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ABSTRACT

Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive

control algorithm for stabilization, command following, and disturbance rejection. In

recent years, the controller gains are solved for via recursive least squares (RLS).

This approach works well on systems that are linear time invariant but for systems

that are linear time varying, we propose extensions to the RLS solution via the

inclusion of either a multiplicative or additive covariance update. A novel algorithm

called the innovations-based sliding window-Q optimization (ISW-QO) is developed

that optimizes the additive process noise covariance matrix Q via the retrospective

innovations of the Kalman filter. For the parameter estimation problem, we prove

that, under reasonable assumptions, the value of Q that minimizes the cumulative

innovations also minimizes the cumulative state-estimate error. This algorithm is

compared to the adaptive Kalman filter and results show that the ISW-QO algorithm

works as well if not better than the adaptive Kalman filter.

Next, RCAC is known to work on systems given minimal modeling informa-

tion. The information needed by RCAC is the leading numerator coefficient and

any nonminimim-phase (NMP) zeros of the plant transfer function. This informa-

tion, which is normally needed a priori, is key in the development of the filter, known

as the target model within the retrospective performance variable. A novel approach

to alleviate the need for prior modeling of both the leading coefficient of the plant

transfer function as well as its NMP zeros is developed. The extension to the RCAC

algorithm is the use of concurrent optimization of both the target model and the

controller coefficients. Concurrent optimization of the target model and controller

xvi



coefficients is a quadratic optimization problem in the target model and controller

coefficients separately. However, this optimization problem is not convex as a joint

function of both variables, and therefore nonconvex optimization methods are needed.

We take advantage of the biquadratic structure of the cost function by applying an

alternative convex search algorithm and compare it to a nonlinear optimization rou-

tine.

Finally, insights within RCAC that include intercalated injection between the con-

troller numerator and the denominator unveil the workings of RCAC fitting a specific

closed-loop transfer function to the target model. We exploit this interpretation by

investigating several closed-loop identification architectures in order to extract this

information for use in the target model. For illustration, RCAC with concurrent

closed-loop identification is applied to a system whose dynamics are highly nonlinear

with time-varying NMP zeros.
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CHAPTER 1

Introduction

The purpose of implementing a controller on a dynamic system is to improve, or

enhance performance with the addition of sensors and actuators. The sensors provide

measurements within the system that allow the controller to drive the actuators to

reach or maintain a desired state. A general diagram of a control system is shown

in Figure 1.1. Due to the information gained through sensed signals, the controller

is designed to actuate the dynamic system in a desired manner. Thus, the cycle

of sensing and actuating, as shown in Figure 1.1, represents a closed-loop feedback

control system.

Dynamic
System

Controller

Disturbances

Actuation
Signals

Sensed
Signals

Command
Signals

Figure 1.1: A generic diagram representing the control of a dynamic system.

Modern technologies such as aircraft, rockets, missiles, and spacecraft systems

would not exist without feedback control. Methods to design controllers for these
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technologies vary, but the objective is the same. A starting place for most control

design is to identify and describe the system through understanding the governing

equations of motion. Thus a large effort of the control design is spent investigating

and understanding the system that is being controlled. Aircraft, rockets, and missiles,

for example, undergo extensive wind tunnel experimentation in order to characterize

the behavior during flight. Standard control techniques for these applications involve

look-up tables that optimize the control design for a particular flight condition. The

time and effort that is spent understanding and characterizing these dynamic systems

is usually what drives the cost of the control design.

Many control designs are optimized for a certain system configuration. If the

dynamic system were to change, for example adding an air-breathing engine to a

missile that was originally a glider or changing a rocket’s propellant which changes

the mass properties, the control design may not work as well or may even cause the

system to become unstable. An even worse case scenario is the dynamics changing

in an unknown fashion while in operation. Examples of this include an aircraft that

has aerodynamics that have changed due to icing on the wings or an actuator that

becomes stuck. For some of these scenarios, robust control techniques are designed to

deal with uncertainties so long as robust stabilization can be guaranteed for the prior

uncertainty. A consequence of robust control techniques is a trade-off of performance

for robustness and some of these uncertainties may not be known a priori. This

motivates the desire to develop adaptive control techniques that are able to adjust to

the uncertainties in the system.

Unlike robust control, adaptive control techniques seek to overcome the robust-

ness/performance trade-off by adjusting the controller relative to the response of

the system during closed-loop operation. Therefore, it is reasonable to think of

an adaptive controller as a nonlinear controller that aims to overcome the robust-

ness/performance trade-off due to uncertainty in the system dynamics. Figure 1.2
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shows a generic diagram of an adaptive control technique. Based on the input and

output of the dynamic system, the controller is tuned through an adaptive strategy

to meet the desired performance objectives. The method for adjusting the controller

in response to the changes in the system is what distinguishes one adaptive scheme

from another.

Dynamic
System

Adaptive
Strategy

Controller

Disturbances

Actuation
Signals

Sensed
Signals

Command
Signals

Figure 1.2: A generic diagram representing the adaptive control of a dynamic system.

The way an adaptive controller is implemented is broken down into two cate-

gories: indirect and direct adaptive control. In indirect adaptive control, the system

parameters are estimated on-line and used to calculate the control parameters. The

on-line estimated system is treated as if it is the true system in the calculation of

the controller. In direct adaptive control, the estimated system is parameterized in

terms of the desired controller. Therefore, the controller is estimated directly without

any intermediate calculations. Throughout this dissertation, we focus on the direct

adaptive controller and from here on out this is referred to as the adaptive controller.

The adaptive control literature focuses primarily on adaptive command following

and adaptive disturbance rejection [1–5]. Model reference adaptive control (MRAC)
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is one of the primary methods used for adaptive command following. The idea un-

derlying MRAC is the design of a reference model that generates a desired trajectory

which the system follows. Thus, the objective is to force an unknown system to fol-

low the output of a known reference model [1, 2]. Adaptive disturbance rejection is a

common objective among problems involving noise control and vibration suppression.

An underlying fundamental question in adaptive control is determining which

modeling information is essential for achieving acceptable transient and asymptotic

performance. Most adaptive control schemes are limited by certain assumptions that

are made about the system. Some of the assumption include passivity, stably in-

vertible or minimum phase, and matched uncertainties. These assumptions are made

to prove convergence of the closed-loop system. The adaptive control algorithms

presented in this dissertation do not assume any of these assumptions, but limited

modeling information is required as discussed in Chapter 7.

In this dissertation, we consider a direct discrete-time adaptive control law. The

discrete control is advantageous due to its ability to be implemented directly in em-

bedded code without the need to perform an intermediate discretization step that

potentially could cause a loss of phase margin. Specifically, we focus on the adaptive

controller called retrospective cost adaptive control (RCAC). RCAC was developed

in [6–8], and has been demonstrated in both simulation and laboratory experiments.

The underlining concept of RCAC is the idea of re-optimizing the controller based on

a retrospective view of the actual control inputs that went into the system and the

actual performance that is represented within the retrospective performance variable.

In other words, given the actual control and actual performance from the past, could

a different controller have given better performance?

Optimization of the RCAC retrospective performance variable is one of the key

features. This retrospective performance variable is a function of the performance

variable and the control input. The control input is filtered through what we call the
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target model Gf , whose design requires the limited modeling information from the

system. The optimization step can be setup a number of different ways and more

recently, in [8], a recursive least squares (RLS) algorithm is used. RLS has been shown

to work well on linear unknown systems [7, 8] but suffers from lack of re-adaptation

once the covariance matrix has decreased. In this dissertation, we explore the use

of extending the RLS algorithm on systems where the dynamics are changing by

introducing multiplicative and additive covariance matrix updates in Chapter 3.

RCAC has been shown to be effective on nonminimum-phase (NMP) systems.

The NMP zero location (if any) is part of the modeling information that is needed in

the RCAC target model Gf along with the relative degree, and the leading numerator

coefficient of the system. In order to obtain this information from the system, we use

closed-loop identification techniques to identify the system and extract the informa-

tion needed for the target model. The use of concurrent identification and controller

optimization allows the RCAC algorithm to obtain the most accurate target model

Gf at each time-step.

The remainder of the introduction summarizes the contents within the chapters

of this dissertation. Specifically, we outline the specific contributions of each chapter.

1.1 Relevant Publications

The following is a list of publications relevant to the research presented in this

dissertation.

• F. Sobolic and D. S. Bernstein, “Semi-adaptive Control of a Nonlinear Missile

Using Concurrent Closed-Loop Identification,” J. Guid. Dyn. Contr. (submit-

ted).

• F. Sobolic, K. F. Aljanaideh, and D. S. Bernstein, “Direct and Indirect Closed-

Loop Architectures for Estimating Nonminimum-Phase Zeros,” Circ. Sys. Sig.

5



Proc. (submitted)

• F. Sobolic and D. S. Bernstein, “Retrospective Cost Adaptive Control with

Concurrent Closed-Loop Identification of Time-Varying Nonminimum-Phase

Zeros,” in Proc. Conf. Dec. Contr., Las Vegas, NV, Dec 2016, pp. 371–376.

• F. Sobolic and D. S. Bernstein, “Kalman-Filter-Based System Identification via

Retrospective Estimation of the Process Noise Covariance,” in Proc. Amer.

Contr. Conf., Boston, MA, July 2016, pp. 4545–4550.

• F. Sobolic, A. Goel, and D. S. Bernstein, “Retrospective Cost Adaptive Control

Using Concurrent Controller Optimization and Target Model Identification,” in

Proc. Amer. Contr. Conf., Boston, MA, July 2016, pp. 3416–3421.

• F. Sobolic and D. S. Bernstein, “An Inner-Loop/Outer-Loop Architecture for

an Adaptive Missile Autopilot,” in Proc. Amer. Contr. Conf., Chicago, IL,

July 2015, pp. 850-855.

• F. Sobolic and D. S. Bernstein, “Aerodynamic-Free Adaptive Control of the

NASA Generic Transport Model,” in Proc. AIAA Guid. Nav. Contr. Conf.,

Boston, MA., August 2013, AIAA-2013-4851.

1.2 Dissertation Outline

This dissertation is organized as follows.

Chapter 2 Summary

The results of Chapter 2 gives a brief overview of RCAC. The adaptive standard

problem is introduced and the key details of RCAC are given. The controller gains in

this chapter are found by using the recursive least squares algorithm. The capability

of RCAC is then shown on an application to the NASA generic transport model

(GTM) simulation. The GTM model has been used as an adaptive control testbed to
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simulate uncertainties [9–11]. The uncertainties investigated in this chapter include

a sudden increase in drag, a sudden decrease in lift, and both a time-varying increase

in drag and decrease in lift which demonstrate icing on the lifting surfaces of the

aircraft.

Chapter 3 Summary

In Chapter 3, we extend [12, 13] to the RCAC recursive update law. In particular,

the use of multiplicative and additive covariance updates. Multiplicative covariance

updates refer to the use of a forgetting factor which gives exponentially less weight to

the older terms. By introducing a forgetting factor λ < 1, the filter is more sensitive

to recent samples at the cost of being unstable. The filter places a discrete-time

unstable pole at 1/λ > 1, which implies that an increase in forgetting factor λ will

lead to instabilities. To combat the constant instability, the variable forgetting factor

λ(k) becomes less than one when the new information differs from the old information.

Therefore, the idea of the variable forgetting factor is to adjust λ(k) < 1 when new

information is present or remain at 1.0 if the information is not changing.

The additive covariance update is based on the Kalman filter. The optimization

of the controller coefficients are updated based on the A matrix equal to the identity

matrix with the addition of a noise term that has a covariance of QKF. Specifically,

we treat the gain updates as estimation of the coefficients of an input-output model.

The dynamic system state components for the Kalman filter are thus the coefficients

of the input-output model, and the dynamics matrix is the identity.

Finally, these techniques are applied to a nonlinear longitudinal missile model

with an inner-loop/outer-loop adaptive missile autopilot. The constant and variable

forgetting factor and the Kalman filter technique are compared against the baseline

three-loop autopilot.

Chapter 4 Summary

The Kalman filter is a stochastically optimal observer that utilizes statistical in-
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formation about the measurement and process noise. In particular, the measurement

and process noise are assumed to be white Gaussian processes with zero mean and

covariances R and Q, respectively. Although R is relatively easy to characterize in

practice, it is often challenging to estimate Q. Consequently, there is an extensive

amount of literature on adaptive Kalman filtering, where the innovations signal is

used to construct an estimate of Q [14–17].

In this chapter, we develop an alternative approach to estimating Q and apply

this technique to parameter estimation. First, we show that the process noise covari-

ance Q that minimizes the cumulative innovations does not (in general) correspond

to the value of Q that, when used in the Kalman filter, minimizes the cumulative

state-estimate error. However, for parameter estimation, we show that under certain

assumptions the value of Q that minimizes the cumulative state-estimate error does

in fact minimize the cumulative innovations. This insight provides the basis for a

novel approach to on-line estimation of the process noise covariance for parameter

estimation problems.

The estimation technique uses a past window of data to rerun the Kalman filter

along with an optimization routine that retrospectively determines the value of Q

that minimizes the cumulative innovations at the present time. Based on the pre-

vious analysis, this estimate is assumed to minimize the state-estimate error. Since

the optimization does not lend itself to analytical gradients, we use gradient-free

optimization techniques.

This technique is applied to the system identification problem, specifically, esti-

mation of the coefficients of an input-output model. The dynamical system state

components for the Kalman filter are thus the coefficients of the input-output model,

and the dynamics matrix is the identity. The ultimate objective is to use this tech-

nique to identify linear systems whose coefficients are time-varying.

Adaptive Kalman filter techniques have been developed for this sort of problem
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in [14–16, 18, 19], where the covariances R and Q are determined in real-time. These

methods are also innovations-based and are not derived in the sense of a minimization

optimization problem of the innovation itself. Rather, they are based on averaging

inside a moving estimation window. Another method commonly used for covariance

identification is the maximum likelihood estimation (MLE). This method assumes

that the noise is characterized by a Gaussian model and that the best fit is determined

by minimizing the error for the given noise structure [19]. The type of parameter

uncertainty investigated in this chapter is only constrained in the structure of Q.

Chapter 5 Summary

Although the overarching motivation for using feedback control versus open-loop

control is the ability to overcome uncertainty, feedback control depends on a model

of the plant in order to operate reliably and without risking instability. Assuming

an exact and complete model, LQG can be used to stabilize all MIMO plants with

optimal H2 performance regardless of plant order, open-loop pole and zero locations,

and channel coupling. In practice, however, uncertainty may be unavoidable due to

complex, unknown, or unpredictably changing physics. To overcome model uncer-

tainty, robust control techniques can be used to guarantee stability and performance,

albeit at the expense of performance. Adaptive control can be viewed as a form of

robust control, wherein the control law adjusts itself to the plant during operation,

thereby circumventing the performance sacrifice inherent in robust control.

A fundamental goal of feedback control is to achieve maximal closed-loop perfor-

mance in the presence of prior model uncertainty. In the case of adaptive control,

closed-loop performance must account for transient performance as the controller ad-

justs itself to the actual plant characteristics. For example, universal adaptive control

laws [20] can adapt to uncertainty in the sign of the leading coefficient of the plant

transfer function, although the transient response may be large.

Nonminimum-phase (NMP) zeros also present a challenge to adaptive control; for
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example, the control laws in [1–3] assume that the plant is minimum phase. Adaptive

control of NMP plants is considered in [8, 21–24]. In [8, 24] knowledge of the NMP

zeros is embedded in the target model Gf , which is used to filter the past data in

order to retrospectively optimize the controller coefficients.

The goal of this chapter is to extend retrospective cost adaptive control (RCAC)

as presented in [8, 24] to alleviate the need for prior modeling of both the sign of the

leading coefficient of the plant transfer function as well as its NMP zeros. The key

element of this extension is concurrent optimization of both the target model and the

controller coefficients. In particular, we show that concurrent optimization facilitates

the application of RCAC with less prior modeling information than is assumed in

[8, 24]. In particular, the number and location of the NMP zeros need not be known

aside from the parity of the number of positive NMP zeros.

Concurrent optimization of the target model and controller coefficients is a quadratic

optimization problem in the target model and controller coefficients separately. How-

ever, this optimization problem is not convex as a joint function of both variables,

and therefore nonconvex optimization methods are needed. In this chapter, we ad-

dress this problem in two different ways. First we take advantage of the biquadratic

structure of the cost function by applying an alternate convex search algorithm [25].

Related techniques for biconvex and bilinear optimization are given in [26–29]. For

comparison, the Matlab fminsearch routine is used to simultaneously optimize the

controller and target model coefficients.

Chapter 6 Summary

The starting point for this chapter is the survey paper [30], which analyzes various

architectures for closed-loop identification. That work emphasizes the practical im-

portance of the problem and demonstrates the richness of the subject in terms of the

diverse architectures that can be employed. As a complement to [30], the contribution

of this chapter is a detailed numerical study that compares multiple closed-loop iden-
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tification architectures in terms of their accuracy in estimating nonminimum-phase

(NMP) zeros.

This chapter thus considers six architectures for identifying a plant operating

in closed loop, namely, direct closed-loop (DCL) identification, standard auxiliary

direct closed-loop (ADCL/S) identification, intercalated auxiliary direct closed-loop

(ADCL/I) identification, indirect closed-loop (ICL) identification, standard auxiliary

indirect closed-loop (AICL/S) identification, intercalated auxiliary indirect closed-

loop (AICL/I) identification.

The goal of this chapter is to assess the advantages and disadvantages of these six

architectures in estimating the nonminimum-phase (NMP) zeros of a plant operating

in closed loop. NMP zeros are one of the most challenging aspects of feedback control

in terms of limiting achievable performance [31]. Consequently, after constructing

a model of the open- or closed-loop plant, the metric used to assess the estimation

accuracy is defined to be the accuracy of the estimate of the NMP zero. This objective

is motivated by retrospective cost adaptive control [32–36], which requires knowledge

of NMP plant zeros.

Chapter 7 Summary

The contents within chapter 7 goes beyond [12, 13, 37] by taking advantage of

recent developments described in [36]. In particular, it is shown in [36] that the

retrospective cost function used by RCAC is based on the residual of a fit between a

specific closed-loop transfer function (called the intercalated transfer function) and the

user-specified target model. The intercalated transfer function arises due to the way

in which the virtual controller perturbation, due to the adaptation, is injected into

the closed-loop system. Since plant zeros are invariant under feedback, it immediately

becomes clear why plant nonminimum-phase (NMP) zeros must be reproduced in the

target model: if these zeros are not included in the target model, RCAC may cancel

them.
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In this chapter, we explore the use of the adaptive controller on a longitudinal

missile model. For the 3DOF missile, it is possible to compute the NMP zeros as

a function of angle of attack and Mach number at each linearized flight condition.

Although this could be done, the estimates of the NMP zeros depend on the available

model and thus maybe erroneous due to model uncertainty. Therefore, we take an

alternative approach, where the NMP zeros of the missile are estimated on-line and the

estimates are used to update the target model at each time step. The contribution of

this chapter is thus a detailed study of the feasibility of semi-adaptive control, where

RCAC is used along with concurrent estimation of the plant NMP zeros in order

to update the target model. This approach is demonstrated using a fully nonlinear

simulation of the 3DOF missile.

Finally, we present conclusions in Chapter 8.
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CHAPTER 2

The Retrospective Cost Adaptive Control (RCAC)

Algorithm

2.1 Introduction

Retrospective cost adaptive control (RCAC) is a direct, digital adaptive control

algorithm. RCAC can be applied to stable or unstable systems, minimum phase or

non-minimum phase systems, linear or nonlinear systems, on stabilization, command

following or disturbance rejection problems. In this chapter, we discuss the basics

of RCAC and derive a recursive solution to the adaptive gains. To demonstrate the

capability of the algorithm, RCAC is applied on the NASA generic transport model

(GTM) where slow or abrupt uncertainties in the model are introduced.

2.2 The Adaptive Standard Problem

Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (2.1)

y(k) = Cx(k) +D2w(k), (2.2)

z(k) = E1x(k) + E0w(k), (2.3)
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where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0.

The objective of the adaptive controller is to generate a control signal u(k) that

minimizes the performance variable z(k) in the presence of exogenous signals w(k).

The exogenous signal w(k) can represent a command signal to be tracked, an external

disturbance, or both. The system (2.1) – (2.3) can represent a sampled-data system

based on continuous-time dynamics with sample and hold operations.

2.3 Details of the RCAC Algorithm

In this section, we describe the details of RCAC. The main aspects of RCAC are

broken into three parts: control law, retrospective performance variable construction,

and retrospective cost function.

2.3.1 The Adaptive Control Law

Let the control signal be constructed as a strictly proper dynamic compensator of

order nc given by

u(k) =
nc∑
i=1

Pi(k)u(k − i) +
nc∑
i=1

Qi(k)y′(k − i), (2.4)

where, for all i = 1, . . . , nc, Pi ∈ Rlu×lu and Qi ∈ Rlu×ly′ are the gain matrices. The

signal y(k)′ is usually chosen to be either the output y(k), the performance z(k), or

both. The controller in (2.4) can be rewritten as

u(k) = Φ(k)θ(k), (2.5)
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where Φ(k) is the regressor matrix

Φ(k)
4
= Ilu ⊗



u(k − 1)

...

u(k − nc)

y′(k − 1)

...

y′(k − nc)



T

∈ Rlu×lθ , (2.6)

where ⊗ is the Kronecker Product and θ(k) = vec [P (k) Q(k)] ∈ Rlθ is the vector of

the controller gains with size lθ = nclu(lu + ly′).

2.3.2 Retrospective Performance Variable

We define the retrospective performance variable as

ẑ(θ̂(k), k)
4
= z(k) +Gf(q)[Φ(k)θ̂(k)− u(k)], (2.7)

Gf(q)
4
= D−1

f (q)Nf(q) (2.8)

where

Nf(q)
4
=

nf∑
i=1

Niq
nf−i, Df(q)

4
= Ilzq

nf −
nf∑
i=1

Diq
nf−i, (2.9)

with Ni ∈ Rlz×lu and Di ∈ Rlz×lz and q represents the forward shift operator. The

filter Gf is of order nf ≥ 1 and each polynomial entry of Df(q) is asymptotically

stable. Next, we are able to rewrite (2.7) as

ẑ(θ̂(k), k) = z(k) + Φf(k)θ̂(k)− uf(k), (2.10)

15



where the filtered regressor and control are given by

Φf(k)
4
= Gf(q)Φ(k),

=

nf∑
i=1

[NiΦ(k − i) +DiΦf(k − i)] , (2.11)

uf(k)
4
= Gf(q)u(k),

=

nf∑
i=1

[Niu(k − i) +Diuf(k − i)] , (2.12)

and θ̂(k) is determined by the optimization below. For reasons discussed in Chapter

5, Gf is referred to as the target model and is chosen to be either a infinite-impulse-

response (IIR) or a finite-impulse-response (FIR) filter.

2.3.3 The Cumulative Cost Function

Define the cumulative cost function to be minimized as

J(θ̂(k), k)
4
=

k∑
i=k0

ẑ(i)TRz(i)ẑ(i)

+
k∑

i=k0

[Φ(i)θ̂(k)]TRu(i)[Φ(i)θ̂(k)]

+ [θ̂(k)− θ̂(0)]TRθ(k)[θ̂(k)− θ̂(0)], (2.13)

where Rz(i), Ru(i), and Rθ(k) are positive definite for all k. Here we assume that

the weighting matrices are constant. Since (2.13) is a strictly convex function, its

minimizer can be found by computing the partial derivative of J(θ̂(k), k) with respect

to θ̂(k) and obtaining

∂J(θ̂(k), k)

∂θ̂(k)
= 2

k∑
i=k0

[ẑ(i)TRzΦf(i) + [Φ(i)θ̂(k)]TRuΦ(i)]

+2[θ̂(k)− θ̂(0)]TRθ = 2A(k)T + 2θ̂(k)TP(k)−1, (2.14)
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where

A(k) ,
k∑

i=k0

(
Φf(i)

TRz [z(i)− uf(i)]
)
−Rθθ̂(0),

P(k) , [
k∑

i=k0

(ΦT
f (i)RzΦf(i) + Φ(i)TRuΦ(i)) +Rθ]

−1.

2.3.4 The Recursive RCAC Update Law

In this section, we design the recursive least squares (RLS) algorithm used as an

update law for obtaining the controller parameters θ̂(k).

2.3.4.1 The RCAC Recursive Least Squares Update Law

To find a recursive solution for the controller parameters, we start with

A(k) = A(k − 1) + Φf(k)TRz [z(k)− uf(k)]

= A(k − 1) +X(k)TR̄ z̄(k), (2.15)

where A(0) = −Rθθ̂(0) and

P(k) = P(k − 1)− P(k − 1)X(k)TΓ(k)−1X(k)P(k − 1), (2.16)

X(k)
4
=

Φf(k)

Φ(k)

 ∈ R(lz+lu)×lθ , (2.17)

R̄
4
=

Rz 0

0 Ru

 ∈ R(lz+lu)×(lz+lu), (2.18)

z̄(k)
4
=

z(k)− uf(k)

0

 ∈ Rlz+lu , (2.19)

Γ(k)
4
= R̄−1 +X(k)P(k − 1)X(k)T, (2.20)
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and P(0)
4
= R−1

θ . Combining (2.15) and (2.16) yields

θ̂(k) = −P(k)A(k),

= θ̂(k − 1)− P(k − 1)X(k)TΓ(k)−1 [X(k)θ(k − 1)

−X(k)P(k − 1)X(k)TR̄z̄(k) + Γ(k)R̄z̄(k)
]
,

= θ̂(k − 1) + P(k − 1)X(k)TΓ(k)−1ε(k), (2.21)

where θ̂(0) = θ̂0 and ε(k)
4
= −z̄(k)−X(k)θ̂(k − 1).

2.4 Application of RCAC on the NASA Generic Transport

Model (GTM)

Aircraft control under emergency conditions poses severe challenges. For exam-

ple, control surface faults may limit the maneuverability of the aircraft and require

unconventional control strategies [38–41]. Although anticipated faults can be com-

pensated for by contingency plans, unexpected faults require real-time adaptation

under unknown conditions.

In this section, we are concerned with unanticipated and unknown changes in the

aerodynamics of the aircraft as modeled by changes in its stability derivatives [42]. For

each airspeed and altitude, stability derivatives provide a linearized approximation

of the aerodynamic forces and moments on the aircraft as functions of perturbations

from steady flight conditions. For aircraft certification and autopilot development,

stability derivatives are typically determined through computational techniques and

wind tunnel testing. These data can be stored in a lookup table for simulation studies.

In this section, we consider emergency flight under abruptly or gradually chang-

ing stability derivatives. In particular, we apply retrospective cost adaptive control

(RCAC) to various scenarios, such as slowly changing lift and drag coefficients to em-
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ulate the effect of icing. Of particular interest is the evolution of the RCAC controller

gains in response to unknown changes in the aircraft dynamics.

2.4.1 GTM Model and Controller Setup

In this section, we describe how the aerodynamic stability derivatives within GTM

are accessed, and we present the RCAC architecture.

The GTM has an extensive lookup table of aerodynamic coefficients, which are

programmed in Simulink as functions of angle of attack and side slip angle. These co-

efficients represent normalized forces and moments that can be acquired from either

computational fluid dynamics software or empirically from an extensive wind tun-

nel experiment. Although these coefficients are related to the stability derivatives,

individual stability derivatives are not specified. An illustration of this database is

shown in Figure 2.1a for the force coefficient along the aircraft body z-axis, with the

body-axis defined in Figure 2.1b. The aerodynamic coefficients that are modified in

this chapter to illustrate RCAC are denoted by CF(·) for a force coefficient and CM(·)

for a moment coefficient in the (·) -axis about the body frame.

(a) Body z-force aerodynamic coefficient
mesh as a function of the angle of attack
(α) and side slip angle (β) (b) Aircraft body coordinate system.

Figure 2.1: A sample of the GTM aerodynamic data base 2.1a and an illustration of the aircraft
body frame 2.1b

For this study, we focus on the ability of RCAC to control the aircraft to maintain
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straight and level flight despite unknown time varying lift and drag aerodynamics. To

achieve this objective, RCAC is set up as shown in Figure 2.2, where the components

Figure 2.2: RCAC architecture applied on the GTM.

of r ∈ R4 represent altitude, airspeed, roll angle, and heading angle commands. Since

the simulation is initialized at a given trim state, the reference commands are just

these trim conditions. Feedback is utilized from the model to define the components

of z ∈ R4 as the respective performance error signals of altitude, airspeed, roll angle,

and heading angle. The output of RCAC is δLT, δRT, δe, δa, δr ∈ R, which are the

commands to the left and right engines, elevator, aileron, and rudder, respectively.

Also, Figure 2.2 shows the RCAC setup and how it is integrated with GTM. It

is important to note that RCAC is not given any knowledge of when or how the

aerodynamic coefficients will be changing. This implies that to compensate for these

changes, RCAC must apply real-time adaptation and utilize the available control

authority.

2.4.2 GTM Results

This section presents results based on the control architecture outlined in Sec-

tion 2.3.1. As noted above, each example is commanded to maintain the initial trim

altitude and airspeed. Since the goal is to maintain straight and level flight despite

unknown time varying lift and drag forces, the force coefficients modifications are

applied along the aircraft body x- and z-axes. For each case, RCAC is tasked to

maintain a desired altitude, heading, roll angle, and airspeed while the aerodynamic

coefficients are modified at time t = 500 sec. These changes range from sudden trans-
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formations as in Example 2.1 and 2.2 to a linearly time varying transformation in

Example 2.3.

In all of the examples below, RCAC utilizes a single tuning with the parameters

nc = 10, (2.22)

P (0) = 10I(lr+lu)nc , (2.23)

N1−5 =

[
H1 H2 H3 H4 H5

]
, (2.24)

Rz =



Rz1 0 0 0

0 Rz2 0 0

0 0 Rz3 0

0 0 0 Rz4


, (2.25)

Ru =



Ru1 0 0 0 0

0 Ru2 0 0 0

0 0 Ru3 0 0

0 0 0 Ru4 0

0 0 0 0 Ru5


, (2.26)

where

Rz1 = Rz2 = Rz3 = Rz4 =



1.5 0 0 0

0 1.0 0 0

0 0 1.0 0

0 0 0 30


,

and

[
Ru1 Ru2 Ru3 Ru4 Ru5

]
=

[
0.002 0.002 0.70 0.70 0.07

]
.
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The target model is designed to be FIR with Markov parameters (2.24) calculated

based on a single linearized version of GTM with the appropriate states modeled in

the system. Thus, the Markov parameters in terms of the adaptive standard problem

(2.1)-(2.3) are defined as

Hi
4
= E1A

i−1B. (2.27)

(a) (b)

Figure 2.3: The evolution of the RCAC gains for Example 2.1. Figure 2.3a shows the gains for a
100% increase in drag, while Figure 2.3b shows the gains for a 200% drag increase. The modified
aerodynamic coefficient CFx is introduced into the simulation at t = 500 sec.

Example 2.1 (Sudden Increase in Drag). Consider the case where the drag abruptly

increases by an unknown scale factor. In this example, only the coefficient CFx is

modified. For this case, the coefficient is modeled as

CFx =
(

1 +
ηFx

100

)
CFx0, (2.28)

where CFx0 is the x-axis force coefficient calculated from the aerodynamic database,

ηFx is the percentage value increase from CFx0, and CFx is the modified body x-axis

force coefficient utilized in the simulation. The aerodynamic change occurs in the

simulation at t = 500 sec.

Figure 2.3 shows the evolution of the RCAC gains, where Figure 2.3a is the result
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of increasing the drag coefficient by 100% and Figure 2.3b is due to an increase of

200%. Note that RCAC has no prior knowledge of the abrupt change in drag.

Figure 2.4 shows the results for a 0%, 100%, and 200% increase in drag. As

shown in Figures 2.4a and 2.4b, the performance variables of altitude and airspeed

are affected at time 500 sec but are compensated for and remain close to the desired

performance values. Both Figures 2.4c and 2.4d are the control variables used to

compensate for this change in dynamics. As shown, the elevator deflects appropriately

due to the changes in the aerodynamic coefficient in order to maintain a suitable angle

of attack (Figure 2.4e) for generating the lift necessary for altitude performance. The

thrust increases to compensate for the abrupt increase in CFx.

Example 2.2 (Sudden Decrease in Lift). As in Example 2.1, we consider a sudden

scale factor change at time 500 sec but this time affecting the lift. For this case, the

coefficient is modeled as

CFz =
(

1− ηFz

100

)
CFz0, (2.29)

where CFz0 is the z-axis force coefficient calculated from the aerodynamic database,

ηFz is the percentage decrease from CFz0, and CFz is the modified body z-axis force

coefficient utilized in the aircraft equations of motion.

Figure 2.5 shows the evolution of the RCAC gains for a 20% decrease in lift

shown in Figure 2.5a and 40% decrease in lift as shown in Figure 2.5b. Note that the

gains evolve more rapidly in the 40% case than the 20% case due to the difference in

magnitude of the change in the aerodynamic coefficient.

Figure 2.6 shows the results due to a 0%, 20%, and 40% decrease in lift. As shown

in Figures 2.6a and 2.6b the performance variables (altitude and airspeed) are affected

at time 500 sec but are compensated for and remain close to the desired performance.

Both Figures 2.6c and 2.6d depict the control authority used to compensate for this
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Example 2.1. The performance variable altitude in Figure 2.4a and airspeed in Figure
2.4b are affected at time 500 sec, RCAC recovers with the control authority of the elevator shown
in Figure 2.4c and thrust in Figure 2.4d react appropriately to reject the abrupt increase in drag.
Figure 2.4e shows the angle of attack (α) adjustment for the decrease in lift, and Figure 2.4f shows
the aerodynamic coefficients. Note that the coefficient CFx illustrates the increases in drag while
the lift coefficient CFz is only slightly modified due to dynamic coupling.
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(a) (b)

Figure 2.5: Evolution of the gains for Example 2.2. a shows the gains of RCAC for a 20% decrease
in lift, while b shows the gains for a 40% decrease in lift. Note that the gains evolve from one
steady-state value for t < 500 sec to another for t > 500 sec due to the abrupt decrease in lift.

abrupt change in lift. As shown, the elevator deflects in the correct direction with

suitable magnitude in order to increase the angle of attack (Figure 2.6e) and therefore

maintain the lift necessary for the altitude, while the thrust is decreased slightly to

maintain airspeed. By modifying Rz in the RCAC algorithm it is possible to weigh

the altitude performance relative to the airspeed due to the aircraft’s inability to

produce the lift necessary to maintain altitude at a given airspeed without stalling.

Example 2.3 (Icing Example). To emulate the effect of icing on the lifting surfaces

of the aircraft, the aerodynamic force coefficients CFx and CFz are modified. In

particular, we model icing as the degradation of lift produced by the wings and an

increase in drag. The aerodynamic coefficients are modeled as

CF(·) =


CF(·)0

, t < 500 sec,

CαF(·) (t− 500) + CF(·)0
, 500 sec ≤ t < 1000 sec,

500CαF(·) + CF(·)0
, t ≥ 1000 sec,

(2.30)

where (·) is the desired body axis label (x, y, z), CF(·)0
is the axis force coefficient

calculated from the aerodynamic database, and CαF(·) is the slope of the coefficient
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Example 2.2. These results show how the performance variables of altitude in Figure
2.6a and airspeed in Figure 2.6b are affected at time 500 sec but recovers with control authority
from the elevator shown in Figure 2.6c and thrust in Figure 2.6d. Figure 2.6e shows the angle of
attack (α) adjustment for the decrease in lift and Figure 2.6f shows the aerodynamic coefficients.
Note that CFz, remains unchanged past 500 sec to maintain the appropriate lift in order to hold
the desired altitude performance, while CFx decreases, resulting in less thrust necessary to maintain
airspeed and steady level flight
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modification governed by

CαF(·) =
ηF(·)

100

ΛF(·)

500
, (2.31)

where ΛF(·) is the axis force coefficient from the database at t = 500 sec and ηF(·) is

the percent increase/decrease from ΛF(·). For this example, these constants are

ΛFx = −0.01676, ηFx = 700,

ΛFz = −0.29051, ηFz = −30.
(2.32)

Note that at time 500 sec, CF x is linearly increased by 700%, while CF z is linearly

decreased by 30% in 500 sec as dictated by (2.30).

Figure 2.7: Evolution of the RCAC gains for Example 2.3. Note that the controller gain evolve
considerably over 500 sec < t <1000 sec to adapt to the unknown time-varying aerodynamic coeffi-
cients.

Figure 2.7 shows the evolution of the gains of the RCAC algorithm. Note that at

t < 500 sec the gains converge to a steady value, but during 500 sec < t < 1000 sec,

the gains evolve to compensate for the aerodynamic coefficient modifications. For

t > 1000 sec, the gains again converge to a steady-state value since the coefficients

are no longer changing.

Figures 2.7 and 2.8 show the results for the icing example. Figure 2.8a and Fig-

ure 2.8b show how the performance variables of altitude and airspeed are maintained
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near the desired reference signal. The control authority needed to maintain the de-

sired states are shown in Figure 2.8c and Figure 2.8d. Note that the thrust increases

to compensate for the increase in drag, and the elevator decreases to increase the

angle of attack shown in Figure 2.8e. Figure 2.8f illustrates the aerodynamic coeffi-

cients before and after they are modified. Note that CF(·)0
is the coefficient from the

database prior to modification.

2.5 Conclusions

In this chapter, we showed the basic retrospective cost adaptive control (RCAC)

algorithm and derived a recursive least squares solution to solve for the adaptive gains.

We applied RCAC to the NASA GTM model under unanticipated and unknown

changes to the aerodynamics of the aircraft. Specifically, we used a single RCAC

block within the simulation that controls the aircraft to a desired steady level flight

by commanding five actuation channels (left and right engines, aileron, elevator, and

rudder). The goal is to examine the evolution of the RCAC controller gains in response

to changes in the aerodynamic coefficients from the linearized aircraft dynamics.

To show this, simulations in the Simulink GTM were run, all with the desire for

the aircraft to fly in a straight and level flight configuration. At a certain time

(unknown to RCAC) the aerodynamic coefficients changed. Presented were three

different aerodynamic parameter modifications, including an icing example, a sudden

increase in drag, and a sudden decrease in lift. For all three examples, only a single

tuning was used for each RCAC block.

Results showed that RCAC is able to adapt its gains in order to compensate for

the unknown time-varying aerodynamic perturbations while maintaining the desired

performance. The icing example showed that both the elevator and engines were used

to compensate for an increase of 700% drag and decrease of 30% in lift production

over a 500 sec interval. In the drag example, RCAC overcame a increase in the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Example 2.3. The performance variable of altitude a and airspeed b with control
authority of the elevator c and engine thrust d follow the altitude and airspeed commands well despite
changes in the aerodynamic coefficients at 500 sec. e shows the angle of attack (α) adjustment for
the decrease in lift, and f shows the aerodynamic coefficients. Note that unlike CFx, CFz does not
vary greatly after 500 sec. This is because the elevator deflects to increase α to maintain the same
lift coefficient for the desired airspeed, while the thrust is used to compensate for the increase in
drag.
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aerodynamic drag coefficient by over 200% by increasing the engine thrust and using

minimal elevator deflections. The gains evolved substantially to compensate for the

amount of drag induced. Finally, we considered an example where the lift decreased

by 40%. Given the constraints imposed by the performance variable on the airspeed,

RCAC used the elevator to increase the angle of attack to maintain altitude. Future

research focus on additional aerodynamic stability derivative changes as well as a

method for relaxing constraints to maintain safe level flight.
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CHAPTER 3

Extensions to the RCAC Recursive Update Law

3.1 Introduction

In this chapter, extensions to the RCAC recursive update law are developed.

Specifically, we are interested in applications where the system dynamics are time-

varying. The recursive least squares (RLS) update requires an initial covariance

matrix P which represents an initial “error” in the estimated gains. During each step

in adaptation, this covariance matrix either remains the same or decreases. A number

of adhoc methods have been developed to reset, or increase, the covariance matrix

when it becomes too low [43] thus leading to insufficient or nonexistent adaptation.

Presented in this chapter are methods that include both multiplicative and additive

covariance matrix updates. We extend the formulation in [12, 13] to include additional

features, namely, variable forgetting factor (VFF) and Kalman Filter (KF) extensions

of the recursive least squares (RLS) update of the controller gains. VFF techniques

[44, 45] are used to adjust the forgetting factor λ in RLS based on the information

provided by the latest measurement. At the end of the chapter, we apply these

methods to a nonlinear missile model through the aid of an inner-loop/outer-loop

control architecture.
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3.2 Development of Multiplicative and Additive RCAC Re-

cursive Least Squares (RLS) Covariance Updates

In this section, we design an update law for obtaining the RCAC controller pa-

rameters θ̂(k). For convenience, the derivation of the recursive least squares (RLS)

algorithm is repeated followed by the modifications to RLS which include the con-

stant forgetting factor (CFF), the variable forgetting factor (VFF), and the Kalman

Filter (KF).

3.2.1 Recursive Least Squares (RLS)

To find a recursive solution for the controller parameters, we start with

A(k) = A(k − 1) + Φf(k)TRz [z(k)− uf(k)]

= A(k − 1) +X(k)TR̄ z̄(k), (3.1)

where A(0) = −Rθθ̂(0) and

P(k) =
[
P(k − 1)−1 + ΦT

f (k)RzΦf(k) + Φ(k)TRuΦ(k)
]−1

= P(k − 1)− P(k − 1)X(k)TΓ(k)−1X(k)P(k − 1), (3.2)

X(k)
4
=

Φf(k)

Φ(k)

 ∈ R(lz+lu)×lθ , (3.3)

R̄
4
=

Rz 0

0 Ru

 ∈ R(lz+lu)×(lz+lu), (3.4)

z̄(k)
4
=

z(k)− uf(k)

0

 ∈ Rlz+lu , (3.5)

Γ(k)
4
= R̄−1 +X(k)P(k − 1)X(k)T, (3.6)
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and P(0)
4
= R−1

θ . Combining (3.1) and (3.2) yields

θ̂(k) = −P(k)A(k),

= θ̂(k − 1)− P(k − 1)X(k)TΓ(k)−1 [X(k)θ(k − 1)

−X(k)P(k − 1)X(k)TR̄z̄(k) + Γ(k)R̄z̄(k)
]
,

= θ̂(k − 1) + P(k − 1)X(k)TΓ(k)−1ε(k), (3.7)

where θ̂(0) = θ̂0 and ε(k)
4
= −z̄(k)−X(k)θ̂(k − 1).

3.2.2 RCAC with Constant Forgetting Factor (CFF)

The recursive algorithm based on RLS is modified to include a constant forgetting

factor by redefining the weight matrices

Rz(k, i) = λk−iRz, Ru(k, i) = λk−iRu, Rθ(k) = λkRθ,

where λ ∈ (0, 1]. The recursion on (3.1) and (3.2) is then

A(k) = λA(k − 1) + Φf(k)TRz(k) [z(k)− uf(k)] , (3.8)

P(k) =
[
λP(k − 1)−1 +X(k)TR̄(k)X(k)

]−1
, (3.9)

which yields the recursive update

θ̂(k) = θ̂(k − 1) + P(k − 1)X(k)TΓ̃(k)−1ε(k), (3.10)

where Γ̃(k) , λR̄(k)−1 +X(k)P(k)X(k)T.
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3.2.3 Variable Forgetting Factor (VFF)

Following [44] and [45], we define

K(k) , P(k)X(k)TΓ(k)−1, (3.11)

E(k) , ε(k)T (I −X(k)K(k)) ε(k), (3.12)

W (k) , P(k)−K(k)X(k)P(k). (3.13)

The VFF variable λ(k) is then defined as λ(k) , 1−E(k)/Σ0, where Σ0 = σ2
0N0, σ2

0 is

the expected measurement noise variance, and N0 determines the speed of adaptation,

which corresponds to the nominal asymptotic memory length [44]. Note that λ(k) is

bounded by the rule

if λ(k) < λmin, then λ(k) = λmin,

elseif 1/λ(k)tr(W (k)) > c, then λ(k) = 1,

endif .

The covariance matrix is then updated as

P(k) =
1

λ(k)
W (k), (3.14)

with P(0) = δI, c > δ, and the update for θ̂(k) is (3.7).

3.2.4 Kalman Filter Update

The Kalman Filter update, where A = I, is of the form

θ̂(k) = θ̂(k − 1) + wv(k), (3.15)

34



where wv(k) is a white sequence with covariance QKF(k). The Kalman Filter can

then be implemented by computing the Kalman gain as

K(k) = P(k)X(k)TΓ(k)−1. (3.16)

Note that the structure of K(k) is the same as (3.11), and the matrix R̄−1 can be

viewed as the measurement noise covariance. The next step is to update the estimate

and compute the error covariance as

θ̂(k) = θ̂(k|k − 1) +K(k)[−z̄(k)−X(k)θ̂(k|k − 1)],

P(k) = [I −K(k)X(k)]P(k|k − 1).

Finally, we project ahead as

θ̂(k + 1|k) = θ̂(k), (3.17)

P(k + 1|k) = P(k) +QKF(k). (3.18)

3.3 Missile Application of RCAC with Multiplicative and

Additive Covariance Updates

Autopilot design for high-performance missiles presents multiple challenges to con-

trol technology. Missiles typically fly through a wide range of Mach numbers, high

angles of attack, and under high ‘g’ loading, leading to strongly nonlinear dynamics

[46]. The standard approach to addressing these nonlinearities is to schedule the con-

trol gains based on the missile’s aerodynamics as they vary during the course of the

flight [46, 47].

Unfortunately, the standard approach to missile autopilot design requires aero-

dynamic lookup tables based on extensive wind tunnel test data, and thus is both
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expensive and time-consuming. This situation motivates the use of adaptive con-

trol laws that can compensate online for changing aerodynamics and uncertainty in

the aerodynamic model. In order to successfully control a high-performance missile,

however, an adaptive control law must be able to adapt sufficiently quickly to rapidly

varying commands from the missile guidance system. With these challenges in mind,

the present chapter extends the work of [12, 13], where retrospective cost adaptive

control (RCAC) was used to control the planar missile model described in [48]. This

model has been used extensively [49, 50] to study the feasibility of various autopilot

control schemes.

RCAC, which was developed in [6–8], has been shown to be effective on nonminimum-

phase systems. This property is relevant to the planar missile model in [48], where

the nose-mounted gyro and tail-fin actuation give rise to nonminimum-phase pitch

dynamics. The goal then, is to apply RCAC to the planar missile in [48] under more

aggressive commands than were considered in [12, 13].

An additional novel element in this chapter is an inner-loop/outer-loop control

architecture. Specifically, RCAC adaptively adjusts the pitch-rate command based

on the normal acceleration command from guidance. This adaptation would not be

needed if the missile were commanded to fly along a circular arc with a constant ve-

locity. However, for arbitrary normal acceleration commands, the appropriate pitch-

rate command cannot be inferred, and this motivates the use of RCAC/VFF and

RCAC/KF to adaptively specify the appropriate pitch-rate command. The pitch-

rate command is then used to drive an inner-loop controller that acts on the error

between the pitch-rate command and the pitch-rate measurement. The pitch-rate

loop architecture is a static gain proportional/integral controller that stabilizes the

pitch rate about a single trim point.
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3.3.1 Problem Formulation and Nonlinear Missile Model

To intercept a moving target, the missile is equipped with an active seeker that

provides the normal acceleration (‘g’) command that the missile must follow in order

to reach its target. In this section we briefly describe the model used. See [48] for

more details.

The target dynamics in an inertial frame are given by

Ẋt = Vt(0)cosθt(0), Żt = Vt(0)sinθt(0), (3.19)

where Xt and Zt represent the inertial coordinates of the target and Vt(0), θt(0),

Xt(0), and Zt(0) are the target’s initial conditions.

The nonlinear three-degree-of-freedom missile dynamics described in the body

frame are given by

mU̇ =
∑

FBX −mQW + TThrust, (3.20)

mẆ =
∑

FBZ +mQU, (3.21)

IY Q̇ =
∑

MY , (3.22)

θ̇ = Q, (3.23)

Ẋ = Ucos θ +W sinθ, (3.24)

Ż = −Usin θ +W cosθ, (3.25)

where U(0) = U0, W (0) = W0, Q(0) = Q0, θ(0) = θ0, X(0) = X0, Z(0) = Z0.
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Assuming a flat Earth, the moment and forces about the center of gravity are

∑
FBX = q̄SCA −mgsinθ, (3.26)∑
FBZ = q̄SCN(α,M, δp) +mgcosθ, (3.27)∑
MY = q̄SdCm(α,M, δp, Q), (3.28)

where q̄ = 1
2
ρV 2 is the dynamic pressure.

The aerodynamic coefficients are modeled as functions of Mach number M , angle-

of-attack α, fin deflection angle δp, and pitch rate Q, as

CA = aa, (3.29)

CN = anα
3 + bnα|α|+ cn

(
2− M

3

)
α + dnδp, (3.30)

Cm = amα
3 + bmα|α|+ cm

(
−7 +

8M

3

)
α + dmδp + emQ, (3.31)

where

α , tan−1(W/U), V 2 , U2 +W 2, M , V/a,

where a is the altitude-dependent speed of sound. The missile model assumes planar

flight, and thus only the X,Z coordinates and pitch are modeled, yielding a 6th-order

model. Out-of-plane effects, such as roll angle, yaw angle, and sideslip are therefore

fixed at zero. Additionally, the fin actuator is modeled as a second-order system. For

realism, an actuator rate and magnitude saturations are implemented at 500 deg/sec

and 30 deg, respectively. Finally, the normalized normal acceleration is given by

nz = FN/(gm) + cosθ.
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3.3.2 Three-Loop Autopilot (3LA)

The goal of the 3LA [48] is to minimize the error between the commanded nor-

mal acceleration, generated by the guidance law, and the normal acceleration mea-

surement provided by the inertial measurement unit (IMU). The states available for

measurement are the normal acceleration nz and the pitch rate Q, which is provided

by an on-board accelerometer and gyroscope, respectively. 3LA is implemented as

u(s) = KQQ(s) +
1

s
(KθQ(s) +KI [KSSnz,cmd − nz,IMU]) ,

where KQ, Kθ, KI, and KSS are the control gains determined by modeling and analysis.

Each gain is scheduled on a trim condition based on the missile angle of attack and

Mach number. In practice, a digital version of the control law is implemented in

discrete time. In this section, we use the 3LA as a baseline for comparative studies.

3.3.3 Adaptive Autopilot Architecture

RCAC generates a pitch-rate command by adapting on the normal acceleration

error and by using the normal acceleration command in the controller regressor Φ. As

shown in Fig. 3.1, this pitch-rate command is then used as the reference to a fixed-

gain proportional-integral (PI) controller. The PI loop is a pitch-rate stabilizing loop

based on a single trim condition. This differs from [12], where the adaptive control

law acts directly on the normal acceleration error to generate fin deflection commands

based on that error.

Figure 3.1: Inner-Loop/Outer-Loop Adaptive Autopilot Architecture
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Note that the steady-state pitch-rate command for the missile flying in a circular

arc with a constant velocity is QCMD,SS = g(sin θ − nz,CMD
)/VT, where VT is the tan-

gential velocity. Since thrust is not regulated (assuming post burn-out), maintaining

a constant velocity is not feasible. Other than this particular maneuver, deriving the

equations for a pitch-rate command involves information that is not directly mea-

sured, thus motivating the need for an adaptive pitch-rate command.

To apply RCAC. the missile dynamics are linearized about a single trim point, and

these dynamics are augmented by the PI controller. The resulting matricies A, B,

and C from (2.1) and (2.2) are used to create the filter Gf [51] in (2.8). D1 and D2 are

not used since external disturbances are not considered. Note that the linearization is

used only for constructing an FIR filter and goes into the design of Nf ; all simulations

are performed using the full nonlinear dynamics. For RCAC, the performance signal

z(k) in (2.3) is used in the regressor Φ as well as in the cost minimization (5.12),

where z(k) is the difference between the normal acceleration command nz,cmd, which

is represented by w(k) as in (2.3), and the normal acceleration measurement nz,IMU.

Finally, for notational convenience, the time step k, represents the actual sample time

of the controller, kTs.

3.3.4 Example of RCAC with standard RLS

We present an example that illustrates the need for modifying the RLS update

law. Consider the nonlinear missile model presented in Section 3.3.1. The missile

is initialized at M0 = 3, θ0 = 25 deg, Z0 = 3 km, Q0 = X0 = α0 = 0, and the

target is initialized at Xt(0) = 4 km, Zt(0) = 2.8 km, Mt(0) = 0.3, and θt(0) = 180

deg. RCAC has the initial values of nc = 4, nf = 1, N1 = −0.6, Rz = 1, Ru = 3,

and P(0) = 1e10I2nc . In order to intercept the target, the missile is commanded to

pull an aggressive maneuver and consequently high angles of attack. This maneuver

ensures that the missile’s nonlinearities are exposed. Fig. 3.2 compares the 3LA to
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the pitch-rate commanded RCAC architecture. As shown in the figure, the adaptive

controller is initially able to track the acceleration command but, as the flight pro-

gresses, tracking becomes worse. This inability to track is depicted by the controller

gains and covariance in Fig.3.2. After 0.6 sec, the controller gains converge and the

eigenvalues in the covariance matrix P approach zero.

Figure 3.2: Missile ‘g’ command tracking of the gain-scheduled three-loop autopilot vs. RCAC
without a forgetting factor. [Top] compares the gain-scheduled ‘g’ command/response versus the
RCAC ‘g’ command/response, where the tracking error increases significantly toward the end of
flight, [Bottom] shows that the RCAC gains remain almost constant after about 0.6 sec due to the
eigenvalues of the covariance matrix tending toward zero.

3.3.5 Comparison of 3LA, RCAC/CFF, and RCAC/VFF

We revisit the example in Section 3.3.4 and compare RCAC/CFF and RCAC/VFF

with the three-loop autopilot (3LA). In this example, we vary the constant forgetting

factor from 0.975 to 1.0 and compare the calculated miss distance (MD), which, after

the target has been acquired, is the distance between the missile and the target at the

instant the seeker loses sight of the target. The variable forgetting factor parameters

are set to Σ0 = 1000, λmin = 0.98, and c = 10δ. Fig. 3.3 shows the miss distance
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compared to a range of constant forgetting factors. Included in the plot is both the

miss distance with the 3LA and the miss distance with RCAC/VFF. As the CFF is

increased past 0.995, the miss distance becomes increasingly large (above the 2 meter

plot limit). Note that the RCAC/VFF as well as some RCAC/CFF miss distances

are below that of the 3LA.

To compare the CFF with VFF, note that with λ = 0.979, the CFF miss distance

is the lowest of all the FF. The bottom of Fig. 3.3 depicts the adaptive gains through

the missile flight. Notice how the gains are more aggressive and oscillatory during

the latter half of the flight time for the CFF compared to VFF. This type of behavior

is undesirable since it may cause the adaptive controller to become unstable leading

to erroneous pitch-rate commands. The top right of Fig. 3.3 shows how the variable

forgetting factor λ varies throughout the flight. This aids in producing adaptation

that is smoother then the constant forgetting factor. From this we conclude that the

VFF is the more desirable algorithm in comparison to the CFF for this application.

3.3.6 Comparison of RCAC/VFF and RCAC/KF

We revisit the example in Section 3.3.4 to compare RCAC/VFF with RCAC/KF.

The VFF tunings are the same as in Section 3.3.5, and the KF tuning is QKF(k) =

0.06. Fig. 3.4 compares these algorithms. The calculated miss distance (MD) is

similar, but unlike the ‘g’ response, the controller gains are significantly different

as shown in the second row of the figures. Notice that the magnitude of the VFF

controller gains are smaller than the magnitude of the KF gains and also vary less

during flight.The bottom of Fig. 3.4 compares the eigenvalues of the covariance

matrix. At around 0.4 sec, covariance values for both algorithms suddenly drop to

zero. After this time, the trends look similar but the KF has a larger number of gains

that are increasing.
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Figure 3.3: Comparison of 3LA, RCAC/CFF, and RCAC/VFF. [Top Left] shows the calculated
miss distance for a CFF that is varied from 0.975 to 1.0. The additional horizontal lines represent
the miss distance of 3LA and RCAC/VFF with Σ0 = 1000, λmin = 0.98, and c = 10δ. [Bottom]
shows the gains for RCAC/VFF and RCAC/CFF with CFF set to 0.9795, which has the best miss
distance performance. [Top Right] shows how the VFF λ(k) varies throughout the flight.

3.3.7 Robustness Comparison of 3LA, RCAC/VFF, and RCAC/KF

In this section, we present a final comparison between 3LA, RCAC/VFF, and

RCAC/KF by considering four examples to test the robustness of the adaptive al-

gorithms. The RCAC parameter Gf is modified to optimize performance through a

range of flight Mach numbers. To do this, N1 is a function of Mach number where

N1(M) = −0.02M2 + 0.25M − 0.87. This modification is a gain-schedule in missile

Mach number for increased performance. Unlike the gain-scheduled 3LA, we do not

schedule based on angle of attack.

Example 3.1. In this example, the initial missile Mach number is increased to M0 =

4, and the initial rotation angle is decreased to θ0 = 15 deg with the remaining initial

conditions left as before. The top of Fig. 3.5 shows the normal acceleration error of

each of the three controllers along with the miss distances. As shown, RCAC/VFF
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Figure 3.4: Comparison of RCAC/VFF and RCAC/KF. Results shown use the parameters presented
in the previous section with the addition of the KF variable QFK(k) = 0.06. [Top] shows the
similarity of the command and response of the two algorithms. The calculated miss distances are
also similar, unlike the controller gains shown [Middle]. The magnitudes of the gains in RCAC/KF
are much larger and vary more through the flight. [Bottom] shows how both eigenvalues of the
covariance matrix drop to zero at time 0.4 sec and steadily increase as the flight progresses to
optimize gains.

has the least miss distance but also has the largest amount of overshoot error around

0.5 sec when the maximum ‘g’ command is given. The overshoot is attributed to

this method having the best miss distance value. The remaining two methods have

similar responses with the gain-scheduled 3LA having a better miss distance value

compared to RCAC/KF. �

Example 3.2. In this example, the initial missile Mach number is M0 = 3, θ0 = 15

deg, and the aerodynamic coefficient Czα in the body Z direction due to the angle-

of-attack is scaled by 3, that is Czαn = 3Czα with the remaining initial conditions

left as before. The middle of Fig. 3.5 shows the normal acceleration error of each

of the three controllers as well as their calculated miss distances. In this example,

RCAC/KF has the lowest miss distance and provides the best tracking despite this
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aerodynamic modification. RCAC/VFF is able to adapt to the modified aerodynamic

coefficient but yields the worst miss distance. 3LA struggles with the aerodynamic

coefficient modification and response similar to that of a lightly damped system. �

Example 3.3. In this example, the initial missile Mach number is M0 = 2.5, θ0 = 25

deg, and the aerodynamic moment coefficient due to the deflection of the control

surface CMδ
is scaled by 3, that is, CMδn

= 3CMδ
with the remaining initial conditions

left as before. The bottom of Fig. 3.5 shows the normal acceleration error of each

controller as well as their calculated miss distances. In this example, RCAC/KF has

the lowest miss distance followed by RCAC/VFF. Both of these controllers quickly

adapted to the modification in the aerodynamic coefficient and are able to track the

normal acceleration command. 3LA struggled with this aerodynamic modification

and continually oscillated throughout the entire flight. �

Figure 3.5: Comparison of the normal acceleration error between 3LA, RCAC/VFF, and RCAC/KF
on three representative cases. [Top] shows the case where the initial missile Mach number is increased
to 4 and θ0 decreased to 15 deg. [Middle] shows the case where the initial missile Mach number of
3, θ0 = 15 deg, and the aerodynamic coefficient Czαn

= 3Czα . [Bottom] shows the case where the
initial missile Mach number is 2.5, θ0 = 25 deg, and the aerodynamic coefficient CMδn

= 3CMδ
.
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Example 3.4. In this example, we revisit the scenario presented in Section 3.3.4 with

an unmodeled decrease in the actuator bandwidth from 150 Hz to 40 Hz throughout

the flight. In doing this, the optimized design of 3LA will suffer due to the increase

in the missiles’ time constant. Fig. 3.6 shows the normal acceleration error of each

of the three controllers as well as the actuator position and rate, respectively. 3LA

struggles with the decrease in actuator performance whereas both the RCAC/VFF

and the RCAC/KF are able to dampen out the response and adapt to the lower

bandwidth actuator. �

Figure 3.6: Comparison of 3LA, RCAC/VFF, and RCAC/KF with an unmodeled decrease in actu-
ator bandwidth. Nominally the actuator has a bandwidth of 150 Hz, but the results above assume
an actuator with a bandwidth of 40 Hz. [Top] The normal acceleration error is shown, while the
actuator deflection angle [Middle] and rate [Bottom] are shown.

3.4 Conclusions

We extended [12, 13] in the RCAC formulation by including a variable forgetting

factor and Kalman Filter. This extension allowed for continual parameter estimation

in the adaptive controller update, a feature that is essential to controlling a system
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with nonlinear dynamics. Additionally, an inner-loop/outer-loop control architecture

is used to adaptively adjust the pitch-rate command based on the normal acceleration

command. The adaptive pitch-rate command loop is appropriate due to the inability

to infer such a command when given an arbitrary normal acceleration command.

Results show that the CFF, although effective, leads to aggressive adaptation that

may lead to instabilities. We also showed that both RCAC/VFF and RCAC/KF

allow for gain adapting through the entire flight and were able to track the normal

acceleration command as well as the 3LA. The adaptive controller excelled when an

aerodynamic coefficient modification was introduced to the system as well as having

a lower bandwidth actuator.
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CHAPTER 4

Kalman-Filter-Based System Identification via

Retrospective Optimization of the Process Noise

Covariance

4.1 Introduction

The Kalman filter is a stochastically optimal observer that utilizes statistical in-

formation about the measurement and process noise. In particular, the measurement

and process noise are assumed to be white Gaussian processes with zero mean and

covariances R and Q, respectively. Although R is relatively easy to characterize in

practice, it is often challenging to estimate Q. Consequently, there is an extensive

amount of literature on adaptive Kalman filtering, where the innovations signal is

used to construct an estimate of Q [14–17].

In the present chapter, we develop an alternative approach to estimating Q and

apply this technique to parameter estimation. First, we show that the process noise

covariance Q that minimizes the cumulative innovations does not (in general) corre-

spond to the value of Q that, when used in the Kalman filter, minimizes the cumu-

lative state-estimate error. However, for parameter estimation, we show that under

certain assumptions the value of Q that minimizes the cumulative state-estimate error

does in fact minimize the cumulative innovations. This insight provides the basis for
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a novel approach to online estimation of the process noise covariance for parameter

estimation problems.

The estimation technique uses a past window of data to rerun the Kalman filter

along with an optimization routine that retrospectively determines the value of Q

that minimizes the cumulative innovations at the present time. Based on the pre-

vious analysis, this estimate is assumed to minimize the state-estimate error. Since

the optimization does not lend itself to analytical gradients, we use gradient-free

optimization techniques.

This technique is applied to the system identification problem, specifically, esti-

mation of the coefficients of an input-output model. The dynamical system state

components for the Kalman filter are thus the coefficients of the input-output model,

and the dynamics matrix is the identity. The ultimate objective is to use this tech-

nique to identify linear systems whose coefficients are time-varying.

Adaptive Kalman filter techniques have been developed for this sort of problem

in [14–16, 18, 19], where the covariances R and Q are determined in real-time. These

methods are also innovations-based and are not derived in the sense of a minimization

optimization problem of the innovation itself. Rather, they are based on an averaging

inside a moving estimation window. Another method commonly used for covariance

identification is the maximum likelihood estimation (MLE). This method assumes

that the noise is characterized by a Gaussian model and that the best fit is determined

by minimizing the error for the given noise structure [19]. The type of parameter

uncertainty investigated in the present chapter are only constrained in the structure

of Q.
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4.2 The State Estimation Problem

Consider state estimation for the linear system

xk+1 = Akxk + wk, (4.1)

yk = Ckxk + vk, (4.2)

where xk ∈ Rn is the state to be estimated, wk ∈ Rn is the process noise, yk ∈ Rm

is the measurement, and vk ∈ Rm is the measurement noise. We assume that the

measurement and process noise are stationary and have zero mean with covariances

R = E[vkv
T
k ] and Q = E[wkw

T
k ], respectively. Assuming (Ak, Ck) is observable, the

Kalman filter is given by

x̂k+1|k = Akx̂k|k, (4.3)

= Ak(x̂k|k−1 +Kkzk), (4.4)

Pk+1|k = AkPk|kA
T
k +Q, (4.5)

= Ak[(I −KkCk)Pk|k−1]AT
k +Q, (4.6)

where the error covariance is defined as

Pk|k−1
4
= E[(xk − x̂k|k−1)(xk − x̂k|k−1)T], (4.7)

and where

Kk
4
= Pk|k−1C

T
k (CkPk|k−1C

T
k +R)−1, (4.8)

zk
4
= yk − Ckx̂k|k−1, (4.9)

are the optimal gain and innovations, respectively [52].
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In the present chapter, we use the innovations to estimate the process noise co-

variance. We define the cumulative state-estimate error as

ex,k+k0 ,
k+k0∑
i=k0

(xi − x̂i|i−1)T(xi − x̂i|i−1), (4.10)

with expected value

E[ex,k+k0 ] =

k0+k∑
i=k0

tr(Pi|i−1),

=

k+k0∑
i=k0

tr(AiPi−1|i−1A
T
i ) + k tr(Q). (4.11)

Next, we define the cumulative innovations as

ez,k+k0

4
=

k+k0∑
i=k0

zT
i zi, (4.12)

with expected value

E[ez,k+k0 ] =

k+k0∑
i=k0

E[(yi − Cix̂i|i−1)T(yi − Cix̂i|i−1)],

=

k+k0∑
i=k0

tr(Ci(AiPi−1|i−1A
T
i +Q)CT

i ) + ktr(R). (4.13)

Note that, since the state error at step i is independent of the measurement noise

at step i, it follows that E[(xi − x̂i|i−1)TCT
i vi] = E[(xi − x̂i|i−1)T]CT

i E[vi] = 0. Also,

note that (4.11) and (4.13) both depend on Q due to (4.5). Furthermore, (4.11) and

(4.13) are closely related since both involve Pi|i−1. However, unless Ci = In, there is

no guarantee that minimizing (4.10) implies that (4.12) is minimized and vice versa.

51



4.3 The Parameter Estimation Problem

In this section, we specialize the state estimation problem to a problem of pa-

rameter estimation, which is subsequently applied to system identification. We show

that, under some assumptions, the value of Q that minimizes the cumulative state-

estimate error also minimizes the cumulative innovations for the parameter estimation

problem. In particular, consider the parameter estimation problem

θk+1 = θk + wk, (4.14)

yk = φT
k θk + vk, (4.15)

where θk ∈ Rn are the parameters to be estimated, yk ∈ Rm are the measurements,

φk ∈ Rn×m is the regression matrix, vk ∈ Rm is the measurement noise, and wk ∈ Rn

is the process noise. Note that (4.14), (4.15) is a special case of (4.1), (4.2) with

Ak = In and Ck = φT
k . Furthermore, if the parameters to be estimated are constant,

that is, wk = 0, and the measurement noise vk ∼ N (0, 1), then the parameter esti-

mation problem becomes the standard recursive least-squares problem [18]. For the

case where the parameters are time-varying, that is wk 6= 0, we write (4.3) – (4.9)

recursively as

θ̂k+1|k = θ̂k|k−1 +Kkzk, (4.16)

Pk+1|k = (I −Kkφ
T
k )Pk|k−1 +Q, (4.17)

where

Kk = Pk|k−1φk(φ
T
kPk|k−1φk +R)−1, (4.18)

zk = yk − φT
k θ̂k|k−1. (4.19)
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Since Ak = In, the expected value of the cumulative state-estimate error (4.11)

and the expected value of the cumulative innovations (4.13) becomes

E[eθ,k+k0 ] =

k+k0∑
i=k0

tr(Pi−1|i−1) + k tr(Q), (4.20)

and

E[ez,k+k0 ] =

k+k0∑
i=k0

tr(φT
i (Pi−1|i−1 +Q)φi) + k tr(R), (4.21)

respectively. Within the context of parameter estimation, the notion of observability

depends on persistent excitation [18]. To show that the same value of Q minimizes

(4.20) and (4.21), we introduce the following assumptions.

Assumption 1. The measurement noise covariance R is known.

Assumption 2. There exists a positive integer N such that the regressor matrix φk

satisfies

βlI ≤
n+N∑
i=n

φiφ
T
i ≤ βuI, (4.22)

where βl and βu are positive constants [18].

Assumption 3. The process noise wk is uncorrelated at each time step k.

In practice, Assumption 1 can be met by performing a sensor characterization.

Assumption 2 requires that the system whose parameters are to be identified is persis-

tently excited and hence (In, φk) is observable. Assumption 3 states that the process

noise is uncorrelated at each time step, thus making Q diagonal.

Lemma 1. Consider the parameter estimation problem (4.14), (4.15) that satis-
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fies Assumptions 1-3. Then, the value of Q that minimizes the expected value of

the cumulative state-estimate error (4.20) also minimizes the expected value of the

cumulative innovations (4.21).

Proof. For all k ≥ N , the expected value of the cumulative innovations (4.21)

is written as

E[ez,k0+k] =

k+k0∑
i=k0

tr((Pi−1|i−1 +Q)φiφ
T
i ) + k tr(R),

=

k+k0∑
i=k0

tr(Pi−1|i−1φiφ
T
i ) + tr(Qφiφ

T
i ) + k tr(R),

≥
k+k0∑
i=k0

tr(Pi−1|i−1φiφ
T
i ) + kβltr(Q) + k tr(R), (4.23)

which is a linear combination of the expected value of the cumulative state estimate

(4.20) and the innovations matrix φiφ
T
i . Since the sum of N innovation matrices are

full rank, it follows that the value of Q that minimizes (4.20) also minimizes (4.23).

In the next example, we examine the residuals of the state and innovations for a

parameter estimation problem.

Example 4.1. Consider the ARMAX model described in (4.14), (4.15) as

θk+1 = θk + wk, (4.24)

yk =

[
uk−1 uk−2 yk−1 yk−2

]
θk + vk, (4.25)

where θk ∈ R4 with initial condition θ0 = [0 0 0 0]T. The input uk is a zero-mean

Gaussian with standard deviation of 1. The true process noise wk has zero mean with

covariance Q = 2.5×10−5I4. We assume that vk ∼ N (0, R), where R = 0.01 is known.

Fig. 4.1 shows the cumulative state-estimate error and the cumulative innovations as

functions of α, where Q = αI4. The simulation is run for 6000 time steps for varying
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values of α. The minimizing values of α for the cumulative state-estimate error and

cumulative innovations are 2.70 × 10−5 and 2.37 × 10−5, respectively. Note that

since the parameter estimation problem (4.25) is a statistical process, the estimate

of Q becomes more accurate as the amount of data increases and the value of α will

converge to the true value 2.5× 10−5. �

Figure 4.1: Results for Example 4.1. The cumulative state-estimate error and cumulative innovations
as a function of the entry α of Q for Example 4.1. Each simulation is run for 6000 time steps for
varying values of α. The minimizing value of α for the cumulative state-estimation error and
the cumulative innovations correspond to the true value Q = 2.5 × 10−5I. The cumulative state-
estimation error achieves its minimum at α = 2.70×10−5, while the cumulative innovations achieves
its minimum at α = 2.37× 10−5.

Example 4.2. Consider the finite impulse response (FIR) filter described in (4.14),

(4.15) as

θk+1 = θk + wk, (4.26)

yk = [uk−1 uk−2]θk + vk, (4.27)

where θk ∈ R2 with parameter initial condition θ0 = [0 0]T. The system input uk

is a white noise sequence with zero mean and standard deviation of 1. The true
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process noise wk has zero mean with the covariance matrix Q = diag([0.25 0.64]).

We assume that the statistical properties of the measurement are known and that

vk ∼ N (0, R), with R = 1. Fig. 4.2 shows the cumulative state-estimate error and

cumulative innovations as a function of α = [α1 α2], where Q = diag(α). The

simulation is run for 5000 time steps for varying values and combinations of α. The

minimizing values of α for the cumulative state-estimate error and the cumulative

innovations is α = [0.225 0.578] and α = [0.25 0.62], respectively. Note that since

the parameter estimation problem (4.27) is a statistical process, the estimate of Q

becomes more accurate as the amount of data increases and will converge to the true

value of [0.25 0.64]. �

(a) (b)

Figure 4.2: Results for Example 4.2. The cumulative state-estimate error and cumulative innovations
as a function of the entries α1 and α2 of Q for Example 4.2. Each simulation is run for 5000 time
steps for varying values and combinations of α. (a) shows the cumulative state-estimate error as a
function of α, with the minimizer α = [0.225 0.578]. (b) shows the cumulative innovations, with
the minimizer α = [0.25 0.62].

4.4 Innovations-Based Sliding Window-Q Optimization

The innovations-based sliding window-Q optimization (ISW-QO) is a method that

minimizes the cumulative innovations by using a retrospective optimization to update

the process noise covariance at each time step. Note that a version of this algorithm
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has been mentioned in [53] for state estimation but no formal proof of convergence is

given nor is it used for online estimation. Thus, the problem is to minimize

J(Q) =
k∑

j=j0

zT
j zj, (4.28)

s.t. Q � 0, (4.29)

where j0 = k−N+1, and N is the window size determined by the user that guarantees

Assumption 2. Fig 4.3 illustrates the method via a flow diagram. The Kalman filter

is first initialized and is run for N − 1 time steps. At time step k = k + 1, the initial

estimates θ̂, error covariance P , input u, and measurement y for that interval is sent to

the optimizer. The current value of Qk is used as an initial guess in the optimizer. In

Fig 4.3, the data yk−N+1:k = [yk−N+1 . . . yk] and uk−N+1:k = [uk−N+1 . . . uk]. Once

the optimal Q is found, the optimization routine passes the optimized parameter

estimates, error covariance, and Q to the Kalman filter to process the next step. The

index k is incremented and the process loops again.

Increment Kalman
Filter, k=k+1

min ez,k
s.t. Q � 0

Run Kalman Filter
1 : k − 1 time steps

Initialize:
k = N , θ̂1|0, P1|0, Q0

θ̂k−N+1|k−N ,
Pk−N+1|k−N ,
yk−N+1:k,
uk−N+1:k,
Qk

θ̂k+1|k,
Pk+1|k,
Qk+1

Figure 4.3: Block diagram illustrating the innovation-based sliding window Q optimization (ISW-
QO) iteration process.

57



For the following examples, we use the gradient-free optimization method fmin-

search in MATLAB R© to optimize Q based on the cumulative innovations. This

method is a multidimensional unconstrained nonlinear minimization routine [54].

Since this method is unconstrained, we must impose the positive semidefiniteness

of Q. First, Q is enforced to have a diagonal structure, e.g. Q = diag(α), where

α = [α1 . . . αn]. Second, at every iteration of the algorithm, the diagonal entries of

Q are squared to ensure positive semidefiniteness.

Example 4.3. We again consider the FIR filter presented in Example 4.2. To test

the ISW-QO method, we allow the optimizer to calculate Q based on the cumulative

innovations with a window size of 800 time steps, running the simulation for a total

of 6000 time steps. Fig. 4.4 shows the optimal α for each time step and a comparison

between the true and the estimated parameters. Note that in this example, α is

initialized at [0.3 0.81] and is used in the optimizer until k = 800. After k = 800, the

optimizer updates α at each time step. The true value of α is shown as reference. Note

that the window used for optimization is only 800 time steps, whereas in Example 4.2,

the optimization uses the entire 6000 time steps. Although the optimized values of α

do not converge to the true values, the cumulative state-estimation error is 1.1× 104

whereas, if the true value of Q were used, the cumulative state-estimation error is

7.0× 103 after the 6000 time steps. �

Example 4.4. In this example, we compare a static Q Kalman filter to the ISW-

QO method to the same FIR filter as in Example 4.2, except with R = 0.01. The

parameters are initialized at θ0 = [−0.8 1.0]T and there is no process noise added to

the system, that is wk = 0. The parameter θ1 induces a sudden step change at k = 250

from −0.8 to 0.1, while θ2 remains constant at 1. Note that unless the exact time

of the parameter step change is known, their is no way to create an accurate noise

model of the parameter variation. Thus, implementing Q = 02×2 is the best option
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Figure 4.4: Results for Example 4.3. The optimized values of α and the parameters θk and θ̂k for
Example 4.3. The Q optimizer is run with a window size of 800 time steps after the initial 800 time
steps. In this example, the true value of Q is held constant throughout the entire simulation. The
true α and the optimized value of α are shown.

and leads to recursive least squares (RLS), which has slow convergence properties.

In this example, the Kalman filter is initialized with the same initial conditions as

the ISW-QO method except that the process noise covariance is constant, that is

Q = 1× 10−4I2, with an anticipation that a parameter might change. The ISW-QO

is initialized at Q = 02×2 with a sliding window of 180 time steps. Fig. 4.5 shows how

the parameters α evolve over the length of the simulation as well as how the parameter

estimates compare to the actual values. Notice the correlation between the parameter

that changes θ1 and the covariance value that changes α1. ISW-QO correctly identifies

the parameter in Q, namely α1, that aided in reducing the innovations and since the

sliding window is of size N = 180 time steps, the value of α1 remains active until the

step outside the window. Also notice that with a small disturbance in θ̂2, θ̂1 converges

faster to the true parameter than the Kalman filter with an added small process noise

covariance. �

Example 4.5. In this example, we revisit Example 4.4 but allow the parameters
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(a) (b)

Figure 4.5: Results for Example 4.4. The optimized values of α and the parameters θk and θ̂k for
Example 4.4. (a) shows the optimized Q parameters with α1 increased due to the step change in
the parameter θ1. (b) compares the Kalman filter to ISW-QO estimates. Notice the convergence

of θ̂1 and the minimal disruption to θ̂2 in ISW-QO compared to the Kalman Filter with constant
Q = 1× 10−4I2.

θ1 and θ2 to ramp. At k = 200, the parameters ramp with a slope of 0.05 and

−0.01, respectively and remain constant after k = 600 at θ1 = 19.25 and θ2 = −3.01.

Figure 4.6 shows the how the parameters in Q vary during and after the course of the

ramp as well as how the estimated parameters track the true values. Notice that the

Kalman filter estimation looks like a delayed version of the true parameters, unlike

the estimated parameters of the ISW-QO method, which tracks the ramp. �

4.5 Innovations-based Adaptive Kalman filter

The innovations-based adaptive Kalman filter (IAKF) adapts the covariance ma-

trices as the measurements evolve with time [14–17]. In this method, the estimate of

Q is

Q̂k =
1

N

k∑
j=j0

∆xj∆x
T
j + Pk|k − Ak−1Pk−1|k−1A

T
k−1, (4.30)
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(a) (b)

Figure 4.6: Results for Example 4.5. The optimized values of α and the estimated and true pa-
rameters θ̂k and θk, respectively for Example 4.5. (a) shows the evolution of α1 and α2 due to a
ramp increase in both the θ parameters, with the magnitude of α1 being greater due to the more
aggressive ramp. (b) compares the Kalman filter to ISW-QO estimates. The Kalman filter looks
like a delayed version of the true parameters, unlike the estimated parameters of ISW-QO, which
tracks the ramp.

where ∆xk is a first order, steady-state term [16] defined as

∆xk , Kkzk, (4.31)

and j0 = k −N + 1 is the first sample within the estimation of moving window size

N . Note that in the parameter estimation problem, Ak = In, and (4.30) reduces to

Q̂k =
1

N

k∑
j=j0

∆xj∆x
T
j + Pk|k − Pk−1|k−1. (4.32)

In this method, it is also assumed that the measurement covariance R is known but

the structure of Q is not forced to be diagonal.

4.6 ISW-QO Compared to IAKF

We compare ISW-QO and IAKF by revisiting Examples 4.4 and 4.5. In these

examples, both ISW-QO and IAKF have the same moving window size of 180 time

steps. Note that unlike ISW-QO, where the user has the ability to define the structure
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of Q to be optimized, IAFK does not have this feature. In order to compare how

the estimate Q̂ evolves over the length of the simulation, we chose to compare the

eigenvalues λ(Q̂k) of Q̂k, to the values of αk in ISW-QO where Qk = diag(α1,k, α2,k).

This comparison is used to identify which parameters IAKF views as having the

largest uncertainty.

Example 4.6. In this example, we compare ISW-QO to IAKF for a sudden step

change in θ1. Figure 4.7 compares the evolution of Q along with the parameter

estimates. Notice that the two methods have different eigenvalue profiles but both

identify which value needs to be greater in order to minimize the innovations. The

parameter estimates for IAKF take longer to converge to the true parameters than

ISW-QO but has a faster response then the Kalman filter in Fig. 4.5. The cumulative

state-estimation errors for the full 600 time steps for IAKF and ISW-QO are 33.2 and

19.2, respectively. �

(a) (b)

Figure 4.7: Results for Example 4.6. A comparison of ISW-QO to IAKF for a sudden step change in
θ1. (a) shows how the eigenvalue profiles are different but share in common which value is greater.
(b) shows the parameter estimates of the two methods compared to the true values. ISW-QO
has a faster response but IAKF performs better compared to the Kalman filter in Fig. 4.5. The
cumulative state-estimation errors for the full 600 time steps for IAKF and ISW–QO is 33.2 and
19.2, respectively.

Example 4.7. In this example, we compare ISW-QO to IAKF for a ramp change

in both θ1 and θ2. Fig. 4.8 shows the evolution of Q as well as the parameter esti-
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mates. Although the methods produce different eigenvalue profiles, they both identify

which value needs to be greater in order to minimize the innovations. The parameter

estimates for IAKF are smoother than those of ISW-QO and the cumulative state-

estimation errors for the full 800 time steps for IAKF and ISW-QO are 104.8 and

156.7, respectively. �

(a) (b)

Figure 4.8: Results for Example 4.7. A comparison ISW-QO and IAKF for a ramp change in both
of the parameters θ1 and θ2. (a) shows how the eigenvalue profiles are different but both identify
which value is needed to be greater to minimize the innovations. (b) shows the parameter estimates
of the two methods compared to the true values. The cumulative state-estimation errors for the full
800 time steps for IAKF and ISW-QO are 104.8 and 156.7, respectively.

4.7 Conclusions

In this chapter, we proposed a technique that minimizes the innovations based

on retrospective optimization of the process noise covariance. We showed that mini-

mizing the cumulative innovations is equivalent to minimizing the cumulative state-

estimation error for the parameter estimation problem under certain assumptions.

This technique is applied to system identification problems where the parameters to

be estimated can be time-varying and thus have an unknown Q value. We compared

our technique to the standard Kalman filter and IAKF. Results show that when ap-

plied to time-varying parameter estimation problem, this technique performs as well

if not better than IAKF.
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CHAPTER 5

Batch Retrospective Cost Adaptive Control using

Concurrent Controller and Target-Model

Optimization

5.1 Introduction

Although the overarching motivation for using feedback control versus open-loop

control is the ability to overcome uncertainty, feedback control depends on a model

of the plant in order to operate reliably and without risking instability. Assuming

an exact and complete model, LQG can be used to stabilize all MIMO plants with

optimal H2 performance regardless of plant order, open-loop pole and zero locations,

and channel coupling. In practice, however, uncertainty may be unavoidable due to

complex, unknown, or unpredictably changing physics. To overcome model uncer-

tainty, robust control techniques can be used to guarantee stability and performance,

albeit at the expense of performance. Adaptive control can be viewed as a form of

robust control, wherein the control law adjusts itself to the plant during operation,

thereby circumventing the performance sacrifice inherent in robust control.

A fundamental goal of feedback control is to achieve maximal closed-loop perfor-

mance in the presence of prior model uncertainty. In the case of adaptive control,

closed-loop performance must account for transient performance as the controller ad-
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justs itself to the actual plant characteristics. For example, universal adaptive control

laws [20] can adapt to uncertainty in the sign of the leading coefficient of the plant

transfer function, although the transient response may be large.

Nonminimum-phase (NMP) zeros also present a challenge to adaptive control; for

example, the control laws in [1–3] assume that the plant is minimum phase. Adaptive

control of NMP plants is considered in [8, 21–24]. In [8, 24] knowledge of the NMP

zeros is embedded in the target model Gf , which is used to filter the past data in

order to retrospectively optimize the controller coefficients.

The goal of this chapter is to extend retrospective cost adaptive control (RCAC)

as presented in [8, 24] to alleviate the need for prior modeling of both the sign of the

leading coefficient of the plant transfer function as well as its NMP zeros. The key

element of this extension is concurrent optimization of both the target model and the

controller coefficients. In particular, we show that concurrent optimization facilitates

the application of RCAC with less prior modeling information than is assumed in

[8, 24]. In particular, the number and location of the NMP zeros need not be known

aside from the parity of the number of positive NMP zeros.

Concurrent optimization of the target model and controller coefficients is a quadratic

optimization problem in the target model and controller coefficients separately. How-

ever, this optimization problem is not convex as a joint function of both variables,

and therefore nonconvex optimization methods are needed. In the present chapter, we

address this problem in two different ways. First we take advantage of the biquadratic

structure of the cost function by applying an alternate convex search algorithm [25].

Related techniques for biconvex and bilinear optimization are given in [26–29]. For

comparison, the Matlab fminsearch routine is used to simultaneously optimize the

controller and target model coefficients.
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5.2 Problem Formulation

Consider the SISO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (5.1)

y(k) = Cx(k) +D2w(k), (5.2)

z(k) = E1x(k) + E0w(k), (5.3)

where x(k) ∈ Rn is the state, y(k) ∈ R is the measurement, u(k) ∈ R is the control

input, w(k) ∈ R is the exogenous input, and z(k) ∈ R is the measured performance

variable. The goal is to develop an adaptive output feedback controller that mini-

mizes z in the presence of the exogenous signal w with limited modeling information

about (5.1)–(5.3). The components of w can represent either command signals to

be followed, external disturbances to be rejected, or both, depending on the choice

of D1 and E0. Depending on the application, components of w may or may not be

measured. These components are included in y by suitable choice of C and D2. No

assumptions are made concerning the state space realization since RCAC requires

only input-output model information.

5.3 RCAC Algorithm

In this section, we introduce the RCAC algorithm for use on systems that are

strictly single-input, single-output (SISO).
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5.3.1 Controller Structure

The adaptive control algorithm is constructed as a strictly proper time-series dy-

namic compensator of order nc, such that the control u(k) is given as

u(k) =
nc∑
i=1

Pi(k)u(k − i) +
nc∑
i=1

Qi(k)z(k − i), (5.4)

where Pi(k), Qi(k) ∈ R are the controller coefficients. In terms of the Z-transform

variable z, the transfer function of the controller from z to u is given by

Gc(z) =
(
znc − znc−1P1 − · · · − Pnc

)−1

·
(
znc−1Q1 + · · ·+Qnc

)
. (5.5)

In this chapter we focus on SISO controllers, and hence Gc can be written as

Gc(z) =
Q1z

nc−1 + · · ·+Qnc

znc − P1znc−1 − · · · − Pnc

. (5.6)

Note that (5.5) is an infinite impulse response (IIR) controller. The controller (5.4)

can be expressed as

u(k) = φ(k)θ(k), (5.7)
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where the regressor matrix φ(k) is defined as

φ(k)T 4=



u(k − 1)

...

u(k − nc)

z(k − 1)

...

z(k − nc)


∈ Rlθ ,

θ(k)
4
=

[
P1(k) · · ·Pnc(k) Q1(k) · · ·Qnc(k)

]T

∈ Rlθ ,

where lθ
4
= 2nc.

5.3.2 Retrospective Performance

The retrospective control is defined as

û(k, θ̂)
4
= φ(k)θ̂, (5.8)

where θ̂ ∈ Rlθ is determined by the optimization in Section 5.3.3. In terms of the for-

ward shift operator q, the corresponding retrospective performance variable is defined

as

ẑ(k, θ̂)
4
= z(k) +Gf(q)

[
û(k, θ̂)− u(k)

]
, (5.9)

where the target model Gf(q) is a finite impulse response (FIR) filter written as

Gf(q) = N̂nf
qnf−1 + · · ·+ N̂1, (5.10)
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where the filter order nf ≥ 1, and N̂i ∈ R for 1 ≤ i ≤ nf . The extended performance

vector Z(k) ∈ Rp, the extended control vector U(k) ∈ Rp, and the extended regressor

Φ(k) ∈ Rp×lθ are defined as

Z(k)
4
=


z(k)

...

z(k − p− 1)

 , U(k)
4
=


u(k)

...

u(k − p− 1)

 ,

Φ(k)
4
=


φ(k)

...

φ(k − p− 1)

 ,

where p
4
= pc + nf , and pc ≥ 1 is the batch window size.

Next, we define the extended retrospective performance vector as

Ẑ(k, θ̂, N̂) = Z(k) +N(Φ(k)θ̂ − U(k)) (5.11)

where Ẑ(k, θ̂, N̂) ∈ Rpc , and the matrix N ∈ Rpc×p is a block-Toeplitz representation

of the FIR filter written as

N =



0 N̂ 0 · · · 0

0
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 0 N̂


,

where N̂
4
= [N̂nf

· · · N̂1].The target model Gf is known to set target locations for the

closed-loop poles [8]. Since we define Gf as an FIR filter, the closed-loop target pole

locations are attracted to the origin. Also, in [8], the ideal Gf is chosen to match the
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NMP zeros of the plant. This feature ensures that the NMP zeros of the plant are not

canceled by Gc. In this chapter, we apply optimization techniques to concurrently

optimize the controller gains and the target model Gf .

5.3.3 Retrospective Cost

Consider the retrospective cost function

J(k, θ̂, N̂) = Ẑ(k, θ̂, N̂)TRzẐ(k, θ̂, N̂)

+ (θ̂ − θ(k − 1))TRδ(θ̂ − θ(k − 1)), (5.12)

where the positive scalar Rz and the positive-definite matrix Rδ ∈ Rlθ×lθ are the

performance and learning rate weightings, respectively.

5.4 Biquadratic Optimization

We use the Matlab fminsearch function for nonlinear function optimization, as

well as the alternate convex search (ACS) algorithm [25]. In the latter code, only

the variables that are active are optimized while the other variables are kept fixed.

Although the ACS algorithm converges to a stationary point of the cost function, it

is shown in [25] that global convergence is not guaranteed.

5.4.1 Alternate Convex Search Minimizers

5.4.1.1 Minimizing θ̂ for fixed N̂

For fixed N̂ , the minimizing θ̂ is found by substituting (5.11) into (5.12) and

letting Uf(k) = N · U(k) and Φf(k) = N · Φ(k). The resulting cost function can be
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written as

J(k, θ̂, N̂) = θ̂TA(k)θ̂ + θ̂T b(k) + c(k), (5.13)

where

A(k) = Φf(k)TRzΦf(k) +Rδ,

b(k) = 2Φf(k)TRz(Z(k)− Uf(k))− 2Rδθ(k − 1),

c(k) = (Z(k)− Uf(k))TRz(Z(k)− Uf(k))+

θ(k − 1)TRδθ(k − 1).

Since A(k) is positive definite, J(k, θ̂, N̂) has the unique global minimizer

θ̂(k) = −1

2
A(k)−1b(k). (5.14)

5.4.1.2 Minimizing N̂ for fixed θ

For fixed θ(k), the minimizing N̂ is found by substituting (5.11) into (5.12). Let-

ting ∆U(k)
4
= Φ(k)θ(k) − U(k) and ∆θ(k)

4
= θ(k) − θ(k − 1), (5.12) can be written

as

J(k, θ̂, N̂) = ∆U(k)TNTRzN∆U(k) + 2Z(k)TRzN∆U(k)

+ ∆U(k)TRδ∆U(k) + Z(k)TRzZ(k). (5.15)

The minimizer is found by setting ∇J(k, θ̂, N̂) = 0 and solving for N̂ . Defining

Ck1:k2

4
=


c(k − k1)

...

c(k − k2)

 , (5.16)
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the minimizer of (5.15) is

N̂(k) = −ξT(k)M(k)−1, (5.17)

where the positive-definite matrix M(k) ∈ Rnf×nf has the entries

Mi,j(k)
4
= ∆UT

i+1:pc+iRz∆Uj+1:pc+j, (5.18)

where 1 ≤ i, j ≤ nf , and ξ ∈ Rnf has the entries

ξi
4
= ZT

f Rz∆Ui+1:pc+i −∆θ(k)TRδ∆θ(k), (5.19)

where 1 ≤ i ≤ nf .

5.4.2 The ACS Algorithm

The modified ACS algorithm consists of the following steps:

Step 1 Choose a nonzero starting point (N̂(k), θ̂(k)) ∈ Rnf+lθ for k = p+ 1.

Step 2 For fixed N̂(k), solve for θ̂(k) using (5.14) and the associated cost using (5.13).

Step 3 For fixed θ̂(k), solve for N̂(k) using (5.17) and the associated cost using (5.15).

Step 4 Determine whether Step 2 or Step 3 produces the lower cost. If a stopping

criteria is satisfied, exit. Otherwise, set N̂(k + 1) and θ̂(k + 1) to the corresponding

step that produced the lower cost, increment k, and go to Step 2.

For the examples in Section 5.5, the stopping criteria consists of 800 evaluations

and a function tolerance of 1× 10−4.
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5.4.3 fminsearch

The method used with the Matlab fminsearch algorithm consists of the following

steps:

Step 1 Choose a starting point (N̂(k), θ̂(k)) ∈ Rnf+lθ for k = p+ 1.

Step 2 At the current time step, minimize the cost function (5.12) until a stopping

criteria is satisfied.

Step 3 Set N̂(k + 1) = N̂(k) and θ̂(k + 1) = θ̂(k) for the next starting point, incre-

ment k, and go to Step 2.

For the examples in Section 5.5, the stopping criteria consists of 5000 function

evaluations and iterations along with a function and variable tolerance of 1× 10−4.

5.5 Numerical Examples

In this section, we present numerical examples to illustrate the concurrent op-

timization technique for the command-following problem shown in Fig. 5.1. The

exogeneous signal w is the command r, and z = y− r. This problem is a special case

of (5.1)-(5.3) with C = E1, D2 = 0, and E0 = −1. Hence G(z) = C(zI − A)−1B.

+ Gc(z) G(z)
ur − z y

Figure 5.1: The command-following problem.

In each of the examples below, except for Example 5.5.7, all of the filter coefficients

are initialized at 0 except for N̂1. Furthermore, N̂1 is initialized based on the parity
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of the positive NMP zeros, that is, at k ≤ p+ 1

N̂1 = (−1)h, (5.20)

where h is the number of positive NMP zeros in G.

Example 5.1 (Asymptotically stable, minimum-phase plant.). Consider the asymp-

totically stable, minimum-phase plant

G(z) =
2.0(z− 0.2)

(z− 0.3)(z− 0.6)
, (5.21)

and let r be a unit-height step command. We choose nf = 2 and note that since G

has no positive NMP zeros, h = 0 and by (5.20), N̂1 = 1. Thus the filter coefficients

in N̂ are initialized as [0 1]. Let the controller order nc = 2, the batch window size

pc = 20, Rδ = 1 × 10−3Ilθ , Rz = 1.0, and x(0) = [1 1]T. For k < p + 1, both

algorithm controller coefficients are 0lθ×1, and at k = p+ 1, the controller coefficients

are initialized to 0lθ×1 and 1lθ×1 for fminsearch and ACS, respectively. Fig. 5.2 shows

the results of the concurrent optimization. Both algorithms give comparable results

in the converged filter and controller gain coefficients. Note that the filter coefficient

N̂2 obtained by both algorithms converge to the value 2.0 of the first nonzero Markov

parameter, while the controller converges to an integrator internal model in order to

follow the step command. �

Example 5.2 (Unstable, minimum-phase plant.). Consider the unstable, minimum-

phase plant

G(z) =
z− 0.2

(z− 0.6)(z− 1.3)
, (5.22)

and let r be a unit-height step command. We choose nf = 4 and note that since G
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Figure 5.2: Example 5.1Asymptotically stable, minimum-phase system. Concurrent optimization is
applied to step-command following for the asymptotically stable minimum-phase plant (5.21). The
upper three left figures show the result of using the ACS algorithm, and the upper right three plots
show the result of using fminsearch. Note that the filter coefficient N̂2 converges to the first nonzero
Markov parameter 2.0 of the plant, and the controller converges to an integrator internal model in
order to follow the step command

has no positive NMP zeros, h = 0 and by (5.20), N̂1 = 1. Thus the filter coefficients

in N̂ are initialized as [0 0 0 1]. Let the controller order nc = 4, and the batch window

size pc = 20, Rδ = 1 × 10−1Ilθ , Rz = 1.0, and x(0) = [0 0]T. For k < p + 1, both

algorithm controller coefficients are 0lθ×1, and at k = p+ 1, the controller coefficients

are initialized to 0lθ×1 and 1lθ×1 for fminsearch and ACS, respectively. Fig. 5.3 shows

the results of the concurrent optimization. Note that both algorithms converge to a

controller with an integrator internal model in order to follow the step command and

that the filter coefficient N̂4 converges to the first nonzero Markov parameter 1.0. �

Example 5.3 (Asymptotically stable, NMP plant.). Consider the asymptotically
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Figure 5.3: Example 5.2: Unstable, minimum-phase plant. Concurrent optimization is applied to
step-command following for the unstable minimum-phase plant (5.22). Note that the controller
stabilizes the unstable plant and develops an integrator internal model in order to follow the step
command.

stable, NMP plant

G(z) =
z− 1.1

(z− 0.3)(z− 0.6)
, (5.23)

and let r be a unit-height step command. We choose nf = 4 and note that since G

has one positive NMP zero, h = 1 and by (5.20), N̂1 = −1. Thus the filter coefficients

in N̂ are initialized as [0 0 0 − 1]. Let the controller order nc = 4, and the batch

window size pc = 30, Rδ = 1×10−3Ilθ , Rz = 1, and x(0) = [0 0]T. For k < p+1, both

algorithm controller coefficients are 0lθ×1, and at k = p+ 1, the controller coefficients

are initialized to 0lθ×1 and 1lθ×1 for fminsearch and ACS, respectively. Fig. 5.4 shows

the results of the concurrent optimization. Note that the location of the NMP zero
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Figure 5.4: Example 5.3:Asymptotically stable, NMP plant. Concurrent optimization is applied to
step-command following for the asymptotically stable, NMP plant (5.23). Note that the location of
the NMP zero is unknown to both algorithms. Also note that the controller develops an integrator
internal model in order to follow the step command, and the filter captures the NMP zero location.
Figure 5.5 shows a zoomed in view of the plant, controller, and filter pole/zero locations after
convergence.

location is unknown to both algorithms. Fig. 5.5 shows the poles and zeros of the

plant (5.23), the controller, and the filter. Both algorithms converge to a filter that

places a zero at the same location as the plant zero. Also, both algorithms converge

to a controller with an integrator internal model in order to follow the step command.

�

Example 5.4 (Asymptotically stable, NMP plant with a NMP negative zero.). Con-

sider the asymptotically stable, NMP plant with a negative NMP zero

G(z) =
z + 1.1

(z− 0.3)(z− 0.6)
, (5.24)
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Figure 5.5: Example 5.3: Asymptotically stable, NMP plant. This figure shows a zoomed in pole/zero
map of the plant, converged controller, and converged filter for the ACS [left] and fminsearch [right]
algorithms. Note that the filter captures the NMP zero location of the plant and that the controller
converges to an integrator internal model in order to follow the step command.

and let r be a unit-height step command. We choose nf = 4 and note that since G has

no positive NMP zeros, h = 0 and by (5.20), N̂1 = 1. Thus the filter coefficients in

N̂ are initialized as [0 0 0 1]. Let the controller order nc = 4, and the batch window

size pc = 50, Rδ = 1 × 10−1Ilθ , Rz = 1, and x(0) = [1 1]T. For k < p + 1, both

algorithm controller coefficients are 0lθ×1, and at k = p+ 1, the controller coefficients

are initialized to 0lθ×1 and 1lθ×1 for fminsearch and ACS, respectively. Fig. 5.6 shows

the results of the concurrent optimization. Both algorithms give comparable results in

the converged filter and controller gain coefficients. Note that the filter coefficient N̂4

for both algorithms converge to the value 1.0 of the first nonzero Markov parameter,

while the controller converges to an integrator internal model in order to follow the

step command. Note that the location of the NMP zero is unknown to both algorithms

and the zero of the converged target model converges to the NMP zero of the plant

(5.24). �

Example 5.5 (Asymptotically stable, NMP plant with relative degree 2.).

Consider the asymptotically stable, NMP plant

G(z) =
z− 1.2

(z− 0.1)(z− 0.3)(z− 0.6)
, (5.25)

and let r be a unit-height step command. We choose nf = 5 and note that since G
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Figure 5.6: Example 5.4: Asymptotically stable plant with a negative NMP zero. Concurrent opti-
mization is applied to a step-command following problem for the asymptotically stable plant with a
negative NMP zero (5.24). Note that the location of the NMP zero is unknown to both algorithms.
The controller converges to an integrator internal model to follow the step command, and the target
model captures the location of the negative NMP zero.

has one positive NMP zero, h = 1 and by (5.20), N̂1 = −1. Thus the filter coefficients

in N̂ are initialized as [0 0 0 0 − 1]. Let the controller order nc = 6, and the batch

window size pc = 40, Rδ = 1×10−2Ilθ , Rz = 1, and x(0) = [1 1 1]T. For k < p+1, both

algorithm controller coefficients are 0lθ×1, and at k = p+ 1, the controller coefficients

are initialized to 0lθ×1 and 1lθ×1 for fminsearch and ACS, respectively. Fig. 5.7 shows

the results of the concurrent optimization. Note that the location of the NMP zero is

unknown to both algorithms and the zero of the converged target model converges to

to the NMP zero of the plant (5.25). Also note that since the relative degree of the

plant (5.25) is 2, the filter coefficient N̂5 for both algorithms converge to 0.0, while

the filter coefficient N̂4 converges to the value of the first nonzero Markov parameter
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Figure 5.7: Example 5.5: Asymptotically stable NMP plant of relative degree 2. Concurrent opti-
mization is applied to a step-command following problem for the asymptotically stable, NMP plant
with relative degree 2 (5.25). Note that the location of the NMP zero is unknown to both algorithms.
The controller converges to an integrator internal model in order to follow the step command, and
the converged target model captures the location of the NMP zero.

1.0. Both algorithms produce a spurious filter zero of high magnitude, which is not

included in Figure 5.7. The controller also converges to an integrator internal model

in order to follow the step command. �

Example 5.6 (Asymptotically stable, minimum-phase plant.). Consider the asymp-

totically stable, minimum-phase plant

G(z) =
z− 0.3

(z− 0.2)(z− 0.6)
, (5.26)

and let r be a unit-amplitude harmonic command with frequency ω = 2π
25

rad/sample.

We choose nf = 3 and note that since G has no positive NMP zeros, h = 0 and by
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(5.20), N̂1 = 1. Thus the filter coefficients in N̂ are initialized as [0 0 1]. Let the

controller order nc = 4, and the batch window size pc = 20, Rδ = 1×10−3Ilθ , Rz = 1,

and x(0) = [0 0]T. For k < p+ 1, both algorithm controller coefficients are 0lθ×1, and

at k = p+1, the controller coefficients are initialized to 0lθ×1 and 1lθ×1 for fminsearch

and ACS, respectively. Fig. 5.8 shows the results of the concurrent optimization.

Note that the controller converges to a harmonic internal model in order to follow

Figure 5.8: Example 5.6: Asymptotically stable, minimum-phase plant with harmonic-command
following. Concurrent optimization is applied to a harmonic-command following problem for the
asymptotically stable, minimum-phase plant (5.26). Note that both algorithms converge to an
internal model controller with poles at the command frequency on the unit circle and the filter
coefficient N̂3 converges to the first nonzero Markov parameter 1.0.

the same frequency of the command r and the filter coefficient N̂3 converges to the

first nonzero Markov parameter 1.0. �

Example 5.7 (Asymptotically stable, NMP plant with relative degree 2.). Consider

the asymptotically stable, minimum-phase plant given in (5.25), and let r be a unit-
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height step command. We choose nf = 5 and note that since G has one NMP zero,

h = 1 and by (5.20), N̂1 = −1. In this example, we violate (5.20) by choosing the

opposite sign of N̂1 to let N̂1 = 1. Thus the filter coefficients in N̂ are initialized as

[0 0 0 0 1]. Let the initialization parameters be the same as stated in Example 5.5.

Fig. 5.9 shows the results of the concurrent optimization. Note that the location of

Figure 5.9: Example 5.7: Asymptotically stable NMP plant of relative degree 2. Concurrent opti-
mization is applied to a step-command following problem for the asymptotically stable, NMP plant
with relative degree 2 (5.25). Note that the location of the NMP zero is unknown to both algorithms.
For both algorithms, the controller converges to an integrator internal model in order to follow the
step command. Also note that for the ACS algorithm, the asymptotic target model captures the
location of the NMP zero while the fminsearch algorithm does not capture the NMP zero leading to
an unstable controller pole and plant NMP zero cancellation.

the NMP zero is unknown to both algorithms and that for the ACS algorithm the

asymptotic target model captures the location of the NMP zero while the fminsearch

algorithm does not capture the NMP zero leading to an unstable controller pole and

plant NMP zero cancellation. �
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5.6 Conclusions

The cost function associated with the retrospective cost adaptive control algorithm

(RCAC) was used for concurrent optimization of the controller gains and the target

model due to its natural biquadratic structure. A modified version of the alternating

convex search (ACS) and the Matlab fminsearch algorithm demonstrated the ability

to concurrently optimize these coefficients for a command-following problem. The

novel element in this chapter is the ability to minimize the cost function without prior

knowledge of the plant transfer function, including NMP zero locations. Future work

will focus on improving the computational efficiency of the concurrent optimization

along with guarantees of global convergence.
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CHAPTER 6

Direct and Indirect Closed-Loop Architectures for

Estimating Nonminimum-Phase Zeros

6.1 Introduction

During closed-loop operation, it is often necessary to monitor the plant in order

to detect changes that can degrade stability and performance. At the same time,

more accurate modeling of the plant can facilitate the ability to enhance closed-loop

performance through on-line controller modification [4, 55–57]. Accordingly, closed-

loop identification has been extensively studied [30, 58–64] and successful applications

utilizing identification during closed-loop operation are discussed in [65–70].

The starting point for the present chapter is the survey paper [30], which ana-

lyzes various architectures for closed-loop identification. That work emphasizes the

practical importance of the problem and demonstrates the richness of the subject in

terms of the diverse architectures that can be employed. The presentation in [30],

however, does not include a numerical investigation of the relative merits of candidate

architectures and identification algorithms. Consequently, as a complement to [30],

the contribution of this chapter is a detailed numerical study that compares multi-

ple closed-loop identification architectures in terms of their accuracy in estimating

nonminimum-phase (NMP) zeros.
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In contrast to open-loop identification, closed-loop identification presents unique

challenges in system identification [71]. For example, the model input may lack

sufficient persistency due to the limited spectral content of the command and dis-

turbances. In addition, because of closed-loop operation, the model input may be

correlated with the exogenous noise, potentially leading to parameter bias.

As noted above, closed-loop identification can be performed with a variety of

architectures. The basic architecture for closed-loop identification is direct closed-

loop identification, where the control signal and measurement, that is, the plant input

and output, are used to construct a plant model. Since the control signal arises in

response to disturbance and sensor noise, the control signal is correlated with these

noise signals, potentially leading to bias in the parameter estimates.

A variation of direct closed-loop identification is to add an auxiliary signal to

the control signal and then use the sum of these signals as the model input. This

approach, called auxiliary direct closed-loop identification, uses the auxiliary signal

to enhance identification accuracy at the cost of disrupting closed-loop performance.

The challenge of designing minimally disruptive signals for identification is discussed

in [72].

An alternative approach to direct closed-loop identification is to estimate a closed-

loop transfer function rather than the plant itself. This approach requires an external

signal. The simplest approach of this type, called indirect closed-loop identification,

uses the command signal as the model input. To facilitate the method, the command

signal can be chosen to be sufficiently persistent albeit at the cost of degrading closed-

loop operation. A model of the plant is subsequently extracted from the estimated

closed-loop model.

A variation of indirect closed-loop identification is to add an auxiliary signal to

the control signal and then use only the auxiliary signal as the model input. This

approach, which is known as auxiliary indirect closed-loop identification identifies the
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overall closed-loop system. As in the case of indirect closed-loop identification, a

model of the plant is subsequently extracted from the estimated closed-loop model.

In order to simplify the identification, the auxiliary signal is chosen in this chapter

to be a multiple of the command signal.

In addition to direct closed-loop, auxiliary direct closed-loop, indirect closed-loop,

and auxiliary indirect closed-loop identification, we consider two nonstandard ways

in which the external signal used for auxiliary direct closed-loop identification and

auxiliary indirect closed-loop identification can be injected into the loop. In the stan-

dard approach, the auxiliary signal is added to the control signal. In contrast, in

intercalated injection, the auxiliary signal is added to an internal signal in the feed-

back controller. This technique arises naturally in retrospective cost adaptive control

[35, 36], where the effect of the controller update at each step is equivalent to inter-

calated injection of a control-input perturbation. For closed-loop identification, the

intercalated auxiliary indirect closed-loop and auxiliary indirect closed-loop architec-

tures are characterized by the fact that the resulting transfer functions have restricted

numerators.

This chapter thus considers six architectures for identifying a plant operating

in closed loop, namely, direct closed-loop (DCL) identification, standard auxiliary

direct closed-loop (ADCL/S) identification, intercalated auxiliary direct closed-loop

(ADCL/I) identification, indirect closed-loop (ICL) identification, standard auxiliary

indirect closed-loop (AICL/S) identification, intercalated auxiliary indirect closed-

loop (AICL/I) identification.

The goal of this chapter is to assess the advantages and disadvantages of these six

architectures in estimating the nonminimum-phase (NMP) zeros of a plant operating

in closed loop. NMP zeros are one of the most challenging aspects of feedback control

in terms of limiting achievable performance [31]. Consequently, after constructing

a model of the open- or closed-loop plant, the metric used to assess the estimation
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accuracy is defined to be the accuracy of the estimate of the NMP zero. This objective

is motivated by retrospective cost adaptive control [32–36], which requires knowledge

of NMP plant zeros.

In order to estimate NMP zeros, we consider infinite impulse response (IIR) mod-

els. In order to focus attention on a comparison of architectures, we make the simpli-

fying assumption that the plant order is known. In the case where the plant order is

unknown, additional techniques for order estimation are needed. This can be done,

for example, by overestimating the plant order, impulsing the estimated model, and

then applying Ho-Kalman realization theory [73, 74] along with heuristic nuclear

norm minimization techniques [75, 76] to estimate the model order and construct a

reduced-order model. Alternatively, this can be done by using a finite impulse re-

sponse (FIR) model structure to directly estimate the Markov parameters for use in

the Hankel matrix. This is the approach used in [77], where noncausal FIR models

are used to account for the possibility that the plant may be open-loop unstable. The

approach of [77], however, is not applicable to plants with poles on the unit circle.

Consequently, we confine our attention to IIR models under the assumption that the

plant order is known.

We consider two techniques for identification, namely, least squares and prediction

error methods. Least squares (LS) provides a baseline technique for estimation. In

most cases, least-squares estimates are biased, and, assuming that the model input is

white, we provide an analytical expression for the bias. Setting the bias to zero yields

a necessary and sufficient condition under which the model estimate is consistent.

This result extends the consistency analysis provided in [78, 79].

A more effective approach to providing consistent estimates within the context

of closed-loop identification is prediction error methods (PEM). PEM is described

in [80] and applied to direct and indirect closed-loop identification architectures in

[30, 60, 81, 82]. PEM can be viewed as an extension of LS that fits both the plant
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and noise model parameters by propagating the outputs over a window of data. The

minimization of the prediction error may be quadratic, as in LS, or nonquadratic, as

in maximum-likelihood minimization [83, 84].

An alternative technique for closed-loop identification is instrumental variables

(IV). An early version of IV was introduced in [85] for identification within the con-

text of discrete-time adaptive control [86] and is extensively studied in [87–89]. As

discussed in [90], the effectiveness of IV for closed-loop identification is sensitive to

the choice of instruments. In addition, as noted in [90], an optimal IV estimator

can be obtained only if the noise model is known. To simplify the comparison of

architectures for closed-loop identification, we thus focus on least squares and PEM.

The noise models are confined to stationary white and colored noise random pro-

cesses representing either process noise or sensor noise. We do not, however, consider

noise that corrupts the signals used for model estimation. Noise of this type gives rise

to an errors-in-variables (EIV) identification problem. EIV is extensively studied;

see, for example, [91–94].

The contents of the chapter are as follows. Section 3 describes the estimation

algorithms, including least squares and prediction error methods. Sections 4 and 5

describe the direct and indirect closed-loop identification architectures, respectively,

with and without an auxiliary signal, including standard intercalated injection. Sec-

tion 6 presents a numerical comparison of the direct closed-loop identification archi-

tectures. Two examples are considered. In the first example, the plant is open-loop

stable; in the second example, the plant is open-loop unstable. Section 7 is analogous

to Section 6 for the case of indirect architectures. Conclusions and directions for

future research are given in Section 8.

Notation: In denotes the n × n identity matrix, 0n×m denotes the n × m zero

matrix, and ‖ · ‖F denotes the Frobenius norm.
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6.2 Model Structure

Consider the discrete-time nth
0 -order SISO transfer function G0 defined as

G0(q)
4
=
N0(q)

D0(q)
, (6.1)

where q is the forward-shift operator and

N0(q) =

n0∑
i=0

biq
n0−i, D0(q) = qn0 +

n0∑
i=1

aiq
n0−i. (6.2)

Letting u0 and y0 denote the input and output, respectively, of G0, that is,

y0(k) = G0(q)u0(k), (6.3)

it follows that, for all k ≥ 0,

y0(k) = −a1y0(k − 1)− · · · − an0y0(k − n0) + b0u0(k) + · · ·+ bn0u0(k − n0), (6.4)

which can be written as

y0(k) = φy0,u0(k)θ, (6.5)

where

φy0,u0(k)
4
= [−y0(k − 1) · · · − y0(k − n0) u0(k) · · · u0(k − n0)], (6.6)

θ
4
= [a1 · · · an0 b0 · · · bn0 ]T. (6.7)
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The measured output y of G0 is defined as

y(k)
4
= y0(k) + w0(k) = G0(q)u0(k) + w0(k), (6.8)

where w0 is a noise signal. Since w0 is added to y0 in (6.8), it appears to represent

sensor noise. However, w0 can represent either sensor or process noise or both by

viewing w0 as the output of a system Gw, that is,

w0(k) = Gw(q)w(k) =
Nw(q)

Dw(q)
w(k), (6.9)

where Gw is a proper transfer function of order n̄ and w is zero-mean white noise

with standard deviation σw. It follows that, for all k ≥ 0,

w0(k) = −ā1w0(k − 1)− · · · − ān̄w0(k − n̄) + b̄0w(k) + · · ·+ b̄n̄w(k − n̄), (6.10)

which can be written as

w0(k) = φw0,w(k)θw, (6.11)

where

φw0,w(k)
4
= [−w0(k − 1) · · · − w0(k − n̄) w(k) · · · w(k − n̄)], (6.12)

θw
4
= [ā1 · · · ān̄ b̄0 · · · b̄n̄]T. (6.13)

We stress that the dynamics of (6.9) may or may not be the same as those of

(6.3), and thus w0 may or may not contribute to y in the same way that u0 does.

For example, suppose that G0 represents the open-loop plant G. To represent process

noise that drives the plant in the same way that the control does, Gw can be chosen

to be equal to G0 and the initial conditions of Gw and G can be set to provide the
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correct free response. The initial conditions of G0 and Gw are accounted for by the

use of the forward shift operator “q” rather than the Laplace “s.” Consequently,

by suitable choice of Gw and its initial conditions, the signal w0 can represent either

process noise or sensor noise.

6.3 Identification Algorithms

In this section we briefly review least squares (LS) and prediction error methods

(PEM) for estimating the coefficients of G0. For simplicity we assume throughout

this chapter that the order n0 of G0 is known. For the direct closed-loop identifica-

tion algorithms, n0 represents the plant order, whereas, for the indirect closed-loop

identification algorithms, n0 represents the order of the closed-loop transfer function.

We also assume that all random processes are ergodic so that ensemble averages are

equal, with probability 1, to time averages of realizations.

6.3.1 Least Squares

In order to estimate G0, we use the model structure

Gm(q)
4
=
Nm(q)

Dm(q)
, (6.14)

where Nm(q)
4
=
∑n0

i=0 b̂iq
n0−i and Dm(q)

4
= qn0 +

∑n0

i=1 âiq
n0−i. Define

φy(k)
4
= [−y(k − 1) · · · − y(k − n0)], φu0(k)

4
= [u0(k) · · · u0(k − n0)], (6.15)

91



and ñ
4
= max(n0, n̄). Let ` ≥ ñ be the number of samples of y and u0, and define

Φy,`
4
=


φy(ñ)

...

φy(`)

 ∈ R(`−ñ+1)×n0 , Φu0,`
4
=


φu0(ñ)

...

φu0(`)

 ∈ R(`−ñ+1)×(n0+1), (6.16)

Φy,u0,`
4
=

[
Φy,` Φu0,`

]
∈ R(`−ñ+1)×(2n0+1), Ψy,`

4
=


y(ñ)

...

y(`)

 ∈ R`−ñ+1. (6.17)

Then, the least squares estimate θ̂LS
` of θ, which is defined by

θ̂LS
`

4
= arg min

θ̄∈R2n0+1

∥∥Φy,u0,`θ̄ −Ψy,`

∥∥
F
, (6.18)

is given by

θ̂LS
`

4
= (ΦT

y,u0,`
Φy,u0,`)

+ΦT
y,u0,`

Ψy,`, (6.19)

where “+” denotes the pseudoinverse.

Next, define the (2n0 + 1)× (2n0 + 1) positive-semidefinite covariance matrices

Γ
4
=

E



Y2(k) · · · Y(k)Y(k + n0 − 1) −Y(k)U0(k + 1) · · · −Y(k)U0(k − n0 + 1)

...
. . .

...
...

. . .
...

Y(k)Y(k + n0 − 1) · · · Y2(k) −Y(k)U0(k + n0) · · · −Y(k)U0(k)

−Y(k)U0(k + 1) · · · −Y(k)U0(k + n0) U2
0 (k) · · · U0(k)U0(k + n0)

...
. . .

...
...

. . .
...

−Y(k)U0(k − n0 + 1) · · · −Y(k)U0(k) U0(k)U0(k + n0) · · · U2
0 (k)


,

(6.20)
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Γ0
4
=

E



Y2
0 (k) · · · Y0(k)Y0(k + n0 − 1) −Y0(k)U0(k + 1) · · · −Y0(k)U0(k − n0 + 1)

...
. . .

...
...

. . .
...

Y0(k)Y0(k + n0 − 1) · · · Y2
0 (k) −Y0(k)U0(k + n0) · · · −Y0(k)U0(k)

−Y0(k)U0(k + 1) · · · −Y0(k)U0(k + n0) U2
0 (k) · · · U0(k)U0(k + n0)

...
. . .

...
...

. . .
...

−Y0(k)U0(k − n0 + 1) · · · −Y0(k)U0(k) U0(k)U0(k + n0) · · · U2
0 (k)


.

(6.21)

It thus follows that

Γ
wp1
= lim

`→∞

1

`
ΦT
y,u0,`

Φy,u0,`, Γ0
wp1
= lim

`→∞

1

`
ΦT
y0,u0,`

Φy0,u0,`. (6.22)

Define the n0 × n̄ matrix HGw , where, if n̄ < n0, then

HGw

4
=



∑∞
i=0H

2
w,i · · ·

∑∞
i=0 Hw,iHw,n̄−1+i

...
. . .

...∑∞
i=0 Hw,iHw,n̄−1+i · · ·

∑∞
i=0H

2
w,i

... · · · ...∑∞
i=0Hw,iHw,n0−1+i · · ·

∑∞
i=0Hw,iHw,n0−n̄+i


, (6.23)

if n̄ = n0, then

HGw

4
=


∑∞

i=0H
2
w,i · · ·

∑∞
i=0Hw,iHw,n0−1+i

...
. . .

...∑∞
i=0Hw,iHw,n0−1+i · · ·

∑∞
i=0H

2
w,i

 , (6.24)
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and, if n̄ > n0, then

HGw
4
=


∑∞

i=0H
2
w,i · · ·

∑∞
i=0Hw,iHw,n0−1+i · · ·

∑∞
i=0Hw,iHw,n̄−1+i

...
. . .

... · · ·
...∑∞

i=0Hw,iHw,n0−1+i · · ·
∑∞

i=0H
2
w,i · · ·

∑∞
i=0Hw,iHw,n̄−n0+i

 ,
(6.25)

where Hw,i is the ith Markov parameter of Gw. Furthermore, define H̃Gw ∈ Rn0×n0

to be the right-hand side of (6.24). Note that H̃Gw has size n0× n0 irrespective of n̄.

Lemma 2. Let u0 and w be realizations of zero-mean, uncorrelated stationary white

random processes U0 and W , respectively, with finite second moments, and let w0 be

given by (6.9). Then,

Γ = Γ0 +

 σ2
wH̃Gw 0n0×(n0+1)

0(n0+1)×n0 0(n0+1)×(n0+1)

 . (6.26)

Proof.

First, note that

Φy,` = Φy0,` + Φ̃w0,`, (6.27)
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where

Φy0,` =


−y0(ñ− 1) · · · −y0(ñ− n0)

... · · · ...

−y0(`− 1) · · · −y0(`− n0)

 ∈ R(`−ñ+1)×n0 , (6.28)

Φ̃w0,` =


−w0(ñ− 1) · · · −w0(ñ− n0)

... · · · ...

−w0(`− 1) · · · −w0(`− n0)

 ∈ R(`−ñ+1)×n0 . (6.29)

Next, note that

lim
`→∞

1

`
ΦT
y0,`

Φy,`
wp1
= lim

`→∞

1

`
ΦT
y0,`

Φy0,`, lim
`→∞

1

`
ΦT
u0,`

Φy,`
wp1
= lim

`→∞

1

`
ΦT
u0,`

Φy0,`, (6.30)

lim
`→∞

1

`
Φ̃T
w0,`

Φy,`
wp1
= lim

`→∞

1

`
Φ̃T
w0,`

Φ̃w0,`
wp1
= σ2

wH̃Gw . (6.31)

Using (6.22), (6.27), (6.30), and (6.31) yields

Γ
wp1
= lim

`→∞

1

`

 ΦT
y,`Φy,` ΦT

y,`Φu0,`

ΦT
u0,`

Φy,` ΦT
u0,`

Φu0,`

 = lim
`→∞

1

`

 ΦT
y0,`

Φy0,` + Φ̃T
w0,`

Φ̃w0,` ΦT
y0,`

Φu0,`

ΦT
u0,`

Φy0,` ΦT
u0,`

Φu0,`

 ,
= lim

`→∞

1

`

 ΦT
y0,`

Φy0,` ΦT
y0,`

Φu0,`

ΦT
u0,`

Φy0,` ΦT
u0,`

Φu0,`

+ lim
`→∞

1

`

 Φ̃T
w0,`

Φ̃w0,` 0n0×(n0+1)

0(n0+1)×n0
0(n0+1)×(n0+1)

 ,
= Γ0 +

 σ2
wH̃Gw 0n0×(n0+1)

0(n0+1)×n0
0(n0+1)×(n0+1)

 .

Note that, if ` > 3ñ, then Φy,u0,` is a tall matrix. The following result is a

consequence of the fact that ` 7→ σmin(ΦT
y,u0,`

Φy,u0,`) is nondecreasing.

Lemma 3. Let ñ ≥ 1. Then, Γ is positive definite if and only if, with probabil-
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ity 1, there exists ` ≥ 3ñ such that rank Φy,u0,` = 2n0 + 1.

Next, define the n0 × (n̄+ 1) matrix Hw, where, if n̄ < n0, then

Hw
4
=



0 Hw,0 · · · Hw,n̄−1

...
. . . . . .

...

0 · · · 0 Hw,0

0(n0−n̄)×1 · · · · · · 0(n0−n̄)×1


∈ Rn0×(n̄+1), (6.32)

if n̄ = n0, then

Hw
4
=


0 Hw,0 · · · Hw,n0−1

...
. . . . . .

...

0 · · · 0 Hw,0

 ∈ Rn0×(n0+1), (6.33)

and, if n̄ > n0, then

Hw
4
=


0 Hw,0 · · · Hw,n̄−n0 · · · Hw,n̄−1

...
. . . . . .

...
. . . . . .

0 · · · 0 Hw,0 · · · Hw,n̄−n0

 ∈ Rn0×(n̄+1). (6.34)

Also, define

Nw
4
=


b̄0

...

b̄n̄

 , Dw
4
=


ā1

...

ān̄

 , θw
4
=

 Dw

Nw

 ∈ R2n̄+1, (6.35)

where Nw(q) =
∑n̄

i=0 b̄iq
n̄−i, and Dw(q) = qn̄ +

∑n̄
i=1 āiq

n̄−i.

Theorem 6.1. Let u0 and w be realizations of zero-mean, uncorrelated stationary

white random processes U0 and W , respectively, with finite second moments, and let
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w0 be given by (6.9). Then,

Γ lim
`→∞

θ̂LS
`

wp1
= Γ0θ +

 σ2
wHGwDw − σ2

wHwNw

0(n0+1)×1

 . (6.36)

If, in addition, Γ is positive definite, then the following statements are equivalent:

i) H̃GwD0 = HGwDw −HwNw.

ii) lim`→∞ θ̂
LS
`

wp1
= θ.

Proof.

Note that (6.19) implies that

ΦT
y,u0,`

Φy,u0,`θ̂
LS
` = ΦT

y,u0,`
Ψy,`. (6.37)

Dividing (6.37) by ` and letting `→∞ yields

lim
`→∞

1

`
ΦT
y,u0,`

Φy,u0,`θ̂
LS
` = lim

`→∞

1

`
ΦT
y,u0,`

Ψy,`. (6.38)

Using (6.22) we can write

lim
`→∞

1

`
ΦT
y,u0,`

Φy,u0,`θ̂
LS
`

wp1
= Γ lim

`→∞
θ̂LS
` (6.39)

Next, note that

Ψy,` = Ψy0,` + Ψw0,`, (6.40)

where

Ψy0,` = Φy0,u0,`θ, Ψw0,` = Φw0,w,`θw, (6.41)
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and

Φy0,u0,`
4
=


φy0,u0(ñ)

...

φy0,u0(`)

 ∈ R(`−ñ+1)×(2n0+1),Φw0,w,`
4
=


φw0,w(ñ)

...

φw0,w(`)

 ∈ R(`−ñ+1)×(2n̄+1).

Using (6.40) and (6.41) we can write

ΦT
y,u0,`

Ψy,` = ΦT
y,u0,`

Ψy0,` + ΦT
y,u0,`

Ψw0,`

= ΦT
y,u0,`

Φy0,u0,`θ + ΦT
y,u0,`

Φw0,w,`θw, (6.42)

where

Φy0,u0,`
4
= [Φy0,` Φu0,`], Φw0,w,`

4
= [Φw0,` Φw,`], (6.43)

Φy0,`
4
=


−y0(ñ− 1) · · · −y0(ñ− n0)

... · · · ...

−y0(`− 1) · · · −y0(`− n0)

 , Φw,`
4
=


w(ñ) · · · w(ñ− n̄)

... · · · ...

w(`) · · · w(`− n̄)

 ,
(6.44)

Φw0,`
4
=


−w0(ñ− 1) · · · −w0(ñ− n̄)

... · · · ...

−w0(`− 1) · · · −w0(`− n̄)

 . (6.45)

Moreover, note that

Φy,` = Φy0,` + Φ̃w0,`,
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where

Φ̃w0,`
4
=


−w0(ñ− 1) · · · −w0(ñ− n0)

... · · · ...

−w0(`− 1) · · · −w0(`− n0)

 ∈ R(`−ñ+1)×n0 . (6.46)

Using (6.43), (6.42) can be written as

ΦT
y,u0,`

Ψy,` =

 ΦT
y,`Φy0,` ΦT

y,`Φu0,`

ΦT
u0,`

Φy0,` ΦT
u0,`

Φu0,`

 θ +

 ΦT
y,`Φw0,` ΦT

y,`Φw,`

ΦT
u0,`

Φw0,` ΦT
u0,`

Φw,`

 θw (6.47)

Since U and W are uncorrelated zero-mean random processes, it follows that

lim
`→∞

1

`
ΦT
y,`Φy0,`

wp1
= lim

`→∞

1

`
ΦT
y0,`

Φy0,`, (6.48)

lim
`→∞

1

`
ΦT
y,`Φu0,`

wp1
= lim

`→∞

1

`
ΦT
y0,`

Φu0,`, (6.49)

lim
`→∞

1

`
ΦT
y,`Φw0,`

wp1
= lim

`→∞

1

`
Φ̃T
w0,`

Φw0,`
wp1
= σ2

wHGw , (6.50)

lim
`→∞

1

`
ΦT
y,`Φw,`

wp1
= lim

`→∞

1

`
Φ̃T
w0,`

Φw,`
wp1
= −σ2

wHw, (6.51)

lim
`→∞

1

`
ΦT
u0,`

Φw0,`
wp1
= 0n0×n̄, lim

`→∞

1

`
ΦT
u0,`

Φw,`
wp1
= 0n0×n̄+1. (6.52)

Using (6.48)–(6.52), dividing (6.47) by `, and letting `→∞ yields

lim
`→∞

1

`
ΦT

y,u0,`Ψy,`
wp1
= lim

`→∞

1

`

 ΦT
y0,`

Φy0,` ΦT
y0,`

Φu0,`

ΦT
u0,`

Φy0,` ΦT
u0,`

Φu0,`

 θ +

 σ2
wHGw −σ2

wHw

0(n0+1)×n̄ 0(n0+1)×(n̄+1)

 θw
= Γ0θ +

 σ2
wHGwDw − σ2

wHwNw

0(n0+1)×1

 . (6.53)

Using (6.39) and (6.53), (6.38) yields

Γ lim
`→∞

θ̂LS
` = Γ0θ +

 σ2
wHGwDw − σ2

wHwNw

0(n0+1)×1

 .
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Theorem 6.1 assumes that the signals U0 and W used for regression are uncorre-

lated. These signals are correlated for the direct closed-loop identification architec-

tures considered in Section 4, but they are uncorrelated for the indirect closed-loop

architectures considered in Section 5. Note that, depending on the closed-loop iden-

tification architecture, the model input u0 might or might not represent the control

signal.

Assuming that Γ is positive definite, Theorem 6.1 shows that the bias b in the

asymptotic least squares estimate lim`→∞ θ̂
LS
` is given by

b
4
= lim

`→∞
θ̂LS
` − θ =

(
Γ−1Γ0 − I2n0+1

)
θ + Γ−1

 σ2
wHGwDw − σ2

wHwNw

0(n0+1)×1

 . (6.54)

By setting b = 0, Theorem 6.1 gives the necessary and sufficient condition i) under

which the least squares estimate is consistent. As a special case, assume that n̄ = n0,

Nw = 1, and Dw = D0. Then H̃Gw = HGw and, since the relative degree of Gw is n0,

it follows that Hw = 0n0×(n0+1). Therefore, i) is satisfied, and thus b = 0. This case is

considered in [95, p. 205] and [83, p. 186].

6.3.2 Prediction Error Methods

For prediction error methods, y is written as

y(k) = G0(q)u0(k) + w0(k), (6.55)

where

w0(k) = Gw(q)w(k) (6.56)
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and Gw represents the noise dynamics, the order of Gw is n̄, and w is zero-mean white

noise. The one-step-ahead predictor of (6.55) is defined by [95]

ŷ(k|θ̂`, θ̂w,n̄,`)
4
= (1−Gw(q, θ̂w,n̄,`)

−1)u0(k) +Gw(q, θ̂w,n̄,`)
−1G0(q, θ̂`)y(k), (6.57)

where G0(q, θ̂`) and Gw(q, θ̂w,n̄,`) are models of G0(q) and Gw(q), respectively, and

Gw(q, θ̂w,n̄,`) is minimum phase.

The prediction error is defined as

ε(k|θ̂`, θ̂w,n̄,`)
4
= y(k)− ŷ(k|θ̂`, θ̂w,n̄,`). (6.58)

From the one-step-ahead predictor model (6.57) the prediction error estimate θ̂PEM
`

of θ is

θ̂PEM
` = arg min

θ̄∈R2n0+1,θ̄w,n̄∈R2n̄+1

V`(θ̄`, θ̄w,n̄,`), (6.59)

V`(θ̄`, θ̄w,n̄,`) =
1

`

∑̀
k=1

‖ε(k|θ̄`, θ̄w,n̄,`)‖2, (6.60)

In Sections 6.6 and 6.7 we use the Matlab System Identification Toolbox [96] to obtain

PEM-based estimates of the plant NMP zeros. Note that the predictor filters in (6.57)

are functions of both G0 and the noise model Gw. Unlike LS, PEM estimates a model

of the noise dynamics Gw. As discussed in [83, p. 209], if the order of the model is

underparameterized, the parameter estimates will converge to a minimum point of

the asymptotic loss function, and thus will not give consistent estimates. Therefore,

for all examples in this chapter, we choose the order of the model of Gw to be equal to

order n0 of G0. When utilizing PEM within the System Identification Toolbox, we use

the Box-Jenkins model structure. Through numerical testing (not shown) the choices

of model structures yielded similar trends for each of the examples we consider and

101



are thus omitted in the results.

6.4 Direct Closed-Loop Architectures

Consider the discrete-time closed-loop system in Fig.6.1 consisting of the SISO

transfer functions, plant G of order n, and controller Gc of order nc. Note that the

plant and controller are defined as

G(q)
4
=
N(q)

D(q)
, Gc(q)

4
=
Nc(q)

Dc(q)
. (6.61)

The signal r is the command, y is the measured output, the error e = r − y, and w0

represents sensor noise. Direct closed-loop identification is used to identify the open-

loop transfer function within a closed-loop system by using measurements of the input

and output of the plant. In this section we define three architectures associated with

direct closed-loop identification. For all three of the direct closed-loop architectures,

the estimated transfer function Gm is of order n, the plant G = G0, and the noise

transfer function Gw = 1. As stated in Section 6.3.2, the order of the PEM noise

model estimate is chosen to be of order n.

6.4.1 Direct Closed-Loop Identification

In direct closed-loop identification (DCL), the plant G = G0 is identified from the

control input u to the output y as shown in Fig. 6.1. The measured output y is given

by

y(k) = y0(k) + w0(k), (6.62)
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where

y0(k)
4
= G(q)u(k). (6.63)

+ Gc G +

ID

r e u y0

w0

−
y

Figure 6.1: Direct closed-loop identification from u to y.

6.4.2 Standard Auxiliary Direct Closed-Loop Identification

In standard auxiliary direct closed-loop (ADCL/S) identification, the auxiliary

signal v0 is added to the controller output uc, and G = G0 is identified by using u

and y, where

u(k) = uc(k) + v0(k), (6.64)

as shown in Fig. 6.2. Note that, if v0 = 0, then ADCL/S is equivalent to DCL

identification.

6.4.3 Intercalated Auxiliary Direct Closed-Loop Identification

In intercalated auxiliary direct closed-loop (ADCL/I) identification, the auxiliary

signal v0 is added to the controller output uint between the numerator and denomi-
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+ Gc + G +

ID

r e uc

v0

u y0

w0

−
y

Figure 6.2: Standard auxiliary direct closed-loop identification from u to y.

nator of the controller, where

uint(k) =
Nc(q)

Dc(q)
e(k) +

qnc −Dc(q)

Dc(q)
v0(k), (6.65)

and G = G0 is identified by using u and y as shown in Fig. 6.3, where, by using

(6.64) and (6.65),

u(k) =
Nc(q)

Dc(q)
e(k) +

qnc

Dc(q)
v0(k). (6.66)

Note that, if v0 = 0, then u = uint and ADCL/I is equivalent to DCL identification.

+
Nc(q)
qnc

+ + G(q) +

qnc−Dc(q)
qnc

ID

r e uint

v0

u y0

w0

−

y

Figure 6.3: Intercalated auxiliary direct closed-loop identification from u to y.
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6.5 Indirect Closed-Loop Architectures

Indirect closed-loop identification can be used to estimate the open-loop transfer

function within a closed-loop system by first estimating the closed-loop system and

then determining the open-loop plant by using knowledge of the controller. However,

the zeros of the plant do not move when the loop is closed. Therefore, for the purpose

of estimating the NMP plant zeros, it is not necessary to extract a model of the open-

loop plant. In this section we define three architectures associated with indirect

closed-loop identification. For all three of the indirect closed-loop architectures, the

true model G0 varies for each architecture but the order for each is the same, that is

n0 = n+nc. The noise model Gw for each architecture is the sensitivity function and

is also of order n̄ = n+ nc. Therefore, the estimated transfer function Gm is of order

n+ nc, and as stated in Section 6.3.2, the order of the PEM noise model estimate is

chosen to be of order n0.

6.5.1 Indirect Closed-Loop Identification

In indirect closed-loop identification (ICL), the closed-loop transfer function from

r to y is identified as shown in Fig. 6.4. The measured output y is given by

y(k) = T (q)r(k) + S(q)w0(k), (6.67)

where

T (q) =
G(q)Gc(q)

1 +Gc(q)G(q)
=

N(q)Nc(q)

D(q)Dc(q) +N(q)Nc(q)
, (6.68)

S(q) =
1

1 +Gc(q)G(q)
=

D(q)Dc(q)

D(q)Dc(q) +N(q)Nc(q)
. (6.69)

Note that for ICL, G0(q) = T (q) with n0 = n+ nc, and Gw(q) = S(q).
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+ Gc G +

ID

r e u y0

w0

−
y

Figure 6.4: Indirect closed-loop identification from r to y.

6.5.2 Standard Auxiliary Indirect Closed-Loop Identification

In auxiliary indirect closed-loop identification (AICL) as well as in ADCL iden-

tification, we specify an auxiliary signal v0 that is added to the controller output.

Unlike ADCL identification, however, we identify the closed-loop transfer function

from r to y. In standard indirect auxiliary closed-loop identification (AICL/S), the

auxiliary signal v0 is added to the controller output uc, as shown in Fig. 6.5, where

v0(k) = αr(k) and α is a constant scalar value. The measured output y is given by

y(k) = T (q)r(k) + Γ(q)v0(k) + S(q)w0(k),

= (T (q) + αΓ(q))r(k) + S(q)w0(k) (6.70)

where T and S are defined in (6.68) and (6.69), respectively, and

Γ(q) =
G(q)

1 +Gc(q)G(q)
=

N(q)Dc(q)

D(q)Dc(q) +N(q)Nc(q)
, (6.71)

Note that the zeros of the transfer functions T and Γ both include the zeros of G and

the transfer function from r to y is

G0(q) = T (q) + αΓ(q) =
N(q)(Nc(q) + αDc(q))

D(q)Dc(q) +N(q)Nc(q)
. (6.72)
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and the noise transfer function Gw(q) = S(q).

+ Gc(q) +

α

G(q) +

ID

r e uc u y0

w0

−
y

v0

Figure 6.5: Standard auxiliary indirect closed-loop identification from r to y.

6.5.3 Intercalated Auxiliary Indirect Closed-Loop Identification

In intercalated auxiliary indirect closed-loop identification (AICL/I), the auxiliary

signal v0 is added to the controller output uint between the numerator and denomina-

tor of the controller written as in (6.65) with the plant input u specified in (6.66). The

transfer function from r to y is identified as shown in Fig. 6.6, where v0(k) = αr(k)

and α is a constant scalar.

+
Nc(q)
qnc

+ +

α

G +

qnc−Dc(q)
qnc

ID

r e uint u y0

w0

−

y

v0

Figure 6.6: Intercalated auxiliary indirect closed-loop identification from v0 and r to y.
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The plant output y is given by

y(k) = T (q)r(k) + Γint(q)v0(k) + S(q)w0(k),

= (T (q) + αΓint(q))r(k) + S(q)w0(k), (6.73)

where

Γint(q) = Γ(q)
qnc

Dc(q)
=

N(q)qnc

D(q)Dc(q) +N(q)Nc(q)
, (6.74)

and T and S are defined in (6.68) and (6.69), respectively. Note that Γint given by

(6.74) is similar to (6.71) except that the numerator of (6.74) includes nc zeros at 0

rather than the controller denominator. The transfer function from r to y is given by

G0(q) = T (q) + αΓint(q) =
N(q)(Nc(q) + αqnc)

D(q)Dc(q) +N(q)Nc(q)
, (6.75)

and the noise transfer function Gw(q) = S(q). For each identification architecture,

Table 6.1 summarizes the input to the estimated transfer function Gm, the estimated

transfer function Gm, and the order of Gm.

Table 6.1: Summary of direct and indirect closed-loop identification architectures with inputs, esti-
mated transfer function, and order of the estimated transfer function.

Architecture Input of Gm Gm Order of Gm

DCL Gc(q)e(k) G(q) n

ADCL/S Gc(q)e(k) + v0(k) G(q) n

ADCL/I
Gc(q)e(k) +

qnc

Dc(q)v0(k)
G(q) n

ICL r(k) T (q) n+ nc

AICL/S r(k) T (q) + αΓ(q) n+ nc

AICL/I r(k) T (q)+αΓint(q) n+ nc
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6.6 Numerical Investigation of Direct Closed-Loop Identifi-

cation Architectures

In this section, we investigate the accuracy of the NMP-zero estimates obtained

from LS and PEM for the direct closed-loop architectures. Two examples are consid-

ered, both of which involve a third-order plant with one minimum-phase zero and one

NMP zero. The first plant is asymptotically stable with a pole near the unit circle,

while the second plant is unstable.

Example 6.2 (Asymptotically stable, NMP plant.). Consider the asymptotically

stable, NMP plant

G(q) =
(q− 0.6)(q− 1.5)

(q− 0.1)(q− 0.5)(q− 0.98)
, (6.76)

where the true NMP zero is zNMP = 1.5, and the controller is given by

Gc(q) =
−0.5174q2 + 0.3315q− 0.02795

q3 − 0.2265q2 + 0.6855q− 0.5142
. (6.77)

The exogenous inputs r, w0, and v0 (when applicable) are independent zero-mean

white noise signals whose standard deviations are listed in Table 6.2. For each archi-

tecture, the signal w0 is adjusted so that the signal-to-noise ratio defined by

SNRdB
4
= 20 log10

RMS(y)

RMS(w0)
, (6.78)

where RMS(x) represents the root mean square of the sampled signal x, is fixed to

be 31.5 dB for all simulations. This noise level corresponds to an SNR of 40.

For the direct closed-loop architectures and both identification algorithms, Fig.

6.7 shows the mean absolute value of the error in the estimated NMP zero and the

corresponding standard deviation averaged over 2000 independent realizations of the
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Table 6.2: Direct closed-loop architecture exogenous-signal standard deviations for Example 6.2.
The standard deviation of the noise w0 is adjusted so that the signal-to-noise ratio (6.78) is 31.5 dB
for each simulation.

Architecture Command r Auxiliary Signal v0 Noise w0

DCL 1.2 − 0.024

ADCL/S 1.2 0.5 0.034

ADCL/I 1.2 0.5 0.032

inputs for increasing number of samples `. The NMP-zero estimate is found by taking

the minimum of the difference between the real part of the roots of the estimated

transfer function numerator and the true zero zNMP. Note that, since the input u is

correlated with the noise w0, the LS estimates are not consistent for each of the three

architectures. In contrast, the accuracy of the PEM estimates improves as the number

of samples increases, thus suggesting consistency. For both identification algorithms,

the standard deviation decreases in a similar fashion, with PEM at a lower value.

Figure 6.7: Simulation statistics for Example 6.2 for the direct closed-loop architectures for both
identification algorithms. The upper plot shows the absolute value of the mean NMP error over
2000 independent realizations of the inputs over varying number of samples. The lower plot shows
the standard deviation of the NMP error.
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Table 6.3 compares the accuracy of the LS estimates, where the NMP-zero errors

are averaged over ` = 105 samples, with the error based on the analytical bias expres-

sion (6.54). Note that, because of the correlation between the input u and the noise

w0, the NMP-zero error based on (6.54) is inaccurate by an order of magnitude.

Table 6.3: Direct closed-loop architecture comparison between the LS NMP zero error estimates
with ` = 105 and the NMP error based on (6.54) for Example 6.2

Architecture
Averaged NMP-Zero

Error
NMP-Zero Error
Based on (6.54)

DCL 2.92× 10−4 4.54× 10−3

ADCL/S 7.98× 10−4 3.61× 10−3

ADCL/I 1.16× 10−4 3.63× 10−3

Example 6.6.2: Unstable, NMP plant. Consider the unstable, NMP plant

G(q) =
(q− 0.6)(q− 1.5)

(q− 0.1)(q− 0.5)(q− 1.3)
, (6.79)

where the true NMP zero location zNMP = 1.5, and the stabilizing controller is

Gc(q) =
−6.357q2 + 3.827q− 0.3191

q3 + 0.1312q2 + 6.943q− 4.419
. (6.80)

The input to the system, r, w0, and v0 (where applicable), are all independent zero

mean white noise signals whose standard deviations are listed in Table 6.4. As in

the previous example, w0 is adjusted in order so that the signal-to-noise ratio is a

constant 31.5 dB for all simulations.

For all three direct closed-loop architectures and both identification algorithms,

Fig. 6.8 shows the absolute value of the mean errors in the estimated NMP zero
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Table 6.4: Direct closed-loop architecture input signal standard deviations for Example 6.2. The
nosie w0 is regulated so that the signal-to-noise ratio (6.78) remains at 31.5 dB for each simulation.

Architecture Command r Auxiliary Signal v0 Noise w0

DCL 0.134 − 0.033

ADCL/S 0.134 0.5 0.147

ADCL/I 0.134 0.5 0.040

and the standard deviations based on 2000 independent realizations of the inputs for

various values of `. Note that, as in the last example, the LS result does not yield

consistency for each of the three architectures since the input u is correlated with the

noise w0, whereas PEM has a trend of consistency. For both identification algorithms,

the standard deviation decreases as the number of samples increases.

In all three direct closed-loop architectures, the input u is correlated with the

noise signal w0. Table 6.3 provides the mean of NMP-zero error obtained from LS

averaged over 2000 independent realizations of the inputs at ` = 105 samples and

using the results based on (6.54). Note that, due to the correlation between the input

u and the noise w0, the NMP error based on (6.54) is inaccurate.

Table 6.5: Comparison for the direct closed-loop architectures of the LS NMP-zero error estimates
with ` = 105 and the NMP error based on (6.54) for Example 6.6.2.

Architecture
Averaged NMP-Zero

Error
NMP-Zero Error
Based on (6.54)

DCL 0.194 0.353

ADCL/S 0.183 0.333

ADCL/I 0.167 0.309
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Figure 6.8: Simulation statistics for Example 6.6.2 for all three direct closed-loop architectures for
both identification algorithms. The upper plot shows the absolute value of the mean NMP error
over 2000 independent realizations of the inputs over varying number of samples. The lower plot
shows the standard deviation of the NMP error.
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6.7 Numerical Investigation of Indirect Closed-Loop Identi-

fication Architectures

In this section, the same two examples that are used in the previous section are

used to illustrate the consistency in computing the NMP zero using both LS and

PEM identification algorithms for all three indirect closed-loop architectures.

Example 6.7.1: Asymptotically stable, NMP plant. We consider the asymptoti-

cally stable NMP plant and controller in Example 6.1 The inputs into the system, r

and w0, are both independent zero-mean white noise signals and for the AICL/S and

the AICL/I architectures, the value of α = 0.5, such that v0(k) = 0.5r(k). As in the

previous examples, the standard deviation of w0 is adjusted so that the signal-to-noise

ratio is a constant 31.5 dB for all simulations shown in Table 6.6.

For the indirect closed-loop architectures and both identification algorithms, Fig.
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Table 6.6: Indirect closed-loop architecture input signal standard deviations for Example 6.7.1. The
nosie w0 is regulated so that the signal-to-noise ratio (6.78) remains at 31.5 dB for each simulation.

Architecture Command r Noise w0

ICL 1.2 0.0235

AICL/S 1.2 0.0341

AICL/I 1.2 0.0267

6.9 shows the absolute value of the mean errors in the estimated NMP zero and

the standard deviations based on 2000 independent realizations of the inputs for

various values of `. Note that the LS result does not yield consistency for each of

the three architectures. Although the input signal r and w0 are uncorrelated and

both the model and noise transfer functions have the same denominator, the matrix

HwNw is not zero, and thus i) of Theorem 3.3 is not satisfied. For both identification

algorithms, the standard deviation decreases as the number of samples increases.

Figure 6.9: Simulation statistics for Example 6.7.1 for all three indirect closed-loop architectures for
both identification algorithms. The upper plot shows the absolute value of the mean NMP error
over 2000 independent realizations of the inputs over varying number of samples. The lower plot
shows the standard deviation of the NMP error.
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In all of the indirect closed-loop architectures, the input r is uncorrelated with

the noise signal w0. Table 6.7 provides the mean of the NMP-zero error from LS

averaged over 2000 independent realizations of the inputs at ` = 105 samples and

using the results based on (6.54). Note that, since the input r and noise w0 are

uncorrelated, the NMP error based on (6.54) agrees with the bias provided by the

analytical expression given by Theorem 3.3 as `→∞.

Table 6.7: Comparison of indirect closed-loop identification architecture between the LS NMP zero
error estimates with ` = 105 and the NMP error based on (6.54) for Example 6.7.1.

Architecture
Averaged NMP-Zero

Error
NMP-Zero Error
Based on (6.54)

ICL 0.84× 10−4 1.28× 10−4

AICL/S 1.80× 10−5 2.76× 10−5

AICL/I 1.70× 10−4 1.63× 10−4

Example 6.7.2: Unstable, NMP plant. We consider the same unstable, NMP

plant given in (6.79) and the stabilizing controller in (6.80) for the use in the com-

parison for all of the three indirect architectures. The inputs into the system, r and

w0, are both independent zero-mean white noise signals and for the AICL/S and the

AICL/I architectures, the value of α = 0.5, such that v0(k) = 0.5r(k). As in the pre-

vious examples, the standard deviation of w0 is adjusted so that the signal-to-noise

ratio is a constant 31.5 dB for all simulations shown in Table 6.8.

Table 6.8: Indirect closed-loop architecture input signal standard deviations for Example 6.7.2. The
nosie w0 is regulated so that the signal-to-noise ratio (6.78) remains at 31.5 dB for each simulation.

Architecture Command r Noise w0

ICL 0.134 0.0334

AICL/S 0.134 0.0383

AICL/I 0.134 0.0322

For all three indirect closed-loop architectures and both identification algorithms,
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Fig. 6.10 shows the absolute value of the mean errors in the estimated NMP zero and

the standard deviations based on 2000 independent realizations of the inputs for var-

ious values of `. Note that, for all of the three architectures, the LS estimates are not

consistent. Although the input signal r and w0 are uncorrelated and both the model

and noise transfer functions have the same denominator, the matrix HwNw is not

zero, and thus i) of Theorem 3.3 is not satisfied. For both identification algorithms,

the standard deviation decreases as O(`−1/2) as the number of samples increases.

Figure 6.10: Simulation statistics for Example 6.7.2 for all three indirect closed-loop architectures
for both identification algorithms. The upper plot shows the absolute value of the mean NMP error
over 2000 independent realizations of the inputs over varying number of samples. The lower plot
shows the standard deviation of the NMP error.
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In all three indirect closed-loop architectures, the input r is uncorrelated with

the noise signal w0. Table 6.9 provides the averages of the NMP-zero errors using

the LS algorithm for 2000 independent realizations of the inputs at ` = 105 samples

and using the results based on (6.54). Note that, since the input r and noise w0 are

uncorrelated, the NMP-zero error based on (6.54) agrees with the bias provided by

116



the analytical expression given by Theorem 3.3 as `→∞.

Table 6.9: Indirect closed-loop architecture comparison between the LS NMP zero error estimates
with ` = 105 and the NMP error based on (6.54) for Example 6.7.2.

Architecture
Averaged NMP-Zero

Error
NMP-Zero Error
Based on (6.54)

ICL 3.05× 10−3 3.26× 10−3

AICL/S 9.19× 10−3 9.44× 10−3

AICL/I 3.94× 10−3 3.95× 10−3

6.8 Conclusions and Future Research

The objective of this chapter was to numerically investigate the effectiveness of

architectures for closed-loop identification. Three direct closed-loop identification

architectures and three indirect closed-loop identification architectures were consid-

ered. These architectures included standard cases with and without auxiliary signals

as well as two novel architectures involving intercalated injection of the auxiliary

signal. Infinite impulse response models were fit using least squares (LS) estima-

tion, which provided a baseline method, and prediction error methods (PEM), which

account for noise correlation. To simplify the study, the plant order was assumed

to be known; for the indirect architectures, the auxiliary signal was chosen to be

a multiple of the command; and errors-in-variables noise was not considered. The

signal-to-noise ratio was normalized across all architectures. Motivated by adaptive

control, the performance metric was chosen to be the accuracy of the estimate of the

nonminimum-phase (NMP) zero of the plant. Two examples were considered, both

of which were third-order and NMP. One plant was asymptotically stable, and the

other was unstable.
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As expected, for all of the architectures and for both examples, the least squares

estimates exhibited bias, whereas the PEM estimates indicated consistency. In com-

paring architectures, the numerical results do not allow definitive conclusions, but

some observations can be made. Based on PEM for direct closed-loop identification,

standard injection of the auxiliary signal appears to be advantageous; direct closed-

loop and auxiliary direct closed-loop with intercalated injection provide roughly the

same accuracy. For indirect closed-loop identification, the conclusions are less clear.

For the asymptotically stable plant, standard injection of the auxiliary signal appears

to be advantageous, whereas, for the unstable plant, intercalated injection appears

advantageous.

In view of the practical importance of closed-loop identification, further investiga-

tion is warranted. A more detailed study would include consideration of instrumental

variables as an alternative to PEM, uncertainty in the plant order, EIV noise, and

higher order plants with multiple NMP zeros.
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CHAPTER 7

Retrospective Cost Adaptive Control and

Closed-Loop Identification for Target Model

Construction

7.1 Introduction

The complex aerodynamics encountered by flight vehicles typically requires some

form of gain scheduling, where the feedback control law is tailored to the current

flight condition. By using wind tunnel data to parameterize the force and moment

coefficients as functions of angle of attack, sideslip, and velocity, the feedback control

gains can be smoothly modulated to provide the desired closed-loop response over a

wide flight envelope [97, 98].

Although this approach is often highly successful, errors in the aerodynamic forces

and moments as well as unsteady effects can lead to degradation in the desired closed-

loop performance. In order to overcome these effects, robust controllers can be gain

scheduled [47, 99, 100], where, for each flight condition, the robust controller must ac-

count for the worst-case variation of the aerodynamic effects. This approach depends

on knowledge of the possible variations of the forces and moments and, assuming that

these variations can be modeled, may sacrifice performance under nominally modeled

conditions.
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As an alternative approach, adaptive control methods have been widely applied to

aerospace systems [5]. Although there is no precise definition of an adaptive controller,

an adaptive controller can be viewed as a robust control law that modifies its gains

in response to the actual plant dynamics, thereby overcoming the loss in performance

associated with robust control.

A key distinction between adaptive control and gain-scheduled control is the fact

the gain-scheduled controller gains change according to the autopilot logic. This

protocol facilitates flight certification and performance guarantees. In contrast, the

gains of an adaptive controller can change “on the fly” in response to the actual

aerodynamics encountered by the vehicle, whether or not these are modeled or even

modelable. Consequently, it is challenging to validate the flight performance of an

adaptive autopilot. These points are discussed in detail in [101–103].

To overcome these challenges, the present chapter investigates a hybrid approach,

called semi-adaptive control, where the baseline controller is gain-scheduled and an

adaptive controller is used to assist the baseline controller when its performance is

degraded for any reason. To illustrate this approach, we consider the well-known

benchmark problem of a planar three-degree-of-freedom (3DOF) missile [12, 48]. As-

suming accurately modeled aerodynamics scheduled on Mach number and angle of

attack, a three-loop autopilot (3LA) is designed in [99] to provide satisfactory and

reliable performance over a broad flight envelope. For the adaptive component of

the semi-active controller, we consider retrospective cost adaptive control (RCAC).

The theoretical development of RCAC is detailed in [8, 24, 104], and application to

the NASA GTM Model is presented in [11, 105]. In preliminary studies, RCAC was

applied to the 3DOF missile in [12, 13, 37].

The contents within the present chapter goes beyond [12, 13, 37] by taking ad-

vantage of recent developments described in [36]. In particular, it is shown in [36]

that the retrospective cost function used by RCAC is based on the residual of a fit
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between a specific closed-loop transfer function (called the intercalated transfer func-

tion) and the user-specified target model. The intercalated transfer function arises

due to the way in which the virtual controller perturbation, due to the adaptation, is

injected into the closed-loop system. Since plant zeros are invariant under feedback,

it immediately becomes clear why plant nonminimum-phase (NMP) zeros must be

reproduced in the target model: if these zeros are not included in the target model,

RCAC may cancel them.

For the 3DOF missile, it is possible to compute the NMP zeros as a function of

angle of attack and Mach number at each linearized flight condition. Although this

could be done, the estimates of the NMP zeros depend on the available model and

thus maybe erroneous due to model uncertainty. Therefore, we take an alternative

approach, where the NMP zeros of the missile are estimated online and the estimates

are used to update the target model at each time step. The contribution of this

chapter is thus a detailed study of the feasibility of semi-adaptive control, where

RCAC is used along with concurrent estimation of the plant NMP zeros in order

to update the target model. This approach is demonstrated using a fully nonlinear

simulation of the 3DOF missile.

Chapter Nomenclature

m = mass, kg

Iyy = moment of inertia, kg-m2

Sref = reference area, m2

dref = reference length, m

dIMU = distance of the IMU from the CG along the body frame x-axis, m

U = inertial velocity component along the body frame x-axis of the CG, m/s
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W = inertial velocity component along the body frame z-axis of the CG, m/s

V = magnitude of the velocity, m/s

M = Mach number

α = angle of attack, rad

γ = flight path angle, rad

θm = pitch angle, rad

q = pitch rate, rad/s

Fx = force about the CG along the body frame x-axis, N

Cx = aerodynamic force coefficient along the body frame x-axis

Fz = force about the CG along the body frame z-axis, N

Cz = aerodynamic force coefficient along the body frame z-axis

My = moment about the body frame y-axis, N-m

Cm = aerodynamic moment coefficient along the body frame y-axis

q̄ = dynamic pressure, N/m2

ρ = air density, kg/m3

δa = actuated fin deflection angle, rad

a = altitude dependent speed of sound, m/s

ρ = altitude dependent air density, kg/m3

qmeas = measured pitch rate, rad/s

Az,meas = measured normal acceleration from the inertial measurement unit, m/s2
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7.2 The Adaptive Servo Problem

Consider the discrete-time, linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), (7.1)

y0(k) = Cx(k) +Du(k) (7.2)

y(k) = y0(k) + w(k), (7.3)

e(k) = y(k)− r(k), (7.4)

where x(k) ∈ Rn is the state, y(k) ∈ R is the measurement, u(k) ∈ R is the control

input, r(k) ∈ R is the reference command, w(k) ∈ R is the sensor noise, and e(k) ∈ R

is the performance variable. The output of the system y0 can be written in terms of

the forward-shift operator q as

y0(k) = G(q)u(k), (7.5)

where

G(q)
4
= C(qIn − A)−1B +D =

N(q)

D(q)
(7.6)

Furthermore, the controller has the form

u(k) = Gc,k(q)e(k) =
Nc,k(q)

Dc,k(q)
e(k), (7.7)

where Gc,k(q) = Nc,k(q)/Dc,k(q) is updated at each time step based on the perfor-

mance metric e(k). Figure 7.1 illustrates the adaptive servo problem.
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+ Gc,k G +
r − e u y0

w
y

Figure 7.1: The adaptive servo problem.

7.3 The Retrospective Cost Adaptive Control Algorithm

In this section, the retrospective cost adaptive control (RCAC) algorithm is pre-

sented for application on the adaptive servo problem shown in Figure 7.1. The system,

G is assumed to be single-input, single-output (SISO) but extensions to RCAC oper-

ating on multiple-input, multiple-output systems are discussed in [8, 24, 106]. RCAC

minimizes the measured error e, which may be corrupted by noise.

7.3.1 The Controller Structure

The controller Gc,k is constructed as a strictly proper time-series dynamic com-

pensator of order nc, such that the control u(k) is given as

u(k) =
nc∑
i=1

Pi(k)u(k − i) +
nc∑
i=1

Qi(k)e(k − i), (7.8)

where Pi(k), Qi(k) ∈ R are the controller coefficients. The transfer function of the

controller from e to u is given by

Gc,k(q) =
(
qnc − P1(k)qnc−1 − · · · − Pnc(k)

)−1 (
Q1(k)qnc−1 + · · ·+Qnc(k)

)
. (7.9)

We focus in SISO controllers, and hence Gc,k is written as

Gc,k(q) =
Q1(k)qnc−1 + · · ·+Qnc(k)

qnc − P1(k)qnc−1 − · · · − Pnc(k)
=
Nc,k(q)

Dc,k(q)
. (7.10)
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Note that the controller coefficients in (7.8) are time-dependent, and thus Gc,k is a

linear time-varying controller. The controller (7.8) is expressed as

u(k) = φ(k)θ(k), (7.11)

where the regressor vector φ(k) and controller coefficient vector θ(k) is defined as

φ(k)
4
=

[
u(k − 1) · · · u(k − nc) e(k − 1) · · · e(k − nc)

]
∈ R1×lθ , (7.12)

θ(k)
4
=

[
P1(k) · · · Pnc(k) Q1(k) · · · Qnc(k)

]T

∈ Rlθ , (7.13)

where lθ
4
= 2nc. As explained in Section 7.3.3, the controller can be written as

u(k) =

(
1− Dc,k(q)

qnc

)
u(k) +

Nc,k(q)

qnc
e(k), (7.14)

and a block diagram representation is shown in Figure 7.2.

Nc,k(q)

qnc
+

1− Dc,k(q)

qnc

e u

Figure 7.2: Alternative representation of the adaptive controller architecture.

7.3.2 The Retrospective Performance Variable

The retrospective performance variable is defined as

ẑ(k, θ̂)
4
= z(k)−Gf(q)[u(k)− φ(k)θ̂], (7.15)
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where z(k) = e(k) is the performance variable, θ̂ ∈ Rlθ , and Gf(q) is a filter specified

below. The rationale underlying (7.15) is to replace the control u(k) with φ(k)θ̂∗,

where θ̂∗ is the vector of retrospectively optimized controller coefficients obtained by

minimizing the retrospective cost function in Section 7.3.4. The updated controller

coefficient are given by θ(k + 1) = θ̂∗, and the control implemented at step k + 1 is

u(k + 1) = φ(k + 1)θ(k + 1). (7.16)

The strictly proper filter Gf , which is of order nf and has the form

Gf(q)
4
= D−1

f (q)Nf(q), (7.17)

=
N1q

nf−1 + · · ·+Nnf

qnf +D1qnf−1 + · · ·+Dnf

, (7.18)

and is constructed in Section 7.4 based on required modeling information. For reasons

given in Section 7.3.3, Gf is referred to as the target model. Using (7.17), equation

(7.15) implies that

Df(q)ẑ(k, θ̂) = Df(q)z(k)−Nf(q)[u(k)− φ(k)θ̂]. (7.19)

Defining

ẑf(k, θ̂)
4
= Df(q)ẑ(k, θ̂), zf(k)

4
= Df(q)z(k), (7.20)

φf(k)
4
= Nf(q)φ(k), uf(k)

4
= Nf(q)u(k), (7.21)

(7.19) can be written as

ẑf(k, θ̂) = zf(k)− uf(k) + φf(k)θ̂. (7.22)
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7.3.3 The Target Model

By minimizing a cost function based on the retrospective performance variable

(7.15), the controller coefficient vector θ̂ is determined such that Gf(q)[u(k)− φ(k)θ̂]

provides the best fit to the performance variable z(k). In other words, θ̂ is chosen

such that the transfer function from u(k)−φ(k)θ̂ to z(k) matches Gf(q). In terms of

the optimal controller coefficient vector θ̂∗, (7.15) is written as

ẑ(k, θ̂)
4
= z(k)−Gf(q)[u(k)− φ(k)θ̂∗]. (7.23)

Defining

ū(k)
4
= u(k)− u∗(k), (7.24)

where u∗(k) = φ(k)θ̂∗, (7.23) can be rewritten as

ẑ(k, θ̂) = z(k)−Gf(q)ū(k). (7.25)

It follows from (7.24) that

u(k) = u∗(k) + ū(k), (7.26)

and thus the controller (7.8) can be written as

u∗(k) =
nc∑
i=1

P ∗i (k)u∗(k − i) +
nc∑
i=1

P ∗i (k)ū(k − i) +
nc∑
i=1

Q∗i (k)e(k − i). (7.27)

Hence

u∗(k) =

(
1−

D∗c,k(q)

qnc

)
[u∗(k) + ū(k)] +

N∗c,k(q)

qnc
e(k), (7.28)
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where

D∗c,k(q) = qnc − P ∗1 (k)qnc−1 − · · · − P ∗nc
(k), (7.29)

N∗c,k(q) = Q∗1(k)qnc−1 + · · ·+Q∗nc
(k). (7.30)

In (7.26), u(k) is written as the sum of the pseudo control input u∗(k) and the virtual

control perturbation ū(k). Note that neither of these signals is explicitly used in

RCAC. Figure 7.3 represents the controller (7.28) within the adaptive servo problem.

+
N∗c (q)
qnc

+ +

1− D∗c (q)
qnc

G +
r − e = z y0

wy

u∗ u

ū

Figure 7.3: The adaptive servo problem based on the controller (7.28).

It can be seen from Figure 7.3 that the closed-loop transfer functions from the

inputs r, ū, and w to z are given by

z(k) = −G̃zr(q)r(k) + G̃zū(q)ū(k) + G̃zw(q)w(k), (7.31)

where

G̃zr(q) = G̃zw(q)
4
=

D(q)Dc(q)

D(q)Dc(q)−N(q)Nc(q)
, (7.32)

G̃zū(q)
4
=

N(q)qnc

D(q)Dc(q)−N(q)Nc(q)
. (7.33)

As discussed in [36], (7.25) is the residual of the fit between z and the output of the

target model Gf with the input ū. However, (7.31) shows the actual transfer function
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G̃zū from ū to z. Since G̃zū arises from the injection of the virtual control perturbation

ū between the numerator and denominator of Gc,k, G̃zū is the intercalated transfer

function. Note that the zeros of G̃zū include the zeros of G. Therefore, in order to

avoid inadvertent cancellation of NMP zeros, the numerator Nf of the target model

Gf is constructed to include the NMP zeros of G, as discussed in Section 7.4.

7.3.4 The Retrospective Cost Function

The retrospective cost function (7.22) is optimized over a sliding window of data.

Define the windows of data

Z(k)
4
=


z(k)

...

z(k − pc + 1)

 ∈ Rpc , Z̃(k)
4
=


z(k − 1)

...

z(k − pn)

 ∈ Rpn , (7.34)

Ũ(k)
4
=


u(k − 1)

...

u(k − pn)

 ∈ Rpn , Φ̃(k)
4
=


φ(k − 1)

...

φ(k − pn)

 ∈ Rpn×lθ , (7.35)

where pc ≥ 1 is the window size, and pn
4
= pc + nf − 1. Furthermore, define the

windowed retrospective performance variable as

Ẑf(k, θ̂)
4
= Z(k) + D̄Z̃(k) + N̄ [Ũ(k)− Φ̃(k)θ̂], (7.36)
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where Ẑf(k, θ̂) ∈ Rpc , and

D̄
4
=



D1 · · · Dnf
0 · · · · · · 0

0 D1 · · · Dnf

. . . . . .
...

0 0 D1 · · · Dnf

. . .
...

...
. . . . . . . . . . . . . . . 0

0 · · · · · · 0 D1 · · · Dnf


∈ Rpc×pn , (7.37)

N̄
4
=



N1 · · · Nnf
0 · · · · · · 0

0 N1 · · · Nnf

. . . . . .
...

0 0 N1 · · · Nnf

. . .
...

...
. . . . . . . . . . . . . . . 0

0 · · · · · · 0 N1 · · · Nnf


∈ Rpc×pn , (7.38)

are Toeplitz matrices. We define the retrospective cost function as

J(k, θ̂)
4
= ẐT

f (k, θ̂)Ẑf(k, θ̂) + (θ̂ − θ(k − 1))TRδ(θ̂ − θ(k − 1)), (7.39)

where the positive-definite matrix Rδ ∈ Rlθ×lθ is the learning-rate weighting. Substi-

tuting (7.36) into (7.39) yields

J(k, θ̂) = θ̂T(k)Aθ(k)θ̂(k) + 2θ̂T(k)bθ(k) + cθ(k), (7.40)
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where

Aθ(k)
4
= Φ̃(k)TN̄TN̄Φ̃(k) +Rδ, (7.41)

bθ(k)
4
= Φ̃(k)TN̄TΨ(k)−Rδθ(k − 1), (7.42)

cθ(k)
4
= Ψ(k)TΨ(k) + θ(k − 1)TRδθ(k − 1), (7.43)

Ψ(k)
4
= Z(k) + D̄Z̃(k)− N̄Ũ(k). (7.44)

If Aθ(k) is positive definite, then (7.40) has a unique global minimizer θ̂∗ given by

θ̂∗
4
= −Aθ(k)−1bθ(k). (7.45)

7.4 Target-Model Construction

As explained in [36], RCAC matches a specific closed-loop transfer function G̃zū

to Gf . Consequently, RCAC may cancel NMP zeros that are not included in Gf .

Since zeros are invariant under feedback, the NMP zeros of G also appear as NMP

zeros of G̃zū. We thus estimate the NMP zeros of G, and then use this information to

construct the numerator of the target model Nf . The estimation is performed online

by identifying G during closed-loop operation.

7.4.1 Direct Closed-Loop Identification

Although G is operating inside a feedback loop, we perform direct identification of

G, where the input and output of G are used for regression. Alternative architectures

can be considered for closed-loop identification, see [107].

Figure 7.4 shows the signals used to perform the direct identification of G during

closed-loop operation, which is the input u and measured output y. An external

exogenous input v is used to enhance persistency and thus accuracy of the identi-

fication. The estimated model is an infinite impulse response (IIR) model of order
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+ Gc + G +

ID

r − e uc u y0

w
y

v

Figure 7.4: Direct closed-loop identification illustrating the signals used for regression.

n̂ ≥ n, which is written as

ŷ(k) = Ĝ(q)u(k) =
N̂(q)

D̂(q)
u(k). (7.46)

The estimate of G can thus be written as

ŷ(k) =
n̂∑
i=1

bn̂−iu(k − i)−
n̂∑
i=1

an̂−iy(k − i) = θIDφID(k), (7.47)

where

θID = [bn̂−1 · · · b0 an̂−1 · · · a0], (7.48)

φID(k) = [u(k − 1) · · · u(k − n̂) − y(k − 1) · · · − y(k − n̂)]T, (7.49)

and the coefficients bi represent the coefficients of the estimated numerator. A batch

sliding window least squares algorithm is used for estimation with window size pc ≥

2n̂. The identification window size is chosen to be the same as the RCAC window

size for convenience. Define

Y (k)
4
= [y(k) · · · y(k − pc + 1)] ∈ R1×pc , (7.50)

ΦID(k)
4
= [φID(k) · · · φID(k − pc + 1)] ∈ R2n̂×pc , (7.51)
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such that the least squares solution is

θID = Y (k)ΦT
ID(k)(ΦID(k)ΦT

ID(k))−1. (7.52)

In order to extract the necessary information from the estimated system, we first

define

N̂(q) = bn̂−1q
n̂−1 + · · ·+ b0, (7.53)

which is the numerator of the estimated system transfer function.

The information needed to construct the numerator Nf of the target model is

the leading numerator coefficient bn̂−1 and all NMP zeros. Let N̂NMP(q) be a monic

polynomial whose roots consist of the roots of N̂(q) whose magnitude is greater than

1. Then, the numerator of the target model is constructed as

Nf(q) = bn̂−1N̂NMP(q). (7.54)

7.4.2 Adaptive Control with Concurrent Target-Model Construction

The adaptive control with concurrent target model construction works in two

steps. First, the numerator of the target model Nf is constructed by performing the

direct identification discussed in the previous section. The denominator of the target

model Df is constructed by the user and the roots are the desired locations of the

closed-loop poles. Second, the coefficients of the adaptive controller are found by

minimizing the retrospective cost function, as shown in Section 7.3.4.
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7.5 Longitudinal Missile Model

In this section, RCAC is applied to the planar, three-degree-of-freedom, nonlinear

longitudinal missile model shown in Figure 7.5. This model is studied in [12, 13, 37, 48]

and is available in MATLAB [108]. To intercept the target, the missile is equipped

with a guidance section that provides the autopilot with a normal acceleration com-

mand Az,cmd that the missile must follow to reach its target.

Figure 7.5: Missile kinematics, where (·)B represents the body frame and (·)I represents the inertial
frame. The velocity components and angles relative to the inertial frame are shown.

The nonlinear dynamics and linear kinematics of the missile are described in the

body frame as

mU̇ +mqW = Fx, (7.55)

mẆ −mqU = Fz, (7.56)

IyyQ̇ = My, (7.57)

θ̇m = q, (7.58)

where U(0) = U0, W (0) = W0, q(0) = q0, and θm(0) = θm0. Assuming a flat Earth

and neglecting gravity, the forces and moment about the missile’s center of gravity
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(CG) are

Fx = q̄SrefCx, (7.59)

Fz = q̄SrefCz, (7.60)

My = q̄SrefdrefCm, (7.61)

where q̄ = 1
2
ρV 2 is the dynamic pressure and the aerodynamic coefficients

Cx = ax, (7.62)

Cz = azα
3 + bzα|α|+ cz

(
2− M

3

)
α + dzδa, (7.63)

Cm = amα
3 + bmα|α|+ cm

(
8

3
M − 7

)
α + dmδa + emq (7.64)

are based on the force and moment data given in [48] and summarized in Table 7.2.

Normal and Axial Force Data

az = 19.373 bz = −31.023 cz = −9.717 dz = −1.948 ax = −0.300

Pitch Moment Data

am = 40.440 bm = −64.015 cm = 2.922 dm = −11.803 em = −1.719

Table 7.2: Aerodynamic data

Using the relations

V 2 = U2 +W 2, M =
V

a
, tan α =

W

U
, γ = θ − α, (7.65)
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(7.55)-(7.58) can be rewritten as

Ṁ =
1

2m
ρM2aSref (Cxcos α + Czsin α) , (7.66)

α̇ =
1

2m
ρMaSref (Czcos α− Cxsin α) + q, (7.67)

γ̇ =
1

2m
ρMaSref (Czcos α− Cxsin α) , (7.68)

q̇ =
1

2Iyy
ρM2a2SrefdrefCm. (7.69)

The pitch-rate measurement qmeas, normal-acceleration measurement Az,meas, and

longitudinal-acceleration measurement Ax,meas are assumed to be provided by an on-

board inertial measurement unit (IMU) and thus are available for feedback. The

normal acceleration is given by

Az =
1

m
Fz − q̇dIMU, (7.70)

where dIMU is the distance from the CG to the IMU. It is assumed that the IMU is

forward of the missile CG, and thus dIMU > 0. The actuator dynamics are represented

by

δ̈a = −ω2
aδa − 2ζωaδ̇a + ω2

aδreq, (7.71)

as well as magnitude- and rate-saturation nonlinearities, where δreq is the actuator

setting requested by the autopilot. Table 7.3 provides the missile parameters. A

standard atmospheric model is assumed, where the air density ρ and speed of sound

a are altitude-dependent.

Variable m Sref dref Iyy dIMU ωa ζa
Value 204.022 0.041 0.228 247.436 0.500 314.160 0.700

Units kg m2 m kg-m2 m rad/s -

Table 7.3: Missile parameters.
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7.5.1 Three-Loop Autopilot

The three-loop autopilot (3LA) is a multi-input, single-output, proportional-integral

control law that is gain scheduled on angle-of-attack and Mach number and is tuned

for robust performance at an altitude of 3.0 km [99]. As shown in Figure 7.6, the 3LA

receives a normal acceleration command Az,cmd from the guidance section and uses

the measured normal acceleration Az,meas and the measured pitch rate qmeas from the

IMU for feedback. The values Ka, K, KI, and Kg are the scheduled 3LA gains based

on angle-of-attack and Mach number. The output δreq,3LA = δreq of the 3LA is the

requested actuator setting, as discussed in the previous section.

+

Ka

K + KI
1
s

+ Kg

Az,cmd xc δreq,3LA

−

Az,meas

qmeas

Figure 7.6: The missile three-loop autopilot architecture.

The 3LA is written as

ẋc = Bc,yymeas +Bc,AAz,cmd, (7.72)

δreq,3LA = Ccxc +Dcymeas, (7.73)

where the scalar state xc is shown in Fig. 7.6, ymeas = [Az,meas qmeas]
T, and

Bc,y = [−KaKKI KI], Bc,A = KKI, Cc = Kg, Dc = [0 Kg]. (7.74)
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7.5.2 Simultaneous Identification and Adaptive Control of the Linearized

Missile

To illustrate RCAC, the missile is linearized about the trim condition correspond-

ing to M0, α0, and q0. The linearized dynamics are given by

ẋm = Amxm +Bmδa, (7.75)

ymeas = Cmxm +Dmδa, (7.76)

Az,meas = Cm,Axm +Dm,Aδa, (7.77)

qmeas = Cm,qxm +Dm,qδa, (7.78)

where xm = [α q]T, ymeas = [Az,meas qmeas]
T, and

Am =

 ∂α̇
∂α

1

∂q̇
∂α

∂q̇
∂q

 , Bm =

 ∂α̇
∂δa

∂q̇
∂δa

 , Dm =

 Dm,A

Dm,q

 , (7.79)

Cm =

 Cm,A

Cm,q

 , Cm,A =

[
∂Az,meas

∂α

∂Az,meas

∂q

]
, (7.80)

Dm,A =
∂Az,meas

∂δa

, Dm,q = 0, Cm,q = [0 1], (7.81)
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where

∂α̇

∂α
=

1

2m
ρaM0Sref(Czα0

cos α0 − Czsin α0 − Cxcos α0), (7.82)

∂α̇

∂δa

=
1

2m
ρaM0SrefCzδa cos α0, (7.83)

∂q̇

∂α
=

1

2Iyy
ρa2M2

0SrefdrefCmα0
, (7.84)

∂q̇

∂q
=

1

2Iyy
ρa2M2

0SrefdrefCmq0 , (7.85)

∂q̇

∂δa

=
1

2Iyy
ρa2M2

0SrefdrefCmδa , (7.86)

∂Az,meas

∂α
=

1

2m
ρa2M2

0SrefCzα0
, (7.87)

∂Az,meas

∂q
= − 1

2Iyy
ρa2M2

0SrefdrefCmq0dIMU, (7.88)

∂Az,m
∂δa

=
1

2m
ρa2M2

0SrefCzδa . (7.89)

The aerodynamic derivatives are given by

Czα0
= 3azα

2
0 + 2bz|α0|+ cz

(
2− M0

3

)
, (7.90)

Cmα0
= 3amα

2
0 + 2bm|α0|+ cm

(
8

3
M0 − 7

)
, (7.91)

Czδa = dz, Cmq0 = em, Cmδa = dm. (7.92)

In state space form, the linear actuator dynamics in (7.71) can be written as

ẋa = Aaxa +Baδreq, (7.93)

δa = Caxa, (7.94)
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where xa = [δ̇a δa]T and

Aa =

 −2ζaωa −ω2
a

1 0

 , Ba =

 ω2
a

0

 , Ca = [0 1]. (7.95)

In terms of the adaptive servo problem shown in Figure 7.1, G consists of the combined

actuator and missile dynamics, which are given by

 ẋa

ẋm

 =

 Aa 02×2

BmCa Am


 xa

xm

+

 Ba

02×1

 δreq, (7.96)

Az,meas =

[
[0 Dm,A] Cm,A

] xa

xm

 , (7.97)

where the input δreq is the requested actuator setting and the output Az,meas is the

measured normal acceleration. The resulting closed-loop equations are given by


ẋa

ẋm

ẋc

 =


Aa +BaDcDmCa BaDcCm BaCc

BmCa Am 0

Bc,yDmCa Bc,yCm 0



xa

xm

xc

+


0

0

Bc,A

Az,cmd,

(7.98)

Az,ref =

[
[0 Dm,A] Cm,A 0

]
xa

xm

xc

 . (7.99)

Figure 7.7 shows how RCAC is combined with the linearized missile model G,

which consists of the linearized missile and actuator dynamics (7.96) and (7.97) with

input δreq = δreq,RCAC and output Az,meas. The goal of the setup in Figure 7.7 is to

use RCAC to adaptively place closed-loop poles that match those corresponding to

those of the 3LA. To do this, the loop is first closed with the 3LA, and then the
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resulting closed-loop poles are used to construct Df . In particular, with Df chosen

based on the 3LA simulation, the direct identification technique in Section 7.4.1 is

used to estimate G described by (7.96), (7.97). The estimate of G is then used to

construct the numerator Nf of the target model based on (7.54). To enhance the

accuracy of the identification, an external perturbation signal δpert is added to the

controller output.

Gc,k + G
(7.96), (7.97)

ID

Az,meas

δreq,RCAC

δpert

Figure 7.7: RCAC combined with the linear missile model in the absence of commands. The goal is
to use RCAC to place closed-loop poles that match those arising from the 3LA. The same setup is
used to demonstrate the use of direct identification of G to construct the numerator Nf of the target
model Gf .

For this example, the adaptive controller has order nc = 5 and is written as

δreq,RCAC(k) =
Q1(k)q4 + · · ·+Q5(k)

q5 − P1(k)q4 − · · · − P5(k)
Az,meas(k). (7.100)

The model is linearized at the flight condition M0 = 2.0, α0 = 0.0 rad, and q0 = 0.0

rad/s. For this flight condition, the gains for the 3LA are Ka = 0.945, K = 0.027,

KI = 22.556, and Kg = 2.125. Equations (7.98) and (7.99) are discretized at 1000 Hz

using zero-order hold, and the resulting discrete-time equations are used to construct

the denominator

Df(q) = q5 − 4.551q4 + 8.296q3 − 7.574q2 + 3.464q− 0.635, (7.101)

of the target model, whose order is nf = 5. The roots of Df , which are the target
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closed-loop poles, are [0.856 0.865± 0.142 0.982± 0.021].

In order to evaluate the accuracy of the identification, G which is represented by

(7.96) and (7.97), is discretized at a sampling rate of 1000 Hz using the zero-order

hold operation which yields

Az,meas(k) =
−3.235q3 + 3.639q2 + 2.357q− 2.757

q4 − 3.551q3 + 4.739q2 − 2.823q + 0.635
δreq(k), (7.102)

with poles located at [0.993 ± 6.326 × 10−4 0.782 ± 0.178] and zeros located at

[−0.863 0.969 1.018]. Note that there is one NMP zero located at 1.018. Thus,

accurate identification of G and proper extraction of the leading numerator coefficient

and NMP zero location yields

Nf(q) = −3.235q4 + 3.293q3. (7.103)

In Figure 7.7, the external perturbation signal δpert is zero-mean white noise with

standard deviation 1.0 × 10−7 rad. To identify G, a 6th-order IIR model with a

sliding window least squares algorithm with window size pc = 300 time steps is used,

as discussed in Section 7.4.1. Note that this window size equates to a data buffer of

0.3 s. The leading coefficient and all NMP zeros are extracted from the numerator

of the identified model and are used to update the numerator Nf of the target model

Gf according to (7.54). Figure 7.8a shows the estimated and true coefficients for the

target model numerator Nf . At time 0.3 s, the data buffer is full and the estimate of

Nf is provided for the RCAC target model. RCAC is also run with the same sliding

window of size pc = 300 with the learning-rate weight Rδ = 1.0×10−17I10. Figure 7.8b

shows the evolution of the coefficients of the adaptive controller, where, at time 0.3 s,

the buffer is full and RCAC is controlling the linearized missile dynamics. Figure 7.9

compares the desired closed-loop pole locations with the closed-loop pole locations

obtained by RCAC at the final simulation time of 10.0 s. Note that the adapted
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closed-loop poles are located near the desired closed-loop pole locations, with the

additional closed-loop poles located near the origin.
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Figure 7.8: Evolution of the estimated polynomial coefficients used in the target model numerator
Nf and the adaptive controller coefficients θ(k) for the linear missile example.
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Figure 7.9: Comparison of the desired and actual closed-loop pole locations. The closed-loop system
is evaluated using the controller coefficients at the final time 10.0 s.

7.5.3 Simultaneous Identification and Adaptive Control of the Nonlinear

Missile

In order to construct the semi-adaptive autopilot, 3LA is combined with RCAC

by applying the augmented control law

δreq(k) = δreq,3LA(k) + δreq,RCAC(k) + δpert(k), (7.104)
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where δreq,3LA is the gain-scheduled 3LA contribution, δreq,RCAC is the adaptive con-

tribution, and δpert is an external perturbation signal for enhancing persistency. This

augmentation is designed to improve the performance of the closed-loop system when

the performance of the 3LA is degraded by modeling errors. The adaptive controller is

provided with the reference normal acceleration command Az,ref through the sched-

uled transfer function Gref . Note that, although Gref is represented by (7.98) and

(7.99), it is updated at each time step as a function of α and M . The scheduled Gref

also updates the denominator Df of the target model with the desired closed-loop

polynomial. The numerator Nf of the target model Gf is updated through LS direct

identification with a sliding window of size pc = 300 and a 10th-order IIR model,

as discussed in Section 7.4.1. Figure 7.10 shows how RCAC augments the 3LA. The

sensor noise w is zero-mean white noise with standard deviation of 1.0×10−6 for both

the acceleration Az,meas and the pitch-rate qmeas.

3LA
(α,M)

RCAC

+ +
Nonlinear Missile

(7.66)–(7.69), (7.71) Sensors

Gref

(α,M)
+

ID

Az,cmd

δreq,3LA

qmeas

δreq,RCAC Az,meas

δpert

δreq

Az,ref

−

w

Figure 7.10: Block diagram of the semi-adaptive control law for the nonlinear missile model consisting
of the 3LA augmented with RCAC.

For the following examples, the multi-input, single-output adaptive controller is
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finite impulse response (FIR), of order nc = 5, and written as

δreq,RCAC(k) =
nc∑
i=1

P1,i(k)Az,des(k − i) +
nc∑
i=1

P2,i(k)Az,meas(k − i), (7.105)

The performance variable is z(k) = Az,meas(k)−Az,ref(k). In terms of the retrospective

performance variable (7.22), u(k) = δreq(k)− δreq,3LA(k), so that the RCAC optimizes

based only on the control contribution of the adaptive control effort. The retrospective

performance variable is optimized over sliding window of pc = 300 with a learning-rate

weight Rδ = 1.0× 104I10.

The examples given below compare the performance of the 3LA and the semi-

adaptive autopilot. The first example assumes no model error, while the second

example considers uncertainty in the pitch moment coefficient and control authority.

Example 7.1 (Nominal Performance). In this example, we compare the 3LA with the

semi-adaptive autopilot under no uncertainty. The model is initialized at M(0) = 3,

α(0) = 0, q(0) = 0, and θ(0) = 0. The external perturbation signal δpert is zero-mean

white noise with standard deviation 1.0×10−5 rad. Figure 7.11 compares the desired

and measured normal acceleration of the 3LA and the semi-adaptive autopilot. Note

that the 3LA contributes the majority of the control signal. Since Gref is a linearized

gain scheduled transfer function and the missile dynamics are nonlinear, small errors

arise between the reference normal acceleration command Az,ref and the measured

normal acceleration Az,meas, which leads to a small adaptive controller contribution,

as shown by the adaptive controller coefficients in Figure 7.12b.

Figure 7.12a compares the target model numerator coefficients based on lineariza-

tion of the nominal model at each time step versus on-line identification. Note that,

at time 0.3 s, the on-line identification starts and converges to the nominal linearized

coefficients. �

Example 7.2 (Performance Under Uncertainty.). We now compare the 3LA with the
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Figure 7.11: Comparison of the 3LA and the semi-adaptive autopilot for the nominal nonlinear
model for Example 7.1.
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(a) Coefficients of Nf . (b) RCAC controller coefficients θ(k).

Figure 7.12: Evolution of the estimated polynomial coefficients used in the target model numerator
Nf and the adaptive controller coefficients θ(k) for Example 7.1.

semi-adaptive autopilot in the case where the missile aerodynamics are uncertain. In

particular, we consider the model errors

Cmq = 2.0em, Czδc = 0.9dz. (7.106)

The model is initialized at M(0) = 3, α(0) = 0, q(0) = 5 rad/s, and θ(0) = 0. The

external perturbation signal δpert is zero-mean white noise with standard deviation

1.0× 10−5 rad. Figure 7.13 compares the desired and measured normal acceleration

of the 3LA with the response of the semi-adaptive autopilot. Note that, due to the
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uncertainty in the nonlinear missile model, the 3LA exhibits oscillatory behavior at

the beginning of the flight and as well as at the terminal phase. For the semi-adaptive

autopilot, the acceleration is initially oscillatory but damps out as the flight progresses

due to the adaptive contribution to the control effort and is not as aggressive during

the terminal phase. Note that the adaptive controller coefficients shown in Figure

7.14b change rapidly at the beginning of the flight and converge as the simulation

progresses.
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Figure 7.13: Comparison of the 3LA with the semi-adaptive autopilot for Example 7.2, which
assumes uncertainty in the nonlinear model.

Figure 7.14a compares the target model numerator coefficients based on lineariza-

tion of the nominal model at each time step versus the on-line identification. Note

that at time 0.3 s, the on-line identification starts and converges to values that differ

from the nominal linearized coefficients due to the control effectiveness Czδc differing

from the nominal model. �

7.6 Conclusions

The contents within this chapter represents a first step in demonstrating that

adaptive control can assist a gain-scheduled autopilot by compensating for uncer-

tainty in the underlying model. To achieve this objective, RCAC was combined in a
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Figure 7.14: Evolution of the estimated polynomial coefficients used in the target model numerator
Nf and the adaptive controller coefficients θ(k) for Example 7.2.

semi-adaptive control architecture with a baseline gain-scheduled three-loop autopi-

lot for a planar three-degree-of-freedom missile model. To facilitate the use of RCAC

without depending on the aerodynamic model, concurrent identification was used

to estimate the leading numerator coefficient and nonminimum-phase (NMP) zero.

Since the model used for identification is linear, this approach is arguably incompat-

ible with the nonlinear missile dynamics. Nevertheless, the concurrent identification

was able to estimate the NMP zeros of the instantaneously linearized missile dynam-

ics under off-nominal conditions, and RCAC was able to use this data to the extent

that cancellation of NMP zeros was avoided. Future work will stress this technique

to a much greater extent by flying the missile under higher Mach numbers and angles

of attack. The ultimate test of this approach is to apply it to a fully nonlinear 6DOF

missile model and, ultimately, flight tests.
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CHAPTER 8

Conclusions

This dissertation presented advances in the retrospective cost adaptive control

(RCAC) algorithm. In chapter 2, the basic RCAC algorithm was presented. The

adaptive controller can be used for stabilization, command following, and distur-

bance rejection for multi-input, multi-output, linear, time -invariant, minimum phase,

nonminimum-phase, discrete-time systems. The require minimal modeling informa-

tion needed includes the plant transfer function leading numerator coefficient and any

nonminimum-phase (NMP) zeros. We applied RCAC to the NASA GTM model under

unanticipated and unknown changes to the aerodynamics of the aircraft. Specifically,

we used a single RCAC block within the simulation that controls the aircraft to a

desired steady level flight by commanding five actuation channels (left and right en-

gines, aileron, elevator, and rudder). The goal is to examine the evolution of the

RCAC controller gains in response to changes in the aerodynamic coefficients from

the linearized aircraft dynamics. To show this, simulations in the Simulink GTM were

run, all with the desire for the aircraft to fly in a straight and level flight configura-

tion. At a certain time (unknown to RCAC) the aerodynamic coefficients changed.

Presented were three different aerodynamic parameter modifications, including an

icing example, a sudden increase in drag, and a sudden decrease in lift. For all three

examples, only a single tuning was used for each RCAC block.
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Results in chapter 2 showed that RCAC is able to adapt its gains in order to com-

pensate for the unknown time-varying aerodynamic perturbations while maintaining

the desired performance. The icing example showed that both the elevator and en-

gines were used to compensate for an increase of 700% drag and decrease of 30% in lift

production over a 500 sec interval. In the drag example, RCAC overcame a increase

in the aerodynamic drag coefficient by over 200% by increasing the engine thrust and

using minimal elevator deflections. The gains evolved substantially to compensate

for the amount of drag induced. Finally, we considered an example where the lift

decreased by 40%. Given the constraints imposed by the performance variable on the

airspeed, RCAC used the elevator to increase the angle of attack to maintain altitude.

Future research focus on additional aerodynamic stability derivative changes as well

as a method for relaxing constraints to maintain safe level flight.

In chapter 3, we extended [12, 13] in the RCAC formulation by including a variable

forgetting factor and Kalman Filter. This extension allowed for continual parameter

estimation in the adaptive controller update, a feature that is essential to controlling

a system with nonlinear dynamics. Additionally, an inner-loop/outer-loop control ar-

chitecture is used to adaptively adjust the pitch-rate command based on the normal

acceleration command. The adaptive pitch-rate command loop is appropriate due

to the inability to infer such a command when given an arbitrary normal accelera-

tion command. Results show that the CFF, although effective, leads to aggressive

adaptation that may lead to instabilities. We also showed that both RCAC/VFF

and RCAC/KF allow for gain adapting through the entire flight and were able to

track the normal acceleration command as well as the 3LA. The adaptive controller

excelled when an aerodynamic coefficient modification was introduced to the system

as well as having a lower bandwidth actuator.

Chapter 4 proposed a technique that minimizes the innovations based on retro-

spective optimization of the process noise covariance. We showed that minimizing the
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cumulative innovations is equivalent to minimizing the cumulative state-estimation er-

ror for the parameter estimation problem under certain assumptions. This technique

is applied to system identification problems where the parameters to be estimated

can be time-varying and thus have an unknown Q value. We compared our technique

to the standard Kalman filter and IAKF. Results show that when applied to time-

varying parameter estimation problem, this technique performs as well if not better

than IAKF.

The cost function associated with RCAC was used for concurrent optimization

of the controller gains and the target model due to its natural biquadratic structure

in chapter 5. A modified version of the alternating convex search (ACS) and the

MATLAB fminsearch algorithm demonstrated the ability to concurrently optimize

these coefficients for a command-following problem. The novel element in this chapter

is the ability to minimize the cost function without prior knowledge of the plant

transfer function, including NMP zero locations. Future work will focus on improving

the computational efficiency of the concurrent optimization along with guarantees of

global convergence.

The objective of chapter 6 was to numerically investigate the effectiveness of archi-

tectures for closed-loop identification. Three direct closed-loop identification archi-

tectures and three indirect closed-loop identification architectures were considered.

These architectures included standard cases with and without auxiliary signals as

well as two novel architectures involving intercalated injection of the auxiliary signal.

Infinite impulse response models were fit using least squares (LS) estimation, which

provided a baseline method, and prediction error methods (PEM), which account for

noise correlation. To simplify the study, the plant order was assumed to be known;

for the indirect architectures, the auxiliary signal was chosen to be a multiple of the

command; and errors-in-variables noise was not considered. The signal-to-noise ratio

was normalized across all architectures. Motivated by adaptive control, the perfor-
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mance metric was chosen to be the accuracy of the estimate of the nonminimum-phase

(NMP) zero of the plant. Two examples were considered, both of which were third-

order and NMP. One plant was asymptotically stable, and the other was unstable.

As expected, for all of the architectures and for both examples, the least squares

estimates exhibited bias, whereas the PEM estimates indicated consistency. In com-

paring architectures, the numerical results do not allow definitive conclusions, but

some observations can be made. Based on PEM for direct closed-loop identification,

standard injection of the auxiliary signal appears to be advantageous; direct closed-

loop and auxiliary direct closed-loop with intercalated injection provide roughly the

same accuracy. For indirect closed-loop identification, the conclusions are less clear.

For the asymptotically stable plant, standard injection of the auxiliary signal appears

to be advantageous, whereas, for the unstable plant, intercalated injection appears

advantageous.

In view of the practical importance of closed-loop identification, further investiga-

tion is warranted. A more detailed study would include consideration of instrumental

variables as an alternative to PEM, uncertainty in the plant order, EIV noise, and

higher order plants with multiple NMP zeros.

The contents within chapter 7 represents a first step in demonstrating that adap-

tive control can assist a gain-scheduled autopilot by compensating for uncertainty

in the underlying model. To achieve this objective, RCAC was combined in a semi-

adaptive control architecture with a baseline gain-scheduled three-loop autopilot for a

planar three-degree-of-freedom missile model. To facilitate the use of RCAC without

depending on the aerodynamic model, concurrent identification was used to estimate

the leading numerator coefficient and nonminimum-phase (NMP) zero. Since the

model used for identification is linear, this approach is arguably incompatible with

the nonlinear missile dynamics. Nevertheless, the concurrent identification was able

to estimate the NMP zeros of the instantaneously linearized missile dynamics under
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off-nominal conditions, and RCAC was able to use this data to the extent that can-

cellation of NMP zeros was avoided. Future work will stress this technique to a much

greater extent by flying the missile under higher Mach numbers and angles of attack.

The ultimate test of this approach is to apply it to a fully nonlinear 6DOF missile

model and, ultimately, flight tests.
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