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ABSTRACT

In the past several years, we have witnessed numerous human genetic studies that have sys-

tematically evaluated the contribution of genetic polymorphisms to various complex diseases, and

enabled the evolution of multiple treatment strategies, particularly pharmaceutical therapies. Geno-

type imputation has been a key step in such studies - increasing the power of gene mapping anal-

yses, facilitating harmonization of results across studies, and accelerating fine-mapping efforts.

Imputation requires access to a reference panel of densely sequenced genomes and is a computa-

tionally intensive process, even with modern high performance computing. Furthermore, reference

panels often have data privacy issues that inhibit users from having direct access to the data. The

goal of this dissertation is to design novel strategies to address these challenges for the next gener-

ation of imputation methods.

In the first project, I describe our efforts to create a reference panel of ~32, 000 individuals with

~40M variants by combining genetic information obtained across 20 whole genome sequencing

studies (Haplotype Reference Consortium). In the second project, I describe a novel idea called

‘state space reduction’ that reduces computational requirements of genotype imputation by orders

of magnitude without any loss of accuracy (minimac3). I also present a web-based platform for

imputation that greatly improves user experience and productivity. In the third project, I extend the

idea of state space reduction by implementing a more complex version of the strategy that produces

additional cost savings (minimac4). In the fourth project, I introduce the idea of meta-imputation:

a novel approach that integrates imputed data from multiple reference panels at overlapping sites

without interfering in the imputation algorithm (MetaMinimac).

In summary, the purpose of this dissertation research is to develop statistical methods and com-

xii



putational tools that will benefit other researchers in the next generation of human gene mapping

studies. These imputation tools will detect rare variants with higher accuracy, consequently in-

creasing the power of association studies.
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CHAPTER 1

Introduction

The field of human genetics has made substantial advances since its genesis with studying

simple Mendelian disorders a century ago. In the past decade, more attention has been paid to

susceptibility to complex diseases1 due to both genetic and environmental factors. In 2005, the

first ever genome wide association (GWA)2 study was conducted on unrelated patients with age-

related macular degeneration (Klein et al. 2005). Although they had a very small sample (~100

cases and ~50 controls), it was the first study to find regulatory genes in inflammation pathways

associated with macular degeneration, which was an unexpected and novel finding. In 2007, the

Wellcome Trust Case Control Consortium (WTCCC) launched one of the largest GWA studies

of its time, analyzing ~17,000 cases and controls for seven common diseases: bipolar disorder,

coronary artery disease, Crohn’s disease, hypertension, rheumatoid arthritis, type I diabetes, and

type II diabetes (WTCCC 2007). Along with replicating many previously implicated genetic loci,

the study revealed multiple new risk loci for several of the diseases, including Crohn’s disease and

rheumatoid arthritis.

The success of these studies led to a rapid explosion of interest in the field; numerous GWA

studies have systematically evaluated the contributions of genetic factors to various complex dis-

eases (McCarthy et al. 2008) along with quantitative traits such as human height (Lango Allen et

al. 2010), body mass index (Locke et al. 2015) and cholesterol (Global Lipids et al. 2013). These

studies helped researchers reveal unexpected pathways in disease etiology, such as the importance

of complement factor genes in macular degeneration (Klein et al. 2005), the role of the central

1 Diseases that are influenced by a combination of multiple genes and environmental factors
2 A study that tests for disease susceptibility across a genome-wide set of common genetic variants
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nervous system in obesity susceptibility (Locke et al. 2015), and the function of genes in the au-

tophagy pathway in Crohn’s disease (Barrett et al. 2008). They have also provided evidence for

previously suspected molecular mechanisms (e.g. the role of IL-23 signaling in psoriasis by Nair

et al. 2009 or the role of APOE in Alzheimer’s disease by Coon et al. 2007) and enabled the de-

velopment of new drugs and treatment strategies (Okada et al. 2013; Zhang et al. 2015). Although

GWA studies now seem quite routine, they have greatly changed human genetics in the last 10

years by presenting a new systematic method of providing deeper insights about disease biology.

Despite their immense success, the magnitude of associations from GWA studies have been

smaller than expected, and they have been able to explain only a limited proportion of disease

heritability3 (Manolio et al. 2009; Witte et al. 2014). One plausible explanation is that GWA

studies use commercial genotyping arrays, which mainly analyze regions of common variation

in the human genome. However, rare variants4, which are more often associated with dramatic

functional consequences, might play an important role in the missing heritability (Gibson 2012).

A standard method to analyze rare variants is whole genome sequencing (WGS)5. Given sufficient

coverage (> 100x), WGS can detect the rarest of mutations, including somatic mutations, with

very high accuracy (Alioto et al. 2015). Although next-generation technologies have significantly

reduced the cost of sequencing a genome, it remains prohibitively expensive for a study to whole

genome sequence a large number of samples (Goodwin et al. 2016). An alternative approach is to

use custom designed genotyping arrays enriched with rarer variants by utilizing information from

whole genome/exome sequencing projects (Hoffmann et al. 2011). Although more affordable,

these custom arrays can only analyze variants that are already known to researchers and thus would

not include the novel rare variants unique to the samples being assayed.

3Degree to which genetic variation accounts for disease susceptibility
4 Variants with minor allele frequency less than 1%
5Process of determining the complete DNA sequence of an organism
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1.1 Genotype Imputation - Sequencing on the Cheap

A more cost efficient way of analyzing rare variants is to impute them in a typical GWA study

(Li et al. 2009b). Rare variants, although not directly assayed on GWA arrays, can be imputed

using genetic information from a reference set of densely sequenced genomes. This method of

estimating genotypes or genotype probabilities6 at markers that have not been directly genotyped in

a typical genetic study is known as ‘genotype imputation’. One of the first studies to use genotype

imputation was on type 2 diabetes in Finnish samples (Scott et al. 2007). Imputation helped the

researchers identify and replicate multiple risk variants as well as compare their results to two

other concurrent studies which used different genotyping arrays. Since then, imputation has been

a key step in the analysis of human genetic studies - accelerating fine-mapping efforts, aiding the

combination of results across studies (meta-analyses), and increasing the power of gene mapping

analyses (Marchini et al. 2010). Some examples of the benefits of genotype imputation are given

below.

Fine-mapping. Imputation provides a higher resolution view of a genetic region by adding more

variants, thereby increasing the chances of identifying a causal variant. For example, a study on

blood triglyceride levels that aimed to fine-map the GCKR gene found that the strongest signal

came from a missense variant that was imputed and later confirmed by direct genotyping (Orho-

Melander et al. 2008). Similarly, another study on the WTCCC data found the strongest signal

in a type 2 diabetes gene (TCF7L2) coming from an imputed variant (rs7903146) instead of a

genotyped variant (Marchini et al. 2007, Figure 4).

Meta-analysis. Imputation also helps in meta-analysis by facilitating the combination of results

across studies. Different studies often use different genotyping arrays containing different sets

of variants. For example, the Affymetrix® 6.0 SNP array includes only a portion of the SNPs

6 probability of each possible genotype at each marker, which is beneficial if the true genotype cannot be imputed
with high accuracy
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included on the Illumina® 660K array. Genotype imputation can be used to generate a common

set of variants which can then be analyzed across all the studies to boost power. This approach has

been successful in identifying several new loci for different traits such as type 1 diabetes (Cooper

et al. 2008) and psoriasis (Tsoi et al. 2015).

Increasing Power of Association Studies. Another benefit of imputation lies in increasing the

power to detect an association signal. Although imputed genotypes are by definition correlated

to the original genotypes, when single nucleotide polymorphisms (SNP) are only genotyped in a

portion of the samples, imputation can increase the effective sample size by filling in the missing

samples. This was demonstrated in a study on triglycerides and cholesterol, where a common

variant in a known risk gene (LDLR) was missed when only the genotyped SNPs were analyzed but

was then identified following imputation (Willer et al. 2008). This was because the genotyping chip

used to assay the majority of samples not only lacked this particular SNP, the directly genotyped

SNPs also inadequately tagged this SNP. Some simulation studies have shown that imputation can

increase power by up to 10% when compared to testing only genotyped SNPs (Spencer et al. 2009,

Table 1) while some others have predicted more modest gains (Anderson et al. 2008, Figure 3; Hao

et al. 2009, Figure 3).

Other benefits. Imputed data have also been used to test for pleiotropic effects by imputing a

known risk variant into multiple disease studies. For example, Hoffmann et al. 2015 found evi-

dence suggesting a pleiotropic effect from a HOXB13 mutation across multiple cancers. Imputation

has been used to estimate other types of genetic variations such as copy number variants (Hand-

saker et al. 2015), classical human leukocyte antigen (HLA) alleles (Leslie et al. 2008), and amino

acid polymorphisms that are difficult to genotype or sequence (Jia et al. 2013).

Genotype imputation has become an integral part of human genetic studies. Trait mapping

using imputed variants is significantly cheaper than analyzing variants from whole genome se-

quencing. The only caveat lies in the loss of power. Testing for association using an imputed
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variant on N samples yields the same power as testing using the unobserved true variant on Nr2

samples (where r2 is the Pearson correlation between the true variant and the imputed variant).

In other words, the effective sample size is reduced by r2. Nevertheless, the effect size estimates

from imputed data remain unbiased in a linear regression, provided the imputed variant is “well-

calibrated7”. More details and proofs are provided Appendix B. Although imputed data doesn’t

attenuate the effect sizes, the assumption of well-calibration is quite to possible to violate, leading

to imperfect imputation results and consequently spurious association signals. This is illustrated by

an extreme example where cases and controls are genotyped on two different platforms resulting

in a marker of interest being genotyped in the cases but not in the controls. If a marker of interest

is not well predicted by flanking markers, imputation will suggest the genotype distribution of the

reference panel at that marker, and this can be a very poor assumption. Similarly, a genetically

dissimilar reference panel can potentially increase the noise in imputation estimates, thereby lead-

ing to spurious or no association. In both these examples, the assumption of well-calibration is

violated as the imputed dosage does not correctly represent the alternate allelic probability for the

samples being analyzed.

In this dissertation, I present a series of four chapters that address some of the prevailing chal-

lenges in next generation imputation techniques. In Chapter 2, we describe our efforts to create

a reference panel of ~32,000 individuals as a resource for genotype imputation (McCarthy et al.

2016). In Chapter 3, we describe a novel technique that significantly reduces the computational

complexity of imputation algorithms by orders of magnitude without any loss of accuracy (Das

et al. 2016). We also present a web-based platform that greatly facilitates imputation analysis and

improves user experience and productivity. In Chapter 4, we describe methods that produce ad-

ditional cost savings on imputation algorithms, thereby enabling users to analyze future studies

with millions of samples at a negligible loss in accuracy. In Chapter 5, we introduce the idea of

7An imputed variant is said to be well-calibrated for a sample haplotype if the probability of observing the alternate
allele for that haplotype is equal to its imputed alternate allele dosage, that is P (G = 1|D) = D where G is the
observed allele at the haplotype (G = 0, 1) and D is the imputed dosage (0 ≤ D ≤ 1)
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meta-imputation, a novel approach that integrates imputed data from multiple reference panels at

overlapping sites without interfering in the imputation algorithm.

To motivate the work described in this dissertation, we will first briefly review the development

of genotype imputation tools in the last decade. Next, we will review different reference panels

used in contemporary imputation analyses. Some major developments in the field of genotype

imputation (including reference panels and imputation tools) are summarized in Figure 1.1, p.7.

Finally, we will present an outline of the four chapters in this dissertation.

1.1.1 Development of Genotype Imputation Tools

Estimation of missing data has been a ubiquitous problem in most applications of statistics

and human genetic studies are no exception. While this challenge could have been mostly solved

by traditional statistical imputation methods, the advent of GWA studies ushered in a new era of

imputation problems that mainstream methods were fundamentally incapable of solving (Yu et al.

2007). The primary reason is the extremely high rate of missingness; commercial GWA arrays only

genotype ~0.1% of the human genome8 while the remaining ~99.9% of the genome is missing and

needs to be imputed. The second reason is that common statistical imputation techniques (linear

regression, regression trees, k-nearest neighbors) lacked the sophistication to take advantage of

genetic architecture (linkage patterns, recombination hot-spots, mutations, genotyping errors, etc.).

These challenges unique to statistical genetics necessitated the development of computational tools

created explicitly for genotype imputation in human gene studies.

Intuition. The basic intuition behind genotype imputation is as follows: individuals of similar

ancestry, even if apparently unrelated, can be expected to share short stretches of chromosomal

segments. Consequently, once a study sample is genotyped on a commercial array (with mostly

missing data), the alleles at the genotyped markers can be used to match these short DNA segments

between the study sample and a reference panel of densely sequenced genomes (with no missing

8The densest genotyping arrays cover ~5M variants while the human genome has ~3 billion variants
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2002

2017

MILESTONE HapMap - Inception (HapMap 2003)

MILESTONE Human Genome Project completed (HumanGenome 2004)
2003

MILESTONE First GWA study (Klein et al. 2005)

2005

REF PANEL HapMap Phase I (HapMap 2005)

SOFTWARE FastPHASE (Scheet et al. 2006)

2006
MILESTONE First GWA study to use imputation (Scott et al. 2007)

2007

SOFTWARE Impute v1 (Marchini et al. 2007)

SOFTWARE Beagle (Browning 2008)

REF PANEL HapMap Phase II (HapMap et al. 2007)

SOFTWARE Impute v2 (Howie et al. 2009)

2009 REF PANEL HapMap Phase III (HapMap et al. 2010)

2010
REF PANEL 1000 Genomes Pilot (1000G et al. 2010)

SOFTWARE MaCH (Li et al. 2010)

MILESTONE Pre-Phasing (Howie et al. 2012)

2012
REF PANEL 1000 Genomes Phase I (1000G et al. 2012)

SOFTWARE Minimac (Howie et al. 2012)

SOFTWARE Minimac2 (Fuchsberger et al. 2014)

2014 REF PANEL 1000 Genomes Phase III (1000G 2015)

MILESTONE Michigan Imputation Server (Das et al. 2016)
2015

SOFTWARE Minimac3 (Chapter 3) (Das et al. 2016)

SOFTWARE Beagle4.1 (Browning et al. 2016)

REF PANEL HRC (Chapter 2) (McCarthy et al. 2016)

2016

SOFTWARE Minimac4 (Chapter 4) (Das et al. in prep.)

SOFTWARE MetaMinimac (Chapter 5) (Das et al. in prep.)

Figure 1.1: A brief time-line summarizing the major developments in genotype imputation. Each
major development has been categorized as either a milestone (labels in dark gray), reference panel
(light gray) or software (no shading)
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data). In other words, a study haplotype can be represented as an imperfect mosaic of short seg-

ments of haplotypes (templates) from the reference panel, enabling one to impute the sites that

were not genotyped. See Figure 1.2 for a simplified illustration. A probabilistic framework is

needed to find estimated template switch positions and account for events like multiple matches

and duplicate matches, a common occurrence in real applications.

X1 A T A A G C A C T G A A A C G G C G C A T

X2 A T A T G C A C T G A A A C G G G G T A C

X3 T G A A G C T C T G A A A C G G C G C A C

X4 A C T T G C A C T G A A A C G G C G C A T

X5 A T A A A C T G A C T A T C T A C G T A T

X6 T T T A A T A C T G A A A C G A G C C T C

SI T g a a G c t g A c t a T c g A g c C t c

SG T . . . G . . . A . . . T . . A . . C . .

Imputed :

Missing :

R
ef

er
en

ce
H

ap
lo

ty
pe

s

Figure 1.2: An illustration of genotype imputation. The figure explains the process of imputation for a
study haplotype (SG) genotyped at 6 markers (in bold) using a reference panel of sequenced haplotypes at
21 markers. The alleles in SG are used to match short segments from the reference panel. For example, in
the first genomic segment, the alleles T and G imply that the corresponding segment might have been copied
from haplotype X3. In the second segment, the alleles A and T imply that haplotype X5 might have been
copied. Proceeding similarly, the study haplotype can be represented as a mosaic of DNA segments from
haplotypes X3, X5, and X6. Consequently, the missing sites can be imputed to obtain the final imputed
haplotype SI .

Li and Stephens Model. Although multiple research groups have developed numerous impu-

tation tools over the last decade, the basic framework behind most of them is fundamentally the

same and is known as the Li and Stephens model. It was first described by Li et al. 2003 and then

later implemented as fastPHASE by Scheet et al. 2006. The framework uses a Hidden Markov

Model (HMM)9 to describe the data, where the observed genotypes of the study sample (with

missing data) represent the observed states of the HMM while a set of reference haplotypes (with

9 A statistical model in which the system being modeled is assumed to be a Markov chain with unobserved/hidden
states. See Appendix A for more details
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no missing data) represent the hidden states of the HMM (see Appendix A for a brief review of

HMM). The HMM framework was immediately useful because it naturally represented sample

genotype data as a mosaic of templates, and the points where the templates switch represented his-

torical recombination events. The transition function between consecutive sites is a function of the

linkage and recombination rates between the sites, while the emission probabilities are a function

of mutation rates and genotyping error rates.

Although most contemporary imputation tools employ the HMM framework for their main

algorithm, they differ from each other in how they define the state space and the parameters of

the HMM. A brief summary of the major imputation tools in the last decade is given in Table

1.1, p.10. While fastPHASE, MaCH, and Impute were quite similar, the first version of Beagle

was distinct from others because it did not employ the usual parameter estimates (transition and

emission functions), and the haplotype model was constructed from the study samples as opposed

to a reference panel (Browning 2008). However, the most recent version of Beagle has an updated

imputation engine which uses the Li and Stephens model for imputation and is much more similar

to the remaining tools (Browning et al. 2016).

Other imputation engines have employed direct methods of haplotype matching that don’t em-

ploy the HMM framework. For example, PBWT uses the positional Burrows-Wheeler transfor-

mation to find ‘set-maximal’ matches at each marker of the genotyped sample, which are in turn

used to assign alleles at the missing markers (Durbin 2014). While such prefix array methods are

computationally highly efficient, their imputation accuracy is reduced because they cannot model

historical recombination rates (see Figure 2.2, p.21). The earlier version of Beagle was essentially

derived from a dynamic truncation of the positional prefix array, but it also employed a proba-

bilistic model which reduced imputation speed. Additionally, some other methods (for example,

PLINK (Purcell et al. 2007), SNPMStat (Lin et al. 2008), TUNA (Nicolae 2006), and UNPHASED

(Dudbridge 2008)) use SNP tagging approaches to carry out imputation. Although these methods

are quicker and simpler, they don’t utilize information from the entire chromosome to perform

imputation and hence generally provide less accurate estimates.
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Software HMM State Space HMM Parameter Functions

fastPHASE All genotype configurations from a
fixed number of localized
haplotype clusters (say K)

Depends on recombination and
mutation rates. Parameters fit using
EM algorithm.

MaCH All genotype configurations from
all the reference haplotypes

Depends on recombination rate,
mutation rate and genotyping error.
Parameters fit using MCMC or EM
algorithm

Impute All genotype configurations from
all the reference haplotypes

Depends on fine scale
recombination map that is fixed
and provided internally by the
program

Beagle All genotype configurations from a
variable number of localized
haplotye clusters

Empirical model with no explicit
parameter functions

Minimac/2 All possible reference haplotypes Same as MaCH

Impute2 All possible reference haplotypes Same as Impute

Minimac3 All unique allele sequences
observed in reference data in a
small genomic segment

Same as MaCH but parameters
estimates are pre-calculated and
fixed.

Beagle4.1 All unique allele sequences
observed in reference and target
data at each "aggregate genotyped
marker"

Depends on recombination rates
and error rates which are fixed and
pre-calculated

Minimac4 Collapsed allele sequences from
reference data that match at
genotyped positions in small
genomic segments

Same as minimac3.

Table 1.1: Summary of imputation tools that employ HMM. This table describes the typical state
space and parameter functions used to model the Li and Stephens framework (Li et al. 2003).
Minimac and Impute2 were the first tools to use the ‘pre-phasing’ approach (Howie et al. 2012).
Minimac3 and Beagle4.1 exploit local haplotype redundancy to reduce the size of the state space
and hence the computational burden (Das et al. 2016; Browning et al. 2016).
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Pre-Phasing. One of the major milestones to reduce computational burden in the Li and Stephens

framework has been achieved in the approach of pre-phasing. This idea involves a two step-

imputation process: the initial step of pre-phasing (i.e. haplotype estimation) of the GWA geno-

types and a subsequent step of imputation into the estimated study haplotypes (Howie et al. 2012).

These separate steps benefited researchers in two ways. First, the decomposed haplotypes could

be re-used for imputation multiple times. Second, it reduced the complexity of the imputation step

from quadratic to linear: this is because pre-phasing allowed matches to be found by comparison

against phased haplotypes rather than comparison against all pairs of haplotypes. Earlier analytical

methods integrated the imputation algorithm over phase uncertainty, thereby yielding marginally

improved imputation accuracy in certain populations such as African Americans, (Howie et al.

2012). However, the ability to use the new method with larger reference panels mitigated the effect

of that reduction. Minimac, Impute2, and Beagle4.1 are respective successors of MaCH, Impute,

and Beagle that employ this pre-phasing approach.

Other major algorithmic developments and software engineering techniques helped to further

improve computational efficiency. For example, minimac2 improved vector and matrix operations

using a highly optimized C++ library to increase its speed threefold over minimac (Fuchsberger

et al. 2014). Similarly, Beagle4.1 employed parallelization, compact representation of reference

haplotypes and genotype probabilities, and other improvements in software architecture to improve

speed over their previous version (Browning et al. 2016). In Chapters 3 and 4 we describe our

efforts to build even faster imputation tools.

1.1.2 Development of Reference Panels

Over the years, the quality of genotype imputation has benefitted greatly from improved geno-

typing technologies (e.g. high-density genotyping arrays) and more efficient analytical methods

(e.g. pre-phasing), but most notably from the synthesis of genetic information through publicly

available datasets. Examples of such datasets include the HapMap Project, the 1000 Genomes

(1000G) Project, UK10K, the Haplotype Reference Consortium (HRC), and the Trans-Omics for
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Precision Medicine (TOPMed) program (HapMap et al. 2010; 1000G 2015; UK10K et al. 2015;

McCarthy et al. 2016; NHLBI 2015). However, the development of next generation sequencing

technologies has led to a rapid increase in the size of public datasets used as reference panels for

genotype imputation. For example, while the first release of the HapMap Project has an initial

sample of approximately 250 sequenced individuals, phase 3 of 1000G Project had around 2,500

individuals, and upcoming reference panels from the TOPMed program are expected to have over

~60,000 samples.

For association studies, the immediate benefits of a larger panel include a more detailed catalog

of genetic variants, which increases the chance of imputing a causal variant, and better imputation

accuracy, which improves the power of downstream association analyses, especially for rare vari-

ants (Li et al. 2009b). On the other hand, the computational resources required to analyze such

large panels using contemporary methods makes it cumbersome, if not infeasible (for example,

imputing 1,000 GWA samples using the HRC reference panel requires ~2 years on a single CPU,

or ~1 week on a 100-core cluster, using minimac2). Furthermore, panels such as the HRC and

TOPMed have data restriction issues which inhibit users from gaining direct access to individual

genotypes. This restriction prevents research groups from directly downloading these reference

panels or merging them with their in-house private reference panels for improved imputation ac-

curacy, thus diminishing their use as a next generation imputation resource. This dissertation

illustrates the creation of a reference panel (Chapter 2) as well as a web server based method that

allows imputation while still abiding by data sharing rules (Chapter 3).

1.1.3 Improving Imputation Quality - Trends and Strategies

Presently, the quality of genotype imputation depends more on the nature of the reference panel

and the study design, and to a much lesser extent on the type of imputation algorithm. For example,

when imputing against the HRC reference panel, the maximum absolute difference in imputation r2

was 0.02 across all minor allele frequency (MAF) bins between minimac2, Impute2 and Beagle4.1

(Das et al. 2016, Table 1). This is because, irrespective of the latent algorithm, the underlying
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mechanism behind any imputation tool is to identify stretches of shared haplotype segments, and

most contemporary tools are almost equally efficient in doing this (Browning et al. 2016). While

disparities in accuracy across different tools is more prominent with smaller reference panels, they

become negligible when imputing against modern panels with large number of samples (Das et al.

2016, Table 1).

Unlike classical statistical problems, increasing the sample size is not the only way to improve

imputation accuracy: taking into account the genetic nature of the data can yield additional bene-

fits. The most intuitive strategies are increasing the size of the reference panel and increasing the

coverage of the genotyping array. Both these approaches improve the chances of finding a possible

match (either by increasing the number of templates to match against or increasing the number of

SNPs to match with) which consequently improves imputation quality. For example, the Illumina®

Human Omni5 Exome array is a better choice for imputation than the Human Omni2.5 Exome ar-

ray, which in turn is better than the CoreExome array. Similarly, for European samples, using the

HRC panel is a better a choice than either of the 1000G panels (see Figure 2.2, p.21). However, the

HRC panel, being more enriched than the 1000G panel with haplotypes from Europeans, decreases

imputation accuracy in non-European samples (see Figure H.3, p.103 in Appendix E). This counter

example of the notion that increasing the reference panel always increases the imputation accuracy

highlights the importance of genetic similarity between the study samples and the reference panel.

Current Strategies. The most common strategy for imputation is using a single publicly avail-

able dataset (such as the 1000 Genomes or the HRC) and it works quite well for studies with

samples of European ancestry. However studies on non-European populations or relatively ho-

mogenous European sub-populations often benefit from using custom reference panels of samples

with greater genetic similarity. For instance, in a study on samples in Sardinia, an island in Italy

with a genetically isolated population, a custom reference of Sardinian samples provided better

imputation accuracy than the 1000G and other large European panels (Pistis et al. 2014). This

has also been replicated in other studies on homogenous European sub-populations (Deelen et al.
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2014) as well as non-European populations such as African-Americans (Duan et al. 2013).

Additionally, disease specific studies often benefit from a hybrid approach that combines a

custom reference panel with an existing public reference panel. This approach is particularly

beneficial for disease studies as it significantly increases the accuracy of imputing a causal variant

(since the hybrid panel is enriched with more copies of rare alleles). An example highlighting this

feature: a recent study on prostate cancer was eventually able to impute the rare HOXB13 G84E

variant after using a hybrid imputation approach that combined the 1000 Genomes data with an

enriched set of cases carrying the mutation (Hoffmann et al. 2015), even though previous studies

had suggested that it might not be possible to impute this variant (Saunders et al. 2014). The hybrid

method is also useful in studies with homogenous sub-populations given it enriches the panel with

genetically similar samples while still retaining the benefits of large public panels.

Multiple Reference Panels. The hybrid approach requires studies to merge multiple reference

panels and the streamlining of this process is still an active field of research. One proposed ap-

proach has been to combine the reference panels by first treating them as reference panels for each

other and then “cross imputing” the missing variants into each reference (Howie et al. 2009). Al-

though this approach enables one to use all variants found in any panel, the performance of this

method has not been fully evaluated. One study found this approach to be neither helpful nor

harmful for large, population-specific panels (Huang et al. 2015, Figure 1b). Some studies have

repeated the imputation process for each of multiple different reference panels. For example, a

study on sick sinus syndrome repeatedly imputed against HapMap, 1000G Pilot, and a set of geno-

typed samples to reveal a missense variant in the MYH6 gene (c.2161C>T) associated with high

risk. The ideal solution with multiple reference panels would be to call the variants jointly from

their respective sequence alignment files for all the samples. However, variant calling is highly

computationally intensive job and is not a feasible or practical solution for merging reference large

panels. We address the issue of multiple reference panels in Chapter 5.
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1.2 Outline of Dissertation

The second chapter of this dissertation describes our efforts to create the Haplotype Refer-

ence Consortium reference panel by combining information across 20 genetic studies as well as

the reasoning for why these efforts were beneficial. We provide a brief summary of the methods

used to combine the genetic data starting from the original alignment files, with details on the

quality control and filtering methods, procedure for jointly calling the genotypes, and approaches

for phasing the reference panel once genotypes have been called. We demonstrate improved im-

putation accuracy for European populations from the HRC panel (compared to 1000G panels) as

well as the added benefit of strengthening association signals from known disease risk loci.

The third chapter describes an imputation tool for significantly faster analysis (minimac3)

and a web platform service that considerably improves user experience (Michigan Imputation

Server). The web server also helps comply with data restriction issues. We explain the idea of

state space reduction - analyzing only unique haplotypes in small genomic segments. We provide

formulations for implementing an HMM with the reduced state space; proofs have been omitted

from the main text and are detailed in Appendix D. We compare the imputation accuracy, total

run-time, and physical memory requirement of minimac3 to other contemporary tools, including

minimac2, Impute2, and Beagle4.1. We assess how the computational burden and memory re-

quirement of minimac3 scales with larger panels. A brief description of the features implemented

on the imputation server is also provided.

The fourth chapter further extends the idea of state space reduction to build even faster impu-

tation tools that can scale to future reference panels (minimac4). We describe a more aggressive

version of state space reduction by collapsing haplotypes based on genotyped markers only. The

necessary formulas are described in the methods, and the detailed proofs are provided in Appendix

E. We also describe other software engineering techniques that were applied to further decrease

the computational burden in minimac4. We compare the performance throughput of minimac4 to

its previous version and to Impute2 and Beagle4.1. We also give predicted run-times for imputing
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against some common reference panels. Finally, we discuss imputation accuracy in non-European

studies and optimum reference panels for such studies.

The fifth chapter addresses issues related to merging reference panels. We introduce the idea of

meta-imputation, in which study samples imputed against different reference panels are combined

to obtain a consensus imputed result (MetaMinimac). We give a brief summary of the intuition

and formulas used in MetaMinimac. We demonstrate that meta-imputation performs equally well

as joint imputation (in which the reference panels have been merged before imputation) in all the

scenarios that we examined, including studies of samples of European, non-European, mixed, and

admixed ancestry. We also demonstrate the benefit of meta-imputation in reducing computation

time for imputation against large reference panels.

Minimac3/4 are subsequent versions in the MaCH/minimac family of imputation tools. Min-

imac4 is a more generalized version of the algorithms implemented in minimac3. Although min-

imac4 requires lesser time to impute each sample, it has an overhead cost and thus might not be

beneficial for small sample sizes. Minimac3 might yield lesser overall computation time for stud-

ies with less than 100 individuals. Both these tools yield the same imputation accuracy and are as

accurate as other existing tools. When a single reference panel is available (such as HRC), mini-

mac3/4 can be used to impute into GWA samples. When multiple reference panels are available,

investigators can impute their study samples against each reference panel and then combine the

results together using metaMinimac. For studies of non-European samples and disease specific

studies, the later approach is more beneficial.

The last chapter summarizes what has been accomplished in this dissertation.

16



CHAPTER 2

Haplotype Reference Consortium - A Reference Panel of 64,976 Haplotypes for Genotype

Imputation1

2.1 Introduction

Over the last decade, large scale international collaborative efforts have created successively

larger and more ethnically diverse genetic variation resources. For example, in 2007 the Interna-

tional HapMap Project produced a haplotype reference panel of 420 haplotypes at ~3.1M SNPs in

3 continental populations (Frazer et al. 2007). More recently, the 1000 Genomes Project has pro-

duced a series of datasets built using low-coverage WGS, culminating in 2015 in a reference panel

of 5,008 haplotypes at over ~88M variants from 26 world-wide populations, namely the 1000G

Phase 3 (1000G 2015). In addition, several other projects have collected low-coverage WGS data

in large numbers of samples that could potentially also be used to build haplotype reference panels

(Francalacci et al. 2013; GoNL 2014; Huang et al. 2015). A major use of these resources has been

to facilitate imputation of unobserved genotypes into GWA study samples that have been assayed

using relatively sparse genome-wide microarray chips. As the reference panels have increased in

number of haplotypes, SNPs and populations, genotype imputation accuracy has increased, allow-

ing researchers to impute and test SNPs for association at ever lower minor allele frequencies.

2.2 Methods

The HRC was formed to bring together as many WGS datasets as possible to build a much

1McCarthy, S., S. Das, W. Kretzschmar, O. Delaneau, A. R. Wood, et al. (2016). “A reference panel of 64,976
haplotypes for genotype imputation”. In: Nature Genetics 48.10, pp. 1279–1283
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larger combined haplotype reference panel. By doing so, our aim is to provide a single centralized

resource for human genetics researchers to carry out genotype imputation. Here we describe the

first HRC reference panel that combines datasets from 20 different studies. Details on the studies

are provided in Table C.2, p.81 in Appendix C. Most of these studies have low-coverage WGS

data (4-8X coverage) and are known to consist of samples with predominantly European ancestry.

However, the 1000G Phase 3 cohort, which has diverse ancestry, is also included. This reference

panel consists of 64, 976 haplotypes at 39, 235, 157 SNPs that have evidence of having a minor

allele count (MAC) greater or equal to 5.

2.2.1 Quality Control

We took the following approach to create the reference panel. We combined existing sets

of genotype calls from each study to determine a ‘union’ set of 95, 855, 206 SNP markers with

MAC ≥ 2 (MAC2 list). After initial tests, we decided for this first version of the HRC panel

not to include small insertions and deletions (indels), since these were very inconsistently called

across projects. We then used a standard tool to calculate the genotype likelihoods consistently

for each sample at each marker from the original study binary alignment map (BAM) files (Li

et al. 2009a) and make a baseline set of non-linkage disequilibrium (LD) based genotype calls.

We next applied several filters to remove poor quality markers (Figure C.1, p.83 in Appendix C).

We restricted filters to markers with MAC ≥ 5 (MAC5 list), corresponding to a minimum MAF

of 0.0077%, then added back markers that are present on several commonly used SNP microarray

chips in GWA studies. After filtering, this marker list consisting of 44, 187, 567 markers exhibited

improved quality compared to MAC ≥ 5 marker list when assessed by measuring a per sample

transition-to-transversion (Ts/Tv) ratio (Figure 2.1). We also detected and removed 301 duplicate

samples across the whole dataset (Table C.3, p.82 in Appendix C).

2.2.2 Phasing

Calling genotypes and phasing using low-coverage WGS data has been a computational chal-
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Figure 2.1: Effect of variant filtering on Ts/Tv ratio in the HRC panel. The top figure shows the
per-sample Ts/Tv ratio for chromosome 20 on the full MAC5 marker list. The bottom figure shows
the same after the marker filtering steps

lenging step for many of the 20 studies providing data. To reduce computation, we carried out

this step on all 32, 611 samples together and leveraged the original separately called haplotypes

from each study to help reduce the search space of the calling algorithm. We then applied a fur-

ther refinement step by re-phasing the called genotypes using the SHAPEIT method (Delaneau

et al. 2012), based on experience from the UK10K project, which found this re-phasing approach

produced substantially improved imputation accuracy when using the haplotypes (Huang et al.

2015). After final genotype calling, we removed a further 123 samples and filtered out 4,952,410

markers whose MAC after refinement and sample removal was below 5, resulting in a final set of

39, 235, 157 markers and 32, 488 samples.

2.3 Results

We evaluated accuracy of our genotype calls by measuring their genotype discordance com-

pared to Illumina® Omni2.5M chip genotypes available on the 1000 Genomes samples. We found
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that both our marker filtering strategy and the increased sample size of HRC led to improved accu-

racy (Table C.1, p.80 in Appendix C). For example, we obtained a non-reference allele discordance

of 39% on the full HRC dataset with marker filtering, compared to 67% on the subset of 1000G

Phase 3 samples.

2.3.1 Improvement in Imputation Accuracy

We next carried out experiments to assess and illustrate the downstream imputation perfor-

mance compared to previous haplotype reference panels. To mimic a typical imputation analysis,

we created a pseudo-GWA study dataset using high-coverage Complete Genomics (CG) WGS

genotypes on 10 European samples. We extracted the CG SNP genotypes at all the markers in-

cluded on an Illumina® 1M SNP array (Human1M-Duo BeadChip). These were used to impute

the remaining genotypes which were then compared to the held out genotypes. We calculated ag-

gregate2 r2 by stratifying results by alternate allele frequency (AF) of the imputed markers. Figure

2.2 shows the results of imputation using two different tools: minimac3 and PBWT (Das et al.

2016; Durbin 2014). We see that the HRC reference panel leads to a large increase in imputation

performance compared to the 1000G Phase 3 (r2 = 0.70 vs r2 = 0.50 for minimac3 and r2 = 0.64

vs r2 = 0.25 for PBWT at alternate AF = 0.1%). HRC imputation at 0.1% frequency provides

similar accuracy to 1000G Phase 3 imputation at 1% frequency.

2.3.2 Higher Resolution for Fine Mapping

To further illustrate the benefits of using the HRC resource, we imputed a GWA studies study

of 1,210 samples from the InCHIANTI study (Ferrucci et al. 2000), including 534 that did not

contribute to the HRC reference panel because they were not sequenced. Imputing using the HRC

2An alternative to average r2 when relatively small number of samples (~10) are used for imputation accuracy
experiments. Instead of calculating Pearson r2 at each variant with only ~10 samples and then averaging across a
fixed alternate allele frequency bin, we combine all variants in the fixed bin and calculate a single Pearson r2 across
all genotypes in this bin. Aggregate r2 has lesser squared error in estimating true imputation r2 when there are small
number of study samples.
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Figure 2.2: Improved imputation accuracy from the HRC panel. We compare accuracy between
HRC and 1000G Phase 3 (abbreviated as G1KP3) using minimac3 and PBWT. The X-axis shows
the non-reference allele frequency on a log scale. The Y-axis shows accuracy measured by aggre-
gate r2 when imputing SNP genotypes into 10 CEU samples
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Figure 2.3: Improved association signal from the HRC panel. Association test statistics on the –log10 p-value scale (y-axis) are plotted
for each SNP position (x-axis). Three different imputation panels were used: HapMap2 (left), 1000G Phase 3 (middle), HRC release
1 (right). The SNP rs28929474 is shown as a purple. HRC imputation gives a clear refinement of the signal at the rare causal SNP
rs28929474 (MAF=0.5%)
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panel resulted in ∼15M SNPs passing an imputation quality threshold of r2 >0.5 compared to

∼13M variants when imputing using 1000 Genomes Phase 3, an increase of over 2 million vari-

ants. The majority of these additional SNPs occur at the lower frequency range. We next tested

the HRC imputed genotypes for association with 93 circulating blood marker phenotypes, includ-

ing many of relevance to human health such as lipids, vitamins, ions, inflammatory markers and

adipocytes. This analysis highlighted potential novel associations and that it is possible for HRC

imputation to refine signals of association (detailed results omitted). For example, Figure 2.3

shows the association results of HapMap2, 1000G Phase 3 and HRC based imputation for the α1-

antitrypsin phenotype at the SERPINA1 locus. HRC imputation gives a clear refinement of the

signal at the rare causal SNP rs28929474 (MAF=0.5%), known to predispose to the α1-antitrypsin

deficiency lung condition emphysema (Bathurst et al. 1984; Ferrarotti et al. 2012).

2.4 Discussion

This first release of the HRC is the largest human genetic variation resource to date and has

been created via an unprecedented collaboration of data sharing across many groups. We envisage

continuing to expand the HRC and are currently planning a second HRC release differing from the

first release in two ways. Firstly, we aim to substantially increase the ethnic diversity of the panel,

by including data from sequencing studies in world-wide sample sets such as the CONVERGE

study (CONVERGE 2015), AGVP (Gurdasani et al. 2014) and HGDP (Rosenberg et al. 2002).

Secondly, we aim to include short insertions and deletions in addition to SNP variants.
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CHAPTER 3

Minimac3 : Next-generation Genotype Imputation Service and Methods1

3.1 Introduction

Genotype imputation means estimation of genotypes or genotypes probabilities at markers that

have not been directly genotyped in a typical genetic study. After study samples are genotyped on a

commercial DNA array, typically directly assaying 300, 000−1, 000, 000 SNPs, imputation works

by finding haplotype segments that are shared between study individuals and a reference panel of

sequenced genomes, such as those from the 1000G Project (1000G et al. 2012; 1000G 2015), or

recent population sequencing studies (Francalacci et al. 2013; GoNL 2014; Gudbjartsson et al.

2015). Imputation accurately assigns genotypes at untyped markers, improving genome coverage,

facilitating comparison and combination of studies that use different marker panels, guiding fine-

mapping, and increasing power to detect genetic association (Li et al. 2009b; Marchini et al. 2010).

The accuracy of imputation increases with the number of haplotypes in the reference panel of

sequenced genomes (Fuchsberger et al. 2014; Howie et al. 2012), particularly for rare (MAF ≤

0.5%) and low-frequency (0.5% < MAF < 5%) variants. These rare and low-frequency variants

include most loss-of-function alleles (MacArthur et al. 2012) and other high-impact variants, iden-

tification of which enable genotype-based callback and focused studies of natural knockout alleles

(MIGCI et al. 2014; Sulem et al. 2015). Large reference panels, such as the one developed by

the HRC are expected to extend accurate imputation to variants with frequencies of 0.1 − 0.5%

1Das, S., L. Forer, S. Schonherr, C. Sidore, A. Locke, et al.(2016).“Next-generation genotype imputation service
and methods”. In: Nature Genetics 48.10, pp. 1284–1287
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or less, and already include 1,000s of putative loss-of-function and protein-truncation alleles. The

HRC panel combines sequence data across >32,000 individuals from 20 medical sequencing stud-

ies, and is cumbersome to access directly because of participant privacy protections in individual

studies and the large volumes of data involved. Using current well established approaches (Fuchs-

berger et al. 2014), we estimate imputing 1, 000 GWA study samples using the HRC reference set

would require >4 years on a single CPU.

In this chapter, we present new algorithms for genotype imputation that increase computational

efficiency with no loss of accuracy by leveraging local similarities between sequenced haplotypes.

We also present a new model for imputation, based on a web-service that greatly simplifies anal-

ysis, eliminates the need for cumbersome data access agreements, and thus allows researchers to

devote their time to more interesting tasks. The approach described here represents the current

most efficient strategy for genotype imputation and has been used to process >7.5 million geno-

typed samples through our imputation server. Our implementation is freely available, enabling

others to build on our advances and ideas.

3.2 Methods

Our improved imputation algorithm is based on a ‘state-space reduction’ of the HMM that is

typically used to describe haplotype sharing (Li et al. 2010); it exploits similarities among haplo-

types in small genomic segments to reduce the effective number of states over which the HMM

iterates (Figure 3.1). Our model divides the genome into consecutive blocks and iterates only over

the unique haplotypes in each genomic block. It then uses a reversible mapping function that can

reconstruct exactly the same state-space used by minimac and Impute2 (Howie et al. 2012). An

important feature of our derivation is that yields exactly the same imputation results as more cum-

bersome analyses in the original state-space. We implemented this method in a C++ package called

minimac3.
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Figure 3.1: Overview of state space reduction in minimac3. We consider a chromosome region with M = 9 markers and H = 8 haplotypes x1, x2,
. . ., x8. (A) We break the region into consecutive genomic segments (blocks) and start by analyzing Block B from marker 1 to 6. (B) In Block B we
identify U = 3 unique haplotypes Y1, Y2 and Y3 (colored in green, red, and blue). Given the left probabilities of the original state space at marker
1 (i.e. L1(x1), . . . , L1(x8)), we fold them to get left probabilities of the reduced state space at marker 1 (i.e. L1(y1),L1(y2) and L1(y3)). (C) We
implement HMM on the reduced state space (Y1, Y2 and Y3) from marker 1 to marker 6 to get L6(y1),L6(y2) and L6(y3). (D) We next unfold the
left probabilities of the reduced state space at marker 6 to obtain the left probabilities of the original state space (i.e. L6(x1), . . . , L6(x8)). (E). We
repeat the same procedure on the next block, starting with L6(x1), . . . , L6(x8) to finally obtain L9(x1), . . . , L9(x8).
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3.2.1 State Space Reduction

In this section, we describe the state space reduction that uses the similarity between haplotypes

in small genomic segments to reduce computational complexity. We recommend first reading a

description of the original MaCH/minimac algorithm (Howie et al. 2012). For a brief review see

Section A.2, p.74 of Appendix A). In the subsections below, we first describe the modified forward

equations, backward equations and final imputation formula. Detailed mathematical proofs for

these equations are provided in Appendix D.

Consider a reference with H haplotypes and a genomic segment bounded by markers P and

Q. Let U ≤ H be the number of distinct haplotypes in the block. Label the original haplotypes

as X1, X2, . . . , XH (the original space) and the distinct unique haplotypes as Y1, Y2, . . . , YU (the

reduced space). For example, in Figure 3.1, the block B bounded by markers P = 1 to Q = 6 has

U = 3 distinct haplotypes and H = 8 actual haplotypes.

Forward Equations LetLk(.) (and Lk(.)) denote the left probabilities for the original states (and

reduced states) at marker ‘k’ (for P ≤ k ≤ Q) (Howie et al. 2012; Li et al. 2010). Below, we have

three sets of equations: the first equation (3.1) explains how we transform the left probabilities from

the original space to the reduced space (LP → LP ), the second equation (3.2) gives the modified

formulation for the Baum-Welch forward equation for the reduced state space (LP → LQ), and

the third equation (3.3) transforms the left probabilities from the reduced space to the original

space (LQ → LQ).

LP (Yi) =
H∑
j=1

I(Xj = Yi)× LP (Xj) (3.1)

Lk (Yi) =

[
[1− λk−1]Lk−1 (Yi) +

Niλk−1
H

U∑
j=1

Lk−1 (Yj)

]
× P (Sk|Yi) (3.2)

LQ(Xj) = LR
Q(Yi)×

[
1

Ni

]
+ LNR

Q (Yi)

[
LP (Xj)

LP (Yi)

]
(3.3)

In the above equations:
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• λk denotes the template switch probability between markers k and k+1 (analogous to a “recom-

bination fraction")

• Sk the genotype in the study sample and P (Sk|Yi) denotes the genotype emission probabilities

(is equal to 1 if study sample is missing at the marker) (Li et al. 2010)

• Ni the number of haplotypes from the original state space that were collapsed to form Yi (i.e.∑U
i=1Ni = H)

• LNR
k (.) and LR

k (.), respectively, are components of the left probabilities assuming no recombi-

nation event or at least one recombination event between markers 1 and k. They are defined

as follows (for each k):

LNR
k (Yi) = LP (Yi)

k−1∏
i=P

[(1− λi)P (Si+1|Yi)] (3.4)

LR
k (Yi) = Lk(Yi)−LNR

k (Yi) (3.5)

Backward Equations Similarly, if Rk(.) (and Rk(.)) denote the right probabilities for the orig-

inal states (and reduced states) at any marker ‘k’ (for P ≤ k ≤ Q), the following equations

respectively transform the right probabilities RQ → RQ (3.6), gives the modified formulation

for the Baum-Welch backward equations RQ → RP (3.7), and then transforms back the right

probabilities RP → RP (3.8).

RQ(Yi) =
H∑
j=1

I(Xj = Yi)×RQ(Xj) (3.6)

Rk (Yi) =
Niλk
H

[
U∑
j=1

Rk+1 (Yj)P (Sk+1|Yj)

]
+ [1− λk]Rk+1 (Yi)P (Sk+1|Yi) (3.7)

RP (Xj) = RR
P (Yi)×

[
1

Ni

]
+ RNR

P (Yi)

[
RQ(Xj)

RQ(Yi)

]
(3.8)

In the above equations, RNR
k (.) and RR

k (.), respectively, are components of the right probabil-

ities assuming no recombination event or at least one recombination event between markers k and
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Q. They are defined as follows (for each k):

RNR
k (Yi) = RQ(Yi)

Q−1∏
i=k

[(1− λi)P (Si+1|Yi)] (3.9)

RR
k (Yi) = Rk(Yi)−RNR

k (Yi) (3.10)

Final Imputation Formula The final formula that gives the posterior probability of each reduced

state in the given genomic block is given in equation (3.11). The mathematical details behind the

proof have been explained in Appendix D.

P (Yi |GWAS) =

[
H∑
j=1

I(Xj = Yi)LP (Xj)RQ (Xj)

]
×
[
LK (Yi)

LP (Yi)
× RK (Yi)

RQ (Yi)

]
+

1

Ni

[
LK (Yi)RK (Yi)−LNR

K (Yi)RNR
K (Yi)

]
(3.11)

3.2.2 Computational Complexity and Optimal Allocation

Methods that perform phasing and imputation simultaneously (for example, MaCH (Li et al.

2010) and Impute (Marchini et al. 2007)) have a computational cost proportional to number of

study samples (N ), number of genotyped markers in the reference panel (M ), and square of number

of reference haplotypes (H2) orO(NMH2). However, in the context of pre-phasing, as in minimac

and Impute2 (Howie et al. 2012) this becomes O(NMH).

In this study, we break up the whole chromosome into K consecutive segments. If Ui and

Mi denote the number of unique haplotypes and markers in each segment, then complexity is

O
(
N ×

∑K
i=1 UiMi

)
+ O(NKH). The second term accounts for the complexity of transitions

between blocks, which occur in the original state space. Thus, although very short segments could

reduce the number of unique haplotypes per segment (Ui) and complexity measured by the first

term, these would also increase the total number of segments (K) and complexity measured by the

second term. An optimal allocation of genomic regions must balance these two goals.

We implement a recursive dynamic programming algorithm to find the optimal allocation of the
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genomic segments, since brute is not feasible (∼ 2M−1 alternatives). We assume that the optimal

complexity of imputation until marker i < M is denoted by C(i) and calculate C(M) recursively

as in equation (3.12):

C(M) = min
i=1,2,...,M−1

{C(i) + [U(i,M)(M − i+ 1)] + 2H} (3.12)

In this expression,C(i) is the optimal cost for imputation from marker 1 to marker i, U(i,M)(M−

i+ 1) is the cost of imputing the genomic segment from marker i to marker M , and 2H is the tran-

sitioning between segments. This expression would require at most M2 comparisons and this

number can be further reduced since we can rule out very long segments.

3.2.3 Comparison of Minimac2, Minimac3, Impute2, and Beagle4.1

We evaluated the performance of Minimac3 in comparison to the three most commonly used

imputation tools – minimac2 (Fuchsberger et al. 2014), Impute2 (Howie et al. 2012), and Beagle

v4.1 (Browning et al. 2016). We combined chromosome 20 data across multiple whole genome

sequencing studies to generate large reference panels. We compared the six reference panels de-

scribed in Table 3.1, p.31. To get a consensus set of variants, we imputed into only those variants

which occurred in all contributing studies, yielding a total of 227, 925 variants (with a minimum

minor allele frequency of 5 × 10−5). To mimic a GWA study, we selected 25 unrelated samples

each from AMD, SARD, BRIDGES, and TWINS and masked all variants except those typed on

the Illumina® Duo 1M Chip (resulting in ∼20K genotyped variants for chromosome 20). To eval-

uate imputation accuracy, we estimated the squared Pearson correlation coefficient between the

imputed genotype probabilities and hard genotype calls from sequenced data at the masked vari-

ants. For each of the four imputation methods and six reference panels combination, we recorded

the aggregate2 r2, total computational time, and physical memory required to impute 100 GWA

study individuals.

2See footnote on page 20 for definition of aggregate r2
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G1KP1 1,092 individuals from 1000G Phase 1

AMD 2,074 individuals sequenced for study of age-related macular
degeneration

G1KP3 2,504 individuals from the 1000G Phase 3

SARD 3,489 individuals from Sardinia

COMB 9,341 individuals from AMD; SARD; 2,464 individuals
sequenced for a study of bipolar disorder (BRIDGES); and 1,314
individuals sequenced for Minnesota Twins study (TWINS)

MEGA 11,845 individuals from COMB and 2,504 from G1KP3

Table 3.1: Description of reference panels used for imputation experiments.

3.3 Results

3.3.1 Faster Imputation

The results from our imputation experiment is shown in Table 3.3, p.33. Imputation using Im-

pute2 required the most running time (over 2 weeks). For minimac2 and Impute2, memory and

run time increased linearly with panel size. Increasing panel size by 10-fold from 1, 091 to 11, 455,

memory required increased 10-fold from 0.3 to 3.5 GB for minimac2 and from 0.9 to 8.3 GB for

Impute2, while run time increased from 26 to 304 hours for minimac2 and 34 to 363 hours for

Impute2. Beagle4.1 did better than linear as its run time increased from 5 to 40 hours (8-fold).

Minimac3 consistently outperformed all alternatives: increasing panel size 10-fold from 1, 091

to 11, 455 samples increased memory requirements 3.5 times and run time 5-fold. For the largest

panel (11,455 samples), minimac3 was twice as fast than Beagle4.1, 14 times faster than minimac2,

and 17 times faster than Impute2, and reduced memory usage by 23%, 90%, and 96%, respectively

(Table 3.3, p.33). In this comparison, all programs were run using a single thread, allowing for fair

comparison. For a comparison of wall-clock running times, when some methods are run in a single

thread and others in multiple threads, see Browning and Browning (Browning et al. 2016). We

compared imputation quality across the four methods by calculating the squared correlation co-

efficient r2 between imputed allele dosages and masked genotypes (Table 3.4, p.34). Minimac,

minimac2, and minimac3 are based on the same mathematical model and hence gave identical
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Reference
panel

sample
size

Imputation accuracy

Probability an individual
judged by imputation to

carry the rare allele actually
does carry that allele

Minor allele frequency bin

10−4 - 0.01% .01 - 1% >1% 10−4 - .01% .01 - 1% >1%

1,000 0.34 0.56 0.91 0.48 0.57 0.89

2,000 0.39 0.59 0.93 0.52 0.60 0.90

5,000 0.46 0.64 0.94 0.57 0.64 0.92

10,000 0.51 0.68 0.95 0.60 0.67 0.93

20,000 0.60 0.74 0.96 0.67 0.75 0.94

Table 3.2: Imputation accuracy based on simulated haplotypes. The haplotypes were simulated
under a coalescent model consistent with European haplotype diversity, and imputed into GWA
study data.

results. Minimac3 slightly outperformed Beagle4.1 and moderately outperformed Impute2, partic-

ularly for the rare variant MAF bin [10−4 − 0.5%] where, with 3, 489 reference samples, Impute2

attained r2 = 53.3% while Beagle4.1 attained 54.3%, and minimac3 attained 55.5%. All methods

demonstrated improved imputation quality with increasing panel size, particularly for rare vari-

ants. For example, for minimac3, quality increased from r2 = 45% to r2 = 77% when panel size

increased from 1, 092 to 11, 455.

3.3.2 Scaling with Large Panels

To evaluate the benefits of large panels, we used coalescent simulations with up to 20,000

reference panel individuals. We found substantial gains in imputation accuracy between imputed

genotypes and the true simulated genotypes, as panel size increased (Table 3.2). For variants with

(MAF ≤ 0.001%), average imputation r2 increased from 0.41 to 0.79 when reference panels grew

from N = 1, 000 to N = 20, 000 individuals; this represents a near 2-fold increase in effective

sample size for association (which scales as r2) (Pritchard et al. 2001). For example, with a ref-

erence panel of 20,000 individuals, our simulations estimate the probability individuals identified

as a rare allele carrier through imputation actually carry the allele is ~84% (MAF 0.01 − 0.1%)
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Reference Panel # Samples minimac3 minimac2 Impute2 Beagle 4.1

Time (in CPU-hours)
G1KP1 1,092 4 27 34 5
AMD 2,074 9 59 73.5 9

G1KP3 2,504 6 61 78 9
SARD 3,489 7 85 108 11
COMB 9,341 17 236 288 31
MEGA 11,845 21 304 364 40

Memory (in CPU-Gigabytes)
G1KP1 1,092 0.09 0.34 0.91 0.51
AMD 2,074 0.14 0.62 1.58 0.39

G1KP3 2,504 0.13 0.75 1.88 0.56
SARD 3,489 0.13 1.03 2.55 0.46
COMB 9,341 0.28 2.73 6.57 0.41
MEGA 11,845 0.33 4.61 8.28 0.43

Table 3.3: Computational requirement of minimac3 and other imputation tools. The tables summarizes
the running time and memory requirements of minimac3, minimac2, Impute2, and Beagle4.1 for different
reference panels to impute 100 whole genomes (running time interpolated from analysis on chromosome
20). All four tools were run on 5 Mb chunks with 1 Mb overlap (13 chunks in serial or chromosome 20
yielding a total of 227,925 variants). Minimac3, minimac2, Impute2 were run with pre-calculated estimates.
Minimac3 and Beagle4.1 was run with their respective input file formats (m3vcf)3 and bref4 respectively)
while minimac2 and Impute2 were run on VCF and Oxford format files respectively. The best results are
highlighted in bold face.
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Reference Panel # Samples minimac3 minimac2 Impute2 Beagle 4.1

Imputation Accuracy (Mean r2) MAF [10−4-0.5%]

G1KP1 1,092 0.45 0.45 0.43 0.42

AMD 2,074 0.54 0.54 0.51 0.52

G1KP3 2,504 0.52 0.52 0.49 0.52
SARD 3,489 0.55 0.55 0.53 0.54

COMB 9,341 0.76 0.76 0.74 0.76
MEGA 11,845 0.76 0.76 0.74 0.76

Imputation Accuracy (Mean r2) AF [0.5-5%]

G1KP1 1,092 0.77 0.77 0.76 0.73

AMD 2,074 0.82 0.82 0.80 0.80

G1KP3 2,504 0.79 0.79 0.78 0.79
SARD 3,489 0.79 0.79 0.78 0.80
COMB 9,341 0.89 0.89 0.88 0.89
MEGA 11,845 0.89 0.89 0.88 0.89

Imputation Accuracy (Mean r2) MAF [5-50%]

G1KP1 1,092 0.96 0.96 0.95 0.95

AMD 2,074 0.96 0.96 0.96 0.96
G1KP3 2,504 0.96 0.96 0.96 0.96
SARD 3,489 0.96 0.96 0.96 0.96
COMB 9,341 0.97 0.97 0.97 0.97
MEGA 11,845 0.97 0.97 0.97 0.97

Table 3.4: Imputation accuracy of minimac3 and other imputation tools. The table summarizes the accuracy
of minimac3, minimac2, Impute2, and Beagle4.1 for different reference panels to impute chromosome 20.
All four tools were run on 5 Mb chunks with 1 Mb overlap (13 chunks in serial or chromosome 20 yielding
a total of 227,925 variants). The number of variants in the 3 MAF bins are 32,945 [10−4-0.5%], 70,016
[0.5-5%], and 104,751 [5-50%]. The best results are highlighted in bold face.
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(Table 3.2). If desired, genotypes of imputation-identified carriers can be validated through Sanger

sequencing or other targeted assays prior to callback phenotyping or other follow-up analyses.

The complexity of our algorithm depends on the number of unique haplotypes in each ge-

nomic segment and the total number of such segments in the reference panel (Figure 3.1). Due to

linkage between variants, the number of unique haplotypes in a genomic segment increases sub-

linearly with sample size. For example, in a 10kb window of simulated data, the number of unique

haplotypes increased from 40 to 120 as the number of individuals increased from 200 to 1,500.

Thus, minimac3 scales better than linearly; increasing the simulated reference panel from 1,000 to

20,000 individuals (20-fold) increased memory and computing time 7-fold. In real data, increasing

the panel size from 1,092 to 11,455 (10-fold) increased computing time 5-fold.

3.3.3 Compressed File Structure

Our state-space reduction also provides an efficient way to represent haplotype data, substan-

tially reducing file size relative to the now standard Variant Call Format (VCF). The relative effi-

ciency of the representation reflects population genetics: for example, data from European popula-

tion can be compressed more than African ancestry samples (Table D.1, p.87 in Appendix D). We

adapted the VCF format to allow for these efficiencies, resulting in the m3vcf (minimac3 VCF)

format that stores only one copy of each unique haplotype in each genomic segment. We calculated

the order of disk space saved using m3vcf files compared to usual VCF files (in both unzipped and

zipped formats). We found that for 1000G Phase 1 with ~1K reference samples we save ~60% of

disk space when using zipped m3vcf files compared to zipped VCF files, and ~93% when com-

pared across unzipped formats (Table D.2, p.88 in Appendix D). The saving is even greater for

larger panels. For example, for the HRC reference panel with ~33K samples, we save ~84% and

~98% of disk space using zipped and unzipped m3vcf files. Our minimac3 distribution includes

simple utilities to manipulate m3vcf files.
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3.3.4 Imputation as a Service

Continued computational improvements in imputation tools are necessary for imputation to re-

main broadly accessible as reference panels scale to 10, 000s of sequenced genomes and 1, 000, 000s

of genotyped samples become available. However, a large burden of imputation and other ge-

nomics tools, is the requirement for users to master and manage large high-performance cluster

jobs from the command line. To address this major need, we constructed a cloud-based imputation

server. The server currently uses the minimac3 engine for rapid computation but pairs it with an

accessible user interface. In the past 6 months, genomes for >1.5 million individuals have been

imputed. Behind the scenes, the server divides large datasets into small chromosome segments that

are processed in a parallel. Results are collected and pasted together so the process is seamless to

end users.

Our imputation server also performs quality control (QC), verifying strand orientation, allele

labeling, file integrity, minor allele frequency distribution, and per sample and per variant missing-

ness. If no major problems are encountered, samples are then imputed using one of the currently

available reference panels: HRC, 1000G Phase 1 and 3, HapMap Phase 2, and CAAPA. Data can

be uploaded directly or by specifying a remote secure file transfer protocol (sftp) location. Data

transfers are encrypted and input data are deleted after processing. As imputation proceeds, the

users are provided feedback on progress, QC summary reports, email notification, and a down-

load link for the imputed data. Our current service (https://imputationserver.sph.

umich.edu), consisting of 12 multi-processor computers (465 cores in total) and can impute >9

million genomes using the HapMap 2 panel and >175K genomes using the HRC panel per month.

Since announcing the service in October 2014, > 7, 800, 000 genomes from ~22, 000 users have

been processed.

3.4 Discussion

Here, we have described improved computational methods and interfaces to ensure that im-
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putation remains broadly accessible - enabling researchers to rapidly process millions of samples,

without first becoming experts in the intricacies of imputation software and cluster job manage-

ment, and to conveniently access large reference panels of sequenced individuals, such as those

from the HRC. To make this service highly scalable, we have re-engineered the core algorithms

in our imputation engine. Our improved imputation algorithm based on “state-space reduction"

provides a numerically faster solution for genotype imputation with no loss in imputation accuracy

and enables the use of large reference panels. Our cloud-based interface simplifies analysis steps

for users and can be adapted to other analysis needs, such as linkage-disequilibrium aware geno-

type calling from low-coverage sequence data. This trend, where cutting edge software, large data,

computational power, and a friendly interface are packaged together, will become increasingly

important as genomic datasets increase in size and complexity.
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CHAPTER 4

Minimac4 - Faster Imputation through Aggressive State Space Reduction of Hidden
Markov Models

4.1 Introduction

Despite substantially boosting the quality of imputation, modern reference panels like the HRC

demand expensive computational resources. In Chapter 3, we developed minimac3 along with a

web-imputation server that significantly reduced computational burden while keeping the same

imputation accuracy. Despite that, the Michigan imputation server, which has over 400 cores of

CPU, has a monthly throughput of ~175,000 genomes using the HRC panel. At this rate, future

GWA studies which aim to have millions of samples, would need over 5 months to analyze their

samples. Furthermore, the Sanger imputation server, which uses PBWT (Durbin 2014) as their

imputation tool, has a higher throughput than our server, albeit at a slightly lower imputation

accuracy (see Figure 2.2, p.21). Similarly, algorithmic improvements made to Beagle4.1 since its

first release has made it a competing tool in terms of imputation time. In this chapter, we aim

to modify our imputation algorithm to further decrease computation complexity. The boost in

imputation speed would substantially increase the throughput of our imputation server as well as

enable users to efficiently impute against future panels with larger number of reference samples

(for example, the second release of TOPMed is predicted to have over ~80,000 samples).

In minimac3, we introduced the idea of state space reduction, which only analyzes the unique

haplotypes in small genomic regions, thereby reducing the size of the Markov model state space

(Das et al. 2016). To illustrate this with an example, the HRC panel has around 65, 000 haplo-

types, but in small genomic segments we analyzed only ~500 unique templates on average. In
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this chapter we implement a more aggressive form of state space reduction that merges haplotypes

based on their alleles at the genotyped markers only. This further round of collapsing, along with

other software engineering techniques and numerical approximations, brings additional computa-

tional savings. These new methods have been implemented in our open source C++ package called

minimac4.

4.2 Methods

Minimac4 employs a parsimonious model for the basic imputation framework based on the Li

and Stephens model (described in Chapter 1, Section 1.1.1, p.6). The methods described in this

chapter have three basic features. (1) We restrict the HMM model to markers that were genotyped

in the study samples, which aids in a more aggressive reduction of the HMM state space and hence

reduces the computational complexity. (2) We impute markers that were not genotyped using a

linear approximation. These approximations negligibly reduce accuracy but significantly improve

imputation speed. (3) We optimize data representation methods and improve software engineering

techniques to further increase computational efficiency.

4.2.1 Aggressive State Space Reduction

The intuition behind imputation is to use the alleles at the genotyped markers of the study

sample to find matching or similar haplotype segments from the reference panel (see Section 1.1.1,

p.6). Since all the genetic information of the study sample is contained within the genotyped mark-

ers, we extended the minimac3 algorithm by collapsing haplotypes that have identical alleles only

at positions that were genotyped in the sample, instead of using all the markers in a genomic seg-

ment (as in minimac3). Under the new model, reference haplotypes which are collapsed together

must have the same alleles at the genotyped markers but might not agree at the intervening ungeno-

typed markers. We illustrate this with example in Figure 4.1, p.41. The top panel is the original

state space with 9 reference haplotypes at 27 markers (as used in minimac), the middle panel is

the reduced state space (minimac3), and the bottom panel is the aggressively reduced state space
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(minimac4). Under the usual state space reduction, the first genomic segment yields 3 unique hap-

lotypes. Under the above extension, the first two unique haplotypes are further collapsed as they

agree at the genotyped markers (see Figure 4.1). We call this extended version “aggressive state

space reduction” (ASR). Reducing the state space in this way is expected to bring a significant

fold decrease in computational complexity, especially since the number of genotyped markers is

only ~1% of the total number of markers. We describe some of the formulations in this chapter

while rigorous details of proof are given in Appendix E. For a brief review of notations and their

meaning, please refer to Chapter 3.

Notations. Let us label the original state space as S1 = {X1, X2, . . . , XH}, the reduced state

space as S2 = {Y1, Y2, . . . , YU}, and the aggressively reduced state space as S3 = {Z1, Z2, . . . , ZV }

where V ≤ U ≤ H are the number of templates in each of the spaces. For example in Figure 4.1,

p.41, for the left most genomic block we have H = 9, U = 3 and V = 2. Next let us denote,

for each Zi ∈ S3, the number of haplotypes from the space S2 (and S1) which were collapsed to

form Zi as mi (and Mi). For example, for Z1 we have m1 = 2 and M1 = 6 and for Z2 we have

m2 = 1 and M2 = 3. It is easy to observe that
V∑
i=1

mi = U and
V∑
i=1

Mi = H . Lastly, let us label the

left probabilities for the space S1, S2, and S3 as Lk(.), Lk(.) and Lk(.) respectively and the right

probabilities as Rk(.), Rk(.) and Rk(.) respectively.

The first step in minimac4 is to fit the HMM on space S3 to estimate posterior genotype prob-

abilities of Z1, . . . , ZV only at the genotyped markers. This is done by implementing the forward

equations on space S3, followed by the backward equations on the same space, and then estimating

the posterior probabilities. The formulas are similar to those in minimac3 with one major excep-

tion. In the aggressive version, we run the forward and backward recursions only on the genotyped

markers rather than all of the markers along the chromosome. Thus, we need to re-define the tran-

sition function which should now measure the probability of a template switch across consecutive

genotyped markers. A more general version of the recombination rate (λA:B) which can measure

the probability of a template switch between any pair of markers A and B is given below (where
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Figure 4.1: Overview of aggressive state space reduction in minimac4. We consider the first block
consisting of the first 7 markers. The top panel shows the original space (S1) with H = 9 hap-
lotypes (X1, . . . , X9). The middle panel shows the usual state space reduction (S2) by collapsing
haplotypes that are identical to each other within the first block. For example, X1 to X4 were
collapsed to form Y1. This gives 3 unique states (Y1, Y2, Y3) for space S2 (U = 3). The bottom
panel shows the aggressive version (S3) where we collapse templates from S2 which match at the
genotyped markers (denoted as blue vertical lines). For example, we collapse Y1 and Y2 to form
Z1 as they agree at markers 2, 5, and 7. This yields 2 states (Z1 and Z2) for space S3 (V = 2). We
also note that the templates collapsed together in Z1 don’t agree at marker 3 (ungenotyped)
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A and B need not be consecutive and λi is as defined in Section 3.2.1, p.27):

1− λA:B =
B−1∏
i=A

(1− λi) (4.1)

Forward Equations. The first equation (4.2) transforms the left probabilities from the original

space S1 to the aggressively reduced space S3 (LP → LP ), the second equation (4.3) gives the

modified forward equation for the space S3 (LP → LQ), and the third equation (3.3) transforms

the left probabilities from space S3 back to the original space S1 (LQ → LQ).

LP (Zi) =
H∑
j=1

I(Xj = Zi)× LP (Xj) (4.2)

LB (Zi) =

[
[1− λA:B]LA (Zi) +

MiλA:B
H

V∑
j=1

LA (Zj)

]
× P (SB|Zi) (4.3)

LQ(Xj) = LR
Q(Zi)×

[
1

Mi

]
+ LNR

Q (Zi)

[
LP (Xj)

LP (Zi)

]
(4.4)

In the above equations:

• A and B are two consecutive genotyped markers.

• λA:B denotes the template switch probability between markers A and B (defined earlier).

• P (SB|Zi) denotes the genotype emission probabilities. We note that haplotypes which are col-

lapsed together in the space S3 agree at the genotyped markers and thus will have the same

genotype emission probabilities. Hence, the term P (SB |Zi ) makes sense

• LNR
Q and LR

Q are the components of LQ and are defined similar to equations (3.4) and (3.5).

Backward Equations. Equation (4.5) transforms the right probabilities from S1 to S3 (RQ →

RQ), while equation (4.6) gives the modified formulation for the Baum-Welch backward equations

(RQ → RP ), and the third equation (4.7) transforms back the right probabilities from S3 to S1
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(RP → RP ).

RQ(Zi) =
H∑
j=1

I(Xj = Zi)×RQ(Xj) (4.5)

RA (Zi) =
MiλA:B
H

[
V∑
j=1

RB (Zj)P (SB|Zj)

]
+ [1− λA:B]RB (Yi)P (SB|Yi) (4.6)

RP (Xj) = RR
P (Zi)×

[
1

Mi

]
+ RNR

P (Yi)

[
RQ(Xj)

RQ(Zi)

]
(4.7)

Posterior Probabilities. The formula below gives the posterior probability of each aggressively

reduced state (4.8).

P (Zi |GWAS) =

[
H∑
j=1

I(Xj = Zi)LP (Xj)RQ (Xj)

]
×
[
LK (Zi)

LP (Zi)
× RK (Zi)

RQ (Zi)

]
+

1

Mi

[
LK (Zi)RK (Zi)−LNR

K (Zi)R
NR
K (Zi)

]
(4.8)

Restricting the HMM to only genotyped markers enables us to implement the model with a

lesser number of comparisons than we could in minimac3. Additionally, the HMM model fitted in

minimac4 is not mathematically different from the model implemented in minimac3, in the sense

that it generates the exact same posterior probabilities at the genotyped markers as they would in

minimac3. Refer to the Appendix E for proof and further details.

4.2.2 Imputation of Ungenotyped Markers

The second step involves imputing the ungenotyped markers. In minimac4, instead of imple-

menting the HMM across all markers along the chromosome, we decided to use constant proba-

bilities for a small ungenotyped region. To be more specific, for each genotyped marker we define

a ‘flanking region’ surrounding that marker. These flanking regions are non-overlapping and as-

sembled sequentially by forming intervals using the mid-points that lie between two consecutive
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genotyped markers (see Figure 4.2). For each such flanking region, we use the posterior probabil-

ities estimated at the corresponding genotyped marker to impute the ungenotyped markers in that

region.

Flanking Region

Flanking Region

Figure 4.2: Assembly of flanking regions for imputation. The figure describes the formation of the flanking
regions. The solid black circles represent the genotyped markers. The vertical black lines denote the mid-
points between consecutive genotyped markers. These lines form the end-points for the flanking regions.
Each genotyped marker lies inside its own flanking region, but need not be at the mid-point of that region

However, as mentioned previously, haplotypes which have been collapsed together in space

S3 might not agree at all the intermediate ungenotyped markers. Thus, we need to transform the

probabilities from the space S3 to the space S2 and use the transformed posterior probabilities

to impute the ungenotyped markers in the flanking region. To explain the notations, let K be

a genotyped site and Yj ∈ S2 be a template that was collapsed to form Zi ∈ S3. The crude

way to transform probabilities from S3 to S2 would be to first transform from S3 to S1 using

equation (4.4) and then from S1 to S2 using equation (3.1). However, the following equation

directly transforms them from space S3 to space S2, where Nj is number of templates from space

S1 collapsed to form Yj (defined earlier in Section 3.2.1). This equation eliminates the need of

space S1 as an intermediate step and this is beneficial in reducing complexity, especially since the

cardinality of S1 is much higher than that of S2 or S3. A similar equation can be derived for the

right probabilities which can then be combined with the left probabilities to yield the final posterior

probabilities for the templates in space S2. Detailed proofs are found in Appendix E.

LQ(Yj) = LR
Q(Zi)×

[
Nj

Mi

]
+ LNR

Q (Zi)

[
LP (Yj)

LP (Zi)

]
(4.9)
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Most Likely Templates. In our internal studies with large reference panels, we observed that for

a specific sample in a specific genomic region, only a handful of haplotype templates have a high

posterior probability (say > 0.01) (see Figure E.1 in Appendix E, p.93). Analyzing only the top

few most probable templates, instead of all of them, can further reduce computational time. When

fitting the HMM at the genotyped markers, we create a set of ‘most likely templates’ from space

S3 (states with posterior probability more than a pre-determined threshold). When we impute the

ungenotyped markers, we only transform the probabilities of these most likely templates from S3,

instead of all the templates Z1, . . . , ZV ∈ S3. The final number of templates from space S2 to

be used for imputing the ungenotyped markers, is thus, much less than U (the total number of

templates in space S2).

4.2.3 Software Engineering Techniques

Apart from the above algorithmic developments, we have also leveraged other software engi-

neering techniques. Compact representation of data not only reduces memory requirements, but

also boosts computation speed by enabling faster search and data access.

Compact Reference Panel. In minimac3, we described the m3vcf format for storing the ref-

erence panel, that only encoded the unique haplotype templates in small genomic regions. This

format significantly reduced disk space requirements for the data as well as time to load the data

in the physical memory. In minimac4, we extend these efforts, by exploiting the fact that rare

variants, despite making up a significant percentage of the total number of variants, exhibit only

a few copies of the minor allele in the data. Consequently, for all markers with a MAF less than

a pre-determined threshold, only the indices of the haplotypes which carry the minor allele are

stored. These indices are stored in a sorted data structure and can be efficiently retrieved using a

binary search technique. If the index of a sample haplotype does not belong to that list, we know

that it carries the reference allele. The compression strategy also boosts imputation speed since im-
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puting these rare markers requires many fewer comparisons (e.g. only 3 comparisons are needed,

instead of 100, to impute a marker with 3 minor alleles, when there are 100 unique templates in

that genomic segment).

The second strategy was to write binary files. This was essential because, as we keep increasing

size of the reference panel, the time required to read data from the disk starts to dominate the time

required for imputation. This might be because, reading the data from disk is always linear in the

number of reference haplotypes, while the minimac3 algorithm scaled better than linear (see Table

3.3, p.33 in Chapter 3). The downside of writing binary files is that they are no longer human

readable.

Memory Efficient Data Structures. Compact representation of the imputed allele probabilities

also decreased the memory requirements. Though the HMM calculations are performed using 4-

byte floating point variable to prevent rounding errors, the final imputed value is stored as a 1 byte

value. To achieve this, for a fixed haplotype dosage value between 0 and 1, we find the nearest

element in set A =
{

2i+1
512

: i ∈ 0, 1, . . . , 255
}

and approximate that imputed value by that element.

The maximum error introduced this way is 1
512
≈ 0.00195 (less than 0.2%). Since there are 256

elements in the set A, we can store them using a single byte value (compared to 4 bytes for floating

point variable) thus giving us a 4-fold memory efficiency on some data structures.

Multi-threading. We greatly improved the parallelization module by using modern compiler

directives and library routines from the OpenMP® programming interface. Some of the key fea-

tures implemented are described here. (1) We reduced bottlenecks due to synchronization between

multiple threads by reducing the number of unnecessary steps in critical segments1. (2) Critical

segments that can run simultaneously were given different construct names to allow them to exe-

cute at the same time. For example, creating summary statistics and writing the output file are both

individually critical steps but can be run in parallel since neither step hinders the other. (3) We used

1Segments of code that should be executed only thread at a time. For example, writing the output file is a critical
step since two threads trying to write on the same file simultaneously would give erroneous results.
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in-built data sharing and initializing clauses (e.g. shared, threadprivate) to improve speed

of data synchronization across threads and thus reduce bottlenecks arising from repeated memory

reallocations. (4) The default output format (VCF) requires the final imputed data to be transposed

(since VCF format stores markers along rows and samples along columns). Additionally, multi-

threading compels samples to be imputed in a random order which later needs to be sorted back;

this further adds to the time spent in the critical step of file output. We implemented a system

of nested parallelization that removed these bottlenecks due to file output. A pre-fixed number

of consecutive samples are imputed in parallel together. The resulting imputed data from such a

batch is stored in the physical memory and then written in a partial VCF file with the samples in

the correct order. Once all such batches are finished the partial VCF files are merged back. This

step is greatly beneficial because it allows the next batch of samples to start imputing while the

previous batch is still being written on disk, thus removing the bottleneck.

4.3 Results

4.3.1 Comparison of Imputation Tools

We compared the imputation run time and physical memory required by minimac4, to min-

imac3, Beagle4.1 and Impute2. We imputed into 1,000 GWA samples using typical reference

panels: 1000G Phase 1, 1000G Phase 3, the HRC, and the TOPMed panel. The number of non-

missing genotypes provided by the panels are ~0.67 billion, ~5.2 billion, ~57.4 billion, and ~176.2

billion respectively. The results are shown in Table 4.2, p.49. Estimates of run-time for the whole

genome were interpolated from analysis on chromosome 20. For minimac3 and minimac4 we used

the m3vcf format for the reference panel, for Beagle4.1 we used the bref format, and for Impute2

we used the Oxford hap/legend format. The m3vcf and bref are compact representations of the

haplotype data and thus aid in faster reading of the data. When imputing against the TOPMed

panel, minimac4 is ~2.5 times faster than minimac3 and ~3 faster than Beagle4.1. However, the

memory consumed by minimac4 is slightly more than Beagle4.1 (~0.74 Gb versus ~0.7 Gb). For

HRC panel it is ~2.5 times faster than Beagle4.1 and the memory consumed is almost a third (~0.68
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Gb versus ~1.78 Gb, respectively)

Minimac4 scales quite well with increasing panel size and marker density. For example, the

number of non-missing genotypes in TOPMed is ~3 times that of HRC, but the time taken for

imputation is quite similar (~290 hours versus ~276 hours). Similarly, the time taken for 1000G

Phase 3 is less than twice as that of Phase 1 (~56 hours versus ~30 hours, respectively) although

the Phase 3 panel provides ~7 times more genetic information. Between minimac3 and minimac4,

the fold increase in speed is less in HRC compared to TOPMed and this is probably because HRC

panel was created at an MAC greater than 5, while the TOPMed panel starts at MAC ≥ 2, thus

enriching the rarer spectrum.

4.3.2 Comparison of Imputation Accuracy

We next examined the change in imputation accuracy due to approximations implemented in

minimac4 (using most likely templates and constant probabilities in ungenotyped regions). We

compared the accuracy of minimac4 to impute 10 CG samples using 4 reference panels to that

of minimac3 (reference panels used are 1000G Phase 1, 1000G Phase 3, HRC, and TOPMed).

The results are shown in Table E.1, p.94 in Appendix E. For a comparison of accuracy between

minimac3 and other methods see Table 3.4, p.34 in Chapter 3. The fall in accuracy due to approxi-

mations in minimac4 is negligible; the maximum fall in aggregate2 r2 across all AF bins is ~0.002

for the TOPMed panel, and ~0.001 for the HRC panel. The difference in accuracy also decreases

as the panel size increases from 1000G Phase 1 to TOPMed (maximum difference in 1000G Phase

1 is ~0.049). The larger panels improve the chances of finding shared templates and thus mitigate

the effect of numerical approximations applied to the HMM.

4.3.3 Comparison of Reference Panels

We estimated the average run time for different reference panels using minimac4. We imputed

into 1,000 GWA samples on chromosome 20 against 1000G Phase 1, 1000G Phase 3, HRC, and

2See footnote on page 20 for definition of aggregate r2
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Reference Panel # Genotypes # Samples # Variants minimac4 minimac3 Impute2 Beagle 4.1

Time (in CPU-hours)

1000G Phase 1 ~0.67B 1,092 ~617K 29 49 340 50

1000G Phase 3 ~5.2B 2,504 ~1.04M 56 112 980 120

HRC ~57.4B 32,470 ~884K 276 414 1,351 728

TOPMed 176.2B 19,815 ~4.44M 290 783 60,500 900

Memory (in CPU-Gigabytes)

1000G Phase 1 ~0.67B 1,092 ~617K 0.07 0.09 0.91 0.51

1000G Phase 3 ~5.2B 2,504 ~1.04M 0.09 0.13 1.88 0.56

HRC ~57.4B 32,470 ~884K 0.68 0.95 22.08 1.78

TOPMed 176.2B 19,815 ~4.44M 0.74 1.24 107.7 0.70

Table 4.2: Computational requirements of minimac4 and other imputation tools. This table summarizes
the running time and memory requirements of minimac4, minimac3, Impute2, and Beagle4.1 for different
reference panels to impute 1,000 whole genomes (running time interpolated from analysis on chromosome
20). All four tools were run on 5 Mb chunks with 1 Mb overlap (13 chunks in serial or chromosome
20 yielding a total of 227,925 variants). Minimac4, minimac3, and Impute2 were run with pre-calculated
estimates. Minimac4, minimac3, and Beagle4.1 were run with their respective input file formats (m3vcf
and bref respectively) while Impute2 was run on Oxford format files. The best results are highlighted in
bold face.
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TOPMed and the results are shown in Table 4.1, p.50. The main segments of the minimac4 algo-

rithm can be categorized as follows: (a) reading the reference data from disk, (b) re-compressing

the reference data (from space S2 to S3), (c) imputing the study samples, and (d) writing the im-

puted data to the disk. The time required in segments (a) and (b) are independent of the number of

GWA samples and contribute to an overhead cost. Segment (c) is the only section that benefits from

multi-threading. For example, multi-threading reduces the imputation time (not total run-time) by

5-fold and 10-fold when using 5 and 10 CPUs respectively, when compared to a single-thread

process (see Table 4.1). Another interesting feature in Table 4.1: when using 10 CPUs to impute

against the TOPMed panel, the time required to write the imputed data to disk (which should be in

serial) is almost equal to the time taken to impute the samples (which has been parallelized).

Time (mins)
1000G
Phase 1

1000G
Phase 3

HRC TOPMed
TOPMed
(5 cpus)

TOPMed
(10 cpus)

File Read 0.5 0.8 2.2 4.0 4.1 4.1

File Write 10.6 17.5 11.9 38.0 39.0 38.8

Re-Compression 0.1 0.3 5.0 3.4 3.8 3.9

Imputation 24.5 51.8 312.0 302.8 62.5 31.5

Total Run Time 35.7 70.4 331.1 348.2 109.4 78.3

Speed Up
(compared to
minimac3)

1.7x 2.0x 1.5x 2.8x 3x 3.7x

Table 4.1: Comparison of imputation time for different reference panels. This table summarizes
the amount of time consumed in different steps during imputation against some typical reference
panels. In this table we describe the time profiles for the 1000G Phase 1, 1000G Phase 3, HRC, and
TOPMed to impute 1,000 samples on chromosome 20. For the TOPMed panel we also compare
the time profile required by a single thread process to multi-thread processes using 5 and 10 CPUs.

The results signify that using more than 10 CPUs would not benefit users beyond a limit, since

the bottleneck of the process would then become the file I/O and that cannot be parallelized. This

feature is a direct application of Amdahl’s law (Amdahl 1967) which states that theoretical speedup

is always limited by the part of the task that cannot benefit from the multi-threading improvement.

For example, using 10 CPUs on the TOPMed panel decreased the total run time by only ~4.4 fold
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(~78 minutes versus ~348 minutes). This is because it takes ~40 minutes to write the imputed data

to disk, which stays constant irrespective of the number of CPUs used (see Table 4.1)

The results from Table 4.1 have been summarized to predict the total run-times for different

panels using minimac4 and have been documented in Table 4.3, p.51. It is estimated to take ~6

hours to impute 1,000 samples on chromosome 20 using the HRC panel (~7.2 minutes of overhead

and 1, 000×21 seconds to impute 1, 000 samples). We note that the ‘time per sample’ also includes

the time taken to write the imputed data to disk and thus these numbers from Table 4.3 cannot be

transformed to obtain multi-thread estimates.

Time for

Chr 20

1000G

Phase 1

1000G

Phase 3
HRC TOPMed

Overhead 0.6 min 1.1 min 7.2 min 7.5 min

Time per Sample ~2 secs ~4 secs ~21 secs ~20 secs

Table 4.3: Predicted run-time for different reference panels. This table provides an estimate of
total run-time on a single CPU to impute against the major reference panels, namely, the 1000G
Phase 1, 1000G Phase 3, HRC, and TOPMed. Note that the time per sample includes the time
to write the imputed data to disk and these numbers cannot be transformed to obtain multi-thread
estimates. See Table 4.1 for time taken in a multi-thread process.

We also compared the accuracy in European samples when imputed against the above 4 ref-

erence panels. We measured aggregate r2 after imputing into 10 CG samples and the results are

shown in Figure 4.3, p.52. TOPMed provides the highest accuracy for studies of European ances-

try, increasing the r2 to ~64% (the r2 for HRC is ~59% and for 1000G Phase 3 is ~30%).

4.3.4 Sensitivity to Parameter Values

Minimac4 has been enabled with a default system of automated chunking where it analyzes

the data sequentially through non-overlapping chunks. The main benefit of imputing chunks as

opposed to imputing whole chromosome is lower memory consumption; this in turn enables more

samples to be imputed in parallel. The main drawback is that chunking breaks down long haplotype
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Imputation in European Samples
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Figure 4.3: Comparison of 1000G Phase 1, Phase 3, HRC, and TOPMed. The plot shows the
imputation accuracy (aggregate r2) for imputing into 10 CG samples using 1000G Phase 1, 1000G
Phase 3, HRC, and TOPMed reference panels.

segments, which might interfere with the haplotype matching process and consequently reduce

imputation accuracy, especially for variants along the edges of the chunk. The decrease should

would also be significant for rarer variants since longer segments of haplotypes might be needed to

accurately impute them. Additionally, overlapping regions between chunks ends up being imputed

twice and adds to the total run-time. In Figure 4.4, p.53, we plot the imputation accuracy for

imputing into 100 GWA samples using the HRC panel on chromosome 20. We evaluated the

effect of different chunk lengths ranging from 0.5Mb to 30Mb. While smaller chunk lengths (less
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than 5Mb) decrease the accuracy substantially, large chunk lengths (greater than 15Mb) yield the

same accuracy as chromosome wide imputation. The default value in minimac4 is to analyze

chunks of length 20Mb with a buffer region of 3Mb on either side of the chunk; users have the

option to change these values. In our internal studies, we have found that these default values

to be sufficiently large enough to provide maximum accuracy across all reference panels and still

be beneficial in reducing memory consumption. For example, the default values reduce memory

consumption ~12 fold and increase total run time by ~20%, when imputing chromosome 2 (with

no fall in imputation accuracy).Effect of Chunk Sizes on Imputation Accuracy
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Figure 4.4: Effect of chunking on imputation accuracy. The figure describes the effect of different
chunk sizes on the imputation accuracy. The X-axis shows the alternate allele frequency on a log
scale. The Y-axis shows imputation accuracy measured by aggregate r2. The gray lines represent
accuracy profiles for different values of chunk length used in minimac4. Chunk lengths smaller
than 5Mb decrease the accuracy substantially while those larger than 15Mb yield the same accuracy
as chromosome wide imputation. The default value in minimac4 is to analyze chunks of length
20Mb with a buffer region of 3Mb on either side of the chunk
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4.3.5 Imputation in Non-European Samples

We also evaluated the accuracy administered by different reference panels for samples of

African, admixed American, East Asian and South Asian ancestry. We imputed into 10 GWA

samples of each of the above ancestry. The study samples were extracted from the 1000G Phase

3 reference panel, and all markers except those on the Illumina® Duo 1M Chip were masked to

mimic a typical GWA study. We imputed into these samples using 1000G Phase 3, HRC, and

TOPMed reference panels and then calculated aggregate imputation r2. For African and admixed

American ancestry we found that the TOPMed reference panel provides significantly higher ac-

curacy than 1000G or HRC panels (see Figure H.1, p.101 and Figure H.2, p.102 in Appendix H).

For example, for African samples the TOPMed panel provides ~63% aggregate r2 while the HRC

panel provides ~54% aggregate r2 at variants with MAF ~0.1%. However, samples of East Asian

and South Asian benefit the most from 1000G Phase 3 panel (see Figure H.3, p.103 and Figure H.4,

p.104 in Appendix H). 1000G Phase 3 yields aggregate r2 of ~55% compared to ~33% accuracy

provided by TOPMed for South Asian samples at variants with MAF between 0.5% and 1%. The

results demonstrate that the TOPMed panel is consequently the choice reference panel for samples

of European, African and Admixed American ancestry while 1000G Phase 3 should be for East

Asian and South Asian samples.

4.4 Discussion

In this chapter we presented some methods on improving the speed of imputation algorithms

while still maintaining similar accuracy. The most effective way to gain imputation accuracy is

to increase the size of the reference panel. Consequently, to keep imputation with larger panels a

computationally feasible practice, imputation algorithms need to constantly improve themselves.

Although, due to unavailability, we have not been able to test minimac4 on reference panels with

millions of samples, we expect the algorithmic developments to scale quite well. The main reason

behind this expectation being: the number of markers on a genotyping chip is far less than the

54



total number of markers and does not change with increasing number of samples or markers in

reference panel; hence we expect the aggressively reduced space to stay much smaller than the

original reduced space. For instance, the HRC panel has ~66, 000 haplotypes but on an average we

analyzed ~500 unique templates in minimac3 and ~80 unique templates in minimac4.

The results from this chapter highlight certain salient features in next generation imputation

studies. First, the study on non-European samples don’t agree with the idea that using a larger

panel always increases the imputation accuracy. The HRC panel properly contains all samples from

1000G Phase 3 but study samples of Asian ancestry benefit more from the 1000G panel. This might

be because the HRC panel is predominantly European (the only non-European samples in HRC

are contributed by the 1000G) and phasing the samples of HRC jointly depletes the contribution

of haplotypes unique to Asian ancestry. The haplotypes of the Asian samples in HRC show more

resemblance to European haplotypes, thus reducing chances of finding good matches with Asian

study samples. This could also be the reason why TOPMed panel provides better accuracy for

African and Admixed American samples but the least accuracy for South and East Asian samples,

as the TOPMed panel is highly enriched with African samples but has poor representation from

Asian samples. Such artifacts are also seen in the field machine learning, especially in algorithms

that rely on a fundamental assumption that the training and test data are drawn from identical

distributions. A future direction of imputation algorithms could be to develop methods of transfer

learning that can control for such ‘negative transfer’ of information.

Second, imputation accuracy is not affected by running analysis on chunks instead of the whole

chromosome, provided the chunks are large enough. In all our experiments, chunks of 15 Mb

length with around 3 Mb buffer on either side have been sufficiently large. Third, future imputation

tools should emphasize improving the efficiency of file I/O as these steps will soon become main

bottlenecks of imputation analysis. For large GWA studies with millions of samples, we might

suggest saving only the most-likely genotypes (instead of a continuous imputed dosage). This

way users can download m3vcf format for their imputed data which would ease the process of file

transfer/sharing. Moving to hard call genotypes from continuous dosages might slightly reduce
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the power of association studies, but the ease with which hard genotypes can be compressed would

mitigate the fall in power, especially when millions of samples are being tested together. We are

currently developing toolboxes that can perform association tests directly on the m3vcf format.

These tools would additionally increase the speed of association studies.

As variant density in commercial chips increases, the fold increase in speed of minimac4 is

expected to decrease compared to minimac3. While this is a genuine concern, based on current

trends we expect future reference panels to have a more detailed catalog of structural variants which

would also increase the number of variants in the reference panels. As long as the proportion of

genotyped variants is small, we expect minimac4 to produce computational savings compared to

minimac3. However, the main caveat of minimac4 lies in the fact that it has an overhead cost and

hence it may not be beneficial for GWA studies with small number of samples. As an example,

it takes 20 seconds per sample to impute against the TOPMed panel on chromosome ~20, while

the overhead cost is ~8 minutes. Thus, it might not make sense to impute a study of 10 samples

as the overhead would be much larger compared to actual imputation time (~4 minutes). For such

instances of studies with small number of GWA samples (less than 100), we recommend using

minimac3.
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CHAPTER 5

MetaMinimac - A Simple and Flexible Method to Combine Imputed Data from Multiple

Reference Panels

5.1 Introduction

Genotype imputation has become an integral tool in human gene association studies. Imputa-

tion is an in-silico method in which a reference panel is used to infer genetic variants that were not

genotyped in a study sample. In Chapter 1, Section 1.1.1, we outlined how algorithms for geno-

type imputation require a reference panel of densely sequenced genotypes to be used as templates

for copying genetic information. In the last decade, apart from public projects like the HapMap

Project or 1000G Project, other large-scale sequencing studies have designed datasets to be used

as reference panels in their respective imputation studies. Examples include a study on an isolated

island in Italy, Sardinia (Francalacci et al. 2013), a study on indigenous Dutch populations (GoNL

2014), and a study on Icelandic samples (Gudbjartsson et al. 2015). To exploit this ever-increasing

abundance of information, it is desirable to combine the available reference sets, as this is likely to

increase the chance of imputing lower frequency and rare variants more accurately. However, how

to best construct a combined panel from the rapidly accumulating reference datasets from around

the world, is still a challenging question.

5.1.1 Motivation

The first hurdle in merging different reference panels is to determine the final set of variants,

since typically different studies will have different sets of variants genotyped. One simple solution

would be to choose the subset of variants that are present in all the datasets. However, this reduces
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the total number of variants in the merged data and might make it difficult to identify shared

haplotype segments. An ideal solution would be to consider the union set of variants, and jointly

call the variants in all the samples from their respective sequence alignment files (to be referred to

as the “joint method"). The HRC reference panel was created using this approach. Still, variant

calling is a highly compute intensive job and isn’t always a feasible solution for merging reference

panels.

An easy substitute for variant calling would be to combine the reference panels by first treating

them as reference panels for each other and then “cross imputing” the missing variants into each

panel. The cross-imputed panels would have the same set of variants and can thus can be easily

merged. However, cross-imputation followed by imputation might decrease statistical certainty in

downstream association studies. This approach has been used in Impute2 and was found to be

neither helpful nor harmful when compared to a large, population-specific reference panel (Huang

et al. 2015). Furthermore, certain reference panels like the HRC and TOPMed are not available

publicly for download and hence cannot be merged with in-house reference panels. Merging panels

also requires researchers to identify and remove overlapping samples across studies in order to

prevent bias in the imputation estimates. Lastly, by adding more haplotypes and variants to a

reference set, a considerable higher computational burden is imposed on imputation.

The accuracy of genotype imputation depends on the following key factors: density of geno-

typing chip, haplotypic diversity of the study population, the number of samples in the reference

panel, and genetic similarity between the reference panel and study samples (Huang et al. 2009).

To demonstrate the effect of some of these factors, we imputed into 20 GWA study samples from a

Norwegian population (Krokstad et al. 2012, HUNT study) using the following reference panels:

1000G Phase 1 with ~1,000 individuals, 1000G Phase 3 with ~2,000 individuals and an internal

HUNT WGS data with ~1,000 individuals. While increasing the number of reference samples from

1000G Phase 1 to 1000G Phase 3 yields a clear increase in accuracy, using a more genetically sim-

ilar reference panel like HUNT gives a much steeper rise at the same number of reference samples

(Figure 5.1, p.59). Previous studies have also reported that a modestly sized “internal” reference
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Figure 5.1: Imputation into 20 Norwegian samples. The results show minor improvement with 1000G
Phase 3 but are much better with HUNT WGS panel (compared to 1000G Phase 1)

panel of genetically more similar samples yields greater imputation accuracy than a larger “exter-

nal” panel from a different population, even if the divergence time between the two populations is

small (Deelen et al. 2014; Jewett et al. 2012; Pistis et al. 2014).

In this chapter, we introduce the idea of meta-imputation, which is a simple and flexible ap-

proach that integrates imputed data from multiple reference panels without interfering with the

original imputation algorithm or requiring access to the reference data. The term meta-imputation

has been used analogous to the term ‘meta-analyses’ for variant association. In meta-analysis,

we combine summary statistics obtained from different GWA studies that are imputed against the

same reference panel. In meta-imputation, we combine imputed data for the same GWA study

imputed against different reference panels. Meta-analysis is beneficial for improving power for

association test while meta-imputation is beneficial for increasing accuracy of rare variant impu-

tation. Additionally, meta-imputation is a solution to the challenges faced in merging reference

panels.
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5.2 Methods

Meta-imputation works by separately imputing the genotyped sample against different refer-

ences, and then combining the inferred genotype likelihoods at the overlapping markers, using

imputation-dependent scores in a weighted average function. We have implemented our method in

a publicly available C++ package called metaMinimac.

5.2.1 Model Description

Let us assume the most general set up where there are K reference panels denoted as P 1,P 2,

...,PK. We can assume that all the panels have the same set of markers (denote M ), since markers

which are specific to only one reference panel, if any, don’t gain any genetic information from

the other panel and thus don’t need to be meta-imputed. Let us denote the subset of variants

which were genotyped as G ⊂ {1, . . . ,M}. We describe methods for meta-imputing a single

sample haplotype. Let us denote for a study haplotype, the estimated haplotype dosage from the

kth reference panel as Xk,1, . . . , Xk,M (for each k = 1, . . . , K). We denote the meta-imputed

haplotype dosage at each marker as Z1, . . . , ZM which is represented as a weighted function of the

individual dosages (Eq. 5.1):

Zi =
K∑
k=1

wkXk,i (5.1)

where the weights wk satisfy 0 ≤ wk ≤ 1 and
∑K

k=1wk = 1 and would be determined by

an ad-hoc method that utilizes imputation dependent accuracy scores. The weights indicate which

reference panel to give preference to while determining the final meta-imputed dosage at each

marker. A panel that provides better matches of shared haplotypes with the GWA haplotype would

have a higher weight in the above function. The weights are allowed to vary based on the marker

position since different panels might be better depending on the region of the genome.

5.2.2 Leave-One-Out Imputation

In a hypothetical situation, if we knew the genotypes of the GWA sample at ungenotyped
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markers, we could compare these genotypes to the imputed data from each reference panel and

consequently get estimates of the weights. In real scenarios, we mimic this approach by compar-

ing the genotypes at the genotyped markers to the imputed dosages from each panel obtained by

hiding data for each genotyped marker in turn. While estimating dosages at genotyped markers,

in addition to reporting the usual imputed dosage, minimac3/4 also reports a leave-one-out (loo)

dosage which is estimated by masking the genotyped alleles of the study sample at that marker and

then imputing it back.

Example. In Figure 5.2, p.62 we give a simple example of leave-one-imputation using a single

panel of 6 reference haplotypes (X1, . . . , X6) and M = 10 markers, where only 3 markers were

genotyped (G = 1, 5, 9). The top left-panel describes the regular imputation, where 2 haplotypes

(X3, X5; shaded in bold) match the GWA haplotype (SG) based on the three genotyped positions.

The remaining three panels explain the leave-one-out imputation for each genotyped marker in

G = {1, 5, 9}. In the top-right panel, when we hide the observed allele for SG at marker 5,

we note that 3 haplotypes (X2, X3, X5) match the study haplotype (based on marker 1 and 9).

Consequently, the loo dosage at marker 5 would be (1 + 0 + 0)/3 = 0.33 (while the usual impute

dosage was 0.0). In the bottom-left panel, hiding the observed allele at marker 1 yields the same

haplotypes matching the study sample (X3, X5) (based on marker 1 and 9). Thus, the loo dosage

at marker 1 stays same as the usual dosage (= 1.0). Similarly, in the bottom-right panel, when we

hide the allele at marker 9, we have 5 reference haplotypes matching the study sample (X1, X3,

X4, X5, X6; based on marker 1 and 5) yielding a loo dosage of 0.4 (usual imputed dosage was

1.0).

At each genotyped marker (i ∈ G), let us denote the loo dosage from the kth panel at that

marker as X̃k,i (the respective usual dosages are denoted as Xk,i). Thus, for the sample shown in

Figure 5.2 and the given reference panel, we have (X1, X5, X9) = (1, 0, 1) and (X̃1, X̃5, X̃9) =

(1.00, 0.33, 0.40). Since the loo dosage has been estimated by hiding observed genotype in-

formation from a marker, we can compare them to the observed genotypes to get an idea of the

61



X1 1 1 0 0 0 0 0 1 0 0

X2 1 1 0 0 1 1 0 1 1 0

X3 1 1 0 0 0 1 1 1 1 0

X4 1 0 0 1 0 0 0 1 0 1

X5 1 0 1 1 0 1 0 1 1 1

X6 1 0 1 0 0 0 0 1 0 1

SG 1 . . . 0 . . . 1 .Missing :

R
ef

er
en

ce
H

ap
lo

ty
pe

s

Usual Imputation

X1 1 1 0 0 0 0 0 1 0 0

X2 1 1 0 0 1 1 0 1 1 0

X3 1 1 0 0 0 1 1 1 1 0

X4 1 0 0 1 0 0 0 1 0 1

X5 1 0 1 1 0 1 0 1 1 1

X6 1 0 1 0 0 0 0 1 0 1

SG 1 . . . ? . . . 1 .

At 5th marker X5 = 0 and X̃5 = 0.33

X1 1 1 0 0 0 0 0 1 0 0

X2 1 1 0 0 1 1 0 1 1 0

X3 1 1 0 0 0 1 1 1 1 0

X4 1 0 0 1 0 0 0 1 0 1

X5 1 0 1 1 0 1 0 1 1 1

X6 1 0 1 0 0 0 0 1 0 1

SG ? . . . 0 . . . 1 .

R
ef

er
en

ce
H

ap
lo

ty
pe

s

At 1st marker X1 = 1 and X̃1 = 1

X1 1 1 0 0 0 0 0 1 0 0

X2 1 1 0 0 1 1 0 1 1 0

X3 1 1 0 0 0 1 1 1 1 0

X4 1 0 0 1 0 0 0 1 0 1

X5 1 0 1 1 0 1 0 1 1 1

X6 1 0 1 0 0 0 0 1 0 1

SG 1 . . . 0 . . . ? .
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Figure 5.2: Schematic diagram explaining leave-one-out imputation. The figure illustrates leave-
one-imputation using a single panel of 6 reference haplotypes (X1, . . . , X6) and M = 10 markers,
where only 3 markers were genotyped (G = 1, 5, 9). SG is the study haplotype with mostly
missing. The top left panel shows usual imputation with two haplotype matches (X3, X5) based
on the 3 genotyped positions. The top-right panel shows leave-one-out imputation for marker 5.
Masking observed allele in SG (denoted as ‘?’) we find three haplotype matches (X2, X3, X5) based
on positions 1 and 9 (marked in bold). This yields a loo imputed dosage of (1 + 0 + 0)/3 = 0.33.
The bottom-left panel does the same for marker position 1. Hiding that allele on SG yields 2
reference matches (X3, X5) based on positions 5 and 9 and and a loo dosage of 1.0. In the bottom-
right panel, masking observed allele at position 9 similarly yields 6 matches (X1, X3, . . . , X6)
based on positions 1 and 5 and loo dosage of 0.4.
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relative imputation accuracy across the chromosome. In the above example, it seems that the ref-

erence panel did comparatively better in the beginning of the genome (X1 = 1 versus X̃1 = 1.0)

than it did towards the end of the genome (X9 = 1 versus X̃9 = 0.4). The benefit of estimating

loo dosages is it provides an ad-hoc way for evaluating the accuracy of imputation based on the

genotyped markers only, thereby removing the need for extra genotyping/sequencing for accuracy

evaluation.

In minimac3/4, the loo dosages are estimated by setting P (Sk|Yi) = 1 in equations (3.2) and

(3.7) (since hiding the observed allele is equivalent to using a trivial genotype emission proba-

bility). Accordingly, the recursive equations for calculation of the loo imputation estimates at

genotype markers are as follows:

L̃B (Zi) =

[
[1− λA:B] L̃A (Zi) +

MiλA:B
H

V∑
j=1

L̃A (Zj)

]
(5.2)

R̃A (Zi) =
MiλA:B
H

[
V∑
j=1

R̃B (Zj)

]
+ [1− λA:B] R̃B (Yi) (5.3)

• A and B are two consecutive genotyped markers.

• λA:B denotes the template switch probability between markers A and B (defined in Chapter 4,

Section 4.2.1, p.42).

• Z1, . . . , ZV are the states of the aggressively reduced state space (minimac4) and L̃i(.) and

R̃i(.) are their respective left and right probabilities for leave-one-out estimation (at the

ith marker).

The left and right probabilities can be used to yield loo posterior probabilities P̃ (Zv|GWAS)

(using Equation (4.8), p.43) which can then be used to obtain loo imputation estimates as follows:

X̃i =
V∑
v=1

Zv × P̃ (Zv|GWAS) (5.4)
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5.2.3 Estimation of Weights

The weights are estimated by training our model on the leave-one-out imputation estimates. At

each of the genotyped markers (i ∈ G), let us denote the genotyped values as Gi. We train our

model by treating the Gi as our pseudo-meta-imputed dosage, and X̃k,i as our pseudo-haplotype

dosages. We use the Nelder-Mead algorithm (Nelder et al. 1965) to obtain w1, . . . , wk by minimiz-

ing the following objective function under the constraints 0 ≤ wk ≤ 1 and
∑K

k=1wk = 1:

Φ(w1, . . . , wk) =
∑
i∈G

[
Gi −

K∑
k=1

wkX̃k,i

]2
(5.5)

In our internal evaluations, we find that optimizing the above function over genomic chunks

(5 − 10 mega base positions) to obtain chunk specific estimates of w1, . . . , wK provides better

imputation accuracy than optimizing them over the whole chromosome. This might be because

different regions of the genome require different weights based on which ancestral parent haplotype

that region had been copied from.

5.3 Results

5.3.1 Meta-imputation in Samples of Admixed Ancestry

Previous studies have shown that admixed samples gained better imputation accuracy from

multi-ethnic panels than from those with single ethnic samples (Chanda et al. 2012). We evaluated

the benefits of meta-imputing samples of admixed ancestry when relatively homogenous reference

panels are used for imputation. We mimicked a typical GWA study using the 1000G WGS samples.

The two homogenous reference panels comprised of 600 African (AFR) samples and 500 European

(EUR) samples, while the joint (merged) reference panel comprised of 1,103 AFR + EUR samples.

We imputed into 61 African-American samples in Southwest USA (ASW) and used aggregate1

1See footnote on page 20 for definition of aggregate r2
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r2 for evaluating imputation accuracy. The results show that the AFR panel yields much higher

accuracy compared to the EUR panel (see Figure 5.3). For example, the EUR panel is unable to

impute any markers with MAF < 1% while the AFR panel yields imputation accuracy as high

as r2 = 35% for variants with MAF around 0.1%. However, the joint reference panel brings a

significant improvement over both panels by increasing the imputation r2 to 45% at MAF around

0.1%.

Meta−imputation in samples of African American ancestry
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Figure 5.3: Meta-imputation in African American samples. The figure illustrates the imputation
accuracy of different panels and methods in samples of African American Ancestry. The X-axis
shows the alternate allele frequency on a log scale. The Y-axis shows imputation accuracy mea-
sured by aggregate r2.
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Our results also show that meta-imputation of individual imputed dosages yields as much ac-

curacy, if not more, as the joint reference panel (detailed values are given in Table G.1. p.99 in

Appendix G). For most part of the rarer frequency spectrum, joint imputation does slightly bet-

ter than meta-imputation (maximum improvement in imputation r2 is 0.0033). Although, for the

lowest MAF bin [~10−3], the meta-imputation r2 is 42.3% compared to the joint imputation r2

of 42.1%. However, meta-imputation consistently performs better around the common spectrum,

albeit at marginally improved rate (e.g. r2 of 92.8% versus r2 of 92.6% around MAF ∼ 45%).

5.3.2 Meta-imputation of Three Reference Panels

We next evaluated the effect on imputation accuracy when meta-imputing three reference pan-

els concurrently. Our pseudo-GWA study comprised of 1,000 samples of both pure and admixed

ancestry from the TOPMed WGS dataset. Our three reference panels are 661 AFR samples, 503

EUR samples, and 504 East Asian (EAS) samples (from 1000G Phase 3). The merged reference

panel is comprised of 1,668 AFR+EUR+EAS samples . The results are shown in Figure G.1, p.97

in Appendix G. The poor performance of the EAS panel could be because less than 10% of the

pseudo-GWA study samples are Asian or East Asian (see Figure F.1, p.95 in Appendix F). The

results in Figure G.1 show that meta-imputation does almost as well as the joint imputation even

when merging data imputed against 3 reference panels. The maximum difference in aggregate r2

is ~0.016 and was observed around alternate AF bin [0.3%− 0.7%] (detailed values in Table G.1.

p.99 in Appendix G).

5.3.3 Additional Benefit in Saving Computational time

Here we illustrate an additional benefit of meta-imputation in saving computation time. Large

reference panels like HRC or TOPMed can be randomly split into multiple non-overlapping parts,

imputed against each such part, then meta-impute the individual imputed dosages. The individual

imputations can be run in parallel and thus save in net computation time. Figure G.2, p.98 in Ap-

pendix G shows that we lose negligible imputation accuracy by meta-imputation of three disjoint
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pieces of the HRC panel compared to the full HRC panel. Apart from the lowest alternate AF

bin, meta-imputation does slightly better than the joint imputation. The maximum improvement in

aggregate r2 is ~0.005 and was observed around alternate AF bin [0.3% − 0.7%] (detailed values

in Table G.1. p.99 in Appendix G). Additionally, we saved ~35% of original run-time in this study

of meta-imputation of three split panels.

5.4 Discussion

In this study we aim to provide a coherent and convenient framework for meta-imputation of

GWA studies that have been imputed against different reference panels. We showed that meta-

imputation compares well to imputation in terms of accuracy. Modern developments in next gen-

eration sequencing have now made it feasible to obtain thousands of genomes in a typical genetic

study. However, until whole genome sequencing is practical for even larger GWA studies, re-

searchers must rely on imputation to have enough power to efficiently investigate rare mutations

potentially associated with a disease. While multiple sequencing projects are providing an ever-

increasing abundance of information, a meticulous consolidation of this genetic information is still

a challenging problem, both due to enormous computational requirements and to other data shar-

ing restrictions. Meta-imputation resolves most of these issues and enables researchers to merge

their imputed datasets in a data-driven dynamic way that attains similar, if not better, accuracy as

the consolidated reference panel.

The main caveat with our methodology is that variants which are present in only one reference

panel gain nothing from the other panels. Special scenarios where the two reference panels have a

small number of overlapping sites might benefit more from alternative methods like “joint impu-

tation” or “cross-imputation”. An interesting observation from this study was the slightly superior

performance of meta-imputation compared to joint imputation near the rare MAF spectrum. The

reason behind this might be, if one of the split panels end up with all copies of the rare allele, the

allele frequency increases for that variant in that panel, which consequently improves accuracy.

For instance, suppose we split the reference panel into 3 equal parts, and one of the split parts ends
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up with all copies of the rare allele while the remaining two have none. The proportion of rare

alleles becomes triple in one of the split panels and this increases the imputation accuracy at that

variant due to that panel (compared to the merged panel). Since the remaining two panels have no

variation at the that site, they are unable to impute these sites at all. The meta-imputation algorithm

dynamically estimates the relative efficacy of each split panel and gives all of its weight to the first

split panel. Thus, the imputation estimates for this rare variant from meta-imputation might be of

higher quality that those from joint imputation. We also note that for common variants, the chances

of all copies of the rare allele ending up in a single split panel is comparatively much lower. For

instance, if we split a large panel like the HRC into three equal parts, the chances of all copies

ending up in one split part is 33% for a variant with MAC = 2 and < 0.01% for a variant with

MAC = 10. This explains the reason why the improvement is noticeable along the rarer variants

but not for common variants.
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CHAPTER 6

Conclusion

We accomplished the following aims in this dissertation (i) create a reference panel that in-

creases imputation accuracy for European samples, (ii) develop tools for significantly faster geno-

type imputation with negligible falls in accuracy, (iii) provide web-based solutions to override

issues of data privacy, and (iv) establish methods of consolidating multiple reference panels. Our

efforts have been to build tools/platforms that aid genetic researchers in next generation of human

gene studies. The HRC is currently the most used reference panel on the Michigan imputation

server accounting for more than 60% of the total number of genomes imputed. The TOPMed

panel is awaiting data permissions before it can be hosted as a panel. The Michigan server has

close to ~2,000 users to date and has imputed over ~7 million whole genomes. This server is used

by investigators from across the world, but mainly from the US and Europe (Figure I.1, p.105).

Our server has also been on social media with users tweeting about their experiences (Figure I.2,

p.105). Minimac3 is the current imputation engine behind the Michigan server. We are running

more tests on minimac4 before we implement it on the server.

The imputation tools described in this dissertation, minimac3 and minimac4, are the next in-

stallments in the series of tools that started with MaCH (Li et al. 2010). MaCH performed im-

putation and phasing simultaneously. The idea of pre-phasing led to the development of minimac

(Howie et al. 2012) and further software engineering techniques led to minimac2 (Fuchsberger et

al. 2014). We implemented the idea of state space reduction and its aggressive version to develop

minimac3 (Das et al. 2016) and minimac4 respectively. The MaCH/minimac tools are summarized

in Figure 6.1. When imputing against the TOPMed reference panel, minimac4 is ~12,000 times
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MaCH 2010 Li et al.

Minimac 2012 Howie et al.

Minimac2    2014 Fuchsberger et al.

Minimac3     2016 Das et al.

Minimac4     2017      Das et al. (in prep)

Pre-phasing imputes into 
haplotypes rather than genotypes

Software engineering techniques

State Space Reduction – haplotype 
redundancy in genomic segments

Aggressive state space reduction, 
most likely haplotypes, interpolation 

Figure 6.1: Summary of development from MaCH (2010) to Minimac4 (2017).

faster than minimac, while minimac is over 20,000 times faster than MaCH. Assuming one is us-

ing a commercial cloud computing system (e.g. Amazon® Web Services at a rate of ~3-4 cents per

CPU hour), it would take a researcher using minimac4 only $9 to impute a small genetic study of

1,000 GWA samples, whereas the same would have cost over $20 million back in 2010 (see Figure

6.2). Another way to consider this result is, if we fixed the computation time, at say ~17.5 CPU-

minutes per genome (the current time to impute against the TOPMed panel with ~20,000 samples),

we could only impute against ~10 samples in 2010. This would have substantially decreased our
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Figure 6.2: Cost savings in imputation and improvement since 2010. The left figure illustrates the
savings in money since 2010 if using Amazon® Web Services at a rate of ~3-4 cents per CPU hour.
The right figure illustrates the improvement in imputation accuracy at a fixed computational time
of ~17.5 minutes per genome, the current time to impute against the TOPMed panel.
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imputation accuracy (see Figure 6.2). A take away message from this dissertation is: if we can’t

build better methods, we should build faster methods, and the amount of data available might make

it a better method.
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APPENDIX A

A brief review of hidden Markov models

A.1 A Brief Review

A hidden Markov model HMM is a statistical process that models a Markov chain with un-

observed (hidden) states. It is a Markov chain where the original states of the process are not

observed, but another output, that is dependent on the original but unobserved state through a pre-

determined probability function, is observed. Figure A.1 briefly explains the working of a HMM.

Although the sequence of the original states of the Markov chain are not observed, the sequence

of observed tokens generated by the hidden sates gives us some information about the underlying

states of the process and hence can be used to make inferences.

Observed States

Unobserved 
(Hidden) 

States

Figure A.1: Illustration of hidden Markov model. The dark gray boxes represent the underlying Markov
chain with initial probability P (X1) and transition functions P (Xi|Xi−1). The transition function follows
the same conditions as a usual Markov chain i.e. P (Xi+1|Xi, Xi−1, . . . , X1) = P (Xi+1|Xi). The variables
X1, . . . , XM are not observed. The light gray circles represent the observed variables Si that depend on the
unobserved variables Xi through the emission probability function P (Si|Xi).

HMMs have been used in modelling time series data, speech recognition systems, computa-
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tional molecular biology, data compression, pattern recognition, and other areas of artificial intel-

ligence (Ghahramani 2001). It has been used as a standard model for genotype imputation as it

suitably fits the following framework:

• ‘i’ denotes each marker. The hidden states Xi denote the underlying haplotype at each marker i

while the observed state Si denotes the observed allele (if the observed site was genotyped)

or is missing.

• P (Si|Xi) denotes the genotype emission probability and is equal to ε (genotyping error) if the

underlying and observed alleles match at the marker, and is equal to 1−ε if they don’t match

. If the marker was not genotyped then P (Si|Xi) = 1.

• P (Xi+1|Xi) denotes the transition function and measures the probability of a template switch

between consecutive markers (as in Figure 1.2, p.8). It depends on the recombination rate

between markers (λi) and is defined as follows:

P (Xi+1|Xi) =


1− λi + λi

H
if Xi+1 = Xi

λi
H

if Xi+1 6= Xi

The intuition behind the above formulas have been explained in Li et al. 2010. HMMs are one

of the most common statistical models employed in genotype imputation. They can be suitably

used to infer the underlying haplotype or yield set of probabilities for each possible haplotype at

every marker. The mathematics behind the HMM were largely developed by L. E. Baum (Baum et

al. 1966), including the famous Baum-Welch’s forward and backward equations (Baum et al. 1970)

that greatly reduces the algorithmic complexity to compute posterior probability of the hidden

states conditional on the observed states i.e. P (Xi|S1, . . . , SM).
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A.2 A Review of HMM in Minimac

Below we give a brief review of the formulas used in minimac. Consider a reference with H

haplotypes and a genomic segment bounded by markers P and Q. Label the original haplotypes

as X1, X2, . . . , XH (the state space).

Forward Equations

Let Lk(.) denote the left probabilities for each state at marker ‘k’ (for a description of left and

right probabilities see Li et al. 2010). P (Sk+1|Xl) denotes the genotype emission probability and

is defined above. Below is Baum-Welch’s forward equation:

Lk+1 (Xl) =

[
(1− λk)Lk (Xl) +

λk
H

H∑
j=1

Lk (Xj)

]
× P (Sk+1|Xl) (A.1)

Backward Equations Similarly, if Rk(.) denote the right probabilities for each state at marker

‘k’, the following equation gives the Baum-Welch’s backward equations.

Rk−1 (Xl) =
λk−1
H

[
H∑
j=1

Rk (Xj)P (Sk|Xj)

]
+ (1− λk−1)Rk (Xl)P (Sk|Xl) (A.2)

Final Imputation Formula The final formula gives the posterior probability of state.

P (Xl |GWAS) = LK(Xl)×RK(Xl) (A.3)

MaCH uses similar formulas but its state space comprises of all possible genotype configura-

tions possible fromH haplotypes (complexityO(H2)), while minimac uses all possible haplotypes

as its state space (complexity O(H)). These formulas provide a base for developing models for

minimac3/4.
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APPENDIX B

Asymptotic results for association test with imputed genotypes

In a GWA study, for variants not directly assayed on the chip, investigators need to use im-

puted dosages for testing association with a physical trait. In this appendix we will look at some

asymptotic results of the effect size estimates from imputed dosages, including any bias compared

to using unobserved genotypes. For sake of simplicity, we assume everything at a haplotype level

i.e. for a fixed marker the observed allele at a haplotype is denoted as Gi (where Gi = 0, 1), and

the imputed dosage is denoted as Di (where 0 ≤ Di ≤ 1) for i = 1, . . . , 2n (where n is the number

of samples). In the sections below, we first show that in a simple linear regression the estimated

effects sizes based on the imputed dosage are consistent for the true effect sizes of the variant, pro-

vided the imputed variant is “well-calibrated”. An imputed variant is said to be well-calibrated for

a sample if the probability of observing the ‘1’ allele for that sample is equal to its imputed dosage,

that is E(G|D) = D. Intuitively speaking, a variant would be well-calibrated if one or more tem-

plate matches were found around that variant, and would be poorly calibrated if no matches were

found. We also show that for the difference in proportion test, using the imputed variant yields an

effective sample size of ρ2n where ρ is the correlation between the genotype and the dosage.

B.1 Simple Linear Regression

Let us assume a linear regression model where the observed alleles are the independent vari-

ables (Gi, treated as continuous) and the phenotype is the outcome variable (Yi).

Yi = α + βGi + εi
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Let us denote the usual least-square estimator based on the unobserved genotypes/alleles as

β̂genotyped. Instead of observing the alleles, we have imputed dosages (Di) which are to be used

as proxies for the unobserved alleles. Accordingly, our least-square estimator based on imputed

dosages would be

β̂imputed =
SDY
SDD

where SDY =
∑
DiYi − 2nD̄Ȳ is the sample covariance between genotyped and dosages and

SDD =
∑

(Di− D̄)2 is the sample variance of the dosages. We first simplify the above expression

by substituting Yi = α + βGi + εi as follows:

β̂imputed =

∑2n
i=1DiYi − 2nD̄Ȳ

SDD

=
α
∑
Di + β

∑
DiGi +

∑
Diεi − 2nαD̄ + 2βnḠ+ 2nD̄ε̄

SDD

=
βSDG +

∑
Diεi + 2nD̄ε̄

SDD

where SDG =
∑
DiGi−2nD̄Ḡ. Since the imputed dosages can be assumed to be independent

of the errors and E(ε) = 0, we have:

E(β̂imputed) = βE

(
SDG
SDD

)

Assuming sufficiently large sample we can assume SDG

SDD
≈ ρσG

σD
(by law of large numbers).

Thus, β̂imputed is an consistent estimator for β∗ = β
[
ρσG
σD

]
. We next show that under the assump-

tion of ‘well-calibration’ β∗ is equal to β. This follows from the following set of equations:

E(G) = E(E(G|D)) = E(D)

E(DG) = E(E(DG|D)) = E(DE(G|D)) = E(D2)

Cov(D,G) = E(DG)− E(D)E(G) = V (D)
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ρ = Corr(D,G) =
Cov(D,G)√
V (G)V (D)

=

√
V (D)

V (G)

Thus, under the assumption of well-calibration we have ρ = σD
σG

which implies that β∗ = β.

Hence, in a linear regression, given a large sample, the estimated effect size from the imputed data

is unbiased for the population effect size. We next compare the standard errors of the statistics.

Var
(
β̂imputed

)
=

σ2

SDD
≈ σ2

σD
=

σ2

ρσG
≈

Var
(
β̂genotyped

)
ρ

The above results show that β̂imputed has a larger standard error than β̂genotyped and the power for

testing association using imputed data yields same power as using genotypes with ρ2n sample size.

B.2 Difference in Proportion Test

This test analyzes the difference in the allele frequency between cases and controls. Let pCase

(and pControl) denote the population allele frequencies in cases (and controls) i.e. pCase = P (G =

1| Case) and pControl = P (G = 1| Control). The test statistic for testing H0 : pCase = pControl is

given as follows (for a setup with n1 cases and n2 controls):

Tgenotyped =
p̂Case − p̂Control√
p̂(1− p̂)

[
1
n1

+ 1
n2

]
When we use imputed dosages as our proxies for the alleles the above statistic becomes:

Timputed =
D̄Case − D̄Control√
D̄(1− D̄)

[
1
n1

+ 1
n2

]
Under the assumption of well-calibration we have E(D̄) = E(D) = E(G) == p. Thus, for

large samples the denominators of Tgenotyped and Timputed are approximately same. We next evaluate
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the asymptotic mean of the numerator.

E
[
D̄Case − D̄Control

]
= E(D| Case)− E(D| Control)

= E(D|G = 1)P (G = 1| Case) + E(D|G = 0)P (G = 0| Case)

−E(D|G = 1)P (G = 1| Control)− E(D|G = 0)P (G = 0| Control)

= [E(D|G = 1)− E(D|G = 0)] [pCase − pControl]

We next see that:

E(D|G = 1)− E(D|G = 0) =

∫
DfD|G=1 −

∫
DfD|G=0

=

∫
DfD,G(D, 1)− P (G = 1)

[∫
DfD

]
P (G = 0)P (G = 1)

=
E(D|G = 1)P (G = 1)− P (G = 1)E(D)

P (G = 0)P (G = 1)

=
E(DG)− E(D)E(G)

V (G)

= ρ
σD
σG

= ρ2

The last equation follows from ρ = σD
σG

which was proved earlier as a consequence of well-

calibration. Thus, we have:

E
[
D̄Case − D̄Control

]
= ρ2 [pCase − pControl]

Hence, for large samples, the test statistics Tgenotyped and Timputed approximately follow non-

central t-distribution with the following means respectively,

 pCase − pControl√
p(1− p)

[
1
n1

+ 1
n2

]
 and ρ2

 pCase − pControl√
p(1− p)

[
1
n1

+ 1
n2

]

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Thus, the distribution of Timputed would approximately be the same as Tgenotyped if the actual

sample sizes for the cases and controls were ρ2n1 and ρ2n2 respectively. This proves that if the

correlation between the imputed dosage and unobserved alleles is ρ2 then testing using that imputed

variant reduces the effective samples size by a factor of ρ2.
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APPENDIX C

Supplementary information for the Haplotype Reference Consortium

C.1 Supplementary Tables

Samples 1000G Phase 3 HRC Pilot HRC Full

(N=2,525) (N=13,309) (N=32,905)
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REF/REF 0.10 0.10 0.10 0.07 0.06 0.06 0.06 0.06 0.06

REF/ALT 0.61 0.59 0.59 0.36 0.38 0.36 0.34 0.36 0.34

ALT/ALT 0.43 0.40 0.40 0.27 0.26 0.25 0.25 0.24 0.23

NRD 0.70 0.67 0.67 0.43 0.43 0.42 0.41 0.41 0.40

Table C.1: Evaluation of genotype calling process. Discordance rates of genotypes called using
different marker lists (Markers row) and sample sets (Samples row). NRD = non reference allele
discordance percentage.
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No Cohort Description No of
Samples

Average
Depth Reference

1 UK10K Project 3,715 6.5x (UK10K et al. 2015)
2 UK Inflammatory Bowel Disease

Genetics Consortium
4,474 4x + 2x (Barrett et al. 2008)

3 SardiNIA Project 3,445 4x (Sidore et al. 2015)
4 Age-related Macular Degeneration 3,189 4x (Chen et al. 2010)

5 The Genetics of Type 2 Diabetes
Consortium

2,709 4x/Exome
(Fuchsberger et al.

2016)

6 1000 Genomes Phase 3 2,495 4x/Exome (1000G 2015)
7 Bipolar Disorder: Improving Diagnosis,

Guidance and Education (BRIDGE)
2,487 6-8x (12x) -

8 Sequencing Initiative Suomi, Kuusamo 1,918 4x (Vartiainen et al. 2009)
9 Minnesota Center for Twin and Family

Research
1,325 10x (Vrieze et al. 2014)

10 Genetics and Epidemiology of Colorectal
Cancer Consortium

1,130 4-6x (Hays et al. 2003)

11 The Nord-Trøndelag Health Study 1,023 4x (Krokstad et al. 2012)
12 Project MinE 935 45x -
13 Genomes of Netherlands 748 12x (GoNL 2014)
14 The Genomic Psychiatry Cohort 697 30x (Pato et al. 2013)
15 Invecchiare in Chianti Study 676 7x (Ferrucci et al. 2000)
16 Nephrotic Syndrome Study Network 402 4x (Gadegbeku et al. 2013)
17 Orkney Complex Disease Study 398 4x (McQuillan et al. 2008)
18 Italian Network of Genetic Isolates -

Fruili Venezia Giulia
250 4-10x (Colonna et al. 2012)

19 Hellenic Isolated Cohorts 247 4x (1x)
(Panoutsopoulou et al.

2014)
20 Val Borbera Isolated Population Project 225 6x (Esko et al. 2012)

Table C.2: Summary of studies contributing samples to the HRC panel.
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Number of
samples

Studies Removal choice

5 AMD AMD Removed the duplicates randomly.

36 IBD IBD These were duplicates between Crohns and UC
studies. Removed the duplicates randomly.

5 FINLAND FINLAND Removed lower coverage (4x) Kuusamo
samples in preference to the higher coverage
(6x) SiSu samples.

14 GECCO GECCO Removed the duplicates randomly.

17 GoT2D FINLAND Removed the FINLAND samples.

79 GoT2D UK10K Removed the UK10K/UK10K duplicates, then
removed randomly otherwise.

34 GPC BRIDGES Removed the GPC samples.

32 GPC GPC Removed the duplicates randomly.

14 MCTFR MCTFR Removed the duplicates randomly.

1 NEPTUNE NEPTUNE Removed the duplicates randomly.

1 ORCADES 1000GP3 Removed the ORCADES sample.

1 ProjectMinE GoNL Removed the ProjectMinE sample.

1 ProjectMinE ProjectMinE Removed the duplicates randomly.

3 SardinIA SardinIA Removed the duplicates randomly.

26 UK10K UK10K These were monozygotic twins already
identified by UK10K. Removed based on a list
from UK10K of samples they had already
excluded from downstream analysis.

Table C.3: Details of duplicate removal in HRC. Each row of the table details the number of
duplicate pairs found within and between studies, together with the method by which duplicates
were removed
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Figure C.1: Illustration of site filtering strategy. This figure summarizes our filtering strategy. On the X-axis we show the number of
studies a variant was called in (out of 20) and on the y-axis we show the number of times it was filtered out by the cohort-specific internal
QC pipelines. The color shows the percentage of variants in each such cell (red means more than 10% of variants lie in that cell while
blue means less than 0.1%). The number to the top right of each cell denotes the Ts/Tv ratio for all sites in that cell. Cells higher in
the plot have been filtered out relatively often and usually represent poor variants, as is also seen from the low Ts/Tv ratio. All variants
above the red line were filtered out (which excludes all cells which had been filtered independently by more than 4 studies or have Ts/Tv
ratio less than 1.7)
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APPENDIX D

Proof of methods and supplementary information for minimac3

D.1 Proof of Method Formulas

In this appendix, we will prove that the formulations for the reduced state space HMM used in

minimac3 (described in Section 3.2.1) are mathematically equivalent to the original HMM used in

minimac (briefly reviewed in Section A.2, Appendix A), and thus would yield the same imputation

estimates in the end. To this end, we will first need to prove equation (3.3), p.27 (LQ → LQ),

which essentially states that the left probabilities of the original states can be extracted from the

left probabilities of the reduced states (Proposition D.1.1). The proof of equation (3.8), p.28 (which

makes the same claim about right probabilities) is very similar and will be skipped in this report.

Next, we will prove equation (3.11), p.29 which claims that the posterior probabilities obtained

from the reduced states would be numerically same as those obtained from the original state space

(Proposition D.1.2), thus finally proving that both the hidden Markov models are mathematically

equivalent.

Proposition D.1.1. For any k such that (P ≤ k ≤ Q) and Xj such that Xj = Yi

Lk(Xj) = LR
k (Yi)×

[
1

Ni

]
+ LNR

k (Yi)

[
LP (Xj)

LP (Yi)

]
(D.1)

Proof. We will use mathematical induction to prove this claim. Proving it for k = P follows

easily from the fact that LR
P = 0 (obtained by substituting k = P in equations (3.4) and (3.5)).
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To prove it for general k > P (under mathematical induction hypothesis), we assume it’s true for

some k = K and we will prove it here for k = K + 1.

To this end, it suffices to prove that expression of LK+1(Xj) from equation (D.1) (for k =

K + 1) satisfies the actual recursion for the forward equations on the original HMM in minimac

(given in equation (A.1), p.74 in Appendix A). To prove that, we first note that equation (3.4) can

be re-written in terms of a recursion as follows:

LNR
K+1(Yi) = LNR

K (Yi)× [(1− λK)P (SK+1|Yi)] (D.2)

Next, substituting k = K + 1 in equation (3.2) we get:

LK+1 (Yi) =

[
[1− λK ]LK (Yi) +

NiλK
H

U∑
j=1

LK (Yj)

]
× P (SK+1|Yi) (D.3)

Substituting the expression for LK+1 from the above equation (D.3) in equation (3.5) (for

k = K + 1), we get the following:

LR
K+1 (Yi) =

[
[1− λK ]LR

K (Yi) +
NiλK
H

U∑
j=1

LK (Yj)

]
× P (SK+1|Yi) (D.4)

Finally, substituting the values of LNR
K+1 (Yi) and LR

K+1 (Yi) from equations (D.2) and (D.4)

into the right hand side of equation (D.1) (for k = K + 1), we get:

RHS

= LR
K+1(Yi)×

[
1

Ni

]
+ LNR

K+1(Yi)

[
LP (Xj)

LP (Yi)

]
=

[
(1− λK)LR

K (Yi)

Ni

+
λK
∑U

j=1LK (Yj)

H
+

LNR
K (Yi) (1− λK)LP (Xj)

LP (Yi)

]
P (SK+1|Yi)

=

[
(1− λK)

[
LR
K (Yi)

[
1

Ni

]
+ LNR

K (Yi)

[
LP (Xj)

LP (Yi)

]]
+
λK
∑U

j=1LK (Yj)

H

]
P (SK+1|Yi)

=

[
(1− λK) [LK (Xj)] +

λK
∑H

i=1 LK (Xi)

H

]
× P (SK+1|Yi)
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= LK+1(Xj)

= LHS

The last step follows from equation (A.1), p.74 and the step before that follows from the in-

duction hypothesis that the proposition is true for k = K (i.e. LK(Xj) = LR
K(Yi)

[
1
Ni

]
+

LNR
K (Yi)

[
LP (Xj)

LP (Yi)

]
), and from the identity

∑H
i=1 LK(Xi) =

∑U
j=1 LK(Yj) (which follows from

Equation (3.1)).

Proposition D.1.2. The posterior probability of each reduced state Yi is given as:

P (Yi |GWAS) =

[
H∑
j=1

I(Xj = Yi)LP (Xj)RQ (Xj)

]
×
[
LK (Yi)

LP (Yi)
× RK (Yi)

RQ (Yi)

]
+

1

Ni

[
LK (Yi)RK (Yi)−LNR

K (Yi)RNR
K (Yi)

]
(D.5)

Proof. To prove this, we start from the LHS of the above equation (and using equation (A.3), p.74

in Appendix A):

P (Yi |GWAS)

=
H∑
j=1

I(Xj = Yi)P (Xj|GWAS)

=
H∑
j=1

I(Xj = Yi)LK(Xj)RK(Xj)

=
H∑
j=1

I(Xj = Yi)

(
LR
k (Yi)×

[
1

Ni

]
+ LNR

k (Yi)

[
LP (Xj)

LP (Yi)

])
×
(
RR

k (Yi)×
[

1

Ni

]
+ RNR

k (Yi)

[
RQ(Xj)

RQ(Yi)

])
=

[
H∑
j=1

I(Xj = Yi)LP (Xj)RQ(Xj)

]
×
[
LNR
K (Yi)

LP (Yi)
× RNR

K (Yi)

RQ(Yi)

]

+

(
LNR
K (Yi)RR

K(Yi)

Ni

)
×

(∑H
j=1 I(Xj = Yi)LP (Xj)

LP (Yi)

)
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+

(
LR
K(Yi)RNR

K (Yi)

Ni

)
×

(∑H
j=1 I(Xj = Yi)RQ(Xj)

RQ(Yi)

)

+

∑H
j=1 I(Xj = Yi)LR

K(Yi)RR
K(Yi)

N2
i

=

[
H∑
j=1

I(Xj = Yi)LP (Xj)RQ(Xj)

]
×
[
LNR
K (Yi)

LP (Yi)
× RNR

K (Yi)

RQ(Yi)

]
+

1

Ni

[
LR
K(Yi)RR

K(Yi) + LNR
K (Yi)RR

J (Yi) + LR
K(Yi)RNR

K (Yi)
]

=

[
H∑
j=1

I(Xj = Yi)LP (Xj)RQ (Xj)

]
×
[
LK (Yi)

LP (Yi)
× RK (Yi)

RQ (Yi)

]
+

1

Ni

[
LK (Yi)RK (Yi)−LNR

K (Yi)RNR
K (Yi)

]
This proves the second proposition.

D.2 Supplementary Tables

1000G Super
Population

No. of
segments in

whole
genome

Average
No of

variants per
segment

Average No
(S.D.) of
unique

haplotypes per
segment

Average time
(in seconds) to
impute single

sample

Average time
(in seconds) to
impute whole

genome

African
Americans

49584 36 14 (2.6) 11.65 582.5

Hispanics 43522 41 13 (2.5) 10.83 541.5

South Asians 40031 44 12 (2.4) 10.42 521.0

East Asians 35822 49 10 (2.3) 9.91 495.5

Europeans 35367 50 10 (2.4) 9.74 487.0

Table D.1: Summary of data compression for different ancestries. The ancestries are the different
super populations of 1000G Phase 3
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Reference
panel

No. of
samples

No. of
markers

Unzipped format [GB] Zipped format [GB]

VCF m3vcf
%

saving
VCF m3vcf

%
saving

1000G Phase 1 1,092 617,694 2.6 0.17 93.65 0.08 0.03 61.9

Sardinia 3,489 331,760 1.9 0.1 94.58 0.07 0.02 70.83

1000G Phase 3 2,004 1,047,613 9.9 0.34 96.56 0.22 0.06 70.73

HRC 32,390 885,404 108 1.8 98.33 1.8 0.28 84.44

Table D.2: Comparison of the VCF and the m3vcf file format for different reference panels (1000G Phase
1, 1000G Phase 3, Sardinia and HRC).
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APPENDIX E

Proof of methods and supplementary diagrams for minimac4

E.1 Proof of Method Formulas

In minimac4, we implement an aggressive version of the state space reduction method that was

applied in minimac3. In this section we prove that the modified formulas of Baum-Welch equation

(as described for minimac4 in Section 4.2.1, p.39) implemented on the genotyped markers using

the modified version of of recombination rate (see Eq. (4.1), p.42), yields the same posterior

probabilities as in the original state space. Additionally, we note that the aggressive reduced states,

although might disagree at ungenotyped markers, should yield the same mathematically equivalent

HMM model as the original model when applied on all markers across the chromosome instead of

only genotyped markers. The only caveat would be that we cannot generate allelic probabilities

from the posterior probabilities of aggressively reduced states (like we could in minimac3). This

is because in minimac3, haplotypes collapsed in the same reduced state agree at all markers. Thus,

each reduced state in minimac3 had the same allele. In minimac4, haplotypes collapsed together

in the same state might have different alleles at ungenotyped markers. There is no easy formula

to split the posterior probability into different components based on which allele is observed at

the marker. In this section, we first prove Eq. (4.3), p.42 which shows that the Baum-Welch’s

forward equation can be modified to implement only on the genotyped markers to yield the same

mathematical model as in minimac3. In the following proportions, A and B be two consecutive

genotyped markers.

Proposition E.1.1. For K such that A < K < B, we have
∑V

i=1LK (Zi) =
∑V

i=1LA (Zi)
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Proof. We first prove this forK = A+1. It will follow easily for K > A+1. The proof hinges on

the fact that all sites in between A and B are ungenotyped and thus have the emission probability

P (Si|Z) = 1 for all Z ∈ S3 and A < i < B. Substituting k = A+ 1 in Equation (3.2) on page 27

(note that for the space S3 we have to replace L(.) with L(.) and Ni with Mi):

V∑
i=1

LA+1 (Zi)

=
V∑
i=1

[
(1− λA)LA (Zi) +

MiλA
H

U∑
j=1

LA (Zj)

]
× P (SA+1|Zi)

= (1− λA)
V∑
i=1

LA (Zi) +
λA
∑V

i=1Mi

H

[
U∑
j=1

LA (Zj)

]

= (1− λA)
V∑
i=1

LA (Zi) + λA

[
U∑
j=1

LA (Zj)

]

=
V∑
i=1

LA (Zi)

The next proposition proves that it suffices to implement the HMM on the genotype markers

only using the modified version recombination rate.

Proposition E.1.2. If LB(.) is generated by applying Equation (3.2) on page 27 recursively on

k = A+ 1, A+ 2, . . . , B , the following gives a direct expression for LB(.):

LB (Zi) =

[
[1− λA:B]LA (Zi) +

MiλA:B
H

V∑
j=1

LA (Zj)

]
× P (SB|Zi)

Proof. We will use mathematical induction to prove this claim. Proving it for B = A + 1 follows

easily from the fact that λA:A+1 = λA (substitute B = A + 1 in Eq. (4.1), p.42). To prove

it for general B > A (under mathematical induction hypothesis), we assume its true for some

B = A + K and we will prove it here for B = A + K + 1 for K > 0. To this end, we first note
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that substituting k = A+K + 1 in Eq (3.2) we get:

LA+K+1 (Zi)

=

[
[1− λA+K ]LA+K (Zi) +

MiλA+K
H

U∑
j=1

LA+K (Zj)

]
× P (SA+K+1|Zi)

= [1− λA+K ]LA+K (Zi) +
MiλA+K

H

U∑
j=1

LA+K (Zj)

= [[1− λA+K ]LA+K (Zi) +
MiλA+K

H

U∑
j=1

LA (Zj)]

= [1− λA+K ]

[
(1− λA:A+K)LA (Zi) +

MiλA:A+K
H

U∑
j=1

LA (Zj)

]

+
MiλA+K

H

U∑
j=1

LA (Zj)

= (1− λA+K) (1− λA:A+K)LA (Zi)

+ (λA:A+K (1− λA+K) + λA+K)

[
Mi

H

][ U∑
j=1

LA (Zj)

]
= (1− λA:A+K+1)LA (Zi)

+ (λA+K + λA:A+K − λA+KλA:A+K)

[
Mi

H

] [ U∑
j=1

LA (Zj)

]

= (1− λA:A+K+1)LA (Zi) +
MiλA:A+K+1

H

U∑
j=1

LA (Zj)

= (1− λA:A+K+1)LA (Zi) +
MiλA:A+K+1

H

U∑
j=1

LA+k (Zj)

The above follows from the induction hypothesis, Proposition (E.1.1), and the equation λA:A+K+1 =

λA+K + λA:A+K − λA+KλA:A+K which follows from Eq. (4.1), p.42. This proves the hypothesis

for B = A+K + 1.

The above equation proves that the forward equations in minimac4 (given by Eq. (4.5), (4.6),

and (4.7) on page 43) are mathematically equivalent to those of minimac3 (Eq. (3.1), (3.2), and

91



(3.3) on page 27) which is in turn equivalent to that of minimac (Eq. (A.1)) on page 74). The

same can be proved similarly for the backward equations. Together they would yield the same

posterior probabilities. However, as mentioned before, these posterior probabilities can be used to

generate allelic probabilities (imputed dosages) only at the genotyped markers where the states of

space S3 agree. They cannot produce allelic probabilities at ungenotyped markers where the states

might not agree. This is the reason we transform the probabilities back to space S2 to impute the

ungenotyped markers.

Proposition E.1.3. The transformation (LQ → LQ) obtained by the composition of transforma-

tions (LQ → LQ) (Eq. (3.3), p.27) and (LQ → LQ) (Eq. (3.1), p.27) can be done directly by the

following equation:

LQ(Yj) = LR
Q(Zi)×

[
Nj

Mi

]
+ LNR

Q (Zi)

[
LP (Yj)

LP (Zi)

]

Proof.

LQ (Yj)

=
H∑
l=1

I(Xl = Yj)× LQ(Xl)

=
H∑
l=1

I(Xl = Yj)×
[
LR
Q(Zi)×

[
1

Mi

]
+ LNR

Q (Zi)

[
LP (Xl)

LP (Zi)

]]

= LR
Q(Zi)×

[∑H
l=1 I(Xl = Yj)

Mi

]
+ LNR

Q (Zi)

[∑H
l=1 I(Xl = Yj)LP (Xl)

LP (Zi)

]

= LR
Q(Zi)×

[
Nj

Mi

]
+ LNR

Q (Zi)

[
LP (Yj)

LP (Zi)

]
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Figure E.1: Posterior probability of reference haplotypes. In this figure the the posterior probabilities of each reference haplotype is plotted for 3
different GWAS study haplotypes on chromosome 20. The X-axis represent the genomic region, the Y-axis denotes the posterior probability each
reference haplotype, the colored lines each denote a reference haplotype, and the gray vertical lines denote the position of genotyped markers. The
reference panel had 200 haplotypes, however, in a small genomic region only a handful of them had probability significantly larger than 0.
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1000G Phase 1 1000G Phase 3 HRC TOPMed

MAF M3 M4 # Variants M3 M4 # Variants M3 M4 # Variants M3 M4 # Variants

0.00014 0.1316 0.1295 169,999 0.1977 0.1951 213,399 0.4636 0.4647 204,916 0.5492 0.5499 193,407

0.00070 0.3600 0.3551 21,838 0.3364 0.3357 25,068 0.6223 0.6228 26,984 0.6751 0.6762 26,364

0.00141 0.4209 0.4205 14,656 0.4327 0.4333 18,236 0.6882 0.6885 19,412 0.7203 0.7212 19,131

0.00333 0.5622 0.5625 18,645 0.5732 0.5740 22,490 0.7789 0.7792 22,722 0.8011 0.8013 22,618

0.00728 0.6167 0.6167 16,959 0.6589 0.6593 17,926 0.8099 0.8099 17,678 0.8212 0.8204 17,671

0.01236 0.7122 0.7123 10,906 0.7408 0.7406 11,009 0.8651 0.8652 10,857 0.8648 0.8645 10,808

0.01745 0.7618 0.7608 7,779 0.7926 0.7915 7,789 0.8944 0.8944 7,685 0.8917 0.8911 7,668

0.02667 0.8261 0.8260 15,013 0.8451 0.8453 15,002 0.9126 0.9125 14,800 0.9110 0.9106 14,738

0.04213 0.8828 0.8824 9,123 0.8932 0.8927 9,085 0.9414 0.9410 8,979 0.9398 0.9390 8,916

0.07263 0.9327 0.9318 17,911 0.9381 0.9372 17,832 0.9651 0.9646 17,612 0.9654 0.9648 17,557

0.14518 0.9619 0.9609 17,576 0.9642 0.9636 17,503 0.9802 0.9798 17,252 0.9793 0.9789 17,204

0.24461 0.9718 0.9707 10,375 0.9736 0.9728 10,350 0.9858 0.9853 10,207 0.9850 0.9845 10,167

0.34783 0.9737 0.9726 6,795 0.9772 0.9765 6,780 0.9867 0.9863 6,679 0.9866 0.9862 6,629

0.44569 0.9752 0.9747 5,081 0.9776 0.9771 5,077 0.9869 0.9864 4,985 0.9857 0.9853 4,969

0.54873 0.9750 0.9740 3,760 0.9757 0.9750 3,742 0.9850 0.9841 3,709 0.9843 0.9838 3,666

0.64823 0.9739 0.9724 2,958 0.9769 0.9760 2,953 0.9878 0.9873 2,918 0.9879 0.9878 2,899

0.74896 0.9698 0.9695 1,961 0.9748 0.9747 1,954 0.9849 0.9845 1,932 0.9816 0.9814 1,927

0.84390 0.9660 0.9658 1,351 0.9685 0.9674 1,344 0.9825 0.9824 1,338 0.9790 0.9788 1,342

0.96378 0.9296 0.9291 1,776 0.9295 0.9288 1,822 0.9674 0.9663 1,661 0.9548 0.9527 1,867

Table E.1: Imputation accuracy of minimac4 compared to minimac3. This tables summarizes the imputation accuracy of minimac3
(M3) and minimac4 (M4) for imputing into 10 CG samples using 1000G Phase 1, 1000G Phase 3, HRC, and TOPMed reference panels.
Minimac4 uses approximation for imputing non-genotyped sites but the accuracy falls negligibly compared to minimac3
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APPENDIX F

Principal components of 1,000 randomly selected TOPMed samples
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Figure F.1: Ancestry of 1,000 TOPMed samples. The figure shows the principal components of
our pseudo-GWA dataset. Over ~50% of the samples are European, ~30% are African, and less
than ~10% are Asian or East Asian.
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APPENDIX G

Supplementary tables/figures for meta-imputation
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Meta−imputation in samples of mixed ancestry
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Figure G.1: Meta-imputation in samples of mixed ancestry. The figure shows the imputation
accuracy of different panels and methods in samples of mixed ancestry. The X-axis shows the
alternate allele frequency on a log scale. The Y-axis shows imputation accuracy measured by
aggregate r2.
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Meta−imputation of 3 reference panels

Alternate Allele Frequency
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Figure G.2: Meta-imputation of 3 reference panels. The figure shows the imputation accuracy by
meta-imputing the HRC reference panel in 3 non-overlapping parts. The X-axis shows the alternate
allele frequency on a log scale. The Y-axis shows imputation accuracy measured by aggregate r2.
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Table G.1: Imputation accuracy details for meta-imputation. This table details the aggregate r2 for
joint and meta-imputation for three different experiments: imputing African American samples using
EUR and AFR (Section 5.3.1), imputing 1,000 samples of mixed ancestry using EUR, AFR, and EAS
(Section 5.3.2), and imputing 10 European samples by splitting HRC panel into three non-overlapping
parts (Section 5.3.3).

African American Mixed Ancestry HRC Split Study

Alternate
AF

# Variants
Merged
Panel

Meta-
Imputation

Merged
Panel

Meta-
Imputation

Full HRC
Panel

Meta-
Imputation

0.0003 117,467 0.058 0.059 0.180 0.179 0.464 0.461
0.0008 70,313 0.421 0.423 0.382 0.373 0.622 0.627
0.0015 83,780 0.567 0.564 0.503 0.492 0.688 0.703
0.0033 108,685 0.674 0.672 0.636 0.619 0.779 0.785
0.0072 73,747 0.768 0.765 0.738 0.722 0.810 0.815
0.0123 38,626 0.818 0.815 0.798 0.785 0.865 0.867
0.0173 23,542 0.825 0.823 0.823 0.811 0.894 0.895
0.0265 38,437 0.862 0.859 0.858 0.849 0.913 0.914
0.0418 19,099 0.874 0.870 0.888 0.882 0.941 0.942
0.0718 31,848 0.899 0.898 0.923 0.920 0.965 0.966
0.1445 30,817 0.920 0.920 0.945 0.944 0.980 0.981
0.2478 18,197 0.929 0.929 0.955 0.954 0.986 0.986
0.3488 14,016 0.930 0.931 0.952 0.952 0.987 0.987
0.4486 11,046 0.926 0.928 0.948 0.947 0.987 0.987
0.5488 9,294 0.933 0.934 0.956 0.955 0.985 0.986
0.6481 7,327 0.928 0.929 0.953 0.952 0.988 0.989
0.7481 5,664 0.930 0.930 0.948 0.947 0.985 0.985
0.8490 4,325 0.917 0.918 0.941 0.939 0.983 0.982
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Figure G.3: Plot of template switch probability across the chromosome. The figure shows the plot between consecutive markers for two sample (one
in each panel). Three reference panels 1000G Phase 1 (abbreviated as G1KP1), 1000G Phase 3 (G1KP3) and HUNT were used for imputation. Long
stretches of low template switch probability denote the same haplotype from the panel was being copied over that stretch. High spikes denote regions
with high chances of recombination events (template switches). The HUNT panel had the smallest average number of template switches occurring,
which is as expected because genetic similarity would show the longest stretches of haplotype sharing
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APPENDIX H

Imputation accuracy graphs for samples of non-European ancestry
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Figure H.1: Imputation accuracy in African American samples. The figure shows the imputation
accuracy in samples of African American Ancestry. The X-axis shows the alternate allele fre-
quency on a log scale. The Y-axis shows imputation accuracy measured by aggregate r2. The gray
lines represent accuracy profiles for different reference panels.
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Admixed American Ancestry

Alternate Allele Frequency
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Figure H.2: Imputation accuracy in admixed American samples. The figure shows the imputation
accuracy in samples of admixed American Ancestry. The X-axis shows the alternate allele fre-
quency on a log scale. The Y-axis shows imputation accuracy measured by aggregate r2. The gray
lines represent accuracy profiles for different reference panels.
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East Asian Ancestry

Alternate Allele Frequency
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Figure H.3: Imputation accuracy in East Asian samples. The figure shows the imputation accuracy
in samples of East Asian Ancestry. The X-axis shows the alternate allele frequency on a log
scale. The Y-axis shows imputation accuracy measured by aggregate r2. The gray lines represent
accuracy profiles for different reference panels.
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South Asian Ancestry

Alternate Allele Frequency
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Figure H.4: Imputation accuracy in South Asian samples. The figure shows the imputation accu-
racy in samples of South Asian Ancestry. The X-axis shows the alternate allele frequency on a log
scale. The Y-axis shows imputation accuracy measured by aggregate r2. The gray lines represent
accuracy profiles for different reference panels.
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APPENDIX I

Supplementary figures for the Michigan imputation server

Figure I.1: Geo-location of users of Michigan imputation server

Figure I.2: Tweets by some users on the Michigan imputation server
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