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ABSTRACT

Aim The Western Indian Ocean region (WIOR), is home to a very diverse and largely unique

flora that has mainly originated via lomlistance dispersal The aim of this study is to gain
insight inta the origins of the WIOR biodiversity and to understand the dynamics of
colonization events between the islands. We investigate spatial and temporhébgpaif

the routes of dispersal, and compare theedsgl patterns of plants of the Coffeeae alliance
(Rubiaceag) and their dispersers. Rubiaceae is the second mostisgegkst family in
Madagascarpand includes many endemic genera. The neighbouring archipelagos of the

Comoros, Mascarenes and Seychelles also harbour several endemic Rubiaceae.

Location The islands of the Western Indian Ocean.

Methods Rhylegenetic relationships and divergence times were reconstructed frach plast
DNA data of an‘ingroup sample of 340 species, using Bayesian infeferuastral areas and
range evolution“history were inferred by a maximum likelihood method that tzs@sgical

uncertaintysinto account.

Results At least 15 arrivals to Madagascar were inferred, the majority of which have taken
place within the last@Myr. Most dispersal events were supported as being from mainland
Africa, butCatunaregammay have dispersed from Asia. Although most Coffeeae alliance
lineages are zoachorous, the general pattern of dispersals from Africangruent with the
biogeographiciorigins of the extant Malagasy volant frugivores. Several Maddgascar

dispersals:weresinferred to the neighbouring islands, as well acblrkzations of Africa.

Main conclusions The African flora has been of foremost importance as source of dispersal
to the islands of the Western Indian Ocean. Following the colonization of Madagapd
radiations appear to have taken place in some clades, and Madagascar has also been an

important source area for subsequent dispersal to the Comorasargiaes and Seychelles.

Keywords

angiosperm, Comoros, dispersakxtinction—cladogenesisdivergence times, island
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biogeography, long-distance dispersal, Madagascar, Mascarenes, molecular dating,

Seychelles

INTRODUCTION

The Western Indian Ocean regiM'IOR) comprises Madagascar, the Comoros, Mascarenes
and Seychellesiand has been recognized as a hotspot of global biodiversityef\yers
2000). As suehy it has become a hotspot for biogeographical studies detailing the origins of
this diversity (e.g.Yoder & Nowak, 2006; Agnarsson & Kuntner, 2012; Samaids,
2013). Madagascar in particular has long been considered to have an extraordinary
biodiversity — while some otherwise widely distributed taxa are notably absesttgotiups
are very specie*(Simpson, 1940). Overall, the flora of Madagascar comprises more than
11000 speciessof vascular plants, 82% of which are endemic (Callneralef011).

The'WIOR harbours both old continental islands and young volcanic islands with a
wide variety of*habitats, offering an ideal system for studies of biodiversitatmn (Losos
& Ricklefs;»2009; Vencest al, 2009). The continental islands were formed following the
breakup ofsEast Gondwana: Madagascar was isolated from the Indian subcontiner@@bout
Ma, and drifted towards the equator alongside Africa (Storey, 1995; Stbaty1995; Wells,
2003), and the granitic Seychelles were subsequently separated from India about 64 Ma
(Plummer & Belle, 1995; Colliegt al, 2008). Volcanic activity in the region gave rise to the
Mascarene.islands, comprising Mauritius, Réunion and Rodrigues (8, 2 and 1.5 Ma
respectively;MeDougakt al, 1965; McDougall, 1971; Duncan, 1990). Older islands may
have existedsinsthe trail of the Réunion hotspot in the past, but have since been rdoded a
submerged(Gardner, 1986; Waredral, 2010). The Comoros archipelago is also the result
of recent volcanism, of which the oldest island is Mayotte, about 8 Ma (Naigier1986).
In addition to the continental and vatudc islands there are also small coralline islands, such
as the Aldabra atoll (Seychelles).

Although'it has long been recognised that the flora of Madagascar is affilidbethevi
African flora, biogeographic theories on the origin of the island's \eosity have
emphasized its Gondwanan heritage, as "a center of survival for archaic autochthonous

plants" (Koechlin, 1972; Leroy, 1978; p.583). The historical proximity to the Indian
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subcontinent as well as extant phylogenetic connections between Madagascar and Asia have
also prompted theories of biotic exchange between these regions by an isthmian land
connection ("Lemurian land bridge"; Van Steenis; 1962; p. 343; Rage, 2003), or by island
steppingstones (Schatz, 1996; Warrenal, 2010). However, recent studies have highlighted
the importance of long-distance dispersal, and indicated that the majorityexitéime biota in
Madagascar. descended from African ancestors that arrived during the Cenozoic (e.g., Yoder &
Nowak, 2006; Buerket al, 2013; Samondst al, 2013). Madagascar has in turn been an
important source of dispersal to the neighbouring archipelagos of the Comoroardas

and Seychelles'(e.g., Michenestual, 2008; Le Péchoat al, 2010; Wikstronet al, 2010).

Despite much recent interest in the biogeography of Madagascar, there aralégpthin

studies of the spatitemporal history of its flora (Vences al, 2009).

Next to Orchidaceae, Rubiaceae is the most spaciesamily in Madagascar, also in
terms of number of endemic species (Callmardat, 2011). In this study, we focus on the
Coffeeae alliance of subfamily Ixoroideae (Razafimandimbetai, 2011; Kainulainewet
al., 2013).Anthe WIOR, this clade is represented by the tribes Alberteae, &mstier
Coffeeae, Gardenieae, Octotropideae and Pavetteae. Many genera are endemic to Madagascar,
i.e., CanepheraChapelierig Flagenium Jovetia Homolleg Lemyrea Mantalanig
MelanoxerusNematostylisPseudomantalanidRazafimandimbisonj&obbrechtiaand
Schizenterospermy but endemic genera are also found in the MascarEpreseliaand
Ramosmanipand the Seychelle®éragenipa. Other genera are widespread in the region —
CoffeaandCeptospermafor example, occur in all the archipelagos except the Seychelles,
andParacephaelisandTarennaare only absent from the Mascarenes.

Dispersalby birds is a commonly invoked explanation for the colonization of
Madagasear-by-fleshiyuited plants (e.g., Renner, 2004), and the fruits of the Coffeeae
alliance are'with few excepins fleshy. However, according to Hawkins & Goodman (2003;
and references therein), few species of birds in Madagascar are frugivores, and none of them
is migrational. Only seven species of fordstelling birds are listed as essential frugivores: a
bulbul and two species each of parrot, pigeon and asitie. Notably, it has been suggested that
these birds have an Asian or Australasian origin (Shapiab, 2002; Warreret al, 2005;

Moyle et al, 2006; Schweizeet al, 2010; although the ancestral areéhef Madagascar
green pigeon is unknown).

Here we use an extensive sample of species from the WIOR and sequence data of
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126 multiple molecular markers in order to reconstruct the biogeographic histories of the tribes of
127 the Coffeeae alliance in the WIOR anddarstand how, when and from where they have

128 colonized this region. Specifically, we investigate (1) predominance of AfacAsian

129 dispersal events to the WIOR; (2) incidence and direction of stegpng dispersal; (3)

130 evidence of backolonization from islands to continents; and (4) if the biogeographic patterns
131 of plants.and their presumed seed dispersers are congruent.

132

133

134 MATERIALS'AND METHODS

135

136 Taxon sampling

137

138 Efforts weresmade to sample all 27 species of the Coffeaee alliance present on the Comoros,
139 Mascarenessand Seychelles, and at least one representative of the 26 genera known from
140 Madagascar. However, attempts to sequence DNA from the Malagasy endemic

141 Pseudomantalaniaere unsuccessful. Also missing &elysphaeria lanceolataubsp.

142 comorensigrom AnjouanP. multiflorafrom Aldabra andCoptosperma mitochondrioides

143 from Mayette. Sampling density was increased in speabsand widespread genera such as
144 Coffeg Gardenig RothmanniaandTarenna Of the 55 genera of the Coffeaee alliance

145 occurring in Africa, 49 where sampled, as were 32 of the 52 genera found in Asia,asiestral
146 or the Pacifiealn contrast, the sampling of Neotropical taxa was linBedi¢rais the only

147 genus of the Coffeeae alliance present both in the Indian Ocean andthepis). The

148 Malagasy sampling included nine as of yet undescribed spedigpefacanthusand at least

149 10 undescribedstaxa of Pavetteae. The sole species of the Coffeeae alliance found on Socotra
150 (Kraussia'socotranawas also included. All 12 extamecies from the Mascarenes were

151 sampled along with nine out of 11 species from Comoros and four out of five species from the
152 Seychelles. Eightfive out of 159 currently recognized Malagasy species were included

153 (although'the estimated number of specieMadagascar is at least 240). In total, the taxon

154 sampling comprised 387 specimens from 364 species. An overview of species hames, voucher
155 information and GenBank accession numbers is given in Appendix S1 in the Supporting

156 Information. The nomenclature fols that of Govaertst al. (2013), with a few exceptions

157 (i.e.,Empogona ruandensiPelagodendron vitiens&ukunia pentagonioidesxdTarenna

This article is protected by copyright. All rights reserved



158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
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malacophyllg, and the tribal classification follows that of Mowyal. (2014).

DNA extraction, amplification and sequencing

DNA was extracted following the protocol of Doyle & Dickson (1987), and purified using the
QIAquick® PCR purification kit (Qiagen, Hilden, Germany). Four plastid DNA regizere
chosen forghis'study: thrps16intron, ndhF—trnL (UAG), trnK intron (includingmat) and
trnT—trnF; allkamplified using the primers and PCR protocol detailed by Kainulainen &
Bremer (2014). PCR products were cleaned using Multiscreen Filter plates (Millipore,
Billerica, Massachusetts, U.S.A.), sequenced usiagmplification primers and the

BigDye® terminator cycle sequencing kit, and subsequently analysed on a ABI PRISM 3100
Genetic Analyzer (Applied Biosystems, Foster City, California, U.S.Atg¢rAatively,
sequencing'wassdone using the EZ-seq v.2.0 sequencing service provided by Macrogen
Europe (Amsterdam, The Netherlands). Sequence reads were assembled (&ixoEthe
PaCKAGE v1.5.3(Staden, 1996; Stadeinal. 2000), and sequences new to this study (1172)
were deposited in GenBank (Appendix S1 in thp@rting Information). Additional
sequences«(286) were obtained from GenBank (for references, see Appendod31peD
andrpll16 data for Bertiereae and Coffeeae (166 sequences in total; Appendix S1)seere al
added to the data set from Daetsal. (2007, 2011), Mauriet al.(2007) and Toskt al.

(2009).

Phylogenetic-analyses

Sequence data were aligned usingddLE 3.8.31 (default settings; Edgar, 2004), after having
been sorted by size usingd&DIT (Hall, 1999). The latter program was also uteddit the
alignments; alternative sequence versions of suspected sequence inversions were separated
from each otheriin the alignments (but not excluded from the analyses; i.espoadiag to
positions 114471-114508 (KJ816005-6, KJ816018), 114501-114524 (KJ816122), 114899—
114990 (KJ136920), 114585114592 (KJ816044, KJ816046—7) and 115063—-115083
(KJ136903) of theCoffea arabicd.. plastid genome (GenBank accession number, EF044213;

This article is protected by copyright. All rights reserved
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Samsoret al, 2007; all within thepl32 region). Homoplastic sequeniwersions ilfmaik,
rps16 acd andpeD, corresponding to positions 2022—-2023, 5412-5430, 60199-60216 and
77852-77866 of EF044213, respectively, were treated in the same manner.

Phylogenetic reconstructions were done using Markov chain Monte Carlo (MCMC)
methods (Yang & Rannala, 1997). Bayesian analyses were conducted eSingeN13.2.2
(Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003g@x&r 1.8 (Drummond
& Rambaut;, 2007; Drummonret al, 2012). Data were treated as a single partition tla@d
GTR + | + G nueleotide substitution model was chosen based on the corrected Akaike
information eriterion (AICc) as calculated using the prograroplLTEST2.1.6 (Darribaet
al. 2012). TheMiRBAYES analysis comprised four runs of four chains each that were run for 5
x 10P generations, the first 25% of which were excluded as burn-in.

Divergence times were estimated usargsT 1.8, implementing the uncorrelated
lognormal elock'model and the birth-death tree prior (Gernhard, 2008). The root node was
assigned a-normglldistributed age prior with a mean of 96 Ma and a standard deviation of
4.6 Myr; secandary calibration priors were similarly applied to the nodes eatiresthe
most recent common ancestor (mrca) of Rubiaceae (87 £ 4.6 Ma), Ixoroideae (59 +7.2 Ma)
and the coreulxoroideae (36 +4.6 Ma); all strongly supported nodes. These age priors conform
to the 95% highest posterior density (HPD) interval of corresponding nodes infeared i
study of Rubiaceae divergence times by Wikstairal. (2015). TheBEAST analyss
comprised‘eight runs of 5010° generations. The individuals runs were combined and
resampled (every 2000@eneration) after removal of the beim(25%) to produce a sample
of 15000 trees.Effective samples sizes of the parameters were evaluatdeith@ girogram
TRACER 1.6 (Rambaut & Drummond, 2013). Mean node ages and age density intervals were
summarizedon‘the sampled topology of the maximum product of clade credibilities. Al

analyses were performed on the Cipres science gateway portal v3e3 éil, 2010).

Biogeographic analyses
Seven geographic areas were recognized in the biogeographic analyses: mainland Africa (A),

Americas (B), Asia (C; including Australasia and the Pacific), Comoros (D), Madagascar (E),

Mascarenes (F) and the Seglibs (G). Distribution data were obtained from the World

This article is protected by copyright. All rights reserved



K. Kainulainenet al. 8

222 checklist of Rubiaceae (Govaeetsal, 2013). Undescribed or undetermined taxa were coded
223 according to where they were collected, as were samples of species occurring in more than
224 one geographicraa (i.e., typically the species of interest and therefore more extensively
225 sampled across their distribution). The geographic range evolution of the group was

226 reconstructed using the dispersadtinction-cladogenesis (DEC) model of Ree & Smith

227 (2008) implemented in the programd&rRANGE 20130526. The DEC model was

228 unconstrained (transitions between all areas equally likely) with a maximum of two areas per
229 node. In order to, account for topological uncertainty, we compiled the likelihood

230 reconstructions'foraeh node across a subsample of 100 trees randomly selected from the
231 posterior distribution OBEAST trees.

232

233

234 RESULTS

235

236 Clade posterior probabilities inferred by the two Bayesian MCMC methorBAXES and

237 BEAST) did notdiffer greatly; both are reportedAppendix S2 in the Supporting Information,
238 along with'mean divergence times, 95% HPD intervals and the results of the biogeographi
239 analyses..Fhe maximum clade credibility (MCC) tree fromstiresT analyses is shown in

240 Figures 1-5. The inferred phylogenetic hypothesis was overall congruent with that ofiprevi
241 molecularstudies (e.g., Kainulainehal, 2013; Moulyet al, 2014). The results of the

242 biogeographie.analyses using the DEC model are summarized in Appendix S2 in the

243 Supporting.Information.

244 Asiaswasrinferred as the most likely ancestral area for the Coffeeae alliance clade, but
245 Africa wasssupported as the ancestral area for the tribes Alberteae, Bertiereae, Coffeeae,
246 Gardenieae, Octotropideae and Pavetteae, that are present in the WIOR. Mdiipéndent
247 dispersal eventsywere found between mainland Africa and Asia, represented by the

248 DiscospermunXantonnealade,Diplosporaand a clade iCoffea(Coffeeae, Fig. 2); the

249 HyptiantheraMorindopsisclade (Octotropideae, Fig. Benkara theBrachytome

250 Catunaregantlade and clades in bo#tidia andRothmannigGardenieae, Fig. 4); and clades
251 in bothPavettaandTarenna(Pavetteae, Fig. 5). Dispersal events from mainland Africa to the
252 Americas were also inferred, represented by Cordiereae, a clBddigraand theRandia

253 Tocoyenalade (Gardenieae). Early range evolution withinGlemipaGardeniaclade could

This article is protected by copyright. All rights reserved
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not be unequivocally resolved.

In the WIOR, the ancestral area reconstructions indicated at least 15 dispersals to
Madagascar,-8L1 disperals out of Madagascar, four dispersals to the Mascarenes, four
dispersals'to the Seychelles ar@® 8ispersals to the Comoros. Most dispersals have occurred
within the last 10 Myr, but at least the colonization of Madagascar by the
Razafimandimbisonidlemdostylisclade is older (crown age 21.6 Ma; HPD, 13.7-29.1 Ma).
Support for.a monophyletic Alberteae was low (Fig. 1), but the biogeographic analyses
favoured assingle dispersal event from Africa to Madagascar. Africa was also indicated as the
ancestral ararof the Indian Ocean radiationBértiera(Fig. 2). A single dispersal event into
the WIOR \was supported, but whether Madagascar or the Mascarenes were colonized first
was equivocal.

At least four dispersals to Madagascar were inferred in Coffeeaeevdovpatterns of
range evolution-iCoffeawere inconclusive, mainly due to topological uncertainty. The
species framsMadagascar were not supported as monophyletic; the majority of the sampled
species formed a clade together with mainly East African species, wh&e#sagrevelC.
humbertiiclade"was resolved as more early divergent. The biogeographical interpretation
largely depended on the relationships among these clades and that of a clade commgrising t
Mascarenesspecie€¢ffea macrocarpaC. mauitiana andC. myrtifolia) together withC.
mongensisThe DEC analyses based on the MCC topology favoured a vicariance scenario in
which the ancestor of the East Africktalagasy clade was distributed in both these areas
(AJAE: 0.97)«Ehe Mascarer@offeaclade was supported as being the result of an
independent dispersal event from Africa.

Empogonavalifolia dispersed from Africa to the Comoros and to Madagascar. The
biogeographicsanalyses favoured two independent dispersal events, although support within
the Empogona ovalifoliazlade was low. Phylogenetic support witfincalysiawas poor and
consequently the biogeographic results were uncertain for this clade.tAwneasdependent
arrivals to Madagascar were indicated: Tljnadagascariensasnd (2) a weakly supported
clade camprising the remaining sampled Malagasy species as well as the two African species
T. capensisindTjasminiflora The former represent a wallipported out-offrica dispersal
event, but biogeographic reconstructions efltiter clade were inconclusive because of
phylogenetic uncertainty.

At least four dispersals to Madagascar were reconstructed in Octotropideae (Fig. 3).

This article is protected by copyright. All rights reserved
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An out-of-Africa dispersal event was supported ftantalania The Malagasy Octotropideae
CanephoraChapelierig Flagenium Gallienia, JovetiaandLemyreaformed a clade together
with Paragenipafrom the Seychelles. The ancestral area of this clade is Africa. Dispersal
from Madagascar to the Seychelles was inferre@éagenipa The genusalinierawas not
resolved as monophyletic. The Malag&sliniera myrtoidesormed a clade with East
African Lamprothamnus zanguebarigwghereass. saxifragafrom Tropical Africa is grouped
with the South AfricaBurchellia bubalina Dispersal from Africa to Madagascar was
supported for the ancestor@aliniera myrtoidesThe Malagasy species Bblysphaeria
were not reselved as monophyletic. However, clade support within the genus was low. The
ancestral area &folysphaeriavas inferred as Africa. The DEC model éaved a vicariance
scenario for.the MCC topology. Out-éfrica dispersal was supported for the ancestor of the
ComoranPolysphaeria multifloraas well as foCremaspora triflorasubspcomorensis
FerneliaandRamosmanidrom the Mascarenes formed a wslipported clade nested within
a clade of African taxa, and Africa was the ancestral area &#&itmelias Ramosmanialade.

Gardenieae included at least four dispersals to Madagascar (Fig. 4). The Malagasy
Gardeniaspecies are monophyletic, nested withidlade of African species. Dispersal from
Africa to Madagascar was also inferred Kbelanoxerusin contrastCatunaregams nested
within a_clade of Asian taxa. The genus is not supported as monophyletic, because tthe India
Deccania pubescerns nestedvithin the clade as a poorly supported sister group to
Catunaregansp. 2 from Madagascar. Out-A6ia dispersal was supported for the latter
species. Phylegenetic relationships withipperacanthusvere poorly supported, although a
clade comprising all sampled Malagasy species buttéyeefacanthusp. 7) was resolved
with strongssupport. The biogeographic analyses supported an African origin of the genus.
The DEEsmodelfavoured a vicariance scenario for the MCC topology. A singlelistagce
dispersal'fromAfrica to the Seychelles was inferredRiothmanniaannae

The Indian Ocean Pavetteae are strongly supported as being monophyletic (Fig. 5),
and are nested within an African clade. The biogeographic analyses supported a single
dispersal'to Madagascdollowed by many outf-Madagascar dispersal events, including:
(1) dispersal tothe Mascarenes in @aptosperma borbonicuymosuntlade; dispersals to
the Comoros in (2. nigrescens(3) C. supraaxillare, (4) Paracephaelis cinered5)
Tarenna grgeiand (6)T. spirantheradispersals to the Seychelles in P7Yrichantaand (8)

T. sechellensjsand dispersal back to Africa in tle littorale-rhodesiacuntlade.
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Coptosperma nigresceasdC. supraaxillare have also dispersed to Africa, either the

Comoros or independently from Madagascar.

DISCUSSION

The Lemurian land-bridge or stepping-stone hypothesis of dispersal postulatesttbat
exchange has occurred from Asia to Madagascar across the Indian Ocean by island hopping,
and via the 'Seychelles in particular (van Steenis, 1962; Schatz, 1996; WaaleRf010).
Quaternary scenarios of the Indian Ocean geography at lowEvetsestimated by Warren
et al. (2010),.indicated that several submerged banks as well as the area that is now th
Seychelles archipelago, were large islands and subaerial during long time intervals (see also
Weigeltet aly72016). These islands should be considered in the study of the biogeographic
history of theslndian Ocean and may at least for birds have feamlithspersal from Asia and
subsequent ¢olonization of Madagascar (cf. Samendk 2013). However, our analyses
indicate that the™'Lemurian” route of dispersal has been of less importance to the Coffeeae
alliance, and,that the predominant pattern ahptolonization in the WIOR is from mainland
Africa.

Although no steppingtone dispersal was inferred via the Seychelles to Madagascar or
the rest ofithe WIOR, this study shows that, conversely, Madagascar has been important as a
stepping-stone,for diersal to the SeychelleB4racephaelisParagenipaandTarenng, as
well as to the Comoro£pffeg CoptospermaParacephaeli@mndTarenng and the
Mascarenes@optospermand probablyBertiera). That the Malagasy flora has been an
importantssource for ¢onizing the surrounding archipelagos has previously been shown in
several groups'(e.g., Micheneetual, 2008; Le Péchoat al, 2010; Strijket al, 2012; Stride
et al, 2014). We also find evidence for back-colonization from Madagascar to mainland
Africa, a biogeographical pattern previously reported in plant families such as Gentianaceae
(Yuanetgal, 2005) and Celastraceae (Ba&tral, 2016). Specifically, at least three
independent dispersal events to eastern Africa was infer@dptospermgpossibly also in
CoffeaandTricalysia).

Except Alberteae, which have wind-dispersed pterocarps, the fruits of thed@offee

alliance are typically fleshy, and presumably zoochorous. In contrast to timeoksia
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Australasian origins of the majority of Cenozoic bird introductions to Madagéaamonds
et al.,2013, Table S1, and references therein), we find that Africa has been thedbrem
source of plants of the Coffeeae alliance in the region, a pattern that has been suggested as
being the predominant of most Malagasy plant groups (Yoder & Nowak, 2006). The
discrepant patterns in the origins of the extant frugivore birds and plants ndigkate that
the African frugivorous birds have not been very successful in colonizating Madagastca
that the colenizion opportunities for the African zoochorous plants may have been very
sporadic. Alternatively, the frugivorous bird species in question may have gorne. eixtia
dispersal of'seeds by fruit bats should also be considered in relation wistamyze dispersal
of fleshy fruits (e.g., Shiltoet al, 1999). However, as with the Malagasy frugivorous birds,
the fruit bat fauna is not very diverse: "rather limited in comparison with other Old World
tropical regions" (Hutcheon, 2003; p. 1205; in referenchédtliree species present in
Madagascar);and at least in the case of the flying féXesopus3, they are recent arrivals
from Asia (O'Brieret al, 2009). It is possible that rafting by washed-off mats of vegetation
has been the dominant means of sespatsal in the region as has been suggested for non-
volant animals(Simpson, 1940; Ali & Huber, 2010).

All'dispersals to Madagascar within the Coffeeae alliance are from Africa, with the
exception.efCatunaregani{Asia; Fig. 4) and possibBertiera(Mascaenes?; Fig. 2). The
first to disperse to Madagascar was likely the African ancestor dfahmatostylis
Razafimandimbisonialade (crown age 21.6 Ma; HPD, 13.7-29.1 Ma), followed by the
Gallienia-Lemyreaclade (crown age 10.4 Ma; HPD, 7.3-13.7 Ma) andNl@eR Pavetteae
(crown age.8.5 Ma; HPD, 6.868.7 Ma). TheMelanoxeruslade has been present
Madagascarssince 4.2 Ma (HPD,-26®0 Ma). The estimated crown ageMdntalaniais only
3.0 Ma (HPD#0:9-5.8 Ma), but the minimum age of colonization by this lineage would likely
have beén older hdeseudomantalanialso been included in the analyses. It is not clear if
MalagasyCoffeaariginate from one or two colonization events. The minimum age of
colonization in the former scenario is 5.8 Ma (HPD, 4.1-7.7 Mg;Z node 736), whereas
two independent arrivals would likely have been more recent. Although the infetteth od
range expansion iBertierais not conclusive, it is likely that this genus has been present in
the WIOR since 4.4 Ma (HPD, 2.4-6.7 Ma; Fig. 2, node 660). We hypothesize that
Madagascar was colonized before the Mascar&@uaslenig HyperacanthusPolysphaeria

Tricalysiaand the ancestor @aliniera myrtoidedikely colonized Madagascar from Africa
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within the last 5 MyrCatunaregams asimilarly recent arrival, but according to the Lagrange
analysis from Asia. Although Asia is the ancestral area of this genus it shaubdeloethat the
phylogenetic relationships between its Asian, African and Malagasy species are not resolved
with strang“support in this study.

The extant Coffeeae alliance native to the Seychelles have reached the archipelago
either via longdistance dispersal events from the East African mainBoth(mannia annge
and most likely the AldabraiRolysphaeria multifloreandEmpogona ovalifolianot included
in the analysis);ior from MadagascBafagenipa lancifoliaParacephaelis trichanthand
Tarenna sechellengisHowever, it should be noted tialionnetig one of the outgroup taxa
of our analyses (belonging to thenduerieae alliance; Ixoroideae; Razafimandimbisioal,

2011), represents a clade that is inferred as having dispersed from Asia to the Seychelles (Fig.
1). The divergence ages indicate that the colonization eveRerafenipa(4.5 Ma, HPD:
2.7-6.5),Rethmannig1.7 Ma, HPD: 0.3-3.1)farenna(1.2 Ma, HPD: 0.4-2.1) and
Paracephaelig0=7 Ma, HPD: 0.2-1.3) all occurred within the last 6.5 Ma.

ThefComorarCoffea humblotianaCoptosperma nigrescens. supra-axillare
Paracephaelis‘€ineredarenna greveandT. spirantheraall appear to have dispersed from
Madagascar, where@emaspora trifloraPolysphaeria lanceolatandP. multifiorahave
reached the®Comoros from eastern Africa. Unfortunately, no sampBesptdsperma
mitochondrioidesor Polysphaeridanceolatafrom the Comoros were included in our
analyses. However, considering the phylogenetic positions of these species (Fysit3 &
can be inferred,that the former species dispersed from Madagascar and the latter from Africa.
Regardingempogona wealifolia it is unclear if its distribution in the Comoros and
Madagascaristthe result of independent dispersal events from East Africa, or stémmpeng
dispersahviaeither the Comoros or Madagascar. The divergence time analysis indicates that
all dispersalstothe Comoros from Madagascar have occurred within the last 3.4 Ma, and
those from Africa within the last 1.6 M@optosperma nigresceadC. supraaxillare have
also colonized eastern Africa, possibly by stepping stone dispersal via the Caahteast
those scenarios are not contradicted by or resultsof2Madagascar dispersal to Africa is
also found in th&€optosperma littoraleC. rhodesiacunelade, and probably iRaracephaelis
(no African material sampled).

The Mascarenes are homeRetiera, Coffeg CoptospermaFerneliaand

Ramosmaniagand the latter two are endemic to this archipelkgmeliaandRamosmania
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414 are nested within a clade of East African taxa, and Africa is supported as the ancestral area.
415 The divergence time of tHeernelia-Ramosmanialade is estimated to 7.4 Ma (HPD: 4.9

416 9.7), an age comparable to that of the formation of Mauritius (8 Ma; Duncan, 1990). The

417 crown group, however, is considerably younger (4.1 Ma, HPD: 2.1-6.3 Ma). Notably, the

418 stem age oRamosmania dder than the island of Rodrigues (1.5 Ma; McDougahl,

419 1965, but see Strijet al, 2012), to whicliRamosmani#s currently restricted. However, these

420 age estimates are not necessarily conflicting, because we have no estimate of the crown age of
421 Ramaemania and cannot preclude that, until recerf@gmosmaniavas native to Mauritius as

422 well. In contrast, Strijlet al. (2012) conjectured an older origin of Rodrigues, and suggested
423 that the island has served as a stepping stone for regional colonafd®isiadia(Asteraceae;

424 although their.analyses showed a HPD for the crown age of the Rodriguesian taxa that fits
425 well with the young age of the island).

426 BertieraandCoffeamay have arrived in the Mascarenes in close concert; at least they
427 have a similaestimated crown age of 2.7 Ma (HPD: 1.2—-4.2 Ma&Biertieraand 1.1-4.5 Ma

428 for Coffeg /A somewhat younger minimum age estimate of 1.8 Ma (HPD: 0.8—-2.8 Ma) for the
429 Mascaren€offeaarrival was reported by Nowadk al.(2014). Like thé~ernelia

430 RamosmaniancestorCoffeais supported as having dispersed from Africa, whereas the

431 ancestral.area @ertierais equivocal, either Africa or Madagasdaoptospermalispersed

432 out-of-Madagascar, and probably represents the most recent arrival to the Mascandeg isla
433 with a crown age of 0.5 Ma (HPD, 0.1-1.1 Ma). All four groups have dispersed between

434 Mauritius and:Réunion, and with the possible exception dB#rgera borbonicaB. rufa

435 clade (crown age: 1.0, HPD, 0.3-1.9), within the last 1 Ma. Compared wiGoffexzae

436 alliance colonization events of the Comoros and Seychelles, the Mascarene radiations appear
437 more diversesinsterms of the number of species, although taxonomic inflation may alsb be par
438 of the explanation. The biogeography of the Coffeeae aflianthe WIOR is discussed in

439 more detall in Appendix S3 in the Supporting Information.

440 In summary, we find that Madagascar has predominantly been colonized by dispersal
441 from (eastern) Africa. Colonizations of the neighbouring archipelagos of therGsm

442 Mascarenes and Seychelles, have partly also been from Africa but have mainly been the result
443 of subsequent steppirggone dispersals from Madagascar, whereas floristic exchange between
444 the WIOR and India or Southeast Asia has not been prominent in tfee&wtlliance. Most

445 dispersals have occurred in the last 10 Myr, and dispersal opportunities appeartiedra
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sporadic, presumably in part due to a paucity of frugivorous migratory birds. This is also
reflected in the high levels of endemism in theéaegFollowing successful colonization,

radiation appears to have taken place in some groups and on Madagascar in particular. Most
notable both in terms of species number and range of habitats occupied are tlomsafiati
Coffea(60 'sp.; Davist al, 2010),Hyperacanthug50 sp.; Rakotonasolo & Davis, 2006) and
Pavetteae (70.sp.; De Block, 2003), which are present in most vegetation types of

Madagascar.
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Fig. 1. The Maximum clade credibility (MCC) tree from tBEAST analyses of the combined
Coffeeae alliance data set. The tree is drawn as a chronogram with node heights representing
the mean of the posterior sample of trees. Age estimates are summarized for each node (95%
highest posterior density intervals). Wsllpported nodes (posterior probabifiy.95) are

shown as black bullets. Node numbers correspond to those listed for the biogeogmaptsic r
(Appendix, S2). Relationshipsitiiin the collapsed clades are detailed in Figs. Results

from theLAGRANGE analyses are shown for nodes of interest. The inferred dispersal events
are summarizedyon the map of the Western Indian Ocean region (WIOR; Larojestiqm).

The colours'efite taxon names represent geographic origin: Africa = black, Americas =

orange, AsiePacific = magenta, Madagascar = green and Seychelles = cyan.

Fig. 2. Part of the Maximum clade credibility (MCC) tree from #EasT analyses of the
combined Coffeeae alliance data set, showing tribes Bertiereae and Coffeeae. Age estimates
are summarizedsfor each node (95% highest posterior density intervalsiupfetirted nodes
(posterior probability=0.95) are shown as black bullets. Results from the LAGRANGE analyses

are shown for nodes of interest. The inferred dispersal events are summarized on the map of
the Western.ndian Ocean region (WIOR; Lambert projection; dashed arrows represent
uncertain routes). The colours of the taxon names: Africa = black, Americasge phaia

Pacific = magenta, Comoros = brown, Madagascar = green, Mascarenes = blue and

Seychelles = cyan.

Fig. 3. Part of the Maximum clade credibility (MCC) tree from #EasT analyses of the

combined Coffeeae alliance data set, showing Octotropideae. Age estimates are summarized
for eachsnode«(95% highest posterior density intervals). Well-supported nodesdposter
probability=0.95) are shown as black bullets. Results from the LAGRANGE analyses are

shown for nodes, of interest. The inferred dispersal events are summarized on theéhmap of
Western Indian Ocean region (WIOR; Lambert projection). The colours of the taxas na
represent’geagraphic origin: Africa = black, ABiaeific = magenta, Comoros = brown,

Madagascar = green, Mascarenes = blue apdhBéles = cyan.

Fig. 4. Part of the Maximum clade credibility (MCC) tree from #EasT analyses of the

combined Coffeeae alliance data set, showing tribes Cordiereae and Gardenieae. Age

This article is protected by copyright. All rights reserved



792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

K. Kainulainenet al. 26

estimates are summarized for each node (95% highest posteridy deesvals). WeH
supported nodes (posterior probabifiy.95) are shown as black bullets. Results from the
LAGRANGE analyses are shown for nodes of interest. The inferred dispersal events are
summarized on the map of the Western Indian Ocean regidDRy\lambert projection).
The colours of the taxon names represent geographic origin: Africa = black, Americas =

orange, AsigRacific = magenta, Madagascar = green and Seychelles = cyan.

Fig. 5. Partsof the maximum clade credibility (MCC) tree from sigasT analyses of the
combined Coffeeae alliance data set, showing tribes Sherbournieae and Pavetteae. Age
estimates are summarizém each node (95% highest posterior density intervals). Well-
supported nodes (posterior probabiti®).95) are shown as black bullets. Results from the
LAGRANGE analyses are shown for nodes of interest. The inferred dispersal events are
summarized-onthmap of the Western Indian Ocean region (WIOR; Lambert projection;
dashed arrowsrepresent uncertain route). The colours of the taxon namestg@egeaphic
origin: Africa = black, AsiaPacific = magenta, Comoros = brown, Madagascar = green,

Mascarenes blue and Seychelles = cyan.
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