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Numerous selective androgen receptor modulators (SARMs) with differing chemical structures and nearly ideal pharmacological
and pharmacokinetic properties have been developed that are well tolerated and selectively increase lean body mass in humans.
However, definitive demonstration of the linkage between lean body mass and physical function in a relevant, large patient
population has remained elusive for a SARM. The clinical endpoints serving as their basis of approval have shifted with time and
clinical indication and are likely to continue to do so as the field matures with additional safety and efficacy data pertaining to the
relationship between lean body mass and physical function, regulatory decisions with SARMs and other agents, and yet
unexplored clinical indications.

Clark et al. present results from phase I studies conducted
with GSK2881078, a member of a new class of drugs known
as selective androgen receptor modulators (SARMs) [1].
SARMs with varying chemical scaffolds and diverse pharma-
cological properties have emerged since initial reports of their
discovery in 1998 [2, 3]. Analogous to selective oestrogen re-
ceptor modulators (SERMs), which elicit differential pharma-
cological effects on breast, bone and uterine tissues, SARMs
provide the opportunity to selectively regulate muscle,
breast, bone and prostatic tissues for therapeutic benefit.
Differences in androgen receptor conformation, androgen
receptor and steroid metabolizing enzyme expression
between tissues, coactivator and corepressor recruitment,
nongenomic signalling, and/or pharmacokinetics associ-
ated with variations in the chemical structure are thought
to be strongly associated with the ability of SARMs to dif-
ferentially promote muscle and bone growth and strength,
inhibit the growth of breast cancer and shrink the prostate
in animals and humans [4–10]. Negro-Vilar [11] defined an
ideal SARM for the treatment of male hypogonadism as
one that is orally active, suitable for once daily administra-
tion, and capable of enhancing fat-free mass, muscle mass

and strength, bone growth and libido, with lesser but stim-
ulatory effects on the prostate, seminal vesicles and other
sex accessory tissues.

Like other SARMs ahead of it in development,
GSK2881078 appears to meet most of these criteria. It
bound the human androgen receptor with high affinity
and selectivity and restored the weight of the levator ani
muscle of orchiectomized rats to that of sham-operated
controls at a low dose of only 0.3 mg/kg/day, while only
producing modest increases in prostate weight. In the
healthy volunteers included within the phase I clinical trial
presented herein, GSK2881078 demonstrated a terminal
half of about 1 week and dose-dependent decreases in
high-density lipoprotein and sex hormone binding globu-
lin. GSK2881078 was well tolerated. Although two subjects
showed marked elevations in creatine phosphokinase (an
adverse event not reported with other SARMs), elevations
in alanine aminotransferase were infrequent. The pharma-
cological effects of GSK2881078 on high-density lipoprotein
and sex hormone binding globulin (established biomarkers
for androgen activity in humans) were also similar to those
observed for other SARMs (i.e. enobosarm and LGD-4033)
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[12, 13], strongly suggesting that it too will have beneficial
effects on body composition with longer-term treatment.

Although accumulating evidence strongly suggests that
many SARMs have acceptable safety profiles and the requisite
effects on body composition, proving that SARM-induced
increases in lean body mass (i.e. muscle) are associated with
improvements in physical function appears to the greatest
barrier to their regulatory approval and clinical use. A variety
of therapeutic agents with the ability to build muscle have
been approved. Testosterone, for example, is approved for
clinical use as testosterone replacement therapy, but not as a
therapeutic agent to improve body weight, lean body mass
or physical function. As such, clinical trials for new testoster-
one products use the restoration of serum testosterone levels
as their primary efficacy endpoint. Such a clinical endpoint
(i.e. demonstrating that reasonable serum concentrations
are achieved) is not feasible for a SARM. For the treatment of
male hypogonadism, approval would almost certainly hinge
on showing that the SARM ameliorates hypogonadal
symptoms (e.g. deficits in muscle strength, bone mineral
density or sexual function) in a large but otherwise healthy
cohort of older men. Defining what constitutes a clinical
deficit in these hypogonadal symptoms, and in turn defining
what qualifies as a clinical benefit in ameliorating them, are
challenging but necessary steps if a SARM is to ever be
developed for hypogonadism.

More rigorous clinical endpoints have been required for
other anabolic agents. Oxandrolone was first approved by
the US Food and Drug Administration in 1964 as adjunctive
therapy to promote weight gain in patients who experienced
weight loss following extensive surgery, chronic infections,
severe trauma, corticosteroid use, or other undefined patho-
physiological reasons. Pivotal clinical trials for oxandrolone
focused on its ability to increase body weight. Somatropin
(i.e. human growth hormone) received accelerated approval
in 1996 for the treatment of human immunodeficiency virus
patients with cachexia based on its ability to increase body
weight and lean body mass and full Food and Drug Adminis-
tration approval in 2003 based on a primary clinical endpoint
of cycle work output (a measure of physical performance).

In a similar vein, recent phase III clinical trials examin-
ing the safety and efficacy of enobosarm for the prevention
and treatment of muscle wasting in patients with stage III
or IV nonsmall cell lung cancer employed coprimary end-
points of lean body mass and physical function; the latter
of which was assessed by as stair climb power [14]. Phase
III trials for anamorelin, an investigational ghrelin receptor
agonist being developed for cachexia in nonsmall cell lung
cancer, used coprimary endpoints of lean body mass and
handgrip strength [15]. Statistically significant, clinically
meaningful and similar benefits in lean body mass were ob-
served with both drugs, but they were not accompanied by
statistically significant improvements in physical function.
The lack of strong association between lean body mass
and physical function was presumably due to many con-
founding factors, including age, stage of disease, baseline
physical function, chemotherapy regimen and toxicity,
and a host of comorbidities (e.g. arthritis, oedema, anae-
mia, loss of appetite), that occur in patient populations like
these, chosen amongst other reasons because they repre-
sent an unmet medical need in the eyes of regulatory

authorities. Other diseases associated with muscle wasting
or weakness such as severe burns, chronic kidney disease
or knee replacement are likely to present different but sim-
ilar challenges in clinical development. Ongoing clinical
trials of SARMs in stress urinary incontinence and andro-
gen receptor positive breast cancer will shed light on other
possible routes for clinical development.

In summary, challenges in navigating the clinical and
regulatory environment for approval in the USA and Europe
have perhaps had the greatest influence on the clinical
development of SARMs. Numerous new chemical entities
with nearly ideal pharmacological and pharmacokinetic
properties that are well tolerated and selectively increase lean
body mass in humans have been developed. However,
definitive demonstration of the linkage between lean body
mass and physical function in a relevant large patient
population has remained elusive for a SARM. The clinical
endpoints serving as their basis of approval have shifted with
time and clinical indication and are likely to continue to do
so as the fieldmatures with additional safety and efficacy data
pertaining to the relationship between lean body mass and
physical function, regulatory decisions with SARMs and
other agents, and yet unexplored clinical indications (e.g.
Duchenne muscular dystrophy). Although it has been 2
decades since the initial discovery of a SARM, much work
remains to be done before they can be used for muscle
wasting or another condition. GSK2881078 has taken the
earliest steps down this winding road.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharma-
cology.org, the common portal for data from the IUPHAR/
BPS Guide to PHARMACOLOGY [16], and are permanently
archived in the Concise Guide to PHARMACOLOGY 2015/
16 [17].
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