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Objective: The goal of this study was to identify metabolites associated with metabolic risk, separately

by sex, in Mexican adolescents.

Methods: Untargeted metabolomic profiling was carried out on fasting serum of 238 youth aged 8 to 14

years, and metabolites associated with a metabolic syndrome risk z-score (MetRisk z-score) were identified

separately for boys and girls, using the simulation and extrapolation algorithm. Associations of each metab-

olite with MetRisk z-score were examined using linear regression models that accounted for maternal edu-

cation, child’s age, and pubertal status.

Results: Of the 938 features identified in metabolomics analysis, 7 named compounds (of 27 identified

metabolites) were associated with MetRisk z-score in girls, and 3 named compounds (of 14 identified) were

associated with MetRisk z-score in boys. In girls, diacylglycerol (DG) 16:0/16:0, 1,3-dielaidin, myo-inositol,

and urate corresponded with higher MetRisk z-score, whereas N-acetylglycine, thymine, and dodecenedioic

acid were associated with lower MetRisk z-score. For example, each z-score increment in DG 16:0/16:0 cor-

responded with 0.60 (95% CI: 0.47-0.74) units higher MetRisk z-score. In boys, positive associations of DG

16:0/16:0, tyrosine, and 50-methylthioadenosine with MetRisk z-score were found.

Conclusions: Metabolites on lipid, amino acid, and carbohydrate metabolism pathways are associated

with metabolic risk in girls. Compounds on lipid and DNA pathways correspond with metabolic risk in boys.

Obesity (2017) 25, 1594-1602. doi:10.1002/oby.21926

Introduction
Metabolomics, the systematic study of low-molecular-weight com-

pounds in biological tissues, is a powerful tool to study disease onset,

severity, and progression. In adults, metabolomics analyses of serum

and plasma have provided novel insights into biomarkers and the eti-

ology of metabolic disorders, the most commonly studied being type

2 diabetes (1). Given that the pathophysiological processes underlying

metabolic disease development (e.g., adiposity, insulin resistance, dys-

lipidemia, hypertension) begin as early as 2 to 4 years of age (2-4)

and may be established for life by the end of adolescence (5,6), there

is a need to elucidate the relationship between circulating metabolites

and conventional metabolic biomarkers earlier in life.

Few metabolomics analyses have been carried out in youth, and the

majority of published studies have sought to replicate findings from

adult populations by focusing on associations of specific compounds

on amino acid (7-10) and fatty acid pathways (7,10) with weight sta-

tus and/or glycemia. However, although adult studies (11,12) and

two metabolomics analyses in school-aged children (13,14) have

found that higher circulating branched chain amino acids (BCAAs)

correlated with insulin resistance and/or type 2 diabetes risk, animal

models (15) and data from a clinical cohort of adolescents with and

without diabetes (7,8) have revealed that these metabolites actually

corresponded with better glycemia and enhanced mitochondrial

function. A potential explanation for the discrepancy is that physio-

logical responses to metabolic disturbances may be fundamentally
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different during the pubertal transition, as it is a time of rapid

change and hormonal fluctuation. Therefore, approaches aimed at

validating findings from adults or prepubertal children may fail to

identify relevant metabolic pathways in youth undergoing puberty.

Here, our primary aim was to take a data-driven approach to identify

metabolites associated with a cluster of metabolic syndrome risk fac-

tors during puberty, a life stage characterized by rapid growth and

development that may also be a sensitive period for development of

excess adiposity and metabolic risk (16). As a secondary aim, we

examined associations of BCAAs (leucine, isoleucine, valine) with the

metabolic syndrome risk factors given their relevance to metabolic

risk in previous metabolomics studies in youth.

Methods
Study population
This study included participants of the Early Life Exposure in Mexico to

Environmental Toxicants (ELEMENT) Project, a cohort of pregnant

women and their offspring in Mexico City, Mexico (17). In 2010, we

recontacted a subset of the offspring (n 5 250) who were then 8 to 14

years of age based on availability of archived prenatal biospecimens to

participate in follow-up studies. At research visits that took place in 2010

(the “peripubertal” visit), the participants provided an 8-hour fasting

blood sample and participated in anthropometric assessment. Our study

sample included 238 children with data on anthropometry, metabolic

biomarkers, and adequate serum volume for metabolomics analyses. The

institutional review boards of the Mexico National Institute of Public

Health and the University of Michigan approved the research protocols.

Untargeted metabolomics profiling
The Michigan Regional Comprehensive Metabolomics Resource Core

quantified metabolites from fasting serum collected at the peripubertal

visit on an untargeted platform that utilized liquid chromatography and

mass spectrometry. The procedure yielded 9,303 features. After

removal of redundant compounds and those with >70% of values miss-

ing, the final data set comprised 938 unique chemical features, 332 of

which were “known” compounds, e.g., those whose spectral peaks,

fragmentation patterns, and retention times matched with compounds

within the Michigan Regional Comprehensive Metabolomics Resource

Core chemical library. While we considered all metabolites in the statis-

tical analysis, our interpretation of results focuses on known com-

pounds. Prior to formal analyses, we removed batch effects, imputed

values below the detection using the K-nearest neighbor algorithm

(K 5 5) with the IMPUTE package in R, and standardized each metabo-

lite as a z-score using a rank-based inverse normal transformation.

Conventional biomarkers
The primary outcome of interest was a metabolic syndrome risk z-
score (MetRisk z-score) calculated as the average of five internally

standardized z-scores for waist circumference, fasting glucose, fasting

C-peptide (as a surrogate for fasting insulin (18)), the ratio of triglycer-

ides to high-density lipoprotein (HDL), and the average of systolic

(SBP) and diastolic blood pressure (DBP). This score is a modification

(e.g., use of C-peptide rather than insulin) of a score proposed by Vii-

tasalo et al. in a study that examined correlations among the metabolic

biomarkers in children and adults, and established its association with

incident type 2 diabetes and cardiovascular mortality (19).

Waist circumference. Research staff measured waist circumference

at the level of the umbilicus to the nearest 0.1 cm using a non-stretchable

measuring tape (QM2000; QuickMedical, Issaquah, Washington).

Fasting glucose, C-peptide, and lipids. Using 8-hour fasting

blood, we measured serum glucose enzymatically. Serum C-peptide

was quantified using an automated chemiluminescence immunoassay

(Immulite 1000, Siemens Medical Solutions USA, Inc., Malvern,

Pennsylvania). These biomarkers provide a measure of glycemic

control, as fasting glucose is an indicator of glucose metabolism and

a diabetes screening tool, and C-peptide is a marker of insulin func-

tion that is secreted in quantities equal to insulin from pancreatic b-

cells (18). We quantified serum triglycerides and HDL using a bio-

chemical analyzer (Cobas Mira Plus, Roche Diagnostics, Indianapo-

lis, Indiana).

Blood pressure. Research staff measured SBP and DBP in dupli-

cate to the nearest mmHg in the seated position (BPTru monitors;

Coquitlam, British Columbia, Canada). Because the intraclass corre-

lation (ICC) between the measurements was high (ICCSBP 5 0.95;

ICCDBP 5 0.89), we used the average in the analysis.

Supporting Information Table S1 shows correlations among the

MetRisk z-score components.

Covariates
At enrollment, mothers reported on age, reproductive history, and

lifestyle and sociodemographic characteristics. A pediatrician

assessed each child to determine Tanner stage on a scale of 1 (no

development) to 5 (full development) for testicles, breasts, and pubic

hair.

Data analysis
Step 1: Bivariate analysis. We examined the distribution of

MetRisk z-score across categories of background characteristics to

identify potential confounders.

Step 2: Identification of relevant metabolites. To identify

metabolites associated with metabolic risk, we examined sex-

specific associations (given the differences in tempo of maturation

during adolescence (20)) of individual metabolites (n 5 938) with

MetRisk z-score, while also adjusting for maternal education and

pubertal status, using the simulation extrapolation (SIMEX) algo-

rithm (SIMEX package in R). Our rationale for using SIMEX for the

initial “first pass” to identify relevant metabolites is to correct for

additive measurement error (e.g., residual batch effects, unmeasured

variation in laboratory methods) in the assessment of metabolite

concentrations. In the first step, the SIMEX algorithm simulates

multiple datasets with varying degrees of measurement error in the

metabolite of interest in order to estimate a range of coefficients

that plausibly represent the error-free relationship between the

metabolite and MetRisk z-score. Next, SIMEX derives an estimate

for a covariate that represents the impact of the unknown source(s)

of error based on the simulated data and extrapolates an error-

corrected estimate for the association of interest. As a result, SIMEX

estimates for regression parameters are larger in magnitude and

more precise than those derived from standard regression. For con-

firmatory purposes, we also quantified associations of individual
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metabolites with MetRisk z-score using standard linear regression.

To reduce the likelihood of false-positive associations, we only re-

tained metabolites for further analyses if they were associated

with MetRisk z-score at a P value of< 0.05/938 (Bonferroni’s

correction).

Step 3: Main analysis. We used multivariable linear regression

to assess the impact of potential confounders to the relationship of

the known metabolites identified in step 2, as well as the BCAAs,

with MetRisk z-score. We selected covariates based on our a priori
knowledge and the bivariate analysis from Step 1. Because little is

known regarding the metabolomics of pubertal status, a potential

confounder and mediator to the relationship between metabolism

and metabolic risk, we also examined crude associations of the

metabolites of interest with pubertal status to ascertain its relevance

as a covariate (Supporting Information Table S2). In Model 1, we

accounted for confounders: maternal education and child’s age. In

Model 2, we further adjusted for pubertal status. Using Model 2, we

also investigated associations of all metabolites of interest with com-

ponents of the z-score.

Unless otherwise stated, all statistical analyses were performed using

SAS 9.4 (Cary, North Carolina).

Results
Median age of the participants was 10.0 years (range: 8.1-14.7), and

approximately half of the participants (47.5%; n 5 113) were boys.

Mean 6 SD MetRisk z-score and the individual components of the

score are displayed in Table 1.

In bivariate analysis (Table 2), older children and those at more

advanced pubertal stages exhibited higher metabolic risk. As com-

pared to participants younger than 10 years of age, those 10 to 12

years and>12 years of age exhibited 0.20 (95% CI: 0.03-0.38) and

0.36 (95% CI: 0.16-0.55) units higher MetRisk z-score. In both boys

and girls, we observed a positive relationship between all puberty

indicators and MetRisk z-score.

Of the 938 features quantified in laboratory analyses, the SIMEX

algorithm identified 27 compounds, 7 of which were known, in girls

and 14 compounds, 3 of which were known, in boys that were associ-

ated with MetRisk z-score after Bonferroni’s correction (Table 3). A

comparison of the magnitude, direction, and significance of the esti-

mates derived from standard linear regression versus SIMEX showed

that the latter yielded larger effect sizes (�1.5-2 times the magnitude)

and smaller P values, which is expected given that the SIMEX proce-

dure accounts for error in assessment of the metabolite concentrations.

After identification of relevant metabolites, we investigated associa-

tions (b [95% CI]) of each known compound with MetRisk z-score

using multivariable linear regression (Table 4). In girls, we found

positive relations of diacylglycerol (DG) 16:0/16:0, 1,3-dielaidin,

myo-inositol, and urate with MetRisk z-score and inverse associa-

tions with N-acetylglycine, thymine, and dodecenedioic acid. Adjust-

ment for maternal education and child’s age (Model 1) followed by

pubertal status (Model 2) did not change the results. For example,

each single z-score increment in DG 16:0/16:0 corresponded with

0.63 (0.49-0.76) units higher MetRisk z-score in the unadjusted

model. Accounting for mother’s education and child’s age did not

materially alter the estimate (0.61 [0.47-0.75]), nor did further inclu-

sion of pubertal status (0.60 [0.47-0.74]). Likewise, each single z-

score increment in thymine was associated with 0.38 (0.22-0.54)

units lower MetRisk z-score in Model 1 and 0.39 (0.23-0.55) units

lower MetRisk z-score in Model 2. In boys, we detected positive

associations of DG 16:0/16:0 (0.42 [0.27-0.57]), tyrosine (0.37

[0.21-0.53]), and 50-methylthioadenosine (MTA) (0.30 [0.15-0.46])

with MetRisk z-score in unadjusted models. These associations per-

sisted after multivariable adjustment (Table 4).

We also examined the relationships of each metabolite with individ-

ual components of the MetRisk z-score: waist circumference, fasting

glucose, fasting C-peptide, triglyceride:HDL ratio, and the average

of SBP and DBP (Table 5). In girls, the four compounds positively

associated with MetRisk z-score were also positively related to each

z-score component. We observed the most consistent associations

for C-peptide. For example, DG 16:0/16:0, 1,3-dielaidin, myo-

inositol, and urate corresponded with 0.4 (0.2-0.6), 0.3 (0.1-0.5), 0.4

(0.2-0.6), and 0.3 (0.0-0.5) ng/mL C-peptide, respectively. We noted

similar trends of these compounds with waist circumference. Simi-

larly, the three compounds inversely related to MetRisk z-score (thy-

mine, dodecenedioic acid, and N-acetylglycine) were inversely asso-

ciated with the individual biomarkers—again, with the most robust

associations observed for waist circumference and C-peptide.

In boys, each single z-score increment in DG 16:0/16:0, tyrosine, and

50-MTA was associated with 3.1 (1.4-4.8), 2.7 (0.9-4.4), and 3.8 (2.2-

5.4) cm higher waist circumference, respectively. These metabolites

were also consistently positively associated with C-peptide and, to a

lesser extent, the triglyceride:HDL ratio and blood pressure.

Table 6 shows associations of BCAAs with the metabolic bio-

markers. In girls, valine corresponded with higher triglyceride:HDL

ratio (0.3 [0.1-0.5]). In boys, all three BCAAs were associated with

higher waist circumference, fasting C-peptide, and MetRisk z-score

(Table 6). For example, each single z-score increment in leucine cor-

responded with 3.0 (1.4-4.5) cm higher waist circumference, 0.3

(0.2-0.5) ng/mL higher C-peptide, and 0.13 (0.03-0.24) units higher

TABLE 1 Mean 6 SD of individual metabolic biomarkers
and MetRisk z-score in 238 ELEMENT participants

All, Girls, Boys,

n 5 238 n 5 125 n 5 113

Waist circumference (cm) 70.8 6 10.8 71.6 6 11.5 70.0 6 10.0

Fasting glucose (mg/dL) 87.1 6 9.4 86.2 6 10.6 88.1 6 7.9

C-peptide (ng/dL) 1.7 6 1.23 1.9 6 1.3 1.6 6 1.2

HDL (mg/dL) 58.7 6 11.8 57.7 6 11.7 59.8 6 12.0

Triglycerides (mg/dL) 87.8 6 44.2 96.8 6 47.2 77.9 6 38.4

SBP (mmHg) 103 6 10 101 6 10 105 6 10

DBP (mmHg) 66 6 7 66 6 7 66 6 7

MetRisk z-scorea 0.00 6 0.62 0.03 6 0.65 20.04 6 0.58

aCalculated as the average of five internally standardized z-scores for waist circum-
ference, fasting glucose, C-peptide, triglyceride:HDL ratio, and the average of SBP
and DBP.
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MetRisk z-score. We observed associations of similar direction and

magnitude for isoleucine and valine.

Discussion
In this study of 238 Mexican youth 8 to 14 years of age, we

employed a data-driven approach to identify metabolites associated

with metabolic syndrome risk factors. Use of untargeted metabolo-

mic profiling followed by measurement-error corrected regression

models revealed associations of metabolites on lipid, amino acid,

and carbohydrate metabolism pathways with metabolic risk in girls,

whereas compounds on lipid and DNA pathways were related to

metabolic risk in boys. As a secondary end point, we examined

associations of BCAAs (leucine, isoleucine, valine), which have

been previously implicated in metabolic risk in youth (7-9,13,14),

with the metabolic outcomes and found positive associations with

metabolic risk in boys.

Data-driven approach: girls
In girls, we identified seven named metabolites that were associated

with MetRisk z-score. Of these compounds, four were positively

related to metabolic risk: DG 16:0/16:0, 1,3-dielaidin, myo-inositol,

and urate; and three were inversely associated with metabolic risk:

thymine, dodecenedioic acid, and N-acetylglycine.

Metabolites associated with higher
MetRisk z-score
We found that higher serum levels of DG 16:0/16:0, a glyceride

composed of two palmitic acid side chains, corresponded with

higher metabolic risk, which makes sense given that DG 16:0/16:0

is a major component of palm oil, a saturated vegetable oil that is

commonly used in developing nations like Mexico and that

adversely impacts plasma lipid profile (21). Indeed, when we exam-

ined associations with components of MetRisk z-score, DG 16:0/

16:0 was strongly associated with a larger triglyceride:HDL ratio,

which has been identified as a discriminatory biomarker of meta-

bolic syndrome in children (22). Another pathway through which

TABLE 2 Association of background characteristics with
MetRisk z-score among 238 ELEMENT mother-child pairs

MetRisk z-score

N Mean 6 SD Pa

Maternal characteristics at the time of enrollment
Age at enrollment 0.62

15-24 y 87 0.5960.02

25-34 y 118 0.5960.07

35-44 y 32 0.1660.75

Marital status 0.23

Married or cohabiting 212 20.0260.62

Single 26 0.1360.59

Maternal education 0.90

<10 y 83 20.0160.60

10-12 y 119 0.0060.62

�13 y 34 0.0060.65

Parity 0.40

0 85 0.0260.58

1-2 137 0.0060.62

�3 16 20.1560.77

Smoking during pregnancy 0.30

Yes 233 20.2760.51

No 5 0.0160.62

Delivery method 0.29

C-section 96 0.0560.63

Vaginal 141 20.0460.61

Child characteristics at the peripubertal visit
Sex 0.39

Male 113 20.0460.58

Female 125 0.0360.65

Child’s age 0.0002

<10 y 119 20.1460.63

10 to 12 y 68 0.0760.56

>12 y 51 0.2260.59

Male puberty indicatorsb

Pubic hair 0.01

Tanner stage 1 90 20.0560.60

Tanner stage 2 15 0.1860.62

Tanner stage 3-5 5 0.5860.74

Testicle development 0.04

Tanner stage 1 54 20.1560.60

Tanner stage 2 40 0.1860.64

Tanner stage 3 10 20.1060.47

Tanner stage 4-5 5 0.3660.91

Female puberty indicatorsc

Pubic hair 0.004

Tanner stage 1 94 20.0960.63

Tanner stage 2 21 0.1160.45

Tanner stage 3 7 0.4260.25

Tanner stage 4-5 3 0.4860.48

TABLE 2. (continued).

MetRisk z-score

N Mean 6 SD Pa

Breast development 0.002

Tanner stage 1 83 20.1260.63

Tanner stage 2 20 0.1360.54

Tanner stage 3 15 0.2360.43

Tanner stage 4-5 7 0.3960.22

aRepresents a test for linear trend in which an ordinal indicator is entered into the
model as continuous variable, with the exception of binary variables (Wald test).
bTanner stages combined due to small sample sizes for pubic hair stages 3-5
(stage 3: n 5 4; stage 4: n 5 1; stage 5: n 5 0) and testicle development stages 4-5
(stage 4: n 5 5; stage 5: n 5 0).
cTanner stages combined due to small sample sizes for pubic hair (stage 4: n 5 2;
stage 5: n 5 1) and breast development (stage 4: n 5 7; stage 5: n 5 0).
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DG 16:0/16:0 may influence metabolic risk is by inducing insulin

resistance. In a study that compared muscle tissue DG composition

of n 5 6 adults without diabetes or obesity, n 5 6 adults with type 2

diabetes, and n 5 6 endurance-trained athletes, Bergman et al.

reported higher levels of three DG species, one of which was DG

16:0/16:0, in the myocyte membranes of patients with diabetes than

for the other two groups (23). Further, the authors observed an

increasing monotonic relationship between the DGs and insulin

resistance in all three groups (23). a phenomenon that could be

explained by the capacity of DGs to activate protein kinase-C, an

enzyme implicated in the pathogenesis of skeletal muscle insulin

resistance (24). Accordingly, this compound was associated with

higher fasting C-peptide, a surrogate marker of insulin (18), in girls.

We also found positive associations of 1,3-dielaidin, myo-inositol,

and urate with MetRisk z-score. Although there are no published

studies relating 1,3-dielaidin, a glycerol with two monounsaturated

fatty acid chains, to metabolic health, a few mechanisms could

underlie our findings for the other two compounds. Myo-inositol

plays an important role as a precursor for secondary cellular messen-

gers such as inositol phosphates phosphatidylinositol and phosphati-

dylinositol phosphate-containing lipids (25). While myo-inositol

occurs naturally in fruits, grains, beans, and nuts, it is also generated

endogenously from D-glucose to augment cellular glucose uptake

(26), a process that may be upregulated under conditions of hyper-

glycemia and/or insulin resistance (27) to encourage glucose utiliza-

tion. This notion is supported by our finding that myo-inositol corre-

sponded with higher fasting glucose and C-peptide.

We observed a positive association between urate and MetRisk z-

score, which aligns with literature pointing toward elevated serum

uric acid as a risk factor for cardiometabolic disease. Proposed

mechanisms include uric acid’s ability to induce oxidative stress

(28) and stimulate proinflammatory pathways (29), both of which

interfere with metabolic homeostasis.

Metabolites associated with lower
MetRisk z-score
In girls, we identified three metabolites that were inversely associ-

ated with metabolic risk: N-acetylglycine, dodecenedioic acid, and

thymine. A few studies have identified N-acetylglycine as a corre-

late of weight status. In an untargeted metabolomics study of adults

in three cohorts, Moore et al. found an inverse relationship between

N-acetylglycine and BMI under both fasting and nonfasting condi-

tions (30). Similarly, in an untargeted analysis of fasting plasma

from 803 Hispanic children, Butte et al. reported higher plasma N-

acetylglycine in children without obesity compared to children with

obesity (14). While the exact mechanism linking this compound to

excess adiposity remains to be elucidated, a study in 73 elderly

adults found higher levels of N-acetylglycine in the gut microbiome

following ingestion of high-fiber foods (31). Given that dietary fiber

intake is consistently associated with lower adiposity and metabolic

risk in epidemiologic studies (32), mechanistic investigations are

warranted to determine whether N-acetylglycine is simply a marker

of fiber metabolism or whether it imparts a direct protective effect

against metabolic risk.

The inverse relationship between dodecenedioic acid and metabolic

risk could transpire from its antioxidant properties. A recent in vitro
study of human skin fibroblasts showed that administration of

TABLE 3 Association of metabolite concentrations with
MetRisk z-score among 125 girls and 113 boys using
standard linear regression and SIMEX

Linear

regression SIMEX

ba P value ba P value

Girls (n 5 125)
Diacylglycerol (DG) 16:0/16:0 0.34 1.09E-10 0.61 1.26E-14
C35 H63 Cl N4 O2 0.33 2.24E-10 0.59 4.39E-14

C33 H67 N4 O4 P 0.31 4.73E-09 0.55 2.46E-12

C35 H76 N2 P2 S 0.30 1.58E-09 0.55 2.65E-12

C35 H73 N4 O4 P 0.29 1.10E-08 0.53 6.34E-12

C33 H69 N4 O4 P 0.30 1.69E-08 0.53 1.63E-11

C44 H68 S 0.29 7.75E-08 0.53 7.03E-11

1,3-Dielaidin 0.27 3.55E-07 0.49 8.34E-10
C42 H79 P S3 0.26 1.66E-06 0.47 6.67E-09

C36 H65 N8 P 0.27 2.71E-06 0.50 9.41E-09

N-Acetylglycine 20.28 4.88E-06 20.51 1.99E-08
Myo-inositol 0.24 1.96E-05 0.42 4.16E-07
C46 H74 S2 0.24 5.10E-05 0.44 6.25E-07

Urate 0.24 6.07E-05 0.42 2.11E-06
C37 H69 N4 O4 P 0.23 9.07E-05 0.41 2.69E-06

PA 38:7 0.23 5.86E-05 0.40 3.39E-06

C40 H69 Cl N4 O 0.22 1.12E-04 0.37 6.62E-06

C44 H66 N4 O 0.22 2.32E-04 0.39 7.24E-06

885.586@25.532227 20.22 2.21E-04 20.40 7.63E-06

C37 H62 N6 O3 0.21 2.66E-04 0.39 8.78E-06

Thymine 20.21 3.08E-04 20.38 1.04E-05
765.394@26.4027 0.23 1.43E-04 0.39 1.07E-05

925.6017@25.308508 0.23 1.28E-04 0.36 1.36E-05

781.3842@26.705156 0.22 1.73E-04 0.37 1.44E-05

783.5786@24.554457 0.21 3.75E-04 0.37 1.96E-05

C37 H71 N2 O4 P 0.22 1.44E-04 0.35 2.17E-05

Dodecenedioic acid 20.18 1.18E-04 20.34 2.90E-05
Boys (n 5 113)

Diacylglycerol (DG) 16:0/16:0 0.23 8.72E-06 0.43 5.18E-08
993.5887@25.33285 0.22 3.83E-06 0.38 1.06E-07

C35 H63 Cl N4 O2 0.22 2.52E-05 0.41 3.37E-07

C33 H69 N4 O4 P 0.20 1.65E-04 0.39 2.30E-06

869.5421@24.07403 0.18 1.09E-04 0.33 3.45E-06

923.6981@28.415735 20.22 7.20E-06 20.34 6.15E-06

765.394@26.4027 0.19 1.98E-04 0.34 9.11E-06

50-Methylthioadenosine (MTA) 0.18 2.59E-04 0.35 1.12E-05
885.586@25.532227 20.20 7.66E-05 20.36 1.47E-05

Tyrosine 0.18 5.29E-04 0.35 2.54E-05
895.6661@26.81271 20.21 2.50E-05 20.32 2.75E-05

991.6704@28.157875 20.20 2.02E-04 20.36 2.92E-05

C35 H73 N4 O4 P 0.19 9.81E-04 0.36 2.94E-05

C35 H76 N2 P2 S 0.19 8.41E-04 0.36 3.30E-05

Bolded estimates indicate statistical significance after Bonferroni’s correction
(P< 5.33E-05).
aEstimates are adjusted for mother’s education level and child’s age.
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dodecenedioic acid decreased phospholipid peroxidation (33), a pro-

cess that is upregulated under conditions of hyperglycemia.

Finally, our finding that higher serum concentrations of thymine cor-

responded with lower metabolic risk could stem from the physiolog-

ical effects of its catabolite b-aminoisobutyrate, a compound

released by skeletal muscle that enhances glucose tolerance (34).

Data-driven approach: boys
As in girls, DG 16:0/16:0 was positively associated with MetRisk z-

score in boys, emphasizing the relevance of this compound to meta-

bolic health regardless of sex. In addition, we found that higher

serum levels of tyrosine and 50-MTA corresponded with greater met-

abolic risk among males.

Our finding of a positive association between tyrosine, a large neutral

amino acid, and MetRisk z-score, as well as with adiposity (larger

waist circumference) and worse glycemia (higher C-peptide), corrobo-

rates literature in both adults and children. Because tyrosine relies on

the same protein (LAT1) as BCAAs for membrane transport, circulat-

ing tyrosine concentrations directly correlate with BCAAs. Tyrosine is

often captured as part of the BCAA “metabolic signature” that is asso-

ciated with obesity and insulin resistance in cross-sectional studies of

adults (11) and children (13,14) and with incident type 2 diabetes

among young adults in the Framingham cohort (12). Of particular rele-

vance to our findings are two recent investigations that have identified

tyrosine as a discriminatory marker of metabolic risk. In an analysis of

96 healthy Slovenian adults 25 to 49 years of age, Mohorko et al. (35)

quantified 10 amino acids in fasting serum and categorized partici-

pants as having zero, one, or two components of metabolic syndrome

in order to determine whether certain amino acids had greater capacity

than others to discriminate between the three levels of subclinical dis-

ease severity. The investigators found that tyrosine was higher among

persons who met criteria for one versus none of the components of

metabolic syndrome, suggesting that it may serve as an early indicator

of metabolic syndrome risk. Similarly, in a recent analysis of 80 Euro-

pean children with obesity, Hellmuth et al. (36) examined changes in

glycemia and circulating levels of 163 metabolites related to amino

acid metabolism before versus after a 1-year weight loss intervention

and identified tyrosine as the only compound that correlated with insu-

lin resistance at baseline, after the intervention, and with change in

insulin resistance during the course of the study (36).

We also found a direct association between 50-MTA with metabolic

risk. While there have not been any studies specifically reporting on

50-MTA with respect to metabolic health, 50-MTA is a by-product of

polyamine synthesis in DNA turnover cycles that increases with

inflammation to modulate cellular stress (37). Considering that meta-

bolic diseases are characterized by persistent chronic inflammation,

it is plausible that the relationship between 50-MTA and the MetRisk

z-score is driven by proinflammatory pathways.

BCAAs and metabolic risk
In addition to our data-driven approach, we also examined associa-

tions of BCAAs with the metabolic syndrome risk factors based on

their relevance to metabolic health in previous studies of children and

adolescents (7-9,13,14). While the results were generally null for girls

(with the exception of a positive relationship between valine and tri-

glyceride:HDL), all three BCAAs corresponded with higher waist cir-

cumference, fasting C-peptide, and the MetRisk z-score in boys. These

results corroborate the existing literature in youth regarding the rela-

tionship of BCAAs with excess adiposity and worse glycemia

(9,13,14), but they warrant additional investigations in other popula-

tions to confirm the sex-specific nature of our findings.

Strengths and weaknesses
Strengths of this study include our data-driven approach, research-

quality measures of body composition and metabolic biomarkers,

TABLE 4 Sex-specific associations of individual metabolites with MetRisk z-score among 238 ELEMENT adolescents

b (95% CI) MetRisk z-score

per 1 unit increment in metabolite z-score

Unadjusted Model 1 Model 2

Girls (n 5 125)
Diacylglycerol (DG) 16:0/16:0 0.63 (0.49 to 0.76) 0.61 (0.47 to 0.75) 0.60 (0.47 to 0.74)
1,3-Dielaidin 0.51 (0.36 to 0.66) 0.49 (0.35 to 0.64) 0.49 (0.35 to 0.63)
Myo-inositol 0.44 (0.28 to 0.59) 0.43 (0.27 to 0.58) 0.43 (0.27 to 0.58)
Urate 0.44 (0.27 to 0.61) 0.42 (0.25 to 0.58) 0.40 (0.23 to 0.56)
Thymine 20.33 (20.49 to 20.17) 20.38 (20.54 to 20.22) 20.39 (20.55 to 20.23)
Dodecenedioic acid 20.33 (20.47 to 20.17) 20.34 (20.49 to 20.19) 20.35 (20.50 to 20.20)
N-Acetylglycine 20.42 (20.58 to 20.25) 20.51 (20.68 to 20.35) 20.53 (20.69 to 20.36)

Boys (n 5 113)
Diacylglycerol (DG) 16:0/16:0 0.42 (0.27 to 0.57) 0.43 (0.29 to 0.58) 0.42 (0.28 to 0.56)
Tyrosine 0.37 (0.21 to 0.53) 0.35 (0.19 to 0.50) 0.33 (0.17 to 0.48)
50-Methylthioadenosine (MTA) 0.30 (0.15 to 0.46) 0.35 (0.20 to 0.49) 0.32 (0.18 to 0.46)

Model 1: Adjusted for maternal education level and child’s age.
Model 2: Model 1 1 pubertal status.
Bolded estimates indicate statistical significance at P< 0.05.
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data on important covariates including physician-assessed pubertal

status, and use of the SIMEX algorithm to correct for unmeasured

error in assessment of metabolite concentrations.

Our study has some limitations. First, the sample size was relatively

small, although it is comparable to other untargeted metabolomics

studies carried out in children and adolescents (13,14). Second, the

cross-sectional design impedes our ability to ascertain temporality.

Third, assessment of the metabolites took place at a single time point;

thus, we are not able to make inferences on metabolic flux. Finally,

we cannot rule out the possibility of unmeasured confounding.

Conclusion
In this study of 238 Mexican youth 8 to 14 years of age, metabolites

on lipid, amino acid, and carbohydrate metabolism pathways corre-

sponded with metabolic risk in girls, and compounds on lipid, DNA,

and BCAA pathways corresponded with greater metabolic risk in

boys. The sex-specific nature of the associations between metabolites

and metabolic risk have been observed in prepubertal children with

obesity (38) and adolescents with obesity (39) in relation to insulin

resistance and with respect to metabolic syndrome in young adults

(40), emphasizing the importance of considering sex differences in

studies of metabolism. While our findings shed light on potential

mechanisms underlying metabolic risk during adolescence, future

studies are necessary to investigate associations of these compounds

with prospective change in conventional metabolic biomarkers.O
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