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Abstract 

Recent studies suggest that the most common and lethal type of “ovarian” cancer, high-grade 

serous carcinoma (HGSC), usually arises from epithelium on the fallopian tube fimbriae, and not 

from the ovarian surface epithelium (OSE). We have developed Ovgp1-iCreERT2 mice in which 

the Ovgp1 promoter controls expression of tamoxifen (TAM)-regulated Cre recombinase in 

oviductal epithelium – the murine equivalent of human fallopian tube epithelium (FTE). We 

employed Ovgp1-iCreERT2 mice to show that FTE-specific inactivation of several different 

combinations of tumour suppressor genes recurrently mutated in human HGSCs – namely 

Brca1, Trp53, Rb1, and Nf1 – results in serous tubal intraepithelial carcinomas (STICs) that 

progress to HGSC or carcinosarcoma, and to widely metastatic disease in a subset of mice. The 

cancer phenotype is highly penetrant and more rapid in mice carrying engineered alleles of all 

four tumour suppressor genes. Brca1, Trp53 and Pten inactivation in the oviduct also results in 

STICs and HGSCs, and is associated with diffuse epithelial hyperplasia and mucinous 

metaplasia not observed in mice with intact Pten.  Oviductal tumours arise earlier in these mice, 

compared to those with Brca1, Trp53, Rb1 and Nf1 inactivation. Tumour initiation and/or 

progression in mice lacking conditional Pten alleles likely requires acquisition of additional 

defects, a notion supported by our identification of loss of the wild-type Rb1 allele in the tumours 

of mice carrying only one floxed Rb1 allele. Collectively, the models closely recapitulate the 

heterogeneity and histological, genetic, and biological features of human HGSC. These models 

should prove useful for studying the pathobiology and genetics of HGSC in vivo, and for testing 

new approaches for prevention, early detection, and treatment. 

 

Keywords:  ovarian cancer, genetically engineered mouse model, fallopian tube, serous 

carcinoma 
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Introduction 

High-grade serous carcinoma (HGSC) is the most common and lethal type of “ovarian” cancer, 

accounting for ~70-75% of cases [1]. Recent studies suggest that HGSCs usually arise in 

fallopian tube epithelium (FTE), rather than the ovarian surface epithelium (OSE) [2,3]. HGSCs 

display a high level of chromosomal instability, and virtually all harbour somatic TP53 mutations, 

which occur very early in HGSC pathogenesis, as TP53 mutations are also present in HGSC 

precursors, known as serous tubal intraepithelial carcinomas (STICs) [4-6]. Although only nine 

genes were shown to be significantly mutated in HGSCs by the Cancer Genome Atlas project 

[7], somatic structural alterations (e.g. DNA copy number alterations, gene breakage, gene 

fusions) are frequently seen in these tumours [7,8]. These mutational and structural changes 

often lead to dysfunction of the RB, BRCA, PI3K and RAS pathways. Genetic instability in the 

early lesions presumably contributes to the likelihood that somatic mutations conferring 

metastatic potential will be acquired. Thus, women with HGSCs typically have small primary 

lesions and widespread metastases at diagnosis.  Ovarian carcinosarcomas (also known as 

malignant mixed Müllerian tumours – MMMTs) show both malignant epithelial and 

mesenchymal elements, and are now thought to represent a much less common variant of 

HGSC [9].  Like HGSCs, pelvic/ovarian carcinosarcomas have been associated with STICs, and 

a recent study showed identical TP53 mutations in matched pairs of STIC and carcinosarcoma, 

providing evidence of their clonal relationship and the potential origin of carcinosarcoma in the 

fallopian tube [10,11]. 

Genetically engineered mouse models (GEMMs) of ovarian cancer that closely recapitulate their 

human tumour counterparts provide excellent in vivo systems with which to study tumour 

biology, and to perform pre-clinical studies aimed at improving ovarian cancer prevention, early 

detection, and therapy [12].  Historically, most HGSC GEMMs were based on OSE 

transformation [13-16]. More recently, models based on transformation of oviduct (equivalent to 

human fallopian tube) epithelium (hereafter referred to as FTE) have been reported.  Kim et al. 

developed an oviductal HGSC model based on conditional deletion of Dicer and Pten, using the 

Amhr2 promoter to express Cre recombinase in the murine oviduct [17]. The tumours in this 
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model arise first in the fallopian tube stroma and are initially mesenchymal. More recently, 

Perets et al. described a HGSC GEMM, using the Pax8 promoter to drive Cre-mediated 

recombination of floxed Brca1 or Brca2, Pten, and Trp53 alleles in the FTE of Pax8-rtTA;TetO-

Cre mice [18]. While these oviductal HGSC models represent a significant advance, both direct 

Cre expression using gene promoters that lack specificity for the FTE. Amhr2 is also expressed 

in the OSE and stromal cells in the ovary, oviduct, and other portions of the female genital tract 

[19], while Pax8 is expressed in other Müllerian epithelia, such as endometrial glandular 

epithelium, as well as other sites such as kidney and thyroid [20]. A promoter for directing Cre 

expression to the FTE with greater specificity was highlighted by Miyoshi et al., who reported 

the development of oviductal HGSC-like tumours in mice expressing SV40-LTag under control 

of a 2.2-kb fragment of the murine Ovgp1 (oviductal glycoprotein1) promoter [21]. We have 

developed mice in which the Ovgp1 promoter directs expression of tamoxifen (TAM)-regulated 

Cre recombinase in the FTE [22]. Ovgp1-iCreERT2 mice carrying floxed alleles of the Apc and 

Pten tumour suppressor genes (TSGs) invariably develop endometrioid-like tumours in the FTE 

following treatment with TAM, and these tumours are more similar to human ovarian 

endometrioid carcinomas in their morphology, biological behavior, and gene expression profiles 

than tumours based on Apc and Pten inactivation in the OSE [22]. While our earlier work 

showed that cell of origin has a profound impact on tumour phenotype, in the present study we 

wished to test the hypothesis that genetics also affects tumour phenotype.  Given that 

dysregulation of Wnt and PI3K/AKT signalling – characteristic of human endometrioid 

carcinomas – in the oviductal epithelium results in mouse tumours with endometrioid-like 

morphology, we wanted to test whether inactivation of TSGs that are often mutated in human 

HGSCs (Brca1, Trp53, Rb1, and Nf1) [7], lead to HGSC-like tumours in the mouse oviduct. To 

build on the work of Perets et al., we also wished to test the effects of Brca1, Trp53, and Pten 

inactivation in our model system [18]. Although somatic PTEN point mutations are relatively 

uncommon in HGSCs, dysregulation of the PI3K/AKT signalling pathway is frequently observed, 

often as a consequence of PTEN gene breakage events or PIK3CA amplification [7,8]. 
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Materials and methods 

Genetically modified mice and animal care  

The development and characterization of Ovgp1-iCreERT2 transgenic mice have been described 

in detail [22]. Ovgp1-iCreERT2 transgenic mice were crossed with mice carrying engineered 

Rb1, Trp53, Brca1, Nf1, and Pten alleles, to generate transgenic mice with various 

combinations of TSG alterations. In addition to floxed Rb1, Trp53, Brca1, Nf1, and Pten alleles 

in which Cre-mediated recombination generates null alleles, we employed mice carrying a Cre-

inducible Trp53 mutation (LSL-R172H) and mice with constitutional inactivation of one Brca1 

allele (Brca1del).  Rb1fl, Trp53fl, Trp53LSL-R172H, and Brca1fl mice were obtained from the National 

Cancer Institute’s mouse repository. Nf1fl/fl mice were a gift from Yuan Zhu (currently at 

Children’s National Medical Center, Washington, DC, USA). Ptenfl/fl mice were a gift from Tak 

Mak (University Health Network, Toronto, Ontario, Canada). Mice with the Brca1del allele were 

generated by crossing E2a-Cre mice (B6.FVB-Tg[EIIa-cre]C5379Lmgd/J, Jackson Laboratory, 

Bar Harbor, Maine, USA) with Brca1fl/+ mice to generate mice carrying an inactivated Brca1 

allele in the germline. All strains were maintained on a mixed genetic background. Mouse 

genotypes were confirmed by PCR analysis of tail DNA (primer sequences in Supplementary 

Table S1). Procedures involving mice were approved by the University of Michigan’s 

Institutional Animal Care and Use Committee (PRO00006370). 

In vivo induction of oviductal tumours  

Ovgp1-iCre-ERT2 female mice carrying various engineered TSG alleles were given 

intraperitoneal injections of tamoxifen (TAM, T5648, Sigma-Aldrich, Indianapolis, IN, USA) at 

100 mg/kg of body weight on three consecutive days, usually when mice were 6 to 8 weeks old.  

Initially, while monitoring mice for tumour development, selected mice were euthanized at 

various time points following TAM injection and inspected for tumour location and extent at 

necropsy. Thirteen mice underwent survival surgery, during which the right oviduct and ovary 

were removed at two (n=11), three (n=1) or twelve (n=1) months after TAM, and the mice were 

then monitored for tumour development in the remaining oviduct.  Once the presence of a 
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tumour was established, most mice were monitored to humane endpoints. Mice were grossly 

evaluated for tumour extent, and in each case, ovaries, oviducts, uteri, lungs, multiple 

abdominal organs, omentum, and mesentery were examined microscopically. 

Histopathology and immunohistochemistry  

Tissues were fixed in 10% buffered formalin and paraffin-embedded.  Sections (5 µm) were 

H&E-stained for evaluation by light microscopy. To identify microscopic oviductal lesions, each 

oviduct and ovary were serially sectioned in their entirety for microscopic examination.  

Alternate sections were either stained with H&E or retained for immunohistochemical (IHC) 

staining, performed using standard methods as previously described [22]. Antigen retrieval was 

performed by microwaving the slides in citrate buffer, pH 6.0 (Biogenex, San Ramon, CA, USA) 

for 15 min.  Antigen–antibody complexes were detected using the avidin–biotin peroxidase 

method, with diaminobenzidine (DAB) as the chromogenic substrate (Vectastain ABC kit, Vector 

Laboratories, Burlingame, CA, USA).  Primary antibodies used were: rat anti-cytokeratin 8 

(Developmental Studies Hybridoma Bank, University of Iowa), rabbit anti-p53 and rabbit anti-

PAX8 (Proteintech, Chicago, IL, USA), rat anti-Ki67 (DAKO, Carpinteria, CA, USA) and goat 

anti-OVGP1 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). 

 

Results 

STICs, HGSCs, and MMMTs develop in the mouse oviduct following conditional 
inactivation of various combinations of Rb1, Brca1, Trp53 and/or Nf1 in the FTE 

We crossed Ovgp1-iCreERT2 mice with mice carrying Brca1, Trp53, Rb1, and Nf1 alleles, to 

generate 80 transgenic mice of several different genotypes (Figure 1 and Supplementary Table 

S2).  Mice with conditionally modified Brca1, Trp53 and Rb1 alleles are hereafter referred to 

collectively as BPR mice (n=29).  BPN mice (n=3) are those with modified Brca1, Trp53 and Nf1 

alleles, while BPRN mice (n=48) carry modified alleles for all four TSGs.  Data summarizing the 
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oviductal lesions developing in these mice are shown in Figure 1, in which animals with 

generally similar genotypes are grouped together. 

In order to determine whether Brca1, Trp53, Rb1, and/or Nf1 inactivation in the FTE results in 

an oviductal tumour phenotype, ten mice with a range of defined genotypes were euthanized 

1.5 to 6.5 months after TAM. One BPRN mouse (#2820) showed a microscopic lesion closely 

resembling human STIC in one oviduct 2.5 months after TAM injection.  Oviductal lesions were 

not identified in the remaining nine mice.  In an attempt to reduce the number of mice needed to 

determine if, and how often, mice with different genotypes acquire oviductal tumours, the right 

oviduct and ovary were removed from thirteen mice in a survival surgery procedure. Eleven of 

the thirteen (four BPRN, six BPR, and one BPN) had the right oviduct and ovary removed two 

months after TAM injection.  STIC was found in one BPRN mouse (#3867, with homozygous 

floxed alleles for all four TSGs). Two additional BPRN mice underwent survival surgery at 3 and 

12 months after TAM (#3559 and #8234), and STIC was identified in the latter.  

Photomicrographs of two representative mouse STIC lesions are shown in Figure 2. As in 

humans, the mouse STICs have a predilection for arising in the distal portion of the oviduct 

(Figures 2A and 2C, equivalent to human fallopian tube fimbriae).  The lesional cells display 

enlarged, hyperchromatic and pleomorphic nuclei, prominent nucleoli, increased mitotic activity, 

and loss of polarization (Figures 2B and 2D).  

All thirteen mice that underwent survival surgery were monitored for tumour development in the 

remaining oviduct for 5 to 23 months following TAM injection.  Lesions were identified in the 

remaining oviduct in five of six BPRN mice, two of six BPR mice, and in the BPN mouse. The 

oviductal lesions identified in the remaining oviduct included two STICs, two early HGSCs 

(confined to oviduct), two HGSCs extending beyond the oviduct, and two MMMTs, one of which 

metastasized widely. 

Oviductal lesions (STIC, early HGSC, HGSC and/or MMMT) were identified in 50 of 57 

additional mice (12 BPR, 36 BPRN, and 2 BPN mice) not included in the groups described 

above. These mice were monitored for tumour development for time periods ranging from 7 to 

24 months after TAM (Figure 1).  In the 59 of 80 mice with oviductal lesions, tumour involved 
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one or both ovaries in 24 (41%), obliterating the ovary in all but four cases.  Widespread 

peritoneal metastases were observed in 8 mice (14%) and ascites in 7 (12%). In similar fashion 

to the human disease, metastases were often observed in the omentum.  Representative 

photomicrographs showing tumour progression from STIC to early HGSC, HGSC/MMMT, and 

metastatic disease are shown in Figure 3, and IHC staining of primary tumours at various 

stages of tumour progression, and metastases to omentum and ovary are shown in Figure 4 

and Supplementary Figure S1, respectively. The tumour cells expressed CK8 and PAX8 and 

showed increased proliferation, based on IHC staining for Ki67. Tumours with the conditional 

Trp53 R172H mutant allele only occasionally showed focal stabilization of p53 protein (Figure 4, 

#3724).  While the neoplastic cells in STICs and HGSCs retain expression of PAX8, a marker of 

secretory cells, they do not express tubulin, which marks ciliated cells (Supplementary Figure 

S2). The absence of tubulin expression is not surprising, as human HGSCs and STICs do not 

typically display ciliated morphology. 

Only 6 of 48 (12.5%) BPRN mice, compared to 15 of 29 (52%) BPR, failed to develop lesions. 

Some of the failures are likely attributable to euthanasia at relatively early time points (≤6.5 

months after TAM), particularly in the BPR mice.  All three BPN mice included in the study 

developed oviductal HGSC and/or MMMT.  On a per oviduct basis, and excluding those 

removed at the time of survival surgery or evaluated earlier than 7 months after TAM, 87 

oviducts had at least one floxed Nf1 allele. In these oviducts, 11% had no neoplastic lesions, 

21% had STIC, 25% had early HGSC, and 43% had HGSC/MMMT. In contrast, for the 39 

oviducts without floxed Nf1, the percentages were 36%, 41%, 13% and 10%, respectively (p = 

3.8 × 10-5, chi-squared test; p = 2.7 × 10-6, Mantel-Haenszel chi-squared test of association).  

Based on our analysis of the data shown in Figure 1 and in Supplementary Table S2, we 

conclude that the HGSC phenotype in our model is highly penetrant in BPRN and BPN mice, 

especially those carrying homozygous floxed alleles for all TSGs. Furthermore, disease 

progression is generally more rapid in BPRN than in BPR or BPN mice. 

Cre-mediated recombination of Brca1, Trp53, Rb1 and Nf1 alleles in representative tumours 

was confirmed by PCR (Supplementary Figure S3). Interestingly, in mice carrying one floxed 
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and one wild type Rb1 allele, loss of the wild type Rb1 allele was seen in seven of eight tumours 

analyzed (e.g. Supplementary Figure S3, #s 13085, 13576, 13179, and 2117). Hence, as in 

human HGSC pathogenesis, the mouse tumours acquire additional genetic alterations during 

tumour progression. We evaluated oviductal tumour DNA for activation of the conditional 

Trp53LSL-R172H mutant allele in three representative tumours, two of which are shown in 

Supplementary Figure S3C. In all three tumours, recombination of the conditional mutant Trp53 

allele was not observed. Interestingly, of mice with both oviducts intact for 7 months or more, 3 

of 6 with the Trp53LSL-R172H/+ genotype had no detectable oviductal lesions, while only 4 of 51 

mice with at least one floxed Trp53 allele lacked lesions (p = 0.020, two-sided Fisher’s exact 

test). These findings suggest that in this HGSC model system (i) there is selection for biallelic 

inactivation of Rb1 and (ii) the Trp53fl allele, generating a null Trp53 mutation via Cre-

recombination, is preferable to the Trp53LSL-R172H mutant allele, perhaps related to inefficient Cre 

recombination or to the absence of selective pressure for recombination and/or selection 

against recombination.  Of note, in the absence of Cre-mediated activation of the R172H 

mutation, the Trp53LSL-R172H allele is null [23]. 

In addition to the oviductal tumours, non-Müllerian tumours (e.g. lymphomas, soft tissue 

sarcomas, and adenomas/carcinomas of the thyroid, lung, skin, or breast) were identified in a 

subset of mice. Lymphomas were the most common type of non-oviductal tumour (17/80 – 

21%). Interestingly, three of five mammary carcinomas arose in mice carrying one constitutional 

inactivated Brca1 allele. Development of lymphomas, sarcomas, carcinomas and other tumour 

types has been reported in various mouse strains, including some with high incidence [24-26]. 

Hence, development of non-oviductal tumours is not unexpected, given the advanced age of 

many of the mice and the presence of mutant Brca1 and/or Trp53 alleles in the germline of a 

sizeable subset. In order to determine if Cre-mediated recombination occurred in the non-

Müllerian tumour cells, we evaluated DNA from representative tumours for the presence of 

recombined Brca1, Trp53, Rb1, and Nf1 alleles (Supplementary Figure S4). We found Cre-

mediated recombination of engineered TSG alleles in one endometrial carcinoma (not shown) 

and in the presumptive thyroid carcinomas, which had morphological features reminiscent of 

human medullary carcinoma. The remaining tumours appear to arise spontaneously.  We do not 

This article is protected by copyright. All rights reserved.



10 
 

observe OVGP1 protein expression in the thyroid based on IHC staining, and hence allelic 

recombination in this site appears to be independent of endogenous Ovgp1 expression. 

TAM-treated Ovgp1-iCreERT2;Brca1fl/fl;Trp53fl/fl;Ptenflfl (BPP) mice develop STICs, HGSCs, 
and MMMTs, and also display oviductal epithelial hyperplasia and mucinous metaplasia 

We crossed Ovgp1-iCreERT2 mice with animals carrying floxed Brca1, Trp53, and Pten alleles, 

to generate Ovgp1-iCreERT2;Brca1fl/fl;Trp53fl/fl;Ptenflfl (BPP) mice. Ten mice were treated with 

TAM, and two were euthanized at each of five time points (1, 2, 3, 4, and 6 months after TAM). 

STICs or early HGSC-like lesions were already present in treated mice one month after TAM. 

All ten mice developed bilateral oviductal lesions, including oviductal carcinomas at the later 

time points. One BPP mouse, examined 6 months after TAM, developed carcinosarcoma with 

metastasis to the ovary and ascites.  Endometrial hyperplasia near the junction of the uterine 

horn with oviduct was noted in two of the ten BPP mice. Data from the BPP mice are 

summarized in Supplementary Table S3, and representative photomicrographs of H&E and 

immunostained lesions arising in the oviducts of BPP mice at 1 month, 2 months, and 6 months 

after TAM are shown in Figure 5. Like tumours arising in BPR, BPRN, and BPN mice, oviductal 

STICs (Figure 5A and B), HGSCs (Figure 5E, F, I, and J) and MMMTs (Figure 5M and N) 

arising in BPP mice express CK8 (Figure 5C, G, K and O) and PAX8 (Figure 5D, H, L, and P).  

As expected, they lack expression of PTEN and have an increased Ki-67 proliferative index (not 

shown). In addition, the oviducts of the TAM-treated BPP mice show rather diffuse epithelial 

hyperplasia characterized by areas with increased epithelial stratification, as well as mucinous 

metaplasia (Figure 6) in which the cells display prominent cytoplasmic accumulation of both 

acidic (Alcian blue-positive) and neutral (periodic acid Schiff-positive) mucin compared to 

normal oviductal epithelium. These latter findings were not observed in the BPR, BPN or BPRN 

mice.  None of the BPP mice developed non-oviductal malignancies during the 6-month 

surveillance period. 

 

Discussion 
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GEMMs that closely mimic the origin, genetics, and biological behaviour of HGSC would 

potentially be of great utility for testing strategies to improve HGSC prevention, early diagnosis, 

and treatment. Here, we have shown that Ovgp1-iCreERT2 mice carrying conditional mutant 

TSG alleles relevant to human HGSC pathogenesis develop oviductal STICs, HGSCs, and 

carcinosarcomas that frequently metastasize to the ovaries and/or peritoneum and other 

organs. Although this is not the first GEMM to target the clinically relevant FTE, it does so with 

greater specificity than previously described models employing the Pax8 or Amhr2 promoters to 

direct expression of Cre recombinase in the oviductal epithelium. 

We have previously shown that biallelic inactivation of Apc and Pten leads to very different 

tumour phenotypes when induced in the OSE vs. the FTE, with the oviductal tumours closely 

resembling human endometrioid carcinomas, while the ovarian tumours were more poorly 

differentiated [22].  In other words, cell of origin plays an important role in determining tumour 

phenotype. We now show that different combinations of genetic alterations in the FTE also lead 

to very different tumour phenotypes. In short, while genetic alterations (e.g. Apc and Pten 

inactivation) that dysregulate signalling pathways characteristic of human endometrioid 

carcinomas result in endometrioid-like tumours in the mouse FTE [22], mutations commonly 

seen in human HGSCs result in HGSC-like oviductal tumours. Furthermore, although BPR, 

BPRN, BPN, and BPP mice all develop oviductal STICs and HGSCs/MMMTs following 

treatment with TAM, the timing of tumour development and progression varies significantly 

among the different models, and the lesions are not morphologically identical. Specifically, 

tumour development is very rapid and penetrant in BPP mice and the FTE acquires diffuse 

changes (hyperplasia and mucinous metaplasia) not observed in BPR, BPN, or BPRN animals.  

The short latency and rapid disease progression in BPP mice bear some similarity to our prior 

findings that mice rapidly develop oviductal endometrioid-like carcinomas following biallelic Apc 

and Pten inactivation by the Ovgp1-iCreERT2 transgene [22].  In BPP and Apcfl/fl;Ptenfl/fl mice, 

the rapidity of tumour development suggests that the conditional alterations are sufficient for 

neoplastic transformation of the targeted cells.  In contrast, in BPR, BPN, and BPRN mice, even 

those with homozygous floxed alleles for all TSGs, oviductal tumours take longer to develop and 

progress. Progression from STIC to HGSC/MMMT usually takes well over a year in BPR mice, 
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but is accelerated by addition of biallelic Nf1 inactivation.  These findings suggest that tumour 

initiation and/or progression in BPR, BPN, and BPRN mice probably requires acquisition of 

additional defects, a notion supported by our identification of loss of the wild-type Rb1 alleles in 

the tumours of mice carrying only one floxed Rb1 allele. The relatively long latency and 

presumptive need for additional genetic alterations may actually be considered advantageous 

features of the model system, as the resultant tumour heterogeneity may more closely mimic 

HGSC pathogenesis in humans than the rapid neoplastic transformation of FTE observed in the 

context of Apc/Pten or Brca1/Trp53/Pten inactivation. Further analyses (e.g. whole exome 

sequencing, comprehensive gene expression profiling) of the oviductal mouse HGSCs/MMMTs 

and comparison to human HGSCs will be needed to specifically address this issue. 

A potential shortcoming of our model system is the development of non-oviductal tumours in a 

sizeable fraction of the 80 mice included in the study. This is probably related, at least in part, to 

the relatively long latency and time required for tumour progression, particularly in BPR and 

BPN mice. Our data suggest that this problem can be mitigated by focusing future work on 

TAM-treated BPP or BPRN mice with homozygous floxed (or in the case of Brca1, Brca1fl/del) 

alleles, which usually acquire STICs, HGSCs/MMMTs and metastatic disease before they 

develop non-oviductal tumours that necessitate early euthanasia. 

Though the specific cell of origin of HGSC in humans remains unclear, our findings indicate that 

a population of Ovgp1-expressing cells in the oviduct is susceptible to transformation by somatic 

mutations akin to those commonly observed in human HGSCs. The transformed cells retain the 

capacity to differentiate along multiple Müllerian sub-lineages, both epithelial and mesenchymal.  

Notably, in contrast to the (Amhr2) Dicer-Pten double knock-out mice described by Kim et al., in 

which tumours initially arise in the oviductal stroma [17], the first recognizable lesions in our 

models are in the FTE. We have previously shown that like PAX8, OVGP1 is expressed 

primarily in secretory, rather than ciliated cells in the mouse FTE [22].  Not surprisingly, 

transformation of OVGP1-expressing cells results in tumours that express PAX8, a marker of 

secretory cells, but not tubulin, which is expressed by ciliated cells. The mucinous differentiation 

of oviductal epithelium noted in TAM-treated BPP mice was not seen in BPR, BPN or BPRN 
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mice, suggesting a role for Pten inactivation in driving this metaplastic change.  We have also 

observed squamous differentiation in occasional tumours arising in the context of Brca1, Trp53, 

and Pten inactivation (not shown).  Mucinous and/or squamous differentiation is commonly seen 

in human endometrioid carcinomas, which have a high frequency of PTEN mutations [27]. We 

also note some differences between the oviductal lesions in our BPP mice and those based on 

transformation of PAX8-positive, rather than OVGP1-positive cells [18]. Although both models 

develop STICs and HGSCs that express PAX8, Perets et al. [18] did not observe 

carcinosarcomas or note the diffuse epithelial changes in the oviductal epithelium seen in our 

BPP mice. These differences suggest, but do not prove, that the cells undergoing 

transformation in the two model systems are not identical. It is also possible that the tumour 

phenotypes in these two models is influenced by genetic background. 

In summary, our GEMMs recapitulate many of the features seen in human HGSC. The mouse 

tumours are based on genetic alterations commonly observed in their human tumour 

counterparts, and arise in the FTE with a predilection for the oviductal equivalent of the human 

tubal fimbrial epithelium.  The histologic features and biological behaviour are also similar to 

human HGSC. The models may prove to be particularly useful for studying the early phases of 

HGSC pathogenesis and effects of various factors associated with HGSC risk. For example, 

though women who have had multiple pregnancies or used oral contraceptives are well-

documented to have reduced risk of HGSC [28], the mechanisms by which this occurs remain 

unclear. Our GEMMs could be used to systematically test effects of these factors on tumour 

initiation and progression. 
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FIGURE LEGENDS 

Figure 1.  Summary of oviductal tumour phenotype in TAM-treated Ovgp1-iCreERT2 mice 
carrying various engineered Brca1, Rb1, Trp53, and Nf1 alleles. Data from all 80 mice are 

shown. Months post-TAM indicates the time points at which mice were euthanized. Where two 

time points are shown, the first represents months post-TAM at survival surgery (removal of 

right ovary and oviduct) and the second, months post-TAM at death. The diamond symbol ◊ 

marks oviducts evaluated ≤ 6.5 months post-TAM. STIC: serous tubal intraepithelial carcinoma; 

early HGSC: invasive HGSC confined to oviduct; HGSC: invasive HGSC extending beyond 

oviduct; MMMT: malignant mixed Müllerian tumour (carcinosarcoma). 

Figure 2.  Representative photomicrographs of STICs arising in BPRN mice. (A) Oviduct 

from mouse #8141, showing STIC (boxed region) arising in portion of oviduct in close proximity 

to ovary. (B) Higher magnification of boxed region in A.  (C) Oviduct from mouse #8234, 

showing STIC (boxed region) in distal oviduct. (D) Higher magnification of boxed region in C.  

Scale bars represent 100 µm unless otherwise indicated. 

Figure 3.  Representative photomicrographs of H&E-stained sections showing 
progression of oviductal lesions in BPRN mice. STICs (panels A and E), early HGSCs (B,  

F), HGSC (C), MMMT (G) and metastases to omentum (D) and pancreas (H) are shown. Scale 

bars represent 100 µm. 

Figure 4.  STICs and HGSCs arising in BPRN mice express markers characteristic of 
human HGSCs. Immunohistochemical staining for CK8, PAX8, Ki67 and p53 in representative 

STIC, early HGSC, HGSC, and metastatic HGSC is shown. Like normal oviductal epithelium, 

the tumour cells express CK8 and PAX8 – areas of CK8-expressing STIC and early HGSC are 

marked with blue arrows. The neoplastic cells have a high proliferative index, based on 

expression of Ki67. Overexpression of p53 is observed in occasional tumours with the Trp53LSL-

R172H allele (mouse #3724), but not in mice carrying only Trp53fl alleles (#3693, #8234, and 

#13604). Insets in selected panels show lesional epithelium at higher magnification. 
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Figure 5.  Representative HGSCs and MMMT identified in BPP mice at various times after 
TAM. Photomicrographs of H&E and immunostained sections from oviductal STIC and early 

HGSC identified at 1 month (A-D), early HGSC at 2 months (E-H), and HGSC (I-L) and MMMT 

with metastasis to ovary (M-P) at 6 months post-TAM, as indicated. Oviduct in panel A shows 

both STIC (upper boxed area) and early HGSC (lower boxed area).  Panels B, F, J, and N show 

higher magnification of lesions shown in panels A, E, I, and M. In panel B, the STIC is marked 

by blue arrowheads. Oviductal tumours arising in BPP mice uniformly express CK8 (C, G, K, 

and O) and PAX8 (D, H, L, and P). 

Figure 6.  Oviductal epithelium in BPP mice displays mucinous metaplasia not seen in 
BPR, BPN, or BPRN mice. Upper panels show normal mouse oviduct stained with H&E (low 

and high magnification), PAS (periodic acid Schiff) and AB (Alcian blue). Lower panels show 

comparably stained sections of oviduct from TAM-treated BPP mouse. Blue arrowheads point to 

accumulation of cytoplasmic mucin in the oviductal epithelium of BPP mouse, not seen in 

normal oviduct. The accumulated mucin is positive for both PAS (neutral mucin) and AB (acidic 

mucin). Note the paucity of PAS- or AB-positive mucin in normal oviductal epithelium. 
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Figure S1.  Metastatic HGSC to ovary in BPRN mouse (#13576) 

Figure S2.  Representative photomicrographs of tubulin and PAX8 expression in STIC and HGSC 

Figure S3.  Cre-mediated gene recombination evaluated by PCR in genomic DNA isolated from 
representative matched mouse tails and oviductal tumours 

Figure S4.  Recombination status of engineered Rb1, Brca1, Trp53, and Nf1 alleles in DNA 
isolated from representative matched tails and non-oviductal tumours 

Table S1. PCR primers for genotyping 

Table S2. Summary of oviductal tumour phenotype and non-oviductal tumours  in TAM-treated 
BPRN, BPR and BPN mice 

Table S3. Summary of oviductal tumour phenotype in TAM-treated BPP mice 
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