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Abstract  

Compelling evidence suggests that epigenetic mechanisms such as DNA methylation play a role 

in stress regulation and in the etiologic basis of stress related disorders such as Posttraumatic 

Stress Disorder (PTSD). Here we describe the purpose and methods of an international 

consortium that was developed to study the role of epigenetics in PTSD. Inspired by the 

approach used in the Psychiatric Genomics Consortium, we brought together investigators 

representing seven cohorts with a collective sample size of N=1147 that included detailed 

information on trauma exposure, PTSD symptoms, and genome-wide DNA methylation data. 

The objective of this consortium is to increase the analytical sample size by pooling data and 

combining expertise so that DNA methylation patterns associated with PTSD can be identified. 

Several quality control and analytical pipelines were evaluated for their control of genomic 

inflation and technical artifacts with a joint analysis procedure established to derive comparable 

data over the cohorts for meta-analysis. We propose methods to deal with ancestry population 

stratification and type I error inflation and discuss the advantages and disadvantages of applying 

robust error estimates. To evaluate our pipeline, we report results from an epigenome-wide 

association study (EWAS) of age, which is a well-characterized phenotype with known 

epigenetic associations. Overall, while EWAS are highly complex and subject to similar 

challenges as genome-wide association studies (GWAS), we demonstrate that an epigenetic 

meta-analysis with a relatively modest sample size can be well-powered to identify epigenetic 

associations. Our pipeline can be used as a framework for consortium efforts for EWAS.  
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Introduction  

Traumatic events are reported by over 70% of individuals during their lifetime [Benjet 

and others 2016]. They have been associated with a number of deleterious outcomes, including 

posttraumatic stress disorder (PTSD), a psychiatric disorder characterized by cognitive 

intrusions, avoidance, negative alterations in thoughts and mood, and alterations in physiological 

arousal and reactivity [Association 2000]. PTSD can be severe and disabling and is often 

associated with a range of comorbid psychiatric conditions such as depression and substance use 

disorders [Brady and others 2000; Najt and others 2011]. PTSD has also been associated with a 

2.8-fold increase in suicidal thoughts and behaviors [Sareen and others 2005] as well as with a 

number of chronic medical conditions [Boscarino 2008; Coughlin 2011; David and others 2014; 

Heppner and others 2009; Jakovljevic and others 2008; Kubzansky and others 2009; Kubzansky 

and others 2007; Luft and others 2012]. While the risk of developing PTSD depends in part on 

the nature of the trauma [Kessler 2000], only a minority of those exposed to trauma develop 

PTSD. As a result, despite the high prevalence of lifetime trauma, the overall lifetime prevalence 

of PTSD in the United States is 6.8%, [Breslau and others 1998; Kessler and others 2005; 

Resnick and others 1993], which suggests there are individual differences in resilience that, if 

better understood, might inform the development of new approaches to prevention and treatment.  

Genetic epidemiological studies suggest that both genetic and environmental factors 

contribute to PTSD risk. Twin studies estimate the heritability of PTSD to be between 30-70%, 

[Sartor and others 2012; Sartor and others 2011; Stein and others 2002; True and others 1993; 

Xian and others 2000] with the remaining variance being attributed to environmental factors. 

Genetic research, based on both candidate gene and genome-wide association studies (GWAS), 

has provided support for the role of genetics in the development and severity of PTSD and has 
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begun to identify variants that account for some of the genetic influence on PTSD. The genetic 

loci identified in the extant GWAS have been implicated in a variety of processes, including 

neuroprotection, actin polymerization, neuronal function, and immune function [Almli and 

others 2014; Guffanti and others 2013; Logue and others 2013; Xie and others 2013]. Although 

promising, no robust genetic variants associated with PTSD have been identified and much work 

remains to be done to understand the biological basis of PTSD risk [Logue and others 2015]. 

A growing body of work has explored the role of environmental influences on an 

individual’s response to trauma. Given the dependence of PTSD development on exposure to 

environmental (i.e., traumatic) events, clarifying the ways in which environmental influences 

might affect biological function are critical to understanding the etiology of PTSD. In this regard, 

epigenetic mechanisms, which can mediate environmental influences on gene function, are 

particularly relevant. Epigenetic modifications, such as DNA methylation at cytosine-guanine 

dinucleotides (CpG sites), induce changes in gene expression in part through structural 

alterations of DNA that are maintained through each round of cell division; they respond to 

changes in the environment, are potentially reversible, and can be targeted for disease therapies 

[Feinberg 2007]. DNA methylation regulates gene expression by influencing the recruitment and 

binding of regulatory proteins to DNA. Typically, higher methylation at gene promoter regions 

correlates with decreased expression of that gene, while intragenic methylation can regulate 

alternative promoters and enhancers [Bonasio and others 2010; Maunakea and others 2010].  

Animal studies have demonstrated that epigenetic changes—particularly alterations in 

DNA methylation in response to nurturing—are related to altered responses to stress [Jirtle and 

Skinner 2007; Weaver and others 2004]. Similar alterations have been reported in the human 

literature, in both central and peripheral tissues [McGowan and others 2009; Tyrka and others 
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2012]. Considering the influence of traumatic stress on DNA methylation seen in some studies 

[Vinkers and others 2015], epigenetic-based investigations may extend genetic research findings. 

For example, research reporting an association of PTSD with a genetic variant in the PAC1 

receptor (ADCYAP1R1; rs2267735) went beyond this finding to observe that PTSD severity was 

also correlated with methylation levels of the gene [Ressler and others 2011]. Other work has 

suggested an interactive effect between trauma burden and DNA methylation in the serotonin 

transporter locus (SLC6A4) on PTSD risk, independent of the widely studied length 

polymorphism at this same locus [Koenen and others 2011] and a potentially interacting effect of 

genetic and epigenetic variation at the dopamine receptor (SLC6A3) on PTSD risk [Chang and 

others 2012]. Indeed, stress exposure itself has been shown to alter epigenetic patterns in both 

animal and human studies [Moser and others 2015; Roth and others 2009; Sipahi and others 

2014]. In addition to candidate gene methylation studies, a small number of studies have 

examined genome-wide DNA methylation patterns in PTSD [Mehta and others 2013; Smith and 

others 2011; Uddin and others 2010]. In these first genome wide studies of DNA methylation, 

immune dysregulation figured prominently among the biological networks associated with PTSD 

and, at a CpG site level, DNA methylation levels in several CpGs showed suggestive evidence of 

replication between these studies [Mehta and others 2013; Smith and others 2011; Uddin and 

others 2010]. 

 Although the emerging literature on epigenetic influences on PTSD is promising, the 

majority of research to date has been conducted with modest sample sizes, with inherent limited 

statistical power. Furthermore, studies of DNA methylation have been hampered by technical 

issues including batch effects [Harper and others 2013] and blood cell composition [Houseman 

and others 2012]. Experience from large-scale genetic studies, such as the Psychiatric Genomics 
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Consortium (PGC), underscores how large collaborative endeavors can provide the adequate 

sample sizes and the statistical power necessary to produce significant and replicable results 

[Logue and others 2015]. Based on this experience, the PGC-PTSD formed the epigenetics 

working group to organize an expansive network of investigators and their collection of samples 

with genome-wide DNA methylation data available for joint analyses.  

Although there are many advantages to this collaborative approach, there are also 

challenges. First, methods for assessment of trauma exposure and PTSD symptoms/diagnosis 

differ among cohorts, requiring harmonization of the phenotypic data. Participating cohorts have 

assessed PTSD using clinical interviews and self-report measures with possible case diagnoses of 

lifetime PTSD, current PTSD, or “probable” PTSD available in across different studies. The 

larger PGC-PTSD has made substantial progress harmonizing phenotypes across studies and a 

similar approach will be adopted by the PGC-PTSD epigenetics group in its analyses. A second 

challenge of consortia is to address complications in the data sharing that is a prerequisite to 

increasing the power and reproducibility of the study. The trend in psychiatric genetics has been 

to establish large-scale consortia for the purpose of expanding sample sizes beyond what is 

possible based on the data from any one group. Almost universally used in current large-scale 

genomic consortia is meta-analysis, through which the data from individual sites are analyzed 

separately and combined based on summary statistics. In many cases, meta-analysis of 

individual-level results yields results comparable to those of a “mega-analysis” of pooled data 

from different studies, [Lin and Zeng 2010; Mathew and Nordstrom 1999; Olkin and Sampson 

1998]. However, there have been important distinctions in the way the meta-analysis strategy has 

been implemented across consortia, including variations in the degree to which the cleaning and 

analysis of the individual-level data occurs (i.e., centralized versus distributed). The analysis of 
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individual data in a centralized manner allows a high degree of control over the quality control 

(QC) process and an ability to quickly perform follow-up analyses, but poses difficulties of 

requiring a larger degree of computational resources and storage at the consortium level and 

permission from all groups to share data.  

The PGC-PTSD epigenetics group uses many of the same protocols and tools developed 

by the PGC [Logue and others 2015], with the difference that not all data are centrally stored and 

managed since some constituent samples that originate from US military, US Veteran (VA), or 

foreign countries are subject to additional regulatory oversight, which do not allow the sharing of 

individual-level genomic data. To enable participation for these studies, the PGC-PTSD 

epigenetics group follows a strategy similar to that of the ENIGMA consortium [Thompson and 

others 2014], in which a set of protocols and scripts are created, in this case to implement 

standardized QC and analysis pipelines for the Illumina HumanMethylation450 BeadChip. These 

scripts are performed at each participating site and analysis results are submitted to the 

consortium where they are assessed, collated, and meta-analyzed. In this study, we compare the 

performance of two QC and two analytical pipelines to control for genomic inflation, present the 

final PGC-PTSD epigenetics pipeline, and assess the performance of the PGC-PTSD epigenetics 

pipeline in a meta-analysis of age.  

 
Materials and Methods 

The PGC EWAS Cohorts 

The participating cohorts, presented in Table 1, consisted of four military cohorts (MRS, 

PRISMO, VA-M, and VA-NCPTSD) and three civilian cohorts (DNHS, GTP, and WTC) that all 

measured DNA methylation (DNAm) with the Illumina HumanMethylation450K BeadChip. 
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Descriptions of the cohorts are in the supplemental information. Each cohort consists of PTSD 

cases as well as trauma-exposed controls. A total of 1,147 subjects (~50% cases) were selected 

for inclusion in the EWAS and were subjected to the quality control and analytical pipelines.  

Posttraumatic Stress Disorder Assessment 

Similar to other analyses conducted by the PGC-PTSD, our analysis required consistently 

defining and harmonizing PTSD diagnoses across cohorts that used different instruments and 

methods of diagnosis [Logue and others 2015]. We used a diagnosis of current PTSD based on 

the diagnostic criteria defined by each cohort’s principal investigator (see supplemental 

information). Individuals with lifetime diagnoses of PTSD but not current PTSD were excluded 

from analysis.  

Quality Control Procedures  

We tested two quality control protocols: the eventually proposed PGC pipeline and a 

Functional Normalization (Funnorm) pipeline. In the PGC pipeline (Supplemental Figure 1), 

study investigators first conducted a visual inspection of control-probes designed to report on 

each step of the Infinium protocol such as bisulfite conversion and hybridization efficiency. In 

addition, samples with probe detection call rates <90% and those with an average intensity value 

of either <50% of the experiment-wide sample mean or <2,000 arbitrary units (AU) were 

excluded. Probes with detection p-values >0.001 or those based on less than three beads were set 

to missing as were probes that cross-hybridized between autosomes and sex chromosomes 

[Teschendorff and others 2013]. CpG sites with missing data for >10% of samples within cohorts 

were excluded from analysis. Probes containing single nucleotide polymorphisms (SNPs; based 

on 1000 Genomes) within 10 base pairs of the target CpG were maintained in each dataset, but 

flagged and tracked throughout the analysis pipeline. This decision was based on the growing 
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recognition that sequence variants can influence DNA methylation patterns throughout the 

genome [Smith and others 2014]. Even if an associated CpG site is influenced by genetics, such 

as is the case for SKA2 [Boks and others 2016; Rice and others 2008], maintaining such probes is 

informative to our overall goal of identifying genes important for PTSD [Gibbs and others 2010; 

Guintivano and others 2014; Heyn and others 2013]. Normalization of probe distribution and 

background differences between Type I and Type II probes was conducted using Beta Mixture 

Quantile Normalization (BMIQ) [Teschendorff and others 2013] after background correction. 

We chose BMIQ after comparing distributions of BMIQ normalized Type II probes in the 

Detroit Neighborhood Health Study (DNHS) with the raw distributions and distributions after 

applying the DASEN procedure in the R package wateRmelon (Supplemental Figure 2) [Pidsley 

and others 2013]. Following normalization, batch effect removal as implemented in the ComBat 

procedure of the SVA package in bioconductor was used to account for sources of technical 

variations including batch and positional effects, which can cause spurious associations [Johnson 

and others 2007]. Individual cohorts also controlled for additional covariates that may not have 

been balanced within chips but that were of interest in downstream analyses, such as case 

designation and sex (if relevant). Following completion of this QC pipeline, each cohort 

confirmed that there were no remaining sources of technical variation by examining the 

association of PCs of the methylation levels with chip and position using multivariate linear 

regression, bar plots, and heat maps.  

The second QC protocol used the functional normalization procedure implemented in the 

R package minfi, which has been reported to remove technical variation more effectively than 

ComBat or other supervised methods [Aryee and others 2014; Fortin and others 2014]. Briefly, 

raw IDATs were loaded into R and functional normalization applied using the default of two 
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principal components (PCs) as covariates. The resulting normalized beta matrix was then 

extracted and used for analysis.  

Cellular Heterogeneity 

DNA methylation is known to vary by cell type which impacts the measured whole blood 

methylation as a result of the amalgamation of the cell type proportions in each individual’s 

sample. To control for possible confounding by individuals’ underlying cell type heterogeneity, 

proportions of CD8, CD4, NK, B cells, monocytes and granulocytes were estimated using each 

individual’s DNA methylation data, publicly available reference data (GSE36069), and the 

method described by Jaffe and colleagues [Jaffe and Irizarry 2014; Reinius and others 2012], 

based on the Houseman algorithm [Houseman and others 2012]. CD8, CD4, NK, B cell, and 

monocyte cell proportions were included as covariates in our statistical analyses. 

Ancestry 

 Accounting for population stratification has become routine practice for genetic 

association studies, and most recently has also been shown to be of importance in DNA 

methylation studies [Barfield and others 2014; Nielsen and others 2010]. GWAS methods such 

as principal components (PCs) derived from SNPs can be incorporated into EWAS, but were not 

always available for all cohorts, or all samples within a cohort. An alternative based on 

methylation probes that proxy nearby SNPs was developed by Barfield et al. for use in European 

and African American subjects [Barfield and others 2014]. Here we evaluated and extended this 

approach to other ancestral populations as part of the PGC-PTSD EWAS pipeline. 

A subset of ancestry-diverse subjects (N=128, including European Americans, African 

Americans, Latinos/Native Americans and ‘others’ including East Asians) from the Marine 

Resiliency study (MRS) were selected based on available genome-wide genotype data (Illumina 
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HumanOmniExpressExome array) and matching Illumina 450K methylation data [Nievergelt 

and others 2015]. Ancestry using GWAS data was inferred as described in Nievergelt et al. 

[Nievergelt and others 2013]. In brief, genotypes of 1783 ancestry-informative markers (AIMs) 

were used to determine a subject’s ancestry at the continental level using STRUCTUREv2.3.2.1, 

including prior population information of the HGDP reference set [Falush and others 2003; Li 

and others 2008]. Based on these ancestry estimates, subjects were placed into one of 4 groups: 

European Americans, African Americans, Latinos/Native Americans and ‘Others’. PCs were 

derived using Eigenstrat [Price and others 2006]. 

Ancestry estimates using methylation data were derived using subsets of methylation 

probes in close proximity to SNPs identified by Barfield et al. [Barfield and others 2014]. Probe 

sets with 0bp distance (N=7,703 CpG probes), within 1bp distance (17,995 CpG probes), and 

within 10bp distance (N=50,319 CpG probes) were compared. GWAS-derived PCs were visually 

compared to methylation-probe derived PCs and genotypes of SNPs in proximity of CpG sites 

were compared with respective CpG methylation values using Pearson correlation (r). 

Statistical Analysis 

Within each cohort, logit transformed ß values (M-values) [Du and others 2010] were 

modeled by linear regression as a function of PTSD, adjusting for sex, age, the estimated cell 

proportions, and ancestry using PCs. For cohorts with available GWAS data, the first three PCs 

from the GWAS were used. For cohorts without GWAS data, the method described by Barfield 

and colleagues was used to generate ancestry PCs directly from the EWAS data. Consistent with 

the original paper and our analysis (full results below), the second through fourth PCs were used 

as covariates in the model to control for ancestry. Note that while ancestry is a primary source 

for variation in GWAS, other potentially confounding factors such as cellular heterogeneity are a 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

 
 
This article is protected by copyright. All rights reserved. 
 

primary source for variation in EWAS data. Comparison with SNP data showed that ancestry 

inference is strongest when excluding EWAS-derived PC1. QQ-plots of the PTSD p-values were 

examined for evidence of genomic inflation due to unaccounted technical variation or other 

confounders. In addition, the genomic inflation factors (λ) were calculated for each study. Two 

adjustments were considered to improve the precision of the estimated variances. First, 

moderated t-statistics were calculated using the empirical Bayes method implemented in the R 

package limma [Smyth 2005]. Second, HC3 robust standard errors, which have been shown to be 

the most effective in samples smaller than 250, were calculated using the R package sandwich 

[Long and Ervin 2000; Zeileis 2004].  

Cohort-level analysis results were combined using the inverse normal method [Marot and 

others 2009]. Briefly, one-sided p-values for each CpG site in each study were calculated from 

the t-statistics. Next z-scores were calculated from the one-sided p-values and weighted by the 

number of subjects in each study relative to the total in the meta-analysis. Two-sided p-values of 

the z-score were then calculated and genomic inflation examined. Finally, p-values were adjusted 

for multiple-testing using the False Discovery Rate (FDR) procedure at the type I error rate level 

of 5 percent [Benjamini and Hochberg 1995]. 

Sensitivity analysis 

Numerous robust associations between age and DNAm have been reported [Bocklandt 

and others 2011; Hannum and others 2013; Horvath 2013; Horvath and others 2012; Weidner 

and others 2014]. Because we expect that age will be associated similarly with DNAm in each 

cohort, we can leverage this highly reproducible relationship to evaluate the pipeline’s 

performance. In each cohort, we modeled methylation as a function of age along with covariates 

for ancestry and gender (if applicable) and meta-analyzed the results as outlined above. In 
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addition, we measured concordance between studies by estimating the correlation between the t-

statistics of the age variable. 

Power 

Power for EWAS is more favorable compared to GWAS as a result of the continuous 

nature of the DNA methylation measures, but instead suffers from poor distribution including 

low variances and heteroscedasticity [Du and others 2010]. The power to detect a differentially 

methylated CpG site depends on the percent difference in methylation between cases and 

controls, the pooled variation in methylation (σ) across CpG sites, and the number of cases and 

controls [Liu and Hwang 2007]. We conducted simulations to test the smallest mean difference 

between PTSD cases and controls we could detect based on our projected sample size and a 

σ=0.43, which represents the highest variation reported in one of our cohorts, and thus a very 

conservative estimate [Orr and Liu 2009].  

 
Results 

Participating cohorts 

Sample characteristics for studies that have contributed data to this first PGC-PTSD 

EWAS study are listed in Table 1 (N=1,147). Three of the seven studies are composed of 

civilians, while the remaining studies include active duty and veteran military populations. The 

majority of participants, especially from the military cohorts, were male (73%) and of European 

American (EA) descent (56%). All participants were exposed to trauma and half of participants 

suffered from current PTSD (50%). Data collection occurred across the United States (e.g., 

Atlanta, Detroit, San Diego, Durham, Boston, and New York) and Europe. While a few studies 

used clinical interviews, the majority of studies used self-report ratings of PTSD symptoms that 
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relied on established cutoffs to assign caseness. A detailed description of participating cohorts is 

provided in the supplementary information.  

Power 

The power analysis shows that with our sample of 573 cases and 574 controls (N = 

1147), we are sufficiently powered to find at least one CpG site with a mean methylation 

difference of 0.08 between cases and controls (Figure 1).  

Ancestry 

We investigated the utility of DNA methylation-based ancestry estimates based on CpGs 

with nearby genetic variants in cis as proposed by Barfield et al. [Barfield and others 2014]. A 

comparison of CpG probes with SNPs within 1bp distance (N= 17,995) and CpG probes with 

SNPs within 10bp distance (N= 50,319) showed a higher genotype-methylation correlation for 

the 1bp probes (r=0.29, p=1.8 × 10-15) than the 10bp probes (r=0.06, p=0.0015). Figure 3 shows a 

SNP derived PC plot based on available GWAS data including PCs 1 and 2 (panel A), PCs 2 and 

3 from the methylation-based CpGs with a SNP 1bp from the probes (panel B), and the PCs from 

CpG probes within 10bp of a SNP (panel C). Supplemental Figure 5 shows PCs 2, 3, 4, and PCs 

2, 3 and 6 for, respectively, CpGs within 1bp and 10bp of a SNP. These results along with the 

genotype-methylation correlations show that the use of DNA methylation ancestry estimates 

(PCs 2-4) using probes within 1bp of a SNP provide reliable results and are suitable as ancestry 

covariates in our analyses. 

Quality Control Results 

 The number of samples and probes, not including cross-reactive probes) removed in our 

proposed PGC-EWAS pipeline ranged from 677 to 10,218 across studies (Supplemental Table 

3). Figure 2 presents the genomic inflation factors from the analysis of PTSD for each individual 
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study using two different quality control methods as well as two different analysis pipelines: (i) 

our proposed PGC-EWAS pipeline, described in detail in the Methods section above, as well as 

(ii) the Functional Normalization (Funnorm) QC pipeline. Resulting data from each QC pipeline 

were then subjected to linear regression analysis, performed with empirical Bayes and HC3 

standard errors, respectively. In studies using the Funnorm pipeline there were large variations in 

the genomic inflation factor with two studies showing high inflation (DNHS, GTP) and two 

studies showing substantial deflation (MRS, VA-NCP) regardless of whether empirical Bayes or 

HC3 standard errors were used. Using the PGC-EWAS pipeline and HC3 standard errors, six of 

the seven studies showed genomic deflation with (λ < 1.0), while only one study was deflated 

when using empirical Bayes standard errors (Supplemental Table 1). These results indicate that 

the PTSD-PGC EWAS pipeline, combined with empirical Bayes standard errors, is the preferred 

method for cohorts participating in our meta-analysis. 

Sensitivity analysis: Age Meta-Analysis Results 

Results for the age analysis using our pipeline and no standard error adjustment are 

presented in Table 3. All studies reported numerous FDR-significant CpG sites but substantially 

more significant results were reported for the combined meta-analysis. MRS and PRISMO 

reported the fewest significant sites. However the age range for participants in these studies was 

narrower as both studies included active military personnel. The correlations of the t-statistics 

ranged from 0.171 to 0.692 when all sites were analyzed and from 0.441 to 0.886 among the 

FDR significant sites (Supplemental Figure 3). The strong correlations of the most significant 

sites indicate that each cohort retained the biological signal of age after QC. Of the 494 CpG 

sites reported to have been associated with age, 326 were significant after FDR-correction 

(Supplemental Table 2). In addition, a forest plot of the most significant CpG site representative 
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of the FDR significant sites, shows a consistent direction of effect in each study (Supplemental 

Figure 4). 

 

Discussion 
 

PTSD is unique among psychiatric disorders in that its occurrence requires exposure to a 

significant traumatic event. With an environmental exposure embedded into the etiology of the 

disorder, the PTSD diagnosis affords an unusual opportunity to identify individual differences in 

the biological response to trauma to increase risk for, or resilience to, the disorder. Here we have 

introduced an international collaboration that has been established to identify epigenetic 

associations - specifically, DNA methylation - related to risk for, or resilience to, PTSD. We 

presented the development of a consistent pipeline for processing and quality-control of 

epigenome-wide association data comparing two quality control approaches and statistical 

pipelines. In our analysis of PTSD, we found that our proposed PGC-EWAS pipeline controlled 

for genomic inflation and deflation more consistently than functional normalization, regardless 

of the standard error correction used. In light of these findings, we encourage consortia with 

epigenome-wide methylation data to implement our quality control pipeline including checks for 

genomic inflation and strengthened associations with age before meta-analyzing across studies.  

Through these collaborative efforts to analyze existing DNA methylation data from blood 

obtained from both military and civilian cohorts, we are poised to collectively address one of the 

main challenges of psychiatric genomics, namely the need for large, harmonized samples to 

adequately power genome-scale analyses. The current collaborative dataset allows detection of 

methylation differences around seven percent, larger than most reported methylation differences, 

[Vinkers and others 2015]. Additional EWAS datasets that are forthcoming will likely prove 
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essential to detecting PTSD-associated DNA methylation differences in our planned meta-

analyses. Moving forward, we anticipate that our collaborative efforts will grow to include 

additional cohorts from around the world; indeed, in the last year alone, several new studies have 

expressed interest in participating in future EWAS analyses as their data become available. In 

addition to the DNA methylation analysis the close allegiance with the PGC-PTSD group has 

laid the foundation for integrating data from GWAS, EWAS, and gene expression/transcriptome 

analyses. In combination with other biological measures and coordinated neuroimaging efforts 

[Logue and others 2015] that may become accessible through this collaboration, these system-

wide integrations will facilitate a more complete understanding of the molecular architecture and 

biological underpinnings of PTSD. 

The harmonization of some study characteristics paired with the demographic and 

clinical diversity of the samples, including the differences between military and civilian trauma, 

allows us the opportunity to identify DNA methylation patterns predictive for specific groups of 

individuals and types of trauma. This will not only provide insight into the heterogeneity of 

PTSD, but may also help explain mechanisms for the variation in conditional effects of different 

types of trauma on PTSD [Wisco and others 2014]. Additionally, it will also provide a 

framework from which DNA methylation may be informative for early risk prediction and 

treatment stratification.  

Looking ahead, we are optimistic that our PTSD EWAS collaboration will identify 

blood-based DNA methylation signatures that associate reliably with PTSD. Identification of 

robust peripheral biomarkers is an important first step and has potential for early detection and 

prevention. The ultimate goal is to provide new insights into the etiology of PTSD. To truly 

understand the mechanistic basis of PTSD, it will be critical to compare our blood-derived 
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epigenetic biomarkers with those from other tissues, in particular brain tissue. As a first pass, 

DNA methylation-based biomarkers that associate with PTSD at particular CpG sites in blood 

can, at this time, be compared to CpG site derived from brain tissues, thanks to the Epigenomic 

Roadmap datasets [Bernstein and others 2010; Kundaje and others 2015]. However, these 

comparisons will be limited to a comparison of DNA methylation levels in brain and blood in 

general, as the current data are not representative of PTSD. Over time, however, the development 

of PTSD brain biobanks of brain and other tissue types including blood cells, will help us to 

pinpoint whether blood-derived, DNA methylation biomarkers of PTSD reflect similar 

alterations in brain tissue, as recent work suggests may be possible for certain pathways 

[Daskalakis and others 2014]. Collectively, these cross-tissue efforts will provide insight into the 

biological pathways underlying PTSD vulnerability and will ultimately facilitate new treatment 

and modes of prevention.  
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Table 1: PGC-PTSD EWAS Cohorts 
 
    Civilian Military  
  Total DNHS GTP WTC MRS PRISMO VA-M VA-
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NCP 
N 1147 100 270 180 126 62 176 233 
Mean 
Age (SD) 

38.0 
(-)  

53.6 
(14.0) 

41.7 
(12.4)  

49.7 
(8.3) 

 22.2 
(3.0) 

27.1 
(9.2)  

 34.9 
(9.9) 

 32.0 
(8.4) 

Current 
PTSD, % 50% 40% 39% 47% 50% 50% 49% 69% 
Male, % 73% 38% 30% 100% 100% 100% 78% 90% 
Race, %                 

   White 56% 15% 5% 76% 57% 100% 100% 74% 
   

Hispanic 6% 0% 0% 0% 25% 0% 0% 14% 
   Black 33% 85% 94% 4% 8% 0% 0% 9% 
   Asian 1% 0% 0% 0% 3% 0% 0% 2% 

Other 3% 0% 0% 20% 0% 0% 0% 0% 
 

 
 
Table 2: Age associations using the PGC-PTSD epigenetics QC and analysis pipeline. 
 

Study Sites 
Sites with  Sites with  Sites with  Sites with  
(FDR < 

0.05) (p < 5x10-5) (p < 5x10-6) (p < 5x10-7) 

DNHS 455,079 4,766 1,744 678 299 
GTP 453,351 59,100 21,562 14,299 9,586 
MRS 455,601 210 311 99 34 
PRISMO 446,688 246 316 121 41 
VA-M 455,641 42,474 12,913 7,213 4,159 
VA-NCPTSD 453,747 35,217 10,522 6,331 3,991 
WTC 455,340 14,239 5,013 2,730 1,525 
Meta-Analysis 444,164 119,308 57,332 46,629 38,656 
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Figure 3 

 

 

 
 
 


