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ON ARBITRAGE AND DUALITY UNDER MODEL UNCERTAINTY
AND PORTFOLIO CONSTRAINTS

ERHAN BAYRAKTAR AND ZHOU ZHOU

University of Michigan

We consider the fundamental theorem of asset pricing (FTAP) and the hedging
prices of options under nondominated model uncertainty and portfolio constraints in
discrete time. We first show that no arbitrage holds if and only if there exists some
family of probability measures such that any admissible portfolio value process is a
local super-martingale under these measures. We also get the nondominated optional
decomposition with constraints. From this decomposition, we obtain the duality of the
super-hedging prices of European options, as well as the sub- and super-hedging prices
of American options. Finally, we get the FTAP and the duality of super-hedging prices
in a market where stocks are traded dynamically and options are traded statically.

KEY WORDS: fundamental theorem of asset pricing, sub-(super-)hedging, model uncertainty, port-
folio constraints, optional decomposition.

1. INTRODUCTION

We consider the fundamental theorem of asset pricing (FTAP) and the hedging prices of
European and American options under the nondominated model certainty framework
of Bouchard and Nutz (2015) with convex closed portfolio constraints in discrete time.
We first show that no arbitrage in the quasi-sure sense is equivalent to the existence of
a set of probability measures; under each of these measures any admissible portfolio
value process is a local super-martingale. Then, we get the nondominated version of the
optional decomposition under portfolio constraints. From this optional decomposition,
we get the duality of super- and sub-hedging prices of European and American options.
We also show that the optimal super-hedging strategies exist. Finally, we add options
to the market and get the FTAP and the duality of super-hedging prices of European
options by using semi-static trading strategies (i.e., strategies dynamically trading in
stocks and statically trading in options).

Our results generalize the ones in Föllmer and Schied (2004, section 9) to a nondomi-
nated model-uncertainty set-up, and extend the results in Bouchard and Nutz (2015) to
the case where portfolio constraints are involved. These conclusions are general enough
to cover many interesting models with the so-called delta constraints; for example, when
shorting stocks is not allowed, or some stocks enter or leave the market at certain times.

Compared to Föllmer and Schied (2004, section 9), the main difficulty in our setting
is due to the fact that the set of probability measures does not admit a dominating
measure. We use the measurable selection mechanism developed in Bouchard and Nutz
(2015) to overcome this difficulty, i.e., first establish the FTAP and super-hedging result
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in one period, and then “measurably” glue all the periods together to derive multiple-
period versions. It is therefore of crucial importance to get the one-period results. In
Bouchard and Nutz (2015), Lemma 3.3 serves as a fundamental tool to show the FTAP
and super-hedging result in a one-period model, whose proof uses an induction on the
number of stocks and a separating hyperplane argument. In our set-up, both of these
arguments do not work due to the presence of constraints. In this paper, we instead use a
finite covering argument to overcome the difficulty stemming from constraints. Another
major difference with Bouchard and Nutz (2015) is the proof for the existence of an
optimal super-hedging strategy in multiple periods. In Bouchard and Nutz (2015), the
existence is a direct consequence of Theorem 2.2. A key step in the proof of Theorem
2.2 is modifying the trading strategy to the one with smaller “rank” which yet still gives
the same portfolio value. However, this approach fails to work in our set-up, because the
modified strategy may not be admissible anymore due to the portfolio constraints. In
our paper, we first find an optimal static option trading strategy, and then determine an
optimal dynamic stock trading strategy using the optional decomposition theorem with
constraints. The optional decomposition theorem also helps us obtain the duality results
for the American options.

We work within the no-arbitrage framework of Bouchard and Nutz (2015), in which
an arbitrage is said to exist when there exists a trading strategy whose gain is quasi
surely nonnegative and strictly positive with positive probability under an admissible
measure. In this framework, we are given a model and the nondominated set of probability
measures comes from estimating the parameters of the model. As estimating results in
confidence intervals for the parameters, we end up with a set of nondominated probability
measures.

There is another no-arbitrage framework, which was introduced by Acciaio et al.
(2016). In that framework, an arbitrage is said to exist if the gain from trading is strictly
positive for all scenarios. Under the framework of Acciaio et al. (2016), the model
uncertainty is in fact part of the model itself and the user of that model does not have
confidence in her ability to estimate the parameters. The choice between the frameworks
of Acciaio et al. (2016) and Bouchard and Nutz (2015) is a modeling issue.

Our assumptions mainly consist of two parts: (1) the closedness and convexity of the
related control sets (see Assumptions 2.1, 3.1, 4.1, and 5.1), and (2) some measurability
assumptions (see the set-up of Section 3.1 and Assumptions 3.1 and 5.1). The first part
is almost necessary (see Example 2.6), and can be easily verified in many interesting
cases (see, e.g., Example 2.2). The second part is the analyticity of some relevant sets,
which we make in order to apply measurable selection results and perform dynamic
programming principle type of arguments. Analyticity (which is a measurability concept
more general than Borel measurability, so in particular every Borel set is analytic) is
a minimal assumption needed in order to have a dynamic programming principle and
this goes well back to Blackwell. These concepts are covered by standard textbooks
on measure theory, see, e.g., Cohn (2013). See also Bertsekas and Shreve (1978) for
applications in stochastic control theory and the references therein. In Section 3.3, we
provide some general and easily verifiable sufficient conditions for Assumptions 3.1(iii)
and 5.1(ii), as well as Examples 3.8 and 3.9.

The rest of the paper is organized as follows: We show the FTAP in one period and in
multiple periods in Sections 2 and 3, respectively. In Section 4, we get the super-hedging
result in one period. In Section 5, we provide the nondominated optional decomposition
with constraints in multiple periods. Then, starting from the optional decomposition,
we analyze the sub- and super-hedging prices of European and American options in
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multiple periods in Section 6. In Section 7, we add options to the market, and study the
FTAP and super-hedging using semi-static trading strategies in multiple periods. Finally
in the Appendix, we provide the proofs of Lemmas 3.3, 3.4, 5.5, and 5.7; these proofs
contain a lot of technicalities and can be safely skipped at the first reading.

We devote the rest of this section to frequently used notation and concepts in the paper.

1.1. Frequently Used Notation and Concepts

� P(�) denotes the set of all the probability measures on (�,B(�)), where � is some
polish space, and B(�) denotes its Borel σ -algebra. P(�) is endowed with the
topology of weak convergence.

� �St(ω, ·) = St+1(ω, ·) − St(ω), ω ∈ �t := �t (t-fold Cartesian product of �). We
may simply write �S when there is only one period (i.e., t = 0).

� Let P ⊂ P(�t). A property holds P − q.s. if and only if it holds P-a.s. for any
P ∈ P . A set A ∈ �t is P-polar if supP∈P P(A) = 0.

� Let P ⊂ P(�). suppP (�S) is defined as the smallest closed subset A ⊂ Rd such that
�S ∈ A P − q.s. Define N(P) := {H ∈ Rd : H�S = 0, P − q.s.} and N⊥(P) :=
span(suppP (�S)) ⊂ Rd . Then N⊥(P) = (N(P))⊥ by Nutz (2016, Lemma 2.6). De-
note N(P) = N({P}) and N⊥(P) = N⊥({P}).

� For H ⊂ Rd , H(P) := projN⊥(P)H, where proj is short for projection. Denote
H(P) = H({P}).

� For H ⊂ Rd , CH(P) := {cH : H ∈ H(P), c ≥ 0}. Denote CH(P) = CH({P}).
� CH := {cH ∈ Rd : H ∈ H, c ≥ 0}, where H ⊂ Rd .
� (H · S)t = ∑t−1

i=0 Hi (Si+1 − Si ).
� R∗ := [−∞, ∞].
� || · || represents the Euclidean norm.
� EP|X| := EP|X+| − EP|X−|, and by convention ∞ − ∞ = −∞. Similarly the con-

ditional expectation is also defined in this extended sense.
� L0

+(P) is the space of random variables X on the corresponding topological space
satisfying X ≥ 0 P − q.s., and L1(P) is the space of random variables X satisfying
supP∈P EP|X| < ∞. Denote L0

+(P) = L0
+({P}), and L1(P) = L1({P}). Similar def-

initions apply for L0, L1
+, and L∞. We shall sometimes omit P or P in L0

+, L1,
etc., when there is no ambiguity.

� We say NA(P) holds, if for any H ∈ H satisfying (H · S)T ≥ 0P − q.s., we have that
(H · S)T = 0 P − q.s., where H is some admissible control set of trading strategies
for stocks. Let NA(P) stand for NA({P}).

� We write Q ≪ P , if there exists some P ∈ P such that Q 	 P.
� Let (X,G) be a measurable space and Y be a topological space. A mapping � from

X to the power set of Y is denoted by � : X � Y. We say � is measurable (resp.
Borel measurable), if

{x ∈ X : �(x) ∩ A �= ∅} ∈ G, ∀ closed (resp. Borel measurable) A ⊂ Y.(1.1)

� is closed (resp. compact) valued if �(x) ⊂ Y is closed (resp. compact) for all
x ∈ X. We refer to Aliprantis and Border (2006, chapter 18) for these concepts.

� A set of random variables A is P − q.s. closed, if (an)n ⊂ A convergent to some
a P − q.s. implies a ∈ A.

� For � : X � Y, graph(�) := {(x, y) ∈ X × Y : y ∈ �(x)}.
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� Let X be a Polish space. A set A ⊂ X is analytic if it is the image of a Borel subset of
another Polish space under a Borel measurable mapping. A function f : X � R∗

is upper (resp. lower) semianalytic if the set { f > c} (resp. { f < c}) is analytic. The
acronym “u.s.a.” (resp. “l.s.a.”) is short for upper (resp. lower) semianalytic.

� Let X be a polish space. The σ -algebra ∩P∈P(X)B(X)P is called the universal com-
pletion of B(X), where B(X)P is the P-completion of B(X). A set A ⊂ X is univer-
sally measurable if A ∈ ∩P∈P(X)B(X)P. A function f is universally measurable if
f ∈ ∩P∈P(X)B(X)P. “u.m.” is short for universally measurable.

� Let X and Y be some Borel spaces and U : X � Y. Then u is a u.m. selector of U,
if u : X � Y is u.m. and u(·) ∈ U(·) on {U �= ∅}.

2. THE FTAP IN ONE PERIOD

In this section, we derive the FTAP for one-period model in this section. Theorem 2.3 is
the main result.

2.1. The Set-Up and the Main Result

Let P be a convex set of probability measures on a Polish space �. Let S0 ∈ Rd be the
initial stock price, and Borel measurable S1 : � � Rd be the stock price at time t = 1.
Denote �S = S1 − S0. Let H ⊂ Rd be the set of admissible trading strategies. We assume
that H satisfies the following conditions:

ASSUMPTION 2.1. CH(P) is (i) convex, and (ii) closed.

EXAMPLE 2.2. Let H : = ∏d
i=1[ai , ai ] for some ai , ai ∈ R with ai ≤ ai , i = 1 . . . , d.

ThenH satisfies Assumption 2.1 for anyP ⊂ P(�). Indeed,H ⊂ Rd is a bounded, closed
and convex set with finitely many vertices, and so is H(P). Hence the generated cone
CH(P) is convex and closed.

Define

Q : = {Q ∈ P(�) : Q ≪ P, EQ|�S| < ∞ and EQ[H�S] ≤ 0, ∀H ∈ H}.

The following is the main result of this section:

THEOREM 2.3. Let Assumption 2.1 hold. Then NA(P) holds if and only if for any P ∈ P ,
there exists Q ∈ Q dominating P.

2.2. Proof for Theorem 2.3

Let us first prove the following lemma, which is the simplified version of Theorem 2.3
when P consists of a single probability measure.

LEMMA 2.4. Let P ∈ P(�) and Assumption 2.1 w.r.t. CH(P) hold. Then NA(P) holds if
and only if there exists Q ∼ P, such that EQ|�S| < ∞ and EQ[H�S] ≤ 0, for any H ∈ H.

Proof. Sufficiency is obvious. We shall prove the necessity in two steps. Without loss
of generality we assume that EP|�S| < ∞ (see, e.g., Bouchard and Nutz 2015, lemma
3.2).
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Step 1: In this step, we will show that K − L0
+ is closed in L0, where

K : = {H�S : H ∈ CH(P)}.

Let Xn = Hn�S − Yn
P→ X, where Hn ∈ CH(P) and Yn ≥ 0. Without loss of generality,

assume that Xn → X, P-a.s. If (Hn)n is not bounded, then let 0 < ||Hnk || → ∞ and we
have that

Hnk

||Hnk ||
�S = Xnk

||Hnk ||
+ Ynk

||Hnk ||
≥ Xnk

||Hnk ||
.

Taking the limits on both sides along a further sub-sequence, we obtain that H�S ≥ 0 P-
a.s. for some H ∈ Rd with ||H|| = 1. As CH(P) is closed, H�S ∈ CH(P). By NA(P),
H�S = 0 P-a.s., which implies that H ∈ N(P) ∩ N⊥(P) = {0}. This contradicts ||H|| =
1. Therefore, (Hn)n is bounded, and thus there exists a subsequence (Hn j ) j convergent to
some H′ ∈ CH(P). Then

0 ≤ Yn j = Hn j �S − Xn j → H′�S − X = : Y, P −a.s.

Then X = H′�S − Y ∈ K − L0
+.

Step 2: From Step 1, we know that K ′ : = (K − L0
+) ∩ L1 is a closed and convex cone

in L1, and contains −L∞
+ . Moreover, by NA(P), K ′ ∩ L1

+ = {0}. Then the Kreps-Yan
theorem (see, e.g., Föllmer and Schied 2004, theorem 1.61) implies the existence of
Q ∼ P with d Q/d P ∈ L∞

+ (P), such that EQ[H�S] ≤ 0 for any H ∈ H.

REMARK 2.5. The FTAP under a single probability measure with constraints is an-
alyzed in Föllmer and Schied (2004, chapter 9). However, although the idea is quite
insightful, the result there is not correct: what we need is the closedness of the generated
cone CH(P), instead of the closedness of H(P). (In this sense, our result is different from
Czichowsky and Schweizer 2011; in Czichowsky and Schweizer 2011 it is the closedness
of the corresponding projection that matters.) Below is a counter-example to Föllmer
and Schied (2004, theorem 9.9).

EXAMPLE 2.6. Consider the one-period model: there are two stocks S1 and S2 with
the path space {(1, 1)} × {(s, 0) : s ∈ [1, 2]}; let

H : = {(h1, h2) : h2
1 + (h2 − 1)2 ≤ 1}

be the set of admissible trading strategies; let P be a probability measure on this path
space such that S1

1 is uniformly distributed on [1, 2]. It is easy to see that NA(P) holds,
and H satisfies the assumptions (a), (b), and (c) in Föllmer and Schied (2004, p. 350). Let
H = (h1, h2) such that H�S = 0, P-a.s. Then h1(S1

1 − 1) = h2, P-a.s., which implies
h1 = h2 = 0. By Föllmer and Schied (2004, remark 9.1), H also satisfies assumption (d)
in Föllmer and Schied (2004, p. 350).

If Föllmer and Schied (2004, theorem 9.9) were to be true, then there would exist
Q ∼ P, such that

EQ[H�S] ≤ 0, ∀H ∈ H.(2.1)
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As Q ∼ P, EQ(S1
1 − 1) > 0. Take (h1, h2) ∈ H with h1, h2 > 0 and h2/h1 < EQ(S1

1 − 1).
Then

h1 EQ(S1
1 − 1) − h2 > 0,

which would contradict (2.1).
In fact, it is not hard to see that in this example,

CH(P) = {(h1, h2) : h2 > 0 or h1 = h2 = 0}
is not closed.

LEMMA 2.7. Let Assumption 2.1(ii) hold. Then there exists P′′ ∈ P , such that N⊥(P′′) =
N⊥(P) and NA(P′′) holds.

Proof. Denote H : = {H ∈ CH(P) : ||H|| = 1}. For any H ∈ H ⊂ N⊥(P), by NA(P)
there exists PH ∈ P , such that PH(H�S < 0) > 0. It can be further shown that there
exists εH > 0, such that for any H′ ∈ B(H, εH),

PH(H′�S < 0) > 0,(2.2)

where B(H, εH) : = {H′′ ∈ Rd : ||H′′ − H|| < εH}. Indeed, there exists some δ > 0
such that PH(H�S < −δ) > 0. Then, there exists some M > 0, such that PH(H�S <

−δ, ||�S|| < M) > 0. Taking εH : = δ/M, we have that for any H′ ∈ B(H, εH),
PH(H′�S < 0, ||�S|| < M) > 0, which implies (2.2).

Because H ⊂ ∪H∈H B(H, εH) and H is compact from Assumption 2.1, there exists a
finite cover of H, i.e., H ⊂ ∪n

i=1 B(Hi , εHi ). Let P′ = ∑n
i=1 ai PHi , with

∑n
i=1 ai = 1 and

ai > 0, i = 1, . . . , n. Then P′ ∈ P , and P′(H�S < 0) > 0 for any H ∈ H.
Obviously, N⊥(P′) ⊂ N⊥(P). If N⊥(P′) = N⊥(P), then let P′′ = P′. Otherwise, take

H ∈ N⊥(P) ∩ N(P′). Then, there exists R1 ∈ P , such that R1(H�S �= 0) > 0. Let R′
1 =

(P′ + R1)/2. Then P′ 	 R′
1 ∈ P , and thus N⊥(R′

1) ⊃ N⊥(P′). As H ∈ N(P′) \ N(R′
1), we

have that N⊥(R′
1) � N⊥(P′). If N⊥(R′

1) � N⊥(P), then we can similarly construct R′
2 ∈

P , such that R′
2 � R′

1 and N⊥(R′
2) � N⊥(R′

1). As N⊥(P) is a finite dimensional vector
space, after finite such steps, we can find such P′′ ∈ P dominating P′ with N⊥(P′′) =
N⊥(P). For any H ∈ H, P′′(H�S < 0) > 0 because P′′ � P′. This implies that NA(P′′)
holds. �

Proof of Theorem 2.3. Sufficiency. If the conclusion were not true, then there
would exist H ∈ H and P ∈ P , such that H�S ≥ 0 P-a.s., and P(H�S > 0) > 0. Take
Q ∈ Q with Q � P. Then EQ[H�S] ≤ 0, which would contradict H�S ≥ 0 Q-a.s. and
Q(H�S > 0) > 0.

Necessity. Take P ∈ P . By Lemma 2.7 there exists P′′ ∈ P such that N⊥(P′′) = N⊥(P)
and NA(P′′) holds. Let R : = (P + P′′)/2 ∈ P . Then N⊥(R) = N⊥(P′′) = N⊥(P), and
thus CH(R) = CH(P) which is convex and closed by Assumption 2.1. Besides, NA(P′′)
implies that for any H ∈ CH(R) \ {0} = CH(P′′) \ {0}, P′′(H�S < 0) > 0, and thus
R(H�S < 0) > 0 as R � P′′. This shows that NA(R) holds. From Lemma 2.4, there
exists Q ∼ R � P, such that EQ|�S| < ∞ and EQ[H�S] ≤ 0 for any H ∈ H. �

3. THE FTAP IN MULTIPLE PERIODS

In this section, we derive the FTAP in multiple periods. We will reduce it to a one-step
problem and apply Theorem 2.3. Theorem 3.2 is the main result of this section.
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3.1. The Set-Up and the Main Result

We use the set-up in Bouchard and Nutz (2015). Let T ∈ N be the time horizon and let
� be a Polish space. For t ∈ {0, 1, . . . , T}, let �t : = �t be the t-fold Cartesian product,
with the convention that �0 is a singleton. We denote by Ft the universal completion of
B(�t), and we shall often treat �t as a subspace of �T. For each t ∈ {0, . . . , T − 1} and
ω ∈ �t, we are given a nonempty convex setPt(ω) ⊂ P(�) of probability measures. Here,
Pt represents the possible models for the t-th period, given state ω at time t. We assume
that for each t, the graph of Pt is analytic, which ensures by the Jankov-von Neumann
Theorem (see, e.g., Bertsekas and Shreve 1978, proposition 7.49) that Pt admits a u.m.
selector, i.e., a u.m. kernel Pt : �t → P(�) such that Pt(ω) ∈ Pt(ω) for all ω ∈ �t. Let1

P : = {P0 ⊗ . . . ⊗ PT−1 : Pt(·) ∈ Pt(·), t = 0, . . . , T − 1},
where each Pt is a u.m. selector of Pt, and

P0 ⊗ . . . ⊗ PT−1(A) =
∫

�

. . .

∫
�

1A(ω1, . . . , ωT)PT−1(ω1, . . . , ωT−1; dωT) . . . P0(dω1),

A ∈ �T.

Let St = (S1
t , . . . , Sd

t ) : �t → Rd be Borel measurable, which represents the price at
time t of a stock S that can be traded dynamically in the market.

For each t ∈ {0, . . . , T − 1} and ω ∈ �t, we are given a set Ht(ω) ⊂ Rd , which is
thought of as the set of admissible controls for the t-th period, given state ω at time t.
We assume for each t, graph(Ht) is analytic, and thus admits a u.m. selector; that is, an
Ft-measurable function Ht(·) : �t � Rd , such that Ht(ω) ∈ Ht(ω). We introduce the set
of admissible portfolio controls H:

H : = {
(Ht)

T−1
t=0 : Ht is a u.m. selector of Ht, t = 0, . . . , T − 1

}
.

Then, for any H ∈ H, H is an adapted process. We make the following assumptions on
H.

ASSUMPTION 3.1.

(i) 0 ∈ Ht(ω), for ω ∈ �t, t = 0, . . . , T − 1.
(ii) CHt(ω)(Pt(ω)) is closed and convex, for ω ∈ �t, t = 0, . . . , T − 1.

(iii) The set

	Ht : = {(ω, Q) ∈ �t × P(�) : EQ|�St(ω, ·)| < ∞ and EQ[y�St(ω, ·)]
≤ 0, ∀y ∈ Ht(ω)}(1)

is analytic, for t = 0, . . . , T − 1.

Define

Q : = {Q ∈ P(�T) : Q ≪ P, EQ[|�St| |Ft] < ∞ Q −a.s. t = 0, . . . , T − 1,(3.1)

H · S is a Q −local − supermartingale ∀H ∈ H}.
1To avoid burdening the reader with further notation we prefer to use the same notation P for the set of

probability measures in one-period models and multi-period models. We will do the same for other sets of
probability measures that appear later in the paper and also for the set of admissible strategies.
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Below is the main theorem of this section:

THEOREM 3.2. Under Assumption 3.1, NA(P) holds if and only if for each P ∈ P , there
exists Q ∈ Q dominating P.

3.2. Proof of Theorem 3.2

We first provide some auxiliary results. The following lemma essentially says that if
there is no arbitrage in T periods, then there is no arbitrage in any period. It is parallel to
Bouchard and Nutz (2015, lemma 4.6). Our proof mainly focuses on the difference due
to the presence of constraints and we put the proof in the Appendix.

LEMMA 3.3. Let t ∈ {0, . . . , T − 1}. Then the set

Nt : = {ω ∈ �t : NA(Pt(ω)) fails}(3.2)

is u.m., and if Assumption 3.1(i) and NA(P) hold, then Nt is P-polar.

The lemma below is a measurable version of Theorem 2.3. It is parallel to Bouchard
and Nutz (2015, lemma 4.8). We provide its proof in the Appendix.

LEMMA 3.4. Let t ∈ {0, . . . , T − 1}, let P(·) : �t � P(�) be Borel, and let Qt : �t �
P(�),

Qt(ω) : = {Q ∈ P(�) : Q ≪ Pt(ω), EQ|�St(ω, ·)| < ∞, EQ[y�St(ω, ·)]
≤ 0, ∀y ∈ Ht(ω)}.

If Assumption 3.1(ii)(iii) holds, then Qt has an analytic graph and there exist u.m.
mappings Q(·), P̂(·) : �t → P(�) such that

P(ω) 	 Q(ω) 	 P̂(ω) for all ω ∈ �t,

P̂(ω) ∈ Pt(ω) i f P(ω) ∈ Pt(ω),

Q(ω) ∈ Qt(ω) if NA (Pt(ω)) holds and P(ω) ∈ Pt(ω).

Proof of Theorem 3.2. Using Lemmas 3.3 and 3.4, we can perform the same glueing
argument Bouchard and Nutz use in the proof of Bouchard and Nutz (2015, theorem
4.5), and thus we omit it here. �

3.3. Sufficient Conditions for Assumption 3.1(iii)

By Bertsekas and Shreve (1978, proposition 7.47), the map (ω, Q) �
supy∈Ht(ω) EQ[y�St(ω, ·)] is u.s.a., which does not necessarily imply the analyticity of
	Ht as the complement of an analytic set may fail to be analytic. Therefore we provide
some sufficient conditions for Assumption 3.1(iii) below.

DEFINITION 3.5. We call Ht : �t � Rd a stretch of Ht, if for any ω ∈ �t, CHt(ω) =
CHt(ω).

It is easy to see that for any stretch Ht of Ht,

	Ht = 	Ht = {(ω, Q) ∈ �t × P(�) : EQ|�St(ω, ·)| < ∞, sup
y∈Ht(ω)

yEQ[�St(ω, ·)] ≤ 0}.
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Therefore, in order to show 	Ht is analytic, it suffices to show that there exists a stretch
Ht of Ht, such that the map ϕHt : �t × P(�) � R∗

ϕHt (ω, Q) = sup
y∈Ht(ω)

yEQ[�St(ω, ·)](3.3)

is l.s.a. on J : = {(ω, Q) ∈ �t × P(�) : EQ|�St(ω, ·)| < ∞}.
PROPOSITION 3.6. If there exists a measurable (w.r.t. B(Rd )) stretch Ht of Ht with

nonempty compact values, then ϕHt is Borel measurable, and thus 	Ht is Borel measurable.

Proof. The conclusion follows directly from Aliprantis and Border (2006, theorem
18.19). �

PROPOSITION 3.7. If there exists a stretch Ht of Ht satisfying

(i) graph(Ht) is Borel measurable,
(ii) there exists a countable set (yn)n ⊂ Rd , such that for any ω ∈ �t and y ∈ Ht(ω),

there exists (ynk)k ⊂ (yn)n ∩ Ht converging to y,

then ϕHt is Borel measurable, and thus 	Ht is Borel measurable.

Proof. Define function φ : Rd × J � R∗,

φ(y, ω, Q) =
{

yEQ[�St(ω, ·)] if y ∈ Ht(ω),
−∞ otherwise.

It can be shown by a monotone class argument that φ is Borel measurable. So the
function ϕ : J � R

ϕ(ω, Q) = sup
n

φ(yn, ω, Q)

is Borel measurable. It remains to show that ϕ = ϕHt . It is easy to see that ϕ ≥ ϕHt . Con-
versely, take (ω, Q) ∈ J . Then φ(yn, ω, Q) = yn EQ[�S(ω, ·)] ≤ ϕHt (ω, Q) if yn ∈ Ht(ω),
and φ(yn, ω, Q) = −∞ < ϕHt (ω, Q) if yn /∈ Ht(ω); i.e., ϕ(ω, Q) = supn φ(yn, ω, Q) ≤
ϕHt (ω, Q). �

EXAMPLE 3.8. Let ai
t, ai

t : �t � R be Borel measurable, with ai
t < ai

t, i = 1, . . . , d.
Let

Ht(ω) =
d∏

i=1

[ai
t(ω), ai

t(ω)], ω ∈ �t.

Then both Propositions 3.6 and 3.7 hold with Ht = Ht and (yn)n = Qd .

EXAMPLE 3.9. Let d = 1 and Ht be such that for any ω ∈ �t, Ht(ω) ⊂ (0, ∞). We
assume that graph(Ht) is analytic, but not Borel. Then Ht itself does not satisfy the
assumptions in Proposition 3.6 or 3.7. Now let Ht(ω) = [1, 2], ω ∈ �t. Then Ht is a
stretch of Ht, and Ht satisfies the assumptions in Propositions 3.6 and 3.7 with (yn)n = Q.
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4. SUPER-HEDGING IN ONE PERIOD

4.1. The Set-Up and the Main Result

We use the set-up in Section 2. Let f be a u.m. function. Define the super-hedging
price

πP ( f ) : = inf{x : ∃H ∈ H, s.t. x + H · S ≥ f , P − q.s.}.
We also denote π P( f ) = π {P}( f ). We further assume:

ASSUMPTION 4.1. H(P) is convex and closed.

REMARK 4.2. It is easy to see that if H(P) is convex, then CH(P) is convex.

Define

Q : = {Q ∈ P(�) : Q ≪ P, EQ|�S| < ∞, AQ : = sup
H∈H

EQ[H�S] < ∞}.

Below is the main result of this section.

THEOREM 4.3. Let Assumptions 2.1(ii) and 4.1 and NA(P) hold. Then

πP ( f ) = sup
Q∈Q

(EQ[ f ] − AQ).(4.1)

Besides, πP ( f ) > −∞ and there exists H ∈ H such that πP ( f ) + H�S ≥ f P − q.s.

Proof of Theorem 4.3. We first provide two lemmas.

LEMMA 4.4. Let NA(P) hold. If H(P) and CH(P) are closed, then

πP ( f ) = sup
P∈P

π P( f ).

Proof. It is easy to see that πP ( f ) ≥ supP∈P π P( f ). We prove the reverse inequality.
If πP ( f ) > supP∈P π P( f ), then there exists ε > 0 such that

α : = πP ( f ) ∧ 1
ε

− ε > sup
P∈P

π P( f ).(4.2)

By Lemma 2.7, there exists P′′ ∈ P , such that N⊥(P′′) = N⊥(P) and NA(P′′) holds.
Moreover, we have that the set

Aα : = {H ∈ H(P) : α + H�S ≥ f , P′′ − a.s. }

is compact. In order to prove this claim take (Hn)n ⊂ Aα. Assume (Hn)n is not bounded,
so up to a subsequence 0 < ||Hn|| → ∞. As a result,

α

||Hn|| + Hn

||Hn||�S ≥ f
||Hn|| .(4.3)

As CH(P) is closed, there exist some H ∈ CH(P) = CH(P′′) with ||H|| = 1 such that
Hnk/||Hnk || → H. Taking the limit along (nk)k, we have H�S ≥ 0 P′′-a.s. NA(P′′) implies
that H�S = 0 P′′-a.s. Hence H ∈ CH(P′′) ∩ N(P′′) = {0}, which contradicts ||H|| = 1.
Thus (Hn)n is bounded, and there exists H′′ ∈ Rd , such that (Hn j ) j → H′′. As H(P) is
closed, H′′ ∈ H(P), which further implies H′′ ∈ Aα.
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For any H ∈ Aα, as α < πP ( f ) by (4.2), there exists PH ∈ P such that

PH(α + H�S < f ) > 0.

It can be further shown that there exists δH > 0, such that for any H′ ∈ B(H, δH),

PH(α + H′�S < f ) > 0.

Because Aα ⊂ ∪H∈Aα
B(H, δH) and Aα is compact, there exists (Hi )n

i=1 ⊂ Aα, such that
Aα ⊂ ∪n

i=1 B(Hi , δHi ). Let

P′ : =
n∑

i=1

ai PHi + a0 P′′ ∈ P,

where
∑n

i=0 ai = 1 and ai > 0, i = 0, . . . , n. Then, it is easy to see that for any H ∈
H(P) = H(P′′) = H(P′),

P′(α + H�S < f ) > 0.

This implies that

α ≤ π P′
( f ) ≤ sup

P∈P
π P( f ),

which contradicts (4.2). �

LEMMA 4.5. Let NA(P) hold. If H(P) and CH(P) are closed, then the set

K(P) : = {H�S − X : H ∈ H, X ∈ L0
+(P)}(4.4)

is P − q.s. closed.

Proof. Let Wn = Hn�S − Xn ∈ K(P) → WP − q.s., where without loss of generality
Hn ∈ H(P) and Xn ∈ L0

+(P), n = 1, 2, . . .. Assume (Hn)n is not bounded, so up to a
subsequence 0 < ||Hn|| → ∞. Consider

Wn

||Hn|| = Hn

||Hn||�S − Xn

||Hn|| .(4.5)

As (Hn/||Hn||)n is bounded, there exists some subsequence (Hnk/||Hnk ||)k converging to
some H ∈ Rd with ||H|| = 1. Taking the limit in 4.5 along (nk)k, we get that H�S ≥ 0P −
q.s. Because (Hnk/||Hnk ||)k ∈ CH(P) and CH(P) is closed, H ∈ CH(P). Hence H�S =
0 P − q.s. by NA(P). Then H ∈ CH(P) ∩ N(P) = {0}, which contradicts ||H|| = 1.

Therefore, (Hn)n is bounded and there exists some subsequence (Hn j ) j converging
to some H′ ∈ Rd . As H(P) is closed, H′ ∈ H(P). Let X : = H′�S − W ∈ L0

+(P). Then
W = H′�S − X ∈ K(P). �

Proof of Theorem 4.3. We first show that πP ( f ) > −∞ and that an optimal super-
hedging strategy exists. If πP ( f ) = ∞ then we are done. If πP ( f ) = −∞, then for any
n ∈ N, there exists Hn ∈ H such that

Hn�S ≥ f + n ≥ ( f + n) ∧ 1, P − q.s.
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By Lemma 4.5, there exists some H ∈ H such that H�S ≥ 1 P − q.s., which contradicts
NA(P). If πP ( f ) ∈ (−∞, ∞), then for any n ∈ N, there exists some H̃n ∈ H, such that
πP ( f ) + 1/n + H̃n�S ≥ f P − q.s. Lemma 4.5 implies that there exists some H̃ ∈ H,
such that πP ( f ) + H̃�S ≥ f P − q.s.

By Lemma 4.4,

πP ( f ) = sup
P∈P

π P( f ) = sup
Q∈Q

π Q( f ) = sup
Q∈Q

sup
Q′∈Q,

Q′∼Q

(EQ′ [ f ] − AQ′
)

≤ sup
Q∈Q

(EQ[ f ] − AQ]),(4.6)

where we apply Theorem 2.3 for the second equality, and Föllmer and Schied (2004,
proposition 9.23) for the third equality. Conversely, if πP ( f ) = ∞, then we are done.
Otherwise let x > πP ( f ), and there exists H ∈ H, such that x + H�S ≥ f P − q.s.
Then for any Q ∈ Q,

x ≥ EQ[ f ] − EQ[H�S] ≥ EQ[ f ] − AQ.

By the arbitrariness of x and Q, we have that

πP ( f ) ≥ sup
Q∈Q

(EQ[ f ] − AQ),

�which together with (4.6) implies (4.1).

5. OPTIONAL DECOMPOSITION IN MULTIPLE PERIODS

5.1. The Set-Up and the Main Result

We use the set-up in Section 3. In addition, let f : �T � R be u.s.a. We further
assume:

ASSUMPTION 5.1.

(i) For t ∈ {0, . . . , T − 1} and ω ∈ �t, (Ht(ω))(Pt(ω)) is convex and closed;
(ii) the map At(ω, Q) : �t × P(�) � R∗,

At(ω, Q) = sup
y∈Ht(ω)

yEQ[�St(ω, ·)]

is l.s.a. on the set {(ω, Q) : EQ|�St(ω, ·)| < ∞}.
REMARK 5.2. Observe that 	Ht defined in Assumption 3.1 satisfies

	Ht = {(ω, Q) ∈ �t × P(�) : EQ|�St(ω, ·)| < ∞, At(ω, Q) ≤ 0}.(5.1)

Therefore, Assumption 5.1(ii) implies Assumption 3.1(iii).

REMARK 5.3. If Proposition 3.6 or 3.7 holds with Ht = Ht, then as At = ϕHt (ϕHt is
defined in 3.3), Assumption 5.1(ii) holds. See Example 3.8 for a case when this holds.

For any Q ∈ P(�T), there are Borel kernels Qt : �t � P(�), t = 0, . . . , T − 1, such
that Q = Q0 ⊗ . . . ⊗ QT−1. For EQ[|�St| |Ft] < ∞ Q-a.s., define AQ

t (·) : = At(·, Qt(·))
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for t = 0, . . . , T − 1, and

BQ
0 : = 0, BQ

t : =
t−1∑
i=0

AQ
i , t = 1, . . . , T,

and

Q : = {Q ∈ P(�T) : Q ≪ P, EQ[|�St| |Ft] < ∞ Q −a.s. for all t, and

BQ
T < ∞ Q −a.s.}.

Then it is not difficult to see that Q ⊂ Q, where Q is defined in (3.1).2 Furthermore, if
for each t ∈ {0, . . . , T − 1} and ω ∈ �t, Ht(ω) is a convex cone, then Q = Q. Below is
the main result of this section.

THEOREM 5.4. Let Assumptions 3.1 and 5.1 and NA(P) hold. Let V be an adapted
process such that Vt is u.s.a. for t = 1, . . . , T. Then the following are equivalent:

(i) V − BQ is a Q-local-supermartingale for each Q ∈ Q.
(ii) There exists H ∈ H and an adapted increasing process C with C0 = 0 such that

Vt = V0 + (H · S)t − Ct, P − q.s.

5.2. Proof of Theorem 5.4

We first provide three lemmas for the proof of Theorem 5.4. We will prove Lemmas
5.5 and 5.7 in the Appendix.

LEMMA 5.5. Let Assumption 5.1(ii) hold, and define Qt : �t � P(�) by

Qt(ω) : = {Q ∈ P(�) : Q ≪ Pt(ω), EQ|�St(ω, ·)| < ∞, At(ω, Q) < ∞}.(5.2)

Then Qt has an analytic graph.

The following lemma, which is a measurable version of Theorem 4.3, is parallel to
Bouchard and Nutz (2015, lemma 4.10). Given Theorem 4.3, the proof of this lemma
follows exactly the argument of Bouchard and Nutz (2015, lemma 4.10), and thus we
omit it here.

LEMMA 5.6. Let NA(P) and Assumption 5.1 hold, and let t ∈ {0, . . . , T − 1} and f̂ :
�t × � � R∗ be u.s.a. Then

Et( f̂ ) : �t � R∗, Et( f̂ )(ω) : = sup
Q∈Qt(ω)

(EQ[ f̂ (ω, ·)] − At(ω, Q))

2A rigorous argument is as follows. Let Q = Q0 ⊗ . . . ⊗ QT−1 ∈ Q, where Qt is a Borel kernels, t =
0, . . . , T − 1. It can be shown by a monotone class argument that the map (ω, y, Q′) � yEQ′ [�S(ω, ·)]
is Borel measurable for (ω, y, Q′) ∈ �t × Rd × P(�). Hence the map (ω, y) � yEQt (ω)[�S(ω, ·)] is Borel
measurable for (ω, y) ∈ �t × Rd . As graph(Ht) is analytic, by Bertsekas and Shreve (1978, proposition 7.50)
there exists a u.m. selector Hn

t (·) ∈ Ht(·), such that

AQ
t (ω) ∧ n − 1/n ≤ Hn

t (ω)EQt (ω)[�St(ω, ·)] ≤ 0, for Q −a.s. ω ∈ �t,

where the second inequality follows from the local-supermartingale property of Hn · S with Hn =
(0, . . . , 0, Hn

t , 0 . . . , 0) ∈ H. Sending n → ∞ we get that AQ
t ≤ 0 Q-a.s. for t = 0, . . . , T − 1, and thus

Q ∈ Q.
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is u.s.a. Besides, there exists a u.m. function y(·) : �t � Rd with y(·) ∈ Ht(·), such that

Et( f̂ )(ω) + y(ω)�St(ω, ·) ≥ f̂ (ω, ·) Pt(ω) − q.s.

for all ω ∈ �t such that NA(Pt(ω)) holds and f̂ (ω, ·) > −∞ Pt(ω) − q.s.

LEMMA 5.7. Let Assumptions 3.1 and 5.1 and NA(P) hold. Recall Qt defined in (5.2).
We have that

Q = {
Q0 ⊗ . . . ⊗ QT−1 : Qt(·) is a u.m. selector of Qt, t = 0, . . . , T − 1

}
.(5.3)

Proof of Theorem 5.4. (ii)=⇒(i): For any Q ∈ Q,

Vt+1 = Vt + Ht�St − (CQ
t+1 − CQ

t ) ≤ Vt + Ht�St, Q −a.s.

Hence,

EQ[Vt+1|Ft] ≤ Vt + Ht EQ[�St|Ft] ≤ Vt + AQ
t = Vt + BQ

t+1 − BQ
t .

Then

EQ[Vt+1 − BQ
t+1|Ft] ≤ Vt − BQ

t .

(i)=⇒(ii): We shall first show that

Et(Vt+1) ≤ Vt, P − q.s.(5.4)

Let Q = Q1 ⊗ . . . ⊗ QT−1 ∈ Q and ε > 0. The map (ω, Q) → EQ[Vt+1(ω, ·)] − At(ω, Q)
is u.s.a., and graph(Qt) is analytic. As a result, by Bertsekas and Shreve (1978, proposition
7.50), there exists a u.m. selector Qε

t : �t � P(�), such that Qε
t (·) ∈ Qt(·) on {Qt �= ∅}

(whose complement is a Q-null set), and

EQε
t (·)[Vt+1] − At(·, Qε

t (·)) ≥ Et(Vt+1) ∧ 1
ε

− ε, Q −a.s.

Define

Q′ = Q1 ⊗ . . . ⊗ Qt−1 ⊗ Qε
t ⊗ Qt+1 ⊗ QT−1.

Then Q′ ∈ Q by Lemma 5.7. Therefore,

EQ′ [Vt+1 − BQ′
t+1|Ft] ≤ Vt − BQ′

t , Q′ −a.s.

Noticing that Q = Q′ on �t, we have that

Vt ≥ EQ′ [Vt+1|Ft] − AQ′
t = EQε

t (·)[Vt+1] − At(·, Qε
t (·)) ≥ Et(Vt+1) ∧ 1

ε
− ε, Q −a.s.

By the arbitrariness of ε and Q, we have that 5.4 holds.
By Lemma 5.6, there exists a u.m. function Ht : �t � Rd such that

Et(Vt+1)(ω) + Ht(ω)�St+1(ω, ·) ≥ Vt+1(ω, ·) Pt(ω) − q.s.
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for ω ∈ �t \ Nt. Fubini’s theorem and (5.4) imply that

Vt + Ht�St ≥ Vt+1 P − q.s.

Finally, by defining Ct : = V0 + (H · S)t − Vt, the conclusion follows.

6. HEDGING EUROPEAN AND AMERICAN OPTIONS IN MULTIPLE
PERIODS

6.1. Hedging European Options

Let f : �T � R be a u.s.a. function, which represents the payoff of a European option.
Define the super-hedging price

π ( f ) : = inf{x : ∃H ∈ H, s.t. x + (H · S)T ≥ f , P − q.s.}.

THEOREM 6.1. Let Assumptions 3.1 and 5.1 and NA(P) hold. Then the super-hedging
price is given by

π ( f ) = sup
Q∈Q

(
EQ[ f ] − EQ[BQ

T ]
)

.(6.1)

Moreover, π ( f ) > −∞ and there exists H ∈ H, such that π ( f ) + (H · S)T ≥ f P − q.s.

Proof. It is easy to see that π ( f ) ≥ supQ∈Q(EQ[ f ] − EQ[BQ
T ]). We show the reverse

inequality. Define VT = f and

Vt = Et(Vt+1), t = 0, . . . , T − 1.

Then Vt is u.s.a. by Lemma 5.6 for t = 1, . . . , T. It is easy to see that (Vt − BQ
t )t is a

Q-local-supermartingale for each Q ∈ Q. Then, by Theorem 5.4, there exists H ∈ H,
such that

V0 + (H · S)T ≥ VT = f , P − q.s.

Hence V0 ≥ π ( f ). It remains to show that

V0 ≤ sup
Q∈Q

(
EQ[ f ] − EQ[BQ

T ]
)

.(6.2)

First assume that f is bounded from above. Then by Bertsekas and Shreve (1978,
proposition 7.50), Lemmas 5.5 and 5.6, we can choose a u.m. ε optimizer Qε

t for Et in
each time period. Define Qε : = Qε

0 ⊗ . . . ⊗ Qε
T−1 ∈ Q,

V0 = E0 ◦ . . . ◦ ET−1( f ) ≤ EQε [ f − BQε

T ] + Tε ≤ sup
Q∈Q

EQ[ f − BQ
T ] + Tε,

which implies (6.2).
In general let f be any u.s.a. function. Then, we have

E0 ◦ . . . ◦ ET−1( f ∧ n) ≤ sup
Q∈Q

(
EQ[ f ∧ n] − EQ[BQ

T ]
)

.
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Obviously the limit of the right-hand side above is supQ∈Q(EQ[ f ] − EQ[BQ
T ]). To con-

clude that the limit of the left-hand side is E0 ◦ . . . ◦ ET−1( f ), it suffices to show that for
any t ∈ {0, . . . , T − 1}, and Ft+1-measurable functions vn ↗ v ,

γ : = sup
n

Et(vn) = Et(v), P − q.s.

Indeed, for ω ∈ �t \ Nt, by Theorem 4.3 vn(ω) − γ (ω) ∈ K(P(ω)), where Nt and K(·) are
defined in (3.2) and (4.4) respectively. As K(P(ω)) is closed by Lemma 4.5, v(ω) − γ (ω) ∈
K(P(ω)), which implies γ (ω) ≥ Et(v)(ω) by Theorem 4.3.

Finally, using a backward induction, we can show that Vt > −∞ P − q.s., t =
0, . . . , T − 1 by Lemma 3.3 and Theorem 4.3. In particular, π ( f ) = V0 > −∞.

COROLLARY 6.2. Let Assumption 5.1 and NA(P) hold. Assume that for any t ∈
{0, . . . , T − 1} and ω ∈ �t, Ht(ω) is a convex cone containing the origin. Then

π ( f ) = sup
Q∈Q

EQ[ f ].

Proof. This follows from (5.1) and that Q = Q and BQ
T = 0 for any Q ∈ Q. �

6.2. Hedging American Options

We consider the sub- and super-hedging prices of an American option in this subsec-
tion. The same problems are analyzed in Bayraktar, Huang, and Zhou (2015) but without
portfolio constraints. The analysis here is essentially the same, so we only provide the
results and the main ideas for their proofs. For more details and discussion see Bayraktar,
Huang, and Zhou (2015).

For t ∈ {0, . . . , T − 1} and ω ∈ �t, define

Qt(ω) : = {Qt(ω) ⊗ . . . ⊗ QT−1(ω, ·) : Qi is a u.m. selector of Qi , i = t, . . . , T − 1}.

In particular Q0 = Q. Assume that graph(Qt) is analytic. Let T be the set of stopping
times with respect to the raw filtration (B(�t))t, and let Tt ⊂ T be the set of stopping
times that are no less than t.

Let f = (ft)t be the payoff of the American option. Assume that ft ∈ B(�t), t =
1, . . . , T, and that fτ ∈ L1(Q) for any τ ∈ T and Q ∈ fQ. Define the sub-hedging price:

π(f) : = sup{x : ∃(H, τ ) ∈ H × T , s.t. fτ + (H · S)τ ≥ x, P − q.s.},

and the super-hedging price:

π (f) : = inf{x : ∃H ∈ H, s.t. x + (H · S)τ ≥ fτ , P − q.s., ∀τ ∈ T }.

PROPOSITION 6.3. (i) The sub-hedging price is given by

π(f) = sup
τ∈T

inf
Q∈fQ

EQ

[
fτ + BQ

T

]
.(6.3)
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(ii) Assume that for each t ∈ {1, . . . , T − 1} the map

φt : �t × P(�T−t) � R∗, φt(ω, Q) = sup
τ∈Tt

EQ

[
fτ (ω, ·) −

τ−1∑
i=t

AQ
i (ω, ·)

]

is u.s.a. Then

π (f) = sup
τ∈T

sup
Q∈fQ

EQ
[
fτ − BQ

τ

]
,(6.4)

and there exists H ∈ H, such that π ( f ) + (H · S)τ ≥ fτ ,P − q.s., ∀τ ∈ T .

Proof. (i) We first show that

π( f ) = sup{x : ∃(H, τ ) ∈ H × T , s.t. fτ + (H · S)T ≥ x, P − q.s.} = : β.

For any x < π ( f ), there exists (H, τ ) ∈ H × T , such that fτ + (H · S)τ ≥ x P − q.s.
Define H′ : = (Ht1{t<τ })t. For t = 0, . . . , T − 1, as {t < τ } ∈ B(�t), H′

t (·) is u.m.; besides,
H′

t (·) is equal to either Ht(·) ∈ Ht(·) or 0 ∈ Ht(·). Hence H′ ∈ H. Then fτ + (H′ · S)T =
fτ + (H · S)τ ≥ x P − q.s, which implies x ≤ β, and thus π ( f ) ≤ β.

Conversely, for x < β, there exists (H, τ ) ∈ H × T , such that fτ + (H · S)T ≥ x P −
q.s. Then we also have that fτ + (H · S)τ ≥ x P − q.s. To see this, let us define D : =
{fτ + (H · S)τ < x} and H′ : = (Ht1{t≥τ }∩D)t ∈ H. We get that

(H′ · S)T = [(H · S)T − (H · S)τ ]1D ≥ 0 P − q.s., and (H′ · S)T > 0 P − q.s. on D.

NA(P) implies that D is P-polar. Therefore x ≤ π( f ), and thus β ≤ π ( f ).
It can be shown that

π (f) = β = sup
τ∈T

sup{x : ∃H ∈ H : fτ + (H · S)T ≥ x, P − q.s.} = sup
τ∈T

inf
Q∈fQ

EQ[fτ + BQ
T ],

where we apply Theorem 6.1 for the last equality above.
(ii) Let VT : = fT. For t = 0, . . . , T − 1, define Vt : �t � R∗,

Vt(ω) : = sup
Q∈Qt

sup
τ∈Tt

EQ

[
fτ (ω, ·) −

τ−1∑
i=t

AQ
i (ω, ·)

]
, ω ∈ �t.

It can be shown that Vt is u.s.a. for t = 1, . . . , T and (Vt − BQ
t )t is a Q-supermartingale

for each Q ∈ Q. By Theorem 5.4, there exists H ∈ H such that

V0 + (H · S)τ ≥ fτ ,P − q.s., ∀τ ∈ T .

Therefore, supτ∈T supQ∈fQ EQ[fτ − BQ
τ ] = V0 ≤ π(f). The reverse inequality is easy to

see.

REMARK 6.4. In (6.3) and (6.4), the penalization terms are BQ
T and BQ

τ respectively.
Similar to the argument in (i) above, one can show that

π̂ ( f ) : = inf{x : ∀τ ∈ T , ∃H ∈ H, s.t. x + (H · S)τ ≥ fτ , P − q.s.}
= sup

τ∈T
inf{x : ∃H ∈ H, s.t. x + (H · S)τ ≥ fτ , P − q.s.}
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= sup
τ∈T

inf{x : ∃H ∈ H, s.t. x + (H · S)T ≥ fτ , P − q.s.}(6.5)

= sup
τ∈T

sup
Q∈fQ

EQ[fτ − BQ
T ].

Even though the definition of π̂( f ) is less useful for super-hedging (because the stopping
time should not be known in advance), it suggests that BQ

T comes from knowing τ

in advance (compare π ( f ) and π̂ ( f )). It is also both mathematically and financially
meaningful that π̂ ( f ) ≤ π( f ). However, it is interesting that when BQ vanishes (e.g.,
when Ht(·) is a cone), we have that π̂ ( f ) = π( f ).

7. FTAP AND SUPER-HEDGING IN MULTIPLE PERIODS WITH OPTIONS

Let us use the set-up in Section 3. In addition, let g = (g1, . . . , ge) : �T � Re be Borel
measurable, and each gi is seen as an option which can only be traded at time t = 0
without constraints. Without loss of generality, we assume that the price of each option
is 0. In this section, we say NA(P)g holds if for any (H, h) ∈ H × Re,

(H · S)T + hg ≥ 0 P − q.s. =⇒ (H · S)T + hg = 0 P − q.s.

Obviously NA(P)g implies NA(P).

DEFINITION 7.1. f : �T � R is replicable (by stocks and options), if there exists some
x ∈ R, h ∈ Re and H ∈ H, such that

x + (H · S)T + hg = f or x + (H · S)T + hg = − f .

Let

Qg : = {Q ∈ Q : EQ[g] = 0}.
Below is the main result of this section:

THEOREM 7.2. Let assumptions in Corollary 6.2 hold. Furthermore, assume that gi is
not replicable by stocks and other options, and that gi ∈ L1(Q), i = 1, . . . , e. Then we have
the following.

(i) NA(P)g holds if and only if for each P ∈ P , there exists Q ∈ Qg dominating P.
(ii) Let NA(P)g hold. Let f : �T � R be Borel measurable such that f ∈ L1(Q).

Then

π ( f ) : = inf{x ∈ R : ∃(H, h) ∈ H × Re s.t. x + (H · S)T + hg ≥ f , P − q.s.}
= sup

Q∈Qg

EQ[ f ].(7.1)

Moreover, there exists (H, h) ∈ H × Re, such that π ( f ) + (H · S)T + hg ≥ f P −
q.s.

(iii) Assume in addition H = −H. Let NA(P)g hold and f : �T � R be Borel measur-
able satisfying f ∈ L1(Qg). Then the following are equivalent:

(a) f is replicable;
(b) The mapping Q � EQ[ f ] is a constant on Qg;
(c) For any P ∈ P there exists Q ∈ Qg such that P 	 Q and EQ[ f ] = π ( f ).
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Moreover, the market is complete3 if and only if Qg is a singleton.

Proof. We first show the existence of an optimal super-hedging strategy in (ii). It can
be shown that

π ( f ) = inf
h∈Re

inf{x ∈ R : ∃H ∈ H s.t. x + (H · S)T ≥ f − hg, P − q.s.}
= inf

h∈Re
sup
Q∈Q

EQ[ f − hg],

where we apply Corollary 6.1 for the second equality above.
We claim that 0 is a relative interior point of the convex set

I : = {EQ[g] : Q ∈ Q}.

If not, then there exists some h ∈ Re with h �= 0, such that EQ[hg] ≤ 0 for any Q ∈ Q.
Then the super-hedging price of hg using S, π0(hg), satisfies π0(hg) ≤ 0 by Corollary 6.2.
Hence by Theorem 6.1 there exists H ∈ H, such that (H · S)T ≥ hg P − q.s. As the price
of hg is 0, NA(P)g implies that

(H · S)T − hg = 0 P − q.s.,

which contradicts the assumption that each gi cannot be replicated by S and the other
options, as h �= 0. Hence we have shown that 0 is a relative interior point of I.

Define φ : Re � R,

φ(h) = sup
Q∈Q

EQ[ f − hg],

and observe that

π ( f ) = inf
h∈Re

φ(h) = inf
h∈span(I)

φ(h).

We will now show that there exists a compact set K ⊂ span(I), such that

π ( f ) = inf
h∈K

φ(h).(7.2)

In order to do this, we will show that any h outside a particular ball will satisfy φ(h) ≥
φ(0), which establishes the claim.

Now, as 0 is a relative interior point of I, there exists γ > 0, such that

Bγ : = {v ∈ span(I) : ||v || ≤ γ } ⊂ I.

Consider the ball K : = {h ∈ span(I) : ||h|| ≤ 2 supQ∈Q EQ| f |/γ }. Then, for any h ∈
span(I) \ K, there exists Q ∈ Q such that −hEQ[g] > 2 supQ∈Q EQ| f | (pick Q s.t. EQ[g]
is in the same direction as −h and lies on the circumference of Bγ ). This implies that

φ(h) ≥ sup
Q∈Q

EQ[−hg] − sup
Q∈Q

EQ| f | > sup
Q∈Q

EQ| f | = φ(0).

3That is, for any Borel measurable function f : �T � R satisfying f ∈ L1
g(Q), f is replicable.
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Because such an h is suboptimal, it follows that

π ( f ) = inf
h∈K

φ(h).

Now observe that

|φ(h) − φ(h′)| ≤ sup
Q∈Q

|EQ[ f − hg] − EQ[ f − h′g]| ≤ sup
Q∈Q

E|(h − h′)g|

≤ ||h − h′|| sup
Q∈Q

EQ[||g||],

i.e., φ is continuous (in fact Lipschitz). Hence, there exists some h∗ ∈ K ⊂ Re, such that

π ( f ) = inf
h∈Re

sup
Q∈Q

EQ[ f − hg] = sup
Q∈Q

EQ[ f − h∗g] = inf{x ∈ R : ∃H ∈ H s.t. x + H · S

≥ f − h∗g, P − q.s.}.

Then, by Theorem 6.1 there exists H∗ ∈ H, such that π ( f ) + (H∗ · S)T ≥ f − h∗g P −
q.s.

Next, let us prove (i) and (7.1) in (ii) simultaneously by induction. For e = 0, (i) and
(7.1) hold by Theorem 2.3 and Corollary 6.2. Assume for e = k (i) and (7.1) hold and we
consider e = k + 1. We first consider (i). Let πk(gk+1) be the super-hedging price of gk+1

using stocks S and options g′ : = (g1, . . . , gk). By induction hypothesis, we have

πk(gk+1) = sup
Q∈Qg′

EQ[gk+1].

Recall that the price of gk+1 is 0. Then NA(P)g implies πk(gk+1) ≥ 0. If πk(gk+1) = 0,
then there exists (H, h) ∈ H × Rk, such that (H · S)T + hg′ − gk+1 ≥ 0 P − q.s. Then by
NA(P)g,

(H · S)T + hg′ − gk+1 = 0, P − q.s.,

which contradicts the assumption that gk+1 cannot be replicated by S and g′. Therefore,
πk(gk+1) > 0. Similarly πk(−gk+1) > 0. Thus, we have that

inf
Q∈Qg′

EQ[gk+1] < 0 < sup
Q∈Qg′

EQ[gk+1].

Then, there exists Q−, Q+ ∈ Qg′ satisfying

EQ− [gk+1] < 0 < EQ+ [gk+1].(7.3)

Then, for any P ∈ P , let Q ∈ Qg′ dominate P. Let

Q′ : = λ− Q− + λQ + λ+ Q+.

By choosing some appropriate λ−, λ, λ+ > 0 with λ− + λ + λ+ = 1, we have P 	 Q′ ∈
Qg, where g = (g1, . . . , gk+1).
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Next consider (7.1) in (ii). Denote the super-hedging price πk(·) when using S and g′,
and π (·) when using S and g, which is consistent with the definition in (7.1). It is easy to
see that

π ( f ) ≥ sup
Q∈Qg

EQ[ f ],(7.4)

and we focus on the reverse inequality. It suffices to show that

∃Qn ∈ Qg′ , s.t. EQn [gk+1] → 0 and EQn [ f ] → π ( f ).(7.5)

Indeed, if (7.5) holds, then we define

Q′
n : = λn

− Q− + λn Qn + λn
+ Q+, s.t. EQ′

n
[gk+1] = 0, i.e., Q′

n ∈ Qg,

where Q+, Q− are from (7.3) and λn
−, λn, λn

+ ∈ [0, 1] such that λn
− + λn + λn

+ = 1. As
EQn [gk+1] → 0, we can choose λn

± → 0. Then EQ′
n
[ f ] → π ( f ), which implies that π ( f ) ≤

supQ∈Qg
EQ[ f ].

Let us concentrate on proving (7.5). By a translation, we may without loss of generality
assume that π ( f ) = 0. If (7.5) did not hold, then we would have that

0 /∈ {EQ[(gk+1, f )] : Q ∈ Qg′ } ⊂ R2.

Then, there would exist a separating vector (y, z) ∈ R2 with ||(y, z)|| = 1 such that

sup
Q∈Qg′

EQ[ygk+1 + zf ] < 0.(7.6)

By the induction hypothesis, we would have that

0 > sup
Q∈Qg′

EQ[ygk+1 + zf ] = πk(ygk+1 + zf ) ≥ π (ygk+1 + zf ) = π (zf ).

Obviously, from the above z �= 0. If z > 0, then by positive homogeneity we would have
that π ( f ) < 0, which would contradict the assumption π ( f ) = 0. Hence z < 0. Take
Q′′ ∈ Qg ⊂ Qg′ . Then, by (7.6), 0 > EQ′′ [ygk+1 + zf ] = EQ′′ [zf ], and thus EQ′′ [ f ] > 0 =
π ( f ), which would contradict (7.4).

Finally, let us prove (iii). It is easy to see that (a)=⇒(b)=⇒(c). Now let (c) hold.
Let (H, h) ∈ H × Re such that π ( f ) + (H · S)T + hg ≥ f P − q.s. If there exists P ∈ P
satisfying

P {π ( f ) + (H · S)T + hg > f } > 0,

then by choosing a Q ∈ Qg that dominates P, we would have that π ( f ) > EQ[ f ] = π ( f ),
contradiction. Hence π ( f ) + H · S + hg = f P − q.s., i.e., f is replicable.

If the market is complete, then by letting f = 1A, we know that Q � Q(A) is constant
on Q for every A ∈ B(�) by (b). As any probability measure is uniquely determined by
its value on B(�), we know that Q is a singleton. Conversely, if Q is a singleton, then (b)
holds, and thus by (a) the market is complete.
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APPENDIX A: PROOFS OF SOME TECHNICAL RESULTS

A.1 Proof of Lemma 3.3

Proof. Fix t ∈ {0, . . . , T − 1} and let

�◦(ω) : = {y ∈ Rd : yv ≥ 0, for all v ∈ suppP(ω)(�St(ω, ·))}, ω ∈ �t.(A.1)

It can be easily shown that

Nc
t = {ω ∈ �t : �◦

H(ω) ⊂ −�◦(ω)},

where �◦
H = �◦ ∩ Ht. For any P ∈ P(�t), by Bouchard and Nutz (4.5), there exists

a Borel-measurable mapping �◦
P : �t � Rd with nonempty closed values such that

�◦
P = �◦ P-a.s. This implies that the graph(�◦

P) is Borel (see Aliprantis and Border
2006, theorem 18.6). Then it can be shown directly from the definition (1.1) that �◦

H,P :
= �◦

P ∩ Ht is u.m. Thanks to the closedness of −�◦, the set

Nc
t,P = {ω : �◦

H,P(ω) ⊂ −�◦(ω)} = ∩y∈Qd {ω : dist (y, �◦
H,P(ω)) ≥ dist (y, −�◦(ω))}

is u.m. Therefore, there exists a Borel measurable set Ñc
t,P, such that Ñc

t,P = Nc
t,P = Nc

t P-
a.s. Thus Nc

t is u.m. by Bertsekas and Shreve (1978, lemma 7.26).
It remains to show that Nt is P-polar. If not, then there exists P∗ ∈ P such that

P∗(Nt) > 0. Similar to the argument above, there exists a map �◦
∗ : �t � Rd with a

Borel measurable graph(�◦
∗), such that

�◦
∗ = �◦ P∗ −a.s.(A.2)

Let

�(ω) : = {(y, P) ∈ (�◦
∗ ∩ Ht)(ω) × Pt(ω) : EP[y�St(ω, ·)] > 0}, ω ∈ �t.

Then Nt = {� �= ∅} P∗-a.s. by (3.2), (A.1) and (A.2). It is easy to see that (with a slight
abuse of notation)

graph (�) = [ graph (Pt) × Rd ] ∩ [P(�) × graph (�◦
∗)] ∩ {EP[y�St(ω, ·)] > 0} ∩ [P(�)

× graph (Ht)]

is analytic. Therefore, by the Jankov-von Neumann Theorem (Bertsekas and Shreve
1978, proposition 7.49), there exists a u.m. selector (y, P) such that (y(·), P(·)) ∈ �(·)
on {� �= ∅}. As Nt = {� �= ∅} P∗ − a.s., y is P∗-a.s. an arbitrage on Nt. Redefine y = 0
on {y /∈ �◦ ∩ Ht}, and P to be any u.m. selector of Pt on {� = ∅}. (Here we redefine
y on {y /∈ �◦ ∩ Ht} instead of {� �= ∅} in order to make sure that y(·) ∈ �◦(·) so that
y�St ≥ 0 P − q.s.) So we have that y(·) ∈ Ht(·), P(·) ∈ Pt(·), y�St ≥ 0 P − q.s., and

P(ω){y(ω)�St(ω, ·) > 0} > 0 for P∗ −a.s. ω ∈ Nt.(A.3)



1010 E. BAYRAKTAR AND Z. ZHOU

Now, let H = (H0, . . . , HT−1) ∈ H satisfies

Ht = y, and Hs = 0, s �= t,

and define

P∗ : = P∗|�t ⊗ P ⊗ Pt+1 ⊗ . . . ⊗ PT−1 ∈ P,

where Ps is any u.m. selector of Ps , s = t + 1, . . . , T − 1. Then (H · S)T ≥ 0 P − q.s.,
and P∗{(H · S)T > 0} > 0 by (A.3), which contradicts NA(P). �

A.2 Proof of Lemma 3.4

Proof. Let

�(ω) : = {(R, R̂) ∈ P(�) × P(�) : P(ω) 	 R 	 R̂}, ω ∈ �t,

which has an analytic graph as shown in the proof of Bouchard and Nutz (2015, lemma
4.8). Consider � : �t � P(�) × P(�),

�(ω) : = {(Q, P̂) ∈ P(�)×P(�) : EQ|�St(ω, ·)| < ∞, EQ[y�St(ω, ·)]≤0, ∀y ∈ Ht(ω),

P(ω) 	 Q 	 P̂ ∈ Pt(ω)}.

Recall the analytic set 	Ht defined Assumption 3.1(iii). We have that

graph (�) = [	Ht × P(�)] ∩ [P(�) × graph (Pt)] ∩ graph (�)

is analytic. As a result, we can apply the Jankov-von Neumann Theorem (Bert-
sekas and Shreve 1978, proposition 7.49) to find u.m. selectors Q(·), P̂(·) such that
(Q(·), P̂(·)) ∈ �(·) on {� �= ∅}. We set Q(·) : = P̂(·) : = P(·) on {� = ∅}. By Theorem 2.3,
if Assumption 3.1(ii) and NA(Pt(ω)) hold, and P(ω) ∈ Pt(ω), then �(ω) �= ∅. So our con-
struction satisfies the conditions in the statement of the lemma.

It remains to show that graph (Qt) is analytic. Using the same argument for �, but
omitting the lower bound P(·), we see that the map �̃ : �t � P(�) × P(�),

�̃(ω) : = {(Q, P̂) ∈ P(�)×P(�) : EQ|�St(ω, ·)| < ∞, EQ[y�St(ω, ·)]≤0, ∀y ∈ Ht(ω),

Q 	 P̂ ∈ Pt(ω)}

has an analytic graph. As graph(Qt) is the image of graph(�̃) under the canonical
projection �t × P(�) × P(�) → �t × P(�), it is also analytic.

A.3 Proof of Lemma 5.5

Proof. Similar to the argument in Bouchard and Nutz (2015, lemma 4.8), we can show
that the set

J : = {(P, Q) ∈ P(�) × P(�) : Q 	 P}
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is Borel measurable. Thus, the map � : �t � P(�) defined by

�(ω) : = {Q ∈ P(�) : Q ≪ Pt(ω)}

has an analytic graph. Indeed, this follows by observing that graph(�) is the projection
of the analytic set

[�t × J] ∩ [ graph (Pt) × P(�)]

onto �t × P(�). By Assumption 5.1(ii), the function Â : �t × P(�) � R∗,

Â(ω, Q) = A(ω, Q)1{EQ|�St(ω,·)|<∞} + ∞1{EQ|�St(ω,·)|=∞}

is l.s.a. As a result,

graph (Qt) = graph (�) ∩ {Â < ∞}

is analytic.

A.4 Proof of Lemma 5.7

Proof. Denote the right-hand side of (5.3) by R. Let R = Q0 ⊗ . . . ⊗ QT−1 ∈ R.
Without loss of generality, we can assume that Qt : �t � P(�) is Borel measurable and
that Qt(·) ∈ Qt(·) on {Qt �= ∅} Qt−1 : = Q0 ⊗ . . . ⊗ Qt−1-a.s., t = 1, . . . , T − 1. Let

�t(ω) : = {(Q, P) ∈ P(�) × P(�) : Qt(ω) = Q 	 P ∈ Pt(ω)}, ω ∈ �t,

t = 0, . . . , T − 1.

Similar to the argument in the proof of Bouchard and Nutz (2015, lemma 4.8), it can be
shown that graph(�t) is analytic. As a result, there exist u.m. selectors Q̂t(·), P̂t(·), such
that (Q̂t(·), P̂t(·)) ∈ �(·) on {�t �= ∅}.

We shall show by an induction that for t = 0, . . . , T − 1,

�0 �= ∅, and {�t = ∅} is a Qt−1 −null set for t = 1, . . . T − 1,

and there exists a u.m. selector of Pt which we denote by Pt(·) : �t � P(�) such that

Qt = Q̂0 ⊗ . . . ⊗ Q̂t 	 P0 ⊗ . . . ⊗ Pt.

Then by setting t = T − 1, we know R = QT−1 ∈ Q. It is easy to see that the above holds
for t = 0. Assume it holds for t = k < T − 1. Then {�k+1 = ∅} ⊂ {Qk+1(·) /∈ Qk+1(·)} is a
Qk-null set by Lemma 3.3 and the induction hypothesis. As a result, Q̂k+1 = Qk+1 Qk-a.s.,
which implies that Qk+1 = Q̂0 ⊗ . . . ⊗ Q̂k+1. Setting Pk+1 : = P̂k+11{� �=∅} + P̃k+11{�=∅},
where P̃k+1(·) is any u.m. selector of Pk+1, we have that P0 ⊗ . . . ⊗ Pk+1 ∈ Pk+1. As
Qk+1(ω) 	 Pk+1(ω) for Qk-a.s. ω ∈ �k, together with the induction hypothesis, we have
that Qk+1 	 P0 ⊗ . . . ⊗ Pk+1. Now we are done with the induction.

Conversely, for any R ∈ Q, we may write R = Q0 ⊗ . . . ⊗ QT−1, where Qt : �t �
P(�) is some Borel kernel, t = 0, . . . , T − 1. Then Qt(ω) ∈ Qt(ω) for Qt−1-a.s. ω ∈ �t−1.
Thanks to the analyticity of graph(Qt), we can modify Qt(·) on a Qt−1-null set, such that
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the modification Q̂t(·) is u.m. and Q̂t(·) ∈ Qt(·) on {Qt �= ∅}. Doing this modification
procedure for each t, we get that R = Q̂0 ⊗ . . . ⊗ Q̂T−1 ∈ R.
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[Birkhäuser Advanced Texts: Basel Textbooks], New York: Birkhäuser/Springer.
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