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ABSTRACT 
 

Bone is in a constant state of remodeling, a process which was once attributed solely to 

osteoblasts and osteoclasts. Decades of research has identified many other populations of cells in 

the bone that participate and mediate skeletal homeostasis. Recently, osteal macrophages 

emerged as vital participants in skeletal remodeling and osseous repair. The exact mechanistic 

roles of these tissue-resident macrophages are currently unknown. Macrophages are highly 

plastic in response to their micro-environment and are typically classified as being pro- or anti-

inflammatory (pro-resolving) in nature. Given that inflammatory states result in decreased bone 

mass, proinflammatory macrophages may be negative regulators of bone turnover. Pro-resolving 

macrophages have been shown to release anabolic factors and present a potential target for 

therapeutic intervention in inflammation-induced bone loss and fracture healing. To better 

understand the role of macrophages in bone, an in vitro approach was used to study mechanisms 

of bone marrow macrophages. Additionally, macrophage functions in vivo were assessed in 

normal bone turnover and in oral osseous wound healing. 

The process of apoptotic cell clearance, termed efferocytosis, is mediated by pro-

resolving macrophages and may contribute to steady-state bone turnover as well as fracture 

healing. This process of efferocytosis by bone marrow macrophages was investigated in vitro. 

Interleukin-10, a pro-resolving cytokine, enhanced bone marrow macrophage efferocytosis of 

apoptotic bone marrow stromal cells (apBMSCs) in a phospho-STAT3 dependent manner. 

Additionally, macrophages engulfing apBMSCs secreted a unique profile of cytokines compared 

to macrophages engulfing apoptotic neutrophils. Macrophages displayed increased secretion of 
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monocyte chemotactic protein 1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) and 

transforming growth factor beta 1 (TGF-β1) in response to apBMSCs. This secreted protein 

profile suggests efferocytosis of apoptotic bone cells signals to recruit new osteoblast progenitors 

to repopulate apoptotic cells and initiate a new round of bone formation.   

Milk fat globule-EGF factor 8 (MFG-E8) is a secreted glycoprotein that facilitates the 

process of efferocytosis by acting as a bridge between apoptotic cells and phagocytes. The role 

of MFG-E8 in bone turnover was investigated. Mice deficient in MFG-E8 displayed decreased 

bone with age which correlated with an increased inflammatory phenotype and accumulations of 

apoptotic cells in the spleen. Increased inflammation leads to increased osteoclast differentiation 

and activation, resulting in decreased bone mass. MFG-E8 deficient mice displayed increased 

osteoclast numbers per bone surface. Intermittent daily parathyroid hormone (iPTH) 

administration is a known anabolic bone agent yet its use in patients is currently limited to cases 

of severe osteoporosis. MFG-E8 deficient mice responded to iPTH administration with a greater 

anabolic response than WT control mice. This suggests iPTH treatment may be beneficial in 

patients with inflammation-induced bone loss.   

Ineffective oral wound healing is detrimental to patients’ oral health related quality of 

life. Delineating the cellular mechanisms involved in optimal healing will elicit better 

approaches to treating patients with compromised healing. To study the role of phagocytic 

myeloid cells on oral wound healing, phagocytes were depleted with clodronate-loaded 

liposomes at the time of tooth extraction in mice. Depletion of macrophages and osteoclasts via 

clodronate treatment increased extraction socket bone fill 14 days after surgery, suggesting a 

crucial balance of macrophages and osteoclasts is necessary to promote effective healing.   
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A better understanding of the exact mechanisms by which macrophages mediate bone 

homeostasis and healing will lead to an expansion of pharmacologic targets for the treatment of 

osteoporosis and inflammation-induced bone loss. 
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CHAPTER 1 

INTRODUCTION 

 

Myeloid cells in bone 

The skeleton provides structural support, is a reservoir of calcium, and supports the 

hematopoietic system. Given the importance of these functions, skeletal homeostasis is crucial to 

maintaining systemic homeostasis. The bone and bone marrow make up a highly dynamic organ, 

which is constantly in a state of turnover. Bone modeling and remodeling are dependent on 

traditional bone cells (osteoclasts, osteoblasts and osteocytes) as well as the hematopoietic cells 

of the bone marrow compartment which includes myeloid and lymphoid cells [1-3]. Cells of the 

myeloid lineage are important regulators of skeletal homeostasis and are the topic of this 

dissertation.   

The common myeloid progenitor cells give rise to megakaryocytes, erythrocytes, mast 

cells and myeloblasts. Myeloblasts then become basophils, neutrophils, eosinophils, or 

monocytes. Cells originating from monocytes include tissue resident macrophages, macrophages 

of the immune response and dendritic cells. Macrophages, Greek for “big eaters,” are phagocytic 

cells with pro- and anti-inflammatory functions. They are recruited to sites of infections and 

inflammation and aid in the process of tissue repair. The bone and bone marrow consist of 

various macrophages occupying specific niches including: hematopoietic stem cell niche 

macrophages, erythroid island macrophages, osteal macrophages, and osteoclasts. The exact 
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mechanisms by which myeloid cells regulate bone turnover are elusive and are currently being 

investigated.  

The work presented in this dissertation focuses on myeloid cell contributions to bone 

homeostasis and repair. Chapter 2 presents an in depth literature review on the role of 

macrophages in skeletal health with a focus on therapeutic options available and how they alter 

myeloid/macrophage populations in bone. In addition, Chapter 2 introduces a major function of 

macrophages: apoptotic cell clearance. This process has been termed efferocytosis, from the 

Latin root “efferre” meaning “to take to the grave” or “to bury” [4]. Efferocytosis is a highly 

regulated process and is crucial to maintaining tissue homeostasis. Accumulations of apoptotic 

cells lead to deleterious effects and are a hallmark of autoimmune diseases, such as systemic 

lupus erythematous. The role of macrophage efferocytosis in bone is underappreciated and is 

investigated in Chapters 3 and 4.   

Macrophages act differently according to their environment. Tissue resident macrophages 

in the lung will see and respond to different stimuli than those in the liver, for example. Bone 

marrow macrophage efferocytosis of osteoblastic cells was investigated to determine what 

factors regulate efferocytosis in the bone and how the macrophages respond to those cues. It is 

hypothesized that due to the pro-resolving nature of the process of efferocytosis, macrophages 

may positively regulate bone turnover by engulfing apoptotic bone cells and releasing factors to 

help recruit a new set of progenitor populations. The link between macrophage efferocytosis and 

bone turnover is currently being investigated. Chapter 3 highlights a series of in vitro 

experiments which investigate mediators of efferocytosis as well as specific macrophage 

responses to apoptotic bone cell “meals.” The findings of this chapter demonstrate that bone 

marrow derived macrophages secrete monocyte chemoattractant protein-1 (MCP-1) and 
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transforming growth factor beta 1 (TGF-β1) in response to apoptotic bone marrow stromal cells 

but not apoptotic neutrophils. MCP-1 and TGF-β1 are known monocyte and mesenchymal cell 

recruitment factors, respectively. Given the specificity of the secretion of these factors in 

response to engulfing apoptotic bone cells, these data suggest one function of macrophages in 

bone is to support the repopulation of the bone forming unit as cells undergo apoptosis. These 

findings contribute to the growing literature on the role of macrophages in bone.  

As mentioned above, efferocytosis is a highly coordinated process. It requires the 

recognition of apoptotic cells by phagocytes, a rearrangement of cytoskeletal elements in the 

phagocytes to surround and engulf the apoptotic cell, and the processing of the dead cell 

internally [5-7]. Milk fat globule epidermal growth factor 8 (MFG-E8) is a secreted glycoprotein 

that binds to phosphatidylserine exposed on the outer membrane of cells undergoing cell death in 

addition to binding the αvβ3/αvβ5 integrin expressed on the macrophage [8]. MFG-E8 deficiency 

leads to various alterations in tissue homeostasis, healing, and inflammatory response [9-13]. 

Table 1.1 details some of the phenotypes seen in mice lacking functional MFG-E8. In addition 

to the findings reported in the table, MFG-E8 has recently been identified as a positive regulator 

of bone turnover [14-16], but the mechanistic role, specifically regarding efferocytosis, has not 

been described. In chapter 4, the contributions of MFG-E8 to bone turnover were investigated in 

a mouse model of MFG-E8 deficiency. Mice with the deficiency had inflammatory-like 

phenotypes, increased accumulations of apoptotic cells in the spleen, and decreased bone with 

age. A known anabolic bone therapeutic agent (teriparatide, hPTH 1-34) was administered to 

MFG-E8 deficient mice to investigate the ability to rescue the phenotype. Interestingly, treatment 

with intermittent PTH caused an anabolic response in the MFG-E8 deficient mice that exceeded 

the anabolic changes seen in WT control mice. The data presented in chapter four expands our 
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understanding of factors that regulate bone turnover and gives further insight on the potential use 

of anabolic bone agents in inflammation-induced bone loss.      

In addition to investigating macrophages in homeostatic bone turnover, the role of bone 

macrophages in healing was investigated. There are various tools to deplete different cell types 

and assess the resulting phenotype. Chapter 5 focuses on the results of depleting phagocytic cells 

using liposomes loaded with clodronate. When engulfed, liposomes containing clodronate are 

metabolized to a toxic byproduct which leads to death of the phagocyte. The effect of depleting 

phagocytic cells via clodronate-loaded liposomes on normal bone turnover was investigated. 

Additionally, the role of these phagocytes in facilitating oral osseous wound healing was 

investigated using a tooth extraction protocol. Understanding the contributions of specific cells 

to the healing process will aid in the design of targeted therapeutics for oral osseous wound 

healing.  

The work presented in this dissertation highlights various models to study myeloid cell 

contributions to bone homeostasis and healing and provides  a better understanding of the 

functional roles of these cells in bone.      
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Table 1.1. Reported phenotypes in MFG-E8 deficient mice.  
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Table 1.1. continued. References from table: [8-12, 14, 17-21] 
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CHAPTER 2 

MACROPHAGES AND SKELETAL HEALTH 

 

Introduction 

The skeleton is a complex organ that provides structural support, protection of the body’s 

internal organs, houses the hematopoietic system, and serves as a reservoir of calcium. Bone is in 

a constant state of turnover which is balanced by bone formation and resorption; processes which 

are controlled by the activity of bone resident cells: osteoblasts, osteocytes, and osteoclasts. The 

bone and bone marrow consist of several other cells that play crucial supportive roles in the 

process of homeostatic bone turnover including, but not limited to, T  and B cells, mast cells, and 

monocytes/macrophages [1-5]. An imbalance in the bone remodeling process due to alterations 

in osteoblast or osteoclast activity can lead to elevated bone mass (increased osteoblast activity 

or decreased osteoclast activity) or decreased bone mass (decreased osteoblast activity or 

increased osteoclast activity).  

Approximately 44 million Americans have low bone mass, placing them at a high risk of 

developing osteoporosis, a disease affecting over 10 million Americans [6]. Loss of bone mass 

leads to increased fracture risk, which has a high rate of morbidity and mortality in the elderly 

population [7]. Osteoporosis-related fractures often lead to hospitalizations and nursing home 

placement, decreasing the patient’s quality of life and posing a large burden on healthcare 

systems. Bone loss leading to osteoporosis has been widely studied in the context of menopause 

and estrogen deficiency and is associated with an increase in osteoclast activity relative to 
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osteoblast activity [8]. Estrogen does not likely mediate osteoclast activity directly, however the 

withdrawal of estrogen results in the increased production of inflammatory cytokines [9]. These 

inflammatory mediators are major contributors in the increased osteoclast activity seen in 

menopause-associated bone loss. An early study by Horton et. al demonstrated that osteoclasts 

which were exposed to activated leukocyte cell supernatant increased osteoclast number and 

activity [10]. This finding led to a large body of research investigating various proinflammatory 

factors and their role in osteoclast stimulation. Some of these proinflammatory cytokines which 

have been shown to increase osteoclastic differentiation and activity include tumor necrosis 

factor alpha (TNF-α) [11-15], prostaglandins [16], interleukin-1 (IL-1) [11, 12, 17-20], IL-6 [21-

23], IL-11[24, 25], IL-15 [26], and IL-17 [27]. The increase in osteoclast differentiation is in 

large part due to an increase in receptor activator of nuclear factor kappa-B ligand (RANKL) 

production in target cells. RANKL binds to RANK on pre-osteoclasts and induces 

differentiation. However, it has been shown that TNF-α can induce osteoclast differentiation 

when RANKL levels are lower than necessary for osteoclastogenesis [28]. 

Increased proinflammatory cytokine production is not only seen in during estrogen 

withdrawal but is also associated with various inflammatory diseases. Systemic and/or local bone 

loss is often seen in patients with inflammatory diseases [29, 30] including systemic lupus 

erythematous [31], rheumatoid arthritis [32-34], cystic fibrosis [35], chronic obstructive 

pulmonary disease [36], inflammatory bowel disease (IBD) [37, 38], and periodontal disease 

[39].  The inflammatory process is a complex response which is mediated by various cells of the 

innate and adaptive immune systems. The direct effect of inflammatory cytokines on osteoclast 

activity has been well studied, and the cells mediating these effects are becoming more 

appreciated for their roles in bone homeostasis. 
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The focus of this review is the role of immune cells, specifically monocyte/macrophages, 

on the maintenance of bone and their contributions to bone disease.  Additionally, the therapeutic 

potential of targeting osteal macrophages in bone-related diseases will be highlighted.  

 

Translating traditional macrophage actions to their roles in bone 

 Macrophages, Greek for “big eaters,” were first described by Elie Metchnikoff over 100 

years ago and are traditionally known for their phagocytic roles in inflammation and immunity 

[40]. They are a heterogeneous population of cells with multiple phenotypes whose function is 

based on surrounding environmental cues. These macrophage phenotypes, commonly referred to 

as polarizations, were once considered to be distinct populations which could be divided into M1 

(classically activated) or M2 (alternatively activated) subsets [41, 42]. A large body of research 

has focused on defining these populations of cells, and it has become clear that macrophage 

polarization cannot simply be divided into two unique populations, but rather consists of a 

spectrum of phenotypes [43-45]. A collaboration between multiple groups has worked together 

to create a set of standards which outline the sources of macrophages, activators of macrophages, 

and defines various markers of macrophage activation [46]. Due to the heterogeneity of 

macrophages, the original definitions of these cells are no longer categorized as M1 or M2. Not 

only have subcategories been identified such as M2a, M2b, and M2c [47], but the original two 

designations are currently referred to as “M1-like” and “M2-like,” due to the overlap of the 

expression of markers. 

M1-like or classically-activated macrophages are defined for their role in mediating an 

inflammatory response. They polarize toward the M1 phenotype in response to inflammatory 

cytokines released from Th1 cells, such as IL-1 and IL-6. M2-like macrophages are present 
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during the resolution phase of inflammation and are responsible for anti-inflammatory cytokine 

production and enhanced clearance of apoptotic cells, termed efferocytosis [48-50]. Exposure to 

anti-inflammatory cytokines IL-4, IL-12 and IL-10 leads to M2-like macrophage polarization 

[51], and increased apoptotic cell clearance [52-54].  

Tissue-resident macrophages are found in nearly all tissues other than hyaline cartilage, 

and play additional roles other than immunity and inflammation, including supporting tissue 

homeostasis, clearance of debris and tissue repair [55-58]. The differentiation and maintenance 

of tissue-resident macrophages is unique compared to that of adult hematopoietic cell renewal 

via hematopoietic stem cells (HSCs). It has recently been shown that many adult tissue-resident 

macrophages differentiate from a Tie2+ cellular pathway which leads to yolk sac-derived 

myeloid progenitors that develop prior to the appearance of HSCs [59, 60]. This distinction is 

important because the unique origin and differentiation of tissue macrophages has significant 

relevance to disease. 

Tissue-resident macrophages perform specific functions based on the tissue in which they 

reside. For example, the lung consists of alveolar macrophages which survey for inhaled 

pathogens and regulate homeostasis of the tissue through surfactant clearance [61-63]. Kupffer 

cells in the liver participate in the clearance of aged erythrocytes [64].  Figure 2.1A depicts 

several of the tissue-resident macrophages. Of interest to this review, the bone and bone marrow 

microenvironment maintains several tissue-resident macrophage populations, each with distinct 

locations and functions.  

The bone and bone marrow consist of three known distinct macrophage populations: 

bone marrow macrophages (erythroid island macrophages and hematopoietic stem cell 

macrophages), osteoclasts, and a recently defined population of macrophages termed osteal 
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macrophages or “osteomacs” [3] (Figure 2.1B). Historically, bone marrow macrophages have 

been studied in the context of erythropoiesis [65, 66] and hematopoietic stem cell niche 

maintenance [67, 68]. Osteoclasts have long been identified as the tissue-resident macrophages 

in bone, although they now share this designation with the other bone macrophage populations. 

Osteoclasts differentiate down the monocyte lineage, and fuse to become multinucleated  

tartrate-resistant acid phosphatase (TRAP)-positive cells. Osteal macrophages are a distinct 

subset of bone macrophages located in close proximity to the bone surface and are F4/80-

positive (Figure 2.2) [69] and TRAP-negative [3]. These osteal macrophages were characterized 

and found frequently located next to active bone forming osteoblasts. The majority of osteoblasts 

on the inner surface of cortical bone are covered in F4/80+, CD68+, Mac-3+, TRAP– 

macrophages [70]. Table 2.1 details the known markers and functions of the four macrophages 

present in bone. The specific myeloid progenitors and functional roles of the osteal macrophage 

are currently under investigation. The proximity to the bone forming unit suggests that they 

communicate with bone resident cells and play a supportive role in the bone remodeling process. 

To investigate the functional role of osteal macrophages, several in vitro assays have 

identified a supportive role for macrophages in mediating bone formation. An early study by 

Champagne et al. [71] demonstrated that human and murine macrophages produce bone 

morphogenetic proteins (BMPs), specifically BMP-2 and BMP-6. Mesenchymal stem cells 

(MSCs) (osteoblast progenitor cells) grown in conditioned media from J774A.1 macrophage 

cells displayed increased osteoblast differentiation gene expression, and treatment of 

macrophages with anti-BMP-2 prevented the pro-osteogenic effect [71]. Primary cell cultures 

which are used to assess osteoblastogenesis and mineralization consist of a heterogeneous 

population of cells. To measure the contribution of macrophages in these cultures, primary 
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calvarial osteoblast cultures were sorted for macrophage markers and found to consist of 11% to 

17% F4/80+ macrophages [3]. When macrophages were depleted from cultures using a magnetic 

sorting technique, mineralization and osteoblastic differentiation gene expression was 

significantly reduced [3]. Nicolaidou et al. [72] also found that monocytes/macrophages induce 

human MSC differentiation into osteoblasts and increase mineralization. Increased oncostatin M 

(OSM) production by monocytes led to upregulation of signal transducer and activator of 

transcription 3 (STAT3) in MSCs and enhanced differentiation. Neutralizing antibody to OSM 

decreased MSC differentiation into osteoblasts [72]. These findings were supported by a study 

showing that OSM produced by activated circulating CD14+ or bone marrow CD11b+ 

monocytes/macrophages induced osteoblast differentiation and matrix mineralization from 

human mesenchymal stem cells [73]. Treatment of MSCs with recombinant OSM also 

stimulated osteoblast differentiation [74]. 

These in vitro data support the hypothesis that macrophages are important in mediating 

osteoblastic differentiation and mineralization. In vivo macrophage ablation models further 

support these findings. The macrophage Fas-induced apoptosis (MAFIA) mouse model results in 

depletion of colony-stimulating factor-1 receptor (c-Fms) positive myeloid lineage cells upon 

administration of AP20187 [75, 76]. MAFIA mice administered AP20187 displayed markedly 

reduced osteoblast lining bone surfaces, decreased bone formation, and an overall reduction in 

bone volume [3, 77, 78]. Another method to deplete macrophages is the lysozyme-M (LysM) 

driven cre model. LysM is expressed in cells of the myeloid lineage [79] and when LysMcre 

mice were crossed with R26RDTA mice, LysM expressing cells including monocytes and 

macrophages were depleted [80]. Macrophage depletion using the LysMcre-DTA model led to 

decreased bone growth in young mice and osteoporosis in skeletally mature mice [80]. 
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 Given that osteoclasts and macrophages differentiate from the monocytic lineage, 

macrophage ablation experiments targeting either c-Fms or LysM should also affect osteoclasts. 

In the MAFIA mouse model using c-fms driven macrophage depletion, Cho et al. [78] 

demonstrated that the dosing regimen of AP20187 used successfully depleted macrophage 

populations without altering the number of osteoclasts per bone surface in vivo. Conversely, Vi 

et al. [80] demonstrated in the LysM model of macrophage depletion that osteoclasts were 

present in macrophage depleted mice, however they were reduced and less active. In vitro assays 

of osteoclast resorptive potential showed that osteoclasts from the LysM mice were still 

functional at resorbing bone. It is important, therefore, that models of macrophages depletion 

used to investigate bone phenotypes, should consider the potential osteoclast effects.  Taken 

together, these studies show that macrophages are important and necessary contributors to the 

bone modeling and remodeling process. Their mechanistic roles are under ongoing investigation. 

 Macrophages are well known for their role as professional phagocytes.  As mentioned 

previously, macrophages can be polarized based on the environment in which they reside. M1-

like macrophages participate in the inflammatory response and are primed by proinflammatory 

cytokines. Proinflammatory cytokines enhance osteoclast differentiation and resorption by 

upregulation of RANKL, resulting in low bone mass phenotypes. M2-like macrophages, on the 

other hand, are considered resolution phase macrophages and participate in the clearance of 

apoptotic cells, termed efferocytosis, following an inflammatory milieu [50, 81-83]. Under 

normal conditions, approximately one million cells in the body become apoptotic each second, 

and the effective clearance of these apoptotic cells is crucial to prevent an abnormal 

inflammatory response or systemic autoimmunity [84-86]. The bone marrow is a complex organ 

that consists of millions of cells which undergo turnover daily, resulting in a large amount of 
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apoptotic cells to be cleared. To maintain homeostasis, these cells must be rapidly and effectively 

cleared. In regards to the bone forming unit cells, osteoblasts have three fates: they become 

bone-lining cells, osteocytes or undergo apoptosis. Of the osteoblasts initially at remodeling 

sites, more than 50% are thought to undergo apoptosis [87]. The role of pro-resolving 

macrophages and the process of efferocytosis have recently surfaced in bone, and studies 

investigating apoptotic cell clearance may lead to a better understanding of the functional role of 

osteal macrophages.  

Macrophage polarization is of interest in the context of bone and may provide clues into 

the functional role macrophages play in skeletal homeostasis [88]. Macrophage expression of the 

osteoinductive factors BMP-2 and BMP-6 was reduced when macrophages were stimulated with 

lipopolysaccharide (LPS), a known proinflammatory M1 macrophage mediator [71]. 

Conditioned media from macrophages treated with LPS were unable to produce the stimulatory 

effect on MSC differentiation into osteoblasts [71]. This suggests that proinflammatory 

mediators may result in reduced bone phenotypes by altering macrophage expression of 

osteoinductive factors. Furthermore, conditioned media from macrophages treated with IL-4 and 

M-CSF (M2 activation) increased osteoblast maturation from MSCs, whereas macrophages 

treated with granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-gamma 

and LPS (M1 activation) did not [74]. These findings support alternatively activated 

macrophages as mediators of bone homeostasis.  

The functional role of macrophages and the participation of efferocytosis in bone 

remodeling is further supported by macrophage ablation experiments.  The depletion of myeloid 

lineage cells via the MAFIA mouse model resulted in decreased F4/80+ cells, CD68+ cells, and 

reduced bone mass [78]. In the same study, clodronate-loaded liposomes were administered to 
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mice to deplete mature macrophages with phagocytic capacity. This method of macrophage 

ablation also led to a decrease in F4/80+ cells, however, CD68+ and CD163+ cells were 

reciprocally increased as was bone mass. CD68+ and CD163+ cells are mature phagocytic 

macrophages that participate in the process of efferocytosis.  It is hypothesized that these cells 

were increased after administration of the clodronate liposomes in a positive feedback 

mechanism [78]. To further support the hypothesis that the increase in CD68+ cells in the 

clodronate model also coincided with increased apoptotic cell clearance, TUNEL staining 

verified a reduction in apoptotic cells in the clodronate-treated mice compared to the MAFIA 

mouse model. Furthermore, clodronate-treated mice displayed increased whole bone marrow 

gene expression of M2-related genes and no change in M1-related genes [78]. Furthermore, the 

clodronate-liposome treatment resulted in increased expression of osteogenic genes including 

Wnt-10b and TGF-β1. The increased bone mass in the clodronate model of macrophage 

depletion suggests a correlation between the process of apoptotic cell clearance and bone 

turnover.   

 During programmed cell death, cells begin to expose phosphatidylserine (PS) on their 

outer membrane. Phagocytic cell receptors recognize PS on apoptotic cells which leads to 

signaling and initiates engulfment of the apoptotic cell [83, 89]. Milk fat globule-epidermal 

growth factor 8 (MFG-E8), also known as lactadherin, is a secreted protein which forms a bridge 

between PS on the apoptotic cell and the vitronectin receptor (αvβ3 integrin) on the phagocyte. 

MFG-E8 knockout mice displayed decreased bone mass and accelerated bone loss due to 

ovariectomy [90]. Cell autonomous studies revealed MFG-E8 knockout osteoblasts mice had 

decreased mineralization and knockout osteoclasts were more active. The phagocytic capacity of 

bone marrow macrophages were not assessed in this study but were shown to have decreased 
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phagocytosis by others [91]. These data suggest that MFG-E8 may have direct roles in osteoblast 

and osteoclast activity, but MFG-E8-mediated efferocytosis by macrophages may also contribute 

to the low bone mass phenotype seen in these mice. Further investigation into the direct effects 

of efferocytosis on bone turnover is important in better delineating the mechanistic roles of 

macrophages in mediating bone homeostasis.  

Recent studies have begun to define the role macrophage-mediated clearance of apoptotic 

bone cells on bone turnover [54, 92]. Live cell imaging shows that bone marrow derived 

macrophages readily engulf apoptotic MC3T3 (osteoblastic) cells, resulting in complete 

clearance [92]. Similarly, bone marrow macrophages engulf apoptotic primary bone marrow 

stromal cells as shown using flow cytometric analysis in conjunction with ImageStream analysis 

(Figure 2.3). IL-10 was investigated as a mediator of apoptotic bone marrow stromal cell 

clearance [54]. Bone marrow derived macrophages primed with IL-10 displayed enhanced 

efferocytosis of apoptotic bone cells and mimicked an M2-like phenotype (CD206+). Following 

engulfment of apoptotic bone marrow stromal cells or MC3T3 cells, macrophages secreted the 

osteogenic molecule TGF-β1 and monocyte cell attractant chemokine (C-C motif) ligand 2 [54]. 

These factors were upregulated in comparison to the engulfment of apoptotic neutrophils, 

suggesting that efferocytosis of apoptotic bone cells leads to a distinct expression profile which 

may aid in the recruitment of progenitor cells to repopulate the dead/dying cell populations. The 

exact mechanistic role of osteal macrophages in supporting bone turnover is currently being 

investigated, and efferocytosis shows potential to positively regulate these processes.   
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Macrophages in bone disease 

Tissue homeostasis requires a tightly organized system of various cell types working 

together to maintain balance. If the balance is disrupted, the progression of aberrant disease 

states may persist. While a direct link between macrophage function and bone-related diseases 

has not been thoroughly investigated, there are clear macrophage phenotypes which present in 

various disease states. As mentioned previously, proinflammatory mediators enhance 

osteoclastogenesis and activity in part due to upregulation of RANKL. Increased inflammatory 

cytokines have been associated with post-menopausal osteoporosis, yet the in vivo 

characterization of bone marrow or osteal macrophage phenotypes under these conditions is not 

known. It may be speculated that increased inflammatory cytokines encourages a shift in 

macrophage phenotypes toward M1-like. The exact role of macrophages in osteoporosis is as yet 

unknown.  

 During aging, repair processes, including fracture repair, often become less efficient [93, 

94]. The cellular processes which are impaired in aging are under investigation. When bone 

marrow from 4 week old mice was transplanted into 12 month old mice, fracture healing was 

enhanced in the older mice [95]. The positive effects were attributed to the young inflammatory 

cells aiding in the repair processes. Additionally, parabiosis experiments showed that youthful 

circulating factors mediated repair processes in aged mice [96]. While the bone marrow 

transplants and parabiosis studies result in the exchange of a heterogeneous population of cells, 

macrophages may play a contributory role. In fact, in other tissues, macrophages have been 

shown to be less effective at tissue repair with age [97]. Aging also coincides with an increase in 

proinflammatory mediators, decrease in M2-like macrophages, and decrease in phagocytic 

capacity [98-103] 
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Rheumatoid arthritis displays local and systemic bone loss and is associated with joint 

destruction. The exact pathogenesis of rheumatoid arthritis is unknown, yet macrophage 

activation contributes greatly to its presentation. Macrophages have been shown to be an 

important source of proinflammatory cytokines such as IL-1β, IL-6, TNF-α and GM-CSF locally 

and systemically [104, 105]. The increased proinflammatory cytokines enhance osteoclast 

differentiation and activity via upregulation of RANKL, and leads to bone destruction. 

Macrophages and their byproducts have become candidate targets in the treatment of rheumatoid 

arthritis, and include anti-TNF antibodies and the inhibition of c-Fms  [106]. However, it is 

proposed that specifically targeting proinflammatory M1-like macrophages may result in more 

positive results than depletion of all macrophages [107].  Additionally, mice deficient in MFG-

E8, a protein that mediates apoptotic cell clearance, have exacerbated rheumatoid arthritis 

presentation [108]. While macrophages were not characterized in this study, the known role of 

MFG-E8 in M2-mediated clearance of apoptotic cells suggests that M2 macrophages may be 

important in preventing rheumatoid arthritis symptoms by aiding in inflammation resolution and 

debris clearance.  

Osteonecrosis of the jaw (ONJ) presents as exposed necrotic bone in the oral cavity. ONJ 

is often associated with high-dose intravenous antiresorptive therapies used in patients with 

metastatic bone disease [109]. The exact etiology is not known for ONJ, but inflammatory 

macrophages have recently been shown to play a role [110]. Increased IL-17 correlated with an 

increase in M1 to M2 macrophage ratio in patients ONJ lesions. Adoptive transfer of M2 

macrophages expanded ex vivo decreased ONJ severity, IL-17 production and M1 to M2 ratio in 

a mouse model for ONJ [110]. Neutralizing antibody to IL-17 also decreased the M1 to M2 ratio 

and disease prevalence in mice. These data suggest that M1 macrophages correlate with ONJ 
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disease presentation and severity, and targeting M1 macrophage activation by IL-17 may serve 

as a potential therapeutic for patient at risk for developing ONJ lesions.    

 

Macrophages in bone repair 

 Macrophages function to maintain normal tissue homeostasis and play a crucial role in 

tissue damage repair. This is also true in osseous wound healing. Following a fracture, bone is 

regenerated to fill in the fracture space to restore form and function. After tissue injury, damaged 

tissue and apoptotic cells are abundant and must be cleared to allow for proper modeling of the 

site. Bone healing generally involves five stages: the inflammatory response, soft callus 

formation, hard callus formation, union, and bone remodeling (reviewed in [111]). The initial 

inflammatory response provides an influx of cells, including macrophages. Macrophages are 

important in the early stages of bone healing, yet their more crucial role has been shown to be 

during the subsequent anabolic steps in bone repair. The MAFIA mouse model was used to 

assess the macrophage contribution to healing via intramembranous ossification or endochondral 

ossification [112, 113]. In both models of repair, macrophage depletion at the time of injury 

resulted in substantially reduced collagen type-I deposition and bone mineralization leading to 

impaired bone repair. Vi et al. [80] utilized the macrophage depletion LysMcre-DTA model and 

similarly found that macrophage depletion significantly impaired tibial fracture healing. To 

better assess the role of macrophages in the later stages of fracture healing, the MAFIA mouse 

model was also utilized to deplete macrophages after the initial inflammatory events and prior to 

the anabolic phase. Interestingly, macrophage depletion during this phase also led to decreased 

healing [112, 113]. These data suggest that macrophages are important during various stages of 

bone repair and are necessary for proper healing. Additionally, this may implicate different 
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macrophage phenotypes during healing as the initial inflammatory macrophages may be distinct 

from those present during the anabolic phase. Indeed, inflammatory and osteal macrophages 

predominate in different locations within fracture sites, further supporting separate functional 

roles [112, 113]. Clearly, macrophages present a possible therapeutic target for enhancing 

fracture healing. 

 The mechanisms by which macrophages exert their positive effects on bone formation are 

not clearly understood. Guihard et al. [114] expanded on their in vitro findings that OSM 

produced by macrophages supports osteoblastic mineralization by investigating signaling during 

tibial injury healing. They found that OSM expression was increased during the inflammatory 

phase of healing and that macrophage depletion via the clodronate-loaded liposome model led to 

decreased OSM expression [114]. Furthermore, OSM and OSM receptor null mice had fewer 

osteoblasts and less bone formation within the injury site. These data support OSM as an 

important pro-anabolic molecule in the healing of bone and a potential target for fracture healing 

therapeutics. Macrophages can secrete other osteoinductive factors (TGF-β1, BMP-2, BMP-4, 

BMP-6), which have only begun to be explored in the context of macrophage-mediated osseous 

wound healing.  Macrophages are implicated in the heterotopic ossification that occurs following 

tissue injury due to trauma and burns playing an important role as immune effector cells in 

ectopic bone formation [115]. One study demonstrated a role for macrophage derived BMP4 in a 

genetic mouse model where soft tissue injuries led to bone with marrow in extraskeletal tissues 

[116]. As macrophages are typically at the interface of the adaptive and innate immune systems 

and have both inflammatory and anti-inflammatory phenotypes, their ability to orchestrate 

osseous wound healing in various scenario requires further study. 
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Current osteoporosis therapies and how they affect macrophages 

 Antiresorptives are commonly used therapeutics to combat the bone loss associated with 

osteoporosis secondary to menopause or systemic inflammation as well as to treat metastatic 

bone diseases and hypercalcemia. Broadly, antiresorptives inhibit osteoclast activity, either 

through targeting key differentiation steps or preventing mechanisms which osteoclasts use to 

adhere to and resorb bone. The most common category of antiresorptives used clinically are the 

bisphosphonates.  

Bisphosphonates attach to hydroxyapatite in bone and are incorporated into osseous 

surfaces. Depending on the structure of the bisphosphonate, as osteoclasts resorb bone that has 

incorporated bisphosphonates, the bisphosphonates inhibit osteoclast activity or induce 

apoptosis. Nitrogen-containing bisphosphonates inhibit farnesyl pyrophosphate synthase leading 

to impaired ability to adhere to bone and produce protons necessary for resorption [117, 118]. 

Simple bisphosphonates on the other hand do not contain nitrogen. These molecules are 

metabolized by osteoclasts to a toxic analogue of adenosine triphosphate (ATP) resulting in 

osteoclast apoptosis [119, 120]. The effects of bisphosphonates on osteoclasts have been widely 

studied, yet the effects on macrophages are just becoming apparent [121]. The phagocytic nature 

of macrophages makes them susceptible to uptake of bisphosphonates [122, 123]. Macrophages 

treated in culture with nitrogen-containing bisphosphonates versus simple bisphosphonates 

responded differently. Simple bisphosphonates reduced inflammatory cytokine (IL-1β, IL-6, 

nitric oxide) production by macrophages whereas nitrogen-containing bisphosphonates enhanced 

IL-1β and IL-6 production [124, 125]. These results indicate that bisphosphonates alter cytokine 

release profiles by macrophages and may therefore alter their interactions with bone cells. 

Bisphosphonates have also been shown to decrease osteoclastogenesis [126, 127]. Osteoclast 
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precursors are of the monocyte-macrophage lineage and may also be altered in the process of 

reduced osteoclastogenesis. The exact alterations in these cell populations are not appreciated, 

but further understanding may allow for better tailored osteoporosis therapies. 

Denosumab is also an antiresorptive, yet its mechanism of action is different than 

bisphosphonates. Denosumab is a human monoclonal antibody that binds to RANKL which 

selectively inhibits osteoclastogenesis. It is FDA approved for the treatment of postmenopausal 

osteoporosis for women with high or increased fracture risk [128]. Due to its long half-life, 

administration of denosumab for the treatment of osteoporosis is once every six months, making 

it more manageable than daily or weekly bisphosphonates [129]. Monocytes and macrophages 

express RANK, the receptor for RANKL. Interestingly, studies have shown that denosumab does 

not alter the functions of monocytes [130, 131]. Additionally, denosumab was not shown to alter 

differentiation or viability of macrophages from monocytes [132].  Reports of severe infections 

as low incidence adverse events in cancer patients taking denosumab have not surfaced in 

osteoporosis patients, yet raise the potential for high doses impacting aspects of the host response 

[133]. While studies do not imply that denosumab changes macrophage differentiation, further 

exploration of macrophage responses to RANKL inhibitors seems prudent. 

Odanacatib is a cathepsin K inhibitor, a key enzyme utilized by osteoclasts to break down 

bone. Recently, Merck discontinued its clinical trials of odanacatib due to stroke risk, however 

cathepsin K inhibition should not be ruled out as a target for treating reduced bone mass. 

Odanacatib has been shown to suppress inflammation and macrophage numbers in sites with 

increased inflammation such as periodontal and endodontic lesions [134, 135]. This result is an 

important finding for the potential treatment of inflammation-induced bone loss. The mechanism 

by which odanacatib alters macrophages is not clear. Given that macrophages are important cells 
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for the maintenance and turnover of bone, there is a need for further identification of the effects 

on macrophages by bone therapeutics. Off target effects of drugs may be due to macrophage 

responses versus traditional bone cell effects.   

 Antiresorptives are the most widely used therapeutic for the treatment of osteoporosis 

where they prevent further loss of bone in patients already exhibiting low bone mass. Due to the 

impact on reducing ongoing resorption, these agents provide increases in bone yet they do not  

stimulate bone formation. Teriparatide (hPTH 1-34) is the only anabolic osteoporosis therapeutic 

that has current US FDA approval. PTH-like analogs (ex. Abaloparatide) are currently under 

clinical investigation [136]. Parathyroid hormone (PTH), when pathologically elevated in the 

body or administered continuously, is catabolic in nature and acts as a signal to sequester 

calcium from the skeleton. However, if PTH is administered intermittently, an anabolic response 

leads to a net increase in bone [137, 138]. Teriparatide is currently only reserved for severe cases 

of osteoporosis due to its high cost, delivery method (injection), and black box warning 

attributed to the development of osteosarcomas in rats treated intermittently with PTH [139]. 

[139]. Any increase in risk of osteosarcoma in humans has not surfaced in the fourteen years it 

has been in clinical use [140, 141]. The exact mechanism of the anabolic response is still being 

investigated, and a better understanding of the effects of teriparatide will allow it to reach more 

patients with osteoporosis, to aid in the healing of fractures, and serve to treat patients with 

inflammatory diseases resulting in bone loss. Additionally, the delivery method is currently via 

subcutaneous injection and is administered systemically. Local delivery of teriparatide is under 

investigation for local bone regenerative application [142-144]. In rats, local intra-oral 

administration of PTH was as effective as subcutaneous injection in enhancing hard and soft 

tissue healing following tooth extraction [145]. Such application could have a positive impact in 
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conditions such as periodontal disease, bone defects or fractures where systemic administration 

has a demonstrated benefit [146, 147] but systemic application is unnecessary.   

 The role of macrophages has been outlined in the context of homeostatic bone turnover, 

disease and healing. Their role in mediating aspects of the PTH anabolic response is currently 

under investigation. Intermittent PTH treatment has been shown to be more effective when 

immune cells, such as macrophages, are present [78]. In a clinical trial investigating the effect of 

local teriparatide treatment of periodontal defects, disease sites displayed an anabolic response to 

teriparatide therapy, whereas non-diseased, non-inflamed sites showed no change in the same 

patient (although the study was not designed specifically to address this endpoint) [146].  

Additionally, the anabolic response is more robust in sites of injury such as tibial fracture, tooth 

extraction sockets, and endodontic lesions versus non-wounded bone [148, 149]. These findings 

led to the hypothesis that cells mediating the inflammatory process may be supportive of the 

anabolic response of intermittent PTH treatment. 

 The role of macrophages in mediating the anabolic response to intermittent PTH comes 

from mouse models of macrophage ablation. Mice treated with intermittent PTH display 

increased bone mass and an increase in F4/80-positive cells lining the periosteal and endosteal 

bone surfaces [78]. In the same study, macrophages were ablated using the MAFIA mouse model 

and mice were treated with intermittent PTH. The anabolic response was lost in the mice with 

depleted macrophages. Interestingly, when macrophages were depleted using clodronate-loaded 

liposomes, the anabolic response was amplified. This led to an investigation of the subsets of 

macrophages which were altered in the two macrophage ablation models. CD68-positive 

macrophages are mature macrophages which demonstrate phagocytic capacity. In the MAFIA 

mouse model, all macrophages were depleted including CD68-positive macrophages. 
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Conversely, in the clodronate-loaded liposome model, CD68-positive macrophages were 

amplified, an increase which may reflect a compensatory feedback loop [78]. These observations 

not only implicate a role for macrophages in the anabolic response to intermittent PTH therapy, 

but also demonstrate that particular macrophage subsets are necessary for the PTH response. 

Further investigation of the clodronate model showed an increase in whole bone marrow 

osteogenic gene expression including Wnt-3a, Wnt-10b and TGF-β1, all of which were further 

increased with PTH treatment [78]. The  source of the increase in gene expression is likely from 

a heterogeneous population of cells, but may be attributed to downstream effects of the increased 

CD-68+ cells and M2 macrophage upregulation. Studies investigating intermittent PTH 

treatment in non-lethally irradiated mice showed similar trends as the clodronate-loaded 

liposome model [150]. Non-lethal irradiation caused a decrease in marrow cells, however CD68+ 

cells were expanded. Mice treated with PTH following irradiation showed an increased anabolic 

response [150]. Due to the large amount of apoptosis that occurs following irradiation, 

efferocytosis machinery is likely altered to compensate for the influx and may lead to an 

upregulation of CD68+ phagocytic cells. This is consistent with the findings seen in the 

clodronate-loaded liposome model, and suggests that intermittent PTH therapy is enhanced in an 

environment in which apoptotic cell clearance is increased. As was seen in the clodronate model, 

TGF-β gene expression in the marrow was increased in the irradiated mice, a factor which may 

potentiate PTH effects [150]. Additionally, mechanical ablation of bone marrow in rats resulted 

in an increase in bone formation which was further increased with intermittent PTH therapy 

[151].  

 Further support of the hypothesis that the effects of intermittent PTH therapy are 

dependent on the macrophage actions comes from metabololipidomic profiling [92]. Intermittent 
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PTH increased proresolving mediators, including resolvin D1 and D2, in the bone marrow. 

Resolvins participate in the resolution phase of inflammation and mediate efferocytosis [152]. 

Human and mouse derived macrophages displayed increased engulfment of apoptotic osteoblasts 

when primed with resolvin D1 and D2 [92]. As macrophages do not have the PTH receptor, the 

mechanism by which PTH exerts its effects on macrophages is currently under investigation. 

PTH has been shown to have both pro- and anti-apoptotic effects on osteoblasts [153, 154]. In 

culture, early osteoblasts treated with PTH demonstrated decreased apoptosis, whereas mature 

osteoblasts treated with PTH displayed increased apoptosis. This led to the hypothesis that PTH 

promotes the apoptosis of less functional cells to promote reconstitution of the bone forming unit 

with younger, more functional osteoblasts. The increase in turnover of the osteoblast population 

may lead to the upregulation of alternatively activated M2-like macrophages and increased 

efferocytosis of apoptotic cells. The subsequent release of osteogenic factors leads to the 

recruitment of osteoblast precursors to facilitate the repopulation of the bone forming unit. 

The exact mechanism by which PTH may regulate macrophages is unknown, as 

macrophages do not express the PTH receptor. Osteoblasts carry the PTH receptor and respond 

to PTH treatment. Osteoblasts treated with PTH show increased expression of macrophage 

responsive factors such as M-CSF [155], IL-6 [156], sIL-6R [157], and chemokine (C-C motif) 

ligand 2 [158]. In the presence of PTH, osteoblasts may secrete factors which promote 

macrophage differentiation and recruitment, leading to increased availability of macrophages to 

exert their pro-anabolic effects on bone.   
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Potential for targeted therapy that modulate macrophages to increase bone regeneration 

 Studies which have assessed the role of macrophages in the context of bone homeostasis 

have utilized models of macrophage ablation and characterized the aberrant effects. While these 

studies have shed light on the importance of this cell type on bone homeostasis, repair and 

anabolism, the ability to positively manipulate these cells to aid in bone regeneration is less 

appreciated. Clearly, targeting macrophages to assist in bone anabolism in cases of reduced bone 

mass or to aid in fracture repair shows promise in the field of bone biology.  Colony-stimulating 

factor-1 (CSF-1), mediates myeloid to monocyte, macrophage, dendritic cell and osteoclast 

differentiation [159-161]. CSF-1 has been investigated for its potential application in tissue 

repair including fracture healing [159, 162]. When CSF-1 was administered to rabbits during 

femoral osteotomy healing, mineralized bone was significantly increased compared to control 

groups [162]. Additional experiments employing the use of macrophage CSF-1 demonstrated 

that bone mass and formation are increased with CSF-1 treatment [163, 164] and in a mouse 

model of osteoporosis, M-CSF prevents ovariectomy-induced bone loss [165]. Interestingly, 

recent studies have demonstrated that CSF-1 treatment increases osteal macrophages but not 

osteoclasts [112, 113]. This suggests that the ability to positively manipulate osteal macrophage 

numbers is a viable therapeutic target. 

 OSM released from macrophages has been shown to be anabolic in nature [72-74, 114, 

166]. The therapeutic potential of this molecule has been explored, and could potentially serve to 

enhance osteoblastic differentiation and mineralization. An early experiment tested the potential 

of an adenoviral vector encoding murine OSM injected into knee joints to alter inflammation and 

stimulate bone formation [167]. OSM was shown to increase joint inflammation, but also 

displayed increased bone apposition at periosteal sites which correlated with increased 
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osteoblasts and decreased osteoclasts. Additionally, in lethally irradiated mice, OSM 

administration enhanced hematopoietic stem/progenitor cell recovery, suggesting OSM may 

serve to maintain the hematopoietic environment after injury. Like OSM, other factors that can 

be secreted by macrophages have been shown to be osteoinductive, including BMP-2 and could 

serve as potential therapies to enhance bone turnover. 

 The ability to directly target macrophages such that M1-like cells are decreased and M2-

like cells are increased may facilitate the positive effects of macrophages on bone. Treating 

inflammation-induced bone loss has centered on targeting the production of Th1 by T cells to 

reduce inflammation and decrease osteoclast activity [168]. These therapies undoubtedly would 

have effects on macrophages as well. For example, Abatacept is a receptor construct that targets 

CD80/CD86 and is used as an anti-inflammatory to treat rheumatoid arthritis [169], and 

Tocilizumab is a humanized monoclonal antibody to IL-6R and is also used to treat rheumatoid 

arthritis as well as juvenile idiopathic arthritis [170]. The exact effects of these therapeutics to 

alter macrophages in respect to bone turnover are not appreciated, but a better understanding of 

these processes can help identify optimal treatment regimens.  

In an interesting study of rheumatoid arthritis, injection of apoptotic thymocytes into the 

peritoneum reduced the presentation of rheumatoid arthritis in a streptococcal cell wall-induced 

rheumatoid arthritis model [171]. This was attributed to a decrease in TNF production by 

macrophages. This may also reflect an increase in resolution M2-like macrophages in response to 

the increased apoptotic cell insult. This further supports the idea that the process of efferocytosis 

results in favorable outcomes for bone in models of disease.  
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Other macrophage-targeted therapies under investigation 

Altering macrophages to aid in the repair processes is not a new idea. In tissues other 

than bone, macrophages are potential targets for reducing symptoms of autoimmune diseases or 

enhancing tissue repair [172]. While many of these targeted therapies are still being investigated 

in animal models, clues from these studies in non-bone tissues may aid in the development of 

macrophage-targeted therapies to alter bone formation and repair. It is thought that an imbalance 

in M1/M2 macrophages that favors proinflammatory M1 cells is the basis for many diseases and 

issues with healing. Targeting macrophages to increase M2-like macrophages may serve to 

decrease any negative effects seen by increased M1-like cells. There are many drugs that are 

anti-inflammatory and could potentiate an M2 increase and a few will be reviewed here. 

A well accepted paradigm in macrophage biology is IL-4 mediates macrophage 

phenotypic switch toward the alternatively activated M2-like state. In a mouse model of 

myocardial infarction, M2-like cells predominate after cardiac injury. When M2 macrophages 

were depleted, mice showed significantly worse prognoses when myocardial infarction was 

induced [173]. Administration of IL-4 increased M2-like macrophages in mice and increased 

prognosis of myocardial infarcted mice. Early studies showed that IL-4 inhibits resorption [174], 

yet the therapeutic potential of IL-4 in fracture repair or osteoporosis therapy has not been 

thoroughly investigated and may serve as a positive regulator of repair and regeneration.  

Another example of an approach to target macrophage polarization is CD200. CD200 

interaction with its receptor increases alternatively activated macrophages [175]. Treatment of 

macrophages with human CD200-Fc up-regulated expression levels of M2-like markers and 

suppressed M1-like markers. These increases coincided with increased TGF-β expression in 

macrophages, and decreased proinflammatory macrophages. Interestingly, CD200 has been 
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shown to play a role in bone turnover and CD200 signaling may be a future therapeutic target to 

promote M2-like macrophages to aid in tissue repair. Although promising, macrophage plasticity 

targets must be explored more thoroughly in in animal models prior to pre-clinical settings to 

understand the complexity of the potential human response.  

 

Conclusions and Future Directions 

 The heterogeneity of macrophages, their varying functional roles, and plasticity make 

them difficult but exciting targets for therapeutic intervention. In the context of bone, certain 

macrophage subsets have been shown to mediate turnover and healing. However, it must be 

noted that most strategies to target macrophages in bone will likely have off-target effects on 

osteoclasts. This review has outlined the known roles of macrophages in bone, the potential 

mechanisms behind their pro-osteogenic effects and the possibility to target macrophages to aid 

in bone related disease treatment and fracture healing. It is promising that macrophage 

stimulating molecules in combination with current approved osteoporosis therapies could 

improve patient outcomes. Clearly, more in depth characterization of macrophages in bone must 

be completed to identify the best possible strategies to target macrophages to aid in bone repair 

and regeneration. 
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Figure 2.1. Tissue resident macrophages. (A) Macrophages are present in nearly all tissues in 
the body and perform different functional roles based on their location. (B) In the bone and bone 
marrow there consist several populations of macrophages. Osteoclasts are bone-resorbing cells 
which differentiate from monocyte precursors in the presence of M-CSF and RANKL. Erythroid 
island macrophages (EIM) are found interacting with and supporting erythroblasts during 
erythropoiesis. These macrophages are distinct from HSC niche macrophages which are found 
adjacent to blood vessels and support HSC self-renewal and cycling. Osteal macrophages are 
found adjacent to bone forming cells (osteoblasts), dormant bone-lining cells, and osteoclasts. 
The functional role of osteal macrophages is proposed to support bone formation through 
mechanisms currently under investigation.    
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Figure 2.2. F4/80 positive cells are located throughout the marrow and intimately 
associated with bone surfaces. Tibiae from 22-week old C57BL/6 mice were paraffin 
embedded, sectioned and immunohistochemical stained (brown) for F4/80 and counterstained 
with hematoxylin (blue) as previously described [78]. Macrophages are located adjacent to bone 
surfaces (black arrowheads) and throughout the marrow space. F4/80+ cells are also associated 
with blood vessels (BV) and support hematopoiesis (red arrowheads). 
 
 
 
 
 
 
 
 
 



36 
 

 
 
Figure 2.3. Internalization of apoptotic bone marrow stromal cells by macrophages. Bone 
marrow macrophages were stained for F4/80-FITC and apoptotic bone marrow stromal cells 
(BMSCs) stained with Cell Tracker Deep Red, co-cultured for 1hr and analyzed via flow 
cytometry. Representative fluorescence-activated cell sorting (FACs) dot plots (left) indicate 
macrophages alone (R1), apBMSCs alone (R2), or macrophages with internalized apoptotic 
BMSCs (R3). Representative photo from Image Stream which captures single cell images 
showing either single cells or engulfment (right). These images depict efferocytosis at two 
stages, recognition and internalization, and demonstrate that bone marrow macrophages in 
culture efficiently phagocytose apoptotic bone marrow stromal cells. 
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Table 2.1. Bone macrophage markers and roles. 

Macrophage Current Known 
Markers 

Roles References 

Erythroblastic island 
macrophages (EIM) 

CD11b 
F4/80 
CD169 
VCAM-1 
ER-HR3 
Ly6G 
TRAP (neg) 

Support erythropoiesis [66, 176] 
 
 
 
 
 

HSC niche 
macrophages 

CD11b 
F4/80 
CD169 
VCAM-1 
CD234  
Ly6G (neg) 
TRAP (neg) 

Support and regulate HSC 
niche self-renewal and 
cycling 

[68, 77, 177, 
178] 

Osteal macrophages F4/80 
CD115 
CD68 
Mac-3 
TRAP (neg) 

Support bone homeostasis 
Support fracture healing 

[3, 113] 

Osteoclasts F4/80 (neg) 
TRAP (pos) 
Cathepsin K 
Calcitonin Receptor 

Bone resorption 
Efferocytosis 

[179, 180] 
[181] 
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CHAPTER 3 
 

MODULATION OF OSTEOBLASTIC CELL EFFEROCYTOSIS BY BONE MARROW 
MACROPHAGES 

 
 

 
Abstract 

Apoptosis occurs at an extraordinary rate in the human body and the effective clearance 

of dead cells (efferocytosis) is necessary to maintain homeostasis and promote healing, yet the 

contribution and impact of this process in bone is unclear. Bone formation requires that bone 

marrow stromal cells (BMSCs) differentiate into osteoblasts which direct matrix formation and 

either become osteocytes, bone lining cells, or undergo apoptosis. A series of experiments were 

performed to identify the regulators and consequences of macrophage efferocytosis of apoptotic 

BMSCs (apBMSCs). Bone marrow derived macrophages treated with the anti-inflammatory 

cytokine interleukin-10 (IL-10) exhibited increased efferocytosis of apBMSCs compared to 

vehicle treated macrophages. Additionally, IL-10 increased anti-inflammatory M2-like 

macrophages (CD206+), and further enhanced efferocytosis within the CD206+ population.  

Stattic, an inhibitor of STAT3 phosphorylation, reduced the IL-10-mediated shift in M2 

macrophage polarization and diminished IL-10-directed efferocytosis of apBMSCs by 

macrophages implicating the STAT3 signaling pathway. Cell culture supernatants and RNA 

from macrophages co-cultured with apoptotic bone cells showed increased secretion of 

monocyte chemotactic protein 1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) and 
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transforming growth factor beta 1 (TGF-β1) and increased ccl2 gene expression. In conclusion, 

IL-10 increases M2 macrophage polarization and enhances macrophage-mediated engulfment of 

apBMSCs in a STAT3 phosphorylation-dependent manner. After engulfment of apoptotic bone 

cells, macrophages secrete TGF-β1 and MCP-1/CCL2 both factors that fuel the remodeling 

process.  A better understanding of the role of macrophage efferocytosis as it relates to normal 

and abnormal bone turnover will provide vital information for future therapeutic approaches to 

treat bone related diseases. 

 

Introduction 

The critical process of bone formation depends on the lifespan and activity of osteoblasts 

lining the bone surface. Three fates have been described for osteoblasts: they either become 

osteocytes embedded in mineralized matrix, bone-lining cells which form layers over bone 

surfaces and at remodeling sites, or they undergo programmed cell death (apoptosis). Of the 

osteoblasts initially at remodeling sites, 30-50% become osteocytes and bone-lining cells, which 

leaves a large percentage of cells thought to undergo apoptosis [1]. The course of events after 

osteoblast apoptosis has been under appreciated.  This is in part due to the inability of assays to 

accurately detect and quantify apoptotic osteoblasts readily undergoing apoptosis. In normal 

physiology, cell death is followed by rapid and efficient removal of apoptotic cells by phagocytic 

cells, predominantly macrophages. This process of apoptotic cell recognition and clearance is 

termed efferocytosis [2].   

Macrophages are immune cells known for their role in infection and inflammation. A 

focus on their role in bone has only recently emerged [3]. Macrophages are prominent players in 

bone homeostasis and are highly implicated in fracture healing [4-6].  They are often found at 
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sites of remodeling, and are intimately associated with bone forming osteoblastic cells. 

Additionally, macrophage numbers increase significantly in fracture sites, and bone repair is 

severely diminished after tibial injury in macrophage-ablated mouse models [5]. Apoptotic cells 

increase in sites of injury, and a crucial component of the healing process is the effective 

clearance of these cells by phagocytes, including macrophages. The recognition and subsequent 

efferocytosis of dead and dying cells leads to the secretion of anti-inflammatory cytokines such 

as TGF-β and IL-10 [7, 8], as well as osteoinductive factors including osteopontin, and BMP-2 

[9-11]. The process of efferocytosis has been extensively studied in other tissues. Recently, 

macrophages were found to efferocytose apoptotic osteoblasts [12] yet the impact of 

efferocytosis in bone has not been clearly defined.  

Macrophages have been shown to polarize into two populations: classically activated M1 

macrophages and alternatively activated M2 macrophages. M2 macrophages are present during 

the resolution phase of inflammation and are responsible for anti-inflammatory cytokine 

production and enhanced efferocytosis [13, 14]. In the presence of the anti-inflammatory 

cytokines IL-4 and IL-10, macrophages polarize to M2-like macrophages [15], and increase 

apoptotic lymphocyte and apoptotic neutrophil clearance [16, 17]. IL-10 is an important bone 

cytokine which inhibits osteoclastogenesis [18] and exhibits a protective role in periodontal 

disease [19]. Furthermore, IL-10 deficient mice exhibit low bone mass phenotypes with reduced 

bone formation compared to wild-type controls [18, 20]. To our knowledge, the role of IL-10-

induced efferocytosis in bone has not been investigated.  

Additonally, it is unclear which factors regulate the clearance of apoptotic bone cells by 

bone resident macrophages and how macrophages respond to the englulfment of an apoptotic 

bone cell. The apoptotic cell identity can impact the response elicited by the phagocyte and the 
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response of a bone marrow macrophage to an apoptotic bone cell is of interest to the present 

work. This study aimed to determine factors and signaling which affect macrophage 

efferocytosis of apoptotic osteoblastic cells and changes in macrophage gene expression in 

response to these apoptotic cells. 

 

Materials/Methods 

Animals  

All animals were maintained in accordance with institutional animal care and use guidelines, and 

experimental protocols were approved by the Institutional Animal Care and Use Committee of 

the University of Michigan. C57BL/6J (The Jackson Laboratory, Bar Harbor, ME) mice were 

used for in vitro experiments unless otherwise indicated. Human CD68-GFP reporter mice 

(hCD68-GFP) mice were generously provided by Dr. Ajay Chawla (University of California San 

Francisco). hCD68-GFP mice were generated by cloning a cDNA fragment encoding EGFP 

(from pEGFP-N1 vector, Invitrogen) into the 1265 vector containing human CD68 promoter 

(−2.9 kb). DNA was then excised from the vector and injected into mouse oocytes by pro-

nuclear injection [21].   

 

Cell Culture 

Primary bone marrow cells were collected from 4-8 week old C57BL/6J or hCD68-GFP mice. 

Bone marrow-derived macrophages (BMMs) were differentiated in vitro from bone marrow 

flush in α-MEM medium (10% FBS, Pen/Strep, glutamine) with murine M-CSF (30ng/mL 

eBioscience) for 6 days. At day 7, macrophages were plated at 2.5 x 105 cells/well in 12-well 

plates (for efferocytosis assays) or 1.5 x 106 cells/well in 6-well plates (for protein/RNA). Bone 



56 
 

marrow stromal cells (BMSCs) were derived from bone marrow flush and cultured in α-MEM 

medium (20% FBS, Pen/Strep, glutamine) containing 10nM dexamethasone (Sigma) and used at 

passage 1-2. Bone marrow neutrophils were isolated as previously described [22].  Briefly, bone 

marrow was flushed from 8-12 week old C57BL/6J mice with RPMI supplemented with 10% 

FBS and 2 mM EDTA, red blood cells lysed using 0.2% NaCl, and neutrophils separated by 

density gradient centrifugation (Histopaque 1119 and Histopaque 1077).  Neutrophils were 

harvested at the interface of the Histopaque 1119 and Histopaque 1077 layers and confirmed 

using FACs anaylsis for CD11b+Ly6G+ cells. 

 

Macrophage treatment 

All recombinant murine proteins were obtained from R&D Systems. BMMs were treated at day 

8 with rmIL-10 (0.1-100ng/mL), rmCCL2/MCP-1 (10ng/mL), rmMFG-E8 (10ng/mL), sIL-6R 

(100ng/mL), or vehicle (0.5% BSA in 1X PBS) for 4-24 hours in low serum containing media 

(0.5% FBS). In a set of experiments BMMs were pre-treated with an inhibitor of pSTAT3 

(Stattic, 6.25µM, CalBiochem) or DMSO (vehicle) 2 hours prior to rmIL-10 treatment.  

 

Efferocytosis Assay 

BMSCs were stained with CellTracker Deep Red (APC+, Invitrogen) and exposed to UV light 

for 30 minutes to induce apoptosis. Apoptotic BMSCs (apBMSCs) were recovered for 2 hours at 

37ºC, enumerated via trypan blue exclusion (confirming cell death), and added to BMM cultures 

at a 1:1 ratio for 0.5-6 hours. BMMs co-cultured with apBMSCs were harvested and stained with 

F4/80-FITC (Abd Serotec, CI:A3-1), fixed with 1% formalin and efferocytosis was assessed via 

flow cytometric (FACs) analyses (BD FACSAriaTM III) for double labeled cells (FITC+APC+) 
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reflecting engulfment. Macrophages cultured alone were harvested and stained with the 

following macrophage-specific antibodies: F4/80 FITC (CI:A3-1, BIORAD), CD86 PE (GL-1, 

Biolegend,) and CD206 PE (C068C2, Biolegend). Cells were fixed, permeabilized with 

Permeabilization Buffer (Biolegend), incubated with CD68 PE (Y1/82A, Biolegend) and 

assessed via FACs analyses.  

 

Confocal microscopy 

BMMs from hCD68-GFP mice were plated in 1.5-mm coverglass chambers (8 x 104 cells/well), 

treated for 24 hours with vehicle or rmIL-10 (10ng/mL) and apBMSCs (stained with CellTracker 

DeepRed) were added at a 1:1 ratio to BMMs for 1 to 24 hours and fixed with ice-cold methanol 

for 20 mins. Cells were then washed with PBS and covered with ProLong® Gold antifade 

reagent with DAPI (Life Technologies). Confocal microscopy images were analyzed using the 

Leica inverted SP5X confocal microscope system with two-photon film and Leica software 

(Leica Microsystems). 

 

Mouse Inflammation Antibody Array 

BMMs were plated into 6-well dishes (1.5 × 106 cells/well), then co-cultured with or without 

apBMSCs at a 1:1 ratio in α-MEM (0.25% FBS). Supernatants were collected after 18 hours and 

proteins were analyzed using the mouse inflammation antibody array C1 (catalog no. AAM-INF-

1–8, RayBiotech, Inc.) per manufacturer’s instructions. 
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TGF-β1 ELISA 

Supernatants were collected from BMMs alone, BMMs/apBMSCs or BMMs/apNeutrophils after 

18 hours of co-culture. TGF-β1 protein levels in culture supernatants were measured with the 

Quantikine mouse TGF-β1 ELISA (R&D systems) per manufacturer’s instructions. Briefly, acid-

activated supernatant samples, standards, and controls were added to anti-mouse TGF-β1 

antibody pre-coated microplates and incubated at room temperature for 2 hours. Wells were 

washed and incubated with TGF-β1 conjugate for 2 hours, washed and substrate solution added 

for 30 minutes.  Stop solution was added and A450 values (corrected with A570) were measured 

using an EZ Read 400 microplate reader (Biochrom). 

 

QRT-PCR 

Total RNA was isolated from BMMs alone, apBMSCs alone and BMM/apBMSC co-culture 

after 18 hours using the Qiagen RNeasy Mini Kit.  Reverse transcription PCR was conducted, 

and the cDNA products were amplified and detected using TaqMan Universal PCR master mix 

(Applied Biosystems) and TaqMan probes, including mouse Ccl2 (Mm00441242_m1) and 

mouse Actb (Mm02619580_g1) as an endogenous control. Realtime PCR was analyzed on ABI 

PRISM 7700 (AppliedBiosystems). 

 

Statistical Analyses 

Statistical analyses were performed by unpaired Student's t test to compare two groups or 

ANOVA to compare three or more groups with a significance of p < 0.05. Data are presented as 

mean ± S.E. 
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Results 

IL-10 Enhances Bone Marrow Derived Macrophage Engulfment of Apoptotic Bone Marrow 

Stromal Cells 

To investigate the impact of IL-10 on macrophage-mediated efferocytosis of apoptotic 

bone cells, bone marrow macrophages (BMMs) were treated with IL-10 and efferocytosis of 

apoptotic bone marrow stromal cells (apBMSCs) was determined. BMMs (F4/80-FITC+) were 

co-cultured with apBMSCs (DeepRed-APC+) and double positive (FITC+APC+) cells were 

quantified using flow cytometric cell sorting, reflecting engulfment (Figure 3.1A, left panel).  

Engulfment was confirmed by ImageStream analysis which images individual cells in the flow 

stream to confirm the presence of fluorescent markers. Double-positive cells were confirmed to 

to be FITC+-macrophages associated with APC+-apBMSCs (Figure 3.1A). To assess the effect 

of various cytokines on efferocytosis, BMMs were treated with IL-10, CCL2, MFG-E8 and sIL-

6R for 24 hours and efferocytosis of apBMSCs measured after 1 hour of co-culture. These 

cytokines were chosen based on their ability to regulate efferocytosis in non-skeletal tissues (IL-

10 and MFG-E8) or important bone formation regulators (CCL2 and sIL-6R). IL-10 enhanced 

engulfment of apBMSCs by 22% and in a dose-dependent manner (Figure 3.1B and C), 

whereas MCP1, MFG-E8 and sIL-6R did not demonstrate significant changes in efferocytosis at 

that time point.  To determine the optimum IL-10 treatment length, BMMs were treated for 4-48 

hours with IL-10.  BMMs treated for 24 hours with IL-10 displayed increased efferocytosis 

compared to shorter treatment times (Figure 3.1D).  Macrophages treated with IL-10 for 24 

hours showed enhanced efferocytosis when co-cultured for shorter durations (0.5-2 hours) 

compared to longer co-cultures (6 hours), suggesting IL-10 increased the rate of efferocytosis 
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(Figure 3.1E). IL-10 treatment of BMMs enhanced engulfment of apBMSCs in a time and dose-

dependent manner. 

 

IL-10 Polarizes Bone Marrow Derived Macrophages to M2-like Phenotype with Enhanced 

Efferocytic Capacity 

Macrophages are described as classically (M1) or alternatively (M2) activated. M2 

polarized macrophages are resolving cells with higher efferocytic capacity than M1 macrophages 

[13]. To determine the impact of IL-10 treatment on BMM phenotypes, equal numbers of BMMs 

were treated with IL-10 for 24 hours and assessed for M1 (F4/80+CD86+) and M2 

(F4/80+CD206+) polarization. IL-10 did not affect cell number or viability (Figure 3.2A), mature 

(CD68+) or M1 macrophages (Figure 3.2B).  Treatment with IL-10 significantly increased M2 

polarization of BMMs (Figure 3.2C). This effect of IL-10 is consistent with previous reports 

[23, 24], however, the impact of IL-10 within the M2 population is unclear.  To investigate the 

role of IL-10 on altering efferocytosis within the CD206+ population, efferocytosis of apBMSCs 

by CD206+ cells was measured.  IL-10 increased the percentage of CD206+ cells that 

efferocytosed apBMSCs (Figure 3.2D), suggesting that IL-10 not only polarized BMMs to M2 

macrophages, but also specifically enhanced their efferocytic ability.   

 

IL-10 Increases Efferocytosis in a STAT3 Activation Dependent Manner  

IL-10 signals through the JAK/STAT pathway and inhibition of JAK/STAT signaling has 

been shown to decrease efferocytosis [25]. To measure the effect of JAK/STAT pathway 

inhibition on IL-10 induced efferocytosis, BMMs were pre-treated with the phospho-STAT3 

(pSTAT3) inhibitor Stattic prior to IL-10 treatment and efferocytosis measurement.  BMMs were 
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isolated from mice which express GFP under the human CD68 promoter to visualize CD68+ 

(mature phagocytic) cells (Figure 3.3A).  Macrophages harvested from the hCD68-GFP mice 

displayed increased efferocytosis of apBMSCs following IL-10 treatment as measured by FACs 

analysis and confocal microscopy (Figure 3.3B and C). BMMs pre-treated for 2 hours with 

Stattic and subsequently treated with IL-10 had reduced efferocytosis of apBMSCs compared to 

DMSO control treated macrophages (Figure 3.3D).  Macrophages pre-treated with Stattic 

followed by vehicle treatment also displayed decreased efferocytosis compared to controls 

suggesting some baseline efferocytosis in vehicle treated macrophages requires signaling through 

the JAK/STAT pathway, likely by other cytokine signaling. To investigate the role of 

JAK/STAT signaling in IL-10 induced M2 polarization, BMMs were treated with Stattic for 2 

hours followed by IL-10 treatment and assessed for CD206+ (M2 polarization).  In vehicle 

treated BMMs, Stattic did not alter the M2 population; however, Stattic treatment prior to IL-10 

treatment significantly reduced the IL-10 mediated M2 shift in macrophage polarization (Figure 

3.3E) suggesting that IL-10 shifts macrophage polarization and enhances efferocytosis of 

apBMSCs via signaling through JAK/STAT pathway. 

 

Macrophages Secrete MCP-1/CCL2 and TGF-β1 in Response to Apoptotic Bone Marrow 

Stromal Cells 

Macrophages release factors when engulfing apoptotic cells that signal to surrounding 

cells [8, 26, 27]. To determine the response of macrophages to apBMSCs, BMMs were cultured 

alone or with apBMSCs for 18 hours and supernatants harvested for analysis of secreted 

proteins.  Supernatants harvested from co-culture of BMMs with apBMSCs showed significantly 

increased secreted CCL2 levels compared to macrophages cultured alone (Figure 3.4A).  RNA 
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harvested from macrophages co-cultured with apBMSCs also showed increased ccl2 gene 

expression (Figure 3.4B) compared to BMMs alone or BMMs co-cultured with apoptotic 

neutrophils.  In other tissues, TGF-β1 is an important anti-inflammatory cytokine released from 

macrophages after efferocytosis [8].  Supernatants from macrophages cultured with apBMSCs 

versus macrophages alone or versus macrophages cultured with apoptotic neutrophils displayed 

increased total secreted TGF-β1 levels (Figure 3.4C).  Hence, in response to engulfment of 

apoptotic bone cells, bone marrow macrophages secrete the anti-inflammatory cytokine TGF-β1 

and chemokine CCL2, which are both important factors related to bone homeostasis.  

 

Discussion 

Patients exhibiting increased inflammation associated with diseases such as rheumatoid 

arthritis and inflammatory bowel disease are often at a higher risk of generalized osteoporosis 

and increased fracture risk [28-30]. Chronic inflammation is associated with systemic 

overproduction of pro-inflammatory mediators, which are thought to play a role in decreasing 

bone formation [31].  Periodontal disease activates macrophages and triggers systemic 

inflammation of the vasculature and atherosclerotic signs [32].  Macrophages are immune cells 

which mediate pro-inflammatory or anti-inflammatory conditions yet little is known about their 

role in the basic cell biology of bone.  

Macrophages have recently become of interest in the bone field due to their intimate 

association with the bone forming unit and contributions to osteoblast function [4-6]. It is 

hypothesized that the anti-inflammatory function of macrophages and the clearance of apoptotic 

cells may contribute to bone turnover and regeneration [12].  In humans, billions of cells die 

daily which is unappreciated by current methods used to detect apoptotic cells from in vivo tissue 
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samples.  This is due to the rapid and effective clearance of apoptotic cells, termed efferocytosis 

[2].  Macrophages are vital mediators of cellular turnover, maintenance of extracellular matrix 

homeostasis and modulation and resolution of inflammation [33].  Understanding their 

mechanisms of action as they relate to bone remodeling provides a basis for the prevention and 

treatment of chronic inflammatory conditions. 

Anti-inflammatory cytokines such as IL-4 and IL-10 released by immune cells have been 

shown to increase human peripheral blood macrophage engulfment of non-bone associated 

apoptotic cells [16, 17]. IL-10 contributes to bone turnover by regulating osteoclastogenesis and 

IL-10 deficient mice display osteopenia [20, 34], but the role of IL-10-associated efferocytosis 

by bone marrow macrophages is largely unknown. To study mechanisms of efferocytosis in bone 

marrow derived macrophages, a series of in vitro experiments were performed to determine how 

bone macrophages respond to apoptotic bone marrow stromal cells and what factors may 

influence the rate of engulfment. IL-10 treated macrophages displayed enhanced clearance of 

apoptotic bone marrow stromal cells.  The effect of IL-10 on bone marrow macrophages was in 

part due to polarization of macrophages toward the pro-resolving M2 phenotype. While there 

was a significant increase in M2 macrophages, the increase was not the only contributing factor 

to an increase in efferocytosis.  The CD206+ M2 macrophages displayed increased efferocytosis 

of apoptotic bone cells after treatment with IL-10 compared to vehicle treated macrophages.  

This suggests that not only does IL-10 polarize macrophages to M2, but it also enhances the M2 

macrophage efferocytic capacity.   

 The effect of IL-10 on efferocytosis of apoptotic lymphocytes and neutrophils has been 

measured, and downstream signaling of IL-10 has been identified [16, 17]. IL-10 signals through 

the JAK/STAT pathway, in which STAT3 is phosphorylated, dimerizes and translocates to the 
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nucleus to regulate transcription of various genes [35-37].  To validate the downstream events of 

IL-10 signaling, macrophages were treated with an inhibitor of STAT3 phosphorylation (Stattic) 

prior to IL-10 treatment.  Efferocytosis of apoptotic bone cells was decreased with Stattic 

treatment, demonstrating that the IL-10 effect occurs in a pSTAT3-dependent manner.  Previous 

studies have also indicated that inhibition of STAT3 phosphorlyation decreases MFG-E8 

mediated phagocytosis of apoptotic mimicry beads [25].   

Following IL-10 activation of macrophages and efferocytosis of apoptotic bone cells, 

proteins released by macrophages signal to surrounding cells.  How macrophages respond to 

apoptotic bone cells may indicate what effects efferocytosis have on bone modeling and 

remodeling. The identity of the apoptotic cell, bone marrow stromal cells in this case, contributes 

to the profile of genes upregulated in macrophages partaking in efferocytosis. In the present 

study, bone marrow derived macrophages increased secretion of monocyte chemoattractant 

protein-1/CC chemokine ligand 2 (MCP-1/CCL2) after co-culture with apoptotic bone cells. 

CCL2 is associated with monocyte/osteoclast precursor recruitment and enhances 

osteoclastogenesis [38]. These data suggest that CCL2 secreted from macrophages engulfing 

apoptotic bone cells could aid in the recruitment of monocytes to enhance bone turnover by 

increasing osteoclasts and bone macrophages. 

  TGF-β1 was also found to be increased after efferocytosis of apBMSCs. Previous studies 

using human peripheral blood macrophages showed increased TGF-β1 levels following 

efferocytosis of apoptotic human derived neutrophils [8]. The release of TGF-β1 following 

apoptotic cell engulfment is often credited with an anti-inflammatory function.  Interestingly, in 

the context of bone, TGF-β1 enhances the recruitment of mesenchymal stem cells which are 

precursors to osteoblastic cells [39, 40].  The secretion of TGF-β1 in response to apoptotic bone 
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cells may contribute to repopulating the bone forming units.  Other osteogenic factors such as 

BMP-2 and osteopontin have been shown to be released from M2 macrophages, but it is unclear 

how the protein levels change during the process of efferocytosis [10, 11].   

 Macrophages are crucial regulators of bone turnover in steady state bone remodeling and 

wound healing [4, 5]. A better understanding of the role of these macrophages is important in 

developing ways to utilize macrophages in therapeutic interventions for osteoporosis, fracture 

healing, periodontal wound healing, and osteonecrosis. These data demonstrate one mechanism 

by which macrophages efferocytose apoptotic bone cells and their subsequent release of factors 

important in bone remodeling (Figure 3.5).  Future work to determine the association of 

efferocytosis and bone turnover is important to better understand the mechanisms by which 

macrophages contribute to bone modeling and remodeling. 
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Figure 3.1. IL-10 treatment enhanced efferocytosis of apoptotic bone marrow stromal cells 
(apBMSCs) by bone marrow derived macrophages (BMMs).  (A) BMMs were stained for 
F4/80-FITC and apBMSCs stained with Cell Tracker Deep Red, co-cultured for 1hr and 
analyzed via flow cytometry. Representative fluorescence-activated cell sorting (FACs) dot plots 
(left) indicate macrophages alone (green gate), apBMSCs alone (red gate), or macrophages with 
internalized apBMSCs (yellow gate). Representative photo from Image Stream which captures 
single cell images showing either single cells or engulfment. (B) BMMs treated for 24hrs with 
vehicle, rmIL-10 (10ng/mL), rmMCP-1 (10ng/mL), rmMFG-E8 (500ng/mL) or sIL-6R 
(500ng/mL) and co-cultured with apBMSCs for 1hr. Efferocytosis was measured as percentage 
of F4/80+ cells which were apBMSC+. IL-10 treatment increased efferocytosis compared to 
vehicle control. (C) BMMs were treated for 24hrs with rmIL-10 (0.1-100ng/mL) and co-cultured 
with apoptotic BMSCs for 1hr. IL-10 (1.0-100ng/mL) increased efferocytosis of apBMSCs. (D) 
BMMs were treated with IL-10 (10ng/mL) for 4-48hrs and co-cultured with apBMSCs for 1hr.  
Treatment of macrophages with rmIL-10 for 24-48hrs induced a larger increase in efferocytosis 
relative to shorter treatment times. (E) BMMs treated for 24hrs with IL-10 or vehicle control and 
co-cultured with apoptotic BMSCs for 0.5-12hrs. IL-10 increased engulfment of apBMSCs after 
0.5-2hrs co-culture. n=6/gp, data is mean ± SEM. *p <0.05, ** p <0.01 versus vehicle treatment. 
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Figure 3.2. IL-10 polarizes BMMs to alternatively activated (M2) phenotype. (A) BMMs 
were treated with rmIL-10 (10ng/mL) for 24hrs and enumerated.  IL-10 did not change cell 
number compared to vehicle controls or viability, (B) BMMs treated for 24hrs with rmIL-10 
were analyzed via FACs for phagocytic cells (CD68) and M1 macrophage phenotype (CD86). 
No significant changes were observed in these cell populations with IL-10 treatment.  (C) BMMs 
treated with IL-10 were analyzed via FACs analysis for alternatively activated M2 macrophages 
(CD206). IL-10 treatment significantly increased the CD206hi population per CD206+. (D) 
BMMs treated with IL-10 showed enhanced efferocytosis of apBMSCs within the CD206+ 
population after 1hr co-culture as evidences by increased CD206+apBMSCs+ double positive 
cells. n = 6/gp, data is mean ± SEM. **p<0.01, ***p <0.001 versus vehicle treatment. 
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Figure 3.3. Stat3 inhibition diminished IL-10 effect. (A) BM cells were harvested from 4-8wk 
old hCD68-GFP mice, enriched to macrophages with M-CSF then analyzed for GFP retention. 
FACs analysis showed that the majority of CD68-PE+ cells were also GFP+, indicating GFP was 
retained during in vitro culture. (B) hCD68-GFP BMMs were treated with IL-10 for 24 hours 
and efferocytosis of apBMSCs harvested from C57BL/6J analyzed via FACs analysis.  IL-10 
significantly increased the percentage of GFP+ cells which were also positive for apBMSCs 
(Deep Red).  (C) hCD68-GFP BMMs were treated with IL-10 for 24 hours and efferocytosis of 
apBMSCs analyzed via confocal microscopy. (D) hCD68-GFP BMMs were treated with Stat3 
inhibitor (Stattic, 6.25µM) or DMSO for 2 hours followed by IL-10 or vehicle treatment for 24 
hours. Efferocytosis of apBMSCs was analyzed via FACs analysis for double positive 
GFP/apBMSCs cells (representative dot plots on left). Stat3 inhibitor decreased efferocytosis of 
apBMSCs in vehicle and IL-10 treated BMMs. (E) Alternatively activated macrophage 
phenotype (CD206-PE) was increased in IL-10 treated BMMs and the effect was diminished 
with Stattic pre-treatment. n = 6/group, data is mean ± SEM. *p <0.05, ** p <0.01, ***p <0.001 
versus vehicle treatment. 
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Figure 3.4. Macrophage efferocytosis induces CCL2 and TGF-β1 secretion. (A) 
Supernatants were harvested from BMMs, apBMSCs or co-culture of BMMs with apBMSCs for 
18hrs and analyzed for secreted proteins using a murine inflammatory cytokine array.  Co-
culture of BMMs with apBMSCs showed significantly increased secreted CCL2 compared to 
BMMs or apBMSCs cultured alone (arbitrary units, a.u.). (B) RNA was isolated from BMMs 
alone or co-cultured with apBMSCs or apoptotic neutrophils and QRT-PCR performed for ccl2 
mRNA.  Ccl2 gene expression was increased in co-culture of BMMs with apBMSCs compared 
to BMMs alone. (C)  ELISA for total TGF-β1 levels in the supernatants showed increased 
secreted TGF-β1 after 18hrs of co-culture of BMMs with apBMSCs compared to BMMs, n=6/gp 
data is mean ± SEM. * p <0.05, ***p<0.001 versus macrophages cultured alone.  
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Figure 3.5. Model. IL-10 promotes M2 macrophage polarization and enhances clearance of 
apoptotic bone marrow stromal cells in a STAT3-phosphorylation dependent manner. Clearance 
of apoptotic cells results in release of anti-inflammatory and osteoinductive factors (TGF-β1 and 
CCL2) which aid in the recruitment of monocytes and osteoclast precursors.   
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CHAPTER 4 

MFG-E8 DEFICIENCY: A MODEL OF INFLAMM-AGING ASSOCIATED BONE 

LOSS RESCUED BY TERIPARATIDE 

 

Abstract 

Multiple processes become less efficient with age leading to chronic increases in pro-

inflammatory cytokines, termed inflamm-aging [1]. This process has been associated with 

osteoporotic- and autoimmune-associated bone loss. Crucial components of anti-inflammatory 

pathways are associated with age-related bone loss. Milk fat globule-EGF 8 (MFG-E8) is a 

glycoprotein that is pro-resolving, regulates apoptotic cell clearance and has recently been linked 

to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the skeleton was 

determined with age in mice deficient in MFG-E8 (KO). In vivo, trabecular bone was similar in 

MFG-E8 KO and wildtype (WT) mice at 6 and 16wks, whereas 22wk MFG-E8 KO mice 

displayed significantly reduced trabecular bone. Osteoclast number per bone surface was 

increased in 22wk KO vs. WT and osteoclasts treated with recombinant murine MFG-E8 were 

decreased in number and size. Adult MFG-E8 KO spleen weight/body weight was increased 

compared to WT and FACs analysis showed significantly increased myeloid derived suppressor 

cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow, suggesting 

an increase in inflammation. Interestingly, iPTH-treated MFG-E8 KO mice showed a robust 

anabolic response in trabecular BV/TV, exceeding the response in iPTH-treated WT mice. The 

strong anabolic response in MFG-E8 deficient mice demonstrates that iPTH therapy may be 
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highly effective in models of age-related bone loss and/or inflammatory states. These data give 

insight into the role of MFG-E8 in aging, provide a new model of age-associated bone loss, and 

suggest anabolic PTH may be a valuable therapeutic approach for autoimmune-associated 

skeletal disease. 

 

Introduction 

 Milk fat globule epidermal growth factor 8 (MFG-E8) is a secreted glycoprotein which 

was first identified in the mammary gland and then studied extensively in many other tissues [2-

5]. One of the most prominent functions of MFG-E8 is to act as a bridge between apoptotic cells 

and phagocytic cells thus coordinating the engulfment of apoptotic cells, a process termed 

efferocytosis [6-9]. MFG-E8 has also been linked to other functions in the body including 

collagen clearance by lung alveolar macrophages [3], angiogenesis in cutaneous wound healing 

[10], phagocytosis in the retina [5], and polarization of tumor associated macrophages [11]. 

MFG-E8 is also an important regulator of the inflammatory response, and mice deficient in 

MFG-E8 have inflammatory phenotypes including intestinal colitis and systemic lupus 

erythematous (SLE)-like symptoms [7, 12, 13]. In humans, a genetic polymorphism of MFG-E8 

correlated significantly to human SLE [14].  

The role of MFG-E8 has recently emerged in bone where it was found to be a positive 

regulator of bone turnover [15] and a protective factor against rheumatoid arthritis [16]. MFG-E8 

deficient mice have reduced bone mass as well as accelerated bone loss in a ligature-induced 

periodontitis model [17], yet the exact functional role of MFG-E8 in bone turnover is still 

unclear. MFG-E8 expression leads to an anti-inflammatory response. Chronic inflammatory 

states increase with age and support osteoclast differentiation and activity. The aging skeleton 

presents with reduced osteoblast activity and increased osteoclast activity leading to a net 
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reduction in bone [18, 19]. Additionally, with age, the body has reduced efficiency of a variety of 

processes and associated chronic elevation of pro-inflammatory cytokines. Age associated 

inflammation has been termed inflamm-aging [1]. The contributions of many inflammatory 

cytokines to age-associated osteoporosis have been studied and well characterized, however the 

role of resolving or anti-inflammatory cytokines are less well characterized. Due to the resolving 

nature of MFG-E8 it is hypothesized that it plays a role in age-associated inflammation and bone 

loss.  

 Teriparatide (human parathyroid hormone, hPTH 1-34) is an FDA approved injectable 

anabolic therapeutic used in cases of severe osteoporosis. Its mechanism has been widely studied 

and intermittent daily treatment (iPTH) results in an increase in overall bone turnover and a 

resultant increase in bone formation and bone mass. PTH effects on bone marrow cell 

populations have also been investigated and have been shown to alter marrow neutrophils and 

macrophages [20, 21]. The therapeutic potential of PTH in rescuing inflammation-induced bone 

loss is less understood.  Additionally, therapeutic interventions to rescue MFG-E8 associated 

bone loss have not been investigated. The purpose of the present study was to assess the role of 

MFG-E8 in the aging skeleton and investigate an anabolic therapeutic intervention in MFG-E8 

deficient mice.  

  

Materials and Methods 

Animals 

All mice were maintained in accordance with institutional animal care and use guidelines, and 

experimental protocols were approved by the Institutional Animal Care and Use Committee of 

the University of Michigan. MFG-E8 deficient (KO) mice were originally created using a gene 
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trap vector and backcrossed into C57BL/6 background (WT controls) [2, 3]. Female mice were 

used for in vitro or in vivo experiments at ages 6, 16 or 22 weeks. To test the anabolic effect of 

intermittent parathyroid hormone (iPTH), 16 week old KO and WT mice were treated daily with 

recombinant human PTH (1-34) (Bachem, Torrance, CA) (50μg/kg, SC) or vehicle (0.9% saline, 

SC) for 6 weeks.  MFG-E8KO mice were crossed with Mertk KO mice (Jackson Laboraties) to 

create double MFG-E8/Mertk KO mice (dKO). Skeletal phenotypes were assessed at 6, 16, and 

22 weeks and were treated in the same manner as KO mice with iPTH.  

 

Complete Blood Counts (CBC) 

Blood was harvested at time of euthanasia via intracardiac puncture from mice at ages 6, 16, and 

22wks, collected in BD Microtainer Tubes with K2E (K2EDTA), and analyzed for CBC with 

differential.  

 

Serum ELISAs 

Mice underwent food and water restriction for 6 hours prior to serum collection. Blood was 

harvested as above, and placed in non-EDTA containing microcentrifuge tubes, allowed to 

coagulate for at least one hour at room temperature, spun down at 8000 rpm for 10 minutes, and 

liquid serum collected into new microcentrifuge tubes. Samples were stored at -20°C until use. 

Enzyme immunoassays were used to measure the serum concentrations of tartrate-resistant acid 

phosphatase form 5b (TRAcP 5b), propeptide of type I procollagen (P1NP) and C-telopeptide of 

type I collagen (CTX-I) according to manufacturer instructions (IDS) and measured on an EZ 

Read 400 microplate reader (Biochrom). 
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Fluorescence Activated Cell Sorting (FACs) Analysis  

Bone marrow was isolated from the femur via flushing in FACs buffer (1X PBS with 2%FBS, 

0.5mMEDTA), and 106 cells stained with anti-mouse F4/80 (APC, Abcam, A3-1), anti-mouse 

CD68 (FITC, Biolegend, FA-11), anti-mouse CD11b (APC, Biolegend, M1/70), anti-mouse Gr-1 

(FITC, Biolegend, RB6-8C5), and/or anti-mouse Ly6G (FITC, Biolegend, 1A8). Isotype controls 

were used to confirm antibody specificity. FACs analysis was performed using a FACs Aria III 

(BD). 

 

MicroCT (μCT) 

Tibiae were harvested from 6, 16 and 22wk old mice and fixed in 10% NBF for 24-48hrs at 4°C, 

then stored in 70% ethanol. Tibiae were scanned by micro-computed tomography at a 12µm 

voxel size (Scanco µCT-100) as previously described [20] and following established guidelines 

[22].  Trabecular bone was measured starting 360μm distal to the top of the proximal growth 

plate and extending 600µm distally with a threshold of 180 mg/cm3. Trabecular bone 

morphometric variables analyzed included bone volume (BV/TV), trabecular number (Tb.N), 

trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp) and trabecular bone mineral density 

(Tb.BMD). Cortical bone was measured starting 3mm proximal to the tibia-fibula junction and 

extended 360μm with a threshold of 280 mg/cm3. Cortical bone morphometric variables 

analyzed included total volume (Tt.V), cortical volume (Ct.V), cortical volume fraction 

(Ct.V/Tt.V), cortical thickness (Ct.Th), and bone mineral density (BMD).  

 

TUNEL Staining 

Spleens and tibiae were fixed in 10% NBF for 24-48hrs at 4°C. Tibiae were decalcified in 14% 
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EDTA for 10-14 days. Spleens and tibiae were processed, embedded in paraffin, and sectioned at 

5μm. Sections were stained for terminal deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) positive cells (In Situ Cell Death Detection Kit, TMR red, Roche). TUNEL positive 

cells were quantified in the white pulp of the spleen and in the bone marrow of 22wk old WT 

and KO mice. 

 

Static Histomorphometry 

Tibiae were fixed in 10% NBF for 24-48hrs at 4°C, decalcified in 14% EDTA for 10-14 days, 

embedded in paraffin, and sectioned at 5μm.  A central slice of the proximal tibiae was stained 

with hematoxylin and eosin (H&E) or tartrate resistant acid phosphatase (TRAP, Sigma 387A) 

and bone morphometry or osteoclast quantification performed as described [23] and according to 

standards set by the ASBMR [24]. The ROI was manually defined, beginning 200µm distal to 

the proximal growth plate and extending 1200µm distally.    

 

Dynamic Histomorphometry 

Five and two days prior to sacrifice, mice were administered calcein (Sigma Aldrich, 30mg/kg, 

IP). Tibiae were harvested and fixed in 10% NBF for 24-48hrs and stored in 70% ethanol. 

Undecalcified tibiae were embedded in methylmethacrylate, sectioned (8μm), and dual-labeled 

surfaces quantified as previously described [25]. Bone formation rate (BFR/BS) and mineral 

apposition rate (MAR) were analyzed. 

 

In vitro osteoblast mineralization assays 

Calvarial osteoblasts were isolated from day 4-10 old KO and WT mice, expanded and induced 
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to differentiate and mineralize as previously described [26]. RNA was harvested and processed 

using RNeasy Mini Kit (Qiagen). Reverse transcription PCR was conducted, and the cDNA 

products were amplified and detected using TaqMan Universal PCR master mix (Applied 

Biosystems) and TaqMan probes, including mouse bglap (Mm03413826_m1), runx2 

(Mm00501584_m1) and mouse actb (Mm02619580_g1) as an endogenous control. Realtime 

PCR was analyzed on ABI PRISM 7700 (AppliedBiosystems).  

 

Bone marrow stromal cells (BMSCs) were obtained from flushing bone marrows of 6 and 22wk 

old KO and WT mice with plain α-MEM, centrifuging and resuspending with α-MEM medium 

(20% FBS, Pen/Strep, glutamine) containing 10nM dexamethasone (Sigma). BMSCs were 

seeded at 2 x 105 cells/well in 24-well plates, grown to confluency, and treated with β-

glycerophosphate and ascorbic acid to induce mineralization. Cells were fixed and stained using 

the von Kossa method to assess mineralized nodules at day 7, 14, and 21 [27].  

 

In vitro osteoclast assays 

Bone marrow from 6  week old KO or WT mice was extracted into 100mm dishes in complete α-

MEM medium (10% FBS, Pen/Strep, glutamine). The following day, non-attached cells were re-

plated onto petri dishes and treated with murine M-CSF (30ng/mL eBioscience) for 4-5 days. 

Cells were then split with 10µM EDTA in ice cold PBS and re-plated at 60,000/cm2 in 48 or 96 

well plates with M-CSF (30ng/ml) and murine RANKL (50ng/mL) (Peprotech). Osteoclastic 

cells were identified via TRAP staining (Sigma 387A kit) or seeded onto Corning Osteoassay 

plates to measure resorptive functional activity. Osteoclast assays were performed as above using 

bone marrow from 22wk old WT mice. At the time of osteoclast differentiation induction using 
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RANKL, cell cultures were treated with rmMFG-E8 (500ng/mL, R&D Systems) or BSA control 

(500ng/mL, Millipore). Cultures were stained for TRAP and quantified.  

 

Efferocytosis 

Bone marrow macrophages were assessed for efferocytic capacity of apoptotic BMSCs or 

apoptotic thymocytes. Bone marrow from 6 or 22 week old WT or KO mice was harvested and 

cultured in macrophage differentiation media (α-MEM, 10% FBS, Pen/Strep, glutamine, 

30ng/mL M-CSF) for 7 days and replated in 6 well plates at a density of 1.5 x 106/well. BMSCs 

were harvested from 6-8 week old KO and WT mice via bone marrow flush and cultured in α-

MEM medium (20% FBS, Pen/Strep, glutamine) containing 10nM dexamethasone (Sigma). 

BMSCs were grown to confluency, dissociated from tissue culture plate using 0.25% trypsin-

EDTA and resuspended in 1X PBS. BMSCs were stained with CellTrace™ CFSE Cell 

Proliferation Kit (2μM, Invitrogen). Apoptosis was induced by exposure to UV light for 30 min 

and cells recovered at 37°C for 2hrs. The thymus was dissected from 6-10 wk old KO or WT 

mice in ice cold 1X PBS, pressed though a 70μm cell strainer, red blood cells lysed with 1X 

ACK, and resuspended in complete α-MEM plus 0.1μM dexamethasone. Thymocytes were 

incubated at 37°C for 16hrs to induce apoptosis, then stained with pHrodo™ succinimidyl ester 

(SE) (20ng/mL, Invitrogen)[28]. Apoptotic BMSCs and thymocytes were counted via trypan 

blue exclusion and resulted in 80-95% apoptosis. Apoptotic cells (BMSCs or thymocytes) were 

cultured with macrophages at a 1:1 ratio in plain α-MEM for 2 hours, fixed in 1% PFA, stained 

for F4/80-APC (Abcam, A3-1). Efferocytosis was measured via flow cytometric analysis for 

double labeling APC-CFSE (engulfed apoptotic BMSCs) or APC-pHrodo-SE (engulfed 

thymocytes). 
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Statistical Analysis 

Statistical analyses were performed by unpaired Student's t test to compare two groups or 

ANOVA to compare three or more groups with a significance of p < 0.05. Data are presented as 

mean ± standard error of mean (SEM).   

 

Results 

MFG-E8 deficiency leads to age-associated osteopenia 

The skeletal phenotypes of female MFG-E8 deficient mice were assessed at 6, 16 and 22 

weeks and compared to age matched WT controls. At 6 weeks of age, MFG-E8 and WT mice 

had similar trabecular BV/TV (Figure 4.1A, B) and Ct.V/Tt.V (Figure 4.1C). With age, MFG-

E8 deficient mice had lower bone mass compared to WT, with significantly decreased trabecular 

BV/TV at 22 weeks (Figure 4.1A, B) and significantly reduced cortical bone at 16 and 22 weeks 

(Figure 4.1C). Serum ELISAs of bone formation (Figure 4.1D) and resorptive markers (Figure 

4.1E, F) showed similar trends in KO and WT with age. Serum TRAcP 5b, a marker reflecting 

osteoclastic cells quantitatively in the body, was decreased in MFG-E8 KO mice at 22wks of age 

compared to WT (Figure 4.1E).  In contrast, CTX-I, a marker of osteoclast functional activity 

was increased in MFG-E8 KO mice at 22wks compared to WT controls (Figure 4.1F).  

 

Increased osteoclasts in 22wk KO mice 

Trabecular bone analysis of the tibia confirmed KO mice had statistically decreased 

trabecular BV/TV (-32%, Figure 4.2A), unchanged Tb.Th (-5%, Figure 4.2B), decreased Tb.N 

(-15%, Figure 4.2C), unchanged trabecular spacing (+8%, Figure 4.2D), and decreased 

trabecular BMD (-33%, Figure 4.2E) compared to WT control mice. Cortical volume fraction 
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and cortical thickness were statistically decreased 4% and 9% respectively in KO mice compared 

to WT (Figure 4.2F, G). Dynamic histomorphometry was performed in mice at 22wks age with 

no significant changes observed in bone formation (BFR/BS) or mineral apposition rate (MAR) 

between KO and WT  mice (Figure 4.2 H, I). Osteoclast number (N.Oc/BS) per bone surface 

was increased in 22wk old KO mice compared to WT (Figure 4.2J). These data suggest the 

reduced bone phenotype in 22wk old KO mice is in part due to an increase in osteoclasts. 

 

Loss of MFG-E8 results in altered immunologic profile in spleen and bone marrow  

In order to evaluate the immunologic impact of MFG-E8, spleens were harvested and 

weighed from 22wk old KO and WT mice. KO mice had significantly increased spleen weight 

per body weight compared to WT mice (Figure 4.3A). FACs analysis of bone marrow 

populations revealed KO mice had significantly increased neutrophils (CD11bhiLy6G+, Figure 

4.3B) and myeloid-derived suppressor cells (MDSCs, CD11bhiGr-1+, Figure 4.3C) compared to 

WT. F4/80+ (murine macrophages) and CD68+ (macrophage and dendritic cells) populations 

were not changed in KO mice compared to WT (data not shown). Spleens and tibiae were fixed, 

embedded in paraffin, sectioned and stained for TUNEL positive cells reflecting cell death. 

TUNEL-positive cells were unchanged in the bone marrow of 16 and 22wk old KO and WT 

mice, suggesting apoptotic cells clearance in the marrow may be facilitated via other efferocytic 

pathways (Figure 4.3D). In vitro efferocytosis studies were performed to assess the effect of 

MFG-E8 deficiency on bone marrow macrophage engulfment of apoptotic cells.  No significant 

alterations in engulfment of apoptotic BMSCs or thymocytes were seen in vitro (data not 

shown). Interestingly, TUNEL positive cells were increased in the white pulp of spleens from 
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22wk old KO mice compared to WT (Figure 4.3E) which might explain a site specific 

efferocytic function of MFG-E8. 

 

Impact of MFG-E8 on cellular activity: osteoblastic and osteoclastic cells  

To better understand the cellular contributions to the age-related skeletal phenotype seen 

in the MFG-E8 deficient mice, a series of in vitro assays were performed. Calvarial osteoblasts 

were isolated from 4-10 day old KO or WT mice, expanded and mineralization or gene 

expression analyzed. KO calvarial osteoblast preparations showed increased mineralized nodules 

compared to WT but no changes in runx2 or osteocalcin gene expression were detected (Figure 

4.4A). BMSCs were cultured from 6 and 22 week old WT and KO mice and induced to 

differentiate. BMSCs from 6 week old KO mice  had increased mineralized nodules compared to 

WT mice after 14 days of culture (Figure 4.4B, left). Interestingly, BMSCs from 22 week old 

mice showed the opposite trend. KO BMSCs displayed decreased mineralized nodules compared 

with WT mice at 14 and 21 days of culture (Figure 4.4B, right). In vitro osteoclast assays from 

6 week old mice revealed no significant alterations in osteoclast differentiation or resorptive 

capacity between WT and KO mice (Figure 4.4C). Osteoclasts from 22 week old mice WT were 

cultured with rmMFG-E8 or BSA control, stained for TRAP and quantified. Treatment with 

rmMFG-E8 significantly reduced osteoclast formation and size (Figure 4.4D).   

 

Intermittent PTH treatment leads to robust anabolic response in KO mice 

MFG-E8 KO and WT mice (16 week) were treated daily with iPTH or vehicle for 6 

weeks to evaluate the therapeutic potential of a known anabolic bone agent (Figure 4.5A). All 

data are presented as treatment (PTH) over control (vehicle). PTH increased spleen weight in 
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both WT and KO mice (tx/control > 1.0, Figure 4.5B). PTH did not alter the CD11bhiLy6G+ 

populations in WT and KO mice whereas PTH  increased marrow CD11bhiGr-1+ cells in WT but 

not KO mice (Figure 4.5C). Complete blood counts from mice WT and KO treated with vehicle 

or PTH  showed PTH treatment decreased the percent neutrophils in the peripheral blood in both 

WT and KO treated mice (Table 4.1). Red blood cell MCV and MCH were significantly 

increased in KO mice compared to WT mice, and PTH further increased these parameters in KO 

mice (Table 4.1). 

 Adult mice treated with vehicle or PTH were assessed for skeletal phenotypes. Static 

histomorphometry of tibia showed an anabolic response in both WT and KO mice in the 

proximal tibia (Figure 4.5D). Trabecular bone analysis of the tibia via μCT showed both WT 

and KO mice responded to iPTH treatment (tx/control > 1.0, Figure 4.5 E-H). KO mice showed 

a stronger anabolic response to PTH in BV/TV (Figure 4.5E), Tb.N (Figure 4.5G) and Tb.BMD 

(Figure 4.3H) than PTH treated WT mice. KO and WT had similar cortical bone anabolic 

responses to PTH (Figure 4.5I, J).  

Mertk is an efferocytic receptor on macrophages. MFG-E8/Mertk double KO (dKO) mice 

were generated to assess the effect of further decreasing a different efferocytic pathway. The 

resulting phenotype was similar in the dKO mice as the MFG-E8KO phenotype. Double KO 

mice had decreased bone with age (Figure 4.7A, B) and responded to iPTH treatment to a 

greater extent than WT controls (Figure 4.7C). These data suggest Mertk deficiency does not 

lead to a stronger phenotype than MFG-E8 deficiency alone.   

 

KO mice display increased osteoclasts per surface, rescued by PTH treatment 

The serum formation marker P1NP and serum resorptive markers TRAcP 5b and CTX-I 
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were all increased with iPTH treatment in both KO and WT mice (Figure 4.6A-C). The increase 

in serum P1NP was larger in iPTH treated KO than WT mice (Figure 4.6A). Bone formation 

(BFR/BS) and mineral apposition rate (MAR) were increased in both iPTH treated WT and KO 

mice, but KO mice showed a lower response in dynamic bone formation parameters with iPTH 

treatment versus WT (Figure 4.6D,E). The increase in osteoclast number (N.Oc/BS) per bone 

surface  in KO mice compared to WT was reduced with iPTH treatment in KO mice (Figure 

4.6F).  

 

Discussion 

 MFG-E8 is a known anti-inflammatory mediator. It is well accepted that chronic 

inflammation increases during the aging process leading to the upregulation of pro-inflammatory 

mediators. Chronic increases in inflammatory cytokines are seen in post-menopausal 

osteoporosis, a disease whose pathology is related to increased osteoclast differentiation and 

activity [29]. The current study describes the contributions of MFG-E8 in the aging skeleton. 

MFG-E8 deficient mice developed a skeletal phenotype that became apparent with age. At 16 

weeks of age, MFG-E8 KO mice showed a trend of decreased trabecular bone and significantly 

decreased cortical bone compared to WT and displayed significantly decreased trabecular and 

cortical bone at 22 weeks of age. These data suggest that MFG-E8 is a contributor to bone 

turnover in adult bone. Interestingly, a previous report of MFG-E8 contributions to bone showed 

decreased vertebral trabecular bone volume fraction in MFG-E8 deficient mice as early as 6 

weeks of age [15], and may describe a location specific effect. The difference of onset of 

osteopenic phenotype between these two models may also represent differences in the 

development of the genetic knockouts. The genetic model presented here was developed by 
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inserting the pGT1-pfs gene trap vector in intron 7 of Mfge8, leading to protein degradation [2]. 

Sinningen et al. [15] used a KO model that was generated by replacing exons 2 to 6 of Mfge8 

with a neomycin resistance cassette [30]. This suggests that disrupting the proper transcription of 

the gene may result in a more dramatic phenotype present at an earlier age whereas the 

prevention of protein secretion results in a phenotype that becomes apparent with time.  

Interestingly, while male mice did have a reduction in trabecular BV/TV at 22wks of age 

(data not shown), the phenotype was more dramatic in female mice. Sinningen et al. [15] also 

saw a reduced bone phenotype in female mice, suggesting a possible sex-specific phenotype 

which should be further explored; however information about a male phenotype was not 

discussed. Given that MFG-E8 is highly expressed in mammary gland tissue and is important in 

mammary gland development and involution [2], it may be associated with hormonal controls 

related to sex steroids that in turn impact a gender specific effect on the skeleton.  

The reduced bone phenotype in MFG-E8 KO mice has been attributed to increased 

osteoclast numbers; via not clearly delineated mechanisms [17]. In concert with an osteoclastic 

phenotype, administration of recombinant MFG-E8 protein to inflammation-induced periodontal 

bone defects decreased bone loss [17]. An inflammatory phenotype was not previously detailed 

in the bones of MFG-E8 deficient mice. Given the relationship between inflammation and 

osteoclast activation, we aimed to identify if the reduced bone phenotype in MFG-E8 deficient 

mice was due in part to an enhanced inflammatory environment. Adult MFG-E8 KO mouse 

spleen weights were increased and bone marrow neutrophils and MDSCs were increased, which 

is consistent with increased inflammatory phenotype. These data are consistent with previous 

findings that MFG-E8 KO mice have increased spleen size at 40 weeks of age [7] and display 

signs of inflammation in other tissues [13].  In the present study, MFG-E8 KO mice showed 
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increased osteoclast number per bone surface and increased serum CTX-I levels consistent with 

an inflammatory induced osteoclastogenesis. Proinflammatory cytokines increase osteoclastic 

differentiation and activity via upregulation of RANKL [31]. Increased proinflammatory 

cytokine production has been associated with systemic and/or local bone loss in patients with 

inflammatory diseases [32, 33] including systemic lupus erythematous (SLE) [34], rheumatoid 

arthritis [35-37], inflammatory bowel disease [38, 39], and periodontal disease[40]. Recombinant 

MFG-E8 protein decreased osteoclast differentiation suggesting that MFG-E8 signaling directly 

affects pathways important to osteoclast differentiation and may be a potential targeted treatment 

for inflammatory bone loss. These findings are similar to recently published articles detailing the 

contributions of MFG-E8 to osteoclast differentiation and function [15-17], and extends these 

findings into an adult mouse model. 

A distinct function of MFG-E8 is to act as a bridge between apoptotic cells and 

phagocytes to facilitate engulfment of dead cells [6]. Accumulations of apoptotic cells lead to 

increased pro-inflammatory cytokine production. Polymorphisms of MFG-E8 have been found 

in cases of SLE, which is characterized by decreased apoptotic cell clearance as well as 

decreased bone mass [41]. The efferocytic capacity of bone marrow macrophages was 

unchanged in vitro in MFG-E8 deficient mice. TUNEL positive cell populations trended 

downward in the bone marrow and TUNEL staining of spleens, revealed increased apoptotic 

bodies in the white pulp of the spleen. This phenotype, consistent with previous literature [7], 

suggests that in vivo there is an alteration in apoptotic cell clearance in MFG-E8 deficient mice. 

The increase in TUNEL positive cells in MFG-E8 deficient spleens but not so in the bone 

marrow suggests compensatory efferocytic mechanisms may be more operative and critical in 

the bone marrow environment. Alternatively, the data presented here may also suggest MFG-E8 



 91 
 

is more dispensable in bone in regards to efferocytic clearance of apoptotic cells. However, the 

increase in marrow neutrophils and MDSCs may in fact reflect a reduced efferocytic 

environment in the marrow. Ineffective efferocytosis leads to increased inflammatory cytokines 

that support the increase in these cells [42]. Further understanding of the pathways which are 

most important in the marrow space will help delineate if and how the process of apoptotic cell 

clearance regulates bone turnover.  

MFG-E8 deficiency resulted in increased osteoclasts due to an enhanced inflammatory 

environment. Currently, therapeutic interventions for patients with inflammatory bone loss 

include anti-resorptives such as bisphosphonates as well as anti-inflammatory targeted therapies.  

Intermittent PTH administration has been extensively studied for its anabolic effects in bone. It is 

FDA approved but is limited to use in cases of severe osteoporosis. Better understanding of 

phenotypes in which PTH may be a beneficial therapeutic could lead to more targeted use of the 

anabolic agent as well as the latest anabolic agent abaloparatide which interacts with the same 

receptor at PTH [43]. In adult MFG-E8 KO mice, PTH was an effective therapeutic and 

surprisingly resulted in a larger anabolic response in KO versus WT mice. Additionally, iPTH 

treatment decreased the number of osteoclasts per bone surface in the adult KO mice and brought 

osteoclast numbers to the level of WT vehicle mice. Treatment with iPTH has been shown to 

both decrease peripheral neutrophils [20] as well as polymorphonuclear leukocyte infiltration in 

healing oral tissue [44]. In our model, iPTH treatment similarly decreased peripheral neutrophil 

numbers. These data suggest iPTH therapy may alter the inflammatory phenotype and be 

beneficial in treatment bone loss due to inflammation. PTH increases specialized pro-resolving 

factors in the bone marrow including resolvin D1, D2 and lipoxins suggesting iPTH therapy aids 

the resolution of inflammation [45]. A previous study of the application of iPTH in a model of 
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rheumatoid arthritis showed PTH repaired local erosions [46] and a clinical trial of local PTH 

application to periodontal defects showed enhanced bone regeneration in PTH treated lesions 

[47]. Collectively, these data suggest PTH may be a particularly effective therapeutic in certain 

types of inflammatory bone disease, yet future studies are necessary to confirm its therapeutic 

benefit  and further delineate mechanisms. 

 In conclusion, our data show that MFG-E8 deficiency leads to an altered immunologic 

profile in the bone marrow, is associated with bone loss with age, and is responsive to 

intermittent PTH therapy.  
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Figure 4.1. MFG-E8 KO mice have reduced bone mass with age. Tibiae harvested from 6, 16, 
and 22wk old MFG-E8 KO and WT female mice were analyzed for trabecular BV/TV (A, B) 
and cortical volume per total volume (Ct.V/Tt.V) (C) by μCT. (D) Serum formation marker 
P1NP and serum resorptive markers TRAcP 5b and CTX-I were measured via ELISA at the time 
of sacrifice. n=8-13/group, *p<0.05, **p<0.01, data are mean ± SEM. 
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Figure 4.2. Adult (22wk) KO mice have reduced bone mass and increased osteoclast 
numbers. (A-E) Tibiae were harvested from female 22 week old WT and KO mice and 
trabecular parameters quantified via μCT. KO mice displayed significantly reduced trabecular 
BV/TV (A), Tb.N (C), and Tb.BMD (E). Trabecular thickness (B) and trabecular spacing (D) 
were not significantly different in WT and KO mice. (F, G) Cortical bone was measured in the 
midshaft of the tibia of 22 week old WT and KO mice. KO mice had reduced Ct.V/Tt.V (F) and 
Ct.Th (G) compared to WT control mice. (H, I) Mice were administered calcein (30mg/g, I.P.) 5 
and 2 days prior to sacrifice. Dynamic histomorphometric analyses were performed in the 
cancellous bone of the proximal tibia. Sections were analyzed for bone formation rate (BFR/BS) 
and mineral apposition rate (MAR). No significant differences were seen between WT and KO 
mice. (J) Paraffin embedded tibiae were sectioned and stained for TRAP. TRAP+ multinucleated 
osteoclasts were quantified per bone surface (N.Oc/BS). Adult KO mice had increased N.Oc/BS 
compared to WT controls. Representative images on right. n=6-11/group, *p<0.05, **p<0.01, 
***p<0.001, data are mean ± SEM. 
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Figure 4.3. Adult KO mice have increased spleen size and greater numbers of marrow 
neutrophils and myeloid cells. (A) Spleens were harvested at time of sacrifice, weighed and 
compared to body weight. Spleen weight per body weight was increased in 22 week old KO 
versus WT mice. n=10-11/group, *p<0.05, ***p<0.001, data are ± SEM. (B, C) Marrow was 
flushed from femora of 22wk old WT and KO mice and stained for flow cytometric analysis of 
CD11bhiLy6G+ (neutrophils) and CD11bhiGr-1+ (immature myeloid cells) populations. KO mice 
displayed significantly increased CD11bhiLy6G+ and CD11bhiGr-1+ cells compared to WT. n=6-
8/group, *p<0.05, ***p<0.001, data is mean ± SEM. (D , E) Tibiae and spleens were processed, 
embedded in paraffin, sectioned and stained for TUNEL positive cells reflecting cell death.  
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Figure 4.4. Aged KO BMSCs had decreased mineralization. (A) Calvarial osteoblasts were 
cultured from day 4-10 old KO and WT mice, expanded and induced to differentiate and 
mineralize. KO calvarial osteoblasts displayed increased mineralization. Runx2 and bglap 
expression were measured at day 7 of differentiation and no changes were observed. (B) BMSCs 
were cultured from 6 and 22wk mice, induced to differentiate toward osteoblasts, and 
mineralized nodules measured via von Kossa staining. Six week KO BMSCs had similar 
mineralization to WT at d7 and d21 of culture with increased mineralization at d14. Twenty-two 
wk KO BMSCs showed decreased mineralization at d14 and d21 compared to WT. 
Representative von Kossa stained wells from 6 and 22wk WT and KO BMSCs (d14). n=4-
5/group, **p<0.01, data is ± SEM. (C) Osteoclasts were derived from 6wk old KO and WT 
mice. Osteoclast differentiation and resorptive activity were unchanged between WT and KO. 
(D) Osteoclasts were derived from 22wk old mice and treated with BSA or rmMFG-E8 
(500ng/mL). Osteoclasts were stained for TRAP. Treatment with rmMFG-E8 significantly 
reduced osteoclast number and size.n=3/group repeated 2-3 times, *p<0.05, data are mean ± 
SEM. 
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Figure 4.5. Anabolic response to iPTH is greater in adult KO mice than WT. (A) 
Experimental design. KO and WT mice (16wks) were administered daily injections of PTH 
(50μg/kg, SC) or vehicle (0.9% saline) for 6 weeks and sacrificed at age 22wks to assess spleen 
and marrow phenotypes. (B) Spleens were harvested from vehicle and PTH treated KO and WT 
mice and weighed. PTH treatment similarly increased spleen weight per body weight in both WT 
and KO mice (tx/control > 1.0). (C) Marrow flow cytometric analysis for CD11bhiLy6G+ and 
CD11bhiGr-1+ populations showed that PTH treatment of WT mice resulted in increased 
CD11bhiGr-1+ populations (tx/control > 1.0) but no change was seen in PTH treated KO 
compared to vehicle treatment (tx/control ~1.0). (D) H&E stained paraffin sections of KO and 
WT tibiae treated with PTH or vehicle were quantified for bone area per total area. Both WT and 
KO mice had an anabolic response to PTH treatment (tx/control > 1.0). (E) Trabecular BV/TV 
analysis of proximal tibia via μCT. Both KO and WT displayed significantly increased BV/TV 
with PTH treatment. PTH treatment showed a greater anabolic effect in KO mice compared to 
WT PTH treated.  
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Figure 4.6. Bone formation and resorption analyses in PTH and vehicle treated KO and 
WT mice. (A, B, C) Serum was collected at time of sacrifice and P1NP, TRAcP 5b, and CTX-I 
were measured via ELISA. n=10-11/group, *p<0.05, **p<0.01, ***p<0.001, data is ± SEM. (D, 
E) Calcein (30mg/g, I.P.) was administered 5 and 2 days prior to sacrifice. Undecalcificed tibiae 
were collected, fixed, embedded, and sections were analyzed for bone formation rate (BFR/BS) 
and mineral apposition rate (MAR). iPTH treatment increased BFR/BS and MAR in both KO 
and WT (tx/control >1.0) but to a greater extent in the WT mice compared to KO. (F) TRAP 
stained paraffin embedded tibiae sections were quantified for TRAP positive multinucleated 
cells. KO mice treated with iPTH showed decreased osteoclast number/bone surface (N.Oc/BS) 
(tx/control < 1.0). n=8-11/group, *p<0.05, **p<0.01, ***p<0.001, data are mean ± SEM.  
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Figure 4.7. Double MFG-E8/Mertk KO mice display a similar phenotype to MFG-E8 KO 
mice. To assess any additive effects of Mertk KO in our MFG-E8 mice, a double MFG-
E8/Mertk KO (dKO) mouse was generated. (A,B) WT and dKO mice had similar trabecular 
bone at 6 and 16 weeks, and a trend of decreased bone in dKO mice at 22 wks of age. (C) 
Sixteen wk old WT and dKO were treated with vehicle or iPTH daily for 6 weeks and skeletal 
phenotypes assessed. WT and dKO mice had anabolic responses to iPTH treatment, and the dKO 
anabolic response exceeded the response in WT mice. n=7-10/group, *p<0.05, **p<0.01, data 
are mean ± SEM 
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Table 4.1. Complete blood counts.  

 
WBC = white blood cell, NE = neutrophil, LY = lymphocyte, MO = monocyte, EO = eosinophil, 
BA = basophil, RBC = red blood cell, HB = hemoglobin, HCT = hematocrit, MCV = mean 
corpuscular volume, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular 
hemoglobin concentration, RDW = red cell distribution width, PLT = platelet, MPV = mean 
platelet volume  
Data are expressed as mean ± SEM 
ap<0.05 vs. WT Vehicle, bp<0.01 vs. WT Vehicle, cp<0.05 vs. KO Vehicle, dp<0.01 vs. KO 
Vehicle, ep<0.001 vs. KO Vehicle 

  WT Vehicle WT PTH KO Vehicle KO PTH 
  n=10 n=11 n=10 n=10 
      
WBC K/uL 4.7 ± 0.5 5.9 ± 0.6 4.7 ± 0.3 6.1 ± 0.6 
NE# K/uL 0.85 ± 0.10 0.91 ± 0.13 0.98 ± 0.11 0.96 ± 0.12 
LY# K/uL 3.7 ± 0.4 4.8 ± 0.4 3.6 ± 0.3 5.0 ± 0.5c 
MO# K/uL 0.09 ± 0.01 0.11 ± 0.01 0.10 ± 0.02 0.10 ± 0.02 
EO# K/uL 0.03 ± 0.01 0.07 ± 0.02 0.05 ± 0.04 0.04 ± 0.01 
BA# K/uL 0.01 ± 0.004 0.03 ± 0.008 0.02 ± 0.01 0.01 ± 0.003 
      
NE% % 18.1 ± 1.1 15.0 ± 0.9a 20.4 ± 1.4 15.5 ± 1.0c 
LY% % 79.0 ± 1.3 81.7 ± 1.1 76.3 ± 2.1 82.1 ± 1.0c 
MO% % 1.9 ± 0.3 2.0 ± 0.2 1.9 ± 0.2 1.7 ± 0.04 
EO% % 0.65 ± 0.20 0.95 ± 0.29 0.95 ± 0.59 0.58 ± 0.18 
BA% % 0.27 ± 0.06 0.38 ± 0.12 0.37 ± 0.20 0.14 ± 0.04 
      
RBC M/uL 8.8 ± 0.1 8.5 ± 0.2 8.7 ± 0.1 7.8 ± 0.3c 
HB g/dL 13.1 ± 0.2 12.7 ± 0.2 13.3 ± 0.1 12.3 ± 0.5 
HCT % 44.8 ± 0.9 43.9 ± 0.9 46.9 ± 0.7 43.0 ± 1.8 
MCV fL 50.8 ± 0.7 51.5 ± 0.5 53.9 ± 0.2b 55.2 ± 0.3d 
MCH Pg 14.8 ± 0.2 15.0 ± 0.2 15.3 ± 0.1a 15.8 ± 0.1c 
MCHC g/dL 29.2 ± 0.3 29.1 ± 0.3 28.4 ± 0.3 28.5 ± 0.2 
RDW % 17.1 ± 0.7 18.2 ± 0.1 16.0 ± 0.1 17.2 ± 0.1e 
      
PLT K/uL 747 ± 16 746 ± 22 744 ± 27 752 ± 14 
MPV fL 4.1 ± 0.06 4.1 ± 0.06 4.0 ± 0.03 4.0 ± 0.03 
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CHAPTER 5 

 
INCREASED TOOTH EXTRACTION SOCKET BONE FILL WITH CLODRONATE-

LOADED LIPOSOME TREATMENT 

 

Abstract 

Ineffective oral wound healing is detrimental to patients’ oral health related quality of 

life. Delineating the cellular mechanisms involved in optimal healing will elicit better 

approaches to treating patients with compromised healing. Osteal macrophages have recently 

emerged as important positive regulators of bone turnover. The contributions of macrophages to 

long bone healing have been studied but their role in oral osseous wound healing following tooth 

extraction are less appreciated. Clodronate-loaded liposomes were used a tool to deplete 

phagocytic macrophages and assess oral osseous bone fill after extraction. In addition to 

macrophage depletion, off target osteoclast depletion occurred. Interestingly, depletion of 

macrophages and osteoclasts via clodronate treatment had different effects based on the location 

and type of bone turnover. In the tibiae, clodronate treatment drastically increased trabecular 

bone volume fraction after 7 and 14 days of treatment, which correlated with increased CD68+ 

cells and decreased F4/80+ cells in the marrow. In extraction sockets, clodronate treatment had 

no effect on bone fill at 7 days after surgery but increased extraction socket bone fill 14 days 

after surgery. This increase was to a much lesser extent than the large changes seen in 

homeostatic bone turnover in the long bone. These data suggest a temporal and spatial specificity 

in the roles of macrophages in normal turnover and healing.    
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Introduction 

Compromised wound healing in the oral cavity leads to prolonged infection, pain and 

overall decreased quality of life. Proper healing of bony defects in the oral cavity from tooth 

extractions, periodontal procedures, congenital diseases or due to surgical reconstruction is 

crucial to restoring function. Compromised immune systems, radiation therapy or IV 

bisphosphonate cancer therapies can lead to ineffective bone healing in the jaw, causing chronic 

issues such as osteonecrosis [1]. Having a better understanding of the mechanisms of osseous 

wound healing will help to abrogate the issues seen in these inadequate healing states, and aid in 

the design of successful therapeutic strategies. 

Extraction sockets are unique locations for healing as they require both bony and soft 

tissue healing and are exposed to the oral flora. Several cell types are crucial to the osseous 

healing of extraction sockets including traditional bone cells (osteoclasts, osteoblasts and 

osteocytes) and immune cells such as macrophages and neutrophils [2]. Soft tissue closure 

requires the coordination of fibroblasts and epithelial cells, along with immune cells aiding in 

tissue repair. Understanding the individual roles of each cell in the healing response will aid in 

creating targeted therapies to assist in the healing process.  

Clodronate-loaded liposomes have been extensively studied for their effectiveness as a 

macrophage-ablation tool [3]. Clodronate bisphosphonate is encapsulated into liposomes which 

are readily engulfed by phagocytic cells. Once engulfed, the phagocytic cell machinery degrades 

the liposome and releases clodronate. Clodronate then is converted to a non-hydrolizable 

analogue of ATP resulting apoptosis of the cell which engulfed the liposomes. Mice treated with 

clodronate-loaded liposomes have depleted macrophages in several tissues in the body, including 

the bone marrow of the long bones [4, 5]. The knowledge of the impact of clodronate-loaded 
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liposomes or oral osseous wound healing is lacking. The aim of this study was to delineate the 

role of macrophages in oral wound healing of extraction sockets via clodronate treatment.  

   

Materials/Methods 

Animals 

All mice were maintained in accordance with institutional animal care and use guidelines, and 

experimental protocols were approved by the Institutional Animal Care and Use Committee of 

the University of Michigan. Six week old male C57BL6/J mice were ordered from Jackson 

Laboratories. Mice were anesthetized with ketamine/xylazine (90mg/kg (K), 5mg/kg (X), IP). 

Once adequate anesthesia was achieved, the mandible was retracted and left and right maxillary 

M1 molars extracted. Mice were given a dose of buprenorphine (0.05-1.0 mg/kg, SC) at time of 

surgery and every 8-12 hours for 48 hours following surgery. PBS- or clodronate-loaded 

liposomes (clodronateliposomes.com) were administered locally in extraction sockets at time of 

surgery as well as daily intraperitoneal injections at a dose of 10μL/g from day 0-6 and 6μL/g 

from day 7-13. Mice were euthanized at day 7 or 14 following tooth extraction and tissues 

harvested for analysis.  

 

Serum ELISAs 

Blood was harvested at time of euthanasia via intracardiac puncture under anesthesia 

(ketamine/xylazine), allowed to coagulate for at least one hour at room temperature, spun down 

at 8000 rpm for 10 minutes, and liquid serum collected.  Samples were stored at -80°C until use. 

Enzyme immunoassays were used to measure the serum concentrations of tartrate-resistant acid 

phosphatase form 5b (TRAcP 5b) and propeptide of type I procollagen (P1NP) according to 
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manufacturer instructions (IDS) and measured with an EZ Read 400 microplate reader with 

Galapagos software (Biochrom US, Holliston, MA). 

 

Fluorescence Activated Cell Sorting (FACs) Analysis  

Bone marrow was isolated from the tibia via flushing in FACs buffer (1X PBS with 2%FBS, 

0.5mM EDTA), red blood cells lysed with 1x ACK, and 106 cells stained with anti-mouse F4/80 

(APC, Abcam, A3-1), anti-mouse CD68 (FITC, Biolegend, FA-11), and anti-mouse CD206 

(FITC, Biolegend, C068C2). Isotype controls were used to confirm antibody specificity. FACs 

analysis was performed using a BD FACs Aria II (BD Biosciences). 

 

MicroCT (μCT) 

Tibiae and maxillae were harvested at time of sacrifice (7 or 14 days) and fixed in 10% neutral 

buffered formalin for 24-48hrs at 4°C, then stored in 70% ethanol. Samples were scanned by 

micro-computed tomography at a 12µm voxel size (Scanco µCT-100) as previously described 

[6] and following established guidelines [7]. Tibial trabecular bone volume of interest was 

defined as starting 360μm distal to the top of the proximal growth plate and extended 600µm 

distally. A threshold of 180 mg/cm3 was used for trabecular analysis. Extraction socket bone fill 

was measured in mesial, distal and palatal extraction sockets. Trabecular bone parameters 

analyzed included trabecular bone volume fraction (Tb. BV/TV), trabecular number (Tb.N), 

trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp) and trabecular tissue mineral density 

(Tb.TMD). Tibial cortical bone volume of interest included a region of the midshaft of the tibia 

starting 3mm proximal to the tibia-fibula junction and extending 360μm distally. The cortical 
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bone threshold was 280 mg/cm3. Cortical bone morphometric variables analyzed included 

cortical volume fraction (Ct.V/Tt.V) and cortical thickness (Ct.Th).  

 

Histomorphometry 

Maxillae and tibiae were fixed in 10% neutral buffered formalin for 24-48hrs at 4°C, decalcified 

in 14% EDTA for 10-20 days, embedded in paraffin, and sectioned at 5μm.  A transverse section 

of the maxilla was cut to view bilateral extraction sockets and stained with hematoxylin and 

eosin (H&E), tartrate resistant acid phosphatase (TRAP, Sigma 387A), or F4/80 (antibody 

information). F4/80 immunohistochemical staining was performed following previously 

published protocols [8, 9]. Briefly, slides were de-paraffinized in xylene and rehydrated in 

ethanol series. Slides were then treated with H2O2 (3% in TBS) for 10 minutes at room 

temperature, washed in TBS, then digested in sodium citrate (10mM, pH 6.0) which was brought 

up to 71-75°C then cooled to room temperature overnight. Slides were washed, serum blocked 

with BioCare Background Sniper for 15 minutes, and incubated with anti-F4/80 (abcam 6640, 

clone CI:A3, diluted 1/350 in BioCare Da Vinci Green diluent) for 1.5 hours at room 

temperature. Slides were washed with TBS then incubated with goat anti-rat secondary antibody 

for 30 min at room temperature, followed by SA-HRP incubation and DAB chromogen. Slides 

were counterstained with hematoxylin and dehydrated before coverslip. Tibial sections were 

stained with hematoxylin and eosin (H&E) or tartrate resistant acid phosphatase (TRAP, Sigma 

387A). Osteoclast quantification in tibiae and extraction sockets was performed as described [4] 

and according to ASBMR histomorphometric analysis standards [10]. 
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Statistical Analysis 

Statistical analyses were performed by unpaired Student's t test to compare PBS-liposome versus 

clodronate-liposome treatments at each timepoint with a significance of p < 0.05. Data are 

presented as mean ± standard deviation (SD).   

 

Results 

Clodronate loaded liposomes deplete bone marrow F4/80+ macrophages 

Maxillary M1 molars were extracted bilaterally and mice were treated with a one-time 

intra-defect application of clodronate (CLOD)- or PBS-loaded liposomes in addition to daily 

intraperitoneal injections of clodronate- or control PBS-loaded liposomes (Figure 5.1). 

Treatment with clodronate loaded liposomes resulted in body weight reductions compared to 

PBS-loaded liposomes after 7 days of treatment, whereas no changes were seen at 14 days 

(Figure 5.2A). Spleen weights were reduced in clodronate treated mice at both 7 and 14 days of 

treatment (Figure 5.2B). Flow cytometric analysis of long bone marrow showed clodronate 

treatment decreased F4/80+ macrophages and M2-like (F4/80-CD206+) macrophages (Figure 

5.2C-D). In contrast, CD68hi cell populations were increased with clodronate treatment 

compared to control PBS (Figure 5.2E). 

 

Bone fill following tooth extraction was increased in clodronate loaded liposome treated mice 

Maxillary M1 molars were extracted and extraction sockets were analyzed for bone fill at 

7 and 14 days post-surgery using micro-CT analysis. Clodronate treatment had no effect on 

trabecular bone parameters after 7 days of treatment (Figure 5.3A-F), with the exception of 

trabecular tissue mineral density (TMD), which was significantly decreased with clodronate 
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treatment. After 14 days of daily treatment with clodronate- or PBS-loaded liposomes, 

clodronate treated mice had increased extraction socket BV/TV compared to PBS treated mice 

(Figure 5.3G,M). Given that trabecular number was decreased with clodronate treatment 

(Figure 5.3H), the increase in trabecular bone volume fraction with clodronate treatment was 

due to an increase in trabecular thickness (Figure 5.3I). The increase in bone volume suggests 

clodronate depleted cells which are negative regulators of bone fill following tooth extraction. 

Alternatively, upregulated cell types may be positive regulators. The significant increase in 

CD68 positive cells in the long bone suggests these may be positive regulators of bone turnover 

and oral osseous repair.  

 

Clodronate treated mice have increased tibial trabecular bone associated with decreased 

resorption 

 In addition to assessing the effects of clodronate treatment on maxillary extraction socket 

healing, systemic skeletal effects were determined. Clodronate treatment resulted in dramatic 

increases in trabecular bone in the proximal tibia as early as 7 days after treatment, and further 

increased trabecular bone after 14 days (Figure 5.4A-F,J). Trabecular bone tissue mineral 

density was decreased with clodronate treatment (Figure 5.4E), which suggests that although 

there was increased bone, the average density of the bone in the clodronate treated mice was 

lower than that in PBS treated. Cortical bone was unchanged in clodronate treated mice at both 

time points (Figure 5.4G). The serum formation marker P1NP and to an even greater extent, the 

serum resorptive marker TRAcP 5b were significantly reduced in clodronate treated mice at 7 

and 14 days (Figure 5.4H-I). Osteoclasts are known phagocytes and have the ability to engulf 

foreign material (i.e. liposomes). Given the reduction in serum TRAcP 5b, the increased bone 
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phenotype may be largely due to alterations in osteoclast number and/or activity. To further 

assess the effect of clodronate on osteoclasts, we measured TRAP+ cells in tibial histology 

sections. Clodronate treatment decreased TRAP+ osteoclasts in tibiae sections (Figure 5.4K). 

The reduction in formation marker P1NP may be due to a coupling response in which decreased 

osteoclast signaling feeds back to decrease osteoblast formation and activity. Alternatively and 

potentially in addition to the coupling response, the reduction in bone formation could be 

attributed to the reduction in macrophages. TRAP+ osteoclasts and F4/80+ macrophages were 

assessed in extraction sockets of mice treated with PBS- or clodronate-loaded liposomes.  

 

Treatment with clodronate-loaded liposomes decreased F4/80+ and TRAP+ cells in the bone 

 Mice treated with clodronate- or PBS-loaded liposomes were assessed for TRAP+ 

(osteoclasts) and F4/80+ (macrophages) cells in the maxillary extraction sockets at 7 and 14 days 

after surgery. TRAP+ (purple) multinucleated osteoclasts increased in extraction sockets at 14 

days compared to 7 days in both PBS and clodronate treated mice (Figure 5.5). There was a 

decrease in TRAP+ osteoclasts at both 7 and 14 days after extraction in the clodronate treated 

mice compared to PBS. F4/80 is a marker for murine macrophages. F4/80+ (brown) cells were 

present in the marrow at both 7 and 14 days after extraction and were decreased with clodronate 

treatment relative to PBS (Figure 5.6).  

 

Clodronate treatment did not affect non-wounded oral bone volume 

 Given the changes seen in steady state long tibiae bone volume and extraction socket 

bone fill, non-wounded bone in the maxilla was analyzed to determine the effects of clodronate 

on bone in other oral sites. Trabecular bone volume was measured between the maxillary M2 and 
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M3 molars (Figure 5.7, right). No significant differences were seen in non-wounded oral bone 

volume after 14 days of treatment with clodronate-loaded liposomes (Figure 5.7, left), 

suggesting a site-specific effect. Table 5.1 summarizes the effects of clodronate on bone volume, 

TRAP+ osteoclasts, F4/80+ macrophages, and CD68+ macrophages in the tibia and maxilla.  

 

  Discussion 

Macrophages are positive regulators of bone turnover, yet the mechanisms by which they 

exert these effects are currently unknown. The macrophage depletion model clodronate-loaded 

liposomes, results in F4/80-positive macrophage cell depletion in several tissues including the 

lung, liver, spleen and bone marrow [4, 5, 11, 12]. Interestingly, a subset of bone marrow 

macrophages and dendritic cells positive for the marker CD68 are increased in clodronate-treated 

mice, consistent with previous studies [4]. Given the large influx of apoptotic cells from the 

induction of phagocytic cell death by clodronate, it is hypothesized that CD68-positive cell 

populations are increased to aid in the clearance of apoptotic cell bodies via some type of 

feedback mechanism.  

It was previously shown that macrophages secrete osteogenic factors during the process 

of apoptotic cell clearance (termed efferocytosis) [13]. In this study as well as others, mice 

treated with clodronate-loaded liposomes had increased bone volume in the appendicular 

skeleton [4, 5], suggesting the increase of CD68+ cells may contribute positivity to bone 

turnover. Widespread depletion of monocytes/macrophages including CD68+ and F4/80+ cells 

using the MAFIA mouse model results in overall decreased bone volume [4, 8, 12, 14, 15]. 

These contrasting phenotypes in which CD68+ cells are high (in clodronate) and low (in 

MAFIA) suggest that CD68+ macrophage populations are positive regulators of bone 
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homeostasis compared to the F4/80+ population. It is important to note, however, that osteoclasts 

were also decreased with clodronate-loaded liposome treatment. Given that osteoclasts are 

mediators of bone resorption, decreasing their numbers undoubtedly decreases resorption and 

may lead to increased bone volume. Targeted depletion of macrophage population subsets to rule 

out osteoclast effects can aid in delineating the contributions of each cell type to homeostatic 

bone turnover as well as healing.   

Mice treated with clodronate-loaded liposomes had significantly increased trabecular 

bone in the tibiae. The trabecular bone volume fraction was increased 81% and 152% compared 

to PBS treatment at days 7 and 14, respectively. Alternatively, while oral extraction socket bone 

fill was significantly increased at day 14 following surgery, the increase in bone was only 7%. 

This suggests that macrophage and osteoclast depletion via clodronate-loaded liposomes has site 

specific effects as well as effects on healing versus homeostatic turnover. Clodronate-liposome 

treatment has been investigated in the context of long bone injury healing. Treatment with 

clodronate-loaded liposomes significantly decreased new bone formation in a tibial injury model 

[12, 16] and in femoral fracture healing [17, 18], further supporting site specific responses to 

clodronate treatment. To better understand how the changes seen in extraction socket bone fill 

are mediated, it is helpful to understand the sequence of events in extraction socket healing.  

After a tooth is extracted a well-orchestrated series of inflammatory and healing events 

occurs. In mice, immediately after the tooth is removed, a clot forms [2]. Early in healing of a 

mouse extraction socket (d0-5), inflammatory cells and MSCs migrate and proliferate. Around 

day 3 after extraction, fibroblasts proliferate and osteoblasts differentiate to aid in collagen 

synthesis and bone formation, respectively. The levels of inflammatory cells and fibroblasts peak 

at around day 7 and osteoblasts peak at day 14 [2]. Blood vessels begin to form around day 5 and 
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continue to increase until day 21. Osteoclasts differentiate and begin to remodel the new bone 

around day 14. This sequence of events leads to a rapid increase in bone tissue from day 5 to 14 

at which time bone fill levels off as osteoclast remodeling takes over. Our findings are consistent 

with the published literature where control mice had a clear increase in TRAP+ osteoclasts in 

extraction sockets at day 14 compared to day 7. While clodronate-loaded liposomes decreased 

osteoclasts in extraction sockets at both time points, the effect of depleting osteoclasts may not 

be appreciated until later time points. The difference in extraction socket bone fill may instead be 

due to an increase in CD68+ cells as was seen in the bone marrow. Future studies should include 

temporal depletion of macrophages and osteoclasts via clodronate-loaded liposomes, including 

before and/or after tooth extraction surgery. 

The location specific changes seen with clodronate are outlined in Table 5.1, and 

highlight the difference between the response in the tibia and maxilla. These differences 

observed in the long bone site versus the oral cavity may be due to many factors including 

differences in the cell populations in the marrow in these sites, origin of these cells, mechanical 

stimulation and exposure to different environmental cues. Bone marrow stromal cells (BMSCs) 

from the mandible have been shown to differentiate and mineralize more than BMSCs from long 

bone sites [19, 20]. Additionally, osteoclasts from the mandible and tibia have similar resorptive 

activity, but osteoclasts from the mandible differentiate faster than those from the long bone [21-

23]. These findings support the differences seen in the oral wound healing sites compared to long 

bone sites. Furthermore, although these cells look similar histologically [24], they arise from 

different origins during embryonic development. The bones of the mandible and maxilla arise 

from neural crest cells of the neuroectoderm layer, and long bones arise from the mesoderm [25]. 

Also, the mandible and maxilla undergo intramembranous ossification compared to 



116 
 

endochondral ossification of the long bones [26]. Lastly, the bones in the jaws are exposed to 

stronger forces during mastication than those generated during walking [27, 28], and mechanical 

stimulation is an important regulator of bone turnover.  

Interestingly, we observed a decrease in tissue mineral density (TMD) in the tibiae and 

extraction socket with clodronate-loaded liposome treatment. One factor that could drive this 

change in TMD is a difference in the rate of mineralization. While clodronate liposomes may not 

directly interact with the mineralization process in a significant way, they did inhibit 

macrophages which have a known role in regulating bone mineralization [8, 12, 15, 29]. 

Specifically, macrophages have been shown to secrete osteogenic factors such as TGF-β1 [13], 

oncostatin M [30-32] and BMP-2 [33], which could impact mineralization. In addition to direct 

impacts on the bone mineralization process altering TMD, in a rapidly healing model, TMD is 

also likely to be driven in large part by the average age of the tissue present, or how much time it 

has been mineralized. A bone with a higher average tissue age could be expected to have a 

higher TMD. In our clodronate-treated healing socket, a potential anti-osteoclast effect could 

yield a greater tissue age due to decreased resorption of the aged bone. In extraction sockets, 

TMD was decreased at day 7 with clodronate treatment, suggesting less mineralization. In our 

model, the effect of TMD is likely not singular, but rather the complex result of multiple distinct, 

and even opposing, biological actions that combine to yield observed TMD phenotype.   

It should not be overlooked that clodronate is a bisphosphonate. Bisphosphonates have 

been studied in the context of extraction socket healing due to their potential ability to lead to 

osteonecrotic lesions in the oral cavity. Because bisphosphonates are anti-resorptives, they 

prevent osteoclasts from clearing bone that has been haphazardly formed. Treatment with 

bisphosphonates leading to necrotic bone has been characterized by empty osteocyte lacunae [34, 
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35]. Treatment with clodronate-loaded liposomes did not alter the presence of osteocytes in 

lacunae (data not shown). Additionally, bisphosphonate treatment increases extraction socket 

bone fill [35, 36], but typically to a greater extent than seen in the present study. Although the 

increase in CD68+ macrophages and decrease in osteoclasts explains an overall increase in bone, 

the percent increase with clodronate treatment may be less than that seen with other 

bisphosphonates due to the altering of other macrophage populations, namely the F4/80+ cells. 

In a healing model, decreased F4/80+ cells may compromise the ability of the bisphosphonate to 

increase bone. This may support the hypothesis that specific macrophage subsets have distinct 

and necessary roles in the context of healing. This is supported by data in long bone healing in 

which F4/80+ cell depletion impaired healing [12]. Perhaps, the depletion of the F4/80+ cells 

prevents the clodronate-loaded liposome treatment from reaching the same level of bone fill 

result seen with non-liposome bisphosphonates.  

Clodronate-loaded liposome treatment resulted in increased bone in the tibiae as well as 

increased bone fill in the extraction sockets. The extent to which clodronate exerted its effect on 

bone was variable according to the location and whether the bone was under normal homeostatic 

turnover or if it is was new bone in response to a wound. Macrophage and osteoclast populations 

were altered with clodronate and suggest a crucial balance of these cells to maintain proper oral 

wound healing. In regards to clinical treatment of oral osseous wounds, it is important to 

understand what cell populations may be potential targets to aid in osseous healing without 

compromising the quality of the bone. Further insight into the temporal and spatial specificities 

of osteal macrophages and osteoclasts will ultimately lead to better methods to target cells. 
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Figure 5.1. Experimental model. Six week old male C57BL/J mice were anesthetized with 
ketamine and xylaxine, mandible retracted and maxillary M1 molars extracted bilaterally. Mice 
received local delivery of clodronate- or PBS-loaded liposomes in extraction sockets at time of 
surgery. Intraperitoneal injections of clodronate- or PBS-loaded liposomes were given daily at a 
dose of 10μL/g from days 0-6 and 6μL/g days 7-13.  Mice were sacrificed at day 7 or 14 after 
surgery and tissues harvested for serum biomarkers, bone marrow flow cytometric analysis 
(FACs), micro-CT, and histomorphometric analysis. n=8-10/group. 
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Figure 5.2. Clodronate treated mice have decreased spleen weight and altered bone 
marrow macrophage populations. (A) Body weight was measured at the time of sacrifice. 
Clodronate treated mice displayed decreased body weight at 7 days post-extraction surgery and 
mice sacrificed at 14 days after surgery showed no differences in body weight. (B) Spleens were 
harvested at time of sacrifice, weighed and compared to body weight. Spleen weight was 
decreased in clodronate treated mice at both time points. (C-E) Bone marrow was flushed from 
tibiae at time of sacrifice and stained for flow cytometric analysis of F4/80+ (macrophages), 
CD206+ (M2-like macrophages) and CD68hi (monocytes, dendritic cells). Clodronate-loaded 
liposome treated mice displayed decreased F4/80+ and F4/80+/CD206+ and increased CD68hi 
marrow populations compared to PBS-treated mice. n=8-10/group, *p<0.05, **p<0.01, 
***p<0.001, data are mean ± SD. 
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Figure 5.3. Clodronate treatment increases extraction socket bone fill at 14 days post tooth 
extraction. Maxillae were harvested at time of sacrifice and analyzed via micro-CT (μCT). (A-
F) Extraction socket bone fill was unchanged after 7 days of treatment with clodronate. (G-L) 
Clodronate liposome treatment significantly increased extraction socket bone fill after 14 days of 
treatment compared to PBS treated mice due to increased trabecular thickness. (M) 
Representative images of bone fill in extraction socket after 14 days of healing. n=8-10/group, 
**p<0.01, data are mean ± SD. 
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Figure 5.4. Clodronate treatment increases tibial trabecular bone.  (A-F) Tibiae were 
harvested at time of sacrifice and trabecular parameters quantified via μCT. Clodronate-loaded 
liposome treated mice had significantly increased trabecular trabecular BV/TV (A), trabecular 
number (Tb.N, B), trabecular thickness (Tb.Th, C) and decreased trabecular spacing (Tb.Sp, D) 
and trabecular tissue mineral density (Tb.TMD, E) at day 7 and 14 compared to PBS treated 
mice. Clodronate treatment increased trabecular bone more at 14 days than at 7 days of 
treatment. (F) Representative images of trabecular bone in proximal tibiae after 14 days of 
treatment with PBS or clodronate. (G) Cortical bone was measured in the midshaft of the tibia 
and was unchanged with clodronate treatment. (H, I) Serum formation (P1NP) and resorptive 
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(TRAcP 5b) markers were measured. Clodronate treatment significantly reduced both formation 
and resorption compared to PBS-treated mice. (J) Representative image of H&E section showing 
increased bone in clodronate treated mice. (K) Tibiae sections were stained for TRAP. 
Clodronate treatment decreased TRAP+ cells in tibiae. n=8-10/group, *p<0.05, **p<0.01, 
***p<0.001, data are mean ± SD 
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Figure 5.5. Clodronate treatment decreases TRAP+ osteoclasts in extraction sockets. 
TRAP+ multinucleated osteoclasts are increased in extraction sockets at day 14 compared to day 
7 after surgery. Treatment with clodronate-loaded liposomes decreases TRAP+ multinucleated 
cells at 7 and 14 days post-extraction compared to PBS-loaded liposome controls.    
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Figure 5.6. F4/80-positive cells are reduced in extraction sockets with clodronate treatment.  
F4/80+ cells are located in the marrow spaces at 7 and 14 days post-extraction and clodronate 
decreased F4/80+ macrophages compared to PBS at both time points.   
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Figure 5.7. Clodronate treatment had no effect on non-wounded oral bone. Interseptal bone 
volume fraction was measured between M2 and M3 molars in the maxilla with no statistically 
significant changes with clodronate treatment.    
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Table 5.1. Clodronate effects on tibia versus maxilla. 
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CHAPTER 6 

 
DISCUSSION AND CONCLUSION 

 

Discussion 

 Understanding the specific roles of individual cells in tissue homeostasis is the basis of 

decades of basic science and translational research. The ultimate goal of identifying the 

mechanistic role of cells under normal conditions is to then be able to identify how these roles 

change in disease. New tools can then be developed to manipulate these mechanisms to promote 

a desired outcome. Each tissue is different and houses its own unique cellular profile which 

affects how that tissue functions, what diseases it is susceptible to and how it responds to injury. 

In the context of the skeletal system, there are 2 major organs, the bone and the bone marrow. 

The bone and bone marrow consists of many cells types that must communicate effectively with 

one another to maintain homeostasis. When one cell type in the bone does not function properly, 

the balance of resorption and formation is affected, leading to potentially undesirable outcomes.  

 One particularly influential cell in bone is the macrophage. Macrophages are myeloid 

lineage cells and function as phagocytes. They are immune cells that can exert pro- and anti-

inflammatory functions. When early and late macrophages are depleted using macrophage 

ablation models, bone forming osteoblasts no longer secrete matrix for mineralization, but the 

mechanisms by which macrophages exert these positive effects are not clear. The work presented 

in this dissertation adds to the current literature on bone marrow macrophage function via in 

vitro and in vivo experimental approaches.  
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 A comprehensive review of the current literature on the bone marrow macrophage 

indicates that the pro-resolving nature of macrophages may explain some of their positive effects 

on bone. To better understand the resolving nature of bone marrow macrophages, a series of in 

vitro experiments were performed to identify regulators of macrophage activity, specifically their 

ability to phagocytose dead and dying cells. In non-bone tissues, anti-inflammatory cytokines 

increase macrophage efferocytosis [1, 2]. It was hypothesized that these anti-inflammatory 

proteins exert similar effects on bone marrow macrophages. Interleukin-10 (IL-10) was a 

candidate cytokine to assess efferocytosis of apoptotic bone cells. IL-10  regulates 

osteoclastogenesis and mice deficient in IL-10 have reduced bone mass [3, 4], yet it was unclear 

how IL-10-associated efferocytosis by bone marrow macrophages may contribute to these 

effects. Consistent with our hypothesis, IL-10 treatment increased macrophage uptake of 

apoptotic bone marrow stromal cells (apBMSCs). IL-10 enhanced efferocytosis by shifting 

macrophage polarization toward the pro-resolving M2 phenotype and increasing the M2 

macrophage ability to uptake apoptotic cells. Next, further information was gathered on the 

signaling pathways affected by the treatment of macrophages with IL-10.  Macrophages were 

treated with an inhibitor of STAT3 phosphorylation (Stattic) prior to IL-10 treatment.  This 

significantly reduced efferocytosis of apBMSCs, confirming IL-10 increases efferocytosis and 

M2 polarization in a pSTAT3-dependent manner.  

Efferocytosis of apBMSCs versus neutrophils led to a unique profile of cytokines 

released by the bone marrow macrophages. The cell specific cytokine response may indicate 

what effects efferocytosis has on bone modeling and remodeling. Following efferocytosis of 

apBMSCs, macrophages displayed increased secretion of monocyte chemoattractant protein-

1/CC chemokine ligand 2 (MCP-1/CCL2) and transforming growth factor beta-1 (TGF-β1). 
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CCL2 promotes osteoclastogenesis in part due to the recruitment of monocyte/osteoclast 

precursors [5]. The release of CCL2 by macrophages engulfing apoptotic bone cells may 

increase bone turnover by recruitment of new osteoclasts and bone macrophages. TGF-β1 is a 

known mesenchymal stem cells recruitment factor [6, 7]. Macrophage secretion of TGF-β1 in 

response to apBMSCs cells may contribute to repopulating the bone forming units.   

Together, the data presented in Chapter 3 show one modulator of macrophage efferocytosis of 

apBMSCs and detail two important cytokines which are upregulated in response. While this 

information tells us more about mediators of efferocytosis in bone, in vivo work should be 

performed to confirm the biologic relevance of these findings.   

 The goal of Chapter 4 was to assess the contributions of MFG-E8, a known anti-

inflammatory mediator, to bone turnover. One well established function of MFG-E8 is to bridge 

between dead and dying cells and macrophages to coordinate engulfment of the apoptotic cell. 

Interestingly, bone marrow macrophages deficient in MFG-E8 did not display altered engulfment 

phenotype in vitro. Additionally, TUNEL positive cells were increased in the spleen and slightly 

but not significantly decreased in the marrow of MFG-E8 KO mice compared to controls. This 

suggested that MFG-E8 may not be the predominant regulator of efferocytosis in the bone 

marrow microenvironment. Given the high turnover rate of cells in the marrow, it would not be 

surprising to see other efferocytic mechanisms upregulated to compensate for the lack of MFG-

E8. Additionally, an MFG-E8 homologue, developmental endothelial locus-1 (DEL-1), has been 

shown to function similarly to MFG-E8 and regulates efferocytosis to a larger extent than MFG-

E8 in certain tissues [8, 9]. Measuring the relative MFG-E8 and DEL-1 expression in the bone 

and bone marrow may provide insight on key efferocytic pathways in bone.  Future studies can 

provide further insight into the important regulators of efferocytosis in this highly plastic tissue.  
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While an efferocytic phenotype was not observed in the bone of the MFG-E8 deficient mice, 

other inflammatory phenotypic changes were observed. In addition to its role in apoptotic cell 

clearance, MFG-E8 is an important anti-inflammatory mediator. MFG-E8 has been shown to 

down-regulate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and 

osteopontin signaling, which are both key regulators of osteoclastic cell differentiation, 

activation and adhesion [10, 11]. Adult MFG-E8 KO mice had increased bone marrow 

neutrophils and myeloid derived suppressor cells as well as increased spleen weights. 

Inflammatory environments have been shown to upregulate osteoclast differentiation and 

activity. Consistent with an increase in osteoclastic bone resorption, MFG-E8 deficient mice 

developed a skeletal phenotype of reduced bone. This phenotype became more apparent with 

age. No phenotype was seen at 6wks of age, but 16wk old mice had decreased cortical bone and 

a trend of decreased trabecular bone. At 22wks, the trabecular phenotype was significant. Other 

groups have also reported on a reduced bone phenotype with MFG-E8 deficiency and found this 

to be consistent with an increase in osteoclast number [12]. In our model, serum from 22wk old 

MFG-E8 KO had increased CTX-I levels which is a marker for osteoclast resorptive activity. In 

vivo, osteoclast number per bone surface was also increased in 22 wk old KO mice compared to 

WT.   

A therapeutic intervention was tested in adult MFG-E8 mice. Intermittent PTH (iPTH) is 

an anabolic bone agent with use limited to severe cases of osteoporosis. Adult MFG-E8 KO mice 

responded robustly to iPTH treatment. Treatment with iPTH decreased osteoclast number per 

bone surface in the adult KO mice and decreased peripheral neutrophil numbers. It is 

hypothesized that iPTH therapy may alter the inflammatory phenotype by mechanisms which 

remain unclear. The insight gained from further studies characterizing the effect of iPTH on 
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inflammation should prove valuable in identifying new patient groups that may benefit from this 

anabolic bone agent as well as the newest anabolic agent, abaloparatide, which utilizes the same 

receptor.  

Steady state bone turnover and bone healing require the presence of macrophages to aid 

in the formation of newly mineralized tissue [13, 14]. Oral osseous wound healing is complicated 

by the unique environment of the oral cavity as well as the need for soft tissue closure. Chapter 5 

delves into the contributions of macrophages and osteoclasts to oral osseous wound healing 

following tooth extraction. Clodronate-loaded liposomes were used to preferentially target 

phagocytic cells and induce apoptosis. Treatment with clodronate-liposomes decreased F4/80+ 

cells in the marrow and in extraction sockets. However, likely due to compensatory mechanism, 

CD68 positive cells were increased in the marrow. CD68 positive cells are mature phagocytic 

macrophages and dendritic cells. This population may be increased to effectively clear the insult 

of apoptotic cell bodies from the clodronate treatment. Additionally, osteoclasts were decreased 

in histologic sections of extraction sockets in mice treated with clodronate and was confirmed by 

decreased serum TRAcP 5b, a marker for osteoclastic bone resorption.  

Mice treated with clodronate displayed location specific alterations in bone volume. In 

the long bones, clodronate dramatically increased trabecular bone volume fraction by 152% after 

14 days of treatment. Alternatively, in extraction sockets, clodronate increased bone fill to a 

much lesser extent; there was an increase in bone fill of 7% compared to PBS treated mice. 

Interestingly, others studies have reported that clodronate-loaded liposome treatment decreased 

new bone formation in a long bone healing [13, 15-17]. Table 6.1 outlines the site-specific 

effects of clodronate treatment as well as MFG-E8 deficiency. As described above, MFG-E8 

deficiency leads to osteopenia in adult mice. Oral osseous wound healing was measured in mice 
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with MFG-E8 deficiency and no alterations to bone fill in extraction sockets or drill hole defects 

were seen (data not shown, summarized in Table 6.1). Because there is an apparent site-specific 

effect of clodronate and MFG-E8 deficiency, it is important to understand the sequence of events 

in tooth extraction socket healing. Briefly, in a mouse extraction socket inflammatory cells 

infiltrate early (d0-3). Osteoblasts form newly mineralized bone around day 5 which is then 

remodeled by osteoclasts after day 7 [18]. In our model, there is a clear increase in TRAP+ 

osteoclasts in extraction socket healing at day 14 compared to day 7, and clodronate decreased 

TRAP+ cells at both time points. Because osteoclast remodeling occurs at or after the latest time 

point measured, the resulting phenotype may not reflect an osteoclast specific outcome. These 

data support macrophages and osteoclasts function at different times to aid in the healing 

process. Future studies should be performed to deplete macrophages and osteoclasts at different 

stages of healing, including before and/or after tooth extraction surgery.  

In addition to depletion of these cells at different stages, the profiles of these cells need to 

be characterized. Previous studies have shown that bone marrow stromal cells (BMSCs) and 

osteoclasts from oral versus long bone sites have different differentiation and activity [19-23]. 

Also, the oral bones and long bones derive from different embryological origins. The mandible 

and maxilla arise from the neuroectoderm layer and undergo intramembranous ossification while 

the long bones arise from the mesoderm and undergo endochondral ossification [24, 25]. Bone 

marrow macrophages from different skeletal sites should also be investigated for their ability to 

differentiate, phagocytose and efferocytose.  Given the oral cavity is unique in its exposure to 

bacteria and pathogens, the macrophages in these sites may be primed to be more active 

phagocytes. Additionally, mechanical forces from mastication are almost double the forces seen 

during walking, and mechanical stimulation positively supports bone formation [26, 27]. The 
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different forces in oral versus long bones may contribute to the relative activity of cells from 

these different skeletal sites. Clearly, more information about how the location of these cells 

affects their behavior is needed.    

Bisphosphonates are anti-resorptive therapeutics that target osteoclasts to prevent 

resorption and further bone loss in patients with osteoporosis. Clodronate is a bisphosphonate 

drug. Treatment of mice with bisphosphonates prior to tooth extraction leads to increased 

extraction socket bone fill [28, 29]. These effects seen with non-liposome bisphosphonates tend 

to lead to a greater increase in extraction socket fill than seen in the clodronate-loaded liposome 

model. Because clodronate-loaded liposomes target macrophages in addition to osteoclasts, this 

may explain the difference between liposome-loaded and non-loaded bisphosphonate extraction 

socket bone fill outcomes. F4/80+ cells are positive regulators of bone turnover [14]. With 

clodronate-loaded liposome treatment, F4/80+ cells are decreased in extraction sockets. The 

clodronate-loaded liposome depletion of F4/80+ cells may therefore negatively impact bone 

formation and explain why clodronate-loaded liposome treatment resulted in differential healing 

than previously published non-liposome bisphosphonate treatments. 

A better understanding of the cell populations crucial to proper healing will lead to the 

development of potential targeted therapies to enhance healing.  

 

Conclusions 

The information gained from these studies has the potential to positively affect patient 

care. Understanding the link between efferocytosis, inflammation and bone volume can lead to 

new screening methods to detect individuals susceptible to inflammation-induced osteoporosis. 

For example, the data presented in Chapter 4 suggests that screening for polymorphisms in the 
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gene encoding MFG-E8 or measuring serum MFG-E8 levels may identify patients at risk of 

developing reduced bone volume. Additionally, other studies have investigated the effect of 

recombinant MFG-E8 protein to decrease the severity of inflammation-induced bone loss with 

promising results [12]. Future studies are needed to investigate MFG-E8 as a drugable target. 

Furthermore, an FDA approved anabolic bone agent, iPTH, was highly effective at increasing 

bone in MFG-E8 deficient mice. This suggests iPTH may be useful in treating patients with 

inflammatory bone loss. Clearly, more studies need to be conducted to assess the effects of iPTH 

in other models of inflammation-induced osteoporosis.  

Compromised oral wound healing leads to decreased oral health related quality of life. It 

is important to understand what cell populations may be potential targets to aid in osseous 

healing without compromising the quality of the bone. Further insight into the temporal and 

spatial specificities of osteal macrophages will ultimately lead to better methods to target cells 

important in the healing process of oral wounds. More information in the quality of the bone that 

is produced by treatment with clodronate-loaded liposomes as well as how timing of depletion of 

macrophages affects healing, may lead to effective treatments for patients susceptible to 

compromised healing. 
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Table 6.1. Clodronate and MFG-E8 deficiency: oral versus long bone changes. 
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