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Summary 

The Carboniferous, the time of Earth’s penultimate icehouse and widespread coal formation, 

was dominated by extinct lineages of early-diverging vascular plants. Studies of nearest living 

relatives of key Carboniferous plants suggest that their physiologies and growth forms differed 

substantially from most types of modern vegetation, particularly forests. Just how different and 

to what degree these long extinct plants influenced the environment remains a matter of debate. 

Integrating biophysical analysis of stomatal and vascular conductivity with geochemical analysis 

of fossilized tissues and process-based ecosystem-scale modeling yields a dynamic and unique 

perspective on these paleo-forests. This integrated approach indicates that key Carboniferous 

plants were capable of growth and transpiration rates that approach values found in extant 

crown-group angiosperms, differing greatly from comparatively modest rates found in their 

closest living relatives. Ecosystem modeling suggests that divergent stomatal conductance, leaf 

sizes, and stem lifespan between dominant clades would have shifted the balance of soil–

atmosphere water fluxes, and thus surface runoff flux, during repeated, climate-driven vegetation 

turnovers. This review highlights the importance of ‘whole-plant’ physiological reconstruction of 
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extinct plants and the potential of vascular plants to have influenced the Earth system hundreds 

of millions of years ago through vegetation–climate feedbacks. 

 

Key words: Carboniferous, medullosans, paleoclimate, paleophysiology, vegetation–climate 

feedbacks. 

 

I. Introduction  

From the perspective of global climate and elemental cycles, the Pennsylvanian Subperiod of 

the Carboniferous (the ‘Coal Age’ ; 323–299 million yr ago (Mya)), is a distant mirror to global 

environments of the last several million years. Icehouse climates prevailed during the Late 

Paleozoic Ice Age (LPIA; 340–290 Mya), as they do today, characterized by orbital forcing of 

glacial-interglacial climate and sea-level cycles (Montañez & Poulsen, 2013) under 

systematically varying but overall low atmospheric pCO2 (Montañez et al., 2016). Both the 

LPIA and the most recent glacial state (during the Pleistocene Epoch of the past 2.6 Mya), in 

which humans evolved, feature a vegetated Earth with diverse and distinct biomes of 

pteridophytes (spore-bearing plants) and seed plants (DiMichele, 2014). However, the 

Pennsylvanian Earth had a few key differences: (1) Carboniferous continents were aggregated 

into a global supercontinent, Pangaea, leaving much of the globe covered by an extensive ocean, 

Panthalassa. (2) Vast areas of the Pangaean continent were of low elevation and very flat, 

leading to periodic extensive flooding by marine waters. (3) The major glaciations that defined 

the rhythms of the LPIA were mainly or entirely confined to the Southern Hemisphere. (4) 

Although atmospheric pCO2 was overall low (<1000 ppm), proxy-based and geochemical mass 

balance modeling estimates of pO2

Substantial scientific efforts to understand the LPIA climate system have recently included 

complex models that account for the atmosphere, land surface, marine systems, and biosphere 

interactions (Poulsen et al., 2007; Horton & Poulsen, 2009; Horton et al., 2010; Heavens et al., 

2012, 2015). This work suggests that abiotic climate processes alone cannot account for the 

 range between 26 and 33% (Bergman et al., 2004; Berner, 

2009; Glasspool & Scott, 2010). (5) The flora and fauna of Pennsylvanian ecosystems were 

considerably different from those of the recent past and present with the notable absence of 

angiosperms, the most diverse and ecologically dominant modern plant group. A
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large-magnitude environmental and pCO2

These findings raise a number of apparent contradictions. First, the Carboniferous Period was 

the time of peak peat accumulation and coal formation for the past half-billion years, by a wide 

margin (Glasspool & Scott, 2010; Nelsen et al., 2016). Paradoxically, the tropical terrestrial 

ecosystems were dominated by now-extinct relatives of early-diverging vascular pteridophytes 

and seed plants (Fig. 1) – including lycophytes, sphenopsids, ferns, and pteridosperms (‘seed 

ferns’) – whose extant distant relatives exhibit low photosynthetic rates (Brodribb et al., 2007; 

Brodribb & McAdam, 2011; McAdam & Brodribb, 2012). The inference of generally low 

photosynthetic rates is based on analyses of leaf anatomical properties, primarily stomatal 

density and size, leading to the hypothesis that stomatal conductance was low in early vascular 

plants (Franks & Beerling, 2009a,b). Furthermore, it has been assumed that high photosynthetic 

rates could not have evolved until maximum leaf diffusive capacity increased with the evolution 

of higher vein densities of angiosperms (c. 120 Mya) in the Cretaceous Period (Boyce et al., 

2009, 2010; Feild et al., 2011; Boyce & Zwienieki, 2012). Our integrated study of paleobotanical 

records, fossil cuticle morphology, anatomy, and isotopic composition, and process-based 

ecosystem modeling indicates a far larger range of possible assimilation rates (3–16 µmol CO

 changes inferred from the geologic record – and that 

the terrestrial and marine biospheres must have played a significant role in hydrological and 

elemental cycling and influencing the global climate system. 

2 

m-2 s-1

Second, our understanding of the ecophysiology of keystone plants of Carboniferous tropical 

wetland ecosystems is extremely limited. Direct comparison of the ecologically dominant spore 

bearing Carboniferous taxa with modern nearest living relatives (NLRs) would imply  that  they 

had physiologies that may have had limited instantaneous response capacities to environmental 

change (Franks & Beerling, 2009a,b; Brodribb & McAdam, 2011; McAdam & Brodribb, 2012; 

Franks et al., 2014). This characterization of Carboniferous tropical vegetation is based on the 

finding that the majority of modern vascular spore-bearing plants (lycophytes and ferns) are 

passive stomatal responders to abiotic stimuli, only capable of closing stomata passively due to 

dehydration (Brodribb & McAdam, 2012). However no simple NLR comparison is available for 

the seed bearing dominant taxa, which are all extinct. The observation that most of the seed plant 

dominants of the Carboniferous have low leaf vein density relative to modern extant 

) for the Carboniferous vascular plants, including certain groups with rates comparable to 

some modern angiosperms (see below for details). 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

angiosperms had led to the assumption that they too likely had limited transpiration capacity 

(Boyce et al., 2009, 2010). Thus, Carboniferous vegetation as a whole is typically considered to 

have had limited potential feedback on the earth system in terms of biospheric water and carbon 

dioxide exchange. This inference, however, stands at odds with evidence of these plants’ 

environmental specificity, changing distributions that track environmental conditions, and 

dispersal capacities across broad swaths of landscape while remaining faithful to habitat 

conditions (e.g. DiMichele & Phillips, 1996; Hilton & Cleal, 2007; Cleal, 2008a,b; DiMichele et 

al., 2008, 2009; Bashforth et al., 2016b). 

A notable feature of Pennsylvanian terrestrial ecosystems is that they were repeatedly and 

dynamically restructured over a hierarchy of time-scales (105- to 107-yr), and in-step with 

climate change. At the eccentricity scale (400 kyr) glacial interglacial cycles, the tropical 

wetland (glacial maximums) and dryland (early glacials and interglacials) biomes were 

intercalated, dominating different parts of each successive cycle (Falcon-Lang, 2004; Falcon-

Lang et al., 2009; DiMichele, 2014; Bashforth et al., 2016a). At million-year time scales, there 

are several points in the Carboniferous, characterized by major climate and atmospheric pCO2

Evidence of broad environmental distributions in some late Paleozoic plants and 

conservatism of composition and dominance-diversity structure within many plant assemblages 

over millions of years, despite repeated restructuring of vegetation and major climate changes 

throughout the Carboniferous and early Permian (e.g., DiMichele et al., 2002, 2009, 2010; Tabor 

 

change, where both the wetland and dryland biomes were broadly restructured over short (meter- 

to 10s of meter-scale) stratigraphic intervals (Phillips et al., 1974; Pfefferkorn & Thomson, 1982; 

DiMichele et al., 2009; Tabor et al., 2013; Montañez et al., 2016) (see section ‘Spatial and 

temporal variability in the Pennsylvanian terrestrial realm’ for further discussion [Author, 

please check the section being referred to as there is no section entitled ‘Spatial and 

temporal variability in the Pennsylvanian terrestrial realm’] ). Moreover, many of these 

plants had large biogeographic ranges across major latitudinal regions and paleoclimate zones 

within those regions, likely related to their wind and water-dispersal and pollination mechanisms 

(e.g., Wagner & Lyons, 1997; Tidwell & Ash, 2004; Moore et al., 2014; Bashforth et al., 

2016a,b). Exceptions reside mainly in the pteridosperms, where large pollen and seed sizes 

suggest animal mediation, resulting in somewhat more restricted geographic ranges and shorter 

temporal ranges/higher species turnover (Raymond & Costanza, 2007). A
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et al., 2013; DiMichele, 2014) suggests, among other possible factors (e.g., differences in 

resource use and competition), a more dynamic range of physiological capabilities than studies 

of nearest living (phylogenetic) relatives might indicate. Additionally, close relationships exist in 

the modern world between different vegetation types and their climate associations (Köppen, 

1936; Walter, 1985), including strong feedbacks between vegetation types and their local 

environment. Thus, it is no surprise that the plants of the past also had such relationships, even if 

their magnitude was not identical to those seen today (e.g., Wnuk, 1996). Nonetheless, questions 

have been raised about the existence of these feedbacks in the geologic past and whether 

Carboniferous plants had sufficient water-transport and carbon-fixation capabilities to have had 

major impact on climate and biogeochemical cycles (Boyce et al., 2009, 2010, 2017; Feild et al., 

2011).  

Finally, the Late Paleozoic Ice Age was the most extensive ice age in space and time since 

the Snowball Earth events of the Late Proterozoic Eon (750–580 Mya), potentially involving 

low-elevation (<1500 m) glaciers in the tropics (Soreghan et al., 2014) and dynamic climate 

behavior (Montañez & Poulsen, 2013). Climate simulations of the LPIA that lack vegetation–

climate–ice feedbacks fail to simulate large magnitude changes in continental ice and sea level 

inferred from geological archives (Horton & Poulsen, 2009; Montañez & Poulsen, 2013), 

implying an important role of the biosphere in influencing global water and carbon cycling. 

The key to addressing these issues and paradoxes is to build an understanding of the ‘whole-

plant’ physiologies of LPIA floral dominants. In this paper, we propose that such reconstructed 

physiologies should be based on the morphological features of the plants themselves, rather than 

solely on the limitations of modern phylogenetic relatives, and should incorporate the full suite 

of those morphological characteristics, from root-to-stem-to-leaf, both anatomical and external 

(e.g., Wilson et al., 2015). Applying whole-plant understanding of extinct plants into process-

based ecosystem and Earth system modeling is critical to refining our understanding of 

vegetation–climate feedbacks in deep-time, including periods that may provide insight into our 

climate future (Fig. 2).  

II. Plants of the Pennsylvanian Tropical Realm 

Keystone plants from Pennsylvanian ecosystems (323–299 Mya) are among the most 

completely studied plants of the fossil record (Fig. 3). An iconic group that dominated Middle 
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Pennsylvanian (315–307 Mya) tropical wetland ecosystems was the arborescent lycophytes. This 

extinct lineage of tree-sized isoetalean lycophytes had very large (up to 2 m in diameter) trunks 

supported by bark rather than wood, limited vascular systems, in particular photosynthate 

transport tissue, and heterosporous reproduction (Fig. 3a; Phillips, 1979; Phillips & DiMichele, 

1992). Also within the tropical wetlands, widespread and dominant in the better-drained habitats 

of floodplains, were the medullosan pteridosperms. This group of seed plants is notable for their 

complex vasculature with very hydraulically efficient tracheids (Cichan, 1986; Wilson et al., 

2008, 2015; Wilson, 2013), large leaf area arrayed in fern-like fronds of great size (Laveine, 

1986), and large seeds and pollen grains, the latter suggesting animal pollination in some species 

(Fig. 3b; Andrews, 1945; Delevoryas, 1955; Laveine, 1986; Pfefferkorn & Thomson, 1982; 

DiMichele et al., 2006; Cleal, 2008a,b; Wilson & Knoll, 2010; Wilson et al., 2008). Medullosan 

plants have been interpreted to occupy a wide range of whole-plant architectures, from scandent 

and vine-like plants with small stems containing large tracheids, to lax-stemmed or fully 

arborescent trees (Pfefferkorn et al., 1984; Wilson & Fischer, 2011; Wilson et al., 2015). 

The wetlands harbored other important groups as well. Among these was the stem group 

marattialean tree fern Psaronius (Fig. 3d; Rößler, 2000; D’Rozario et al., 2011), a small tree with 

substantial colonizing ability, found in swamps and moist-soil habits, even within otherwise 

strongly seasonally dry landscapes. Another group was the calamitalean sphenopsids, which had 

a clonal habit and occupied swamps, riverine corridors and lake margins, and disturbed wetland 

settings harbored both the clonal calamitalean sphenopsids (Gastaldo, 1992; Thomas, 2014; 

Falcon-Lang, 2015) and the thicket-forming to climbing sphenopsid Sphenophyllum (Batenburg, 

1981; Cichan, 1985; Bashforth & Zodrow, 2007). The cordaitaleans, a representative of the stem 

group coniferophytes, are another group found within the swamps but were also dominant in 

seasonally dry settings. These plants varied in habit from large, woody trees, particularly in 

‘upland’ environments (Fig. 3c; Falcon-Lang & Bashforth, 2005), to small trees and scrambling 

forms, in swampy settings (Rothwell & Warner, 1984; Falcon-Lang, 2004, 2005; Raymond et 

al., 2010); all had strap-shaped, parallel veined leaves. The great geographic and ecological 

extent of the cordaitaleans is indicated by the genus Rufloria, which was the dominant element of 

northern temperate forests during the Pennsylvanian (Chaloner & Meyen, 1973; Meyen, 1982, 

1997). 
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Disarticulation of plant organs upon death has led to the use of form genera for isolated 

organs of many Pennsylvanian plants (Table 1), including stem taxa (e.g., Medullosa), leaf taxa 

(e.g., Neuropteris ovata), and reproductive structures (e.g., the seed/ovule Pachytesta) that 

otherwise were produced by the same plant (or by a group of closely related species). 

Reassembling whole plants from isolated organs bearing different names remains a challenge, 

but fossils found attached, in close and repeated taphonomic association, and with anatomical 

similarities have proven to be guides to the morphology of the living plant (Bateman & Hilton, 

2009). It should be noted that the morphological and, consequently, ecological diversity and 

disparity found within a fossil genus is likely to vary considerably depending on how well 

characterized that group may be – not all species are preserved and interspecific incompatibilities 

that are easily observed among living plants (e.g., pollen incompatibility) may not be observable 

in the fossil record. 

 

1. Dynamic aspects of Pennsylvanian vegetation 

Pennsylvanian tropical regions of Euramerica were characterized by temporal shifts between 

wetland and seasonally dry plant communities, tracking linked changes in low-latitude climate, 

high-latitude continental ice extent, and atmospheric pCO2 (Fig. 4; DiMichele et al., 2009, 2010; 

DiMichele, 2014; Montañez, 2016; Montañez et al., 2016). At the 105-yr time scale, there is an 

oscillatory pattern throughout the Pennsylvanian of relatively wetter flora characteristic of 

swamp habitats and those floras of seasonally dry habitats, rich with woody cordaitaleans and a 

variety of other taxa. This oscillation is most easily observed in coal-bearing deposits throughout 

North American and European basins (Falcon-Lang, 2004; Plotnick et al., 2009; Falcon-Lang & 

DiMichele, 2010; DiMichele, 2014; Bashforth et al., 2016b). In these settings and at this time-

scale, sea level minima (suggesting maximum accumulation of high-latitude ice sheets) coincide 

with expanded tropical everwet floras near the equator, whereas maximum flooding intervals 

(times of maximum deglaciation) and subsequent falling stages of sea level (early glacials) are 

notable for the expansion of summer-wet or seasonally dry forests (DiMichele et al., 2010; 

Horton et al., 2012; Cecil et al., 2014). This oscillation, mechanistically linked to eccentricity-

scale (105-yr) glacial-interglacial cycles, persists throughout the 24-Myr period of the 

Pennsylvanian and into the earliest Permian.  
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A second, longer-term (106- to 107-yr) trend on which the eccentricity scale variability is 

superimposed, marks a secular change in Pennsylvanian forests, particularly tropical forests. A 

series of turnovers in composition, but, more significantly, in the relative proportions of the 

major groups (lycophytes, pteridosperms, marattialean tree ferns, sphenopsids, cordaitaleans, and 

conifers) occurs at several intervals during the Pennsylvanian and near the Carboniferous-

Permian boundary (Pfefferkorn & Thomson, 1982; Phillips & Peppers, 1984; Phillips et al. 1985; 

Cleal & Thomas, 2005; Cleal et al., 2012; Tabor et al., 2013; van Hoof et al., 2013). Notably, 

these restructuring events coincide with periods of major change in tropical climate and in most 

cases, atmospheric CO2

 

 concentrations.  

2. Pennsylvanian-early Permian biomes 

Montañez (2016) characterized these million-yr scale changes in quantitative dominant 

elements of the vegetation and associated change in architecture and/or structure as a series of 

biomes (Fig. 4). A shift in the tropical wetland forests from lycophyte dominance (wetland 

biome (WB) 1) in the early Pennsylvanian (~317–318 Mya) to woody cordaitalean–lycophyte 

forests (WB 2) overlaps with initiation of the main phase of Pennsylvanian glaciation (Fielding 

et al., 2008). Additional quantitative changes in abundance and new floral dominants occurred at 

the onset (c. 311 Mya) of long-term waning of Gondwanan ice sheets, elevated atmospheric 

pCO2

This ecologic threshold event at the MLPB was coincident with a decrease in pCO

 (Montañez et al., 2016) and increased seasonality (DiMichele et al., 2009). Two 

subsequent turnovers appear to be contemporaneous with the return of short-lived but intense 

glaciations and associated climate deterioration in the paleotropics. The first shift between WB 2 

and 3 (c. 308 Mya) involved marked loss of cordaitaleans and a distinct rise in tree fern 

abundance (Pfefferkorn & Thomson, 1982). The second and best characterized of the 

Pennsylvanian turnover events (WB 3 to 4) occurred at the Middle to Late Pennsylvanian 

Boundary (MLPB, 306 Mya; Desmoinesian-Missourian boundary in the American stratigraphic 

system), where a major turnover occurred in glacial-phase wetland forests, from dominance by 

arborescent lycophytes to dominance by Psaronius tree ferns and medullosan pteridosperms 

(Phillips et al., 1974; Phillips & Peppers, 1984; DiMichele et al., 2002, 2006; Cleal, 2007; 

Falcon-Lang et al., 2011a).  

2 to below 

300 ppm and the lowest glacial phase CO2 concentrations (<200 ppm) of the reconstructed 
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Pennsylvanian record (Montañez et al., 2016). Following this turnover, lycophytes were greatly 

reduced in abundance and diversity in Late Pennsylvanian tropical wetlands of Euramerica, but 

remained significant in wetland ecosystems of eastern Pangaea (i.e., North China) well into the 

Permian Period (e.g., Hilton & Cleal, 2007; Zhou et al., 2008; Wang et al., 2012). The remainder 

of the Late Pennsylvanian witnessed the dominance of water-stress–tolerant marattialean tree 

ferns (WB 3) and their stepped emergence as swamp-community dominants (WB 4) in 

environments which also contained abundant pteridosperms (Pfefferkorn & Thomson, 1982; 

DiMichele et al., 2009). Notably, the transition from lycophyte-dominated to fern- and 

pteridosperm-dominated tropical wetland forests is a major biotic transition in the Paleozoic Era 

and one that likely exerted significant change on the global carbon and hydrologic cycles. The 

final turnover, was a permanent replacement of the wetland biome by seasonally dry woodland 

flora (cordaitaleans and conifers; dryland biome (DB 2) that occurred across the Carboniferous–

Permian boundary (299 Mya) coincident with widespread aridification (DiMichele et al., 2009; 

Tabor et al., 2013; Oplustil et al., 2013), a drop in pCO2 to sub-300 ppm concentrations 

(Montañez et al., 2016), and likely peak O2:CO2

In addition to the glacial-interglacial floral cyclicity and the longer-term intervals of floral 

restructuring in the lowland tropical forests, several other distinct biomes can be defined that 

were distributed spatially throughout Pangaea and persistent throughout the Pennsylvanian (Fig. 

5). The distinct tropical, seasonally dry biome maintained permanent populations in western 

equatorial Pangaea (New Mexico, Arizona, Utah, and Colorado, extending to western Kansas, 

Oklahoma, and Texas during drier times) and perhaps in the mountainous regions of central 

Pangaea (e.g., Atlantic Canada and European basins) throughout the Pennsylvanian (Broutin et 

al., 1990; DiMichele et al., 2011; Bashforth et al., 2014; Thomas & Cleal, 2017) and likely 

consisted of several distinct ecozones. Initially dominated by cordaitaleans this assemblage 

became richer in conifers, including the stem group conifer Walchia (Fig. 3G), toward the close 

of the Pennsylvanian and during the early Permian (Rothwell et al., 1997; Falcon-Lang et al., 

2011b; Hernandez-Castillo et al., 2009. At this time, Northern Hemisphere temperate regions of 

Angaraland were covered by forests dominated by cordaitalean Rufloria trees (Meyen, 1982). 

The Southern Hemisphere warm temperate forests were co-dominated by medullosans, 

 values (Glasspool & Scott, 2010). Wetland 

plants at this time became restricted to spatially discontinuous habitats in large parts of 

Euramerica.  
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Psaronius, and calamitaleans and various kinds of lycophytes. Many of the extratropical biomes 

maintained similar compositions throughout the Pennsylvanian, with the largest and most 

significant change being the aforementioned replacement of lycophyte-dominated, tropical 

wetland biomes with tree fern- and seed fern-dominated floras. The high-latitude tundra biome 

may have been much richer in bryophytes than present-day analogous settings and likely 

included seed ferns 

The preceding paragraphs summarize much of our present understanding of the vegetation 

during the main phase of the LPIA. Long-term studies of the biotic communities from this period 

have produced excellent understanding of their taxonomic diversity, form and architecture, and 

paleoecology. Several decades of geological investigations, in particular in the paleotropics, have 

produced a detailed stratigraphy, physical and biological, an understanding of the 

paleogeography and tectonic regimes, and characterization of the paleoclimate and its dynamics. 

These studies have revealed initial insights into biogeographic patterns and biodiversity, and 

their dynamics in time and space. There remains, however, much to be learned with regard to 

translating diversity of species and forms to function – a research area that is ripe for 

investigation but has been barely explored.   

and small isoetalean lycophytes (LePage et al., 2003; Ricardi-Branco et al., 

2013). 

Given the clear distinction between the plant species of the past and those of the present, we 

suggest that a step-forward in understanding paleo-plant physiology is through the development 

of a ‘whole-plant’ conceptual model approach. This approach is based on the understanding that 

the physiology of plants is governed by the principles of biophysics and is influenced by the 

anatomical and architectural aspects of plants. It further considers phylogenetically shared 

attributes of physiology determined from modern plants, while undertaking explicit analysis of 

the anatomical and architectural aspects of the extinct plants themselves, based on material found 

in the fossil record. The wealth of paleobotanical material offers the opportunity to compare and 

contrast potential physiological function of Pennsylvanian taxa within and between 

phylogenentic clades, and can then be extended to ecophysiological characterization of the larger 

plant assemblages and paleo-biomes. Understanding functional diversity is likely the only 

approach to delineating the limits of terrestrial plants to cycle carbon and water (Cadotte et al., 

2009) particularly in paleo-environments characterized by atmospheric compositions and 

environmental conditions different than the modern (Feng et al., 2014). Importantly, this 
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approach is based on observations and inferences from the biome community members 

themselves, thus vastly improving confidence in the results.  

 

III. Conceptual insights into paleoecophysiology 

The quantitative ecology and ecophysiology of extinct plants have received much attention in 

the 20th and 21st centuries. Many approaches have focused on analysis of the NLRs of plants 

found in the fossil record. To date, most methods have managed the challenge of reassembling 

whole plants from isolated organs by focusing on isolated organs: individual stems or leaves. 

After Woodward’s (1987) pioneering work employing stomatal analyses to reconstruct 

atmospheric CO2

 

 concentration, dozens of publications have explored leaf-level gas exchange 

through analysis of fossilized stomata (e.g., McElwain & Chaloner, 1995; Edwards et al., 1998; 

McElwain, 1998; Beerling & Royer, 2002; Konrad et al., 2008; Franks & Beerling, 2009a,b; 

McElwain et al., 2016a; Montañez et al., 2016). Other work on leaves has explored changes in 

vein length per area (Boyce & Knoll, 2002; Boyce et al., 2009) or stable isotopic (O, H, C) 

signatures of transpiration found in fossil leaves (e.g., Diefendorf et al., 2010; Hren et al. 2010; 

Sachse et al., 2012). Quantitative analyses of extinct plants have focused on their biomechanical 

properties (e.g., Rowe et al., 1993; Rowe & Speck, 1998; Spatz et al., 1998; Masselter et al., 

2007; Wilson & Fischer, 2011). Using biomechanical and biophysical principles, recent 

investigations of late Paleozoic plants have included analysis of extinct plant hydraulics (Cichan, 

1986; Wilson et al., 2008; Wilson & Knoll, 2010; Wilson & Fischer, 2011; Wilson, 2013; 

Strullu-Derrien et al., 2014). Despite these efforts, there has been little to no whole-plant 

physiological work attempted, particularly for deep time, because there are significant obstacles 

to assembling the disparate parts of a plant (Wilson et al., 2015). The following subsections 

review recent advances and attempts to integrate different organs into a ‘whole-plant model’ that 

can be employed for ecosystem modeling and ultimately integrated into earth system models. 

1. No single anatomical variable captures plant physiology 

Generalizing expected physiological response to the environment, whether past, present, or 

future, based on individual anatomical features is important as a first step in developing a 
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conceptual modeling of a complex system. In assessing the past, this may be out of necessity – 

simply because fossils have limited preserved physical and chemical information from which to 

adequately assess physiological processes. However, plants function as an integrated system of 

organs and physiological processes in a dynamic environmental context. This presents a singular 

problem for paleobotanical attempts to reconstruct physiology. As a complex system that is 

frequently preserved in the form of isolated organs, the whole-plant anatomy of fossil plants is 

rarely understood, even among angiosperms with similar-looking relatives, despite remarkable 

fossil discoveries (e.g., Chloranthaceae reproductive structures: Friis et al., 2015). One approach 

to resolving this taphonomic problem has been to identify an anatomical feature that can function 

as a proxy for the entire plant’s physiology (e.g., stomatal density, vein length per area). 

Although these traits record important aspects of plant physiology, it is important to recognize 

that they are merely parts of an integrated physiological system that includes root, stem, and leaf 

tissues and their individual and collective functions. A full accounting of the physiology of an 

extinct plant ideally includes the whole plant or as much of the whole plant as can be accounted 

for (Fig. 6). 

 

2. Whole-plant physiology – the ‘Mr. Potato Head’ approach  

The fossil record of extinct plants contains combinations of organs and physiological 

properties, that have no modern extant analogues particularly among floras from the distant past. 

For example, medullosan stems had xylem composed of tracheids with resistance to water flow 

comparable to that of vessel-bearing secondary xylem (Cichan, 1986, Wilson et al., 2008), but 

which also bore leaves with only modest vein lengths per area (Boyce & Zwieniecki, 2012; 

Raymond et al., 2014) but highly conductive and abundant stomata (Montañez et al., 2016). 

Reconciling these novel combinations of ecophysiological features can be done by applying a 

method that is similar to the children’s puzzle toy ‘Mr. Potato Head’ (Hasbro©); in this model, 

parameters such as root area, stem xylem, branch architecture, vein length per area, stomatal 

frequency, and other factors are considered as components of an integrated system in which 

different values can be substituted. For example, in a medullosan ‘Mr. Potato Head’ model, the 

root, stem, branch, and stomatal properties approach those of angiosperms, whereas the vein 

length per area is equivalent to that of extant gymnosperms – much like a toy with an ear 
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substituted for a nose (Table 2). Using this method, unfamiliar combinations of anatomical 

structures can be understood individually and in their whole-plant context. An alternative 

conceptual model for non-analogue whole plant physiologies, is the non-analogue biomes of the 

Quaternary, where pollen analyses demonstrates unique species combinations which are not 

found anywhere in existence in the modern world (Williams & Jackson, 2007). The complete 

absence of a modern analogue makes for a complex interpretation of their functioning and 

interaction/adaptation to the prevailing climate.  

3. Quantitative approaches to leaf water movement 

Leaves are among the most abundant macrofossils and, consequently, have received the 

majority of attention from previous research focused upon extinct plant physiology. Review 

studies of modern and extinct plants and comparative methods have existed for some time 

(Beerling & Royer, 2002; Sack & Holbrook, 2006; Boyce et al., 2009; Feild et al., 2011; Willis 

& McElwain, 2016). With fossil leaf cuticles being relatively abundant and well preserved as far 

back as hundreds of millions of years, maximum stomatal conductance has been frequently 

determined microscopically using measures of stomatal density, guard-cell size, and aperture 

morphology and inferred pore depth (Fig.  6). However, this yields only an anatomically 

maximum conductance value that, operationally, must be constrained by environmental limits 

affecting opening and closing of the stomata if the actual gas exchange of the plant is to be 

estimated. 

Recent work on early-diverging vascular plants has indicated an important role for stomatal 

behavior, in addition to stomatal size and frequency, in regulating overall leaf response to 

environmental stress. Particular emphasis has been placed on the differential response rate of 

lycophyte and fern stomata relative to the faster, active responses observed in angiosperm leaves. 

It has been suggested that lycophyte and pteridophyte guard cells are insensitive to abscisic acid 

(ABA) with turgor pressure regulated solely by water loss (Brodribb & McAdam, 2011), which, 

in turn, is hypothesized to slow the leaf response rate to drought stress. If ABA insensitivity and 

slow leaf responses to drought stress are found throughout lycophytes and ferns, and are 

ancestral within the seed plants – including, perhaps, medullosans and cordaitaleans – then the 

ecologically dominant Pennsylvanian plants may have responded slowly to environmental stress 

as well. However, interpreting stomatal behavior from Pennsylvanian plants is challenging for 
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two reasons: first, there is no leaf anatomical feature that is diagnostic for ABA insensitivity with 

preservation potential in the geologic record, and second, many Pennsylvanian plants have 

contrasting mixture of organ-level traits. For example, the Pennsylvanian giant fossil tree, 

Lepidodendron and its closest living relative, the modern herbaceous Isoetes, and possibly 

Selaginella – frequently used in experimental studies for understanding Lepidodendron – are 

quite distinct from one another in size, morphology, and anatomy. Lepidodendron leaves bear 

numerous, conductive stomata but only a single leaf vein (e.g., Beerling, 2002) whereas 

medullosans combine high stem conductivity, high stomatal conductivity, and low vein length 

per area. Determining the stomatal behavior of extinct plants in the context of non-analogue 

plant anatomy and morphology remains a challenge. 

Two methods could shed light on this question: viewing stomatal control in the context of 

cavitation vulnerability and observations from molecular biology. Plants that are predicted to 

have high vulnerability of xylem to cavitation based on abundant pits and tracheid diameters may 

have required active control over stomatal closure in order to coordinate leaf and stem resistance 

to drought stress, as theorized by Sperry et al. (2002). Molecular biological insights may provide 

additional lines of evidence. Key intermediate proteins responsible for binding and response to 

ABA in guard cells have been found to exist – and retain functionality – in bryophytes, leading 

to some speculation that dynamic stomatal control may have evolved and existed earlier than 

previously thought (Chater et al., 2011). However, more recent molecular studies suggest that 

the original function of ABA response genes may have been for sex determination within the 

gametophyte of ferns, perhaps becoming co-opted later within the guard cells of seed plants as 

part of the dynamic stomatal control response system (McAdams et al., 2016). Environmentally 

restricted stomatal conductance in modern plants because of light, CO2

Recognition of the importance of mesophyll conductance (g

, and drought conditions 

(Hetherington & Woodward, 2003) may be considered potentially more physiologically similar 

to extinct plants where sufficient genetic evidence exists (e.g. Doi et al., 2015). Combining 

biophysical evidence, geochemical analysis, and insights from molecular biology may clarify the 

history of fast versus slow stomata in extinct land plants. 

m) in many living plants (Raven, 

1968; Niinemets, 1999; Flexas et al., 2012; Tosens et al., 2016) presents an additional challenge 

because mesophyll is infrequently preserved in fossil leaves. Recent work has looked toward the 

application of finite element modeling or diffusion equations to quantify paleo-gas exchange 
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using anatomical parameters derived from fossilized stomata (Konrad et al., 2008; Franks et al., 

2014; McElwain et al., 2016b; Veromann-Jürgenson et al., 2017). This involves modeling 

stomatal conductance to water vapor and CO2 with mesophyll resistance (1/ gm) as an assumed 

conservative fraction of stomatal conductance (McElwain et al., 2016a). Although the value of 

gm is often experimentally derived, it is also related to cellular morphology such as cell wall 

thickness (Tómas et al., 2013; Tosens et al., 2016) as a function of diffusional distance of CO2 

within and between cells (Tholen & Zhu, 2011). Given that extant spore-bearing and 

gymnosperm species show thicker cellular features, tightly-packed mesophyll (Veromann-

Jürgenson et al., 2017), and smaller sub-stomatal air-filled spaces (Brodribb et al., 2010), 

defining gm

Additional studies of leaves have explored the role of vein length per area and leaf 

architecture on the evolution of plant physiology (Fig. 6). The high vein length per area values 

seen among some angiosperm lineages has led to the hypothesis that diffuse leaf development 

among angiosperms minimized the distance between veins and substomatal chambers, thus 

increasing short-term replacement of transpired water from leaves (Boyce et al., 2009; Boyce & 

Lee, 2010; Brodribb & Feild, 2010; Feild et al., 2011). These reports are grounded within 

comparative study of leaf hydraulics through analysis of microfluidic devices, which 

demonstrate that close proximity between hydraulic conduits and sites of evaporation increases 

simulated leaf hydraulic capacity (Noblin et al., 2008). However, vascularization of leaves is 

only one part of leaf hydraulics; at the cellular scale, symplastic and apoplastic water movement 

is regulated by aquaporin type and density in plasma membranes (Morillon & Chrispeels, 2001; 

Prado & Maurel, 2013). Key aquaporins in the model bryophyte, Physcomitrella patens, have 

been shown to be very diverse when compared with shared protein families in Arabidopis 

thaliana and Zea mays (Danielson & Johanson, 2008). These results indicate derived 

extravascular water regulation in plants that diverged early in land plant evolution.  

 through fossil anatomical features is important, particularly for the Paleozoic, as an 

evolving constraint on leaf gas-exchange. 

In light of these previous studies, the hypothesized morphological simplicity (e.g., low leaf 

vein density) and simple developmental capacity of early vascular plants’ leaves, when 

compared with the leaves of extant tropical angiosperms (high Dv), has led to the conclusion by 

some (Boyce et al., 2010, 2017) that no extinct plants were capable of functioning at the 

‘modern’ levels of transpiration and assimilation found within extant angiosperms that dominate 
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the planet today. If the hypothesis that leaf morphological simplicity must translate into whole-

plant physiological simplicity is true – that is, if Lepidodendron functioned as a 30-m-tall Isoetes 

based on low vein length per area – then Paleozoic plants did not possess a high capacity to 

influence their local to global environment through photosynthesis or transpiration at a level 

equivalent to modern angiosperm tropical forests.  

Leaves, however, are not the only organs in land plants. A more comprehensive model of the 

gas-exchange and photosynthetic capacity of extinct plants must account for the whole plant 

physiology. The fossil record contains abundant anatomical and morphological complexity 

through the 100 million yr that separate the earliest vascular plants from Medullosa, strongly 

implying that the ecological and evolutionary pace of Paleozoic terrestrial ecosystems was not 

static, and this complexity can be measured and assessed in a quantitative way. 

 

4. Quantitative approaches to stem water movement 

Although much attention has been focused on the terminal portion of the water transport 

pathway (i.e., the leaves), the role played by stems in facilitating water transport from roots is a 

relatively understudied area – in living and fossil plants – and may explain differences in species 

adaptive characteristics growing under similar water stress conditions (Johnson et al., 2011). 

Structural characteristics of stem-conducting tissue reflect the biophysical compromises between 

the opposing functions of the xylem: the need to supply water at the same rate of loss from 

transpiration without loss of function through vessel cavitation (Manzoni et al. 2013). Stem 

hydraulics directly affect daily canopy conductance, generally reducing midday stomatal 

conductance (Zhang et al., 2013). Thus, at the level of an individual plant, stem tissue 

conductance is a central constraint limiting maximum conductance of a canopy, based on leaves 

and stomatal features. It is a well documented feature of trees that stem storage of soil water is  

an essential intermediate pool for use by canopy leaves to replace water lost daily through 

transpiration (Tyree & Ewers, 1991; Holbrook, 1995), yet this is rarely discussed as a limiting 

factor in leaf-focused studies. Notably, the fossil record of stem anatomy is rich, permitting 

quantification of plants’ stem properties that, in turn, shed light on the functional morphology 

and architectural tradeoffs among extinct plants. 
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The first major quantitative advance to the study of water transport, with particular emphasis 

on stems, was articulated in 1948: that water transport, being driven by the evaporative gradient 

between leaf tissue and the atmosphere and passing through empty cells, should function in a 

fashion analogous to Ohm’s Law (van den Honert, 1948). These observations were elaborated 

upon in the 1970s and 1980s (Zimmermann, 1983) and the predicted inverse relationship 

between hydraulic efficiency and cavitation resistance was validated using the centrifuge method 

on excised segments of living plants (Tyree & Sperry, 1989; Tyree & Ewers, 1991; Comstock & 

Sperry, 2000). Modeling advances in the last two decades, coupled with refined parameters from 

experimental analyses, significantly expanded the methods available to account for variation in 

longitudinal morphology, conduit wall thickness, pit structure, and connectivity (Lancashire & 

Ennos, 2002; Choat et al., 2004, 2006, 2008, 2011; Hacke et al., 2004; McCulloh et al., 2004; 

Sperry & Hacke, 2004; Jansen et al., 2007, 2009; Choat & Pittermann, 2009; Pittermann et al., 

2010; Brodersen et al., 2014). 

Recent work, including by the lead author, has focused on the hydraulic conductivity of early 

vascular plants such as the paleobotanical icons Medullosa and Cordaites (Wilson et al., 2008, 

2015; Wilson & Knoll, 2010; Wilson & Fischer, 2011; Wilson, 2013). These analyses employ 

tracheid morphology parameters, including diameter and length, in addition to information about 

pit type, frequency, and porosity, thereby accurately reflecting the key hydraulic constraints in 

xylem cells (Fig. 6). These studies have demonstrated that xylem cells conferring high stem 

hydraulic capacity – comparable to the conductivity of angiosperm vessels – evolved 

independently in several Paleozoic lineages, including the medullosans and calamitaleans in the 

Pennsylvanian tropical wetlands (Wilson et al., 2008; Wilson & Knoll, 2010; Wilson, 2013, 

2016). They further document that, at the same time, extinct coniferophytes from both wet and 

seasonally dry ecosystems with dense, pycnoxylic (low amounts of parenchyma) xylem, such as 

cordaitaleans, occupied what, in the modern world, is the conifer portion of the hydraulic 

ecospace. Therefore, at the origin of the coniferophyte clade, early-diverging coniferophytes 

already occupied that portion of the hydraulic landscape occupied by modern members of the 

same lineage. 

 

5. Quantitative approaches to root water movement 
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Root fossils are commonly found in the fossil record, especially in paleosols. Fossil roots 

provide yet another part of the plant hydraulic system that can be characterized in considerations 

of physiological constraints on gas-exchange (Fig. 6). Vascular plant root systems, including 

those assignable to lycophytes, are known from the Early Devonian, and those roots have been 

considered to be derived through division of the shoot apical meristem, followed by gravitropic 

growth, but recent fossil discoveries have demonstrated complex patterns of lateral branching 

and interaction with soil environments (Hetherington & Dolan, 2016; Matsunaga & Tomescu, 

2016; Xue et al., 2016). Well-preserved fossils suggest that the earliest vascular plants may have 

borne two types of roots: root axes that are homologous to stem axes, and small, laterally 

branched, non-gravitropic organs specialized for absorption and stabilization like extant root 

systems. (Matsunaga & Tomescu, 2016). Euphyllophytes are thought to have evolved roots 

independently and recent fossil discoveries have demonstrated that several taxa developed 

extensive root systems from root thickenings (‘ rootballs’ ) (Soria & Meyer-Berthaud, 2004; 

Giesen & Berry, 2013). Three-dimensional complexity of root systems diversified dramatically 

among plant taxa during the Devonian with a well-developed rhizosphere emerging soon after 

terrestrialization (Willis & McElwain, 2014). Branching in roots of early land plants increased 

access to water and nutrients (e.g. calcium, phosphorus) that, in turn, increased growth rates by 

permitting higher atmospheric CO2

Homology between Paleozoic Era plant root systems and stem systems permits the 

quantification of root hydraulic transport rates, even if the organs themselves are derived from 

unfamiliar developmental mechanisms. Though not yet utilized, dimensions from these fossil 

roots can provide the basis of estimating limits to water use by plants based on established 

relationship between root area and water flux (q, kg s

 assimilation (Morris et al., 2015). By the Pennsylvanian 

Subperiod, arborescent plants, such as cordaitaleans and arborescent lycophytes, had extensive 

root systems, with interpreted tap root systems reaching depths of up to 1 m in soils (Davie & 

Gibling, 2011; Hetherington et al., 2016); extensive root systems further attested to by the 

abundance of roots that are anatomically preserved in coal ball material. Pennsylvanian plants 

with other novel anatomical features feature roots that are more familiar in organization, 

development, and anatomy: medullosan pteridosperms, for example, feature roots with a eustele 

and wide tracheids (Steidtmann, 1944).  
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In which L is the mean root length (m), v is the rooting depth (m), r is the mean root radius, n 

is a factor associated with soil type, k is the soil and root surface hydraulic conductivity (kg s-1 

m-3

Using models and methods similar to those employed for stems, the preserved vascular tissue 

from roots permits reconstruction of conduit-specific hydraulic conductivity values (J. P. Wilson, 

unpublished). Generally, roots are much more conductive to water than stems. In comparison to 

stems, there is evidence that vessel cellular properties in roots, including cell-wall thickness and 

lumen diameter – commonly used to determine probability of cavitation – are better correlated 

with overall stem vessel conductivity (Pratt et al., 2007) than relationships derived from stems. 

The forest- and regional-scale effects of roots on soil hydraulic properties are profound: in 

addition to water movement within plants, roots redistribute water within soil profiles, which for 

large forested regions, can have profound effects on atmospheric hydrologic cycling (Lee et al., 

2005). 

), and dΨ is the difference in the soil and root surface water potentials (Pa) (Campbell, 1991; 

Ogle et al., 2004). Ignoring kdΨ in the above equation, the remainder becomes a scalar to 

evaluate the separate and combined effects of root size and soil density on potential water 

absorption and transpiration. Employing quantitative, physical models such as these in studies 

where stem and root fossils are found intact and in place provides a new and intriguing means for 

assessing the evolution of root constraints on plant water availability (c.f. Holmes & Galtier, 

1976; Huber & Galtier, 2002; Soria & Meyer-Berthaud, 2004; Hao et al., 2010). 

 

IV. High-productivity Carboniferous plants  

Several independent lines of analysis point toward the capacity for high hydraulic supply to 

leaves and high photosynthetic rate among lineages of Pennsylvanian plants. Process-based 

ecosystem modeling of canopy average and maximum sunlit assimilation suggest photosynthetic 

rates of a medullosan forest stand between 9 and 16 µmol CO2 m-2 s-1 using fossil-derived 

stomatal conductance under a range of late Paleozoic O2:CO2 values (Fig. 8; Montañez et al., 

2016). Independent analysis of hydraulic path length (K leaf) in anatomically preserved 

medullosan leaves further suggests high maximum photosynthetic rates (11–16 µmol CO2 m
-2 s-

1). Medullosans have single-tracheid conductivity values that approach those observed in some 

tropical angiosperms reflecting their large tracheid diameters (up to 250µm) and abundant pits. 
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Large (e.g., 37 x 20 µm per guard cell) and relatively abundant (SI between 10 and 25) stomata 

on medullosan foliage support a modeled high stomatal conductance based on scaling 

relationships between Gmax and assimilation rate for a range of species of varying vein density 

(A to Gmax

The broadleaved coniferophyte Cordaites, now extinct, also functioned with a physiology 

that is distinct from its NLRs Ginkgo biloba, the gnetales and crown group conifers. Hydraulic 

conductivity of cordaitalean tracheids is comparable to the conductivity observed in extant 

conifers despite the presence of torus-margo pits among modern representatives. Cordaites 

achieved an equal conductivity through the presence of multiple circular-bordered pits on the 

radial walls, which lowered the resistance of its wood at the cost of decreased safety from air-

seeding. Broad cordaitalean leaves with multiple parallel veins in close proximity to stomata 

suggest a maximum photosynthetic rate of nearly 11 µmol CO

 on Fig. 5; McElwain et al., 2016b). In sum, a paleoecophysiology characterized by 

high photosynthetic rates is supported by medullosan stem hydraulics, leaf and frond 

architecture, hydraulic path length, and stomatal conductance (Figs 5, 7, 8). Conversely, low 

conductance and low photosynthetic rates are inferred when focused only on vein length per 

area. 

2 m
-2 s-1, although lower values 

were likely more representative of dryland specimens (Fig. 8). These results approximate 

maximum photosynthetic rates found within the broadleaved gymnosperm Ginkgo biloba (9 

µmol CO2 m
-2 s-1

The extinct arborescent lycophytes remain a physiological enigma. The abundance of 

lycophyte reproductive and vegetative structures throughout the first two-thirds of the 

Pennsylvanian SubPeriod and lack of juvenile specimens has been interpreted as supporting 

rapid growth rates and, presumably, high photosynthetic rates (Cleal & Thomas, 2005) but 

alternate interpretations are possible (Boyce & DiMichele, 2016). However, some lycophytes 

contain high frequencies of stomata on their leaves (e.g., 450 stomata mm

), which is noteworthy as one of the few living gymnosperms with coniferous 

wood, broad leaves and parallel, but dichotomous, venation – similar to features found in 

Cordaites. Root xylem of wetland Cordaites were highly conductive with secondary xylem 

containing multiseriate circular-bordered pits along the radial walls (J. P. Wilson, unpublished). 

Taken together, the cordaitalean whole-plant physiology (roots, stems, and stomata) supports a 

model that is distinct from their distant, living relatives Ginkgo biloba, the gnetales, and crown 

group conifers and closer to early-diverging angiosperms. 

-2 in Lepidodendron 
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dichotomum) despite a relatively small stomatal index because of below-average epidermal cell 

size, resulting in estimated Gmax values of 2.7 to 8.3 mol m-2 s-1 (Fig. 7; Tables 2, 3; Montañez et 

al., 2016). Furthermore, the small amount of secondary xylem found in lycophyte stems is more 

conductive than would be expected, with tracheids larger than typical seed plants and 

occasionally exceeding 80µm in diameter (Cichan, 1986; J. P. Wilson, unpublished). Further 

tests of these hypotheses at the whole-plant scale are necessary to determine the physiology of 

lycophytes, but a photosynthetic rate exceeding that of the lycophytes that are frequently subject 

to experimental and physiological analysis (i.e., Selaginella and its close relatives; Selaginella 

longipinnae Amax = 6.15 µmol CO2 m
-2 s-1; Selaginella pallescens Amax = 1.689 µmol CO2 m

-2 s-

1

Whole-plant analysis of these plants and other Pennsylvanian paleobotanical icons yields 

insight into landscape-scale and physiological processes. When aspects of leaf and stem biology 

are integrated, plant stress resistances can be defined that elucidate ecological strategies. For 

example, high stomatal conductance in medullosans, combined with the limited ability of stem 

tracheids to resist cavitation and embolism, implies a physiology that was resistant to stress from 

low atmospheric pCO

; Brodribb et al., 2007) is likely. 

2 characteristic of the deepest interglacial episodes (Montanez et al., 2016). 

Avoiding low pCO2 stress was accomplished by moving large volumes of water to leaf surfaces, 

permitting stomata to remain open and, thus, allowing large volumes of gas exchange. However, 

the same features that permitted a high hydraulic supply to leaves and increased volumes of gas 

exchange simultaneously increased medullosans vulnerability to drought stress (Fig. 9). 

Conversely, the mechanically-reinforced tracheids of cordaitalean stems and limited stomatal 

conductance, relative to medullosans, implies that the cordaitaleans possessed substantial 

drought stress resistance at the cost of vulnerability to carbon dioxide limitation at low 

atmospheric CO2

Under identical environmental conditions, water use efficiency modeled using BIOME-BGC 

v.4.2 predicts major differences between the dominant Pennsylvanian plants (Fig. 10; Montañez 

et al., 2016). Medullosa and Psaronius had 4–6 times the water use efficiency of Lepidodendron, 

respectively; this difference reflects elevated photosynthetic rates in the medullosans and more 

conservative stomatal conductance in the tree ferns. Such distinct physiological capabilities 

between lycophytes and tree ferns result in significant effects on the landscape by producing 

major changes in transpiration and surface runoff as the tree ferns replace lycophytes at the 

 concentrations. 
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MLPB. For example, for the MLPB ecological threshold, the replacement of lycophyte-

dominated wetlands by tree-fern-dominated wetlands resulted in a 50% decrease in 

evapotranspiration, from 7.57 × 10-9 m3 s-1 (cms) to 3.88 x 10-8 m3 s-1

 

 (cms). A reduction in 

evapotranspiration of this magnitude would have resulted in a 50% increase in surface runoff, 

assuming no net change in precipitation, which likely affected physical and chemical weathering 

in Pennsylvanian landscapes, perhaps ultimately increasing nutrient levels in litorral 

environments (Figs 2, 10) 

1. Non-uniformitarian combinations of organ-level anatomy and morphology 

What anatomical features permit us to infer high photosynthetic and transpiration rates? In short: 

non-uniformitarian anatomy across the whole plant. Large tracheids are found within 

Pennsylvanian-age seed plants (particularly and notably medullosans), and spore-bearing plants, 

Sphenophyllum, a sphenopsid. Some of the arborescent lycophytes may fall into this category, as 

well. Leaves of many Carboniferous plants contain stomata at relatively high densities and with 

larger sizes leading to higher gmax values 

 

than many of their NLRs (Tables 2, 3; Wilson et al., 

2015.  Moreover, uncompressed fossil leaves preserved in coal balls tend to be quite thin from 

top to bottom, frequently less than 2mm thick, which places stomata in close proximity to 

vascular tissue even at low vein lengths per area. Finally, large leaf areas are notable for 

Psaronius, Cordaites, and Medullosa (e.g., Laveine, 1986), and when combined with highly 

efficient xylem, result in Huber values (leaf area : sapwood area ratios) that are comparable with 

values found in extant tropical angiosperms. 

2. Using whole-plant modeling to develop and test ‘paleoplant’ hypotheses  

Whole-plant reconstructions play a key role in quantifying the evolutionary history of plant 

physiology by developing and testing hypotheses for extinct plants, based on data from those 

plants themselves, rather than on parameters inferred from NLRs. Such studies place quantitative 

constraints on the influence of terrestrial plants in shaping Earth’s climate history. If assimilation 

rates can be derived, then gas exchange models can be used in an inverse method to quantify the 

ambient CO2 concentrations and further refine leaves as paleo-pCO2 proxies (Franks et al., 
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2014, 2017; McElwain et al., 2016a, 2017; Montañez et al., 2016). Second, using fossil-derived 

parameters to derive key water-transport constraints from root-to-leaf-to-water permits 

paleobotanists to ‘revive’ extinct species. Process-based, mechanistic models that rely on 

biophysics provide a reality check on predictions made by whole-plant reconstructions. Basic 

principles affecting heat, mass, and momentum transfer must also be considered given the 

dynamic range of Earth’s atmospheric composition over the period that vascular plants have 

existed. Dynamic simulation modeling, in particular, is critical for understanding the 

coordination of processes, such as water transport by different parts of plants, under different 

climate and environmental conditions.  

Ongoing work to understand the functional limits of extinct plants using process-based 

models is important for helping better understand physiological (plant) forcing of past climate 

through its influence on the water and carbon cycles. Using key parameters derived from fossil 

plants, basic aspects of physiology specific to particular Pennsylvanian plant taxa can be 

quantified, such as the effects on stem and root vascular tissue cavitation resulting from the 

evaporative demand placed on leaves (Fig. 9). This leads to understanding of ecological 

feedbacks, such as increased or decreased total leaf area affecting canopy evaporative demand, 

that are constrained by stem and root water supply. Because leaf area limits are confined within a 

climate-environmental envelope, air-seeding thresholds of the stem and root tissue may be 

determined, in turn helping to elucidate whether stomatal closure in Paleozoic plants was passive 

or active as a function of vascular safety margin in leaves. If the leaf safety margins are low, then 

‘ fast’ or ‘sensitive’ stomata are required to prevent lethal amounts of water loss. If the safety 

margins are high, slower or ABA insensitive stomata are permitted. 

 

V. Lessons learned 

1. Whole-plant methods are critical 

A paleoplant view should account for all of the anatomical features of a plant functioning in 

an integrated system. For example, stomatal conductance has to be scaled to both leaves and 

stems; these organs determine the functional limits of stomata. Leaf-specific parameters, 

including vein length per area, should be considered within their anatomical and organographic 
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context, including but not limited to mesophyll path length, leaf thickness, and leaf area. To 

determine leaf area, leaves and branches have to be scaled to stems and roots. Finally, plants 

themselves must be situated within their own environment, including the climatic and 

atmospheric conditions of the time. 

 

2. Long evolutionary branches 

The evolutionary distance between Carboniferous plants and their NLRs is large. Over 300 

million yr, these divergences between the lycophytes, sphenopsids and stem group marattialean 

ferns, pteridosperms, and stem group gymnosperms and conifers are nested deep within the 

vascular plant tree (Fig. 1). Employing the lycophyte (Selaginella), which is most frequently 

analyzed as a NLR, to compare with Lepidodendron is a suboptimal strategy. An improved 

method would begin by reconstructing the whole hydraulic pathway in a Carboniferous plant and 

then choosing an equivalent with similar physical and physiological characteristics, rather than 

relying solely on a NLR or an ecological and/or ecophysiological equivalent that has no 

phylogenetic relatedness sensu McElwain & Chaloner’s (1995) NLE approach. 

Carboniferous plants have complex physiologies that bear little resemblance to their NLRs as 

a consequence of anatomical, morphological, and developmental differences. The large size of 

lycophyte stomata, despite the limited water-transport tissue found throughout the stem and 

leaves, results in a whole-plant physiology that is akin to a slow-growing seed plant, such as a 

cycad. However, even extant relict gymnosperms, such as cycads, contain taxa that exhibit fast-

growing features: extant cycad stomata show closing behaviors more similar to modern grasses 

and crop than to their closest extant relatives, conifers and Ginkgo biloba (Elliott-Kingston et al., 

2016), and some cycads produce new leaves at a high rate (Lepidozamia peroffskyana). 

Cordaitaleans, sphenopsids, and medullosans have whole-plant physiologies that are comparable 

with mesic, shrubby dicot and monocot angiosperms, respectively. As a whole, we hypothesize 

that Carboniferous pteridophytic (spore-bearing) vascular plants are like extant gymnospermous 

seed plants, and Carboniferous seed plants compare with angiosperms, particularly basal 

angiosperms and monocots. 
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VI. The big picture: an active role for early forests In  Late Paleozoic climate 

Significant vegetative forcing of the hydrologic cycle is a novel implication of widespread 

Pennsylvanian tropical forests that included dominant tropical elements with assumed slow or 

passive stomatal control but with the capacity for high transpiration (e.g., lycophytes or 

Psaronius). Medullosans and Psaronius, for example, could have transpired large volumes of 

water but, if passive stomatal control is widespread among pteridosperms and pteridophytes, also 

have been slower to respond to environmental changes than angiosperms with the same leaf area. 

Such an unusual (compared to today) coupling of physiological behavior could have dramatically 

altered climate and surface conditions on a local-, regional-, and global-scale during the repeated 

turnovers in vegetation, especially given the associated dynamic fluctuations in atmospheric CO2 

(Montañez et al., 2007, 2016). Modeling studies of modern and future climate reveal that 

physiological responses of terrestrial vegetation to increasing CO2

We hypothesize that if the aforementioned significant differences in leaf conductance and 

hydraulic capacity (Fig. 10a) existed among late Paleozoic plant groups then repeated turnovers 

in plant composition, architecture and structure at the eccentricity to million-year scale (e.g., the 

biome shifts of Fig. 2) would have led to substantial change in the degree of physiological 

forcing of the hydrologic cycle and climate during key intervals of the LPIA.  Paleobotanical 

observations and quantitative inferences coupled with process-based ecosystem modeling 

indicates that replacing tropical wetland forests dominated by lycophytes, with high g

 concentrations and/or water 

stress can feedback on regional surface temperatures, hydroclimate, and terrestrial C 

sequestration, which, in turn, can translate into much broader-scale changes in climate, 

continental runoff, and atmospheric greenhouse gas concentrations (Gedney et al., 2006; Betts et 

al., 2007; Nugent & Matthews, 2012; Swann et al., 2012; de Boer et al., 2014; Skinner et al., 

2016).  

max (avg. of 

4.0 ±2.0 m m-2 s-1), with those dominated by marattialean tree ferns and cordaitaleans, with 

lower gmax (avg. of 0.3 (±0.3) m m-2 s-1 and 2.3 (±3.1) m m-2 s-1, respectively) would have caused 

a 200+% increase in surface runoff relative to received precipitation when holding climate 

constant (Fig. 10b). The consequent increased fluvial and groundwater discharge to coastlines 

would have perturbed nutrient supply and productivity, the efficiency of the marine biological 

pump, and ultimately carbon cycling between Earth’s surface C reservoirs (cf. Steinthorsdottir et 
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al., 2011; Fig. 2). Changes in the terrestrial component inevitably influence the marine realm as 

the components of the Earth system are fully interconnected.  

Unique to Earth’s penultimate icehouse, c. 300 Mya, anomalously high O2:CO2 ratios and 

pO2 concentrations (up to 26–30%) undoubtedly further influenced plant characteristics and gas-

exchange, and in turn, surface environmental conditions (cf. Beerling & Berner, 2000; Poulsen et 

al., 2015). Elementary analysis of gas exchange under atmospheric pO2 of up to 25% leads to the 

expectation of higher photorespiration burdens on Carboniferous plants, perhaps even limiting 

terrestrial plant productivity (Beerling et al., 2002). There is, however, no evidence to support 

such a hypothesis – Pennsylvanian plants survived and diversified without the evolution of 

carbon-concentrating mechanisms such as C4 photosynthesis. The biological adaptations or 

environmental conditions that permitted plants to evade this biochemical constraint have been 

explored for some taxa such as lycophytes (Green, 2010) but await further investigation. Rather, 

we hypothesize that for specific intervals of the Carboniferous and early Permian, characterized 

by very low pCO2 (<300 ppm) and high pO2

Plant adaptation to environmental forcing and scaling to ecosystem and biome responses is 

complex, involving the interplay of many biological and environmental conditions that can be 

challenging to quantify. In this review, we highlight the multiple facets of physiological 

functioning of extinct plants that can be quantitatively constrained and argue the importance of 

integrating them into ‘whole-plant’ physiology reconstructions. Ultimately, major progress in our 

understanding of climates and the biosphere of the deep past requires a systems-based approach 

in which plants are a focal point given their dynamic interface with surface environments. Such 

an integrated ‘systems’ perspective must be built on a foundation developed using process-based 

ecosystem modeling. Such modeling must be integrated with detailed anatomical and 

paleontological data and culminate with Earth system modeling that incorporates reconstructed 

physiologies, plant functional types, and biomes appropriate for the period of interest. This 

review has elucidated a much broader spectrum of physiological functioning in extinct 

, the unique atmospheric composition would have 

differentially affected the gas-exchange capacity, photosynthetic physiology, and water-use 

efficiency of plant groups and thus their ecological competitiveness (Montañez et al., 2016). 

Therefore, ecophysiological reconstructions of these extinct plant communities and their 

potential to feedback on surface environmental conditions, atmospheric greenhouse gas 

composition, and climate must consider the full range of atmospheric composition.  
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Carboniferous plants than previously understood and considered. Such considerations reveal the 

limitations of assuming that ancient plant functional traits and types can be equated with nearest 

living phylogenetic relatives, and provide a roadmap for identifying more appropriate nearest 

living equivalents for long extinct plants that, themselves, can be amenable to experimental 

analysis. Identifying the physiological properties of extinct plants, assembling them into whole-

plant models, and identifying NLEs from the whole-plant perspective will yield a more 

comprehensive and nuanced understanding vegetation–climate feedbacks throughout the 

evolutionary history of plants.  
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Fig. 1 A tree of key Pennsylvanian plants, their living relatives, and their evolutionary context. 

Triangles represent extant lineages with substantial biodiversity. The arborescent lycophytes are 

nested within two extant herbaceous lycophyte genera, Selaginella and Isoetes. Sphenopsids, 

including the extinct taxa Sphenophyllum and Calamites, are nested within the extant ferns 
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(‘monilophytes’). Genetic analyses suggest that extant ferns form a monophyletic group (e.g., 

Pryer et al., 2004), that extant gymnosperms (non-angiosperm seed plants) form a second 

monophyletic group with the gnetales as sister to the Pinaceae or extant conifers (e.g., Qiu et al., 

1999), and that angiosperms are sister group to the gymnosperms (e.g., Burleigh & Mathews, 

2004; Doyle, 2006, 2008, 2012), implying that angiosperms diverged from a lineage of seed 

plants that themselves diverged from extant gymnosperms before their last common ancestor. 

Medullosa represents the pteridosperms, an informal name for early-diverging seed plants that 

bore seeds on fernlike leaves. 

Fig. 2 Flow chart delineating connections and process-based linkages between many of the 

components of paleoecophysiology reconstruction. Blue boxes are solar system- to local-scale 

physical forcings acting on Carboniferous biomes. Alternation in the lowland tropical basins of 

the two biomes shown (wetland and seasonally dry; courtesy of Mary Parrish; National Museum 

of Natural History, Smithsonian Institution) occurred during 105

Fig. 3 Reconstructions of key Pennsylvanian plants and representative fossils. (a) Reconstruction 

of an arborescent lycophyte, from Taylor et al. (2009). (b) Reconstruction of an arborescent but 

lax-stemmed medullosan pteridosperm, from Andrews (1945) with permission from Missouri 

Botanical Garden Press, St Louis, USA. Note that the large, compound frond systems are drawn 

as if the plant were wilting in order to fit the plant within a single illustration. Additional 

perspectives on medullosan growth and form can be found in Pfefferkorn et al. (1984), Wilson & 

Fischer (2011), and Wilson et al. (2015). (c) Reconstruction of an extrabasinal, or ‘upland’ giant 

cordaitalean tree, from Falcon-Lang & Bashforth (2005), with permission. It is likely that these 

trees were abundant in environments that are represented at low frequencies in the fossil record. 

(d) Reconstruction of Psaronius from Taylor et al. (2009). Note that the majority of the volume 

of the stem is made up of root mantle, rather than leaf and stem tissue. (e) Medullosan 

(Neuropteris) leaf from Indiana, USNM Locality 38327. Bar, 1 cm. (f) Cordaites leaf from 

 yr glacial–interglacial cycles. 

Green boxes are the empirically based or inferred plant to forest characteristics applied to the 

process-based ecosystem modeling, BIOME BGC V.4.2.  Orange boxes are modeled output 

processes (total canopy conductance, surface runoff) and possible environmental and biologic 

consequences.  
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Indiana, USNM Locality 38327. Bar, 1 cm. (G) Walchian conifer leaf impression from New 

Mexico. 

Fig. 4 Temporal distribution of tropical Pennsylvanian and early Permian biomes, paleo-

atmospheric pCO2 and pO2, and glaciation history adapted from Montañez (2016). Upper 

section is a detailed inset of the biome-glaciation history shown in the Lower section. WB 1 

owned, commissioned by, and courtesy of the City and County of Denver, K. Johnson, and J. 

Vriesen. WB 3 and 4, and Seasonally Dry Biome 1, courtesy of Mary Parrish (National Museum 

of Natural History, Smithsonian Institution). See text for detail of biome distributions. Pink 

shading around the CO2

Fig. 5 Generalized diagram of Middle and Late Pennsylvanian biomes during a glacial phase. 

Green, tropical everwet forests; blue, subtropical forests, sometimes seasonally dry; orange, 

deserts; red, Angaran northern temperate forests dominated by Rufloria; purple, southern 

hemisphere temperate forests; gray, tundra. Local vegetational dynamics were likely to be 

strongly influenced by topography and climate, including oceanographic influences. 

Paleogeographic map base from Blakey (http://jan.ucc.nau.edu/rcb7/nam.html). 

 curve is the 16 and 84 percentile-uncertainty around the estimates. 

[Author, to assist readers in interpreting the figure please refer to (a) and (b) in the legend.] 

Fig. 6 Key plant parameters for reconstructing ‘whole-plant’ water transport physiology against 

the backdrop of Medullosa thompsonii from Andrews (1945) with permission from Missouri 

Botanical Garden Press, St Louis, USA. From root to leaf: root anatomy can be used to 

determine rooting depth, and root xylem can be used to determine the hydraulic conductivity of 

roots (kroot). Stem anatomy and xylem anatomy, in particular, can be used to determine the 

hydraulic conductivity of individual tracheids (ksc) and whole stems (kstem). At the branch scale, 

the number of conduits and their individual hydraulic conductivity can be used to quantify the 

conductivity of a single branch (kbranch). Within leaves, the total vein length per unit of leaf area 

is a component of the hydraulic constraints within a leaf, along with the stomatal density/index 

(stomatal frequency), maximum water vapor exchange of an individual stomatal complex (gwmax) 

and its operational maximum (gop), the mesophyll path length (Dm

Fig. 7 A comparison of measured stomatal conductance (G

) and leaf thickness. 

s) from a global survey of vegetation 

from Maire et al. (2015) (*) with estimated operational Gs (** this study) for keystone taxa of 
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the Carboniferous tropical wetland forests. Gs was estimated from measured Gmax values from 

Montanez et al. (2016) by assuming that Gs= 0.25(Gmax) following the observation of McElwain 

et al. (2016b) and Franks et al. (2014). Box lower bound, horizontal line, and upper bound define 

the 25th, median, and 75th percentile of data respectively; whiskers define c. 1st and c. 99th

Fig. 8 Modeled and empirically inferred canopy conductance for major Carboniferous plant 

groups.  Simulated values using BIOME BGC v4.2 are shown as maximum sunlit canopy (purple 

bars) and net canopy average values (red bars) and were modeled for 400 ppm CO

 and 

percentile of data; circles are outliers. Medullosan stomatal conductance and lycophyte stomatal 

conductance are high because of high stomatal frequency and/or large stomata. 

2 and range of 

hypothesized atmospheric pO2. Empirically derived photosynthetic assimilation rates shown as 

average values (colored outline symbols ± 2 SE) and were made using scaling relationship 

between Gmax and assimilation rate (solid color symbols; McElwain et al., 2016b) and vein-to-

stomata distance and its empirically determined relationship Kleaf and Amax

Fig. 9 Modeled leaf and stem hydraulic features of Pennsylvanian genera Cordaites and 

Medullosa in compared to living gymnosperms and angiosperms. Stomatal conductance to CO

 (Brodribb et al., 

2007).   

2 

on the x-axis (based on Day et al., 1991; Loreto et al., 1992, 2003; Picon et al., 1996; Auge et 

al., 2000; Day, 2000; DeLucia et al., 2003; Dang & Cheng, 2004; Bota et al., 2004; Herrick et 

al., 2004; Ethier et al., 2006; Zazzaro, 2006; Galme et al. 2007; Niinemets et al., 2009; 

Montañez et al., 2016), and the stem resistance to cavitation (defined as the square of thickness-

to-span of xylem conducting cells) on the y-axis (stem vessel thickness based on Donaldson, 

1983; Cato et al., 2006; Rathgeber et al., 2006; Sun et al., 2006; Wilson et al., 2008; Hacke & 

Jansen, 2009; Ramirez et al., 2009; Domec et al., 2010; De Micco et al., 2008, 2016; Carvalho et 

al., 2015). Labels in quadrants refer to qualitative stress tolerance levels of components where: 

physical refers to structural stress based on wood strength, water refers to drought, and CO2

Fig. 10 Intrinsic water-use efficiency (WUE) for modern and Carboniferous plants and modeled 

surface runoff ratios for the Carboniferous. (a) Intrinsic WUE values for modern (closed 

symbols, delineated by pink shading) and dominant Carboniferous taxa (open symbols, 

delineated by blue shading) over a range of atmospheric pCO

 

refers to atmospheric supply. 

2. Modern values are derived from 
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various CO2 enrichment studies; paleo-values are from BIOME–BGC v.4.2 simulations utilizing 

fossil leaf morphology and nitrogen composition. (b) Modeled runoff ratio, calculated from 

simulated discharge to input precipitation for Carboniferous taxa over the same range of 

atmospheric pCO2

 

 values.  

Table 1 Key organ or form genera for Pennsylvanian plants and their associated whole-plant 

concept [Typesetters, see separate xlsx file for the table.] 

 

Table 2 Stem and leaf parameters for medullosans, Cordaites, and two gymnosperms: Dioon 

edule and Ginkgo biloba  

[Typesetters, see separate xlsx file for the table.] 

[Footnote text below Table 2] Vein length per area (Dv

 

) values for D. edule and G. biloba are 

from Boyce et al. (2009). Stomatal values for G. biloba are preindustrial values from Barclay & 

Wing (2016). Medullosa noei root tracheid diameters are from Steidtmann (1944), other 

measurements are from Greguss (1968), Wilson et al. (2008), Wilson & Knoll (2010) and J. P. 

Wilson (unpublished). 

 

Table 3 Maximum stomatal conductance (Gmax

Representative taxa 

) values for various extinct Carboniferous–

Permian taxa 

Avg. G ± 1 σ  max 

(mol m-2 s-1 (mol m)  -2 s-1)  

Medullosales (medullosans) 3.7 3.5 

Sphenophyllum 0.4 0.2 
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Lepidodendrales (lycopsids) 4 1.8 

Cordaitales  (cordaitaleans) 2.4 3.1 

Ferns (mostly marattialean 

tree ferns) 0.3 0.3 
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