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CHAPTER I

Introduction

Belief specification, as well as the identification of sources and statistical proper-

ties of uncertainty, is a crucial stage in stochastic model development. In much of

the classical literature, one would begin by pinpointing a future event whose out-

come would effectively determine the conclusion of the scenario of interest. It would

then be necessary to hypothesize a particular distribution for the event’s outcomes.

Once these decisions had been made, answering questions with both theoretical and

practical significance became a matter of careful argumentation and computation.

In this thesis, we are concerned with the following two questions, especially in

cases when they can be motivated by financial applications: What if one is unable

to select a single distribution which most appropriately characterizes the likelihoods

of future outcomes? What if one has made a choice, even the best conceivably

available choice, but it is simply wrong? For example, the first issue could naturally

arise when several distribution candidates appear equally plausible, but they all have

unique advantages and flaws. The occurrence of the second issue is nearly inevitable:

As noted by the legendary statistician George Box, “All models are wrong” ([59]).

The financial mathematics community has investigated our first question since

the seminal works of Avellaneda et al. ([28]) and Lyons ([165]). Volatility is a

1
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key parameter when pricing certain securities including options, and these papers

examine what unfolds, if the volatility is not precisely known. Roughly, an agent

faced with this problem is driven to consider several possible distributions for his

future event’s outcomes. He considers infinitely many of them, in fact, and some

may badly disagree with others. For instance, one of his distributions may deem the

occurrence of a particular outcome as certain, while another views it as impossible.

The financial implications of such a framework and its variants have been thoroughly

studied ([18], [42], [52], [53], [91], [109], [125], [126], [172], [203], and [124]). In

support of this line of research and due to its independent relevance, others have

investigated the transference of statistical properties from classical objects to their

counterparts under this new scheme ([190], [191], [223], [224], [195], [241], [181], [127],

[94]). Chapters II and III fall into the latter category. Intuitively, they primarily

focus on features of large aggregations of future events where the corresponding

distributions are uncertain.

To the best of our knowledge, our second question has attracted less scholarly

attention in the contexts of index tracking during a reconstitution, parimutuel wa-

gering, or mini-flash crashes. Briefly, index funds like the Vanguard 500 Index Fund

(VFINX) aim to replicate a chosen market benchmark such as the S&P 500 ([230]).

Parimutuel wagering is a popular betting system used in finance ([38]), sports ([7]),

lotteries ([6]), and prediction markets ([197]). Mini-flash crashes are violent, rapid

spikes or crashes in the price of some security, e.g., the 300ms swing in Qualys, Inc.

(QLYS) from $10 to $0.0001 and back, which took place on April 25, 2013 ([9]).

Chapters IV - VI can be viewed as suggesting that it is natural to make mistakes in

these situations, whether by picking a seemingly reasonable (but imperfect) objective

or relying upon a sophisticated (but faulty) model. These innocuous errors can have
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surprising and occasionally disastrous consequences.

We conclude Chapter I with a more precise outline of the remainder of the thesis.

1.1 Chapter II Summary

In one dimension, the theory of the G-normal distribution is well-developed, and

many results from the classical setting have a nonlinear counterpart. Significant chal-

lenges remain in multiple dimensions, and some of what has already been discovered

is quite nonintuitive. By answering several classically-inspired questions concerning

independence, covariance uncertainty, and behavior under certain linear operations,

we continue to highlight the fascinating range of unexpected attributes of the multi-

dimensional G-normal distribution.

The material in this chapter is based upon [47], which was presented during the

Financial Mathematics: Advanced Modeling and Numerical Methods conference at

the Université Paris Diderot on June 20, 2014.

1.2 Chapter III Summary

For α ∈ (1, 2), we present a generalized central limit theorem for α-stable random

variables under sublinear expectation. The foundation of our proof is an interior

regularity estimate for partial integro-differential equations (PIDEs). A classical

generalized central limit theorem is recovered as a special case, provided a mild but

natural additional condition holds. Our approach contrasts with previous arguments

for the result in the linear setting which have typically relied upon tools that are

nonexistent in the sublinear framework, e.g., characteristic functions.

The material in this chapter is based upon [48], which was presented during the

following events: the Financial/Actuarial Mathematics Seminar at the University

of Michigan on December 3, 2014; the Methods of Mathematical Finance confer-
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ence at Carnegie Mellon University on June 2, 2015; the Mathematical Finance and

Probability Seminar at Rutgers University on November 17, 2015; and at the Joint

Mathematics Meetings: Special Session on Financial Mathematics I at the Washing-

ton State Convention Center on January 7, 2016.

1.3 Chapter IV Summary

We develop a continuous-time game to study the problem faced by an index

tracker whose benchmark is undergoing a reconstitution. Given a linear price im-

pact model, we use standard optimality conditions based on the maximum principle

to produce candidate Nash equilibria. We analyze these results numerically under

varying assumptions regarding tracking error constraints, market characteristics, and

predatory trading activity.

The material in this chapter was presented during the Financial/Actuarial Math-

ematics Seminar at the University of Michigan on March 18, 2015.

1.4 Chapter V Summary

How do large-scale participants in parimutuel wagering events affect the house and

ordinary bettors? A standard narrative suggests that they may temporarily benefit

the former at the expense of the latter. To approach this problem, we begin by

developing a model based on the theory of large generalized games. Constrained only

by their budgets, a continuum of diffuse (ordinary) players and a single atomic (large-

scale) player simultaneously wager to maximize their expected profits according to

their individual beliefs. Our main theoretical result gives necessary and sufficient

conditions for the existence and uniqueness of a pure-strategy Nash equilibrium.

Using this framework, we analyze our question in concrete scenarios. First, we study

a situation in which both predicted effects are observed. Neither is always observed in
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our remaining examples, suggesting the need for a more nuanced view of large-scale

participants.

The material in this chapter is based upon [50], which was presented during the

SIAM Conference on Financial Mathematics & Engineering at the Sheraton Austin

Hotel at the Capitol on November 18, 2016. A particular application of these results

was also featured in media outlets including the Associated Press, after the layman’s

version [49] was published by the The Conversation on May 19, 2016.

1.5 Chapter VI Summary

Oft-cited causes of mini-flash crashes include human errors, endogenous feedback

loops, the nature of modern liquidity provision, fundamental value shocks, and mar-

ket fragmentation. We develop a mathematical model which captures aspects of the

first three explanations. Empirical features of recent mini-flash crashes are present

in our framework. For example, there are periods when no such events will occur.

If they do, even just before their onset, market participants may not know with cer-

tainty that a disruption will unfold. Our mini-flash crashes can materialize in both

low and high trading volume environments and may be accompanied by a partial

synchronization in order submission.

Instead of adopting a classically-inspired equilibrium approach, we borrow ideas

from the optimal execution literature. Each of our agents begins with beliefs about

how his own trades impact prices and how prices would move in his absence. They,

along with other market participants, then submit orders which are executed at a

common venue. Naturally, this leads us to explicitly distinguish between how prices

actually evolve and our agents’ opinions. In particular, every agent’s beliefs will be

expressly incorrect.
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As far as we know, this setup suggests both a new paradigm for modeling heteroge-

neous agent systems and a novel blueprint for understanding model misspecification

risks in the context of optimal execution.

The material in this chapter is based upon [46], which was presented during the

Financial/Actuarial Mathematics Seminar at the University of Michigan on April

12, 2017.



CHAPTER II

Comparing the G-Normal Distribution to its Classical
Counterpart

2.1 Introduction

The G-framework, which includes the G-normal distribution and G-Brownian

motion, was initially motivated by the study of risk measures and pricing under

volatility uncertainty. Roughly speaking, one can think of these objects as the ap-

propriate analogues of their classical namesakes in a setting of model uncertainty

where the relevant collection of probability measures may be singular.

Activity in this area has been considerable since its introduction by Peng ([189],

[192]), and developments have proceeded at a rapid pace. A great variety of standard

theorems from classical probability and stochastic analysis now have versions in the

G-setting including the law of large numbers ([190], [191]), the central limit theorem

([190], [191], [159], [130], [244]), the martingale representation theorem ([223], [224],

[195]), Lévy’s martingale characterization theorem ([242], [243], [160], [161], [225]),

and Girsanov’s theorem ([241], [181], [127]). Substantial progress and extensions of

this work have been completed in many other directions as well ([176], [93], [135],

[177], [94]). Readers interested in survey articles are referred to [188], [193], and

[194].

Fundamental issues linger, especially in multiple dimensions. Much ofG-stochastic

7
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analysis is built upon the G-normal distribution, and yet, many important elemen-

tary questions about this distribution remain unanswered. Some of what is known

is also rather startling. For instance, the following result about the classical normal

distribution is false in the G-setting ([194]):

For any n-dimensional random vector Z, if 〈v, Z〉 is a normal random

variable for all v ∈ Rn, then Z is a normal random vector.

Our intuition cannot be trusted when turned to G-normal random vectors. Prop-

erties such as the one just mentioned fail due to the nonlinearity of the expectation

operator in this framework. Other obstacles include the lack of well-understood

tools from the classical theory (e.g., characteristic functions and density functions).

Also, the distributional uncertainty associated to a G-normal random vector is far

more complex than its initial appearance suggests, since viewing a G-normal random

vector as having some fixed but unknown covariance matrix is usually incorrect.

Faced with these challenges, we asked to what extent additional properties of

the classical normal distribution hold for its G-counterpart, particularly focusing on

behaviors under various linear operations and the relationship between coordinate

independence and the covariance matrix. We present our findings concerning the

following classical theorems:

(i) Let Z1, . . . , Zn be i.i.d. normal random variables. If

U =
n∑
i=1

aiZi and V =
n∑
i=1

biZi

for real numbers ai, bi satisfying

n∑
i=1

aibi = 0,

then U and V are independent.
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(ii) Let Z1, . . . , Zn be independent normal random variables. For any m × n real

matrix A, if

Z = (Z1, . . . , Zn)> ,

then AZ is an m-dimensional normal random vector.

(iii) The covariance matrix of a normal random vector is diagonal if and only if its

coordinates are (mutually) independent normal random variables.

(iv) If Z is an n-dimensional normal random vector, then there exists an invertible

n× n matrix A such that the coordinates of AZ are independent.

Theorem II.14 reveals that (i) is no longer true in the G-setting. We show in The-

orem II.15 that (ii) no longer holds either. While this was already known in a few

special cases ([194]), our work explores a broad new class of examples and illuminates

a surprising dichotomy depending on the rank of the matrix. Theorems II.17 and

II.18 indicate that while (iii) is partially true for the G-normal distribution, unex-

pected new constraints on the coordinates are introduced. We end by demonstrating

with Theorem II.19 that the analogue of (iv) is false.

Our proofs often take advantage of a strange phenomenon in this setting: inde-

pendence can be asymmetric, i.e., Y can be independent from X even if X is not

independent from Y . The general strategy is to show that this is incompatible with

the symmetry relations imposed by the G-heat equation associated to the G-normal

distribution, given a careful choice of parameters.

These insights expand our knowledge of the remarkable series of behaviors exhib-

ited by the multidimensional G-normal distribution. While the ultimate goal is to

use these results to broaden our knowledge of G-stochastic analysis and its related

financial applications, we believe that many more surprises lurk in the answers to
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further theoretical questions about this object.

Readers unfamiliar with this area can find a short treatment of relevant back-

ground material in Section 2.2. The specific setup necessary for the statement of our

results is in Section 2.3. Our main results are contained in Section 2.4.

2.2 Background

We begin with a brief survey of the theory of sublinear expectation spaces and

the G-normal distribution. Our focus will be restricted to only those results that are

directly needed for our work in the sequel. Readers interested in a more thorough

treatment can find further details in [188], [193], [194], [128], or [163], the references

from which our discussion is adapted.

Throughout, we let Ω be a given set and H be a space of real-valued functions

defined on Ω. One should understand H as a space of random variables on Ω. We

will only place minimal emphasis on Ω and H, but we suppose that H

(i) is a linear space,

(ii) contains all constant functions, and

(iii) contains ϕ (X1, X2, . . . , Xn) for every X1, X2, . . . , Xn ∈ H and

ϕ ∈ Cl.Lip (Rn), where Cl.Lip (Rn) is the set of functions such that there exists

C > 0 and m ∈ N (depending on ϕ) satisfying

|ϕ (x)− ϕ (y)| ≤ C (1 + |x|m + |y|m) |x− y|

for all x, y ∈ Rn.

Our specific choice of test functions, Cl.Lip (Rn), is only a matter of convenience.

Other spaces are also commonly used.
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Definition II.1. A sublinear expectation is a function Ê : H −→ R which is

(i) Monotonic: Ê [X] ≤ Ê [Y ] if X ≤ Y ,

(ii) Constant-preserving: Ê [c] = c for any c ∈ R,

(iii) Sub-additive: Ê [X + Y ] ≤ Ê [X] + Ê [Y ], and

(iv) Positive homogeneous: Ê [λX] = λÊ [X] for λ ≥ 0.

The triple
(

Ω,H, Ê
)

is called a sublinear expectation space.

Notation II.2. Unless stated otherwise, we will always work on some sublinear

expectation space
(

Ω,H, Ê
)

, and when we have random variables X1, X2, . . . , Xn ∈

H, we will say that X is an n-dimensional random vector and write X ∈ Hn.

Great caution is required when manipulating expressions with sublinear expec-

tations due to (iii) and (iv). Most familar operations from the classical theory are

simply no longer valid. One situation where a standard technique can be applied is

the following.

Lemma II.3. Consider two random variables X, Y ∈ H such that

Ê [Y ] = −Ê [−Y ]. Then

Ê [X + αY ] = Ê [X] + αÊ [Y ]

for all α ∈ R.

In the literature, random variables such as Y above are said to have no mean-

uncertainty, a notion which also arises in the context of symmetric G-martingales.

We will resort to a notable consequence of this result again and again: if Ê [Y ] =

Ê [−Y ] = 0, then for all α ∈ R,

Ê [X + αY ] = Ê [X] . (2.1)
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Definition II.4. An n-dimensional random vector Y ∈ Hn is said to be independent

from an m-dimensional random vector X ∈ Hm if for all ϕ ∈ Cl.Lip (Rm+n), we have

Ê [ϕ (X, Y )] = Ê
[
Ê [ϕ (x, Y )]x=X

]
.

As we mentioned previously, independence can be asymmetric when Ê is not a

linear expectation. A now standard example which we will refer to later illustrates

this concretely.

Example II.5. Consider random variables X, Y ∈ H such that

(i) Ê [X] = −Ê [−X] = 0,

(ii) Ê [|X|] > 0, and

(iii) Ê [Y 2] > −Ê [−Y 2].

If X is independent from Y ,

Ê
[
XY 2

]
= 0,

while if Y is independent from X,

Ê
[
XY 2

]
> 0.

A broad class of situations where (i) , (ii), and (iii) are satisfied occurs when X ∼

N (0, [σ2
1, σ

2
1]) for 0 < σ2

1 and Y ∼ N (0, [σ2
2, σ

2
2]) for σ2

2 < σ2
2 (see below for notation).

Ignoring trivial cases, one can actually characterize the distribution of X and Y if

X is independent from Y and vice versa (see Proposition II.13 below). Still, observe

that if Ê is a linear expectation, this definition is equivalent to the classical one.

Definition II.6. Let X be an n-dimensional random vector, i.e., X ∈ Hn.

(i) The distribution of X, FX , is defined on Cl.Lip (Rn) by

FX (ϕ) = Ê [ϕ (X)] .
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(ii) X has distributional uncertainty if FX is not a linear expectation

( (Rn, Cl.lip (Rn) ,FX) is always a sublinear expectation space).

(iii) If Y ∈ Hn is another n-dimensional random vector, then X and Y are identically

distributed, denoted X ∼ Y , if

FX = FY .

(iv) If X and Y are identically distributed and Y is independent from X, then Y is

an independent copy of X.

This notion of being identically distributed is also equivalent to the classical defin-

tion if Ê is a linear expectation. The sublinear case possesses many interesting new

features, but we will only need to know about those pertaining to the G-normal

distribution and the maximal distribution.

Definition II.7. An n-dimensional random vector X ∈ Hn is said to be G-normally

distributed if for any independent copy of X, say X̄, we have

aX + bX̄ ∼
√
a2 + b2X

for all a, b ≥ 0.

“G” refers to the sublinear function defined on the space of n × n symmetric

matrices, S (n), by

G (A) =
1

2
Ê [〈AX,X〉] . (2.2)

For each such function, there exists a unique bounded, closed, convex subset Γ of

the n× n positive semidefinite matrices, S+ (n), such that

G (A) =
1

2
sup
B∈Γ

tr [AB] . (2.3)
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Conversely, given any Γ with these properties, there exists a G-normal random vector

X such that (2.2) and (2.3) hold.

Γ completely determines the distribution of a G-normal random vector X, and in

fact, one can loosely interpret Γ as describing the covariance uncertainty of X. As

we remarked above, some care must be exercised since viewing X as possessing a

classical normal distribution with some fixed but unknown covariance matrix selected

from Γ is not generally correct. However, if Γ contains only one element, then X is

a classical normal random vector with mean zero and covariance Γ.

Notation II.8. We write X ∼ N (0,Γ). If n = 1, then Γ = [σ2, σ2] for 0 ≤ σ2 ≤ σ2

given by

σ2 = Ê
[
X2
]

and σ2 = −Ê
[
−X2

]
.

We will frequently use the following important basic properties of a G-normal

random vector.

Lemma II.9. Let X = (X1, . . . , Xn) be an n-dimensional G-normal random vector,

i.e., X ∼ N (0,Γ). Then

(i) Ê [Xi] = Ê [−Xi] = 0 for all i;

(ii) −X and X are identically distributed, i.e., −X ∼ N (0,Γ);

(iii) for all v ∈ Rn, the random variable 〈v,X〉 is N (0, [σ2, σ2])-distributed, where

σ2 = Ê
[
〈v,X〉2

]
and σ2 = −Ê

[
−〈v,X〉2

]
; and

(iv) for all m× n real matrices M , MX ∼ N
(
0,MΓM>).

Perhaps the deepest known property of a G-normal random vector is its intimate

connection to the so-called “G-heat equation”, a parabolic PDE generalizing the

classical heat equation.
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Proposition II.10. Let X be an n-dimensional G-normal random vector, i.e., X ∼

N (0,Γ). For all ϕ ∈ Cl.Lip (Rn), the function

u (t, x) = Ê
[
ϕ
(
x+
√
tX
)]
, (t, x) ∈ [0,∞)× Rn

is the unique viscosity solution of the following PDE:

∂tu−G
(
D2u

)
= 0, (t, x) ∈ (0,∞)× Rn

u (0, x) = ϕ (x) , x ∈ Rn,

where D2u =
(
∂2
xixju

)
ij

.

We will not need the full theory of viscosity solutions in our development, as the

solution to the equation above is actually a classical solution if G is non-degenerate.

We will use the remainder of this section only for the proof of Theorem II.18.

Notation II.11. We let Cb.Lip (Rn) denote the space of bounded Lipschitz functions

on Rn.

We recall that [128] uses Cb.Lip (Rn) as the space of test functions instead of

Cl.Lip (Rn). This technicality does not matter for our proof of Theorem II.18, as we

will explain later.

Definition II.12. An n-dimensional random vector X ∈ Hn is called maximally

distributed if there exists a closed set Γ ⊂ Rn such that

Ê [ϕ (X)] = sup
x∈Γ

ϕ (x)

for all ϕ ∈ Cb.Lip (Rn).

One can understand random variables of this kind as analogues of constants in

the sublinear setting. In particular, if X is a G-normal random variable with X ∼
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N (0, [σ2, σ2]) for some σ2 < σ2, then X is not maximally distributed. Observe that

we have presented the definition from [128] rather than the original version in [194],

as we will need the following theorem from [128].

Proposition II.13. Suppose that the random variable W ∈ H has distributional

uncertainty and that the random variable W ′ ∈ H is not a constant. If W is inde-

pendent from W ′ and vice versa, then W and W ′ must be maximally distributed.

2.3 Basic Setup

Throughout our work below, we consider random vectors X, Y ∈ Hn such that

(i) X = (X1, . . . , Xn) is a G-normal random vector, i.e., X ∼ N (0,Γ); and

(ii) Y = (Y1, . . . , Yn), where

(a) Y1 ∼ N (0, [σ2, σ2]) for some 0 < σ2 < σ2;

(b) Yi+1 and Yi are identically distributed, i.e., Yi+1 ∼ Yi; and

(c) Yi+1 is independent from (Y1, . . . , Yi).

Although a seemingly innocent construction, we will see that Y is a rich source of

counterexamples when evaluating whether or not standard classical theorems about

the normal distribution hold in the G-framework. The inequality

σ2 < σ2

is critical for us, as it implies that the coordinates of Y are not classical normal

random variables. Because our objective is to compare the properties of the classical

normal distribution with its G-counterpart, we have added the assumption

0 < σ2
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for convenience. As observed above, this condition ensures that the solution to the

G-heat equation is actually classical.

Whenever restating classical results to facilitate our comparisons, we will always

call classical random vectors “Z”.

2.4 Main Results

2.4.1 Behavior Under Linear Combinations

Recall that in the classical setting, we have the following result:

Let Z1, . . . , Zn be i.i.d. normal random variables. If

U =
n∑
i=1

aiZi and V =
n∑
i=1

biZi

for real numbers ai, bi satisfying

n∑
i=1

aibi = 0,

then U and V are independent.

The corresponding statement does not hold in the G-framework.

Theorem II.14. Let a1 = 1, a2 = 1, b1 = 1, and b2 = −1. Set the remaining

constants equal to zero, i.e.,

U = Y1 + Y2 and V = Y1 − Y2.

Then
n∑
i=1

aibi = 0,

but U is not independent from V and vice versa.

In fact, it is not yet known if any non-trivial linear combination of this kind will

produce independent random variables. An important classical characterization of
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the normal distribution, the Skitovich-Darmois theorem, is related to the indepen-

dence of such linear combinations, and whether or not a G-version of this holds is

also unknown.

Proof. Our strategy will be to show that the random vectors (U, V ) and (V, U) are

identically distributed. On the other hand, if U were independent from V or vice

versa, the resulting destruction of symmetry would make this impossible.

A simple calculation shows that −Y2 is an independent copy of Y1, which means

that

V ∼
√

2Y1 ∼ N
(
0,
[
2σ2, 2σ2

])
by Definition II.7. The same is true for U .

By Example II.5, if U is independent from V , then

Ê
[
UV 2

]
= 0

and

Ê
[
V U2

]
> 0.

If V is independent from U , then

Ê
[
V U2

]
= 0

and

Ê
[
UV 2

]
> 0.

Hence, exactly one of these must hold:

(i) U is independent from V but V is not independent from U .

(ii) V is independent from U but U is not independent from V .

(iii) U is not independent from V and V is not independent from U .
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Let S : R2 → R2 be defined by

S (x, y) = (x− y, x+ y) for all (x, y) ∈ R2.

Observe that ϕ ◦ S ∈ Cl.Lip (R2) for any ϕ ∈ Cl.Lip (R2). Since Y2 and −Y2 are each

independent copies of Y1, for any ϕ ∈ Cl.Lip (R2),

Ê [ϕ (V, U)] = Ê [ϕ (Y1 − Y2, Y1 + Y2)]

= Ê [(ϕ ◦ S) (Y1, Y2)]

= Ê
[
Ê [(ϕ ◦ S) (x̄, Y2)]x̄=Y1

]
= Ê

[
Ê [(ϕ ◦ S) (x̄,−Y2)]x̄=Y1

]
= Ê [(ϕ ◦ S) (Y1,−Y2)]

= Ê [ϕ (Y1 + Y2, Y1 − Y2)]

= Ê [ϕ (U, V )] .

Applying this equality to ϕ (x, y) = xy2, we have

Ê
[
V U2

]
= Ê

[
UV 2

]
,

which implies that U is not independent from V and vice versa.

2.4.2 Behavior Under General Linear Transformations

Allowing the degenerate case, we have another important property of the classical

normal distribution:

Let Z1, . . . , Zn be independent normal random variables. For any m × n

real matrix A, if

Z = (Z1, . . . , Zn)> ,

then AZ is an m-dimensional normal random vector.
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The situation in the G-framework is far more delicate.

Theorem II.15. For any m× n real matrix A,

(i) 〈v,AY 〉 is a G-normal random variable with

〈v,AY 〉 ∼ N
(

0,
[∥∥v>A∥∥2

σ2,
∥∥v>A∥∥2

σ2
])

for all v ∈ Rm;

(ii) if A has rank less than or equal to one, AY is an m-dimensional G-normal

random vector, or more precisely, AY ∼ N (0,Γ′), where

Γ′ =
{
uru> : r ∈

[
‖w‖2 σ2, ‖w‖2 σ2

]}
and A = uw> for u ∈ Rm, w ∈ Rn; and

(iii) if A is invertible, AY is not G-normally distributed. (In particular, Y is not

G-normally distributed.)

One would expect (i) and (ii); however, (iii) is quite surprising both because of the

bifurcation it reveals and its relation to classical theorems. While it was previously

known that the classical property above failed to be true in the G-setting ([194]),

our result provides an expansive new series of cases illustrating this failure. It serves

the same purpose with respect to the following classical statement as well:

For any n-dimensional random vector Z, if 〈v, Z〉 is a normal random

variable for all v ∈ Rn, then Z is an n-dimensional normal random vector.

Whether or not AY is a G-normal random vector if A is non-invertible but has rank

strictly greater than one remains unclear.

The most difficult part of the proof is the following lemma, which is a small

extension of Exercise 1.15 in [194]. This lemma will be critical for our proof of

Theorems II.17, II.18, and II.19 as well.
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Lemma II.16. Let α > 0. Suppose that W1 and W2 are two G-normal random

variables such that

(i) W1 ∼ N (0, [σ2, σ2]); and

(ii) W2 ∼ N (0, [ασ2, ασ2]).

If either W2 is independent from W1 or vice versa, then W = (W1,W2)> is not a

2-dimensional G-normal random vector.

Proof. We first consider the case where W2 is independent from W1. Suppose instead

that W is a 2-dimensional G-normal random vector. Our initial step will be to com-

pute the corresponding G-heat equation, which we will use to establish an identity

relating the distributions of the random vectors W = (W1,W2)> and (W2,W1)>.

The conclusion will be reached by showing that this “symmetry” contradicts the

asymmetry induced by our independence assumption.

We can find a bounded, closed, convex subset Γ ⊂ S+ (2) such that

1

2
Ê [〈AW,W 〉] = G (A) =

1

2
sup
B∈Γ

tr [AB]

for all A ∈ S (2). Now for all

A =

 a11 a12

a12 a22

 ∈ S (2) ,
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we have

G (A) =
1

2
Ê

〈
 a11 a12

a12 a22


 W1

W2

 ,
 W1

W2

〉


=
1

2
Ê
[
a11W

2
1 + 2a12W1W2 + a22W

2
2

]
=

1

2
Ê
[
Ê
[
a11x̄

2 + 2a12x̄W2 + a22W
2
2

]
x̄=W1

]
=

1

2
Ê
[(
a11x̄

2 + 2a12x̄Ê [W2] + Ê
[
a22W

2
2

])
x̄=W1

]
=

1

2
Ê
[(
a11x̄

2 + ασ2
(
a+

22

)
− ασ2

(
a−22

))
x̄=W1

]
=

1

2
Ê
[
a11W

2
1

]
+
α

2

(
σ2
(
a+

22

)
− σ2

(
a−22

))
=

1

2

(
σ2
(
a+

11

)
− σ2

(
a−11

))
+
α

2

(
σ2
(
a+

22

)
− σ2

(
a−22

))
= Ḡ (a11) + αḠ (a22) ,

where Ḡ is defined by

Ḡ (x) =
1

2

(
σ2
(
x+
)
− σ2

(
x−
))

for all x ∈ R. A quick calculation verifies that Γ must then be given by

Γ =


 r1 0

0 r2

 : r1 ∈
[
σ2, σ2

]
, r2 ∈

[
ασ2, ασ2

] .

Let ϕ ∈ Cl.Lip (R2). Define the function u by

u (t, x, y) = Ê
[
ϕ
(

(x, y) +
√
t (W1,W2)

)]
for all (t, x, y) ∈ [0,∞)×R2. By Proposition II.10, u is the unique viscosity solution

to

∂tu− Ḡ
(
∂2
xxu
)
− αḠ

(
∂2
yyu
)

= 0, (t, x, y) ∈ (0,∞)× R2

u (0, x, y) = ϕ (x, y) , (x, y) ∈ R2.
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In fact, since 0 < σ2, u is a classical solution.

Let the functions S and S̃ be given by

S (x, y) =

(
1√
α
y,
√
αx

)
for all (x, y) ∈ R2 and

S̃ (t, x, y) =

(
t,

1√
α
y,
√
αx

)
for all (t, x, y) ∈ [0,∞)× R2. Define a function v by

v = u ◦ S̃.

Then v is a classical solution of

∂tv − Ḡ
(
∂2
xxv
)
− αḠ

(
∂2
yyv
)

= 0, (t, x, y) ∈ (0,∞)× R2

v (0, x, y) = (ϕ ◦ S) (x, y) , (x, y) ∈ R2.

Hence,

v (t, x, y) = Ê
[
(ϕ ◦ S)

(
(x, y) +

√
t (W1,W2)

)]
.

In particular,

Ê
[
ϕ

(
1√
α
W2,
√
αW1

)]
= Ê

[
(ϕ ◦ S)

(
(0, 0) +

√
1 (W1,W2)

)]
= v (1, 0, 0)

=
(
u ◦ S̃

)
(1, 0, 0)

= u (1, 0, 0)

= Ê
[
ϕ
(

(0, 0) +
√

1 (W1,W2)
)]

= Ê [ϕ (W1,W2)] .



24

Since ϕ ∈ Cl.Lip (R2) was arbitrary, applying this to the function ϕ (x, y) = xy2 gives

√
αÊ
[
W2W

2
1

]
= Ê

[
W1W

2
2

]
.

On the other hand, Example II.5 implies

Ê
[
W2W

2
1

]
= 0

and

Ê
[
W1W

2
2

]
> 0,

a contradiction. It follows that W is not a 2-dimensional G-normal random vector

in this case.

To finish the proof, assume that W1 is independent from W2. If W = (W1,W2)>

were 2-dimensional G-normal random vector, then 0 1

1 0

 ·
 W1

W2

 =

 W2

W1


would be a 2-dimensional G-normal random vector by Lemma II.9. This is impossible

by what we just considered, so the result holds.

The proof of the theorem is now straightforward.

Proof. Let A = (aij). To prove (i), suppose v = (v1, . . . , vm)> ∈ Rm. For all

ϕ ∈ Cl.Lip (R),

Ê [ϕ (〈v, AY 〉)] = Ê

[
ϕ

((
v1

n∑
k=1

a1kYk

)
+ · · ·+

(
vm

n∑
k=1

amkYk

))]

= Ê

[
ϕ

((
m∑
k=1

vkak1

)
Y1 + · · ·+

(
m∑
k=1

vkakn

)
Yn

)]

= Ê

ϕ

√√√√( m∑

k=1

vkak1

)2

+ · · ·+

(
m∑
k=1

vkakn

)2

Y1




= Ê
[
ϕ
(∥∥v>A∥∥Y1

)]
,
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which directly follows from Definition II.7. By Lemma II.9,

〈v,AY 〉 ∼
∥∥v>A∥∥Y1 ∼ N

(
0,
[∥∥v>A∥∥2

σ2,
∥∥v>A∥∥2

σ2
])
.

For (ii), since A has rank less than or equal to one, we can find

u = (u1, . . . , um)> ∈ Rm and w = (w1, . . . , wn)> ∈ Rn such that

A = uw>.

By Lemma II.9,

w>Y ∼

√√√√ n∑
i=1

w2
i

Y1 ∼ N
(
0,
[
‖w‖2 σ2, ‖w‖2 σ2

])
.

Since AY is given by

AY = u
(
w>Y

)
,

another application of Lemma II.9 implies the result.

To see that (iii) holds, let B be the 2× n matrix

B =

 1 0 · · · · · · 0

0 1 0 · · · 0

 .
Since (

BA−1
)
AY = BY =

 Y1

Y2

 ,
Lemmas II.9 and II.16 show that AY cannot be an n-dimensional G-normal random

vector.

2.4.3 Connections Between Covariance Uncertainty and Independence

Classically, there is a tight relationship between the covariance matrix of a normal

random vector and the independence of its coordinates:
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The covariance matrix of a normal random vector is diagonal if and only

if its coordinates are (mutually) independent normal random variables.

Once again, the analogous situation is more subtle in the G-setting. For instance,

the forward direction is false.

Theorem II.17. Let

Γ =


 r1 0

0 r2

 : r1, r2 ∈
[
σ2, σ2

] ,

so X = (X1, X2)> and X ∼ N (0,Γ). X1 is not independent from X2 and vice versa.

Proof. We will proceed by computing the distributions of the random variables X1

and X2. Then we will invoke Lemma II.16, the impetus for our choice of this specific

Γ.

Recall that for A ∈ S (2),

1

2
Ê [〈AX,X〉] = G (A) =

1

2
sup
B∈Γ

tr [AB] .

In particular,

1

2
Ê
[
X2

1

]
= G


 1 0

0 0




=
1

2
sup
B∈Γ

tr


 1 0

0 0

B


=
1

2
sup

r1∈[σ2,σ2]
r1

=
1

2
σ2,

i.e.,

Ê
[
X2

1

]
= σ2.
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A similar calculation gives that

Ê
[
X2

2

]
= σ2

and

−Ê
[
−X2

1

]
= −Ê

[
−X2

2

]
= σ2.

By Lemma II.9, X1 and X2 are both G-normal random variables and

X1, X2 ∼ N
(
0,
[
σ2, σ2

])
.

Lemma II.16 implies that X1 cannot be independent from X2 and vice versa.

The backward direction bears a stronger resemblance to the classical case, al-

though with a few unforeseen twists.

Theorem II.18. Suppose that there exists a permutation π ∈ Sn such that for all

1 ≤ i ≤ n− 1, Xπ(i+1) is independent from
(
Xπ(1), . . . , Xπ(i)

)
. Then

(i) for σ2
i , σ

2
i such that Xi ∼ N (0, [σ2

i , σ
2
i ]),

Γ =
{

diag [r1, . . . , rn] : ri ∈
[
σ2
i , σ

2
i

]}
;

(ii) for any 1 ≤ i ≤ n such that 0 < σ2
i < σ2

i ,

α
[
σ2
i , σ

2
i

]
6=
[
σ2
j , σ

2
j

]
for all j 6= i and α > 0; and

(iii) for any i < j, Xπ(i) is not independent from Xπ(j) if either of the following hold:

(a) σ2
π(i) < σ2

π(i) and 0 < σ2
π(j), or

(b) σ2
π(j) < σ2

π(j) and 0 < σ2
π(i).
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(i) is exactly as expected, but (ii) and (iii) are highly nonintuitive: no remotely

similar conditions are present in the classical theory. Observe that while this theo-

rem places substantial restrictions on Γ if the coordinates of X satisfy appropriate

independence conditions, it does not address the existence of such an X. This issue

is still unresolved.

Proof. We begin with (i). By Lemma II.9 we can find 0 ≤ σ2
i ≤ σ2

i such that

Xi ∼ N
(
0,
[
σ2
i , σ

2
i

])
for all 1 ≤ i ≤ n. Also, for any A = (aij) ∈ S (n),

1

2
Ê [〈AX,X〉] = G (A) =

1

2
sup
B∈Γ

tr [AB] .

Now

1

2
Ê [〈AX,X〉] =

1

2
Ê

[
n∑
i=1

aiiX
2
i + 2

n−1∑
i=1

n∑
j=i+1

aijXiXj

]

=
1

2
Ê

[
n∑
i=1

aπ(i)π(i)X
2
π(i) + 2

n−1∑
i=1

n∑
j=i+1

aπ(i)π(j)Xπ(i)Xπ(j)

]
.

For any 1 ≤ i < j ≤ n,

Ê
[
Xπ(i)Xπ(j)

]
= Ê

[
Ê
[
x̄Xπ(j)

]
x̄=Xπ(i)

]
= 0

and

−Ê
[
−Xπ(i)Xπ(j)

]
= −Ê

[
Ê
[
−x̄Xπ(j)

]
x̄=Xπ(i)

]
= 0.
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By repeated application of (2.1),

1

2
Ê [〈AX,X〉] =

1

2
Ê

[
n∑
i=1

aπ(i)π(i)X
2
π(i)

]

=
1

2
Ê

[
Ê

[
· · · Ê

[
n−1∑
i=1

aπ(i)π(i)x̄
2
π(i)

+ aπ(n)π(n)X
2
π(n)

]
x̄π(n−1)=Xπ(n−1)

· · ·

]
x̄π(1)=Xπ(1)

]

=
1

2

n∑
i=1

(
σ2
π(i)

(
a+
π(i)π(i)

)
− σ2

π(i)

(
a−π(i)π(i)

))
=

1

2

n∑
i=1

(
σ2
i

(
a+
ii

)
− σ2

i

(
a−ii
))
.

Hence, we need to find a bounded, closed, convex subset Γ ⊂ S+ (n) such that

n∑
i=1

(
σ2
i

(
a+
ii

)
− σ2

i

(
a−ii
))

= sup
B∈Γ

tr [AB]

for any A = (aij) ∈ S (n). One easily verifies that

Γ =
{

diag [r1, . . . , rn] : ri ∈
[
σ2
i , σ

2
i

]}
.

To prove (ii), suppose that i 6= j and 0 < σ2
i < σ2

i . Let Bij be the 2 × n matrix

of 0’s and 1’s such that  Xi

Xj

 = BijX.

Lemma II.9 implies that  Xi

Xj


is a 2-dimensional G-normal random vector. By Lemma II.16, since either Xj is

independent from Xi or vice versa, (ii) holds.

(iii) is an immediate consequence of Proposition II.13. One might object that the

space of test functions in [128] is Cb.Lip (Rn) instead of Cl.Lip (Rn), but this issue is

addressed in Example 21 of that reference.
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An additional classical result bridging the form of a normal random vector’s co-

variance matrix and the independence of its coordinates is as follows:

If Z is an n-dimensional normal random vector, then there exists an in-

vertible n× n matrix A such that the coordinates of AZ are independent.

The related statement is false for a G-normal random vector. There are several

possible approaches here. For example, by Lemma II.9 and Theorem II.18, it suffices

to construct a Γ such that AΓA> contains non-diagonal matrices for all invertible

n × n matrices A. Our method uses a more straightforward choice of Γ but also

incorporates Lemma II.16.

Theorem II.19. Let

Γ =


 r1 0

0 r2

 : r1, r2 ∈
[
σ2, σ2

] .

There is no invertible 2 × 2 real matrix A such that the coordinates of AX are

independent.

Proof. Suppose that for some invertible 2 × 2 real matrix A = (aij), either W2 is

independent from W1 or vice versa, where (W1,W2)> = AX. By Lemma II.9,

AX ∼ N
(
0, AΓA>

)
.

For all r1, r2 ∈ [σ2, σ2],

A

 r1 0

0 r2

A> =

 r1a
2
11 + r2a

2
12 r1a11a21 + r2a12a22

r1a11a21 + r2a12a22 r1a
2
21 + r2a

2
22

 .
From Theorem II.18,

AΓA> =


 r1 0

0 r2

 : r1 ∈
[
σ2

1, σ
2
1

]
, r2 ∈

[
σ2

2, σ
2
2

]
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where Wi ∼ N (0, [σ2
i , σ

2
i ]).

This is only possible if

a11a21 = a12a22 = 0.

Since A is an invertible 2× 2 real matrix, it must be of the form

A =

 a11 0

0 a22

 for nonzero a11, a22 ∈ R

or

A =

 0 a12

a21 0

 for nonzero a12, a21 ∈ R.

If the former holds, then

AΓA> =


 r1 0

0 r2

 : r1 ∈
[
a2

11σ
2, a2

11σ
2
]
, r2 ∈

[
a2

22σ
2, a2

22σ
2
] .

In this case,

W1 ∼ N
(
0,
[
a2

11σ
2, a2

11σ
2
])

and W2 ∼ N
(
0,
[
a2

22σ
2, a2

22σ
2
])

by Lemma II.9, which is impossible by Lemma II.16.

Similarly, A cannot have the latter form, so the result holds.



CHAPTER III

An α-Stable Limit Theorem Under Sublinear Expectation

3.1 Introduction

The purpose of this manuscript is to prove a generalized central limit theorem

for α-stable random variables in the setting of sublinear expectation. Such a result

complements the limit theorems for G-normal random variables due to Peng and

others in this context and answers in the affirmative a question posed by Neufeld

and Nutz in [173] (see below).

When working with a sublinear expectation, one is simultaneously considering a

potentially uncountably infinite and non-dominated collection of probability mea-

sures. A construction of this kind is motivated by the study of pricing under volatil-

ity uncertainty. Needless to say, a variety of frequently called upon devices from the

classical setting are unavailable. The complications encompass further issues as well:

new behaviors are occasionally observed like those outlined in [47].

Analogues of significant theorems from classical probability and stochastic analysis

are nevertheless moderately abundant. For instance, versions of the law of large

numbers can be found in [190] and [191]; the martingale representation theorem

is given in [223], [224], and [195]; Girsanov’s theorem is obtained in [241], [181],

and [127]; and a Donsker-type result is shown in [94]. To conduct investigations

32
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along these lines, standard proofs must often be reimagined. For instance, Peng’s

proof of the central limit theorem under sublinear expectation in [190] resorts to

interior regularity estimates for fully nonlinear parabolic partial differential equations

(PDEs). His idea has since been extended to prove a number of variants of his original

result, e.g., see [191], [159], [130], and [244].

We will operate in the sublinear expectation framework unless explicitly indicated

otherwise. The objects of our special attention here, the α-stable random variables

for α ∈ (1, 2), were introduced in [173]. The authors pondered whether or not these

could be the subject of a generalized central limit theorem. Classical generalized

central limit theorems ordinarily come in one of three flavors:

(i) a statement indicating that a random variable has a nonempty domain of at-

traction if and only if it is α-stable such as Theorem 2.1.1 in [136],

(ii) a characterization theorem for the domain of attraction of an α-stable random

variable such as Theorem 2.6.1 in [136], or

(iii) a characterization theorem for the domain of normal attraction for an α-stable

random variable such as Theorem 2.6.7 in [136].

Recall that an i.i.d. sequence (Yi)
∞
i=1 of random variables is in the domain of attrac-

tion of a random variable X if there exist sequences of constants (Ai)
∞
i=1 and (Bi)

∞
i=1

so that

Bn

n∑
i=1

Yi − An

converges in distribution to X as n → ∞. (Yi)
∞
i=1 is in the domain of normal

attraction of X if

Bn =
1

bn1/α

for some b > 0.
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We confine our search to the direction suggested by (iii) because of the particular

importance classically of results of this type (cf. the central limit theorem). Our main

findings are summarized in Theorem III.11, which details sufficient conditions for

membership in the domain of normal attraction of a given α-stable random variable.

While the initial appearance of our distributional hypotheses is perhaps forbidding,

in point of fact, our assumptions are manageable. This is illustrated by the discussion

immediately following Theorem III.11, as well as Examples III.13 and III.14.

Example III.13 establishes that the α-stable random variables under consideration

are in their own domain of normal attraction. Although one need not apply Theorem

III.11 for this purpose, the writeup serves a clarifying role and any credible result

clearly must pass this litmus test.

Example III.14 is more substantive. Setting aside a few mild “uniformity” con-

ditions which arise due to the supremum, this example can be understood in an

intuitive manner (see Section 3.4). This falls out of our analysis just below Theorem

III.11, where we describe the relationship between our work and the classical result

noted in (iii) above. More specifically, Theorem III.11 detects all classical random

variables in this collection with mean zero and a cumulative distribution function

(cdf) that satisfies a small differentiability requirement. An extra regularity condi-

tion on the cdf is unavoidable, as one must translate its form into properties that

can be stated only in terms of expectation.

The strategy of our proof is to reduce demonstrating convergence in distribu-

tion to showing that a certain limit involving the solution to the backward version

of our generating PIDE is zero. Upon breaking up our domain and summing the

corresponding increments of the solution, regularity properties of this function are

employed to argue that size of the terms being added together decay rapidly enough
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in the limit to furnish the desired conclusion. This general scheme is similar to that

initiated in [190], except that the generating equation there is

∂tu−
1

2

(
σ2 (∂xxu)+ − σ2 (∂xxu)−

)
= 0, (t, x) ∈ (0,∞)× R

u (0, x) = ψ (x) , x ∈ R

for some 0 ≤ σ2 ≤ σ2 and appropriate function ψ. Recall that this equation is

known as the Barenblatt equation if σ2 > 0 and has been studied in [37] and [28], for

instance. Ours is given by (3.1), a difference that leads to a few difficulties as reflected

by the increased complexity of our hypotheses. To overcome these difficulties, we

use the technology from [157], [156], and [64].

The work in this paper offers a step toward understanding α-stability under sublin-

ear expectation. The simple interpretation admitted by Example III.14 is promising,

as developing intuition in this environment is usually a tough undertaking for the

reasons mentioned previously.

A brief overview of necessary background material can be found in Section 3.2.

We prove our main result and discuss its connection to the classical case in Section

3.3. Examples highlighting the applications of our main result are contained in

Section 3.4. We give some prerequisite material for the proof of the essential interior

regularity estimate for our PIDE in Section 3.5. The proof of this estimate is in

Section 3.6.

3.2 Background

We now offer a concise account of those aspects of sublinear expectations, α-stable

random variables, and PIDEs which are required for the sequel.1 References for more

comprehensive treatments of these topics are also included for the convenience of the

1Further information on PIDE interior regularity theory is contained in Section 3.5.
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interested reader.

Definition III.1. Let H be a collection of real-valued functions on a set Ω. A

sublinear expectation is an operator E : H −→ R which is

(i) monotonic: E [X] ≤ E [Y ] if X ≤ Y ,

(ii) constant-preserving: E [c] = c for any c ∈ R,

(iii) sub-additive: E [X + Y ] ≤ E [X] + E [Y ], and

(iv) positive homogeneous: E [λX] = λE [X] for λ ≥ 0.

The triple (Ω,H, E) is called a sublinear expectation space.

One views H as a space of random variables on Ω. Typically, it is assumed that

H

(i) is a linear space,

(ii) contains all constant functions, and

(iii) contains ψ (X1, X2, . . . , Xn) for every X1, X2, . . . , Xn ∈ H and ψ ∈ Cb.Lip (Rn),

where Cb.Lip (Rn) is the set of bounded Lipschitz functions on Rn;

however, we will expend little attention on either Ω or H. Delicacy needs to be

exercised while computing sublinear expectations. A rare instance when a classical

technique can be justly employed is the following.

Lemma III.2. Consider two random variables X, Y ∈ H such that E [Y ] = −E [−Y ].

Then

E [X + αY ] = E [X] + αE [Y ]

for all α ∈ R.
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This result is notably useful in the case where E [Y ] = E [−Y ] = 0.

Definition III.3. A random variable Y ∈ H is said to be independent from a random

variable X ∈ H if for all ψ ∈ Cb.Lip (R2), we have

E [ψ (X, Y )] = E [E [ψ (x, Y )]x=X ] .

Observe the deliberate wording. This choice is crucial, as independence can be

asymmetric in our context. Note that this definition reduces to the traditional one

if E is a classical expectation. The same is true for the next three concepts.

Definition III.4. Let X, Y , and (Yn)∞n=1 be random variables, i.e., X, Y , and

(Yn)∞n=1 ∈ H.

(i) X and Y are identically distributed, denoted X ∼ Y , if

E [ψ (X)] = E [ψ (Y )]

for all ψ ∈ Cb.Lip (R).

(ii) If X and Y are identically distributed and Y is independent from X, then Y is

an independent copy of X.

(iii) (Yn)∞n=1 converges in distribution to Y , which we denote by Yn
d−→ Y , if

lim
n→∞

E [ψ (Yn)] = E [ψ (Y )]

for all ψ ∈ Cb.Lip (R).

Random variables need not be defined on the same space to have appropriate

notions of (i) or (iii). In this case, the above definitions require the obvious notational

modifications. Further details concerning general sublinear expectation spaces can

be found in [188] or [194].
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Definition III.5. Let α ∈ (0, 2]. A random variable X is said to be (strictly)

α-stable if for all a, b ≥ 0,

aX + bY

and

(aα + bα)1/αX

are identically distributed, where Y is an independent copy of X.

Three examples of α-stable random variables exist in the current literature. For

α = 1, there are the maximal random variables discussed in references such as [191],

[194], and [128]. When α = 2, we have the G-normal random variables of Peng.

Resources on this topic are plentiful and include [188], [193], [194], [163], and [47]. If

α ∈ (1, 2), we can consider X1 for a nonlinear α-stable Lévy process (Xt)t≥0 in the

framework of [173]. Our focus shall be restricted to the last situation.

The construction of nonlinear Lévy processes in [173] extends that studied in

[129], [208], [186], and [185] and is much more general than our present objectives

demand. We limit our presentation to a few key ideas. Let

(i) α ∈ (1, 2);

(ii) K± be a bounded measurable subset of R+;

(iii) Fk± be the α-stable Lévy measure

Fk± (dz) =
(
k−1(−∞,0) + k+1(0,∞)

)
(z) |z|−α−1dz

for all k± ∈ K±; and

(iv) Θ =
{(

0, 0, Fk±
)

: k± ∈ K±
}

.
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One can then produce a process (Xt)t≥0 which is a nonlinear Lévy process whose

local characteristics are described by the set of Lévy triplets Θ. This means the

following.

(i) (Xt)t≥0 is a real-valued càdlàg process.

(ii) X0 = 0.

(iii) (Xt)t≥0 has stationary increments, i.e., Xt − Xs and Xt−s are identically dis-

tributed for all 0 ≤ s ≤ t.

(iv) (Xt)t≥0 has independent increments, i.e., Xt −Xs is independent from

(Xs1 , . . . , Xsn) for all 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t.

(v) If ψ ∈ Cb.Lip (R) and u is defined by

u (t, x) = E [ψ (x+Xt)]

for all (t, x) ∈ [0,∞)× R, then u is the unique2 viscosity solution3 of

∂tu (t, x)− sup
k±∈K±

{∫
R
δzu (t, x)Fk± (dz)

}
= 0, (t, x) ∈ (0,∞)× R

u (0, x) = ψ (x) , x ∈ R. (3.1)

2The uniqueness of a viscosity solution of (3.1) can be viewed as a special case of Theorem 2.5 in [173].
3We take the following definition from Section 2.2 of [173]. Let C2,3

b ((0,∞)× R) denote the set of functions on
(0,∞)× R having bounded continuous partial derivatives up to the second and third order in t and x, respectively.
A bounded upper semicontinuous function u on [0,∞)× R is a viscosity subsolution of (3.1) if

u (0, ·) ≤ ψ (·)

and for any (t, x) ∈ (0,∞)× R,

∂tϕ (t, x)− sup
k±∈K±

{∫
R
δzϕ (t, x)Fk± (dz)

}
≤ 0

whenever ϕ ∈ C2,3
b ((0,∞)× R) is such that

ϕ ≥ u
on (0,∞)× R and

ϕ (t, x) = u (t, x) .

To define a viscosity supersolution of (3.1), one reverses the inequalities and semicontinuity. A bounded continuous
function is a viscosity solution of (3.1) if it is both a viscosity subsolution and supersolution. Viscosity solutions of
the other PIDEs appearing in this paper, e.g., see Lemma III.18, are defined similarly.
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Here we use the notation

δzu (t, x) := u (t, x+ z)− u (t, x)− ∂xu (t, x) z

since the right hand side of this equation as well as similar expressions will frequently

occur throughout the paper.

A critical feature of this setup is that if Θ is a singleton, (Xt)t≥0 is a classical

Lévy process with triplet Θ. That X1 actually is an α-stable random variable is not

immediately obvious. We give a brief argument in Example III.13, but the core of

this observation is a result from [173] (see Example 2.7).

Lemma III.6. For all β > 0 and t ≥ 0, Xβt and β1/αXt are identically distributed.

The dynamic programming principle in Lemma III.7 (see Lemma 5.1 in [173]) and

the absolute value bound in Lemma III.8 (see Lemma 5.2 in [173]) also play a central

role when using our main result to check that X1 is in its own domain of normal

attraction.

Lemma III.7. For all 0 ≤ s ≤ t <∞ and x ∈ R,

u (t, x) = E [u (t− s, x+Xs)] .

Lemma III.8. We have that

E [|X1|] <∞.

The remaining essential ingredients for our purposes describe the regularity of u.

The first result describes properties of u which are valid on the whole domain. It is

a special case of Lemma 5.3 in [173].

Lemma III.9. The function u is uniformly bounded by ‖ψ‖L∞(R) and jointly con-

tinuous. More precisely, u (t, ·) is Lipschitz continuous with constant Lip(ψ), the
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Lipschitz constant of ψ, and u (·, x) is locally 1/2-Hölder continuous with a constant

depending only on Lip(ψ) and

sup
k±∈K±

{∫
R
|z| ∧ |z|2 Fk± (dz)

}
<∞.

We will require even stronger regularity estimates for u. To obtain these, we must

restrict our attention to the interior of the domain.

Proposition III.10. Suppose that for some λ, Λ > 0, we know λ < k± < Λ for all

k± ∈ K±. For any h > 0,

(i) ∂tu and ∂xu exist and are bounded on [h, h+ 1]× R;

(ii) there are constants C, γ > 0 such that

|∂tu (t0, x)− ∂tu (t1, x)| ≤ C |t0 − t1|γ/α

|∂tu (t, x0)− ∂tu (t, x1)| ≤ C |x0 − x1|γ

for all (t0, x), (t1, x), (t, x0), (t, x1) ∈ [h, h+ 1]× R;

(iii) u is a classical solution of (3.1) on [h, h+ 1]× R; and

(iv) if K± contains exactly one pair {k±}, then ∂2
xxu exists and is bounded on

[h, h+ 1]× R.

The proof of Proposition III.10 can be found in Section 3.6.

3.3 Main Result

To facilitate our discussion in the sequel, we now fix some notation. Compared

with Section 3.2, we make only one alteration to our nonlinear α-stable Lévy process

(Xt)t≥0: additionally assume that K± is a subset of (λ,Λ) for some λ, Λ > 0. We

will make use of this in conjunction with Proposition III.10.
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We also consider a sequence (Yi)
∞
i=1 of random variables on some sublinear ex-

pectation space. The only aspect of this space that we will invoke directly is the

sublinear expectation itself, say E ′. Distinguishing between E and E ′ will be conve-

nient for Example III.14. We further specify that (Yi)
∞
i=1 is i.i.d. in the sense that

Yi+1 is independent from (Y1, Y2, . . . , Yi) and Yi+1 ∼ Yi for all i ≥ 1. After proper

normalization,

Sn :=
n∑
i=1

Yi

will be the sequence attracted to X1.

Theorem III.11. Suppose that

(i) E ′ [Y1] = E ′ [−Y1] = 0;

(ii) E ′ [|Y1|] <∞; and

(iii) for any 0 < h < 1 and ψ ∈ Cb.Lip (R),

n

∣∣∣∣∣E ′ [δBnY1v (t, x)]−
(

1

n

)
sup

k±∈K±

{∫
R
δzv (t, x)Fk± (dz)

}∣∣∣∣∣→ 0 (3.2)

uniformly on [0, 1]× R as n→∞, where v is the unique viscosity solution of

∂tv (t, x) + sup
k±∈K±

{∫
R
δzv (t, x)Fk± (dz)

}
= 0, (t, x) ∈ (−h, 1 + h)× R

v (1 + h, x) = ψ (x) , x ∈ R. (3.3)

Then

BnSn
d−→ X1

as n→∞.

Admittedly, a cursory glance over our hypotheses leaves one with the impression

that they are intractable. The opposite is true. Before presenting the proof of
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Theorem III.11, let us demonstrate that when our attention is confined to the classical

case, we are imposing only a mild and natural supplementary restriction on the

attracted random variable. In addition to being a significant remark in itself, this

work also underlies Example III.14.

Assume that Θ is a singleton. Since (Xt)t≥0 is the classical Lévy process with

triplet
(
0, 0, Fk±

)
, the characteristic function of X1, denoted ϕX1 , is given by

ϕX1 (t) = exp

(
k−

∫ 0

−∞

exp (itz)− 1− itz
|z|α+1 dz + k+

∫ ∞
0

exp (itz)− 1− itz
zα+1

dz

)
for all t ∈ R. In the case where Y1 is a classical random variable with mean zero,

Theorem 2.6.7 from [136] implies that

BnSn
d−→ X1

as n→∞ if and only if the cdf of Y1, denoted FY1 , has the form

FY1 (z) =

 [bα (k−/α) + β1 (z)] 1
|z|α z < 0

1− [bα (k+/α) + β2 (z)] 1
zα

z > 0

for some functions β1 and β2 satisfying

lim
z→−∞

β1 (z) = lim
z→∞

β2 (z) = 0.

As there is no appropriate counterpart of the cdf in the sublinear setting, we must

recast this condition using expectation. To do so requires FY1 to possess further

regularity properties. For convenience, say that after an extension, the βi’s are

continuously differentiable on their respective closed half-lines. This is the lone extra

requirement we shall need.

It follows that

E [|Y1|] <∞
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since ∫ ∞
0

z dFY1 (z) = −
∫ 1

0

β′2 (z)

zα−1
dz +

∫ 1

0

bαk+ + αβ2 (z)

zα
dz + β2 (1)

+

∫ ∞
1

β2 (z)

zα
dz +

∫ ∞
1

bαk+

zα
dz

<∞ (3.4)

and similarly for the integral along the negative half-line. One could have cited

Theorem 2.6.4 of [136] instead, but (3.4) will be helpful in Example III.14. We also

get

n

∣∣∣∣E [δBnY1v (t, x)]−
(

1

n

)∫
R
δzv (t, x)Fk± (dz)

∣∣∣∣
=

(
1

bα

) ∣∣∣∣∣
∫
R
δzv (t, x)

(
β′1 (B−1

n z) |B−1
n z|+ αβ1 (B−1

n z)

|z|α+1 1(−∞,0) (z)

+
−β′2 (B−1

n z) |B−1
n z|+ αβ2 (B−1

n z)

|z|α+1 1(0,∞) (z)

)
dz

∣∣∣∣ (3.5)

for all (t, x) ∈ [0, 1]× R and n ≥ 1 by changing variables.

A careful application of elementary estimates shows that this last expression tends

to zero uniformly on [0, 1] × R as n → ∞. To see this, note that we can choose an

upper bound, say M1, for |∂xxv|, |∂xv|, and |v| on [0, 1] × R by Lemma III.9 and

Proposition III.10. Then using integration by parts and the dominated convergence

theorem,∣∣∣∣∫ ∞
1

δzv (t, x)

(
−β′2 (B−1

n z) |B−1
n z|+ αβ2 (B−1

n z)

|z|α+1

)
dz

∣∣∣∣
=

∣∣∣∣δ1v (t, x) β2

(
B−1
n

)
+

∫ ∞
1

β2 (B−1
n z)

zα
[∂xv (t, x+ z)− ∂xv (t, x)] dz

∣∣∣∣
≤ 3M1

∣∣β2

(
B−1
n

)∣∣+ 2M1

∫ ∞
1

|β2 (B−1
n z)|

zα
dz

→ 0 (3.6)
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as n→∞. The mean value theorem and a change of variables give∣∣∣∣∫ Bn

0

δzv (t, x)

(
−β′2 (B−1

n z) |B−1
n z|+ αβ2 (B−1

n z)

|z|α+1

)
dz

∣∣∣∣
≤
∫ Bn

0

M1
|−β′2 (B−1

n z) (B−1
n z) + αβ2 (B−1

n z)|
zα−1

dz

=

(
M1

b2−αn
2
α
−1

)∫ 1

0

|−β′2 (z) z + αβ2 (z)|
zα−1

dz

→ 0 (3.7)

as n→∞. We have ∣∣∣∣∫ 1

Bn

δzv (t, x)

(
αβ2 (B−1

n z)

|z|α+1

)
dz

∣∣∣∣
≤
∫ 1

Bn

M1
|αβ2 (B−1

n z)|
zα−1

dz

≤M1α

∫ 1

0

|β2 (B−1
n z)|

zα−1
dz

→ 0 (3.8)

as n→∞ by the mean value theorem and dominated convergence theorem. Finally,∣∣∣∣∫ 1

Bn

δzv (t, x)

(
−β′2 (B−1

n z) (B−1
n z)

|z|α+1

)
dz

∣∣∣∣
=

∣∣∣∣∣− δ1v (t, x) β2

(
B−1
n

)
+ δBnv (t, x) (Bn)−α β2 (1)

+

∫ 1

Bn

[∂xv (t, x+ z)− ∂xv (t, x)]

(
β2 (B−1

n z)

zα

)
dz

− α
∫ 1

Bn

δzv (t, x)

(
β2 (B−1

n z)

zα+1

)
dz

∣∣∣∣∣
≤ 3M1

∣∣β2

(
B−1
n

)∣∣+M1 |β2 (1)|
(

1

b2−αn
2
α
−1

)
+

∫ 1

Bn

M1
|β2 (B−1

n z)|
zα−1

dz

+ α

∫ 1

Bn

M1
|β2 (B−1

n z)|
zα−1

dz

≤ 3M1

∣∣β2

(
B−1
n

)∣∣+M1 |β2 (1)|
(

1

b2−αn
2
α
−1

)
+ 2αM1

∫ 1

0

|β2 (B−1
n z)|

zα−1
dz

→ 0 (3.9)
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as n→∞ by integration by parts, the dominated convergence theorem, and the mean

value theorem. The integrals along the negative half-line are handled similarly.

Having established the connection between Theorem III.11 and the classical case,

we finally present its proof.

Proof of Theorem III.11. We need to show that

lim
n→∞

E ′ [ψ (BnSn)] = E [ψ (X1)] (3.10)

for all ψ ∈ Cb.Lip (R). Our initial step will be to reduce proving (3.10) to proving

(3.13). The advantage of doing so is that we can then incorporate the regularity

properties described in Lemma III.9 and Proposition III.10. These properties alone

do much of the heavy lifting in the estimates at the heart of the argument, and our

distributional assumptions do the rest.

Let ψ ∈ Cb.Lip (R), and define u by

u (t, x) = E [ψ (x+Xt)] (3.11)

for all (t, x) ∈ [0,∞) × R. We know from Section 3.2 that u is the unique viscosity

solution of (3.1).

It will be more convenient for our purposes to work with the backward equation.

Since we will soon rely on the interior regularity results of Proposition III.10, we also

let 0 < h < 1 and define v by

v (t, x) = u (1 + h− t, x) (3.12)

for (t, x) ∈ (−h, 1 + h]× R. Then v will be the unique viscosity solution of (3.3).

Observe that v inherits key regularity properties from u. At the moment, it is

enough to note that for any (t, x) ∈ (−h, 1 + h]×R, v (·, x) is 1/2-Hölder continuous

with some constant K1 and v (t, ·) is Lipschitz continuous with constant Lip(ψ) by
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Lemma III.9. Because the t-domain has length 1+2h and 0 < h < 1, the 1/2-Hölder

continuity is uniform, and we can assume that K1 does not depend on h. It follows

by (3.11) and (3.12) that

lim sup
n→∞

|E ′ [ψ (BnSn)]− E [ψ (X1)]|

≤ lim sup
n→∞

(|E ′ [ψ (BnSn)]− E ′ [v (1, BnSn)]|+ |E ′ [v (1, BnSn)]− v (0, 0)|

+ |v (0, 0)− E [ψ (X1)]|)

= lim sup
n→∞

(|E ′ [v (1 + h,BnSn)]− E ′ [v (1, BnSn)]|+ |E ′ [v (1, BnSn)]− v (0, 0)|

+ |v (0, 0)− v (h, 0)|)

≤ lim sup
n→∞

(
E ′
[
K1

√
h
]

+ |E ′ [v (1, BnSn)]− v (0, 0)|
)

+K1

√
h

= 2K1

√
h+ lim sup

n→∞
|E ′ [v (1, BnSn)]− v (0, 0)| .

As h is arbitrary, it is sufficient to show that

lim
n→∞

E ′ [v (1, BnSn)] = v (0, 0) . (3.13)

The required estimates are intricate, so we will give them in Lemma III.12 below.

Lemma III.12. In the setup of Theorem III.11,

lim
n→∞

E ′ [v (1, BnSn)] = v (0, 0) .

Proof of Lemma III.12. For all n ≥ 3,

v (1, BnSn)− v (0, 0)

= v (1, BnSn)− v
(
n− 1

n
,BnSn

)
+

n−1∑
i=2

[
v

(
i

n
, BnSi+1

)
− v

(
i− 1

n
,BnSi

)]
+ v

(
1

n
,BnS2

)
− v (0, 0) . (3.14)
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Our analysis now becomes delicate. We would like to show that when we apply E ′

to (3.14) and let n→∞, the result goes to zero. Since the number of terms in this

decomposition is growing with n, we must prove that our v-increments are decaying

quite rapidly. The properties of v arising from Lemma III.9 are only enough to

manage the first and last terms. By the 1/2-Hölder continuity of v (·, x),

E ′
[∣∣∣∣v (1, BnSn)− v

(
n− 1

n
,BnSn

)∣∣∣∣] ≤ E ′
[
K1

√
1

n

]
= K1

√
1

n
. (3.15)

If we also use the Lipschitz continuity of v (t, ·) and the fact that Y2 is independent

from Y1, we get

E ′
[∣∣∣∣v( 1

n
,BnS2

)
− v (0, 0)

∣∣∣∣]
≤ E ′

[∣∣∣∣v( 1

n
,BnS2

)
− v (0, BnS2)

∣∣∣∣]+ E ′ [|v (0, BnS2)− v (0, 0)|]

≤ E ′
[
K1

√
1

n

]
+ E ′ [Lip (ψ)Bn |S2|]

≤ K1

√
1

n
+ 2Lip (ψ)BnE ′ [|Y1|] . (3.16)

We remark that although we only referred to Cb.Lip (R) in our definition of indepen-

dence, our manipulations are still valid by Exercise 3.20 in [194].

Proposition III.10 allows us to control the remaining terms. Again, this motivates

our requirement that K± ⊂ (λ,Λ) for some 0 < λ < Λ. We can find a constant

K2 > 0 such that ∂tv exists on [0, 1]× R and

|∂tv (t0, x)− ∂tv (t1, x)| ≤ K2 |t0 − t1|γ/α

|∂tv (t, x0)− ∂tv (t, x1)| ≤ K2 |x0 − x1|γ (3.17)

for all (t0, x), (t1, x), (t, x0), and (t, x1) ∈ [0, 1]×R. We then break down the rest of
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(3.14) a bit further. If 2 ≤ i ≤ n− 1,

v

(
i

n
, BnSi+1

)
− v

(
i− 1

n
,BnSi

)
= v

(
i

n
, BnSi+1

)
− v

(
i− 1

n
,BnSi+1

)
− ∂tv

(
i− 1

n
,BnSi

)
1

n

+ ∂tv

(
i− 1

n
,BnSi

)
1

n
+ v

(
i− 1

n
,BnSi+1

)
− v

(
i− 1

n
,BnSi

)
.

Let

Cn
i = v

(
i

n
, BnSi+1

)
− v

(
i− 1

n
,BnSi+1

)
− ∂tv

(
i− 1

n
,BnSi

)
1

n

and

Dn
i = ∂tv

(
i− 1

n
,BnSi

)
1

n
+ v

(
i− 1

n
,BnSi+1

)
− v

(
i− 1

n
,BnSi

)
.

We can establish an appropriate bound for the Cn
i ’s using (3.17):

|Cn
i | =

∣∣∣∣ 1n
∫ 1

0

[
∂tv

(
i− 1 + β

n
,BnSi+1

)
− ∂tv

(
i− 1

n
,BnSi+1

)]
dβ

+
1

n

[
∂tv

(
i− 1

n
,BnSi+1

)
− ∂tv

(
i− 1

n
,BnSi

)]∣∣∣∣
≤ 1

n

∫ 1

0

∣∣∣∣∂tv(i− 1 + β

n
,BnSi+1

)
− ∂tv

(
i− 1

n
,BnSi+1

)∣∣∣∣ dβ
+

1

n

∣∣∣∣∂tv(i− 1

n
,BnSi+1

)
− ∂tv

(
i− 1

n
,BnSi

)∣∣∣∣
≤ 1

n

∫ 1

0

K2

∣∣∣∣βn
∣∣∣∣γ/α dβ +

1

n
K2B

γ
n |Yi+1|γ

≤ K2

n

[(
1

n

)γ/α
+Bγ

n |Yi+1|γ
]
.

Hence, for 2 ≤ i ≤ n− 1,

E ′ [|Cn
i |] ≤

K2

n

[(
1

n

)γ/α
+Bγ

nE ′ [|Y1|γ]

]
(3.18)

since Yi+1 and Y1 are identically distributed. Note that hypothesis (ii) gives that

E ′ [|Y1|γ] <∞.
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While we need (3.17) to bound the Dn
i ’s, we finally use (3.2) too. Let ε > 0. By

(3.2), we can find N such that n ≥ N implies

n

∣∣∣∣∣E ′ [δBnY1v (t, x)]−
(

1

n

)
sup

k±∈K±

{∫
R
δzv (t, x)Fk± (dz)

}∣∣∣∣∣ < ε

on [0, 1]× R. Now

E ′
[
v

(
i− 1

n
,Bnx+BnY1

)]
− v

(
i− 1

n
,Bnx

)
= E ′

[
δBnY1v

(
i− 1

n
,Bnx

)]
by (i), so for these n,

n

∣∣∣∣v(i− 2

n
,Bnx

)
− E ′

[
v

(
i− 1

n
,Bnx+BnY1

)]∣∣∣∣
= n

∣∣∣∣∣v
(
i− 2

n
,Bnx

)
− E ′

[
v

(
i− 1

n
,Bnx+BnY1

)]
+ v

(
i− 1

n
,Bnx

)
− v

(
i− 1

n
,Bnx

)
+

(
1

n

)
∂tv

(
i− 1

n
,Bnx

)
+

(
1

n

)
sup

k±∈K±

{∫
R
δzv

(
i− 1

n
,Bnx

)
Fk± (dz)

} ∣∣∣∣∣
≤

∣∣∣∣∣−v
(
i−2
n
, Bnx

)
− v

(
i−1
n
, Bnx

)
−1/n

+ ∂tv

(
i− 1

n
,Bnx

)∣∣∣∣∣
+ n

∣∣∣∣∣E ′
[
δBnY1v

(
i− 1

n
,Bnx

)]
−
(

1

n

)
sup

k±∈K±

{∫
R
δzv

(
i− 1

n
,Bnx

)
Fk± (dz)

}∣∣∣∣∣
<

K2

nγ/α
+ ε

by the mean value theorem, (3.3), and (3.17). Then∣∣∣∣∂tv(i− 1

n
,Bnx

)
1

n
+ E ′

[
v

(
i− 1

n
,Bnx+BnYi+1

)]
− v

(
i− 1

n
,Bnx

)∣∣∣∣
≤ 1

n

∣∣∣∣∣∂tv
(
i− 1

n
,Bnx

)
+
v
(
i−2
n
, Bnx

)
− v

(
i−1
n
, Bnx

)
1/n

∣∣∣∣∣
+

∣∣∣∣E ′ [v(i− 1

n
,Bnx+BnY1

)]
− v

(
i− 2

n
,Bnx

)∣∣∣∣
<

2K2

n1+γ/α
+
ε

n
(3.19)
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for 2 ≤ i ≤ n− 1, x ∈ R, and n ≥ N .

Since Yi+1 is independent from (Y1, . . . , Yi), repeated application of (3.19) shows

that for n ≥ N ,

E ′
[
n−1∑
i=2

Dn
i

]
< (n− 2)

(
2K2

n1+γ/α
+
ε

n

)
<

2K2

nγ/α
+ ε (3.20)

and

E ′
[
n−1∑
i=2

Dn
i

]
> − (n− 2)

(
2K2

n1+γ/α
+
ε

n

)
> − 2K2

nγ/α
− ε. (3.21)

We only need to combine our bounds above and invoke hypothesis (ii) to finish

the proof. By (3.15), (3.16), (3.18), (3.20), and (3.21),

E ′ [v (1, BnSn)]− v (0, 0)

= E ′
[
v (1, BnSn)− v

(
n− 1

n
,BnSn

)
+

n−1∑
i=2

Cn
i +

n−1∑
i=2

Dn
i + v

(
1

n
,BnS2

)
− v (0, 0)

]

≤ E ′
[∣∣∣∣v (1, BnSn)− v

(
n− 1

n
,BnSn

)∣∣∣∣]+
n−1∑
i=2

E ′ [|Cn
i |] + E ′

[
n−1∑
i=2

Dn
i

]

+ E ′
[∣∣∣∣v( 1

n
,BnS2

)
− v (0, 0)

∣∣∣∣]
<

(
K1

√
1

n

)
+

(
K2

[(
1

n

)γ/α
+Bγ

nE ′ [|Y1|γ]

])
+

(
2K2

nγ/α
+ ε

)

+

(
K1

√
1

n
+ 2Lip (ψ)BnE ′ [|Y1|]

)
and

E ′ [v (1, BnSn)]− v (0, 0)

> −

(
K1

√
1

n

)
−

(
K2

[(
1

n

)γ/α
+Bγ

nE ′ [|Y1|γ]

])
−
(

2K2

nγ/α
+ ε

)

−

(
K1

√
1

n
+ 2Lip (ψ)BnE ′ [|Y1|]

)
for n ≥ N . Since ε > 0 is arbitrary and lim

n→∞
Bn = 0, we have

lim
n→∞

E ′ [v (1, BnSn)] = v (0, 0) .
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3.4 Examples

Example III.13. X1 is in its own domain of normal attraction. While this follows

directly from the α-stability of X1, we will demonstrate this using Theorem III.11 as

well in order to unpack our main result.

Let ψ ∈ Cb.Lip (R) and u be defined by

u (t, x) = E [ψ (x+Xt)]

on [0,∞)× R. If X̃1 is an independent copy of X1, then

E
[
ψ
(
aX1 + bX̃1

)]
= E

[
E
[
ψ
(
ax+ (bα)

1
α X̃1

)]
x=X1

]
= E [u (bα, aX1)]

= u (aα + bα, 0)

= E
[
ψ
(

(aα + bα)
1
α X1

)]
for any a, b ≥ 0 by Lemmas III.6 and III.7, i.e., X1 is α-stable. Exercise 3.20 in

[194] implies that the same relation actually holds for a broader class of maps. In

particular,

2
1
αE [X1] = E

[
E
[
x+ X̃1

]
x=X1

]
= E [X1 + E [X1]]

= 2E [X1] ,

so

E [X1] = 0.

It follows similarly that

E [−X1] = 0.
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We know

E [|X1|] <∞

from Lemma III.8.

To check the final hypothesis, let 0 < h < 1 and v be the unique viscosity solution

of (3.3). Then for all (t, x) ∈ [0, 1]× R,

n

∣∣∣∣∣E [δBnX1v (t, x)]−
(

1

n

)
sup

k±∈K±

{∫
R
δzv (t, x)Fk± (dz)

}∣∣∣∣∣
= n

∣∣∣∣E [v (t, x+BnX1)]− v (t, x) +

(
1

n

)
∂tv (t, x)

∣∣∣∣
= n

∣∣∣∣v(t− 1

n
, x

)
− v (t, x) +

(
1

n

)
∂tv (t, x)

∣∣∣∣
=

∣∣∣∣∣v
(
t− 1

n
, x
)
− v (t, x)

1/n
+ ∂tv (t, x)

∣∣∣∣∣
≤ K2

nγ/α

by (3.12), (3.17), and Lemma III.7. Here b = 1 or, equivalently,

Bn =
1

n1/α
.

Abusing notation, Theorem III.11 shows that

BnSn
d−→ X1

as n→∞.

Example III.14. Up to some “uniformity” assumptions, this example has a straight-

forward interpretation.

Let the uncertainty subset of distributions (see [194]) of Y1 be given by

{Pθ : θ ∈ Θ}. If for all θ ∈ Θ, a classical random variable with distribution

Pθ is in the domain of normal attraction of a classical α-stable random

variable with triplet θ, then Y1 is in the domain of normal attraction of X1.
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Let b, M > 0 and f be a nonnegative function on N tending to zero as n → ∞.

For each k± ∈ K±, let Wk± be a classical random variable such that

(i) Wk± has mean zero;

(ii) Wk± has a cdf FWk±
of the form

FWk±
(z) =


[
bα (k−/α) + β1,k± (z)

]
1
|z|α z < 0

1−
[
bα (k+/α) + β2,k± (z)

]
1
zα

z > 0

(3.22)

for some continuously differentiable functions β1,k± on (−∞, 0] and β2,k± on

[0,∞) with

lim
z→−∞

β1,k± (z) = lim
z→∞

β2,k± (z) = 0;

(iii) the following quantities are all less than M :

∣∣∣∣∫ −1

−∞

β1,k± (z)

(−z)α
dz

∣∣∣∣ ,

∣∣∣∣∫ 0

−1

β′1,k± (z)

(−z)α−1 dz

∣∣∣∣ ,

∫ 0

−1

∣∣∣−β′1,k± (z) z + αβ1,k± (z)
∣∣∣

(−z)α−1 dz,

∣∣∣∣∫ ∞
1

β2,k± (z)

zα
dz

∣∣∣∣ ,

∣∣∣∣∫ 1

0

β′2,k± (z)

zα−1
dz

∣∣∣∣ ,

∫ 1

0

∣∣∣−β′2,k± (z) z + αβ2,k± (z)
∣∣∣

zα−1
dz; and

(iv) the following quantities are less than f (n) for all n:

∣∣β2,k±

(
B−1
n

)∣∣ ,

∫ ∞
1

∣∣β2,k± (B−1
n z)

∣∣
zα

dz ,

∫ 1

0

∣∣β2,k± (B−1
n z)

∣∣
zα−1

dz

∣∣β1,k±

(
−B−1

n

)∣∣ ,

∫ −1

−∞

∣∣β1,k± (B−1
n z)

∣∣
(−z)α

dz ,

∫ 0

−1

∣∣β1,k± (B−1
n z)

∣∣
(−z)α−1 dz.

Note that by (ii) alone, the terms in (iii) are finite and the terms in (iv) approach

zero as n→∞. In other words, the content of (iii) and (iv) is that uniform bounds

and minimum rates of convergence exist.

Define an operator E ′ on a space H of suitable functions by

E ′ [ϕ] = sup
k±∈K±

∫
R
ϕ (z) dFWk±

(z)
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for all ϕ ∈ H. The exact composition of H is irrelevant for our purposes here.

Clearly, (R,H, E ′) is a sublinear expectation space.

Let Y1 be the random variable on this space defined by

Y1 (x) = x

for all x ∈ R. We will use Theorem III.11 to show that

BnSn
d−→ X1

as n→∞. Most of the difficulties have already been addressed during our discussion

of the classical case in Section 3.3.

Since each Wk± has mean zero,

E ′ [Y1] = sup
k±∈K±

∫
R
z dFWk±

(z) = 0

and

E ′ [−Y1] = sup
k±∈K±

∫
R
−z dFWk±

(z) = 0.

After recalling that K± ⊂ (λ,Λ), (iii) gives

E ′ [|Y1|] <∞

using (3.4) and (3.22). Observe that we are solving (3.22) for the obvious expressions

to obtain uniform bounds on the terms

∣∣β2,k± (1)
∣∣ ,

∣∣β1,k± (−1)
∣∣ ,

∣∣∣∣∫ 1

0

bαk+ + αβ2,k± (z)

zα
dz

∣∣∣∣
and ∣∣∣∣∫ 0

−1

bαk− + αβ1,k± (z)

(−z)α
dz

∣∣∣∣ .
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To check the remaining hypothesis, let 0 < h < 1, ψ ∈ Cb.Lip (R), and v be the

unique viscosity solution of (3.3). The techniques of (3.5) demonstrate that

n

∣∣∣∣∣E ′ [δBnY1v (t, x)]−
(

1

n

)
sup

k±∈K±

{∫
R
δzv (t, x)Fk± (dz)

}∣∣∣∣∣
≤
(

1

bα

)
sup

k±∈K±

∣∣∣∣∣
∫
R
δzv (t, x)

(
β′1,k± (B−1

n z) |B−1
n z|+ αβ1,k± (B−1

n z)

|z|α+1 1(−∞,0) (z)

+
−β′2,k± (B−1

n z) |B−1
n z|+ αβ2,k± (B−1

n z)

|z|α+1 1(0,∞) (z)

)
dz

∣∣∣∣∣
for (t, x) ∈ [0, 1] × R and n ≥ 1. Combining (3.6), (3.7), (3.8), and (3.9) with (iii)

and (iv) proves that this last expression approaches zero in the required way.

3.5 Appendix: Interior Regularity Theory Background

Interior regularity theory for fully nonlinear integro-differential equations is rich

and well-developed. Before describing the results that we need for our proof, we

provide a short discussion of the literature. Readers new to this field are encouraged

to first consult [12] for an introduction.

Some results and methods from the interior regularity theory for PDEs can be

imported to the nonlocal case after minor modifications. For other aspects of the

theory, this is false. As described in Section 2 of [217], a Hölder estimate and the

Harnack inequality appear together in the local setting; however, there are nonlocal

equations for which a Hölder estimate holds in the absence of the Harnack inequality.

A partial list of other ways that nonlocal results can significantly differ from their

local counterparts can be found in [12].

Early work on the regularity of integro-differential equations focused on equations

in divergence form. A survey of these results is contained in [146]. For equations in

nondivergence form, [39] contains the first Harnack inequality and Hölder estimate.
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The equations studied in [39] are of the form∫
Rd

[w (x+ z)− w (x)− z∇w (x) 1B1 (z)] k (x, z) dz = 0,

where k is a kernel such that

k (x, z) = k (x,−z) (3.23)

and

λ1

|z|d+α1
≤ k (x, z) ≤ Λ1

|z|d+α1
(3.24)

for some constants λ1, Λ1 > 0 and α1 ∈ (0, 2). For a review of the extensions of this

initial work, see [146].

The Hölder estimate in [39] blows up as α1 → 2. Many other early estimates

share this feature. The first paper to prove a Hölder estimate and Harnack inequality

without this property is [65]. The equations are of the form

inf
r

sup
s

{∫
Rd

[w (x+ z)− w (x)− z∇w (x) 1B1 (z)] krs (z) dz

}
= 0 (3.25)

for kernels krs depending only on z and satisfying (3.23), (3.24), and an additional

smoothness condition. More precisely, for some fixed positive constants ρ and C,∫
Rd\Bρ

|k (z)− k (z − ε)|
|ε|

dz ≤ C

whenever

|ε| < ρ

2
.

The paper culminates in a C1,γ estimate for the solution of (3.25).

These findings have been extended in a number of ways. For instance, references

such as [221], [218], [155], [157], and [156] study equations with nonsymmetric kernels,

i.e., kernels that do not satisfy (3.23). Other examples of recent work include [66],

[219], and [153].
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We now collect the definitions and results from [157] and [156] that we need for

our proof. These references describe properties of the solutions to a broad class of

nonlocal fully nonlinear parabolic equations of the form

∂tw (t, x)− Iw (t, x) = f (t) .

Due to the general nature of these equations, [157] and [156] are quite technical.

Since (3.1) is an easy case of the equations studied in these papers, we will simplify

this material and present only the version that we need for our argument.

Notation III.15. Let

Cτ,r (t, x) := (t− τ, t]× (x− r, x+ r) .

We write Cτ,r for the cylinder Cτ,r (0, 0). For suitable functions w, let

δ̃zw (t, x) := w (t, x+ z)− w (t, x)− ∂xw (t, x) 1(−1,1) (z) z;

‖w‖L1(ν) :=

∫
R
|w (z)|min

(
1, |z|−1−α) dz; and

[w]C0,1((t0,t1] 7→L1(ν)) := sup
(t−τ,t]⊆(t0,t1]

‖w (t, ·)− w (t− τ, ·)‖L1(ν)

τ
.

We also let

bk± := (k− − k+)

∫ ∞
1

dz

zα

for all k± ∈ K±.

In the literature, one also works frequently with cylinders of the form

(t− τα, t]× (x− r, x+ r)

due to their convenient scaling properties. We introduce

‖ · ‖L1(ν)
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and

[ · ]C0,1((t0,t1] 7→L1(ν))

due to their role in upcoming Hölder estimates, namely, Lemmas III.18 and III.19.

The symbols δ̃z and bk± facilitate the identification of (3.1) with the equations studied

[157] and [156]. Observe that for all k± ∈ K± and suitable functions w,∫
R
δzw (t, x)Fk± (dz) = bk± ∂xw (t, x) +

∫
R
δ̃zw (t, x)Fk± (dz) . (3.26)

Definition III.16. Since K± ⊂ (λ,Λ), we can pick β > 0 such that

sup
k±∈K±

{
sup
r∈(0,1)

{
rα−1

∣∣∣∣bk± +

∫
(−1,1)\(−r,r)

zFk± (dz)

∣∣∣∣}
}
≤ β.

Let L0 be the family of operators

w (t, x) 7→ b ∂xw (t, x) +

∫
R
δ̃zw (t, x)

k (z)

|z|1+α dz,

where k is a kernel and b is a constant such that λ ≤ k ≤ Λ and

sup
r∈(0,1)

rα−1

∣∣∣∣b+

∫
(−1,1)\(−r,r)

zk (z)

|z|1+α dz

∣∣∣∣ ≤ β.

We say that an operator in L0 is in L1 if

|∂zk (z)| ≤ Λ

|z|
,

and an operator in L1 is in L2 if

∣∣∂2
zzk (z)

∣∣ ≤ Λ

|z|2
.

The stronger regularity requirements on the kernels (in L2, say, compared to those

in L0) give rise to stronger regularity results. All of the operators

w (t, x) 7→ bk± ∂xw (t, x) +

∫
R
δ̃zw (t, x)Fk± (dz)
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are in each of these families. As we will soon see in (3.27), we will be especially

interested in the operator I defined by

Iw (t, x) = inf
k±∈K±

{
bk± ∂xw (t, x) +

∫
R
δ̃zw (t, x)Fk± (dz)

}
.

I is a specific case of an extremal operator.

Definition III.17. For a collection of operators L ⊆ L0, define the extremal opera-

tors M+
L and M−

L by

M+
L = sup

L∈L
L and M−

L = inf
L∈L

L.

I has a number of other key properties including the following.4

(i) I0 = 0.

(ii) I is uniformly elliptic with respect to Lj, i.e.,

M−
Lj (w1 − w2) ≤ Iw1 − Iw2 ≤M+

Lj (w1 − w2) .

(iii) I is translation invariant, i.e.,

I (w (t0 + ·, x0 + ·)) (t, x) = (Iw) (t0 + t, x0 + x) .

(i) is trivial. See Section 2 of [156] for (ii). Since I has constant coefficients, we get

(iii). We highlight these classes of operators and properties of I for the convenience

of the reader comparing the next three results to their original versions (see Theorem

2.3 in [156] for Lemma III.18; Theorems 1.1, 2.4, and 2.5 in [156] for Lemma III.19;

and Theorem 3.3 in [157] for Lemma III.20).5

4Though we will not emphasize this point, we remark in passing that Iw (t, x) is well-defined for any w (t, ·) ∈
C1,1 (x) ∩ L1 (ν) (see Section 2 of [156]).

5A number of related results exist in the literature. We mention only a small sample. Theorem 12.1 in [65],
Theorem 1.1 in [217], and Theorem 7.1 in [218] are Cγ estimates along the lines of Lemma III.18. Theorem 8.1 in
[218], Theorem 13.1 in [65], Theorem 1.1 in [66], and Theorem 1.1 in [219] contain C1,γ or Cα+γ estimates similar
to those in Lemma III.19. Like Lemma III.20, Theorem 5.9 in [65] and Lemma 3.2 in [220] investigate the difference
of viscosity solutions.
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Lemma III.18. Let w satisfy

∂tw −M+
L0w ≤ 0

∂tw −M−
L0w ≥ 0

in the viscosity sense on C1,1. There is some γ ∈ (0, 1) and C > 0 depending only

on λ, Λ, and β such that for every (t0, x0), (t1, x1) ∈ C1/2,1/2,

|w (t0, x0)− w (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ C ‖w‖L1((−1,0] 7→L1(ν)) .

Lemma III.19. Let w satisfy

∂tw − Iw = 0

in the viscosity sense on C1,1 . There is some γ ∈ (0, 1) and C > 0 depending only

on λ, Λ, and β such that for every (t0, x0), (t1, x1) ∈ C1/2,1/2,

|∂xw (t0, x0)|+ |∂xw (t0, x0)− ∂xw (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ C ‖w‖L1((−1,0]7→L1(ν))

and

|∂tw (t0, x0)|+ |∂tw (t0, x0)− ∂tw (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ C [w]C0,1((−1,0] 7→L1(ν)) .

We also have

‖w‖Cα+γ(C1/2,1/2) ≤ C
(
‖w‖L1((−1,0]7→L1(ν)) +

[
w1(−1,1)c

]
C0,1((−1,0]7→L1(ν))

)
.

Lemma III.20. Let w1, w2 satisfy

∂twi − Iwi = 0

in the viscosity sense on some domain Ω. Then

∂t (w1 − w2)−M+
L0 (w1 − w2) ≤ 0

∂t (w1 − w2)−M−
L0 (w1 − w2) ≥ 0

also holds in the viscosity sense on Ω.
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We will need one more result (for the original version, see Lemma 5.6 and the proof

of Corollary 5.7 in [64]). It is the key to a standard technique from the literature

allowing one to repeatedly apply an estimate such as Lemma III.18 in order to obtain

a higher regularity estimate.

Lemma III.21. Let 0 < β1 ≤ 1, 0 < β2 < 1, L > 0, and w ∈ L∞ ([−1, 1]) satisfy

‖w‖L∞([−1,1]) ≤ L.

For 0 < |h0| ≤ 1, define wβ1,h0 by

wβ1,h0 (x) =
w (x+ h0)− w (x)

|h0|β1

for all x ∈ Ih0, where Ih0 = [−1, 1− h0] if h0 > 0 and Ih0 = [−1− h0, 1] if h0 < 0.

Suppose that

wβ1,h0 ∈ Cβ2 (Ih0)

and

‖wβ1,h0‖Cβ2(Ih0) ≤ L

for any 0 < |h0| ≤ 1.

(i) If β1 + β2 < 1, then

w ∈ Cβ1+β2 ([−1, 1])

and

‖w‖Cβ1+β2 ([−1,1]) ≤ CL.

(ii) If β1 + β2 > 1 and β1 6= 1, then

w ∈ C0,1 ([−1, 1])

and

‖w‖C0,1([−1,1]) ≤ CL.
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(iii) If β1 = 1, then w ∈ C1,β2 ([−1, 1]) and

‖w‖C1,β2 ([−1,1]) ≤ CL.

In any of these cases, C depends only on β1 + β2.

We will often apply these results on different domains than we have listed above

without comment. For instance, we might use Lemma III.19 on C1,1 (t, x) or Lemma

III.21 on an arbitrary closed interval. These “new” results are obtained merely by

translating or rescaling, both standard routines in the literature. As an example of

such an operation, notice that if w satisfies

∂tw − Iw = 0

in the viscosity sense on (t1, t2]× Ω, then w̃ defined by

w̃ (t, x) = w (rαt+ t0, rx+ x0)

satisfies

∂tw̃ − Iw̃ = 0

in the viscosity sense on (
t1 − t0
rα

,
t2 − t0
rα

]
× Ω− x0

r

(see Section 2.1.1 of [157]). Further information can be found in [157], [156], and

[64].

3.6 Appendix: Proof of Proposition III.10

In the hope of keeping the number of constants in our argument at a reasonable

level, we will not issue a new subscript each time we introduce a new constant B
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below. Also, we will write ū instead of −u. From (3.1) and (3.26), ū is a viscosity

solution of

∂tū (t, x)− Iū (t, x) = 0, (t, x) ∈ (0,∞)× R

ū (0, x) = −ψ (x) , x ∈ R. (3.27)

It suffices to show that parts (i)-(iv) of Proposition III.10 hold for ū and (3.27).

The quantities

[ū]C0,1((t0,t1]7→L1(ν))

play a crucial role in Lemma III.19, so our first goal will be to control them for t0

greater than some positive number. We will do this by showing that ū is uniformly

Lipschitz as a function of time for times above some lower bound. Achieving a

Lipschitz estimate can be done using a standard strategy. Specifically, we will begin

by obtaining an initial Cγ/α estimate from Lemma III.18. Lemma III.20 will allow

us to apply Lemma III.18 to get a Cγ/α estimate for the incremental quotients of ū.

Then Lemma III.21 will give that ū is C2γ/α in time. We will repeat these steps to

show that ū is C3γ/α in time, C4γ/α in time, and so on until we conclude that ū is

Lipschitz in time.

Since

M−
L0w ≤ Iw ≤M+

L0w,

ū satisfies

∂tū−M+
L0ū ≤ 0

∂tū−M−
L0ū ≥ 0
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in the viscosity sense on (0,∞)× R. For any t̄ > 1,

‖ū (t̄+ ·, ·)‖L1((−1,0]7→L1(ν)) =

∫ 0

−1

∫
R
|ū (t̄+ t, z)|min

(
1, |z|−1−α) dz dt

≤ ‖ψ‖L∞(R)

∫ 0

−1

∫
R

min
(
1, |z|−1−α) dz dt

by Lemma III.9. Lemma III.18 implies that for some B, γ > 0,

|ū (t0, x0)− ū (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ B. (3.28)

for every (t0, x0), (t1, x1) ∈ C1/2,1/2 (t̄, x̄) with t̄ > 1.

For 0 < |h0| < 1/2, define ūγ/α,h0 by

ūγ/α,h0 (t, x) =
ū (t+ h0, x)− ū (t, x)

|h0|γ/α

for all (t, x) ∈ [1/2,∞)× R. Then

∥∥ūγ/α,h0∥∥L∞((1,∞)×R)
≤ B

by (3.28). Hence,

∥∥ūγ/α,h0 (t̄+ ·, ·)
∥∥
L1((−1,0] 7→L1(ν))

≤ B

∫
R

min
(
1, |z|−1−α) dz

for any t̄ > 2.

Notice that

∂tū (·+ h0, ·)− Iū (·+ h0, ·) = 0

in the viscosity sense on (1/2,∞)×R because (3.27) has constant coefficients. Lemma

III.20 implies that

∂tūγ/α,h0 −M+
L0ūγ/α,h0 ≤ 0

∂tūγ/α,h0 −M−
L0ūγ/α,h0 ≥ 0
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in the viscosity sense on (1/2,∞)× R. For some B,∣∣ūγ/α,h0 (t0, x0)− ūγ/α,h0 (t1, x1)
∣∣(

|t0 − t1|1/α + |x0 − x1|
)γ ≤ B

for every (t0, x0), (t1, x1) ∈ C1/2,1/2 (t̄, x̄) with t̄ > 2 by Lemma III.18.

Lemma III.21 shows that for a small r1 (less than 1/4), we can find B such that

ū (·, x̄) ∈ C2γ/α ([t̄− r1, t̄+ r1])

and

‖ū (·, x̄)‖C2γ/α([t̄−r1,t̄+r1]) ≤ B (3.29)

for t̄ > 2.

Due to Lemma III.21, assume without loss of generality that α/γ is not an integer.

Starting from the incremental quotient

ū (t+ h0, x)− ū (t, x)

|h0|2γ/α
,

we can use these steps to produce a C3γ/α estimate for ū in time. By continuing to

repeat this procedure, we will obtain a C4γ/α estimate, a C5γ/α estimate, and so on

until we obtain a Lipschitz estimate for ū in time. More precisely, we will find B and

a small rn such that

ū (·, x̄) ∈ C0,1 ([t̄− rn, t̄+ rn])

and

‖ū (·, x̄)‖C0,1([t̄−rn,t̄+rn]) ≤ B

for t̄ > dα/γe.

For t0, t1 > dα/γe,

|ū (t0, x0)− ū (t1, x0)| ≤ |ū (s0, x0)− ū (s1, x0)|+ · · ·+ |ū (sN−1, x0)− ū (sN , x0)|

≤ B |s0 − s1|+ · · ·+B |sN−1 − sN |

= B |t0 − t1|
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where t0 = s0, t1 = sN , and si < si+1 ≤ si + 2rn. This indicates that

ū (·, x̄) ∈ C0,1 ((dα/γe,∞))

and

‖ū (·, x̄)‖C0,1((dα/γe,∞)) ≤ B.

Then t0, t1 > dα/γe implies

[
ū1(−1,1)c

]
C0,1((t0,t1] 7→L1(ν))

≤ [ū]C0,1((t0,t1]7→L1(ν))

= sup
(t−τ,t]⊆(t0,t1]

‖ū (t, ·)− ū (t− τ, ·)‖L1(ν)

τ

≤ B

∫
R

min
(
1, |z|−1−α) dz.

Lemma III.19 gives that for t̄ > dα/γe,

|∂xū (t0, x0)|+ |∂xū (t0, x0)− ∂xū (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ B (3.30)

and

|∂tū (t0, x0)|+ |∂tū (t0, x0)− ∂tū (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ B (3.31)

for every (t0, x0), (t1, x1) ∈ C1/2,1/2 (t̄, x̄). It also shows that

‖ū‖Cα+γ(C1/2,1/2(t̄,x̄)) ≤ B. (3.32)

After suitably rescaling, we see that these inequalities actually hold for t̄ > (1 +

h)/2. Part (i) of Proposition III.10 then follows from (3.30) and (3.31), while part

(iii) follows from (3.32). From (3.31) and a simple covering argument, we know that

as long as the distance between x0 and x1 is under some arbitrary bound, we can

find B such that

|∂tū (t, x0)− ∂tū (t, x1)| ≤ B |x0 − x1|γ
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for t ∈ [h, h+ 1]. Since ∂tū is bounded on [h, h+ 1] × R, we can drop the distance

constraint and get the second inequality in part (ii). A similar covering argument

finishes the proof of the first inequality and yields part (ii) of Proposition III.10.

It remains to prove part (iv). In this case, the equation for ū is

∂tū (t, x)− bk± ∂xū (t, x)−
∫
R
δ̃zū (t, x)Fk± (dz) = 0, (t, x) ∈ (0,∞)× R

ū (0, x) = −ψ (x) , x ∈ R. (3.33)

Since ū is a classical solution of this equation on [h,∞)×R, ū (·, x̄+ ·) also classically

satisfies

∂tū (·, x̄+ ·)− bk± ∂xū (·, x̄+ ·)−
∫
R
δ̃zū (·, x̄+ ·)Fk± (dz) = 0

on [h,∞)× R. Then

ûh0 (t, x) :=
ū (t, x+ h0)− ū (t, x)

|h0|

is a classical solution of (3.33) on [h,∞)× R as well.

Lemma III.9 implies that

‖ûh0 (t̄+ ·, ·)‖L1((−1,0]7→L1(ν)) ≤ Lip (ψ)

∫
R

min
(
1, |z|−1−α) dz

for t̄ > 1. By Lemma III.19, it follows that for some B,

|∂xûh0 (t0, x0)|+ |∂xûh0 (t0, x0)− ∂xûh0 (t1, x1)|(
|t0 − t1|1/α + |x0 − x1|

)γ ≤ B

for every (t0, x0), (t1, x1) ∈ C1/2,1/2 (t̄, x̄) with t̄ > 1. Rewriting this in terms of ū, we

see that we have found a γ-Hölder estimate for

∂xū (t0, x+ h0)− ∂xū (t0, x)

|h0|
.

By Lemma III.21, ∂2
xxū exists and is bounded on (1/2,∞)×R. By rescaling, we get

that this actually holds on [h, h+ 1]× R.



CHAPTER IV

Index Tracking Near Rebalance Dates

4.1 Introduction

An index fund is distinguished by its objective. In the words of [230], “the goal of

an index fund is to track the performance of a specific market benchmark as closely

as possible”. One might think that the difference between the fund’s return and the

benchmark’s return, also known as the tracking difference, should be the key metric

here. The most important metric in practice is actually the tracking error, i.e., the

standard deviation of the difference between the fund’s return and the benchmark’s

return.

Despite its significance, this measurement possesses a few curious features. A

purely theoretical remark is that a fund which maintains a constant difference be-

tween its return and the benchmark’s return has a tracking error of zero, regardless

of the value of the difference. Of more practical significance is the observation that

tracking error penalizes outperformance. In fact, “index funds do not attempt to

outperform their benchmark” according to [105].

Regardless, index funds are enormously popular: [236] estimates that nearly 20%

of what is invested in stock funds lies in an index fund. Endorsements come from

luminaries including Warren Buffett. In [63], he writes that “most investors, both

69
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institutional and individual, will find that the best way to own common stocks is

through an index fund that charges minimal fees”. Empirical studies support this

strategy too, for example, [104] finds that index funds beat comparable actively

managed porfolios over 80% of the time. Their tax efficiency, broadly diversified

portfolios, low fees, and clear investment objectives are some of their most frequently

cited advantages.

Managers of index funds still face significant difficulties, one of the biggest of which

is that indexes occasionally rebalance or reconstitute. During a reconstitution, the

securities in an index can be reweighted, current securities can be removed (index

deletions), or new securities can be added (index additions). Rebalancing procedures

among indexes vary widely, both in the specifics of the procedures and even their

transparency to the public.

The Russell Indexes use the especially well-understood construction methods de-

tailed in [14]. For instance, the Russell 3000 Index includes the top 3,000 U.S. stocks

based on market capitalization. To complete this year’s reconstitution, Russell In-

vestments will begin an initial ranking of all U.S. stocks after the close on May 29,

2015. A preliminary list of index deletions and additions will be released to the

public on June 12, 2015. Updated lists will be released on the next two Fridays, and

the reconstitution will take effect after the close on June 26, 2015.

The strategies employed by many index fund managers are also quite well-understood.

In [148], Kim and Oikonomou write that

“with a primary objective of replicating the performance of any given

benchmark, managers have a much higher incentive to minimize track-

ing error than to take greater risks to improve returns. [...] Passive index

funds with the tightest tracking error allowances typically choose to wait
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until the last moment on the effective day of change before trading, leading

to inflated prices on the purchases of those stocks being added to the index

(and substantially lower prices on those to be removed)”.

The combination of widely known index rebalancing methods and index tracking

strategies presents ripe opportunities for predatory traders. Some funds such as

the Aviva Investors Index Opportunities Fund are very open about their intentions

in this regard and are openly designed to profit from the behavior of index funds

near rebalance dates. It is determined in [83] that investors in funds tracking the

S&P 500 and the Russell 2000 lose between one and two billion dollars per year to

predatory trading of this kind. Perhaps even more startling is the finding in [67] that

a buy-and-hold portfolio outperforms the annually rebalanced index by an average

of 17.29% over five years.

The goal of this paper is to construct a model for the problem faced by an index

tracker during a reconstitution. We want to take into account varying tracking

error constraints, market characteristics, and predatory trading activities. We hope

to understand how these variables affect the returns and optimal strategies for the

index tracker and a potential predator, as well as the prices of the index securities.

To the best of our knowledge, ours is the first predatory trading model to explicitly

incorporate tracking error considerations.

In our model, the index tracker’s tracking error constraint winds up being an

extremely strong condition. As this bound becomes tighter, the index tracker’s

strategy approaches an instantaneous liquidation at the terminal time, regardless

of the market conditions. Consequently, the price of an index deletion during the

reconstitution is significantly deflated. This appears to reflect practical experience.

As we will see, the index tracker in our model sometimes benefits from the presence
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of the predator. The intuition behind this observation is that the negative effects due

to the “predator’s role as a predator” are outweighed by the positive effects due to

the “predator’s role as a liquidity provider”, as long as the index tracker is eventually

selling rapidly enough. This is never the case in the related one-period models of

[69] and [216].

We give a short overview of the literature in Section 4.2. Our model is described

in Section 4.3. In Section 4.4, we describe the mathematical details underlying our

numerical work. Section 4.5 contains our numerical examples.

4.2 Previous Work

A number of empirical studies have been completed on various aspects of index

rebalancing. Some of the key papers include [164], [82], [179], [84], [166], [180], [67],

[83], [119], and [112]. Another helpful reference is the undergraduate thesis [240]. In

Section 4.1, we have discussed the findings in these papers that we are most interested

in reproducing with our model.

Many theoretical studies of predatory trading in general have also been done.

Early models are proposed in [62] and [26]. In [69] and [216], risk-neutral agents

maximize expected revenues, and open-loop Nash equilibria are determined using

an Almgren-Chriss market impact model. This framework is extended to the case

of multiple assets in [86]. Schied and Zhang study an open-loop Nash equilibrium

where the players conduct either a CARA utility maximization or a certain mean-

variance optimization in [213]. Carmona and Yang numerically analyze a closed-loop

Nash equilibrium with one distressed trader and one predator, where the predator

can trade over a longer time horizon in [72]. In [215], Schöneborn derives both open-

loop and closed-loop strategies for two players using a discrete-time limit order book
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model extending that of [178]. Unlike previous studies, [170] investigates a game

with asymmetric information.

4.3 Our Model

We work on some finite time horizon, say [0, T ]. One index tracker and some noise

traders are active in the market throughout this period. Another strategic trader,

who we will view as a predator, is also sometimes present. It will occasionally be

convenient to refer to the index tracker and the predator as Player 1 and Player 2,

respectively. The description of our model will be less awkward if we act as if the

predator is always active. The case where the index tracker and the noise traders are

alone in the market can be obtained by merely dropping all of the quantities related

to the predator.

Our market contains only two assets: one risky asset and one risk-free asset (cash).

We assume that the risk-free interest rate is zero. Of course, an index consists of

many securities in practice, but we will assume for simplicity that our index consists

of only a single asset. More precisely, at t = 0, only the risky asset is a member

of the index. At t = T , the following reconstitution takes effect: the risky asset is

deleted and the risk-free asset is added.

We assume that the index is guaranteed to rebalance in this way and that both

the index tracker and the predator are aware of this at t = 0. This means that

our time horizon should be viewed as being fairly short, say the last day of trading

before the reconstitution. We remark that even with a transparent index such as the

Russelll 2000, no such guarantee actually exists in practice. Also, while we could have

replaced the risky asset with another risky asset to make our model more realistic,

we opt against this for convenience. 1

1Still, our preliminary (unpublished) investigations into the two risky asset case actually suggest that the results
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Let X1 (t) and X2 (t) denote the risky asset holdings at time t of the index tracker

and the predator, respectively. We require X1 (t) and X2 (t) to be continuously

differentiable. The price at time t of the risky asset, P (t), is given by the linear

price impact model

P (t) = P̃ (t) +
2∑
i=1

γi (Xi (t)−Xi (0)) +
2∑
i=1

λiẊi (t) (4.1)

for t ∈ [0, T ], where P̃ is an arithmetic Brownian motion without drift starting from

p̄. Here, γi is Player i’s permanent price impact parameter, while λi is Player i’s

temporary price impact parameter.

This model for the asset price dynamics is identical to that used in many sources,

e.g., [69] and [216], except that we allow the index tracker and the predator to have

potentially different price impact parameters. One reason for this choice is that we

can recover a simple version of the N -predator model in [69] and [216] by letting

γ2 = Nγ1 and λ2 = Nλ1.

Index trackers do not necessarily own all of the securities in the index they are

tracking. We strive to avoid such complications, so we require the index tracker to

hold only the risky asset at t = 0 and only cash at t = T . We denote the index

tracker’s initial holdings in the risky asset by x̄, so we have

X1 (0) = x̄ (4.2)

and

X1 (T ) = 0. (4.3)

For the predator, we enforce the conditions

X2 (0) = 0 (4.4)

are easily understood from our setup here anyway, at least when the assets are independent.
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and

X2 (T ) = 0. (4.5)

The first condition seems justified by the observation that the predator only trades

in the risky asset to take advantage of the index tracker’s distressed circumstances.

This suggests that the predator should not have any initial holdings in the asset.

Because many index reconstitutions take effect at the market close on the effective

date, it is reasonable to view T as a market closing time. The second condition then

reflects the fact that predatory traders often eschew having open positions at the

end of the trading day.

At t = 0, both the index tracker and the predator will choose their deterministic

trading rates over the entire time horizon. We denote these functions by Ẋ1 and Ẋ2,

respectively. The expected revenue for Player i becomes

−
∫ T

0

Ẋi (t)
[
p̄+ γ1 (X1 (t)− x̄) + γ2X2 (t) + λ1Ẋ1 (t) + λ2Ẋ2 (t)

]
dt.

Observe that this is deterministic as well.

In many predatory trading models, e.g., [69] and [216], the traders maximize their

expected revenues. We will assume that the predator has this objective throughout;

however, this might not be an appropriate assumption for the index tracker. Let us

examine this claim more carefully.

In our setup, the index tracker’s tracking error on [0, T ] is√√√√√√√Var

P (T )− p̄
p̄

+

∫ T

0

Ẋ1 (t)P (t) dt+ x̄p̄

x̄p̄

. (4.6)

As an aside, to avoid an artificial jump in the benchmark’s value, we consider the

index’s holdings in the risk-free asset to be worth P (T ) after time T . A similar
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Figure 4.1: Depiction of the index tracker’s tracking error (see Section 4.3).

normalization occurs in practice for the same reason. The issue is that (4.6) may not

be small enough if the index tracker is maximizing expected revenue. In the plastic

market case from [216], i.e., letting

x̄ = 1, p̄ = 10, T = 1,

γ1 = γ2 = 3, and λ1 = λ2 = 1,

we have √√√√√√√Var

P (T )− p̄
p̄

+

∫ T

0

Ẋ1 (t)P (t) dt+ x̄p̄

x̄p̄

 = 0.05.

Tracking error allowances can be much smaller.

An obvious remedy is to shorten the time horizon. This appears to reflect how

index trackers deal with this issue in practice. Figure 4.1 shows the index tracker’s

tracking error as a function of T using the rest of the parameter values just mentioned.

Unfortunately, the index tracker’s new strategy is only guaranteed to be optimal on

the shortened time horizon, not the original time horizon. Also, arbitrarily shortening

the index tracker’s time horizon should not necessarily shorten the predator’s time

horizon as well.
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One could allow the predator to trade in a period before the index tracker enters

the market. This is the approach taken in [240]. The index tracker’s strategy is still

not guaranteed to be optimal on the original time horizon, so we feel an alternative

setup is needed.

A second remedy might be to assume that the index tracker’s objective is to

minimize (4.6). After attempting to carry out the program in Section 4.4, we found

that the only possible solution features

X1 (t) = x̄H (T − t) ,

where H is the Heaviside step function. Intuitively, this solution means that the

index tracker instantaneously liquidates the risky asset at the terminal time. While

this solution also appears to reflect the behavior of index trackers in practice, it is

problematic in our setup. The main concern is that P (T ) is no longer defined: the

index tracker’s trading rate is

Ẋ1 (t) = −x̄δ (T − t) ,

after all. Another objection is that the index tracker’s risky asset position is not

continuously differentiable.

In an attempt to avoid the occurrence of delta functions, a third remedy might be

to assume that the index tracker’s objective is to minimize (4.6) and that all trading

rates are valued in a given compact set, say [−M,M ]. After attempting to apply

the techniques of Section 4.4, we found that the only possible solution is as follows:

the index tracker initially does not trade at all and then sells the risky asset at the

maximum allowable speed. Intuitively, the index tracker uses the strategy which

most closely approximates the strategy from the previous setup, which is perhaps

not a surprise. The primary concern about this approach is that many important
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quantities in the problem now depend on a fairly arbitrary trading speed bound. A

secondary issue is that the index tracker’s risky asset position is not continuously

differentiable.

We have now arrived at the remedy which we use in this paper. For some α > 0,

the index tracker’s objective is to maximize

−
∫ T

0

Ẋ1 (t)
[
p̄+ γ1 (X1 (t)− x̄) + γ2X2 (t) + λ1Ẋ1 (t) + λ2Ẋ2 (t)

]
dt

such that √√√√√√√Var

P (T )− p̄
p̄

+

∫ T

0

Ẋ1 (t)P (t) dt+ x̄p̄

x̄p̄

 = α. (4.7)

The interpretation here is that the index tracker is maximizing expected revenue

while maintaining a specific tracking error. Based on Section 4.5, we suspect that if

we replace “=” in (4.7) with “≤”, we will get an equivalent problem.

A nice feature of this setup is that the solutions in the one-period models of [69]

and [216] are recovered as special cases. Of course, the value of α which allows us to

recover their result depends on the values of all of the other parameters.

4.4 Mathematical Details

As it stands, our game is formulated in a rather unusual way due to (4.7). This

problem is easily solved. We introduce the extra state variables X3 and X4 satisfying

Ẋ3 (t) = tẊ1 (t)

Ẋ4 (t) = X3 (t) Ẋ1 (t) (4.8)

with initial data

X3 (0) = 0

X4 (0) = 0. (4.9)
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These variables are defined precisely so that we can rewrite the tracking error in

terms of the terminal values of the state variables. Specifically, a quick calculation

shows that the index tracker’s tracking error constraint is now given by√
T

p̄2
+

2X3 (T )

x̄p̄2
+

2X4 (T )

x̄2p̄2
= α. (4.10)

4.4.1 No Predator Case

We begin by analyzing the case when the predator is absent from the market.

Note that we merely drop the quantities related to the predator throughout this

discussion and retain all of the other notation. We will use standard necessary

optimality conditions based upon the maximum principle, e.g., see [31], to produce

a candidate strategy for the index tracker.

Introduce the costate function

p (t) = (p1 (t) , p3 (t) , p4 (t))

for t ∈ [0, T ] and the constant multipliers ν1, ν2. The Hamiltonian for the index

tracker is given by

H
(
X (t) , Ẋ1 (t) , p (t) , t

)
= Ẋ1 (t)

[
p̄+ γ1 (X1 (t)− x̄) + λ1Ẋ1 (t)

+ p1 (t) + tp3 (t) +X3 (t) p4 (t)
]

on [0, T ]. The costate function satisfies the equations

ṗ1 (t) = −γ1Ẋ1 (t)

ṗ3 (t) = −p4 (t) Ẋ1 (t)

ṗ4 (t) = 0
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with terminal data

p1 (T ) = ν1

p3 (T ) =
2ν2

x̄p̄2

p4 (T ) =
2ν2

x̄2p̄2
.

This means that

p1 (t) = −γ1X1 (t) + ν1

p3 (t) = − 2ν2

x̄2p̄2
(X1 (t)− x̄)

p4 (t) =
2ν2

x̄2p̄2

for t ∈ [0, T ].

By the stationarity condition,

0 = p̄+ γ1 (X1 (t)− x̄) + 2λ1Ẋ1 (t) + p1 (t) + tp3 (t) +X3 (t) p4 (t)

= p̄− γ1x̄+ ν1 + 2λ1Ẋ1 (t)− 2ν2

x̄2p̄2

∫ t

0

[t− s] Ẋ1 (s) ds.

Hence,

Ẋ1 (t) = − p̄− γ1x̄+ ν1

2λ1

+
ν2

λ1x̄2p̄2

∫ t

0

[t− s] Ẋ1 (s) ds.

This is a non-homogeneous Volterra integral equation of the second kind. From

Section 2.1 of [202],

Ẋ1 (t) =
−p̄+ γ1x̄− ν1

2λ1

+

√
ν2

λ1x̄2p̄2

(
−p̄+ γ1x̄− ν1

2λ1

)∫ t

0

sinh

[√
ν2

λ1x̄2p̄2
(t− s)

]
ds

=

(
−p̄+ γ1x̄− ν1

2λ1

)
cosh

(
t

√
ν2

λ1x̄2p̄2

)
(4.11)

on [0, T ]. Note that if ν2 < 0, we could equivalently write

Ẋ1 (t) =

(
−p̄+ γ1x̄− ν1

2λ1

)
cos

(
t

√
− ν2

λ1x̄2p̄2

)
.
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Let

A =
−p̄+ γ1x̄− ν1

2λ1

and

B =

√
ν2

λ1x̄2p̄2
.

If B = 0, then integrating (4.11) gives

X1 (t) = x̄+ At

on [0, T ]. By (4.3),

A = − x̄
T
.

Continuing, we get

Ẋ1 (t) = − x̄
T

(4.12)

X1 (t) = x̄

[
1− t

T

]
X3 (t) = − x̄t

2

2T

X4 (t) =
x̄2t3

6T 2
,

which leads to

α2 =
T

3p̄2
. (4.13)

Now assume that B 6= 0. Integrating (4.11) gives

X1 (t) = x̄+
A sinh (Bt)

B

on [0, T ]. By (4.3),

A = − x̄B

sinh (BT )
.
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After simplifying, (4.8) implies that

Ẋ1 (t) = − x̄B cosh (Bt)

sinh (BT )
(4.14)

X1 (t) = x̄

[
1− sinh (Bt)

sinh (BT )

]
X3 (t) = − x̄ [Bt sinh (Bt)− cosh (Bt) + 1]

B sinh (BT )

X4 (t) =
x̄2
[
2Bt cosh2 (Bt)− 3 sinh (Bt) cosh (Bt) + 4 sinh (Bt)− 3Bt

]
2B [cosh (2BT )− 1]

By substituting our new expressions into (4.10) and simplifying again, we arrive at

α2 = −4BT exp (2BT )− exp (4BT ) + 1

2Bp̄2 [exp (2BT )− 1]2
. (4.15)

From (4.12), (4.14), and (4.15), we see that Ẋ1 does not depend on the price

impact parameters γ1 and λ1.

Notice that (4.12) would also be the optimal strategy if the index tracker maxi-

mized expected revenue and did not face a tracking error constraint, e.g., see page

2244 of [69]. The solution in that case depends only on x̄ and T . While our solution

also depends on x̄ and T , in general, it depends on p̄ (and α) as well.

The intuition here seems to be roughly as follows. As p̄ increases, the effect

of the index tracker’s choices on both her own return and the return of the risky

asset should decrease. Assuming the index tracker has a tracking error constraint,

this should make the constraint easier to satisfy and give the index tracker greater

flexbility when selecting a strategy. In particular, the index tracker should take p̄

into account. On the other hand, if the index tracker is only trying to maximize her

expected revenue, she should be primarily worried about how much her trading causes

the price of the risky asset to drop in an absolute sense. Because this is independent

of the risky asset’s initial price (in our model, at least), the index tracker’s strategy

should be independent of p̄ in this case.
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Figure 4.2: Depiction of f (·) (see Subsection 4.4.1).

Whether the index tracker maximizes expected revenue (only) or maximizes ex-

pected revenue with a tracking error constraint, the values of the price impact pa-

rameters γ1 and λ1 do not affect the optimal solution when the predator is absent

from the market.

To the best of our knowledge, (4.15) cannot be solved explicitly for B. Since we

believe it reveals all of the salient features of the problem, we will only informally

analyze this equation. By changing variables, note that solving (4.15) is equivalent

to solving

α2p̄2

T
= −2y exp (y)− exp (2y) + 1

y [exp (y)− 1]2
. (4.16)

for y. Denote by f the map

y 7→ −2y exp (y)− exp (2y) + 1

y [exp (y)− 1]2
.

Based on our work above, the only relevant arguments for f lie along either the

positive real axis or the positive imaginary axis.

Figure 4.2 is a graph of f (y) for positive real y, while Figure 4.3 is a graph of

f (iy) for positive real y. We can draw the following conclusions:
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Figure 4.3: Depiction of f (i·) (see Subsection 4.4.1).

(i)

lim
y↓0

f (y) = lim
y↓0

f (iy) =
1

3
,

(ii)

lim
y↑+∞

f (y) = 0,

(iii)

lim
y↑2π

f (iy) = +∞,

(iv) f (y) decreases as y increases for y on the positive real axis, and

(v) f (iy) increases as y increases for y ∈ (0, 2π).

Comparing these observations to (4.13) and (4.15), we see that

α2 >
T

3p̄2
=⇒ B ∈ iR+ =⇒ ν2 < 0

α2 =
T

3p̄2
=⇒ B = 0 =⇒ ν2 = 0

α2 <
T

3p̄2
=⇒ B ∈ R+ =⇒ ν2 > 0.
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Of course, the case where

α2 >
T

3p̄2

is merely a curiosity. The index tracker would have a higher expected revenue and

a lower tracking error by setting B = 0 instead, a far more preferable outcome in

practice (this case corresponds to the strategy which maximizes expected revenue).

4.4.2 Predator Case

We now study the case where the predator is active in the market. We will use

the same approach as in the previous subsection. The resulting expressions and

equations are far more complicated here due to the appearance of the predator. For

this reason, our discussion will be limited.

For j = 1, 2, we introduce the costate function

pj (t) = (pj,1 (t) , pj,2 (t) , pj,3 (t) , pj,4 (t))

on [0, T ]. We also let ν1, ν2, and ν3 be constant multipliers. The Hamiltonian for

Player j is defined by

Hj

(
X (t) , Ẋ1 (t) , Ẋ2 (t) , pj (t) , t

)
= Ẋj (t)

[
p̄+ γ1 (X1 (t)− x̄) + γ2X2 (t) + λ1Ẋ1 (t) + λ2Ẋ2 (t)

]
+ Ẋ1 (t) [pj,1 (t) + tpj,3 (t) +X3 (t) pj,4 (t)] + Ẋ2 (t) pj,2 (t)

for j = 1, 2 and t ∈ [0, T ]. The costate function j satisfies

ṗj,1 (t) = −γ1uj

ṗj,2 (t) = −γ2uj

ṗj,3 (t) = −Ẋ1pj,4

ṗj,4 (t) = 0
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subject to the terminal conditions

p1,1 (T ) = ν1

p1,2 (T ) = 0

p1,3 (T ) =
2ν2

x̄p̄2

p1,4 (T ) =
2ν2

x̄2p̄2

and

p2,1 (T ) = 0

p2,2 (T ) = ν3

p2,3 (T ) = 0

p2,4 (T ) = 0.

In particular,

p1,1 (t) = −γ1

∫ t

0

Ẋ1 (s) ds− γ1x̄+ ν1

p1,3 (t) = − 2ν2

x̄2p̄2

∫ t

0

Ẋ1 (s) ds

p1,4 (t) =
2ν2

x̄2p̄2

p2,2 (t) = −γ2

∫ t

0

Ẋ2 (s) ds+ ν3

on [0, T ].

From the stationarity condition, we get

0 = p̄+ γ1 (X1 (t)− x̄) + γ2X2 (t) + 2λ1Ẋ1 (t) + λ2Ẋ2 (t) + p1,1 (t) + tp1,3 (t) +X3 (t) p1,4 (t)

= p̄− γ1x̄+ ν1 + γ2

∫ t

0

Ẋ2 (s) ds+ 2λ1Ẋ1 (t) + λ2Ẋ2 (t)− 2ν2

x̄2p̄2

∫ t

0

[t− s] Ẋ1 (s) ds
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and

0 = p̄+ γ1 (X1 (t)− x̄) + γ2X2 (t) + λ1Ẋ1 (t) + 2λ2Ẋ2 (t) + p2,2 (t)

= p̄+ γ1

∫ t

0

Ẋ1 (s) ds+ λ1Ẋ1 (t) + 2λ2Ẋ2 (t) + ν3 (4.17)

for t ∈ [0, T ]. This implies that

−γ2

∫ t

0

Ẋ2 (s) ds+ λ2Ẋ2 (t) = −ν3 − γ1x̄+ ν1 + λ1Ẋ1 (t)− γ1

∫ t

0

Ẋ1 (s) ds

− 2ν2

x̄2p̄2

∫ t

0

[t− s] Ẋ1 (s) ds.

We can think of Ẋ2 as the solution to a non-homogeneous Volterra integral equation

of the second kind involving Ẋ1. By Section 2.1 of [202], we have

Ẋ2 (t) =
−ν3 − γ1x̄+ ν1

λ2

+
λ1

λ2

Ẋ1 (t)− γ1

λ2

∫ t

0

Ẋ1 (s) ds− 2ν2

λ2x̄2p̄2

∫ t

0

[t− s] Ẋ1 (s) ds

+
γ2

λ2

∫ t

0

exp

(
γ2 (t− r)

λ2

)[
−ν3 − γ1x̄+ ν1

λ2

+
λ1

λ2

Ẋ1 (r)− γ1

λ2

∫ r

0

Ẋ1 (s) ds

− 2ν2

λ2x̄2p̄2

∫ r

0

[r − s] Ẋ1 (s) ds

]
dr (4.18)

on [0, T ].

Define the auxiliary variable Y by

Y (t) =

∫ t

0

X1 (s) ds
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for t ∈ [0, T ]. We can write (4.17) as

0 = p̄+ γ1

∫ t

0

Ẋ1 (s) ds+ λ1Ẋ1 (t) + ν3

+ 2λ2

(
−ν3 − γ1x̄+ ν1

λ2

+
λ1

λ2

Ẋ1 (t)− γ1

λ2

∫ t

0

Ẋ1 (s) ds− 2ν2

λ2x̄2p̄2

∫ t

0

[t− s] Ẋ1 (s) ds

+
γ2

λ2

∫ t

0

exp

(
γ2 (t− r)

λ2

)[
−ν3 − γ1x̄+ ν1

λ2

+
λ1

λ2

Ẋ1 (r)− γ1

λ2

∫ r

0

Ẋ1 (s) ds

− 2ν2

λ2x̄2p̄2

∫ r

0

[r − s] Ẋ1 (s) ds

]
dr

)

= p̄− γ1

(
Ẏ (t)− x̄

)
+ 3λ1Ÿ (t) + ν3 + 2 [−ν3 − γ1x̄+ ν1]− 4ν2

x̄2p̄2
(−tx̄+ Y (t))

+
2γ2

λ2

(λ2 (ν1 − ν3)

(
exp

(
γ2t

λ2

)
− 1

)
γ2

−
2λ2ν2

(
λ2 − λ2 exp

(
γ2t

λ2

)
+ γ2t

)
γ2

2 p̄2x̄

+

∫ t

0

exp

(
γ2 (t− r)

λ2

)[
λ1Ÿ (r)− γ1Ẏ (r)− 2ν2

x̄2p̄2
Y (r)

]
dr

)

after integrating.

Let L denote the Laplace transform of Y . By taking Laplace transforms and

solving for L, we get

L (s) =

[
x̄

s2 (4λ2ν2 + γ2γ1p̄2x̄2 + γ2λ1p̄2sx̄2 + γ1λ2p̄2sx̄2 − 3λ2λ1p̄2s2x̄2)

]
·
[
4λ2ν2 − γ2p̄

3x̄− γ2ν3p̄
2x̄+ λ2p̄

3sx̄+ γ2γ1p̄
2x̄2 + γ2λ1p̄

2sx̄2

−γ1λ2p̄
2sx̄2 − 3λ2λ1p̄

2s2x̄2 + 2λ2ν1p̄
2sx̄− λ2ν3p̄

2sx̄
]
.

We will only state the next steps. The reason is that the expressions involved

are enormous. While they can be easily obtained by following the procedure below

using software such as MATLAB, they are so complicated that we believe it would

not be beneficial for the reader to actually see them. We will see their important

qualitative features during our discussion of the numerical examples soon.
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Step 1: Find Y by taking the inverse Laplace transform of L.

Step 2: Differentiate Y to obtain X1.

Step 3: Differentiate X1 to obtain Ẋ1.

Step 4: Use (4.8), (4.9), and the formula for Ẋ1 to obtain X3 and X4.

Step 5: Use (4.18) and the formula for Ẋ1 to obtain Ẋ2.

Step 6: Integrate Ẋ2 to obtain X2.

All of the formulas above will be in terms of the constants ν1, ν2, and ν3. It only

remains to find these constants, which can be done numerically as follows.

Step 7: Use (4.3) and the formula for X1 to obtain a formula for ν1 in terms of ν2

and ν3.

Step 8: Use (4.5), the formula for X2, and the formula for ν1 from Step 7 to obtain

a formula for ν3 in terms of ν2 alone.

Step 9: Use (4.10), the formulas for X3 and X4, and the formulas from Steps 7 and

8 to obtain an equation relating ν2 to α, p̄, x̄, T , and the price impact

parameters.

As in (4.15), it is not clear if the equation in Step 9 can be solved explicitly for

ν2; however, it is easy to do so numerically after selecting values for α, p̄, x̄, T , and

the price impact parameters. We then use Steps 7 and 8 to get numerical values for

ν1 and ν3. These values allow us to compute the remaining quantities of interest.

Before moving on to the numerical examples, we remark that Ẋ1 and Ẋ2 are of

the form

Ẋ1 (t) = exp (C1t) [C2 sinh (C3t) + C4 cosh (C3t)]
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and

Ẋ2 (t) = exp (C1t) [C5 sinh (C3t) + C6 cosh (C3t)] + C7

for some constants C1, . . . , C7.

4.5 Numerical Examples

For simplicity, we will first examine the case when the index tracker and the

predator have the same price impact parameters. More precisely, we will use the

parameters from the plastic market case in [216], i.e., we let

x̄ = 1, p̄ = 10, T = 1,

γ1 = γ2 = 3, and λ1 = λ2 = 1.

Recall that predatory trading has been observed in plastic markets (and in other

types of markets as well). We will later vary the price impact parameters to under-

stand their influence.

In all of our figures below, we will write “N = 1” or “N = 0” to indicate whether

the predator is active or not, respectively. We only considered values of α that were

below the value of α corresponding to the one-period model solution from [69] or

[216], as these are the only solutions with potential relevance in practice. We also

restricted ourselves to values of α for which the expected price process is positive on

[0, T ], given our parameters.

4.5.1 Effects Due to the Tracking Error Constraint

Question IV.1. What is the effect of the tracking error constraint α on the players’

trading rates?

Figure 4.4 shows the index tracker’s trading rate in the case where the predator

is active as a function of t for various values of α. The index tracker sells more
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Figure 4.4: Depiction of the index tracker’s trading rate (see Question IV.1).
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Figure 4.5: Depiction of the predator’s trading rate (see Question IV.1).
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rapidly for small times and more slowly for large times as α increases. By continuing

to shrink α, the index tracker’s trading rate appears to converge in an appropriate

sense to

Ẋ1 (t) = −x̄δ (T − t) ,

i.e., an instantaneous liquidation at the terminal time. This reflects practical expe-

rience, where tight tracking error constraints effectively force index fund managers

to rebalance their portfolios at the close on the effective date of the reconstitution.

Observe that the index tracker’s trading rate retains the general features of the one-

period model solution in [69] and [216], e.g., it is negative, concave, and has its

maximum at an intermediate time.

In Figure 4.5, we have the predator’s trading rate as a function of t for a few

values of α. The predator sells more rapidly for (very) small times and buys more

slowly for large times as α increases. The predator sells for a shorter period of time

as α increases. Note that the predator’s trading rate also retains important features

of the one-period model solution in [69] and [216]. For instance, it is increasing,

negative for small times, positive for large times, and convex. The predator’s buying

rate near the terminal time also rapidly increases when the index tracker’s selling

rate rapidly decreases near the terminal time, as in [69] and [216].

Question IV.2. What is the effect of the tracking error constraint α on the expected

price process?

Figure 4.6 depicts the expected price process as a function of t in the case where

the predator is active for several values of α. The expected price process decreases

for small times but increases for large times as α increases. We also see a concavity

changes as α increases. Specifically, as α decreases, it appears that the expected
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Figure 4.6: Depiction of the expected price (see Question IV.2).
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Figure 4.7: Depiction of the index tracker’s expected revenue (see Question IV.3).



94

0.03 0.035 0.04 0.045 0.05 0.055

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

α
E

xp
ec

te
d 

R
ev

en
ue
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Figure 4.9: Depiction of the total expected revenue (see Question IV.3).

price process becomes concave. To the best of our knowledge, the expected price

process in the one-period model of [69] and [216] is convex.

Question IV.3. What is the effect of the tracking error constraint α on the players’

expected revenues?

Figure 4.7 shows the index tracker’s expected revenue when the predator is active

as a function of α. It appears to be increasing and concave.

In Figure 4.8, we have the predator’s expected revenue as a function of α. It

seems to be decreasing and convex.

Figure 4.9 depicts the sum of the index tracker’s expected revenue (in the case

where the predator is active) and the predator’s expected revenue as a function of
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Figure 4.10: Depiction of the index tracker’s trading rate (see Question IV.4).
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Figure 4.11: Depiction of the expected price (see Question IV.4).

α. It appears to be a concave function of α with a maximum roughly near α = 0.04.

Comparing this graph to Figures 4.7 and 4.8, we see that although the predator’s

expected revenue increases and the index tracker’s expected revenue decreases as α

gets smaller, the index tracker loses more than the predator gains for α small enough.

4.5.2 Effects Due to the Predator’s Appearance

Question IV.4. What is the effect of the predator’s appearance?

Figure 4.10 shows the index tracker’s trading rate as a function of time for various

values of α and N . For the values of α we considered, the entry of the predator causes

the index tracker to sell more rapidly at small and large times and more slowly

at intermediate times. We qualify this statement because for these price impact
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Figure 4.12: Depiction of the index tracker’s expected revenue (see Question IV.4).
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Figure 4.13: Depiction of the index tracker’s trading rate (see Question IV.5).
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parameters, the index tracker (distressed trader) sells more slowly for small times

and more rapidly for large times in the one-period model of [69] and [216]. We did

not attempt to find the smallest value of α for which this change in behavoir occurs.

Also, while the index tracker’s trading rate is decreasing when the predator is absent,

it is only eventually decreasing after the predator’s appearance.

In Figure 4.11, we have the expected price process as a function of t both in the

predator’s absence and presence. For the α we considered, the expected price process

when the predator is in the market is initially smaller but is eventually much higher

than it is in the absence of the predator. The same is true in the one-period model

of [69] and [216].

Figure 4.12 depicts the index tracker’s expected revenue as a function of α both in

the predator’s absence and presence. The entry of the predator increases the index

tracker’s expected revenue for small α and decreases the index tracker’s expected

revenue for large α. Observe that transition occurs roughly near α = 0.04. It would

be interesting to study whether or not this is the same value of α which maximizes

the sum of the expected revenues in Figure 4.9 and, if so, why this is the case. Recall

that in the one-period model of [69] and [216], the index tracker (distressed trader)

always loses expected revenue as a result of the predator’s entrance to the market.

4.5.3 Effects Due to the Price Impact Parameters

We will now try to understand the influence of the price impact parameters. We

will vary each parameter one at a time, while keeping the remaining parameters as

they were previously. We remark that all of the properties that we just observed still

hold.

Question IV.5. How does varying γ1 affect our solution?
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Figure 4.14: Depiction of the index tracker’s trading rate (see Question IV.5).

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

t

T
ra

di
ng

 R
at

e

 

 

α = 0.03, N = 1, γ
1
 = 2.25

α = 0.03, N = 1, γ
1
 = 3.00

α = 0.03, N = 1, γ
1
 = 3.75

Figure 4.15: Depiction of the predator’s trading rate (see Question IV.5).

Figure 4.13 shows the index tracker’s trading rate as a function of t when the

predator is not active. In this case, the index tracker’s trading rate does not depend

on γ1. Recall that the distressed trader’s trading rate in the predator’s absence is

also independent of the permanent price impact parameter in the one-period model

of [69] and [216].

In Figure 4.14, we see the index tracker’s trading rate as a function of t after the

predator’s appearance for various γ1. The index tracker now responds to changes

in γ1. Specifically, the index tracker sells (slightly) more rapidly for small and large

times and (slightly) more slowly for intermediate times as γ1 increases.

Figure 4.15 depicts the predator’s trading rate as a function of t for several values



99

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

t

E
xp

ec
te

d 
P

ric
e

 

 

α = 0.03, N = 1, γ
1
 = 2.25

α = 0.03, N = 1, γ
1
 = 3.00

α = 0.03, N = 1, γ
1
 = 3.75

Figure 4.16: Depiction of the expected price (see Question IV.5).
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Figure 4.17: Depiction of the index tracker’s expected revenue (see Question IV.5).

of γ1. The predator sells more rapidly for small times and buys more rapidly for

large times as γ1 increases. The predator appears to sell for a slightly longer period

of time as γ1 increases. Comparing this graph to Figure 4.14, the predator’s trading

rate appears to be more sensitive to γ1 than the index tracker’s trading rate.

Figure 4.16 shows the expected price process as a function of t when the predator is

active for various γ1. It appears that the expected price process decreases for all times

as γ1 increases and that the magnitude of the drop increases with time. Apparently

the upward price pressure due to the predator’s increased trading rate for large times

is outweighed by the downward price pressure due to the index tracker’s liquidation

(and the predator’s short-selling) as γ1 increases.
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Figure 4.18: Depiction of the index tracker’s expected revenue (see Question IV.5).
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Figure 4.19: Depiction of the predator’s expected revenue (see Question IV.5).

In Figure 4.17, we have the index tracker’s expected revenue as a function of γ1

when the predator is not active. This quantity decreases linearly with γ1, which is

also clear from Figure 4.13, since the index tracker’s trading rate does not depend

on γ1.

Figure 4.18 depicts the index tracker’s expected revenue as a function of γ1 when

the predator is active. After a close inspection, it appears that this is a decreasing

concave function. The fact that this function is decreasing seems clear given Figures

4.14 and 4.16, since the index tracker’s trading rate seems to only minimally change

and the expected price process noticeably drops as γ1 increases.

Figure 4.19 shows the predator’s expected revenue as a function of γ1. It appears
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Figure 4.20: Depiction of the index tracker’s trading rate (see Question IV.6).
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Figure 4.21: Depiction of the index tracker’s trading rate (see Question IV.6).

to be an increasing convex function γ1. Considering Figures 4.15 and 4.16, one

might have guessed that this function is increasing: the predator is initially short-

selling more rapidly and the drop in the expected price process grows with time as

γ1 increases.

Question IV.6. How does varying λ1 affect our solution?

In Figure 4.20, we have the index tracker’s trading rate as a function of t when

the predator is absent from the market. This trading rate does not depend on λ1,

so the index tracker’s trading rate does not depend on either of the price impact

parameters in the predator’s absence (see Figure 4.13). Again, the same is true of

the distressed trader’s trading rate in the one-period model of [69] and [216].
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Figure 4.22: Depiction of the predator’s trading rate (see Question IV.6).
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Figure 4.23: Depiction of the expected price (see Question IV.6).

Figure 4.21 depicts the index tracker’s trading rate as a function of t after the

predator’s apperance. It appears that the index tracker sells more slowly for small

and large times and more rapidly for intermediate times as λ1 increases. Recall that

this is the opposite of what we observe as γ1 increases in Figure 4.14. Comparing

these two figures, it also appears that the index tracker’s trading rate might be more

sensitive to λ1 than γ1.

Figure 4.22 shows the predator’s trading rate as a function of t for several values

of λ1. The predator sells more rapidly for small times and buys more rapidly for

large times as λ1 increases. This is the same effect that we observe in Figure 4.15

as γ1 increases, although it appears that the predator’s trading rate may be more
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Figure 4.24: Depiction of the index tracker’s expected revenue (see Question IV.6).
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Figure 4.25: Depiction of the index tracker’s expected revenue (see Question IV.6).

sensitive to λ1 than to γ1.

In Figure 4.23, we have the expected price process as a function of time when

the predator is active for various λ1. It appears that this function decreases for

all times as λ1 increases and that the magnitude of the drop increases with time.

We observe the same phenomenon as γ1 increases in Figure 4.16. Also, it appears

that the concavity of the expected price process may change for small times as λ1

decreases.

Figure 4.24 depicts the index tracker’s expected revenue as function of λ1 when

the predator is not in the market. The expected revenue decreases linearly with λ1.

As we observed with γ1 in Figure 4.17, the linear decrease is clear from Figure 4.20,
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Figure 4.26: Depiction of the predator’s expected revenue (see Question IV.6).
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Figure 4.27: Depiction of the index tracker’s trading rate (see Question IV.7).

since the index tracker’s trading rate does not depend on λ1.

Figure 4.25 shows the index tracker’s expected revenue as function of λ1 when the

predator is present. In this case, a close inspection suggests that the index tracker’s

expected revenue is a decreasing concave function of λ1. Recall that we observe the

same thing when γ1 increases in Figure 4.18. Also, notice that as λ1 increases from

0.25 to 1.75, the index tracker loses much more in expected revenue when there is

no predator than when the predator is active.

In Figure 4.26, we have the predator’s expected revenue as a function of λ1. It

appears to be an increasing convex function. While we observed that the preda-

tor’s expected revenue is also an increasing convex function of γ1 in Figure 4.19, a
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comparison of these two figures suggests that it might be more sensitive to λ1.

Question IV.7. How does varying γ2 affect our solution?

Figure 4.27 depicts the index tracker’s trading rate as a function of t for several

values of γ2. The index tracker sells (slightly) more rapidly for small and large times

and (slightly) more slowly for intermediate times as γ2 increases. Recall that we

observe the same effect as γ1 increases in Figure 4.14 and the opposite effect as λ1

increases in Figure 4.21. Also, changing γ2 appears to have the greatest effect on the

index tracker’s trading rate for very small times and very large times.

Figure 4.28 shows the predator’s trading rate as a function of t for various γ2. The

predator sells (slightly) more slowly for small times and buys (slightly) more rapidly

for large times as γ2 increases. As λ1 and γ1 increase, we see the same phenomenon

for large times; however, increasing these parameters has the opposite effect on the

predator’s trading rate for small times (see Figures 4.15 and 4.22). Note that the

predator’s trading rate seems to be less sensitive to γ2 than it is to γ1 and λ1.

In Figure 4.29, we have the expected price process as a function of t for a few

values of γ2. This process decreases for all times as γ2 increases, and the magnitude

of the drop is the largest for intermediate times and fairly negligible for small and

large times. While we also observe that the expected price process decreases as γ1

and λ1 increase, the magnitude of the drop appears to increase with time in those

cases (see Figures 4.16 and 4.23).

Figure 4.30 depicts the index tracker’s expected revenue as a function of γ2. A

close inspection suggests that it is a decreasing convex function of γ2. From Figures

4.18 and 4.25, we observe that while the expected revenue still decreases with γ1

and λ1, it does so in a concave manner in those cases. The index tracker’s expected

revenue also appears to be less sensitive to γ2 than to either γ1 or λ1.
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Figure 4.28: Depiction of the predator’s trading rate (see Question IV.7).
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Figure 4.29: Depiction of the expected price (see Question IV.7).
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Figure 4.30: Depiction of the index tracker’s expected revenue (see Question IV.7).
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Figure 4.31: Depiction of the predator’s expected revenue (see Question IV.7).

Figure 4.31 shows the predator’s expected revenue as a function of γ2. It appears

to be a decreasing convex function of γ2. While the predator’s expected revenue is

also a convex function of γ1 and λ1, it is an increasing function in each of those cases

(see Figures 4.19 and 4.26). Still, the fact that the expected revenue is decreasing

here is not too surprising given Figures 4.28 and 4.29, since the predator’s trading

rate changes minimally but the expected price process drops as γ2 increases.

Question IV.8. How does varying λ2 affect our solution?

In Figure 4.32, we have the index tracker’s trading rate as a function of t for

various λ2. The index tracker sells more slowly for small and large times but more

rapidly for intermediate times as λ2 increases. Recall that we observe exactly the
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Figure 4.32: Depiction of the index tracker’s trading rate (see Question IV.8).
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Figure 4.33: Depiction of the predator’s trading rate (see Question IV.8).
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same effects when λ1 increases but the opposite effects when γ1 or γ2 increase (see

Figures 4.14, 4.21, and 4.27). In general, it appears that the index tracker’s trading

rate is more sensitive to changes in the temporary price impact parameters than to

changes in the permanent price impact parameters.

Figure 4.33 depicts the predator’s trading rate as a function of t for several values

of λ2. The predator sells more slowly for small times and buys more slowly for large

times as λ2 increases. This is exactly the opposite relationship that the predator’s

trading rate has with γ1 and λ1 (see Figures 4.15 and 4.22). We see the same effect for

small times but the opposite effect for large times when γ2 increases. As is the case

with the index tracker, it seems that the predator’s trading rate is more sensitive

overall to changes in the temporary price impact parameters than changes in the

permanent price impact parameters.

Figure 4.34 shows the expected price process as a function of t for a few values

of λ2. The expected price process increases for all times as λ2 increases. For large

times, the concavity changes as λ2 increases. Compared to the changes we observe

when increasing γ1, λ1, and γ2 in Figures 4.16, 4.23, and 4.29, these observations

are somewhat surprising. For instance, in all other cases, the expected price process

drops as the price impact parameter increases. Also, we did not notice any concavity

change in the expected price process when varying γ1 or γ2. The concavity change

we notice while varying λ1 occurs for small times and is much less pronounced.

In Figure 4.35, we have the index tracker’s expected revenue as a function of

λ2. It appears to be an increasing concave function. This is the only instance

when we observe that the index tracker’s expected revenue increases with a price

impact parameter (see Figures 4.18, 4.25, and 4.30), although this observation is

not too surprising given our observations about the expected price process in Figure
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Figure 4.34: Depiction of the expected price (see Question IV.8).

4.34. Generally, it seems that the index tracker’s expected revenue is much more

sensitive to the temporary price impact parameters than to the permanent price

impact parameters.

Figure 4.36 depicts the predator’s expected revenue as a function of λ2. It appears

to be a decreasing convex function of λ2. When varying any of the other price impact

parameters, the predator’s expected revenue has always appeared to be convex as

well (see Figures 4.19, 4.26, and 4.31). The expected revenue seems to decrease

when the predator’s price impact parameters increase and increase when the index

tracker’s price impact parameters increase. As in the case of the index tracker, the

predator’s expected revenue appears to be much more sensitive to the temporary

price impact parameters than to the permanent price impact parameters.
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Figure 4.35: Depiction of the index tracker’s expected revenue (see Question IV.8).
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Figure 4.36: Depiction of the predator’s expected revenue (see Question IV.8).



CHAPTER V

High-Roller Impact: A Large Generalized Game Model of
Parimutuel Wagering

5.1 Introduction

Suppose that a collection of bettors are wagering on an upcoming event. The

payoffs are determined via a (frictionless) parimutuel system if whenever Outcome i

occurs, Bettor A receives

(Total Amount Wagered)

(
Bettor A’s Wager on Outcome i

Total Amount Wagered on Outcome i

)
.

The idea is that players with correct predictions will proportionally share the final

betting pool. Prizes are reduced in practice by transaction costs such as the house

take, a percentage fee collected by the betting organizer (or house). For example,

Bettor A might only win

κ (Total Amount Wagered)

(
Bettor A’s Wager on Outcome i

Total Amount Wagered on Outcome i

)
(5.1)

when Outcome i occurs, if the house take is (1− κ) % for some 0 < κ < 1.

This mechanism was invented in the context of horse race gambling by Oller in the

late 1800’s ([68]) and remains widely employed in that setting: In 2014, worldwide

parimutuel betting on horse races totaled around seventy-five billion euros ([7]). It

also typically determines wagering payoffs for other sports such as jai alai and races

112
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involving bicycles, motorcycles, motorboats, and greyhounds ([38]). Certain prizes

for major lotteries such as Mega Millions, Powerball, and “EuroMillions” are com-

puted in a parimutuel fashion ([6]). Parimutuel systems are increasingly popular

methods for distributing payoffs in online prediction markets as well ([197]). Gold-

man Sachs Group, Inc., Deutsche Bank AG, CME Group Inc., Deutsche Börse AG,

and ICAP have even facilitated the development of parimutuel derivatives on eco-

nomic indicators ([38]).

The first scholarly publication on parimutuel wagering was written by Borel in

1938 ([57]), and more recent surveys and anthologies ([228]; [122]; [121]) attest to

the substantial academic interest garnered by this topic since. A vast range of issues

from optimal betting ([138]; [209]; [56]) to market efficiency ([123]; [25]; [134]) to

market microstructure ([154]; [197]; [196]) has been extensively studied. Significant

attention has been paid to strategic interactions among bettors ([205]; [184]; [151];

[227]; [201]).

Similar to the rise of high-frequency and algorithmic traders in financial mar-

kets, a growing number of parimutuel wagering event participants are organizations

employing large-scale strategies based upon advanced mathematical, statistical, and

computational techniques ([145]). There are fundamental differences between these

bettors and more traditional wagerers. The new firms typically have access to vast

budgets, making their betting totals orders of magnitude beyond the amounts wa-

gered by regular players. Often, they can place their wagers at speeds impossible for

ordinary bettors to match. Presumably, their use of complex methods also makes

their forecasts and corresponding wagering strategies generally superior.

The house collects a percentage of the total amount wagered and, therefore, may

initially benefit from the presence of large-scale wagering firms. After all, their
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activities should increase the size of the pool, at first anyway. The factors just

described are thought to put ordinary bettors at an extreme disadvantage, though.

Since payouts are calculated according to (5.1), ordinary bettors’ profits may even

directly decline as a result of the large-scale firms’ wagers. If this discourages enough

regular players from betting, then pool sizes may eventually dwindle, hurting the

house’s revenue. In fact, many betting organizers have publicly expressed strong

concerns about the new breed of wagerers. Betting organizers have even occasionally

banned these participants from parimutuel wagering events ([145]).

How reasonable is this narrative? Our goal is to quantify the impact of large-scale

participants in parimutuel wagering events on the house and ordinary bettors.

First, using the theory of large generalized games, i.e., games with a continuum of

diffuse (or non-atomic/minor) players and finitely many atomic (or major) players, we

develop a model of parimutuel betting. The bets made by individual atomic players

affect all others because they change the final payoff per unit bet on Outcome i:

κ

(
Total Amount Wagered

Total Amount Wagered on Outcome i

)
. (5.2)

Aggregate decisions made by the diffuse players also affect every player for the same

reason. A key feature is that an individual diffuse player cannot change (5.2) by

revising her wagers. In fact, her specific choices have no effect whatsoever on the

rest of the game’s participants.

We view diffuse and atomic players as stand-ins for ordinary bettors and large-

scale wagering firms, respectively. The approximation is motivated by the obser-

vation that the total amount wagered by a single traditional bettor is generally

negligible compared to the total amount wagered by an entire betting firm.

Our main theoretical result, Theorem V.7, provides necessary and sufficient con-

ditions for the existence and uniqueness of a pure-strategy Nash equilibrium. Other
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scholars have shown the existence of equilibria in a broad class of large generalized

games ([32]; [33]; [70]; [206]). Such results often rely upon sophisticated technol-

ogy including variants of the Kakutani fixed-point theorem. We choose to employ a

more elementary fixed-point argument instead. Advantages of our approach include

its simplicity and the possibility of proving the equilibrium’s uniqueness. A simple

algorithm for computing relevant equilibrium quantities immediately presents itself

as well.

Having such an algorithm allows us to analyze our problem in specific scenarios.

In accordance with the prevailing narrative, we observe that because of the atomic

player, the house is temporarily better off and the diffuse players are worse off in

Example V.12. For varying reasons, at least one of these effects is not observed in

each of the remaining situations.

In Example V.13, the diffuse players are better off in the presence of the atomic

player. Intuitively, when the event is too close to call, the atomic player can bet on

the wrong outcome even if her prediction is assumed to be quite accurate. Such an

error is to the advantage of the diffuse players.

In Example V.14, the diffuse players believe that they are better off when there

is an atomic player. Roughly, if the diffuse players’ beliefs are too homogeneous but

the atomic player disagrees with them, the diffuse players’ expected profits per unit

bet rise when the atomic player takes the other side of their wagers.

In Example V.15, we argue that the diffuse players are better off but the house

is (immediately) worse off because of the atomic player, exactly the opposite of the

prevailing narrative.1 To make this point, we recast our model as a two-stage game

taking into account the house’s strategic decisions. Effectively, because the atomic

1Recall that the alleged decline in the house’s revenue is thought to occur over time.
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player considers her impact on (5.2), she has a lower tolerance for unfavorable betting

conditions than the diffuse player. When she is absent, this means that the house

can more easily prey upon the diffuse players.

Before offering further details, we more thoroughly discuss related literature in

Section 5.2. We carefully present our model in Section 5.3 and our main theoretical

result in Section 5.4. We numerically investigate our concrete examples in Section

5.5. Section 5.6 highlights a few technical aspects of Section 5.4’s work. We give our

longer formal proofs in Appendices 5.7 and 5.8.

5.2 Related Literature

The individual states of our diffuse players are only coupled via the empirical

distribution of controls. Since each diffuse player is too small to influence this distri-

bution, she treats it as fixed when determining her own strategy. Assumptions like

these have appeared in the literature on continuum games ([27]; [214]; [168]; [207])

and mean-field games ([158]; [133]).2

Our paper bears a stronger resemblance to work in the former category. For

instance, we model parimutuel wagering as a static game. Such a choice is quite

common in a continuum game study; however, stochastic differential games are more

often the focus in mean-field game theory. Also, we restrict ourselves to an intuitive

argument for viewing ordinary bettors as diffuse players. Papers on mean-field games

often rigorously present their continuum model as a limit of finite population models,

while those on continuum games typically emphasize other issues.

General mean-field interactions among players can be described by complex func-

tions of the empirical distributions of states and/or controls. On the other hand,

2Originally, players were coupled via the empirical distribution of states, not controls, in the mean-field game liter-
ature. Recent advances have shown that models with additional interactions through the controls also have promising
applications, say in the contexts of price impact, optimal execution, high-frequency trading, and oligopolistic energy
market problems ([117]; [71]; [115]; [81]; [80]).
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parimutuel wagerers affect one another through (5.2) alone, a comparatively simple

scenario. This makes parimutuel wagering an especially strong candidate for model-

ing by either theory. Continuum games have already been applied in this way ([182];

[234]).

Watanabe considered a two-stage game with a betting organizer and a continuum

of risk-neutral diffuse players with heterogeneous beliefs ([234]). First, the betting

organizer selects a value for the house take. The diffuse players then determine

whether to place a unit bet on one of two outcomes or bet nothing at all. Using

techniques from set-valued analysis, Watanabe showed that an equilibrium always

exists, provided the house take is not too large. As long as each player can only

bet negligible amounts, Watanabe also found that equilibria in parimutuel wagering

games are regular. That is, if a player wagering on Outcome i believes that Outcome

i will occur with probability p, all players who believe that Outcome i will occur

with probability p′ > p also wager on Outcome i. The paper’s results on the betting

organizer’s optimal strategy were in the context of specific examples.

Ottaviani and Sørenson developed their continuum game to explain two phenom-

ena frequently observed in the context of parimutuel wagering on horse races: late

informed betting and the favorite-longshot bias ([182]). The first states that more ac-

curate information about a race’s outcome can be gleaned from late bets than early

bets. The second says that the public tends to excessively bet on unlikely outcomes

and wager too little on likely outcomes. A continuum of privately informed risk-

neutral players decide when to place their individual bets in a discrete-time setting.

They can wager a unit amount on one of two outcomes or abstain from betting.

The paper gave conditions under which all of these players simultaneously wager at

the terminal time, and the corresponding equilibrium is shown to always feature the
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favorite-longshot bias.

Others have more implicitly created infinite-player parimutuel wagering models

by assuming that there are many bettors ([134]; [183]). These references have sought

to identify other possible causes of the favorite-longshot bias.

The most important new feature of our setup is that, in addition to the diffuse

bettors, we introduce an atomic bettor. The parimutuel wagering studies we just

discussed only incorporate diffuse players. We would not be able to understand the

effects of large-scale wagering organizations on ordinary bettors, if we made a similar

assumption.

Because of this addition, our model belongs to the class of continuum game models

known as large generalized games. Games that include both diffuse and atomic play-

ers can be found in mean-field game theory as well under the heading major-minor

player models ([132]; [174]; [175]; [141]; [232]). Applications of large generalized

games are known to be diverse and already include a collection of problems from

politics ([90]) to oligopolistic markets ([238]). General results on the existence of

equilibria in large generalized games have also been obtained ([32]; [33]; [70]; [206]).

We choose not to rely upon these, as the simple structural aspects of parimutuel wa-

gering just discussed, combined with a convenient modeling assumption (see Section

5.3), allow us to use elementary arguments.

Ultimately, we employ a mean-field approximation for the standard reason: By

doing so, we make our model tractable, hopefully while preserving the critical macro-

scopic properties of our original problem. Issues other than the impact of large-scale

wagering organizations have been resolved in finite-player settings, though such stud-

ies have usually invoked other strong assumptions.

Weber gave sufficient conditions for the existence of an equilibrium in a simultane-
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ous parimutuel betting game with N atomic players, each of whom is risk-neutral and

must bet a specific total amount ([237]). Watanabe, Nonoyama, and Mori’s setup

and goals are similar to those in Watanabe’s continuum game paper, except that the

diffuse players in the latter are replaced by finitely many atomic players ([235]; [234]).

Explanations of the favorite-longshot bias have been offered using equilibrium results

for N -player parimutuel wagering games ([77]; [151]; [184]; [204]). Games in which

finitely many bettors wager sequentially have also been investigated for various pur-

poses ([103]; [85]; [152]; [151]; [229]). For example, Thrall showed that if risk-neutral

atomic bettors with homogeneous beliefs wager sequentially, their profits tend to

zero as the number of bettors increases ([229]). Note that some of these works do

consider limiting cases in which the population of wagerers grows arbitrarily large to

complement their other insights ([229]; [184]).

5.3 Model Details

Our players have the opportunity to wager on an event that can unfold in two

mutually exclusive ways: Outcome 1 might occur. If not, Outcome 2 will occur. For

now, we view κ ∈ (0, 1) to be exogenously given. Inspired by Watanabe et al. ([235];

[234]), we later informally consider what happens when we allow the house take to

be optimally selected by the betting organizer in the first stage of a two-stage game

(see Example V.15). Our results in Section 5.4 are unaffected by such a shift.

The unit interval describes the diffuse bettors’ views on the likelihood of Outcome

1: the bettors whose views are indexed by p ∈ [0, 1] believes that Outcome 1 will

occur with probability p. Initially, each diffuse bettor has some (negligible) unit

wealth. A finite Borel measure µ with a continuous everywhere positive density

characterizes the distribution of the diffuse bettors. More precisely, the total initial
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wealth of all diffuse bettors whose views are contained in a Borel set A is µ (A).

That µ has a continuous everywhere positive density is our convenient modeling

assumption from Section 5.2. It is similar to a key hypothesis in Ottaviani and

Sørenson’s work, although the posterior beliefs of their diffuse bettors are obtained

after updating a common prior belief using a private signal and Bayes’ rule ([182]).

Effectively, Watanabe assumed that µ need not have a density, and even when it

does, the density need not be positive everywhere ([234]). These choices necessitated

a set-valued approach, which we are able to avoid.

Continuity merely simplifies a few of our arguments, e.g., see Step 6 of Theorem

V.7’s proof. The rest of the assumption plays a more critical role. Results on the

existence of equilibria in parimutuel wagering games often include a hypothesis such

as the following: for any given outcome, at least two bettors believe that the outcome

will occur with positive probability.3 By supposing that the density is positive, we

assume this as well. Watanabe has shown that an equilibrium may not be unique,

if µ ({p}) > 0 for some fixed p ([234]). Obviously, this situation is prevented by the

density’s existence.

Our atomic player believes that Outcome 1 will occur with probability q ∈ [0, 1].

She has (non-negligible) finite initial wealth w > 0.

Throughout, we treat all players’ beliefs as exogenously determined. We do not

address how the players generate their estimates; however, this process is of great

interest both practically and academically ([122]; [121]). For our theoretical results

in Section 5.4, we also do not specify how the players’ estimates compare to the

actual probability that Outcome 1 will occur. Since large-scale betting organization

allegedly produce highly accurate forecasts, we could choose q to be some small

3This is true of Weber’s work, for instance ([237]). Roughly, if only one player believes that a particular outcome
will occur with positive probability, she should wager an arbitrarily small amount on that outcome. In the absence
of a positive minimum bet size constraint, it follows that an equilibrium does not exist.
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perturbation of the actual probability of Outcome 1. We informally experiment with

this extra assumption in Examples V.12 and V.13.

All players decide how much to wager on each outcome. Their choices are con-

strained only by their initial wealth: a betting strategy is feasible (or admissible) for

an individual bettor as long as the sum of her wagers is no more than her wealth.

For example, a bettor could choose to wager 100% of her wealth on Outcome 1, 55%

of her wealth on Outcome 1 and 30% of her wealth on Outcome 2, or not wager at

all. We formalize this as follows.4

Definition V.1. A feasible strategy profile for the diffuse players is a measurable

function

f = (f1, f2) : (0, 1) −→
{

(x1, x2) ∈ R2
≥0 : x1 + x2 ≤ 1

}
.

A feasible strategy profile for the atomic player is a vector a = (a1, a2) ∈ R2
≥0 such

that

a1 + a2 ≤ w.

We call the pair (f, a) a feasible strategy profile.

Under (f, a), the atomic player wagers ai on Outcome i. Each diffuse player who

believes that Outcome 1 will occur with probability p wagers fi (p) × 100% of her

(negligible) unit initial wealth on Outcome i.

Our space of feasible strategy profiles is slightly atypical. Previously, diffuse

players in parimutuel wagering games have only been able to place unit bets, if they

bet at all ([182]; [234]). We could have made this restriction as well without loss

of generality due to Proposition V.5. Watanabe allowed groups of diffuse players

to wager differently, even if they held identical beliefs ([234]). In equilibrium, such

4In practice, concerns about large-scale wagering firms are also driven by their alleged ability to bet faster than
ordinary players. Our static game only has two outcomes, so it does not make sense to model this feature here. We
hope to revisit the issue in a future work.
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a discrepancy could only arise among the diffuse players who believed that their

expected profits would be zero. We encounter a related ambiguity in our framework

(see our discussion of Proposition V.5). For us, the µ-measure of this set of bettors is

zero, and we anticipate that all of our main results would remain the same, if we were

to relax the diffuse bettors’ same beliefs-same bets restriction. More significantly,

atomic players have been frequently constrained to wager a fixed amount in total

or a unit amount on a single outcome when they bet ([237]; [235]; [77]; [184]).5

Proposition V.6 suggests that imposing these restrictions would have a severe effect.

The total amount that the diffuse players wager on Outcome i, denoted di, is

given by

di =

∫ 1

0

fi (p)µ (dp) .

Since µ has a density, we immediately confirm that the bets placed by any given

diffuse player are too small to affect the amount wagered on any specific outcome.

Of course, if she revises her strategy, then a particular diffuse player affects neither

the total amount wagered nor (5.2). All of these quantities could change when

aggregations of diffuse players, that is, collections of diffuse players whose beliefs are

contained in a Borel set A with positive µ-measure, revise their wagers.

Payoffs are determined according to (5.1). Each player selects her wagering strat-

egy simultaneously in order to maximize her expected profit according to her beliefs.

We implicitly assume that every bettor knows κ, µ, q, and w, so that she can select

the best response to her opponents’ collective actions. Similar assumptions can be

found in many other equilibrium studies on parimutuel wagering ([237]; [235]; [234];

[77]; [184]).6

5An exception is Cheung’s thesis, though that work’s focus is quite different from our own ([85]).
6Even so, our players might seem unrealistically knowledgeable and confident in their beliefs. Real bettors would

presumably have a more complex prior for the outcomes’ likelihoods. They probably would not have access to such
comprehensive information about their opponents. If they somehow had a sense of these details, they might also
wish to update their own forecasts.



123

Since each diffuse player starts out with negligible unit wealth, technically, we

should only discuss the expected profits of diffuse bettors whose views lie in some

Borel set A. We nevertheless compute and refer to the expected profits of an indi-

vidual diffuse bettor in an obvious, but admittedly informal, way. Doing so helps

motivate our definition of a pure-strategy Nash equilibrium (see Definition V.3) and

highlight the intuition underlying our results.

A seemingly more formidable concern is how to handle (5.1) in pathological cases.

It is trivial to produce a feasible strategy profile (f, a) such that for some p, we have

fj (p) > 0 but

dj = aj = 0.

Näıvely translating (5.1), we conclude that a diffuse player whose views are indexed

by p receives

κ

(
2∑
i=1

(di + ai)

)(
fj (p)

dj + aj

)
(5.3)

whenever Outcome j occurs.

If

d1 = d2 = a1 = a2 = 0,

then the total amount wagered is zero. Practically, the betting organizer would

probably cancel such an event, which suggests that it is natural to set all players’

payoffs to zero in this scenario.

An ad-hoc but simple way to address these objections could be to consider κ as some (publicly known) negative
perturbation of the true κ (abusing notation). The idea is that each player would model transaction costs as being
higher than their actual value, artificially lowering their perceived edge and encouraging them to bet more cautiously
than they would otherwise.

A more thorough study could begin by determining whether or not approximating parimutuel wagering using the
Nash equilibrium solution concept is, indeed, reasonable. If it is, one might endow the bettors with more sophisticated
priors and enable them to update their beliefs using the equilibrium implied probabilities (see Definition V.2). This
would lead to an extra condition in Definition V.3.

If the solution concept is unreasonable, one could devise a new scenario in which players independently determine
their betting strategies according to individual reference models and appropriately penalized alternative models for
outcome likelihoods, as well as their opponents’ parameters. Broadly speaking, this treatment of a single player’s
optimization problem has seen widespread use across macroeconomics and finance ([124]). One might then investigate
what unfolds when all players simultaneously participate in the same parimutuel wagering event.

We leave further consideration of these topics for a future work.
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Alternatively, we might have

di + ai > 0

for i 6= j. There are now two appealing options for the diffuse player’s payoff. First,

we might choose to set the payoff to zero. Practically, no bettor would receive a

payout, if Outcome j occurred but no one wagered on it. We also might set the

payoff to +∞, as in Watanabe’s work ([234]). In practice, if the amount wagered

on Outcome j were zero, each player who believed that Outcome j would occur

with positive probability would want to place an arbitrarily small bet on Outcome

j. Setting the payoff to +∞ captures this intuition.

We choose the first option, but selecting the second instead would not change

our results. Only equilibrium payoffs need to be computed, and in an equilibrium,

positive amounts are always wagered on both outcomes. Essentially, the scenario

we describe never arises. One reason is that we do not allow the trivial (or null)

equilibrium in which no player wagers. We could,7 but as Watanabe observed, that

case is comparatively uninteresting and practically unimportant ([234]). Roughly,

the other reason is the same as our justification for possibly setting the payoff to

+∞.

Before making this discussion precise, we introduce some notation.

Definition V.2. Given a feasible strategy profile (f, a) such that at least one of

the di’s or ai’s is positive, the implied (or subjective) probability that Outcome 1 will

occur, denoted P f,a, is defined by

P f,a =
d1 + a1∑2
i=1 (di + ai)

.

7This situation could be considered an equilibrium because if any single player unilaterally revised her wagers,
intuitively, she should incur a loss of at least (1− κ) %.
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We refer to

1− P f,a =
d2 + a2∑2
i=1 (di + ai)

as the implied (or subjective) probability that Outcome 2 will occur.

P f,a is the ratio of the amount wagered on Outcome 1 to the total amount wagered,

assuming the latter is positive. Our previous discussion implies that P f,a ∈ (0, 1) in

equilibrium.8 Since the argument was informal, we do not yet take this as fact. In

particular, the amount received by a diffuse player who believes that Outcome 1 will

occur with probability p is9

κ

(
2∑
i=1

(di + ai)

)(
f1 (p)1{d1+a1 6=0}

d1 + a1

)
=
κf1 (p)1{P f,a 6=0}

P f,a

and

κ

(
2∑
i=1

(di + ai)

)(
f2 (p)1{d2+a2 6=0}

d2 + a2

)
=
κf2 (p)1{P f,a 6=1}

1− P f,a

when Outcomes 1 and 2 occur, respectively. Hence, this diffuse player believes that

her expected profit is

f1 (p)

(
κ1{P f,a 6=0} p

P f,a
− 1

)
+ f2 (p)

(
κ1{P f,a 6=1} (1− p)

1− P f,a
− 1

)
. (5.4)

Similarly, the atomic player thinks that her expected profit is

a1

(
κ1{P f,a 6=0} q

P f,a
− 1

)
+ a2

(
κ1{P f,a 6=1} (1− q)

1− P f,a
− 1

)
. (5.5)

Definition V.3. A pure-strategy Nash equilibrium is a feasible strategy profile (f ?, a?)

such that

(i) at least one of the d?i ’s or a?i ’s is positive;

8We later observe that P f,a ∈ (1− κ, κ) in equilibrium (see Step 4 of Theorem V.7’s proof).
9Of course, we still abuse notation here. When one of our indicator functions is equal to zero, the corresponding

fraction is actually of the form 0/0, not zero as we suppose.
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(ii) for any p ∈ [0, 1],

f ?1 (p)

(
κ1{P f?,a? 6=0} p

P f?,a?
− 1

)
+ f ?2 (p)

(
κ1{P f?,a? 6=1} (1− p)

1− P f?,a?
− 1

)

= sup
b1,b2≥0
b1+b2≤1

{
b1

(
κ1{P f?,a? 6=0} p

P f?,a?
− 1

)
+ b2

(
κ1{P f?,a? 6=1} (1− p)

1− P f?,a?
− 1

)}
;

(iii) and

a?1

(
κ1{P f?,a? 6=0} q

P f?,a?
− 1

)
+ a?2

(
κ1{P f?,a? 6=1} (1− q)

1− P f?,a?
− 1

)

= sup
b1,b2≥0
b1+b2≤w

d?1,d
?
2,b1 or b2>0

{
b1

(
κ1{P f?,b 6=0} q

P f?,b
− 1

)
+ b2

(
κ1{P f?,b 6=1} (1− q)

1− P f?,b
− 1

)}
.

(i) formally excludes the case in which the total amount wagered is zero. (ii) and

(iii) ensure that each player maximizes her expected profit according to her beliefs,

given her opponents’ wagers.10

First, observe that each player requires very little information about her oppo-

nents’ strategies. For a given diffuse bettor, knowing P f?,a? alone is enough. The

atomic player must be able to compute P f?,b for all of her feasible strategy profiles

b, so it is sufficient for her to know d?1 and d?2. The difference for the two kinds of

players reflects that an individual diffuse player cannot affect the implied probability

of Outcome 1, while the atomic player can. These remarks explain why we infor-

mally claim that only the atomic player and aggregations of diffuse players affect the

other participants. Notice that each player’s strategy depends anonymously on her

opponents’ bets: how, specifically, her opponents wagers produced P f?,a? , d?1, and d?2

is irrelevant.

Although we only optimize over b in (iii), the apparent possibility that d?1 = d?2 = 0

10In (ii), we determine the equilibrium wagers for all diffuse bettors whose beliefs are indexed by p; however, a
single diffuse bettor with these beliefs solves the same maximization problem.
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motivates our use of the extra constraint

d?1, d
?
2, b1 or b2 > 0.

One might be concerned that we do not consider the feasible strategy b1 = b2 = 0

for the atomic player, if d?1 = d?2 = 0. Recall that all players receive a payoff of zero

in such a situation. A simple calculation shows that the supremum is then also zero,

so no issue is caused by our omission.

The last important concept for our modeling framework is uniqueness.

Definition V.4. A pure-strategy Nash equilibrium (f ?, a?) is unique if for any other

pure-strategy Nash equilibrium (f �, a�), we have f ? = f � µ-a.s. and a? = a�.

We allow f ? and f � to disagree on a set of µ-measure zero since, ultimately, all

relevant equilibrium quantities such as the implied probabilities are unaffected by

such a difference. Soon, we see that f ? (p) and f � (p) must be equal for all but two

points, at most. There is only uncertainty about the behavior of the diffuse bettors

who believe that their expected profits are zero (cf. our discussion about our space

of feasible strategy profiles).

5.4 Theoretical Results

We now state and prove11 our theoretical results, beginning with Propositions V.5

and V.6. The former describes how the diffuse players should wager in response to

the atomic player’s strategy. The latter tells us how the atomic player should bet,

given the diffuse players’ wagers. We use these observations to prove Theorem V.7,

our main result.12 Recall that it offers necessary and sufficient conditions for the

existence and uniqueness of a pure-strategy Nash equilibrium.
11We describe the ideas underlying all of our proofs in Section 5.4; however, we delay our formal arguments for

Proposition V.6 and Theorem V.7 until Appendices 5.7 and 5.8, respectively.
12Roughly, this suggests that our large generalized game can almost be viewed as a game with two players: the

mean-field of diffuse players and the atomic player.
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We conclude Section 5.4 with Corollaries V.8, V.9, and V.10. Corollary V.8 says

that the atomic player wagers on a particular outcome if and only if the final expected

profit per unit bet on that outcome is positive. The next corollary states that our

equilibria are regular in a particular sense, while Corollary V.10 says that the implied

probability of Outcome 1 tends to 0.5 uniformly as the house take approaches 50%.

Proposition V.5. Let (f, a) be a feasible strategy profile such that d1, d2 > 0. f

satisfies

f1 (p)
( κ p
P f,a

− 1
)

+ f2 (p)

(
κ (1− p)
1− P f,a

− 1

)
= sup

b1,b2≥0
b1+b2≤1

{
b1

( κ p
P f,a

− 1
)

+ b2

(
κ (1− p)
1− P f,a

− 1

)}
(5.6)

for all p ∈ [0, 1] if and only if

f1 (p) =


1 if p > P f,a/κ

0 if p < P f,a/κ

f2 (p) =


1 if 1− p >

(
1− P f,a

)
/κ

0 if 1− p <
(
1− P f,a

)
/κ

.

First, notice that P f,a ∈ (0, 1) since both d1 and d2 are positive. Comparing (5.6)

and (ii) of Definition V.3, we find that Proposition V.5 provides a simple characteri-

zation of the diffuse players’ equilibrium strategies in this case, given the bets of the

atomic player. Our assumption is not too restrictive, as Step 1 of Theorem V.7’s

proof says that d1 and d2 are always both positive in equilibrium.

Three distinct groups of diffuse bettors emerge: The first group, containing the

diffuse bettors who believe that Outcome 1 will occur with probability greater than

P f,a/κ, wager all of their initial wealth on Outcome 1. Diffuse bettors who think that

Outcome 2 will occur with probability greater than
(
1− P f,a

)
/κ make up the second

group. These players bet their entire fortunes on Outcome 2. The remaining diffuse



129

players, except those whose beliefs are indexed by p = P f,a/κ or
(
1− P f,a

)
/κ, do

not wager at all. None of the groups overlap, since 0 < κ < 1 implies that

1−
(

1− P f,a

κ

)
<
P f,a

κ
. (5.7)

The proof’s underlying intuition is easy to explain. It is equivalent to show that

f satisfies (5.6) on [0, 1] if and only if

f1 (p) =


1 if κp

P f,a
− 1 > 0

0 if κp
P f,a
− 1 < 0

f2 (p) =


1 if κ(1−p)

1−P f,a − 1 > 0

0 if κ(1−p)
1−P f,a − 1 < 0

.

The terms

κp

P f,a
− 1 and

κ (1− p)
1− P f,a

− 1

describe the expected profit per unit bet on Outcomes 1 and 2, respectively, from

the perspective of the diffuse player who believes that Outcome 1 will occur with

probability p. Individual diffuse players are risk-neutral and do not affect these

quantities, so they wager on an outcome only if the corresponding term is positive.

For a particular diffuse player, this is true of at most one outcome as κ ∈ (0, 1).

Consequently, if a diffuse player has identified a profitable wagering opportunity, she

bets her entire fortune on it.

Despite their large space of feasible strategies, the diffuse players, aside from

those whose beliefs are indexed by p = P f,a/κ or
(
1− P f,a

)
/κ, wager either 100%

or 0% of their wealth on each outcome. The value of fi at P f,a/κ and
(
1− P f,a

)
/κ

is ambiguous because, if a given diffuse player’s expected profit per unit bet on

Outcome i is zero, then she is indifferent to the size of her bet on Outcome i.13

13Since µ has a density, the µ-measure of a set with two points is zero. It follows that this ambiguity has no bearing
on an equilibrium’s uniqueness. A more serious concern is that we could have feasible strategy profiles satisfying
Definition V.3 with different implied probabilities. Precluding this possibility is a key part of Theorem V.7’s proof.
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Though their setups differed from our own (see Sections 5.2 - 5.3), Ottaviani,

Sørenson, and Watanabe found similar groupings of diffuse players in equilibrium

([182]; [234]). We return to this observation during our discussion of Corollary V.9,

which roughly says that these groupings persist even when we take into account the

atomic player’s wagers.

Proof. There is little to formalize beyond our heuristic discussion above. We only

comment that rearranging (5.7) shows that we can never have both

κp

P f,a
− 1 > 0 and

κ (1− p)
1− P f,a

− 1 > 0.

Proposition V.6. Let (f, a) be a feasible strategy profile such that d1, d2 > 0.

Consider the equation

a1

(
κ q

P f,a
− 1

)
+ a2

(
κ (1− q)
1− P f,a

− 1

)
= sup

b1,b2≥0
b1+b2≤w

{
b1

(
κ q

P f,b
− 1

)
+ b2

(
κ (1− q)
1− P f,b

− 1

)}
. (5.8)

(i) When

q >
d1

κ (d1 + d2)
, (5.9)

a satisfies (5.8) if and only if a2 = 0 and

a1 = min

{
w,

√
κqd1d2

1− κq
− d1

}
. (5.10)

(ii) When

1− q > d2

κ (d1 + d2)
, (5.11)

a satisfies (5.8) if and only if a1 = 0 and

a2 = min

{
w,

√
κ (1− q) d1d2

1− κ (1− q)
− d2

}
. (5.12)
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(iii) When

q ≤ d1

κ (d1 + d2)
and 1− q ≤ d2

κ (d1 + d2)
, (5.13)

a satisfies (5.8) if and only if a1 = a2 = 0.

As in our discussion of the last result, P f,a ∈ (0, 1) and that we only study the

case in which d1, d2 > 0 does not matter. Proposition V.6 can be interpreted as

the complement of Proposition V.5: It characterizes the atomic player’s equilibrium

strategy, given the diffuse players’ bets.

A calculation similar to that in (5.7) shows that (5.9) and (5.11) never hold

simultaneously. Notice that a1 > 0 under (i), while a2 > 0 under (ii). For example,

(5.9) implies that

d1

d1 + d2

< κq and
d2

d1 + d2

> 1− κq. (5.14)

In this case,

a1 = min

{
w,

√
κqd1d2

1− κq
− d1

}
≥ min

{
w,

√(
d1

d2

)
d1d2 − d1

}
> 0.

Hence, under (i), the atomic player wagers on Outcome 1 alone. The atomic player

only bets on Outcome 2 in (ii), while she does not wager at all in (iii). Despite having

the opportunity to do so, she never simultaneously wagers on both possibilities.

Proposition V.5 revealed similar behavior for diffuse bettors.

Important ideas in the proofs of Propositions V.5 and V.6 are closely related. By

rearranging (5.9) and (5.11), we get

κ (d1 + d2) q

d1

− 1 > 0 and
κ (d1 + d2) (1− q)

d2

− 1 > 0,

respectively. Given the wagers of the diffuse players, the first term describes the

expected profit per unit bet on Outcome 1 according to the atomic player. The

second term has the analogous interpretation for Outcome 2.
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As in our analysis for the diffuse players, the atomic player is risk-neutral and

bets only when one of these inequalities holds,14 leading directly to (iii). Isaacs first

proved this while modeling parimutuel wagering as the control problem faced by a

single risk-neutral atomic player unconstrained by a budget ([138]). We include (iii)

in Proposition V.6 merely to assist with our presentation.

Unlike our previous analysis, we cannot conclude that the atomic player bets her

entire fortune on an initially profitable wagering opportunity. The reason is simple:

the atomic player’s choices affect (5.2). In fact, all else being equal, the payoffs

per unit bet on an outcome decrease as the atomic player raises her wager on that

outcome. Balancing the desires to increase her expected profit by betting more and

keep her expected profit per unit bet high by betting less leads to (5.10) and (5.12),

not the all-or-nothing wagers of Proposition V.5.

More precisely, if (5.9) holds and we relax our wealth constraint, this trade-off

makes it optimal for the atomic player to wager√
κqd1d2

1− κq
− d1 (5.15)

on Outcome 1. This solution was also first discovered by Isaacs ([138]).15 The

idea behind (5.10) is then clear: If the atomic player cannot afford to bet (5.15) on

Outcome 1, she instead wagers as much as she can. This seems reasonable, intuitively,

since up to (5.15), the positive impact of raising her Outcome 1 bet on her expected

profit should outweigh the negative impact. The interpretation of (ii) is similar. We

present the formal proof of Proposition V.6 in Section 5.7.

14The outcome, if any, on which the atomic player wagers can be identified based upon her opponents’ wagers
alone. In particular, this identification can be made without knowledge of the implied probability of Outcome 1.
Still, from (5.8), it is clear that the atomic player bets on Outcome i in equilibrium if and only if the expected profit
per unit bet on Outcome i is positive. We rigorously prove and discuss this further in Corollary V.8.

15Related expressions are also seen in equilibrium studies with N risk-neutral atomic players constrained to wager
a specific total amount ([77]). In an obvious way, Proposition V.6 fills the small gap between these two settings.
Recall that no explicit solutions are available for Cheung’s atomic player, who faces a budget constraint like ours
but is risk-averse ([85]).
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Theorem V.7. A pure-strategy Nash equilibrium exists if and only if κ > 0.5.16

When an equilibrium exists, it is unique.

The connection between low transaction costs (or large κ) and the existence of

non-trivial equilibria has been observed in other parimutuel wagering studies. For

example, a non-trivial equilibrium exists in Watanabe’s model only if the house

take is sufficiently small ([234]). Ottaviani and Sørenson make a similar observation

([182]).

Intuitively, κ > 0.5 is necessary for the existence of an equilibrium in our frame-

work because there are only two possible outcomes. Suppose that (f ?, a?) is a pure-

strategy Nash equilibrium. Regardless of her type, if a player believes that Outcome

1 will occur with probability p and wagers on Outcome 1, it should be true that her

final expected profit per unit bet on Outcome 1 is positive:

κ p

P f?,a?
− 1 > 0.

Similarly, if she wagers on Outcome 2, then

κ (1− p)
1− P f?,a?

− 1 > 0.

Positive amounts are wagered on both outcomes (see Section 5.3), implying that

κ

P f?,a?
− 1 > 0 and

κ

1− P f?,a?
− 1 > 0. (5.16)

Rearranging (5.16) shows that κ > 0.5. More generally, it is easy to see that in a

parimutuel betting game with n outcomes and risk-neutral players who can elect not

to bet, κ > 1/n is necessary for the existence of an equilibrium.

Parimutuel wagering games in the literature occasionally possess multiple equilib-

ria. For instance, Watanabe et al. adapt the work of Harsanyi and Selten to select
16In practice, this inequality almost always holds.
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one equilibrium out of several that arise in their atomic player model ([235]). As

mentioned in Section 5.3, Watanabe’s continuum game model can feature multiple

equilibria when µ ({p}) > 0 for some fixed p. We suspect that our equilibrium would

no longer be unique, if we incorporated additional atomic players or relaxed our

assumption that µ had a density, but we leave this issue to a future study.

We break our proof into 4 steps. Step 1 allows us to use Propositions V.5 and V.6.

It says that in an equilibrium, the total amount wagered by the diffuse players on

each outcome is always positive. Step 2 formalizes our discussion above and shows

that κ > 0.5 is necessary for the existence of an equilibrium.

To finish, we find an equivalent formulation of our original problem. More pre-

cisely, after presenting some preliminary notation in Steps 3 - 4, we define our so-

called implied probability map ϕ in Step 5. Our work in Steps 6 - 7 shows that this

map has a unique fixed-point. Due to its construction, its fixed-point corresponds

to a pure-strategy Nash equilibrium and vice versa. We can then conclude that our

game has a unique equilibrium when κ > 0.5 in Steps 3 - 4.

Our approach is motivated by the following observation: an equilibrium is es-

sentially determined by the implied probability of Outcome 1. Given this quantity,

we immediately recover the diffuse players’ wagers from Proposition V.5. Techni-

cally, we do not know how the diffuse players whose beliefs are indexed by P f?,a?/κ

or
(
1− P f?,a?

)
/κ behave, but this does not matter. By Proposition V.6, we then

identify the atomic player’s wagers.

This observation leads to the definition of ϕ in Step 5. In a certain sense, our

recipe is only meaningful at a fixed-point of ϕ, which underlies the correspondence

just discussed. Our complete proof of Theorem V.7 can be found in Section 5.8.

We close Section 5.4 with Corollaries V.8, V.9, and V.10. The first result says that
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the atomic player wagers on a particular outcome if and only if her final expected

profit per unit bet on that outcome is positive. This is fairly obvious from (iii)

of Definition V.3, and we basically assume this to be true during our discussion of

Theorem V.7.

Still, recall that Proposition V.6 identifies the outcome, if any, on which the atomic

player wagers based upon only the diffuse players’ bets. For instance, according to

that result, the atomic player wagers on Outcome 1 in an equilibrium (f ?, a?) if and

only if

q >
d?1

κ (d?1 + d?2)
. (5.17)

Since a?1 > 0, we might be concerned about the possibility that

P f?,a?

κ
≥ q >

d?1
κ (d?1 + d?2)

.

The specific form of a?1 in (5.10) ultimately prevents this.

Notice that Proposition V.5 already almost implies the corresponding result for

diffuse players. We say almost because of the undetermined behavior of the diffuse

bettors whose final expected profit per unit bet on some outcome is 0. From that

perspective, the atomic and diffuse players identify profitable wagering opportuni-

ties using the same criteria. Strategically, they just differ in how they size their

equilibrium wagers.

Corollary V.8. Suppose that (f ?, a?) is an equilibrium. Then a?1 > 0 if and only if

κq

P f?,a?
− 1 > 0,

while a?2 > 0 if and only if

κ (1− q)
1− P f?,a?

− 1 > 0.
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Proof. We present the argument for the first case. The other is similar.

Recall that d?1, d?2 > 0 (see Step 1 of Theorem V.7’s proof). Assume that a?1 > 0.

According to Proposition V.6, (5.9) holds and a?2 = 0. Using the notation from Step

4 of Theorem V.7’s proof,

P f?,a? ≤
ζ1

(
P f?,a?

)
+ d?1

ζ1 (P f?,a?) + d?1 + d?2
.

That

κq

P f?,a?
− 1 > 0 (5.18)

follows from Isaacs’ work ([138]).

To prove the remaining direction, assume that (5.18) is satisfied. Exactly one of

(5.9), (5.11), and (5.13) holds. We cannot have (5.11), since it would follow that

a?2 > 0. Arguing as we just did, we would get

κ (1− q)
1− P f?,a?

− 1 > 0,

which would lead to

κq

P f?,a?
− 1 < 0.

(5.13) cannot hold either, as this would give the contradiction

q ≤ d?1
κ (d?1 + d?2)

=
P f?,a?

κ
.

Hence, (5.9) holds and a?1 > 0.

To explain our next result, suppose that some player is wagering on a particular

outcome. If another player believes that this outcome will occur with higher prob-

ability than the original player, Corollary V.9 says that the new player also wagers

on the outcome. Recall from Section 5.2 that Watanabe called an equilibrium with
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this property regular ([234]). All equilibria in Watanabe’s framework and Ottaviani

and Sørenson’s framework are regular ([182]; [234]).

One might suspect that such a result generally holds, but this is not the case

([235]). To the best of our knowledge, regularity has only been consistently observed

in the literature when each player’s initial wealth is negligible ([182]; [234]). Corollary

V.9 shows that our model is an example of a parimutuel wagering game in which

the equilibrium is regular, even when an atomic player is active. It is an immediate

consequence of our observation that both atomic and diffuse players decide to wager

on some outcome by determining whether or not the final expected profit per unit

bet on that outcome is positive.

Corollary V.9. An equilibrium (f ?, a?) is always regular.

Proof. Since d?1, d?2 > 0 by Step 1 of Theorem V.7’s proof, the result directly follows

from Proposition V.5 and Corollary V.8.

Section 5.4’s last result says that the implied probability of Outcome 1 tends to

0.5 as the house take approaches 0.5, regardless of the other parameters that we

choose for our model. In fact, the convergence is uniform.

Initially, this finding may appear rather odd. For example, it is easy to ensure

that P f?,a? lies between 49.9% and 50.1% when q = 0 and the µ-mass of [0, 1] is

almost entirely concentrated near p = 0. If essentially the whole population believes

that Outcome 2 is guaranteed to occur, how can the total amounts wagered on each

outcome be roughly equal?

Our discussion of Theorem V.7 outlines the key intuition. Simply notice that

instead of rearranging (5.16) to show that κ > 0.5, we can show that P f?,a? ∈
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(1− κ, κ). This holds even in the extreme scenario where virtually all of the initial

wealth is held by those who believe that Outcome 2 is a sure bet. Still, our first

instinct has some merit: Here, P f?,a? ≈ 1− κ for all κ (see Section 5.6).

Corollary V.10. Fix µ, q, and w and consider the map defined on (0.5, 1) by

κ 7→ P f?,a? .

As κ ↓ 0.5, the values of the map approach 0.5.

Proof. Simply notice that the map is well-defined by Theorem V.7 and that P f?,a? ∈

(1− κ, κ) by Step 4 of its proof.

5.5 Numerical Results

The theoretical results from Section 5.4 allow us to return to our central question:

How do large-scale participants in parimutuel wagering events affect the house and

ordinary bettors? We explore this issue by analyzing several concrete scenarios (see

Examples V.12 - V.15).

We use the house’s revenue to quantify the atomic player’s impact on the house.

Given an equilibrium (f ?, a?), the house’s revenue is simply the product of the house

take and the total amount wagered:

(1− κ) (d?1 + d?2 + a?1 + a?2) . (5.19)

Notice that this quantity is deterministic and does not depend on the actual proba-

bility of Outcome 1, as the house collects (5.19) regardless of which outcome occurs.

To quantify the atomic player’s effect on diffuse bettors, we use one of two quanti-

ties. In Examples V.12 - V.13, we select values for the actual probability of Outcome
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1. Making this choice lets us compute the actual total expected profit of the diffuse

players. If (f ?, a?) is an equilibrium and the actual probability of Outcome 1 is p̄,

then it is given by

d?1

(
κ p̄

P f?,a?
− 1

)
+ d?2

(
κ (1− p̄)
1− P f?,a?

− 1

)
. (5.20)

While we use (5.20) to describe how the atomic player affects the diffuse players

in Examples V.12 - V.13, we cannot do so in Examples V.14 - V.15. The reason

is that we make no assumption about the actual probability of Outcome 1 in the

latter situations. Instead, we quantify the impact on diffuse bettors using their total

subjective expected profit, which is given by∫ 1

0

[
f ?1 (p)

(
κ p

P f?,a?
− 1

)
+ f ?2 (p)

(
κ (1− p)
1− P f?,a?

− 1

)]
dµ (p) (5.21)

in an equilibrium (f ?, a?). Here, we merely compute each diffuse player’s expected

profit according to her beliefs and aggregate the results over all diffuse players.

From Section 6.1, recall that the standard narrative says that the presence of the

atomic player should increase the house’s revenue but decrease the diffuse players’

total expected profit (actual or subjective, as applicable). The eventual decline in

the house’s revenue should only be seen over time, not in our static game model.

Technically, since we specified that w > 0 in Section 5.3, the atomic player can

never be absent in our framework. Still, we can model the atomic player’s absence

by choosing an extremely low value for w, say w = 10−10. Her wagers are then too

small to materially affect any equilibrium quantities. We do this for all of the Case

1’s in Examiples V.12 - V.15. The atomic player is present, that is, w >> 0, in all

of our upcoming Case 2’s.

The following collection of measures is convenient for our purposes.
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Definition V.11. For n ≥ 1, let µn be the Borel measure on [0, 1] whose density gn

is defined by

gn (p) =

 −2n (n− 1) p+ 2 (n− 1) + 1/n if p < 1/n

1/n if p ≥ 1/n

.

In Figure 5.1, we give the plots of gn for n = 1, 3, and 9. Here are the key

observations:

(i) gn is continuous and positive on [0, 1].

(ii) µn ([0, 1]) = 1 for all n.

(iii) µ1 is the Lebesgue measure on [0, 1].

(iv) gn converges in distribution to the Dirac delta function as n ↑ ∞.

(i) and (ii) ensure that µn is a suitable candidate for the measure describing the initial

wealth of the diffuse bettors, that is, all of our results apply when µ = µn. In this

case, (iii) says that the initial wealth of the diffuse bettors is uniformly distributed

when n = 1. (iv) says that their initial wealth is increasingly concentrated among

those who believe that Outcome 2 will occur with high probability as n increases.

Another key feature is that the diffuse bettors’ total initial wealth is always equal to

1 (see (ii)).

Before we proceed, we remark that all of our figures are generated with the help

of the ideas in Theorem V.7’s proof. More precisely, assume that κ ∈ (0.5, 1). The

function ϕ defined in Step 5 has a unique fixed-point. Since ϕ is also continuous and

decreasing, we can efficiently approximate this value with arbitrary precision using

binary search. Step 3 shows how to reconstruct the pure-strategy Nash equilibrium

(f ?, a?), given such an estimate.
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Figure 5.1: Depiction of gn for n = 1, 3 and 9.

Example V.12. We now show that both effects predicted by the usual narrative

can be observed.

In Cases 1 and 2, we set µ = µ1 and q = 0.9. We assume that the atomic player’s

beliefs are exactly correct, i.e., the actual probability that Outcome 1 will occur is

also 0.9. The only difference between Cases 1 and 2 is that w = 10−10 in the former

but w = 1 in the latter.

Recall that choosing µ = µ1 means that the diffuse bettors’ initial wealth is

uniformly distributed. Since q = 0.9, the atomic player (correctly) believes that

Outcome 1 is quite likely.

In Figure 5.2, we plot the diffuse players’ actual total expected profit. Collectively,

the diffuse players beliefs are rather inaccurate, so it is not surprising that their expect

profit is negative. Still, as κ ↑ 1, the diffuse players become increasingly worse off in

Case 2. Intuitively, the atomic player quickly raises her bet on Outcome 1 as κ ↑ 1.

The implied probability of Outcome 1 rises,17 causing more diffuse players to bet on

Outcome 2 and less to bet on Outcome 1. Since the actual probability of Outcome

1 is 0.9, this transition negatively affects the diffuse players.

17We remark that P f
?,a? ∈ [0.5, 0.7] for all κ ∈ (0.5, 1) in Example V.12. In particular, the favorite-longshot bias

results, regardless of the house take.
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Figure 5.2: Depiction of the diffuse players’ actual total expected profit in Example V.12.
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Figure 5.3: Depiction of the house’s revenue in Example V.12.

We plot the house’s revenue in Figure 5.3. The house’s revenue is higher in Case

2 than in Case 1 for all κ ∈ (0.5, 1), as a result of the higher wagering totals in Case

2.

Example V.13. Still, there are cases in which diffuse players are positively affected

by the activities of the atomic player.

We now choose µ = µ1 and q = 0.57 for Cases 1 and 2. The actual probability of

Outcome 1 is 0.47. The only difference between the two scenarios is that w = 10−10

in Case 1, while w = 1 in Case 2.

Compared to Example V.12, Outcome 1 is slightly less likely here. Also, we still

assume that the atomic player’s forecast is quite accurate, but her prediction is no
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Figure 5.4: Depiction of the diffuse players’ actual total expected profit in Example V.13.

longer perfect.

We plot the diffuse players’ actual expected profit in Figure 5.4. The graphs for

Cases 1 and 2 are the same for most values of κ; however, we see that the diffuse

players’ expected profit is higher in Case 2 when κ is large enough. Roughly, the

atomic player does not start betting (on Outcome 1) until the house take is low, since

she is nearly ambivalent. This explains why the curves are initially identical. When

the atomic player begins to wager on Outcome 1, the diffuse players reshuffle their

bets as in Example V.12.18 The shift benefits them, essentially because the atomic

player wagers on the wrong outcome.

In Figure 5.5, we plot the house’s revenue. We see an extremely small improvement

in Case 2 when κ is large, but the graphs are almost indistinguishable, visually. As in

Example V.12, the increase corresponds to the increase in the total amount wagered.

It is slight, as the atomic player’s uncertainty about what will occur causes her to

bet very little in Case 2, even for κ ≈ 1.

Example V.14. We can argue that the diffuse players are better off in the presence

of the atomic player, even without making assumptions about the actual probability

of Outcome 1.
18Like Example V.12, we see the favorite-longshot bias here because P f

?,a? ∈ [0.5, 0.53] for all κ ∈ (0.5, 1).
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Figure 5.5: Depiction of the house’s revenue in Example V.13.

In Cases 1 and 2, we now choose µ = µ10 and q = 0.95. As in Examples V.12 -

V.13, we set w = 10−10 in Case 1 and w = 1 in Case 2. The atomic player believes

that Outcome 1 is highly likely. Collectively, the diffuse players believe that Outcome

2 will probably happen: over 90% of their initial wealth is held by those who believe

that the probability of Outcome 2 is at least 0.9. We make no judgment about the

accuracy of the players’ beliefs.

We plot the diffuse players’ subjective expected profit in Figure 5.6. The graphs

are the same for low κ, but eventually, the diffuse players’ subjective expected profit

is much higher in Case 2. Intuitively, the atomic player raises her wager on Outcome

1 as κ ↑ 1, since she believes that Outcome 1 will occur. The implied probability of

Outcome 1 then rises, a boon to those who believe that Outcome 2 will occur. This

includes most of the diffuse players.

In Figure 5.7, we plot the house’s revenue. The house’s revenue in Case 2 is at

least as large as its revenue in Case 1 for all values of κ. Often, the improvement is

significant. Roughly, there is too much agreement among the diffuse bettors. They

wager more in the presence of the atomic player, believing that they can profit from

her supposed wagering mistakes. The pool size increases, leading to greater revenue

for the house in Case 2.
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Figure 5.6: Depiction of the diffuse players’ subjective total expected profit in Example V.14.
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Figure 5.7: Depiction of the house’s revenue in Example V.14.
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Example V.15. In keeping with the standard narrative, it seems like the house is

always immediately better off because of the atomic player. We can cast some doubt

on this too.

We used the same µ for Cases 1 and 2 in Examples V.12 - V.14. This choice

captures the idea that the presence of the atomic player should not affect the diffuse

players’ initial wealth in a static parimutuel wagering game.19

Alternatively, it might be reasonable to fix the distribution of initial wealth across

the entire population, not just the diffuse population. For instance, we could specify

that the amount held by those who believe that Outcome 1 will occur is roughly the

same as the amount held by those who believe that Outcome 2 will occur. We could

then compare the situations in which the wealth is held by only diffuse players and

in which some wealth is held by the atomic player. This is the approach we now

take.

In Case 1, w = 10−10 and the density of µ is defined by

p 7→ g100 (p) + g100 (1− p)
2

.

For Case 2, we set w = 1 and µ = µ100. We choose q = 1 for both scenarios and,

again, make no assumption about Outcome 1’s actual probability.

Intuitively, half of the diffuse players in Case 1 believe that Outcome 1 is going

to occur, while the other half believes that Outcome 2 will occur. For Case 2, the

diffuse players all believe that Outcome 2 is going to occur. The atomic player, whose

wealth is equal to the collective wealth of the diffuse players, believes that Outcome

1 will occur.

Notice that the diffuse players’ total initial wealth is equal in Cases 1 and 2;

however, the wealth of the entire population in Case 2 is twice what it is in Case
19Over the course of many events, diffuse players may stop participating because of the atomic player, making this

intuition questionable in another context (see Section 6.1).
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1. This is consistent with our parameter selections in Examples V.12 - V.14. When

studying the house’s revenue here, we might have also chosen µ = 0.5 × µ100 and

w = 0.5 in Case 2, ensuring that the wealth of the entire population is identical in

both scenarios. We comment on this shortly.

One might suspect that Cases 1 and 2 are quite similar, but this is not true. In

Figure 5.8, we plot the diffuse players’ subjective expected profit. For κ ≈ 1, their

subjective expected profit is higher in Case 2 than in Case 1. Otherwise, it is lower

for all κ, and often, the drop is significant.

To explain this observation, we plot the implied probability of Outcome 1 in

Figure 5.9. The implied probability of Outcome 1 is about 0.5 for all κ in Case 1.

For Case 2, it is almost 1− κ for low κ but approaches 0.5 as κ ↑ 1.

Since the diffuse players believe that Outcome 2 will occur but the atomic player

believes that Outcome 1 will occur, the intuition appears to be as follows. Roughly,

the diffuse players are willing to tolerate unfavorable betting conditions more than

the atomic player. Despite the fact that each type of player is basically sure that the

outcome they are betting on will occur, the diffuse players in Case 2 raise the size of

their wagers much faster than the atomic player when κ is low. The diffuse players

do this at the expense of their own subjective expected profit, which is nearly zero

in Case 2 until κ ≈ 0.84. The atomic player does not substantially raise her wager

on Outcome 1 until the values of the implied probability of Outcome 1 and κ make

her subjective expected profit per unit bet very high.

One could argue that the atomic player’s strategy is superior to the strategies

employed by the diffuse players, although we have made no assumption about the

accuracy of her prediction. Perhaps the reason is that unlike the diffuse players,

she considers her individual impact on the other wagerers because of her substantial
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wealth.

In Figure 5.10, we plot the house’s revenue. We see that the house’s revenue

is higher in Case 1 for small κ but higher in Case 2 for large κ. After selecting

µ = 0.5 × µ100 and w = 0.5 in Case 2 (see our explanation above), we re-plot the

house’s revenue in Figure 5.11. Now the house’s revenue is higher in Case 1 for all κ.

Regardless of our normalization, the key point is that the house’s maximum revenue

is always much higher in Case 1.

Intuitively, the diffuse players appear to have a greater tolerance for poor betting

conditions than the atomic player, as discussed previously. They are willing to

bet even when κ ≈ 0.5, and consequently, about 99% of the diffuse players are

wagering in Case 1 when κ ≈ 0.51. The house loses revenue by raising κ, since the

entire population has already wagered almost everything that it can. In Case 2, the

atomic player’s reluctance to significantly raise her wager on Outcome 1 until betting

conditions improve means that the total amount wagered is low for most κ. The pool

is large only if κ is quite high, so the house does not collect much.

In Examples V.12 - V.14, the house’s revenue in Case 2 is at least as great as

the house’s revenue in Case 1 for all κ. Of course, the house’s maximum revenue is

then higher in Case 2 for these studies. Here, the pointwise analysis is not as clean,

leading us to more directly consider the house’s strategic behavior.

Thus far, we have understood the house take to be exogenously determined. One

way to relax this assumption is to break our game into two stages. In the first stage,

the betting organizer chooses a value for the house take in order to maximize her

revenue. The second stage is identical to our current setup.

Under the new framework, the house needs to account for more than the distri-

bution of initial wealth across the entire population. The house must also consider
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Figure 5.8: Depiction of the diffuse players’ subjective total expected profit in Example V.15.

how the initial wealth is distributed across the population for each type of player.

Independent of our normalization of the entire population’s wealth, the house’s rev-

enue is maximized at κ ≈ 0.506 in Case 1 and at κ ≈ 0.839 in Case 2. Hence, the

house selects these values of κ in Cases 1 and 2, respectively.

In Figure 5.8, the diffuse players’ subjective expected profit is about 0.0085 when

κ ≈ 0.506 in Case 2, while it is about 0.023 when κ ≈ 0.839 in Case 2. These

numbers arise from our original parameter choices, ensuring that the total initial

wealth of the diffuse players is 1 in both scenarios. The diffuse players are not well

off in either Case 1 or Case 2. We could still argue that the setup of Case 2 is to

their advantage, in contrast to our earlier pointwise analysis. Roughly, because the

atomic player is less willing to bet under poor wagering conditions, the house more

easily preys upon the diffuse players when she is absent.

5.6 Appendix: Properties of P f?,a?

We briefly revisit our discussion of Corollary V.10 by studying the properties of

P f?,a? as a function of κ. We hope this highlights a few theoretical features of our

model, though we do not relate our findings in Section 5.6 to our central question.

To generate these figures, we use the approach and notation of Section 5.5.
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Figure 5.9: Depiction of Outcome 1’s implied probability in Example V.15.
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Figure 5.10: Depiction of the house’s revenue in Example V.15 (before Case 2 wealth is normalized).
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Figure 5.11: Depiction of the house’s revenue in Example V.15 (after Case 2 wealth is normalized).
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Figure 5.12: Depiction of Outcome 1’s implied probability when all players effectively believe that
Outcome 2 will occur (cf. Section 5.6).

Recall our claim that in an extreme case where nearly all of the initial wealth is

held by those who believe that Outcome 2 is highly likely, P f?,a? ≈ 1 − κ for all κ.

We illustrate this in Figure 5.12, which depicts the map κ 7→ P f?,a? when µ = µ100,

q = 0, and w = 1. Here, over 99% of the diffuse players’ initial wealth belongs to

those who believe that the probability of Outcome 2 is at least 0.99. The atomic

player believes that Outcome 2 is guaranteed to occur. As expected, the plot is

visually indistinguishable from a plot of the map κ 7→ 1− κ.

Often, it is more difficult to broadly describe attributes of the function κ 7→ P f?,a? .

We know that P f?,a? ∈ (1− κ, κ), but our players’ heterogeneity allows for a wide

range of possibilities within these bounds. There is a rich interplay between their

differing beliefs, effects on (5.2), and wealth constraints. By plotting the map κ 7→

P f?,a? under varying assumptions on q, w, and µ, Figure 5.13 displays a few of the

myriad possibilities. For instance, the density g of the µ used to generate Line A is a

linear combination of Gaussian densities with different means. Line A’s oscillations

arise because of g’s distinct peaks.



152

κ

0.5 0.6 0.7 0.8 0.9 1

P
f∗

,a
∗

0.4

0.5

0.6

0.7

0.8

0.9

A B C D

Figure 5.13: Depiction of Outcome 1’s implied probability under various parameter regimes (cf.
Section 5.6).

5.7 Appendix: Proof of Proposition V.6

We only prove (i). The argument for (ii) is similar, and as observed above, (iii) is

due to Isaacs ([138]).

Suppose that (5.9) holds. Then

1− q
d2

<
1− κq
d2

<
1

d1 + d2

<
1

κ (d1 + d2)
<

q

d1

. (5.22)

We get the first and third inequalities because κ ∈ (0, 1). The second inequality is

due to (5.14), while the last inequality is a rearrangement of (5.9). For now, the

critical observation is that the leftmost quantity is less than the rightmost, allowing

us to use the work of Isaacs ([138]).

Define the map

Φ : R2
≥0 −→ R

by

Φ (b1, b2) = b1

(
κ (b1 + d1 + b2 + d2) q

b1 + d1

− 1

)
+ b2

(
κ (b1 + d1 + b2 + d2) (1− q)

b2 + d2

− 1

)
.

Φ (b1, b2) is the atomic player’s expected profit, given that she wagers bi on Outcome
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i, and it allows us to rewrite (5.8) as

a1

(
κ q

P f,a
− 1

)
+ a2

(
κ (1− q)
1− P f,a

− 1

)
= sup

b1,b2≥0
b1+b2≤w

Φ (b1, b2) .

Technically, strategy profiles (b1, b2) with

b1 + b2 > w

are not feasible, but this is unimportant.

Isaacs showed that Φ has a unique global maximum on R2
≥0, denoted (b?1, b

?
2), given

by

(b?1, b
?
2) =

(√
κqd1d2

1− κq
− d1, 0

)
.

This proves that (i) holds when w ≥ b?1.

The case where w < b?1 is handled with elementary calculus. First, observe that

(5.9) implies that q > 0 and

∂b1Φ (0, 0) =
κ (d1 + d2) q

d1

− 1 > 0.

Since ∂b1Φ (b?1, 0) = 0 and

∂b1b1Φ (b1, b2) = −2κd1 (b2 + d2) q

(b1 + d1)3

is always negative, it follows that ∂b1Φ (b1, 0) > 0 for 0 ≤ b1 < b?1. The interpretation

is that as long as the atomic player has not yet wagered on Outcome 2, she should

wager as much as she can up to b?1 on Outcome 1.

We only need to argue that she should never wager on Outcome 2, that is,

∂b2 (b1, b2) is negative whenever b1 + b2 ≤ w. Rearranging (5.22) implies that

∂b2Φ (0, 0) =
κ (d1 + d2) (1− q)

d2

− 1 < 0.
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Now ∂b2Φ (b?1, 0) ≤ 020 and

∂b2b1Φ (b1, b2) =
κd1q

(b1 + d1)2 +
κd2 (1− q)
(b2 + d2)2

is positive everywhere, so ∂b2Φ (b1, 0) < 0 for 0 ≤ b1 < b?1. Since

∂b2b2Φ (b1, b2) = −2κd2 (b1 + d1) (1− q)
(b2 + d2)3

is always non-positive, we conclude that ∂b2 (b1, b2) must be negative whenever 0 ≤

b1 < b?1. In particular, ∂b2 (b1, b2) is negative, if b1 + b2 ≤ w.

5.8 Appendix: Proof of Theorem V.7

Step 1: If (f ?, a?) is an equilibrium, then d?1, d
?
2 > 0.

We show that the total amount wagered on each outcome by the diffuse players

is positive in equilibrium: d?1, d?2 > 0. We use this result to complete the proof of the

only if direction of Theorem V.7 in Step 2. It also allows us to use Propositions V.5

and V.6 in the proof of the if direction.

Suppose instead that we can find a pure-strategy Nash equilibrium (f ?, a?) with

d?1 = 0. It follows immediately that d?2 > 0: otherwise, (iii) of Definition V.3 implies

that a?1 = a?2 = 0, which contradicts (i) of Definition V.3. A consequence of Isaacs’

work is that q = 0 ([138]).21 Then (iii) of Definition V.3 implies that a?1 = a?2 = 0.

In particular, P f?,a? = 0. By (i) of Definition V.3, f ?2 ≡ 0, which is impossible since

d?2 > 0.

Hence, d?1 > 0. It follows similarly that d?2 > 0.

Step 2: If an equilibrium exists, then κ > 0.5.

20We know that ∂b1Φ
(
b?1, 0

)
= 0 and ∂b2Φ

(
b?1, 0

)
≤ 0 since Φ has a unique global maximum on R2

≥0 at
(
b?1, b

?
2

)
.

21If q > 0, then a?1 is undefined. Roughly, the atomic player needs to make an arbitrarily small bet on Outcome 1
but is not allowed to do so.
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We finish the proof of the only if direction of Theorem V.7 by formalizing the

heuristics given previously. Suppose that (f ?, a?) is an equilibrium. Step 1 implies

that d?1, d?2 > 0. Then both

P f?,a?

κ
< 1 and

1− P f?,a?

κ
< 1 (5.23)

by Proposition V.5. Rearranging (5.23) finishes the argument.

Step 3: Definition and discussion of p̄i (when κ > 0.5).

Due to Step 2, we assume that κ > 0.5 for the remainder of the proof (Steps 3 -

4). This assumption ensures that our discussions are not vacuous, as we implicitly

rely on the positive length of the interval [1− κ, κ].

We now define and discuss the quantities p̄1, p̄2 ∈ [1− κ, κ]. We use this notation

when we define our ζi maps in Step 4 and ϕ in Step 5. Roughly, p̄1 is a näıve lower

bound for the implied probability of Outcome 1 when the atomic player wagers on

Outcome 1. Similarly, p̄2 is an upper bound for the implied probability of Outcome

1 when the atomic player wagers on Outcome 2. Both are derived from Propositions

V.5 and V.6.

Since µ’s density is positive, the map

p 7→
µ
(
p
κ
, 1
]

κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) (5.24)

is decreasing and continuous on [1− κ, κ]. Its value is 1/κ at p = (1− κ) and 0 at

p = κ. Hence, there is a unique p̄1 ∈ (1− κ, κ] such that

q =
µ
(
p̄1
κ
, 1
]

κ
(
µ
(
p̄1
κ
, 1
]

+ µ
[
0, 1− 1−p̄1

κ

)) . (5.25)

Clearly, p̄1 = κ, or equivalently, (p̄1, κ] is empty, if and only if q = 0. Regardless
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of q’s value, we know

q ≤
µ
(
p
κ
, 1
]

κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) if p ∈ [1− κ, p̄1]

q >
µ
(
p
κ
, 1
]

κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) if p ∈ (p̄1, κ]

. (5.26)

We later connect this observation to (5.9) and (5.13) when defining ζi and ϕ.

Similarly, the map

p 7→
µ
[
0, 1− 1−p

κ

)
κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) (5.27)

is increasing and continuous on [1− κ, κ]. Its value is 0 at p = (1− κ) and 1/κ at

p = κ, so there is a unique p̄2 ∈ [1− κ, κ) such that

1− q =
µ
[
0, 1− 1−p̄2

κ

)
κ
(
µ
(
p̄2
κ
, 1
]

+ µ
[
0, 1− 1−p̄2

κ

)) .
Now p̄2 = (1− κ), i.e., [1− κ, p̄2) is empty, if and only if q = 1. In any case,

1− q >
µ
[
0, 1− 1−p

κ

)
κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) if p ∈ [1− κ, p̄2)

1− q ≤
µ
[
0, 1− 1−p

κ

)
κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) if p ∈ [p̄2, κ]

. (5.28)

This comment relates to (5.11) and (5.13), as reflected in our definitions of ζi and ϕ.

We conclude by observing that we have p̄2 < p̄1 since κ ∈ (0.5, 1). This is another

key remark for our future definition of ϕ.

Step 4: Definition and discussion of ζi (when κ > 0.5).

We define and discuss the functions ζ1 and ζ2. We use this notation in our defini-

tion of ϕ in Step 5. Intuitively, ζi (p) represents the amount that the atomic player

wagers on Outcome i when she makes a positive wager on Outcome i, does not face



157

a budget constraint, and the implied probability of Outcome 1 is p (cf. (5.10) and

(5.12)).

For p ∈ [p̄1, κ], define ζ1 by

ζ1 (p) =

√
κq

1− κq
µ
(p
κ
, 1
]
µ

[
0, 1− 1− p

κ

)
− µ

(p
κ
, 1
]
.

Since µ has a positive density, (5.26) implies that

µ
(p
κ
, 1
]
> 0, µ

[
0, 1− 1− p

κ

)
> 0, and q >

µ
(
p
κ
, 1
]

κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

))
for p ∈ (p̄1, κ). It follows as in (5.14) that ζ1 is positive on (p̄1, κ). We also have

ζ1 (p̄1) = ζ1 (κ) = 0

from (5.25).

We define ζ2 for p ∈ [1− κ, p̄2] by

ζ2 (p) =

√
κ (1− q)

1− κ (1− q)
µ
(p
κ
, 1
]
µ

[
0, 1− 1− p

κ

)
− µ

[
0, 1− 1− p

κ

)
.

Using the techniques from our discussion of ζ1, we see that ζ2 is positive on (1− κ, p̄2)

and

ζ2 (1− κ) = ζ2 (p̄2) = 0.

Step 5: Definition and discussion of ϕ (when κ > 0.5).

We introduce the implied probability map ϕ. We see in Steps 3 and 4 that a fixed-

point of ϕ corresponds to a pure-strategy Nash equilibrium in an obvious way and

vice versa, which ultimately allows us to complete Theorem V.7’s proof.

ϕ’s domain is the set of candidates p for the implied probability of Outcome 1.

We need only consider p ∈ [1− κ, κ], as we observe in Step 4. Proposition V.5 says

that

µ
(p
κ
, 1
]

and µ

[
0, 1− 1− p

κ

)
(5.29)
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are the total amounts wagered by the diffuse players on Outcomes 1 and 2, respec-

tively. The atomic player’s wagers are described by Proposition V.6. For example,

if

q >
µ
(
p
κ
, 1
]

κ
(
µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)) ,
that is, p ∈ (p̄1, κ], then the atomic player wagers nothing on Outcome 2 and

min {w, ζ1 (p)}

on Outcome 1. Recalculating the implied probability of Outcome 1 using these bets,

we get

min {w, ζ1 (p)}+ µ
(p
κ
, 1
]

min {w, ζ1 (p)}+ µ
(p
κ
, 1
]

+ µ

[
0, 1− 1− p

κ

)
from Definition V.2. We set ϕ (p) to this value. In some sense, this procedure is only

potentially meaningful when p is equal to ϕ (p), leading to our focus on fixed-points.

Here is the complete definition of ϕ suggested by this explanation:

ϕ (p) =



µ
(
p
κ
, 1
]

min {w, ζ2 (p)}+ µ
(p
κ
, 1
]

+ µ

[
0, 1− 1− p

κ

) if p ∈ [1− κ, p̄2)

µ
(
p
κ
, 1
]

µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

) if p ∈ [p̄2, p̄1]

min {w, ζ1 (p)}+ µ
(p
κ
, 1
]

min {w, ζ1 (p)}+ µ
(p
κ
, 1
]

+ µ

[
0, 1− 1− p

κ

) if p ∈ (p̄1, κ]

.

Observe that ϕ is continuous on [1− κ, κ] since µ has a positive density and

ζi (p̄i) = 0 (see Step 4). This helps us prove that ϕ has a unique fixed-point in Step

7.

Step 6: ϕ is decreasing (when κ > 0.5).
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We show that ϕ is decreasing. We use this property in Step 7 to argue that ϕ has

a unique fixed-point.

Since µ’s density is positive everywhere, ϕ is decreasing on [p̄2, p̄1]. It suffices to

show that ϕ is decreasing on both [1− κ, p̄2) and (p̄1, κ] because ϕ is continuous.

The proofs are similar, so we consider the former case.

We are done, if [1− κ, p̄2) is empty. Suppose that it is not. Recall from Step 3

that this is equivalent to assuming that q < 1. Define two functions ϕ2 and ϕw2 on

[1− κ, p̄2) by

ϕ2 (p) =
µ
(
p
κ
, 1
]

ζ2 (p) + µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

)
ϕw2 (p) =

µ
(
p
κ
, 1
]

w + µ
(
p
κ
, 1
]

+ µ
[
0, 1− 1−p

κ

) .
The point is that

ϕ (p) = max {ϕ2 (p) , ϕw2 (p)}

on [1− κ, p̄2), so it is enough to show that ϕ2 and ϕw2 are both decreasing.

Clearly, ϕw2 is decreasing. Denoting the positive and continuous density of µ by

g, we see that ϕ2 is decreasing because

ϕ′2 (p) = −
g
(
p
κ

)√ κ(1−q)
1−κ(1−q)µ

(
p
κ
, 1
]
µ
[
0, 1− 1−p

κ

)
2κ
(√

κ(1−q)
1−κ(1−q)µ

(
p
κ
, 1
]
µ
[
0, 1− 1−p

κ

)
+ µ

(
p
κ
, 1
])2

−

(
κ(1−q)

1−κ(1−q)

)0.5

µ
(
p
κ
, 1
]3/2

µ
[
0, 1− 1−p

κ

)−0.5
g
(
1− 1−p

κ

)
2κ
(√

κ(1−q)
1−κ(1−q)µ

(
p
κ
, 1
]
µ
[
0, 1− 1−p

κ

)
+ µ

(
p
κ
, 1
])2 .

Step 7: ϕ has a unique fixed-point (when κ > 0.5).

We show that ϕ has a unique fixed-point. We use the existence of ϕ’s fixed-point

to prove the existence of a pure-strategy Nash equilibrium in Step 3, while we use

the uniqueness of ϕ’s fixed-point to demonstrate that the equilibrium is unique in

Step 4.
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The proof is simple: ϕ (1− κ) = 1 and ϕ (κ) = 0. Since ϕ is continuous and

decreasing (see Steps 5 - 6), it must have a unique fixed-point.

Step 8: An equilibrium exists (when κ > 0.5).

We show that a pure-strategy Nash equilibrium exists. Based on Step 7, we need

only describe how to construct an equilibrium from a fixed-point of ϕ.

Suppose that P̂ is a fixed-point of ϕ. The proofs for each case are similar, so we

only present the argument when P̂ ∈ [1− κ, p̄2). Define a feasible strategy profile

(f, a) by

f1 (p) =


1 if p ≥ P̂ /κ

0 if p < P̂/κ

, f2 (p) =


1 if 1− p ≥

(
1− P̂

)
/κ

0 if 1− p <
(

1− P̂
)
/κ

,

a1 = 0, and

a2 = min
{
w, ζ2

(
P̂
)}

.

In particular,

d1 = µ

(
P̂

κ
, 1

]
and d2 = µ

[
0, 1− 1− P̂

κ

)
.

(5.28) implies that (5.11) is satisfied. Since ϕ (1− κ) = 1, we know that P̂ 6=

(1− κ). Hence, d1, d2 > 0 because the density of µ is positive everywhere. We then

have (iii) of Definition V.3 by Proposition V.6.

Since P̂ is a fixed-point of ϕ,

P̂ =
µ
(
P̂
κ
, 1
]

min
{
w, ζ2

(
P̂
)}

+ µ

(
P̂

κ
, 1

]
+ µ

[
0, 1− 1− P̂

κ

) = P f,a.

From Proposition V.5, we see that (ii) of Definition V.3 holds.

This completes the proof, as (i) of Definition V.3 is obviously satisfied.
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Step 9: The equilibrium in Step 3 is unique (when κ > 0.5).

We conclude Theorem V.7’s proof by showing that the equilibrium in Step 3 is

unique. The key observation is that ϕ’s fixed-point is also unique (see Step 7).

First, we describe how to construct a fixed-point of ϕ, given an equilibrium

(f ?, a?). From Proposition V.5 and Step 1, we know that

d?1 = µ

(
P f?,a?

κ
, 1

]
> 0 and d?2 = µ

[
0, 1− 1− P f?,a?

κ

)
> 0.

In particular, P f?,a? ∈ (1− κ, κ). By Proposition V.6, there are three possibilities

for a?.

Assume that a?1 > 0 and a?2 = 0. The other cases can be handled similarly. By

Proposition V.6, (5.9) holds. Hence, P f?,a? ∈ (p̄1, κ) due to (5.26) and

a?1 = min

{
w,

√
κqd?1d

?
2

1− κq
− d?1

}
= min

{
w, ζ1

(
P f?,a?

)}
.

By Definition V.2,

P f?,a? =

min
{
w, ζ1

(
P f?,a?

)}
+ µ

(
P f?,a?

κ
, 1

]
min

{
w, ζ1

(
P f?,a?

)}
+ µ

(
P f?,a?

κ
, 1

]
+ µ

[
0, 1− 1− P f?,a?

κ

)
= ϕ

(
P f?,a?

)
,

that is, P f?,a? is a fixed-point of ϕ.

Now suppose that we have another equilibrium (f �, a�). Using the method just

described, we see that P f�,a� is a fixed-point of ϕ. Since there is exactly one fixed-

point of ϕ by Step 7, P f�,a� = P f?,a? .

By Step 1 and Proposition V.5, f ? and f � necessarily agree everywhere, except

when

p = P f?,a?/κ or 1− p =
(
1− P f?,a?

)
/κ.
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Since µ has a density, it follows that f ? = f � µ-a.s. Clearly, d?1 = d�1 and d?2 = d�2.

Proposition V.6 implies that a? = a�.



CHAPTER VI

Mini-Flash Crashes, Model Risk, and Optimal Execution

6.1 Overview

Amidst the violent market disruption on May 6, 2010, the infamous Flash Crash,

“Over 20,000 trades across more than 300 securities were executed at prices

more than 60% away from their values just moments before. Moreover,

many of these trades were executed at prices of a penny or less, or as high

as $100,000, before prices of those securities returned to their ‘pre-crash’

levels” ([3]).

Today, this particular event remains so memorable due to its remarkable scale.

In fact, lesser versions of the Flash Crash, or mini-flash crashes, happen quite

often. Anecdotal evidence suggests that there may be over a dozen every day ([102]).

A rigorous empirical analysis uncovered “18,520 crashes and spikes with durations

less than 1,500 ms” in stock prices from 2006 through 2011 ([142]). The exhaustive

documentation on Nanex LLC’s “NxResearch” site offers further corroboration as

well ([10]).

A popular definition characterizes a mini-flash crash as an event in which the price

of some security changes at least 0.8% and ticks ten times consecutively in a single

direction ([142]). Price swings need not be so mild, though. Johnson et al. noted that

163
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“both crashes and spikes are typically more than 30 standard deviations larger than

the average price movement either side of an event” ([142]). The SEC also recently

described several 99% plunges as “mini-flash crashes” ([17]). Price surges can also

fit these requirements. For example, the share price of Kraft Foods underwent a

mini-flash crash on October 3, 2012 when it rocketed up 28% in less than a minute

([199]).

Now, it is true that the most irregular trades executed during some mini-flash

crashes are eventually nullified and removed from the consolidated tape. For instance,

when shares of the network security firm Qualys, Inc. jumped from $10 to $0.0001

and back during a 300ms period on April 25, 2013, all trades below $10.15 were

ultimately canceled ([9]). The idea is that these transactions were clearly erroneous,

that is, there was “an obvious error in [a] term, such as price, number of shares or

other unit of trading, or identification of the security” ([13]).

Regardless of whether they are reflected in final data feeds, why do such phenom-

ena occur?

Several answers have been proposed. Roughly, most point to human errors, en-

dogenous feedback loops, the nature of modern liquidity provision, fundamental value

shocks, or market fragmentation. These ideas can be viewed as different ways to ra-

tionalize how an extreme (local or global) dislocation in supply and demand can arise

in modern markets. We will thoroughly review them all in Subsection 6.2.1.

One of our contributions in the present paper is the development of a model which

captures aspects of the first three theories. The remaining explanations are plausible

sources of a subset of mini-flash crashes, and we discuss their relationship to our

framework in Subsection 6.2.1.
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Our model also appears to exhibit features of historical mini-flash crashes. For

instance, there are periods in which extreme price moves will not manifest. If they

do, accompanying trade volumes can be high or low. Some market participants may

partially synchronize their trading during a mini-flash crash. Our agents may not

know that a mini-flash crash is about to begin even just before its onset.

Our results seem to be aligned with intuitive expectations as well. For example,

our mini-flash crashes can begin if some of our agents are too uncertain about their

initial beliefs, inaccurate in their understanding of price dynamics, slow to update

their models and objectives, or willing to take on risk.

Subsection 6.2.1 contains details on where to find the proofs and figures corre-

sponding to these claims.

We construct our model beginning with a finite population of agents trading in

a single risky asset, each of whom must decide how to act based upon his own

preferences, beliefs, and observations. Our specifications are drawn from ideas in the

price impact and optimal execution literature and are given in Subsections 6.4.2 -

6.4.4.

We imagine that our agents’ orders are submitted to a single venue, where they

are executed together with trades from other (unmodeled) market participants. This

naturally compels us to make an explicit distinction between how the risky asset’s

price actually evolves and our agents’ beliefs about its future evolution (see Section

6.5).

Since we view our agents as simultaneously solving their own optimal execu-

tion problems, we avoid certain strong assumptions that would have been implicitly

needed, if we had used a classical equilibrium-based approach instead. An additional

consequence is that we precisely describe the errors in our agents’ beliefs. Potentially,
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each agent could be wrong both about how his trades affect prices and how prices

would move in his absence. By appealing to theoretical and practical considerations,

we argue away the consistency issues that one might feel would arise.

To the best of our knowledge, this general setup appears to be a new paradigm

for modeling heterogeneous agent systems in the contexts of optimal execution and

mini-flash crashes.

Additionally, we feel that our general framework could be viewed as a novel

method for understanding, to some extent, model misspecification risks and Knigh-

tian uncertainty in optimal trading. The basic point is that “all models are wrong”

and some (most) risks may be “unquantifiable” ([59], [150]). Existing techniques for

managing these unknowns often involve position limits, sensitivity analysis, Bayesian

model averaging, the worst-case framework, and interpolations between the worst-

case and classical setups. We illustrate how employing our abstract process, poten-

tially in conjunction with these standard methods, may give a more robust perspec-

tive.

Our in-depth discussion of these contributions and connections to previous liter-

ature on optimal execution and model misspecification appears in Subsection 6.2.2.

We are ready to begin presenting our work in detail. We highlight key background

material and our paper’s contributions in relation to it in Section 6.2. Our definition

of mini-flash crashes is given and discussed in Section 6.3. Our agents and their

beliefs are described in Section 6.4. We characterize the correct dynamics of the

risky asset’s price in Section 6.5. General results on what unfolds when our agents

act as prescribed by Section 6.4 but prices actually move as in Section 6.5 are given

in Section 6.6. Using the material in Section 6.6, a broad particular case of our model

is investigated theoretically and numerically in Section 6.7. Our longer proofs are



167

contained in Section 6.8 - 6.10.

6.2 Background & Contributions

In Section 6.2, we clarify our contributions and explain how they fit into the

current literature. Subsections 6.2.1 and 6.2.2 contain the relevant discussions for

our work on mini-flash crashes and model risk in optimal execution, respectively.

6.2.1 Mini-Flash Crashes

We already mentioned that existing theories on the causes of mini-flash crashes

could be viewed as falling into one of five categories (see Section 6.1). Here are

further details.

i) Human errors (and, relatedly, improper risk management) are among the most

commonly cited causes of mini-flash crashes ([139], [167], [17]). The SEC claims

that the majority of mini-flash crashes originate from such sources, in fact

([167]). When we read about fat finger trades, rogue algorithms, or glitches

in the media, typically human errors are indirectly responsible. For example,

due to a bug in the systems at the Tokyo Stock Exchange and a typo in a trade

submitted by Mizuho Securities, the share price of the recruitment agency J-

Com fell in minutes from U672,000 to U572,000 on December 8, 2005 ([2]).

ii) Mini-flash crashes may be caused by the rapid, endogenous formation of positive

feedback loops ([8], [142], [106], [139], [131], [140]). As Johnson et al. put it,

“Crowds of agents frequently converge on the same strategy and hence

simultaneously flood the market with the same type of order, thereby

generating the frequent extreme price-change events” ([142]).
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A separate empirical study on the Flash Crash of May 6, 2010, specifically, de-

termined that at its peak, “95% of the trading was due to endogenous triggering

effects” ([106]).

iii) The nature of liquidity provision in modern markets is thought to cause some

mini-flash crashes ([149], [96], [92], [116], [143], [115], [97]). Today, the majority

of liquidity is provided by participants that are free from formal market-making

obligations ([92]). In particular, they can instantly vanish, effectively taking one

or both sides of the order book at some venue with them. A mini-flash crash

can arise either directly as bid-ask spreads blow out or indirectly when a market

order (of any size) tears through a nearly empty collection of limit orders. Such

a phenomenon has been called fleeting liquidity and may have contributed to

the occurrence of 38% of mini-flash crashes from 2006 - 2011 ([116]).

This proposed explanation is deeply intertwined with a crucial empirical obser-

vation: Mini-flash crashes occur in both high and low trading volume regimes.1

For instance, the trading volume during the 30s mini-flash crash of “WisdomTree

LargeCap” Growth Fund on November 27, 2012 was nearly eight times the aver-

age daily trading volume for this security ([17]). The empirical study by Florescu

et al. offers extensive evidence that mini-flash crashes often occur during low

trading volume periods as well.

Why modern liquidity providers might wish to briefly disappear at times is a

separate issue. Broadly, the idea is that liquidity providers choose to pull back

when they fear they will be adversely selected. Some suggest that the clearly er-

roneous trade regulations might discourage the submission of market-stabilizing

1Since market fragmentation may also contribute to local liquidity shortages (see (v)), it may be connected with
this observation as well.
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orders in the midst of a mini-flash crash ([92]). Gayduk and Nadtochiy propose a

mechanistic theory: As trading frequencies increase, the very design of auction-

style exchanges might ensure that markets become fragile and participants stop

offering liquidity ([115]). Adverse selection fears are also stoked by genuine order

flow toxicity, delays in consolidated quote feeds like the Security Information

Processor, or activities by spoofers and other market manipulators ([5], [96],

[97], [4]).

iv) Shocks to perceived fundamental values may lead to mini-flash crashes in some,

albeit not most, cases ([143], [239]). We reiterate that these shocks must be

perceived only: They may have no factual basis. For instance, a tweet sent

on April 23, 2013 after a successful hack on the AP’s Twitter account falsely

claimed that President Obama was injured in a series of explosions at the White

House. Within two minutes, $136 billion was erased from the S&P 500 Index

([147]).

v) Market fragmentation itself, as well as the current regulations concerning this

issue, may give rise to some mini-flash crashes ([92], [116], [78]). In present-

day markets, a particular security might be traded at a number of venues, and

liquidity need not be uniformly distributed. This injects sophisticated consid-

erations into the problem of optimal execution: How does one route an order

to achieve the best possible price? The SEC introduced Rule 611, as well as

various exceptions including intermarket sweep orders (ISOs), in an attempt to

ensure that traders would receive the most favorable prices available across all

venues ([16]). Some argue that, inadvertently, this regulation may have made

matters worse. For instance, Dick posits a scenario in which a trader receives
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an inferior execution because Rule 611 only protects quotes at the top of the

book ([92]). In their empirical analysis, Golub et al. find that most mini-flash

crashes are initiated by aggressive ISO-submission ([116]).

Aspects of (i), (ii), and (iii) are reflected in our work. For example, the human

error theory arises in each of the following ways:

a) Every agent believes that a mini-flash crash is a null event (see Remark VI.10).

On the contrary, there are cases in which one will occur almost surely (see

Lemmas VI.39 and VI.42).

b) Every agent thinks that his trades affect prices through specific temporary and

permanent price impact coefficients (see Subsection 6.4.2). His estimates for

these parameters might be wrong (see Section 6.5).

c) Every agent’s trades may also indirectly impact prices by inducing others to

make different decisions than they would otherwise (see Subsection 6.4.5 and

Section 6.5). This potential effect is not modeled by our agents (see Subsection

6.4.2). More generally, even if we have a single agent in our setup trading with

other unspecified market participants, the parameters in his fundamental value

model might be inaccurate (see Subsection 6.4.2 and Section 6.5).

d) No agent revises the general class of his beliefs, admissible strategies, or objec-

tives on our time horizon (see Subsections 6.4.2 - Subsection 6.4.4). In some

cases, a mini-flash crash will not occur if this period is fairly short but will if it

is too long (see Lemmas VI.28 and VI.34).

e) Every agent is averse to his position’s apparent volatility risks (see Subsection

6.4.4). In some cases, there will be no mini-flash crash when our agents are
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sufficiently averse to these risks; otherwise, there will be one (see Lemmas VI.28

and VI.34).

f) Every agent has the opportunity to update the drift parameter in his price model

based upon his observations (see Subsection 6.4.2). In some cases, a mini-flash

crash will unfold because our agents are too easily persuaded to revise their

priors (see Lemmas VI.28 and VI.34).

g) Every agent has a model for how prices are affected by the temporary impact

of trades (see Subsection 6.4.2). In some cases, there will be a mini-flash crash

if our agents sufficiently underestimate the role of aggregate temporary impact.

No such disturbance will occur otherwise. Our agents may be more prone to

induce mini-flash crashes in this way when there are many of them (see Lemmas

VI.28 and VI.34).

Notice that some of our agents’ human errors directly cause mini-flash crashes,

though not all (see Lemma VI.28). We highlight this observation in Figures 6.1

- 6.3. Implicitly, the occasional absence of mini-flash crashes also agrees with (i).

Despite the regularity of these disruptions on a market-wide basis, individual secu-

rities may rarely experience such an event. Similarly, traders’ models and strategies

do roughly achieve their intended goals much of the time, which we observe as well

(see Lemma VI.28).

Several key ideas from the endogenous feedback loop theory are present in our

paper. For example, if a mini-flash crash does occur, it almost surely does so because

of “endogenous triggering effects.” Specifically, our mini-flash crashes arise when

some of our agents buy or sell at faster and faster rates, which they only do because

they started trading more rapidly in the first place (see Section 6.5 and Lemma
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VI.23). As predicted by this theory, some of our agents also “converge on the same

strategy” during mini-flash crashes: In certain cases, the agents driving these events

all buy or sell together with the same (exploding) growth rate (see Lemmas VI.39 and

VI.42). Figures 6.5, 6.8, and 6.11 graphically illustrate this partial synchronization.

We do not explicitly model liquidity providers in our framework, as we view our

agents as submitting market orders to a single venue (see Section 6.5). We still view

our paper as reflecting (iii), at least in some sense, since our mini-flash crashes can

be accompanied by both high and low trading volumes (see Corollary VI.15 and

Lemmas VI.39 and VI.42). Visualizations of this point are provided in Figures 6.4,

6.6, 6.7, 6.9, 6.10, and 6.12.

The fundamental value shock theory is beyond the scope of our work. To study

it, we could extend our model, say, by including a jump term in our specification

of the actual price dynamics (see Section 6.5). Provided these jumps were almost

surely finite, we suspect that they would not induce a mini-flash crash in the sense

of our definition (see Section 6.3). This point is left for future work.

For the sake of tractability, we chose to model our agents as trading at a single

venue (see Section 6.5). This puts the market fragmentation theory also beyond the

scope of our paper. Especially since routing decisions are inextricably linked with

optimal execution problems in practice, we hope to return to this topic in the future

([1]).

6.2.2 Model Risk & Optimal Execution

Problems in which agents make their decisions based upon misspecified models are

well-studied in the economics and behavioral finance communities ([55], [60], [111],

[35], [101], [24], [210], [100]). To the best of our knowledge, such an approach has not

been directly pursued in the financial mathematics literature on optimal execution.
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Much of the previous work in this area assumes that agents have complete and

correct knowledge of all model parameters ([54], [19], [20], [22], [178], [113], [187],

[45]). Others consider the possibility that their agents’ models have the correct form;

however, the agents must gradually learn the values of certain unobserved features

([21], [44], [75], [98], [110], [88]).

It is understood that anyone using the resulting strategies would be highly exposed

to model (misspecification) risks. The concern is partially mitigated since methods

including position limits, sensitivity analysis, Bayesian model averaging, the worst-

case framework, and interpolations between the worst-case and classical setups may

help to manage these issues. Agents that explicitly take model risks into account,

say, by using one of these techniques, are typically called ambiguity averse ([73], [74],

[76]).2

The idea with a control like a position limit is that although a model or strategy

may never be perfect, their errors cannot cause ruinous damage. In practice, there

are many related risk limits. Key differences among these variants tend to lie in

what, specifically, is being limited in size and how its size limit is implemented

([171]). For example, the sizes of single positions, sector positions, market bets,

market capitalization bets, and leverage might all be limited. The limits themselves

might be inflexible constraints or appear as penalty functions.

Sensitivity analyses attempt to precisely measure how aspects of a strategy or its

performance would change, if model assumptions are varied. Here, a model’s parame-

ters or probabilistic structure are often modified ([108], [107], [114]). If a strategy and

its performance are found to be sufficiently stable, one might be somewhat assured

that model risks are contained.
2Such agents appear throughout the literature, not just in the financial mathematics strand on optimal execution.

The seminal book by Hansen & Sargent offers a comprehensive discussion ([120]). There have been many more recent
developments as well (see [95], [203], [58], [51], [42], [40], [41], [43], [18], and the references therein).
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Agents using the final three techniques above can be viewed as having several

candidate models (not one). Alternatively, they can occasionally be interpreted as

trying to reduce their exposure to Knightian (or unquantifiable) uncertainty ([150]).

Possibly after assigning seemingly appropriate weights, such agents simultaneously

measure the performance of their admissible strategies under all candidate models

([212], [89], [73]).

Despite the protection afforded by these methods, they do not offer complete

inoculation against model risk.

Due to practical flaws in design or implementation, position limits may not always

avert disaster. For example, the SEC found that in some cases, Merrill Lynch’s

controls allowed single orders to be placed with sizes that were over fifty times larger

than a security’s average daily trading volume ([17]). The SEC further claimed that

these allegedly ineffective limits contributed to the onset of several mini-flash crashes,

and Merrill Lynch was fined $12.5 million.

Certain types of sensitivity analysis, e.g., differentiating a strategy or its perfor-

mance with respect to some parameter, may have shortcomings. For instance, they

may be most useful when an agent’s model is a slight perturbation of the actual price

dynamics. Efficacy might be further lowered, if optimal strategies in one regime are

only compared against optimal strategies in another (rather than studying how a

single proposed strategy would perform under a new framework).

Safeguards provided by Bayesian model averaging, the worst-case framework, and

interpolations between the worst-case and classical setups may be weakened if the

agent’s

i) candidate models all poorly represent the actual price dynamics,

ii) designated model weights are assigned inappropriately,
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iii) or conceptions about future outcomes and their payoffs are mistaken.

Now, in much of the optimal execution literature with ambiguity averse agents,

the sources of uncertainty are driven by Brownian motions, Poisson processes, or

Poisson random measures, and the agent’s candidate models are characterized by a

suitable class of equivalent measures ([73], [74], [76]). Even when candidate models

are allowed to be mutually singular, e.g., in the separate body of work on option

pricing under volatility uncertainty ([165], [28]), they are philosophically similar, say,

in the sense that they might have the same general form but differ in their parameter

specifications. These points heighten the possibility of (i).

Weights corresponding to candidate models are typically determined in a Bayesian

fashion or according to a chosen notion of distance from the candidate to the agent’s

reference model. (ii) may then arise, if either the agent’s priors or belief metrics are

not reflective of the actual price dynamics.

Historical examples of (iii) are abundant. Though not in the context of optimal

execution, Taleb recounts an especially striking anecdote involving a casino ([226]).

This organization put on a show which included a tiger. The firm insured against

a variety of incidents but did not envision that the creature would attack its star

performer. When this tragically occured, the casino lost $100 million and suffered

one of its largest losses ever.

While model risks in optimal execution can never be entirely eliminated, these

observations suggest that a new paradigm for managing them could be helpful. We

hope that our general procedure, possibly applied together with existing techniques,

might be such a paradigm. To clarify what we are introducing in the context of

optimal execution, note the following alternative interpretation of our setup:

We have a single agent trading in a risky asset over a finite time horizon.
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In part, he has the beliefs and objectives described in Subsections 6.4.2

- 6.4.4; however, he is also concerned about model misspecification risks.

Before he begins trading, he wishes to have a more robust understanding

of how the strategy he derives in Subsection 6.4.5 might perform. To get

this, he imagines a new plausible way that the price might evolve and tests

his strategy’s performance in this scenario. He first hypothesizes that there

might be other market participants who stumbled upon the basics of his

strategy and might be planning to use these ideas. He is then led to consider

the possibility that the actual price dynamics are as given in Section 6.5.

He studies what might unfold in Sections 6.6 - 6.7. He concludes that

since it seems like his original strategy might lead to mini-flash crashes

and devastating losses at times, he would like to reconsider his trading

plans.

In short, instead of emphasizing mathematical similarity when checking his strategy’s

performance in additional models, we could view our agent as emphasizing his human

similarity with other market participants. By doing so, he seems to test his ideas

in alternative settings which are both plausible and yield a different perspective on

his model risks (compared to the insights offered by more traditional approaches).

Observe that the idea that our agents, real or fictitious, individually solve their

optimal execution problems and are not in a classical equilibrium state is crucial

here.

The concept that strategy replication among market participants may significantly

affect the future and, hence, may bring unforeseen risks is not limited to the context

of optimal execution. For example, there is growing concern that the dramatic rise in

index investing may have unanticipated, detrimental effects on the broader economy



177

([61], [99], [29], [30]).

Also, when we consider our setup from this new viewpoint, the consistency issues

which may arise in conjunction with some of the human errors in our framework are

not worrisome (see (a) - (g) in Subsection 6.2.1). After all, our agent is deliberately

falsifying his beliefs to better discern his model risk exposure.

Even if we retain our initial finite population system view, we feel that these

concerns may not be significant. While we could directly attempt to fit our framework

into one of the modern equilibrium notions in the model misspecification literature,

there may not be a need to do so: It appears that there are simple, practically-

oriented reasons why the apparent issues might naturally come about in our setting.

First, we think of our agents as having the opportunity to witness just a single

realization of the price, meaning that each agent believes that null events (including

the price path itself) must occur. This seems to reflect the non-stationarity of mar-

kets: Models, parameters, and strategies which work quite well in one period may

fail in the next.

Second, in practice, agents do not necessarily notice all of the ways in which their

models are wrong. If they do, they may not want or be able to fix them. These

behavioral arguments seem especially valid over the short time horizons that we con-

sider and are supported by general observations from both the philosophy of science

and psychology communities ([79], [23], [118], [222], [169]). For a specific example

verifying these claims, recall the circumstances which engulfed Knight Capital on

August 1, 2012: A bug arose in a critical piece of software. It has been alleged that

the firm did not detect the glitch themselves; rather, they only became aware of it

after being notified by the New York Stock Exchange. Supposedly, it then took 30

to 45 minutes for the firm to implement corrections, leading to a $440 million loss
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and Knight Capital’s subsequent acquisition by Getco LLC ([198]).

6.3 Mini-Flash Crashes

In Section 6.3, we introduce and discuss our definition of mini-flash crashes.

Definition VI.1. We say that a mini-flash crash occurs, if the risky asset’s price

tends to either +∞ or −∞ on our time horizon.

For now, while this definition communicates our broad notion, its details are fairly

vague.

We say more about our time horizon and price in Sections 6.4 - 6.5. The former

is finite and deterministic, while the latter is a particular stochastic process.

We precisely describe the sense in which the price explodes and at what kinds

of times3 mini-flash crashes can occur in Sections 6.6 - 6.7. Roughly, we analyze

the occurrence of mini-flash crashes pathwise. In the cases that we consider, they

happen (or not) almost surely; however, their direction is random. If a mini-flash

crash unfolds, it does so at a deterministic time; yet, none of our agents have enough

information to compute this time or even know that a mini-flash crash is imminent.

We said nothing about the classification of unbounded price oscillations as well. In

the scenarios that we investigate, unbounded price oscillations occur with probability

zero (see Sections 6.6 - 6.7), but this may be an artifact of our technical choices. Such

an oscillation appears to reflect the practical duration of mini-flash crashes, and we

hope to explore this point in a future work.

Clearly, there are many reasons why mini-flash crashes would be non-existent, if

Definition VI.1 were used in practice. For instance, the SEC has instituted the “Limit

Up-Limit Down Mechanism” to temporarily suspend trading in individual securities

3We thank Shige Peng for this observation.



179

whose prices escape certain upper and lower bounds in specified short periods ([15]).

Market-wide circuit breakers might be employed as well, which temporarily halt all

trading when the S&P 500 Index declines sufficiently in a single trading day ([15]).

Our intuitive justification for this approximation is four-fold: First, though finite,

price swings during a mini-flash crash can be quite extreme and shocking (see Section

6.1 and Subsection 6.2.1). Second, in our setting, we roughly view that trading would

be suspended just before the occurrence of the event in Definition VI.1: A mini-flash

crash is more appropriately understood to be the local behavior of the price near such

a disruption. Third, since there are cases in which prices explode almost surely in

our framework, Definition VI.1 avoids seemingly more arbitrary cut-offs that might

have been necessary, if we included finite disturbances (see Sections 6.1 and 6.7).

Finally, when we view our setup from the model risk-averse single agent perspective

explained in Subsection 6.2.2, it might be reasonable to hypothesize that our agent

would consider the possibility of exploding prices, even as only a limiting case which

must be averted.

6.4 Agents

In Section 6.4, we describe our agents and their individual optimal execution prob-

lems. Important preliminary details are given in Subsection 6.4.1. We present our

agents’ models and beliefs in Subsection 6.4.2. Each agent’s admissible strategies

are characterized in Subsection 6.4.3. We discuss the agents’ objectives in Subsec-

tion 6.4.4. We prove Lemma VI.9, the main result of Section 6.4, in Subsection

6.4.5. Lemma VI.9 prescribes optimal strategies for our agents given their beliefs

and preferences. Our agents attempt to trade according to these plans on our time

horizon. When he does so, each agent believes that a mini-flash crash will occur with
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probability zero.

6.4.1 Preliminaries

We consider a population of N agents: Agent 1,. . . , Agent N . The intuition

underlying our agent’s models suggests that N should be interpreted as a large

number (see Subsection 6.4.2). Mathematically, its qualitative size does not matter

(see Lemma VI.23).

There is a special nonnegative parameter ν2
j associated to Agent j (see Subsection

6.4.2).

Definition VI.2. If ν2
j > 0, then we call Agent j an uncertain agent. If ν2

j = 0,

then we call Agent j a certain agent.

The reason for choosing these particular words will become clear in Subsection

6.4.2, and the distinction between these two types of agents will be crucial throughout

the rest of the paper. For now, we assume that there are K ∈ {0, . . . , N} uncertain

agents, namely, Agents 1 through K. A critical role is played by the value of K (see

Lemma VI.23).

All agents attempt to trade in a single risky asset over a time horizon [0, T ]. Our

arguments proceed as long as T is deterministic and finite; however, our rationale is

reasonable only when this period is short, say, no more than 1 day (see Subsection

6.4.2).

6.4.2 Models

Our agents trade continuously by optimally selecting a trading rate from a par-

ticular class of admissible strategies. To motivate our specifications of their choices

and objectives, we first define their models and beliefs.
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All trades submitted at time t are executed immediately at the price Sexct . At

each time t, every agent observes the correct value of Sexct . No agent knows the true

dynamics of the stochastic process Sexc, though.

Instead, prior to t = 0, Agent j has developed a model Sexcj,θj
for Sexc. Sexcj,θj

evolves

on (
Ωj,Fj, {Fj,t}0≤t≤T , Pj

)
, (6.1)

a filtered probability space satisfying the usual conditions.4 Every agent models Sexc

on a different probability space, despite the fact that their observations of Sexc will

be identical. Our point is that Agent j interprets his observations as a sample path

of his individual model for Sexc, which may be unrelated to the process that Agent

k uses to interpret the same data.

The space (6.1) comes equipped with Wj, an Fj,t-Wiener process under Pj. There

is also an Fj,0-measurable random variable βj, which is independent of Wj and nor-

mally distributed with mean µj and variance ν2
j under Pj.

Recalling Definition VI.2, we see that Agent j is certain if he believes that he

knows the correct value of βj at t = 0. Otherwise, he is uncertain. Regardless of

whether he is certain or uncertain in this sense, we will soon see that Agent j can

always be viewed as certain about many things, e.g, he will not change the form of

his models, objectives, or admissible strategies on [0, T ].5

Definition VI.3. Following ([21]), Agent j defines an Fj,t-adapted process Sunfj by

Sunfj,t = Sj,0 + βjt+Wj,t, t ∈ [0, T ] . (6.2)

4From a technical perspective, we will soon see that there is no need to introduce the filtration {Fj,t}. It would

be equivalent to work with
{
Funfj,t

}
(see Subsections 6.4.3 and 6.4.5). The basic observation is that Agent j believes

he can correctly reformulate his original optimal execution problem with partial information as one with complete
information. Keeping the first problem seems to help motivate our setup.

5From this perspective, one might partially connect our work on mini-flash crashes to explanations of longer term
financial bubbles based on overconfident investors ([211]).
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Sunfj,t is Agent j’s estimate of the unaffected or fundamental price of the risky asset

at time t. The drift term represents the price pressure that Agent j believes will

arise due to the trades of (other) institutional investors. Agent j approximates the

average behavior of uninformed or noise traders using the Brownian term.6

After a fashion, Agent j believes that he can compute Sunfj,t at t (see Subsection

6.4.3). Implicitly, he believes that his observations of Sunfj,t will be independent

of his trading decisions. Agent j knows which deterministic constant Sj,0 he has

selected in (6.2). Unless ν2
j = 0, he does not assume that he can determine the

realized values of βj or Wj,t. Instead, Agent j will attempt to learn the value of βj

by computing its expectation conditional on his accumulated observations as time

passes (see Subsection 6.4.5).

Intuitively, Agent j’s selection of (6.2) makes the most sense when N is large and

T is short. Notice that Agent j makes no attempt to precisely estimate the number

of other market participants, nor their individual goals or beliefs. That he believes

he cannot improve the predictive accuracy of (6.2) by doing so appears to suggest

that the population of traders is of sufficient size.7 In practice, many securities’

prices must be positive.8 Together with the fact that real drifts and volatilities are

non-constant, (6.2) only seems even potentially plausible over short periods.

We now are ready to discuss Sexcj,θj
.

Definition VI.4. Let θj,t denote Agent j’s trading rate at time t (see Subsection

6Almgren & Lorenz provide further details regarding the interpretation and limitations of (6.2) ([21]). A possible
extension of our work could replace (6.2) with one of the more recent models considered in the literature on optimal
trading problems with a learning aspect ([21], [98], [75], [113], [187], [110], [88]).

7Alternatively, one could argue that there are only a few agents, all of whom are effectively hidden from one
another; however, the securities for which our framework seems most reasonable would probably be traded by a large
population anyway.

8Certain commodities have traded at negative prices ([11]).
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6.4.3). He defines Sexcj,θj
as the Fj,t-adapted process

Sexcj,θj ,t
= Sunfj,t + ηj,per

∫ t

0

θj,s ds+
1

2
ηj,temθj,t, t ∈ [0, T ] . (6.3)

Agent j has chosen the deterministic positive constants ηj,per and ηj,tem in (6.3) prior

to time t = 0.

There are two primary rationales behind (6.3). First, Agent j could be viewed

as taking into account his own effects on the execution price via an Almgren-Chriss

reduced-form model ([20], [19], [22]). ηj,per would denote Agent j’s estimate for his

permanent price impact parameter, while he would approximate his temporary price

impact parameter with ηj,tem. There is an alternative explanation in which Agent j

believes he submits market orders to a limit order book with certain characteristics.

We present further details for both viewpoints in Section 6.5.

While Agent j can use his prior for βj, as well as his observations, to improve his

estimate for the realized value of βj, all model parameters in (6.2) and (6.3) are fixed

(see Subsection 6.4.3). He cannot change the form of these models either, e.g., by

making βj time-dependent in (6.2) or including a transient impact term in (6.3). The

idea is that T is short and, in practice, the time scale for developing an appropriate

class of models for trading some instrument is often much longer than the time scale

for revising parameters to better reflect current market conditions.

6.4.3 Admissible Strategies

Agent j selects his trading rate θj from Aj, a class of admissible strategies that

we will now define precisely.

Recall that Agent j does not observe the realizations of either βj or Wj. Hence,

it would not make sense for Agent j’s trading rate to be Fj,t-adapted. Agent j does

watch Sexc, though, which he interprets as Sexcj,θj
. Working with the filtration gener-
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ated by Sexcj,θj
is somewhat cumbersome, as Agent j believes that it depends on his

choice of trading rate. The key is to notice that when Agent j selects a continuous

trading rate adapted to
{
Funfj,t

}
, the filtration generated by Sunfj , he believes that

this filtration describes the same flow of information as his execution price observa-

tions. This is advantageous, as Agent j thinks that
{
Funfj,t

}
is independent of his

trading decisions (see Subsection 6.4.2).

Intuitively, the idea is that at each time t, Agent j observes the correct value of

Sexct . He views this value as the realization of Sexcj,θj ,t
. Using his knowledge of his

past trading rate, he determines Sunfj,t as in (6.3). Agent j thinks that these steps

can be effectively taken all at once due to the (perceived) continuity of each process

involved in the calculations.

Agent j also believes his trades suffer from transaction costs due to both tempo-

rary and permanent price impact (see (6.3)). It seems reasonable to assume that he

would never adopt a strategy that he thought would saddle him with infinite costs.

As temporary impact induces a quadratic cost, we specify that he can only choose a

strategy that satisfies

EPj

[∫ T

0

θ2
j,t dt

]
<∞. (6.4)

Costs arising from permanent impact do not depend on Agent j’s trading rate, if

his terminal inventory is deterministic. In fact, for reasons discussed in Subsection

6.4.4, we specify that Agent j’s terminal inventory must be zero, i.e., Agent j solves

an optimal liquidation problem.9

Formalizing these comments leads to the following definition.

Definition VI.5. Let Aj be the space of Funfj,t -adapted processes θj such that θj,· (ω)

9Why would Agent j produce the estimate ηj,per? After all, he believes that its value will not affect his trading
decisions. Roughly, we feel that Agent j might have such an approximation for business purposes, e.g., he may hope
to accurately forecast P&L, even if he believes some components are uncontrollable. Unbeknownst to Agent j, ηj,per
is quite important for additional reasons (see Subsection 6.7.1).
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is continuous on [0, T ] for Pj-almost every ω ∈ Ωj, (6.4) holds, and

xj +

∫ T

0

θj,t dt = 0 Pj − a.s. (6.5)

For any θj ∈ Aj, we define the process X
θj
j by

X
θj
j,t = xj +

∫ t

0

θj,s ds. (6.6)

X
θj
j is our notation for Agent j’s inventory: When he trades according to θj,

Agent j holds X
θj
j,t shares of the risky asset at time t. In particular, we could also

write (6.5) as

X
θj
j,T = 0 Pj − a.s..

In agreement with our intuition, the process X
θj
j is Funfj,t -adapted due to our con-

struction of Aj.

6.4.4 Objective Functions

Agent j would like to trade such that, on average, his realized trading revenue

will be as high as possible. He is also concerned about the various risks he might

encounter while trading and hopes to take some of these into account. Since Agent

j proxies Sexc with Sexcj,θj
, he believes that the expected revenue corresponding to

θj ∈ Aj is given by

EPj

[
−
∫ T

0

θj,t S
exc
j,θj ,t

dt

]
. (6.7)

Now Agent j must consider how to manage several risks. First, there are volatility

risks associated with delayed liquidation. Since he uses (6.2) and (6.3), he believes

that these can be quantified by

EPj

[
−κj

2

∫ T

0

(
X
θj
j,t

)2

dt

]
. (6.8)

In (6.8), Agent j selects the deterministic risk aversion parameter κj > 0 based upon

his appetite. On the other hand, Agent j presumably believes that as he observes
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the execution price’s path, he can better estimate βj’s realized value. He might

then think that he is more likely to regret earlier trades than later trades. A simple,

though admittedly ad-hoc, way that Agent j could adjust for this risk is to artificially

lower κj. Similarly, it might be possible for him to partially account for his other

risks including those arising from model misspecification with such an approach. In

fact, in a slightly different setting, Jaimungal et al. show the equivalence between

certain forms of ambiguity aversion and quadratic inventory penalties ([73]).

This discussion suggests the following objective for Agent j.

Definition VI.6. Agent j’s objective is to maximize

EPj

[
−
∫ T

0

θj,t S
exc
j,θj ,t

dt− κj
2

∫ T

0

(
X
θj
j,t

)2

dt

]
(6.9)

over θj ∈ Aj.

As mentioned in Subsection 6.4.3, (6.9) motivates our requirement that Agent

j must liquidate by T (see (6.5)). Although the permanent impact term in (6.9)

disappears, regardless of the deterministic value of X
θj
j,T , non-zero values of X

θj
j,T

could perversely incentivize Agent j via (6.8). For example, if Agent j started with

a large inventory and needed a larger terminal inventory, he might be inclined to pay

unnecessary round-trip (sell early/buy later) costs induced by temporary impact.

In Lemma VI.9’s proof, we see that (6.9) can be equivalently formulated as the

following complete information problem: Maximize

EPj

[∫ T

0

X
θj
j,tE

Pj
[
βj
∣∣Funfj,t

]
dt− ηj,tem

2

∫ T

0

θ2
j,t dt−

κj
2

∫ T

0

(
X
θj
j,t

)2

dt

]
over θj ∈ Aj. It can also be thought of as an optimal tracking problem, in which

Agent j must minimize

EPj

1

2

∫ T

0

Xθj
j,t −

EPj

[
βj
∣∣Funfj,t

]
κj

2

dt+
ηj,tem
2κj

∫ T

0

θ2
j,t dt

 .
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Variants of both the former and the latter have been previously investigated, although

not, to the best of our knowledge, with our intentions ([113], [34]).

6.4.5 Results

Before proving Lemma VI.9, we introduce the following notation. It will be useful

throughout the paper.

Definition VI.7. We define τj (·) by

τj (t) ,
√

κj
ηj,tem

(T − t) , t ∈ [0, T ] .

Remark VI.8. For our purposes, the key point in Definition VI.7 is that τj strictly

decreases to 0 as t ↑ T .

Lemma VI.9. (6.9) has a unique10 solution θ?j ∈ Aj. When ω ∈ Ωj is chosen such

that Wj,· (ω) is continuous on [0, T ], X
θ?j
j (ω) satisfies the linear ODE

θ?j,t (ω) = −
√

κj
ηj,tem

coth (τj (t))X
θ?j
j,t (ω)

+
tanh (τj (t) /2)

[
µj + ν2

j

(
Sunfj,t (ω)− Sj,0

)]
√
ηj,temκj

(
1 + ν2

j t
) , t ∈ (0, T )

X
θ?j
j,0 (ω) = xj. (6.10)

Remark VI.10. In conjunction with Subsections 6.4.2 - 6.4.3, Lemma VI.9 implies

that Agent j believes that a mini-flash crash is a null event. More precisely, under

his setup, Sexcj,θj
, hence Sexc, will remain finite on [0, T ] Pj-a.s. Of course, he believes

that this will be true of X
θ?j
j and θ?j as well.

Remark VI.11. Agent j believes that (6.10) characterizes his optimal trading rate

almost surely. Therefore, it seems reasonable to view that he would always attempt

to implement this strategy: He thinks it is nearly impossible for this approach to be

flawed, after all.
10Here, uniqueness holds up to dPj ⊗ dt-a.s. equality on Ωj × [0, T ].
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Remark VI.12. The first term in (6.10) arises from our constraint that Agent j must

liquidate by the terminal time (see (6.5)). In fact, the weighting factor

−
√

κj
ηj,tem

coth (τj (t))

tends to −∞ as t ↑ T . Intuitively, the reason that Agent j believes that X
θ?j
j,t and θ?j,t

remain finite as t ↑ T is that X
θ?j
j,t tends very rapidly to zero.

Agent j thinks that he learns about βj’s realized value over time, which is captured

by the second term in (6.10) since

EPj
[
βj
∣∣Funfj,t

]
=
µj + ν2

j

(
Sunfj,t − Sj,0

)
1 + ν2

j t
Pj − a.s. (6.11)

([162]). The factor

tanh (τj (t) /2)
√
ηj,temκj

is bounded by 1/
√
ηj,temκj and tends to zero as t ↑ T .

The second term may either dampen or amplify the effects of the first. Agent j

believes that the weighting factors reflect that his need to liquidate must eventually

overwhelm his desire to profit by trading in the direction of the risky asset’s drift.

Remark VI.13. As anticipated, Agent j’s permanent impact parameter estimate ηj,per

is absent in (6.10) (see Subsection 6.4.3).

Remark VI.14. Lemma VI.9’s proof has five steps.

First, we introduce an auxiliary problem in which Agent j can select a trading rate

from a larger class of admissible strategies. Our original formulation did not consider

these, as they may not be aligned with the intuition underlying our framework. For

instance, some of them suggest that Agent j could peak into the future or that he

might knowingly select a trading rate that would cause Sexcj,θj
to explode.
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We then show that Agent j does not believe that he can benefit from the auxiliary

problem’s new informational structure. This part of the argument uses (6.11), as well

as the Vitali convergence theorem and uniform integrability.

The third step is to find a suitable complete information equivalent for Agent j’s

auxiliary problem. We have effectively discussed this in Subsection 6.4.4. The idea

is to use integration by parts and an innovation process.

Next, we use a result from Bank et al. to determine the unique solution to our

auxiliary problem ([34]). The introduction of our auxiliary problem was motivated

by this step. Admittedly, this means we use a tool which seems to be far more

powerful than our problem demands. For instance, the result of Bank et al. applies

to a broad class of optimal tracking problems with a non-Markovian target, while

(6.11) suggests that we track a Markovian one (see Subsection 6.4.4). We still adopt

this approach, as it may allow us to extend our work in the future.

We conclude by demonstrating that the trading rate identified in the previous

step is actually in our original set of admissible strategies. Much of the work to

prove that the trading rate is adapted to
{
Funfj,t

}
comes from our second step, while

the remaining ideas are taken care of by Bank et al. ([34]).

Proof. See Subsection 6.8.1.

Corollary VI.15. If ν2
j = 0, then X

θ?j
j does not depend on Sunfj . In particular, it is

deterministic and satisfies the linear ODE

θ?j,t = −
√

κj
ηj,tem

coth (τj (t))X
θ?j
j,t +

µj tanh (τj (t) /2)
√
ηj,temκj

, t ∈ (0, T )

X
θ?j
j,0 = xj. (6.12)

Remark VI.16. Corollary VI.15 confirms that there are significant differences between

our certain and uncertain agents, as expected: If Agent j feels completely certain of
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βj’s realized value, he would not glean profitable information and modify his trades

based upon his observations of the execution price (see Subsections 6.4.3 - 6.4.4).

Mathematically, it is also especially evident from (6.37) and (6.38).

Proof. This is immediate from Lemma VI.9.

6.5 Execution Price

In Section 6.5, we specify how Sexc actually evolves. While each agent observes the

same realized path of this process, in general, no agent knows the correct dynamics.11

An agent’s trading decisions are entirely determined by his beliefs, preferences, and

observations of a single realized path of Sexc (see Lemma VI.9).

Let (
Ω̃, F̃ ,

{
F̃t
}

0≤t≤T
, P̃

)
be a filtered probability space satisfying the usual conditions. The space is equipped

with an F̃t-Wiener process under P̃ , which we denote by W̃ . We also have the

following deterministic real constants:

β̃, S0, η̃1,per, . . . , η̃N,per, and η̃1,tem, . . . , η̃N,tem.

β̃ can be arbitrary; however, the remaining constants are strictly positive.

Definition VI.17. The true execution price Sexc under P̃ is the F̃t-adapted process

Sexct = S0 + β̃t+
N∑
i=1

η̃i,per

(
X
θ?i
i,t − xi

)
+

1

2

N∑
i=1

η̃i,temθ
?
i,t + W̃t, t ∈ [0, T ] . (6.13)

(6.13) can be viewed as a multi-agent extension of the Almgren-Chriss model

([20], [19], [22]). Models of this form, particularly when the η̃j,tem’s (η̃j,per’s) are all

identical, have been applied in the context of predatory trading ([69]).

11There is a single trivial case where this is not true. If N = 1, β̃ = β, ν21 = 0, η̃1,tem = η1,tem, and η̃1,per = η1,per,
our lone agent’s model would be exactly right.
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From this perspective, η̃j,per and η̃j,tem are the correct values of Agent j’s perma-

nent and temporary price impact parameters, respectively. We allow these quantities

to have arbitrary relationships to Agent j’s corresponding estimates ηj,per and ηj,tem.

For instance, Agent j might underestimate his permanent impact (ηj,per < η̃j,per)

but perfectly estimate his temporary impact (ηj,tem = η̃j,tem). Similarly, Agent j’s

prior βj for the correct drift β̃ may be accurate or severely mistaken. Comparing

our descriptions of Sexcj,θj
in (6.3) and Sexc in (6.13), we see that Agent j proxies each

term in (6.13) as follows:

ηj,per

(
X
θ?j
j,t − xj

)
←→ η̃j,per

(
X
θ?j
j,t − xj

)
1

2
ηj,temθ

?
j,t ←→ 1

2
η̃j,temθ

?
j,t

Sj,0 + βjt+Wj,t ←→ S0 + β̃t+
∑
i 6=j

η̃i,per

(
X
θ?i
i,t − xi

)
+

1

2

∑
i 6=j

η̃i,temθ
?
i,t + W̃t.

Heuristically, we could also interpret (6.13) through the lens of a single order

book. This connection was observed by Kallsen & Muhle-Karbe ([144]). The process

S0 + β̃t+ W̃t

would be viewed as the fundamental price, while the sum of the fundamental price

and the permanent impact terms

S0 + β̃t+ W̃t +
N∑
i=1

η̃i,per

(
X
θ?i
i,t − xi

)
would be the reference price. We would set the η̃j,tem’s to a single value, and do

the same for the η̃j,per’s. Our agents would submit market orders, and only the

net agent order flow would be executed in the book (remaining orders would be

matched together). All agents would receive the same average execution price at

each time. The bid-ask spread would be infinitesimally small, while the book would

be infinitely resilient and block-shaped with height 1/η̃j,tem. That is, agents would
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trade in an Obizhaeva-Wang book which instantly recovers to the reference price

after each execution (no transient impact) ([178]) .

6.6 General Results

When our agents implement the strategies that they believe are optimal (see

Lemma VI.9) but Sexc has the dynamics in (6.13), what happens? The goal of

Section 6.6 is to offer some general answers to this question.

To simplify our presentation, we begin by introducing and analyzing additional

notation (see Definition VI.19 and Lemma VI.21). We find that our agents’ invento-

ries and trading rates evolve according to a particular ODE system with stochastic

coefficients (see Lemma VI.23). Under certain conditions, the system can have a

singular point (see Lemma VI.24). For convenience, we study what unfolds when

this singular point is of the first kind (see Lemma VI.27). We also examine the case

in which there is no singular point (Lemma VI.28). Due to tractability issues, in

order to determine whether or not mini-flash crashes arise, we consider a particu-

lar, though broad, class of examples (see Remark VI.30). While we present these

findings in Section 6.7, we provide a high-level summary of them in Theorem VI.31.

In particular, we see that in some cases, mini-flash crashes occur P̃ -a.s. at the first

singular point of our system. Again, our agents still believe that a mini-flash crash

is a null event.

First, observe that our assumptions in Section 6.5 do not affect our certain agents’

trading decisions (see Corollary VI.15). It remains to characterize our uncertain

agents’ strategies.

We will have an even mix of deterministic and stochastic maps. In what follows,

we always explicitly indicate ω-dependence to distinguish between the two. Our
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equations are solved pathwise, so we do not encounter probabilistic concerns.

Notation VI.18. Fix ω ∈ Ω̃ such that W̃· (ω) has a continuous path.

Definition VI.19. Define the maps

Φi : [0, T ] −→ R

A : [0, T ] −→ MK (R)

B : [0, T ) −→ MK (R)

C (·, ω) : [0, T ] −→ RK

by

Φi (t) ,
tanh (τi (t) /2) ν2

i√
ηi,temκi (1 + ν2

i t)

Aik (t) ,


1− 1

2
(η̃i,tem − ηi,tem) Φi (t) if i = k

−1

2
η̃k,temΦi (t) if i 6= k

Bik (t) ,


(η̃i,per − ηi,per) Φi (t)−

√
κi

ηi,tem
coth (τi (t)) if i = k

η̃k,perΦi (t) if i 6= k

Ci (t, ω) , Φi (t)

µiν2
i

+ (S0 − Si,0) + β̃t−
∑
k≤K
k 6=i

η̃k,perxk − xi (η̃i,per − ηi,per)

+
∑
k>K

η̃k,per

(
X
θ?k
k,t − xk

)
+

1

2

∑
k>K

η̃k,temθ
?
k,t + W̃t (ω)

]
.

Here, i ∈ {1, . . . , K}.

Remark VI.20. Observe that we can now write the dynamics in (6.10) as

θ?j,t (ω) = −
√

κj
ηj,tem

coth (τj (t))X
θ?j
j,t (ω) + Φj (t)

[
µj
ν2
j

+
(
Sunfj,t (ω)− Sj,0

)]
when Agent j is uncertain.

We frequently reference various easy properties of the functions in Definition

VI.19. We collect these below for convenience.
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Lemma VI.21. Fix j ∈ {1, . . . , K}. We have the following:

i) Φj is a strictly decreasing nonnegative function on [0, T ] with Φj (T ) = 0.

ii) The entries of A are analytic on [0, T ] and A (T ) = IK.

iii) If detA has a root on [0, T ], we can find the smallest one which we denote by

te. In this case, te < T and the zero of detA at te is of finite multiplicity.

iv) The entries of B are analytic on [0, T ) but

lim
t↑T

Bjj (t) = −∞.

v) C (·, ω)’s entries are continuous on [0, T ].

Proof. Parts (i) and (ii) are clear. After recalling that the zeros of an analytic

function are isolated and of finite multiplicity, we get (iii) from (ii). The singularity

in Bjj at T arises from the coth term, yielding (iv). Corollary VI.15 and our choice

of ω give (v).

Definition VI.22. When detA has a root on [0, T ], we let te denote the smallest

one (see Lemma VI.21).

Up to some deterministic time, the uncertain agents’ inventories evolve according

to a particular first order linear ODE system when ω is fixed. Lemma VI.23 makes

this precise when this time is positive. We leave the investigation and interpretation

of the case when it is zero for future work. Also, note that our agents effectively

assume that this time is T almost surely.

Lemma VI.23. Suppose that detA has a root on [0, T ]. If te > 0, then Sexc (ω), the

X
θ?j
j (ω)’s and the θ?j (ω)’s are all uniquely defined and continuous on [0, te). More-
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over, letting the u-superscript signify restriction to the uncertain agents,12 the un-

certain agents’ strategies are characterized by

A (t) θu,?t (ω) = B (t)Xu,θ?

t (ω) + C (t, ω) , t ∈ (0, te)

Xu,θ?

0 (ω) = xu. (6.14)

When detA does not have a root on [0, T ], the same statements hold after replacing

te with T .

Proof. See Subsection 6.9.1.

Lemma VI.23 does not address the behavior of our uncertain agents’ inventories

and trading rates as t ↑ te or t ↑ T . The difficulties are that A is non-invertible at

te, while B’s entries explode at T (see Lemma VI.21).

The approach for resolving these issues is well-established (see Chapter 6 of [87]).

We sketch the key points when detA has a root on [0, T ] and te > 0. Analyzing the

effects of B’s explosion at T is similar (see Lemma VI.28).

We begin by considering the homogeneous equation corresponding to (6.14):

A (t) Ẋu
t (ω) = B (t)Xu

t (ω) , t ∈ (0, te)

Xu
0 (ω) = xu. (6.15)

We change notation to emphasize that (6.15) no longer describes the uncertain

agents’ optimal strategies. We next write (6.15) in a more convenient form.

Lemma VI.24. Suppose that detA has a root on [0, T ] and te > 0. Near te, the

solution of (6.15) satisfies

(t− te)m+1 Ẋu
t (ω) = D (t)Xu

t (ω) . (6.16)

12For instance, θu,?t (ω) denotes the first K-entries of θ?t (ω).



196

In (6.16), m is a nonnegative integer such that the multiplicity of the zero of detA

at te is (m+ 1). D is a particular analytic map for which D (te) has rank 0 or 1 (see

(6.47)).

Proof. See Subsection 6.9.2.

Definition VI.25. If detA has a root on [0, T ] and te > 0, we let m, D, and f be

defined as in Lemma VI.24’s proof (see (6.46) and (6.47)). Also, D (te) has at most

one non-zero eigenvalue (see Lemma VI.24’s proof), which we denote by λ.

Remark VI.26. Unless D (te) = 0, D (te) has rank 1 (see Lemma VI.24’s proof).

Hence, we can find v, v̂ ∈ RK such that

vv̂> = D (te) and v̂>v = λ.

Moreover, v is an eigenvector of D (te) corresponding to λ. While v and v̂ are not

unique, algorithms are available to compute an example of such a pair ([200]). In

future work, we may use this decomposition to investigate the occurrence of mini-

flash crashes in broader cases than those considered in Section 6.7.

Suppose that D (te) 6= 0. Since te < T , the coefficients of (6.15) are analytic in a

neighborhood of te (see Lemma VI.21). It follows that (6.15) has a singular point of

the first kind at te when m = 0 in Lemma VI.24 (see Chapter 6 of ([87])). Otherwise,

the singular point is of the second kind.13 In the former case, the fundamental

solution of (6.15) near te is the product of a certain analytic function with a matrix

exponential.

The analysis of solution behavior when there is a singular point of the second

kind at te is significantly more difficult. For instance, while we may be able to find a

formal series solution for (6.15) near te, it may converge at just one point.14 We do
13We adopt the nomenclature from Coddington & Carlson ([87]); however, other sources refer to such points as

regular and irregular singular points, respectively ([137]). There are nonequivalent definitions of these terms too.
14See the books by Wasow ([233]) and Ilyashenko & Yakovenko ([137]) for detailed discussions on these issues.
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not consider scenarios with such singularities in the present work, as our examples

in Section 6.7 do not exhibit them (see Lemma VI.34).

As soon as we have the fundamental solution near te, we use variation of pa-

rameters to solve (6.14). This gives our uncertain agents’ optimal inventories. We

immediately get their optimal trading rates by differentiating and the corresponding

execution price by plugging all agents’ strategies into (6.13).

This discussion is made precise in the next result.

Lemma VI.27. Suppose that detA has a root on [0, T ], te > 0, and m = 0. If

λ 6∈ Z,15 then for some small ρ > 0,

Xu,θ?

t (ω) = P (t)

[
K−1∑
j=1

(
yj (ω)−

∫ t

te−ρ

Fj (s, ω)

|s− te|
ds

)
vj

+ |t− te|λ
(
yK (ω)−

∫ t

te−ρ

FK (s, ω)

|s− te|1+λ
ds

)
vK

]
(6.17)

for t ∈ (te − ρ, te). Here,

• {v1, . . . , vK} is an eigenbasis for D (te) (vK corresponds to λ);

• P is a (non-singular-)matrix-valued analytic function on [te − ρ, te] such that

P (te) = IK (see (6.48));

• {y1 (ω) , . . . , yK (ω)} are constants (see (6.51));

• and {F1 (·, ω) , . . . , FK (·, ω)} are continuous real-valued functions on [te − ρ, te]

(see (6.51)).

15In Section 6.7, we can always slightly perturb our parameters, if necessary, to ensure that λ 6∈ Z (see Lemma
VI.37).

Generally, the λ ∈ Z case may or may not be more difficult to avoid. We leave this point for future work. In
principle, there could be three additional scenarios to consider: D (te) = 0, D (te) is a non-zero nilpotent matrix,
and λ 6= 0.

When D (te) = 0, the matrix exponential in the fundamental solution of (6.15) can be dropped (see Sections
2.3 and 5.6 of [87]). If D (te) is a non-zero nilpotent matrix, the series representation of the matrix exponential
terminates after (K − 1) terms, maybe fewer, as the degree of D (te) is no higher than K.

In the last case, the argument is less transparent. A crucial recursion used in the determination of P is no longer
valid, necessitating an intricate change of variables (see Chapter 6 of [87]). Consequently, the fundamental solution
of (6.15) is that in (6.48) but with D (te) replaced by a more opaque matrix, which significantly complicates further
analysis.



198

We get θu,? (ω) and Sexc (ω) on (te − ρ, te) by differentiating (6.17) and by substitut-

ing Xθ? (ω) and θ? (ω) into (6.13), respectively.16

Proof. See Subsection 6.9.3.

Lemma VI.28. Suppose that detA does not have a root on [0, T ]. Then Sexc (ω), the

X
θ?j
j (ω)’s and the θ?j (ω)’s are all uniquely defined and continuous on [0, T ]. Moreover,

lim
t↑T

Xθ?

t (ω) = 0. (6.18)

Remark VI.29. Each agent believes that his terminal inventory will be zero almost

surely (see (6.5)). Lemma VI.28 specifies conditions under which the agents are

effectively correct in this regard.

Proof. See Subsection 6.9.4.

Remark VI.30. For general parameter choices, using Lemma VI.27 to investigate the

occurrence of mini-flash crashes may be difficult. Here are the key challenges:

a) Transparent conditions governing the existence of a root of detA on [0, T ] are

not immediate.17

b) It is not yet obvious when, if ever, the multiplicity of detA’s root at te will be

1.

c) It is unclear that we can ensure that λ 6∈ Z, even after a perturbation of our

parameters.

d) More analysis of (6.17) is needed to characterize potential explosions in the

coordinates of Xu,θ?

t and θu,?t as t ↑ te.
16Recall that the certain agents’ inventories and trading rates were found in Corollary VI.15.
17Once we have such conditions, easily checking whether or not te > 0 would be presumably trivial but could be

troublesome as well.
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e) Determining whether or not Sexc explodes requires a more thorough study of

(6.13) and (6.17).

Resolving (a) and (b) is rather intractable, unless K is small or our uncertain

agents are fairly similar (see Definition VI.19). Completing the studies suggested by

(c) and (d) requires further knowledge of λ and the eigenbasis {v1, . . . , vK} of D (te).

Even then, the yj’s and the Fj’s in (6.51) may be quite opaque and pose obstacles.

These observations further restrict the size of K or the differences among our agents.

After all of these restrictions, finishing (e) may still not be straightforward, as in

principle, the coordinates of Xu,θ?

t or θu,?t might explode at the same rates but in

opposite directions.

Hence, we investigate mini-flash crashes only in the context of a particularly

tractable class of examples (see Section 6.7). We offer a rough summary of our

mathematical findings in Theorem VI.31; however, the details and practical connec-

tions to mini-flash crashes are in Section 6.7.

We leave the study of other scenarios for future work. For instance, it would be

interesting to know whether or not we could observe unbounded price oscillations

near te or mini-flash crashes in the absence of synchronized trading (see Section 6.3).

Theorem VI.31. When our agents are as characterized in Section 6.4 but the risky

asset’s price evolves as in Section 6.5, at least three cases emerge (see Lemmas VI.28,

VI.34, VI.39, and VI.42 for precise statements): There are broad sufficient conditions

on our deterministic parameters such that

i) Sexc, the X
θ?j
j ’s and the θ?j ’s are all uniquely defined and continuous on [0, T ]

and

lim
t↑T

Xθ?

t = 0 P̃ − a.s.;
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ii) Sexc, the X
u,θ?j
j ’s, and the θu,?j ’s explode as t ↑ te P̃ -a.s.;

iii) or all coordinates of Xθ? have a finite limit but Sexc and the θu,?j ’s explode as

t ↑ te P̃ -a.s.

In scenarios (ii) and (iii), all explosions occur in the same random direction: +∞

or −∞. The P̃ -probability of infinite spikes (crashes) tends to either 0 or 1 as t ↑ te;

however, it is positive for any fixed t < te.

While our conditions are deterministic, no agent knows the critical parameters in

these calculations. In particular, our agents believe that a mini-flash crash is a null

event.

Proof. The result follows immediately from Lemmas VI.28, VI.34, VI.37, VI.39, and

VI.42.

6.7 Semi-Symmetric Uncertain Agents

In Section 6.7, we thoroughly analyze a broad but tractable class of scenarios.

This will enable us to both theoretically and numerically investigate the occurrence

of mini-flash crashes.

Based on Remark VI.30, we specify that our uncertain agents’ parameters are

identical, except for their initial inventories xj, means of their initial drift priors µj,

and their initial estimates for the fundamental price Sj,0. Such agents are nearly

symmetric, so we call them semi-symmetric.

Definition VI.32. We say that our uncertain agents are semi-symmetric when there

are positive constants

η̃tem, ηtem, η̃per, ηper, ν2, and κ
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such that for each i ∈ {1, . . . , K}

η̃i,tem = η̃tem, ηi,tem = ηtem, η̃per = η̃i,per,

ηi,per = ηper, ν2
i = ν2, κi = κ.

Definition VI.32 implies that the diagonal entries of A are identical, as are the off-

diagonal entries. The same is true for B (see Definition VI.19). Such a simplification

considerably reduces the difficulties in computing detA, λ, and an eigenbasis for

D (te) (see (6.61) and Lemma VI.37). The xj’s, µj’s, and Sj,0’s only enter in C,

which also has a nice structure (see (6.71)).

For the rest of Section 6.7, we assume that our uncertain agents are semi-symmetric

but place no restrictions on the certain agents. Our theoretical results are contained

in Subsection 6.7.1. In Subsections 6.7.2 - 6.7.4, we provide figures for key conclu-

sions on mini-flash crashes (see Subsection 6.2.1). With these plots, our goal is to

highlight the features of our model, not to recreate any specific historical scenario.

6.7.1 Results

Notation VI.33. If our uncertain agents are semi-symmetric, the τj’s and the Φj’s

are the same for j ≤ K (see Definitions VI.7, VI.19, and VI.32). We denote these

functions by τ and Φ, respectively.

Lemma VI.34. Suppose that the uncertain agents are semi-symmetric. Then detA

has a root on [0, T ] and te > 0 if and only if

(Kη̃tem − ηtem) Φ (0) > 2. (6.19)

In this case, the zero of detA (·) at te is of multiplicity 1.

Remark VI.35. Definitions VI.7 and VI.19 enable us to re-write (6.19) as

ν2 (Kη̃tem − ηtem) tanh

(
T

2

√
κ

ηtem

)
√
ηtemκ

> 2. (6.20)
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By varying our parameters in (6.20) one at a time, (6.19) can be interpreted as

discussed in Subsection 6.2.1:

i) (6.19) holds when ν2 is high. Since ν2 is the variance of the uncertain agents’

drift priors, we are led to (f) in Subsection 6.2.1.

ii) (6.19) holds when (Kη̃tem − ηtem) is high. A given uncertain agent believes

that his own temporary impact parameter is ηtem, while the actual collective

temporary impact parameter induced by the uncertain agents is Kη̃tem. Then

(Kη̃tem − ηtem) is large whenever each uncertain agent severely underestimates

his own temporary impact or there are many uncertain agents, giving (g) in

Subsection 6.2.1.

iii) (6.19) holds when T is high. Since [0, T ] is our time horizon, we get (d) in

Subsection 6.2.1. Note that T must be small enough for our agents’ modeling

rationale to hold (see Section 6.4); however, T need not be too large here, as

the value of tanh reaches 95% of its supremum on [0,∞) for arguments greater

than 1.8.

iv) (6.19) holds when κ is low. We conclude (e) in Subsection 6.2.1, as κ measures

our uncertain agents’ aversion to volatility risks (see Subsection 6.4.4). Observe

that both the numerator and the denominator of the LHS in (6.19) roughly look

like
√
κ for small κ; however, when κ is large, the whole LHS looks like 1/

√
κ

since tanh is bounded by 1 on [0,∞).

Proof. See Subsection 6.10.1.

Remark VI.36. As observed in (6.62), when detA has a root on [0, T ], we have

Φ (te) =
2

Kη̃tem − ηtem
. (6.21)
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No agent would think to compute te since they all believe that a mini-flash crash

is a null event; however, (6.21) makes it especially clear that they could not do so

anyway.

Lemma VI.37. Suppose that the uncertain agents are semi-symmetric and (6.19)

holds. Then

λ =

2

[√
κ

ηtem
coth (τ (te))− 2

(
Kη̃per − ηper
Kη̃tem − ηtem

)]
(Kη̃tem − ηtem) Φ̇ (te)

(6.22)

and the corresponding eigenvector is vK = [1, . . . , 1]>. By slightly perturbing η̃per

and/or ηper, if necessary, we can ensure that λ 6∈ Z. In this case, D (te) is diagonal-

izable and the remaining vectors in an eigenbasis for D (te) (all with the eigenvalue

zero) are

v1 = [−1, 1, 0, . . . , 0]> , . . . , vK−1 = [−1, 0, . . . , 0, 1]> .

Remark VI.38. With the exceptions of η̃per and ηper, all parameters in (6.22) deter-

mine whether or not detA has a root on [0, T ] (see Lemma VI.34). They also fix the

value of te (see Remark VI.36). Hence, to interpret (6.22), we only consider the roles

of η̃per and ηper. These parameters enter (6.22) via

Kη̃per − ηper
Kη̃tem − ηtem

. (6.23)

Intuitively, (6.23) can be viewed as the ratio of two terms: The numerator mea-

sures how far a given uncertain agent’s estimate of his own permanent impact is

from the uncertain agents’ actual collective permanent impact. The denominator,

which must be positive due to Lemma VI.34, is the corresponding measure for the

temporary impact. One might call (6.23) a mistake ratio.

Since Φ̇ (te) < 0 by Lemma VI.21, λ is positive only when (6.23) is high enough.

We have λ < 0 when the uncertain agents’ total permanent impact and a single
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uncertain agent’s’ estimate of his own permanent impact are too close or when his

estimate exceeds the cumulative permanent impact. More precisely,

{λ > 0} ⇐⇒
{

1

2

√
κ

ηtem
coth (τ (te)) (Kη̃tem − ηtem) < Kη̃per − ηper

}
{λ < 0} ⇐⇒

{
1

2

√
κ

ηtem
coth (τ (te)) (Kη̃tem − ηtem) > Kη̃per − ηper

}
. (6.24)

Whether a mini-flash crash is accompanied by high or low trading volumes is effec-

tively determined by which inequality in (6.24) holds (see Lemmas VI.39 and VI.42

and Subsections 6.2.1, 6.7.3, and 6.7.4).

Proof. See Subsection 6.10.2.

Lemma VI.39. Suppose that the uncertain agents are semi-symmetric and (6.19)

holds. Assume that λ 6∈ Z and λ < 0 (see Lemma VI.37). Let ρ, yK (ω), and FK (·, ω)

be defined as in Lemma VI.27. Then{
yK (ω) > lim

t↑te

∫ t

te−ρ

FK (s, ω)

|s− te|1+λ
ds

}
(6.25)

=⇒
{

lim
t↑te

Xu,θ?

t (ω) = lim
t↑te

θu,?t (ω) = [+∞, . . . ,+∞]> , lim
t↑te

Sexct (ω) = +∞
}

and{
yK (ω) < lim

t↑te

∫ t

te−ρ

FK (s, ω)

|s− te|1+λ
ds

}
(6.26)

=⇒
{

lim
t↑te

Xu,θ?

t (ω) = lim
t↑te

θu,?t (ω) = [−∞, . . . ,−∞]> , lim
t↑te

Sexct (ω) = −∞
}
.

Moreover,

i) The integral limits in (6.25) and (6.26) exist and are finite.

ii) Either (6.25) or (6.26) holds P̃ -a.s.
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iii) At te−ρ, the events (6.25) and (6.26) both have positive P̃ -probability; however,

the P̃ -probability of one event tends to 1 (while the other tends to 0) if we let

ρ ↓ 0.

Remark VI.40. Although we fixed ω in Notation VI.18, by abuse, we view it as

varying for our probabilistic statements in Lemmas VI.39 and VI.42.

Remark VI.41. Since P (te) = IK (see Lemma VI.27), (6.51) and Lemma VI.37 imply

that yK (ω) will be large and positive when the uncertain agents hold significant,

similar long positions. yK (ω) will be of high magnitude but negative, if the uncertain

agents carry substantial, similarly-sized short positions. Hence, a spike in Sexc (ω) is

more likely when the uncertain agents are synchronized aggressive buyers, while the

odds of a collapse improve when they are synchronized heavy sellers. These effects

play the deciding role as t ↑ te, as the integral limits in (6.25) and (6.26) are finite.

Still, due to how we can decompose FK in our case (see (6.74)), large fluctuations

in the fundamental price can make the mini-flash crash’s direction unclear until just

before te (see Figure 6.9).

Proof. See Subsection 6.10.3.

Lemma VI.42. Suppose that the uncertain agents are semi-symmetric and (6.19)

holds. Assume that λ 6∈ Z and λ > 0 (see Lemma VI.37). Then P̃ -a.s.,

lim
t↑te

Xθ?

t (ω)

exists in RN . If any coordinates of θu,?t (ω) explode, then Sexct (ω) and all coordinates

of θu,?t (ω) explode in the same direction. For instance, when λ > 1,{
lim
t↑te

[
|t− te|λ−1

∫ t

te−ρ

W̃s (ω)− W̃t (ω)

|s− te|1+λ
ds

]
= +∞

}
(6.27)

=⇒
{

lim
t↑te

θu,?t (ω) = [+∞, . . . ,+∞]> , lim
t↑te

Sexct (ω) = +∞
}
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and {
lim
t↑te

[
|t− te|λ−1

∫ t

te−ρ

W̃s (ω)− W̃t (ω)

|s− te|1+λ
ds

]
= −∞

}
(6.28)

=⇒
{

lim
t↑te

θu,?t (ω) = [−∞, . . . ,−∞]> , lim
t↑te

Sexct (ω) = −∞
}
.

Moreover,

i) Either (6.27) or (6.28) holds P̃ -a.s.

ii) At te−ρ, the events (6.27) and (6.28) both have positive P̃ -probability; however,

the P̃ -probability of one event tends to 1 (while the other tends to 0) if we let

ρ ↓ 0.

Remark VI.43. We make no rigorous statement regarding the λ ∈ (0, 1) case. Most

of Lemma VI.42’s proof would still be valid (see Subsection 6.10.3); however, the

final estimates are especially convenient when λ > 1 (see (6.85) - (6.89)). The over-

arching purpose of Lemma VI.42 is only to illustrate that mini-flash crashes can

occur in low trading volume environments (see Subsection 6.2.1). Nevertheless, we

suspect that mini-flash crashes might unfold when λ ∈ (0, 1), e.g., see Subsection

6.7.3 and (6.85) - (6.89).

Proof. See Subsection 6.10.3.

6.7.2 Example 1: No mini-flash crash

Our mini-flash crashes do not always occur (see Lemmas VI.28 and VI.34). In

Subsection 6.7.2, we illustrate this by numerically simulating a scenario in which

detA has no root on [0, T ].

By Lemma VI.34 and (6.61), we know that detA is non-vanishing on [0, T ] if and

only if

(Kη̃tem − ηtem) Φ (0) < 2. (6.29)
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One selection of parameters for which (6.29) is satisfied is

N = 3, K = 2, T = 1, S0 = 100,

β̃ = 1, η̃tem = 1, ηtem = 0.75, η̃per = 1,

ηper = 1, ν2 = 2, κ = 5, x1 = 2,

x2 = −2, µ1 = 15, µ2 = −10, S1,0 = 100,

S2,0 = 100, η̃3,tem = 1, η3,tem = 1, η̃3,per = 1,

µ3 = −3, ν2
3 = 2, κ3 = 5, x3 = 2.

(6.30)

In fact, the LHS of (6.29) then equals 1.1095. Observe that there is no need to

specify η3,per and S3,0 as they are irrelevant (see Corollary VI.15, Definition VI.19,

and Lemma VI.23). Again, our purposes are only illustrative here, and we leave the

reproduction of a specific practically meaningful scenario for a future work.

Since K = 2 and N = 3, we have two uncertain agents and one certain agent

in the coming plots. We label the corresponding curves with U1, U2, and C1. For

example, the label U1 will signify a quantity for Agent 1, the first uncertain agent.

In Figures 6.1 and 6.2, we plot inventories and trading rates. The execution price is

depicted in Figure 6.3.

The diagrams exhibit all of the important qualities that we expect based upon

our theoretical results. Here are a few key features:

i) All agents liquidate their positions by the terminal time T (see (6.18) and Figure

6.1).

ii) Sexc (ω), the X
θ?j
j (ω)’s and the θ?j (ω)’s are all continuous on [0, T ] (see Lemma

VI.28 and Figures 6.1 - 6.3).

iii) The uncertain agents’ trading rates appear to exhibit a Brownian component

(see Lemma VI.9 and Figure 6.2).
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Figure 6.1: Depiction of the agents’ inventories in Subsection 6.7.2.
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Figure 6.2: Depiction of the agents’ trading rates in Subsection 6.7.2.

iv) The certain agent’s trading rate appears to be smooth on [0, T ] (see Corollary

VI.15 and Figure 6.2).

v) The agents need not either strictly buy or strictly sell throughout [0, T ] (see

Subsection 6.4.3, Lemma VI.9 and Figure 6.2).

vi) Even so, the agents may decide to strictly buy or strictly sell throughout [0, T ]

(see Subsection 6.4.3, Lemma VI.9 and Figure 6.2).

vii) The uncertain agents’ trading rates do not appear to synchronize (see Figure

6.2).
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Figure 6.3: Depiction of the execution price in Subsection 6.7.2.
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Figure 6.4: Depiction of the agents’ inventories in Subsection 6.7.3.
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6.7.3 Example 2: A mini-flash crash with low trading volume

Our mini-flash crashes can be accompanied by low trading volumes (see Lemma

VI.42). In Subsection 6.7.3, we visualize this by studying a concrete scenario in which

detA has a root on [0, T ]; te > 0; the zero of detA at te is of multiplicity 1; λ 6∈ Z;

and λ > 0. The behavior of the X
θ?j
j (ω)’s is then characterized by Corollary VI.15

and Lemma VI.42. Lemma VI.42 would rigorously describe Sexct (ω) and the θ?j,t (ω)’s

as t ↑ te, if λ > 1. To improve the quality of our plots, we consider a situation where

λ ∈ (0, 1) instead (see Remark VI.43).

By Lemmas VI.34 and VI.37, we must select parameters such that (6.19) is sat-

isfied and

λ =

2

[√
κ

ηtem
coth (τ (te))− 2

(
Kη̃per − ηper
Kη̃tem − ηtem

)]
(Kη̃tem − ηtem) Φ̇ (te)

(6.31)

is a positive non-integer. We can keep most of our choices in (6.30) the same and

only make a few revisions:

η̃tem = 0.5, ηtem = 0.2, η̃per = 0.8,

ηper = 0.025, ν2 = 3, κ = 1.

(6.32)

As in Subsection 6.7.2, we do not seek to replicate a particular historical situation.

We immediately get (6.19), as its LHS is 4.3302. Using Remark VI.36 and (6.31),

we can show that

te = 0.2691 and λ = 0.5939.

Again, we have two uncertain agents and one certain agent. We retain the

{U1, U2, C1}- labeling system from Subsection 6.7.2. The inventories, trading rates,

and execution price are plotted in Figures 6.4 - 6.6. To aid our illustration, we

truncate the time domains in Figures 6.5 - 6.6 to

[
0, 0.75

(
te − 10−6

)]
and

[
0, te − 10−6

]
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Figure 6.5: Depiction of the agents’ trading rates in Subsection 6.7.3.

for the left and right plots, respectively.

The qualities that we expect based upon Corollary VI.16, Lemma VI.42, and

Remark VI.43 are all present. We offered some applicable comments in Subsection

6.7.2, so we only add a few new observations here.

i) All agents’ inventories approach a finite limit as t ↑ te (see Lemma VI.42 and

Figure 6.4).

ii) The execution price and the uncertain agents’ trading rates explode as t ↑ te

(see Lemma VI.42, Remark VI.43 and Figures 6.5 - 6.6).

iii) The uncertain agents’ trading rates synchronize as t ↑ te (see Lemma VI.42,

Remark VI.43, and Figure 6.5).

iv) That an explosion in Sexc (ω) will occur as well as its direction becomes increas-

ingly obvious as t ↑ te; however, it is not necessarily clear at first (see Lemma

VI.42, Remark VI.43, and Figure 6.6).

6.7.4 Example 3: A mini-flash crash with high trading volume

Our mini-flash crashes can also be accompanied by high trading volumes (see

Lemma VI.39). We illustrate this in Subsection 6.7.4 by simulating a case in which
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Figure 6.6: Depiction of the execution price in Subsection 6.7.3.

detA has a root on [0, T ]; te > 0; the zero of detA at te is of multiplicity 1; λ 6∈ Z; and

λ < 0. The behaviors of Sexc (ω), the X
θ?j
j (ω)’s, and the θ?j (ω)’s are then described

by Corollary VI.15 and Lemma VI.39.

We especially wish to emphasize the stochastic explosion direction and do this in

two ways.

First, we choose the same deterministic parameters to create Figures 6.7 - 6.12.

The difference is that one realization of W̃· is used in Figures 6.7 - 6.9, while another

is used in Figures 6.10 - 6.12. We denote the corresponding ω’s by ωup and ωdn, since

there are spikes and crashes in the former and latter plots, respectively.

Second, Figures 6.7 - 6.9 themselves suggest that the explosion direction is ran-

dom. This is particularly true in Figures 6.8 - 6.9, since we initially notice that the

price rapidly rises as the uncertain agents’ buying rates synchronize. Only moments

before the mini-flash crash do we see the price collapsing and the uncertain agents’

aggressively selling together.

Now, we need to choose parameters such that (6.19) is satisfied and

λ =

2

[√
κ

ηtem
coth (τ (te))− 2

(
Kη̃per − ηper
Kη̃tem − ηtem

)]
(Kη̃tem − ηtem) Φ̇ (te)

is a negative non-integer due to Lemmas VI.34 and VI.39. Compared to Subsection
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6.7.3, we set

η̃per = 0.5, ηper = 0.5

and keep every other parameter the same. As in Subsections 6.7.2 - 6.7.3, we do not

have in mind a special historical example here. Since we have only changed η̃per and

ηper, the values of (Kη̃tem − ηtem) Φ (0) and te do not differ from Subsection 6.7.3;

however, λ is now negative:

(Kη̃tem − ηtem) Φ (0) = 4.3302, te = 0.2691, and λ = −0.4531.

The numbers of uncertain and certain agents are still two and one, respectively.

We also retain the {U1, U2, C1}-labeling system from Subsections 6.7.2 - 6.7.3. Fig-

ures 6.7 and 6.10 depict the agents’ inventories. We plot the agents’ trading rates

in Figures 6.8 and 6.11. The execution price appears in Figures 6.9 and 6.12. To

help with our visualization, the time domains in the left plots in Figures 6.7 - 6.9

and Figures 6.10 - 6.12 are truncated to [0, 0.94 (te − 10−6)] and [0, 0.75 (te − 10−6)],

respectively.

Our observations regarding Figures 6.7 - 6.12 are in agreement with Corollary

VI.15 and Lemma VI.39. We have already made note of many important aspects in

Subsections 6.7.2 - 6.7.3 and only remark upon the new details.

i) The execution price, as well as the uncertain agents’ inventories and trading

rates, all explode in the same direction as t ↑ te (see Lemma VI.39 and Figures

6.7 - 6.12).

ii) The explosions take place at the deterministic time te (see Lemma VI.39 and

Figures 6.7 - 6.12).

iii) The explosion direction depends on ω ∈ Ω̃ (see Lemma VI.39 and Figures 6.7 -

6.12).
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Figure 6.7: Depiction of the agents’ inventories for ωdn in Subsection 6.7.4.
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Figure 6.8: Depiction of the agents’ trading rates for ωdn in Subsection 6.7.4.

iv) The explosion direction cannot be known with complete certainty before te (see

Lemma VI.39 and Figures 6.7 - 6.12).

v) The explosion rates in the price and uncertain agents’ trading rates in Subsection

6.7.3 are slower than in Subsection 6.7.4 (see Figures 6.5 - 6.6, Figures 6.8 - 6.9,

and Figures 6.11 - 6.12). We did not explicitly state this previously; however,

this is to be expected since trading rates are integrable in Subsection 6.7.3 but

not in Subsection 6.7.4.
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Figure 6.9: Depiction of the execution price for ωdn in Subsection 6.7.4.

0 0.05 0.1 0.15 0.2 0.25
t

-5

0

5

10

In
ve

nt
or

y

U1 U2 C1

0 0.1 0.2 0.3
t

-500

0

500

1000

In
ve

nt
or

y

U1 U2 C1

Figure 6.10: Depiction of the agents’ inventories for ωup in Subsection 6.7.4.
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Figure 6.11: Depiction of the agents’ trading rates for ωup in Subsection 6.7.4.
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Figure 6.12: Depiction of the execution price for ωup in Subsection 6.7.4.

6.8 Appendix: Section 6.4 Proofs

6.8.1 Proof of Lemma VI.9

We now implement the steps outlined in Remark VI.14.

Step 1: Denote the usual Pj-augmentation of
{
Funfj,t

}
0≤t≤T

by
{
F̃unfj,t

}
0≤t≤T

.

Let Ãj be the space of F̃unfj,t -progressively measurable processes θj such that (6.4)

and (6.5) hold. We, again, define the process X
θj
j by (6.6) for any strategy θj ∈ Ãj.

Agent j’s auxiliary problem is to maximize

EPj

[
−
∫ T

0

θj,t S
exc
j,θj ,t

dt− κj
2

∫ T

0

(
X
θj
j,t

)2

dt

]
(6.33)

over θj ∈ Ãj.

Step 2: We wish to show that

EPj
[
βj

∣∣∣F̃unfj,t

]
= EPj

[
βj

∣∣∣Funfj,t

]
Pj − a.s.

(Ωj,Fj, Pj) is Pj-complete by hypothesis (see Subsection 6.4.2). Suppose that t ∈

[0, T ).18 Letting Nj be the Pj-null subsets of Ωj and

Funfj,t+ =
⋂

t<u≤T

Funfj,u ,

18The result is clear when t = T , since F̃unfj,T = σ
(
Funfj,T ,Nj

)
.



217

we have

F̃unfj,t = σ
(
Funfj,t+ ,Nj

)
.

Hence,

EPj
[
βj

∣∣∣F̃unfj,t

]
= EPj

[
βj

∣∣∣Funfj,t+

]
Pj − a.s. (6.34)

Since Funfj,t ⊆ F̃
unf
j,t , it suffices to show that

EPj [1Uβj] = EPj
[
1UE

Pj
[
βj
∣∣Funfj,t

]]
for all U ∈ Funfj,t+ . Pick U ∈ Funfj,t+ and any positive decreasing sequence (εn)n≥1 in

(0, T − t) tending to 0. By (6.2) in Subsection 6.4.2 and (6.11) in Step 2,

1UE
Pj
[
βj
∣∣Funfj,t+εn

]
Pj−a.s.−−−−→ 1UE

Pj
[
βj
∣∣Funfj,t

]
. (6.35)

By the Vitali convergence theorem and the uniform integrability of the collection

{
1UE

Pj
[
βj
∣∣Funfj,t+εn

]}
n≥1

,

(6.35) also hold in the sense of L1-convergence. This finishes the argument, as

EPj [1Uβj] = EPj
[
1UE

Pj
[
βj
∣∣Funfj,t+εn

]]
for n ≥ 1.

Step 3: By (6.3) and (6.6),

−
∫ T

0

θj,t S
exc
j,θj ,t

dt = −
∫ T

0

θj,t S
unf
j,t dt−

∫ T

0

θj,t

[
ηj,per

(
X
θj
j,t − xj

)
+

1

2
ηj,temθj,t

]
dt

for θj ∈ Ãj. Section 7.4 of [162] and (6.2) imply that the process
{
W j,t

}
0≤t≤T with

W j,t , Sunfj,t − Sj,0 −
∫ t

0

EPj
[
βj
∣∣Funfj,s

]
ds
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is an Funfj,t -Wiener process under Pj
19 and

Sunfj,t = Sj,0 +

∫ t

0

EPj
[
βj
∣∣Funfj,s

]
ds+W j,t. (6.36)

After integrating by parts and recalling (6.6) and (6.36), we get

EPj

[
−
∫ T

0

θj,t S
unf
j,t dt

]
= EPj

[
−Xθj

j,TS
unf
j,T +

∫ T

0

X
θj
j,tE

Pj
[
βj
∣∣Funfj,t

]
dt

]
+ xjSj,0.

We also have

EPj

[
−
∫ T

0

θj,t

[
ηj,per

(
X
θj
j,t − xj

)
+

1

2
ηj,temθj,t

]
dt

]
= EPj

[
−1

2
ηj,per

(
X
θj
j,T − xj

)2

− 1

2
ηj,tem

∫ T

0

θ2
j,t dt

]
.

Now X
θj
j,T = 0 Pj-a.s. by the definition of Ãj in Step 1. Since xj, Sj,0 and Sunfj,T do

not depend on Agent j’s choice of θj ∈ Ãj, Step 2 implies that θ?j maximizes (6.33)

over θj ∈ Ãj if and only if it maximizes

EPj

[∫ T

0

X
θj
j,tE

Pj
[
βj
∣∣F̃unfj,t

]
dt− 1

2
ηj,tem

∫ T

0

θ2
j,t dt−

κj
2

∫ T

0

(
X
θj
j,t

)2

dt

]
. (6.37)

Due to (6.2), (6.11), in Step 2, and Agent j’s Gaussian prior for βj, the process

EPj

[
βj

∣∣∣F̃unfj,·

]
is F̃unfj,t -predictable and in L2 (dPj ⊗ dt). Clearly, θ?j maximizes (6.37)

over θj ∈ Ãj if and only if it minimizes

EPj

1

2

∫ T

0

Xθj
j,t −

EPj

[
βj
∣∣F̃unfj,t

]
κj

2

dt+
ηj,tem
2κj

∫ T

0

θ2
j,t dt

 . (6.38)

19In fact, W j is an innovation process, i.e., for each t ∈ [0, T ], we have Funfj,t = FW j

j,t . Here,

{
FW j

j,t

}
0≤t≤T

is the

filtration generated by W j .
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Step 4: After defining

Kj (t, s) ,
√

κj
ηj,tem

(
sinh (τj (s))

cosh (τj (t))− 1

)
, 0 ≤ t ≤ s < T

β̂j,t , EPj

[
1

κj

(
1− 1

cosh (τj (t))

)

·
∫ T

t

EPj
[
βj
∣∣F̃unfj,s

]
Kj (t, s) ds

∣∣∣∣∣ F̃unfj,t

]
, t ∈ [0, T ) ,

(6.39)

we see from Theorem 3.2 of [34] that (6.38) has a unique solution θ?j ∈ Ãj. Moreover,

the corresponding optimal inventory process X
θ?j
j satisfies the linear ODE

dX
θ?j
j,t =

√
κj

ηj,tem
coth (τj (t))

(
β̂j,t −X

θ?j
j,t

)
dt

X
θ?j
j,0 = xj (6.40)

dPj ⊗ dt-a.s. on Ωj × [0, T ).

Using Fubini’s theorem and Steps 2, we get that

EPj

[∫ T

t

EPj
[
βj

∣∣∣F̃unfj,s

]
Kj (t, s) ds

∣∣∣∣∣ F̃unfj,t

]
= EPj

[
βj

∣∣∣Funfj,t

]
, Pj − a.s. (6.41)

The tanh half-angle formula together with (6.11) and (6.39) imply that (6.40) can

be re-written as

θ?j,t = −
√

κj
ηj,tem

coth (τj (t))X
θ?j
j,t

+
tanh (τj (t) /2)

[
µj + ν2

j

(
Sunfj,t − Sj,0

)]
√
ηj,temκj

(
1 + ν2

j t
) , t ∈ (0, T )

X
θ?j
j,0 = xj. (6.42)

Step 5: We know that θ?j satisfies (6.4) and (6.5), as all strategies in Ãj have

these properties. Now Wj,· (ω) is continuous on [0, T ] for Pj-almost every ω ∈ Ωj.
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When such an ω is chosen, (6.42) becomes (6.10). The latter is a first order linear

ODE with continuous coefficients, so θ?j,· (ω) is continuous on [0, T ) (e.g., by Chapter

1.2 of [231]).

Since our terminal inventory constraint is deterministic, we observe that

lim
t↑T

θ?j,t (ω)

exists and is finite from (28) and (29) in the proof of Theorem 3.2 in [34], as well

as (6.41) in Step 4. In particular, we can view the paths of θ?j on [0, T ] as Pj-a.s.

continuous.20 We conclude by noting that θ?j is also Funfj,t -adapted by (28) and (29)

in the proof of Theorem 3.2 in [34], (6.11) in Step 2, and (6.41) in Step 4.

6.9 Appendix: Section 6.6 Proofs

6.9.1 Proof of Lemma VI.23

Let j ∈ {1, . . . , K}. At each time t, Agent j observes the correct value of Sexct (ω),

interprets this value as the realized value of Sexcj,θ?j ,t
(ω), and computes Sunfj,t (ω).21 By

(6.3), it follows that

Sexct (ω) = Sexcj,θ?j ,t
(ω)

= Sunfj,t (ω) + ηj,per

(
X
θ?j
j,t (ω)− xj

)
+

1

2
ηj,temθ

?
j,t (ω) . (6.43)

20Alternatively, we could give an argument using singular point theory as in Section 6.6.
21By abuse of notation, we evaluate Sexc

j,θ?j ,t
and Sunfj,t are evaluated at ω; however, Agent j would evaluate these

quantities at some ωj ∈ Ωj . We adopt similar conventions in the sequel without further comment.
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After substituting (6.13) into (6.43), we have

Sunfj,t (ω)− Sj,0

= (S0 − Sj,0) + β̃t+
∑
i≤K
i 6=j

η̃i,per

(
X
θ?i
i,t (ω)− xi

)
+
∑
i>K

η̃i,per

(
X
θ?i
i,t − xi

)

+
1

2

∑
i≤K
i 6=j

η̃i,temθ
?
i,t (ω) +

1

2

∑
i>K

η̃i,temθ
?
i,t

+ (η̃j,per − ηj,per)
(
X
θ?j
j,t (ω)− xj

)
+

1

2
(η̃j,tem − ηj,tem) θ?j,t (ω) + W̃t (ω) . (6.44)

The quantity on the LHS of (6.44) plays a role in determining Agent j’s strat-

egy (see Lemma VI.9). Substituting (6.44) into (6.10) and applying the half-angle

formula for tanh (·), we get

Ajj (t) θ?j,t (ω)−
∑
i≤K
i 6=j

Aji (t) θ
?
i,t (ω)

= Bjj (t)X
θ?j
j,t (ω) +

∑
i≤K
i 6=j

Bji (t)X
θ?i
i,t (ω) + Cj (t, ω) .

It follows that the uncertain agents’ strategies are characterized by the ODE system

A (t) θu,?t (ω) = B (t)Xu,θ?

t (ω) + C (t, ω)

Xu,θ?

0 (ω) = xu. (6.45)

Corollary VI.15, Lemma VI.21 and a standard existence and uniqueness theorem

(see Sections 1.1 and 3.1 of [36]) finish the argument.

6.9.2 Proof of Lemma VI.24

As t ↑ te, {
A (t) Ẋu

t (ω) = B (t)Xu
t (ω)

}
⇐⇒{

[detA (t)] Ẋu
t (ω) = [adjA (t)]B (t)Xu

t (ω)
}
.
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Here, adj denotes the usual adjugate operator.

We can find a non-negative integer m such that the multiplicity of the zero of

detA at te is (m+ 1) by Lemma VI.21. Hence, there is a unique non-vanishing

analytic function f such that

detA (t) = (t− te)m+1 f (t) (6.46)

on a small neighborhood of te. Note that f is non-vanishing, as the zeroes of detA

are isolated and detA (T ) = 1 (see Lemma VI.21). We then define the analytic (see

Lemma VI.21) map D by

D (t) , [adjA (t)]B (t) /f (t) (6.47)

and arrive at (6.16).

Since detA (·) has a root at te, the rank of A (te) is no more than K − 1. We

conclude by observing that adj A (te) has rank 1 when A (te) has rank K − 1; oth-

erwise, adj A (te) must be the zero matrix. The comments about the rank of D (te)

immediately follow.

6.9.3 Proof of Lemma VI.27

D (te) 6= 0 since λ 6= 0. Then (6.15) has a singular point of the first kind at te

(see our discussion above). λ 6∈ Z by hypothesis, so Theorem 6.5 of [87] implies that

a fundamental solution of (6.15) on [te − ρ, te) for some ρ > 0 is given by

P (t) |t− te|D(te) . (6.48)

In (6.48), P (·) is an analytic MK (R)-valued function with P (te) = IK . Moreover,

P (t) is invertible for all t ∈ [te − ρ, te) and22

(
P (t) |t− te|R

)−1

= |t− te|−R [P (t)]−1 . (6.49)

22Any fundamental solution of (6.16) is invertible everywhere, as are matrix exponentials.
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The solution of (6.14) satisfies

(t− te) θu,?t (ω) = D (t)Xu,θ?

t (ω) +
adj [A (s)]C (s, ω)

f (s)
.

near te (argue as in Lemma VI.24). Since

P (t) |t− te|D(te) ρ−D(te) [P (te − ρ)]−1

is also a fundamental solution of (6.16) on [te − ρ, te)23 and equals IK at te − ρ, we

can apply variation of parameters24 to obtain

Xu,θ?

t (ω)

= P (t) |t− te|D(te)
[
ρ−D(te) [P (te − ρ)]−1] · [Xθ?

te−ρ (ω)

+

∫ t

te−ρ

(
P (te − ρ) ρD(te) |s− te|−D(te) [P (s)]−1

)(adj [A (s)]C (s, ω)

(s− te) f (s)

)
ds

]
.

(6.50)

We can find an eigenbasis {v1, . . . , vK} for D (te) such that vK corresponds to λ

(see Lemma VI.24 and Remark VI.26). We then define the continuous real-valued

functions {F1 (·, ω) , . . . , FK (·, ω)} on [te − ρ, te] and the constants {y1 (ω) , . . . , yK (ω)}

as certain eigenbasis coordinates:

K∑
j=1

Fj (s, ω) vj ,
[P (s)]−1 adj [A (s)]C (s, ω)

f (s)

K∑
j=1

yj (ω) vj , ρ−D(te) [P (te − ρ)]−1Xθ?

te−ρ (ω) . (6.51)

Taken with (6.50), these definitions immediately give (6.17) after recalling that for

any matrix Q ∈MK (R) with eigenvalue γ and corresponding eigenvector v, we have

|t− te|Q v = |t− te|γ v.

23See Theorem 2.5 of Coddington & Carlson ([87]).
24See Theorem 2.8 of Coddington & Carlson ([87]).
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6.9.4 Proof of Lemma VI.28

We know that Sexc (ω), the X
θ?j
j (ω)’s and the θ?j (ω)’s are all uniquely defined and

continuous on [0, T ) (see Lemma VI.23). Corollary VI.15 implies that X
θ?j
j (ω) and

θ?j (ω) are continuous at T for j > K (the certain agents). It also gives us

lim
t↑T

X
θ?j
j,t (ω) = 0

for j > K. By Definition VI.17, it remains to show that

lim
t↑T

Xu,θ?

t (ω) = 0 and lim
t↑T

θu,?t (ω) ∈ RK . (6.52)

As discussed above, one difficulty is that the diagonal entries of B in (6.14) explode

at T (see Lemma VI.21); however, the approach for resolving this issue is similar to

that used to analyze solution behavior near te.

First, we show that (6.15) (after replacing te with T ) has a singular point of the

first kind at T . Now sinh (τj (·)) has a zero of multiplicity 1 at T since

d sinh (τj (t))

dt

∣∣∣∣∣
t=T

= −
√

κj
ηj,tem

cosh (τj (t))

∣∣∣∣∣
t=T

= −
√

κj
ηj,tem

.

Hence, there is a unique non-vanishing analytic function gj such that

sinh (τj (t)) = (t− T ) gj (t) and gj (T ) = −
√

κj
ηj,tem

(6.53)

on a small neighborhood of T . Near T , it follows that the entries of (t− T )B (t) are

given by

(t− T )Bik (t) =



(t− T ) (η̃i,per − ηi,per) Φi (t)

−
√

κi
ηi,tem

(
cosh (τi (t))

gi (t)

)
if i = k

(t− T ) η̃k,perΦi (t) if i 6= k

(6.54)
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(see Definition VI.19). On this region, the solution of (6.15) satisfies

(t− T ) Ẋu
t (ω) = A−1 (t) (t− T )B (t)Xu

t (ω) . (6.55)

By (6.54) and Lemma VI.21, (6.55) has a singular point of the first kind at T .

Second, we find a fundamental solution of (6.55) near T . We know that

A−1 (T ) = (t− T )B (t)

∣∣∣∣∣
t=T

= IK

by (6.53), (6.54), and Lemma VI.21. Theorem 6.5 of [87] implies that a fundamental

solution of (6.55) on [T − δ, T ) for some δ > 0 is given by

Q (t) |t− T |IK = Q (t) |t− T | . (6.56)

In (6.56), Q is an analytic MK (R)-valued function with Q (T ) = IK . Also, Q (t) is

invertible for all t ∈ [T − δ, T ).25

Finally, we use our fundamental solution to solve (6.14) and conclude the proof.

Notice that tanh (τj (·)) also has a zero of multiplicity 1 at T since

d tanh (τj (t))

dt

∣∣∣∣∣
t=T

= −1

2

√
κj

ηj,tem
sech2 (τj (t) /2)

∣∣∣∣∣
t=T

= −1

2

√
κj

ηj,tem
.

There is a unique non-vanishing analytic function hj such that

tanh (τj (t) /2) = (t− T )hj (t) (6.57)

on a neighborhood of T . In particular, the entries of C (t, ω) / (t− T ) near T are

given by

Ci (t, ω)

(t− T )
=

(
hi (t) ν

2
i√

ηi,temκi (1 + ν2
i t)

)µiν2
i

+ (S0 − Si,0) + β̃t−
∑
k≤K
k 6=i

η̃k,perxk

− xi (η̃i,per − ηi,per) +
∑
k>K

η̃k,per

(
X
θ?k
k,t − xk

)
+

1

2

∑
k>K

η̃k,temθ
?
k,t + W̃t (ω)

]
. (6.58)

25Any fundamental solution of (6.55) is invertible everywhere.
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Since

Q (t) |t− T | δ−1Q−1 (T − δ)

is also a fundamental solution of (6.16) on [T − δ, T )26 and equals IK at T − δ, we

can apply variation of parameters27 to obtain

Xu,θ?

t (ω)

= Q (t) |t− T | δ−1Q−1 (T − δ) ·

[
Xθ?

T−δ (ω)

+

∫ t

T−δ

(
Q (T − δ) δ |s− T |−1Q−1 (s)

)
A−1 (s)C (s, ω) ds

]
. (6.59)

By (6.58), (6.59), and Corollary VI.15, we get (6.52).

6.10 Appendix: Section 6.7 Proofs

6.10.1 Proof of Lemma VI.34

By Definitions VI.19 and VI.32, we see that A is now given by

Aik (t) ,


1− 1

2
(η̃tem − ηtem) Φ (t) if i = k

−1

2
η̃temΦ (t) if i 6= k

. (6.60)

A short calculation shows that

detA (t) =

[
1 +

1

2
ηtemΦ (t)

]K−1 [
1− 1

2
(Kη̃tem − ηtem) Φ (t)

]
. (6.61)

The first term in (6.61) is always at least 1. The second term is non-zero at 0 but

does have a root on (0, T ] if and only if (6.19) holds.28 Both of these observations

come from Lemma VI.21.

Now, (6.19) implies that Kη̃tem > ηtem. Since te is a zero of detA, we must have

that

1− 1

2
(Kη̃tem − ηtem) Φ (te) = 0. (6.62)

26See Theorem 2.5 of Coddington & Carlson ([87]).
27See Theorem 2.8 of Coddington & Carlson ([87]).
28In fact, te is the unique root of detA in this case.
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Hence, by Lemma VI.21,

d [detA (t)]

dt

∣∣∣∣∣
t=te

= −1

2
(Kη̃tem − ηtem)

[
1 +

1

2
ηtemΦ (t)

]K−1

Φ̇ (t)

∣∣∣∣∣
t=te

> 0. (6.63)

6.10.2 Proof of Lemma VI.37

By (6.46), (6.63), and Lemma VI.34,

f (te) =
d [detA (t)]

dt

∣∣∣∣∣
t=te

= −1

2
(Kη̃tem − ηtem)

[
1 +

1

2
ηtemΦ (te)

]K−1

Φ̇ (te) . (6.64)

A short calculation shows that adj A (t) is given by

[adjA (t)]ik

=

(
1 +

1

2
ηtemΦ (t)

)K−2


1− 1

2
[(K − 1) η̃tem − ηtem] Φ (t) if i = k

1

2
η̃temΦ (t) if i 6= k

. (6.65)

It follows that

[(adjA (t)]B (t)]ik

= η̃perΦ (t)

(
1 +

1

2
ηtemΦ (t)

)K−1

+

(
1 +

1

2
ηtemΦ (t)

)K−2(
ηperΦ (t) +

√
κ

ηtem
coth (τ (t))

)

·



1

2
[(K − 1) η̃tem − ηtem] Φ (t)− 1 if i = k

−1

2
η̃temΦ (t) if i 6= k

. (6.66)

One can then check that the only potentially non-zero eigenvalue of

D (te) =
[adjA (te)]B (te)

f (te)
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is given by

λ = −
2

[
(Kη̃per − ηper) Φ (te)−

√
κ

ηtem
coth (τ (te))

]
(Kη̃tem − ηtem) Φ̇ (te)

(6.67)

with corresponding eigenvector vK as above. We get (6.22) from (6.67) after applying

(6.21).

Recall that Φ (te) > 0 and Φ̇ (te) < 0 by Lemma VI.21. Since te, Φ, and τ do not

depend on η̃per or ηper, we can ensure that λ 6∈ Z by perturbing the latter parameters.

D (te) is then diagonalizable as observed in Lemma VI.27, and v1, . . . , vK−1 can be

computed using (6.66).

6.10.3 Proof of Lemmas VI.39 and VI.42

Since our uncertain agents are semi-symmetric,

Ci (t, ω) = Φ (t) W̃t (ω)

+ Φ (t)

[
β̃t+

∑
k>K

η̃k,per

(
X
θ?k
k,t − xk

)
+

1

2

∑
k>K

η̃k,temθ
?
k,t

]

+ Φ (t)

µiν2
+ (S0 − Si,0)−

∑
k≤K
k 6=i

η̃perxk − xi (η̃per − ηper)

 (6.68)

for t ≤ te by Definition VI.19. For convenience, we introduce the following deter-

ministic function29 c and the constants c1, . . . , cK :

c (t) ,

[
β̃t+

∑
k>K

η̃k,per

(
X
θ?k
k,t − xk

)
+

1

2

∑
k>K

η̃k,temθ
?
k,t

]

K∑
i=1

civi ,



µ1

ν2
+ (S0 − S1,0)−

∑
k≤K
k 6=1

η̃perxk − x1 (η̃per − ηper)

...

µK
ν2

+ (S0 − SK,0)−
∑
k≤K
k 6=K

η̃perxk − xK (η̃per − ηper)


. (6.69)

29The function c is deterministic by Corollary VI.15.
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Using (6.68), we get that

C (t, ω) = W̃t (ω) Φ (t) vK + c (t) Φ (t) vK + Φ (t)
K∑
i=1

civi. (6.70)

By (6.65), {v1, . . . , vK} is an eigenbasis for adj [A (t)]. Moreover,(
1 +

1

2
ηtemΦ (t)

)K−2 [
1− 1

2
(Kη̃tem − ηtem) Φ (t)

]
(6.71)

is the eigenvalue corresponding to each of v1, . . . , vK−1, while(
1 +

1

2
ηtemΦ (t)

)K−1

(6.72)

corresponds to vK .

By (6.51), it follows that

K∑
j=1

Fj (t, ω) vj

=
[P (t)]−1 adj [A (t)]C (t, ω)

f (t)

= W̃t (ω)


Φ (t)

(
1 +

1

2
ηtemΦ (t)

)K−1

f (t)

 [P (t)]−1 vK

+


Φ (t)

(
1 +

1

2
ηtemΦ (t)

)K−1

(c (t) + cK)

f (t)

 [P (t)]−1 vK

+


Φ (t)

(
1 +

1

2
ηtemΦ (t)

)K−2 [
1− 1

2
(Kη̃tem − ηtem) Φ (t)

]
f (t)


·
K−1∑
i=1

ci [P (t)]−1 vi. (6.73)

It follows that we can find analytic deterministic functions Fj,1 and Fj,2 such that

Fj (t, ω) , W̃t (ω)Fj,1 (t) + Fj,2 (t) (6.74)

for each j ∈ {1, . . . , K}.30 Since P (te) = IK (see Lemma VI.27), (6.64) and Remark
30Note that c is continuously differentiable on [0, te] by Corollary VI.15.
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VI.36 further imply that

Fj,1 (te) = Fj,2 (te) = · · · = FK−1,1 (te) = FK−1,2 (te) = 0 (6.75)

and

FK,1 (te) = −Φ2 (te)

Φ̇ (te)
> 0 and FK,2 (te) = −Φ2 (te)

Φ̇ (te)
(c (te) + cK) . (6.76)

While FK,1 (te) > 0, determining the sign of FK,2 (te) is difficult, in general, as it

depends upon the sign of c (te) + cK (see (6.69)).

We see from (6.74) and (6.75) that the expression

Fj (s, ω)

|s− te|
(6.77)

is bounded near te for each j < K and almost every ω ∈ Ω̃. In particular, the

coordinates of both

K−1∑
j=1

(
yj (ω)−

∫ t

te−ρ

Fj (s, ω)

|s− te|
ds

)
P (t) vj

and its time derivative are bounded near te for such ω as well.

Since P (te) = IK , the vK-coordinate of P (t) vK tends to 1 t ↑ te. For j < K, the

vj-coordinate of P (t) vK tends to 0 as t ↑ te. In each situation, we can also obtain

Lipschitz bounds on the convergence. Due to (6.17) and (6.74), potential explosions

in the coordinates of Xu,θ?

t (ω) are characterized by

lim
t↑te

[
|t− te|λ

(
yK (ω)−

∫ t

te−ρ

W̃s (ω)FK,1 (s) + FK,2 (s)

|s− te|1+λ
ds

)]
. (6.78)

Specifically,

{|(6.78)| < +∞} ⇐⇒
{

lim
t↑te

Xu,θ?

t (ω) exists in RK

}
{(6.78) = +∞} ⇐⇒

{
lim
t↑te

Xu,θ?

t (ω) = [+∞, . . . ,+∞]>
}

{(6.78) = −∞} ⇐⇒
{

lim
t↑te

Xu,θ?

t (ω) = [−∞, . . . ,−∞]>
}
. (6.79)
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To finish the proof, we separately consider the λ < 0 and λ > 0 cases.

λ < 0 Case.

Assume that λ < 0. It follows that

lim
t↑te

∫ t

te−ρ

∣∣∣W̃s (ω)FK,1 (s)
∣∣∣

|s− te|1+λ
ds <∞ and lim

t↑te

∫ t

te−ρ

|FK,2 (s)|
|s− te|1+λ

ds <∞.

Clearly,

lim
t↑te
|t− te|λ = +∞,

meaning that{
yK (ω)− lim

t↑te

∫ t

te−ρ

FK,2 (s)

|s− te|1+λ
ds > lim

t↑te

∫ t

te−ρ

W̃s (ω)FK,1 (s)

|s− te|1+λ
ds

}
(6.80)

=⇒
{

lim
t↑te

Xu,θ?

t (ω) = [+∞, . . . ,+∞]>
}

and {
yK (ω)− lim

t↑te

∫ t

te−ρ

FK,2 (s)

|s− te|1+λ
ds < lim

t↑te

∫ t

te−ρ

W̃s (ω)FK,1 (s)

|s− te|1+λ
ds

}
(6.81)

=⇒
{

lim
t↑te

Xu,θ?

t (ω) = [−∞, . . . ,−∞]>
}

Arguing as in our discussion of (6.77), we see that the hypotheses in (6.80) and (6.81)

also imply that{
lim
t↑te

θu,?t (ω) = [+∞, . . . ,+∞]>
}

and

{
lim
t↑te

θu,?t (ω) = [−∞, . . . ,−∞]>
}
,

respectively.31 Conditional on F̃te−ρ, the RHS of the inequality in (6.80) (and 6.81)

is deterministic. Since FK,1 (te) > 0 (see (6.76)), we finish our proof of Lemma VI.39.

λ > 0 Case.

Assume that λ > 0. We can find a constant R0 (ω) such that∣∣∣∣∣yK (ω)−
∫ t

te−ρ

W̃s (ω)FK,1 (s) + FK,2 (s)

|s− te|1+λ
ds

∣∣∣∣∣ ≤ R0 (ω)

|t− te|λ
. (6.82)

31In particular, the coordinates of θu,?t (ω) will asymptotically explode at the rate |t− te|−λ−1.
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Hence, (6.78) is bounded as t ↑ te and

lim
t↑te

Xu,θ?

t (ω)

exists in RK by our previous comments.

By our discussion surrounding (6.77), we see that explosions in the coordinates of

θu,?t (ω) are characterized by

lim
t↑te

[
−λ |t− te|λ−1

(
yK (ω)−

∫ t

te−ρ

W̃s (ω)FK,1 (s) + FK,2 (s)

|s− te|1+λ
ds

)

−

(
W̃t (ω)FK,1 (t) + FK,2 (t)

|t− te|

)]
. (6.83)

More precisely,

{(6.83) = +∞} ⇐⇒
{

lim
t↑te

θu,?t (ω) = [+∞, . . . ,+∞]>
}

{(6.83) = −∞} ⇐⇒
{

lim
t↑te

θu,?t (ω) = [−∞, . . . ,−∞]>
}
. (6.84)

Suggestively, we first rewrite the expression in (6.83) as

FK,2 (t)

(
λ |t− te|λ−1

∫ t

te−ρ

1

|s− te|1+λ
ds− 1

|t− te|

)

+ λ |t− te|λ−1

∫ t

te−ρ

FK,2 (s)− FK,2 (t)

|s− te|1+λ
ds

− λ |t− te|λ−1 yK (ω)

+ W̃t (ω)FK,1 (t)

(
λ |t− te|λ−1

∫ t

te−ρ

1

|s− te|1+λ
ds− 1

|t− te|

)

+ λ |t− te|λ−1

∫ t

te−ρ

W̃s (ω) [FK,1 (s)− FK,1 (t)]

|s− te|1+λ
ds

+ λ |t− te|λ−1 FK,1 (t)

∫ t

te−ρ

W̃s (ω)− W̃t (ω)

|s− te|1+λ
ds (6.85)

Let R1 and R2 be the deterministic Lipschitz coefficients for FK,1 and FK,2. The first
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two lines of (6.85) are deterministic, and we can obtain the following bounds:∣∣∣∣∣FK,2 (t)

(
λ |t− te|λ−1

∫ t

te−ρ

1

|s− te|1+λ
ds− 1

|t− te|

)∣∣∣∣∣
≤ |FK,2 (t)| |t− te|λ−1

ρλ∣∣∣∣∣λ |t− te|λ−1

∫ t

te−ρ

FK,2 (s)− FK,2 (t)

|s− te|1+λ
ds

∣∣∣∣∣
≤
(
λR2

1− λ

)(
ρ1−λ |t− te|λ−1 − 1

)
(6.86)

In (6.85), the third line is deterministic conditional on F̃te−ρ. Lines 4 - 6 of (6.85)

are stochastic conditional on F̃te−ρ. Letting R3 (ω) be the maximum of
∣∣∣W̃t (ω)

∣∣∣ on

[te − ρ, te], we notice that∣∣∣∣∣W̃t (ω)FK,1 (t)

(
λ |t− te|λ−1

∫ t

te−ρ

1

|s− te|1+λ
ds− 1

|t− te|

)∣∣∣∣∣
≤
FK,1 (t)

∣∣∣W̃t (ω)
∣∣∣ |t− te|λ−1

ρλ∣∣∣∣∣λ |t− te|λ−1

∫ t

te−ρ

W̃s (ω) [FK,1 (s)− FK,1 (t)]

|s− te|1+λ
ds

∣∣∣∣∣
≤
(
λR1R3 (ω)

1− λ

)(
ρ1−λ |t− te|λ−1 − 1

)
. (6.87)

When λ > 1, it follows that we see that (6.83) has the same behavior as

lim
t↑te

[
|t− te|λ−1

∫ t

te−ρ

W̃s (ω)− W̃t (ω)

|s− te|1+λ
ds

]
(6.88)

(all other terms tend to 0 P̃ -a.s.). Using integration by parts,

|t− te|λ−1

∫ t

te−ρ

W̃s (ω)− W̃t (ω)

|s− te|1+λ
ds

∼ N

0, |t− te|2λ−2

∫ t

te−ρ

(
|s− te|−λ

λ
− 1

λρλ

)2

ds

 . (6.89)

Asymptotically, the variance in (6.89) grows like |t− te|−1 as t ↑ te, completing the

proof of Lemma VI.42.
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[215] T. Schöneborn, Trade execution in illiquid markets: optimal stochastic control and multi-
agent equilibria, PhD thesis, Universitätsbibliothek, 2008.
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