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ABSTRACT

A ubiquitous and complex challenge for mathematics teachers is managing stu-

dents’ responses in-the-moment during whole-class instruction. In-the-moment, man-

aging students’ responses involves a variety of internal resources—including special-

ized content knowledge for teaching, productive beliefs about teaching and learning

mathematics, and the ability to self-regulate ones’ own emotional state and anxiety—

in addition to skill in perceiving and interpreting important aspects of students’ an-

swers. Beyond these specialized internal resources and skills which make this complex

work, managing students responses becomes more salient to research when one con-

siders that the public nature of this interaction means that how a teacher handles

these situations can have important implications for the learning of all students in

the class.

In this three-paper dissertation, I explore the complexities of managing students’

responses in-the-moment. In the first paper, I explore a special case of managing stu-

dents’ responses when a student response is perceived by a teacher as incorrect. Here,

I outline the important consequences of managing students’ responses for students

and explore why this might be difficult and challenging work for teachers. For the

second and third papers, I used an interactive-video based teaching simulation to first

explore how teachers responded to students (in paper 2) and then to consider what

factors (such as various internal resources a teacher might have) might be related to

various features teachers’ responses (paper 3).

In paper 2, I describe the ways in which teachers responded to apparently correct

and incorrect student answers. In general regardless of whether the student answer
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is apparently correct or incorrect, teacher responses tend to go back to the student

who provided the answer. However, the ways in which the same student was asked

to think about particular mathematics depended on whether the student answer was

apparently correct or incorrect. When a student answer was apparently incorrect,

teacher responses predominantly asked questions to get the student to correct or

fix their response. In contrast, when a student answer was apparently correct, the

majority of teacher responses would ask the student to elaborate on some aspect of

his/her response. A small subset of teachers in this sample did not exhibit these

same, clear evaluative patterns and I discuss trends in their responses that could

inform ways in which teacher education supports teachers in responding to students.

In paper 3, I quantitatively investigate how teachers responses to students relate

to teachers’ individual characteristics, including their anxiety, teaching experience,

beliefs and mathematical knowledge for teaching, as well as their self-reported emo-

tional reaction to student responses. The analyses showed that teachers’ self-reported

emotional reactions, with the exception of sense of control, had almost no significant

correlations to any aspects of their responses to students. Additionally, teachers’ anx-

iety was generally negatively correlated with aspects of teacher responses while years

of experience was positively correlated with features of teachers’ responses. Findings

indicate that exploring teachers’ anxiety is a promising avenue for understanding

teaching performance and that important methodological considerations arise when

attempting to assess an action-related competence such as managing students’ re-

sponses.
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CHAPTER I

Introduction

Motivation for Dissertation Study

During my three years as a field instructor for secondary mathematics teachers at

the University of Michigan I was fortunate to work closely with both novice and expe-

rienced teachers discussing and observing lots of mathematics teaching. It was during

those experiences that I began to notice that many of the preservice teachers I worked

with had very distinct patterns in the way they responded to students. Specifically,

these preservice teachers clearly validated correct answers (e.g., “Great”, “Nice job”,

“Exactly”) and negatively evaluated seemingly incorrect answers (e.g., “Not quite”,

“Anybody else?”, “Interesting”) in ways that were not necessarily productive for stu-

dent learning. In the post-observation meetings where the preservice teacher and I

would debrief their instruction we would discuss these patterns and their potential

consequences for students. The preservice teachers were always eager to improve and

we would brainstorm alternative ways in which they could manage responses from

students. Typically though, despite their genuine desire to change and their newfound

knowledge of alternative strategies, the next time I would observe them I would see

the same evaluative patterns; nothing seemed to change. This apparent paradox—

between their desire and knowledge, and their performance—perplexed and troubled

me until I came across Feldon’s (2007) article on automaticity in teaching.
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In this article, Feldon (2007) describes dual-process models of cognition (which

stipulate that human cognition is comprised of both automatic and conscious pro-

cesses) in relation to empirical findings in teaching. This dual-process lens resonated

with my own experiences teaching and observing teaching in a way that prior work

on teacher decision-making had not and it prompted me to seriously reconsider my

conceptualizing of what it takes to teach, let alone teach well. In particular, it offered

me both a more generous way to view teaching and suggested other disciplines to

scour for answers in my reconceptualization of teaching.

First, instead of assuming that teaching is an entirely conscious endeavor, apply-

ing a dual-process lens, which means considering how unconscious processes play a

part in complex human endeavors, humbled me to be more generous in my observa-

tions of others’ teaching. Instead of wondering if my preservice teachers were being

disingenuous in their desire to improve, I could step back and appreciate that they

were instead doing what humans have necessarily evolved to do: in life, and in com-

plex performance situations in particular, we automate as much as possible the ways

in which we operate. As they were standing in front of the classroom, trying to nav-

igate the intellectual and emotional needs of 30 or more students in addition to their

own jitters, these preservice teachers might not have been able to consciously focus

on every single response they provided to students. They had to automate some of

their work and it was not unreasonable for them to perhaps default to the evaluative

response patterns they had likely experienced in their own schooling. Rather than

placing the onus for change squarely on the individual teacher, for me this new dual-

process lens forces me, as well as other teacher educators, researchers and teacher

education in general, to carefully reconsider how to train teachers given this reality

of human cognition.

Second, Feldon’s article spurred me to look into dual-process theories and, more

broadly, into the disciplines of psychology and psychophysiology to begin to explore
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what other fields had learned about in-the-moment decision-making that might help

inform my reconceptualization of teaching. Though not an exhaustive look by any

means, these forays into other fields shaped my thinking about teaching and scholar-

ship in teacher education more broadly. In particular, it encouraged me to explore the

ways in which affect—a dimension of the work of teaching that is often neglected in

teacher education programs—could impact teaching performance and to find ways to

argue for why the affective dimension of teaching warrants more attention. Further,

it pushed me to consider other methodologies, including incorporating different mea-

sures (such as electrodermal activity or sweat, and self-assessed emotional reactions),

and to design a teaching simulation that would allow me to explore how teachers

respond to students and to begin exploring the various factors (including knowledge,

anxiety and beliefs) that might explain why they responded as they did. It also led

me into literature from Europe, and Germany in particular (e.g., the Max Planck

Institute for Human Development), that informed a great deal of the work presented

here and reminded me that scholarship and progress in education are international,

not just national, pursuits.

The Dissertation Study

This dissertation study explores how mathematics teachers manage students re-

sponses in-the-moment. In addition to this introductionwhich provides some personal

background relevant to this workthe dissertation includes three scholarly articles. The

first article explores a special case of managing students responses, namely when a

student provides a mathematical response that is apparently incorrect. In this concep-

tual piece, I use a vignette to illustrate what I mean by managing students apparently

incorrect responses and then describe four ways in which this is consequential for stu-

dents. I then explain why this might be difficult work for the teacher and explore

what it might entail to manage students apparently incorrect responses. In the sec-
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ond paper I explore how teachers respond to three different student responses: one

apparently correct response and two apparently incorrect responses. In the third

paper, I explore whether there are relationships between teachers’ emotional reac-

tions to student answers and the characteristics of their responses, as well as whether

teachers’ internal resources ( such as their knowledge, beliefs and anxiety) might have

associations with characteristics of their responses.
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CHAPTER II

Managing Students’ “Apparently” Incorrect

Mathematical Responses: A Conceptual

Framework

Managing Students’ “Apparently” Incorrect Mathematical Re-

sponses: A Conceptual Framework

What do I mean by managing “apparently” incorrect student responses?

Every teacher has experienced the challenge of navigating a student’s incorrect

response during whole-class instruction. This situation can become particularly dicey

for the teacher and students when a student response seems incorrect but might

not actually be wrong; in other words, when a student response is “apparently”

incorrect. In this paper I explore how teachers manage students’ apparently incorrect

responses and discuss the challenges and complexities of this ubiquitous and high-

stakes situation.

To begin my exploration, I present a vignette from a high school, accelerated ge-

ometry class to illustrate an “apparently” incorrect student response. The vignette

serves two purposes. First, it provides a starting point to develop a shared understand-

ing of “apparently incorrect”. Second, the vignette includes additional information
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(e.g., some of the teacher’s thoughts, feelings and actions) that impacts how teachers

manage these situations. The complex and varied nature of this information—which

includes the many visible actions as well as the invisible factors that contribute to

how the classroom interaction in the vignette unfolds—is why I have chosen the verb

“manage” (as opposed to “respond” or “decide”, for example) to describe the work

of teaching in this situation. After analyzing the interaction in the vignette, I discuss

four potential implications of how teachers manage apparently incorrect responses for

students.

Next, I turn my attention to the teacher and describe four ways in which managing

these responses can be difficult. Here I present a model to illustrate the complexity of

this in-the-moment decision-making. I then use this model to detail the different cog-

nitive, affective and motivational-volitional resources as well as the situation-specific

skills that managing students’ apparently incorrect responses might entail. Finally, I

conclude by discussing possible implications for teacher education.

Vignette.

In the following vignette, imagine you are observing a high school, accelerated

geometry class during a lesson on the perimeter and area ratios of similar figures. On

this occasion, you have access to both the visible actions that occur and the invisible

factors that might be at play. Specifically, you can see what the students and teacher

say and do, including some of the teacher’s facial expressions (offset from the rest of

the vignette below by brackets) and you have insight into some of the invisible factors

at play, including the teacher’s thoughts and feelings (denoted by italics).

As the lesson begins you can tell the teacher is a little anxious. Although she is

strong in her mathematical content knowledge (i.e., she knows how to easily calculate

the perimeters and areas of these figures), she is nervous about how students might

take up this content and starts the lesson slowly. She begins by reading aloud some
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notes on the board about the relationship between the ratios of perimeters and areas

of similar figures that students jot down as she speaks. She then asks students to

work individually on the following problem (Figure 3.1):

Figure 2.1: Problem given to students.

As students work, the teacher circulates and notices that most students are able

to quickly set-up the perimeter ratio (6:10 or 3:5) and area ratio (9:25) correctly. She

feels relieved. After a few minutes, she calls on a student who provides both ratios

correctly. She thinks, Okay, it seems like they get this so far, so how can I push them a

little moremaybe I can go for something more general. Yeah, to think about why this

works, to consider how perimeter is one-dimensional and area is two-dimensional...So

she asks the class, “So, now I want you guys to take a second and think about why

this relationship makes sense. Why do we go from 3 to 5, to 9 to 25? [hhmmmaybe

that’s not clear, I should reword that] So we’re squaring it, why does this make sense?

Think about it, talk to each other and when your group has an answer, signal and

I’ll keep an eye out”

As students start to discuss this question with their group members, the teacher

stands at the board looking around the room. Sometimes, Jean and his group mem-

bers take a few minutes to get started so she keeps an eye on them until she sees

they are working together. She mulls over her ideas, preparing herself for when she

brings students back together to talk. Okay, perimeter is one-dimensional and area is

two-dimensional, area is the square of length, so squaring it makes sense since you’re
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going from one-dimensional to two-dimensional. She feels good. This was a good

question to ask, it will push them to think beyond the procedure and to connect

this to other work they’ve done. After about two minutes, it seems to her that most

groups have had a chance to talk and she confirms this by quickly checking in with

a group of students. They confirm that they are ready to answer, so she calls the

class back together and says, “Okay, raise your hand if you would like to share your

thoughts about my question?”

She waits several seconds and a few hands go up. She notices that Jean has his

hand up and thinks Great! He’s got an answer. Jean hardly ever volunteers so she’s

excited that he seems to have something to say. “Yes, Jean?” Jean responds, “Okay,

if you think of it like boxes [she furrows her brow, What is he talking about, there’s

nothing 3-D going on here?!] and you have a box that’s 3 by 3 and a box that’s 5 by 5,

then there’s 9 boxes in the box that’s 3 by 3 [she nods, okay, that’s true] and 25 boxes

in the box that’s 5 by 5 [she nods, yup, 5 times 5 is 25 but her spirit sinksuurggghhh,

he’s not answering my question, he’s not generalizing, where’s the one-dimensional

and two-dimensional stuffhe doesn’t get it. She clenches her jaw, her heart starts to

race and her palms begin to sweat a little...how do I respond to this???!!!]. So the 9

to 25 rather than 3 to 5 cause it’s...yeah”

Then, without hesitation, she replies, “Okay, that’s an interesting answer [I don’t

want you to feel bad Jean, thanks for trying] but it doesn’t necessarily answer why.

When we talk about units squared we’re talking about area, it’s 2-dimensional and

the perimeter is 1-dimensional, that’s why the ratio of the areas is the square of the

ratio of the perimeters because area is 2-dimensional.” She scans the room and deems

that the students’ facial expressions convey that they understand her explanation but

she misses Jean’s perplexed expression. Okay, she thinks, let’s move on to a more

complicated problem. “Alright then, let’s go ahead and try a few harder problems.

Everyone grab a book and turn to page 56 please.”
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A Situation in Teaching: Apparently Incorrect Responses.

The vignette above illustrates a frequent, often important and complex situation

in mathematics classrooms: a moment during whole-class instruction when a student

(e.g., Jean) provides an apparently incorrect response. To understand the importance

and potential complexity of this situation first necessitates common ground about

what is meant by “apparently incorrect”. To establish this common ground, I take a

closer look at Jean’s response and the teacher’s subsequent reply.

Several aspects of Jean’s answer provide evidence of insightful mathematical un-

derstanding. In particular, in his response there is evidence that Jean has not only a

clear understanding of how to compute areas but also a conceptual understanding of

the meaning of area. This is evident in his description of the number of unit squares

(9 and 25) that comprise the areas of the two squares (3 by 3 and 5 by 5). Specifically,

he is building on the tacit assumption made in school mathematics that the reference

unit of length is the unit interval [0,1] on the number line and hence, the unit of area

measure is the unit square. To measure the area of some plane region (such as a 3

x 3 square), Jean is providing the number of unit squares that fit, without overlap,

within that region (using what he knows about computing the area of a square to get

“9 boxes”). He then contrasts this unit of measure of area with that of the unit of

measure for length (“9 to 25 rather than 3 to 5”). The connections he makes between

length and area throughout his example and his contrasting of the area and perimeter

ratio at the end of his response indicate he is indeed, correctly answering the teacher’s

question. However, though Jean’s answer is correct, there are two surface features of

his response that might make it more challenging to follow.

First, Jean has made a lexical selection error, specifically in his choice of the words

“box” and “boxes.” Jean uses the word “box” not in reference to a 3-dimensional

object but rather to refer to the 2-dimensional squares in his example (one with side

length 3, the other with side length 5). Similarly, he uses the word “boxes” rather that
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“unit squares” to describe the total number of unit squares that comprise the area of

each larger square (“9 boxes” and “25 boxes”). Second, he does not provide a general

justification for why the ratio of the areas of similar figures is the square of the ratio of

their perimeters. Instead, he provides a concrete example using squares (3 x 3 and 5

x 5) and unit squares (“9 to 25 rather than 3 to 5”) to explain his reasoning. Despite

this minor issue in language and lack of generalization, Jean’s explanation clearly

indicates understanding and sense making. In other words, though his response is

not quite correct, it is also not completely incorrect either. Essentially, responses from

students can be thought of as occurring on a continuum of correctness (see Figure

3.1).

Figure 2.2: Continuum of correctness

At the far right of the continuum are responses that can be objectively deemed

correct. These responses are likely to contain underlying mathematical ideas and

reasoning that are procedurally and conceptually sound; and, further, these ideas are

presented articulately, with precise mathematical language. These correct responses,

far to the right, are likely to be objectively evaluated as correct. On the far left of the

continuum, are responses that can be objectively deemed incorrect. In these types

of responses, the underlying mathematical procedures and concepts are troublesome

and deeply, logically flawed. Additionally, the presentation of the ideas is problematic

due to ambiguous pronouns, incorrect terminology, or confusing uses of mathemat-

ical language. At this end of the continuum, responses are likely to be objectively

evaluated as incorrect. Most student responses, like Jean’s, tend to fall somewhere

in-between the two ends of this continuum and hence, require some interpretation

and sense-making on the part of the teacher, as we will see next.

Once Jean has responded, the teacher needs to manage Jean’s response. In the
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vignette, she manages this situation by responding as follows: Okay, that’s an interest-

ing answer but it doesn’t necessarily answer why. When we talk about units squared

we’re talking about area, it’s 2-dimensional and the perimeter is 1-dimensional, that’s

why the ratio of the areas is the square of the ratio of the perimeters because area is

2-dimensional.

Though the teacher begins her response by acknowledging Jean’s answer is “inter-

esting” she quickly proceeds to how his answer is wrong (“but it doesn’t necessarily

answer why”). She then continues by providing what she likely considered the correct

answer, one that uses the terms “1-dimensional” and “2-dimensional” (terms she had

in mind before Jean responded and that she was likely fishing for with her original

question). Hence, though she begins with what could have been a positive evalua-

tion of Jean’s response, what follows clearly indicates that she has interpreted Jean’s

answer to be wrong. To the teacher in the vignette, Jean’s response is more towards

the left-end of the continuum, closer to incorrect. It is “apparently” incorrect.

Again, although there are times when a student’s response may be objectively

incorrect (e.g., “2 plus 2 is 5”), the vignette above illustrates that it is not always an

objective act to manage students’ responses. As I described above, students’ answers

typical fall on a continuum between objectively incorrect and objectively correct.

Hence, a teacher must hear and make sense of (consciously or unconsciously) what a

student has said, a process that occurs through the filter of a teacher’s experiences,

knowledge, emotional state, and so forth. In other words, teachers manage students’

response through a subjective lens and hence, a judgment of correctness cannot always

be objective. As in the vignette above, seen through her filter, the teacher perceives

Jean’s answer as wrong and her response indicates that she is managing an apparently

incorrect (to her) response.
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Section summary: Managing Students’ Apparently Incorrect Responses.

With the vignette and this exploration of Jean’s and the teacher’s responses, I

hope that I have illustrated for the reader what I mean by “apparently” incorrect.

Specifically, my aim is to have established that students say lots of things (many of

which fall on a continuum, somewhere between objectively correct and objectively

incorrect) and that making sense of a student response is not a completely objective

act. Additionally, I hope to have clarified the deliberate choice of the verb, “manage”,

to capture both the visible actions a teacher takes in response to a student (i.e., what

she says or does, or doesn’t do) as well as the invisible factors that contribute to

these visible actions (i.e., the affective reaction, the cognitive resources and mental

processes at play). With this shared context to build from, I turn next to considering

the following question: Does it matter how teachers manage these moments?

Why Does it Matter?

The ways in which a teacher manages students’ apparently incorrect responses

during whole-class instruction has important implications for the learning of not only

the student who has responded but also the rest of the class. Since the interaction

occurs during whole-class instruction it is public and hence, a teacher’s subsequent

actions impact not only the student who provided the response but also the rest of the

students in the class who are observing this interaction take place. This interaction

can have important consequences for students’ through the four important messages

it can send, implicitly or explicitly, about: (1) what mathematics students should

learn, (2) what mathematics is and hence what it means to do mathematics, (3) the

role of errors in mathematics learning and in learning more broadly, and (4) who can

learn mathematics.

The consequences of these messages are best illustrated in the case when, like in
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the vignette above, a teacher negatively evaluates the student’s response. This type

of interaction pattern, where the teacher initiates a question, gets a response from

a student and then evaluates that response (IRE) (Mehan, 1979) is predominant in

U.S. classrooms (Franke et al., 2007). Hence, the case in the vignette is likely repre-

sentative of a common occurrence in US classrooms and the potential consequences

I discuss below have salience and urgency for students currently experiencing this in

mathematics classrooms.

Why does it matter: What mathematics students should learn.

A very immediate impact of the teachers’ actions is on what mathematics stu-

dents will learn. On a moment-to-moment level, how a teacher manages students’

responses indicates what mathematics is correct or incorrect and hence, conveys to

students what mathematics they should be learning. For example, in the vignette

above, students experiencing this interaction between the teacher and Jean might take

away the idea that using concrete examples in the process of abstract mathematical

generalization is ill advised. Polya (1945), Lakatos (1976) and many other prominent

mathematicians are likely to cringe at this idea that concrete examples (i.e., inductive

reasoning) have no part in abstract mathematical generalizations. Another way to

make sense of this problematic message is to think of what happens in the opposite

occurrence, when a student response is apparently correct. A classic illustration of

this occurrence is Erlwanger’s (1973) interview with Benny, a 12-year old student

making “better than average” progress through a behavioral, initiate, response, and

evaluate protocol (IRE) structured mathematics program. Though Benny’s answers

on the automated program seem to indicate he understands how to add and multiply

fractions and decimals, upon closer inspection it is clear he does not. For example,

in solving 0.7 times 0.5 Benny provides the correct answer of 0.35 but explains the

position of the decimal as follows, “because there’s two points, one in bothin front of
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each number; so you have to add both of the numbers left1 and 1 is 2; so there has to

be two numbers left for the decimal” (Erlwanger, 1973, p.8). Though Benny’s answers

are apparently correct, they conceal deep misunderstandings and have actually rein-

forced some incorrect mathematical thinking. In other words, how a teacher manages

students’ apparently incorrect (or correct) responses signals to students what mathe-

matics they should learn and has the dangerous potential, as in the case of Jean and

Benny, to lead to mathematical misconceptions and misunderstandings.

Why does it matter: What mathematics is and what it means to do math-

ematics.

Beyond the moment-to-moment interactions when a teacher predominantly en-

gages in an IRE discourse pattern in a mathematics classroom, she can send implicit

or explicit messages at a higher level about what mathematics is and hence what it

means to do mathematics. Specifically, this pattern of interaction places the emphasis

on getting the right answer, rather than developing understanding and exploring the

methods or strategies used to produce an answer (Franke et al., 2007, p.229). This

focus on the “right” answer privileges procedural competence rather than meaning-

ful, conceptual mathematical understanding. It sends messages to students about

what the discipline of mathematics is—a set of rules to be memorized rather than a

connected discipline that can be reasoned through (H. Ball D. L. Bass, 2000)—and

hence what it means to do mathematics.

For example, rather than viewing mathematics as a connected web of interrelated

concepts, Benny understands mathematics as a set of rules, “ invented ‘by a man

or someone who was very smart’ ” (Erlwanger, 1973, p.x). For Benny, rather than

thinking of doing mathematics as a sense-making activity, he describes learning math-

ematics as a “wild goose chase” (p.53) in which he is searching for the right, “magic”

answers (p. 54). In the vignette, Jean may similarly feel frustrated and disillusioned
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with mathematics when his answer is so quickly dismissed as incorrect. He too may

start to wonder if mathematics is a disconnected set of rules and facts, a body of

knowledge that is to be transferred into his mind, rather than an activity of making

sense and discovery. He might start to believe that doing mathematics is just about

getting the right answer.

Why does it matter: The role of errors.

Another important consequence of this interaction is what it tells students about

the role of errors in mathematics learning and in learning more broadly. It could

be that, at this point, after reading about Benny and Jean’s thoughts, some readers

may wonder about what role the student plays in all of this and, in particular how

students’ own personalities and idiosyncrasies play a role in making meaning of these

interactions. Indeed, there has been quite a bit of work over the past decade about

individuals’ differing mindsets and how these shape the ways in which they make

different meanings of the same situations (e.g., the growth versus fixed mindset work

of Dweck (e.g., Dweck, 2008)). Specifically, a student’s orientation towards their

learning goals (mastery for one’s own competence versus performance to demonstrate

high-competence or avoid showing low-competence) and their academic self-concept

(i.e., their beliefs about their domain specific abilities) are highly correlated to their

behaviors in response to making mistakes. However, recent work challenges the idea

that students’ adaptive or maladaptive motivational and behavioral patterns around

errors and failure can be solely explained by their individual attributes (Steuer et al.,

2013).

Instead, this recent body of research demonstrates that, above and beyond stu-

dents’ individual attributes, a classroom’s “error climate” significantly contributes

to understanding student’s behaviors and motivation around errors (Steuer et al.,

2013). The multi-faceted construct of a classroom’s “error climate” includes the ways
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in which teachers might set-up classrom norms (e.g., making the classroom a safe-

place to make mistakes and take risks) that support a positive error climate as well as

how a teacher navigates students’ errors in-the-moment. A teacher’s in-the-moment

navigation of errors includes a teacher’s tolerance of those errors, the ways in which

errors are tied to summative assessment in early learning phases, support following

an error, and a teacher’s disapproving reactions to errors, all of which have important

implications for the error climate of a classroom (Steuer et al., 2013). This perceived

error climate is predictive of students’ “behavioral and cognitive engagement in aca-

demic work (in terms of the quantity and self-regulation of their effort)” (p. 207). In

other words, while students’ individual affective and behaviorial orientations towards

errors are important, the perceived error climate (positive or negative) of a classroom

also significantly impacts how students react to errors.

This error climate can likely reinforce students’ mindsets around the meaning of

errors in mathematics—as “springboards for inquiry” (Borasi, 1994) or as demon-

strations of incompetence—and the ways in which they cope with errors and failure

in general. Reinforcing negative perceptions around errors can reinforce maladaptive

coping mechanisms such as avoiding challenges or taking risks and hiding mistakes

in addition to increasing students’ negative affect towards a particular subject or to

learning and failure (Steuer et al., 2013; Tulis, 2013; Rybowiak et al., 1999; Dweck,

2008).

Why does it matter: Who can learn mathematics.

A final message that can be sent to students through the manner in which a

teacher manages apparently incorrect responses is about who can learn mathematics

or who cannot (or should not). One way to understand how this might be the case

is to re-read the vignette and replace the student “Jean” with “Shareese”—a Black,

female student. In this version of the vignette, with the student’s gender and race now
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fore grounded, it is likely that the teacher’s quick, corrective response feels heavier

and more consequential than when the student was simply “Jean”. This qualitative

difference is likely due to the fact that this micro-level interaction speaks to macro-

level educational inequities across race and gender (to name a few). At the macro-

level there is a well-documented absence of people of color, and females in particular,

in STEM fields and a so-called mathematics “achievement gap” between Black and

White students that continues to widen (e.g., Lubienski, 2002; Flores, 2007). As

researchers have turned their focus on understanding the underlying mechanism that

give rise to the “achievement gap”, they have begun to reframe it as an “opportunity

gap” (Flores, 2007). This change in naming the problem more accurately reflects the

underlying mechanisms at the school and classroom level (such as student-teacher

interactions) that seem to be emerging as likely explanations for the differences in

the mathematical performance of Black and White students.

Specifically, research is accumulating evidence of the alarming disparities in the

quality of mathematics education that students of color receive in the United States

(e.g., Ladson-Billings, 1997; Lubienski, 2002; Flores, 2007). At the school level, Black,

LatinX, and low-income students are more likely to be placed in remedial mathematics

courses (already placing them at a disadvantage to their Anglo and Asian peers) and

have inexperienced and under-qualified mathematics teachers (Flores, 2007). At the

classroom-level, these students are more likely to have teachers with deficit mindsets

who believe that students’ lack of achievement is explained by “student characteristics

such as differences in motivational levels, work ethic, and family support” (Bol &

Berry, 2005, p.32). These systemic issues then translate into lower-expectations for

students and problematic mathematics instruction.

In mathematics classrooms these issues manifest themselves through instruction

that is focused on building basic computational skills and learning procedures rather

than engaging in higher-level, cognitively demanding tasks and assessments (e.g.,
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Ladson-Billings, 1997; Means & Knapp, 1991). At the level of student-teacher inter-

actions, which are likely a mechanism through which the macro-levels disparities are

perpetuated (Battey & Leyva, 2016), less research exists. However, the research that

does exist can illuminate how something as small as how a teacher manages different

students’ apparently incorrect responses could send messages to students about who

can (or should) do mathematics.

In education research more broadly, scholars have found that teacher-student re-

lationships are important for both students’ academic and psychological development

but that these relationships are strained and perceived as more conflictual between

teachers and Black students (e.g., Jerome et al., 2009). In mathematics education,

Battey & Leyva (2013) examined teacher-student relationships through five dimen-

sions to begin to unpack how these interactions might differ. They found that of these

five dimensions, “acknowledging student contribution”, which examined the ways in

which teachers acknowledged student mathematical thinking by “valuing/devaluing,

or praising/disparaging” student contributions (p. 982), was the only dimension

(in that sample) that was statistically significant in predicting students’ mathematics

achievement on the California Standards Test (p.984). Additionally, though not quite

statistically significant in the small sample, they did find some notable differences in

the ways in which teachers acknowledge student contributions. Specifically, they

found that teachers acknowledged student contributions in a way that advantaged

Black girls and disadvantaged Black boys. In other words, Battey & Leyva (2013)

found that how teachers acknowledge student contributions impacted students’ math-

ematics achievement and was not consistent across students’ gender. Even if these

problematic interactions are unconscious and hence not deliberate or intentional on

the part of the teacher but rather due to teacher’s implicit racial bias, they can still

cause harm to students (e.g., Van den Bergh et al, 2010). Essentially, the recent work

of Battey Leyva (2013, 2016) points to the importance of how teachers’ manage stu-
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dents’ responses and how this could be a mechanism for “conveying messages about

who is mathematically able, whose mathematical contributions are valid, and whose

cultural and linguistic practices are legitimized in mathematics classrooms” (Battey

& Leyva, 2013).

Section summary: Why does it matter?

How teachers manage students’ apparently incorrect responses is consequential

for students. Implicitly or explicitly it sends four critical messages to them. First,

it signals to students what mathematics they should learn and, when done poorly, it

can lead to mathematical misunderstandings and misconceptions. Second, it conveys

messages about the nature of mathematics which in turn shape students’ understand-

ing of what it means to do mathematics—as a pursuit for the elusive right answer

through correct procedures or as a creative, problem-solving endeavor for conceptual

understanding. Third, it indicates to students what role errors play in mathematics

learning and in learning more broadly. This can either reinforce students’ fear of mak-

ing mistakes and maladaptive coping mechanisms for failure or liberate them to see

mistakes as opportunities for learning and growth that are worth the risks. Finally, it

can send messages to students about who can (or should) learn mathematics through

how it positions or favors students of different genders, races or class. Despite these

significant implications for students, it is still common for teachers’ in US classrooms

to engage in evaluative patterns in response to all types of student answers (Franke

et al ref). However, examining why it might be difficult for teachers to manage stu-

dents’ apparently incorrect responses sheds light on why this discourse pattern might

persist.
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Why might managing students’ apparently incorrect responses

be difficult?

In this section, I argue that managing students’ apparently incorrect responses is

difficult for four main reasons: (1) Teaching, and specifically managing apparently

incorrect student responses, can be “unnatural” work. (2) Teaching, and specifically

managing apparently incorrect student responses, can involve managing dilemmas.

(3) Teaching, and specifically managing apparently incorrect student responses, can

be anxiety provoking. (4) Making decisions in-the-moment can be difficult and cannot

always be completely conscious.

Difficulty 1: Teaching is “unnatural” work.

The work of professional classroom teaching requires teachers to act in ways that

are vastly different from those in their day-to-day life (D. L. Ball & Forzani, 2009)

and this is particularly evident when a teacher needs to respond to a student. In that

moment, to be able to ‘hear’ a child, a teacher must first be intently focused on really

understanding what the student has said. In our everyday interactions, when we are

in conversation with others, rather than listening to truly understand what another

person is saying, our minds are usually busy crafting a response.

Even when we are genuinely interested in hearing another person, we can be

looking to understand what they are saying in terms of how it provides value for us and

not necessarily the other person (i.e., “what can I learn here”, “how can respond so I

look good, genuine, etc.” ). Teachers, on the other hand, are likely listening through

the lens of students’ learning and looking for ways to provide learning opportunities

and value for students, not themselves. In other words, the teacher must suspend the

urge to craft a response or seek value only for themselves and instead, cultivate an

intense, “unnatural orientation towards others” (D. L. Ball & Forzani, 2009, p.499).
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Additionally, in our day-to-day lives, we tend to spend time with people who are

like us in some way, people with whom we have some shared perspective or identity.

Hence, we can, usually correctly, make assumptions about what someone else means

(e.g., “I totally hear what you are saying”, “I get it”). In contrast, teaching requires

that teachers be vigilant about not assuming a shared perspective and take care to

not project their own understanding and thinking onto what students’ have said.

This vigilance is closely tied to the work of “listening across divides” of age, race,

culture, religion, language, and gender between the students and teacher (D. L. Ball,

1997). As D. L. Ball (1997) puts it, “how children think, talk, and represent their

ideas is shaped by their varied identities and experiences. Trying to hear children chal-

lenges teachers while trying to listen across a gulf of human experience and meaning”

(p. 787). In the vignette for example, the teacher seems to have difficulty hearing

across the divide and listening without her own understanding clouding what she

hears. She seems to understand the relationship between the ratios in terms of one-

dimensional and two-dimensional objects and hence cannot hear past the language

(“box”, “boxes”) and concrete example that Jean uses in his response. The teacher

therefore assumes Jean does not understand the concept because he does not under-

stand it in the way she does or use language she would use. In order to manage a

student response productively, a teacher must first hear and understand in an “un-

natural” way what a student has said. Once a teacher hears a student response, if she

perceives it to be incorrect, she must then continue to engage in unnatural behaviors.

In day-to-day interactions, when a child or individual says something apparently

incorrect, adults usually make efforts to quickly aid the individual in getting to the

right answer. There is a strong urge to “smooth” things over and minimize the

potential embarrassment of the situation. In contrast, when a student provides an

apparently incorrect response a teacher will likely need to linger in that moment. She

might ask purposefully probing questions that provide more information or inten-
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tionally cause cognitive disequilibrium and discomfort, as the work of learning often

necessitates this uncomfortable struggle (D. L. Ball & Forzani, 2009). Teachers must

suppress the natural urge to swoop in and swiftly ‘fix’ errors, to do something for

someone else, and instead facilitate meaningful learning through productive struggle.

Managing students’ apparently incorrect responses requires teachers to act in un-

natural ways. They must be unnaturally focused on the words, understanding and

needs of others and have to suspend natural assumptions of common identity and

meaning. Additionally, if a student says something that is apparently incorrect, they

need to unnaturally linger in the discomfort of the moment in order to facilitate

students’ learning.

Difficulty 2: Teaching can involve managing dilemmas.

The complexity of teaching in general and managing student responses in partic-

ular, often requires a teacher to navigate sometimes-competing teaching obligations

(Buchman, 1986) in addition to their own goals and desires. In particular, as a teacher

of mathematics in schools, a teacher has professional obligations to at least four main

stakeholders: the discipline of mathematics (to represent and teach it in authentic

and valid ways), the individual students (and their idiosyncratic feelings, thoughts,

and needs), the class as whole (in particular, making sure the shared resources of

time and space are used in “socially and culturally appropriate ways” by all, Herbst

& Chazan (2012, p.610), and the institution (e.g., the school, state and federal educa-

tion mandates, professional organizations, etc.) (Herbst & Chazan, 2012). In addition

to these obligations or commitments (Lampert, 1985), teachers also have a variety of

short-term goals (e.g. “ responding at a specific moment to a particular student in an

appropriate way”, p. 15) and long-term goals (e.g. “helping students to develop over

the course of a year”, p. 15) for what they intend to achieve, mathematically or affec-

tively (Schoenfeld, 2011). These goals are likely shaped by and in turn influence the
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ways in which a teacher interprets her various obligations to different stakeholders.

One particular goal—the mathematical learning and understanding of children—can

also manifest itself as the teacher’s powerful desire for children to ‘get’ the right an-

swer . D. L. Ball (1997) explains, “Teachers want students to understand... They

care about their students. After investing time and effort in a particular student, a

teacher wants to hear right answers, sensible reasons, creative ideasThe desire to have

been effective, to have helped, is strong ” (p. 800).

What can become difficult for teachers is that these various obligations, goals

and desires together rarely present a single, clear, “right” course of action at any

given moment. Frequently, teachers are faced with “a forced choice between equally

undesirable alternatives” which creates seemingly impossible dilemmas to problems

that “might be defined as unsolvable” but that a teacher must resolve nonetheless

(Lampert, 1985, p.179). These dilemmas are not always simply resolved by cutting

edge theories of mathematics teaching and learning since they are not simple matters

of logic and knowledge. They need to be resolved in complicated contexts and involve

real cognitive and affective consequences to other human beings and to the teacher.

When a teacher responds to a student’s apparently incorrect answer they are not only

shaping students, they are also shaping their own identity as a teacher and, hence,

dilemmas can further be “a conflict of identity” (p. 182). To illustrate how these

various obligations, goals and desires might come into play let us revisit the vignette

but this time consider how Jean’s apparently incorrect response might give rise to

dilemmas for the teacher.

When Jean provides his response the teacher is in a situation where she must

navigate obligations to all four stakeholders, and her own goals and desires simulta-

neously. First, she is obligated by the discipline of mathematics to help students learn

to speak in mathematically precise ways by using terms such as “one-dimensional”

and “two-dimensional” rather than “box” and “boxes”. Second, the teacher has a
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sense of obligation towards Jean’s individual emotional and intellectual needs. Third,

the teacher is likely highly aware, since the interaction occurs during whole-class

instruction, of her interpersonal obligation to the class. Some teachers fear public,

incorrect answers because they worry about the handful of students that might be

paying attention only in that moment and then leave the class believing that perime-

ters and areas are “box” and “boxes” . Further, teachers are also responsible for the

use of time in class and cannot spend inordinate amounts of it on Jean’s response.

Fourth, the teacher has institutional obligations that, in particular through the del-

uge of standardize testing, pressure her to make sure that students have a correct

understanding of the content and, in some cases, that she keep a particular pace in

her class (which creates time pressures around how long, if time is spent at all, to

perhaps spend on apparently incorrect answers). Related to these obligations, are

the teacher’s own goals and desires. In this case, the teacher likely has a goal of de-

veloping students’ understanding of these ideas as well as their use of mathematical

terms. The teacher also has a strong desire for Jean to participate and to get the

right answer. When he volunteers, she get’s excited and she is looking forward to an

answer to her ‘good question.’ Then there are likely her own desires to be a good and

competent teacher, and the clearest proof of her success as a teacher will be that her

students are able to produce the right answer (D. L. Ball, 1997).

All of these various obligations, goals and desires do not necessarily align to sug-

gest one, correct course of action for the teacher. On the one hand, her individual

obligation to Jean and her desire for him to participate and learn, might suggest

one course of action where she follows-up with probing questions (e.g., “what do you

mean by “boxes”?”). On the other, her obligations to the class as a whole and the

discipline in addition to her desire for students to understand might suggest that a

better course of action is for her to provide a correct, accurate response with the right

terminology. These obligations and desires might also suggest a third option: asking
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a different student to voice their understanding of Jean’s response by rephrasing what

was said. Unlike choose-your-own-adventure books where there are usually only two

possible courses of action, in teaching many instructional moments present three or

more plausible choices for the teacher and these choices are not likely to satisfy every

obligation, desire or goal at play in that moment. In some cases, a teacher might

feel that these obligations, goals and desires are pulling her towards different, irrec-

oncilable courses of action. Regardless, she likely does not have the luxury of time to

contemplate each path of action to completion before needing to respond. She must

make a decision and resolve the dilemma.

Difficulty 3:Teaching can be anxiety provoking.

As I mentioned earlier, I am exploring managing students’ apparently incorrect

responses in the context of whole-class instruction. This particular activity struc-

ture, regardless of the type of instruction occurring in that structure (i.e., lecture or

discussion), means that the teacher’s interaction with a student is public and this

public-nature has important implications for both the students and the teacher. As I

mentioned earlier, for students this public interaction has implications for what they

learn mathematically, and about what it means to do mathematics, what it means to

make mistakes, and who can learn mathematics. For the teacher there are also impor-

tant implications due to the public nature of this interaction. Consider for a moment

that in psychology experiments one of the easiest ways to “stress out” a participant

is to engage them in a public speaking task as well as a public mental mathematics

task (Kirschbaum et al., 1993). I contend that this experience, in many ways, is sim-

ilar to the experience of the mathematics teacher, standing at the front of the room,

responding to students. Like a participant in a psychology experiment, a teacher is

speaking to an audience and performing cognitively demanding work (harder, I would

argue, in most cases than simple mental computations). It is therefore plausible to
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imagine that, like in the psychology experiment, a teacher managing an apparently

incorrect student response is likely to experience emotional arousal, quite possibly in

the form of anxiety. A cause for concern is that this anxiety has important conse-

quences for the teacher’s cognitive abilities and performance in that moment through

two potential mechanisms: occupying mental space and their physiological reaction.

Several researchers have argued that anxiety, such as math anxiety, needlessly

occupies mental space and hence, negatively impacts performance (e.g., Beilock &

Willingham, 2014; Wine, 1971). In other words, they hypothesize that during a

math test, for example, an anxious math test taker inadvertently divides their atten-

tion between “self-relevant” (being “self-deprecating” and “self- preoccupied” dur-

ing the task) and “task-relevant” (actually working on the task at hand) variables

(Wine, 1971). This attention to both the worries and the task at hand reduces

the capacity of working memory (Beilock & Willingham, 2014). Working memory

is the short term, capacity-limited part of short-term memory which holds infor-

mation temporarily such that it can be used for immediate, conscious perceptual

and linguistic processing and hence, guides reasoning, decision-making and behav-

ior (”https://en.wikipedia.org/wiki/Working memory”, accessed April 2017). Thus,

preoccupying working memory with worry reduces its capacity to solve the task at

hand. Recent work in neuroscience has confirmed this hypothesis.

When looking at the neural activity in the brain of children with high and low

math anxiety as they worked on math problems, researchers found differences in the

children’s brain activity. Math anxious children, as compared to their peers, had more

brain activity in their amygdala (which is used for processing negative emotions)

and lower activity in the dorsolateral prefrontal cortex and the posterior parietal

lobe (brain regions known to support working memory and numerical processing)

(Christina B Yung, Saras S Wu, Vinod Menon, “neuro-developmental basis of math

anxiety” psychological Science 23, 201, 492—501). In other words, worrying about
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a task activates the processing of negative emotions and decreases brain activity in

areas that could be used to problem-solve.

This is exactly one of things that happens to the teacher is the vignette. In

the vignette, we can see her worry as she listens to Jean’s response: “What is he

talking about, there’s nothing 3-D going on here?!uurggghhh, he’s not answering

my question...he doesn’t get it....how do I respond to this???!!!...” She worries about

making sense of what Jean is saying, about Jean not understanding and about how

to respond, all of which needlessly occupies her working memory. I hypothesize

that consciously and unconsciously, teachers are likely worrying about many things—

looking knowledgeable, making sure all students are paying attention, keeping an

eye on how much time is left, etc. all the obligations, goals and desires creating

dilemmas—simultaneously. These unavoidable concerns can, at times, give rises to

anxiety and worries that then needlessly occupy mental space, hindering a teacher’s

cognitive capacity to fully listen and hear what a student has said and to respond

productively. In addition to these worries, another challenge can be presented through

the teacher’s physiological response in that moment. Threat versus challenge: The

physiological response.

When a teacher is at the front of the room and a student has just responded,

the teacher is in a situation that requires an active performance—including cognitive,

emotional and behavioral responses—on their part. The way in which the teacher

perceives this situation (also known as appraisal of the situation) has importance

consequences for their physiological response and their performance (e.g., Blascovich

& Mendes, 2000; Jamieson et al., 2010). When an individual feels that they have

“insufficient resources to meet the situational demands” they experience a threat re-

sponse (Blascovich & Mendes, 2000, p.60). In contrast, if they feel that they have

“sufficient or nearly-sufficient resources” they experience a challenge response. These

different appraisals of a situation in light of one’s resources have distinct physiologi-
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cal responses that impede or support performance. Though both responses activate

the sympathetic-adrenal-medullary axis , in a challenge state the adrenal medulla re-

leases higher levels of catecholamine neurotransmitters (such as adrenaline) that are

associated with better task performance (e.g., Jamieson et al., 2010) and the body’s

cardiovascular response “mimics cardiovascular performance during aerobic exercise

and represents the efficient mobilization of energy for coping” (Blascovich & Mendes,

2000, p.66). In other words, when an individual appraises a situation as a challenge,

their body kicks into gear a physical response that better mobilize them to perform.

In contrast, if a situation is appraised as a threat, an individual’s body is preparing

for physical harm so it constricts blood flow to minimize blood loss, ramps up in-

flammation and mobilizes immune cells needed to heal after the inevitable harm is

inflicted. This reaction then impedes cognitive performance and, over the long-term,

can increase the risk of cardio-vascular disease (McGonigal, 2015, pp.110-111).

When a teacher is at the font of the room and a student has provided an apparently

incorrect response, a teacher might appraise the situation (consciously or not) as

either a threat or a challenge. To illustrate these differences, let us imagine two

different ways this moment might go. In the first, the teacher hears the student

response and feels like she doesn’t have the experience, knowledge or resources to

handle it. This is the first time she has taught this content so she is unsure of what

mathematics underlie the student thinking and where to go with what the student

has provided. She feels underprepared and is not confident in her ability to manage

this moment productively. Her body, sensing this perception of threat, responds

accordingly. Her heart pounds, her palms sweat, her blood vessels constrict and

reduce the blood flow and oxygenation to her brain. Her body is ready for harm

and, as a consequence, provides her with less support to handle this moment. Now

imagine instead that the teacher hears the student response and gets excited. She

has wanted this particular misconception to come out so she can dig into it with
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her students. This is exactly what she had been reflecting on a few days ago as she

planned out this lesson, anticipating various mathematical complexities and issues

students might have and planning a variety of ways in which she might respond. She

is confident in her knowledge and in her ability to manage this moment. In turn,

her body perceives her challenge appraisal of the situation and mobilizes to support

her. Her heart beats faster, her blood vessels dilate, there is a rush of blood and

oxygenation to her brain, and adrenaline courses through her. Her body provides her

with the physical resources to face this challenge.

Difficulty 4: Making decisions in-the-moment can be complex.

I argue that a fourth difficultly in managing students’ apparently incorrect re-

sponses is the complexity of in-the-moment decision-making. Understanding into

this difficulty first necessitates some common ground be established regarding what

“decision making” might mean in general and clarifying how it is being operational-

ized here. Decision-making—loosely conceptualized as why and/or how people do

what they do—has long been a focus of considerable interest by philosophers and

researchers alike. This fascination has led to a prolific and diverse body of work on

the subject across a variety of disciplines including education (e.g., Blömeke, Gustafs-

son, & Shavelson, 2015; Schoenfeld, 2011; Shavelson & Stern, 1981), psychology (e.g.,

work on behavioral decision making such as Kahneman (2011) and any of the work

by Kahneman Tversky, or G. Gigerenzer as well as naturalistic decision making,

e.g., Klein (1999)or Lipshitz et al. (2001)), social psychology (e.g., Chaiken & Trope,

1999), business (e.g. Buchanan O’Connell,2006) and neuroscience (e.g., the work of

Antonio and Hanna Damasio on emotions and decision-making). While an exhaus-

tive review of this vast, rich literature is impossible here, I provide an overview of

the facets of decision-making relevant to understanding it in the context of managing

students’ apparently incorrect responses.
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At a glance over this broad field one might notice four interrelated but slightly

different facets of the work on “decision-making”: 1. A focus on the outcome (deci-

sion) and/or the processes (the decision-making processes, e.g. weighing pros versus

cons or using a rule of thumb) and/or the post-hoc rationalization of decisions (i.e.,

what people do versus the processes that occurs versus how they explain why they

did what they did after the fact). 2. A focus on the attributes of individuals that

influence the decision or decision-making process. 3. A focus on the characteristics

of a situation that influence the decision or decision-making process. 4. A focus on

the ways in which decision-making might evolve or be optimized over time.

All of these various foci have implications for how one might define, conceptu-

alize and study any decision-making phenomenon, including how teachers manage

students’ apparently incorrect responses. For example, a focus on only the outcome

or decision means looking closely at how teachers respond (what they say and do). In

addition though, one might want to also consider the invisible decision-making pro-

cesses that are occurring (e.g., it is a snap judgment, a heuristic or routine, or is there

some mental deliberation the teacher is going through?). One might also explore how

teachers rationalize or explain their decisions post-hoc (e.g., Herbst Chazan’s prac-

tical rationality). Further, one might be interested in understanding what individual

characteristics, such as particular types of knowledge and skills, might influence teach-

ers decisions (e.g., Schoenfeld’s work on goals, resources and orientations in teacher

decision-making). There is also a need to consider the characteristics of a situation

that influence the decision or decision-making process. For example, if one were in-

terested in studying how implicit bias might impact how teachers’ manage students’

apparently incorrect responses this would need to occur in a context where differ-

ences in race are present. One might also be interested in how managing students’

apparently incorrect responses differs between content areas (e.g. Algebra versus Cal-

culus), student age groups (e.g., elementary, middle, or high-school or post-secondary
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students), or school settings (e.g., public versus private, or urban versus suburban).

Finally, one might be interested in how teachers’ manage students’ apparently incor-

rect responses moment-to-moment or looking across time to see patterns in the ways

this might evolve for novices or be improved with particular interventions such as

professional development on children’s thinking.

In order to allow for these different facets or foci, at a high-level I conceive of

how teachers manage students’ apparently incorrect responses as a type of profes-

sional competence and therefore, draw on Blömeke, Gustafsson, & Shavelson (?)odel

of competence. In examining the research on competence, Blömeke, Gustafsson, &

Shavelson (2015) pointed to a dichotomy between performance, on the one hand,

captured through “behavioral assessment in real-life situations” and the “disposi-

tions underlying such behavior,” (p.5) on the other, which are usually “analytically

divided into several cognitive and affective-motivational traits (or resources), each to

be measured reliably and validly” typically with paper-and-pencil assessments (p. 2).

To bridge this dichotomy, they propose a model of competence as a continuum that

takes into account dispositions along with the situation-specific skills (i.e., processes

such as the “perception and interpretation of a specific job situation together with

decision-making”, p. 8) that likely mediate between disposition and performance.

“Thus, instead of insisting on an unproductive dichotomy view of competence, in

particular knowledge or performance, competence should be regarded as a process, a

continuum with many steps in between” (p. 8, italics added, see Figure 4.1 below).

Taking this model as a starting point, the competency of managing students’

apparently incorrect responses can be conceived of as encompassing a variety of “dis-

positions” (e.g., cognitive, affective, motivational, volitional) and “situation-specific

skills” (e.g., perception, interpretation, and decision making) that led to an observable

behavior (e.g., a response to a student). Based on my focus here on in-the-moment

decision-making, I revised their model as follows:
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Figure 2.3: Model of competence as a continuum (Blömeke, Gustafsson, & Shavelson,
2015, p.9).

Figure 2.4: Revised model of competence for managing students responses.
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In this model I have made four important changes. First, instead of using the

label “dispositions”, I have used “internal resources” to indicate what an individual

might have available to them in the moment. Dispositions can be thought of as a

type of average of these internal resources since a disposition is a tendency over time

rather than at a unique moment in time. Second, within this category I have chosen

to differentiate between cognitive, affective and motivational-volitional resources. In

general, there is some agreement that cognitive resources are “knowledge” or empir-

ical facts as contrasted with beliefs and emotions. Here, I use affective resources to

encompass teachers’ beliefs about the subject matter and about teaching and learn-

ing mathematics. In other words, affective resources are beliefs about things that are

outside of themselves. In contrast, beliefs related to their abilities (inside themselves)

such as self-efficacy, I categorize as motivational-volitional resources. To illustrate the

difference in the way I have defined affective versus motivational-volitional resources,

consider the difference between a belief in mathematics teaching and learning as en-

compassing students engaged in hands-on activity versus a belief in my ability to

actually implement this type of instruction. As I will discuss in greater detail in the

next section, managing students’ apparently incorrect responses necessitates several

specialized cognitive, affective and motivational-volitional resources. A lack in any

one of these resources is likely to impact performance and hence, a difficulty here is

in having and/or accessing all of these resources in the moment of performance.

A third change I have made is in labeling the mediating step between resources

and performance as “situation-specific skills and processes”. This change in label

is directly related to the fourth and final change I have made to the model: layer-

ing Type 1 and Type 2 processes onto the “perception, interpretation, and decision

making” skills. These processes, Type 1 and Type 2, come from research on dual-

process theories of cognition. These theories essentially stipulate that human beings

have (at least) two systems for processing information: Type 1 or the autonomous
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set of systems (in some work referred to as system 1) which can be faster, automatic

and unconscious (including: “modular, habitual, and automated forms of processing”

(Evans & Stanovich, 2013, p.225)), and Type 2 processes (in some work referred to as

system 2) which can be slower, deliberate and conscious (Evans & Stanovich, 2013;

Kahneman, 2011). The important distinction between these is that “Type 2 pro-

cessing is distinguished from autonomous Type 1 processing by its nature—involving

cognitive decoupling and hypothetical thinking—and by its strong loading on the

working memory resources that this requires” (Evans & Stanovich, 2013, p.227). I

have chosen to layer this into my model for several reasons.

First, the research on expertise, including expertise in teaching, suggests that

one of the characteristics that distinguished experts from more novice members of a

profession is their development of and reliance on heuristics and routines. A teacher

might have developed a set of heuristics or routines to handle particular, common

types of apparently incorrect student response. For example, an expert teacher might

have developed something as simple as a wait-time or revoicing routine after particular

types of responses that she knows will leave space for other students to jump-in or

for the same student to reflect on their own response. Or an expert teacher might

have a routine follow-up task or question to use when students exhibit a specific

mathematical misconception. It is likely that in these familiar moments, a teacher

might perceive, interpret and decide almost simultaneously and instantaneously on

a course of action. These quick decisions are not only a sign of expertise when they

occur at opportune moments but they are also a necessity in teaching because of

the typically rapid-fire pace of events. The difficulty arises in having professional

judgment and knowing (intuitively) when a quick decision can or should be made and

heuristics utilized versus when the situation requires a more conscious deliberation

before acting.

Second, the inclusion of Type 1 and Type 2 processes also affords room to more
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accurately and generously consider how implicit bias might appear in a teacher’s prac-

tice in general and in how a teacher manages students’ apparently incorrect responses

in particular. Implicit bias is hypothesized to occur through an unconscious, associa-

tive mechanism in which a particular attribute of an object or situation automatically

triggers a specific association (Greenwald & Banaji, 1995). These “so-called evaluative

associations are created via evaluative conditioning or the repetition of particularly

negative (or positive) information in the media, personal experiences, and so forth”

(Van den Bergh et al., 2010). One does not need to look very far to see examples

in day-to-day media that might bias individuals (e.g., watching the news or network

shows and noticing how many instances there are of Black vs White males being

portrayed as criminals). Regardless of their source, these evaluative associations are

automatically triggered and hence are not under conscious control. In teaching, it is

likely that racial implicit bias shapes the interactions between teachers and students

(Battey & Leyva, 2016). It is therefore reasonable to assume this bias will impact

the ways in which teachers manage students’ apparently incorrect responses and it

would unsurprising, for example, to find that teachers who have implicit bias more

frequently negatively-evaluate apparently incorrect responses from students of color.

Recognizing this as an implicit, unconscious, and likely Type 1 process has implica-

tions for not only a more realistic and generous view of teaching but, importantly, for

suggesting alternative interventions. In other words, how teacher education might go

about addressing a lack of situation-specific skills (e.g. noticing) is likely to be differ-

ent than how it addresses an unconscious, situation-specific process, such as implicit

bias.
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What might be entailed in managing students’ apparently in-

correct responses?

The four difficulties of managing student’s apparently incorrect mathematical re-

sponses discussed above—that it can be “unnatural” work, that it can involve man-

aging likely un-solvable dilemmas, that it can be anxiety provoking, and that making

decisions in-the-moment is complex—might make it seem impossible to fathom how

a teacher would be able to consistently do this work competently. I propose, how-

ever, that having named these difficulties and in particular, having conceptualized

managing students’ apparently incorrect responses as a type of professional compe-

tence, provide a starting point for envisioning what it might entail for teachers to

manage these responses. In this section, I review research that provides insights into

the internal resources and situation specific skills that might be entailed in manag-

ing students’ apparently incorrect responses. It should be noted that even though

these various components are listed separately here for the purposes of discussion,

in reality these components are closely interrelated and integrated. After explor-

ing the relevant cognitive, affective, and motivational-volitional resources I discuss

perception, interpretation and decision-making through the lens of the “noticing”

literature. Throughout, I discuss when relevant how a particular resource or skill

addresses one or more of the four difficulties identified above.

Figure 2.5

resources.

Cognitive resources.

“Cognitive resources” is a term intended to broadly capture “knowledge” (i.e., “

Having a basis in or reducible to empirical factual knowledge” or cognition as “the

mental processes of perception, memory, judgment and reasoning as contrasted with

36



Figure 2.5: Model of managing competence with details on relevant internal resources.

emotional and volitional processes” -http://www.dictionary.com/browse/cognitive).

It is generally agreed that teachers, like other professionals, needs particular types

of specialized knowledge and work in mathematics education, spurred in part by

Shulman (1987)’s research, is in progress to develop this knowledge base.

In articulating what a professional knowledge base for teaching might encompass

Shulman (1987) proposed seven likely categories: content knowledge, general peda-

gogical knowledge, curriculum knowledge, pedagogical content knowledge, knowledge

of learners and their characteristics, knowledge of educational contexts, and knowl-

edge of educational aims. It is likely that all seven of these various forms of knowl-

edge shape teachers’ competence and actions in important ways but I focus here on a

sub-set. Specifically, the two forms of knowledge that are likely key to managing stu-

dents’ apparently incorrect responses are: content knowledge and pedagogical content

knowledge.
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Content knowledge (CK) and pedagogical content knowledge (PCK).

In mathematics teaching the first category, content knowledge, has been hypoth-

esized to include common content knowledge (CCK), specialized content knowledge

(SCK), and horizon content knowledge (D. L. Ball et al., 2008). Essentially con-

tent knowledge broadly encompasses knowing mathematics content deeply such as

knowing how to do mathematical procedures, use mathematical concepts, and un-

derstanding why particular algorithms or procedures work. This type of knowledge,

specifically common content knowledge, is “the mathematical knowledge and skill

used in settings other than teaching” (D. L. Ball et al., 2008, p.200). CCK is what a

teacher utilizes to recognize when a student might have made a mistake. In addition,

“sizing up the nature of an error, especially an unfamiliar error, typically requires

nimbleness in thinking about numbers, attention to patterns, and flexible thinking

about meaning in ways that are distinctive of specialized content knowledge (SCK)”

(p. 401). These particular ways of knowing content, however, are not enough. Teach-

ers also need pedagogical content knowledge (PCK) that is “most likely to distinguish

the understanding of the content specialist from the pedagogue” (p.8 Shulman, 1987).

In other words, teachers need a special type of mathematical knowledge for mathe-

matics teaching that distinguishes them from a generalist or “pedagogue”. Others

have gone further to demonstrate that PCK also differentiates mathematics teaches

from mathematicians or other math-intensive professions.

PCK has been theorized to include knowledge of content and students (KCS),

knowledge of content and curriculum, and knowledge of content and teaching (KCT)

(D. L. Ball et al., 2008). In order to first decipher a students’ apparently incorrect

response teachers need KCS or, “familiarity with common errors and [knowledge to

decipher]which of several errors students are most likely to make” (p. 401). Fur-

ther, KCS is a type of knowledge that supports teachers in being able “to hear and

interpret students’ emerging and incomplete thinking as expressed in the ways that
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pupils use language” (p. 401). Once a teacher has heard a student and identified a

potential misconception, KCT can support a teacher in knowing how to respond to a

student. KCT “combines knowing about teaching and knowing about mathematics”

(p.401) which enables teachers to make instructional decisions about which student

contributions to pursue and which to ignore or save for a later timewhen to pause

for more clarification, when to use a student’s remark to make a mathematical point,

and when to ask a new question or pose a new task to further students’ learning (p.

401).

Closely related to D. L. Ball et al. (2008)’s articulations of the specialized math-

ematical knowledge for teaching that teachers need are the types of knowledge some

researchers speculate are important for “professional error competence” (Seifried &

Wuttke, 2010, p.147), “error analysis” Peng & Luo (2009) or “diagnostic competence”

(e.g., Schwarz et al., 2008; Hoth et al., 2016). Diagnostic competence refers to “the

ability and the readiness of an assessing person [e.g., a teacher] to assess or analyse

[sic] people or their performances according to predefined categories and terms or

conceptions” (Schwarz et al., 2008, p.779). In addition to having strong, relevant

content knowledge, this competence requires that teachers have the following types

of PCK:

(1) Knowledge of possible error types: At first, teachers have to actually recognize

the specific logical flaws and false assumptions made by students. To be able to do

this, teachers need domain-specific knowledge about possible learner errors.

(2) Available strategies of action/teachers reaction: After having recognised [sic]

the error, teachers must treat it adequately. For this they have to know about various

alternatives of action (e.g. about giving adequate feedback or when it is better to

ignore errors). (Seifried & Wuttke, 2010, p.150).

The first type of knowledge is essentially a sub-set of what D. L. Ball et al.

(2008) described as knowledge of content and students (KCS) and what Peng & Luo
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(2009) describe as a teacher’s knowledge of the existence of the error, the underlying

“rationality of the mathematical error” and the evaluation of the error (p. 23). The

second type of knowledge (about available strategies of actions/ teacher reactions), is

essentially equivalent to D. L. Ball et al. (2008)’s articulation of knowledge of content

and teaching (KCT) or what Peng & Luo (2009) described as the teaching strategy

presented to “eliminate [or remediate] the mathematical error” (p. 23).

Essentially, in order to manage students’ apparently incorrect responses teachers

likely need some form of all seven of Shulman (1987)’s types of knowledge but key to

this competence are content knowledge (specifically CCK and SCK) and pedagogical

content knowledge (KCS and KCT). These forms of specialized knowledge can support

a teacher’s situation-specific skills (as will be explored later) to diagnose a possible

error and respond productively.

Affective resources.

Like “cognitive resources”, “affective resources” is used to broadly capture the

resources related to a person’s emotions such as their “mood, feelings or attitudes”

(Google search definition). Here, I will focus on the types of teacher attitudes or

beliefs specific to teaching and learning mathematics that might support teachers in

managing students’ apparently incorrect responses. In this section, I do not include

beliefs such as self-efficacy and have chosen to discuss those as motivational-volitional

resources. In other words, this section focuses on beliefs teachers hold about the

relevant ideas that are “out there” (e.g., their beliefs about constructivist versus be-

havioral instruction) rather than how those ideas relate to themselves (e.g., their own

abilities to actually enact constructivist teaching). Obviously, these two categories

are highly interrelated and interconnected and are only presented distinctly here for

ease of presentation and discussion.
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Beliefs about the nature of mathematics.

At a macro-level, what a teacher believes (implicitly or explicitly) about teaching

and learning in general and specifically about mathematics will influence their be-

havior (e.g., Pajares, 1992). With regard to mathematics teaching, teacher’s beliefs

about the nature of mathematics influence their beliefs about teaching and learning

mathematics, or as Pajares (1992) described it, “Teachers often teach the content

of a course according to the values held of the content itself”( p. 308-309). In par-

ticular, three distinct views of the nature of mathematics have been described: an

instrumentalist view (“mathematics is an accumulation of facts, rules and skills to be

used in the pursuance of some external end. Thus mathematics is a set of unrelated

but utilitarian rules and facts”) ( Skemp, 1978?) , a Platonist view (“mathematics

as a static but unified body of certain knowledge. Mathematics is discovered, not

created”) and a problem-solving view (“mathematics as a dynamic, continually ex-

panding field of human creation and invention, a cultural product. Mathematics is a

process of enquiry and coming to know, not a finished product, for its results remain

open to revision”) (Ernst, 1988, p. 1-2). These different views about the nature of

mathematics in turn shape teachers’ beliefs about what it means to learn and teach

mathematics.

Beliefs about mathematics learning and teaching.

In particular, teachers with more instrumentalist views of mathematics tend to

believe mathematics learning looks like students being able to correctly carry out

mathematical procedures and that in mathematics teaching, they should maintain

the locus of control of instruction (Thompson, 1984). This then unfolds through

instruction that is more structured and teacher centered with fewer digressions to

address student difficulties and instructional patterns where teachers demonstrate

procedures and then give students time to reproduce or practice these procedures

41



(Thompson, 1984; Stigler & Hiebert, 1999). These types of beliefs about mathematics

instruction, sometimes described as “traditional” or “teacher-centered” (“transmis-

sion view”, Perry et al. 1999), stand in contrast to the beliefs about mathematics

learning and teaching of teachers with a problem-solving view of the nature of math-

ematics.

Believing that the discipline of mathematics is a dynamic, evolving field and that

mathematics is a creative, problem-solving endeavor, tends to be accompanied with

particular beliefs about what it looks like to learn and hence to teach mathemat-

ics. Specifically, teachers with these beliefs about the nature of mathematics also

believe that learning mathematics means developing deep conceptual understanding

and flexibility in integrating “knowledge of facts, concepts, and procedures so as to

find solutions to a variety of related mathematical tasks” (Thompson, 1984, p.120).

Consequently, mathematics instruction then involves releasing some intellectual con-

trol to students and having them actively do and reason about mathematics with

their classmates (a perspective that learning is a social activity and hence a socio-

constructivist view of learning) ( Perry et al 1999: child-centerdness view). These

types of beliefs about mathematics learning and teaching (sometimes referred to as

“inquiry-oriented”) do not necessarily mean that teachers do not believe in developing

students’ procedural and computational fluency but rather that they place value on

instructional activities that engage students in reasoning, creativity, problem-solving,

and constructing knowledge (Stipek et al., 2001). Teachers with these kinds of beliefs

about mathematics learning and teaching may be less likely to simply correct students

who have provided an apparently incorrect response. It is possible that because of

their beliefs about the nature of mathematics, they might be more comfortable with

the messy process of problem solving which inevitably involves struggle and making

errors.

A related sub-set of these beliefs about teaching and learning mathematics, has
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to do with teacher’s beliefs about the role of errors in learning and their related

beliefs about ability. Most recently, Stipek et al. (2001) suggested that there might

be a relationship between teachers’ beliefs about students’ mathematical abilities as

more fixed than malleable (more fixed versus growth mindset, Dweck (2008)) and

their beliefs about what mathematics learning might look like. In particular, they

proposed that teachers who believe in a more traditional view of mathematics teaching

and learning would be more likely to believe that students’ abilities are fixed since

both views focus on correct performance, in which there is little room for errors.

Hence, it follows that for teachers to manage students’ apparently incorrect responses

productively they would need to believe that students’ abilities are malleable and that

errors are a productive part of learning, that mistakes are “springboards for inquiry”

(Borasi, 1994). In particular, Borasi (1994) proposed that an orientation towards

more progressive, inquiry-based instruction, “calls for highlighting ambiguity and

uncertainty in the mathematical content studied so as to generate genuine conflict or

doubt and, consequently, the need to pursue inquiry” (p. 168).

In summary, the following beliefs are most likely to support teachers in produc-

tively managing students’ apparently incorrect responses:

(1) Beliefs about the nature of mathematics: as a “dynamic, continually expanding

field of human creation and invention, a cultural product” (Ernst, 1988).

(2) Beliefs about mathematics learning: as stemming from abilities that are mal-

leable rather than fixed; as an active and social process in which students construct

deep conceptual understanding and flexibility in integrating “knowledge of facts, con-

cepts, and procedures so as to find solutions to a variety of related mathematical

tasks” (Thompson, 1984, p.120). This type of active, social and inquiry-based learn-

ing therefore will and must involve making and reasoning from errors (Borasi, 1994).

(3) Beliefs about teaching mathematics: as “providing necessary support to stu-

dents’ own search for understanding by creating a rich learning environment that
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can stimulate students’ inquiries and by organizing the mathematics classroom as a

community of learners engaged in the creation of mathematical knowledge” (Borasi,

1992, p2-3 as cited in Borasi (1994)). This means that teachers believe that their

role is more like that of a facilitator and guide than as a holder and transmitter of

knowledge.

Implicit and Explicit Bias.

Another important affective resource for teachers is a lack, rather than the pres-

ence of, particular beliefs about students. Specifically, teachers are likely to be more

effective in instruction and in managing all students’ apparently incorrect responses

when they do not hold negative biases about students. Though in some parts of the

US blatant racism and discrimination still exist, overall explicit racism seems to have

diminished; unfortunately, implicit racist attitudes have not (Pearson et al., 2009).

These implicit attitudes are the unconscious, “introspectively unidentified (or inac-

curately identified) traces of past experience that mediate favorable or unfavorable

feeling, thought or action towards social objects” (Greenwald & Banaji, 1995, p.8).

These implicit racial biases can lead to “aversive racism”, which occurs when an in-

dividual has conscious, explicit, non-prejudiced views and considers the suggestion

they might be prejudice as ‘aversive’ but, simultaneous, has a typically-unconscious,

implicit, ‘aversion’ to Blacks in the form of fear, anxiety or other negative feelings

(Pearson et al., 2009, p.317).

Most teachers, at least as part of their professional identity, must embrace teach-

ing and learning for all students, a push for equitable education that is frequently

reflected in statements for many national organizations including the National Coun-

cil of Teachers of Mathematics (NCTM) (e.g., their position statement on Access and

Equity in Mathematics Education released in April, 2014). Teachers must therefore

publically and explicitly espouse non-prejudiced views of teaching and overtly pro-
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vide equitable instruction. However, as I mentioned earlier, because of the complex

and fraught nature of the media and the paradoxical, conflicting history of the US

(“an ‘American dilemma’, as first described in 1944 by Swedish economist Gunnar

Myrdal”, from Pearson et al. (2009, p.314)), it is unlikely that all teachers do not

hold some form of implicit racial bias. The danger of this aversive racism and these

implicit biases is that these, “unconscious negative feelings and beliefs get expressed

in subtle, indirect, and often rationalizable ways (Dovidio Gaertner, 2004; Gaertner

Dovidio, 1986; Nail, Harton, Decker, 2003)” (Pearson et al., 2009, p.317).

In teaching, this rationalization is evident in the ways some secondary mathe-

matics teachers explain students’ lack of achievement as resulting from student char-

acteristics, specifically “differences in students’ motivational levels, work ethic, and

family or parent support” (Bol & Berry, 2005, p.40). Though in their study Bol &

Berry (2005) did not explore the role implicit bias played in shaping teachers’ ra-

tionalizations, based on the work of Dovidio and Gaertner it is likely that implicit

biases underlie these explanations and deficit mindsets. These rationalizations are

dangerous for equitable education since they shift the blame for the achievement gap

onto students and away from the teacher and the instructional quality these students

receive. As Battey & Leyva (2013) demonstrated it is possible that these disparities

in achievement are actually perpetuated and produced at the level of instruction,

through the interactions of teachers with students. Hence, implicit bias is likely to

rear its ugly head when a teacher manages students’ apparently incorrect responses,

especially if the teacher has to navigate multiple obligations under pressures of time

in a complex environment (as they regularly must). Acknowledging that this affective

factor exists and is a hindrance rather than a resource while also recognizing that it

stems from different, unconscious mental processes is a first step towards actually

realizing more equitable instruction.
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Motivational-Volitional Resources.

In addition to the above cognitive and affective resources, teachers also need par-

ticular motivational-volitional resources to managing students’ apparently incorrect

responses. Here, I use motivational-volitional resources to group together resources

having to do with an individual’s desire or willingness to do something (in some

disciplines motivation is distinguished from volition as follows: motivation is “the

desire to do something” and volition is sometimes equated to the willpower). The

notion that motivational-volitional resources might play a role in how teachers’ man-

age students’ apparently incorrect responses comes from psychological motivation

theories that propose that motivation precedes behavior. As Kunter et al. (2008)

summarize it, motivation, “is assumed to provide the energy, direction and quality

of goal-directed behaviour (Ford, 1992; Pintrich, 2003b; Schutz, Hong, Cross, Os-

bon, 2006), and it is thought that differences in people’s goals, emotions, beliefs and

values predict differential behaviour and engagement (Eccles Wigfield, 2002; Ford,

1992; Linnenbrink, 2006; Pintrich, 2003b; Schutz et al., 2006)” (Kunter et al., 2008,

p.470). In other words, teacher’s motivational orientations are likely to impact their

instructional behaviors. In considering which motivational-volitional resources are

most likely to play a role in how teachers manage students’ apparently incorrect re-

sponse, I propose three: (1) enthusiasm for mathematics teaching, (2) self-efficacy in

mathematics teaching and (3) the ability to self-regulate.

In the last decade, researchers have started to examine how teacher’s enthusiasm,

which had previously been considered to be an aspect of effective teaching but was

left under-specified, is linked to their instruction (Kunter et al., 2008). Teacher’s

enthusiasm reflects, “the degree of enjoyment, excitement and pleasure that teach-

ers typically experience in their professional activities” (Kunter et al., 2008, p.470).

In mathematics teaching, teachers’ enthusiasm for teaching mathematics (which is

distinct from their enthusiasm for mathematics) has been linked to higher perceived
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instructional quality by students (Kunter et al., 2008). In Kunter et al. (2008), the

study perceived instructional quality including three dimensions: monitoring (“the

degree to which the teacher notices disruptive or inattentive student behaviour [sic]”),

cognitive challenge (“the degree of cognitive challenge they [the students] experience

in mathematics instruction”), and “the social support for students provided by their

teacher” (p. 473). Though none of these dimensions has a one-to-one correspondence

to the management of students’ apparently incorrect responses, there is likely some

overlap between the ways in which students’ feel cognitively challenged and social

support and how teachers’ manage their responses. In other words, it is likely that

students’ perceptions of these two dimensions are in part reflective of how teachers’

manage students’ responses. Hence, continuing to work backwards from there, it is

reasonable to speculate that teachers who are enthusiastic about mathematics teach-

ing might also manage students’ apparently incorrect responses in more productive

ways. Put another way, an enthusiasm for mathematics teaching is likely to support

teachers in managing students’ apparently incorrect responses.

A related motivational-volition resource is a teacher’s self-efficacy. Self-efficacy

refers to one’s belief in one’s ability to succeed at a given task or in a specific situa-

tion (context specific) (Bandura, 1977) or “self-perception of competence rather than

actual level of competence” (Tschannen-Moran et al., 1998). Teacher’s self efficacy

has been defined as “ “the extent to which the teacher believes he or she has the ca-

pacity to affect student performance” (Berman, McLaughlin, Bass, Pauly, Zellman,

1977, p. 137), or as ”teachers’ belief or conviction that they can influence how well

students learn, even those who may be difficult or unmotivated” (Guskey Passaro,

1994, p. 4) (as summarized in Tschannen-Moran et al. (1998, p.202)). Teaching

self-efficacy has been defined as being context (e.g., working with particular types

of students for example) and subject-specific specific (e.g., teaching Algebra I ver-

sus Geometry) and, even potentially teaching task specific (i.e., “teachers’ sense of
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efficacy is not necessarily uniform across the many different types of tasks teachers

are asked to perform” (Tschannen-Moran et al. (1998, p.219), summarizing Bandura

(1977)). There are also distinctions that have been made between general teaching ef-

ficacy (GTE) (which goes beyond an individual’s perceived capabilities but rather are

about the capabilities of teachers in general or teaching more broadly) and personal

teaching efficacy (which is more specific and individual that GTE) (Tschannen-Moran

et al., 1998). Teaching self-efficacy has been linked to a variety of teacher characteris-

tics (“teachers’ classroom behaviors, their openness to new ideas, and their attitudes

toward teaching”) as well as impacting “student achievement, attitude, and affective

growth” Tschannen-Moran et al. (1998, p.215). More recently, teacher self-efficacy

has been found to be positive related to students’ perception of instructional quality

(as captured on three dimensions: classroom management, cognitive activation and

individual learning support) (Holzberger et al., 2013). Interestingly, in the same lon-

gitudinal study, Holzberger et al. (2013) also found a reverse effect of instructional

quality on self-efficacy over time, meaning that self-efficacy not only impacts instruc-

tional quality but that, in turn, instructional quality over time shapes a teacher’s

self-efficacy.

Again, though the dimensions of instructional quality are not a one-to-one corre-

spondence with managing students’ apparently incorrect responses, there is enough

empirical evidence to suggest that teachers may feel more or less efficacious in this

professional competence. It is also possible that, as suggested by prior work, this

sense of efficacy is context and content dependent. In other words, a teacher might

feel a strong sense of self-efficacy when managing students’ apparently incorrect re-

sponses in Geometry but not Algebra or when managing students’ apparently incor-

rect responses during small-group work versus whole-class instruction. The empirical

evidence also suggests that this sense of self-efficacy is likely to support teachers in

their performance. Hence, a teacher with a high sense of self-efficacy in managing
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students’ apparently incorrect responses (in a given context and content) is likely to

do so more productively (in that given context and content).

A final motivational-volitional resource that I propose can support teachers in

managing students’ responses is adaptive self-regulation around emotional labor that

arises because of the demands of the “role” teachers need to play (Buchman, 1986).

Teaching is a “role” that requires teachers to act in particular ways that align with

their professional obligations, obligations that apply “regardless of personal opinions,

likes or dislikes” (Buchman, 1986, p. 531). This can be particularly difficult when, as

I mentioned earlier, a teacher needs to act in ways that are “unnatural” (D. L. Ball

& Forzani, 2009), as can occur when teachers manage students’ apparently incorrect

responses. Though hearing a students’ apparently incorrect response might evoke

an emotional reaction (perhaps disappointment, or an emotional instinct to protect

a child from embarrassment or even joy that a particular mathematical idea is now

at play), a teacher must typically suppress and control these emotions and feelings

to maintain composure and stay in their role. In the case where a teacher has ap-

praised the situation as a threat rather than a challenge (another difficultly that can

arise in this situation), they are likely experiencing negative emotions (e.g., anxiety,

fear, uncertainty) that they must similarly be careful to manage appropriately. This

“management of feeling to create a publicly observable facial and bodily display”

is known as “emotional labor” (Hochshild,1983 as cited in James & Robin (2003))

and has implications for employee’s mental well-being and job performance that have

been extensively explored in organizational behavior research. The concept has only

recently made its way into research on teaching as more scholars note the importance

of teacher’s mental and emotional well-being not only on teacher retention and burn-

out (e.g., Näring et al., 2006; Cheung et al., 2011) but also on instructional quality

(Klusmann et al., 2008).

Since emotional labor can lead to emotional exhaustion and burn out (Näring et
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al., 2006) teachers need ways to deal with the emotional demands of teaching. In

occupational research, it has been shown that employees, including teachers, with

high engagement and high resilience tend to far better on several measures including

reporting “less physical and psychological strain, had lower absence rates, and had

lower means on the three burnout symptoms”(Schaarschmidt et al. (1999) as cited in

Klusmann et al. (2008)). Engagement refers to, “the willingness to invest energy and

effort in one’s job” (Klusmann et al., 2008, p.704) and “resilience reflects the individ-

ual’s reaction to work-related demands and describes the ability to deal with failure

and to maintain a healthy distance with one’s work (Schaarschmidt et al., 1999). It

includes emotional distancing, a low tendency to give up after failure, active cop-

ing, and mental stability” (Klusmann et al., 2008, p.704). Though these constructs

are typically studied at the macro-level of an individuals’ overall engagement and

resilience, I hypothesize that the ability to effectively self-regulate one’s emotional

state in-the-moment, at the micro-level, is likely reflective of these macro-level mea-

sures of an individual’s engagement and resilience. Essentially, I am proposing that

these macro-level constructs reflect the sum of the micro-level, moment-to-moment

interactions a teacher experiences.

Therefore, I argue that teachers with high levels of engagement and resilience will

fare better in self-regulating the emotional demands of managing student responses

in-the moment and in responding productively. Again, though the interactions at

the level of managing students’ apparently incorrect responses have not been stud-

ied, there has been research that explores how these motivational-volitional resources

impact instructional quality at the macro-level. Specifically, teachers with high en-

gagement and high resilience (as compared to those with low engagement and high

resilience, low engagement and low resilience, or high engagement and low resilience)

have been shown to provide more social support, cognitive activation and teach at a

lower interactional tempo as perceived by students (even after controlling for context-
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schools tracks) (Klusmann et al., 2008, p.711). Included in the dimension of social sup-

port is a sub-scale of relevance for managing students’ apparently incorrect responses,

namely, “the students’ perceptions of the teachers’ patience with students’ mistakes

(“Our teacher is patient if someone makes a mistake in the lesson”; 3 items) (Klus-

mann et al., 2008, p.711). Additionally, interactional tempo (captured through items

such as “Our teacher does not leave us much time to think when asking questions”

(Klusmann et al., 2008, p.711) is likely related to forms of general pedagogical knowl-

edge that support teachers in managing students’ apparently incorrect responses.

Situation-specific skills: “noticing.”

In addition to the internal resources needed to manage students’ apparently in-

correct responses, teachers need situation-specific skills to enact this competency.

In mathematics teaching, there has been a significant amount of work on these

skills through the lens of teachers professional noticing (e.g., M. Sherin et al., 2011).

Teacher’s professional noticing builds on Goodwin’s “professional vision”: the spe-

cialized, “socially situated” and “historically constituted” ways of seeing and under-

standing events particular to a profession (p. 606). In the context of teaching, though

there is some diversity in how this notion has been taken-up, most authors who discuss

teacher noticing include two main processes: “attending to particular events in an

instructional setting” and interpreting or “making sense of events in an instructional

setting” (M. Sherin et al., 2011, p.5). These two processes are equivalent to what

Chi (2011) described in experts as the processes of, “(1) perceiving particular events

in an instructional setting; (2) interpreting the perceived activities in the classroom”

(as summarized in Santagata & Yeh (2016, p.154)).

With regard to managing students’ apparently incorrect responses these skills are

related to the ways in which Jacobs et al. (2010) adapted these two processes for

the specific work of “professional noticing of children’s mathematical thinking” (p.
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169). In their conceptualization of particular professional noticing, the process of

“attending to particular events in an instructional setting” is narrowed to attending

to “the mathematical details in children’s strategies” (p. 172). In other words, to

manage students’ apparently incorrect responses teacher first need to see the mathe-

matical intricacies and details within a students’ responses. In addition to attending

to the mathematics in a students’ response, a teacher will also need to “interpret”

the student thinking. This means going beyond what the student has provided to

making-sense of what the child’s response indicates about their understanding.

Decision-making.

Though some conceptualizations of noticing including decision-making and I have

kept it as a situation-specific process as per Blömeke, Gustafsson, & Shavelson (2015)’s

model, I hypothesize that there is not one consistently useful way in which teacher

make decisions when managing students’ apparently incorrect responses. Again, since

this is a situation—hence context and content—dependent process, decision-making

will at times occur unconsciously and out of habit, relying on some heuristic, routine

or rule-of-thumb. It is quite likely that expert teachers have particular routines (e.g.,

repeating student contributions, asking other students to rephrase or to weigh in on

an idea) that are productive in managing this situation. At other times, something

about the student’s response or the context might make a teacher pause and delib-

erate more consciously how to manage this situation. Knowing when to rely on a

routine and when to pause and deliberate is a form of professional judgment, key to

this competency, that is built on all the resources I previously described.

Conclusion and Implications

When a student has provided a response that seems wrong but might not actually

be wrong, an apparently incorrect responses, how a teacher manages this response
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in that moment has important implications for students’ mathematical learning and

learning more broadly. This micro-level interaction can shape students’ perceptions

about mathematics, about failure and about who can and should do mathematics.

Seen in this light, managing students’ apparently incorrect becomes an issue of equity

and quality mathematics instruction for all students. Despite the consequential nature

of these interactions, they are not frequently managed productively and instead, non-

discriminate patterns of negative and positive evaluation are typical in classrooms.

The prevalence of these patterns, however, is less surprising when one considers the

difficulty and level of complexity entailed in managing students’ apparently incorrect

responses.

In particular, teaching in general and managing student’s apparently incorrect

mathematical responses in particular can be “unnatural” work, requiring teachers to

act in ways coherent with their role as teachers but in that stand in juxtaposition to

their day-to-day adult ways of being. Additionally, this situation can involve navigat-

ing un-solvable dilemmas and can be anxiety provoking. Further, when one considers

managing students’ apparently incorrect responses as a professional competency and

considers what it might entail, the complexities of in-the-moment decision making

come to light.

In particular, in order to manage students’ apparently incorrect responses teachers

need a vast array of knowledge, and affective and motivational-volitional resources,

as well as skill in noticing relevant situation-specific details. In addition to general

pedagogical knowledge, teachers need specialized forms of professional knowledge in-

cluding common content knowledge (CCK), specialized content knowledge (SCK),

knowledge of content and students (KCS), knowledge of content and curriculum, and

knowledge of content and teaching (KCT). They also need productive beliefs about

the nature of mathematics as a problem-solving endeavor and about mathematics

learning and teaching. Additionally, in order to really be able to enact equitable
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instruction, teacher need to be free of explicit and implicit biases that might overtly

or subtly impact their interactions with students. Teacher must also have enthusi-

asm for teaching mathematics, a strong sense of self-efficacy and high-engagement

and resilience in order to navigate the sometimes emotional challenges of managing

students’ responses.

All the these various internal resources can then support the teacher’s situation

specific skills and processes when they manage students’ responses in the moment.

Within a specific situation teachers must notice—perceive and interpret—relevant

features of instruction and deploy professional judgment. Ideally, this professional

judgment affords teachers the ability to know when to engage in habitual behaviors

and employ a rule of thumb or when to pause and deliberate an appropriate course

of action as called for by the specific student response and context. Having a clear

conceptualization of managing students’ apparently incorrect responses and the com-

plexity it entails, I turn now to considering relevant future research and implications

for teacher education.

Future Research.

As with any professional competence, there are questions about whether the in-

ternal resources I have highlighted here are in fact those that are indeed key to

managing students’ apparently incorrect responses. It is possible that other resources

I did not mention here could play a part in this competence (e.g., some sub-sets of

general pedagogical knowledge). Additionally, when considering these resources that

are questions to be explored about, “how precisely the different resources are cob-

bled together, what this interplay depends on and how the resources can be built

up” (Blömeke, Gustafsson, & Shavelson, 2015, p.7). There is also work that remains

to understand how this competency is enacted, how it develops over time and what

teacher education content and pedagogies might facilitate learning of and improve-
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ment in managing students’ responses. Implications for Teacher Education.

With regard to teacher education, this paper both echoes old wisdom and offers

newer suggestions. It is not new to suggest that teacher education carefully reconsider

the type of knowledge it imparts on secondary mathematics teachers (e.g., Shulman,

1986). Indeed, there has been more of a push for joint efforts between mathematics

and education departments for coherent instruction focus on learning mathematics for

teaching and a growing body of research on specialized forms of MKT for different

mathematical content. There is also accumulating evidence that situation-specific

skills such as noticing are important for teaching and can be developed in teacher

education through a variety of video-based pedagogies (e.g., M. G. Sherin & van Es,

2009; McDuffie et al., 2014; Stockero, 2014). Additionally, there are more efforts to

incorporate pedagogies of enactment (Grossman, Hammerness, & McDonald, 2009) in

mathematics teacher education that can afford opportunities for teachers to develop

competence using their knowledge in action.

What might be less common in current conversations about teacher education is

attention to the other resources that impact how teachers’ manage students’ appar-

ently incorrect responses. In particular, there is little attention to teachers’ implicit

biases and no systematic means in teacher education to identify and work on these

problematic beliefs. Additionally, though there is attention to teachers’ beliefs about

the nature of mathematics and its learning and teaching, there is little to no attention

to developing teachers’ self-efficacy and adaptive self-regulation practices. Teacher ed-

ucation seems to take for granted that teachers come to the profession already having

developed the beliefs and practices they need to have high enjoyment and resilience.

Just as teacher educators might sometimes need to remind teachers that their role

calls for them to attend not only to teaching mathematics, but to teaching children

mathematics—and all the social-emotional, interpersonal work this entails—teacher

education might also need to be reminded that it too is dealing with human be-
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ings. A more holistic approach to teacher education that attends to the complex,

multi-faceted, humanistic nature of teaching and addresses key resources in several

areas—cognitive, affective and motivational-volitional—might make for more compe-

tent, engaged and resilient teachers. An outcome that is not only beneficial for these

teachers but also to the countless students that will come through their classrooms

for years to come.
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CHAPTER III

How Do Secondary Mathematics Teachers

Respond to Student Thinking in Early Algebra?

Introduction

There is general agreement in mathematics education of the importance of teach-

ers being responsive to students’ thinking. For example, the National Council of

Teachers of Mathematics highlights the importance of teachers eliciting and probing

students’ thinking to craft instruction that connects to and builds on student ideas

(2000). Being responsive to student ideas reflects “the extent to which teachers ‘take

up’ students’ thinking and focus on student ideas in their moment-to-moment interac-

tions” (Pierson, 2008, p.40). This type of responsive instruction has been linked with

both rich, learning environments and improved student achievement (e.g., Pierson,

2008; Fennema et al., 1993).

Despite widespread agreement about its importance, research into how teachers

respond to students is still ongoing. Research related to understanding how teach-

ers respond spans a variety of different streams of work including research that ex-

amines the work of teachers pre-, post- and during- instruction. Though the field

benefits from studies that examine the ways in which teachers plan for and reflect

on instruction (e.g., Stein et al., 2008) these actions differ from those of responding
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in-the-moment to student-thinking. To support teachers in the enactment of respon-

sive teaching requires a better understanding of the variety of ways teachers respond

in-the-moment to different types of student thinking.

Within the work that explores how teachers respond in-the-moment there is an

impressive range in the mathematical context and some variety in the focus of anal-

ysis. First, the mathematical content of studies varies greatly from whole-number

operations in early elementary mathematics (e.g., Jacobs et al., 2010), to topics in

Algebra (responding to student work on linear equations e.g., AMTE, Lesseig. et

al.), to Geometry concepts such as ratio and proportion (J.-W. Son, 2013) and re-

flective symmetry (J. Son & Sinclair, 2010), to proofs of the Pythagorean Theorem

(D. Zazkis & Zazkis, 2016) and quadratic equations Hu et al. (n.d.). Additionally,

the analysis of teacher responses varies as well including exploring the content and

pedagogical content knowledge that teachers used in interpreting and responding to

students (e.g., J.-W. Son, 2013; D. Zazkis & Zazkis, 2016), or the pedagogical nature

of the response (e.g., working with versus redirecting students’ thinking; “show and

tell” versus “give-ask”, (J.-W. Son, 2013, p.56).

Though the mathematical content and analysis vary within this body of research,

most studies obtain teacher responses in a similar manner. The predominant approach

is to ask teachers to script or write their response to student work (e.g., J. Son &

Sinclair, 2010; Crespo et al., 2011; R. Zazkis & Kontorovich, 2016; R. Zazkis et al.,

2012). A slight variation of this method is to ask teachers to depict—using a comic,

image based program—how they might respond to students (e.g., Rouge & Hersbt,

in press; Pelton et al., n.d.; Chen, 2012; de Araujo et al., 2015).

Looking across this body of work, three important gaps emerge. First, few studies

examine how teachers respond to students work in early algebraic content. Algebra

is often described as the “gate-keeper” to higher-level mathematics and a variety

of recent efforts, including introducing algebraic concepts in elementary grades and
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pushing more formal algebra into middle school mathematics, speak to the need

to introduce students sooner than high school to Algebraic concepts. The transition

from arithmetic thinking to algebraic thinking presents many adjustments for students

including a shift of focus to “relations and not merely on the calculation of a numerical

answer”, “on operations as well as their inverses, and on the related idea of doing

/ undoing”, “on both representing and solving a problem rather than on merely

solving it” and “a focus on both numbers and letters, rather than on numbers alone”

(Kieran, 2004, pp.140-141). This push for earlier introductions to algebraic content

and the challenges this presents for students, means that students are likely to produce

a range of correct and incorrect thinking as they reason through this content. In

order to support teachers as they manage these student answers, research is first

needed to explore how teachers might currently be navigating student responses in

this mathematical domain.

A second gap emerges when looking at the type of student responses used as

prompts. Most studies present teachers with either incorrect or correct student think-

ing. In studies focusing on exploring how PSTs respond to students, prompts tend

to include problematic or incorrect student work since these are typically more chal-

lenging for novice teachers to respond to. Specifically, in addition to the content

knowledge needed to identify an error a teacher also needs specialized knowledge of

content and students D. L. Ball et al. (2008) to craft a response. Other studies include

correct student work with rich and varied solution methods to explore how teachers

might attend to, interpret and decide how to respond to students (Jacobs et al.,

2010). Though Jacobs et al. (2010) provided teachers with one student response that

includes a small computational error, even though the student work demonstrates a

strong grasp and flexibility with numbers, the focus of their analysis was not on how

teachers might have responded differently to this student. In order to better under-

stand the ways in which teachers respond it would be important to explore the ways
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in which they respond to a variety of student responses, including comparing and

contrasting responses to perceived (or what I will refer to as “apparently”) correct

and incorrect student responses.

A third important gap arises when examining the methods used, specifically the

ways in which teacher responses are obtained. As I mentioned above, the predominant

means of obtaining information about how a teacher would respond to a student is to

ask the teacher to write or script their response (e.g., Jacobs et al., 2010; R. Zazkis et

al., 2012). Though this provides interesting information about what teachers report

they might do and is likely related to how they might actually respond to students,

the fidelity between this setting and a real classroom setting is still low. Therefore,

caution should be used in extending the results obtained in these settings to actual

classroom performance. Further, very few studies ask teachers to respond verbally

to student thinking (e.g., Van Zoest, Stockero, etc. 2017 in press PME-NA proposal)

and even fewer do so under conditions that replicate some of the time-pressures of

actual classrooms (e.g., Knievel et al., 2015). The current study aims to address

these three gaps by reporting on the ways in which teachers responded to a variety of

correct and incorrect student thinking in early algebra during a teaching simulation

with more fidelity to classroom conditions. In particular, I asked:

1. How do teachers respond to apparently correct student responses?

2. How do teachers respond to apparently incorrect student responses?

3. How do teachers’ responses to these different types of student responses vary?

Conceptual Framework

There are two general concepts that undergird the work in this study: (1) that

student responses are usually not simply right or wrong, and (2) that there are some
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overarching, guiding principles about what features of teachers’ responses that make

them more or less productive for student learning.

Types of Student Thinking

One of the challenges that teachers face when responding to students is that

student responses are rarely objectively correct or incorrect. Instead, responses from

students can be thought of as occurring on a continuum of correctness (see Figure

3.1).

Figure 3.1: Continuum of correctness

At the far right of the continuum are responses that can be objectively deemed

correct. These responses are likely to contain underlying mathematical ideas and

reasoning that are procedurally and conceptually sound. Further, these ideas are

presented articulately, with precise mathematical language. These correct responses,

far to the right, are likely to be objectively evaluated as correct. On the far left of the

continuum, are responses that can be objectively deemed incorrect. In these types

of responses, the underlying mathematical procedures and concepts are troublesome

and deeply, logically flawed. Additionally, the presentation of the ideas is problematic

due to ambiguous pronouns, incorrect terminology, or confusing uses of mathemat-

ical language. At this end of the continuum, responses are likely to be objectively

evaluated as incorrect.

Though I have chosen to represent this continuum as two-dimensional there are a

variety of ways in which a student response could vary (as I alluded to in my descrip-

tions above). For example, a student answer might have a simple computational error

and/or a more fundamental, logical error. Further, as I mentioned above, the way

in which the answer is presented (through imprecise or inaccurate language) might
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superficially make the answer appear incorrect (as in the case of Jean and his “boxes”

in Paper 1). In some cases, issues might arise when a student provides an incomplete

answer that perhaps misses a logical step in a proof for example, or provides a correct

answer with an incomplete justification for the answer. Perhaps, as is the case in

the apparently incorrect responses used in this study, students are quite capable at

doing the mathematics and are simply solving a problem that is different than the one

the teacher intended. Essentially, one might imagine that between the two extremes

of “objectively correct” and “objectively incorrect” lie a variety of other dimensions

representing the multitudes of ways in which student answers might vary. Most stu-

dent responses tend to fall somewhere in-between the two ends of this continuum and

hence, will require some interpretation and sense-making by the teacher. However,

there are some broad principles that guide how teachers could respond to students.

Responding to Student Thinking

Over the last three decades much research has focused on describing teacher re-

sponses to student thinking. These efforts seem to fall into three broader strands

of work with each strand foregrounding one of three components core to effective

mathematical discussions: engaging the class, focusing on the mathematics, and re-

sponsiveness to students. One example in the first strand is the general “talk moves”

(e.g., revoicing, asking students to restate others’ thinking) proposed by Chapin et

al. (2009) that attend to students’ positioning relative to each other and to the con-

tent to create collaborative discourse in classrooms. This work highlights the central

goal of discourse to more broadly involve students, not just the teacher, in discussing

content. A second strand of work on teacher responses foregrounds the mathematics.

An example of this strand of work is the research of Conner et al. (2014) that de-

scribes teacher responses that support collective argumentation. This work highlights

the importance that mathematics should play in teacher responses. A third strand
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focuses predominantly on characterizing teachers’ responses with respect to whose

ideas and what reasoning are the focus of a teacher’s response (e.g., Pierson, 2008).

This strand of work foregrounds responsiveness to student thinking and highlights

the importance of teacher responses picking up the ideas that students put forth.

Together these lines of work suggest that important aspects of teachers’ responses

include: (1) who they engage in the work, (2) what mathematics is considered and in

what ways, and (3) the extent to which teacher responses are ‘responsive’ to student

thinking.

Research Methods

Participants

Secondary mathematics in-service and pre-service teachers within and around a

large midwestern university town were recruited in person and by email as part of a

larger study on managing students’ mathematics responses. Recruitment efforts tar-

geted secondary mathematics teachers at middle and high schools, as well as public,

private and charter schools. All participants volunteered and were compensated for

their participation in this study. Hence, the final sample of 24 participants who com-

pleted all data collection (paper instruments and teaching simulation) for this study

is a sample of convenience (it should also be noted that the author had previously

worked with 10 of the 24 participants in the author’s previous work as a university

field-supervisor).

Within this sample of 24 secondary mathematics teachers, one participant self-

identified as Black and 23 participants self-identified as White. Additionally, there

were six participants who self-identified as male and 18 who self-identified as female.

The sample included five preservice teachers, three of which were in their final year

of a three-semester undergraduate secondary teaching certification program, one who
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was in the first semester of this same undergraduate program and one who was in

a one-year masters teaching certification program. The remainder of the sample is

comprised of 19 inservice teachers with a range of 2 to 38 years of teaching experience

and a median of 10 years of experience. The 24 participants ranged in age from 19

to 64 years of age, with a median age of 35.5 years.

Of the 24 teachers, one was recently (within the last 5 years) retired, 10 were

currently in middle school mathematics classrooms and 13 were in high school math-

ematics classrooms. One participant reported having taken no undergraduate or

graduate mathematics courses while the rest of the participants all reported having

taken three or more undergraduate or graduate mathematics courses. With respect to

methods of mathematics teaching courses, seven participants reported having taken

one such course, nine reported having taken two courses, and eight reported having

taken three or more mathematics methods courses.

Teaching Simulation.

As part of a larger study exploring how mathematics teachers manage students’

responses, I designed, piloted and used an interactive-video based teaching simula-

tion. The teaching simulation takes place in a lab setting where participants sit at a

desk and go through the teaching simulation on a laptop computer (see Figure 3.2 for

a picture of the set-up). The experimenter, myself in this case, sits next to the par-

ticipant and monitors their progression through the teaching simulation, intervening

with additional information and feedback as indicated in a protocol script. In terms

of the mechanics, the teaching simulation is essentially a collection of slides that par-

ticipants click through with a computer mouse and videos of student responses that

they can view only once.
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Figure 3.2: Teaching simulation set-up in lab space.

Teaching simulation: Overview.

Here I present an overview of the teaching simulation and details of the student

responses that are the basis of the analysis in this paper. Figure 3.3 below shows an

overview of the contents of the simulation. To ensure consistency of the information

presented and questions posed to participants, I used a simulation protocol script and

checklist.
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Figure 3.3: Overview of teaching simulation.

The teaching simulation begins with a short, three slide overview that presents

participants with general information about the context of the simulation (responding

to students) and what they will be ask to do (read, think-aloud, respond) in addition

to explaining why baseline and break clips are built into the simulation (to provide

rest periods for the physiological data that was also collected during the teaching

simulation but not used in this study). After viewing the baseline clip, participants

go through a series of slides that explain the structure and content of the Student

Response Sequences (SRSs) that comprise the core of the teaching simulation. The

teaching simulation includes four SRSs (three of which are analyzed in this paper).

Each student response sequence (SRS) begins with some instructional context

including information about what problem students are working on and images of

relevant board work. After the instructional context, participants see a slide with

a question that they are to imagine they have posed to students. During the SRS

participants can go through the context and question slides at their own pace. When

they are ready to move past the question slide and click the mouse, a video of the

student responding to the question immediately begins to play. The videos of the

student responses used in the SRSs come from an actual 6th-grade mathematics class
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and are taken from a first-person perspective (using Tobii eye-tracking glasses) from

the front of the classroom. This makes the viewing of the video seem more like what

one might see as the teacher in the class. These videos also include subtitles on the

bottom left in case, for some reason, participants have difficulty hearing the student

despite the good sound quality. Additionally, during a practice clip I confirm with

the participant that the volume is adequate and adjust it for them as needed.

Once the student is done talking, the simulation automatically transitions to a

slide prompting the participant to self-assess their emotional reactions to the stu-

dent response using a paper-and-pencil version of the Self-Assessment-Manikin Self-

Assessment-Manikin (SAM) (Lang, Bradley, xx). Participants have a total of 15

seconds to fill these out. The 15 seconds consist of the prompt slide (which is dis-

played for five seconds) and a ten-second, countdown video. After the ten-second

countdown video ends, the simulation automatically transitions to a slide prompting

participants to respond to the student. Participants are given a maximum of 90 sec-

onds (a minute and a half) to respond. In earlier piloting of the simulation, this was

found to be more than enough time especially given that I am asking participants to

provide only their initial or first response to the student. The organization of the SRS

and the time constraints imposed for responding are similar to some of the design

considerations Lindmeier (2011) and Knievel et al. (2015) advocate to explore action-

related competence (which is related to the ability to perform under more realistic

conditions).

After participants have gone through these detailed instructions about the SRSs

and we discuss the SAM scales, they are given a practice student response sequence.

This provides them with an opportunity to get a sense for the flow and speed of the

various components of the SRS, to ask any final questions, and for me to redirect

them if they talk to me rather than speaking to the student when they respond.

After this practice sequence, participants are given the context for the rest of the
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teaching simulation and SRS clips. Namely, participants are asked to imagine that

they are substituting for a colleague’s 6th-grade mathematics class towards the end

of the school year during a lesson on using fact-families to find unknowns. They are

then given the lesson materials (Connect Mathematics Program lesson 4.4 “Finding

the Unknown Value: Solving Equations I” version 4, 2011) to review for about 25-

minutes, after which they go through the four SRSs.

Teaching simulation: Student response sequences.

Figures 3.4 and 3.5 provides a summary of the instructional contexts, the teacher

questions and student responses for Clips 1, 2 and 4 that are the focus of this paper.

Clip 3 was not used in this analysis since participants varied in their perceptions of

whether it was correct or incorrect. This made it less useful in characterizing teachers’

responses to apparently correct and incorrect student answers.

In the first SRS (Clip 1) the student notices that numbers in the facts of the fact

families for multiplication and division are “rotating around in a circle.” Though there

is some imprecision in the student’s language, she is noticing something visually that

is indicative of underlying mathematical properties (e.g., the commutative property

of multiplication, that division is the inverse operation to multiplication, and that

when a number is divided by one factor the result is the remaining factor). Hence,

the student response in Clip 1 is likely to be perceived as correct by teachers.

In SRS Clip 2 the student provides their answer to the following problem:

On the Ocean Bike Tour test run, Sidney stopped the van at a gas station

that advertised 25 cents per gallon off on Tuesdays. 1. Write the function

that shows how to calculate the Tuesday discount price per gallon d from

the price on other days p. (Connected Math Curriculum)

The correct answer to this problem is that d (the discounted price per gallon) is
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Figure 3.4: Summary of SRSs Clips 1, and 2: instructional context, teacher question
and student response.
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Figure 3.5: Summary of SRSs Clip 4: instructional context, teacher question and
student response.
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equal to p (the normal price per gallon) minus 0.25 (dollars per gallon). The student’s

solution can be summarized as follows:

d is the discounted price, p is normal price, and g is gallons,

therefore d = p -0.25*g, which means you get 25 cents off for every gallon

There is some ambiguity on the exact definition of the student’s variables, though

it can be inferred that the student means these to be total prices (rather than price per

gallon) because of the way the student explains what their equation represents. Given

their definition of the variables, the student solution is actually correct. However, the

student response does not answer the question posed in the problem. The core issue

stems from how the variables d and p are being defined. If they represent total price,

then one indeed needs to know the number of gallons (g) in order to calculate the total

discount price from the total normal price. If, as the problem intends, the prices are

unit prices (price per gallon) then there is no need to specify the number of gallons

(g) in order to calculate the total discount price per gallon from the total normal

price per gallon.

In Clip 4, the student is providing an alternative response to a problem 4 that is

already on the board. The board work is as follows:

14 ÷m = 74

m = decimal

14 ÷m = 74

14 ÷ 74 = 0.189

The student proposes that, “the answer is one thousand thirty six because one

thousand thirty-six divided by fourteen...” [equals 74]. Again, like in Clip 2, the stu-

dent answer is not completely incorrect. Based on the end of the student’s response,

it appears that the student is actually solving a different problem, one in which m is
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divided by 14 rather than 14 divided by m. The core issue becomes understanding

why the student solved m÷ 14 = 74 rather than the original problem 14 ÷m = 74.

Coding of teacher responses.

In this study, I am interested in characterizing teachers’ initial responses to ap-

parently correct and incorrect student answers in early algebra.The choice to examine

a teacher’s initial response to a student is, in part, a consequence of the design of the

teaching simulation (the student in the simulation cannot respond to the teacher).

Additionally, though a teacher’s initial response is only a thin slice of their instruction

and is not necessarily representative of their overall practice, it can be argued that

the ways in which a teacher starts an interaction with a student idea can immediately

either open or close the conversation that follows. If this initial response shuts down

or narrows the focus of conversation immediately, the interaction that follows has less

potential to engage students in meaningful mathematical conversation. On the other

hand, an initial response that is more open-ended (though it might not necessarily

stay that way as the conversation unfolds) provides greater potential for the inter-

action to be responsive to student thinking and to engage the class in conversation.

In other words, though a teacher’s initial response provides only a glimpse into how

they might manage student thinking, it is a crucial first-move for the teacher and

important insight can be gained by examining the way in which teachers choose to

begin their interaction around student thinking.

In the section that follows, I describe the two analysis I conducted to describe

teachers’ responses to students’ early algebraic thinking. The first analysis I con-

ducted used a coding scheme to describe various characteristics of teachers’ responses.

These characteristics are informed by the features of teachers’ responses that make

them more or less productive for student learning (identified early in the conceptual

framework). This first analysis provides a way to describe trends in features of teacher
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responses within each SRS clip and across apparently correct and incorrect SRS clips.

This broader level of analysis however, necessitates loosing some of the interesting,

context specific details of teacher responses. In order to see some of the more SRS

context specific nuances in teachers’ responses, I also conducted a thematic analy-

sis. This afforded me an opportunity to explore how teachers responded in the three

different student response contexts and complements the first analysis by painting a

richer picture of what teachers said.

Analysis 1: identifying the initial teacher response and qualitative cod-

ing.

After transcribing the 72 teacher responses (24 teachers and three student clips),

I identified the initial teacher responses. I define a teacher’s initial response as their

first full turn of talk that starts when the teacher begins to speak and ends either

when the teacher stops talking or there are indications that they would let students

take a turn of talk. In some cases, teachers responded with more than just their initial

response. In these cases, I looked for indications within their full response that they

would have let a student take a turn and I also reviewed the video of their teaching

simulation experience for other indicators that their initial turn of talk was over (e.g.,

looking for wait times of more than a few seconds). For example in response to SRS

Clip 2 about finding the discounted price per gallon, participant id07 responded with,

Okay Paul, so can you read the problem out loud to me again, cause I want

to talk about let’s start with the variables that you chose. Okay, you had

uhhmm g for gallons, d for discounted uhhhmmmm price, so I want to talk

about the variables first, does anybody else have different ideas for the

variables, what variables we maybe can use from the problem now that’s

he’s read it out loud again...uhh. it says discounted...so, I want people to

raise their hand if they have an idea of what operation discounted could
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mean...

There is evidence that the teacher’s initial response is to ask the student to read

the problem out loud. After the student has read the problem out-loud, the teacher

would then follow-up by asking other students in the class about the variables. Based

on the lexical clues and the pause in speech and the lexical clues that indicate the

student has read the problem, I defined this teacher’s initial response as follows:

Okay Paul, so can you read the problem out loud to me again, cause I

want to talk about let’s start with the variables that you chose. okay, you

had uhhmm g for gallons, d for discounted uhhhmmmm price, so I want

to talk about the variables first

Once I had identified and catalogued the initial teacher responses I qualitatively

coded the response using the Teacher Response Coding scheme (TRC) (Peterson,

Van Zoest, Rougée, Freeburn, Stockero, Leatham, in press). The TRC was devel-

oped to provide a descriptive way to capture multiple features of teachers’ responses

that have been identified in the literature as important for effective mathematics

discussion. Specifically, it contains four categories: actor (which identifies who is

publicly being asked to consider the student thinking), move (which captures what

the actor is doing or being asked to do), recognition (the extent to which the student

might recognize their response in the teacher’s response through the take-up of the

student’s language— student actions subcategory—and main ideas—student ideas

subcategory), and mathematics (the alignment between the mathematics towards

which the teacher response seems to be headed and the mathematics underlying the

student’s idea). These categories and codes, including additions that I made to the

coding scheme, are described in greater detail below. The TRC can be applied at

various grain sizes including the entire teacher response or at the level of each different

move (distinguished by changes in inferable instructional intent) within a teacher re-

sponse. For example, the teacher response “Nice job Johnny, what do others think?”
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can be coded either holistically (the entire teacher response) or can be decomposed

into two moves (“Nice job Jonny” and “what do others think?”) that can then each

be coded separately. In this study, the unit of analysis was the entire, initial teacher

response. Hence, each teacher response received an actor, move, recognition- student

actions, recognition- student ideas, and mathematics code.

To establish some validity in the coding 19 out of the 72 ( 26% of the data) re-

sponses were coded by two other researchers. Both researchers had been previously

involved (as was I) with the development of the coding scheme and had prior ex-

perience applying the TRC codes to teacher responses from classroom videos and

interview scenarios. Each researcher independently coded 10 teacher responses (cho-

sen at random from across Clip 1, Clip 2 and Clip 4) for all categories of the TRC.

All but one of the teacher responses assigned to the external researchers were unique,

hence a final count of 19 rather than 20 teacher responses. After the researchers

and I had independently coded the assigned teacher responses, I met with each one

individually to discuss our coding. During these meetings, the researcher and I would

discuss the coding that differed and discuss the instance untill agreement was reached.

Hence, after these meetings I had 100% agreement with the researchers for all TRC

codes for the 19 teacher responses. After these meeting, I re-coded the remaining 53

teacher responses based on the agreements and understanding reached through those

discussions.

TRC: Actor

The coding category actor captures who is publicly being engaged or asked to engage

in the intellectual work. The actor of a teacher response or move can be coded as:

teacher, same student(s), other student(s), and whole class.

TRC: Recognition

The code recognition captures the extent to which the student might recognize his/her

response in the teacher’s response through two sub-categories of codes: (1) through

75



the take-up of the student’s language (student actions) and (2) through the take-

up of the student’s ideas (student ideas). Student actions can be an important or

a superficial way for teachers to pick up on what students have said. On the one

hand, using the student’s language, work or gestures (their actions) might reasonably

increase the probability that the teacher’s response is close to the student’s ideas. On

the other hand, it is possible that a teacher response picks-up the student’s actions

without attending to the student’s underlying main idea. In addition to attending

to the degree to which a teachers’ response uses a student’s actions (coded: explicit,

implicit, or not), I also captured when teachers attempted to use a students’ language

explicitly but did so incorrectly. For example, saying “you got 1076” rather than 1036

in response to Clip 4. Hence, I added the code explicit-incorrect to this sub-category.

The coding sub-category student ideas, in contrast to student actions, is a more

meaningful way for teachers to attend to what a student has said. The codes in this

category capture the extent to which the main idea in the teacher’s response is related

to the student’s main idea. Codes in this category include: core, peripheral, other,

cannot infer and not applicable.

TRC: Moves

The coding category moves captures what the actor is being asked to publicly do.

For example, the actor might be asked to justify, clarify or repeat some particular

aspect of the mathematics being discussed. A detailed list of the various movescodes

and their definitions can be found Peterson, Van Zoest, Rouge, Freeburn, Stockero,

and Leatham (in press).

TRC: Mathematics

This category captures the alignment between the mathematics towards which the

teacher response seems to be headed (the mathematical understanding (MU) of the

teacher response) and its relation to the mathematical point (MP) underlying the

student’s idea. Van Zoest et al (2016- theorizing MP) define a mathematical under-
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standing as “a concise statement of a non-subjective truth about mathematics” and

the mathematical point of a student’s response as “the mathematical understanding

that (1) students could gain from considering a particular instance of student thinking

and (2) is most closely related to the SM [student mathematics] of the thinking” (p.

326). The degree to which the MU of a teacher’s response aligns with the MP of the

student response can be coded as: core, peripheral, other, cannot infer (CNI), and

non-mathematical. Additionally, the tag “-incorrect” can be added to the code other

when the teacher response (TR) seems to be going towards incorrect mathematics (I

extend this tag to use with the code peripheral). When more than one mathematical

point underlies the student’s idea a tag, “-MP1”, “-MP2” and so forth, can be added

to any of the main codes to further specify what mathematics a teacher response

could be headed towards (details about these various codes can be found in the next

paper of this dissertation).

Analysis 2: identifying themes in teacher responses.

Though the TRC provides a means to describe various characteristics of teachers’

responses in a way that allows for comparisons across responses to different student

answers, I also analyzed the teacher responses thematically. Essentially, for each

set of 24 teacher responses I went about grouping the responses from most to least

productive to better understand the various ways in which teachers might respond.

For each group of 24 responses I went through roughly the same process. In a first

pass, I first created two groups from the 24 responses: a less and more productive

group. This initial choice was informed in part by whether the teacher did all of the

intellectual work or not, whether or not there were issues in the language or wording

of the response that might make it confusing for students, and the general sense for

whether the mathematics seemed related or not to what the student had proposed.

I then went into each group to look for similarities between responses in the type of
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work teachers might be asking students to engage in (e.g., were students being asked

to check their work or put their answer on the board). This resulted in clusters of

teacher responses with similar themes that are described in the results that follow.

Results

In the sections that follow I explore the answers the following:

1. How do teachers respond to apparently correct student responses?

2. How do teachers respond to apparently incorrect student responses?

3. How do teachers’ responses to these different types of student responses vary?

How do teachers respond to an apparently correct student answer?

In response to the student who, correctly, notices a relationship between the num-

bers in the multiplication and division fact of the fact family most teachers responded

by going back to the same student (13 out of 24 responses). Nine teacher responses

engaged only the teacher and two responses engaged the whole class. Additionally,

a little over half (14 out of 24) used the student’s language explicitly and 10 used

it implicitly. Most teacher responses were close to the student idea with half (12

out of 24) coded as core to the student ideas. The remaining 13 responses were pe-

ripheral ( 5 responses), CNI (1 response), other (3 responses), or NA (3 responses).

Though there was some distribution in the type of move (see Table 3.4, the most

frequently occurring move was an elaborate. With regard to the mathematics, most

of the responses to Clip 1 were cannot infer or CNI, meaning they were vague but

not imprecise or confusing (see Table 3.5 for the distribution).
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Thematic grouping of teacher responses to Clip 1

In qualitatively grouping the 24 teacher responses the following seven categories

emerged: (1) “Come up and show us”, (2) “why is it doing that?”, (3) “what do you

mean?”, (4) focusing on peripheral/other mathematics, (5) “that’s good, can you tell

me more...?”, (6) “that’s good, what else?”, and (7) only the teacher engages in the

intellectual work.

(1)“Come up and show us” There were four teacher responses (from id06, id08, id07,

and id18) that, with only slight variations, essentially all asked the student to come to

the board and “...show a little bit what you’re talking about with how you’re noticing

the numbers move around in these fact families”—id08. These responses all focused

on the student idea and asked the student to either repeat, clarify or elaborate on the

idea of the numbers rotating in a circle by coming up to the board. In two of these

responses teacher also provided a rationale for their request (“...cause I could...can

see a couple of people in class not really understanding your way of thinking about

this.”—id18 and “...so that others can see what you’re thinking.”—id06).

(2) “Why is it doing that...” Another group of six (id21, 11, 19, 01,16, and 17)

teacher responses focused on some version of probing the underlying mathematical

operations and preservation of equality, with questions in the vain of “why it rotates

like that”—id19. Of these, two responses asked student(s) to think about “anything

that’s happening between those two numbers that might cause them to rotate?”—

id 21 or “why is it doing that?”—id 11. Two other responses posed what could be

described as a two-part question, where the first question, like these first two responses

asked, “why it rotates in a circle” —id01. The responses then continued with another,

related question. In one case, the participant asked, “could we write them differently

where they wouldn’t rotate?”—id19. In the other, the participant asked a similar but

more ambiguously worded question, “can you do it without doing the whole circle or

do you need to write it down every time?”—id01. Both of these follow-up questions
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seem to be attempting to support (or funnel?) students towards the preservation of

equality implicit in the fact families. A fifth response in this category was longer than

the other but also more deliberately and clearly focusing students on investigating

“...are all three numbers interchangeable, uhhmmm...can can I switch the 12 and the

4 and the 3 and put them in any spot and still always have a true answer?..”—id17.

The final response in this group seemed to also intend to probe the underlying “why”

but used wording that was unclear, “are you sure that the 12 is moving around in

the circle...errrr...or what do you think might be going on with that, that 3 and that

4?”—id16.

(3) “what do you mean?” Two teacher responses, after some verbal processing, settled

on asking the student to clarify or elaborate on what they meant. In one case, the

participant started with “what do you mean by it goes around in a circle” but then

veered into reiterating that the conversation was about facts of multiplication and

division, asking “what’s the connection between multiplication and division, what’s

the connection between addition and subtraction and going around in circles”, before

finally settling back on “what do you mean by it going around in circles?”—id02. The

other participant also seemed to flounder to find the question they wanted to ask the

student. This participant started by honing in on the word rotate, “when you use

the word rotate, that’s an interesting word”, then veered into wanting the student

to connect this to “some other words that you’ve heard in your math classes uhhh

that kind of mean the same thing as rotate...” before finally articulating the question

“I’m interested in like when you use the word rotate, like it goes in a circle [gestures],

uhmm, what do you, could you say some more about that?”—id23.

(4) Focusing on peripheral/other mathematics Two teachers responses (id09, 24),

after validating the student responses, focused on a piece of mathematics that was

rather far from the student thinking. As mentioned in the discussion above on the

mathematics of the moves, at the heart of the student’s response is the mathematical
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idea that there is some pattern (hence the “rotating”, and “circle”) related to the

relationships between the mathematical operations within facts of the fact family. The

two responses in this group appeared to deviate significantly from this mathematical

terrain. In one response the participant seemed to focus on what they perceived to

be the student’s imprecision in language, “you said that the 3 becomes the answer,

how do we know if there’s an answer here if we’re not solving for anything?”—id09.

Interestingly, the student is not incorrect when they describe the number that remains

by itself in the fact as “the answer”. The answer to the problem “12 divided by 4” is

in fact 3.

The other response in this category was much longer and hence, an instance where

the participant seemed to be verbally processing the student thinking. During this

processing, the participant seemed to hone in on the underlying mathematical oper-

ations in the fact families, “...so when you’re saying something like the 3 can kinda

rotate around and move to the other side of the equation you’re noticing that uhmm,

that you can move the numbers around with mathematical operations...”—id24. Then

the response veers into, “if we go from 12 equals 3 times four that we have up here

to something like 12 divided by 3 equals 4, then what mathematical operation have

we done to both sides of that equation?”—id24. Here, the response has taken a turn

towards mathematical territory (inverse operations) that is related but likely math-

ematically inappropriate for this lesson and grade level (this lesson is essentially the

start to introducing the concept of inverse operation but in a less formal way).

(5) “That’s good... what more?” Two teacher responses, after validating the student

response (“awesome”—id12 and “that’s a very good observation”—id22) asked the

student to follow up with more. In both cases, however, the request for more in-

formation was vague and unclear: “what more can you tell me when you see that

they’re rotating, is there something else that you could tell me about?”—12 and “is

there anything else you could think of that uhh this could relate to or why this is
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important?”—”—idid22. There is nothing in the questions that supports student in

responding to them. Though, on the one hand, one could argue they are open and

hence leave space for student thinking, on the other hand, a student is unlikely to

have any idea what to think about and say in response to this.

(6) “That’s good... what else?” In this group of responses, after validating the stu-

dent’s response, the teacher went on to collect input from other students. The

three teacher responses in this group all start out similarly by validating the stu-

dent responses: “that’s a great observation”—id13, “that was really good”—id05,

and “that’s a really good observation”—id03. Two responses (id13, and id05) went

on to repeat, with varying degrees of accuracy, part of what the student had said

(e.g., “...You noticed that each family you can reverse the position so the 3 and the

4 uhh...make 12, as does the 4 and the 3. Then you go back to, to make 12 and

multiply...”—id 05). All three responses ended by asking for input from other stu-

dents: “...does anybody else have a suggestion on that? how do you see it Vanessa

sitting in the front row?”—id05, “...do we have any other , other insights into what’s

going on here?”—id 13 and “...but is there anything else you guys noticed about

it?”—id03)

(7) Only the teacher engages in the intellectual work There were five teacher responses

that basically just made a statement about the student response and never re-engaged

the same student or any other students in the class in the intellectual work.

Version 1- “Awesome job there” One of these teacher-centric responses essentially

made a succinct statement validating the student response: “That’s really interesting

how you think like that, putting it in a circular motion, that’s really a cool idea”—id

25.

Version 2-“That’s good and here are the connections I see”

The other four versions of this teacher-centric response validated the student re-

sponse and made, to varying degrees, connections between what the student had said

82



and other ideas. In one of these, it seemed that the teacher was verbally processing

what the student had said as she was speaking, almost as if she was doing a think-

aloud: “I think you’re right on target. You know you’re going to use all the three

numbers all the time and that if you’re using two of the numbers then the other num-

ber is the answer, you said it kind of goes around in a circle, kinda like that triangle

idea. So if you switch the 3 and the 4 yes the answer is still the third number and

nice job, I think you’ve got a good handle on it”—id 10. On the one hand, as this

teacher is verbally processing, she is making her thinking and hence, the ideas in the

student response, more visible to the rest of the class. However, it seems that her

verbalization is more for her benefit rather than to intentionally broadcast the stu-

dent’s idea. This seems clear when she references “kinda like that triangle idea.” The

connection between fact families and “that triangle idea” is a connection this teacher

made during the lesson-planning segment as she was making sense of the content.

It was never a part of the instructional context and hence this reference would be

something the hypothetical students in the simulation would have no obvious reason

to understand.

A second response in this group made a connection between the student’s response

and inverse operations for both multiplication and division, and addition and sub-

traction: “...So when you’re looking at rotating, you could give those words those

operations uhhh, they’re inverse operations so that’s why they can operate like that,

... so if we’ve talking about multiplication and division those, those fact families

are together, right? They can kind of [gesturing a circle] undo and redo each other.

Which the same is true about addition and subtraction and they rotate like that,

that’s good, good explanation”—id15. In this response, the teacher again seems to

be verbally processing and making connections as she is speaking. Though there are

moments where it sound like she could have re-engaged students (“right?”) she does

not pause and hence these are rhetorical questions rather than questions intended to
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engage students with the ideas.

The third response in this group similarly made a validation of the student think-

ing but then followed it up with a word of caution to students: “now we just have

to be cautious with that when we start getting into negative numbers and uhhmm

when we start to see more operations”—id26. It seems as though this teacher made

some kind of connection between the pattern the student saw and exceptions to it

but her articulation of this connection to negative numbers and “more operations” is

left ambiguous in her response.

The final response again started with a validation, “Okay, you just made an inter-

esting observation”—id20, then repeated the student response in a way that seemed

to help the teacher (rather than the imaginary class of students) process the student

thinking. The response then made a large mathematical leap from fact families to

interpreting division problems:

so you’re noticing that these are kind of rotating but where those are, those

specific positions, that’s actually an important part of division problems,

right? So, there’s specific terms where uhhmm, where those numbers are

located and what that means with the context of a problem. So, we’re

dividing for example into four groups and seeing how many are in each

group or dividing into three groups and seeing how many are in each

group. So these are, those are different ways of interpreting those division

problems

This particular participant had talked about partative and measurement models

of division during her lesson planning, which might explain the leap to division in her

response.
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How do teachers respond to an apparently incorrect student answer?

Though both Clip 2 and Clip 4 had apparently incorrect student answers, they

presented different mathematical challenges for the teacher. In particular, with regard

to the Clip 2 in which the student uses total pries versus unit prices, the student’s

answer provides information both about what the student is doing incorrectly and

why (they are using different variables that represent total amounts rather than unit

prices). Hence, the student answer provides sufficient information to suggest a partic-

ular course of action for the teacher (namely addressing the definition of the variables

somehow). In contrast, the student answer in Clip 4 provides insight into what the

student is doing incorrectly (solving a different problem) but not why the student is

doing this. Hence, it is less clear how a teacher might proceed. Given these important

differences, I explore each clip separately.

Coding of teacher responses to Clip 2

In response to the student who incorrectly uses total prices to determine their

equation for discount price, most teachers responded by going back to the same

student (14 out of 24 responses). Five teacher responses engaged only the teacher

and five responses engaged the whole class. Additionally, over half (16 out of 24)

used the student’s language explicitly, 2 used it incorrectly, 3 did not use it at all

and 3 used it implicitly. Again, most teacher responses were close to the student idea

with a little less than half (11) coded as core to the student ideas and the remaining

13 responses were coded as peripheral to the student idea. Though there was some

distribution in the type of move (see Table 3.4, the most frequently occurring move

was a correct. With regard to the mathematics, there was a wide variety in the

responses to Clip 2. Most responses to Clip 2 were either CNI (6 out of 24), CNI-

Core (5 out of 24) or peripheral (5 out of 24) for mathematics (see Table 3.5 for the

distribution).
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Thematic grouping of teacher responses to Clip 2

In qualitatively grouping the 24 teacher responses the following four categories

emerged: (1) focusing on the variables, (2) variations on ‘g’, (3) monitoring first, and

(4) “did you test that?”.

(1) Focusing on the variables

A total of seven teacher responses (id 07, 18, 06, 02, 08, 23, 17) focused on

the number or definition of the variables that the student had chosen but chose to

address this issue in very different ways. One response, after providing a condensed

version of the student’s equation (“...d equals p minus point-two-five g”), opened

the conversation about the variables to the class, “anybody want to comment on

these variables?”—id08. One response included a short think-aloud, “I’m interested

in uhh about G, the variable G uhh so what I’m wondering is when you think about

what D stands for and what P stands for, could you...” then asked the students to

revisit the definition of the variables, “let’s talk again about like what those variables

actually stand for”—id23. This response seemed to convey, “I’m interested in your

variables, let’s talk about what those stand for” though it is not quite clear how a

student could respond to this since they have already provided the definition for their

variables. This teacher response does not provide any guidance as to how the student

or class might go about revisiting the variable definitions.

Another teacher response focused on probing the student for justification of their

equation and variable choice by asking a rapid-fire series of questions, “why are you

subtracting twenty five from the regular price?... how could you find out the number

of gallons that a customer is going to buy and the cost, how could I find out the

cost on Monday versus the cost on Tuesday? which is more economical buying gas

on Monday or Tuesday? and why would this be economical? why’d you choose these

variables for...current price and the discounted price?”—id02. Though this TR might

be confusing for students because it asks so many, slightly different questions, it does
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settle on a core issue around the definition of the variables, “why’d you choose these

variables for uhhhmmm current price and the discounted price?”

Two teacher responses (id07 and id18) asked the student to read the problem

aloud again because in one case, “...I want to talk about the variables first...”—id07

and in the other, “let’s take a look back at the question again and see if we can...think

about the 3 variables that you had...”—id18. A final response in this group focused

on the number of variables but probed the student with a series of two confusing,

yes-no questions: “Is there a way that you could write this without using all those

variables? Is there something that you know that you can put instead of all those

letters?”—id06. It is clear that the participant wants the student to focus on the

number of variables but the teacher response provides students with no clear support

in how to revisit the number of variables. “Is there something you know that you can

put instead of all those letters?” sounds like it is fishing for something but provides

little guidance for students. Hence, it is unlikely that students will have any idea how

to respond to this question. In the final response in this category, after re-reading the

beginning of the problem aloud, the teacher tells students suggests that, “let’s look at

the situation when we’re only thinking about one gallon at a time cause I think that

might even make a nicer problem for us. So I think we should investigate that.”—id

17.

(2)Variations on ‘g’

A majority (10 of the 24 teacher responses) focused on the variable G (for gallons)

that the student proposed and, as in the group above that focused on the variables

more broadly, the responses addressed this issue in several different ways. Within

this group, two teacher responses focused on the “multiplying...at the end” in the

student’s response and seeking an elaboration from the student about this. The

responses (after an incorrect repetition of the student’s variables in the case of one

response, “so it sounds like you are...looking at price per gallon”—id 13) basically
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asked the student to say more about “the multiplying by G at the end there”—

id21. Another response focused on the multiplication but used it in a different way

than these two responses. In this response, the teacher requested that the student

come up, “and just look at the problem a little bit clearer” because, “I don’t quite

understand...where the multiplication is coming from which is what I think I saw on

the board”—id 12. In other words, the confusion generated by the student’s use of

multiplication in the equation was used as the rationale for the teacher’s request to

have the student review the original problem statement.

Another set of responses focused on the inclusion of gallons in conjunction with

considering unit price. Within this set of eight responses (id 01, 09, 03, 11, 25, 10,

24,15) there were variations in the ways in which responses made use of the connection

between the number of gallons and unit price. One response put it succinctly, “we’re

looking for the price per gallon, so what’s the g actually going to tell you?”—id01.

One response funneled the issue to an either-or-question but was a imprecise, asking

the asking, “is gallons going to be a variable in our equation or are we just talking

about price ?”—id09. A final variation on teacher responses that focused on unit

price did so by having students consider whether or not unit price will change if only

one gallon is purchased. After validating the student’s response, one teacher response

asked “but then what if I just had the price is two dollars and fifty cents, is it going

to matter how many gallons I buy, if I buy more than one gallon is the price going

to be different than two dollars and fifty cents?”—id03. In another teacher response,

after repeating the student’s equation the participant asked, “well does price change

at all depending upon the number of gallons?” but then immediately opened the

conversation up to input from other students, “anyone else have a different response

here?”—id 11.

A sub-set of four teachers responses that focused on the variable G explicitly

corrected the student response. In one case, the teacher response was short and to
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the point, “we probably wouldn’t need to use a G would we, because we know the price

is twenty-five cents and we know that we’re referring to gallons”—id25 then ended by

validating the student’s use of the other two variables (d and p). Another corrected

the student’s use of g, “I don’t think you have the understanding of a variable ’g’ in

here. They never mention ’g’ to be how many gallons”, explaining that the prices

are “per gallon”—id10. The response then goes on to validate the student’s use of

subtraction and then finally provide the correct answer, “it’s like the price minus the

point two five is your discounted price or the original price, I should say can be found

by adding twenty-five to the discount”—id10. The last two responses in this subset

were both much longer because it appeared that the teacher was verbalizing their

own thinking (almost like a think aloud).

In one response, the participant pointed out that the student (whom they named

“Billy”) was “actually making the equation kinda complicated” because “it’s kind of

a complicated situation” and “he’s so mathematically capable”—id24. The response

then focused on streamlining the number of variables, “...we’re going to try to simplify

what’s going on here uhhmm to limit the number of things that we have, variables

that we have to deal with...” by using just, “...the ones that were given to us in B

which were d is the discounted price per gallon and p is the regular price per gallon”.

Which lead to dismissing the use of the variable g, “So really the number of gallons

that we’re buying is not a factor in this question all were’ looking at is just the unit

prices per gallon, so umm, so g is not a variable it’s just d and p...”. After dismissing

the student’s answer as incorrect, this teacher response then asked the class for a

different answer, “...uhmm did anybody else get a different equation for uhh for part

B number one that they’d like to share?”

In the other response, the participant again seemed to be verbalizing their thinking

and, as they are talking, they seem to be changing their mind about where they want

to go with students. In the beginning of this response, the participant immediately
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cautioned the student that in this problem “we’re talking about one gallon no matter

what” and then quickly compliment the student on their use of the other two variables

(d and p). The response then goes on to, “take away this gallons...because that’s the

total price when I put in a whole bunch of gallons, right?... we’re not looking for

the total price but just for one...one gallon.” Eventually, the participant explains,

“on Tuesday it happens to be discount day so you have your D which is great and

what do you have to do to that D, what’s, what’s the actual price, I’m gonna back

up, what’s the price and you have to take-away that twenty-five cents, right, to get

the discounted price”—id 15. Even after essentially giving students the answer (d =

d0.25), the response continues and finally tasks students with, “I’m going to leave it

open there cause I’m hoping you can come back with an equation, how do we relate

the discount, the d, with the price and the twenty-five cents. which what are you

taking away from what?”

A final pair of teacher responses (id 16,22) that focused on the variable g did so

without attention to the way in which the student had defined the variables p and

d. In one, after acknowledging how students’ demonstrated “a good intuition” by

including g, the participant asked an either-or-question (“is the question asking for

...the total price of a certain number of gallons of gas or is it just asking us to look at

the price per gallon?”—id16) but continued with, “and what one small change would

we need to make to your groups equation to better fit the problem situation?”. This

final question seems to imply that the student’s equation would be correct if they

simply remove the variable g. In the other response, after validating the student’s

work the teacher asked two questions in a row, “is it necessary to have g there as a

variable in order to calculate the price per gallon? if we were just looking for just

one gallon of gas what the price would be?”—id22. Though the first question hits

on the key issue at play, the second question seems to guide students towards simply

substituting “one” for the number of gallons in their equation to get the discounted
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price, which neglects the ways in which d and p are currently defined in the student’s

equation.

(3) Monitoring first.

In another group of responses (3 total), the participant decided to monitor the

student thinking in the class by asking students, “...raise your hand if you also used

three variables?...”—id20 or “how many people got the same answer?”—id 05 or

“how does everybody else feel about that response?”—id26. In theory, this is a type

of formative assessment that could allow the teacher to gather more information about

what other students are thinking and to use this to inform the teacher’s next steps.

Unfortunately, participant id 26 initially repeated the student response incorrectly (

“...so you set-it up as Tuesday price is equal to regular day price minus point two

five...”) before asking other students to chime in.

(4) “Did you test that?”

One participant asked the student if his group had tested their equation by substi-

tuting “any possible number of gallons to see if that equation makes sense?”—id19. It

is possible though that this participant is assuming that the students used unit prices

(price per gallon for d and p) rather than total prices. If this were indeed the cases,

then students would eventually get negative prices for any purchase over a certain

amount of gallons (e.g., d = 2.76 − 0.25 ∗ 12 =2.763= −0.24). Though this line of

questioning by the teacher could work if this was indeed the mistake that students

had made, it is not as helpful given that the student has defined the prices as total

prices. Therefore, this teacher responses is unlikely to help students hone in on the

definition of their variables.

Coding of teacher responses to Clip 4

In response to the student who incorrectly solves the problem m/ 14 = 74 most

teachers, again, responded by going back to the same student (13 out of 24 responses).
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Of the remaining 11 responses, 10 teacher responses engaged only the teacher and one

response engaged the whole class. Additionally, a little less than half (10 out of 24) of

the teacher responses used the student’s language explicitly 2 used it incorrectly, 10

did not use it at all and 2 used it implicitly. Again, most teacher responses were close

to the student idea with a little less than half (11) coded as core to the student ideas.

The remaining 13 responses were peripheral ( 5 responses), other (3 responses), or

NA (5 responses). Though there was some distribution in the type of move (see Table

3.4, the most frequently occurring move was a correct. Most responses to Clip 4 were

either CNI ( 6 out of 24), or Other (5 out of 24) (see Table 3.5 for the distribution).

Thematic grouping of teacher responses to Clip 4

In qualitatively grouping the 24 teacher responses the following four categories

emerged: (1) exploring the student’s response (2) “does your answer make sense?”

(3) “Youre solving the wrong problem”, (4) correcting the student and (5) taking it

literally.

(1) Exploring the student’s response.

A group of eight TR followed up on the student thinking in ways that had the

most potential for productive conversation about the student response. In one TR,

after making an inference about how the student got their answer of 1036 (“I heard

you say that...you have multiplied together the fourteen and the seventy-four, and

that when you did that multiplication you got ten-thirty-six”—id08), the teacher

asked others to comment, “does anybody want to either support or challenge this

idea?” This provides space for other students to potentially question the student

about whether he is solving the same problem or using a fact that does not belong in

this fact family. Two TR probed the student for how they came to their answer. In

one, the TR probed the student for information about “what was the equation that

you set-up to get that answer?”—id09. This TR does not make an inference about
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how the student got their answer of 1036 but does begin to focus the conversation

on potential relevant mathematical content. Similarly, id20 asked the student, “so

how did you get that answer?” One response asked the student to go back to what

they had done and the beginning of the lesson and think about how to “use our fact

families to find our solution for m”—id22.

Two teacher responses focused on mathematical operations. In one, the TR seems

to make an inference about how the student obtained the answer of 1036 and asks,

“why would you multiply to find this answer?”—id02. In the other TR, the participant

seems to focus on the end of what he student has said (the incomplete statement about

“1036 divided by 14...” ) and asks, “how did you know that you had to use division

the way that you used division?”—id 23. In one TR, the participant essentially asked

the student to come up to the board and represent their work next to the other

answer on the board so that “then we can look at the two of them side by side and

figure out which one is uhhmm the is the better way to go”—id 24. A final TR in

this group asked the student, “now expand upon that for just a second?”—id19. On

the one hand, this TR provides room for the student to say more but, in the other,

it is not clear what the student should be saying more about. Hence, it leaves the

mathematical terrain of the conversation particularly nebulous.

(2) Does your answer make sense?

A group of six TRs essentially focused on whether the student answer made sense.

One response focused on the idea that m should be a decimal and five of these TRs

focused on having the student plug their answer back into the original problem. These

TRs did varying degrees of work to connect the problem the student seemed to be

doing and the original problem on the board. This connection seems important for

student understanding because tin the student response, the student has essentially

already plugged their answer back in (“because one thousand thirty-six divided by

fourteen...” [equals 74]).
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In one TR, the participant explicitly pointed the student back to the problem

on the board, “...let’s think about putting it in the problem...which position on this

problem that’s on the board does that number fit into”—id18, to focus the student’s

elaboration on “...why that [1036] is a correct answer?”—id18. Another TR inferred

the student had multiplied 14 and 74 to get 1036 and then simply stated, “but if

we put one thousand thirty-six in for m. check that we got fourteen divided by one

thousand thirty-six and what do you get when you do that? is it seventy-four?”—id01.

Although the TR does not explicitly explain how the original problem is connected

to the one the student seems to have solved, the TR is at least very explicit about

what the 1036 is being plugged back into. Similarly, participant id13, after some

verbal processing, asked the student “so that, that value you’re substituting ...we

have fourteen divided by that value if we, if we plug that into our calculators or if

we write that down on the board as a fraction, what does that look like? fourteen

divided by that number you said ...”. Though the participant could not recall the

student’s exact answer they were clear about the student using their answer in the

problem “fourteen divided by that value.” Additionally, the participant seemed to

hypothesize that the student’s issue arose from the notation in the original problem

and that representing the problem differently (vertically as a fraction rather than

horizontally) would also clarify things for the student.

Two other TRs essentially also asked the student to “plug it back into the equation

to see if that gave you a true statement?”—id 05 or “let’s plug that in uhhh and see

how the arithmetic pans out”—id 21 but neither of these responses specific what

equation the 1036 was being plugged back into. The one response that focused on

making sense of the size of m given the original problem asked the student, “If I’m

taking fourteen and I’m dividing it, uhmmm into pieces and I end up with seventy four

of them, would it make sense for our divisor to be a whole number or a decimal?”—id

12. Though the response is clear about what problem the teacher is talking about, it
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does nothing to connect it with the problem the student seemed to be solving.

(3) You’re solving the wrong problem.

Three TRs pretty explicit told the student, “but it, it doesn’t ask what divided by

fourteen is seventy-four, the question is fourteen divided by what is seventy-four”—

id06. In one case, participant id06 this was their whole response. The other two TRs

continued solving the original problem by explaining “so when you solve for m in this

case, you’re gonna take fourteen and divide by 74 to get to your answer of m”—id26.

Participant id10 went as far as the final solution, “to get ’m’ which was the decimal

point one eight nine”. Like participant id13, participant id26 seemed to hypothesize

that the notation had caused the problem, so she also wrote “it out a different way

that might help you see it a little bit better.”

(4) Correcting the student

A group of six TRs corrected, to varying degrees and with different mathematical

foci, the student’s response. One participant seemed very taken with the work on the

board for problem 4, in which the student volunteer had noted that “m = decimal” and

focused their response to the student on that idea. In this response there was a lot of

verbal processing, but the participant did state the problem again, “fourteen divided

by something is equal to a bigger number” and suggested the class consider an easier

version of the student’s response by stating, “you’re going to say fourteen divided by

a bigger number, one thousand something is equal to seventy-four, so let’s try just

a smaller number like fourteen divided by...by twenty-eight, what would that be...”

to see if that “makes sense with the context of this problem”—id07. Unfortunately,

the TR seems to consider neither the student’s answer of 1036, instead opting for

a smaller number, or the fact that the student seemed to have solved a different

problem.

Another set of three TRs that were also rather wordy touched both on the idea

that m is a decimal and using fact families to solve the problem. One TR quickly

95



stated that 1036 was wrong and that mental math would confirm this (14 divided

by 1036 does not equal 74) then the response goes on to talk about how division

problems do not need to have the “the largest number and divide it by a smaller

number”—id 17. The TR then mentions the work on the board that noticed that m

was a decimal and goes on to talk about how, earlier, the class had talked about how

the numbers in the fact families can only go in certain positions. Another participant

walked through the facts of the fact family (14/m = 74 so 14 = 74 ∗m, then we can

divide out the m and get 14/74 = m) and asking rhetorically, “and fourteen divided

by seventy-four is that going to be bigger than one or smaller than one?”—id11. The

TR then comments on how the student’s thought to multiply (the 14 and 74) would

have been “the right thing to do if it were m divided by fourteen” but that in the

facts for this fact family they needed to multiply 74 and m.

A third response of this sub-type, immediately cautioned the student, “so be

careful,” then reiterated the original problem “fourteen divided by M equals seventy-

four” and pointed out that the answer has to be a decimal. The response then went

on to putting another fact family on the board (35 = 5∗7, 35/5 = 7, etc.) to highlight

that you can get one factor by diving by the other factor and connecting this to the

student response in the first clip that mentioned the numbers “can rotate.”

Another set of TRs were much more concise in their corrections. One TR essen-

tially explained that the participant had made the same mistake and that rewriting

it horizontally helped them see how to solve it correctly. The TR then walks through

the algebraic steps, “we had to multiply the m on both sides to get fourteen equals

seventy-four m and then divide the seventy-four and that’s how we got point one eight

nine repeating”, to solve the problem. The other concise TR assumed the student had

made an error with order of operations in his calculator and cautioned the student to

“be careful” because “order is very important...so when we put it into our calculators

we need to make sure we’re doing fourteen divided by seventy-four”—id 16. This par-
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ticipant also seemed to believe that rewriting the problem horizontally would support

students in seeing the original problem correctly and that from there, “...so that when

we put it in our calculators ...so make sure that that we’re doing fourteen divided by

seventy-four, not seventy-four divided by fourteen, okay? auhmmm , alright.”

(5) Taking it literally One TR seemed to take the teacher prompt for this student

response (“Yes, what’s your question about number 4?”) very literally and essentially

told the student to hold his answer because “first we just want to know if you have

any questions about how to do part four...”—id25.

How do teachers’ responses to these different types of student responses

vary?

Tables 3.1, 3.2, 3.3, 3.4 and 3.5 display the distributions for various codes across

the five categories in the TRC: actor, student actions, student ideas, move and math-

ematics.

In general, participants seemed inclined to either go back to the same student or

be the main actor to publicly consider the student thinking. There was the more

variation in the actor in teacher responses to Clip 2, where the student provided the

answer of d = p−0.25 ∗ g. In that case, though the majority of the participants (14

out of 24) went back to the same student, the rest were evenly split between publicly

inviting the whole class to consider the student thinking and being the only ones to

publicly consider the student response.

Table 3.1: Distribution of actor codes in Clips 1, 2, and 4.

Same Student
Whole Class/
Other student

Teacher

Clip 1 13 2 9
Clip 2 14 5 5
Clip 4 13 1 10
Total 40 8 24
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With regard to being responsive to student thinking, as captured by the student

actions and student ideas TRC categories, overall participants’ responses frequently

explicitly used the student’s language and were core to the student’s idea. In response

to Clips 1 and 2 (both of which were had longer student answer and in which the

mathematical ideas were more intricately tied to the language the student used),

the majority of participants explicitly used the students’ words (14 out of 24 for

Clip 1, using “rotate” and/or “circle” and 16 out of 24 in Clip 2, using “g” and

“number of gallons”). When responding to the student’s response of 1036 in Clip

4 (a student answer that was much shorter than the student answers from Clips 1

and 2), participants’ were almost split between explicitly using the student’s language

(repeating the answer of 1036, or attempting to repeat it but doing so incorrectly)

and not using it at all.

Table 3.2: Distribution of student actions codes in Clips 1, 2, and 4.

Explicit Implicit Not
Explicit-
Incorrect

Clip 1 14 10 0 0
Clip 2 16 3 3 2
Clip 4 10 2 10 2
Total 40 15 13 4

The teacher responses across all three student response clips tended to be fairly

responsive to students. In other words, the student’s within all three Clips would

be likely to recognize their idea (a code of core) or a closely related idea (a code of

peripheral) as being made the object of consideration in the teacher responses. This

is evident from the 17 teacher responses in Clip 1, 24 teacher responses in Clip 2 and

16 teacher responses in Clip 4 that were coded as either core or peripheral (see Table

3.2). Participants’ responses seemed to more easily make the student response (or

a closely related idea) the main object of consideration in Clip 2, in which a little

less than half of the teacher responses were core to the student ideas and slightly
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more than half were peripheral to it. Teacher responses to the other clips had more

variation, with about one eighth TRs (3 out of 24) to both clip 1 and clip 4 veering

towards other ideas and about a few (3 in Clip 1 and 5 in Clip 4) not pursuing the

student idea (a code of NA).

Table 3.3: Distribution of student ideas codes in Clips 1, 2, and 4.

Core Peripheral CNI Other NA
Clip 1 12 5 1 3 3
Clip 2 11 13 0 0 0
Clip 4 11 5 0 3 5
Total 34 23 1 6 8

Teacher responses across the three clips employed a variety of different moves as

can be seen in Table 3.4. In response to the mostly correct student response of Clip

1, a little over a third of participants (9 out of 24 TRs) tended to engage the actor

in an elaboration of some aspect of the student idea. In contrast, in response to the

mostly incorrect student responses of Clips 2 and 4, a third of participants (8 out

of 24 TRs) tended to engage the actor in a correction of some aspect of the student

idea.

Table 3.4: Distribution of moves codes in Clips 1, 2, and 4.

Clip 1 Clip 2 Clip 4 Total
Justify 4 2 1 7
Allow 0 1 0 1
Elaborate 9 2 5 16
Collect 0 1 0 1
Connect 0 3 0 3
Clarify 1 0 0 1
Monitor 0 0 4 4
Repeat 2 1 1 4
Evaluate 1 0 1 2
Literal 0 6 2 8
Validate 1 0 0 1
Adapt 3 0 0 3
Correct 0 8 8 16
Dismiss 3 0 2 5
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As can be seen in Table 3.5 there was some interesting variation in the mathematics

code across the various student responses. When responding to the mostly correct

student response of Clip 1, teacher responses seemed to leave more room for students’

to explore the mathematical terrain (as suggested by the 10 CNI and 5 CNI-core

coded responses). In the clips that were mostly incorrect, participants had different

trends. In response to the student using the incorrect variables (total price versus

price per gallon, in Clip 2), a little more than a third of the participants seemed to

provided responses that touched on (4 out of 24, Core) or had the potential to touch

on (5 out of 24, CNI-core) the core mathematical issue about the way in which the

student had defined their variables and the implications of defining these as total

versus unit price.

Table 3.5: Distribution of mathematics codes in Clips 1, 2, and 4.

Clip 1 Clip 2 Clip 4 Total
CNI-core 5 5 1 11
CNI 10 6 6 22
Core-MP1 0 0 0 0
Core 0 4 4 8
Peripheral 1 5 3 9
Peripheral-beyond 2 0 1 3
CNI-imprecise 4 4 3 11
Peripheral-incorrect 0 0 0 0
Other 1 0 5 6
Other-incorrect 1 0 0 1
Non-math 0 0 1 1

In contrast, when responding to Clip 4 (where the student suggests an answer of

1036 for m) participants seemed to have more difficulty picking up, on the fly, the core

mathematical issue to pursue from the student’s response as indicated by the 8 TRs

that veered into peripheral, peripheral-beyond or other mathematics. Put another

way, these 8 responses veered into mathematical terrain that drifted away from the

core mathematical point underlying the student response. That core mathematical

point can be summarized as follows: While fact families switch around location of
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three values in inverse operations, a/b=c is not equal to b/a=c unless c=1.

Patterns within teachers

Another facet of understanding how teachers responded to different types of stu-

dents emerges from looking at patterns across the student responses within teachers.

As can be seen in Table 3.6, half of the teachers in this sample provided responses

with the same actor for their responses to all three student responses (9 had the same

student as the actor for all three responses and 3 had the teacher as the actor for all

three responses).

Table 3.6: Patterns in actor code within teachers

Pattern in Actor Code Number of teachers
All 3 same student 9
All 3 teacher 3
2 Teachers/ 1 Same Student/Whole Class 5
1 Teacher/ 2 Same Student/Whole Class 6
2 Whole Class/ 1 Same Student 1

As can be seen in the TRC results in Table 3.2, the majority of teacher responses

tended to explicit use the student actions. Looking at these instances within teachers,

as can be seen in Table 3.7, teachers were predominantly explicit in the majority of

their responses to students. Though few were explicit in their responses to all three

student answers (only 4 out of 24), a little less than half of the teachers used the

students’ exact language in two of their three responses (13 out of 24).

Table 3.7: Patterns in actor code within teachers

Patterns in Explicit Student Actions Code Number of teachers
Explicit in all 3 4
Explicit in 2 13
Explicit in 1 6
Explicit in none 1

In looking across the TRC coding and within teachers, another interesting pattern
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that emerged was the way in which different teachers seemed to treat the student

responses.

Table 3.8: Patterns across student response types]

Pattern in responses to “correct” versus “incorrect”
student responses

Number of
teachers

Group 1: Evidence that Clip 1 is correct and Clips 2
and 4 are incorrect

12

Group 2: Evidence that responses 1, 2, and 4 were
treated similarly

7

Group 3: Less clarity but more evaluative than not 3
Group 4: Miscellaneous 2

As can be seen in Table 3.8 half of the teachers (id 01, 03, 05, 06, 10, 12, 13,

15, 16, 17, 22 and 23) (Group 1) in this sample responded to Clips 2 and 4 in a

way that differed significantly from how they had responded to Clip 1. Namely, these

teachers responded in a way that generally indicated that the student answers in Clips

2 and 4 were incorrect. In four of these 12 responses, teachers used a correct move

overall in the response to both Clip 2 and Clip 4. Another frequent combination of

moves within this subset of teachers was a correct in response to one clip and a literal

move in response to the other (three teachers did this). The remaining five teachers

had various combinations of moves across their responses to the two clips including

correct, and literal, as well as monitor (which, for these five teachers, was always

in response to clip 4), connect, justify and dismiss. There were no distinct patterns

that appeared with respect to their choices of actor, student actions, student ideas or

mathematics.

Three teachers (id 07, 11, and 24; Group 3 in Table 3.8) provided responses that

were also more evaluative than not, but made this distinction with a little less clarity.

Two of these teachers clearly evaluated the student response in Clip 4 as incorrect

(with a dismiss and a correct) but were a bit more ambiguous in their treatment of the

student response in Clip 2. In one case the teacher asked back-to back questions, first
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indicating there might be an issue (“well does price change at all depending upon the

number of gallons?”) but then deciding to collect responses from the class (“...anyone

else have a different response here?”—id 11). In the other, the teacher asked the

student from Clip 2 to “read the problem out loud to me again” so they could,

“talk about the variables first” id 07. The third teacher more evidently corrected the

student response from Clip 2 (by essentially providing the right answer) but was not

as obvious in their evaluation of the correctness of the student response from Clip 4.

In response to Clip 4, the teacher asked the student to come up and write their answer

on the board so it could be discussed without obvious indications they thought it was

wrong.

There was another group of seven teachers that provided responses to the students

that did not as obviously seem to indicate that students were correct or incorrect.

This group of six teachers (and 21 responses) had a number of similarities. With the

exception of one teacher in this group, the teachers engaged the same student or the

whole class in all three of their responses. The only exception was a teacher whose

response to Clip 1 engaged the teacher but whose responses to Clips 2 and 4 engaged

the whole class and the same student. This group of teachers also seemed to be more

responsive to students. Their responses more frequently used the students’ exact lan-

guage (all seven had explicit student actions in two of their three responses) and they

were predominantly either core or peripheral to the students’ ideas. Another trend

across this group of teachers was the predominance of CNI codes for mathematics.

Six of the seven teachers gave responses that were coded with one of the three vari-

ations of the CNI code for at least two of their responses, with CNI and CNI-Core

occurring most often (13 out of the 18 instances of a CNI code in this sub-set of six

teachers). This indicates that, in general, the responses from this group of teachers

tended to give less away or be less leading and, hence, leave more room for students

to do the intellectual work.
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When contrasting the move choices of these seven teachers’ responses with the 17

teachers with clearly evaluative responses, one distinction arises in the choice of move

for Clip 4. In particular, the majority of teacher responses in Group 1 used potentially

lower-level cognitive moves such as correct, literal, dismiss and monitor. In contrast,

a majority of the seven teacher in Group 2 used more cognitively demanding moves

such as justify and elaborate in response to Clip 4.

Within Group 4 (“miscellaneous”) one teacher response (id26) misremembered the

students’ answer in Clip 2. This response repeated the correct answer rather than

the student’s answer, and hence, it is unclear how this teacher would have actually

responded if she had correctly recalled what the student had said. The other teacher

in this “miscellaneous” group (id09) provided responses that were generally impre-

cise, vague and confusing making it difficult to determine what, exactly, the teacher

responses were conveying to students. Therefore, it was not possible to determine

whether or not these two teachers had normative, evaluative response patterns to

student answers. This meant they could not be placed into Groups 1, 2 or 3.

Discussion and Conclusion

Though current mathematics reforms and research efforts point to the importance

of how teachers respond to students, work in the area in still ongoing. In particular,

when looking across the research that does exists three gaps emerge: (1) a lack of

studies examining how teachers respond to students around algebraic content, (2) a

lack of studies comparing and contrasting teacher responses to correct and incorrect

student responses and (3) a need to explore how teachers respond in more realistic

ways under more authentic conditions. The current study aims to address these three

gaps by reporting on the ways in which teachers responded to a variety of correct and

incorrect student thinking in early algebra, in a teaching simulation with more fidelity

to classroom conditions. In particular, I asked:
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1. How do teachers respond to apparently correct student responses?

2. How do teachers respond to apparently incorrect student responses?

3. How do teachers’ responses to these different types of student responses vary?

In examining how teachers responded to correct student responses, teachers in

this study responded in a variety of ways. Namely, seven different types of repose

categories emerged: (1) “Come up and show us”, (2) “why is it doing that?”, (3)

“what do you mean?”, (4) focusing on peripheral/other mathematics, (5) “that’s

good, can you tell me more...?”, (6) “that’s good, what else?” and (7) only the teacher

engages in the intellectual work. As hinted by the category names, the majority of

teacher responses took-up the correct student thinking. Overall, teacher responses

were responsive to the student thinking and went back to the same student asking

for an elaboration without giving away all the mathematical ideas to be explored.

In responding to the student who used total prices and provided an equation

that included the variable g for gallons (a response that is correct given how the

student defines their variables but does not answer the original problem) teacher

responses fell into four categories: (1) focusing on the variables, (2) variations on

‘g’, (3) monitoring first, and (4) “did you test that?”. Though teacher responses

were responsive to the student thinking and went back to the same student without

giving away all the mathematical ideas to be explored, they tended to use moves

that funneled or guided the student to a correct answer. One interesting issue that

arose in the teacher response to this student was a problem with precision in language

around units. Even as teacher responses seemed to be honing in on the mathematical

issue of defining variables and/or units precisely, many still used incorrect units (e.g.,

referring to price when they meant price per gallon).

In response to the student who found that m is 1036 and seems to have solved

m/14 = 74 rather than 14/m = 74, teacher responses fell into the following four
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categories: (1) exploring the student’s response, (2) “does your answer make sense?”,

(3) “You’re solving the wrong problem”, (4) correcting the student and (5) taking it

literally. With the exception of the first category, most teacher responses sought to

correct, through various means, the student’s answer. This was also what emerged

in looking at the coding distributions of the Teacher Response Coding scheme, where

again though most teacher responses were responsive to the student thinking and

re-engaged the same student, they tended to use moves that funneled or guided the

student to a correct answer.

Additionally, of the three student answers used in this simulation, the student

answer in Clip 4 seemed to be the most difficult for teachers to mathematically inter-

pret in-the-moment. Several teacher responses seemed to misinterpret the underlying

mathematical issue in the student thinking and hence veered into mathematics that

did not seem closely related to the mathematical point underlying the student think-

ing. Another interesting issue that arose in these responses was the inference that

teachers’ responses seem to make. These ranged in the amount of inference: from a

small amount (such as completing the students though, “ 1036 divided by 14” equals

74), to making a little bigger of a leap (assuming the student got 1036 by multiply-

ing 14 and 74), to making large inferences about why the student made a mistake

(not plugging it into their calculator correctly, misusing fact families, not reading the

original problem correctly).

When looking at all 72 teacher responses across all three clips and within teachers

a two interesting patterns emerge that seem to speak to some normative behaviors

in teacher responses, regardless of the type of student response. First, as can be seen

in Table 3.1 teachers seemed to be inclined to re-engage the same student in their

response (40 out of 72, a little over half, teacher responses in this sample were coded

as same student). When exploring the choice of actors within teachers, (Table 3.6 ) a

similar conclusion emerges. Namely, more than half (15 out of 24) of the teachers had
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a pattern of predominately going back to the same student (9 had the same student

as the actor for all three responses and 6 had the same student as the actor for two

of the three responses). Second, teachers seem to be inclined to repeat part or all

of a student’s contribution verbatim in their response. As can be seen in Table 3.2,

40 teacher responses explicitly included the student’s actions, a predominant pattern

that also emerged within teachers. 17 of the 24 teachers used explicitly used the

student’s actions in two of their three responses (Table 3.7 ).

Of note in this sample is that not all teachers exhibited clear evaluative patterns in

their responses to students (Table 3.8). Indeed, though the majority of teachers in this

sample responded in ways that made it clear that the first student answer was correct

and that the other two were incorrect, this was not the case for seven of the teachers

in this sample. These seven teachers tended to provide responses that predominantly

engaged the same student or the whole class in all three of their responses and were

highly responsive to the student thinking, especially with regard to using, verbatim,

the students’ language. They also tended to provide responses that were clear but

that did not completely give away the underlying mathematical point that was being

explored. Hence, they invited students to engage in the intellectual work in ways that

were both clear and vague.

In conclusion, this study provides some implications for teacher education with

regard to considering the ways in which teachers respond to student thinking. First, it

provides a methodological alternative that can provide teachers with an opportunity

to respond under more realistic time constraints in a context with more fidelity to

actual classroom instruction. Second, it points to some possible norms of teacher

responses—about repeating student thinking and going back to the same student—

that can both provide a starting point for novices and also a point of discussion to

help teachers broaden their practice with an eye towards discerning when they can

involve more students versus when there is not enough information and they need
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to go back to the same student. Finally, in contrast to much of the deficit rhetoric

about teachers, there is evidence that not all teachers default to simply evaluating

student responses. In other words, there is some hope that by understanding what

might support this different group of teachers and describing the characteristics of

their responses, that teacher educators might gain insight into how to better support

teachers in responding to student thinking.
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CHAPTER IV

Managing Students’ Responses: Examining

Individual Resources That Might Influence the

Outcome

Introduction

There is general agreement in mathematics education of the importance of teach-

ers’ being responsive to students’ thinking. For example, the National Council of

Teachers of Mathematics highlights the importance of teachers eliciting and probing

students’ thinking to build instruction that connects to and builds on student ideas

(2000). Being responsive to student ideas reflects “the extent to which teachers ‘take

up’ students’ thinking and focus on student ideas in their moment-to-moment interac-

tions” (Pierson, 2008, p.40). This type of responsive instruction has been linked with

both rich, learning environments and improved student achievement (e.g., Pierson,

2008; Fennema et al., 1993).

Despite widespread agreement about its importance, research into what enables

teachers to successfully enact responsive instruction is still ongoing. Some might sug-

gest that skill at eliciting student thinking precedes a teacher’s ability to respond. It

does, undoubtedly, seem logical that in order to have student thinking to respond to,

a teacher would first need to be skilled at “eliciting” that student thinking; in other
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words, she would need to be skilled in “the set of teaching actions that serve the

function of drawing out students’ mathematical ideas” (Lobato et al., 2005, p.111).

Others might propose that what teachers need is broader than skill at eliciting and

suggest that teachers need to have positive affect towards and beliefs about mathe-

matics, and mathematics teaching and learning. There is in fact evidence that teach-

ers’ self-efficacy in teaching mathematics and their social-constructivist beliefs about

mathematics, and mathematics teaching and learning can positively impact their

instruction (e.g., Kunter et al., 2008; Thompson, 1984, 1992; Stipek et al., 2001).

Still others might suggest that being responsive to student thinking depends more

on a teacher’s specialized pedagogical content knowledge (PCK) (Shulman, 1986,

1987). Indeed professional development around children’s mathematics thinking, a

facet of PCK, has been shown to improve teachers’ instruction including the ways

in which student thinking is made central to and built upon during instruction (e.g.,

Carpenter et al., 1989; Fennema et al., 1993). Further, a version of specialized knowl-

edge for teaching that brings together PCK and content knowledge, mathematical

knowledge for teaching (MKT) (D. L. Ball et al., 2008), has been linked to overall

gains in students’ mathematics achievement (Hill et al., 2005) and positively cor-

related with responding to students appropriately—as captured by “the degree to

which teacher can correctly interpret students’ mathematical utterances and address

student misunderstanding” (Hill et al., 2008, p.437). The result of Hill et al.’s (2008)

study regarding appropriately responding to students also suggests that responding

to students involves more than MKT.

Specifically, it seems to indicate that responding to student thinking also de-

pends on a teacher’s ability to attend to and interpret student thinking; in other

words, a teacher’s skill in noticing students’ mathematical thinking (Jacobs et al.,

2010). This particular form of professional noticing encompasses three interrelated,

component skills: “attending to children’s strategies”, “interpreting children’s math-
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ematics understandings”, and “deciding how to respond” (Jacobs et al., 2010). All

three of these skills seem to be supported by professional development that focuses

on children’s mathematical understandings, and ways to elicit and respond to those

understandings (Jacobs et al., 2010). These findings echo the results of prior re-

search on the effects of professional development focused on children’s mathematical

understandings. Specifically, they reaffirm the importance of teachers’ specialized

pedagogical content knowledge for teaching and the need for a variety of skills that

support responding to students.

Although the work of Jacobs et al. (2010) starts to bring together skill and knowl-

edge in considering how teachers respond to students, it does not yet provide a com-

plete understanding of what is entailed in responding productively to students’ think-

ing. In this paper, I propose that a more comprehensive approach might be to consider

how teachers manage students’ responses as a type of professional competence—which

would encompass knowledge, skills, and beliefs as well as affective and motivational

factors—and explore what this might entail with regard to the in-the-moment enact-

ment of this competence. In particular, I contend (as is argued in more detail in the

following section) that in addition to teachers’ knowledge, beliefs, skills and affective

resources, teachers’ emotional reaction to a student’s answer might also play a role

in shaping teachers’ responses. Hence, in this paper, I report on a study that asked

what might explain how teachers respond to students’ ideas. In particular, I asked:

1. Are participants’ self-assessed emotional reactions to the student responses re-

lated to characteristics of their responses?

2. Are participants’ individual characteristics (predictor variables) related to char-

acteristics of their responses to students?
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Theoretical Framework

Conceptualizing “Managing Student Responses” as a Competence

As the research and knowledge base on teaching mathematics has continued to

grow, more attention is being given to the ways in which various factors might come-

together in a more holistic conception of what it might take to teach well. Specifically,

recent work (most prolifically from the Max Planck Institute for Human Develop-

ment’s COACTIV studies in Germany) has proposed that conceptualizing teaching

as a competence might serve to bridge various lines of research on teacher quality

(e.g., Kunter et al., 2013). Broadly, teaching competence can be thought of as the

various “skills, knowledge, attitudes, and motivational variables that form the basis

for mastery of specific situations (see Epstein & Hundert, 2002; Kane, 1992; Klieme,

Hartig, & Rauch, 2008)” (Kunter et al., 2013, p.807) (see also Weinert et al., 1990). In

teaching this would likely entail skills such as professional noticing (e.g., M. G. Sherin

& van Es, 2009; Jacobs et al., 2010), specialized pedagogical content knowledge (Shul-

man, 1987), productive beliefs about teaching and learning (e.g., Thompson, 1992),

self-efficacy in teaching (Tschannen-Moran et al., 1998) and productive self-regulation

mechanisms (e.g., Klusmann et al., 2008). Indeed, evidence is accumulating that these

various facets shape the quality of teachers’ instruction that then subsequently im-

pacts students’ learning (e.g., Kunter et al., 2013). It is likely that this higher-level

conception of teaching as a competence can be conceptualized as comprising of a set

of smaller-grained sized competencies such as competency in planning instruction,

in leading whole-class discussions, providing oral and written feedback, etc. (e.g.,

TeachingWorks high-leverage practices might be re-conceptualized as competencies).

One competency that I contend is ubiquitous to teaching in general and mathematics

teaching in particular, is managing students’ responses.

Regardless of the activity structure of instruction (one-on-one, small group, or
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whole class), core to the interactions between teachers and students is the back-

and-forth about mathematical ideas and in particular about students’ mathematical

ideas. This mathematical discourse around student ideas reflects the “moment-to-

moment decisions and interactions [that] are the life of the learning environment”

and “influences student learning” (Pierson, 2008, p.14). This indisputable fact about

mathematics discourse means that a core part of teaching becomes managing students’

responses. Managing students’ responses is best described as the in-the-moment form

of what others have described as teachers’ “diagnostic competence” (Weinert et al.,

1990; Hoth et al., 2016).

Diagnostic competence.

In describing a more holistic model of teaching that considered how classroom

context and teacher expertise might impact student achievement, Weinert et al. (1990)

proposed diagnostic competence as one of four key variables defining teacher expertise.

In medicine, the field from which the term likely stems, diagnostic competence refers

to one’s ability to determine, through the use of diagnostic tests, what is wrong with

a patient and subsequently decide on an appropriate course of treatment (Hoth et

al., 2016, p.43). In mathematics teaching, diagnostic competence can be thought of

similarly and can apply to a range of teaching situations using a variety of diagnostic

assessments (e.g., pre and post tests, formative or summative assessments, etc.). One

particularly important version of diagnostic competence is situation-based diagnostic

competence (Hoth et al., 2016) and is closely related to what I referred to earlier as

“managing student responses.”

This type of diagnostic competence, as described by Hoth et al. (2016) builds on

Blömeke, Gustafsson, & Shavelson (2015) model of competence as a continuum. In

response to a dichotomy in the literature on “competence” as focused on internal

resources or dispositions (e.g., various forms of knowledge) on the one hand and per-
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formance on the other, Blömeke, Gustafsson, & Shavelson (2015) proposed a model

that brings these two perspectives together. They proposed that competence involves

various cognitive and affective-motivational dispositions and the situation specific

skills (namely perceiving, interpreting and deciding) that mediate between these dis-

positions and performance (see Figure 4.1).

Figure 4.1: Model of competence as a continuum (Blömeke, Gustafsson, & Shavelson,
2015, p.9).

Hence, situation-based diagnostic competence likely necessitates particular cogni-

tive resources and affective-motivational resources in addition to skill at perceiving,

interpreting and making decisions about student thinking.

As mentioned above, with regard to mathematics education, there is general agree-

ment that two core cognitive resources for mathematics teachers are likely to be

content knowledge and pedagogical content knowledge. Indeed, empirical evidence

suggests that mathematical knowledge for teaching, which encompasses these two

different forms of knowledge, supports how teachers interpret and respond to student

thinking (Hill et al., 2008). Others would add that in-the-moment, situation-based

diagnostic competence will be shaped by, “general pedagogical knowledge” (p. 42). In

their study, Hoth et al. (2016) found that differences in these forms of knowledge, es-

pecially in content versus general pedagogical knowledge, had important implications

for what teachers’ perceived and interpreted in a video-based assessment. In partic-
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ular, they found that teachers with lower mathematics content knowledge tended to

focus on behavioral aspects of the video while teachers with “above-average mathe-

matics content knowledge” tended to focus on aspects of the video related to students’

“understanding and learning” (p. 51).

In addition to these cognitive resources, this form of diagnostic competence also

likely involves particular affective-motivational factors, typically conceptualized as

“epistemological beliefs about mathematics and about mathematical knowledge ac-

quisition” (p. 42). Indeed, researchers have found that teachers can hold varying

beliefs about the nature of mathematics that seem to influence their beliefs about

teaching and learning mathematics (e.g., Thompson, 1992). Within the body of

research on beliefs and instructional practice, few have looked specifically at how

teachers respond to students. One notable exception is Bray’s (2011) case study that

examined the influence of both beliefs and knowledge on how teacher’s responded to

errors during whole-class discussions. In particular, Bray (2011) found one teacher’s

intentional practice of making student errors a focus of instruction for the purposes

of learning were supported by both the teacher’s content and pedagogical content

knowledge in addition to her beliefs, specifically her belief that “students’ flawed so-

lutions...[are] partially correct solutions with underlying logic” (p. 25). This study,

like prior research that examines how beliefs are linked to instructional practice,

highlights that beliefs about teaching and learning mathematics are likely to influ-

ence instructional practices, including how teachers’ manage students’ responses, but

that the complexity of teaching means that beliefs cannot be studied in isolation.

In addition to beliefs one needs to consider other internal and external factors in-

cluding teachers’ knowledge, contextual factors at the classroom, school, district and

national level, and other motivational-affective resources (such as self-awareness and

self-reflection) (Buehl & Beck, 2015, p.74).

With regard to managing students’ responses, this attention to the external factors
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is captured in part by considering the situation-specific skills that teachers “need to

perceive relevant aspects [of an instructional situation] and interpret them in order to

decide about reasonable ways to act” (p. 44). These skills build on the literature that

explores expert teachers’ “noticing” (Kaiser et al., 2015). Though there are variations

in the ways researchers conceptualize “noticing”, most include teachers’ attending to

or perceiving relevant aspects of an instructional situation and making-sense of or “in-

terpreting” these aspects (e.g., M. Sherin et al., 2011). In the competence literature,

these situation-specific skills are usually articulated as the “PID-model” which in-

cludes: “(a) Perceiving particular events in an instructional setting, (b) Interpreting

the perceived activities in the classroom and (c) Decision-making, either as antic-

ipating a response to students’ activities or as proposing alternative instructional

strategies” (Kaiser et al., 2015, p.374). Similar to Jacobs et al. (2010)’s articulation

of “professional noticing of children’s mathematical thinking” the PID model includes

perceiving, interpreting and decision-making.

There is quite a bit of research that has explored mathematics teacher’s percep-

tion, interpretation and/or decision-making (see Stahnke et al., 2016, for a review).

Across the studies that included teachers’ decision-making there are three impor-

tant trends worth noting. First, there seems to be some consistency in the findings

that knowledge plays an important part in teachers’ decisions about how to respond

to students. For example, J. Son & Sinclair (2010) found that in a scenario-based

task on reflective symmetry, though many pre-service teachers were able to iden-

tify the scenario-student’s error on a conceptual level, the interventions pre-service

teacher (PST)s proposed were predominantly focused on addressing procedures. In

other words, the knowledge needed to diagnose a student’s error or misunderstanding

(e.g., common content knowledge (CCK)) differs from the knowledge needed to decide

an appropriate response (i.e., knowledge of content and teaching (KCT)) (D. L. Ball

et al., 2008). Additionally, the ways in which teachers propose responding to stu-
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dents seems to be greatly shaped by their areas of strength. Specifically, Hoth et al.

(2016) found that in their proposed responses to students, teachers with greater con-

tent knowledge focused on “content specific characteristics” while those with greater

general pedagogical knowledge focused on “pedagogical aspects such as the classroom

management or methodological decisions” (p. 52).

A second important trend builds on the first by considering the impact of beliefs in

addition to knowledge on decision-making. For example, in exploring changes during

teacher induction, Blömeke, Hoth, et al. (2015) found that teachers with higher levels

of knowledge (including mathematical content, general pedagogical and mathematical

pedagogical content knowledge) and productive beliefs (including mathematics as

dynamic, constructivist beliefs about learning and ability as malleable) scored higher

on both their mathematical-PID and pedagogical-PID in a video based assessment.

A third important trend to note in these studies is in the methods used to ascer-

tain teachers’ decision-making. Specifically, these studies used either static (written

scenario) or dynamic (classroom video clips) stimuli with prompts to describe and

explain (usually in writing) how the teacher might follow-up with the students. Under

these conditions, it is likely that what is being collected provides insight into teachers’

“reflective competence”—or the “abilities required to master subject-specific pre- and

post-instructional tasks”—rather than their “action-related competence” (Knievel et

al., 2015, p.313). Action-related competence refers to the component of professional

competence needed for tasks that occur during instruction and “are determined by the

spontaneous, immediate, interactive, complex, and concurrent demands of teaching

mathematics” (Knievel et al., 2015, p.313). Though action-related competence, like

reflective competence, requires particular types of knowledge and skills, it occurs un-

der pressure. Hence, “there is no time for reflective application of the knowledge and

deep elaboration processes in instruction” in other words, “conscious decision-making

possibilities are limited. Hence, for instructional situations, the rapid accessibility of

117



subject-specific—perhaps implicit—knowledge gains importance” (p. 314).

Managing student responses is a type of situation-based, diagnostic competence

that has both a reflective and an action-related component. This means it entails

particular types of knowledge (e.g., mathematical content knowledge, mathematical

pedagogical content knowledge and general pedagogical knowledge) as well as beliefs

about the nature of mathematics, and the teaching and learning of mathematics.

Additionally, it involves skills in perceiving, interpreting and making decisions based

on student thinking that are inextricably linked to teachers’ knowledge. Most of

the research that has explored competency related to managing student thinking has

used methods that focused on exploring the reflective component of this competency.

Though it is likely that information about reflective competence provides some insight

into the action-based competence, there is a dearth of research on the action-based

competency of managing students’ responses.

A focus on this action-based component necessitates attention to additional factors—

beyond knowledge, beliefs and PID skills—that can play a role in in-the-moment

decision-making. In particular, I propose that both a teachers’ emotional reaction to

a student response and their anxiety will be important factors when exploring action-

based competency. The case for exploring these two additional factors comes from

considering work outside educational research on decision-making. Essentially, the

case for considering both of these factors comes from research on the role of emotions

or affect in decision-making and in particular, the bi-directional connection between

the brain and the body.

The case for the first factor—considering a teacher’s emotional reactions to a

student response—comes from considering the “somatic marker hypothesis” in neu-

roscience (Bechara et al., 2000). Through studies of the decision-making of patients

with various cognitive impairments (due to disease or injury), neuroscientist Antonio

Damasio (1994) demonstrated that emotions and feelings play an important part in
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the decision making process. Specifically, the somatic marker hypothesis, “proposes

that a defect in emotion and feeling plays an important role in impaired decision

making” and “specifies a number of structures and operations required for the nor-

mal operation of decision making” (Bechara et al., 2000, p.295). Essentially, when

presented with a complex situation for which some factual aspects have been previ-

ously experienced and categorized, those factual aspects trigger a variety of pertinent

processes and information, including emotions and facts, consciously and/or uncon-

sciously, that impact decision-making. “Emotion, feeling, and biological regulation

all play a role in human reason” (Damasio, 1994/2005, p.xvii).

The role of emotions in decision-making, resonates with how D. L. Ball (1997) de-

scribed teaching as, “one part intellect, [and] three parts emotion” (p. 800). D. L. Ball

(1997) describes, at a broad level, essentially how teachers’ emotions can impact their

actions:

Teachers are disappointed when they confront their students’ confusions,

missing pieces, distorted understandings. They care about their students.

After investing time and effort in a particular student, a teacher wants to

hear right answers, sensible reasons, creative ideas. Teachers ask leading

questions, fill in where students leave space, and hear more than what is

being said because they so hope for student learning

In other words, D. L. Ball (1997) is describing in teaching what (Damasio, 1994/2005)

has postulated in decision-making more generally. Emotions impact our decisions and

our actions, and teaching is not immune to this reality of human decision-making. I

hypothesize that the emotions triggered by a student’s responses will impact how a

teacher responds to a student. In particular, if a teacher perceives a student’s response

to be incorrect and this triggers disappointment or unhappiness, I hypothesize that

a teacher will be more likely to engage in the response behaviors D. L. Ball (1997)

described.
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Additionally, I propose that an examination of the action-related facet of the

competence of managing students’ responses necessitates consideration of teachers’

anxiety. This hypothesis is in part supported by, again, appealing to the theory that

emotions play a part in decision-making but also by looking closely at the ways in

which anxiety can impact performance. Specifically, anxiety can impact performance

through two mechanisms: (1) active worry and (2) the body’s physiological reaction.

In studies of students’ with math testing anxiety, research has shown that individu-

als dilute their mental capacity to solve the problem at hand by worrying about it

(Beilock & Willingham, 2014). Instead of allocating all of their working memory to

solving a task, these individuals are preoccupying part of their working memory with

concerns about their performance.

A second mechanism through which anxiety can impact performance is through

the body’s physiological reaction to a situation that has been appraised as a threat.

When faced with a situation that requires an active performance—including cogni-

tive, emotional and behavioral responses—on their part (as is the case for managing

students’ responses), an individual might experience a threat or a challenge depend-

ing on whether they perceive they have the capacity or not to meet the demands

of the situation (e.g., Blascovich & Mendes, 2000; Jamieson et al., 2010). When

an individual feels they do not have the capacity to meet the situation’s demands,

they feel threatened and their body responds accordingly. Specifically, an individ-

ual’s body will prepare for physical harm and constricts blood flow to minimize blood

loss, ramps up inflammation, and mobilizes immune cells needed to heal after the

inevitable harm is inflicted. This reaction then impedes cognitive performance and,

over the long-term, can increase the risk of cardio-vascular disease (McGonigal, 2015,

pp.110-111). Hence, if a teacher has high levels of anxiety in general and with respect

to tasks of teaching, they are likely to feel anxious about responding to students

in-the-moment. This anxiety is likely to then negatively impact their physiological
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reaction and, in-turn, their action-related competency.

This paper explored the action-related component of the competency of managing

student responses. It adds to the conceptualization of action-related competence by

considering the ways in which teachers’ emotional reactions to student responses and

teachers’ anxiety might play a role in performance.

Research Methods

Participants

Secondary mathematics in-service and pre-service teachers within and around a

large midwestern university town were recruited in person and by email as part of a

larger study on managing students’ mathematics responses. Recruitment efforts tar-

geted secondary mathematics teachers at middle and high schools, as well as public,

private and charter schools. All participants volunteered and were compensated for

their participation in this study. Hence, the final sample of 24 participants who com-

pleted all data collection (paper instruments and teaching simulation) for this study

is a sample of convenience (it should also be noted that the author had previously

worked with 10 of the 24 participants in the author’s previous work as a university

field-supervisor).

Within this sample of 24 secondary mathematics teachers, one participant self-

identified as Black and 23 participants self-identified as White. Additionally, there

were six participants who self-identified as male and 18 who self-identified as female.

The sample included five preservice teachers, three of which were in their final year

of a three-semester undergraduate secondary teaching certification program, one who

was in the first semester of this same undergraduate program and one who was in

a one-year masters teaching certification program. The remainder of the sample

comprised 19 inservice teachers with a range of 2 to 38 years of teaching experience
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and a median of 10 years of experience. The 24 participants ranged in age from 19

to 64 years of age, with a median age of 35.5 years.

Of the 24 teachers, one was recently (within the last 5 years) retired, 10 were

currently in middle school mathematics classrooms and 13 in high school mathematics

classrooms. One participant reported having taken no undergraduate or graduate

mathematics courses while the rest of the participants all reported having taken three

or more undergraduate or graduate mathematics courses. With respect to methods

of mathematics teaching courses, seven participants reported having taken one such

course, nine reported having taken two courses, and eight reported having taken three

or more of these math methods courses.

Data Collection

Measures of Internal Resources

In order to investigate the hypothesis that how teachers respond to students is re-

lated to their anxiety, mathematical knowledge for teaching, and beliefs about teach-

ing and learning mathematics, I used four different paper instruments to capture

these factors. Participants completed these instruments in person, in about one to

two hours, several days or months prior to completing the teaching simulation.

Anxiety: STAI and Teaching anxiety. I used two paper and pencil instruments

to assess participants’ level of anxiety: the State-Trait Anxiety Inventory (STAI)

for adults and a teaching anxiety instrument adapted from Parons’s (1973) Teaching

Anxiety Scale. I chose these two instrument to explore if and how general anxiety

and context-specific anxiety, namely teaching anxiety, might have similar or difference

associations with teacher’s responses.

The STAI was developed by Spielberger, Gorsuch, Lushene, Vagg, and Jacobs

(1983) and is used in clinical settings to aid in the diagnosis of anxiety disorders

(http://www.apa.org/pi/about/publications/caregivers/practice-settings/
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assessment/tools/trait-state.aspx). Reliability (Spielberger et al., 1983) and

construct validity of the instrument have been established (Spielberger, 1989). The

STAI contains a set of 40 items, 20 that assess state anxiety (anxiety felt at that

moment, right now as the person is filling out the survey) and 20 assessing trait (or

general) anxiety. On the state anxiety portion of the STAI, participants indicate the

degree to which 20 different statements (e.g.“ I feel calm”,“I am jittery”, etc.) seem

to describe how they feel at that moment (1=“not at all”, 2= somewhat”, 3=”mod-

erately so”, and 4 =“very much so”). On the trait anxiety portion of the STAI,

participants indicate the frequency (1=“almost never”, 2= sometimes”, 3=”often”,

and 4 =“almost always”) with which they generally experience 20 different statements

(e.g.“I feel like a failure”,“I am happy”,“I get in a state of tension or turmoil as I

think over my recent concerns and interests”, etc.). Both the individual state and

trait anxiety score range from 20 (low) to 80 (high).

The teaching anxiety instrument I used pulled from three different sources for the

26 items in the final instrument. The majority of the items (17 of the 26) in this in-

strument came from Parsons’s (1973) Teaching Anxiety Scale and were used with only

slight modifications in language (e.g., changing“I would feel...” to“I feel...”). Addi-

tionally, I used two items translated and adapted from Schwarzer & Jerusalem (1999)

that measure teachers’ appraisal of their profession (in my questionnaire items 21 “I

am confident that I am up for the demands of teaching mathematics” and 22“I feel

that teaching is an interesting job because it challenges me in new ways”). I also cre-

ated three questions specifically about student responses and students’ struggling with

content (“I feel capable of handling unanticipated, incorrect student responses”,“I feel

relieved when students do not struggle with the mathematical content they are learn-

ing”, and“I feel capable of handling unanticipated, correct student responses”). For

these 22 items (17 from Parsons (1973), 2 from Schwarzer & Jerusalem (1999) and 3

that I created), participants were asked to indicate how frequently they experienced
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the statement by circling a response from 1 to 6 (1= always, 2=usually, 3=often,

4=sometimes, 5=seldom, 6= never).

I also created a set of four questions that probed how frequently teachers ex-

perienced different emotions (excited, worried, calm, tense, upset, relaxed) during

different instruction formats (one-on-one, small groups, whole-class instruction) and

when teaching new content. For each emotion, participants again circled a response

form 1 to 6 (1= always, 2=usually, 3=often, 4=sometimes, 5=seldom, 6= never) indi-

cating how frequently they experienced that emotion in context given in the question

statement. This resulted in a final instrument with 26 different statements and 46

different items. Items were reverse coded such that a higher score indicated experi-

encing more teaching anxiety. Hence, the minimum score on this instrument is 46

and the maximum is 276. Together, these 46 items for the 26 participants who took

this instrument have a Cronbach’s alpha of 0.959 and an average inter-item corre-

lation of 0.351; indicating acceptable internal consistency of this collection of items.

Hence, all items were used as is and each participant was assigned a teaching anxiety

score based on their scored responses to the 46 items (a simple sum of the score for

individual items, where each item is scored from 1 to 6 based on the answer circled).

Mathematical Knowledge for Teaching Algebra. In the teaching simulation I de-

signed for this study, participants are asked to imagine they are substituting for a 6th

grade mathematics teacher during a lesson on using fact families to solve equations

with one unknown. This mathematical content lies in early Algebra so I used a se-

lection of Mathematical Knowledge for Teaching (MKT) items around this content.

Since there are no instruments intended to assess MKT in this specific domain of Al-

gebra, I pulled together a set of 12 items from three different MKT instruments: (1)

the Learning Mathematics for Teaching Project (LMT) instrument on Middle School

Patterns, Functions, and Algebra Content Knowledge (University of Michigan), (2)

the Content Knowledge for Teaching: Algebra 1 Assessment (Phelps, Gitmore, 2012),
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and (3) the Teacher Education Study in Mathematics (TEDS-M): released items from

the Future Teacher Mathematics Content Knowledge (MCT) and Mathematics Ped-

agogical Content Knowledge (MPCK) Secondary (2011). Using the scoring rubrics

provided by each instrument developer, each item was scored accordingly. Though

for the full LMT instrument weights for each item are suggested, these were not

used in the final scoring since only a sub-set of the LMT items were used. In other

words, using the weights determined on the full set of items on a sub-set of items

is not appropriate. A simple sum score was used as a proxy for participant’s MKT.

Participants could obtain a score between 0 and 30 on the set of MKT items I used.

Beliefs about teaching and learning mathematics. In order to assess participants’

beliefs about teaching and learning mathematics, I used the survey instrument de-

veloped by MacGyvers, Stipek, Salmon Bogard (1993) and used in used in Stipek

et al. (2001). After an initial review of the literature, used in Stipek et al. (2001)

created a total of 57 items covering seven different beliefs domains (e.g.“Math as a

set of operations versus a tool for thought”,“Correct answers versus understanding

as primary goal”). For each of these items, participants are asked to indicate the

degree (1=“strongly agree” to 6 = “strongly disagree”) to which they agree with

the statement. Since the original instrument was only used with a small sample (24

teachers), I ran some reliability statistics on the data I obtained with the 26 teachers

who completed this instrument to narrow the original 57 items to an appropriate,

statistically reliable subset.

This resulted in a final list of 32 items from the original survey that grouped into

two categories similar to those used in used in Stipek et al. (2001). Beliefs category 1

comprises 26 items and includes teacher’s beliefs about“Math as a tool”, “Extrinsic

versus intrinsic motivation”, “Teacher Control”, and“Correct Answers.” In Beliefs

category 1, scores range from 26 to 156 and a lower score indicates more productive

beliefs about mathematics learning and teaching. Beliefs category 1 had a Cronbach’s
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alpha of 0.861 and an average inter-item correlation of 0.188. Beliefs category 2

included 6 items on participants’ enjoyment of and confidence in mathematics. In this

category scores can range from 6 to 36 and a higher score indicates higher confidence

in mathematics teaching and enjoyment of math. For this sample, Beliefs category 2

has a Cronbach’s alpha of 0.740 and an average inter-item correlation of 0.378.

Teaching Simulation.

As part of a larger study exploring how mathematics teachers manage students’

responses, I designed, piloted and used an interactive-video based teaching simula-

tion. The teaching simulation takes place in a lab setting where participants sit at a

desk and go through the teaching simulation on a laptop computer (see Figure 4.2 for

a picture of the set-up). The experimenter (myself in this case) sits next to the par-

ticipant and monitors their progression through the teaching simulation, intervening

with additional information and feedback as indicated in a protocol script. In terms

of the mechanics, the teaching simulation is essentially a collection of slides that par-

ticipants click through with a computer mouse and videos of student responses that

they can view only once.
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Figure 4.2: Teaching simulation set-up in lab space.

Teaching simulation: Overview. Here I present an overview of the teaching sim-

ulation and details of the student responses that are the basis of the analysis in this

paper. Figure 4.3 below shows an overview of the contents of the simulation. To

ensure consistency in the information presented and questions posed to participants,

I used a simulation protocol script and checklist.
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Figure 4.3: Overview of teaching simulation.

With regard to the content, the teaching simulation begins with a short, three

slide overview that presents participants with general information about the context

of the simulation (responding to students) and what they will be ask to do (read,

think-aloud, respond) in addition to explaining why baseline and break clips are built

into the simulation (to provide rest periods for the physiological data that was also

collected during the teaching simulation but reviewed elsewhere). After viewing the

baseline clip, participants go through a series of slides that explain the structure and

content of the Student Response Sequences (SRSs) that comprise the core of the

teaching simulation. The teaching simulation includes four SRSs (three of which are

analyzed in this paper).

Each SRS begins with some instructional context including information about

what problem students are working on and images of relevant board work. After

the instructional context, participants see a slide with a question that they are to

imagine they have posed to students. During the SRS participants can go through

the context and question slides at their own pace. When they are ready to move

past the question slide and click the mouse, a video of the student responding to the

question immediately begins to play. The videos of the student responses used in the
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SRSs come from an actual 6th-grade mathematics class and are taken from a first-

person perspective (using Tobii eye-tracking glasses) from the front of the classroom.

This makes the viewing of the video seem more like what one might see as the teacher

of the class. They also include subtitles on the bottom left of the video in case, for

some reason, participants have difficulty hearing the student, although the sound

quality is good. During a practice clip, I also confirm with the participant that the

volume is adequate and adjust it for them as needed.

Once the student is done talking, the simulation automatically transitions to a

slide prompting them to self-assess their emotional reactions to the student response

using a paper-and-pencil version of the Self-Assessment-Manikin (SAM) (Bradley

& Lang, 1994). Participants have a total of 15 seconds to fill these out. The 15

seconds consists of the prompt slide (which is displayed for five seconds) and a ten-

second, countdown video. After the ten-second, countdown video ends, the simulation

automatically transitions to a slide prompting participants to respond to the student.

Participants are given a maximum of 90 seconds (a minute and a half) to respond. In

earlier piloting of the simulation, this was found to be more than enough time since

I am asking participants to provide only their initial response to the student. The

organization of the SRS and the time constraints imposed for responding are similar to

some of the design considerations Lindmeier (2011) and Knievel, Lindmeier, Heinze

(2015) advocate to explore action-related competence.

After participants have gone through these detailed instructions about the SRSs

and we discuss the SAM scales, they are given a practice student response sequence.

This provides them with an opportunity to get a sense for the flow and speed of the

various components of the SRS, to ask any final questions and for me to redirect

them if they talk to me rather than speaking to the student when they respond.

After a quick break, participants are told that they are being asked to imagine they

are substituting for a colleague’s 6th-grade mathematics class towards the end of
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the school year during a lesson on using fact-families to find unknowns. They are

then given the lesson materials to review (Connect Mathematics Program lesson 4.4

“Finding the Unknown Value: Solving Equations I” version 4, 2011) after which they

go through the four SRSs.

Teaching simulation: Student response sequences. Figures 4.4 and 4.5 provides a

summary of the instructional contexts, the teacher questions and student responses

for Clips 1, 2 and 4 that are the focus of this paper.

In SRS Clip 1 the student notices that numbers in the facts of the fact families

for multiplication and division are “rotating around in a circle.” Though there is

some imprecision in the student’s language, she is noticing something visually that is

indicative of underlying mathematical properties (e.g., the commutative property of

multiplication, that 3*4=4*3, that division is the inverse operation to multiplication,

that when a number is divided by one factor the result is the remaining factor, so

that 12/3 =4 and 12/4 = 3). Hence, her response is mostly correct.

In SRS Clip 2 the student provides their answer to the following problem:

On the Ocean Bike Tour test run, Sidney stopped the van at a gas station

that advertised 25 cents per gallon off on Tuesdays. 1. Write the function

that shows how to calculate the Tuesday discount price per gallon d from

the price on other days p. (Connected Math Curriculum)

The correct answer to this problem is that d (the discounted price per gallon) is

equal to p (the normal price per gallon) minus 0.25 (dollars per gallon). The student’s

solution can be summarized as follows:

d is the discounted price, p is normal price, and g is gallons,

therefore d = p -0.25*g, which means you get 25 cents off for every gallon

There is some ambiguity on the exact definition of the student’s variables though

it can be inferred that they mean these to be total prices (rather than price per gallon)
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Figure 4.4: Summary of SRSs Clips 1, and 2: instructional context, teacher question
and student response.
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Figure 4.5: Summary of SRSs Clip 4: instructional context, teacher question and
student response.
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because of the way the student explains what their equation represents. Given their

definition of the variables, the student solution is actually correct. However, the

student response does not answer the question posed in the problem. The core issue

stems from how the variables d and p are being defined. If they represent total price

then one does, indeed, need to know the number of gallons (g) in order to calculate

the total discount price from the total normal price. If, as the problem intends, the

prices are unit prices (price per gallon) then there is no need for the number of gallons

(g) to calculate the total discount price from the total normal price. In Clip 4 the

student is providing an alternative response to a problem 4 that is already on the

board. The board work is as follows:

14 ÷m = 74

m = decimal

14 ÷m = 74

14 ÷ 74 = 0.189

The student proposes that, “the answer is one thousand thirty six because one

thousand thirty-six divided by fourteen...” [equals 74]. Again, like in Clip 2, the stu-

dent answer is not completely incorrect. Based on the end of the student’s response,

it appears that the student is actually solving a different problem, one in which m is

divided by 14 rather than 14 divided by m. The core issue becomes understanding

what the student did to get from the original problem 14 ÷m = 74 to the problem

they are solving m÷ 14 = 74.

Teaching simulation: Self-assessment manikin. To capture participants’ self-

assessed emotional reaction to the student response, immediately after the student

response clip ended a screen prompted participants to circle the SAM scales (see Fig-

ure 4.6 below). During the simulation overview, when I discussed the SAM scales

with participants, participants were provided paper versions of this screen (one paper

for each of the six times they were asked to do this during the simulation). In or-
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der to capture participants’ reactions as authentically as possible, participants were

given a total of 15 seconds to circle their ratings for the three scales. This short

amount of time is enough to complete the task but provides little time to overanalyze

or over-think their emotional response. Hence, these ratings are likely to be more

representative of participants’ authentic immediate reactions to the student response

clip.

The self-assessment manikin (Lang, 1980) provides a quick and easy method to

capture participants’ assessment of their emotional state along three dimensions: va-

lence or pleasure (happy to unhappy), arousal (excited to calm) and dominance or

agency (out-of-control to in-control). Though the original instrument does not in-

clude any text, language was added to provide an anchoring for each of the extremes

of the three scales.

Figure 4.6: Screen prompting participants to fill out the SAM scales.
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Data Analysis

Scoring of measures of internal resources and SAM.

The four paper-and-pencil instruments discussed above (STAI, Teaching Anxiety,

MKT and Beliefs) were scored as described in the previous section but I summarize

here those processes. In the STAI instrument each item received a score of 1 to 4,

where some items are reverse coded, and the final score is a simple sum of the scores

for individual items. For both state and trait anxiety final scores can range from 20

(low) to 80 (high). In the teaching anxiety instrument all items were answered on

the same 6-point Likert scale and again, after appropriate items were reverse coded,

a simple sum of individual item scores was computed. Scores on the teaching anxiety

instrument can range from 46 to a maximum is 276. For the MKT items, these were

scored based on the answer keys provided by the instrument developers. Since weights

for items were not available, a simple binary system (1-point for each right answer

and 0-points for each wrong answer) was used and, again a sum of individual item

scores was used. For this instrument scores can range from 0 to 30.

The final beliefs instrument contained two categories of items. These categories

were defined based on the factor analysis of Stipek et al. (2001) and the individ-

ual items within each category were determine through iterative decisions aimed at

achieving acceptable internal consistency. Beliefs category 1 is comprised of a final

list of 26 items on teacher’s beliefs about“Math as a tool”, “Extrinsic versus intrinsic

motivation”, “Teacher Control”, and“Correct Answers.” Beliefs category 2 included

six items on participants’ enjoyment of and confidence in mathematics, where higher

agreement meant more enjoyment and confidence. All items on the beliefs instru-

ment (and hence for beliefs category 1 and 2) were answered on the same 6-point

Likert scale and a simple sum was used to calculate totals for Beliefs category 1 and

category 2. In Beliefs category 1, scores range from 26 to 156 and a lower score pos-
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sibly indicates more productive beliefs about mathematics learning and teaching. In

Beliefs category 2 scores can range from 6 to 36 and a higher score indicates higher

confidence in mathematics teaching and enjoyment of math.

With the SAM scale participant’s score for each of the three dimensions was

recorded for each student response clip. In order to explore relationships that might

exist across clips an average was computed for each of the three dimensions. For

example, average valence score for a participant was obtained as follows:

(Clip1 valence + Clip2 valence + Clip3 valence) / 3.

Coding and quantification of teacher responses.

In this study, I am interested in exploring the relationships between a teacher’s

initial response to student and their emotional reaction to that student answer, as

well as various internal resources the teacher might have at her disposal. The choice

to examine a teacher’s initial response to a student is, in part, a consequence of the

design of the teaching simulation (the student in the simulation cannot respond to the

teacher). Additionally, though a teacher’s initial response is only a thin slice of their

instruction and is not necessarily representative of their overall practice, it can be

argued that the ways in which a teacher starts an interaction with a student idea can

immediately either open or close the conversation that follows. If this initial response

shuts down or narrows the focus of conversation immediately, the interaction that

follows has less potential to engage students in meaningful mathematical conversation.

On the other hand, an initial response that is more open-ended (though it might

not necessarily stay that way as the conversation unfolds) provides greater potential

for the interaction to be responsive to student thinking and to engage the class in

conversation. In other words, though a teacher’s initial response provides only a

glimpse into how they might manage student thinking, it is a crucial first-move for

the teacher and important insight can be gained by examining the way in which
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teachers chose to begin their interaction around student thinking.

Step 1: identifying the initial teacher response and qualitative coding. After tran-

scribing the 72 teacher responses (24 teachers and three student clips) , I identified

the initial teacher responses. I define a teacher’s initial response as their first, full

turn of talk that starts when the teacher begins to speak and ends either when the

teacher stops talking or there are indications that they would let students take a turn

of talk. In some cases, teachers responded with more than just their initial response

so I looked for indications in the video for the end of their initial response (e.g., look-

ing for wait times of more than a few seconds) or lexical clues in their full response.

For example in response to SRS Clip 2 about finding the discounted price per gallon,

participant id07 responded with,

Okay Paul, so can you read the problem out loud to me again, cause I

want to talk about let’s start with the variables that you chose. okay, you

had uhhmm g for gallons, d for discounted uhhhmmmm price, so I want to

talk about the variables first, does anybody else have different ideas for the

variables, what variables we maybe can use from the problem now that’s

he’s read it out loud again...uhh. it says discounted...so, I want people to

raise their hand if they have an idea of what operation discounted could

mean

It is clear that the teacher’s initial response is to ask the student read the problem

out loud, after which the teacher would follow-up by asking other students in the class

about the variables. Using the pause in speech and the lexical clues that indicate the

student has read the problem, I defined this teacher’s initial response as follows:

Okay Paul, so can you read the problem out loud to me again, cause I

want to talk about let’s start with the variables that you chose. okay, you

had uhhmm g for gallons, d for discounted uhhhmmmm price, so I want

to talk about the variables first
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Once I had identified and catalogued the initial teacher responses I qualitatively

coded the response using the Teacher Response Coding scheme (TRC) (Peterson,

Van Zoest, Rouge, Freeburn, Stockero, Leatham, 2017 accepted PME proposal).

The TRC was developed to provide a descriptive way to capture multiple features of

teachers’ responses that have been identified in the literature as important for effective

mathematics discussion. Specifically, it contains 4 coding categories: actor (identi-

fying who is publically being asked to consider the student thinking), move (which

captures “what the actor is doing or being asked to do with respect to the instance

of student thinking”), recognition (the extent to which the student might recognize

their response in the teacher’s response through the take-up of the student’s language

and main ideas), and mathematics (the alignment between the mathematics towards

which the teacher response seems to be headed and its relation to the mathematics

central to the student’s idea). These categories and codes, including additions that I

made to the coding scheme, are described in greater detail below in the section that

details how these codes were quantified (as well as being described in the previous

Dissertation Paper). In this study, the unit of analysis was the entire, initial teacher

response. Hence, each teacher response received an actor, move, recognition- student

actions, recognition- student ideas, and mathematics code.

To establish some validity in the coding 19 out of the 72 ( 26% of the data) re-

sponses were coded by two other researchers. Both researchers had been previously

involved (as was I) with the development of the coding scheme and had prior ex-

perience applying the TRC codes to teacher responses from classroom videos and

interview scenarios. Each researcher independently coded 10 teacher responses (cho-

sen at random from across Clip 1, Clip 2 and Clip 4) for all categories of the TRC.

All but one of the teacher responses assigned to the external researchers were unique,

hence a final count of 19 rather than 20 teacher responses. After the researchers

and I had independently coded the assigned teacher responses, I met with each one
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individually to discuss our coding. During these meetings, the researcher and I would

discuss the coding that differed and discuss the instance untill agreement was reached.

Hence, after these meetings I had 100% agreement with the researchers for all TRC

codes for the 19 teacher responses. After these meeting, I re-coded the remaining 53

teacher responses based on the agreements and understanding reached through those

discussions.

Step 2: quantifying the qualitative coding. In this study, I am interested in ex-

ploring the relationship between the characteristics of a teacher’s response and their

emotional reactions to a student answer, as well as to their various internal resources.

Though there are several ways in which one could go about exploring these rela-

tionships, I chose to quantify the qualitative TRC coding and look for correlations

between the quantified TRC scores and the various factors of interest (e.g. SAM scale

valence rating, MKT score, etc.). There are a few reasons (conceptual and practical)

for this choice.

Though one option could have been to simply create box plots in which I com-

pared, for example, the MKT score distribution for each of the three actor coding

categories (same student, teacher, whole class) this would provide answers for a series

of different research questions (such as “Are there differences in the means or distribu-

tions of MKT scores between teachers who provide responses where the same student

is the actor versus teachers with responses coded whole class versus teachers with

responses coded teacher?”). Additionally, since I am interested in many variables

(eight internal resources measures, three emotional scales, across three clips) looking

across correlation tables versus a large numbers of box plots provides a more accurate

and efficient way to look for trends in relationships. Further, (and I elaborate on

this in what follows) there are arguments that can be made, based on the literature,

that (under particular classroom conditions) certain codes represent more productive

choices (ones that have more potential to led to student learning) than other codes.
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For example, given the same student response in the same instructional context it

might be possible to make a case for why it would be better for a teacher response

to go back to the same student rather than open the conversation to the whole class

at that moment. In what follows, I explain the values I assigned to each code and

why those values were chosen (by both considering the other codes within a coding

category and thinking across all five categories in relation to one another).

In addition, this quantification provides a mean to assign an aggregate, overall

score to each teacher response so that trends across all three student response clips

can be explored. Since the TRC was originally intended to provide a way to describe,

rather than evaluate, teacher responses, I made some minor additions to the codes

(described below) to capture the nuances in teachers’ responses that made them more

or less productive.

To check that the final results were not simply a product of this quantification

process and idiosyncratic to this model but rather indicative of existing relationships,

I also explored the results for a different model, which used a binary coding process

(e.g., for the actor category instead of 5 points for same student, 3 point for whole

class and 0 points for teacher, the same student and whole class were assigned a 1 and

teacher was assigned a 0). Overall, the results for both of these different models were

almost identical (see Appendix A for a comparison of the coefficients and p-values and

Appendix B discussion of the rare differences). In the only case where an important

difference did occur (for Clip 2 word count and clip 2 moves scores), when I explored

this relationship further it seemed to be the result of outliers in the data rather than

the quantification process.

In order to make judgments about the value of different codes within each category

and sub-category of the TRC, I drew from the ideas that informed the TRC (about

responsiveness, teacher moves, and productive discourse in general) and used the

details of the context and content of the student’s response to make decisions about
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what might be more or less productive for a given student response. Additionally, I

sorted the responses to each of the three SRS from what had the potential to be the

most productive to the least productive teacher responses. This qualitative ranking

served two purposes. First, it provided me with a sense for which characteristics’

of teacher responses might be weighed more in quantifying the teacher responses.

Second, comparing this qualitative ranking with the quantitative ranking served as

a way to verify that the quantification of the teacher responses accurately captured

and weighed the underlying characteristics of the responses appropriately.

In assigning numerical values for each code, I considered both the code’s value

in comparison to other codes in the same category (e.g. an explicit code for student

actions is more productive, hence scores higher than a not code for student actions)

and how the category of codes might be more or less productive in comparison with

other categories of codes (e.g., who the actor is in a TR seemed to influence the

productivity of a TR more than the extend to which the TR picks up the student

actions). Below, I discuss for each coding category the ways in which numerical values

were assigned to codes.

Actor

To quantify the actor codes, the first question I considered was whether or not the

student had provided enough information within their response for a teacher to rea-

sonable open the student idea up to the class. If the student had not provided enough

information, it would be more productive for the teacher to go back to the same stu-

dent and follow-up the student’s idea in some way. Overall, I assigned numerical

codes for the actor based on the underlying assumption that getting the student or

students to engage in the intellectual work is generally more productive for student

learning than if the teacher is the only actor engaging in the intellectual work.

In general, in all three clips (Clip1, 2, and 4) there was a level of ambiguity in

the students’ responses that made it viable (though not crucial) for the teacher to go
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back to the same student but did not preclude the response from being considering in

some capacity by other students in the class. For example, in Clip 1, the student uses

the terms “rotate” and “in a circle” which are not mathematically precise and a little

ambiguous. Though she grounds this in concrete examples (“...the multiplication...so

like the 4 goes where the 3 was and then the 3” and “when it goes ...multiplication

to division...the 12 goes where the 4 was and the 4 goes to the 3 and then the 3

goes to the answer”), even these concrete examples are a little unclear. Hence, it is

viable that going back to the same student for some kind of information can be more

productive than either having the teacher be the only actor considering the student

ideas (which likely requires the teacher to make some important inferences about

what the student says) or engaging other students just yet in the conversation about

the student response.

Similarly, in Clip 2 the student provides a response that is also somewhat ambigu-

ous but contains enough information that some reasonable inferences might be made.

In their response, the student has provided a definition of their variables as well as a

complete equation (d= p- 0.25g), including providing a brief explanation about what

the equation means (“you get 25 cents off for every gallon so p is normal price and

then you would minus the 25 times the gallons to get the difference”). Though the

student’s explanation seems to indicate they have defined the variables as total prices

rather than unit prices, there is ambiguity in the initial definition they provide of

their variables (“discounted price” and “normal price”). In this case, it is reasonable

to go back to the same student for more information about the variables though, as

in Clip 1, there is enough information available to ask other students to engage in

some way with the student thinking. In Clip 4, like in Clip 2, the student provides

more clarity than in Clip 1 but leaves some ambiguity because they do not complete

their final thought (“because one thousand thirty-six divided by fourteen...”). Ad-

ditionally, it is not clear why the student seems to be solving the problem m/14 =
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74 rather than 14/m = 74. Again, it is reasonable to go back to the same student

for more information or to engage other students with some aspect of the student

thinking. Hence, for teacher responses to Clip 1, 2 and 4 the actor codes were scored

as followed:

Same Student = 5, Other student/Whole class= 3, Teacher = 0.

Recognition: Student actions and student ideas.

The code recognition captures the extent to which the student might recognize their

response in the teacher’s response through two sub-categories of codes: (1) through

the take-up of the student’s language (student actions) and (2) through the take-up

of the student’s ideas (student ideas).

Student actions can be an important or superficial way for teachers to pick up on

what students have said. On the one hand, using the student’s language, work or

gestures (their actions) might reasonably increase the probability that the teacher’s

response is closer to the student’s ideas. On the other hand, it is possible that a

teacher response picks-up the student’s actions without attending to the student’s

underlying idea. Hence, both of these categories are important for gauging the re-

sponsiveness of a teacher’s response.

In the TRC the codes for this category include: explicit, implicit, not. In general,

a student is more likely to recognize that their idea is the focus of conversation

of a teacher explicitly uses the student’s language. Therefore, from most to least

productive the codes for student actions are explicit, implicit, not.

Additionally, in clip 2 and clip 4, I wanted to capture instances where teacher

responses attempted to explicitly use the student’s actions but did so incorrectly (e.g.,

saying “you got 1076” rather than 1036 in response to Clip 4). Hence, I added the

code explicit-incorrect and considered this to be problematic for a teacher response

to do since it can possibly evoke confusion about what is being discussed.

After deciding on a general order of productiveness within this category (from
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most to least:explicit, implicit, not, explicit-incorrect, I considered where this category

might stand with respect to the other four TRC categories. As I mentioned before,

student actions, as opposed to student ideas could be a superficial way for teachers to

pick up a student’s idea. Hence, the final scores in this category are, in general, worth

less than in student ideas. This category is also less important for student learning

than.actor, moves or mathematics.

Further, I determined that attention to student actions should carry the same

weight in all three clips since, in all three clips, it is ideal for a teacher to pick up a

student’s language correctly. The instructional contexts across the clips do not seem

to suggest than in one case, versus another, it would be more prodcuive for a teacher

to not use a student’s words, for example. Hence, for teacher responses to Clips 1,

2 and 4 the student action codes were scored as followed: explicit = 2, implicit = 1,

not = 0, explicit-incorrect = -1.

The sub-category student ideas is a more meaningful way for teachers to attend

to what a student has said. The codes in this category capture the extent to which

a student would recognize their main idea as the one being taken-up in the teacher’s

response and include the codes: core, peripheral, cannot infer, other, and not appli-

cable. Again, across all three student clips it is more productive for teachers to pick

up on the student’s main idea and hence, the order in which I have just represented

these codes, is the order in which I ranked them within this category.

When comparing this category with the other four TRC categories, I had (as

mentioned above) pointed out that student ideas rather than student actions is a more

important means to take-up a student’s answer. With respect to the other categories,

the choice of move and mathematics are both more important than student ideas.

For example, a teacher response that picks up a student’s main idea but engages

students in low-level cognitive work (such as answer a simple, factual question) or

steers them into unrelated mathematical content is more problematic and hence less
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productive than a teacher that, for example, is a little vague (and is coded cannot

infer for student ideas) but engages students in higher-level intellectual work (such

as justifying) in the relevant mathematical terrain. With regard to student ideas in

comparison with the actor category, I consider these two categories to be related in

their conceptual purposes (to engage students) and hence consider these on par with

each other. This resulted in the following quantification of the student ideas codes for

teacher responses to Clip 1, 2 and 4, the student ideas codes were scored as followed:

core = 5, peripheral = 3, cannot infer = 0, other = -2 and not applicable = -4.

Moves

After having coded the moves across all three clips, the final list included 14 moves.

These were ranked and scored based on which moves have the most potential to

engage the actor in more cognitively demanding work. For example, asking a student

to justify some mathematical idea is more intellectually demanding work than simply

asking them to repeat their answer. This, as I mentioned above, is more crucial than

student ideas or student actions.

With regard to this category versus the actor category, I would contend that it is

more productive for the teacher response to only engage the teacher in justifying some

mathematical idea than to engage the whole class in simply validating the student

answer. However, one might suggest that regardless of teh move, a teacher response

is most productive when it engages an actor other than the teacher. Additionally, the

productivity of an individual move however, is highly contingent upon the mathemat-

ical ideas that are the focus of the move. Hence, though the move is an important

factor in determining whether one teacher response is more or less productive than

another, I did not want these scores to mask issues that might be present with re-

gard to who was being asked to engage in the work ( the actor codes) and the type of

mathematics that is being pursued (the mathematics code. Thus, the highest score in

this category is much higher than in the student actions and student ideas categories
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but not much higher than in the actor or mathematics categories. The final scoring

was as follows:

justify, or allow = 6, elaborate, collect, or connect = 5, clarify or monitor = 4, repeat

= 3, evaluate = 2, literal = 1, validate = 0, adapt = -2, correct = -4, and dismiss =

-4.

Mathematics

This category captures the alignment between the mathematics towards which the

teacher response seems to be headed and its relation to the mathematics point (MP)

underlying the students idea (see Leatham et al., 2015 for additional details about

the mathematical point as it is being used in this context). The original TRC has

the following codes in this category: core, peripheral, other, cannot infer (CNI),

and non-mathematical. Additionally, the tag “-incorrect” can be added to the code

other when the TR seems to be going towards incorrect mathematics (I extend this

tag to use with the code peripheral). When more than one mathematical point

underlies the students idea the tag “-MP1”, “-MP2” and so forth can be added

to any of the main codes to further specify what mathematics a teacher response

could be headed towards. In qualitatively sorting the TRs in this sample I noticed

a few nuances that the coding scheme did not seem to capture for me so I added 5

codes in this category: CNI-core, CNI-Imprecise, peripheral-beyond, and peripheral-

incorrect. Below, provide more details about the 11 codes that emerged in this data

set. When an MU cannot be articulated: “Cannot infer” code variations. In order to

determine the alignment between the mathematics in the TR and the mathematical

point underlying the students idea, the TRC necessitates that one articulate, to some

extent, the mathematics in the TR (also know as the mathematical understanding or

MU underlying the teachers response). When the TR is mathematical but too vague

to be able to reasonably articulate the MU (which often happens), then mathematics

is coded as cannot infer or CNI. In coding the TR in this sample, I noticed that there
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appeared to be three variations within TR that were coded CNI: TR that were vague

and open but clear, TR that were confusing or imprecise and TR that were vague

but contained indications that the TR had potential to the mathematics central to

the students idea.

TR that were simply vague or open (e.g., “Okay, so we just had a different...uhhmmm

possible solution. So let’s talk about that. So you said that the answer was one thou-

sand thirty-six, so how did you get that answer?”- id20) were coded CNI. In some TRs

the MU could not be articulated because the TR was confusing and/or used imprecise

language. This often occurred when the TR used pronouns such as “it” or “that” in

critical places where precision and specificity were crucial to understanding what idea

was being considered. Since, even when using contextual information, the meaning

of the pronouns could not be sufficiently deciphered the MU of the responses could

not be accurately inferred. These types of responses were coded as CNI-Imprecise.

In other cases, the TR was vague but contained some clues that seemed to indicate

that the mathematical terrain was being narrowed towards the mathematical point

underlying the students idea. For example, in response to the final SRS, participant

id09 responded, “So, since we’re talking about setting up equations and expressions,

if you think that the answer is a hundred and thirty-six what was the equation

that you set-up to get that answer?” Though it is unclear exactly what mathematical

understanding the teacher is going towards, there is some indication that this response

is honing in on the core issue presented by the student response. Namely, that the

student seems to be solving a different problem. These TR were coded CNI-core to

indicate that, even though the response was vague and a precise MU could not be

articulated, the responses contained evidence that the TR could be headed towards

the mathematics central to the students idea.

When an MU can be articulated. When an MU can be reasonably articulated,

it can then be compared to the mathematical point underlying the students idea.
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The alignment can then be described as: core, peripheral, or other. The code core

is assigned when the MU in the TRs is clearly going to words the mathematical

point underlying the students idea (this typically occurs when the TR is very explicit

about the mathematics). In student responses that could have contained more than

one mathematical point (MP), I specified which MP the TR was core to (e.g., with the

code core-MP1). When the MU is still related but not core to the mathematical point

underlying the students idea, it is coded peripheral. An example of this is the TR from

participant id02 to Clip 2 that hones in on the connection between the operations

but extends it to addition and subtraction. So though this TR is related to what

the student has said, it is broader and hence veering into peripheral mathematics.

TRs that were coded as peripheral-incorrect were mathematically related to what the

student has said but incorrect. An example of this would be an MU that has students

focus on just correcting the inclusion of g in response to Clip 2.

Though this will superficially fix the issue of the extra variable in the students

equation and is hence, peripherally related to what the student has said, it incorrectly

addresses the mathematical issue at stake. The core mathematical issue is about the

definition of the variables (total prices versus unit prices) and the direct implications

these definitions have for the equation created. In some cases, TRs started peripheral

to the MP but veered into mathematical content that was likely beyond the level

of 6th graders (e.g., talking about inverse operations or solving equations with two-

steps). Essentially, these responses were related to the MP underlying the students

idea but were mathematically beyond what is likely appropriate for that grade level.

Hence, I characterized these types of responses as peripheral-beyond and added this

code to the TRC.

When the MU in the TR did not seem to be related in anyway to what the

mathematical point underlying the students idea, the TR mathematics was coded as

other. If the MU was not related and also appeared to be incorrect, the TR was
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coded other-incorrect. Finally, if the MU in a TR is not mathematical (e.g., they are

attending to classroom management or behavioral issues) then the TR is coded as

non-mathematical.

In considering how to assign numerical values to these 11 codes, I first grouped

the codes into two broad categories: codes that seem to indicate that not all the

intellectual work has been done in the teacher response and codes that seem to indi-

cate that most of the intellectual work has been done in the teacher response. The

former group included the codes CNI-Core and CNI, and the latter group included

the remaining 9 codes (Core- MP, Core, Peripheral, Peripheral- beyond, Peripheral-

Incorrect, CNI-Imprecise, Other, Other-incorrect, Non-Mathematical). Next, I looked

at within category and ranked the codes from those with the most potential to be

productive for student learning to those with the least potential to be productive.

Recall that the codes CNI and CNI-core apply when a teacher response is mathe-

matical but vague. The main difference between these codes is that teacher responses

with some indication that the mathematics could be headed into ideas that are core

to the underlying MP of the students response are coded CNI-Core. Hence, I ranked

CNI-Core as more productive than CNI. The second broad category contained the

remaining 9 codes that all indicate that most of the intellectual work has been done in

the teacher response. As a first pass in ranking these, I decided that a teacher response

that receives one of these codes would be more productive if the MU is closer to the

underlying MP of the students response. This led to ranking the Core-MP and Core

codes above the three peripheral codes (Peripheral, Peripheral- beyond, Peripheral-

Incorrect) that were ranked above the Other, Other-incorrect, and non-mathematical

codes. The only remaining code to rank in this group was CNI-imprecise, which is

used when TR are mathematical but vague in a way that is unclear or confusing

because of imprecision in the language in the TR.

I reasoned that teacher responses that received this code had the potential to be
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more productive than TRs coded as Peripheral-beyond, that veer into correct math-

ematical terrain that is beyond and hence likely inappropriate for 6th graders. In

qualitatively contrasting TRs coded as Peripheral versus CNI-imprecise I concluded

that TRs with either code did not have significantly different potentials to be produc-

tive for student learning and assigned them the same value. I chose to assign positive

values to the codes that seem to indicate not all the intellectual work has been done

in the initial teacher response and negative values to the 9 codes in the other grouping

since these, overall, are likely less productive for student learning. The final ranking

and scoring of all 11 mathematics codes is as follows:

CNI-Core = 4, CNI = 2, Core-MP1 = -1, Core = -2, Peripheral = -3, CNI-Imprecise

= -3, Peripheral-beyond = -4, Peripheral-incorrect = -5, Other = -6, Other-incorrect

= -7, and Non-math = -8.

Problematic inaccuracy in language.

In line with the issues in teachers’ language that I seen in teachers’ responses to Clip

4, I noticed a related issue regarding precision in language in Clip 2. Specifically,

even though the core mathematical issue at stake in the student’s responses in Clip

2 is the definition of the variables as total prices versus price per gallon, there were

many teacher responses that were imprecise or incorrect in the units they used. For

example, even as their responses seemed to be pointing out that the student’s units

were incorrect, many of the teachers’ responses themselves were fraught with imprecise

language around units (issues are italicized), “...but then what if I just had the price

is two dollars and fifty cents, is that going to matter how many gallons I buy...”—id03.

In responding to Clip 2 precision with units is crucially important. Hence, when a

teacher response used incorrect units (as in the TR of participant id03), I assigned

a penalty of 2 points to the overall TRC score (i.e., every teacher response to Clip 2

received either a 0 or −2 for language imprecision).

Word count Another aspect of teacher responses that I chose to explore was word
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count. In general, I hypothesized that it is likely that teachers who do less speaking

are more likely to be leaving space for students to do the intellectual work. Though

this suggests that some of the five TRC categories might be correlated with word

count, it is potentially capturing a different aspect of teachers responses and therefore

worth investigating separately. When individuals are nervous or anxious, it is likely

that they speak more (and faster) though this effect might be mitigated by various

internal resources they might have or their emotional state. Therefore, I looked to

see how teachers’ emotional reactions and internal resources might also be associated

with word count.

Results

As discussed in the introduction, there is significant research on the character-

istics of skilled and competent mathematics teachers. Skilled mathematics teachers

have a litany of internal resources including specialized mathematical knowledge for

teaching, productive beliefs about teaching and learning mathematics, and produc-

tive motivational and affective traits such as self-regulation and self-efficacy. Though

these various lines of research have provided crucial insights about the resources of

skilled mathematics teachers, it is typical that these various resources are explored in

isolation from each other and in settings that are typically inauthentic and therefore

lose fidelity to real classroom instruction. This study takes a step towards address-

ing both a need to look at various teacher characteristics, including their affective

reactions in-the-moment, in conjunction as they relate to the competency of man-

aging students’ responses and by using methods that maintain some fidelity to the

constraints of actual classroom instruction. In this section I discuss the results to the

two research questions explored in this paper:

1. Are participants’ self-assessed emotional reactions to the student responses re-

lated to characteristics of their responses?
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2. Are participants’ individual characteristics (predictor variables) related to char-

acteristics of their responses to students?

Before delving into each of these research questions, I first provide a brief de-

scription of how teachers responded overall and across each individual clip to provide

some context for the results that follow. After these brief descriptions (more de-

tails can be found in Paper 2), I explore each research question in turn and begin

the results to those questions by presenting some descriptive information about the

predictor variables explored here, namely the SAM scores used to capture teachers’

emotional reaction and the various measures of their internal resources (e.g., state

anxiety, MKT, etc.). I then turn my attention to answering the two research ques-

tions through a multi-level exploration of the results. By multi-level, I mean that I

start my exploration to each research question by looking at the level of the average

teacher responses, across all three clips. I then explore whether there are distinctions

between relationships at the level of apparently correct and incorrect by looking at

each of the three student response clips. Finally, I look within each of the three

student response clips to unpack the nuances.

In general, I found very few relationships that were significant at the p< 0.05

level, likely to due to the small sample size (24) of this study. Since this study

is underpowered, in this paper I report on correlations with values greater than or

equal to 0.250 as being “weak” associations, despite being non-significant.

Brief Description: How did teachers respond?

In this sample, the average aggregate TRC score across all three student responses

ranged from −2.67 to 19.33, with a mean of 8. As can be seen in Table 4.1, below,

this average aggregate score is, unsurprisingly, positively and strongly correlated with

the average score for each of the five, individual TRC categories, with the exception

of average student actions score (p = 0.302). The non-significant correlation between
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average aggregate TRC score and average student actions score suggests that there

is not a relationship between these two variables or that the average aggregate TRC

score does not reflect the student actions scores. Overall, however, the remaining

correlations suggest that the average aggregate TRC score is reasonably reflective of

the underlying characteristics of the teacher’s responses (as captured by the TRC).

Which suggests it is meaningful to say that a higher average aggregate TRC score

has higher scoring characteristics for each of the five individual TRC categories.

Using the mode for each category as well as the distribution of codes within each

clip (from Appendix C), the most frequently occurring average teacher response had

the following characteristics:

• An actor score of 5 (indicating the same student was the actor in the response),

• A move score of 2 (which, considering the distributions of moves across the 3

clips, can’t be described meaningfully but rather indicates that even if teachers

had lower scoring moves in some of their responses, they had higher ones in

other responses),

• A student actions score of 2 (indicating is explicitly used a student’s language)

• A student ideas score of 4.33 (which does not correspond meaningfully to one

code in this category but rather, suggests that teachers responses were likely to

be coded core for two of the three responses and implicit for one of the three)

• A mathematics score of -3 (which indicates that either all three teachers re-

sponses were CNI-Imprecise or that the teacher responses varied in the mathe-

matics code, with a prevalence for negative codes, meaning the teacher responses

had more of tendency to veer away from the underlying mathematical point of

the student response).

With regard to average word count, as indicated in Table 4.1 there is an overall

negative trend between average word count and all but one (student actions) of the

average TRC category scores. This suggests that as average word count increases
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Table 4.1: Average aggregate TRC, average word count, and average TRC categories:
Pearson’s correlation coefficients and Descriptive Statistics (N=24).

Average
Actor Score

Average
Move Score

Average
Student
Actions
Score

Average
Student

Ideas Score

Average
Mathematics

Score

Avg.
aggregate
TRC Score

0.782∗∗ 0.931∗∗ 0.22 0.764∗∗ 0.765∗∗

Avg. Word
Count

−0.583∗∗ −0.410∗ 0.116 −0.283 −0.3

M 3.111 1.639 1.292 2.708 −0.75
SD 1.822 2.338 0.576 1.786 2.032
Mode 5 2 2 4.333 −3
∗p < 0.05,∗∗ p < 0.01

there is an associated decrease in average actor score (−0.583∗∗) and move score

(−0.410∗), and possibly a slight decrease in average student ideas score (−0.283, p-

value =0.181) and average mathematics score (−0.300, p-value = 0.154). Word count

has little to no association with student actions (0.116, p-value = 0.591). Additionally,

the average word count across all three responses for all 24 teachers varied from a

minimum of 20 words to a maximum of about 204, with a mean of about 74 words a

standard deviation of about 51 words and a mode of about 36 words.

CLIP 1: Response characteristics

In Clip 1, the apparently correct student responses about fact family numbers

“rotating” in a“circle”, the Clip1 TRC aggregate is positively and significantly corre-

lated with all but one (student actions) of the TRC categories describing the teacher

response. This is not unexpected since the Clip 1 aggregate TRC is a sum of these

five individual characteristics.

Using the modes in Table 4.2 and code distributions in Appendix C,a typical

teacher response to Clip 1 can be described as follows:

• An actor score of 5 (indicating the same student was the actor in the response),
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Table 4.2: Clip 1 aggregate TRC, word count, and individual TRC categories: Pear-
son’s correlation coefficients and Descriptive Statistics (N=24).

Actor Move
Student
Actions

Student
Ideas

Mathematics

Clip 1 TRC
aggregate

0.808∗∗ 0.882∗∗ 0.185 0.920∗∗ 0.524∗∗

Clip 1 Word
Count

−0.453∗ −0.279 0.214 −0.283 −0.279

M 2.96 2.63 1.58 2.38 0.04
SD 2.4 3.62 0.5 3.42 3.48
Mode 5 5 2 5 2
∗p < 0.05,∗∗ p < 0.01

• A move score of 5 (an elaborate move)

• A student actions score of 2 (indicating it explicitly used a student’s language)

• A student ideas score of 5 (indicating the teacher response was core to the

student ideas)

• A mathematics score of 2 (a CNI code meaning the response was vague but not

imprecise and without meaningful hints within the response to make a strong

or confident inference about the mathematics the teacher response was headed

towards).

In looking across word count, though actor is the only TRC category that is

significantly correlated with Clip 1 word count, there is a trend, with the exception

of student actions, of negative correlation coefficients in this row (all of which have

p-values below 0.188). This suggests that, although not statistically significant, there

is a weak, negative association between word count and move, student ideas and

mathematics as well as actor (meaning that as word count increases all four of these

TRC category scores decrease). Additionally, responses to Clip 1 had an average

word count of about 59 words with a standard deviation of 40 words and a mode of

43 words. Teacher responses ranged in length from 18 words to 155 words.
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CLIP 2: Response characteristics

In Clip 2, the apparently incorrect student responses about total discount price

being “d= p-0.25*g,” the Clip 2 TRC aggregate is, unsurprisingly, positively and

significantly correlated with all but one (student actions) of the TRC categories de-

scribing the teacher response. Unlike in Clip 1, the correlation coefficient between

Clip 2 aggregate TRC score and student actions is negative. A look at the data reveals

that this is likely a result of 16 of the 24 teachers providing responses that explicitly

used the used the students’ words, hence scoring a two, but that these 16 teachers

had a large range in their overall scores, ranging from -1 to 21, hence pulling the

trend line down to the right (therefore producing a negative correlation coefficient).

Table 4.3: Clip 2 aggregate TRC, word count, and individual TRC categories: Pear-
son’s correlation coefficients and Descriptive Statistics (N=24).

Actor Move
Student
Actions

Student
Ideas

Mathematics

Clip 2 TRC
aggregate

0.642∗∗ 0.879∗∗ −0.146 0.453∗ 0.750∗∗

Clip 2 Word
Count

−0.635∗∗ −0.467∗ 0.063 −0.006 −0.287

M 3.54 1.38 1.38 3.92 −0.13
SD 2.02 3.61 1.01 1.02 2.95
Mode 5 −3 2 3 −3
∗p < 0.05,∗∗ p < 0.01

Using the modes in Table 4.3 and code distributions in Appendix C,a typical

teacher response to Clip 2 can be described as follows:

• An actor score of 5 (indicating the same student was the actor in the response,

like in Clip 1),

• A move score of -3 (a correct move, unlike the predominant elaborate move in

Clip 1)

• A student actions score of 2 (indicating it explicitly used a student’s language,

similar to Clip 1)
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• A student ideas score of 3 (indicating the teacher response was peripheral to

the student ideas, unlike Clip 1 where student ideas was, on average, coded as

core)

• A mathematics score of -3 (which, given the distributions in Table C.5 of Ap-

pendix C cannot really be meaningfully interpreted to describe the mathematics

of a typical response to Clip 2).

With regard to word count, actor and move are the only TRC categories that are

significantly correlated with Clip 2 word count. Additionally, although not significant,

there is a weak, negative association between mathematics and word count (p-value

= 0.174). Student ideas and student actions appear to have little-to-no association

with Clip 2 word count (unlike in Clip 1 where student ideas had a larger coefficient

and smaller p-value, though it was also not statistically significant). Responses to

Clip 2 had an average word count of about 77 words with a standard deviation of 64

words and a mode of 33 words. Teacher responses ranged in length from 11 words to

257 words.

CLIP 4: Response characteristics

In Clip 4, again the aggregate TRC score is positively and significantly corre-

lated with almost all the individual TRC categories (student actions and Clip 4 TRC

aggregate has a coefficient of 0.338 with p = 0.106).

Using the modes in Table 4.4and code distributions in Appendix C, a typical

teacher response to Clip 4 can be described as follows:

• An actor score of 5 (indicating the same student was the actor in the response,

like Clips 1 and 2),

• A move score of -3 (a correct move, like Clip 2 but differing from the predomi-

nant elaborate move in Clip 1)

• A student actions score of 2 (indicating it explicitly used a student’s language,
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Table 4.4: Clip 4 aggregate TRC, word count, and individual TRC categories: Pear-
son’s correlation coefficients and Descriptive Statistics (N=24).

Actor Move
Student
Actions

Student
Ideas

Mathematics

Clip 4 TRC
aggregate

0.809∗∗ 0.895∗∗ 0.338 0.846∗∗ 0.875∗∗

Clip 4 Word
Count

−0.574∗∗ −0.586∗∗ 0.139 −0.464∗ −0.381

M 2.83 0.92 0.92 1.83 −2.17
SD 2.48 3.75 1.06 3.8 3.34
Mode 5 −3 2 5 −3
∗p < 0.05,∗∗ p < 0.01

like Clips 1 and 2)

• A student ideas score of 5 (indicating the teacher response was core to the

student ideas, like in Clip 1 but unlike Clip 2 where the average teacher response

was coded as peripheral to the student ideas)

• A mathematics score of -3 (which, given the distributions in Table C.5 of Ap-

pendix C, cannot quite be meaningfully interpreted to describe the mathematics

of a typical response to Clip 4 though it was likely either CNI or Other).

Clip 4 word count is negatively and significantly correlated with most of the TRC

categories scores (mathematics is almost significantly correlated with a p-value of

0.066). Again, the exception to this negative coefficient trend is the correlation be-

tween word count and student actions score in Clip 4 in which there appears to be

little-to-no relationship. Responses to Clip 4 had an average word count of about

86 words with a standard deviation of 71 words and a mode of 33 words. Teacher

responses ranged in length from 8 words to 284 words. Given these general descrip-

tions of the teacher responses overall and for each of the three clips, I now turn my

attention to the results of the two research questions.
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Research Question 1: Are participants’ emotional reactions to student

answers related to their response?

As mentioned in the theoretical framework of this paper, recent theories about

human behavior have begun to demonstrate the crucial role that emotions play in

decision-making (Damasio, 1994). Teaching as a human decision-making endeavor is

not immune to this fact and has actually been described as“one part intellect, [and]

three parts emotion” (Ball,1997, p. 800). Hence, I hypothesized that how a teacher

feels, specifically their emotional reaction to a student’s response, might have some

relationship to the response the teacher provides to the student. I therefore asked the

following research question: Do participants’ self-assessed emotional reactions to the

student responses help us understand their responses?

To answer this question, I first provide some descriptive information about the

measures of teachers’ emotional reactions and then explore the association between

these emotional reactions and the teachers’ responses to students. I explore these

associations at varying levels, starting with the teachers’ average response score then

looking at the responses to the three different student clips and finally, at the level

of the teacher response characteristics.

SAM scale descriptives

Recall that during the teaching simulation, immediately after watching a video of

the student response, participants were asked to rate (within 15 seconds of watching

the video) their emotional reaction to the student response. Participants self-assessed

their emotional reactions using the SAM instrument that has the following three

dimensions:

• Valence (where 1 indicates feeling happy and 9 is unhappy, hence an increase

in this score indicates feeling unhappier)

• Arousal (where 1 indicates feeling excited and 9 is calm, hence an increase in
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this score indicates feeling calmer)

• Control (where 1 indicates feeling out of control and 9 is in-control, hence an

increase in this score indicates feeling more in-control of the situation)

The SAM instrument is based on the assumption that emotional response can be

assessed along these three, distinct dimensions and hence, it is expected that there

would be little to no correlation between participants ratings on these scales within

an SRS Clip (see Appendix D for confirmation of this). Participants’ self-reported

emotional reactions to Clips 1, 2, and 4, and on average are shown in Table 4.5 below.

Table 4.5: SAM scale means and standard deviations for each clip and averages across
all three clips.

Valence Arousal Control
Clip 1 3.708 4.792 6.375

(1.756) (1.978) (1.952)
Clip 2 3.5 4.833 6.208

(1.745) (1.949) (1.841)
Clip 4 4.208 5.083 6.75

(1.719) (2.225) (1.726)
Average 3.8 4.9 6.4

(1.154) (1.553) (1.222)

In reaction to clip 1, participants reported feeling slightly happy (valence of 3.708),

neither excited or calm (arousal of 4.792) and slightly in-control (control of 6.375) 1. In

reaction to Clip 2 participants also reported feeling somewhat happy (valence of 3.5),

neither excited or calm (arousal of 4.883) and slightly in-control (control of 6.208) after

listening to the student response in Clip 2. Finally, in reaction to clip 4 participants

still reported feeling slightly happy but less so than in Clips 1 or 2 (valence of 4.208),

neither very excited or very calm (arousal of 5.083) and somewhat in-control (control

of 6.750). On average (across all three student responses), participants self-reported

feeling slightly happy (valence of 3.8), neither very calm or very excited (arousal

of 4.9), and slightly in-control (control of 6.4). On average, participants reported

1please see Appendix E for an explanation of the language choices relative to the SAM scales.
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feeling happiest while listening to Clip1 (valence of 3.708) and the least content but

still positive when listening to Clip 4 (valence of 4.208). Additionally, participants

generally reported feeling neither very aroused nor very calm, in other words neutral

(closer to 5) when listening to the student responses. Across all responses, they also

reported feeling slightly in-control (control of 6).

Emotional Reactions and Average Teacher Response Characteristics

At a broad level, I examined whether there were associations between a partic-

ipants’ average response score across the three student responses or average word

count and their average SAM scores. As can be seen in Table 4.6 below there were

no statistically significant associations between a participant’s average response score

(average TRC score) and any of the average SAM dimensions ratings (all p-values

were greater than 0.5). This suggests that there is not a relationship between partic-

ipant’s average self-reported emotional reactions across all three student answer clips

and their average aggregate TRC score (the potential productivity of their response).

There is one statistically significant association between average word count and av-

erage SAM control. This negative correlation indicates that as participant’s average

self-assessed SAM control score (meaning they reported feeling more in-control) in-

creased there was an associated decrease in the average number of words in their

response (see Figure F.2 in Appendix F for plots of these data). Average valence and

arousal have no association with average word count.

Table 4.6: Average SAM scales and average aggregateTRC score and average word
count: Pearson’s correlations coefficients. (N= 24).

Average
Valence

Average
Arousal

Average
Control

Average aggregate
TRC Score

0.033 0.052 0.131

Average Word Count 0.152 −0.017 −0.549∗∗

∗p < 0.05,∗∗ p < 0.01
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At the level of average TRC characteristics, there are also no statistically signifi-

cant correlations as can be seen in Table 4.7. Only the negative correlation between

average control and average student actions score (−0.391) is close to significant with

a p-value of 0.059. This suggests that an increase in average self-reported control

might be associated with a decrease in average student actions score. Otherwise, it

appears that average emotional reactions (as captured by the SAM scales) to the stu-

dent answers have no association with any of the average characteristics of a teacher’s

response (which is suggested by the close to zero correlation coefficients and high p-

values, all of which were larger than 0.250 for the remaining 14 coefficients in the

table).

Table 4.7: Average SAM scales and average individual TRC category scores: Pear-
son’s correlations coefficients. (N= 24).

Average
Valence

Average
Arousal

Average
Control

Average Actor Score 0.057 0.002 0.244
Average Move Score −0.029 0.035 0.219
Average Student Actions Score −0.151 −0.156 −0.391
Average Student Ideas Score −0.087 0.097 0.046
Average Mathematics Score 0.211 0.088 0.029

Emotional Reactions and Individual Clip Teacher Responses Characteris-

tics

After looking at average aggregate teacher response scores and participants’ emo-

tional reaction, I examined individual associations within each of the three student

responses.

As can be seen in Table 4.8 there were no statistically significant correlations

between a participant’s aggregate Clip 1 TRC score and any of the average SAM

dimensions ratings (all p-values were greater than 0.3). In Clip 1 the TRC score

ranged from -8 to 21, with a mean of 9.542 and standard deviation of 10.236. The
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Table 4.8: Clip 1 SAM scales, aggregate TRC score and word count: Pearson’s cor-
relations coefficients. (N= 24).

Clip 1 SAM
Valence

Clip 1 SAM
Arousal

Clip 1 SAM
Control

Clip 1 TRC aggregate −0.187 0.075 0.146
Clip 1 Word Count 0.294 −0.165 −0.448∗

∗p < 0.05,∗∗ p < 0.01

word count in responses to Clip 1 varied from 18 to 155 words, with a median of

about 49 words. There was only one statistically significant correlation between Clip

1 word count and Clip 1 SAM control. This negative correlation indicates that as the

number of words in a teacher’s response to Clip 1 increased there was an associated

decrease in their self-assessed SAM control score (meaning they reported feeling more

out-of-control in response to Clip 1). The only other correlation of note, although

not significant, is the weak, positive association between Clip 1 word count and Clip1

valence (0.294, p-value = 0.164). This suggests that an increase in self-reported

valence in response to the student answer in Clip1 (indicating feeling unhappier)

might be associated with an increase in word count (talking more in their response).

Otherwise, the remaining four correlation coefficients (and their p-values) suggest that

there is no relationship between valence and Clip 1 aggregate TRC score, arousal and

aggregate TRC score or word count, and control and aggregate TRC score.

For Clip 2, there were similar results to those described in Clip 1. As can be seen

in Table 4.9, in response to Clip 2 there were no statistically significant correlations

between a participant’s aggregate Clip 2 TRC score and any of the average SAM

dimensions ratings (all p-values were greater than 0.1). The correlation coefficient

between Clip 2 control and aggregate TRC though not significant, did meet my criteria

for a“weak” relationship (0.2889, p-value = 0.171). This suggests a non-significant,

weak, positive association between control and aggregate TRC score ( meaning that an

increase in self-reported control in response to the student answer in Clip2 (indicating
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feeling more in-control) might be weakly associated with a slight increase in aggregate

TRC score (a potentially more productive response). With regard to word count,

there were no statistically significant correlations between a participant’s response

word count and any of the average SAM dimensions ratings in Clip 2 (all p-values

were greater than 0.1). Though, again, the correlation between word count and

control (−0.329, p-value = 0.116) is almost significant at the 0.100-level. Like in Clip

1, this suggests that an increase in control might be associated with a slight decrease

in word count.

Table 4.9: Clip 2 SAM scales, aggregate TRC score and word count: Pearson’s cor-
relations coefficients. (N= 24).

Clip 2 SAM
Valence

Clip 2 SAM
Arousal

Clip 2 SAM
Control

Clip 2 TRC aggregate 0.217 0.09 0.289
Clip 2 Word Count −0.133 −0.026 −0.329

Table 4.10, shows the results of the Pearson’s correlation across Clip 4 aggregate

TRC score , word count and SAM scales.

Table 4.10: Clip 4 SAM scales, aggregate TRC score and word count: Pearson’s
correlations coefficients. (N= 24).

Clip 4 SAM
Valence

Clip 4 SAM
Arousal

Clip 4 SAM
Control

Clip 4 TRC aggregate 0.12 0.015 −0.24
Clip 4 Word Count 0.219 0.109 −0.137

The aggregate TRC scores for SRS Clip 4 had the largest range of all three clips,

with scores going from -16 to 21, and the lowest mean, with an average of 2.583

with a standard deviation of 10.669. The word count in responses to Clip 4 varied

from 8 to 284 words, with a median of about 62 words (the highest median of all

three clips). As can be seen from Table 4.10 there were no statistically significant

correlations between any of the variables (all p-values > 0.2). The six coefficients

and their associated p-values suggest that there is no relationship between any of the
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three emotional dimensions and either aggregate TRC score or word count for Clip

4.

Emotional Reactions and Characteristics of Individual TRC Categories

After looking at the level of the aggregate TRC score for each clip, I explored

whether there might be associations between specific characteristics of a teacher’s

response and their emotional reaction to each of the three different student responses.

Table 4.11: Clip 1 SAM scales and individual TRC categories scores: Pearson’s cor-
relations coefficients. (N= 24).

Actor score Move score
Student
Actions
Score

Student
Ideas Score

Mathematics
Score

Clip 1 SAM
Valence

−0.024 −0.209 −0.045 −0.263 −0.048

Clip 1 SAM
Arousal

0.099 0.098 −0.135 0.076 −0.005

Clip 1 SAM
Control

0.078 0.076 0.122 0.089 0.189

As can be seen from Table 4.11 there were no statistically significant correlations

between any of the three emotional dimensions of the SAM instrument and any

of the five different TRC categories for Clip 1(all p-values > 0.2). Only student

ideas and valence are weakly but not statistically significantly associated (−0.263, p-

value = 0.214). This relationship would suggest that an increase in valence ( feeling

unhappier) is weakly associated with a slight decrease in student ideas score (meaning

that the student might be less likely to recognize their idea in the teacher response).

The remaining 14 coefficients and their p-values suggest there are no associations

between emotional reactions to Clip 1 and characteristics of a teacher’s response to

Clip 1.

With regard to Clip 2, again there were no statistically significant correlations

between any of the three emotional dimensions of the SAM instrument and any of

the five different TRC categories for Clip 2 (all p-values ¿ 0.1) (see Table 4.12). Here
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there are two correlations that might be meaningful with more data. First, valence

and actor could be related ( 0. 265, p-value = 0.211), suggesting an increase in valence

( feeling unhappier) might be associated with an increase in actor score (meaning the

teacher response engages the same student or whole class rather than the teacher).

Second, there might be a positive relationship between control and moves (0.335,

p-value = 0.110). This would suggest that an increase in sense of control might be

associated with an increase in move score,(e.g., perhaps asking the actor to jusitfy

rather than to correct). Otherwise, the remaining 13 correlation coefficients and their

p-values suggest that there is no relationship between these remaining combinations

of emotional reactions and Clip 2 teacher responses characteristics.

Table 4.12: Clip 2 SAM scales and individual TRC categories scores: Pearson’s cor-
relations coefficients. (N= 24).

Actor score Move score
Student
Actions
Score

Student
Ideas Score

Mathematics
Score

Clip 2 SAM
Valence

0.265 0.197 −0.061 −0.024 0.122

Clip 2 SAM
Arousal

−0.109 0.139 −0.077 0.212 0.072

Clip 2 SAM
Control

0.144 0.335 −0.067 0.126 0.157

In Clip 4, again there were no statistically significant correlations between any of

the three emotional dimensions of the SAM instrument and any of the five different

TRC categories (all p-values > 0.2 with one exception). The only correlation that

was close to significant was the one between mathematics score and Clip 4 SAM

control (−0.377, p = 0.070), indicating that a modest increase in Clip 4 SAM control

is associated with a decrease in mathematics score (meaning the teacher responses

is possibly veering away from the underlying mathematical point of the student’s

response). Additionally, there is a weak, negative association (a correlation coefficient

of −0.250) between Clip 4 SAM control and student actions. Otherwise, there appears

to be no relationship between emotional reaction to the student answer in Clip 4 and
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the Clip 4 teacher response characteristics.

Table 4.13: Clip 4 SAM scales and individual TRC categories scores: Pearson’s cor-
relations coefficients. (N= 24).

Actor score Move score
Student
Actions
Score

Student
Ideas Score

Mathematics
Score

Clip 4 SAM
Valence

−0.043 −0.017 0.058 0.205 0.226

Clip 4 SAM
Arousal

0.026 −0.004 0.003 −0.034 0.078

Clip 4 SAM
Control

−0.183 −0.117 −0.25 −0.113 −0.377

Research Question 2: Are participants’ internal resources related to their

response to students?

Considering managing student’s mathematical responses as a competency means

considering the various internal resources that might impact a teacher’s performance.

This study set out to explore the possible association between characteristics of a

teacher’s response to a student and various internal resources a teacher might have,

including their: state, trait and teaching anxiety, as well as beliefs, MKT, years

of teaching experience and general life experience (age). Recall that state, trait

and teaching anxiety, as well as beliefs and MKT measures were captured through

paper-and-pencil instruments, administer in a quiet space days to month before the

participant completed the teaching simulation. Hence, these various score (with the

exception of the MKT instrument) are reflective of their general self-assessment on

these measures. The teaching anxiety, beliefs and MKT instruments are context-

specific in the sense that the items in those instruments are about teaching situations

and task (e.g.,“ I find it easy to admit to the class that I don’t know the answer to

a question a student asks”). Table 4.14 below includes descriptive statistics for these

eight measures (additionally, see histograms in Appendix G).

In addition to the general distributions of these variables for participants in this
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Table 4.14: Descriptive statistics for internal resources variables.

Variables Minimum Maximum Mean
Standard
Deviation

State Anxiety 20 43 29.71 6.31
Trait Anxiety 21 50 33.42 8.31
Teaching Anxiety 61 171 102 28.24
MKT raw score 14 30 24.75 3.8
Beliefs Category 1 50 90 71.58 11.12
Beliefs Category 2 26 36 32.33 2.79
Years Teaching 0 38 11.67 11.7
Age 19 64 38.29 14.05

sample, I also explored associations between these variables as can be seen in Table

4.15 below.

Table 4.15: Internal resources variables:Pearson’s correlation coefficients. (N= 24)

Variables 1 2 3 4 5 6 7

1. State
anxiety

−

2. Trait
anxiety

0.639∗∗ −

3. Teaching
anxiety

0.668∗∗ 0.771∗∗ −

4. MKT
score

−0.021 −0.127 0.131 −

5. Beliefs
category 2 −0.517∗∗

−0.480∗ −0.531∗∗
−0.033 −

6. Beliefs
category 1

0.643∗∗ 0.569∗∗ 0.592∗∗ −0.068 −0.676∗∗
−

7. Years
teaching

−0.165 −0.295 −0.337 −0.096 −0.091 0.029 −

8. Age −0.296 −0.39 −0.486∗ −0.233 0.164 −0.192 0.851∗∗

∗p < 0.05,∗∗ p < 0.01

In this sample state, trait, and teaching anxiety are all positively and statistically-

significantly correlated, as suggested by the Pearson’s correlation coefficients of 0.639∗∗,

0.668∗∗ and 0.771∗∗. Essentially, an individual with self-reported higher state anxi-

ety is also likely to self-report higher anxiety in general (trait anxiety) and higher

anxiety around tasks of teaching (teaching anxiety). Additionally, state, trait and

teaching anxiety were all weakly negatively and significantly correlated with Beliefs
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category 2, with correlations of −0.517∗∗, −0.480∗∗, and −0.531∗∗ respectively. This

indicates that an individual with higher state, trait or teaching anxiety was likely

to report feeling less enjoyment of and confidence in mathematics (as captured by

the paper and pencil beliefs instrument). State, trait and teaching anxiety were all

also positively and significantly correlated with Beliefs category 1 (with correlations

of 0.643∗∗, 0.569∗∗ and 0.592∗∗ respectively). This indicates that an individual with

higher state, trait or teaching anxiety is likely to report less productive beliefs about

teaching and learning mathematics (higher Beliefs category 2 scores).

Of the three different types of anxiety measured, only teaching anxiety was sig-

nificantly correlated with age (−0.486∗∗). However, the trend across correlation co-

efficients for all three anxiety measures and age are negative. In other words, in this

sample, older participants reported less teaching anxiety and might also report less

state and trait anxiety. Though again not statistically significant, there was a similar

trend in correlation coefficients for all three anxiety measures and years of teaching.

This is not entirely surprising given that all three anxiety measures are highly cor-

related with each other and that age and years of teaching were highly correlated

with each other (0.851∗∗). The correlation between years of teaching and age simply

indicates that older participants were more likely to report more years of teaching

experience. The overall trends of negative anxiety measure correlation coefficients

suggests that as participants get older and gain more teaching experience, they are

likely to report feeling less state, trait and teaching anxiety.

The only other statistically significant correlation in this sample is between Beliefs

categories 1 and 2 (−0.676∗∗). This negative correlation between the two beliefs

categories suggests that an individual who reports generally less-productive beliefs

about teaching and learning mathematics (a higher Beliefs category 1 score) is also

likely to report feeling less confidence in and enjoyment of mathematics (a lower

Beliefs category 2 score). The remaining correlation coefficients for Beliefs categories
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1 and 2 were all non-significant and mostly close to zero. Suggesting that there

possibly no association between these beliefs (as measured) and MKT (coefficients

−0.033 and −0.068 for category 1 and 2 respectively), or years of teaching experience

(coefficients −0.091 and 0.029 for beliefs category 1 and 2 respectively) or with age

(coefficients −0.192 and 0.164, and both p-values > 0.367, for beliefs category 1 and

2 respectively).

Though I had anticipated that MKT might be correlated with other predictors, as

can be seen in Table 4.15, the raw MKT scores in this sample were not statistically-

significantly correlated with any other variables. The correlation coefficients and their

associated p-values suggest that there is no relationship between this measure of MKT

and any of the other seven internal resources.

Internal resources variables and overall TRC Scores, word count

At a broad level, I examined whether there were associations between a partic-

ipants’ average response score across the three student responses or average word

count and their scores of the internal resources measures. As can be seen in Table

4.16 below, there were no statistically significant correlations between a participant’s

average response score (average TRC score) and any of the internal resources mea-

sures or the average word count of a participant’s response and any of the internal

resources measures (all p-values were greater than 0.05).

Table 4.16: Average aggregate TRC score and word count, and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

State
Anxi-
ety

Trait
Anxi-
ety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Average
TRC score

−0.257 −0.236 −0.012 0.018 −0.079 −0.153 0.404 0.235

Average
Word Count

−0.222 −0.029 −0.129 0.333 −0.073 0.159 −0.13 −0.085
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There are three correlations that were close to significant and/or meet my criteria

for a weak association (coefficient absolute value greater than or equal to 0.250). First,

the negative, non-significant correlation coefficient between state anxiety and average

aggregate TRC score (−0.257, p-value =0.226) suggests that an increase in state

anxiety might be weakly associated with a slight decrease in average aggregate TRC

score (i.e., a decrease in the potential productivity of teacher responses). Second, the

correlation coefficient between years of teaching experience and average aggregate

TRC score was significant at the 0.100-level (p = 0.051). The positive correlation

coefficient (0.404) suggests that an increase in years of teaching experience might

be associated with an increase in average aggregate TRC score. Third, the only

other correlation that was close to being significant at 0.100-level(p = 0.112) was the

positive coefficient between raw MKT score and average word count (0.333). This

suggests that an increase in raw MKT score could be associated with an increase in a

teacher’s response word count. Otherwise, there seems to be no relationship between

most of the internal resources measures and aggregate TRC score or average word

count.

Though at the average aggregate TRC score level there were no statistically signif-

icant correlations, there are some statistically significant correlations between internal

resources measures and the average mathematics score (as can seen in Table 4.17 ).

Specifically, an increase in state anxiety or trait anxiety is associated with a de-

crease in average mathematics score (−0.430∗ and −0.438∗respectively), while an

increase in years of teaching is associated with an increase in average mathematics

score (0.412*). Additionally, though not statistically significant, the correlation co-

efficients and their associated p-values between average mathematics score and age

(0.288, p-value = 0.173), and between average mathematics score and beliefs cate-

gory 1 (−0.270, p-value = 0.201) suggest weak associations between these variables.

It seems that the average mathematics score has the most potential associations with
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Table 4.17: Average individual TRC scores and internal resources variables: Pear-
son’s correlation coefficients. (N= 24)

State
Anxiety

Trait
Anxiety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Average
Actor
Score

−0.081 −0.164 −0.01 0.015 −0.029 −0.156 0.155 −0.075

Average
Move
Score

−0.176 −0.147 0.009 −0.089 −0.013 −0.207 0.367 0.181

Average
Student
Actions
Score

−0.143 0.016 −0.122 0.061 −0.107 0.063 0.006 0.111

Average
Student
Ideas
Score

−0.106 −0.024 0.136 −0.02 0.096 −0.32 0.391 0.353

Average
Mathe-
matics
Score

−0.430∗ −0.438∗ −0.125 0.147 −0.27 0.14 0.412∗ 0.288

∗p < 0.05,∗∗ p < 0.01
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the various internal resources (five out of the eight internal resources).

Years teaching and age are significantly associated (at the 0.100-level) with av-

erage student ideas score (0.391, p-value = 0.059 and 0.353, p-value= 0.091). While

beliefs category 2 (enjoyment of and confidence in mathematics) has a non-significant,

weak, negative association with average student ideas score (−0.320, p-value = 0.128).

These suggest that an increase in years teaching or age might be associated with a

slight increase in average student ideas score (i.e., a student would be likely to recog-

nize their ideas as being “taken-up” by the teacher response). On the other hand, an

increase in beliefs category 2 is weakly associated with a slight decrease in average

student ideas score (i.e., a student would be likely to recognize their ideas as being

“taken-up” by the teacher response). A final correlation of note that is significant

at the 0.100-level is between years teaching and average move score (0.397, p-value

= 0.077). This relationship suggests that an increase in years teaching might be as-

sociated with an increase in average move score (meaning the teacher response uses

a more cognitively demanding move). Otherwise, the remaining 31 correlation coef-

ficients and their accompanying p-values suggest there are no relationships between

the remaining internal resources and average individual TRC characteristics.

Internal resources variables and Individual Clip Teacher Responses Char-

acteristics

After looking at overall teacher response scores and participants’ internal resources

measures, I examined associations in each of the three student responses.

As can be seen in Table 4.18, there were no statistically significant correlations

between a participant’s Clip 1 aggregate TRC score and any of the internal resources

measures or participant’s Clip 1 response word count and any of the internal re-

sources measures (all p-values were greater than 0.05). The only correlation that was

statistically significant at the 0.100-level was between state anxiety and Clip1 TRC
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Table 4.18: Clip 1 aggregate TRC score and word count, and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

State
Anxi-
ety

Trait
Anxi-
ety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Clip 1 TRC
aggregate

−0.404 −0.308 −0.234 0.001 0.071 −0.063 0.279 0.316

Clip 1 Word
Count

−0.243 −0.117 −0.184 0.301 −0.03 −0.215 0.005 −0.071

aggregate score (p = 0.051) which suggests that an increase in state anxiety might

be associated with a decrease in Clip1 TRC aggregate score.

There are a few other, potential trends between Clip1 TRC aggregate score and

three other internal resources. Specifically, there is a non-significant, weak, negative

association between trait anxiety and Clip1 TRC aggregate score (−0.308, p-value =

0.143). Additionally, both years teaching and age have non-significant but positive,

weak associations with Clip1 TRC aggregate score (0.279, p-value = 0.186 and 0.316,

p-value = 0.133). This suggests that as years teaching or age increase there is a

weakly associated slight increase in the overall score of a teacher’s response to Clip 1.

When examining the correlations between the internal resources and Clip 1 word

count it appears there is a weak, positive association between MKT score and word

count (0.301, p-value = 0.153). This suggests that as MKT score increases there is

a weakly associated slight increase in words in teacher responses to the apparently

correct student answer of Clip 1. Otherwise, none of the remaining seven internal

resources variables seem to have any relationship with Clip1 word count.

In looking at the teacher responses to Clip 2, there are again no statistically

significant correlations between a participant’s Clip 2 aggregate TRC score and any

of the internal resources measures or participant’s Clip 2 response word count and

any of the internal resources measures (all p-values were greater than 0.05). The

correlation coefficient between years of teaching experience and Clip 2 aggregate TRC
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score was significant at the 0.100-level (with a p-value of 0.058). This suggests that

an increase in years of teaching experience is associated with an increase in Clip 2

aggregate TRC score. Additionally, like in Clip 1, there is a weak, negative association

between Clip 2 aggregate TRC score and state anxiety ( −0.262, p-value = 0.216). In

looking at the correlation coefficients and their associated p-values, it appears there

are no relationships between Clip 2 word count and any of the eight internal resources

measures.

Table 4.19: Clip 2 aggregate TRC score and word count, and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

State
Anxi-
ety

Trait
Anxi-
ety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Clip 2 TRC
aggregate

−0.262 −0.238 0.034 0.042 −0.099 −0.106 0.392 0.216

Clip 2 Word
Count

−0.203 −0.02 −0.169 0.208 0.008 0.117 −0.192 −0.127

Finally, as can be seen below in Table 4.20, there were also no statistically sig-

nificant correlations between a participant’s Clip 4 aggregate TRC score and any of

the internal resources measures or participant’s Clip 4 response word count and any

of the internal resources measures (with only one exception all p-values were greater

than 0.100).

Only the positive correlation coefficient between raw MKT score and Clip 4 word

count was significant at the 0.100-level with a p-value of 0.094. Additionally, word

count in Clip 4 has a weak, positive association with beliefs category 2 (0.251, p-

value= 0.236) but a weak, negative association with Clip 4 aggregate TRC score

(−0.256, p-value = 0.228). It is possible that an increase in beliefs category 2 (indi-

cating more enjoyment of and confidence in mathematics) could be weakly associated

with a slight increase in word count and a slight decrease in aggregate TRC score for

teacher responses to Clip 4 (essentially meaning slightly longer and less productive
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teacher responses).

Table 4.20: Clip 4 aggregate TRC score and word count, and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

State
Anxi-
ety

Trait
Anxi-
ety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Clip 4 TRC
aggregate

0.07 0.01 0.161 0.005 −0.02 −0.256 0.207 −0.003

Clip 4 Word
Count

−0.152 0.023 −0.018 0.35 −0.04 0.251 −0.106 −0.027

Internal resources variables and Individual Clip Teacher Responses Char-

acteristics

In this section, I explore for each clip in-turn how different characteristics of a

teacher’s response were associated with their internal resources.

Internal resources variables and Clip 1 Teacher Responses Characteristics With

regard to individual TRC characteristics of teacher responses to Clip 1 and internal

resources measures, there was only one statistically significant correlation (−0.486∗)

(as can be seen in Table 4.21). This correlation suggests that as trait anxiety increases

there is an associated decrease in the TRC mathematics score. Other that this, trait

anxiety has no relationship with any of the other charactersitics of teacher responses

to Clip1.

Though not significant at the 0.05-level, there were a few correlations that were

significant around the 0.100-level and some general trends in the table worth men-

tioning. One trend that stands-out is the negative correlations between state anxiety

and four of the five TRC categories. In particular, an increase in state anxiety is

not-significantly but weakly associated with a decrease in move (−0.277, p-value =

0.190). State anxiety also has significant (at the 0.100-lelve) associations with stu-

dent actions (−0.368, p-value = 0.077), student ideas (−0.377, p-value = 0.069), and
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Table 4.21: Clip 1 individual TRC categories scores and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

CLIP 1
State
Anxi-
ety

Trait
Anxiety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Actor −0.187 −0.138 −0.085 0.051 −0.02 −0.121 0.146 0.036

Move −0.277 −0.081 −0.205 −0.029 0.048 −0.004 0.132 0.145

Student
Actions

−0.368 −0.227 −0.349 −0.216 −0.126 −0.082 0.034 0.079

Student
Ideas

−0.377 −0.207 −0.226 −0.059 −0.048 −0.018 0.211 0.339

Mathematics −0.341 −0.486∗ −0.141 0.086 −0.155 0.325 0.367 0.404
∗p < 0.05,∗∗ p < 0.01

mathematics (−0.341, p-value = 0.102) scores. Teaching anxiety also appears to have

a significant (at the 0.100-level), negative association with student actions (−0.349,

p-value = 0.095).

A second trend of note is the significant (at the 0.100-level), positive relationships

between Clip 1 mathematics score and beliefs category 2 (0.325, p-value = 0.121),

years teaching (0.367, p-value = 0.077), and age (0.404, p-value = 0.050). These

suggest that an increase in years teaching, age or beliefs category 2 are associated

with a slight increase in Clip 1 mathematics score (meaning the teacher responses

are likely vague but not imprecise or closer to the mathematics underlying the stu-

dent response). Finally, age is also significantly (at the 0.100-level) and positively

associated with student ideas (0.339 p-value = 0.105).

Internal resources variables and Clip 2 Teacher Responses Characteristics

With regard to individual TRC characteristics of teacher responses to Clip 2 and

internal resources measures, there were four statistically significant correlation and a

few other correlations worth mentioning (see Table 4.22 below). Both state and trait

anxiety were significantly and negative correlated with mathematics scores (−0.559∗∗
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and −0.506∗∗) and teaching anxiety is also significantly at the 0.100-level, negatively

correlated with the mathematics score for Clip 2 (−0.358, p = 0.086). This suggests

that an increase in state, trait or teaching anxiety is associated with a decrease in

mathematics score in teacher responses to Clip 2. Additionally, mathematics score for

Clip 2 is significantly (at the 0.100-level) and negatively associated with beliefs cate-

gory 1 (beliefs about teaching and learning mathematics) (−0.316, p-value = 0.133)

and not-significant, positively and weakly associated with years of teaching (0.293,

p-value = 0.164). These correlations suggest that an increase in beliefs category 1

(which likely indicates potentially less-productive beliefs about teaching and learning

mathematics) is associated with a slight decrease in mathematics score while an in-

crease in years of teaching experience is weakly associated with a slight increase in

mathematics score for teacher responses to Clip 2.

Two other statistically significant correlations for Clip 2 occurred between student

ideas scores and years of teaching experience (0.450∗∗), and student ideas and age

(0.442∗). These correlations suggest that an increase in years of teaching or age is

associated with an increase in student ideas score (meaning a teacher response that

is possibly core rather than peripheral to the student idea).

There are three other trends worth noting with respect to Clip 2 teacher response

characteristics and internal resources. First, teaching anxiety is significantly ( at the

0.100-level) and negatively associated with student actions (−0.343, p-value = 0.100).

Teaching anxiety is also weakly, positively associated with both actor (0.275, p-value

= 0.193) and moves (0.263, p-value = 0.214) scores. This would mean that an increase

in teaching anxiety is weakly associated with teacher responses that implicitly or do

not use the student’s language but that engage either the same student or whole

class in a more challenging move. A second trend to notice occurs across years of

teaching experience. As mentioned earlier, this is positively associated with student

ideas and weakly, positively associated with mathematics score. Additionally, years
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of teaching experience is positively and significantly (at the 0.100-level) associated

with moves at the (0.346, p-value = 0.098). Age is significantly (at the 0.100-level)

and positively associated with student actions (0.352, p-value = 0.091) while there

is a non-significant, weak, positive association between beliefs category 2 (enjoyment

of mathematics) and student actions (0.277, p-value = 0.191). In other words, an

increase in either age or enjoyment of mathematics is weakly associated with a slight

increase in student actions scores (meaning a teacher response to Clip 2 that likely

uses the student language explicitly). The remaining correlations and p-values suggest

that there are no other relationships between the internal resources measures and

characteristics of teacher responses to Clip 2.

Table 4.22: Clip 2 individual TRC categories scores and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

CLIP 2
State

Anxiety
Trait

Anxiety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Actor 0.136 0.027 0.275 0.058 0.159 −0.264 0.013 −0.246

Move −0.033 −0.024 0.263 −0.044 0.005 −0.224 0.346 0.195

Student
Actions

−0.213 −0.133 −0.343 −0.031 −0.128 0.277 0.139 0.352

Student
Ideas

−0.119 −0.006 0.136 −0.006 0.028 −0.082 0.450∗ 0.442∗

Mathe-
matics

−0.559∗∗ −0.506∗ −0.358 0.125 −0.316 0.137 0.293 0.167

∗p < 0.05,∗∗ p < 0.01

Internal resources variables and Clip 4 Teacher Responses Characteristics

With regard to individual TRC characteristics of teacher responses to Clip 4 and

internal resources measures, there was only one statistically significant correlation

(−0.413∗) (as can be seen in Table 4.23). This correlation suggests that as beliefs

category 2 (enjoyment of mathematics) increases there is an associated decrease in the
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TRC student ideas score in the teacher response to Clip 4. The remaining correlations

in that column suggest that beliefs category 2 has no association with the remaining

four TRC categories. With the exception of three correlations that I will mention in

a moment, the rest of the correlations and their accompanying p-values suggest that

there are no relationships between state anxiety, MKT, beliefs category 1, years of

teaching or age and any of the five TRC categories for Clip 4 responses.

There is a non-significant, weak, positive association between teaching anxiety and

student actions (0.295, p-value = 0.162) and a significant (at the 0.100-level), positive

association between teaching anxiety and student ideas ( 0.359, p-value = 0.085). In

other words, an increase in teaching anxiety is associated with an increase in student

actions and weakly associated with a slight increase in student ideas scores (indicating

a more responsive teacher response) in Clip 4. Finally, though not significant, there is

a weak, positive association between student actions and trait anxiety ( 0.261, p-value

= 0.218).

Table 4.23: Clip 4 individual TRC categories scores and internal resources vari-
ables:Pearson’s correlation coefficients. (N= 24)

State
Anxi-
ety

Trait
Anxi-
ety

Teach-
ing

Anxi-
ety

raw
MKT
score

Beliefs
Cate-
gory
1

Beliefs
Cate-
gory
2

Years
Teach-
ing

Age

Actor −0.109 −0.25 −0.165 −0.065 −0.175 −0.01 0.19 0

Move −0.03 −0.173 −0.038 −0.096 −0.075 −0.167 0.226 0.01

Student
Actions

0.146 0.261 0.295 0.232 0.008 −0.122 −0.139 −0.194

Student
Ideas

0.223 0.155 0.359 0.027 0.171 −0.413∗ 0.242 0.073

Mathematics 0.066 0.154 0.236 0.068 −0.053 −0.203 0.11 −0.044
∗p < 0.05,∗∗ p < 0.01
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Discussion

Attention to students’ mathematical learning has meant attention to the interac-

tions of students and teachers around mathematical content. In particular, there is

evidence that whether teachers do or do not take-up students’ thinking has important

implications for students’ learning. Exploring this interactional aspect of instructional

quality means considering the capacities teachers need to be able to do this compli-

cated, interactional work in the complex environment of the classroom. Multiple but

typically parallel lines of research have produced evidence that teachers’ instructional

quality depends on teachers having specialized knowledge, particular beliefs, and var-

ious affective-motivational resources. With these various bodies of work to build on,

research on teaching is now poised to bring these mostly independent lines of inquiry

together and to develop a more comprehensive and holistic understanding of what is

involved in teaching.

One promising perspective involves considering teaching as a form of professional

competence in which multiple internal resources and situation-specific skills come to-

gether to produce particular performance outcomes. For a teaching competency such

as managing students’ mathematical responses, for example, teachers need mathemat-

ical content, general pedagogical and mathematical pedagogical content knowledge in

addition to productive beliefs about the nature of mathematics and its teaching and

learning. Further they need emotional-motivational resources that support them in

productively regulating their emotions and motivation both in-the-moment and over

the long-term. These internal resources in-turn support and are supported by teach-

ers’ skills at noticing: perceiving and interpreting important and relevant aspects of

students’ mathematical responses. All of these resources and skills culminate in some

type of decision and then observable behavior.

A further nuance of the competence perspective that is consequential for, “the

spontaneous, immediate, interactive, complex, and concurrent demands of teaching
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mathematics” is the distinction between reflective and action-related competency

(Knievel et al., 2015, p.313). Specifically, recognizing that the ways in which teacher

might plan for, reflect on or hypothesize about how they might respond to students

involves a related but different competence than the competence they need to actually

respond to students during instruction. A focus on this action-related competence

necessitates building not only on the research within education but also utilizing

findings from research outside of education that has explored individuals’ decision-

making in-the-moment. Most notable and relevant from this research are the findings

on the role of emotions or affect in decision-making and additionally the bi-directional

nature of the connection between the brain and the body.

Specifically, “emotion, feeling, and biological regulation all play a role in human

reason” (Damasio, 1994/2005, p. xvii). One notable illustration of this is the way

in which anxiety can impact human reason and performance. Experiencing anxiety

about a task can manifest itself in worry, which occupies mental space in work-

ing memory, essentially diminishing the mental capacity one might otherwise have

available to reason about the task. With regard to performance, when faced with a

situation that requires an active performance—including cognitive, emotional and be-

havioral responses—the way in which an individual appraises the situation—as either

a threat or a challenge depending on whether they perceive they have the capacity

or not to meet the demands of the situation—will impact their physiological reaction

which in-turn impacts their performance (e.g., Blascovich & Mendes, 2000; Jamieson

et al., 2010).Essentially, emotions impact our decisions and our actions, and teaching,

which is “one part intellect, [and] three parts emotion” (D. L. Ball, 1997, p.800), is

not immune to this reality of human decision-making.

With this lens and a focus on the active-related component of managing students’

responses, this paper explored two questions:

1. Are participants’ self-assessed emotional reactions to the student responses re-
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lated to characteristics of their responses?

2. Are participants’ individual characteristics (predictor variables) related to char-

acteristics of their responses to students?

By using a novel teaching simulation and various paper instruments, I collected

data about teachers to explore how they responded to three different types of student

responses: one response that is apparently correct in which a student notices that

numbers in a multiplication and division facts family “rotate” in a “circle”; a second,

apparently incorrect response in which a student provides an equation relating total

discount price, normal price and number of gallons rather than using unit prices;

and a third, apparently incorrect student response in which a student appears to be

solving a different problem (m /14 = 74 instead of 14 / m = 74).

In what follows, I discuss the answers to these research questions using visual

representations of the results. There are a few things that are helpful to know about

these visuals in order to make sense of what they represent. First, the colors used

indicate that there is no relationship (orange), a positive relationship (green text and

green arrow) or a negative relationship (red text and red arrow) between the variables.

These determinations about the relationships (none, positive or negative) are based

on the value of the correlation coefficient and the p-value.

Orange indicates that the absolute value of the correlation coefficient is less than

0.250 (suggesting there is no statistically significant or non-significant and weak as-

sociation between those variables). Red indicates that the correlation coefficient is

less than or equal to −0.250 (suggesting a weak, negative relationship) and green

indicates that the correlation coefficient is greater than or equal to 0.250 (suggesting

a weak, positive relationship).

Within these visual representations of the results, significance, if it occurred, is

indicated with the appropriate superscript-asterisk or letter as follows: a indicates

p < 0.100, ∗ indicates p < 0.05, ∗∗, and indicates p < 0.01.
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Another thing to note when interpreting the results displayed is that each visual is

organized in a similar manner. Specifically, the coefficients represented by the color-

coded text (“Average”, “Clip 1”, “Clip 2” and “Clip 4”) are to be read in the context

of an increase in the predictor variable (emotional reaction or internal resource). For

example, in Figure 4.7 the first visual representation shows the relationships between

valence and aggregate TRC scores and the word count correlation when valence is

increasing (as suggested by the blue arrow, right below the valence SAM image, that

is going from left to right).

Finally, the visuals also summarize information about the average (across all three

clips) teacher responses as well as the teacher responses to Clips 1, 2 and 4. This

aspect of the visual has implications for the way that individual results are read.

For example, in Figure 4.7 though the SAM scales shown represent the general scale

(valence, arousal or control), when interpreting the individual results the SAM scale

should be read in the context of that specific result. In other words, in Figure 4.7

all the results for “Clip1” should be taken in the context of the SAM scale represent-

ing participant’s self-assessed valence in response to Clip 1, while all the results for

“Clip2” should be taken in the context of the SAM scale representing participant’s

self-assessed valence in response to Clip 2, and so forth. Hence, when reading the

result for valence and word count for “Clip 1”, this result should be read as “an

increase in valence in response to the student answer in Clip 1 was associated with

an increase in the word count of the teacher responses to Clip 1.”

In what follows I discuss the significant results and a few of the interesting trends

that emerge (namely predominant trends or trends that are interesting in light of the

apparently correct or incorrect nature of the student responses).
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Are teachers’ emotional reactions to student answers related to character-

istics of their responses?

As can be seen in Figure 4.7 participants emotional reactions across all the Clips

and in response to individual Clips generally have no relationship to their correspond-

ing aggregate TRC scores. This is indicated by the predominance of orange text (the

color used, as mentioned above, to indicate small correlation coefficients and large

p-values, or, in other words, that there was no relationship between the variables).

Essentially, participants self-report valence and arousal have no relationship to the

aggregate TRC scores across all three clips and at the individual Clip level. With

regard to participant’s sense of control, this seems to have a positive association with

teacher responses to Clip 2 (as indicated by the green text and arrow) suggesting that

an increase in sense of control after hearing the student answer in Clip 2 might be

associated with an increase in the overall productivity of the teacher response to Clip

2.

When looking across the emotional reactions and word count results there is again

a predominance of orange text. The only notable exception to this trend are the red

text and arrows for the control SAM scale. In this case, an increase in participant’s

self-reported sense of control after hearing the students answers in Clip 1 and 2 was

associated with a decrease in the word count of their responses to those clips. When

participants reported feeling more in control, they talked less. It is interesting to

note that this results did not occur for Clip 4 in which the apparently incorrect

student response does not provide information to participants about why the error

is occurring. In contrast, in response to Clip 2 where the student answer provides

both information about what the error is and why it is occurring (using total price

versus unit price), an increase in sense of control was associated with shorter, more

productive teacher responses.

When examining these relationship at the level of individual TRC characteristics
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Figure 4.7: Summary Visual of SAM scores versus aggregate TRC and word count
for the across-clip average, Clip 1, Clip 2 and Clip 4.
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scores rather than aggregate TRC scores, the trends are essentially the same as those

in Figure 4.7 (see Figures 4.8, 4.9, and 4.10 below). Specifically, with only two

exceptions (as can be seen in Figure 4.8), valence has little to no association with

any of the individual TRC categories for responses to Clips 1, 2, and 4 as well as

for the average teacher response. Additionally, Figure 4.9 shows that there were no

associations at all between participant’s self assessed arousal and any of the individual

TRC categories scores for responses to Clips 1, 2, and 4 as well as for the average

teacher response. Though there are a few more potential relationships when looking

at Figure 4.10, which summarizes the results across the control dimension, there is still

overall little-to-no association between a participant’s self-reported sense of control

and any of the individual TRC categories for responses to Clips 1, 2, and 4 as well as

for the average teacher response.

Despite this lack of relationships it is interesting to note that participant’s sense

of control, on average, might be associated with a slight decrease in average student

actions scores potentially suggesting that teacher responses were less likely to use

student’s language or actions explicitly. Additionally, it is also interesting that in

Clip 4, where the student answer provides insight into what the student is doing

incorrectly (solving a different problem) but not why the student is doing this, there

is a negative association between sense of control and mathematics score. It is possible

that after hearing the student’s answer teachers feel in control since they can likely

identify the student’s mistake. However, when they are crafting their response to

the student, they struggled in addressing the underlying reason for the student’s

error since it was not evident from what the student had said. It could be that if

participants were asked to self-assess their sense-of-control after responding to Clip 4

(rather than before) that some teachers might have felt less sense of control.
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Figure 4.8: Summary Visual of average SAM scores versus aggregate TRC and word
count for the across-clip average, Clip 1, Clip 2 and Clip 4.
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Figure 4.9: Summary visual of arousal SAM scores versus aggregate TRC and word
count for the across-clip average, Clip 1, Clip 2 and Clip 4.
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Figure 4.10: Summary visual of control SAM scores versus aggregate TRC and word
count for the across-clip average, Clip 1, Clip 2 and Clip 4.
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Even though there are a few interesting relationships in teacher’s self-assessed

sense of control and the characteristics of their responses to student, overall however,

there is a clear absence of relationships between teachers’ emotional reactions to

student answers and characteristics of their responses to those answers. In particular,

out of the possible 84 associations (12 across the aggregate TRC scores, 12 across

word count and 60 at the individual TRC characteristics level), only 10 (less than

12%) were non-zero.

Nonetheless, this lack of significance and results could be more indicative of

methodological limitations rather than theoretical ones. In particular, though this

aspect of the teaching simulation was designed with attention to some of the issues

with self-reports—by limiting the time participants were given to fill out the self-

report and by using a scale that uses images rather than just text—it could be that

this was not enough to overcome other challenges with self-reports. Namely, even

under the constraints of time, participants still likely engaged in some level of cog-

nitive work to translate what they felt into a numerical rating on each of the three

SAM scales. Some might also argue that asking participants “how do you feel?”

could invoke higher-order cognitive processes that are difficult to subjectively cap-

ture (Nisbett Wilson, 1977). Essentially, by asking participants to be introspective

it is possible that what is being captured is what participants’ think they feel rather

than what they actually feel.

Are teachers’ internal resources related to characteristics of their responses

to students?

Again, to summarize the trends in the associations between various internal re-

sources and aggregate TRC scores and word counts, I have compiled the results into

Figures 4.11, 4.15 and 4.19. I discuss these and the results at the individual TRC

characteristics (also summarized visually) in what follows.
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Figure 4.11: Summary visual of state, trait and teaching anxiety versus aggregate
TRC and word count for the across-clip average, Clip 1, Clip 2 and Clip
4.
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As can be seen in Figure 4.11 all three types of anxiety had no relationships to

word count but state and trait anxiety had some negative associations with aggregate

TRC scores. In looking more closely at the trends between the three different anxiety

measures and the individual TRC scores (see Figures 4.12, 4.13, and 4.14) though the

majority of the associations are non-existent (as indicated by the orange text) there

are some interesting patterns that emerge in the associations that do exist.

First, the TRC characteristics scores of teacher responses to Clip 1 have negative

associations (where they do occur) with all three anxiety measures. State anxiety in

particular has negative associations with four of the five TRC characteristics for Clip

1. Recall that state anxiety was a measure of how anxious teachers felt while filling out

the paper-and-pencil instruments. Essentially, those negative trends suggest that an

increase in feeling more anxious while filling out the STAI instrument was associated

with generally less productive (as measure by the TRC categories) responses to the

apparently correct student answer. Though efforts were made to make participants

feel at ease while both taking the pencil-and-paper instruments and when completing

the teaching simulation, it could be that both of these situations, nonetheless, felt

evaluative, high-stakes and thus anxiety-provoking for teachers. This state anxiety

could then have negatively impacted teachers’ responses to Clip 1 though it is unclear

why it simultaneously had essentially no relationship with their responses to the

apparently incorrect student answers of Clips 2 and 4.

A second interesting trend across these Figures is the mix of positive and negative

associations seen for the TRC characteristics scores of teacher responses to Clip 2.

Essentially, both an increase in state or trait anxiety is associated with a decrease in

the mathematics scores for Clip 2. However, teaching anxiety has positive associations

with Clip 2 actor and moves scores but negative (and close to significant) associations

with Clip 2 student actions and mathematics. It is not evident why this would be the

case though one possibility is that within the range of teaching tasks covered in the
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teaching anxiety instrument some might have supported teachers while responding

in-the-moment and others might have hindered them.

A third trend emerges when looking at the Clip 4 teacher responses. Specifically,

where there are associations they are positive. Both trait and teaching anxiety had

positive associations with Clip 4student actions scores (meaning a teacher responses

that was more likely to use the student’s language explicitly). Additionally, teaching

anxiety was positively and almost significantly associated with Clip 4 student ideas.

Of the three anxiety measures, teaching anxiety seems to show the most promise

for providing insights into the relationship between anxiety and teacher responses.

Future work will need to look more closely at this measure including both conceptual

and instrument development. With regard to conceptual development, the current

instrument covers a wide range of teaching tasks and it is possible that there teachers

might have anxiety in some sub-domains of teaching work and not others. Therefore,

developing a conceptual map of the categories of teaching work that are likely to

cause teachers anxiety could better map the terrain of this broader anxiety. This

conceptual development is also likely to inform instrument development, particularly

the development of items for the various sub-categories of teaching work that are

likely to be anxiety provoking.

Two additionally, methodological insights emerge from the anxiety data. On

the one hand, these results provide evidence that anxiety can impact a teacher’s

performance and should be further explored in both research and teacher education.

On the other hand, out of the 84 possible associations across all three anxiety measures

(12 for the aggregate TRC scores, 12 for word count and 60 at the individual TRC

characteristics level), only 21 (or 25%) were non-zero.

This suggests that perhaps other methods for collection information about anxi-

ety might be worth exploring. In particular, as with the emotional reactions, using

instruments and measures that do not require participants to self-assess and can be
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used in-the-moment rather than a priori during the teaching simulation might provide

more information. A second methodological consideration is suggested in part by the

mix of positive and negative associations that occurred across Clips 2 and 4. Specif-

ically, in paper 1 I mentioned research has shown that how an individual interprets

the anxiety—as either a threat or a challenge—experienced in a situation can impact

there physiological reaction and their ability to perform. It would be worth exploring

whether teachers experience students’ apparently incorrect answers as threatening

or challenging and if these perceptions lead to variable teacher performance when

responding to students.

Figure 4.12: Summary visual of state anxiety versus individual TRC characteristics
scores for the across-clip average, Clip 1, Clip 2 and Clip 4.

As can be seen in Figure 4.15 below there were no statistically significant associa-

tions between raw MKT score, beliefs category 1 and beliefs category 2 with aggregate

TRC scores or word count. Though raw MKT score has a positive association with

word count, suggesting that an increase in MKT is associated with lengthier teacher

responses in Clips 1 and 4, raw MKT score had no relationships with aggregate TRC

scores and no associations at the level of individual TRC characteristics (see Figure
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Figure 4.13: Summary visual of trait anxiety versus individual TRC characteristics
scores for the across-clip average, Clip 1, Clip 2 and Clip 4.

Figure 4.14: Summary visual of teaching anxiety versus individual TRC characteris-
tics scores for the across-clip average, Clip 1, Clip 2 and Clip 4.
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4.16). As I mention in the limitations below, one potential explanation for this lack of

significance could be related to methodological considerations. However, the increase

in word count with an increase in MKT score could be related to the instrument and

“teacher lust.” Namely, the MKT instrument has items that are mostly focused on

common content knowledge and some specialized mathematical knowledge items. It

could be that it is more of a proxy for specialized content knowledge rather than

pedagogical content knowledge. Thus it is likely more of an indication of an individ-

ual’s content strength. It is possible that these individuals, who are scored higher

in MKT, experience “teacher lust” when they hear students answers and are excited

about discussing the mathematics. Hence, their responses become lengthier.

Beliefs category 1 has no associations with word count or aggregate TRC scores

and, even at the level of individual TRC characteristics (see Figure 4.17) has associ-

ations with only Clip 2 and average mathematics scores. It is possible that this lack

of associations is a methodological issue again. Recall that this beliefs category was

comprised of several sub-categories ( “Math as a tool”, “Extrinsic versus intrinsic

motivation”, “Teacher Control”, and “Correct Answers”) and therefore covers many

different types of beliefs. It is possible that these broader beliefs are not ones that

influence how teachers manage students’ responses.

Beliefs category 2 also had very few associations of note. LIke raw MKT, an

increase in this beliefs category (which indicates an increase in enjoyment of and

confidence in mathematics) is associated with an increase in word count. I would

hypothesizes that, similar to this phenomenon with the MKT score, it is possible that

teachers who enjoy and are more confident in mathematics might also enjoy talking

more about the mathematics. At the level of the individual TRC characteristics, this

beliefs category is positively associated with aspects of teacher responses to Clips 1

and 2 but negatively associated with the student ideas score for teacher responses to

Clip 4. It is possible, due to the nature of the apparently incorrect answer in Clip 4,
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that teachers who are more confident in mathematics might also feel more confident

in inferring why the student made the mistake he did, even though his answer does

not provide this information. Hence, teacher responses then start to veer further from

the main student idea.

Figure 4.15: Summary visual of MKT, Beliefs category 1 and Beliefs category 2 versus
aggregate TRC and word count for the across-clip average, Clip 1, Clip
2 and Clip 4.
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Figure 4.16: Summary visual of raw MKT score versus individual TRC characteristics
scores for the across-clip average, Clip 1, Clip 2 and Clip 4.

Figure 4.17: Summary visual of Beliefs category 1 versus individual TRC character-
istics scores for the across-clip average, Clip 1, Clip 2 and Clip 4.
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Figure 4.18: Summary visual of Beliefs category 2 versus individual TRC character-
istics scores for the across-clip average, Clip 1, Clip 2 and Clip 4.

Finally, of the eight internal resources variables measures years teaching and age

show the most association with various aspects of teachers’ responses to Clips 1 and

2 (see Figures4.19, 4.20 and 4.21). Overall, years teaching has positive associations

several aspects of teachers responses to Clip 2 and to the mathematics score of Clip

1 responses. In general, age is also positively associated with aspects of teacher re-

sponses to both Clips 1and 2. Out of a possible 56 associations (8 across the aggregate

TRC scores, 8 across word count and 40 at the individual TRC characteristics level)

there were 18 (about 32%) that were not zero.
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Figure 4.19: Summary visual of years teaching and age versus aggregate TRC and
word count for the across-clip average, Clip 1, Clip 2 and Clip 4.

Figure 4.20: Summary visual of years teaching versus individual TRC characteristics
scores for the across-clip average, Clip 1, Clip 2 and Clip 4.
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Figure 4.21: Summary visual of age versus individual TRC characteristics scores for
the across-clip average, Clip 1, Clip 2 and Clip 4.

In general, the eight internal resources had the most associations with aspects of

teacher responses to Clip 2. Out of a possible 56 associations (1 with aggregate TRC

score, 1 with word count, and 5 with the individual TRC characteristics for each of

the eight resources) there were 16 associations ( or almost 29%) that were non-zero

and almost evenly split between positive (nine) and negative (seven) associations.

The number of associations with Clip 1 teacher responses was close (15 out of 56, or

about 27%) with, again, an almost even split between positive (seven) and negative

(eight) associations. In contrast, there were only seven associations of note for Clip

4 (or about 12.5%) and most of these were positive (five of the seven).

Though there were fewer associations across the emotional scales, there were again

more associations between emotional reactions and aspects of teacher responses to

Clip 2 (4 out of 21 possible, or about 19%). Clip 1 was again a close second with

three associations ( about 14%), while Clip 4 only had one association (or about

5%) across all possible associations with emotional reactions. In other words, the

measures used in this study for emotional reactions and internal resources seemed to

be the most helpful for understanding aspects of teacher responses to Clips 2 and 1,
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rather than Clip 4.

Though the lack of results suggest many refinements for the instruments, this

pattern across the types of student responses also suggests that future designs of the

teaching simulation that vary the student answers in strategic ways might provide

different kinds of insights. In particular, it could be that different kinds of inter-

nal resources are more or less helpful in responding to particular types of student

responses (such as the more incomplete apparently incorrect student answer in Clip

4).

Limitations

Reviewing these findings raises some limitations and several avenues for design

improvements in future iterations. In particular, as I consider the various instru-

ments used to measure the internal resources variables, I reflect on both what the

instruments captured and how they captured this information.

As I mentioned in the description of the methods, there are no paper-and-pencil

instruments that comprehensively assess the MKT in the specific mathematical do-

main covered in the teaching simulation. Hence, the items used were taken from the

closest related content, specifically Algebra. It is therefore possible that the MKT

captured by the paper-and-pencil assessment is significantly different than the MKT

needed to respond to the student clips. Additionally, it could be that assessing MKT

in this way is indicative of its use in reflective competence versus action-related com-

petence. Indeed, this is the part of the argument that Knievel, Lindmeier and Heinze

(2015) put forth in support for their video-vignette computer based assessment.

In this study, the beliefs instrument I used captured teachers beliefs about the

nature of mathematics and the teaching and learning mathematics (beliefs category

1) as well as teachers’ personal enjoyment and confidence in mathematics (beliefs

category 2). Category 1 included beliefs about “Math as a tool”, “Extrinsic versus
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intrinsic motivation”, “Teacher Control”, and “Correct Answers” which touch on

some relevant facets of beliefs about mathematics and its learning and teaching.

It is possible that the original instrument from which the items were pulled has

some limitations including covering beliefs that may not be as crucial in shaping how

teachers’ respond to student thinking. With regard to beliefs category 2, which had

no relationship to any of the teacher responses characteristics in any of the three

student responses, it is likely that a more relevant measure would be of teachers’

enjoyment and confidence in teaching mathematics rather than of just mathematics.

This is a theoretical distinction that Kunter et al. (2008) are careful to point out and

explain,

given the clich of the highly knowledgeable, but pedagogically untalented,

mathematics or science teacher who is fascinated by the subject of instruc-

tion, but would prefer not to have to interact with students, the topics-vs.

activity-specific [enthusiasm] distinction seems particularly applicable to

teaching (see also Shulman, 1987) (p. 470).

Hence, in future iterations, two important consideration will be: (1) which beliefs

about mathematics teaching and learning are most relevant to assess with respect to

managing students’ responses and additionally (2) which beliefs about enjoyment and

confidence in teaching mathematics should be assessed. A final consideration about

the beliefs instruments speaks again to broader methodological debates. Specifically,

there are likely inherent issues with asking teachers to provide self-reports about their

beliefs (i.e., assessing beliefs through introspection). It is possible that beliefs might

be better conceptualized as tacit and more authentically captured through breach

experiments (in which beliefs come to light when they are violated or breached).

In considering the measures of anxiety, it is possible that the teaching anxiety

questionnaire was not specific enough to the tasks of teaching relevant for managing

students. Additionally, questions similar to those I posed with respect to assessing
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participants’ emotional reactions arise when considering the measures of anxiety that

I used; specifically, that perhaps assessing anxiety in-the-moment, through physio-

logical measures rather than introspection could provide more accurate measures of

teachers’ anxiety.

Conclusions and Implications

This study sought to explore various factors that might help researchers better

understand how teachers respond to students and in particular, to provide empirical

evidence to warrant future investigations into the role of affect, particularly anxiety, in

teaching. It also raised many methodological issues and questions that will need to be

addressed as scholars explore the dynamic, action-related competencies of teaching.

Of importance to teacher educators is the finding that anxiety does, indeed, play a

role in shaping teachers’ responses to students. In particular, it implies that teacher

education may need to consider pedagogies of enactment that are likely to decreases

teachers’ anxiety while developing their self-efficacy and action-related competencies.

Additionally, it suggests that teacher candidates might need support in developing

emotional-motivational skills that are likely to impact not only their instructional

quality but also their longevity in the profession.
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CHAPTER V

Conclusion

In this dissertation, I explored how mathematics teachers manage students’ re-

sponses in-the-moment during whole-class instruction. In my first paper I described

a special case of this phenomenon when a student has provided an answer that the

teacher perceives as incorrect, an “apparently incorrect” student response. After pro-

viding an illustrative vignette, I discussed four potential consequences for students’

learning. Namely, that how a teacher manages students’ apparently incorrect re-

sponses has consequences for: what mathematics students learn, what students learn

about what it means to do mathematics, who can learn mathematics and what it

means to make mistakes. Despite these consequences, research shows that in most

US classrooms students’ answers are still simply evaluated as right or wrong. In light

of this reality, I unpacked the difficulties and complexities involved in managing stu-

dents’ responses to illustrate why something as seemingly simple as responding to

students is actually incredibly difficult to do and therefore not often observe being

skillfully enacted in classrooms. Specifically, I conceptualized managing students’

response as a competency and described the various cognitive, affective and motiva-

tional factors that are likely to play an important part in a teacher’s ability to do this

work.

In my second paper, I looked at how teachers responded to both apparently cor-
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rect and incorrect student answers in a teaching simulation early algebraic content.

In this data I found trends in teacher responses that seemed to hold across both

types of student answers as well as interesting differences across the two types. In

general, regardless of whether a student answer was apparently correct or incorrect,

teacher responses had a tendency to want to engage the same student in some kind

of follow-up. Teacher responses across both types of student answers were also fairly

responsive—as captured by the way teacher responses picked up a student’s language

and the extend to which a student might recognize their idea in what is being dis-

cussed. This result is encouraging since it seems to suggest that most teachers do

make efforts to take-up what students are saying and engage at least the student

who has spoken in conversation, rather defaulting to lecturing (or some other form

of mathematical monologue).

What was less encouraging are the results about the teacher response characteris-

tics that differed depending on whether the student answer was apparently incorrect

or correct. Here I found that most teachers, even in this simulated instructional con-

text, exhibited evaluative patterns around student responses. When a student answer

was apparently incorrect, the majority of teacher responses employed moves clearly

aimed at getting the student to correct their mistake. In contrast, when the student

answer was apparently correct, teacher responses sought elaboration from the student

on some aspect of their idea.

What is interesting is that there was a subset of the teachers in my sample of

24 that did not have these same clear patterns. In particular, when looking across

their responses to the three different student answers there was not a clear pattern

in the features of their responses to apparently correct versus apparently incorrect

student answers. In particular, their responses to apparently incorrect student an-

swers seemed to suspend judgment or evaluation and instead, sought, in general, to

get more information from the student. Though the ultimate goal of instruction is for
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students to have correct knowledge, there is something of value to be gleaned from

this subset of teachers. In particular, by suspending judgement in their responses to

students, these teacher responses potentially provide space for students in the class

to do the intellectual work and have more agency in developing mathematical knowl-

edge and determining what is right and wrong. These teacher responses have more

potential to be productive for student learning.

In consider the features of this subset of teacher responses and the other results

of this paper, some points of leverage for teacher education emerge. In particular,

most teachers are able to provide productive responses to student answers that are

visibly correct but struggle in crafting responses to apparently incorrect answers.

This indicates that it might be beneficial to spend time exploring incorrect student

thinking within mathematics content and methods courses. Additionally, these explo-

rations of student work could engage teachers (as other researchers have suggested)

in looking carefully at the student thinking for both what a student does and does

not understand. These claims of student understanding, however, should be sup-

ported by evidence from the student answer. Essentially, mathematics teachers could

benefit from more opportunities to explore incorrect student thinking in ways that

intentionally develop in them a more cautious disposition. By engaging with student

work with a focus on both what students seem to understand and using evidence to

support claims about these understandings, teacher could become more discerning in

the inferences they make and recognize when and how to suspend judgment about

the incorrectness of a student answer.

In addition to suggesting the development of particular dispositions towards stu-

dent answers and thinking, the results of this paper also provide some recommenda-

tions for how teachers might respond to students. Specifically, there were particular

moves (such as elaborate and justify) that teachers could be encouraged to utilize with

apparently incorrect responses. In particular, the results indicate that teachers have
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little difficulty taking-up student’s language and ideas in their responses but might

need more support in developing a larger and more productive repertoire of moves

to employ when a student answer is apparently incorrect. Teacher education efforts

could again take-up this charge by providing opportunities for teachers to brainstorm

alternative moves to incorrect student answers and then to practice utilizing these new

moves in low-stakes but high-fidelity simulations of responding to student answers.

In my third paper, I turned my attention from the rich nuances and details of

the teacher responses to exploring what factors might be related to features of these

teachers’ responses. Specifically, I explored how both teachers’ emotional reactions

to the student answers in the simulation and their various internal resources (e.g.,

knowledge, beliefs, anxiety) might be associated with aspects of their responses to

students. In particular I explore how the word count, aggregate Teacher Responses

Coding scheme (TRC) score and individual TRC category scores might be associated

with the teachers’ emotional reactions and internal resources.

Overall, there were few significant correlations in the results, which I hypothesize

is in part due to methodological rather than conceptual limitations. When looking

at the correlations that were significant as well as those with the potential to become

significant in a much larger sample, a few notable patterns emerged. Specifically,

teachers who reported feeling more in control after hearing the student answers in

Clips 1 and 2 (the apparently correct and the first apparently incorrect answers),

gave shorter responses. Additionally, one of the few potential associations between

a teachers’ sense-of-control and their responses was a negative relationship with the

mathematics score for Clip 4 responses.

In essence, though a sense of control is likely to reflect a teacher’s sense of self-

efficacy and could, in theory, support a teacher in responding more productively, this

results suggests that in some cases this initial reaction might actually be misleading.

As I mentioned in the discussion of that paper, it is likely that upon hearing the
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student answer teachers can easily identify what the student did incorrectly and feel

confident. However, this is likely a false sense of confidence since in their responses

they had difficulty identifying why the student was making a mistake and seemed to

struggle in determining what mathematics to follow-up on. Essentially, self-efficacy or

confidence could be a double-edge sword and future work could explore the conditions

that make it an affordance or a hinderance. Otherwise, it seems that either student

answers do not evoke much emotional reactions from teachers and/or participants are

not able to accurately self-assess their emotional state.

In exploring the potential relationships between features of teachers’ responses and

their internal resources again very few significant correlations occurred in this sample.

Noteworthy nonetheless are the associations that did emerge when looking at state

anxiety and teaching anxiety in particular. These results do suggest that anxiety can,

like confidence, be a double-edge sword. With regard to anxiety, it would be worth

exploring whether teachers perceive particular instructional situations as threatening

or challenging since this might explain the mix of positive and negative associations

I found.

These particular results can also be used to inform teacher education. The po-

tentially detrimental effects of anxiety for both teachers (e.g., stress has been linked

to an increased risk of heart disease in the general population and anxiety has been

linked to burn-out in teachers) and students (e.g., through the possibly problematic

ways this might impact the instruction they receive) might give teacher education

programs that fully embrace the apprenticeship model pause. Though novices can

gain much from these experiences ( as suggested in part by the positive associations

found in this study between years of teaching and features of teachers’ responses),

the preparation and support they receive to navigate the stress and complexity of

real classroom teaching warrants closer attention. It could be that novices would

be better prepared for these opportunities and their accompanying anxiety through
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carefully structured approximations of practice Grossman, Compton, et al. (2009).

In general, the work presented here—like much of the work in teacher education

more broadly—has hopefully served to paint a more complete picture of the com-

plexity and challenges of mathematics teaching in general and managing students’

responses in particular. By continuing to expand the methodologies utilized in ed-

ucation research and considering teaching more holistically–including the affective

components of the work that are often ignored—progress can be made more rapidly

in understanding teaching and improving teacher education.
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APPENDIX A

Comparison of TRC models

In order to confirm that the final results were indicative of existing relationships

between variables rather than simply a consequence of the quantification choices I

made, I compared the results of two models. In one model, I used the quantification

scheme described in the paper (e.g., for the actor category: 5 points for same student,

3 point for whole class and 0 points for teacher) and in a second model I reduced the

codes to a low and a high (0/1) group. Below, I briefly discuss the binary grouping

for each of the five TRC categories and provide a short rationale for the groupings

within each category.

In the actor category same student and whole class were grouped together in the

high or 1 group and teacher into the low or 0 group. In general, and in the specific

context of the student response clips used in this study, student learning is more

likely to happen if the teacher is not the only one doing the intellectual work. In the

recognition-student actions category I defined the high group as the explicit code and

the low group as implicit, not, and explicit-incorrect. In the recognition-student ideas

category I defined the high group as the core code and the low group as peripheral,

CNI, Other and NA. Students will be more likely to recognize their thinking in a

teacher response if the teacher response uses the students exact words and stays
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core to the students idea. Conceptually, responsive teaching is more likely to be

accomplished through teacher responses that would be coded explicit for recognition-

student actions and core for recognition-student ideas (as opposed to the other codes in

these categories). In the moves category justify, allow, elaborate, collect and connect

were grouped together in the high or 1 group and clarify, monitor, repeat, evaluate,

literal, validate, adapt, correct and dismiss into the low or 0 group. The five moves in

the high category, as opposed to those in the low category, have greater potential to

engage students in more cognitively demanding work. Finally, in the mathematics the

codes CNI-core and CNI were grouped together in the high or 1 group and Core-MP1,

core, peripheral, peripheral-beyond, CNI-imprecise, peripheral-incorrect, other, other-

incorrect, and non-math into the low or 0 group. Teacher responses that are coded

CNI-core or CNI do not give away so much of the mathematics that students have

little intellectual work to do, are possibly closer to the mathematical point underlying

the student thinking and do not have language issues (i.e., imprecision) that could be

confusing for students.

In order to compare these models, I conducted Pearsons correlation coefficient

analyses for the quantified codes model (model 1) and Chi-squared and Logit analyses

for the binary model (model 2). I then compared the resulting coefficients’ signs

(positive and negative) and p-values. A detailed discussion of differences between the

model can be found in Appendix B.
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Figure A.1: Comparison of Pearson’s correlation coefficients from model 1 and Chi-
squared results from model 2 for Clip 1 TRC coding.
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Figure A.2: Comparison of Pearson’s correlation coefficients from model 1 and Chi-
squared results from model 2 for Clip 2 TRC coding.
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Figure A.3: Comparison of Pearson’s correlation coefficients from model 1 and Chi-
squared results from model 2 for Clip 4 TRC coding.
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Figure A.4: Comparison of Pearson’s correlation coefficients from model 1 and Logit
coefficients results from model 2 for Clip 1 TRC coding and SAM scales.
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Figure A.5: Comparison of Pearson’s correlation coefficients from model 1 and Logit
coefficients results from model 2 for Clip 2 TRC coding and SAM scales.
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Figure A.6: Comparison of Pearson’s correlation coefficients from model 1 and Logit
coefficients results from model 2 for Clip 4 TRC coding and SAM scales.
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Figure A.7: Comparison of Pearson’s correlation coefficients from model 1 and Logit
coefficients results from model 2 for Clip 1 TRC coding and internal
resources measure.
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Figure A.8: Comparison of Pearson’s correlation coefficients from model 1 and Logit
coefficients results from model 2 for Clip 2 TRC coding and internal
resources measure.
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Figure A.9: Comparison of Pearson’s correlation coefficients from model 1 and Logit
coefficients results from model 2 for Clip 4 TRC coding and internal
resources measure.
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APPENDIX B

Discussion and plots of differences between TRC

model 1 and 2

In comparing the coefficients and p-values of models 1 and 2 for various variables

there are 13 differences that warranted further exploration. Again, differences were

flagged when the sign of the coefficients and/or the significance level differed since,

in general, the magnitudes of the coefficients cannot be necessarily compared in a

meaningful way (especially in the case of Pearsons correlation versus Logit coefficients

since the units are, in one case, related to a change in y for a one unit change in x

and, in the other case, related to the log-odds for a change from group 0 to group 1).

Relationships within TRC categories

In comparing the Pearsons correlation coefficients of model 1 and Chi-squared

results of model 2 in looking at the relationship within the five TRC categories for

each clip, there were 6 differences between the models that warranted investigating.

In Clip1, the relationship between mathematics and actor was positive in both

models but not significant in the quantitative model (model 1, Pearsons correlation

coefficient p-value = 0.381) and significant in the binary model (model 2, Chi-squared
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coefficient p-value = 0.021). Similarly, the relationship between mathematics and

student ideas was positive in both models but not significant in the quantitative

model (model 1, p-value = 0.099) and significant in the binary model (model 2, p-

value = 0.001). In looking at the relationship move and student ideas though again

both coefficients were positive, in this case the coefficient was significant in model 1

(p-value = 0.000) and not significant in model 2 (p-value =0.219).

In Clip 2, the relationship between mathematics and actor was positive in both

models but not significant in the quantitative model (model 1, Pearsons correlation

coefficient p-value = 0.208) and significant in the binary model (model 2, Chi-squared

coefficient p-value = 0.021). Similarly, the relationship between mathematics and

move was positive in both models but significant in the quantitative model (model 1,

p-value = 0.026) and not significant in the binary model (model 2, p-value = 0.113).

In Clip 4, the relationship between actor and student ideas was positive in both

models but significant in the quantitative model (model 1, p-value = 0.031) and not

significant in the binary model (model 2, p-value = 0.810).

Relationships between TRC categories and SAM scales

In this group of relationships only one difference stood out. In Clip 2, the rela-

tionship between actor and Clip 2 SAM Arousal was non-significant in both models

but negative in model 1 and positive in model 2. As can be seen in Figure B.1 below,

the plots of Clip 2 SAM arousal versus model 1 (quantitative model, top plot) and

model 2 (binary model, bottom plot) provide some explanation for this result. In

particular, it appears that teachers with Clip 2 responses that were coded teacher

(0 in the quantitative model) or same student (5 in the quantitative model) actually

seem to self-assess about the same level of arousal (the average for the 5 participants

in the teacher group was 4.20 and the average for the 10 participants in the same

student group was 4.14). In contrast, the participants with Clip 2 responses coded
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as whole class for the actor (a score of 3 in the quantitative model) reported higher

arousal (the average for the 5 participants in this group was 7). Thus, the negative

trend line in the model 2 plot reflects this slight negative difference in the means of

arousal between the 0-score and 5-score groups (average of 4.20 versus 4.14) while

in the model 2 plot, the 1-score group (which is a combination of the 3- and 5-score

groups of model 1) reflects the higher arousal of teachers whose responses were coded

whole class.
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Figure B.1: Clip 2 SAM arousal versus actor for model 1 (quantitative model, top
plot) and model 2 (binary model, bottom plot).
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Relationships between TRC categories and internal resources

In this group of relationships six differences stood out, most of which involved

word count as one of the two variables.

In Clip 1, the relationship between actor and Clip1 word count was negative in

both models but significant in the quantitative model (model 1, Pearsons correlation

coefficient p-value = 0.026) and not quite significant in the binary model (model 2,

Logit coefficient p-value = 0.070). The plots of Clip 1 word count versus model 1

(quantitative model, top plot) and model 2 (binary model, bottom plot) in Figure

B.2 below show this slight difference. The combination of the whole class group with

the same student group results in a trend line that is not as steep in the binary

model. This likely explains why this result is not quite significant in model 2 but is

significant in model 1. The similarities in these results and plots provide reassurance

that, in this case, the result of model 1 is meaningful and not simply a byproduct of

the quantification process.

Additionally, the relationship between Clip 1 student ideas and age was positive

in both models but not significant in the quantitative model (p-value = 0.105) and

significant in the binary model (p-value = 0.049). A comparison of the plots (see

Figure B.3 below) shows this slight difference between the two models. The similar-

ities in these results and plots suggest that there might exist a positive association

between Clip 1 student ideas and age.
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Figure B.2: Clip 1 word count versus actor for model 1 (quantitative model, top plot)
and model 2 (binary model, bottom plot).
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Figure B.3: Age versus Clip 1student ideas for model 1 (quantitative model, top plot)
and model 2 (binary model, bottom plot).
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In Clip 2 the relationship between moves and word count was negative in both

models but significant in the quantitative model (p-value = 0.021) and not significant

in the binary model (p-value = 0.306). As can be seen from the plots of the word

count versus moves for models 1 and 2, it appears that in collapsing the codes (which

meant grouping the -3, 1 and 3-point scoring moves into the low group for the binary

model) lowered the average score of the low group and hence, flattened the trend line

between the two extremes of the plot (see Figure B.4). The top plot does seem to

indicate that a few outlier in the -3 moves group might be skewing the results and,

indeed, after removing the three outliers (with word counts greater than 120 words)

there seems to be no relationship between moves and word count (see Figure B.5).
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Figure B.4: Clip 2 word count versus moves for model 1 (quantitative model, top
plot) and model 2 (binary model, bottom plot).
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232



In Clip 4 the relationship between moves and word count was negative in both

models but significant in the quantitative model (p-value = 0.003) and not quite

significant in the binary model (p-value = 0.078). The plots of these models shows

these slight differences (see Figure B.6) and, after removing the four outlier responses,

a negative trend is still prominent in model 2 (B.7). These plots suggest that the

result of model 1 is meaningful and not simply a byproduct of the quantification

process or outliers.
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Figure B.6: Clip 4 word count versus moves for model 1 (quantitative model, top
plot) and model 2 (binary model, bottom plot).
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Figure B.7: Clip 4 word count versus moves for model 1 with and without outlier
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Also, in Clip 4 the relationship between student ideasand word count was negative

in both models but significant in the quantitative model (p-value = 0.022) and not

quite significant in the binary model (p-value = 0.083). Again, the plots of this

relationship in each model shows this slight different (see Figure B.8). In this case,

outliers are not a factor in the quantitative model since these are spread across three of

the four student ideascategories (see Figure B.9).These plots seem to confirm that the

negative association between Clip 4 student ideasand word count is not idiosyncratic

to the quantitative model or a only a result of outliers.
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Figure B.8: Clip 4 word count versus moves for model 1 (quantitative model, top
plot) and model 2 (binary model, bottom plot).
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Figure B.9: Clip 4 word count versus student ideas for model 1 with and without
outlier points.

237



Finally, in Clip 4 the relationship between student ideas and beliefs category 2 was

negative in both models but significant in the quantitative model (p-value = 0.045)

and not quite significant in the binary model (p-value = 0.067). Plots of beliefs

category 2 versus student ideas in model 1 and in model 2 (see FigureB.10) indicate

that a slight, negative association seems to exits, regardless of the model.
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Figure B.10: Beliefs category 2 versus Clip 4 student ideas for model 1 (quantitative
model, top plot) and model 2 (binary model, bottom plot).

238



APPENDIX C

TRC code distribution in clips

Table C.1: Distribution of actor codes in Clips 1, 2, and 4.

Same Student
Whole Class/
Other student

Teacher

Clip 1 13 2 9
Clip 2 14 5 5
Clip 4 13 1 10
Total 40 8 24

Table C.2: Distribution of student actions codes in Clips 1, 2, and 4.

Explicit Implicit Not
Explicit-
Incorrect

Clip 1 14 10 0 0
Clip 2 16 3 3 2
Clip 4 10 2 10 2
Total 40 15 13 4

239



Table C.3: Distribution of student ideas codes in Clips 1, 2, and 4.

Core Peripheral CNI Other NA
Clip 1 12 5 1 3 3
Clip 2 11 13 0 0 0
Clip 4 11 5 0 3 5
Total 34 23 1 6 8

Table C.4: Distribution of moves codes in Clips 1, 2, and 4.

Clip 1 Clip 2 Clip 4 Total
Justify 4 2 1 7
Allow 0 1 0 1
Elaborate 9 2 5 16
Collect 0 1 0 1
Connect 0 3 0 3
Clarify 1 0 0 1
Monitor 0 0 4 4
Repeat 2 1 1 4
Evaluate 1 0 1 2
Literal 0 6 2 8
Validate 1 0 0 1
Adapt 3 0 0 3
Correct 0 8 8 16
Dismiss 3 0 2 5

Table C.5: Distribution of mathematics codes in Clips 1, 2, and 4.

Clip 1 Clip 2 Clip 4 Total
CNI-core 5 5 1 11
CNI 10 6 6 22
Core-MP1 0 0 0 0
Core 0 4 4 8
Peripheral 1 5 3 9
Peripheral-beyond 2 0 1 3
CNI-imprecise 4 4 3 11
Peripheral-incorrect 0 0 0 0
Other 1 0 5 6
Other-incorrect 1 0 0 1
Non-math 0 0 1 1

240



APPENDIX D

SAM scale correlations

Tables D.1 , D.2, and D.3 show the SAM scale correlations for Clips 1, 2, and

4. As mentioned earlier, we would not expect there to be correlations between these

scales within a clip as they are meant to measure conceptually different aspects of

the construct emotion. The tables confirm that this is the case for these three clips.

Table D.1: Clip 1 SAM scales: Pearson’s correlations coefficients (N = 24).

Variables 1 2 3
1. Clip1 SAM Valence −
2. Clip1 SAM Arousal −0.244 −
3. Clip1 SAM Control −0.36 0.314 −
M 3.708 4.792 6.375
SD 1.756 1.978 1.952

Table D.2: Clip 2 SAM scales: Pearson’s correlations coefficients (N = 24).

Variables 1 2 3
1. Clip 2 SAM Valence −
2. Clip 2 SAM Arousal −0.128 −
3. Clip 2 SAM Control −0.196 0.18 −
M 3.5 4.833 6.208
SD 1.745 1.949 1.841
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Table D.3: Clip 4 SAM scales: Pearson’s correlations coefficients (N = 24).

Variables 1 2 3
1. Clip 4 SAM Valence −
2. Clip 4 SAM Arousal 0.086 −
3. Clip 4 SAM Control −0.319 0.096 −
M 4.208 5.083 6.75
SD 1.719 2.225 1.726
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APPENDIX E

SAM scale language

The SAM scale is designed with visuals in order to avoid some of the potential

problems inherent with asking participants to interpret text or words; however, in

order to teach participants how to use the scale during the teaching simulation the

extremes (1 and 9) and middle (5) were described to participants with both text and

images. In order to described the results, I assigned language after-the-fact to the

remaining SAM scale positions ( 2, 3, 4, 6, 7, and 8) and chose language intended to

reflect each number’s relative position between the neutral point (a 5) and the closest

extreme (see Table E.1 below).
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Table E.1: SAM scales language.

Rating Valence Scale Arousal Scale Control Scale

1 very happy
very

aroused/excited
very

out-of-control

2
considerably

happy
considerably

happy
considerably
out-of-control

3
somewhat

happy
somewhat

happy
somewhat

out-of-control

4 slightly happy slightly happy
slightly

out-of-control

5
neither happy
not unhappy

(neutral)

neither excited
not calm
(neutral)

neither excited
not calm
(neutral)

6 slightly unhappy slightly calm
slightly

in-control

7
somewhat
unhappy

somewhat calm
somewhat
in-control

8
considerably

unhappy
considerably

calm
considerably

in-control

9 very unhappy very calm very in-control
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APPENDIX F

Plots of average SAM scales versus average

aggregate TRC scores and average word count.

0.00 

1.00 

2.00 

3.00 

4.00 

5.00 

6.00 

7.00 

8.00 

9.00 

-4.00 1.00 6.00 11.00 16.00 21.00 

SA
M

 S
co

re
 

Avegage TRC aggregate score 

Average Valence Score Average Arousal Score Average Control Score 
Linear(Average Valence Score) Linear(Average Arousal Score) Linear(Average Control Score) 

Figure F.1: Plot of average SAM scores versus average aggregate TRC scores.
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Figure F.2: Plot of average SAM scores versus average word count.
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APPENDIX G

Histograms of Eight Internal Resources Measures

Figure G.1: Histogram of state anxiety score (N=24)
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Figure G.2: Histogram of trait anxiety score (N=24)

248



Figure G.3: Histogram of teaching anxiety score (N=24)
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Figure G.4: Histogram of raw MKT score (N=24)
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Figure G.5: Histogram of raw MKT score (N=24)
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Figure G.6: Histogram of beliefs category 1 (N=24)
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Figure G.7: Histogram of beliefs category 2 (N=24)
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Figure G.8: Histogram of years of teaching experience (N=24)
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Figure G.9: Histogram of age (N=24)
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