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ABSTRACT 

Methanotrophs are a group of bacteria that use methane as their sole carbon and energy 

source. These microbes have various applications including methane removal, 

biodegradation of halogenated hydrocarbons, and valorization of methane to various 

products including biofuels, bioplastics, and single cell protein. Current obstacles for the 

application of aerobic methanotrophs include our incomplete understanding of their 

metabolism and genetics. This work studies the methanotrophic response to metals, i.e., 

copper and rare earth elements, with the goal of achieving better control of 

methanotrophic activity.  

 

The expression and activities of alternative forms of methane monooxygenases in 

methanotrophs are regulated by the availability of copper. The genetic regulation by 

copper in methanotrophs involves in a copper-chelating molecule called methanobactin 

(mb) produced by methanotrophs. First, the uptake mechanism of mb was investigated. 

mbnT, encoding for TonB-dependent transporter, was knocked-out in Methylosinus 

trichosporium OB3b. The mutant was able to synthesize and secrete mb but not take it up 

as evidenced by significant decrease in copper uptake when grown at presence of 

exogenous mb. The mutant was, however, still able to take up free copper, indicating that 

there is (are) alternative copper uptake pathway(s) in M. trichosporium OB3b. Second, 

the biosynthesitic pathway of mb was investigated. Specifically, mbnN, encoding for an 
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aminotransferase, was disrupted in M. trichosporium OB3b. mb produced by this mutant 

has only one of the two oxazolone rings and the C-terminal methionine was missing. This 

study lays the foundation for achieving fine-tuning mb structure and for enhancing its 

production for potential applications. 

 

In addition to copper, it was found that cerium also regulates key enzymes in 

methanotrophs, i.e., alternative forms of methanol dehydrogenases (MeDHs). This 

finding was first extended to consider the effect of other rare earth elements (REEs). It 

was found that lanthanum, praseodymium, neodymium and samarium also regulate the 

expression of MeDHs in M. trichosporium OB3b. These effects, however, were only 

observed in the absence of copper, indicating cross-regulation by copper and REEs. 

Second, the whole transcriptomic response to copper and/or cerium in M. trichosporium 

OB3b was studied using transcriptomic analyses. Interestingly, the largest difference in 

gene expression was observed when both copper and cerium were present. Many genes 

were upregulated, most notably multiple steps of the central methane oxidation pathway, 

the serine cycle, and the ethylmalonyl-CoA pathway, indicating more efficient carbon 

assimilation. 

 

Lastly, attempts were made to elucidate alternative mechanism(s) of copper uptake in M. 

trichosporium OB3b. Specifically, copCD, putatively encoding for a periplasmic copper-

binding protein and an inner membrane protein, respectively, were knocked out in 



	xvi	

wildtype and a mb-defective mutant of M. trichosporium OB3b. Our results showed that 

these genes are not critical for copper uptake nor were they basis of copper-regulation in 

M. trichosporium OB3b. 
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CHAPTER I INTRODUCTION 

I.1	Ecological	and	phylogenetic	diversity	of	methanotrophs	

Methanotrophs are an intriguing group of microorganisms that utilize methane as their 

sole source of carbon and energy. Two key functional groups of microorganisms, i.e., 

aerobic methane-oxidizing bacteria, and anaerobic methane-oxidizing archaea (ANME), 

fall into this definition. This study focuses on aerobic methane-oxidizing bacteria. There 

is great deal of interest in these microbes as they: (1) are ubiquitously distributed in the 

nature and are phylogenetically diverse; (2) play important roles in the global carbon 

cycle, e.g., they can remove methane from the atmosphere (Holmes et al., 1999; Roslev 

& Iversen, 1999, Dunfield et al., 1999, Knief & Dunfield, 2005, Kolb et al., 2005); (3) 

have been extensively used for biodegradation of halogenated hydrocarbons (Westrick et 

al., 1984, Wilson & Wilson, 1985, Semprini, 1997, Semrau et al., 2010); and (4) have 

great potential in promoting sustainability by valorizing methane to biofuels, bioplastics, 

and osmo-protectants, amongst other products (Fei et al., 2014, Stron et al., 2014, 

Kalyuzhnaya et al., 2015, Khmelenina et al., 2015).  

 

Aerobic methane-oxidizing bacteria have been studied for over a century since being first 

described in 1906 (Söhngen, 1906). Most commonly, aerobic methane-oxidizing bacteria 

are found at oxic/anoxic interfaces of environments such as wetlands, aquatic sediments, 
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and landfills, where they feed on methane produced by methanogenic activities in anoxic 

zones (Wartiainen et al., 2006, Ettwig et al., 2010, Geymonat et al., 2011). Interestingly, 

methanotrophic bacteria are also found in “extreme” environments. One example is 

Methylacidiphilum fumariolicum Strain SolV isolated from acidic, geothermal 

environments. M. fumariolicum SolV has an optimal growth pH of 2 and has an optimal 

growth temperature of 60 °C. (Castaldi & Tedesco, 2005, Dunfield et al., 2007, Pol et al., 

2007, Islam et al., 2008, Op den Camp et al., 2009) Another example is the psychrophilic 

methanotroph, Methylosphaera hansonii, isolated from Antarctic, marine-salinity lakes. It 

can grow at 0 °C with an optimal growth temperature of 10°C and can survive NaCl 

concentrations as high as 12% (w/v). (Bowman, 1998) There are also alkaliphilic 

methanotrophs isolated from Siberian soda lakes that can tolerate pH as high as 11. 

(Kaluzhnaya et al., 2001) Methanotrophic bacteria have also been identified and isolated 

from the rhizosphere and phyllosphere (Knief et al., 2012; Bao et al., 2014; Khalifa, et al., 

2015). 

 

Corresponding to their wide geographical distribution, methanotrophs are taxonomically 

diverse. Methanotrophs were initially grouped into three taxonomic groups, or types I, II, 

and X based on their morphology, structure of intracytoplasmic membrane and pathways 

for carbon assimilation (Whittenbury et al., 1970). With the rise of advanced sequencing 

technology in the 1990s, phylogenetic analyses based on 16S rRNA sequences were 

applied. In the review by Hanson & Hanson (1996) , methanotrophs were grouped into 

six genera in the Proteobacteria, with four genera, Methylobacter, Methylococcus, 

Methylomicrobium, and Methylomonas in the Gammaproteobacteria (Methylococcaceae 
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family), and two genera, Methylocystis and Methylosinus, in the Alphaproteobacteria 

(Methylocystaceae family). Twenty years later, 25 genera have now been described 

within the Proteobacteria. 20 are in the Gammaproteobacteria and five in the 

Alphaproteobacteria. New genera within the Gammaproteobacteria include 

Methylocaldum, Methylosarcina, Methylosoma, Methylosphaera, Methylomagnum, 

Methyloglobulus, Methylogaea, Methylovulum, Methyloparacoccus, Methyloprofundus, 

and Methylomarinum, which belong to the Methlococcaceae family, and 

Methylohalobius, Methylomarinovum, and Methylothermus that belong to the 

Methylothermaceae family. There are also filamentous methanotrophs under the 

Clonothrix and Crenothrix genera in the Gammaproteobacteria. New genera within the 

Alphaproteobacteria include Methylocella, Methylocapsa, and Methyloferula, which 

belong to the Beijerinkiaceae family.  

 

Until 2007, all known species of methanotrophic bacteria belonged to the phylum 

Proteobacteria phylum. However, in 2007–2008, three research groups independently 

described the isolation of thermoacidophilic methanotrophs as mentioned previously that 

represented a distinct lineage within the Verrucomicrobia phylum. (Dunfield et al., 2007, 

Pol et al., 2007, Islam et al., 2008, Op den Camp et al., 2009) Although these strains were 

isolated from distinct geographical locations (i.e., New Zealand, Italy, and Russian), their 

16S rRNA gene sequences are very similar (> 98.4% identical) and are considered to 

represent a single genus, Methylacidiphilum (Op den Camp et al., 2009). Another 

exciting new member is Candidatus Methylomirabilis oxyfera, which belongs to bacterial 

NC10 phylum. From the genome assembled from an enrichment culture from agricultural 
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runoff. C. Methylomirabilis oxyfera was characterized and drew attention in its unique 

ability to couple methane oxidation to nitrite reduction, and in so doing generate oxygen 

required for the initial turnover of methane to methanol (Ettwig et al., 2010). 

I.2	Methanotrophic	metabolism	

I.2.1 Methane oxidation  

The diversity of methanotrophs is reflected in the diversity of their metabolism.  

Methanotrophs were initially considered to be obligate aerobes. It is generally accepted 

that they oxidize methane to carbon dioxide and water via four central steps as shown in 

Figure 1.1. The initial and rate-limiting step is the conversion of methane to methanol by 

methane monooxygenase (MMO) (Hanson & Hanson, 1996). Methanol is subsequently 

oxidized to formaldehyde by a periplasmic pyrroloquinoline quinine (PQQ)-linked 

methanol dehydrogenase (MDH). Conversion of formaldehyde to formic acid and formic 

acid to carbon dioxide is catalyzed by formaldehyde dehydrogenase (FADH) and formate 

dehydrogenase (FDH), respectively. (Hanson & Hanson, 1996)  

 

Figure 1.1. The pathway of methane oxidation by aerobic methanotrophs.  
NADH is the electron donor for the sMMO, but not the pMMO. X represents the unknown 

electron donor for the pMMO (Murrell et al. 2000). 
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However, anaerobic oxidation of methane has been shown to occur via three different 

microbial processes. First, geochemical evidence suggests a coupling of anaerobic 

methane oxidation with sulfate (Boetius et al., 2000, Orphan, et al., 2001), manganese, or 

iron reduction (Beal et al., 2009, Ettwig et al., 2016) by a consortium of archaea (i.e., 

ANME) and bacteria. Second, as mentioned above, Candidatus Methylomirabilis oxyfera 

of the bacterial NC10 phylum couples methane oxidation to nitrite reduction (Ettwig et 

al., 2010). M. oxyfera bypasses the denitrification intermediate nitrous oxide by the 

conversion of nitric oxide to dinitrogen and dioxygen, the latter then used to oxidize 

methane. This explains the biochemical mechanism of poorly understood freshwater 

methane sinks and shows a novel pathway for oxygen production. Third, the archaean 

Candidatus Methanoperedens nitroreducens can anaerobically oxidize methane through 

reverse methanogenesis with nitrate as the terminal electron acceptor (Haroon et al., 

2013). The following discussion will focus on the methane oxidation pathways of aerobic 

methane-oxidizing bacteria.  

 

I.2.1.1 Methane monooxygenase 

The methane monooxygenase (MMO) catalyzes the oxidation of CH4 to CH3OH. Two 

distinct types of MMO are known- a cytoplasmic, soluble form (sMMO) and a 

membrane-bound particulate form (pMMO). pMMO is found in most methanotrophs, 

with exceptions of Methylocella and Methyloferula species (Dedysh et al., 2000, Dunfield 

et al., 2003, Vorobev et al., 2011). Some methanotrophs, such as Methylococcus 

capsulatus (Bath) and Methylosinus trichosporium OB3b, can express both sMMO and 

pMMO. (Table 1.1) 
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sMMO consists of three components- a hydroxylase (MMOH, 251 kDa), a reductase 

(MMOR, 38.6 kDa), and a regulatory protein (MMOB, 15.9 kDa) (Stirling & Dalton, 

1979, Lee et al., 2013) (Figure 1.2). Methane oxidation occurs at a glutamate-bridged di-

iron active site within MMOH, which has an α2ß2γ2 polypeptide arrangement comprised 

of MmoX (α), MmoY (ß), and MmoZ (γ) subunits (Rosenzweig et al., 1993, Dalton, 

2005). MMOR is a Fe-S flavoprotein that transfers electrons from NADH to MMOH 

(Merkx et al., 2001). The regulatory polypeptide MMOB is essential for the activity of 

MMOH and triggers the transformation of the enzyme from an NADH oxidase to a 

hydroxylase (Green & Dalton, 1985, Lee et al., 2013).  

 
Figure 1.2. Structure of the hydroxylase component of sMMO from Methylococcus capsulatus 

Bath.  
The α,β and γ subunits, encoded by the mmoX, Y and Z genes, are colored green, yellow and blue, 
respectively. The iron atoms of the binuclear iron centers are shown as pink spheres. (Sazinsky & 

Lippard, 2005)  
 

pMMO is an integral membrane metalloenzyme composed of three polypeptides- PmoB, 

PmoA, PmoC- with molecular masses of approximately 45kDa , 26kDa, and 23kDa, 

respectively (Lieberman & Rosenzweig, 2005, Hakemian & Rosenzweig, 2007). Crystal 

structures of pMMOs from M. capsulatus Bath (Lieberman & Rosenzweig, 2005), M.
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Table 1.1 Occurrence of select enzymes in the genomes of methanotrophs. 

Strain Phylum Genera pmoA mmoX pxmA mxaFI xoxF mbnB/C 
Methylobacter tundripaludum SV96 Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylobacter marinus A45  Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylobacter tundripaludum 21/22  Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylobacter luteus IMV-B-3098 Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylobacter tundripaludum 31/32  Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylobacter whittenburyi strain ACM  Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylobacter sp. BBA5.1  Gammaproteobacteria Methylobacter Yes No Yes Yes Yes No 
Methylocaldum szegediense O-12  Gammaproteobacteria Methylocaldum Yes No No Yes Yes No 
Methylococcus capsulatus str. Bath Gammaproteobacteria Methylococcus Yes Yes No Yes Yes No 
Methyloglobulus morosus KoM1  Gammaproteobacteria Methyloglobulus Yes No Yes Yes Yes No 
Methylohalobius crimeensis 10Ki  Gammaproteobacteria Methylohalobius Yes No No Yes Yes No 
Methylomarinum vadi strain IT-4  Gammaproteobacteria Methylomarinum Yes No No Yes Yes No 
Methylomicrobium alcaliphilum Gammaproteobacteria Methylomicrobium Yes No No Yes Yes No 
Methylomicrobium album BG8 Gammaproteobacteria Methylomicrobium Yes No Yes Yes Yes No 
Methylomicrobium buryatense 5G Gammaproteobacteria Methylomicrobium Yes Yes No Yes Yes No 
Methylomicrobium agile strain ATCC 
35068  

Gammaproteobacteria Methylomicrobium Yes No Yes Yes Yes No 

Methylomonas methanica MC09 Gammaproteobacteria Methylomonas Yes Yes No Yes Yes No 
Methylomonas sp. MK1 Gammaproteobacteria Methylomonas Yes Yes Yes Yes Yes No 
Methylomonas sp. 11b Gammaproteobacteria Methylomonas Yes Yes Yes Yes Yes No 
Methylomonas sp. LW13 Gammaproteobacteria Methylomonas Yes Yes Yes Yes Yes No 
Methylomonas denitrificans strain FJG1 Gammaproteobacteria Methylomonas Yes No Yes Yes Yes No 
Methylosarcina fibrata AML-C10  Gammaproteobacteria Methylosarcina Yes No No Yes Yes No 
Methylosarcina lacus LW14  Gammaproteobacteria Methylosarcina Yes No No Yes Yes No 
Methylovulum miyakonense HT12 Gammaproteobacteria Methylovulum Yes Yes No Yes Yes No 
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Table 1.1 Continued 
Strain Phylum Genera pmoA mmoX pxmA mxaF xoxF mbnB/C 
Methylocapsa acidiphila B2  Alphaproteobacteria Methylocapsa Yes No No Yes Yes No 
Methylocapsa aurea KYG Alphaproteobacteria Methylocapsa Yes No No Yes Yes No 
Methylocella silvestris BL2 Alphaproteobacteria Methylocella No Yes No Yes Yes No 
Methylocystis sp. SB2 Alphaproteobacteria Methylocystis Yes No Yes Yes Yes Yes 
Methylocystis sp. SC2 Alphaproteobacteria Methylocystis Yes No No Yes Yes Yes 
Methylocystis rosea SV97 Alphaproteobacteria Methylocystis Yes No No Yes Yes Yes 
Methylocystis sp. ATCC 49242 strain 
Rockwell 

Alphaproteobacteria Methylocystis Yes No No Yes Yes No 

Methylocystis parvus strain OBBP  Alphaproteobacteria Methylocystis Yes No No Yes Yes Yes 
Methyloferula stellata AR4 strain AR4T Alphaproteobacteria Methyloferula No Yes No Yes Yes No 
Methylosinus sp. LW4 Alphaproteobacteria Methylosinus Yes Yes No Yes Yes Yes 
Methylosinus trichosporium OB3b  Alphaproteobacteria Methylosinus Yes Yes No Yes Yes Yes 
Methylosinus sp. LW3  Alphaproteobacteria Methylosinus Yes Yes No Yes Yes Yes 
Methylosinus sp. PW1  Alphaproteobacteria Methylosinus Yes Yes No Yes Yes Yes 
Methylocystis sp. LW5  Alphaproteobacteria Methylosystis Yes Yes No Yes Yes Yes 
Candidatus Methylomirabilis oxyfera NC10 Candidatus Yes No No Yes Yes No 
Methylacidiphilum fumariolicum SolV Verrucomicrobia Methylacidiphilum Yes No No No Yes No 
Verrucomicrobia bacterium LP2A Verrucomicrobia Verrucomicrobia Yes No No No Yes No 
Verrucomicrobium sp. 3C Verrucomicrobia Verrucomicrobium Yes No No No Yes No 
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trichosporium OB3b (Hakemian et al., 2008), and Methylocystis sp. strain M (Smith et 

al., 2011) have been determined and reveal that three copies each of the PmoB, PmoA, 

and PmoC subunits are arranged in an α3β3γ3 trimer (Figure 1.3). The PmoB subunit 

contains both periplasmic and transmembrane domains, while the PmoA and PmoC 

subunits are composed primarily of transmembrane helices. The metal content of pMMO 

is controversial, with reported values of 2-15 copper ions and 0-2 iron atoms per ~100-

kDa purified pMMO (Nguyen et al., 1998, Basu et al., 2003, Choi et al., 2003, Yu et al., 

2003). For the activity of this enzyme, methanobactin (mb) is postulated as a “Cu-

shuttle” to scavenge copper from the environment. The involvement of this molecule will 

be discussed more in later sections. With multiple conflicting models proposed for the 

active site of this enzyme, the mechanism of pMMO for methane oxidation is still not 

clear (Semrau et al., 2010).  

 

Figure 1.3. Structure of the hydroxylase component of pMMO from Methylococcus capsulatus Bath.  
The PmoB, PmoA, PmoC and some unknown helix polypeptides are depicted in light blue, dark 

blue, yellow, and green, respectively. Copper is depicted as brown spheres. (Sirajuddin et al., 
2014) 
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I.2.1.2 Methanol dehydrogenase 

Methanol is oxidized to formaldehyde by a periplasmic, pyrroloquinoline quinone 

(PQQ)-linked methanol dehydrogenase (MDH). Two types of MDH have been identified 

in methanotrophs, i.e., a Mxa-type and a Xox-type. Mxa-MDH is a heterotetramer (α2ß2) 

composed of two large subunits (MxaF) and two small subunits (MxaI) with molecular 

weights of 67 kDa and 8.5 kDa, respectively (Anthony & Williams, 2003) (Figure 1.4). 

MxaF binds a Ca2+ ion and acts as the catalytic center. It also contains PQQ whose 

reduction to PQQH2 is coupled to the oxidation of methanol. While crystal structures 

showed tight wrapping of MxaI against MxaF, the function of MxaI remains elusive (Xia 

et al., 1999, Xia et al., 2003, Choi et al., 2011). Electrons are transferred from PQQH2 to 

the terminal oxidase via cytochrome c551 and cytochrome c550 (Anthony, 1992, Goodwin 

& Anthony, 1995). 

 

Figure 1.4. Structure of the methanol dehydrogenase from Methylobacterium extorquens. 
Two α subunits and two ß subunits are depicted in green and yellow, respectively. Two PQQ 

molecules and two calcium ions (green sphere) are bound in α subunits (Williams et al.,2004). 
 

Xox-MDH was studied more recently as genomic studies found an mxaF (encoding for 

MxaF) homolog, named xoxF (Chistoserdova & Lidstrom, 1997, Chistoserdova, 2011). 

Comparatively, the sequence of xoxF displays less than 50% identity to mxaF and the 
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xoxF gene cluster lacks most of the genes coding for Ca2+ insertion and maturation as 

well as the gene coding for the small subunit (mxaI). However, the motifs for binding 

PQQ and Ca2+ are conserved in xoxF (Keltjens et al., 2014). Recent genome mining 

reveals that xoxF is more abundant than mxaF in environmental systems (Chistoserdova, 

2011) (Table 1.1). Some methanotrophs contain only xoxF (Pol et al., 2007, Hou et al., 

2008, Vekeman et al., 2016).  

 

Early proof that xoxF encodes for a true MDH is provided by a study on the facultative 

formaldehyde-oxidizing bacterium Rhodobacter sphaeroides, in which a deletion mutant 

of xoxF lost the ability to use methanol (Wilson et al., 2008). Later studies in 

Methylobacterium radiotolerans and Methylobacterium extorquens AM1 showed that 

cerium and lanthanum both increased methanol oxidation by Xox-MeDH (Hibi et al., 

2011; Nakagawa et al., 2012). Further, growth and overall MeDH activity of a M. 

extorquens AM1 mutant in which mxaF was knocked out was severely limited in the 

absence of lanthanum but growth recovered in its presence, regardless of whether 

calcium was simultaneously present or not (Nakagawa et al., 2012). Such results indicate 

that lanthanum was required for the activity of Xox-MeDH. Subsequent studies on 

methanotrophic strain M. fumariolicum SolV (that only has XoxF-MDH) found that its 

growth can be enhanced in the presence of rare earth elements (Pol, et al., 2014). 

Purification of the active MDH of M. fumariolicum SolV grown in the presence of 

praseodymium showed ~ 0.5 - 0.7 atoms of praseodymium per monomer, indicating 

praseodymium to be part of the active site. The XoxF-MDH is homodimeric proteins 

containing a large subunit only and has PQQ as the prosthetic group (Pol, et al., 2014).  
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Another interesting aspect of MDH is the formation of a super-complex between pMMO 

and MxaF-MDH (Myronova et al., 2006). Cryoelectron microscopy and single particle 

analysis showed that pMMO and MxaF-MDH form a “cap-body”-like complex that 

possibly contributes to protein stability and make electron transport more efficient. 

(Figure 2.5) (Leak et al., 1985). The source of electron donor to pMMO has yet to be 

elucidated. Direct electron transfer from MeDH has been proposed but has not been 

directly shown (Kalyuzhnaya et al., 2015). The co-localization of pMMO and MeDH, 

however, supports the hypothesis of direct coupling, i.e., methanol oxidation supplying 

electrons for methane oxidation (Fassel. et al., 1993; Myronova et al., 2006). Other 

theories include: formaldehyde and formate oxidation generate NAD(P)H, which could in 

turn be used to generate ubiquinol from ubiquinone (Choi et al., 2003; Vorholt 2002). 

Methanol oxidation could also partially support methane oxidation with the additional 

input from respiratory Complexes I/III (Torre et al., 2015). A recent study by Torre et al., 

(2015) constructed an in silico stoichiometric flux balance model of Methylomicrobium 

buryatense 5G(B1) and suggested that reverse electron transfer from MeDH is a better fit 

to experimental data.  
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Figure 1.5. 3D structures of pMMO-MDH supercomplex (Myronova et al., 2006)  
(A) Putative intracellular side of pMMO-MDH complex showing a relatively flat complex 

triangular in shape. (B) Putative periplasmic face of the complex revealing three protein densities 
joining in the center to form a three-pronged star arrangement. (C) Putative side view of the 

complex illustrating that the purified complex is composed of two densities termed the cap and 
body. 

 

Despite the fact that xoxF clusters do not have the gene encoding for the small subunit of 

Mxa-MDH, a recent study by Wu et al. (2014) found that XoxF could bind MxaI in Ca. 

Methylomirabilis oxyfera. The concerted actions of different proteins from different gene 

clusters raised the possibility of a joint regulatory system between mxa and xox gene 

clusters and is discussed in later sections.  

 

I.2.1.3 Oxidation of formaldehyde to carbon dioxide 

Formaldehyde is either further oxidized to CO2 or serves as the starting substrate for 

carbon assimilation. Formaldehyde can be oxidized to formate either via a single enzyme 

system of formaldehyde dehydrogenases (FDH) or multi-enzyme cofactor-linked C1 

transfer pathways, such as the tetrahydromethanopterin (H4MPT) pathway or 
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tetrahydrofolate (H4F) pathways. (Vorholt, 2002, Chistoserdova et al., 2009) (Figure 2.6) 

For the latter, the pathways generally follow the condensation of formaldehyde and the 

respective C1 carrier, the oxidation of the cofactor-bound C1 unit and its conversion to 

formate, and the oxidation of formate to CO2 (Vorholt 2002). Formaldehyde is also 

oxidized via the cyclic ribulose monophosphate pathway (RuMP) (Anthony, 1982).  

       

Figure 1.6. Comparison of different linear pathways for formaldehyde conversion in 
methylotrophic bacteria, as found in Methylobacterium extorquens.  

(A) H4F- dependent pathway, (B) H4MPT-dependent pathway. MtdA NADP-dependent 
methylene-H4MPT dehydrogenase, Fch methenyl-H4F cyclohydrolase, Fhs formyl-H4F 

synthetase, FDH formate dehydrogenase, Fae H4MPT -dependent formaldehyde activating 
enzyme, MtdB NAD(P)-dependent methylene-H4MPT dehydrogenase, Mch methenyl-H4MPT 
cyclohydrolase, Ftr formyltransferase, Fhc Ftr/hydrolase complex, Gfa glutathione-dependent 

formaldehyde activating enzyme, GD-FALDH NAD+- and glutathione-dependent formaldehyde 
dehydrogenase, FGH formyl-glutathione hydrolase. X Unknown cofactor, which is assumed to be 

an analogue to methanofuran (MFR) from methanogenic archaea. (Vorholt, 2002) 
 

The H4MPT pathway is the most widespread pathway in methylotrophs (Chistoserdova et 

al., 2009). It involves four groups of enzymes- Fae catalyzes the condensation of 

formaldehyde with H4MPT to form N5, N10-methylene-H4MPT, which is the oxidized 

sequentially by MtdA, MtdB, and Mch to ultimately form N10-formyl-H4MPT. Formate is 

(A)	 (B)	
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then produced via oxidation of N10-formyl-H4MPT by FhcABCD. (Vorholt, 2002) The 

H4F -pathway follows a similar route as does the H4MPT pathway. It is more integrated 

with the serine pathway (discussed in the next section) as H4F pathway helps maintain 

high concentration of N5, N10-methylene-THF as a formaldehyde acceptor for serine 

pathway (Vorholt, 2002, Ward et al., 2004).  

 

Formate is oxidized to CO2 by the formate dehydrogenase (FDH). NAD-linked (Yoch et 

al., 1990) and ferredoxin-linked (Chen & Yoch, 1988) FDH have been purified from M. 

trichosporium OB3b. Multiple copies of genes putatively encoding FDH has been found 

in M. capsulatus Bath (Ward et al., 2004) but their functions are not fully understood. 

Differential expression of FDHs has been observed in M. extorquens AM1 in response to 

molybdenum or tungsten, suggesting that a similar mechanism may exist in 

methanotrophs. (Chistoserdova et al., 2004, Trotsenko & Murrell, 2008) NAD(P)H is 

generated in MtdB/A- and FDH- mediated steps as a reductant for biosynthesis. 

 

I.2.2 C1 assimilation 

The two major pathways employed by methanotrophs for C1 assimilation are the 

ribulose-monophosphate (RuMP) pathway at the level of formaldehyde and serine 

pathway that happens at the level of methylene-H4F and CO2. (Quayle, 1980) In the 

RuMP cycle, formaldehyde is added to a C5 sugar, ribulose-5-phosphate, and produces 

glucose 6-phosphate (G6P). G6P is then partially converted into phosphotrioses via either 

Entner-Doudoroff (EDD)-variant (Strom et al., 1974) or Embden-Meyerhof-Parnas 

(EMP)-variant (Leak & Dalton, 1986; Kalyuzhnaya et al.,2013) pathway, partially for 
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cell biosynthesis, and partially oxidized to regenerate ribulose-5-phosphate (Anthony, 

1982). In the serine cycle, formaldehyde, after condensing with THF, reacts with glycine 

to produce serine. Serine is sequentially phosphorylated, carboxylated, and reduced to 

acetyl-CoA, which partially is converted to biomass, and partially oxidized to glyoxylate. 

Glyoxylate accepts the amino group from serine to regenerate glycine to complete the 

cycle. (Anthony, 1982; Chistoserdova et al., 2009) (Figure 1.7)  

 
 

Figure 1.7. (A) RuMP pathway (B) Serine cycle (Liao et al., 2016) 
 

Historically, the serine cycle was attributed to Alphaproteobacterial methanotrophs (Type 

II) and the RuMP cycle was attributed to Gammaproteobacterial methanotrophs (Type I). 

A subset of methanotrophs belonging to Type I, physiologically classified as Type X 

including Methylococcus and Methylocaldum, assimilate C1 mainly by RuMP pathway 

while also possessing serine pathway and the Calvin-Benson-Bassham (CBB) cycle. 

(Taylor et al., 1981, Stanley & Dalton, 1982) The contribution of CBB cycle remains 

poorly understood, although methanotrophic Verrucomicrobia Methylacidiphilum 

infernorum V4 (Op den Camp et al., 2009) and methanotrophs belonging to the NC10 

A B 
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phylum (Ettwig et al., 2010) are known to assimilate carbon by using the CBB cycle to 

fix CO2. (Figure 1.8) 

 

Figure 1.8. Examples of methanotrophy metabolic modules.  
(A) M. capsulatus; (B) M. trichosporium; (C) Phylum NC10; (D) methanotrophic 

Verrucomicrobia (Chistoserdova, 2011) 
 

Recent transcriptomic and isotopic labeling study by Kalyuzhnaya et al. (2014) found that 

methane assimilation can also coupled with a pyrophosphate-mediated glycolytic pathway in 

Methylomicrobium alcaliphilum strain 20Z. When grown under under oxygen limitation 

conditions, M. alcaliphilum 20Z undergoes a fermentation-based methanotrophy and excretes 

organic compounds and hydrogen. This finding has major implications for the environmental role 

of methanotrophic bacteria in O2-limiting environments suggesting that methane oxidation occurs 

more broadly than initially assumed. Methanotrophs can serve as keystone species for the 

development of microbial communities in situ.  

 

I.2.3 Facultative methanotrophy 

Although some early studies showed that acetate and other multi-carbon compounds can 

be assimilated to a certain extent during growth on methane by some methanotrophs 
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(Eccleston & Kelly, 1973, Patel et al., 1978), the vast majority of methanotrophs are 

obligate, i.e., they grow only on methane or in some cases, other one-carbon compounds, 

such as methanol. Attempts to isolate and characterize facultative methanotrophs that can 

grow on multi-carbon compounds have been reported since 1970s. Most results, however, 

were inconclusive, due to either failure of repeating the initial findings or subsequent 

discovery of contamination (Patt et al., 1974, Patel et al., 1978, Lidstrom-Oconnor et al., 

1983, Semrau et al., 2011). It was not until 2011 that unequivocal demonstration of 

facultative methanotrophy in genus Methylocella was collected with the help of improved 

and more comprehensive assays, including phase-contrast microscopy, whole-cell 

hybridization, and sequencing (Dedysh et al., 2005). Subsequently, species of other 

genera have been shown to be capable of growth on acetate or ethanol in addition to 

methane, including species of Methylocapsa and Methylocystis (Dunfield et al., 2010, 

Belova et al., 2011, Im et al., 2011). 

 

Limited studies have looked into the metabolism of multi-carbon compounds in 

facultative methanotrophs. In a transcriptomic study of Methylocystis sp. SB2 grown on 

ethanol, it was found that ethanol is first converted to acetyl-coenzyme A, which then 

enters the TCA cycle for energy generation and the EMC pathway for conversion to 

biomass, while the expression of the central methane oxidation pathway and serine cycles 

were down-regulated. These findings reveal an effective coordination of different 

pathways that is likely based on complex regulatory network in methanotroph (Vorobev 

et al., 2014). Another study on Methylocella silvestris BL2 that has only soluble form of 

MMO and can grow on several organic acids and alcohols (Dedysh et al., 2005), 
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investigated the mechanism by which M. silvestris grows on propane. Genomic analysis 

revealed two copies of a soluble di-iron center monooxygenase of which the second copy 

was functionally identified as propane monooxygenase (PrMO) based on mutagenesis 

(Crombie & Murrell, 2014). Interestingly, both sMMO and PrMo are required for 

propane utilization by M. silvestris. The 2-propanol produced during propane oxidation 

by sMMO is needed to induce the expression of PrMO.  

 

I.3	Regulation	of	gene	expression	by	copper	

I.3.1 mmo and pmo operons 

sMMO is encoded by the mmo operon. sMMO is composed of a reductase encoded by 

mmoC, a protein B encoded by mmoB, and a hydroxylase component with α2β2γ2 

structure encoded by mmoX, mmoY, and mmoZ, respectively. All these genes are co-

transcribed from a six-gene operon (Stainthorpe et al., 1990, Cardy et al., 1991), together 

with another gene, mmoD, which participates in the genetic regulation of mmo and pmo 

operons. The arrangement of these genes in M. trichosporium OB3b is shown in Figure 

2.9A. A σ54/σN-like promoter is present 5’ of mmoX (Nielsen et al., 1997, Barrios et al., 

1999) and a σ70 promoter at 5’ of mmoY. Upstream of mmoX, there is mmoR, encoding a 

σN-dependent transcriptional activator, and mmoG, encoding a chaperonin GroEL 

homologue (Figure 1.5 A). A regulatory system has been proposed to involve the σN 

promoter, mmoR and mmoG. It was shown by mutagenesis studies that the initiation of 

the σN promoter requires the σN encoded by rpoN, and the expression of mmoR and 

mmoG. (Csáki et al., 2003, Stafford et al., 2003). mmoG is transcribed in a σN and 
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MmoR-independent manner and regardless of copper availability (Stafford et al., 2003). 

Also, MmoG is required for MmoR binding to DNA, it is thus speculated to function as a 

co-regulator of mmo expression via interaction with MmoR, or a chaperone for MmoR. It 

also may be multi-functional and play a role in sMMO assembly (Scanlan et al., 2009). 

The inability to purify MmoG from heterologous expression systems, however, makes it 

difficult to draw any strong conclusion (Scanlan et al., 2009). 

 

The gene arrangement of the mmo operon is identical in most sMMO-possessing 

methanotrophs. The position of mmoR and mmoG, however, can vary. In M. capsulatus 

Bath, mmoR and mmoG are downstream of mmoC. Moreover, they are in a cluster with 

mmoQ and mmoS. The latter two are transcribed in the opposite orientation under a 

putative σ70 promoter and correspond to a homologue sensor and regulator components of 

a two-component system. This kind of system in other bacteria can detect the 

environmental signal via sensor protein and transmit it to the regulator protein via 

transphosphorylation (West & Stock, 2001). It was suggested that MmoG and MmoQ can 

sense copper levels and transmit the signal to MmoR (Csáki et al., 2003, Ukaegbu & 

Rosenzweig, 2009).  

 

Bioinformatic analysis indicates that most methanotrophs possessing sMMO have only 

one copy of mmo operon (data not shown). Methylosinus sporium strain 5 was recorded 

to have duplicate copies of mmoX (Ali et al., 2006). While both copies are transcribed, 

only one copy (mmoX1) was essential for sMMO activity. 
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Figure 1.9. (A) mmo operon of Methylococcus capsulatus Bath, (B) mmo operon of Methylosinus 
trichosporium OB3b (Scanlan et al., 2009) and (C) pmo operon of Methylosinus trichosporium 

OB3b (Costello et al., 1995; Semrau, et al., 1995) 
 

The structural genes for pMMO lie in a three-gene operon in the order of pmoC-A-B 

(Figure 1.9 B) encoding α, β, and γ subunits, respectively. The pmo operon is under the 

control of a σ70 promoter. (Ali & Murrell, 2009) There are typically two complete pmo 

operons and a third copy of pmoC in methanotrophs genome (Semrau et al., 1995, Gilbert 

et al., 2000, Stolyar et al., 2001). Chromosomal insertion mutations suggest that both 

copies of pmoCAB are functional. However, the relative expression and enzyme activity 

from the second copy of pmoCAB (pmoCAB2) are higher than that of pmoCAB1 (Stolyar 

et al., 1999, Stolyar et al., 2001). The mutation of the third copy of pmoC3 cannot be 

obtained suggesting it may play an essential role in growth on methane.  

 

Methylocystis sp. strain SC2 contains two very different types of pmoA. The first type, 

pmoA1 (i.e., conventional pmoA), has two copies in Methylocystis sp. SC2 and are 

identical with the pmoA identified in M. trichosporium OB3b and M. capsulatus Bath. 

The second type, pmoA2, exhibits 73% similarity at nucleotide level with pmoA1 
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(Dunfield et al., 2002). This novel pmoA was later found to be widely distributed in 

Methylocystis and Methylosinus genera (Yimga et al., 2003). pmoA2 is also in a pmoCAB 

gene cluster (pmoCAB2) under the control of a σ70 promoter (Ricke et al., 2004). 

Mutagenesis analysis showed that both pmoCAB1 and pmoCAB2 are transcribed into 

functional pMMOs (pMMO1 and pMMO2). Very interestingly, they have distinct 

methane oxidation kinetics. pMMO1, was only expressed at CH4 concentrations > 600 

p.p.m.v., and had an apparent affinity of CH4 of 9.3 µM The other isozyme, pMMO2, 

was constitutively expressed, had an apparent affinity of CH4 of 0.11–0.12 µM and can 

oxidize CH4 at atmospheric concentrations. Further studies also indicate that 

methanotrophs oxidizing CH4 at atmospheric concentrations in acidic forest soils were 

expressing pMMO (Kolb et al., 2005, Baani & Liesack, 2008). 

 

In most identified pmo operons, pmo genes cluster in a canonically C-A-B order. 

However, in 2011, a pmo-like gene cluster, substantially divergent from previously 

characterized pmo with ~53% identity in sequence, has a unique cluster order of A-B-C. 

These genes are named pxmABC. They are found in several Gammaproteobacteria 

methanotrophs, e.g., Methylomonas sp. Strain LW13, Methylonomas methanica strain S1, 

etc. (Tavormina et al., 2011) (Table 1.1). More divergent pmo genes are discovered in 

other methanotrophs such as Proteobacteria Crenothrix polyspora (Stoecker et al., 2006), 

acidophilic Verrucomicrobial Methylacidiphilum species (Vuilleumier et al., 2012), and 

Candidatus Methylomirabilis oxyfera (Wu et al., 2011). The relevance of these divergent 

pmo genes, however, is still unclear. 

 



	 23	

I.3.2 Copper uptake via methanobactin (mb) 

Copper is an essential metal for methanotrophic activity and plays a regulatory role in 

methanotrophs, most notably on the expression of the sMMO and pMMO (Stanley et al., 

1983, Nielsen et al., 1997). The general effect of copper on methanotrophic activity has 

been noted for more than 30 years (Dalton et al., 1984; Stanley et al., 1983). However, 

the copper sensing and uptake mechanisms by methanotrophs was only recently 

determined. Phelps et al., (1992) isolated an M. trichosporium OB3b mutant that 

constitutively expressed sMMO up to 10 µM Cu (mutant smmoC), suggesting possibly a 

specific Cu uptake system was disrupted. Later, a copper binding compound was 

identified in association with pMMO during its purification from M. capsulatus Bath and 

was thought to be a cofactor. (Zahn & DiSpirito, 1996). This small copper binding 

molecule, later named methanobactin (mb), turns out to be part of a novel metal-uptake 

system used by methanotrophs for copper sequestration.  

 

I.3.2.1 Structure and properties of mb 

Early studies on mb produced by M. trichosporium OB3b (mb-OB3b) showed that mb is 

a short, modified chromopeptide produced by methaontrophs under low-copper 

conditions (Kim et al., 2004). While the amino acid sequence was determined by MS-

based sequencing, the modified residues had novel structures that were difficult to 

elucidate (Kim, 2003). Using NMR, two oxazolone rings were identified in mb-OB3b, 

which are formed by modified proteinogenic amino acids of the sequence X-Cys. 

(Behling et al., 2008, Krentz et al., 2010) (Figure 1.10A). Mb-OB3b has characteristic 

UV-Vis spectrum with two major peaks at 340nm and 394 nm assigned to the two 
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oxazolone rings (Figure 1.11). The molecule was proposed to fold with the two rings in 

proximity to each other and bind Cu (I) with coordination of N and S. Following the 

study of mb-OB3b, mbs from other methanotrophs have been isolated and characterized, 

which include Methylocystis strain SB2 (Krentz et al., 2010), Methylocystis strain M, 

Methylocystis hirsuta CSC1, Methylocystis rosea (El Ghazouani et al., 2012), and 

Methylosinus LW4 (Kenney et al., 2015). 

 

 

Figure 1.10. Chemical structure of (A) mb-OB3b and (B) mb-SB2 (Krentz et al., 2010) 
 
 
 

 
Figure 1.11. UV–visible absorption spectra of mb from M. trichosporium OB3b (Kim et al., 

2005) 

B.	

A.	
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A review of the structurally identified mbs reveals a core structure featuring one 

oxazolone ring and a second of either oxazolone, imidazolone, or pyrazinedione ring with 

adjacent thioamide groups. (DiSpirito, et al., 2016) Based on their structural variation, 

mbs are divided into two groups. Group 1 mb, represented by mb-OB3b (Figure 1.6), 

contains Cys residues in the mature peptide, which are linked by an intramolecular 

disulfide bond. Group 2 mbs, represented by mb-SB2 (Figure 1.10B), lack the Cys 

residues in the mature peptide and thus no disulfide bond. Instead, the group 2-mbs have 

a sulfate group in front of the second oxazolone ring which aids the formation of bend in 

the molecule though in a less rigid way than group 1-mbs. Group 2-mbs are also smaller 

that group 1-mbs (DiSpirito, et al., 2016). 

 

Mb can bind both Cu2+ and Cu1+ but appears to favor Cu1+ (Choi et al., 2006; El 

Ghazouani et al., 2011; Bandow et al., 2012). After binding to Cu2+, it quickly reduces 

Cu2+ to Cu1+ (Ghazouani, et al., 2011; Bandow et al., 2012; Choi et al., 2006; Pesch. et al., 

2012). The Cu1+ binding affinity of mb was calculated to be as high as ~1021M-1 

(determined by competition studies). In addition to copper, mb-OB3b and mb-SB2 also 

bind to a number of transitional and near-transitional metals including Hg2+, Au3+, Zn2+, 

Cd2+, Co2+, Fe3+, Mn2+, Ni2+ (listed in a descending order of binding preferences for mb-

OB3b) (Choi et al., 2006; Bandow, 2014). This property of mb leads to several 

interesting phenomena, which will be discussed in more detail later.  
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Copper binding compounds from the Type I methanotroph M. capsulatus Bath have also 

been isolated (Choi et al., 2008, Choi et al., 2011) but their structures have not been 

determined. These compounds from Type I methanotrophs show distinct spectrum 

properties from mb indicating different structures and also are known to have weaker 

copper-binding constants (Choi et al., 2008, Choi et al., 2011). This difference may lead 

to different copper sequestering ability between Type I and II methanotrophs and help 

define the structure and composition of methanotrophic communities in situ (Semrau et 

al., 2010). 

 

I.3.2.2 Mb genetic organization  

In the study by Krentz et al. (2010) a short open reading frame (mbnA) was identified in 

the genome of M. trichosporium OB3b that matches the amino acid sequence of a 

hydrolyzed form of mb, providing evidence that mb is derived from a ribosomally 

produced peptide. Definitive proof was provided later by a mutagenesis study in which 

the ability of M. trichosporium OB3b to produce mb was lost after mbnA was knocked 

out (Semrau et al., 2013). 

 

The genome sequence near mbnA in M. trichosporium OB3b has been analyzed 

bioinformatically (Semrau et al., 2013; Kenney & Rosenzweig, 2013). Several ORFs 

have been identified and speculated to involve in mb synthesis and transport (Figure 

1.12A). mbnA is the precursor polypeptide for mb. Following mbnA are mbnB and mbnC, 

two putative genes with no significant homologues in the current database and are 

speculated to involve in mb biosynthesis. A putative multi-antimicrobial extrusion 
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protein (MATE) efflux pump gene (mbnM) follows mbnC, and is proposed to export mb 

out of cell. Downstream of mbnM is mbnN, putatively encoding for a transaminase, 

which may be involved in mb maturation. mbnP and mbnH are downstream to mbnN, and 

encodes for a di-heme cytochrome c peroxidase homologue and its partner, respectively. 

Similar pairs of proteins are found in M. capsulatus Bath (SACCP and MopE) and M. 

album BG8 (CorB and A) though with low similarity. MopE is involved in an alternative 

Cu sensing system in some methanotrophs (Fjellbirkeland et al., 2001). CorB, the same 

as MopE, is down-regulated in the presence of copper and a mutant with corA knocked 

out grew poorly indicating its important physiological role (Berson & Lidstrom, 1997). 

The function of MbnPH pair however, is not clear and may be involved in the oxidation 

steps required for ring formation (DiSpirito et al., 2016).  

 

 

Figure 1.12. mbn gene cluster in (1) Methylosinus trichosporium OB3b and (2) Methylocystis sp. 
strain SB2. (Dispirito et al., 2016) 

 

A	

B	
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Putative σ70 promoters upstream of mbnA and mbnI have been identified. Putative 

promoters are found inside mbnM and mbnN, as well as in intergenic region between 

mbnN and mbnP, but with lower scores (BPROM package, www.softberry.com). 

Polycistronic transcripts of the mbn operon have been found that include mbnA and at 

least mbnB and mbnC (Semrau et al., 2013). 

 

Upstream of mbnA, there are mbnI, mbnR, and mbnT. MbnT is a homologue of TonB-

dependent transportors (TBDTs). TBDTs act as importers for siderophores and it is 

speculated to have a similar role for mb import. MbnI/R are putative homologs of FecI/R 

pairs, which are often seen in siderophore systems. FecI is “Fe(III) dicitrate membrane 

sensor” and FecR is “ECF sigma factor”. They work together with TBDT in siderophore 

systems in that upon binding a siderophore, TBDT may interact with FecR, which then 

may send a signal to FecI that regulates expression of siderophore biosynthesis and 

transport proteins (Koebnik, 2005, Postle & Larsen, 2007, Brooks & Buchanan, 2008). If 

similar functions apply here, mbnIR could regulate mb synthesis.  

 

Interrogation of the genome of Methylocystis sp. strain SB2 also reveals a putative 

methanobactin gene cluster (Figure 1.12B). It has similar mbnABCM gene arrangement 

as the M. trichosporium mbn operon. By comparison, the aminotransferase MbnN is 

missing from the mb-SB2 gene cluster and instead there is mbnF and mbnS. MbnF (a 

FAD-dependent oxidoreductase homologue) may be involved in the oxidation steps 

required for ring formation, and MbnS (a sulfotransferase homologue) may catalyze the 

sulfonation of the threonine (DiSpirito et al., 2016). Also, the interesting observation that 
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mbnA of Methylocystis sp. strain SB2 is embedded at the 3’ end of mbnI makes one 

wonder its implication in genetic regulation, i.e., MbnI is involved in regulating 

expression of mb (DiSpirito et al., 2016).  

 

Interestingly, genome mining of mb gene cluster (not only queried by the short and 

diverse mbnA, but rather, also the adjacent mbnB and mbnC) (Table 1.1) against available 

databases returns several non-methanotrophic bacteria strains, suggesting that such gene 

clusters may encode peptide-derived products with more diverse functions (Krentz et al., 

2010; DiSpirito. et al., 2016). 

 

 I.3.2.3 Regulation of gene expression by mb and MmoD 

It has been long observed that there is a “copper-switch” in methanotrophs. That is, in 

cells grown under high copper-to-biomass ratios, the pMMO is expressed while under 

low copper-to-biomass ratio, the sMMO enzyme is highly expressed. (Stanley et al., 

1983, Dalton et al., 1984)  

 

A study by Semrau et al., (2013) shed light on the genetic bases of the “copper-switch”. 

In this study, the expression of several key genes of a M. trichosporium OB3b SMDM 

mutant, (created by Borodina et al.,(2007) in which mmoXYBZDC were knocked-out) as 

well as a mbnA::Gmr mutant (in which mbnA was knocked-out) grown at various copper 

conditions were quantified by quantitive reverse transcription (qRT)-PCR. Several 

observations were made: (1) mbnA expression is regulated by the availability of copper, 

i.e., its expression level dropped >3 orders of magnitudes when cells were growing at 
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1uM Cu compared to the absence of copper; (2) the copper switch between sMMO and 

pMMO still existed in the mbnA::Gmr mutant but to a lesser degree; (3) the copper switch 

was inverted in the SMDM mutant, i.e., pmoA expression was greatest in the absence of 

copper and dropped by ~2 orders of magnitude at presence of copper, and mbnA 

expression was invariant with respect to copper at a low level. Since MmoX, Y, B, Z, C 

are known to encode for structural peptides of sMMO, it was thus proposed that MmoD 

is the switching factor, and mb acts as a “magnifier” to the copper-switch. More finding 

supporting this hypothesis includes that mmoD, while being partly co-regulated together 

with the rest of mmo operon, is constitutively expressed with respect to copper (DiSpirito, 

et al.,2016). Moreover, in a study on Methylomicrobium buryatense 5GB1C (Yan et al., 

2016), a mmoD::Gmr mutant was created where MmoD were knocked-out. The mutants 

showed lack of sMMO activity at absence of copper.  

 

Starting from the above, a genetic regulation model was built (Semrau et al.,2014) and 

improved (DiSpirito et al., 2016) to include the earlier findings of MmoG/R as mmo 

regulaters as well as recent hypothesis on MbnIR, which have both been discussed in 

earlier sections. This revised model (Figure 1.13) hypothesized that MbnI induces 

expression of the mbn operon and mmoRG MbnI also binds to and induces the s70 

promoter upstream of mmoY. In turn, mb, MmoR, and MmoG interact to induce 

expression from the sN promoter upstream of mmoX. mmoD is constitutively expressed 

and can repress the pmo and mbn operon at low-copper condition. However, MmoD 

associates with copper when it is present and lift the repressions.  
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Figure 1.13. Proposed regulatory scheme of mmo, pmo and mbn operons by copper, 
methanobactin and MmoD. (A) low copper:biomass ratio; (B) high copper:biomass ratio. 

(DiSpirito, et al., 2016) 
 

I.3.2.4 Physiological roles of mb 

Methanotrophs secrete mb under low-copper conditions to acquire copper. Under 

laboratory conditions where copper is provided in a soluble form, it was found that mb is 

not necessary for copper acquisition or induction of “copper-switch” (Semrau et al., 

2013). The role of mb in acquiring mineral copper source was investigated and showed 

that mb facilitates copper uptake from mineral copper source but the degree (with 

respective to relative activities of sMMO and pMMO) largely varies between different 

forms of mineralogy. (Knapp et al., 2007; Fru et al., 2011) These studies can be very 

informative for application of in situ bioremediation where the estimation of 

methanotrophic activity in soil environments is needed.  

 

After shuttling copper inside the cells,  Cu-mb can provide copper to pMMO (Zahn & 

DiSpirito, 1996). The activity of pMMO has long been known to correlate with 

intracytoplasmic membrane formation. (Dalton et al., 1984; Green et al., 1985; Prior & 
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Dalton, 1985; Choi et al., 2003) As shown by DiSpirito et al., (2006), while the SMDM 

mutant had intracytoplasmic membrane development similar to wild type M. 

trichosporium OB3b, the mbnA::Gmr mutant appears to have a clear defect in 

intracytoplasmic membrane development. (Figure 1.14) However, how the defect is 

caused by mb is not known. Whether mb is directly involved in the development of the 

intracytoplasmic membranes in methanotrophs could be very valuable for 

methanotrophic application of biolipid production.  

 

Figure 1.14. Transmission electron micrographs of M. trichosporium OB3b wild-type (A and B), 
SMDM mutant (C and D), and mbnA deletion mutant (E and F) cultured in nitrate mineral salts 

(NMS) medium (A, C, and E) or NMS medium amended with 5 M CuSO4 (B, D, and F). 
 

As has been mentioned, mb can bind to a variety of metals other than copper with 

relatively high affinity. A study by Vorobev et al., (2013) found that after binding to 
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mercury, mb significantly alters the speciation and bioavailability of mercury and thereby 

reduced its toxicity. These results raised the possibility that mb could serve to protect the 

microbial community from mercury toxicity in the environment, which was shown as 

Methylomicrobium album Strain BG8 is also protected by mb-OB3b from mercury. 

Another study by Kalidass et al., (2015) looked at the interaction of mb with gold and 

their effect on methanotrophic activity. It was found that when copper, gold, and mb-

OB3b are provided in the medium, gold can bind to mb more rapidly and block the 

binding and availability of copper to M. trichosporium OB3b leading to sMMO 

expression in the presence of copper. However, if mb was pre-incubated with copper and 

added exogenously together with gold to M. trichosporium OB3b, sMMO expression was 

repressed, suggesting that gold cannot displace copper bound to mb. These findings 

extend our understanding of in situ methanotrophic activity where complicated 

environments are present.  

 

Other studies have shown that methanotroph can take up mb produced by another 

methanotrophic member. By doing so, the “copper-switch” could be induced (Ghazouani 

et al., 2011; Farhan UI Haque et al., 2015). It was also found that the addition of mb-SB2 

can enhance the expression and activity of sMMO in M. trichosporium OB3b, a similar 

response as to the addition of its native mb (Semrau et al., 2013; Farhan UI Haque et al., 

2015). This finding suggests that mb may serve as a signaling molecule to regulate 

genetic expression between methanotrophic strains. As mentioned earlier, copper binding 

compounds from the Type I methanotroph (i.e. M. capsulatus Bath) have different 

structures and a lower copper-binding constant compared to the mbs from Type II 
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methanotrophs. (Choi et al., 2008, 2011) There is also a difference in copper binding 

affinities between the mbs from Type II methanotophs, especially to Cu2+ (Ghazouani et 

al., 2011). It will be interesting to see if there is interaction between Type I and II 

methanotrophs (and even with other groups of bacteria) based on mbs and to see how the 

difference in mb properties affect the structure and composition of methanotrophic 

communities (Semrau et al., 2010).  

 

I.3.2.5 Applications of mb 

Mb has several properties that make it industrially and medically valuable. Both mb-

OB3b and mb-SB2 have been shown to reduce Au3+ to Au0 and form gold nanoparticles 

with high uniformity (Bandow, 2014; Choi et al., 2006). Gold nanoparticles have 

applications in catalysis, biosensing, drug delivery, and photonics. However, obtaining 

mono-dispersed gold nanoparticles with a narrow size distribution remains challenging 

(Daniel et al., 2004). Microbial-mediated production of gold nanoparticles has been 

considered (Korbekandi et al., 2009). Mb stands out as a strong candidate in that they 

produce gold nanoparticles of well-defined sizes of 2.0+/-0.7mm (Bandow, 2014; Choi et 

al., 2006).  

 

Other research has shown that mb is an effective chelator for copper in a rat model for 

Wilson disease. Wilson disease is an autosomal recessive disorder where the body is 

unable to correctly assimilate copper, with copper accumulating in the liver and brain, 

and can result in severe and irreversible damage (Ala et al. 2007, Roberts, 2011). Current 

treatment therapies include prescription of chelating agents such as penicillamine and 
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trientine, but it is not uncommon for serious side effects to occur, and in any case copper 

is excreted when using these compounds through the urine and not the bile, which is the 

preferred or normal physiological route. Mb, however, was found to bind copper very 

strongly in a rat model of Wilson disease. Copper was then quickly removed via the bile 

and animals treated with mb had sustained clinical recovery (Lichtmannegger et al., 

2016). Such findings indicate that mb has the potential to be an alternative treatment for 

Wilson disease, particularly for those patients with acute liver failure (Kaler, 2016). 

 

The application of mb for different purposes is held back currently by the lack of 

knowledge of its synthesis pathways and the slow growth of methanotrophs, which leads 

to low yield of mb (~50 mg/L culture). The latter is an obstruction faced by many 

methanotroph-based applications. There is a great deal of interest in enhancing 

methanotrophic activity and in up-scaling the production of mb.  

 

I.3.3 Alternative copper uptake mechanism(s) 

The finding that mbnA::Gmr mutant is able to take up copper and respond to copper 

indicates that an alternative copper uptake pathway(s) exist in methanotrophs (Semrau et 

al., 2014). Several candidates have been suggested. For example, Balasubramanian et al., 

(2011) argue a porin-dependent passive transport mechanism exists besides the active 

uptake of Cu-mb in M. trichosporium OB3b based on uptake-inhibition studies. Another 

possible candidate is a CopC encoding gene which was found to respond to copper levels 

in a transcriptomic study on M. capsulatus Bath (Larsen & Karlsen, 2015). CopC family 

proteins are located to the periplasm where they have been shown to function as copper 
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chaperones (Djoko et al. 2007). Moreover, as discussed previously, the MbnP (a putative 

di-heme cytochrome c peroxidase) and MbnH (the partner protein) are homologues of 

SACCP/MopE in M. capsulatus Bath and CorB/CorA in M. album BG8. These have been 

indicated to be involved in copper sensing system (Berson & Lidstrom, 1997, 

Fjellbirkeland et al., 2001) in Type I methanotrophs. Specifically, MopE was found to 

have a copper binding site and its C-terminal region can be secreted for copper sensing 

(Kalsen et al., 2005; 2008; 2010). Expression of corAB responds to copper and are 

downregulated in the presence of copper in M. album BG8 (Berson & Lidstrom, 1997). 

MbnPH could be an alternative copper sensing mechanism if these proteins function like 

MopE. However, MbnP has low similarity to either MopE or CorA.  

 

I.4	Regulation	of	gene	expression	by	rare	earth	elements	

The complexity of genetic regulation in methanotrophs is not only shown in MMOs. It is 

now known that MDH expression also involves a complicated regulatory network. A 

mutagenesis study on Methylobacterium extorquens AM1 identified five genes required 

for the transcription of MxaF-MDH. These five genes consist of two and a half pairs of 

sensor kinase/response regulators (Springer et al., 1997). These two-component 

regulatory systems are commonly used by bacteria as a mechanism to respond to rapid 

environmental changes (Krell et al., 2010). The first pair is mxbDM, located upstream of 

pqq operon pqqABCED, genes required for the synthesis of PQQ. This pair responds to 

one-carbon substrate as compared to growth on succinate. Hierarchically above mxbDM, 

there is a second pair of genes, mxcQE, which are required for expression of mxbDM and 

indirectly control expression of the mxa operon (Springer et al., 1997). A third regulator 



	 37	

named mxaB also exists and is required for the transcription of mxa operon as well. It is 

an orphan response regulator without a sensor kinase (Springer et al., 1998).  

 

With the identification and characterization of XoxF-MDH, it was found that xox genes 

are also co-regulated with the mxa operon. Skovran et al. (2011) found that (1) with the 

two copies of xoxF in M. extorquens AM1 (xox1 and xox2), at least one copy of xoxF is 

required for the expression of mxa-promoter; (2) MxbM is require for the repression of 

xox1 operon; and (3) xoxF12 are required for inducing mxcQE and mxbDM expression.  

 

However, early observation regarding the expression of xoxF itself was controversial. 

While xoxF is hardly expressed in typical laboratory culturing conditions, it was found to 

have at a high level of expression in several proteomics studies on environmental samples 

(Delmotte et al., 2009, Ettwig et al., 2010, Sowell et al., 2011). These inconsistent 

observations were attributed to the availability of rare-earth elements (REE) like 

lanthanum (III), since lanthanum was found to increase the activity of XoxF-MDH 

(Nakagawa et al., 2012, Wu et al., 2014). The effect of cerium on the expression of xox 

operon was then investigated in methanotrophs (Farhan UI Haque et al., 2015, 2016). 

Cerium was found to induce the expression of xox operon and represses the mxa operon. 

Consistent observations were made later in M. extorquens AM1 by Vu et al., (2016). In 

the same study, a regulatory model of xox and mxa operons was proposed in M. 

extorquens AM1 (Figure 2.15). The accuracy of the model, however, is yet to be tested as 

the existence of an apo-form of XoxF, the interaction of XoxF with MxcQ, and the direct 

binding of MxcE, MxbM with different promoter regions have not been demonstrated.  
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Figure 1.15. Hypothesis for how XoxF and lanthanides (Ln) differentially regulate expression of 

the mxa and xox1 genes in the absence (A) and presence (B) of lanthanides. (Vu et al., 2016) 
 

As mentioned above, the genetic regulation by REE in methanotrophs was initiated by 

Farhan UI Haque et al., (2015), in which the expression levels of Mxa-MeDH and Xox-

MeDH in M. trichosporium OB3b under different cerium and copper conditions were 

investigated. It was found that Mxa-MeDH and Xox-MeDH significantly decreased and 

increased, respectively, when grown in the presence of cerium compared to the absence 

of cerium. In the presence of copper, however, the repression of cerium on mxaF was less 

significant, while the induction on xoxF was at similar level as compared to the absence 

of copper. This indicates a cross-regulation of gene expression by copper and cerium 

methanotrophs.  

 

These findings broaden our understanding of the complicated regulation system in 

methanotrophs and can be instructive for better manipulation of methanotrophic activities. 

Many new topics should be investigated, for example, the sensing and uptake mechanism 

of the sparingly soluble REEs by methanotrophs; the effect on electron transport to 

pMMO, and the relative regulation of MDHs by REEs.  
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I.5	Applications	of	methanotrophs		

Methanotrophs grow on methane as their sole carbon and energy source. Methane is 

renewable if produced by methanogenic activity. Methane has become an attractive 

choice for liquid fuel and chemical production. Nearly 3x1013 ft3 of natural gas was 

produced in the US in 2012, representing a 30% increase since 2002 (US Energy 

Information Administration, 2015). The production of natural gas is estimated to keep 

increasing with 25% of global energy derived from natural gas by 2035 (International 

Energy Agency, 2015). Due to the development of shale gas production, the cost of 

natural gas (80-95% v/v methane mixed with other heavier alkanes) has dropped 

significantly, from $10.79 per 1000 ft3 in July 2008 to $3.38 per 1000 ft3 in 2012 (US 

Energy Information Administration, 2015). Nevertheless, about 5% of the annual 

production of natural gas is currently flared or vented around the globe, contributing to 

greenhouse gas emissions. This waste is largely caused by the lack of economic incentive 

to capture the unwanted natural gas. Therefore, alternative processes to produce value-

added products from methane is currently of great interest. Current technologies of the 

conversion of natural gas into liquid products (e.g. the Fischer-Tropsch process) are 

usually energy intensive and have low carbon conversion efficiency (25-50%). 

 

Due to their unique physiology as the biological methane sink and versatile metabolic 

abilities, methanotrophs have drawn substantial attention for bioconversion of methane. 

Applying methanotrophs for methane conversion has the following advantages: (1) 

methanotrophs are able to convert methane into value-added products under ambient 
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conditions; (2) bioconversion of methane does not require pipelines facilities and can be 

realized in scattered, remote areas; (3) using methane as a starter material for chemical 

production can relieve the dependence on other substrates (e.g., sugar) with high costs; 

and (4) bioconversion of methane by methanotrophs is inexpensive and efficient (in 

carbon conversion) compared to many other traditional chemical processes. Many 

potential applications of methanotrophs in the bioconversion of methane have been 

proposed and thoroughly reviewed (Semrau et al., 2010; Jiang et al., 2010; Fei et al., 

2014; Kalyuzhnaya et al., 2015; Khmelenina et al., 2015). A few aspects are discussed 

below.  

 

I.5.1 Mitigation of methane emission 

CH4 is approximately 34 times as efficient as carbon dioxide at absorbing infrared 

radiation as a greenhouse gas. Processes like landfill and mining activities are significant 

sources of CH4 emission (IPCC, 2013), in particular, globally landfills release 799 metric 

tons of CO2 equivalent of the methane entering the atmosphere (US EPA, 2011). 

Reduction of fugitive methane emissions from these sources is required. Much attention 

has been put into stimulatory methanotrophic activity in landfill cover soils or other 

engineered systems (e.g., biocover and biofilter) to reduce fugitive emissions of CH4 

(Park et al., 2008; Scheutz et al., 2009; Nikiema et al., 2007; Huber-Humer et al., 2008). 

These systems use supporting materials with sufficient porosity and a high moisture 

holding capacity to increase gas transfer to better establish methanotrophic growth. Field 

trials and experimental studies have shown that methanotrophic biofilters can remove 

appreciable amounts of methane at concentrations ranging from 700 to 1500 p.p.m.v. 
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(Melse & Van Der Werf, 2005; Nikiema et al., 2009; Barlaz et al., 2004).  

 

I.5.2 Bioremediation 

Both forms of MMO can bind and oxidize a range of hydrocarbons and some halogenated 

derivatives (Colby et al., 1977, Grosse et al., 1999). Methanotrophs have been 

investigated for bioremediation of halogenated compounds (Westrick et al., 1984, Wilson 

& Wilson, 1985, Semprini, 1997, DiSpirito et al.,1992), aromatic hydrocarbons (Rockne 

et al., 1998), and chlorinated biphenyls (Lindner et al., 2000). Methanotrophs biodegrade 

organic pollutants oxidatively, which produce less toxic intermediates as compared to 

reductive biodegradation. Also, methanotrophs are ubiquitous and are easily stimulated 

with the provision of methane.  

 

There is some controversy as whether sMMO- or pMMO-expressing cells are more 

useful for bioremediation. The sMMO has a wider substrate range, being able to oxidize 

alkanes up to C-8, as well as ethers, cyclic alkanes, and aromatic hydrocarbons (Colby et 

al., 1977; Burrows et al., 1984). pMMO has a narrower substrate range being able to 

oxidize alkanes up to C5 but not aromatic compound (Burrows et al., 1984). However, 

pMMO has a higher affinity for CH4 (Lontoh & Semrau, 1998) and gives methanotrophs 

a higher efficiency of CH4 conversion into biomass (Leak et al., 1985). As a result, 

methanotrophs expressing pMMO appear to have a competitive advantage over cells 

expressing sMMO for degrading mixtures of substrates over the long term. This is 

because pMMO has greater specificity for methane and cells are more effective at turning 

over the growth substrate (methane) in the presence of non-growth substrates. Further the 
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accumulation of toxic degradation products is slower. (Lee et al.,2006; Yoon & Semrau, 

2008).  

 

Methanotrophs have also been considered for immobilizing heavy metals. Methanotrophs 

influence the speciation and bioavailability of metals in the environment (Choi 2006, 

Jenkins et al.,1994, Knapp et al.,2007). Hasin et al. (2010) reported the reductive 

transformation of soluble and more toxic Cr (VI) into a less toxic Cr (III) species by M. 

capsulatus Bath. This strain was also found to reduce mercury using reducing equivalents 

obtained from the dissmililation of methane (Boden and Murrell, 2011). As discussed in 

the previous section, methanotrophs can interact with metals via mb. The expanding 

knowledge of mb will thus likely expand the application of methanotrophs in 

bioremediation of heavy metals.  

 

I.5.3 Single cell protein production 

There has been interest in the use of microorganisms as an alternative source of protein 

for animal consumption since the early 1980s (Kuhad et al., 1997). The use of cheap, 

non-agricultural products as a starting material, i.e., CH4, for single-cell protein 

production by methanotrophs has been put into use at a commercial scale (e.g., UniBio, 

Denmark, 2011). Although bacteria typically possess a high protein content (50-60%), 

they also possess high nucleic acid content (8-12%) which can cause significant 

immunological effects (NCSF, 2006). As a result, bacterial protein is best suited as a feed 

ingredient for animals with a short life span. UniProtein produced by UniBio has been 

tested as feed for salmon, calves, pigs and chickens with positive results in terms of 
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acceptance and growth.  

 

I.5.4 Poly (3-hydoxybutyrate) (PHB) production 

Biopolymers like poly(3-hydoxybutyrate) (PHB) are biodegradable, biocompatible, and 

thermoplastic polyesters that are of interest for the production of plastics. PHB can be 

accumulated by bacteria by exposing an active culture to excess carbon while under some 

nutrient limitation. Many studies have explored the potential of utilizing methanotrophs 

for PHB production, most of which tried to increase PHB production by manipulating the 

growth conditions of methanotrophs, e. g., C:N ratios (Lee et al., 1994; Kim et al., 1998; 

Zhang et al., 2008), and also limiting potassium (Kim et al., 1998; Helm et al., 2008). It 

was found that pMMO-expressing cells displayed greater and more rapid PHB 

accumulation as well as greater biomass (Shah et al., 1996). A maximum PHB content of 

70% (w/w) could be obtained in a culture of Methylocystis parvus OBBP (Asenjo and 

Suk, 1986). However, the production cost of microbial PHB is relatively high compared 

to traditional petrochemical-based plastics (Lee et al., 2005). It has been suggested that 

higher-value polymers used in biomedical applications could be the target to bridge initial 

commercialization of biopolymers from methanotrophy (Strong et al., 2015). Indeed, 

methanotrophic production of PHB has been commercialized (Newlight Technology, 

Costa Mesa, CA; Mango Materials, CA, USA) by using biogas produced from anaerobic 

digestion of organic material.  

 



	 44	

I.5.5 Biofuel production 

The use of methanotrophs to produce biofuels from methane has also been recently 

evaluated (Conrado & Gonzalez, 2014; Fei et al., 2014). Because of the formation of 

extensive intracytoplasmic membranes (ICM) under pMMO-expressing conditions, 

methanotrophs have a relatively high lipid content compared to most other bacteria. As a 

result, they have metabolic potential for the production of biodiesel from these lipids. The 

ICM consists of phosphatidyl-glycerol (PG) and phosphatidyl methyl ethanolamine (PE)-

type phospholipid, e.g., phosphatidyl methyl ethanol-amine (PME) and phosphatidyl 

dimethyl ethanolamine (PDME) (Lechevalier and Moss, 1977; Weaver et al., 1975). The 

composition is different from typical biodiesels rich in triglycerides (Fang et al., 2000). 

Methanotrophic lipids are thus proposed to produce renewable dieseal via 

hydroprocessing (Fei et al., 2014). The lipid fraction in the biomass can be more than 20% 

on a dry cell weight basis in methanotrophs under pMMO-expression conditions (Collins 

et al., 1991; Kaluzhnaya et al., 2001). However, this yield is not yet competitive over the 

utilization efficiency of glucose for production of other biofuels. An increase to 

approximately 35% lipid content could justify methane to biodiesel conversion 

(Khmelenina et al.,2015) but would likely require a synthetic biology approach to achieve.  

 

I.5.6 Challenges in applications of methanotrophs 

Many other potential applications of bio-conversion of methane by methanotrophs have 

been proposed and evaluated including cell-free catalysis, production of primary and 

secondary metabolites, biosensors for methane detection amongst others. (Semrau et al., 

2010; Jiang et al., 2010; Fei et al., 2014; Kalyuzhnaya et al., 2015; Khmelenina et al., 
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2015). However, there are still obstacles in realizing any of these applications in pilot- or 

commercial scales. These include: (1) incomplete understanding of metabolic shifts/gene 

regulation in response to different growth/nutrient conditions, (2) lack of high-efficiency 

tools and approaches to genetically manipulate methanotrophs, (3) inability to obtain 

active enzymes either in vitro or via heterologous expression, and (4) slow and limited 

growth of methanotrophs, mostly due to limited gas-liquid phase transfer of methane and 

oxygen.  

 

I.6	Project	aims		

There is great need for a better understanding of how methanotrophs regulate their 

metabolism and also to develop better genetic manipulation systems to enhance the utility 

of methanotrophs for various applications. The aims of the work described here are thus 

to:  

1. investigate mb-mediated copper uptake in M. trichosporium OB3b; � 

2. develop systems to facilitate the genetic manipulation in M. trichosporium OB3b, 

especially to characterize mb synthesis; 

3. identify other systems possibly involved in copper uptake and/or sensing in M. 

trichosporium OB3b; 

4. determine how REEs affect gene expression in M. trichosporium OB3b, and; 

5. investigate the cross-regulation of gene expression by copper and REE in M. 

trichosporium OB3b through transcriptomic analyses.  
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CHAPTER II MATERIALS AND METHODS 

II.1	Materials	

Chemicals were purchased through Sigma-Aldrich Corporation (St Louis, MO, USA) or 

Fisher Scientific (Fair Lawn, NJ) as analytical-grate or higher. Methane used for growth 

of cultures was 99.999% purity grade obtained from Airgas Company (Ann Arbor, MI). 

Custom oligonucleotide primers were obtained from Integrated DNA Technologies 

(Coralville, IA). Enzymes are purchased through New England Biolab (Ipswich, MA), 

Invitrogen (Carlsbad, CA), and Bio-Rad (Hercules, CA).  

 

II.2	Cultivation,	maintenance,	and	storage	of	bacterial	strains	

All solutions and growth media were prepared with Milli-Q water (>18.2 MΩ·cm at 

25 °C) and sterilized either by autoclaving or filtering using 0.22 µm SFCA or PVDC 

filters purchased from EMD-Millipore (Billerica, MA) before use. Solid media were 

prepared by the addition of 1.5 % to 1.8% (w/v) agar and sterilized via autoclaving. A 

summary of bacterial strains used is shown in Table 2.1. Frozen stocks of strains were 

stored at -80°C in the presence of 15 % (v/v) glycerol sterilized via autoclaving. 
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II.2.1 Antibiotics 

Antibiotics were filter sterilized and added aseptically to cooled, sterilized growth 

medium. Where appropriate, antibiotics were added to the following concentrations: 

ampicillin 100 µg·ml-1; kanamycin, 25 to 50 µg·ml-1; gentamicin 5 µg·ml-1; nalidixic acid 

15 µg·ml-1 for E. coli strains, kanamycin, 10 µg·ml-1, gentamicin 2.5 µg·ml-1, and 

specitnomycin 20 µg·ml-1. Cycloheximide (30 µg·ml-1) was used to prevent fungi 

contamination when necessary.  

 

II.2.2 Preparation of chemically competent Escherichia coli cells 

Chemically competent E. coli were prepared via CaCl2 (Mandel & Higa, 1970, Cohen et 

al., 1972). A single colony from a fresh plate of E. coli Top10 cells was transferred to 10 

ml of Luria-Bertani (LB) medium and incubated at 37 °C with shaking at 220 rpm 

overnight. 1mL of the overnight culture was then used to inoculate 500 ml flasks 

containing 100 ml LB medium, and incubated at 37 °C with shaking for 2-3 hours until 

OD600 reached 0.20-0.30. Cells were then cooled on ice, harvested by centrifugation 

(2,000 × g, 15 mins, 4 °C), and resuspended in 40 ml ice-cold 0.1M MgCl2. The cells 

were then centrifuged again, resuspended in 20 ml ice-cold 0.1M CaCl2, and treated for at 

least 20 min on ice. The cells were harvested for the third time and resuspended in 2ml of 

ice-cold 85mM CaCl2, 15% glycerol and incubate for 10 min followed by distributing 

200 µl aliquots into cooled microcentrifuge tubes, and stored at -80 °C.  
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Table 2.1. Bacterial strains and plasmids used in this study.  
Abbreviations, Gmr, gentamicin resistance; Kmr, kanamycin resistance; Apr, ampicillin resistance; Nar, nalidixic acid resistance. 

 

Strains/Plasmids Description Reference/Source 

Escherichia coli   
 TOP10  F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 

araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG 
Invitrogen 

S17.1 λpir  recA1 thi pro hsdR- RP4-2Tc::Mu Km::Tn7 λpir (Simon, 1984) 

Methylosinus trichosporium  
OB3b  Wild-type strain  

ΔmbnAN mbnABCMN deleted this study 
ΔmbnAN + pWG101 ΔmbnAN back-complemented by pWG101 this study 
ΔmbnN ΔmbnAN carrying pWG102 this study 
ΔmbnM ΔmbnAN carrying pWG105 this study 
ΔmbnB ΔmbnAN carrying pWG103 this study 
ΔmbnC ΔmbnAN carrying pWG104 this study 
ΔmbnT::Gmr mbnT deleted with insertion of Gm cassette this study 
ΔcopCD::Gmr copCD deleted with insertion of Gm cassette this study 
ΔmbnAH mbnABCMNPH deleted this study 

ΔmbnPH 
 
Plasmids 

ΔmbnAH carrying pWG101 this study 

pK18mobsacB Kmr, RP4-mob, mobilizable cloning vector containing sacB from 
B.subtilis  

(Schäfer et al., 1994) 
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Table 2.1 Continued 
 

Strains/Plasmids Description Reference/Source 
pTJS140 Spr, Smr cloning vector (Smith et al., 2002) 

p34S-Gm Source of Gmr cassette  (Dennis & Zylstra, 1998) 

pWG011  pK18mobsacB carrying 2 ligated arms with a Gm cassette used to 
knock out mbnT 

this study 

pWG012 pK18mobsacB carrying 2 ligated arms used to knockout 
mbnABCMN 

this study 

pWG013 pK18mobsacB carrying 2 ligated arms used to knockout 
mbnABCMNPH 

this study 

pWG014 pK18mobsacB carrying 2 ligated arms with a Gm cassette used to 
knockout copCD 

this study 

pWG101 pTJS140 carrying mbnABCMN with its native promoter  this study 

pWG102 pTJS140 carrying mbnABCM with its native promoter  this study 

pWG103 pTJS140 carrying mbnACMN with its native promoter this study 

pWG104 pTJS140 carrying mbnABMN with its native promoter this study 

pWG105 pTJS140 carrying mbnABCN with its native promoter this study 
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For transformation, cells were thawed on ice and less than 50 ng of plasmid DNA or ligation mix 

was added to 50 – 100 µl competent cell suspensions and gently mixed. Cells were subjected to 

heat shock at 42 °C for 45 s, and cooled on ice for at least 3 min. Warm SOC medium (Corning, 

Manassas, VA) was added and cells recovered at 37 °C with shaking for one hour. Aliquots of 

different amount were spread on selective LB plates and incubated at 37 °C for 24 - 48 h before 

colony screening. 

 

II.2.3 Methanotrophs 

M. trichosporium strains were grown on nitrate mineral salt (NMS) medium (Whittenbury et al., 

1970) with addition of antibiotics if necessary at 30 °C in 250 ml side-arm Erlenmeyer flasks 

shaken at 200 rpm. CH4 was added at a methane-to-air ratio of 1:2. The optical density at 600 nm 

(OD600) was measured with a Genesys 20 Visible spectrophotometer (Spectronic Unicam, 

Waltham, MA) at 12-h intervals. For growth on solid media, agar plates were incubated in a gas-

tight container under a methane/air (1:2) atmosphere. 

 

II.2.4 Biparental mating of methanotrophs and E coli 

The transfer of plasmid DNA from E. coli to methanotrophic strains was done following the 

method by Martin and Murrell (1995). A 10 ml E. coli S17.1 culture grown overnight containing 

the plasmid of interest, and a 50 ml culture of M. trichosporium OB3b in early exponential phase 

(OD600 0.2-0.3) were separately centrifuged (4,000 × g, 15 min, room temperature), both were 

washed once in NMS medium, resuspended and mixed together in 10 ml NMS medium, filtered 

through a 0.2 µm pore-size nitrocellulose filter (Millipore, Billerica, MA). The filter holding 

cells was placed on a NMS agar plate supplemented with 0.02 % (w/v) proteose peptone and 
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incubated for 24-48 hours at 30 °C. Following incubation, the cells were resuspended with 10 ml 

NMS medium, pelleted and resuspended finally in 2 ml NMS medium. Aliquots of 100 -200 µl 

were spread on NMS plates containing selective antibiotics and incubated in the presence of 

methane/air at 30 °C. Colonies appeared on plates after 10-20 days.  

 

II.3	Nucleic	acid	manipulation	techniques	

II.3.1 Nucleic acid extraction and quantifications 

DNA and RNA were isolated using the method modified from Griffiths et al. (2000). For 

extraction of genomic DNA, cells were harvested by centrifuging at 4,000 g for 10 minutes at 

4 °C. The cell pellets were resuspended in 0.75 mL of extraction buffer [100 mM Tris-HCl (pH 

8.0), 1.5 M NaCl, 1% (w/v) hexadecyltrimethylammonium bromide (CTAB)].  

 

Total RNA was extracted from the cells grown in exponential phase, collected from 5 or 10 mL 

of culture mixed with 0.6 or 1.2 mL of stop solution [5 % buffer equilibrated phenol (pH 7.3) in 

ethanol] to stop any new mRNA synthesis. Cells was then resuspended in 0.75 mL of the 

extraction buffer as described above and subsequent steps were as described by Semrau et al. 

(2013). DNA was removed by Qiagen RNase-free DNase through at least two treatments (one in 

solution and one on column), followed by purification using a Zymo RNA Clean & Concentrator 

kit (Zymo Research, Irvine, CA) following the manufacturer’s instructions. Removal of all traces 

of DNA was confirmed by the absence of a 16S rRNA PCR product in reactions using 1 µl to 2 

µl of RNA template and > 30 PCR cycles. 
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Plasmid preparations were carried out on 5 -10 ml overnight E. coli cultures using the Qiaprep 

Miniprep Kit (Qiagen) according to the manufacturer’s instructions. 

 

DNA and RNA concentrations were estimated using an ND-1000 spectrophotometer (NanoDrop 

Technologies Inc., Wilmington, DE). 

 

II.3.2 Polymerase chain reaction (PCR) 

Polymerase chain reactions (PCR) were conducted using a C1000 Touch (Bio-Rad, Hercules, 

CA) or T-48 Personal (Biometra) thermal cycler, using recombinant GoTaq Green polymerase 

(Promega, Madison, WI) or, for high fidelity applications like cloning, iProof (BioRad) 

polymerase. A typical 25 µl reaction contained 1 × MasterMix and 0.5 µM forward and reverse 

primer. Cycling conditions followed the manufacturer’ suggestions. Annealing temperature was 

calculated using OligoAnalyzer 3.1 (https://www.idtdna.com/calc/analyzer).  

 

For PCR directly from colonies, a colony was picked aseptically using autoclaved pipet tips and 

suspended in 10 µl sterilized water. 5 µl of the suspension was mixed with 5 µl 0.5M NaOH 

solution and heated at 95 °C for 10 min for quick breaking of cells. 0.2 µl of the cell lysis 

solution was used in a 15-25 µl PCR reaction as DNA template. Negative (with water as template) 

and positive controls (with constructed plasmid or extracted genome as template) were included 

in all cases. PCR primers used are listed in Table 3.2. 
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II.3.3 Agarose gel electrophoresis 

DNA fragments were separated in 0.8 – 1.0 % (w/v) agarose gels in 1 × TAE buffer (Invitrogen, 

Carlsbad, CA). 100 bp or 1 kb DNA ladders (New England Biolab, Ipswich, MA) were used to 

estimate the sizes of DNA fragments. Ethidium bromide (10 µg ml-1) was added to gels prior to 

casting. Gels were visualized on a Gel Logic 100 (Kodak, Rochester, NY) imaging system. 

 

II.3.4 DNA purification from PCR reaction 

DNA fragments from PCR reactions were checked on agarose gels. Those with a clear, specific 

band were purified using QIAquick (Qiagen) purification kits. Otherwise DNA fragments were 

excised from TAE agarose gels and purified using QIAquick (Qiagen) gel extraction kits 

following the manufacturers’ instructions.  

 

II.3.5 DNA restriction digests 

Restriction digestion of DNA was typically carried out with enzymes purchased from New 

England BioLabs (Ipswich, MA) overnight at 37°C. The reactions were set up according to the 

manufacturers’ recommendations. DNA fragments after restriction digestions were routinely 

purified from gel to remove undesired digested fragments.  

 

II.3.6 DNA ligations 

Ligations were carried out using T4 DNA ligase (New England BioLabs, Ipswich, MA) in a 

volume of 20 µl comprising vector and insert fragments in 1:3-1:4 molar ratios or two PCR 

products in 1:1 molar ratio. The simpler ligation reactions (e.g., ligation of two short DNA 
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fragments) were performed at room temperature for > 3 hours. For ligation of large inserts into 

plasmids, reactions were typically carried out at 16°C overnight to increase efficiency.  

 

II.3.7 Cloning of PCR products 

For DNA fragments that were subject to cloning, PCR primers were typically designed with an 

added restriction site and a 6 nt-overhang for enzyme binding at 5’ (Table 2.2). iProof high-

fidelity polymerase was used for PCR amplification, followed by purification of PCR product, 

restriction digestion, gel purification of digested fragment, and ligation into vectors. The ligation 

mix was then used to chemically transform E. coli TOP10 for selection and maintenance. Inserts 

were confirmed by colony PCR using vector specific primers and sequencing.  

 

II.3.8 RT-quantitative PCR (RT-qPCR) 

Differential expression of genes was tested by RT-qPCR. A list of primers used for RT-qPCR are 

listed in Table 3.2. qPCR reactions were performed in 96-well reaction PCR plates in a volume 

of 20 µl containing 0.8 µl cDNA or DNA, 1 × iTaq Universal SYBR Green Supermix (Bio-Rad, 

Hercules, CA), 0.5 µM of each of forward and reverse primers and nuclease-free sterile water 

(Fisher Scientific, Pittsburgh, PA). CFX Connect Real Time PCR Detection System (Bio-Rad, 

Hercules, CA) was used to run a three step qPCR program consisting of an initial denaturation at 

95 °C for 3 min and 40 cycles of denaturation (95°C for 20 s), annealing (58°C for 20 s) and ex- 

tension (68°C for 30 s). To confirm specificity, qPCR products were subjected to melting curve 

analysis with temperature ranging from 65°C to 95°C after the completion of amplication cycles. 

The threshold amplication cycle (CT) values were then imported from CFX Manager Software 

(Bio-Rad, Hercules, CA) into Microsoft Excel to quantify the expression of different genes.   
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Table 2.2. Primers for PCR and sequencing. 
 

Name 
qRT-PCR 
primers are 
underlined. 

Sequence (5’-3’) 
Restriction sites are noted with lower case letters. 
Added overhangs for binding by restriction 
enzyme are underlined. 

Reference 

27F AGAGTTTGATCMTGGCTCAG* (Lane, 1991)  

1492R TACGGYTACCTTGTTACGACTT*  (Lane, 1991)  

M13F GTAAAACGACGGCCAG� Invitrogen 

M13R CAGGAAACAGCTATGAC Invitrogen 

pmoA-F GGNGACTGGGACTTCTGG* (Holmes et al., 1995) 

pmoA-R  CCGGMGCAACGTCYTTAC* (Costello & Lidstrom, 1999) 

mmoX-F  ATCGCBAARGAATAYGCSCG* (Hutchens et al., 2004) 

mmoX-R  ACCCANGGCTCGACYTTGAA* (Hutchens et al., 2004) 

mbnA-F TGGAAACTCCCTTAGGAGGAA (Semrau et al., 2013) 

mbnA-R CTGCACGGATAGCACGAAC  (Semrau et al., 2013) 

Ton41 ATTTTTgaattcCCAGAAATATGAGATTCCGC this study 

Ton42 ATTTTTggatccCACGACCAGATCGATGATAC this study 

Ton43 ATTTTTggatccTTCGGTTCGATCAACGAGG this study 

Ton44 ATTTTTaagcttGCCAATCAGCGTGGAGAACC this study 

dmbnaF 
(mbn56) 

ATTTTTggatccCGAAGGACAATAACAAGGCG this study 

dmbnaR 
(mbn57) 

ATTTTAggtaccACTCCAAACAgcatgcGATA this study 

dmbnbF 
(mbn60) 

ATTTTAggtaccATCCTTCTATGTCTGCAGCC this study 

dmbnbR 
(mbn61) 

ATTTTTaagcttGATCCTCCTCGAATTCCCTC this study 

dmbnAHbF  ATTTTTctagaGTTTCTCTGATCCCTGGAGA this study 

dmbnAHbR  ATTTTTaagcttGAAAGAGAGATCACAGCCAC this study 

pK18-bb-F CTCTGGTAAGGTTGGGAAGC this study 

pK18-bb-R GCAATACACGGGTAGCCAA this study 

mbnANf 
(wgu21) 

ATTTTTggtaccGACGTTCGGGTCTTCTTCGC this study 

mbnANr 
(wgu22) 

ATTTTTggtaccCGCCTCTAGATCATTCCGAC this study 

mbnAMr 
(mbn64) 

ATTTTTggtaccTTCGTTTCACATGGGATCGC this study 
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Table 2.2 Continued. 

 

 
 

Name 
qRT-PCR 
primers are 
underlined. 

Sequence (5’-3’) 
Restriction sites are noted with lower case letters. 
Added overhangs for binding by restriction enzyme are 
underlined. 

Reference 

copCDaF  ATTTTTaagcttCCGTTATCGCTATGTCGGGT this study 

copCDaR    ATTTTAggatccAATCTCTCATCGCTGAAAGC this study 

copCDbF  ATTTTTggatccCAGCTTCATTCTTCGGCTCC  this study 

copCDbR ATTTTTgaattcCCGTTCCTCTCGCTGTTTTGC  this study 

pmxa-F 
(wgu51) 

ATTTTTgcatgcGAACTTCCTCGTCTGCTTC this study 

pmxa-F 
(wgu52) 

ATTTTTtctagaCCTCGTGGCGCTTTCGTCGA this study 

mbn1_SB2 TAAAAAtctagaCAGACGAAATCAAAACAGGAGG this study 

mbn2_SB2 TAAAAAggtaccGTTGATCCCATGCGCTTT this study 

mbn3_SB2    TAAAATggtaccTCGACCACTCTCCTTTGCGA  this study 

mbn4_SB2 TAAAAAggtaccCAGAGCAAGGAGAGGTCG this study 

mbn5_SB2 ATTTTTgaattcCGTCGCTGTTTTCTTGCTCT this study 

mbn63 ATTTTTggtaccCTCGAACGTTTGCCCAGAG this study 

mbn64 ATTTTTggtaccTTCGTTTCACATGGGATCGC this study 

mbn65 ATTTTTggtaccCTAGGCGCATCATCATCACA this study 

mbn66 ATTTTTggtaccCGAACAATGTGTGCCAGTAG this study 

mbn67 ATTTTTggtaccTGGAATACGGCCAGAATCG this study 

mbn65 ATTTTTggatccCTAGGCGCATCATCATCACA this study 

mbn66 ATTTTTggatccCGAACAATGTGTGCCAGTAG this study 

mbn67 ATTTTTggatccTGGAATACGGCCAGAATCG this study 

mbn68 ATTTTTggatccGCTCGGAATTCTCGCTTTCC this study 

mbn69 ATTTTTggatccCGATATTTTCCCCTGCGTCG this study 

mbn70 ATTTTTggatccGTTCGGCTATTTCCTGACGC this study 

qpmoA_FO TTCTGGGGCTGGACCTAYTTC (Knapp et al., 2007) 

qpmoA_RO CCGACAGCAGCAGGATGATG (Knapp et al.,2007) 
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Table 2.2 Continued. 
 

* Symbols for mixed bases are R: A,G; Y: C,T; M: A,C; K: G,T; S: C,G; W: A,T; H: A,C,T; 
B: C,G,T; V: A,C,G; D: A,G,T; N: A,C,G,T. 

Name 
qRT-PCR 
primers are 
underlined. 

Sequence (5’-3’) 
Restriction sites are noted with lower case letters. 
Added overhangs for binding by restriction enzyme 
are underlined. 

Reference 

qmmoX_FO TCAACACCGATCTSAACAACG (Knapp et al.,2007) 

qmmoX_RO TCCAGATTCCRCCCCAATCC (Knapp et al.,2007) 

q16SrRNA_FO GCAGAACCTTACCAGCTTTTGAC (Knapp et al.,2007) 

q16SrRNA_RO CCCTTGCGGGAAGGAAGTC (Knapp et al.,2007) 

qmbnA_FO TGGAAACTCCCTTAGGAGGAA (Semrau et al.,2013) 

qmbnA_RO CTGCACGGATAGCACGAAC (Semrau et al.,2013) 

qmxaF_FO CTACATGACCGCCTATGACG (UI Haque et al.,2016) 

qmxaF_RO ATTGGCCTTGTTGAAGTCGT (UI Haque et al.,2016) 

qXoxF_F1 TCATTTCCGTGATGTGCTGC (UI Haque et al.,2016) 

qXoxF_R1 CTTTCCAGACGATCTTGCCG (UI Haque et al.,2016) 

qcopC2_FO GATCCTCGACTCGACTGGC this study 

qcopC2_RO TTTCACGACATAGCTCCCGA this study 

qcopD_FO CCTATCTCACGAGCCATCCC this study 

qcopD_FO GAGCGGTCGATCAGGAAATG this study 

nifH-f-o CTATGCCGATCCGTGAGAAC this study 

nifH-r-o TCAGAATGCCCTTGGAGATG this study 

pvdF-f-o CGAAGATGGCGAAGACGAAG this study 

pvdF-r-o CTCCTTTGTAGTCGATGTACCG this study 

yjgP-f-o ATGCCTCGCCTCTTGTTC this study 

yjgP-r-o AGCGTGTAGAGCAGATAGGA this study 

clpX-f-o CCACTATAAGCGGCTCAATCA this study 

clpX-r-o GTGAAGGGCACATCGAGAAT this study 

copCD_f GCCGTATCGCCCTTGTTATG this study 

copCD_r GGAGCCGAAGAATGAAGCTG this study 
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The levels of expressed genes were measured by either absolute or relative quantification 

methods. In absolute quantification, calibration curves based on plasmid preparations with 

known copy numbers for each gene were used to calculate the gene transcripts per ng RNA and 

copy numbers per ng of DNA. The average ratios of transcript number to copy number 

determined from the RNA and DNA extracted from the same culture at the same growth point, 

were represented as a measure of expression levels. When using relative quantification, the 

relative gene expression levels were calculated by using a comparative CT method (Schmittgen et 

al., 2008) with 16S rRNA, yjgP, or clpX as the housekeeping gene.  

 

II.4	Construction	of	mutants	

II.4.1 Markerless mutagenesis of mbnABCMN and mbnABCMPH 

To study the function of the genes in the mb-gene cluster and for manipulation of mb structure, 

M. trichosporium ΔmbnAN and ΔmbnAH mutants were constructed, in which mbnABCMN and 

mbnABCMNPH were deleted via counter-selection techniques.  

 

A suicide vector pK18mobsacB (Schäfer et al., 1994) was used to introduce inactivated genes of 

interest into the chromosome of M. trichosporium OB3b, thereby allowing homologous 

recombination. pK18mobsacB includes the broad host range transfer elements allowing for 

mobilization from E. coli donor strain S17.1 into methanotrophs. It contains the counter-

selecting gene sacB. It is based on the narrow host range plasmid pBR322 and is only maintained 

by E. coli. (Schäfer et al., 1994)  

 

Specifically, for the construction of ΔmbnAN, a 1.1-kb DNA fragment upstream of mbnA 
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(“armA”, amplified using dmbnaF/dmbnaR primers, Table 2.2, Figure 2.1), and a 1-kb fragment 

spanning 3’ mbnN and its downstream regions (“armB”, amplified using dmbnbF/dmbnbR 

primers, Table 2.2, Figure 2.1) were ligated together using a KpnI site and then cloned into 

pK18mobsacB at BamHI and HindIII sites to create pWG012 plasmid. For the construction of 

ΔmbnAH, armB was replaced by a 1.2-b fragment spanning 3’ mbnH and downstream regions 

amplified by dmbnAHbF/dmbnAHbR primers (Table 2.2) which created pWG013 plasmid. The 

constructed plasmids for mutation was then conjugated into M. trichosporium OB3b wild type 

strain.  

 

Figure 2.1. Mutagenesis of M. trichosporium OB3b ΔmbnAN via counterselection technique.  
 

For counterselection, transconjugants were first selected by resistance to kanamycin for 

successful single homologous recombination and nalidixic acid to remove donor E. coli. 
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Secondly, selected transconjugants were grown on NMS containing 2.5% (mass/vol) sucrose for 

counterselection of double homologous recombination events (Figure 2.1). Resulting colonies 

were then checked for kanamycin sensitivity and genotype determined via sequencing. A 3.5-kb 

region containing complete mbnABCM and 490 bp of 5’ mbnN (>40%) was knocked out in 

ΔmbnAN (Figure 2.1), and a 6.6-kb region containing complete mbnABCMNPH was knocked out 

in ΔmbnAH (Figure 2.2). 

 

Figure 2.2. Location of arms used to create M. trichosporium OB3b ΔmbnAH via counterselection 
technique.  

 

II.4.2 Marker exchange mutagenesis of mbnT and copCD 

Marker exchange mutagenesis has been successfully applied to create mutants in M. 

trichosporium OB3b using the pK18mobsacB vector (Semrau et al., 2013). In counterselection 

mutagenesis, the second recombination step counter-selected by sucrose can lead to either a 

mutation event or to a recovery of wild type genotype. For difficult genetic regions, the odds of 

recombination can be quite low. In comparison, marker-exchange mutagenesis inserts an 

antibiotic marker into regions of mutation. The inserted marker can increase the probability of 

selecting knocke-outs.  

 

To create the mbnT mutant, two sets of primers, Ton41/42 and Ton43/44 (Table 2.2), were used 

to amplify two 700-bp DNA fragments internal to mbnT flanking a 500-bp knock-out region. 

These two arms were ligated together at BamHI site, and cloned into pK18mobsacB at EcoRI and 

HindIII sites. A gentamicin (Gm) cassette from pS34-Gm was later inserted in between of the 
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two arms at BamHI site (Figure 2.3) to create the plasmid pWG011. To knock-out copCD, 

primers, copCDaF/R and copCDbF/R (Table 2.2), were used to amplify two 1-kp DNA 

fragments flanking a 2.4-kb region of copCD (Figure 2.4). These two arms were used to create 

pWG014 following the same cloning process as described above. The constructed pWG011 and 

pWG014 were conjugated into M. trichosporium OB3b with help of E. coli S17, separately, to 

created ΔmbnT::Gmr and ΔcopCD::Gmr.  

 

Figure 2.3. Construction of M. trichosporium ΔmbnT::Gmr via marker exchange mutagenesis. 
 

 

Figure 2.4. Location of arms used to knock-out copCD in M. trichosporium OB3b wild type and 
ΔmbnAN.  

 

Conjugation colonies became visible on selective NMS plates containing Gm after about 10 days 

of incubation. Colonies were transferred twice onto fresh NMS plates supplemented with 

nalidixic acid, to remove E. coli, and Gm, to select for recombinants. The recombinants were 

screened directly for successful double homologous recombination by checking for pheynotypes 

of Kanamycin-sensitive and sucrose-resistance (10% w/v sucrose), which indicate loss of 

pWG011	
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plasmid backbone. Alternatively, Gm-resistant recombinants were plated on NMS containing a 

lower concentration of sucrose (2.5% w/v) and gentamycin for counterselection. Resulting 

colonies were again checked for kanamycin sensitivity and genotype via sequencing.  

 
II.4.3 Construction of various mb mutants 

In order to study the function of different genes in the mbn gene cluster, ΔmbnAN was used as a 

host for expression of various recombinant mb-synthesizing genes. The suitability of ΔmbnAN as 

a host for expression was established by first introducing pWG101, an expression vector 

containing wild-type M. trichosporium OB3b mb-gene cluster (mbnABCMN) with its native 

promoter, into ΔmbnAN for back complementation. Further, to characterize the function of 

various genes in the mbn operon from both M. trichosporium OB3b, different fragments of mb-

synthesizing genes were amplified, assembled by ligation, and inserted to pTJS140 at the KpnI 

site. The details of construction of different plasmids are listed and described in Table 2.3. Figure 

2.4 graphically illustrates the composition of various mb mutants. 

 

Figure 2.5. DNA removed to construct M. trichosporium OB3b ΔmbnAN, ΔmbnAH mutants and inserts 
used to construct various single mutants.  
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Table 2.3. Construction of various methanobactin mutants. 

 

M. trichosporium 
construct Host + Plasmid Construction of insert to pTJS140 

ΔmbnAN + 
pWG101 

ΔmbnAN + pWG101 amplified by wgu21/22 (mbnABCMN with 
promoter) insert into KpnI 

ΔmbnN ΔmbnAN + pWG102 wgu21+mbn64 (P+mbnA) 

ΔmbnB ΔmbnAN + pWG103 wgu21+mbn67 (P+mbnA)-BamHI-
mbn69+wgu22(mbnCMN) 

ΔmbnC ΔmbnAN + pWG104 wgu21+mbn66 (P+mbnAB)-BamHI-
mbn70+wgu22(mbnMN) 

ΔmbnM ΔmbnAN + pWG105 wgu21+mbn65 (P+mbnA)-BamHI-
mbn68+wgu22(mbnCMN) 

ΔmbnPH ΔmbnAH + pWG101 amplified by wgu21/22 (mbnABCMN with 
promoter) insert into KpnI 

 

II.5	Naphthalene	assay	

The assay of Brusseau et al. (1990) was used to detect sMMO activity. 1.6 ml of cells in 

exponential phase was incubated with a few crystals of naphthalene for 1 h at 30 °C with shaking. 

Cells were pelleted by centrifuging. 130 µL of 4.21 mM tetrazotized o-dianisidine was added to 

1.3 mL of supernatant and tranfered to cuvettes for measurement of absorbance at 528 um. 

Immediate development of a pink/purple color was taken as evidence of naphthalene oxidation 

by sMMO. 

 

II.6	Mb	production	assay	

Screening of mb production was based on the plate chrome azurol S (CAS) assay developed by 

Yoon et al., (2010). Screening of mb production by methanotrophic strains used split NMS/50 
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mM Cu–CAS plates. Culture was streaked on NMS half plates and incubated at appropriate 

growth conditions.  

 

Alternatively, production of mb was determined by collecting the spent medium of cultures after 

overnight induction, and the UV-Vis spectrum was obtained by Varian Cary 3 UV-Vis 

spectrophotometer (Agilent, Santa Clara, CA) to identify the characteristic peaks of mb-OB3b at 

340 and 394 nm.  

 

II.7	Metal	analysis	

Copper associated with the methanotrophic biomass was determined using an inductively 

coupled plasma mass spectrometer (ICP-MS, Agilent Technologies, Santa Clara, CA). After 

growing to the late exponential phase, cultures (20 ml) were harvested by centrifugation at 4,300 

g for 15 min. The cell pellets then were resuspended in 1 ml fresh NMS. 1 ml of 70% nitric acid 

(vol/vol) was added to the cell suspension. The mixtures were incubated for 2 h at 95°C with 

inversion every 20 min. Digested cell suspensions were subsequently diluted with fresh NMS 

medium and nitric acid to achieve a final concentration of 2% nitric acid and analyzed using 

ICP-MS. The ICP standards of metals were purchased as 1, 000 ppm stocks. The stocks were 

serially diluted to create standard curves with measured correlation coefficients of >0.99. Protein 

concentrations were converted from cell densities (as OD600) measured by Genesys 20 Visible 

spectrophotometer (Spectronic Unicam, Waltham, MA). The correlation was obtained using the 

Bradford assay (Bio-Rad, Hercules, CA) as descried previously (Semrau et al. 2013). For each 

condition, at least duplicate biological samples were analyzed. 
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II.8	Sequencing	and	bioinformatic	analysis	

II.8.1 Mining selected genes in available methanotrophic genomes 

Select genes as discussed in the introduction were searched in all the methanotroph genomes that 

were available in NCBI, including “NCBI genomes” and “whole-genome shotgun” databases. 

The results are presented in Table 1.1. pmoA, mbnB/C from M. trichosporium OB3b, mxaF, xoxF 

from M. extorquens AM1, pxmA from Methylomonas sp. M5 were used as the seeds to query the 

genomic sequences by blastn. Alignment length of 60% and identity of 60% were generally used 

as standard to evaluate the results. For xoxF and pxmA, it was manually inspected in the 

neighboring sequences for the absence of mxaI-like genes and a pxmA-B-C clustering order, 

respectively, to avoid any mixed identification with mxaF or pmoA. The results were checked 

with literature when possible.  

 

II.8.2 Sanger Sequencing 

Purified DNA was submitted for Sanger sequencing together with 1 µM primer to the University 

of Michigan Sequencing Core (https://seqcore.brcf.med.umich.edu/). 

 

II.8.3 RNA-Seq sample preparation and analysis 

To study how copper and cerium (co-)regulate gene expression in M. trichosporium OB3b and to 

identify potential genes involved in copper/cerium uptake and homeostasis, whole-cell 

transcriptomic differential expression of M. trichosporium OB3b was investigated using RNA-

seq analysis. 10 µM copper (as CuCl2) and 25 µM cerium (as CeCl3) were prepared as stock 

solution and were suplemented to NMS media where neceassary. M. trichosporium OB3b was 

grown in four conditions: Cu-Ce (uM): 0-0, 10-0, 0-25, and 10-25 in triplicate. RNA was 
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extracted and purified as described in Section III.3.1. The quality of total RNA from the samples 

were checked by BioAnalyzer with results of RNA integration number (RIN) all higher than 9. 

Total RNAs were sent to University of Michigan DNA Sequencing Core. rRNA removal was 

performed by the Sequencing Core using the RiboZero kit for Gram- bacteria (Illumina, San 

Diego, CA). 12 non-stranded mRNA-seq libraries were prepared and sequenced in one lane 

using Illumina HiSeq4000 (San Diego, CA) SE 50 (Haas, et al., 2012; Chhangawala, et al., 2015). 

 

The raw reads obtained from the sequencing facility were trimmed using Sickle (Joshi & Fass, 

2011) with default parameters and then aligned to the M. trichosporium OB3b genome 

downloaded from genoscope (WGS ADVE02) using the Burrows-Wheeler alignment tool 

(BWA) backpack 0.7.12 (Li & Durbin, 2010). The resulting Sequence alignment/map (SAM) 

files were sorted using SAMtools-1.3.1 (Li et al., 2009). Reads counts were obtained from 

HTSeq 0.6.1 with intersection-nonempty mode (Anders et al., 2015) and analyzed by DESeq2 

1.12.4 (Anders et al. 2013). Genes were considered to be differential expressed with a 2-fold 

change of higher than 1.5 and adjusted p-value of less than 0.01.  
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CHAPTER III FUNCTION OF GENES IN METHANOBACTIN (MB) 
GENE CLUSTER 

 

Figure 3.0 Elucidation of functions of mb gene cluster of M. trichosporium OB3b 
	
Published:  
 
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus 
trichosporium OB3b. Applied and Environmental Microbiology, 82(6), 1917-1923.  
 
An Aminotransferase is Responsible for the Deamination of the N-terminal Leucine and 
Required for Formation of Oxazolone Ring A in Methanobactin of Methylosinus trichosporium 
OB3b. Applied and Environmental Microbiology, 83(1): e02619-16. 
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III.1	TonB-dependent	uptake	of	mb	

III.1.1 Introduction 

Bioinformatic studies of the genome of M. trichosporium OB3b revealed a putative TonB-

dependent transporter (TBDT), i.e., mbnT, upstream of mbnA. mbnT is in a putative operon with 

mbnI and mbnR, i.e., a putative “Fe(III) dicitrate membrane sensor” and “ECF sigma factor”, 

respectively (Figure 3.1). (Kenney & Rosenzweig, 2013) This pairing resembles the FecIRA-like 

systems found in E. coli and Pseudomonas aeruginosa for siderophore-mediated iron uptake, 

e.g., Fpv/PvdS-FpvR-FpvA, PupI-R-B (Lamont et al., 2002, Visca et al., 2002). In these systems, 

genes encoding for transporters and proteins involved in siderophore biosynthesis are regulated 

at multiple levels. When iron is available, siderophores are loaded and bind to TBDTs. The 

TBDTs transduce the signal across the outer membrane to a regulator “R”. This regulator is 

typically an inner membrane protein that transmits the signal to an inducer “I”, which enhances 

RNA polymerase to binding to specific promoter regions. Usually, there is another layer of 

regulation from a transcriptional repressor, e.g., Fur (Ferric Uptake Regulator). At high iron 

concentrations, Fur binds DNA sequences using Fe2+ as a cofactor and represses the expression 

of the regulators I, R, as well as genes encoding TBDT and proteins for siderophore 

synthesizing, thus controlling intercellular iron levels. When iron is limiting, Fur cannot bind 

DNA, leading to de-repression of the target genes. An example of this system is shown in Figure 

4.2. 
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Figure 3.1. Methanobactin gene cluster of M. trichosporium OB3b 
 
 

 
 

Figure 3.2. The ferric citrate transport and regulatory system.  
The signaling pathway from FecA to FecI; TonB-ExbB-ExbD complex is involved in signaling and 

transport; the periplasmic FecB protein and the ABC transporter FecCDE proteins are involved in iron 
transport. Fe2+-loaded Fur repressor binds to the promoter upstream of fecI and fecA and dissociates from 

the promoter under low iron conditions. There are interactions between the FecA TonB box and TonB 
and between the FecA signaling domain and FecR. N indicates the N-terminal end, C the C-terminal end 

of the proteins. σ2 and σ 4 indicate FecI domains involved in binding to FecR and DNA, respectively. 
(Braun & Mahren, 2005) 
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A similar regulatory system may exist in M. trichosporium OB3b for copper uptake mediated by 

mb (Kenney & Rosenzweig, 2013). It has been hypothesized that MbnT functions as the 

transporter for Cu-mb and sends signals to MbnR. MbnR then activates MbnI, which thereby 

regulates the expression of mbn operon, mbnIRT, and possibly mmo and pmo operons. If this is 

true, it will be a new level of regulation involved in the “copper-switch” between sMMO and 

pMMO. It would be interesting to see how mbnIRT fit into the regulatory model based on MmoD 

and mb (Semrau et al., 2013, DiSpirito et al., 2016). In this model, it was hypothesized that 

MmoD up-regulates the expression of mbn operon at low copper-biomass condition, which 

explains the observation that the highest production of mb was found to occur at copper 

concentration between 0.1 and 0.7 µM while cells express sMMO. The induced mbn operon 

encodes MbnI, which in turn induces the expression of mmo operon.  

 

It is also reasonable to speculate that a negative regulator like “Fur” exists in methanotrophs to 

control intercellular copper levels. Interestingly, two copies of “Fe2+/Zn2+ uptake regulation 

protein, Fur like protein” was identified in M. trichosporium OB3b genome 

(ADVE02_v2_13735, ADVE02_v2_13735) with highest similarity of 55% at amino acid level 

with Fur family protein in Nitratireductor indicus C115. However, these two genes are not near 

mbn operon or other identifiable copper-related proteins. It is also possible that there is a novel 

copper-binding protein that acts as a negative regulator. As iron is vital for the growth of bacteria 

like E. coli and P. aeruginosa, complicated regulatory networks have been found involving in 

iron homeostasis in these microbes with different regulators. It will not be surprising to see a 

similar picture in methanotrophs regarding to copper considering its important role in 

methanotrophic activity.  
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III.1.2 Knocking out mbnT in M. trichosporium OB3b 

To elucidate the role of mbnT in mb uptake, a mutant of M. trichosporium OB3b was created in 

which mbnT was selectively knocked out via marker exchange mutagenesis as described in 

Chapter 3. The mutation of mbnT was confirmed by phenotype of Gm-resistance, Km-sensitive, 

and sucrose-resistance, as well as by PCR for mbnT and the pK18mobsacB plasmid backbone, 

and by sequencing. PCR product of mutated mbnT is 400 bp larger than that of WT mbnT 

amplified by TonB27/44, and no product was observed from PCR of plasmid backbone in the 

mutant (Figure 3.3)  

 

Figure 3.3. Verification of knockout of mbnT in M. trichosporium by PCR.  
M, molecular weight markers; lane 1, PCR of mbnT from the M. trichosporium OB3b mbnT::Gmr mutant; 
lane 2, PCR of mbnT from wild-type M. trichospo- rium OB3b; lane 3, PCR of pK18mobsacB backbone 

in M. trichosporium OB3b mbnT::Gmr; lane 4, PCR of pK18mobsacB backbone in pWG011. 
 

III.1.3 Characterization of mbnT::Gmr mutant  

III.1.3.1 Metal uptake and regulation of gene expression by copper 

Our initial hypothesis was that if MbnT was truly involved in Cu-mb uptake, knocking out mbnT 

would lead to the cell being unable to sense and incorporate copper, thus sMMO would be 

expressed and active at a wider range of copper concentrations. To test these hypotheses, the 

phenotype of the mbnT::Gmr mutant was further examined and compared to that of M. 
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trichosporium wildtype. When grown in varying copper concentrations (0, 0.5, and 1 µM), both 

mbnT::Gmr mutant and wildtype had increasing amounts of copper associated with biomass 

(Figure 3.4 A). Further, gene expression in both mutant and wildtype showed clear evidence of 

the “copper-switch”. i.e., as copper increased, expression of mmoX decreased by several orders 

of magnitude, while pmoA expression increased over an order of magnitude (Figure 3.4 B, C). 

Finally, expression of mbnA, encoding for the precursor polypeptide of mb, decreased 

substantially in both in M. trichosporium OB3b wildtype and mbnT::Gmr mutant as copper 

increased, indicating that the knock-out of mbnT did not affect mb expression (Figure 3.4 D). 

 

Figure 3.4. Characterization of wild-type M. trichosporium OB3b (black bars) and the mbnT::Gmr mutant 
(white bars) grown in the presence of various amounts of copper.  

(A) Copper associated with biomass; (B) RT-qPCR of pmoA; (C) RT-qPCR of mmoX; (D) RT-qPCR of 
mbnA. Error bars indicate standard deviations from at least duplicate biological replicates. Indicated P 

values are from one-way analysis of variance (ANOVA). 
 

III.1.3.2 Mb uptake 

These findings suggest that either mbnT is either not involved in copper uptake (i.e., binding of 

copper-mb complexes) or there are multiple mechanisms for copper uptake in M. trichosporium 
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OB3b, such that the copper-switch is still operative. To differentiate between these possibilities, 

mb in the spent medium and cell extracts of the mbnT::Gmr mutant and wildtype strain of M. 

trichosporium OB3b was assayed for a wide range of copper concentrations using immuno-

blotting assays. As shown in Figure 3.5, as the growth concentration of copper increased, the 

amount of mb in the spent medium decreased in M. trichosporium OB3b wildtype, but was 

readily apparent in the spent medium of the mbnT::Gmr mutant at all tested copper 

concentrations. Conversely, mb was found in the cell extract of M. trichosporium OB3b wild 

type under all conditions, indicating that mb was taken up after secretion. No mb was ever 

observed in the cell extract of the mbnT::Gmr mutant, indicating that the mutant produced and 

secreted mb, but was unable to subsequently take it up.  

 

Figure 3.5. Immuno-blotting assays for location of methanobactin in wild-type M. trichosporium 
OB3b and in the mbnT::Gmr mutant as a function of the concentration of copper in the growth 

medium (0.2, 5, 10, or 20 µM copper).  
Fifty nmol lysozyme (lys) and 50 nmol methanobactin (mb) were used as negative and positive controls, 

respectively.  
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III.1.3.3 Metal uptake and regulation of gene expression with addition of mb 

The mbnT::Gmr mutant and wildtype strain of M. trichosporium OB3b were then grown in the 

presence of 1 µM copper and varying amounts of copper-free mb. As shown in Figure 3.6 A, in 

the presence of either 5 or 50 µM mb, copper associated with biomass of the mbnT::Gmr mutant 

decreased over three-fold, while no significant change in copper levels of M. trichosporium 

OB3b wildtype was observed. Further, expression of mmoX increased over three orders of 

magnitude in the mbnT::Gmr mutant while pmoA expression dropped by approximately eight-

fold. No significant change in expression of either mmoX or pmoA was observed, however, in M. 

trichosporium OB3b wildtype (Figure 3.6 B, C). Collectively, these data show that in the 

presence of molar excess of mb, copper was still bioavailable to M. trichosporium OB3b 

wildtype, but was not for the mbnT::Gmr mutant. Additionally, it was assayed if the addition of 

exogenous mb affected mbnA expression in M. trichosporium OB3b wildtype and mbnT::Gmr 

mutant. As shown in Figure 3.6, as increasing amounts of mb were added, mbnA expression 

increased in both wildtype and mutant strains.  
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Figure 3.6. Characterization of wild-type M. trichosporium OB3b (black) and the mbnT::Gmr mutant 
(white) grown in the presence of 1 M copper and various amounts of mb.  

(A) Copper associated with bio- mass; (B) RT-qPCR of pmoA; (C) RT-qPCR of mmoX; (D) RT-qPCR of 
mbnA. Error bars indicate standard deviations from at least duplicate biological replicates. Indicated P 

values are from one-way analysis of variance (ANOVA).  
 

III.1.4 Discussion  

Since the discovery of the mb gene cluster, it has been speculated that a TonB-dependent 

transporter encoded by mbnT is responsible for mb uptake (Semrau, et al., 2013). Here it is 

shown that mb uptake is indeed mediated by mbnT, as: (1) mb could be taken up by M. 

trichosporium OB3b wildtype but not the mbnT::Gmr mutant, and; (2) the mbnT::Gmr mutant of 

M. trichosporium OB3b was not able to take up copper if mb was exogenously added to bind 

copper, but M. trichosporium OB3b wildtype was. 

 

The data also show, however, M. trichosporium OB3b has an alternative mechanism(s) for 

copper uptake, i.e., in the absence of any exogenous mb, the amount of copper in the wildtype 
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and mbnT::Gmr strains of M. trichosporium OB3b was indistinguishable. The conclusion of 

multiple copper uptake systems, however, is not novel, as it was reported earlier that at least two 

pathways for copper uptake exist in M. trichosporium OB3b (Balasubramanian, et al., 2010). 

Such redundancy in copper uptake systems in methanotrophs, although unusual when compared 

to other microbes, can be explained when one considers the importance of copper in 

methanotrophic metabolism. That is, methanotrophs expressing pMMO have a strong need for 

copper as it occupies at least two of three metal centers found in purified pMMO (Martinho et al., 

2007; Hakemian et al., 2008).  

 

An interesting issue is that, as found earlier in a mutant of M. trichosporium OB3b where mbnA 

encoding for the precursor polypeptide of mb was knocked out, the “copper-switch” still existed 

in the mbnT::Gmr mutant (Semrau et al., 2013). Given the similarity in genetic arrangement of 

mbnIRT and fecIRA-like system in other bacteria, as mentioned earlier, it has been speculated 

that after MbnT binds copper-mb, a signal cascade results whereby mb synthesis, and possibly 

expression of mmo and pmo operons is controlled (Kenney, et al., 2013). The findings presented 

here, however, suggest that although such a signal cascade may exist after MbnT binds copper-

mb, such a regulatory scheme does not include the “copper-switch” between sMMO and pMMO.  

It is also difficult to conclude from these data that this signal cascade affects expression of mbnA. 

That is, mbnA expression in both M. trichosporium OB3b wildtype and the mbnT::Gmr mutant 

decreased significantly with increasing copper, but the magnitude of the drop in expression was 

greater in wildtype (Figure 3.6D). Further, in the presence of 1 µM copper and varying amounts 

of exogenous mb, mbnA expression in M. trichosporium OB3b wildtype and mbnT::Gmr mutant 

responded with the same pattern (Figure 3.6D). It appears that another regulatory circuit is 
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involved in controlling expression of mbnA, but the possibility that such expression is also 

controlled to some extent by mbnI, which is indirectly activated by MbnT binding copper-mb, 

cannot be excluded at this time. 

 

III.1.5 Conclusions and future perspectives 

In conclusion, here we report the successful knock-out of mbnT, and show that this is responsible 

for mb uptake. The phenotype of the mbnT::Gmr mutant, however, indicates that M. 

trichosporium OB3b has multiple systems for copper uptake. It is tempting to speculate that mb 

may serve as a high affinity system to collect copper, but when copper is not limiting, an 

alternative lower affinity system is used. Such a hypothesis is supported by the finding that 

expression of mbnA decreases with increasing copper both in M. trichosporium OB3b wildtype 

and the mbnT::Gmr mutant.  

 

The nature of this imputed low affinity copper uptake mechanism is still elusive, but clues from 

other methanotrophs, e.g., Methylomicrobium album BG8 and Methylococcus capsulatus Bath 

may provide some suggestions. That is, it has been shown that in M. album BG8, an outer 

membrane protein, CorA, exists that is copper-repressible and may serve to bind copper (Berson 

et al., 1997). Further, it has been found that M. capsulatus Bath synthesizes a similar outer 

membrane protein, MopE, as well as a secreted truncated form, MopE* that both bind Cu(II) 

(Karlsen et al., 2013; Helland et al., 2008; Ve et al., 2012). A gene encoding for a protein similar 

to CorA and MopE, mbnP, is adjacent to the mb gene cluster in M. trichosporium OB3b, and it 

may be that this serves as an alternative copper uptake mechanism in M. trichosporium OB3b.  
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III.2	Synthesis	pathway	of	mb	

III.2.1 Introduction 

As the first example of a chalkophore, or copper-specific chelating agent, mbs are characterized 

as being small (< 1300 Da) polypeptides with two heterocyclic rings each with an adjacent 

thioamide group. The N-terminal ring is an oxazolone, while the other is either another 

oxazolone or an imidazolone or pyrazinedione group (DiSpirito, et al., 2016). Specifically, mb 

from M. trichosporium OB3b (Figure 3.7), has two oxazolone rings and its N-terminal leucine is 

de-aminated (Krentz, et al., 2010). 

 

The genetics underlying mb synthesis are slowly being unraveled. Given the unique structure of 

mb-OB3b, it was initially speculated that it was synthesized via a non-ribosomal peptide 

synthase (Kim et al., 2004). Subsequent investigation, however, suggested that it may be a 

ribosomally synthesized and post-translationally modified peptide (RiPP), with a gene -mbnA - 

possibly encoding for the polypeptide precursor of mb identified that includes a 19 amino acid 

leader sequence and a 10 amino acid core sequence (Krentz et al., 2010). When mbnA was 

knocked out in M. trichosporium OB3b, this microbe was unable to synthesize mb, providing 

evidence that mb is a RiPP (Semrau et al., 2013). With these data, the core polypeptide sequence 

of mb-OB3b was shown to be Leu-Cys-Gly-Ser-Cys-Tyr-Pro-Cys-Ser-Met, where the 

heterocyclic rings shown in Figure 3.7 are formed from the two X-Cys dipeptide sequences 

highlighted in bold (DiSpirito et al., 2016). 
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Figure 3.7. Molecular structure of methanobactin from M. trichosporium OB3b (Krentz et al., 2010). 
 

Further bioinformatic analysis revealed that mbnA is part of a gene cluster in M. trichosporium 

OB3b as shown in Figure 3.1. As discussed in Section 1.3.2.2, downstream of mbnA are several 

genes, some of which have unknown function, but are likely involved in mb biosynthesis (mbnB 

and mbnC), as well as several genes annotated as either an extrusion protein that may be 

responsible for mb secretion (mbnM) or an aminotransferase that may play a role in mb 

biosynthesis (mbnN). These genes appear to be part of an operon under the control of a s70-

dependent promoter as predicted using BPROM. Two additional genes, mbnP and mbnH that 

encode for a putative di-haem cytochrome c peroxidase and its partner are adjacent to mbnN, but 

look to be under the control of a separate s70-dependent promoter (again predicted using 

BPROM). The function of mbnP and mbnH is unclear, although they may be involved in ring 

formation in mb, or possibly part of a secondary copper uptake system (DiSpirito et al., 2016).  

 

The formation of the heterocyclic rings in mbs are not clear and needs to be addressed 

experimentally. DiSpirito et al. (2016) provided a hypothesis as shown in Figure 3.8. In the 

proposed scheme, the oxazolone rings in mb-OB3b are synthesized via a tandem two-step 

sequence of peroxidation and dehydration reactions.  
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Figure 3.8. Proposed reaction schemes for biosynthesis of the oxazoline rings with associated thioamide 
groups via a tandem two-step sequence of peroxidation and dehydration reactions.  

Cysteine thiols are likely protected against oxidation, possibly as disulfides involving one of the proteins 
of the mb gene cluster (blue circles). For imidazolone and pyrazinedione ring formation, oxazolone rings 
are modified via a transamination/deamination step followed by an aminolysis step to open the oxazolone 

ring followed by ring formation and dehydration. 
 

There is increasing interest to understand the biosynthetic pathway of mb, e.g., it has been 

recently shown that mb from M. trichosporium OB3b has the potential to treat individuals 

afflicted with Wilson disease (Summer et al., 2011, Zischka et al., 2011, Lichtmannegger et al., 

2016).  
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III.2.2 Confirmation of mutants and gene expression 

 
Previously a M. trichosporium mbnA::Gmr mutant was constructed where mbnA was knocked 

out via marker-exchange mutagenesis (Semrau et al., 2013). While this mutant was unable to 

synthesize mb, it does not allow easy mutation of other genes in the mbn operon. We therefore 

constructed a new M. trichosporium ΔmbnAN mutant, in which mbnABCMN was deleted as 

described in Section 2.4.1. The successful knockout was confirmed by PCR amplification of 

mbnA through mbnN for ΔmbnAN mutant, as well as verification of the loss of plasmid backbone 

(Figure 3.9). This was further confirmed by sequencing as well as finding that the ΔmbnAN 

strains were kanamycin sensitive and sucrose resistant.  

   

Figure 3.9. Confirmation of construction of M. trichosporium OB3b ∆mbnAN mutant.  
A: PCR of mbnABCMN using primers mbn21/22. Lanes 1 – 4 are PCR of mbnABCMN from: 1 - M. 

trichosporium OB3b mbnAN mutant; 2 - M. trichosporium OB3b wildtype; 3 - pWG012 plasmid (positive 
control); 4 - water (negative control). B: PCR of pK18mobsacB plasmid backbone using primers pK18-

bb-F/R. Lanes 1 – 4 are PCR of pK18mobsacB plasmid backbone from: 1 - M. trichosporium OB3b 
mbnAN mutant; 2 - M. trichosporium OB3b wildtype; 3 - pWG012 plasmid (positive control); 4 - water 

(negative control). 
 
 

For the ΔmbnAN mutant, the deletion of mbnABCMN had no effect on expression of mbnPH as 

confirmed by RT-PCR (Figure 3.10). Interestingly, expression of mbnPH was dependent on 

copper as found earlier for mbnA (Semrau et al., 2013), suggesting that expression of mbnA, 
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mbnP and mbnH utilizes a shared regulatory element.  

 

 

 

 

 

 

Figure 3.10. Confirmation of expression of mbnPH in ∆mbnAN mutant using primers mbnPH-F/R.  
Lanes 1 - 4 are RT-PCR of mbnPH from: 1 - M. trichosporium OB3b ∆mbnAN grown in the absence of 

copper; 2 - M. trichosporium OB3b ∆mbnAN mutant grown in the presence of 1 µM copper; 3 - M. 
trichosporium OB3b wild type grown in the absence of copper (positive control); 4- water (negative 

control).  
 
 
The suitability of mutant ΔmbnAN as a host for expression of recombinant mb-synthesizing 

genes was established by introducing pWG101 (Table 2.3, Figure 2.4), an expression vector 

containing the wild-type mbn operon (mbnABCMN) with its native promoter, into ΔmbnAN for 

back complementation.  

 

Expression of these back added genes was confirmed via RT-PCR (Figure 3.11). The native s70-

dependent promoter upstream of mbnA was also incorporated into pWG101, and based on earlier 

findings showing that mbnA expression decreased with increasing copper in M. trichosporium 

OB3b wildtype (Semrau et al., 2014), similar results were expected in ΔmbnAN + pWG101. 

Indeed, in the presence of copper, expression of mbnA and mbnN was visibly reduced in 

ΔmbnAN + pWG101 as compared to when no copper was provided in the growth medium 

(Figure 3.11).  
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Figure 3.11. Expression of mbnA and mbnN in ∆mbnAN + pWG101.  
A: RT-PCR of mbnA using primers qmbnA_FO/RO. Lanes 1 -5 are RT-PCR of mbnA from: 1 - M. 

trichosporium OB3b ∆mbnAN + pWG101 grown in the absence of copper; 2 - M. trichosporium OB3b 
∆mbnAN + pWG101 grown with 1 µM copper; 3 - M. trichosporium OB3b ∆mbnAN grown in the 

absence of copper (negative control); 4 - M. trichosporium OB3b wild type grown in the absence of 
copper (positive control); 5 - water (negative control). B: RT-PCR of mbnN using primers mbnN-F/R. 
Lanes 1 – 5 are RT-PCR of mbnN from: 1 - M. trichosporium OB3b ∆mbnAN + pWG101 grown in the 

absence of copper; 2 - M. trichosporium OB3b ∆mbnAN + pWG101 grown in the presence of 1 µM 
copper; 3 - M. trichosporium OB3b ∆mbnAN grown in the absence of copper (negative control); 4 - M. 
trichosporium OB3b wild type grown in the absence of copper (positive control); 5 - water (negative 

control). 
 

To characterize the function of each gene in mb gene cluster, a series of mutants were 

constructed by introducing different expression vectors (Table 2.1, Table 2.3) into ΔmbnAN 

mutant. We here first discuss the characterization of strain ΔmbnAN + pWG102, in which 

mbnABCM were cloned and expressed in ΔmbnAN mutant without mbnN. First, the expression of 

the insert mbnABCM from the plasmid in ΔmbnAN + pWG102 was confirmed by RT-PCR as 

shown below. 

 

III.2.3 Characterization of mb  

The analysis on mb produced by various mutants was done by our collaborator Dr. Alan 

DiSpirito at Iowa State University. Currently, the characterization of ΔmbnAN, back-

complemented ΔmbnAN, and ΔmbnN (ΔmbnAN + pWG102) are complete and the results are 

presented below.  
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Figure 3.12. Expression of mbnA, mbnM and mbnN in ∆mbnN.  
A: RT-PCR of mbnA using primers qmbnA_FO/RO. Lanes 1 -5 are RT-PCR of mbnA from: 1 - M. 

trichosporium OB3b ∆mbnAN + pWG102 grown in the absence of copper; 2 - M. trichosporium OB3b 
∆mbnAN + pWG102 grown with 1 µM copper; 3 - M. trichosporium OB3b ∆mbnAN grown in the 

absence of copper (negative control); (4) M. trichosporium OB3b wild type grown in the absence of 
copper (positive control); (5) water (negative control). B: RT-PCR of mbnM using primers mbnM-F/R. 
Lanes 1 -5 are RT-PCR of mbnM from: 1 - M. trichosporium OB3b ∆mbnAN + pWG102 grown in the 
absence of copper; 2 - M. trichosporium OB3b ∆mbnAN + pWG102 grown with 1 µM copper; 3 - M. 

trichosporium OB3b ∆mbnAN grown in the absence of copper (negative control); (4) M. trichosporium 
OB3b wild type grown in the absence of copper (positive control); (5) water (negative control). C: RT-
PCR of mbnN using primers mbnN-F/R. Lanes 1 - 5 are RT-PCR of mbnN from: 1 - M. trichosporium 
OB3b ∆mbnAN + pWG102 grown in the absence of copper; 2 - M. trichosporium OB3b ∆mbnAN + 

pWG102 grown with 1 µM copper; 3 - M. trichosporium OB3b ∆mbnAN grown in the absence of copper 
(negative control); 4 - M. trichosporium OB3b wild type grown in the absence of copper (positive 

control); 5 - water (negative control). 
 

After verification of the deletion of mbnA through mbnN from the chromosome, mb production 

was examined in this mutant. The absence of color in the culture medium suggested no mb was 

being produced by this mutant even when it was cultured in low copper conditions (Figure 3.13). 

The lack of mb production in the ΔmbnAN was confirmed via UV/visible absorption spectral 

analyses of the spent medium (Figure 3.14). After back complementation, mb production was 

restored in ΔmbnAN + pWG101 (Figure 3.13, Figure 3.14). The mass of mb from this back-

complemented mutant was found to be 1154.27 Da by both LC-MS/MS and FT-ICR-MS as 

determined by collaborators at Iowa State University, identical to the mass of mb from wildtype 

M. trichosporium OB3b, indicating that ΔmbnAN + pWG101 produced the same form of mb. 
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Also consistent with gene expression, mb production was markedly reduced when ΔmbnAN + 

pWG101 was grown in the presence of copper. 

 
Figure 3.13. Fermenters of (A) wild-type M. trichosporium OB3b, (B) ∆mbnAN, and (C) ∆mbnAN + 

pWG101 cultured in NMS media amended with 0.2 µM CuCl2. 
 

 
 

Figure 3.14. UV-visible light absorption spectra of the spent media from wild-type M. trichosporium 
OB3b (black trace), the ΔmbnAN mutant (red trace), and the ΔmbnAN+pWG101 mutant (green trace).  

Cells were cultured on NMS medium amended with 0.2 M CuCl2 (black and red traces) or on NMS 
medium amended with 0.2 M CuCl2 and 20 g · ml-1 spectinomycin (green trace). The blue trace shows 
methanobactin production in mutant ΔmbnAN+pWG101 grown on NMS medium amended with 5.0 M 

CuCl2 and 20 g·ml-1 spectinomycin. 
 

The molecular mass of mb produced by ΔmbnAN + pWG102 was found to be 999.47 Da by LC-

MS/MS and 999.46 Da by FT-ICR MS, 154.7 Da smaller than mb isolated from M. 

wild-type 
at	0	μM	Cu	
 
ΔmbnAN+pWG101	 
at	0	μM	Cu 
	
 
ΔmbnAN+pWG101	 
at	5μM	Cu 
	
ΔmbnAN 
at	0	μM	Cu 
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trichosporium OB3b wildtype. The difference suggests that one or both heterocyclic rings are not 

formed and an amino acid residue is missing. Subsequently mb from ΔmbnAN + pWG102 was 

subjected to Edman degradation and was found to have a polypeptide backbone with a sequence 

of Leu-?-Gly-Ser-?-Tyr-Pro-?-Ser-? (question marks suggest moieties with sulfhydryl groups, 

e.g., cysteines or non-amino acid moieties). It should be noted that the C-terminal methionine is 

missing from mb- ΔmbnAN + pWG102, and this can explain 131.2 Da of the difference in mass 

when comparing wildtype mb to that from ΔmbnAN + pWG102. More importantly, successful 

amino acid sequencing of mb from ΔmbnAN + pWG102 was surprising as previous attempts to 

sequence wildtype OB3b-mb via Edman degradation resulted in the non-mb sequence of Ser-

Met-Tyr-Pro-? Ser-?-Met. The modification of the N-terminal leucine and the presence of the 

adjacent oxazolone ring A alters/disrupts N-terminal amino acid sequencing in wildtype mb. The 

successful collection of sequence data of mb from ΔmbnAN + pWG102 indicates that the N-

terminal leucine has not been modified, and raises the possibility that oxazolone ring A may also 

be missing.  

 

To help identify the unknown residues found in the initial amino acid sequence of mb from 

ΔmbnAN + pWG102, the composition of acid-digested mb from ΔmbnAN+pWG101 and 

ΔmbnAN + pWG102 was determined and compared. Mb from ΔmbnAN + pWG102 was found to 

have 0 leucine, 1.9 serine, 2.1 glycine, 0.8 proline, 1.8 cysteine, and 0.8 methionine per tyrosine. 

The presence of proline and one additional glycine than expected from the structure of wildtype 

mb (Figure 3.7) indicates that under these conditions, oxazolone ring B underwent hydrolysis 

and decarboxylation to form proline and a glycine (likely containing thioamide or Gly-Y), but 

oxazolone ring A was not degraded. Such a result is not unprecedented as earlier it was shown 
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that when mb from M. trichosporium OB3b is subjected to acid digestion, oxazolone ring B was 

hydrolyzed and decarboxylated to proline and a thioamide-containing glycine before ring A was 

converted to an α–oxo-leucine and a thioamide-containing glycine (Krentz, et al., 2010).  

 

Mb from ΔmbnAN + pWG102 was found to have a different composition, i.e., 1.0 leucine, 1.8 

serine, 3.3 glycine, 0.7 proline, and 1.6 cysteine per tyrosine. The absence of a Met was 

consistent with the N-terminal sequencing results. The presence of leucine and a third glycine is 

remarkable, and is unlikely to be the result of the degradation of oxazolone ring A as mb from 

ΔmbnAN + pWG102 was prepared in the same fashion as that from ΔmbnAN + pWG101. Rather, 

the finding of these residues supports the possibility that oxazolone ring A was not present in mb 

from ΔmbnAN + pWG102 mb.  

 

To consider this further, UV/visible absorption spectral analyses of ΔmbnAN + pWG102 mb 

were performed and compared to that of mb produced by ΔmbnAN + pWG101 (Figure 3.15). 

The presence of only one major absorption peak at 337 nm indicates that ΔmbnAN + pWG102 

mb has only oxazolone ring B, and not oxazolone ring A as a second major absorption peak 

would be expected at 394 nm. Further, copper titration of ΔmbnAN + pWG102 mb demonstrated 

copper binding, but the sample saturated at a copper:mb molar ratio of ~0.5, as compared to 1.0 

for wildtype mb (Choi et al., 2006) and for mb from ΔmbnAN + pWG101 (Figure 3.15). The 

impaired copper binding by mb from ΔmbnAN + pWG102 again suggests that oxazolone ring A 

is missing. Finally, acid digestion of mb produced by ΔmbnAN + pWG102 followed the 

hydrolysis pattern observed for oxazolone B from both wild-type (Krentz et al., 2010) and 

ΔmbnAN + pWG101. In wild-type and ΔmbnAN + pWG101 mb, oxazolone ring B is hydrolyzed 
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before oxazolone ring A as evidenced by the decrease in absorption at 340 nm but little change at 

394 nm (Figure 3.16). The mass changes for mb from ΔmbnAN + pWG101 (24.98 Da) and 

ΔmbnAN + pWG102 (25.99, 27 and 28 Da) after acid digestion were consistent with the 

predicted 25.98 Da change following hydrolysis of the oxazolone ring B (Krentz et al., 2010). 

 
 

Figure 3.15. Comparison of the UV/visible light absorption spectra of methanobactin from (A) M. 
trichosporium OB3b ΔmbnAN+pWG101 and (B) M. trichosporium OB3b ΔmbnAN + pWG102 with the 

addition of 0.0 to 1.0 Cu(II) per methanobactin in 0.05 increments. 
 

 
 

sFigure 3.16. UV/visible absorption spectra of methanobactin from ∆mbnAN + pWG101 (A and B) and 
∆mbnN (C and D) of samples incubated in either 10 mM HCl (A and C) or 100 mM HCl (B and D).  

Spectra were taken either at 20 min (A and C) or at 120 min (B and C) intervals. Insets A and B, 
absorbance changes at 340 nm (blue trace) and 394 nm (red trace). Inserts C and D, absorbance changes 

at 337 nm (blue trace).  
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When we consider the mass spectral, amino acid sequence, composition, and UV/visible 

absorption data in toto, we propose that the metal-free form of mb from ΔmbnAN + pWG102 has 

the molecular structure shown in Figure 3.17. This structure, with a mass of 999.26 Da, agrees 

well with that measured via mass spectrometry. In particular, we predict that leucine is adjacent 

to a thioamide-containing glycine (Gly-Y), and that oxazolone ring B is also present. To verify 

the presence of this modified glycine in mb, our collaborators at Iowa State University assayed 

for the presence of thiol groups before and after reduction with tris (2-carboxyethyl) phosphine 

(TCEP). Before reduction, no thiol groups were measured in methanobactin from M. 

trichosporium OB3b wildtype, ΔmbnAN + pWG101 and ΔmbnAN + pWG102 strains, suggesting 

that the thioamide groups associated with the oxazolone rings are not detectable using this 

methodology and the cysteine thiol groups were oxidized. After reduction, however, mb from M. 

trichosporium OB3b wildtype and ΔmbnAN + pWG101 strain had 1.7 ± 0.3 and 2.0 ± 0.2 thiols 

per mb, respectively, and were likely created from the reduction of the disulfide bond connecting 

Cys 3 and Cys 6. Mb from ΔmbnAN + pWG102 had 3.1 ± 0.3 thiols per mb after reduction with 

TCEP. The finding of an additional thiol after reduction indicates that despite the lack of 

oxazolone ring A, the sulfur group remains, and as such supports the conclusion that a 

thioamide-containing glycine exists in place of oxazolone ring A.  

 

 
Figure 3.17. Proposed structure of methanobactin from M. trichosporium ΔmbnAN + pWG102. Major 

differences from wild-type methanobactin are shown in red. 
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IV.2.4 Discussion  

Here, through the construction of markerless deletion of mbnABCMN and expression of 

mbnABCM off a plasmid, we show that the product of mbnN is necessary for the deamination of 

the N-terminal leucine. Further, ΔmbnAN + pWG102 is unable to construct oxazolone ring A in 

mb, but oxazolone ring B is formed, indicating that these two rings are made independently. It is 

unclear, however, if oxazolone rings A and B are formed via the same or different modifying 

enzyme(s), but from the data collected, it appears that the modifying enzyme(s) responsible for 

formation of oxazolone ring A can only bind and/or modify the N-terminal cysteine after the 

deamination of the adjacent leucine.  

 

In the earlier hypothesized pathway for mb biosynthesis (Figure 3.8), it was speculated that ring 

closure occurred before changes in connectivity of the peptide backbone. Based on the findings 

reported here, however, it appears that deaminaton of the N-terminal acid must occur before 

formation of oxazolone ring A in M. trichosporium OB3b, and an alternative scheme for 

formation of mb is presented in Figure 3.18. It should be noted that we do not know if, in 

wildtype mb, re-arrangement of the peptide backbone occurs before leucine deamination (or 

vice-versa), only that both are required for formation of oxazolone ring A.  
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Figure 3.18. Proposed pathway of formation of (A) the N-terminal oxazolone group with associated 
thioamide group in wild-type methanobactin from M. trichosporium OB3b and (B) the resulting altered 

pathway in M. trichosporium ΔmbnAN + pWG102.  
 

All mbs characterized to date have an oxazolone ring near the C-terminus, but the N-terminal 

heterocyclic ring is either an oxazolone, pyrazinedione or imidazolone ring. In the earlier 

hypothesized pathway for mb biosynthesis (Figure 3.8), it was speculated that pyrazinedione and 

imidazolone rings are formed from modification of an oxazolone ring, but further consideration 

of available bioinformatic data juxtaposed with the findings reported here suggests that 
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pyrazinedione and imidazolone rings can be created without an oxazolone ring platform. That is, 

in the original model of ring formation, deamination of the amino acid residue adjacent to the 

cysteine converted to an oxazolone ring was not necessary for ring formation. The data presented 

here, however, show such deamination is required for the formation of oxazolone ring A. For 

example, mb of Methylocystis strain SB2 has an N-terminal imidazolone ring, but its mb gene 

clusters does not show any clear evidence of an encoded aminotransferase (DiSpirito et al., 2016) 

(Figure 1.11, Figure 1.12). Given that the N-terminal oxazolone ring in mb of M. trichosporium 

OB3b is only formed when mbnN is expressed, it is possible that the creation of alternative rings 

found in other forms of mb do not require that an oxazolone ring be first formed. Rather, the 

formation of a pyrazinedione and imidazolone ring may be due to the concerted activity of a 

suite of modifying enzymes, including a putative FAD-dependent oxidoreductase found in the 

mb gene clusters of Methylocystis strain SB2 but not in M. trichosporium OB3b (DiSpirito et al., 

2016). As noted earlier, however, formation of imidazolone or pyrazinedione rings without an 

oxazolone intermediate would likely necessitate multiple changes in the connectivity of the 

peptide backbone (DiSpirito et al., 2016).  

 

IV.2.5 Conclusions and future perspectives 

In conclusion, through the construction and back complementation of a deletion mutant defective 

in mb production, the function of mbnN is elucidated. With such information of synthesis 

pathway of mb, we can develop a better mechanistic understanding of the biosynthetic pathway 

of mb. With a better grasp on how mb is synthesized, we can then develop strategies to modify 

methanobactin to enhance its efficacy for the treatment of copper-related diseases such as Wilson 

disease. 
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It appears that different strategies have been developed by different methanotrophs for the 

formation of mb, and clearly creation and characterization of more mutants is required to fully 

re-construct these different biosynthetic pathways. A challenge, however, is M. trichosporium 

OB3b is the only methanotroph known to produce mb with a validated system for generation of 

mutants. Similar approaches may be possible in other methanotrophs that produce mb, but in the 

event that working genetic systems are difficult to construct in these strains, it may be useful to 

pursue efforts whereby mb genes from other strains are heterologously expressed in either E. coli 

or mb-defective mutants of M. trichosporium OB3b.  
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CHAPTER IV GENETIC REGULATION BY RARE EARTH ELEMENTS 
(REEs) AND COPPER 

 
Figure 4.0 Effect of copper and REEs on gene expression in M. trichosporium OB3b 

 
 
Published: 
 
Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium 
OB3b. FEMS Microbiology Letters, 363(13), fnw129.  
 
In preparation: 
 
The Effect of Copper and Cerium on the Transcriptome of Methylosinus trichosporium OB3b. 
 
 

IV.1	Genetic	regulation	by	REEs	

IV.1.1 Introduction 

In methanotrophs and methylotrophs, microbes that utilize methane and/or methanol for growth, 

it was initially assumed that methanol oxidation was performed in these microbes by a calcium-

containing pyrroquinolone quinone (PQQ)-linked methanol dehydrogenase (MeDH), or Mxa-
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MeDH (Williams, et al. 2005). Recent genomic and biochemical evidence indicate, however, an 

alternative PQQ-MeDH that contains a rare earth element in its active site also exists (Xox-

MeDH), and this form may actually be catalytically superior to Mxa-MeDH (Hibi, et al., 2011; 

Wu, et al., 2015; Keltjens, et al., 2014; Pol, et al., 2014). Early data suggested that expression of 

the alternative forms MeDH was not regulated by the (un)availability of rare earth elements 

(Nakagawa, et al., 2012), but it has been shown that in the presence of cerium, expression of 

xoxF, encoding for the single subunit of Xox-MeDH increased in the α-Proteobacterium, 

Methylosinus trichosporium OB3b, while expression of mxaF and mxaI, encoding for the large 

and small subunits of Mxa-MeDH, respectively, goes down (Farhan Ul Haque, et al., 2015). 

Subsequently, it was shown that cerium and other rare earth elements (lanthanum, 

praseodymium, and neodymium) exhibited a similar effect on MeDH expression in the 

methylotroph, Methylobacterium extorquens AM1 (Vu, et al., 2016). It was also later shown that 

cerium and lanthanum upregulate expression of xox genes, while repressing mxa genes in the g-

Proteobacterium, Methylomicrobium buryatense (Chu and Lidstrom, 2016). 

 

One interesting finding was that although cerium controlled expression of alternative forms of 

MeDH in methanotrophs and methylotrophs, such regulation appears to be over-ridden by the 

“copper-switch” in methanotrophs (Farhan Ul Haque, et al., 2015). That is, in M. trichosporium 

OB3b, expression of xoxF increased in the presence of cerium regardless of the concentration of 

copper. In the absence of copper, expression of mxaF and mxaI, decreased, but cerium had little 

effect on expression of these genes in the presence of copper. Here we extend these initial 

findings to determine if other rare earth elements also serve to regulate expression of alternative 

forms of the MeDH, and if so, if such regulation is also over-ridden by copper. 
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IV.1.2 Metal analysis 

M. trichosporium OB3b wildtype was grown in the presence of every tested rare earth element 

(lanthanum, praseodymium, neodymium and samarium) both in the presence and absence of 

copper. Metals associated with biomass was measured by ICP-MS. We found that more than 

90% of the added rare earth element was associated with biomass (Table 4.1), indicating that 

methanotrophs appear to have a mechanism (as yet uncharacterized) for the uptake of these 

metals.  

A mxaF::Gmr mutant of M. trichosporium OB3b able only to express Xox-MeDH had been 

constructed in a previous study by Farhan HI-Haque et al. (2015). This mutant was also 

investigated in this study. It was found to be able to grow in the presence of lanthanum, 

praseodymium, neodymium, but not samarium (data not shown), and again, most of the added 

rare earth element was cell-associated (Table 4.1). 

 

IV.1.3 Gene expression 

Quantitative PCR was then used to determine if the “copper-switch” was still operative under 

these conditions, and if, as found earlier for cerium, expression of mxaF and mxaI was not 

affected by the presence of other rare earth elements in the presence of copper. The levels of 

expressed genes were measured by absolute quantification method as described in Session 2.3.9.  
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Table 4.1. Rare earth element (REE) and copper associated with biomass of M. trichosporium OB3b wild 
type and mxaF:Gmr mutant as a function of the growth concentration of copper and REE.  

Values presented are mean ± standard deviation of triplicate cultures. 
 

Strains Growth conditions 
nmol REE/mg 

protein 
nmol Cu/mg 

protein 
% REE 
uptake 

% Cu 
uptake 

Wild 
type 

0 µM 
Cu 

25 µM La 80.9±4.7 2.6x10-2±9.5x10-3 96.1±1.4 NA 
25 µM Ce 73.9±8.9 9.0x10-3±7.7x10-3 93.2±4.4 NA 
25 µM Pr 94.6±10.3 1.4x10-2±2.5x10-3 95.6±1.7 NA 
25 µM Nd 94.2±16.3 3.5x10-2±1.5x10-2 98.4±0.4 NA 
25 µM Sm 92.3±14.8 5.1x10-2±1.9x10-2 93.0±3.6 NA 
0 µM REE 0.2±0.3* 3.1x10-2±8.2x10-3 NA NA 

10 µM 
Cu 

25 µM La 60.6±6.5 7.3±0.6 91.9±0.7 23.2±1.4 
25 µM Ce 65.2±3.2 6.6±0.7 98.0±0.4 22.8±1.7 
25 µM Pr 78.3±9.4 7.9±1.4 94.6±6.4 27.5±3.1 
25 µM Nd 87.4±5.9 7.6±0.8 98.3±1.4 23.3±1.8 
25 µM Sm 84.6±16.1 6.2±1.4 97.6±0.9 20.1±0.8 
0 µM REE 0.1±2.1x10-2* 4.3±0.3 NA 12.3±0.9 

mxaF::G
m 

0 µM 
Cu 

25 µM La 76.4±3.8 3.9x10-2±1.7x10-2 91.8±0.2 NA 
25 µM Ce 63.1±17.3 8.8x10-2±1.3x10-2 83.9±1.9 NA 
25 µM Pr 78.0±5.7 4.8x10-2±2.4x10-2 89.0±1.4 NA 
25 µM Nd 89.7±9.7 8.7x10-2±7.8x10-2 96.5±1.6 NA 

10 µM 
Cu 

25 µM La 51.9±1.4 5.4±0.5 64.7±0.7 14.6±1.7 
25 µM Ce 33.0±4.9 5.8±0.5 51.8±9.3 13.0±1.9 
25 µM Pr 59.4±3.0 5.9±0.7 81.2±1.0 18.4±0.3 
25 µM Nd 67.0±9.3 4.5±0.5 84.8±1.2 14.8±0.7 

 
NA: No growth. 
* measured as the sum of La, Ce, Pr, Nd, Sm.  
Note: The background level of copper and lanthanides in the media were determined as follows: copper 
0.52 ± 0.04 µg/L, lanthanum 0.56 ± 0.28 µg/L, praseodymium 0.32 ± 0.01 µg/L, neodymium 0.34 ± 0.03 
µg/L, samarium 0.35 ± 0.01 µg/L. 
 
 
As can be seen in Figure 4.1, expression of pmoA and mmoX in M. trichosporium OB3b wildtype 

was not affected by the presence of any rare earth element either in the absence or presence of 

copper, but the “copper-switch” was readily apparent, i.e., pmoA expression increased in the 

presence of copper while mmoX expression decreased. Expression of mxaF and mxaI, however, 

was significantly reduced (p < 0.05) in the absence of copper when a rare earth element was also 
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present (Figure 4.2). In the presence of copper, expression of mxaF and mxaI was not affected by 

the presence of any rare earth element. Finally, expression of xoxF1 and xoxF2 increased in the 

presence of most rare earth elements regardless of the presence or absence of copper; the only 

exception was expression of xoxF2 in the presence of samarium (Figure 4.3). 

 

Figure 4.1. Expression analyses of pmoA (A) and mmoX (B) in M. trichosporium OB3b wild type grown 
in the absence of any rare earth element (no REE) or in the presence of 25 µM Lanthanum (La), 
Praseodymium (Pr), Neodymium (Nd), or Samarium (Sm) with either 0 µM or 10 µM copper.  

Errors bars represent the standard deviation of triplicate samples. The values for columns within each plot 
labeled by different letters are significantly different (P < 0.05). 
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Figure 4.2. Expression analyses of mxaF (A) and mxaI (B) in the M. trichosporium OB3b wild type 
grown in the absence of any rare earth element (no REE) or in the presence of 25 µM Lanthanum (La), 

Praseodymium (Pr), Neodymium (Nd) or Samarium (Sm) with either 0 µM or 10 µM copper.  
Errors bars represent the standard deviation of triplicate cultures. Lower error bars are not visible for Pr 

with 0 µM Cu for both mxaF and mxaI and Sm with 10 µM Cu for mxaF as the standard deviation is 
larger than the mean. The values for columns within each plot labeled by different letters are signi cantly 

different (P < 0.05). 
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Figure 4.3. Expression analyses of xoxF1 (A) and xoxF2 (B) in the M. trichosporium OB3b wild type 

grown in the absence of any rare earth element (no REE) or in the presence of 25 µM Lanthanum (La), 
Praseodymium (Pr), Neodymium (Nd), or Samarium (Sm) with either 0 µM or 10 µM copper.  

Errors bars represent the standard deviation of triplicate samples. The values for columns within each plot 
labeled by different letters are significantly different (P < 0.05). 

 

IV.1.4 Discussion  

Here we extend an earlier finding that cerium serves to regulate expression of alternative 

methanol dehydrogenases in M. trichosporium OB3b (Farhan Ul Haque, et al., 2015) and show 

that other rare earth elements, i.e., lanthanum, praseodymium, neodymium, and samarium, also 

induce expression of Xox-MeDH and repress expression of Mxa-MeDH. Further, as found for 

cerium, such control was only evident in the absence of copper, i.e., the “copper-switch” appears 

to be of primary importance in controlling expression of genes involved in the conversion of not 
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only methane to methanol, but also methanol to formaldehyde. The cross-regulation by copper 

and rare earth elements on the expression of MMOs and MDHs is summarized in Figure 4.4.  

 

Figure 4.4. Cross-regulation on gene expression by copper and rare earth elements in M. trichosporium 
OB3b 

 

Although samarium did affect expression of mxaF and mxaI in the absence of copper in M. 

trichosporium OB3b wildtype, its impact was comparatively less than that of lanthanum, 

praseodymium, and neodymium (Figure 4.2) and samarium also caused the lowest increase in 

expression of xoxF1 and xoxF2 (Figure 4.3). Further, the mxaF::Gmr mutant was unable to grow 

in the presence of samarium. Similar findings have been reported in the Methylobacterium 

extorquens AM1 where samarium was also found to have relatively weaker effects on growth in 

Mxa-MeDH mutant strains (Vu, et al., 2016). It was suggested that the relatively greater ionic 
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radius of samarium vs. other rare earth elements may either limit uptake of samarium and/or 

insertion into Xox-MeDH. The ionic radius of an element, however, depends on a number of 

factors, including oxidation state and coordination number, and the ionic radii of the rare earth 

elements have great overlap (Shannon, 1976). Our finding that samarium was effectively taken 

up by both M. trichosporium OB3b wildtype and mxaF::Gmr mutant suggest that reduced effect 

of samarium compared to other rare earth elements is not due to limited bioavailability but rather 

a reduced ability to correctly insert samarium into Xox-MeDH, i.e., poor coordination with 

residues that stabilize its localization within Xox-MeDH as well as ensure its effective 

coordination with POQ for electron transfer.  

 

Although it is now apparent that methanotrophs strongly respond to the presence of rare earth 

elements, nothing is known as to how these metals are sensed, collected, or regulate gene 

expression. A review of the literature reveals that the question of uptake of rare earth elements is 

actually poorly understood, likely due to the fact it was initially believed that rare earth elements 

were non-essential as they had no established biological function (Nakamura, et al., 2006). Early 

studies found that cerium uptake varies widely, with some bacteria taking up more than 80% of 

added cerium (e.g., Escherichia coli and Aerobacter aerogenes) while others take up less than 

25% (e.g., Serretia marcescens and Pseudomonas vulgaris). In fact, uptake can vary widely 

within specific genera, i.e., Streptomyces flavovirens has been shown to take up more than 75% 

of added cerium while Streptomyces viridoflavus collects less than 25% (Johnson and Kyker, 

1961). It has been argued that such uptake is largely passive (Johnson and Kyker, 1961), but 

others have found that microbes can actively oxidize cerium (Moffett, 1990). This result, coupled 

with the finding that rare earth elements control the expression and activity of methanol 
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dehydrogenase in methanotrophs, and that most of the added rare earth elements are associated 

with biomass, however, suggest an uptake mechanism for rare earth elements exists in at least 

some microbes. 

 

Equally unknown is the basis by which rare earth elements control gene expression in 

methanotrophs. At this time, expression of only four genes in M. trichosporium OB3b has been 

shown to be affected by the presence of rare earth elements, i.e., mxaF and mxaI (which are co-

expressed on the same polycistronic transcript), and xoxF1 and xoxF2 (which have different 

transcripts). Scanning of the promoter regions of these genes indicates that there is one unique 

sequence found in all: CGA(T/C)(G/A)TGACC. This sequence has also been found in the 

promoter regions of over a dozen genes in the genome of M. trichosporium OB3b. The majority 

of these encode for proteins of unknown function. It is tempting to speculate that this sequence 

may serve as binding site for some regulatory protein that differentially regulates expression of 

genes encoding for Mxa- vs. Xox-MeDH (and perhaps other proteins) in response to rare earth 

elements.  

 

It should be stressed that although mxaF and mxaI expression decreased in the presence of rare 

earth elements, this was only in the absence of copper. In the presence of copper, mxaF and mxaI 

expression was not reduced with the concurrent addition of a rare earth element, although xoxF1 

and xoxF2 expression did increase. These data indicate that the mxa operon is controlled by both 

rare earth elements and copper, but that copper is the primary regulator. Scanning of the 

promoter regions of genes clearly shown to be upregulated with respect to copper, e.g., pmoA, 

mxaF, and mxaI finds one consensus sequence: TATT(G/T)CA(C/T)GT. Further, examination of 
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the entire genome of M. trichosporium OB3b indicates that this sequence is found in the 

promoter region of many genes encoding for proteins of unknown function. It is tempting to 

speculate that this sequence is important for the copper regulation of these genes. It is also 

interesting to note that the mxa operon was the only operon found to have both putative copper 

and cerium regulatory sequences. 

 

IV.1.5 Conclusions and future perspectives 

In conclusion, we demonstrate that a range of rare earth elements affect the expression of 

alternative methanol dehydrogenases in M. trichosporium OB3b, but such control is only 

apparent in the absence of copper. Further, growth of the mxaF::Gmr mutant of M. trichosporium 

OB3b was not observed in the presence of samarium, but did occur in the presence of lanthanum, 

praseodymium and neodymium, suggesting that these metals enable Xox-MeDH to become 

active, but samarium cannot.   

 

These findings open more questions as to how methanotrophs sense, transport, storage, and 

regulate REEs. Further experiments need to be done to understand the interaction between 

methanotrophs and REEs, which may include mutagenesis study to identify novel sensing, 

uptake, and storage mechanisms, the use of reporter vectors and DNA binding techniques to 

investigate genetic regulation elements, and structural characterization of more Xox-MeOH to 

better determine the nature of the metal-binding site in Xox-MeDH. To date only the Xox-

MeDH from Methylacidiphilum fumariolicum SolV, an acidophilic methanotroph of the 

Verrucomicrobia, has been studied to any great extent (Pol, et al., 2014).  
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IV.2	Transcriptomic	analysis	of	M.	trichosporium	OB3b	in	response	to	copper	

and/or	cerium	

IV.2.1 Introduction 

The activity of methanotrophs is strongly affected by a number of environmental parameters, 

including the bioavailability of copper and REEs. As described before, methanotrophs have a 

well-known “copper-switch” where the expression and activity of sMMO and pMMO responds 

significantly to the availability of copper (Choi, et al., 2003; Semrau et al., 2010; Semrau, et al., 

2013). More recently, rare earth elements have been shown to have a major effect on 

methanotrophs (Pol et al., 2014; Wu et al., 2015) by strongly regulating the activity and 

expression of alternative methanol dehydrogenases (MxaF-MeOH and XoxF-MeDH) that 

oxidize methanol to formaldehyde, signifying that a “REE-switch” also exists (Farhan Ul Haque, 

et al. 2015; Gu, et al., 2016; Vu, et al., 2016). Cross-regulation by these metals on gene 

expression has been observed as described above.  

 

What is not clear, however, is if copper and/or cerium exert more global control over gene 

expression in methanotrophs. These metals clearly control expression of enzymes mediating the 

oxidation of methane and methanol - two key steps in the central pathway of methane oxidation- 

but do they regulate expression of genes in other metabolic pathways? Here we describe the 

effect of different concentrations of copper and/or cerium on the transcriptome of M. 

trichosporium OB3b using RNA-seq and RT-qPCR. 
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IV.2.2 Transcriptomic analysis by RNA-Seq 

IV.2.2.1 General analyses of transcriptomic samples 

To investigate the effect of copper and cerium on the transcriptome of M. trichosporium OB3b, 

this strain was grown under four different conditions: 0 µM copper + 0 µM cerium, 0 µM copper 

+ 25 µM cerium, 10 µM copper + 0 µM cerium, and 10 µM copper + 25 µM cerium. The quality 

of the collected RNA from these cultures was very good (RIN ≥ 8.7 for each sample) with 23.1 – 

42.8 x 106 reads per sample (Table 4.2). Of these, 7.3 - 15.2 x 106 reads per sample were 

assigned to regions encoding for proteins. To determine the reproducibility of biological 

replicates, principal component analysis of the normalized logarithmic transformed read counts 

of each transcriptome was performed using DESeq2 (Anders & Huber, 2010). High similarity 

was observed between triplicate biological replicates for three of the growth conditions - 0 µM 

copper + 0 µM cerium, 0 µM copper + 25 µM cerium, and 10 µM copper + 25 µM cerium 

(Figure 4.5). Transcriptomes of replicates of the fourth growth condition - 10 µM copper + 0 µM 

cerium - showed less uniformity (Figure 4.5). Despite the variability in the transcriptome of M. 

trichosporium OB3b when grown with 10 µM copper + 0 µM cerium, we could not reasonably 

conclude that any replicate in this condition was an outlier as: (1) the coverage and sequence of 

these replicates were comparable, and; (2) the Spearman’s rank correlation coefficient between 

these three replicates was found to be > 0.93. As such, all replicates for all conditions were 

included in subsequent analyses of differential gene expression. 

 
 
 
 
 
 
 



107 
	

Table 4.2. General properties of transcriptome samples of M. trichosporium OB3b grown in the presence 
of varying amounts of copper and cerium. 

 

Conditions 0 µM Cu 
0 µM Ce 

10 µM Cu 
0 µM Ce 

0 µM Cu 
25 µM Ce 

10 µM Cu 
25 µM Ce 

RIN 9.1 9.0 9.1 9.0 9.0 8.9 9.2 9.2 9.3 8.7 9.0 9.1 
Reads (X106) 32.7 29.9 23.9 30.6 33.4 41.4 29.7 23.1 38.3 42.8 41.1 39.1 
Reads aligned 

(X106) 28.3 21.9 18.0 26.5 29.1 32.7 25.3 20.0 31.8 34.2 33.1 33.7 

Reads assigned to 
coding features 

(X106) 
11.8 8.7 7.3 11.2 11.7 14.3 10.3 8.2 12.7 15.2 14.6 14.8 

 

 
 

Figure 4.5. Principal component analysis of collected transcriptomic sequence data. 
¡ - 0 µM copper + 0 µM cerium; l - 10 µM copper + 0 µM cerium; r - 0 µM copper + 25 µM cerium; 

p - 10 µM copper + 25 µM cerium. 
 

IV.2.2.2 Differentially expressed genes in the presence or absence of copper  

When comparing the transcriptome of M. trichosporium OB3b grown with 10 µM copper + 0 

µM cerium vs. 0 µM copper + 0 µM cerium, 37 genes were found to have significantly increased 

expression in the presence of copper, i.e., log2 change ³ 1.5 and Benjamini-Hochberg-adjusted p-

value £ 1 x 10-3 (Table 4.3). As expected from previous RT-qPCR assays of pmoA, genes of the 

pmo operon were significantly upregulated (log2 > 2; p < 3 x 10-8). Further, a gene (locus tag 

ADVE02_v2_12455) encoding for a recently discovered copper storage protein, Csp1, (Vita et 
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al., 2015) was also significantly upregulated in the presence of copper but its homolog, Csp2 

(locus tag ADVE02_v2_10455), did not vary with respect to copper. cusA, encoding for a copper 

efflux system (Munson et al., 2000), was also found to have increased expression in the presence 

vs. absence of copper. Very few other groups of genes were found to be upregulated, with the 

exception of genes encoding for 30S and 50S ribosomal proteins and genes of unknown function. 

Approximately twice as many genes (86 in total) were downregulated in the presence of copper 

(i.e., log2 change £ -1.5 and Benjamini-Hochberg-adjusted p-value £ 1 x 10-3) in several general 

groups, e.g., mmo genes encoding for polypeptides of the sMMO as well as mbn genes involved 

in methanobactin synthesis. Many genes encoding for TonB-dependent transporters had reduced 

expression in the presence of copper, as did numerous putative σ factors and proteins of 

unknown function (Table 4.3).  

 

IV.2.2.3 Differentially expressed genes in the presence or absence of cerium 

Gene expression was also affected by the availability of cerium, but fewer genes showed 

differential expression in response to the addition of this rare earth element as compared to 

changes observed when copper was varied, i.e., 20 genes were upregulated and 15 

downregulated in the presence vs. absence of cerium (Table 4.4). As expected from previous RT-

qPCR assays (Farhan Ul Haque et al., 2015, Gu et al., 2016), when comparing the transcriptome 

of M. trichosporium OB3b grown with 0 µM copper + 0 µM cerium vs. 0 µM copper + 25 µM 

cerium, genes encoding for the rare earth element-containing methanol dehydrogenase (Xox-

MeDH) increased in the presence of cerium. Interestingly, so did genes predicted to be involved 

in pyoverdine synthesis and uptake. The only other genes significantly upregulated by cerium 

were two genes encoding for a s70 factor and an ABC transporter, as well as several genes  
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Table 4.3. Select genes differentially expressed in M. trichosporium OB3b grown with 10 µM copper + 0 
µM cerium vs. 0 µM copper + 0 µM cerium.  

(Benjamini-Hochberg-adjusted p-value < 1 x10-3, |log2| >1.5) 

Function Gene/Locus number 

Up-regulated 

Particulate methane monooxygenase pmoAB12 
 

Metal transport and metabolism cusA, csp1(ADVE02_v2_12455), modA, 
ADVE02_v2_14468 

 

Ribosomal proteins 50S (rplDWBVP, rpmC), 30S (rpsSQNH) 
 

Proteins of unknown function ADVE02_v2_10901, 10902, 11082, 11143, 11164, 
11568, 12042, 12128, 12492, 12978, 12979, 

12980, 13152, 14285, 14468, 30055 

Down-regulated 

Soluble methane monooxygenase mmoRGXYBDZC 
 

Methanobactin synthesis and transport mbnTABCMNPH 
 

TonB-dependent transporters ADVE02_v2_10030, 10151, 11125, 11295, 11307, 
11588, 12266, 12284, 13641, 13988, 14392, 20043 

 

Transcription regulators  σ24 factors (ADVE02_v2_10149, 11305, 11827, 
12264) 

 
σ54 factor (mmoR) 

 
 

σ70 factor (ADVE02_v2_13661) 
 

FecRI-like proteins (ADVE02_v2_10211&10212, 
11296&11297, 11828, 13990, 14098, 

14393&14394, 20042) 

Proteins of unknown function ADVE02_v2_10007, 10008, 10031, 10035, 11119, 
11294, 11308, 11588, 12283, 12503, 12506, 
12508, 13637, 13638, 13660, 13662, 13663, 

13985, 13986, 14096, 14246, 20041 

 

encoding for proteins of unknown function. Genes encoding for the calcium-containing methanol 

dehydrogenase (Mxa-MeDH) were downregulated in the presence of cerium (Table 4.4). Three 
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genes encoding for either a TonB dependent receptor, a pentapeptide repeat protein and a protein 

of unknown function were the only other genes to exhibit decreased expression when cerium was 

added in the absence of copper (Table 4.4).  

Table 4.4. Select genes differentially expressed in M. trichosporium OB3b grown with 0 µM copper + 25 
µM cerium vs. 0 µM copper + 0 µM cerium. 

(Benjamini-Hochberg-adjusted p-value < 1 x10-3, |log2| >1.5) 

Function Gene/Locus number 

Up-regulated 

Xox-type methanol dehydrogenase gene 
cluster 

xoxFG1, xoxGJF2  
 

Pyoverdine synthesis and transport  aphA, pvdFAHL, fpvA, mbtH, macB 
 

ABC-type transporter ADVE02_v2_11792 
 

σ70 factor 
 

ADVE02_v2_30017 
 

Proteins of unknown function 
 

ADVE02_v2_12116, 30014 

Down-regulated  

Mxa-type methanol dehydrogenase  mxaHDLKCASRIGJF 
 

TonB-dependent transporter ADVE02_v2_10208 
 

Pentapeptide repeat protein 
 

ADVE02_v2_11208 

Protein of unknown function 
 

ADVE02_v2_12110 

 

IV.2.2.4 Differentially expressed genes in the presence or absence of cerium and in the presence 

of copper 

When comparing the transcriptome of M. trichosporium OB3b grown with 10 µM copper + 0 

µM cerium vs. 10 µM copper + 25 µM cerium, only seven genes were upregulated when cerium 

was added in the presence of copper, i.e., genes encoding for the Xox-MeDH, ABC or TonB-
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dependent transporters, or of unknown function (Table 4.5). 36 genes were found to be 

downregulated, most notably genes encoding for nitrogenase and hydrogenase (discussed in 

more detail below). Finally, no significant difference in the expression of genes involved in 

pyoverdine synthesis was observed, suggesting that iron uptake was not affected by the variation 

of cerium so long as copper was also present. As discussed below, it may be that an alternative 

copper-based iron uptake was operative in these conditions such that pyoverdine synthesis was 

not required for iron sequestration. 

 

Table 4.5. Select genes differentially expressed in M. trichosporium OB3b grown with 10 µM copper + 
25 µM cerium vs. 10 µM copper + 0 µM cerium.  

(Benjamini-Hochberg-adjusted p-value < 1 x10-3, |log2| >1.5) 

Function Gene/Locus number 

Up-regulated genes 

Xox-type methanol dehydrogenase xoxFG1 

ABC-type transporter ADVE02_v2_11791, 11792 

TonB-dependent transporter ADVE02_v2_10208 

Protein of unknown function 
 

ADVE02_v2_12116 

Down-regulated genes 

Hydrogenase hupH, hyaCB, ADVE02_v2_10849 
 

Nitrogenase 
 

nifBENXU, frxA 

Proteins of unknown function 
 

ADVE02_v2_10223, 10394, 10643, 11076, 
11428, 11580, 11714, 11715, 12128, 12519, 
12756, 12823, 12824, 13014, 13310, 13674, 

13996, 14333 
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IV.2.2.5 Differentially expressed genes in the presence or absence of copper and in the presence 

of cerium  

When comparing the transcriptome of M. trichosporium OB3b grown with 0 µM copper + 25 

µM cerium or 10 µM copper + 25 µM cerium, over 780 genes, approximately 15% of the entire 

genome, were found to be either up- or down-regulated. Figure 4.6 maps major shifts in gene 

expression for various metabolic pathways and uptake systems while Table 4.6 summarizes 

major changes in gene expression.  

 

Figure 4.6. Central metabolism of M. trichosporium OB3b. Genes highlighted in green or red were 
significantly upregulated or downregulated, respectively, when M. trichosporium OB3b was grown in the 

presence of 10 µM copper + 25 µM cerium vs. in the presence of 0 µM copper + 25 µM cerium. 
(Green arrows indicate up-regulated genes, red arrows indicate down-regulated genes) 
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Table 4.6. Select genes differentially expressed in M. trichosporium OB3b grown with 10 µM copper + 
25 µM cerium vs. 0 µM copper + 25 µM cerium. 

(Benjamini-Hochberg-adjusted p-value < 1 x10-3, |log2| >1.5) 

Function Gene/Locus number 

Up-regulated 

Methane oxidation 
 

pmoAB12, mxaHDLKCASRIGJF, fae1, mtdAB, fchA, 
fhcABCD 

 

Carbon assimilation 
 

glyA, sga, hprA, gckA, ppc, mtkAB, mclA12, phaAB, ecm, 
meaC, pccAB, mcmB, yliK, sucC, icd 

 

Fatty acid synthesis 
 

accABC, fabBGH 

Ribosomal proteins and rRNA 
maturation 

30S (rpsOPIFDBKSCQNH),  
 

50S (rplIMLYQAKDWBVPNXEFRT, rpmCDHI) 
 

rlmJ, rsmD, rim, era 
 

tRNA synthetase tyrS, thrS, pheT, hisS, valS, alaS, queA, gatA, mtaB, 
tsaD, truB 

 

Cellular division ftsEX, parAB 
 

Amino acid synthetases hisACGH, pro, glnA, trpE, leuB, thrB, leuD, argBFJH, 
serC, ilvC 

 

NADH-quinone oxidoreductase nuoBCDEFGHIJKLMN 
 

Vitamin synthesis cobDQTONWFBMLJIH, bioB 
 

ATP synthase atpCBGAFEB 
 

Transcription regulators TetR-like regulator (ADVE02_v2_12329), 
oxyR 

 

Copper storage protein csp1(ADVE02_v2_12455) 

Function Gene/Locus number 

Cobalamine synthesis 
 

cobDQTONWFBMLJIH 

Flagella synthesis flhB, ADVE02_v2_11202 
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Table 4.6 Continued 

Function Gene/Locus number 

Transporters secBFD, hppA, cscA, modA, cusA 
 

TonB-dependent transporters (ADVE02_v2_10208, 10688, 
13035, 14446, 14451),  

 
MATE-type exporter (mdtA), 

 
ABC-type transporters (ADVE02_v2_12321, 12556, yejF),  

 
RND-type exporters (ADVE02_v2_11509, 11510, 11574) 

 

Down-regulated 

Soluble methane monooxygenase 
 

mmoRGXYBDZC 

Xox-type methanol dehydrogenase 
 

xoxFGJ2 

Methanobactin synthesis and 
transport 

 

mbnTABCMNPH 

Pyoverdine synthesis and transport 
 

pvdAFHSEIJDLL, fpvA ,fecIR, mbtH, macB 

Nitrogenase nifBHDENUW, frxA 
 

Hydrogenase hypDCFB, hybF, hupJHGF, hyaDCBA, hydA, 
ADVE02_v2_10849 

 

Transcription regulators  
 
 
 
 
 
 

Transcription regulators 

σ24 factors (ADVE02_v2_11827, 12264, 14394),  
 

σ54 factor (mmoR),  
 

σ70 factor (ADVE02_v2_13661, 30017),  
 

FecRI-like proteins (ADVE02_v2_10212, 11296&11297, 
13990, 14098, 14393),  

 
sigH, fixJ, rpoH,  

 
LuxR-like protein (ADVE02_v2_12868),  

 
TetR-like protein (ADVE02_v2_10058) 
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Table 4.6 Continued 

Function Gene/Locus number 

Transporters TonB-dependent transporters (mbnT, fpvA, 
ADVE02_v2_10030, 10151, 11295, 11307, 11411, 12266, 

11588, 12284, 12822, 13641, 13988, 14392, 20043),  
 

MATE-type transporters (mbnM, ADVE02_v2_12268),  
 

ABC-type transporters (ADVE02_v2_12305, 30003, 30018, 
30146),  

 
RND-type exporters (ADVE02_v2_11413, 30009),  

 
actP (copper transporting ATPase) 

 

As found when copper was added in the absence of cerium (Table 4.3), if copper was added in 

the presence of cerium, it again appears that copper homeostasis must be carefully managed 

given that genes involved in copper uptake decreased (mbnA) while those involved in copper 

efflux and storage increased (cusA and csp1, respectively), and only a fraction of the added 

copper was associated with biomass (see below). Similarly, genes involved in pyoverdine 

synthesis decreased when copper was added in the presence of cerium, again suggesting that a 

copper-dependent iron uptake system may exist in methanotrophs. 

 

Further, as found when comparing the transcriptomes of cultures grown with 0 µM copper + 0 

µM cerium vs. 10 µM copper + 0 µM cerium, expression of genes encoding for 30S and 50S 

ribosomal proteins increased for cultures grown in the presence of 10 µM copper + 25 µM 

cerium vs. 0 µM copper + 25 µM cerium. In addition, expression of genes involved in the 

conversion of formaldehyde to biomass via the serine cycle and ethylmalonyl-CoA pathway 

were upregulated as were genes for amino acid, tRNA, fatty acid and cobalamin synthesis, 

amongst many others (Figure 4.6, Table 4.6). In the presence of copper and cerium, Mxa-and 
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Xox-MeDH were both expressed, and as such, M. trichosporium OB3b is likely converting 

methanol to formaldehyde more rapidly. In doing so, however, it appears that the cell is also 

increasing the rate at which formaldehyde is assimilated to control the buildup of this toxic 

intermediate. Interestingly, expression of the NAD-linked formate dehydrogenase decreased in 

the presence of both copper and cerium, suggesting that carbon flow to carbon dioxide via 

formate oxidation was reduced under these conditions. 

 

Expression of nitrogenase genes also decreased when copper was added in the presence of 

cerium. The finding of reduced nitrogenase expression when cerium and copper are both present 

is intriguing as nitrogenase activity was not expected under any condition as nitrate mineral salts 

(NMS) medium containing 9.9 mM NO3
- was used for all cultures, and it has been shown that M. 

trichosporium OB3b has no N2-fixation activity in this medium (Murrell & Dalton, 1983). 

Others have shown, however, low expression of nitrogenase genes in M. trichosporium OB3b 

when grown in NMS medium amended with copper (Matsen et al., 2013). Our data support these 

findings, and further indicate that nitrogenase expression is most affected when both copper and 

cerium are present, for reasons as yet unknown.   

 

Finally, hydrogenase expression significantly decreased in the presence of copper and cerium. It 

has been observed that several methanotrophs, including M. trichosporium OB3b, 

Methylococcus capsulatus Bath and Methylomicrobium album BG8 can generate significant 

amounts of H2, with production dependent on the oxidation of formate to carbon dioxide 

(Hanczár et al., 2002, Kawamura et al., 1983). H2 generation may be used to balance the ratio of 

NAD+ to NADH by regenerating NAD+ consumed during formate oxidation (Kawamura et al., 
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1983). We speculate that in the presence of copper and cerium, carbon flux through the serine 

cycle and ethylmalonyl-CoA pathway increased, reducing carbon flow to carbon dioxide through 

formate, and this is supported by the finding of reduced expression of the NAD-linked formate 

dehydrogenase under these conditions (Figure 4.6). As a result, there was reduced formate 

oxidation and subsequent formation of NADH, decreasing the need to generate H2 to balance 

NAD+: NADH ratios. It would be interesting to examine the proteome and metabolome of M. 

trichosporium OB3b under varying amounts of copper and cerium to determine if this indeed the 

case, but such experiments are beyond the scope of this research. 

 

IV.2.3 RT-qPCR confirmation of differential gene expression 

To confirm RNA-Seq findings that genes encoding for alternative MMOs (sMMO vs. pMMO), 

MeDHs (Mxa-MeDH vs Xox-MeDH), metal uptake systems (methanobactin and pyoverdine) 

and nitrogenase varied in response to varied concentrations of copper or cerium, more focused 

and accurate RT-qPCR assays of the following genes were performed: mmoX and pmoA 

(sMMO/pMMO), mxaF, xoxF1 and xoxF2 (Mxa-MeDH/Xox-MeDH), mbnA and pvdF 

(methanobactin/pyoverdine), and nifH (nitrogenase). Three genes - rrs (16s rRNA), clpX, (a 

subunit of a ClpX-ClpP ATP-dependent serine protease), and yjg (a permease of the YjgP/YjgQ 

family) - were used as internal references. These were chosen as rrs was found earlier to be 

appropriate (Kalidass, et al., 2015; Farhan UI Haque et al., 2015; Gu et al., 2016), and expression 

of clpX and yjg were observed to be invariant under the growth conditions described examined 

here, i.e., log2 expression changes < 0.05 as determined via RNASeq. New primers were 

designed (Table 4.2) and calibration curves were measured as shown in Figure 4.7. Figure 4.8 
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shows changes in gene expression when the geometric mean of all three reference standards was 

used; similar trends were found when any one reference gene was used (Figure 4.9-4.11).  

 

As expected from RNA-Seq data, expression of mmoX and mbnA significantly decreased when 

copper was added, while pmoA expression increased, and such changes occurred regardless if 

cerium was present or not (p < 0.05; Figure 4.7). Further, expression of xoxF1 increased when 

cerium was added both in the absence and presence of copper. mxaF expression only decreased 

when cerium was added in the absence of copper (Figure 4.7, p < 0.05). nifH expression was also 

found to decrease in the presence of both copper and cerium as compared in the absence of both 

metals or in the presence of cerium only, i.e., there was no difference in nifH expression for M. 

trichosporium OB3b grown with 10 µM copper + 0 µM cerium and 10 µM copper + 25 µM 

cerium. Finally, pvdF was also found to be upregulated when cerium was added, but only in the 

absence of copper. Interestingly, RT-qPCR indicated that pvdF expression decreased slightly 

when copper was added but no significant changes were observed in the RNA-Seq data (Figure 

4.7). Collectively the RT-qPCR data support the RNA-Seq data in that copper and cerium 

differentially affected gene expression in M. trichosporium OB3b. 
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Figure 4.7. Calibration curves for qRT-PCR 
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Figure 4.8. qRT-PCR using geometric mean of all reference genes for normalization.  
Each bar represents average of triplicate cultures; error bars represent standard deviation. Bars within 

each plot labeled by different letters are significantly different (P < 0.05). 
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Figure 4.9. RT-qPCR using reference gene rrs 
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Figure 4.10. RT-qPCR using reference gene clpX 
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Figure 4.11. RT-qPCR using reference gene yjpG 
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IV.2.4 Metal analysis 

Metal (including copper, cerium, and iron) associated with cells were measured by ICP-MS. 

When copper was added as CuCl2, the amount of copper associated with biomass increased by 

~70-fold, and copper uptake was ~50% greater in the presence of cerium than in its absence 

(Figure 4.12, p < 0.05). When 10 µM copper was added, however, only 10-15% of the added 

copper was found to be cell-associated, indicating that M. trichosporium OB3b has active 

mechanisms to regulate copper homeostasis, i.e., differential expression of genes involved in 

copper uptake (e.g., mbnA), copper storage (csp1), and efflux (cusA) was observed under 

different growth concentrations of copper (see above).  

 

Unlike, copper, when cerium was added as CeCl3, the majority of cerium was found to be cell-

associated (~90%), suggesting that cerium is not toxic. Further, copper did not have any 

measurable effect on cerium uptake (p > 0.05), indicating that copper and cerium uptake are 

mediated by independent systems.  

 

Iron uptake, however, was affected by the presence of copper (Figure 4.12). Iron associated with 

biomass increased ~ 2.5-fold when copper was increased from 0 (no added) to 10 µM (p < 0.05), 

suggesting that there may be a copper-dependent iron transport system in M. trichosporium 

OB3b. At this time, it is unclear what this uptake mechanism may be, but it is tempting to 

speculate that as multi-copper oxidases have been shown to serve as iron transporters in other 

bacteria (Dubbels et al., 2004; Huston et al., 2002), a similar mechanism may be utilized here. 

There is one annotated multi-copper oxidase in the genome of M. trichosporium OB3b (locus tag 

ADVE02_v2_10748), but expression of this oxidase did not change significantly with respect to 
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copper (data not shown). Thus, we hasten to stress that the role (if any) of this gene product in 

iron uptake is unclear. When one considers this uncertainty, and that many genes encoding for 

proteins of unknown function also had differential expression when copper was added, it is 

evident that much more work is required to determine how copper may enhance iron uptake in 

methanotrophs. Finally, cerium had no significant effect on iron uptake, either in the absence or 

presence of copper (Figure 4.12, p > 0.05), suggesting that cerium uptake is independent of iron 

uptake.  

 

Figure 4.12. Metal associated with biomass. 
 

IV.2.5 Discussion 

We here investigate how the transcriptome of M. trichosporium OB3b varies in response to 

copper and cerium. These metals were chosen as it has been found that they control expression 

of key parts of methanotrophic metabolism, i.e., genes encoding for methane and methanol 
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oxidation, respectively (Choi, et al., 2003; Nielsen, et al., 1996, 1997). Interestingly, copper and 

cerium affected the expression of other genes, but such control was strongly dependent on if both 

metals were present.  

 

In the absence of cerium, copper affected expression of genes encoding for sMMO, pMMO and 

methanobactin, as found earlier using more focused RT-qPCR assays (Semrau, et al., 2013; 

Farhan Ul Haque, et al., 2015; Gu, et al., 2016). Interestingly, although copper is an important 

component of methanotrophic metabolism, these microbes (like others) appear to carefully 

regulate the distribution and amount of copper in vivo. That is, only a fraction of the added 

copper was found to be cell-associated and expression of mbn genes (responsible for 

methanobactin synthesis) decreased in the presence of copper while expression csp1 and cusA 

(encoding for a copper storage protein and a copper efflux system respectively) increased. Such 

data indicate that M. trichosporium OB3b actively controls the amount of copper in vivo, and 

suggests that methanotrophs have a complex, interconnected system whereby copper uptake, 

storage, and excretion pathways are tightly coupled to effectively utilize copper while 

minimizing its toxicity. 

 

In addition to genes involved in methane oxidation and copper homeostasis being differentially 

expressed in the absence/presence of copper, genes encoding for ribosomal proteins had 

increased expression when copper was added. Many genes encoding for proteins of unknown 

function also had differential expression when copper was added, indicating the transcriptome of 

M. trichosporium OB3b is “tuned” to the availability of copper. Such a response may explain 

earlier findings that methanotrophic growth yields increase with increasing copper (Leak and 
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Dalton, 1986). It should be noted, however, that overall growth rates of M. trichosporium OB3b, 

however, do not change significantly with respect to copper (Farhan Ul Haque, et al., 2015). 

Thus it appears that changes in the transcriptome with respect to copper enable methanotrophs to 

enhance the efficiency of methane utilization, but does not alter the overall rate at which methane 

is converted into biomass. 

 

Interestingly, in addition to changes in the transcriptome of M. trichosporium OB3b to the 

absence/presence of copper, significantly more iron was associated with biomass when copper 

was added (Figure 4.12), suggesting that there may be a copper-dependent iron transport system 

in M. trichosporium OB3b. At this time, it is unclear what this uptake mechanism may be, but it 

is tempting to speculate that as multicopper oxidases have been shown to serve as iron 

transporters in other bacteria (Dubbels, et al., 2007; Huston, et al., 2002), a similar mechanism 

may be utilized here. There is one annotated multicopper oxidase in the genome of M. 

trichosporium OB3b (locus tag ADVE02_v2_10748), but expression of this oxidase did not 

change significantly with respect to copper (data not shown). Thus, we hasten to stress that the 

role (if any) of this gene product in iron uptake is unclear. When one considers this uncertainty, 

and that many genes encoding for proteins of unknown function also had differential expression 

when copper was added, it is evident that much more work is required to determine how copper 

may enhance iron uptake in methanotrophs.  

 

When cerium was varied in the absence of copper, expression of fewer genes was observed to 

vary as compared to when copper was varied in the absence of cerium, suggesting that cerium 

(and by extension other REEs) plays a less significant role in methanotrophic metabolism than 
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copper. Besides genes encoding for Xox-MeDH increased in expression, while those encoding 

for Mxa-MeDH had lower expression when cerium was added in the absence of copper, the 

finding of increased expression of pyoverdine synthesis genes in the presence of cerium, 

however, is novel and unexpected. Typically, expression of metal uptake systems increases with 

decreasing metal availability, suggesting that pyoverdine synthesis increased when cerium was 

added as this may have limited iron uptake. Iron speciation at equilibrium, however, was not 

significantly different in the absence vs. presence of cerium (Table 4.7), nor was the amount of 

iron associated with biomass appreciably different for M. trichosporium OB3b grown with either 

0 µM copper + 0 µM cerium or 0 µM copper + 25 µM cerium (Figure 4.12). This suggests that 

increased pyoverdine synthesis when M. trichosporium OB3b was grown with 0 µM copper + 25 

µM cerium was not due to iron limitation, but to a different stress. Remarkably, cerium, in 

addition to iron, can act as a catalyst to activate H2O2 via a Fenton-like mechanism (Bokare & 

Choi, 2014; Heckert, et al., 2008). That is, cerium can generate free radicals from the activation 

of H2O2 as follows: 

Ce3+ + H2O2→ Ce4+ + HO• + OH− (1) 

Ce4+ + H2O2→ Ce3+ + HO2• + H+ (2) 

Given that cerium can also serve as a Fenton reagent, it is possible that pyoverdine synthesis 

increased to limit free radical formation by reducing the free ion concentration of cerium. We 

cannot state with any certainty if this indeed the case, but it suggests that in addition to copper, 

methanotrophs must carefully control the speciation and distribution of cerium to effectively 

utilize use it in methanol oxidation while limiting its (possible) toxicity. We would like to 

highlight that this hypothesis implicitly assumes that pyoverdine binds cerium to such a degree 

that that it can alter cerium speciation. To the best of our knowledge, however, the affinity of 
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pyoverdine or any other siderophore to bind cerium has not been measured. It has been observed 

though, that siderophores can mobilize rare earth elements from igneous materials (Kraemer, et 

al., 2015; Bao, et al., 2013), suggesting that these biogenic chelating agents can bind rare earth 

elements in complex situations. Expression of pyoverdine, however, decreased when copper was 

added in addition to cerium, indicating that if cerium toxicity can be an issue, it was only 

important in the absence of copper. 

Table 4.7. Predicted speciation of copper, iron, and cerium at equilibrium for all conditions as determined 
using Visual Minteq v3.1 (Gustafsson, 2011). 

 

Component Species name 

% of total concentration 
0 µM Cu 
+ 0 µM 
Ce 

10 µM Cu 
+ 0 µM 
Ce 

0 µM Cu 
+ 25 µM 
Ce 

10 µM Cu 
+ 25 µM 
Ce 

Fe3+ 

Fe2(OH)2(EDTA)2
4- 4.5x10-2 1.3x10-2 4.5x10-2 1.2x10-2 

FeOH2+ 0.0 4.1x10-2 0.0 4.1x10-2 
Fe(OH)2

+ 8.2 50 8.3 50 
Fe(OH)3 (aq) 5.0x10-2 3.0x10-1 5.0x10-2 3.0x10-1 
Fe(OH)4

- 2.0x10-2 1.2x10-1 2.0x10-2 1.2x10-1 
FeHPO4

+ 2.1x10-1 1.3 2.1x10-1 1.3 
FeEDTA- 71 38 71 38 
Fe(OH)EDTA2- 20 11 20 11 

Cu2+ 

Cu2+ ND 5.7 ND 5.7 
CuOH+  ND 1.4  ND 1.4 
Cu(OH)2 (aq)  ND 3.1x10-2  ND 3.1x10-2 
Cu2(OH)2

2+  ND 1.7x10-2  ND 1.7x10-2 
CuCl+  ND 1.9x10-2  ND 1.9x10-2 

CuSO4 (aq)  ND 1.1  ND 1.1 
CuNO3

+  ND 8.7x10-2  ND 8.8x10-2 
CuHPO4 (aq)  ND 34  ND 34 
CuEDTA2-  ND 58  ND 58 
CuHEDTA-  ND 1.1x10-2  ND 1.1x10-2 

Ce3+ 

Ce3+ ND ND 2.3x10-1 2.3x10-1 
Ce(SO4)2-  ND  ND 2.5x10-2 2.5x10-2 
CeSO4

+  ND  ND 4.8x10-1 4.8x10-1 
CeH2PO4

2+  ND  ND 2.9x10-2 2.9x10-2 
CePO4 (aq)  ND  ND 99 99 
CeEDTA-  ND  ND 7.8x10-2 0.0 
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If copper was varied in the presence of cerium, expression of many genes was found to be 

affected (Figure 4.6; Table 4.6). As found when copper was varied in the absence of cerium, 

cusA, pmo, ribosomal protein genes and the gene encoding for a copper storage protein increased 

when copper was added in the presence of cerium. Expression of mxa genes and genes encoding 

for ATP synthases were also found to have increased expression when copper was added in the 

presence of cerium. Many steps for the conversion of formaldehyde to formate and biomass were 

also found to increase when copper was added in the presence of cerium, likely due to both Mxa-

and Xox-MeDH being expressed. As such, in the presence of both copper and cerium, M. 

trichosporium OB3b appears to be able to more rapidly convert methanol to formaldehyde, but 

in so doing must also increase the rate at which formaldehyde is converted to either formate or 

assimilated into biomass to control the buildup of this toxic intermediate. It would be interesting 

to examine the proteome and metabolome of M. trichosporium OB3b under varying amounts of 

copper and cerium to determine if this indeed the case, but such experiments are beyond the 

scope of this research. Further, expression of nitrogenase and hydrogenase also decreased when 

both copper and cerium were present as opposed to just cerium. With the data presented here, we 

cannot state with any certainty as why expression of these systems would decrease, although it 

may be that enhanced growth efficiency is partly due to enhanced utilization of nitrogen, 

reducing the need for fixing nitrogen to meet growth requirements. In any event, the growth rate 

of M. trichosporium OB3b did not appreciably change when copper was varied in the presence 

of cerium (Farhan Ul Haque, et al., 2015), suggesting that the observed changes in gene 

expression in M. trichosporium OB3b do not translate to significant changes in the overall rate of 

growth. 
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IV.2.6 Conclusion and future perspectives 

We show herein that both copper and cerium affect the expression of many genes in M. 

trichosporium OB3b, but that the greatest changes occurred when both metals were present. 

Such studies can be very informative for manipulating methanotrophic metabolism for the 

valorization of methane, considering that the presence of both copper and cerium may increase 

the rate of carbon assimilation in M. trichosporium OB3b. It would, however, be necessary to 

examine the proteome (and metabolome) of M. trichosporium OB3b under varying amounts of 

copper and cerium to determine if this is indeed the case. This study could also be extended with 

targeted physiological characterizations, which include measuring the rate of methanol oxidation 

and the activities of nitrogenase and hydrogenase in M. trichosporium OB3b under varying 

amounts of copper and cerium to verify some of the observations.  
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CHAPTER V INVESTIGATION OF ALTERNATIVE COPPER-UPTAKE 
MECHANISMS 

 

Figure 5.0 Elucidation of the role of CopCD in M. trichosporium OB3b 
 

Accepted: 

Characterization of the role of copCD in copper uptake and the “copper-switch” in 
Methylosinus trichosporium OB3b, FEMS Microbiology Letters.  
	

V.1	Introduction	

There is of great interest to understand the basis of the “copper-switch” as this could be key for 

greater control of methanotrophic activity, and thus for the valorization of methane. Currently, 

there are conflicting models for this switch. One model, proposed by us, is based on mmoD, a 

gene within the operon for the soluble methane monooxygenase (mmo operon). In prior work, it 
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was shown that when mmoD was knocked out in the methanotrophic type strain, Methylosinus 

trichosporium OB3b, expression of pMMO was inverted as compared to M. trichosporium OB3b 

wildtype, i.e., pMMO expression in the mutant was highest in the absence of copper and 

decreased with the addition of copper (Semrau et al., 2013). In this mutant, however, not only 

was mmoD deleted, so were genes encoding for polypeptides of sMMO. As such, independent 

assessment of sMMO expression was not possible. Subsequently, Yan et al., (2016) selectively 

removed mmoD from Methylomicrobium buryatense 5GB1C. In this mutant, no sMMO activity 

or expression was observed in the absence of copper, supporting our hypothesis that MmoD is a 

transcriptional activator for the sMMO operon.  

 

Others disagree with this hypothesis. It has been reported that MmoD, when expressed and 

purified from E. coli does not bind either copper or DNA (Kenney et al., 2016). Instead, it has 

been suggested that copD, encoding for a copper importer may be involved in copper uptake 

and/or the copper switch in methanotrophs (Keeney et al., 2016). The rationale for this 

hypothesis was developed by comparing the genome of M. trichosporium OB3b wildtype to that 

of a mutant generated via random chemical mutagenesis that constitutively expressed sMMO 

(smmoC) in the presence of copper. Interestingly, the smmoC mutant did not collect copper, 

suggesting that the phenotype of this mutant was due to specific lesions in genes involved in 

copper uptake. Several differences were observed, perhaps most notably copD in smmoC has a 

22 bp-deletion (Figure 5.1). copD, encoding for an inner membrane protein, has been found to be 

involved in copper uptake in other bacteria, and is commonly in an operon with copC, encoding 

for a periplasmic copper binding protein (Cha & Cooksey, 1993; Koay et al., 2005; Wijekoon et 

al., 2015). Thus it was speculated that copD may play a critical role in the “copper-switch” 
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and/or copper homeostasis in methanotrophs. Both conclusions are somewhat controversial, 

given that independent laboratories conclude MmoD is involved in the copper switch, and the 

role of methanobactin, a well-characterized copper binding agent shown to be important for 

copper uptake (Gu, et al., 2016) is not explicitly considered in this model. Here we describe the 

phenotype of specific mutants to elucidate the role of copD in both copper uptake and the 

“copper-switch” in M. trichosporium OB3b. 

 

Figure 5.1. Gene arrangement of copCD in M. trichosporium OB3b. 
 

V.2	Characterization	of	copCD::Gmr	and	∆mbnAN	copCD::Gmr	

Using marker exchange mutagenesis, copCD from wildtype M. trichosporium OB3b and the 

∆mbnAN mutant (Gu et al., 2017) was knocked-out creating copCD::Gmr and ∆mbnAN 

copCD::Gmr. The mutants are gentamicin-resistant, indicating successful insertion of the Gm 

cassette, and kanamycin-sensitive and sucrose-resistant, showing loss of the plasmid backbone. 

The genotypes of these mutants were verified by PCR (Figure 5.2) and Sanger sequencing. 

 

The phenotype of the copCD::Gmr and mbnAN copCD::Gmr mutants were compared to that of 

wild-type M. trichosporium and the ∆mbnAN mutant. When grown in the presence of either 0 

(no added) or 1 µM copper, all strains had similar amounts of copper associated with biomass 

(Figure 5.3). Further, gene expression in all three mutants, as well as in M. trichosporium OB3b 

wildtype showed clear evidence of the copper switch (Figure 5.4). Specifically, in the presence 
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of 1 µM copper, expression of mmoX decreased by several orders of magnitude as compared to 

when no copper was added. Further, pmoA expression increased by about an order of magnitude 

when copper was added. Interestingly, mmoX expression was slightly (but significantly) higher 

in the copCD::Gmr and ∆mbnAN copCD::Gmr mutants as compared to wildtype M. 

trichosporium and the ∆mbnAN mutant in the presence of 1 µM copper. It should be noted, 

however, that in the presence of copper mmoX expression was low for any strain, i.e., < 0.1 

transcripts per gene copy number. Further, no sMMO activity was observed for any strain in the 

presence of copper as determined via the naphthalene assay (Brusseau, et al., 1990) (Figure 5.5). 

This strongly suggests that CopCD alone is not the cause of constitutive sMMO activity in the 

smmoC mutant.  

 

To determine if expression of copCD was affected by the availability of copper, expression of 

both copC and copD was monitored via RT-qPCR. The qPCR calibration curves for copCD are 

presented in Figure 5.6. Expression of copC and copD did not change with increasing copper in 

wildtype M. trichosporium OB3b. copC and copD expression did increase slightly (~1.5-fold; p 

< 0.05) in ∆mbnAN with increasing copper, but expression was in any case very low (< 0.1 

transcripts per gene copy number) (Figure 5.7). 
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Figure 5.2. Knockout of copCD in M. trichosporium OB3b copCD::Gmr and ∆mbnAN copCD::Gmr mutants.  

(A) PCR products amplified using primers copCD_F/R from Lanes 1- M. trichosporium OB3b 
copCD::Gmr (1.3 kb), 2 - ∆mbnAN copCD::Gmr (1.3 kb), 3 – wildtype (2.8 kb), 4 - water (negative 

control); (B) using primers qcopC_FO/qcopD_RO from Lanes 1- M. trichosporium OB3b copCD::Gmr, 2 
- ∆mbnAN copCD::Gmr, 3 - wildtype (2.1 kb), 4 - water (negative control); (C) PCR of plasmid backbone 

of pK18mobsacB from Lanes 1- M. trichosporium OB3b copCD::Gmr, 2 - ∆mbnAN copCD::Gmr, 3 - 
pK18mobsacB (0.8 kb, positive control), 4 - water (negative control) 

 
 
 

 

Figure 5.3. Copper associated with M. trichosporium OB3b wild type (black), ∆mbnAN (white), 
copCD::Gmr (grey) and ∆mbnAN copCD::Gmr (striped) grown in the presence of either 0 or 1 µM copper.  

Columns indicated by different letters are significantly different (p < 0.05) 
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Figure 5.4. Expression of (A) pmoA and (B) mmoX in M. trichosporium OB3b wild type (black), 

∆mbnAN (white), copCD::Gmr (gray) and ∆mbnAN copCD:Gmr (striped) grown in the presence of either 
0 or 1 µM copper.  

 
 

 
Figure 5.5. sMMO activities as determined via naphthalene oxidation. M. trichosporium OB3b wild type 
(black), ∆mbnAN (white), copCD::Gmr (gray) and ∆mbnAN copCD::Gmr (striped) grown in the presence 

of either 0 or 1 µM copper.  
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Figure 5.6. qPCR calibration curve for (A) copC and (B) copD 

 
 

 
Figure 5.7.  Expression of (A) copC and (B) copD in M. trichosporium OB3b wild type and ∆mbnAN 

grown at 0 µM (open) and 1 µM (filled) copper conditions.  
 

 
 

V.3	Conclusion	and	future	perspectives	

Via genomic sequencing of a constitutive sMMO-expressing mutant created by Phelps et al. 

(1992), a 22 bp deletion in copD was observed by Keeney et al. (2016). Given that this mutant 

not only expresses sMMO in the presence of copper but also has reduced copper uptake as 

compared to M. trichosporium OB3b, it was speculated that CopD may be involved in both 

copper uptake and the “copper-switch” of M. trichosporium OB3b. To test these hypotheses, we 

constructed a specific knockout of copCD in both wildtype M. trichosporium OB3b and a 

previously constructed mutant where genes encoding for methanobactin synthesis were removed 
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(ΔmbnAN). All strains exhibited similar responses to copper, i.e., all strains were still able to 

sequester copper and all strains exhibited the copper switch. These data indicate that CopD likely 

does not play a role in the copper-switch. Further, as discussed earlier, it is apparent that in 

addition to methanobactin, methanotrophs have a second mechanism for copper uptake (Gu, et 

al., 2016; Balusabramian, et al., 2011). Given that the mutants defective in copCD still collected 

copper suggest that CopD and its partner CopC do not play a significant role in copper uptake, or 

that there is a third (unknown) mechanism by which M. trichosporium OB3b collects copper.  

 

Further, we did not observe any changes in copC or copD expression with respect to copper in 

either wildtype M. trichosporium OB3b or the ΔmbnAN mutant. This is in contrast to the findings 

of Keeney, et al. (2016) where mild upregulation in the presence of copper was reported. We can 

not explain this difference, but the fact that at most mild increases have been observed in copCD 

gene expression in response to copper suggests that it may have a limited role in the copper-

switch and/or copper uptake. 

 

In conclusion, our selective knockout of copCD in M. trichosporium OB3b indicates that these 

genes, on their own, do not play a significant role in the “copper-switch”. Further, if CopCD are 

involved in copper uptake, there is remarkable redundancy of copper uptake systems in M. 

trichosporium OB3b as copper uptake was observed when copCD was knocked out in either 

wildtype M. trichosporium OB3b or the ΔmbnAN mutant. Nonetheless, it is must be kept in mind 

that the smmoC mutant has no copper-switch. As such, it cannot be stated unequivocally that 

copD is not involved, but rather, the constitutive expression of sMMO in smmoC is likely due to 

a suite of mutations. In addition to the 22 bp deletion in copD, several other lesions were noted in 
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the genome of the smmoC mutant, including in two kinases that may (or may not) be involved in 

copper uptake/sensing, as well as several hypothetical proteins. It may be that these mutations in 

concert are responsible for the phenotype of the smmoC mutant 
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CHAPTER VI CONCLUSIONS AND FUTURE WORK  

VI.1	Conclusions	

The general objective of this study was to understand how various metals and methanobactin 

(mb) impact gene expression in the methanotrophic type strain, Methylosinus trichosporium 

OB3b.  Such information is critical to enhance our ability to utilize methanotrophs for a suite of 

medical, industrial and environmental applications. 

 

First, the uptake mechanism of methanobactin was investigated. The gene encoding the 

polypeptide precursor of mb, mbnA, is part of a gene cluster that also includes several genes 

encoding proteins of unknown function (but speculated to be involved in mb formation) as well 

as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for mb 

uptake. A knockout of mbnT was constructed in M. trichosporium OB3b using marker exchange 

mutagenesis. The resulting M. trichosporium mbnT::Gmr mutant was found to be able to produce 

mb but was unable to internalize it. Further, if this mutant was grown in the presence of copper 

and exogenous mb, copper uptake was significantly reduced. Expression of mmoX and pmoA, 

encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane 

monooxygenase (pMMO), respectively, also changed significantly when mb was added, which 

indicates that the mutant was unable to collect copper under these conditions. Copper uptake and 

gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating 

that the TonB-dependent transporter encoded by mbnT is responsible for mb uptake and that mb 
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is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gmr mutant was 

grown under a range of copper concentrations in the absence of mb, however, the phenotype of 

the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that 

this methanotroph has multiple mechanisms for copper uptake.  

 

Second, to begin to elucidate the function of other genes in the mb gene cluster, we constructed 

an unmarked deletion of mbnABCMN in Methylosinus trichosporium OB3b and then 

homologously expressed mbnABCM using a broad-host-range cloning vector to determine the 

function of mbnN, annotated as coding for an aminotransferase. Methanobactin produced by this 

strain was found to be substantially different from wild-type methanobactin in that the C-

terminal methionine was missing and only one of the two oxazolone rings was formed. Rather, in 

place of the N-terminal 3-methylbutanoyl-oxazolone-thioamide group, a leucine and a 

thioamide-containing glycine (Gly-Y) were found, indicating that MbnN is used for deamination 

of the N-terminal leucine of mb and that this posttranslational modification is critical for closure 

of the N-terminal oxazolone ring in M. trichosporium OB3b. Mb not only plays a key role in 

controlling methanotrophic activity, it has also been shown to be effective in the treatment of 

Wilson disease, an autosomal recessive disorder where the human body cannot correctly 

assimilate copper. Thus, it is important to characterize the mb biosynthesis pathway to 

understand how methanotrophs respond to their environment as well as to optimize the use of mb 

for the treatment of copper-related diseases such as Wilson disease.  

 

Besides the genetic regulation of alternative forms of methane monooxygenases by copper, more 

recently, it has been discovered that M. trichosporium OB3b also has multiple types of methanol 
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dehydrogenase (MeDH), i.e. the Mxa-type MeDH (Mxa-MeDH) and Xox-type MeDH (Xox-

MeDH), and the expression of these two forms is regulated by the availability of the rare earth 

element (REE), cerium (Farhan UI Haque, et al., 2016). We first extended these studies by 

showing that lanthanum, praseodymium, neodymium and samarium also regulate expression of 

alternative forms of MeDH. The effect of these REEs on MeDH expression, however, was only 

observed in the absence of copper. Further, a mutant of M. trichosporium OB3b, where the Mxa-

MeDH was knocked out (Farhan UI Haque, et al., 2016), was able to grow in the presence of 

lanthanum, praseodymium and neodymium, but was not able to grow in the presence of 

samarium. Collectively, these data suggest that multiple levels of gene regulation by metals exist 

in M. trichosporium OB3b, but that copper overrides the effect of other metals by an as yet 

unknown mechanism.  

 

To further investigate the effect of copper and REEs on gene expression in M. trichosporium 

OB3b, RNA-Seq analysis was performed to compare the transcriptome of M. trichosporium 

OB3b grown in the presence of varying amounts of copper and cerium. We found that when 

copper was added in the absence of cerium, expression of genes encoding for both soluble and 

particulate methane monooxygenases varied as expected. Genes encoding for copper uptake, 

storage, and efflux also increased, indicating that methanotrophs must carefully control copper 

homeostasis. When cerium was added in the absence of copper, expression of genes encoding for 

alternative methanol dehydrogenases varied as expected, but few other genes were found have 

differential expression. When cerium concentrations were varied in the presence of copper, few 

genes were found to be either up or downregulated, indicating that copper over rules any 

regulation by cerium. When copper was added in the presence of cerium, however, many genes 
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were upregulated, most notably multiple steps of the central methane oxidation pathway, the 

serine cycle, and the ethylmalonyl-CoA pathway. Such studies can be very informative for 

manipulating methanotrophic metabolism for the valorization of methane.  

 

Lastly, efforts to further elucidate the molecular basis of “copper-switch” were made. Recently it 

was suggested via characterization of a mutant of M. trichosporium OB3b that expresses sMMO 

in the presence of copper (smmoC mutant) that the “copper-switch” may be based on copCD 

(Kenney et al., 2016). These genes encode for a periplasmic copper-binding protein and an inner 

membrane protein, and are used by other bacteria for copper uptake. Specific knockouts of 

copCD in M. trichosporium OB3b wildtype, however, show these genes are not part of the 

“copper-switch” in methanotrophs, nor do they appear to be critical for copper uptake. Rather, it 

appears that the constitutive expression of sMMO in the smmoC mutant of M. trichosporium 

OB3b may be due to multiple lesions as smmoC was generated via random chemical 

mutagenesis.  

 

VI.2	Future	work	

From this study, it is evident that metals, copper and REEs, play a key role in regulating gene 

expression in M. trichosporium OB3b. However, much is unknown for developing a complete 

model for these “metal switches”, particularly how they might be used to enhance 

methanotrophic applications.  Future efforts should include, but are not limited to the following.  

 

1.  As shown in Figure 2.5 and Table 2.3, a series of methanobactin mutants have been 

created in M. trichosporium OB3b. By now, only the mbnT::Gmr and ΔmbnN are 
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characterized. The phenotypes for other mutants will be investigated in the near future. 

Downstream of mbnA, there are mbnB and mbnC, two putative genes with no significant 

homologues in the current database. They are conserved in all identified mb gene clusters 

and are speculated to be involved in the maturation of mb. Thus, ΔmbnB and ΔmbnC 

mutants are expected to produce the mb precursor polypeptide while not modified as a 

mature product. Following mbnC, there is mbnM encoding for a multi-antimicrobial 

extrusion protein and is proposed to export mb out of cell. The ΔmbnM mutant may be 

able to synthesize a mature product of mb-OB3b but not secrete it out of the cell. 

Downstream of mbnN are mbnP and mbnH, encoding for a di-heme cytochrome c 

peroxidase homologue and its partner, respectively. Similar pairs of proteins are found in 

M. capsulatus Bath and M. album BG8 and are believed to be alternative copper sensing 

system (Berson & Lidstrom, 1997; Fjellbirkeland et al., 2001). The copper uptake of M. 

trichosporium OB3b ΔmbnAH mutant (mbnABCMNPH were all knocked out), however, 

does not seem to be affected (preliminary data not shown). It is thus proposed that 

MbnPH in the mb gene cluster are involved in the oxidation steps required for ring 

formation (DiSpirito et al., 2016). ΔmbnPH mutant may produce an immature form of mb.  

 

2.  Besides mb from M. trichosporium OB3b, there is also interest in studying the synthesis 

of mb in Methylocystis sp. strain SB2. The size of mb-SB2 (851 Da) is 30% less than mb-

OB3b (1154 Da) (Figure 1.10). It may be a more effective treatment for Wilson disease 

as it may enter the cells more easily (Lichtmannegger J, et al. 2016). To study the 

synthesis pathway of mb-SB2, one must first develop genetic systems, e.g., transferrable 



146 
	

expression and suicidal vectors, for this strain. Subsequently, similar mutation work can 

be carried out as done in M. trichosporium OB3b.  

 

3. Another task to achieve the application of mb is to enhance its production. One way to 

realize this goal is to heterologously express mb genes in robust host like E. coli. 

Succeussful production of mb heterologously requires (1) all the genes required for the 

production and maturation of mb to be expressed; (2) all the genes expressed to be 

translated into active enzymes. Another way to realize the enhancement of mb production 

is to do so in its native host by increasing the copy number of the mb genes or increasing 

their expression by manipulating their genetic regulatory system. For example, the 

mbnT::Gmr mutant may be a good start as it can secret but not take mb back up.  

 

4. Besides methanobactin, the genetic regulation in methanotrophs in response to metals 

will be investigated as the building blocks for developing regulatory models for enhanced 

metabolic engineering of methanotrophs. Based on our recent transcriptomic studies, 

there are candidate genes, including putative transporters and regulatory kinases that may 

be involved in copper and rare earth metals’ sensing and regulation. Especially, two 

kinases were found to have point mutation in the smmoC mutant. The mutation of a 

histine kinase, MxaY, in Methylomicrobium buryatense 5GB1C disrupted the regulation 

of Mxa-/Xox- types of MeDHs by REEs. It is not unreasonable to assume that the sensor-

kinase system also plays a role in the “copper-switch” in methanotrophs. The two 

mutated kinases may be the reason for the sMMO-constitutive phenotype. To elucidate 

the roles and involvement of different molecular elements in metal sensing, genetic 
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mutation, quantitative reverse transcription PCR, and other molecular biological 

techniques can be applied.  

 

5. The long-term goal of understanding the genetics and metabolism in methanotrophs is to 

apply methanotrophs for valorizing methane to different products in engineered systems. 

To achieve this, it is proposed here that bioinformatic tools and molecular biological 

techniques can be applied to realize the redirection of carbon flux in methanotrophs to 

desired products. For example, stoichiometric model can be constructed to evaluate 

metabolic capcity of methanotrophs (Van Dien and Lidstrom, 2001) and as a guildline for 

metabolic engineering. Analysis of metabolic flux and proteome can be carried out to 

validate the reconstructed models. Further, efforts can be put forward into constructing 

pilot bioreactors and developing robust mathematical models to characterize 

methanotrophic growth and optimize for higher methane conversion. One important goal 

is to increase mass transfer of methane between gas and liquid phases. Novel bioreactor 

designs such as hollow fiber membrane bioreactors can be tested to achieve this goal.  

 

6. It may also be interesting to revisit bioremediation by methanotrophs in situ. Methane 

monooxygenase (MMO) in methanotrophs has been found to be nonspecific and can 

oxidize organic compounds like alkanes, cyclic alkanes, aromatic hydrocarbons, 

chlorinated hydrocarbons, etc., as non-growth substrates. Methanotrophs have been 

applied for in situ bioremediation of polluted sites, however, the predominant form of 

methane monooxygenase expressed by in situ communities is difficult to control. Recent 

works in our and other labs have discovered many interesting interactions of metals and 
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methanotrophs. For example, gold competitively bind to mb over copper and affect the 

expression and activity of MMO (Kalidass, et al., 2015). Several strains of methanotrophs 

have been found to detoxify mercury (Vorobev et al., 2013; Boden and Murrell, 2011; 

Xia et al., in review) which may benefit microbial community. Rare earth metals may 

enhance methanotrophic activity (Farhan UI Haque et al., 2015, Gu et al., 2016; Chu and 

Lidstrom, 2016). Methantorophs compete with othe microbes for copper via the 

mediation of mb (Jin et al., in preparation). With our expanding knowledge of the 

ecological role of methanotrophs, especially in its interaction with metals and other 

microbes, it will be interesting to revisit its application in bioremediation from the 

microbial community point of view using meta-omics techniques and with better 

characterization of the environment, especially of metal content.  
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