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Abstract

Genomewide screens of genetic variation within and between populations can

reveal signatures of selection implicated in adaptation and speciation. Genomic

regions with low genetic diversity and elevated differentiation reflective of locally

reduced effective population sizes (Ne) are candidates for barrier loci contributing to

population divergence. Yet, such candidate genomic regions need not arise as a

result of selection promoting adaptation or advancing reproductive isolation. Linked

selection unrelated to lineage-specific adaptation or population divergence can gen-

erate comparable signatures. It is challenging to distinguish between these pro-

cesses, particularly when diverging populations share ancestral genetic variation. In

this study, we took a comparative approach using population assemblages from dis-

tant clades assessing genomic parallelism of variation in Ne. Utilizing population-level

polymorphism data from 444 resequenced genomes of three avian clades spanning

50 million years of evolution, we tested whether population genetic summary statis-

tics reflecting genomewide variation in Ne would covary among populations within

clades, and importantly, also among clades where lineage sorting has been com-

pleted. All statistics including population-scaled recombination rate (q), nucleotide

diversity (p) and measures of genetic differentiation between populations (FST, PBS,

dxy) were significantly correlated across all phylogenetic distances. Moreover, geno-

mic regions with elevated levels of genetic differentiation were associated with

inferred pericentromeric and subtelomeric regions. The phylogenetic stability of

diversity landscapes and stable association with genomic features support a role of

linked selection not necessarily associated with adaptation and speciation in shaping

patterns of genomewide heterogeneity in genetic diversity.
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1 | INTRODUCTION

Understanding the processes governing heterogeneity of genome-

wide diversity has been a long-standing goal in evolutionary genetics

(Ellegren & Galtier, 2016) and is of central importance to adaptation

and speciation research (Seehausen et al., 2014; Wolf & Ellegren,

2017). A plethora of recent studies characterizing genetic variation

of diverging natural populations in a taxonomically diverse set of

species identified strong heterogeneity in the genomewide distribu-

tion of genetic diversity, both within and between populations (e.g.,
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in sunflowers (Renaut et al., 2013), monkey flowers (Puzey, Willis, &

Kelly, 2017), stickleback fish (Roesti, Kueng, Moser, & Berner 2015),

rabbits (Carneiro et al., 2014) or birds (Ellegren et al., 2012; Poelstra

et al., 2014)). Despite commonality in patterns seen across this wide

range of taxa, elucidating the underlying processes remains challeng-

ing (Wolf & Ellegren, 2017).

Regions of reduced genetic diversity generally coinciding with

elevated levels of genetic differentiation (Charlesworth, 1998) can

be interpreted in the context of adaptation and speciation under

conditions of gene flow (Nosil & Feder, 2013). Building on the idea

of a ‘genic view of speciation’ (Wu, 2001), barrier loci experiencing

divergent selection contribute to a reduction of gene flow between

populations (i.e., reduced effective migration rate (me) relative to

gross migration rate (m) (Abbott et al., 2013)). However, recombina-

tion decouples the locus under divergent selection from neighbour-

ing genetic variation. As a consequence, effective migration rates

will not only vary across the genome as a function of the strength of

selection (s), but also due to recombination rate (r). Effective migra-

tion will be most strongly reduced by selection at the causative locus

and increases as a function of genetic distance to levels experienced

by neutral genetic variation (at equilibrium me = m/(1 + s/r), (Barton

& Bengtsson, 1986)). Assuming neutrality, empirical information on

genomewide migration rate under mutation–drift equilibrium can be

obtained from measures of genetic differentiation, usually FST ~ 1/

(1 + Ne(m + l)). Genome scans assaying local levels of genetic differ-

entiation along the genome may additionally allow identifying

regions under selection (Lewontin & Krakauer, 1973). Positive selec-

tion will reduce local levels of genetic diversity, and hence Ne, result-

ing in increased levels of FST (see also (Cruickshank & Hahn, 2014)).

Divergent selection opposing gene flow between populations will

further increase regional genetic differentiation by preventing

homogenizing admixture (reducing me). Regions of the genome with

elevated levels of genetic differentiation and reduced levels of

genetic diversity are thus often regarded as candidates for hosting

barrier loci subject to divergent selection and refractory to the

homogenizing process of gene flow (‘speciation islands’) (Nosil &

Feder, 2013). Although often framed in the context of ecological

speciation (Nosil & Feder, 2013), barrier loci refer to any genetic ele-

ment conveying ecological, sexual, pre- or postzygotic reproductive

isolation (Wolf, Lindell, & Backstr€om, 2010). The cumulative effect of

multiple barrier loci is eventually expected to transition to genome-

wide barriers, ultimately promoting speciation (Abbott et al., 2013;

Barton, 1983).

However, divergent selection promoting lineage-specific adapta-

tion or reproductive isolation under conditions of gene flow is not the

only process introducing heterogeneity in Ne across the genome. Any

form of selection that reduces genetic diversity will result in compara-

ble signatures of genomewide heterogeneity in Ne. Selection reducing

diversity not only at sites under selection, but also at linked neutrally

evolving sites, is collectively referred to as linked selection. This

includes both positive selection (Smith & Haigh, 1974) and negative

(background) selection (Charlesworth, 1994; Charlesworth, Morgan, &

Charlesworth, 1993). Although these two selective mechanisms are

fundamentally different, it is difficult to discern their effect on genetic

diversity and differentiation (Stephan, 2010). Linked selection is

expected to be most pronounced in regions of low recombination and

high target (gene) density and has been shown to significantly affect

heterogeneity in levels of genetic diversity across a broad range of

organisms (Burri et al., 2015; Cutter & Payseur, 2013; Nachman &

Payseur, 2012; Slotte, 2014). Genomic regions subject to linked selec-

tion are not only depleted of genetic diversity (h ~ Nel), but also expe-

rience accelerated lineage sorting resulting in increased levels of

relative genetic differentiation (FST) (Cruickshank & Hahn, 2014;

Renaut et al., 2013). Relating patterns of genetic variation and differ-

entiation to the underlying process is further complicated by additional

intrinsic and extrinsic factors such as mutation rate variation or demo-

graphic perturbation (Strasburg et al., 2012).

Several ways forward have been suggested to differentiate

between linked selection universally acting in all populations from lin-

eage-specific selection promoting adaptation and speciation. Func-

tional validation of candidate barrier loci flagged during genome scans

provides valuable, independent information on the plausibility of

divergent selection opposing gene flow in a given population-specific

context (Kronforst & Papa, 2015). Theoretical models provide useful

null expectations to compare with empirical patterns (Bank, Ewing,

Ferrer-Admettla, & Foll, Jensen, 2014). Experimental evolution studies

(Dettman, Sirjusingh, Kohn, & Anderson, 2007) or manipulative experi-

ments in natural populations (Soria-Carrasco et al., 2014) allow the link

between the nature of selection and genomic patterns of genetic

diversity to be studied under controlled conditions. Microlevel compar-

ative population approaches leveraging information from spatiotempo-

ral contrasts between populations (‘speciation continuum’ (Mallet,

Beltrán, Neukirchen, & Linares 2007; Powell et al., 2013; Seehausen

et al., 2014)) help disentangle the effects of linked selection unrelated

to speciation (e.g., background selection) from those thought to con-

tribute to reproductive isolation in the face of gene flow (e.g., diver-

gent selection) (Wolf & Ellegren, 2017). This includes the use of

natural hybrids (Barton, 1983; Gompert & Buerkle, 2011) or crosses

generated in the laboratory (Seehausen et al., 2014). Within species

and among closely related species, however, a substantial fraction of

genetic variation is shared by ancestry, impeding inference.

Here, we propose a macrolevel comparative approach extending

comparisons of genomewide diversity beyond closely related taxa to

phylogenetically distant clades, where lineage sorting has long been

completed. This controls for the effect of shared recent ancestry,

recent or ongoing gene flow between clades. Genomic parallelism in

patterns of genetic diversity across such large evolutionary distances

cannot be explained by processes involving selection on a set of

specific genes for each lineage. Instead, it is expected that genomic

parallelism is mediated by universal processes shared in syntenic

regions with similar genomic properties among clades.

One candidate parameter to affect genetic diversity (h ~ 4 Nel)

of syntenic regions similarly among clades is the mutation rate l,

which is known to vary across the genome (Hodgkinson & Eyre-

Walker, 2011). However, support for a role of mutation rate in mod-

ulating the level of genetic variation and differentiation across the
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genome is limited (Cutter & Payseur, 2013). While some studies

found a contribution (Dutoit et al., 2017; Smith & Eyre-Walker,

2017), genetic diversity is generally only weakly associated with

proxies for mutation rate (Cutter & Payseur, 2013; Vijay et al.,

2016). Another parameter that can affect genetic diversity is recom-

bination rate which is reportedly conserved at broadscale between

clades (Auton et al., 2012; Burri et al., 2015; Kawakami et al., 2014;

Roesti, Hendry, Salzburger, & Berner, 2012; Singhal et al., 2015; Tine

et al., 2014). With little evidence for recombination-associated muta-

tion (and hence r ~ l) (Cutter & Payseur, 2013), any form of linked

selection, where the local reduction in Ne through selection is con-

tingent on the rate of local recombination, is thus a prime candidate

for explaining shared heterogeneity in genetic variation among

clades (Cutter & Payseur, 2013).

A macrolevel comparative perspective on genomewide variation

of genetic diversity is implicit, though not the main focus, of recent

work by Van Doren et al. (2017) and Dutoit et al. (2017) comparing

summary statistics of genetic diversity between stonechats and fly-

catchers and between flycatchers and crows, respectively. Here, we

assess the contribution of linked selection in shaping genomewide

landscapes of genetic diversity and differentiation across a wide

range of evolutionary time scale ranging from few thousand to

approximately 50 million years of evolution. Given the global conser-

vation of recombination landscape for tens of millions of years

among avian lineages (Singhal et al., 2015), it is expected that linked

selection mediated by recombination constitutes an important com-

ponent for the concerted evolution of heterogeneity in genomewide

diversity. Note that linked selection resulting in genomic parallelism

between clades includes background selection as well as positive

selection acting repeatedly on orthologous loci among clades. We,

therefore, predict that summary statistics reflective of Ne not only

covary among populations of closely related taxa, but are also corre-

lated among clades. Moreover, assuming karyotypic stability, we

would expect genomic regions with locally reduced Ne by linked

selection to be stably associated with chromosomal features of sup-

pressed recombination such as pericentromeric or subtelomeric

regions.

To empirically address this expectation, we used publicly

available genome resequencing data from several populations or

(sub)-species of three distantly related clades of avian species

complexes – Darwin’s finches, Ficedula flycatchers and Corvus crows

(Table S1) – with split times beyond the expected time for complete

lineage sorting (Fig. S1). For each population and species comparison

within clades, we quantified a set of genetic summary statistics in

syntenic windows of 50 kb in size. Summary statistics were chosen

to be reflective of the local effective population size (Ne) of a geno-

mic region: population-scaled recombination rate q (~Ner), nucleotide

diversity p (~Nel), genetic differentiation expressed as FST (~1/

(1 + Ne (m + l)) (where mutation rate l can generally be neglected if

migration rate m ≫ l), the related population branch statistic (PBS)

accounting for nonindependence of population comparisons, and dxy

(~Nel + lt) reflecting the average number of nucleotide substitutions

between populations. The only parameter shared by these statistics

is Ne; hence, covariation of all statistics in syntenic regions would

indicate selection affecting local Ne alike in the investigated

populations.

2 | MATERIALS AND METHODS

2.1 | Clades

We chose populations and (sub)-species from three phylogenetically

divergent clades: Darwin’s finches of the genera Geospiza, Certhidea

and Platyspiza., flycatchers of the genus Ficedula (F. albicollis, F. hy-

poleuca, F. semitorquata and F. speculigera) and crows of the genus

Corvus including the American crow C. brachyrhynchos and several

taxa from the Corvus (corone) spp. species complex (Vijay et al.,

2016). Functionally annotated genome assemblies with high

sequence contiguity are available for one representative each of

Ficedula flycatchers (F. albicollis, genome size: 1.13, scaffold/contig

N50 = 6.5 Mb/410 kb, National Center for Biotechnology Informa-

tion (NCBI) Accession No: GCA_000247815.2; (Ellegren et al., 2012);

new chromosome build (Kawakami et al., 2014)) and for one hooded

crow specimen (Corvus (corone) cornix, genome size: 1.04 Gb, scaf-

fold/contig N50 = 16.4 Mb/94 kb, NCBI Accession no: GCA_

000738735.1; (Poelstra et al., 2014; Poelstra, Vijay, Hoeppner, &

Wolf, 2015)). The assembly of the medium ground finch G. fortis is

of comparable size (1.07 Gb) and the least contiguous among the

three both at the scaffold and contig level (scaffold/contig

N50 = 5.3 Mb/30 kb, NCBI Accession no: GCA_000277835.1;

(Rands et al., 2013)).

In all three clades, it has been suggested that shared genetic vari-

ation between (sub)-species within clades resulted from incomplete

lineage sorting of ancestral polymorphisms, regardless of whether

populations were connected by recent gene flow or not (Burri et al.,

2015; Lamichhaney et al., 2015; Vijay et al., 2016). However, shared

polymorphism is highly unlikely among clades because of their phylo-

genetic distance. Phylogenetic relationships and divergence time

estimates between representatives of all three clades and zebra finch

(Taenopygia guttata) as shown in Figure 1 have been extracted as

the consensus of 10,000 phylogenetic reconstructions from Jetz,

Thomas, Joy, Hartmann, and Mooers (2012) and Jetz et al. (2014)

using the tree of 6670 taxa with sequence information by Ericson

et al. (2006) as backbone (http://birdtree.org/). This places the sepa-

ration between Corvoidea (crows) and Passerida (Darwin’s finches

and flycatchers) at over 50 million years. Assuming a range in gener-

ation time between 6 years for hooded crows (Vijay et al., 2016),

5 years for Darwin’s finches (Grant & Grant, 1992) and 2 years for

flycatchers (Brommer, Gustafsson, Pieti€ainen, & Meril€a, 2004), this

corresponds to at least 8–25 million generations. With an estimated

long-term Ne of 200,000 for flycatchers and crows (Nadachowska-

Brzyska et al., 2013; Vijay et al., 2016; Wolf, Bayer, et al., 2010;

Wolf, Lindell, et al., 2010) and considerably less for Darwin’s finches

(Ne = 6,000 to 60,000 (Lamichhaney et al., 2015)), this yields a mini-

mum range of 40–125 Ne generations as time to the most common

ancestor. This is clearly beyond the expected time for complete

4286 | VIJAY ET AL.

http://www.ncbi.nlm.nih.gov/nuccore/GCA_000247815
http://www.ncbi.nlm.nih.gov/nuccore/GCA_000738735
http://www.ncbi.nlm.nih.gov/nuccore/GCA_000738735
http://www.ncbi.nlm.nih.gov/nuccore/GCA_000277835
http://birdtree.org/


lineage sorting (9–12 Ne generations; (Hudson & Coyne, 2002)).

Clades are thus not expected to share ancestral polymorphism. The

same consideration holds for the split between flycatcher and Dar-

win’s finches assuming approximately 45 million years of divergence

(Figure 1). Even assuming an earlier, minimal age estimate of the

split between Corvoidea and Passerida in the order of 25 million

years ago (Jarvis et al., 2014; Prum et al., 2015; Jønsson et al. 2016)

and a split between flycatchers and finches at 19 million years (Sing-

hal et al., 2015) gives split times beyond 12 Ne generations suggest-

ing complete lineage sorting for neutral genetic variation.

2.2 | Establishing homology among genomes

Homologous regions between genomes were identified in order to

quantify the degree to which genetic diversity, recombination and

genetic differentiation landscapes are conserved between species.

To ensure comparability across all three clades in the most efficient

way, we chose to lift-over coordinates of 50-kb nonoverlapping win-

dows from the genomes to the independent, well maintained high-

quality zebra finch reference genome (Hubbard et al., 2002). Lift-

over is the process of transferring the positions along one genome

to another genome based on whole-genome alignments. This

approach assumes a high degree of synteny among species, which is

justified given the evolutionary stasis of chromosomal organization

in birds across more than 100 million years of evolution (Ellegren,

2010). Performing a base by base lift-over can lead to partial loss of

regions within a window as well as merging of nonadjacent windows.

While sequencing reads of one species can be mapped to the gen-

ome of another species to identify variants, this strategy cannot be

confidently extended beyond 5–15% sequence divergence without

introducing read mapping bias (Shafer et al., 2016; Vijay, Poelstra,

Künstner, & Wolf, 2013). To avoid such errors, we estimated the

statistics for each species in windows prior to the lift-over. Convert-

ing the coordinates of genomes from multiple different species into

one single coordinate system allows for straightforward comparison

of all statistics derived from the original polymorphism data (in vari-

ant call format or vcf).

Whole-genome alignments between species can be represented

in the form of chain files that record the links between orthologous

regions of the genome. We downloaded chain files from the UCSC

website (https://genome.ucsc.edu/) to transfer the coordinates in

bed format from flycatcher and Darwin’s Finch genomes onto the

zebra finch genome using the program liftOver (Kuhn et al., 2007).

For the crow genome where no chain files were available, we first

aligned the crow genome to the flycatcher genome using LASTZ

(Harris, 2007) to obtain a .psl file which was subsequently converted

to a chain file using JCVI utility libraries (Tang, Li, & Krishnakumar,

2015). This chain file was then used to transfer the crow coordinates

to zebra finch coordinates (via flycatcher) using the liftOver utility

(Hinrichs et al., 2006).

Orthology could be established for a large proportion of the orig-

inal genomes. Depending on parameter settings, controlling strin-

gency (‘minmatch’) and cohesion (‘minblocks’) per cent recovery

ranged from as little as 13% to over 90% (Fig. S1, Table S2). To find

an optimal combination of parameter values and to validate lift-over

quality, we made use of the fact that GC content in orthologous

regions of avian genomes is expected to be strongly conserved

across long evolutionary distances (Weber, Boussau, Romiguier, Jar-

vis, & Ellegren, 2014). We calculated GC content in 50-kb windows

from the three different assemblies and compared these values to

the GC content at the new, orthologous positions lifted over to the

zebra finch genome. Pearson’s correlations were high across a broad

set of parameter values in all clades ranging from 0.83–0.97. While

liftOver is able to transfer the coordinates from the focal genome

onto positions along the zebra finch genome, these new positions do

not retain the window structure from the original genomes. To be

able to compare population genetic summary statistics between spe-

cies in orthologous windows, we defined 50-kb windows along the

zebra finch genome. For each window, we then calculated a mean

value across all regions that were lifted over and overlapped a given

window. To ensure that this procedure of calculating means did not

unduly influence comparability across species, we compared the val-

ues of GC content from each of the focal genomes after taking the

mean across overlapping regions to the GC content in the zebra

finch genomic windows. Although correlation coefficients were

lower than those seen directly after liftOver, they still exceeded

0.78, 0.82, 0.82 for Darwin’s finch, flycatcher and crow, respectively,

across a broad ‘minmatch’ and ‘minblock’ parameter space (Fig. S1,

Table S2). The high correlation of GC content across the liftOver

steps suggests that the lift-over procedure of moving the windows

F IGURE 1 Study design. Dated phylogenetic reconstruction of all
clades used in this study. Note that for each focal taxon (crows,
flycatchers and Darwin’s finches), a large number of individuals from
several populations and subspecies have been used comprising 120
Darwin’s finch genomes (Lamichhaney et al., 2015), 200 genomes
from Ficedula flycatchers (Burri et al., 2015) and 124 genomes from
crow of the genus Corvus (Vijay et al., 2016) [Colour figure can be
viewed at wileyonlinelibrary.com]
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from one genome assembly to another was reliable at the window

size being evaluated. Finally, an optimal combination of stringency,

cohesion and per cent recovery was chosen on the basis of the (vi-

sually inferred) inflection point of the relationship between GC cor-

relation and recovery (Fig. S1).

It could be seen that certain regions of the genome were system-

atically more susceptible to drop out during liftOver than others for

all clades (Fig. S2). In particular, regions located on scaffolds that have

not been linked to any specific chromosome and those that have not

been placed at a particular position along a chromosome were more

difficult to lift-over than other regions of the genome. Hence, for the

purpose of this study, we have excluded these regions in all subse-

quent analyses. To ensure that liftOver did not introduce a bias in

the regions being analysed, we compared the GC content distribution

of the regions that could be lifted over at different values of the

“minmatch” parameter (Fig. S3). No clear evidence of bias with regard

to GC content of the successfully lifted over regions emerged.

2.3 | Data sets

We compiled the following publicly available population resequenc-

ing data sets for the three clades (Table S1). Populations with less

than three individuals were excluded in all species.

1. Crows in the genus Corvus (124 genomes resequenced, 55 popula-

tion comparisons within and between two focal species, the Ameri-

can crow C. brachyrhynchos and various (sub)-species and

populations within the C. (corone) spp. complex). Population

genetic summary statistics including genetic diversity (p), popula-

tion recombination rate (q), genetic differentiation (FST, PBS, dxy)

across the European crow hybrid zone have been characterized

using high coverage whole-genome resequencing data of 60 indi-

viduals samples in a 2 9 2 population design between carrion

crows (Corvus (corone) corone) and hooded crows (C. (c.) cornix)

(Poelstra et al., 2014). This study has been followed by a broader

sampling regime with a total of 118 crows from the Corvus (c.) spp.

species complex including a parallel hybrid zone in Russia between

C. (c.) cornix and C. (c.) orientalis, a contact zone between the latter

and C. (c.) pectoralis and numerous other allopatric populations

(Vijay et al., 2016). The system is relatively young such that 12% of

segregating genetic variation has been estimated to be shared

between Eurasian and American crows (C. brachyrhynchos) (Vijay

et al., 2016) which split at approximately 3 million years ago

(Jønsson et al. 2016). FST and dxy ranged from 0.016–0.486 and

0.0015–0.0018, respectively. A broad range in p (0.0010–0.0033)

and Tajima’s D (0.5895 to �1.974) suggests perturbation by popu-

lation-specific demographic histories.

2. Ficedula flycatchers (200 genomes resequenced with 30 popula-

tion comparisons across the 4 focal species F. albicollis, F. hy-

poleuca, F. semitorquata and F. speculigera and two outgroup

species F. parva and F. hyperythra). Species diverged approxi-

mately 2 million years ago and populations differ slightly in geno-

mewide levels of differentiation (p: 0.0029–0.0039). A total of 30

population comparisons within and across species provide a

broad contrast across a spectrum of genomewide differentiation

(FST: 0.012–0.981 and dxy: 0.0031–0.0050) (see (Burri et al.,

2015)).

3. Darwin’s finches (120 genomes resequenced, 44 population com-

parisons across the six focal species Geospiza conirostris, Geospiza

difficilis, Camarhynchus pallidus, Certhidea fusca, Certhidea olivacea

and Pinaroloxias inornata). The differentiation landscape of Dar-

win’s finches has been studied using whole-genome resequencing

data and has been instrumental in the identification of adaptive loci

associated with beak shape evolution (Lamichhaney et al., 2015).

This set of populations across several species differs fourfold in

genomewide levels of diversity (p: 0.0003–0.0012, see (Lamich-

haney et al., 2015)). Species are estimated to share common ances-

try ~1.5 million years ago, yielding 44 population comparisons

ranging across a broad spectrum of genomewide differentiation

(FST: 0.192–0.897) and divergence (dxy: 0.0022–0.0047).

2.4 | Genetic diversity data

In all three study systems, segregating genetic variation and related

summary statistics have been characterized in nonoverlapping win-

dows across the genome using similar strategies based on the Gen-

ome Analysis Toolkit GATK (DePristo et al., 2011) (see Table S3 for

methodological comparison and consult individual studies for addi-

tional details). We used the final set of variant calls from each indi-

vidual to calculate a set of summary statistics. vcf (Variant Call

Format) files were obtained from Lamichhaney et al. (2015) for Dar-

win’s finches, Burri et al. (2015) for flycatchers and Vijay et al.

(2016) for crows. Each of the statistics was calculated in 50-kb win-

dows for all scaffolds longer than 50 kb.

2.4.1 | Population recombination rate (q) and
nucleotide diversity (p)

To generate an estimate of the population-scaled recombination rate

in Darwin’s finches q, we followed the approach described in Vijay

et al. (2016). In brief, we used LDHELMET (Chan, Jenkins, & Song, 2012)

on genotype data phased with FASTPHASE (Scheet & Stephens, 2006).

The required mutation matrix was approximated from zebra finch sub-

stitution rates following Singhal et al. (2015). Population recombina-

tion rate data for crows and flycatchers were estimated using the same

approach and were extracted from Vijay et al. (2016) and Kawakami

et al. (2017), respectively. Pairwise nucleotide diversity p was calcu-

lated from the .vcf files using the R package HIERFSTAT. The number of

usable invariant sites was identified based on per base pair sequencing

coverage of individuals to use only those sites that are covered by at

least five reads in more than half of the individuals in each population.

2.4.2 | Genetic differentiation (FST, PBS, dxy)

FST was estimated using Weir and Cockerham’s estimator based on

genotypes from the .vcf files using the procedure implemented in
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the HIERFSTAT package (Goudet, 2005) as the ratio of the average of

variance components. To avoid pseudo-replicated population

comparisons, we also calculated lineage-specific FST in the form

of population branch statistics (PBS) using the formula

PBS ¼ ðð�logð1� FSTðPop1 Pop2ÞÞÞ þ ð�logð1� FSTðPop1 Pop3ÞÞÞ
�ð�logð1� FSTðPop2 Pop3ÞÞÞÞ=2. dxy following the definition by

Nei (1987) was estimated with custom scripts on the basis of the R

package HIERFSTAT (Poelstra et al., 2014). The number of usable invari-

ant sites for dxy calculation was identified based on per base pair

sequencing coverage of individuals to use only those sites that are

covered by at least five reads in more than half of the individuals in

both populations.

2.4.3 | Quantifying similarity of genomic landscapes
within and among clades

We used Pearson correlations as a simple means to characterize the

degree of covariation in genomewide distribution patterns for a

given summary statistic. Correlation coefficients were calculated on

the basis of homologous windows within and between clades (see

above). For intrapopulation measures (q, p), we calculated all possible

combinations between two populations (with more than three indi-

viduals) i = 1. . .(n�1) and j = (i + 1). . ..n. For interpopulation metrics

(FST, PBS, dxy), we calculated all possible combinations between

population comparisons I (e.g., popA vs. popB), J (e.g., popC vs.

popD) except for flycatcher where FST was only available for 16 pop-

ulations comparisons (cf. Burri et al., 2015). This yields a distribution

of correlation coefficients for each summary statistic (see also (Vijay

et al., 2016)). Significance in covariation between populations or

population comparisons was attributed if more than 95% of the dis-

tribution were above zero (significant positive correlation) or below

zero (significant negative correlation).

2.4.4 | Overlap with centromeres and subtelomeres

LiftOvers to the zebra finch genome in principle allow associating

outlier regions from genome scans (e.g., islands of elevated differen-

tiation) with genomic features such as centromeres or subtelomeres.

This approach works under the assumption of karyotype conserva-

tion across large evolutionary timescales (Ellegren, 2010). It is con-

servative in that overlap is only expected if centromere position is

conserved between zebra finch and the taxon under consideration.

Evolutionary lability of these features, partly expected due to known

lineage-specific inversions in zebra finch (Hooper & Price, 2015;

Kawakami et al., 2014; Romanov et al., 2014), would reduce any real

correlation (type II error), but is unlikely to introduce spurious corre-

lations (type I error). Twenty-two centromere and 20 subtelomere

positions were obtained for zebra finch from Knief and Forstmeier

(2016). Candidate centromeric regions were on average ~1 Mb long

(mean: 960,100 bp; range: 150,000 bp to 5,350,000 bp), while the

subtelomeric regions were shorter (mean: 169,800; range: 50,000 bp

to 298,700 bp). Some of the subtelomeric and (peri)centromeric

regions were located at the extreme ends of the chromosomes and

orthologous regions could not be identified in the draft assemblies

of the crow, flycatcher and Darwin’s finch. These regions are either

not assembled in the draft genomes, or synteny could not be unam-

biguously assigned.

Of the 42 regions that have been identified as (peri)centromeric

or subtelomeric regions in zebra finch, orthologous regions could be

identified for a subset of 38 in the flycatcher (mean recovery, i.e.,

mean of the fraction of each of the regions mapped: 0.69), 39 in

crow (mean recovery: 0.83) and 25 in the Darwin’s Finch genome

(mean recovery: 0.55). The relatively low recovery in Darwin’s finch

is most likely owing to the lower quality of its genome, which is more

fragmented than the genomes of flycatcher and, particularly, of crow.

The subtelomeres of chromosome 5, 13 and 21 could be lifted over

in neither crow nor flycatcher genomes suggesting a systematic bias

for these regions. To reduce the effect of such bias, we not only

looked for overlap of outlier peaks (as defined below) with (peri)cen-

tromeric or subtelomeric regions, but also for overlap with increasing

distance from the inferred positions of these features in five incre-

mental steps of 10 kb. In the case of random association, no relation-

ship would be expected with distance. In the case of genuine

association, significance of the overlap should decrease with distance.

To relate characteristics of the genomic differentiation landscape

to chromosomal features, we proceeded as follows. For each taxon,

we chose two independent population comparisons with the highest

genomewide average FST values. This strategy is owing to the fact

that clear ‘background peaks’ caused by shared linked selection only

start crystallizing at an advanced level of population divergence (Burri

et al., 2015; Vijay et al., 2016). This is theoretically expected and has

been shown in crows where an increase in genomewide FST is

accompanied by an increase in autocorrelation between windows,

peak overlap and the degree of covariation in differentiation land-

scapes (Vijay et al., 2016). Population pairs used and their corre-

sponding differentiation statistics are shown in Table S4. We then

used positions along the zebra finch genome to calculate the per cent

of (peri)centromeric and subtelomeric regions that overlapped with

differentiation outliers (Table S5). To check whether the per cent of

overlap we observed was more than that expected by chance, we

permuted the positions of centromeres and subtelomeres within each

chromosome 1000 times using the shuffle option in bedtools (Quin-

lan & Hall, 2010) and calculated the per cent of overlap that was

expected by chance alone. A significant association is inferred at type

I error levels of 0.05/0.01 if the test statistic derived from the empiri-

cal centromere/subtelomere distribution exceeded a maximum of 49/

0-times by test statistics derived from the permuted distributions.

3 | RESULTS

3.1 | Covariation within clades (microlevel)

Previous studies in flycatcher (Burri et al., 2015; Kawakami et al.,

2017) and crow (Vijay et al., 2016) have shown that population-

scaled recombination rate (q), nucleotide diversity (p) and measures

of genetic differentiation (FST, PBS and dxy) were significantly
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correlated between population (comparisons) within each clade.

Extending the population comparison of q, p, FST, PBS and dxy to the

Darwin’s finch complex corroborates the generality of this finding.

Genomewide patterns of these summary statistics summarized in

Figure 2 and Table S6 were positively correlated among all popula-

tions in each of the three clades. For q, correlation coefficients were

highest in flycatchers (mean r = .43), followed by Darwin’s finches

(r = .27) and crows (r = .19). Nucleotide diversity p showed strongest

covariation in flycatchers (r = .95), followed by crows (r = .70) and

Darwin’s Finches (r = .49). Correlation of FST was consistently posi-

tive between all population pairs in Darwin’s finches (r = .46), fly-

catchers (mean r = .42) and crows (r = .36). The correlation for PBS

was even stronger than FST (r = .64 in Darwin’s finches, r = .46 in

flycatchers and r = .42 in crows). dxy showed significantly positive

correlations between pairs of populations within each clade with

mean correlation coefficients of .72, .85 and .94 in flycatchers, crows

and Darwin’s finches, respectively. Importantly, dxy was negatively

correlated with FST (mean range r = �.45 to �.19). This is predicted

by long-term linked selection (acting already in the ancestor) and is

opposed to the expectation for divergent selection in the face of

gene flow (Cruickshank & Hahn, 2014; Nachman & Payseur, 2012).

3.2 | Covariation across clades (macrolevel)

Next, we investigated whether the summary statistics indicative of

local Ne used in the intraclade comparisons also covaried in syn-

tenic regions between clades. Although effect sizes were lower,

correlations were consistently positive for all summary statistics

(Figure 2b, Table S7). Mean Pearson’s correlation coefficient in the

population-scaled recombination rate (q) ranged from 0.099 (crow

vs. flycatcher) to 0.172 (flycatcher vs. Darwin’s finch) and for

nucleotide diversity (p) from 0.082 (flycatcher vs. Darwin’s finch)

to 0.271 (crow vs. flycatcher). Patterns of genetic differentiation

were also similar between clades with FST ranging from 0.115

F IGURE 2 Covariation of population genetic summary statistics within and among clades. (a) Genomewide landscapes of four summary
statistics are compared within and between clades. Depicted is an example showing the population recombination rate (q), nucleotide diversity
(p), genetic differentiation (FST and dxy) along chromosome 13 of zebra finch. The x-axis is scaled in units of 50-kb windows. (b) Distribution of
correlation coefficients (Pearson’s r) shown as violin plots for population summary statistics characterizing variation within (q, p) and between
populations (FST, dxy). Correlations are first shown for population comparisons within each of the three clades (intraclade). Subscripts i, j
symbolize all possible combinations of correlations between two populations i = 1. . .(n�1) and j = (i+1). . ..n for within-populations measures;
capital letters I, J symbolize interpopulation statistics. Correlations exclude pseudo-replicated population comparisons. Similarly, within- and
between-population measures were compared among all three clades (interclade), as illustrated by the bird images. In case of no association, a
normal distribution centred around null would be expected [Colour figure can be viewed at wileyonlinelibrary.com]
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(crow vs. flycatcher) to 0.163 (crow vs. Darwin’s finch) and PBS

ranging from 0.185 (crow vs. Darwin’s finch) to 0.231 (flycatcher

vs Darwin’s finch). dxy showed the highest interclade correlations

ranging from 0.224 (flycatcher vs. Darwin’s finch) to 0.342 (crow

vs. flycatcher). As in the microlevel comparisons, dxy and FST were

negatively correlated among clades (mean range r = �.21 to �.16).

The strength of correlation in all of these summary statistics was

not systematically associated with divergence time representing 50

million years of independent evolution (Figure 2b, Table S7,

Fig. S4).

3.3 | Overlap with structural genomic features

We next sought to investigate the potential impact of structural

genomic features where the effect of linked selection might be par-

ticularly pronounced. We evaluated whether regions of highly ele-

vated differentiation were associated with regions of suppressed

recombination adjacent to pericentromeric and subtelomeric regions

as predicted from the location of such regions in zebra finch (kary-

otype data are not available for both crow and collared flycatcher;

Figure 3a). For each clade, we focused on the two most divergent

population/species comparisons (Burri et al., 2015; Vijay et al.,

2016). In all three clades, the overlap was significantly larger than

expected by chance in at least one comparison of each species (per-

centage of overlap in flycatchers: 58.53% and 60.98%, crows:

21.95% and 31.7%, Darwin’s finches: 14.63% and 29.27%) (Fig-

ure 3b). When regions next to pericentromeric and subtelomeric

regions were considered separately, there was a significant associa-

tion for subtelomeric regions in all three clades (Fig. S5), whereas

the association for regions next to centromeres was significant only

in flycatcher (Fig. S6).

4 | DISCUSSION

In this study, we quantified genomewide patterns of genetic diver-

sity within and between multiple populations for each of three phy-

logenetically distant avian clades with split times beyond the

expected time for complete lineage sorting. We asked the question

whether these ‘landscapes of genetic diversity’ covaried across

microevolutionary timescales among populations within clades and

across macroevolutionary timescales among clades.

As previously reported, genomewide heterogeneity in genetic vari-

ation captured by population genetic statistics reflective of local Ne

covaried among populations within clades. Studies in sunflowers

(Renaut et al., 2013) stonechats (Van Doren et al., 2017), crows (Vijay

et al., 2016) and flycatchers (Burri et al., 2015) similarly reported that

landscapes of variation in genetic diversity were correlated among

populations and closely related species differing in divergence time

and the level of gene flow. An explanation for the correlated pattern

of diversity, therefore, requires a mechanism universally affecting all

populations. Variation in the strength of linked selection mediated by

local levels of recombination rate shared among populations has been

suggested as a primary force. In flycatchers, for example, where pedi-

gree-based recombination rate data are available, linked selection

serves an explanation for genomic parallelism among populations and

species without the need to invoke population-specific adaptation and

context-dependent selection in the face of gene flow (Burri et al.,

2015). While mutation rate may contribute in shaping genomewide

variation in genetic diversity, linked selection appears to be the domi-

nant mechanism (Dutoit et al., 2017).

The present study adds a macroevolutionary, comparative axis

providing evidence for linked selection at syntenic regions across

large phylogenetic distances where any contribution of shared

F IGURE 3 Association of genomic differentiation landscapes with chromosomal features. (a) Schematic of the shuffling of centromere and
subtelomere positions to estimate the expectation for random overlap. (b) The degree of overlap between regions of elevated differentiation
with the combined set of regions adjacent to the centro- and subtelomeres is quantified for two selected population pairs (red and black
arrows) from each taxon. The distributions of random expectation as assessed by permutation for these population pairs are shown in the
same colours. The dotted line to the right side is the 95% quantile of the distribution [Colour figure can be viewed at wileyonlinelibrary.com]
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ancestry, gene flow or common environmental factors can be

excluded. Summary statistics capturing information on Ne were corre-

lated among clades spanning over 50 millions of years of divergence.

The degree of correlation among clades was remarkable considering

divergence times of several million generations, gaps in syntenic

alignments and the statistical error associated with population genetic

estimates from moderate samples sizes. With recombination rate

being the key mediator of linked selection, an explanation of genomic

parallelism in Ne through linked selection requires conserved recom-

bination landscapes among the clades under investigation. Unlike

mammals, a relatively stable karyotype in birds (Ellegren, 2010)

argues for global conservation of recombination landscape; however,

the extent of such conservation is not clear, in particular at the level

of individual chromosomes. Comparative analysis among chicken,

zebra finch and collared flycatcher suggests that intrachromosomal

rearrangements occurred at non-negligible rates and that lack of

recombination around (macro-)chromosome centres appears to be

specific to zebra finch (Kawakami et al., 2014). It is thus not straight-

forward to predict the degree of covariation in recombination rates

at kb-resolution considered here. The observed correlation in popula-

tion-scaled recombination rates between clades, however, is consis-

tent with the assumption that overall recombination landscapes are

sufficiently similar to mediate common patterns of linked selection.

Nevertheless, it has been suggested that recombination rate could

slightly change even within clades in birds (Kawakami et al., 2017),

indicating that genetic diversity and differentiation could evolve in a

species or clade-specific manner. It should further be noted that

mutation rate variation could also contribute to the correlation.

However, compared to the effect of recombination rate, its effect on

genomewide variation of genetic diversity seems minor (Cutter &

Payseur, 2013; Dutoit et al., 2017).

The magnitude of correlations of all summary statistics was not

related to divergence time (Fig. S4) with sometimes noticeably higher

correlation coefficients for the phylogenetically older flycatcher–

crow comparison, than for the younger flycatcher–finch comparison

(Table S7). This suggests that the strength of covariation may be

underestimated by factors such as genome quality, population sam-

pling and/or differences in the degree of rearrangements between

clades. Due to these limitations, a direct comparison of effect sizes

between intra- and interclade comparisons which would allow the

separation of population-specific selection from selection shared

across all clades under consideration is at present not possible. How-

ever, substantial covariation among clades indicates that genomic

regions with properties amenable to linked selection reducing Ne

remained stable across millions of years of evolution. The observa-

tion that dxy was generally reduced in areas of high relative differen-

tiation (FST, PBS) both within and across clades points towards a

selective process continuously purging diversity and reducing effec-

tive population size (Cruickshank & Hahn, 2014). Van Doren et al.

(2017) also reported covariation in FST, dxy and p across the shorter

evolutionary distance between flycatchers and stonechat, and simi-

larly concluded that linked selection continuously erodes local

genetic diversity possibly before the divergence of these species.

Linked selection can occur in the form of background selection

(Charlesworth, 1994) or recurrent hitch-hiking dynamics by selective

sweeps (Smith & Haigh, 1974). Consistent with both types of selec-

tion, recent population genetic studies of flycatchers and crows sug-

gest that diversity and differentiation landscapes were associated

with variation in recombination rate and gene density (as a proxy for

the target of selection) within clades (Burri et al., 2015; Vijay et al.,

2016). In species with moderate effective population sizes, beneficial

mutations are expected to be limited, and the distribution of fitness

effects are likely to differ between species (Eyre-Walker & Keightley,

2007). Parallel positive selection forming the basis of adaptation or

divergent selection affecting the same genomic regions in different

clades is thus expected to be rare. Background selection on the

other hand appears to be less limited by mutational input, assuming

that the vast majority of new mutations are deleterious. Given its

long-term effects, it will also be only slightly affected by the transi-

tory population-specific demographic change (Beissinger et al., 2016;

Coop, 2016; Ewing & Jensen, 2016). Based on model-based coales-

cent simulation, Corbett-Detig, Hartl, and Sackton (2015) suggested

that for species with low/moderate population sizes (including fly-

catchers), background selection would prevail over hitch-hiking in

relative importance (but see Coop (2016) and Munch, Nam, Schierup,

and Mailund (2016)). Importantly, linked selection based on either

background selection or selective sweeps will reduce ancestral

genetic variation and consequently generate shared patterns of

reduced genetic diversity in low recombination regions. The

observed negative correlation between FST and dxy is consistent with

predictions of linked selection of both background and positive

selection reducing not only population-specific, but ancestral genetic

variation. Yet, it cannot fully be excluded that loci directly governing

population-specific adaptation or promoting population divergence

can emerge in parallel among clades. Such an explanation would,

however, need to invoke continuous and frequent occurrences of

selective sweeps reducing genetic variation at syntenic regions

between clades. The inclusion of more species from larger evolution-

ary distances with distinct biogeographic histories will help to further

resolve the relative contribution of factors influencing local genetic

diversity.

In all clades under investigation, we found evidence for reduced

diversity and elevated differentiation at candidate (peri)centromeric

regions. A similar association was suggested for mouse (Carneiro,

Nuno, & Nachman, 2009), Swainson’s thrushes (Delmore et al., 2015)

and stickleback fish (Roesti, Moser, & Berner, 2013). These studies are

consistent with the idea that strongly reduced recombination rate in

the vicinity of centromeres will most strongly be affected by linked

selection. However, centromeric positions in crow, flycatcher and Dar-

win’s finch were approximated relative to centromeres in zebra finch.

Zebra finch is known for its many lineage-specific inversions (Kawa-

kami et al., 2014; Weissensteiner et al., 2017) which may have

reduced the association of genetic differentiation with the predicted

centromere locations in the target species. Recent work in crows,

however, corroborates an impact of independently predicted, putative

(peri)centromeric regions on population recombination, genetic

4292 | VIJAY ET AL.



diversity and differentiation (Weissensteiner et al., 2017). In addition

to putative centromeric regions, we found evidence for an association

of subtelomeric regions with variation in genetic diversity. Yet, sub-

telomeric regions are not necessarily characterized by low recombina-

tion in birds (Backstr€om et al., 2010; Kawakami et al., 2014) which is

consistent with an explanation invoking recurrent positive selection

rather than background selection reducing local Ne. However, in other

systems, it has been shown that subtelomeric regions experience low

recombination rates, similar to centromeres (Roesti et al., 2013). Fur-

ther evaluation of this hypothesis will require fine-scale recombination

rate estimates across all clades.

In conclusion, we advocate the use of comparative, phylogenetic

approaches to shed light on population-level processes introducing

heterogeneity in patterns of diversity, differentiation and divergence

along the genome. Most insight will be gained in taxa with

high-quality, chromosome level genome assemblies with correct

placement of centromeric and subtelomeric regions. Independent

estimates of mutation and recombination rates are further crucial to

assess the genomic stability of these central processes across evolu-

tionary timescales. On the bioinformatic side, unbiased methods for

translating orthologous genomic coordinates among a large number

of distantly related species are required.
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