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Compelling evidence suggests that epigeneticmechanisms such asDNAmethylation

play a role in stress regulation and in the etiologic basis of stress related disorders

such as Post traumatic Stress Disorder (PTSD). Here we describe the purpose and

methods of an international consortium that was developed to study the role of

epigenetics in PTSD. Inspired by the approach used in the Psychiatric Genomics

Consortium, we brought together investigators representing seven cohorts with a

collective sample size of N = 1147 that included detailed information on trauma

exposure, PTSD symptoms, and genome-wide DNAmethylation data. The objective

of this consortium is to increase the analytical sample size by pooling data and

combining expertise so that DNAmethylation patterns associated with PTSD can be

identified. Several quality control and analytical pipelines were evaluated for their

control of genomic inflation and technical artifacts with a joint analysis procedure

established to derive comparable data over the cohorts for meta-analysis. We

propose methods to deal with ancestry population stratification and type I error

inflation and discuss the advantages and disadvantages of applying robust error

estimates. To evaluate our pipeline, we report results from an epigenome-wide

association study (EWAS) of age, which is a well-characterized phenotype with

known epigenetic associations. Overall, while EWAS are highly complex and subject

to similar challenges as genome-wide association studies (GWAS), we demonstrate

that an epigenetic meta-analysis with a relatively modest sample size can be well-

powered to identify epigenetic associations.Our pipeline can be used as a framework

for consortium efforts for EWAS.

K E YWORD S

EWAS, meta-analysis, stress, trauma

1 | INTRODUCTION

Traumatic events are reported by over 70% of individuals during their

lifetime (Benjet et al., 2016). They have been associatedwith a number

of deleterious outcomes, including posttraumatic stress disorder

(PTSD), a psychiatric disorder characterized by cognitive intrusions,

avoidance, negative alterations in thoughts and mood, and alterations

in physiological arousal and reactivity (American Psychiatric Associa-

tion, 2000). PTSD can be severe and disabling and is often associated

with a range of comorbid psychiatric conditions such as depression and

substance use disorders (Brady, Killeen, Brewerton, & Lucerini, 2000;

Najt, Fusar-Poli, & Brambilla, 2011). PTSD has also been associated
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with a 2.8-fold increase in suicidal thoughts and behaviors (Sareen,

Houlahan, Cox, & Asmundson, 2005) as well as with a number of

chronic medical conditions (Boscarino, 2008; Coughlin, 2011; David,

Woodward, Esquenazi, & Mellman, 2004; Heppner et al., 2009;

Jakovljevic et al., 2008; Kubzansky, Koenen, Jones, & Eaton, 2009;

Kubzansky, Koenen, Vokonas, & Sparrow, 2007; Luft et al., 2012).

While the risk of developing PTSD depends in part on the nature of the

trauma (Kessler, 2000), only a minority of those exposed to trauma

develop PTSD. As a result, despite the high prevalence of lifetime

trauma, the overall lifetime prevalence of PTSD in the United States is

6.8%, (Breslau et al., 1998; Kessler et al., 2005; Resnick, Kilpatrick,

Dansky, Saunders, & Best, 1993), which suggests there are individual

differences in resilience that, if better understood, might inform the

development of new approaches to prevention and treatment.

Genetic epidemiological studies suggest that both genetic and

environmental factors contribute to PTSD risk. Twin studies estimate

the heritability of PTSD to be between 30% and 70%, (Sartor et al.,

2012; Sartor et al., 2011; Stein, Jang, Taylor, Vernon, & Livesley, 2002;

True et al., 1993; Xian et al., 2000) with the remaining variance being

attributed to environmental factors. Genetic research, based on both

candidate gene and genome-wide association studies (GWAS), has

provided support for the role of genetics in the development and

severity of PTSD and has begun to identify variants that account for

some of the genetic influence on PTSD. The genetic loci identified in

the extant GWAS have been implicated in a variety of processes,

including neuroprotection, actin polymerization, neuronal function,

and immune function (Almli et al., 2014; Guffanti et al., 2013; Logue

et al., 2013; Xie et al., 2013). Although promising, no robust genetic

variants associated with PTSD have been identified and much work

remains to be done to understand the biological basis of PTSD risk

(Logue et al., 2015).

A growing body of work has explored the role of environmental

influences on an individual’s response to trauma. Given the depen-

dence of PTSD development on exposure to environmental (i.e.,

traumatic) events, clarifying the ways in which environmental

influences might affect biological function are critical to understanding

the etiology of PTSD. In this regard, epigenetic mechanisms, which can

mediate environmental influences on gene function, are particularly

relevant. Epigenetic modifications, such as DNA methylation at

cytosine-guanine dinucleotides (CpG sites), induce changes in gene

expression in part through structural alterations of DNA that are

maintained through each round of cell division; they respond to

changes in the environment, are potentially reversible, and can be

targeted for disease therapies (Feinberg, 2007). DNA methylation

regulates gene expression by influencing the recruitment and binding

of regulatory proteins to DNA. Typically, higher methylation at gene

promoter regions correlates with decreased expression of that gene,

while intragenic methylation can regulate alternative promoters and

enhancers (Bonasio, Tu, & Reinberg, 2010; Maunakea et al., 2010).

Animal studies have demonstrated that epigenetic changes—

particularly alterations in DNA methylation in response to nurturing—

are related to altered responses to stress (Jirtle & Skinner, 2007;

Weaver et al., 2004). Similar alterations have been reported in the

human literature, in both central and peripheral tissues (McGowan

et al., 2009; Tyrka, Price, Marsit, Walters, & Carpenter, 2012).

Considering the influence of traumatic stress on DNA methylation

seen in some studies (Vinkers et al., 2015), epigenetic-based

investigations may extend genetic research findings. For example,

research reporting an association of PTSDwith a genetic variant in the

PAC1 receptor (ADCYAP1R1; rs2267735) went beyond this finding to

observe that PTSD severitywas also correlatedwithmethylation levels

of the gene (Ressler et al., 2011). Other work has suggested an

interactive effect between trauma burden andDNAmethylation in the

serotonin transporter locus (SLC6A4) on PTSD risk, independent of the

widely studied length polymorphism at this same locus (Koenen et al.,

2011) and a potentially interacting effect of genetic and epigenetic

variation at the dopamine receptor (SLC6A3) on PTSD risk (Chang et al.,

2012). Indeed, stress exposure itself has been shown to alter

epigenetic patterns in both animal and human studies (Moser et al.,

2015; Roth, Lubin, Funk, & Sweatt, 2009; Sipahi et al., 2014). In

addition to candidate gene methylation studies, a small number of

studies have examined genome-wide DNA methylation patterns in

PTSD (Mehta et al., 2013; Smith et al., 2011; Uddin et al., 2010). In

these first genome-wide studies of DNA methylation, immune

dysregulation figured prominently among the biological networks

associated with PTSD and, at a CpG site level, DNA methylation levels

in several CpGs showed suggestive evidence of replication between

these studies (Mehta et al., 2013; Smith et al., 2011; Uddin et al., 2010).

Although the emerging literature on epigenetic influences on

PTSD is promising, the majority of research to date has been

conducted with modest sample sizes, with inherent limited statistical

power. Furthermore, studies ofDNAmethylation have been hampered

by technical issues including batch effects (Harper, Peters, & Gamble,

2013) and blood cell composition (Houseman et al., 2012). Experience

from large-scale genetic studies, such as the Psychiatric Genomics

Consortium (PGC), underscores how large collaborative endeavors can

provide the adequate sample sizes and the statistical power necessary

to produce significant and replicable results (Logue et al., 2015). Based

on this experience, the PGC-PTSD formed the epigenetics working

group to organize an expansive network of investigators and their

collection of samples with genome-wide DNA methylation data

available for joint analyses.

Although there are many advantages to this collaborative

approach, there are also challenges. First, methods for assessment

of trauma exposure and PTSD symptoms/diagnosis differ among

cohorts, requiring harmonization of the phenotypic data. Participating

cohorts have assessed PTSD using clinical interviews and self-report

measureswith possible case diagnoses of lifetime PTSD, current PTSD,

or “probable” PTSD available in across different studies. The larger

PGC-PTSD has made substantial progress harmonizing phenotypes

across studies and a similar approachwill be adopted by the PGC-PTSD

epigenetics group in its analyses. A second challenge of consortia is to

address complications in the data sharing that is a prerequisite to

increasing the power and reproducibility of the study. The trend in

psychiatric genetics has been to establish large-scale consortia for the

purpose of expanding sample sizes beyond what is possible based on
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the data from any one group. Almost universally used in current large-

scale genomic consortia is meta-analysis, through which the data from

individual sites are analyzed separately and combined based on

summary statistics. In many cases, meta-analysis of individual-level

results yields results comparable to those of a “mega-analysis” of

pooled data from different studies, (Lin & Zeng, 2010; Mathew &

Nordstrom, 1999; Olkin & Sampson, 1998). However, there have been

important distinctions in the way the meta-analysis strategy has been

implemented across consortia, including variations in the degree to

which the cleaning and analysis of the individual-level data occurs (i.e.,

centralized vs. distributed). The analysis of individual data in a

centralized manner allows a high degree of control over the quality

control (QC) process and an ability to quickly perform follow-up

analyses, but poses difficulties of requiring a larger degree of

computational resources and storage at the consortium level and

permission from all groups to share data.

The PGC-PTSD epigenetics group uses many of the same

protocols and tools developed by the PGC (Logue et al., 2015), with

the difference that not all data are centrally stored and managed since

some constituent samples that originate from US military, US Veteran

(VA), or foreign countries are subject to additional regulatory

oversight, which do not allow the sharing of individual-level genomic

data. To enable participation for these studies, the PGC-PTSD

epigenetics group follows a strategy similar to that of the ENIGMA

consortium (Thompson et al., 2014), in which a set of protocols and

scripts are created, in this case to implement standardized QC and

analysis pipelines for the Illumina HumanMethylation450 BeadChip.

These scripts are performed at each participating site and analysis

results are submitted to the consortium where they are assessed,

collated, and meta-analyzed. In this study, we compare the perfor-

mance of two QC and two analytical pipelines to control for genomic

inflation, present the final PGC-PTSD epigenetics pipeline, and assess

the performance of the PGC-PTSD epigenetics pipeline in a meta-

analysis of age.

2 | MATERIALS AND METHODS

2.1 | The PGC EWAS cohorts

The participating cohorts, presented in Table 1, consisted of four

military cohorts (MRS, PRISMO, VA-M, and VA-NCPTSD) and three

civilian cohorts (DNHS, GTP, and WTC) that all measured DNA

methylation (DNAm) with the Illumina HumanMethylation450k

BeadChip. Descriptions of the cohorts are in the supplemental

information. Each cohort consists of PTSD cases as well as trauma-

exposed controls. A total of 1,147 subjects (∼50% cases) were selected

for inclusion in the EWAS and were subjected to the quality control

and analytical pipelines.

2.2 | Posttraumatic stress disorder assessment

Similar to other analyses conducted by the PGC-PTSD, our analysis

required consistently defining and harmonizing PTSD diagnoses across

cohorts that used different instruments and methods of diagnosis

(Logue et al., 2015).We used a diagnosis of current PTSD based on the

diagnostic criteria defined by each cohort’s principal investigator (see

supplemental information). Individualswith lifetime diagnoses of PTSD

but not current PTSD were excluded from analysis.

2.3 | Quality control procedures

We tested two quality control protocols: the eventually proposed PGC

pipeline and a Functional Normalization (Funnorm) pipeline. In the PGC

pipeline (Supplemental Figure S1), study investigators first conducted a

visual inspection of control-probes designed to report on each step of

the Infinium protocol such as bisulfite conversion and hybridization

efficiency. In addition, samples with probe detection call rates <90%

and those with an average intensity value of either <50% of the

experiment-wide sample mean or <2,000 arbitrary units (AU) were

excluded. Probes with detection p-values > 0.001 or those based on

less than three beads were set to missing as were probes that cross-

hybridized between autosomes and sex chromosomes (Teschendorff

et al., 2013). CpG sites with missing data for >10% of samples within

cohorts were excluded from analysis. Probes containing single

nucleotide polymorphisms (SNPs; based on 1000 Genomes) within

10 base pairs of the target CpG were maintained in each dataset, but

flagged and tracked throughout the analysis pipeline. This decisionwas

based on the growing recognition that sequence variants can influence

DNAmethylation patterns throughout the genome (Smith et al., 2014).

Even if an associated CpG site is influenced by genetics, such as is the

case for SKA2 (Boks et al., 2016; Rice et al., 2008), maintaining such

probes is informative to our overall goal of identifying genes important

for PTSD (Gibbs et al., 2010; Guintivano et al., 2014; Heyn et al., 2013).

Normalization of probe distribution and background differences

between Type I and Type II probes was conducted using Beta Mixture

Quantile Normalization (BMIQ) (Teschendorff et al., 2013) after

background correction. We chose BMIQ after comparing distributions

of BMIQ normalized Type II probes in the Detroit Neighborhood

Health Study (DNHS) with the raw distributions and distributions after

applying the DASEN procedure in the R package watermelon

(Supplemental Figure S2) (Pidsley et al., 2013). Following normaliza-

tion, batch effect removal as implemented in the ComBat procedure of

the SVA package in bioconductor was used to account for sources of

technical variations including batch and positional effects, which can

cause spurious associations (Johnson, Li, & Rabinovic, 2007). Individual

cohorts also controlled for additional covariates that may not have

been balanced within chips but that were of interest in downstream

analyses, such as case designation and sex (if relevant). Following

completion of this QC pipeline, each cohort confirmed that there were

no remaining sources of technical variation by examining the

association of PCs of the methylation levels with chip and position

using multivariate linear regression, bar plots, and heat maps.

The second QC protocol used the Functional Normalization

procedure implemented in the R package minfi, which has been

reported to remove technical variation more effectively than ComBat

or other supervised methods (Aryee et al., 2014; Fortin et al., 2014).
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Briefly, raw IDATs were loaded into R and Functional Normalization

applied using the default of two principal components (PCs) as

covariates. The resulting normalized beta matrix was then extracted

and used for analysis.

2.4 | Cellular heterogeneity

DNA methylation is known to vary by cell type which impacts the

measured whole blood methylation as a result of the amalgamation of

the cell type proportions in each individual’s sample. To control for

possible confounding by individuals’ underlying cell type heterogene-

ity, proportions of CD8, CD4, NK, B cells, monocytes, and granulocytes

were estimated using each individual’s DNAmethylation data, publicly

available reference data (GSE36069), and the method described by

Jaffe and Irizarry (2014) (Reinius et al., 2012), based on the Houseman

algorithm (Houseman et al., 2012). CD8, CD4, NK, B cell, and

monocyte cell proportionswere included as covariates in our statistical

analyses.

2.5 | Ancestry

Accounting for population stratification has become routine practice

for genetic association studies, and most recently has also been shown

to be of importance in DNA methylation studies (Barfield et al., 2014;

Nielsen et al., 2010). GWAS methods such as principal components

(PCs) derived from SNPs can be incorporated into EWAS, but were not

always available for all cohorts, or all samples within a cohort. An

alternative based on methylation probes that proxy nearby SNPs was

developed by Barfield et al. (2014) for use in European and African

American subjects. Here we evaluated and extended this approach to

other ancestral populations as part of the PGC-PTSD EWAS pipeline.

A subset of ancestry-diverse subjects (N = 128, including Euro-

pean Americans, African Americans, Latinos/Native Americans, and

“others” including East Asians) from theMarine Resiliency study (MRS)

were selected based on available genome-wide genotype data

(Illumina HumanOmniExpressExome array) and matching Illumina

450Kmethylation data (Nievergelt et al., 2015). Ancestry using GWAS

data was inferred as described in Nievergelt et al. (2013). In brief,

genotypes of 1,783 ancestry-informative markers (AIMs) were used to

determine a subject’s ancestry at the continental level using

STRUCTUREv2.3.2.1, including prior population information of the

HGDP reference set (Falush, Stephens, & Pritchard, 2003; Li et al.,

2008). Based on these ancestry estimates, subjects were placed into

one of four groups: European Americans, African Americans, Latinos/

Native Americans, and “Others.” PCs were derived using Eigenstrat

(Price et al., 2006).

Ancestry estimates using methylation data were derived using

subsets of methylation probes in close proximity to SNPs identified by

Barfield et al. (2014). Probe sets with 0 bp distance (N = 7,703 CpG

probes), within 1 bp distance (17,995 CpG probes), and within 10 bp

distance (N = 50,319CpGprobes) were compared. GWAS-derived PCs

were visually compared to methylation-probe derived PCs and

genotypes of SNPs in proximity of CpG sites were compared with

respective CpG methylation values using Pearson correlation (r).

2.6 | Statistical analysis

Within each cohort, logit transformed ß values (M-values) (Du et al.,

2010) were modeled by linear regression as a function of PTSD,

adjusting for sex, age, the estimated cell proportions, and ancestry

using PCs. For cohorts with available GWAS data, the first three PCs

from the GWAS were used. For cohorts without GWAS data, the

method described by Barfield et al. was used to generate ancestry PCs

directly from the EWAS data. Consistent with the original paper and

our analysis (full results below), the second through fourth PCs were

used as covariates in themodel to control for ancestry. Note that while

ancestry is a primary source for variation in GWAS, other potentially

confounding factors such as cellular heterogeneity are a primary

source for variation in EWAS data. Comparison with SNP data showed

that ancestry inference is strongest when excluding EWAS-derived

PC1. QQ-plots of the PTSD p-values were examined for evidence of

genomic inflation due to unaccounted technical variation or other

TABLE 1 PGC-PTSD EWAS Cohorts

Civilian Military

Total DNHS GTP WTC MRS PRISMO VA-M VA-NCP

N 1147 100 270 180 126 62 176 233

Mean age (SD) 38.0 (–) 53.6 (14.0) 41.7 (12.4) 49.7 (8.3) 22.2 (3.0) 27.1 (9.2) 34.9 (9.9) 32.0 (8.4)

Current PTSD (%) 50 40 39 47 50 50 49 69

Male (%) 73 38 30 100 100 100 78 90

Race (%)

White 56 15 5 76 57 100 100 74

Hispanic 6 0 0 0 25 0 0 14

Black 33 85 94 4 8 0 0 9

Asian 1 0 0 0 3 0 0 2

Other 3 0 0 20 0 0 0 0
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confounders. In addition, the genomic inflation factors (λ) were

calculated for each study. Two adjustments were considered to

improve the precision of the estimated variances. First, moderated

t-statistics were calculated using the empirical Bayes method

implemented in the R package limma (Smyth, 2005). Second, HC3

robust standard errors, which have been shown to be the most

effective in samples smaller than 250, were calculated using the R

package sandwich (Long & Ervin, 2000; Zeileis, 2004).

Cohort-level analysis results were combined using the inverse normal

method (Marot, Foulley, Mayer, & Jaffrézic, 2009). Briefly, one-sided

p-values for each CpG site in each study were calculated from the

t-statistics.Next z-scoreswere calculated from theone-sidedp-values and

weightedby thenumberof subjects ineachstudy relative to the total in the

meta-analysis. Two-sidedp-values of the z-scorewere then calculated and

genomic inflation examined. Finally, p-values were adjusted for multiple-

testing using the False Discovery Rate (FDR) procedure at the type I error

rate level of 5% (Benjamini & Hochberg, 1995).

2.7 | Sensitivity analysis

NumerousrobustassociationsbetweenageandDNAmhavebeenreported

(Bocklandt et al., 2011; Hannumet al., 2013; Horvath, 2013; Horvath et al.,

2012;Weidner et al., 2014). Becausewe expect that agewill be associated

similarly with DNAm in each cohort, we can leverage this highly

reproducible relationship to evaluate the pipeline’s performance. In each

cohort, wemodeledmethylation as a function of age along with covariates

for ancestry and gender (if applicable) and meta-analyzed the results as

outlined above. In addition, wemeasured concordance between studies by

estimating the correlation between the t-statistics of the age variable.

2.8 | Power

Power for EWAS is more favorable compared to GWAS as a result of the

continuous nature of the DNAmethylation measures, but instead suffers

from poor distribution including low variances and heteroscedasticity (Du

et al., 2010). The power to detect a differentially methylated CpG site

depends on the percent difference in methylation between cases and

controls, the pooled variation in methylation (σ) across CpG sites, and the

number of cases and controls (Liu & Hwang, 2007). We conducted

simulations to test the smallestmeandifference betweenPTSDcases and

controls we could detect based on our projected sample size and a

σ = 0.43, which represents the highest variation reported in one of our

cohorts, and thus a very conservative estimate (Orr & Liu, 2009).

3 | RESULTS

3.1 | Participating cohorts

Sample characteristics for studies that have contributed data to this

first PGC-PTSD EWAS study are listed in Table 1 (N = 1,147). Three of

the seven studies are composed of civilians, while the remaining

studies include active duty and veteran military populations. The

majority of participants, especially from themilitary cohorts, weremale

(73%) and of European American (EA) descent (56%). All participants

were exposed to trauma and half of participants suffered from current

PTSD (50%). Data collection occurred across the United States (e.g.,

Atlanta, Detroit, San Diego, Durham, Boston, and New York) and

Europe. While a few studies used clinical interviews, the majority of

studies used self-report ratings of PTSD symptoms that relied on

established cutoffs to assign caseness. A detailed description of

participating cohorts is provided in the supplementary information.

3.2 | Power

The power analysis shows that with our sample of 573 cases and 574

controls (N = 1147), we are sufficiently powered to find at least one

CpG site with a mean methylation difference of 0.08 between cases

and controls (Figure 1).

3.3 | Ancestry

We investigated the utility of DNA methylation-based ancestry

estimates based on CpGs with nearby genetic variants in cis as

proposed by Barfield et al. (2014). A comparison of CpG probes with

SNPs within 1 bp distance (N = 17,995) and CpG probes with SNPs

within 10 bp distance (N = 50,319) showed a higher genotype-

methylation correlation for the 1 bp probes (r = 0.29, p = 1.8 × 10−15)

than the 10 bp probes (r = 0.06, p = 0.0015). Figure 2 shows a SNP

derived PC plot based on available GWAS data including PCs 1 and 2

(panel A), PCs 2 and 3 from the methylation-based CpGs with a SNP

1 bp from the probes (panel B), and the PCs from CpG probes within

FIGURE 1 Sample size vs. power to to detect differentially
methylated CpG sites. The black curve indicates the number of
cases and controls necessary to find a differentially methylated if
only one CpG site exists, while the gray line indicates the size
necessary if 10 differentially methylated sites exist
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10 bp of a SNP (panel C). Supplemental Figure S5 shows PCs 2, 3, 4,

and PCs 2, 3, and 6 for, respectively, CpGs within 1 bp and 10 bp of a

SNP. These results along with the genotype-methylation correlations

show that the use of DNA methylation ancestry estimates (PCs 2–4)

using probes within 1 bp of a SNP provide reliable results and are

suitable as ancestry covariates in our analyses.

3.4 | Quality control results

The number of samples andprobes, not including cross-reactive probes)

removed in our proposed PGC-EWAS pipeline ranged from 677 to

10,218 across studies (Supplemental Table S3). Figure 3 presents the

genomic inflation factors from the analysis of PTSD for each individual

study using two different quality control methods as well as two

different analysis pipelines: (1) our proposed PGC-EWAS pipeline,

described in detail in the Methods section above, as well as (2) the

Functional Normalization (Funnorm) QC pipeline. Resulting data from

each QC pipeline were then subjected to linear regression analysis,

performed with empirical Bayes and HC3 standard errors, respectively.

In studies using the Funnorm pipeline there were large variations in the

genomic inflation factorwith two studies showing high inflation (DNHS,

GTP) and two studies showing substantial deflation (MRS, VA-NCP)

regardless of whether empirical Bayes or HC3 standard errors were

used.Using the PGC-EWASpipeline andHC3 standard errors, six of the

seven studies showed genomic deflation with (λ < 1.0), while only one

study was deflated when using empirical Bayes standard errors

(Supplemental Table S1). These results indicate that the PTSD-PGC

EWAS pipeline, combined with empirical Bayes standard errors, is the

preferred method for cohorts participating in our meta-analysis.

3.5 | Sensitivity analysis: Age meta-analysis results

Results for the age analysis using our pipeline and no standard error

adjustment are presented in Table 2. All studies reported numerous

FIGURE 2 Ancestry inference using SNPs versus methylation probes in 128 participants of the Marine Resiliency Study (MRS). (a)
Principal component (PC) plot showing ancestry inferred using SNPs from a genome-wide association study (GWAS). PC plots based on
CpG probes with SNPs within 1 bp distance (b) and with SNPs within 10 bp distance (c), respectively. Subject are placed into four
ancestral groups based on ancestry estimates using ancestry-informative SNPs and a reference panel (see methods).
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FDR-significant CpG sites but substantially more significant results

were reported for the combined meta-analysis. MRS and PRISMO

reported the fewest significant sites. However the age range for

participants in these studies was narrower as both studies included

active military personnel. The correlations of the t-statistics ranged

from 0.171 to 0.692 when all sites were analyzed and from 0.441 to

0.886 among the FDR significant sites (Supplemental Figure S3). The

strong correlations of the most significant sites indicate that each

cohort retained the biological signal of age after QC. Of the 494 CpG

sites reported to have been associated with age, 326 were significant

after FDR-correction (Supplemental Table S2). In addition, a forest plot

of the most significant CpG site representative of the FDR significant

sites, shows a consistent direction of effect in each study

(Supplemental Figure S4).

4 | DISCUSSION

PTSD is unique among psychiatric disorders in that its occurrence

requires exposure to a significant traumatic event. With an environ-

mental exposure embedded into the etiology of the disorder, the PTSD

diagnosis affords an unusual opportunity to identify individual

differences in the biological response to trauma to increase risk for,

or resilience to, the disorder. Herewe have introduced an international

FIGURE 3 PTSD genomic inflation factors (λ) by quality control pipeline (PGC vs. Funnorm) and standard error adjustment method
(empirical Bayes vs. HC3)

TABLE 2 Age associations using the PGC-PTSD epigenetics QC and analysis pipeline

Sites with Sites with Sites with Sites with

Study Sites (FDR < 0.05) (p < 5 × 10−5) (p < 5 × 10−6) (p < 5 × 10−7)

DNHS 455,079 4,766 1,744 678 299

GTP 453,351 59,100 21,562 14,299 9,586

MRS 455,601 210 311 99 34

PRISMO 446,688 246 316 121 41

VA-M 455,641 42,474 12,913 7,213 4,159

VA-NCPTSD 453,747 35,217 10,522 6,331 3,991

WTC 455,340 14,239 5,013 2,730 1,525

Meta-analysis 444,164 119,308 57,332 46,629 38,656
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collaboration that has been established to identify epigenetic

associations—specifically, DNA methylation—related to risk for, or

resilience to, PTSD. We presented the development of a consistent

pipeline for processing and quality-control of epigenome-wide

association data comparing two quality control approaches and

statistical pipelines. In our analysis of PTSD, we found that our

proposed PGC-EWAS pipeline controlled for genomic inflation and

deflation more consistently than Functional Normalization, regardless

of the standard error correction used. In light of these findings, we

encourage consortia with epigenome-wide methylation data to

implement our quality control pipeline including checks for genomic

inflation and strengthened associations with age before meta-

analyzing across studies.

Through these collaborative efforts to analyze existing DNA

methylation data from blood obtained from both military and civilian

cohorts, we are poised to collectively address one of the main

challenges of psychiatric genomics, namely the need for large,

harmonized samples to adequately power genome-scale analyses.

The current collaborative dataset allows detection of methylation

differences around seven percent, larger than most reported

methylation differences, (Vinkers et al., 2015). Additional EWAS

datasets that are forthcoming will likely prove essential to detecting

PTSD-associated DNA methylation differences in our planned meta-

analyses. Moving forward, we anticipate that our collaborative efforts

will grow to include additional cohorts from around the world; indeed,

in the last year alone, several new studies have expressed interest in

participating in future EWAS analyses as their data become available.

In addition to the DNA methylation analysis the close allegiance with

the PGC-PTSD group has laid the foundation for integrating data from

GWAS, EWAS, and gene expression/transcriptome analyses. In

combination with other biological measures and coordinated neuro-

imaging efforts (Logue et al., 2015) that may become accessible

through this collaboration, these system-wide integrations will

facilitate amore complete understanding of themolecular architecture

and biological underpinnings of PTSD.

The harmonization of some study characteristics paired with the

demographic and clinical diversity of the samples, including

the differences between military and civilian trauma, allows us the

opportunity to identify DNA methylation patterns predictive for

specific groups of individuals and types of trauma. This will not only

provide insight into the heterogeneity of PTSD, but may also help

explain mechanisms for the variation in conditional effects of different

types of trauma on PTSD (Wisco et al., 2014). Additionally, it will also

provide a framework fromwhichDNAmethylationmay be informative

for early risk prediction and treatment stratification.

Looking ahead, we are optimistic that our PTSD EWAS

collaboration will identify blood-based DNA methylation signatures

that associate reliably with PTSD. Identification of robust peripheral

biomarkers is an important first step and has potential for early

detection and prevention. The ultimate goal is to provide new insights

into the etiology of PTSD. To truly understand themechanistic basis of

PTSD, it will be critical to compare our blood-derived epigenetic

biomarkers with those from other tissues, in particular brain tissue. As

a first pass, DNA methylation-based biomarkers that associate with

PTSD at particular CpG sites in blood can, at this time, be compared to

CpG site derived from brain tissues, thanks to the Epigenomic

Roadmap datasets (Bernstein et al., 2010; Kundaje et al., 2015).

However, these comparisons will be limited to a comparison of DNA

methylation levels in brain and blood in general, as the current data are

not representative of PTSD. Over time, however, the development of

PTSD brain biobanks of brain and other tissue types including blood

cells, will help us to pinpoint whether blood-derived, DNAmethylation

biomarkers of PTSD reflect similar alterations in brain tissue, as recent

work suggests may be possible for certain pathways (Daskalakis,

Cohen, Cai, Buxbaum, & Yehuda, 2014). Collectively, these cross-

tissue efforts will provide insight into the biological pathways

underlying PTSD vulnerability and will ultimately facilitate new

treatment and modes of prevention.
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