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Abstract

This work is motivated by the fact that the investigation of non-equilibrium

phenomena in strongly correlated electron systems has developed into one of the

most active and exciting branches of condensed matter physics as it provides rich

new insights that could not be obtained from the study of equilibrium situations.

However, a theoretical description of those phenomena is missing. Therefore,

in this thesis, we develop a numerical method that can be used to study two

minimal models – the Hubbard model and the Anderson impurity model with

general parameter range and time dependence.

We begin by introducing the theoretical framework and the general features of

the Hubbard model. We then describe the dynamical mean field theory (DMFT),

which was first invented by Georges et al [1] in 1992. It provides a feasible way

to approach strongly correlated electron systems and reduces the complexity of

the calculations via a mapping of lattice models onto quantum impurity models

subject to a self-consistency condition. We employ the non-equilibrium extension

of DMFT and map the Hubbard model to the single impurity Anderson model

(SIAM).

Since the fundamental component of the DMFT method is a solver of the sin-

gle impurity Anderson model, we continue with a description of the formalism to

study the real-time dynamics of the impurity model staring at its thermal equilib-

rium state. We utilize the non-equilibrium strong-coupling perturbation theory

and derive semi-analytical approximation methods such as the non-crossing ap-

proximation (NCA) and the one-crossing approximation (OCA). We then use

the Quantum Monte-Carlo method (QMC) as a numerically exact method and

present proper measurements of local observables, current and Green’s functions.

We perform simulations of the current after a quantum quench from equilibrium

by rapidly applying a bias voltage in a wide range of initial temperatures. The

current exhibits short equilibrium times and saturates upon the decrease of tem-

perature at all times, indicating Kondo behavior both in the transient regime

and in the steady state.
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However, this bare QMC solver suffers from a dynamical sign problem for long

time propagations. To overcome the limitations of this bare treatment, we in-

troduce the “Inchworm algorithm”, based on iteratively reusing the information

obtained in previous steps to extend the propagation to longer times and stabilize

the calculations. We show that this algorithm greatly reduces the required order

for each simulation and re-scales the exponential challenge to quadratic in time.

We introduce a method to compute Green’s functions, spectral functions, and

currents for inchworm Monte Carlo and show how systematic error assessments

in real time can be obtained. We illustrate the capabilities of the algorithm with

a study of the behavior of quantum impurities after an instantaneous voltage

quench from a thermal equilibrium state.

We conclude with the applications of the unbiased inchworm impurity solver

to DMFT calculations. We employ the methods for a study of the one-band

paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the

DMFT approximation becomes exact. We begin with a brief introduction of the

Mott metal insulator phase diagram. We present the results of both real time

Green’s functions and spectral functions from our nonequilibrium calculations.

We observe the metal-insulator crossover as the on-site interaction is increased

and the formation of a quasi-particle peak as the temperature is lowered. We

also illustrate the convergence of our algorithms in different aspects.
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Introduction

The collective behavior of non-equilibrium systems is poorly understood com-

pared to systems in thermal equilibrium, for which statistical mechanics pro-

vides a well established theory. By non-equilibrium systems we refer both to

systems held far from thermal equilibrium by an external driving force, and the

complementary situation of systems relaxing towards thermal equilibrium after a

perturbation of their states. Such systems display a broad range of phenomena,

such as nonequilibrium phase transitions and slow collective dynamics, which

one would like to understand at a deeper level. The study of non-equilibrium

systems has arisen in many different contexts such as interacting many-particle

systems out of equilibrium [8], driven diffusive systems [9], and the slow dynamics

of glassy systems [10].

In quantum mechanics, due to the macroscopically large number of degrees of

freedom, an exact many-body theory has be be ruled out. The simplest suc-

cessful theory of solids is based on the approximate model of non-interacting or

weakly interacting electrons moving in a background lattice of ions. The addi-

tion of electronic interaction makes the picture more interesting, and it leads to

complex material properties, such as metal-insulator transitions, high tempera-

ture superconductivity, and various magnetic phenomena. When such interacting

many-particle systems are driven out of equilibrium, a multitude of interesting

phenomena can be found. For example, photoinduced phase transitions [11] are

able to access electronic states that may differ greatly from states produced with

excitations close to equilibrium and can be used to change complex macroscopic

material properties on the ultra-fast timescales. Also the dynamics of a cor-

related system reveals fundamental questions of statistical mechanics such as
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the relaxation pathways and thermalization conditions, that are inaccessible via

traditional equilibrium physics.

On the other hand, experiments on strongly correlated quantum many-body sys-

tems out of equilibrium have reached a high level of precision and control. One

can excite complex materials with femtosecond laser pulses and record their sub-

sequent time evolution on the timescale of the electronic motion [12–14]. These

ultrafast “pump-probe” spectroscopies enable studies of excitation and relaxation

phenomena in correlated fermionic systems. Additionally, in systems of ultra-

cold atoms in optical lattices, interactions and bandwidths can be controlled in

a precise manner, and external fields can be mimicked by shaking or tilting the

optical lattice [15]. It provides a new way to control and measure the time evolu-

tion of interacting lattice systems with a vastly different characteristic time scale

compared to electron systems.

The understanding of those nonequilibrium phenomena is challenging for theoret-

ical physics, and completely new theoretical tools have to be developed to guide

the experimental progress. And the numerical investigation of non-equilibrium

phenomena in quantum many-body systems is a fundamental active and exciting

branch of modern computational condensed matter physics. One of the simplest

fermionic non-equilibrium quantum problems is the Anderson impurity problem

[16]. It contains localized impurity states coupled to a non-interacting bath and

appears in a wide range of contexts, including impurities embedded into a host

material [16], confined nanostructures [17] and molecules adsorbed on surfaces

[18, 19]. It is a basic model of nano-science as representations of quantum dots

and molecular conductors.

Impurity models also appear as auxillary models in the non-equilibrium formu-

lation of dynamical mean field theory (DMFT), which is a method that is well

suited to capture strong local correlation effects in higher-dimensional systems.

DMFT has the advantage of being non-perturbative and applicable to large sys-

tems [8, 20]. This method generalizes the mean-field approximations by neglect-

ing spatial variations and treating exactly the temporal quantum fluctuations.
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Thus it relies on solving not the actual lattice model, but an equivalent quantum

impurity self-consistently embedded in an effective medium. And this approxi-

mation becomes exact in the limit of lattices with infinite coordination number.

And the Hubbard model, which is believed to contain the main ingredients to

describe the qualitative features present in certain classes of strongly correlated

materials, can be mapped into an Anderson impurity model supplemented with

a self-consistency condition.

Our work studies the single impurity Anderson models out of equilibrium. We

use Monte Carlo algorithms to solve the impurity model that captures the initial

correlations and treats general time-dependent setups. We also use the DMFT

approach to study the Hubbard model in equilibrium on the infinite dimensional

Bethe lattice. The non-equilibrium treatment of the Hubbard model in an equi-

librium phase enables the access to two-time quantities such as Green’s functions

and spectral functions in a numerical exact manner, and yields a solution that

is independent of ill-posed analytical continuation techniques, such as the maxi-

mum entropy method [21].

In Chapter 1 we introduce the Hubbard model and the Anderson impurity model,

which are the basic models that are discussed in the thesis. We also present the

mathematical framework for nonequilibrium DMFT and derive the exact self-

consistency condition for a Bethe lattice. The notions and formalism of time-

dependent problems are outlined in Chapter 2. We perform the strong coupling

perturbation theory on a single impurity Anderson model explicitly up to the

second and fourth orders. Semi-analytic self-consistent approximate methods,

NCA and OCA, are also explained. In Chapter 3, the numerical algorithm used in

the work - quantum Monte Carlo with hybridization expansion is developed. The

simulation processes and measurements are explained. And this bare method can

be used to study the transient behavior of a Kondo system after a voltage quench.

It manages to capture the short-time dynamics, however, the bare method suffers

from a dynamical sign problem and efforts of obtaining accurate results grow

exponentially with time propagation. In Chapter 4, an improved algorithm - the
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“Inchworm algorithm” is adapted into the Monte Carlo calculations and it re-

scales the exponential challenge to quadratic. In this way, the solver significantly

overcomes the dynamical sign problem and its result can be used in the non-

equilibrium DMFT loop to produce reasonable outcomes. So in Chapter 5, the

exact results of real-time Green’s functions and spectral functions are shown and

the signature of a metal-insulator crossover is observed.
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Chapter 1

Theoretical Models of Strongly

Correlated Electron Systems

In this chapter, we set the framework for the main part of this thesis by in-

troducing the models under investigation and the approximations and methods

employed.

The typical application of quantum mechanics to the study of electrons in solids

uses a model of non-interacting or weakly interacting fermions to establish the

band theory and the Fermi liquid theory, and it has successfully described a large

portion of experimental observations, particularly for cases when metallicity was

generated by electrons in s and p orbitals. However, the behavior of the transi-

tion metal monoxides (FeO, NiO, CoO) compounds, which are antiferromagnetic

insulators, yet had been predicted to be metallic because the strong interactions

between their d-shell electrons were neglected (cf. de Boer and Verwey (1937)).

The accounting of strong Coulomb interactions between these electrons would

significantly suppress the mobility at very low temperatures when the average

filling is of one electron per atom. Because any one electron attempting to move

through the lattice would have to spend most of the time on already occupied

atoms and double occupancy of the same orbital is energetically unfavored by

the Coulomb repulsion [22]. This insulating state is called the Mott insulator.

These classes of materials include transition metals and transition metal oxides.
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Figure 1.1: The electron configurations in the periodic table. The transition
metals are the first three rows in the blue area and their properties are strongly
dominated by the d-electrons.

Transition elements occupy three rows of the periodic table, extending from the

right of the alkali earths (Ca, Sr, Ba) to the poor metals (Zn, Cd, Hg), as shown

in Fig. 1.1. The electronic d-shell is completely empty in the alkali earths and

completely filled in the noble metals.

In addition to the Mott insulating phase, J. G. Bednorz and K. A. Müller (1986)

announced the discovery of superconductivity in a ceramic copper oxide material

at a temperature of about 30K. These compounds are poor conductors, and thus

their result was unexpected and beyond the scope of the BCS theory. After that,

dozens of “high-Tc” compounds have been discovered in the last few decades.

Until the discovery of the Fe-based superconductors in 2008, the high-Tc materials

all have one or more CuO2 planes in their structure, which are separated by layers

of other atoms (Ba, O, La, etc), as illustrated in Fig. 1.1. Most researchers in

this field strongly believe that superconductivity is related to processes occurring

in the CuO2 planes, with the other atoms simply providing the charge carriers.

Thus the strong correlations between electrons in transition metal compounds

constitute the rich physics in magnetic and non-magnetic Mott insulators, high
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Figure 1.2: Crystal structures of four cuprates. (A) The unit cells. (B) The
universal building block of the high-Tc cuprates is the CuO2 sheet. The most
important electronic orbitals, Cu dx2−y2 and O pσ, are shown [2].

temperature superconductors. And these observations launched the long and

continuing history of the field of strongly correlated electrons [23, 24].

Already in equilibrium, strong electronic correlations bring about a tantalizing

variety of novel phenomena. If such a system is driven out of equilibrium, we

can expect even richer physics, of which only a small fraction has been discov-

ered so far, and of which even less can be considered as being “understood”.

On the experimental side, ultrafast pump-probe spectroscopies enable studies of

excitation and relaxation phenomena in correlated fermionic systems [25], while

ultracold atoms in optical lattices provide a new way to control and measure the

time evolution of interacting lattice systems with a vastly different characteristic

time scale compared to electron systems [26].

The model that is believed to be capable of capturing these features and is most
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successful and most widely studied for the interactions present in correlated elec-

tron systems is the Hubbard model, which was independently conceived by Mar-

tin Gutzwiller [27], Junjiro Kanamori [28] and John Hubbard [29]. It is one of

the simplest models of interacting fermions, but despite its simplicity, it exhibits

a wide range of correlated electron behavior including interaction-driven metal-

insulator transitions, superconductivity, and magnetism. The precise behavior

depends delicately on parameters, creating an interesting challenge for theory

and computation. It is exactly solvable for the case of a 1-dimensional system

[30]. However, it is not the case in general lattices, and the simple perturbative

approach is not possible because of the lack of a weak-coupling parameter. And

the numerical solutions for the lattice Hamiltonian using non-perturbative algo-

rithms such as exact diagonalization (ED) or quantum Monte Carlo (QMC) are

severely restricted by certain problems. The exponential growth of the Hilbert

space with system size is the crucial problem for ED. And the fermionic sign

problem limits QMC calculations only for temperatures too high to be relevant

for physically interesting situations [24].

A new approach to these problems started with the observation by W. Metzner

and D. Vollhardt [31] that significant simplifications occur in the limit of infinite

coordination number where the self-energy becomes independent of momentum

[32]. Then A. Georges and G. Kotliar [1] presented an exact mapping of the

Hubbard model in infinite dimensions onto a single-impurity Anderson model

supplemented by a self-consistency condition. This provides a mean-field picture

of strongly correlated systems with neglecting the spatial correlations, which

becomes exact as Z → ∞. The method is called the dynamical mean field

theory (DMFT) and it has greatly contributed to our present understanding of

strongly correlated systems in equilibrium, in particular, of Mott physics [20, 33].

Then in 2002, P. Schmidt and H. Monien proposed a generalized DMFT for the

nonequilibrium physics in the presence of a time-dependent external field [34] and

a general formulation of the nonequilibrium DMFT and its application was given

in 2006 by J. K. Freericks et al. [35]. Nonequilibrium DMFT can be combined

with several numerical implementations as the solver of the effective Anderson
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impurity model (AIM), such as quantum Monte Carlo [36] and density matrix

renormalization group (DMRG) [37] techniques and has the advantage that it is

nonperturbative and can capture both short-time and long-time evolutions for

any parameter regimes.

In the following, we will first discuss the Hubbard model in a general context

in Sec. 1.1, and the Anderson impurity model that describes local moments

embedded in a metallic host as an effective model for solving the Hubbard model

in Sec. 1.2. Then we will introduce the nonperturbative treatment within the

nonequilibrium dynamical mean field theory (DMFT) in Sec. 1.3 and we state

the self-consistency condition in the case of a Z → ∞ Bethe lattice, which will

be a main focus for the purpose of this thesis because DMFT becomes exact in

this limit.

1.1 Hubbard Model

The nonequilibrium experiments with ultracold atoms in optical lattices [15],

pump-probe spectroscopy with femtosecond time resolution [13, 25] can access

the real-time dynamics in materials with strong correlation effects. They are

capable of measuring quantities on their intrinsic microscopic time scale, defined

by the electron hopping between crystal lattice sites and reveal striking phenom-

ena such as photoinduced insulator-to-metal transitions in correlated Mott and

charge transfer insulators [25, 38] and pump-induced melting and recovery of

charge density waves [39].

The ongoing experimental progress inspires the study of the Hubbard model

driven out of equilibrium [40]. The Hubbard model, although being highly over-

simplified, is believed to contain the main ingredients to describe interacting

quantum mechanical particles, originally fermions, in certain types of materials

such as the cuprates and organics. Its basis is a tight binding description of

electrons in materials. The idea is that only one or few energy bands close to the

Fermi energy contribute to the spectrum. When electrons on the Fermi surface
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originate from the d orbitals, the bandwidth is determined by the amount of over-

lap between d orbitals on adjacent sites, and the typically small extent of these

orbitals compared to the lattice constant suggests a narrow-band feature and the

strongly localized character of d electrons. Thus the tight-binding approximation

provides a better model of the kinetic energy of electrons. This also implies that

interactions between electrons on the same ion are much larger than interactions

of electrons on different ions and the screening effects make the longer-range

Coulomb interactions exponentially weak. Although nearest-neighbor interac-

tions can sometimes be strong enough to generate specific physics, for example

the charge-ordering effect, they will be neglected and only taken in considera-

tion when using the extended Hubbard model instead [41, 42]. Therefore in the

simplest Hubbard model, the interaction taken into account is just an on-site

interaction. The Hamiltonian of the single-band Hubbard model then contains

two parts:

H = −
∑
〈i,j〉,σ

vijc
†
iσcjσ + U

∑
i

ni↑ni↓ (1.1)

where c†iσ (ciσ) creates (annihilates) an electron with spin σ =↑, ↓ on site i,

niσ = c†iσciσ is the number operator, vij denotes the hopping amplitude, 〈i, j〉
means the hopping is restricted to purely nearest neighbor hopping and U is the

repulsive on-site Coulomb interaction strength. The first part in the Hamiltonian

is the single-particle part, often called kinetic energy, describes particles hopping

on a lattice which originates from the tight binding model and the second part

is the additional two-particle on-site interaction term.

1.2 Anderson Impurity Model

The Anderson impurity model was originally introduced in the 60’s to explain the

behavior of magnetic impurities (Fe, Mn, Cr) diluted into non magnetic metals

[16].
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Besides being auxiliary models in nonequilibrium DMFT, quantum impurity

models are basic to nanoscience as representations of quantum dots and molecu-

lar conductors [17] and have been used to understand the absorption of atoms on

surfaces [19, 43]. Also transport measurements on quantum dots [44] enable the

study of the basic question that how localized electrons interact with delocalized

electrons and reveal non-equilibrium Kondo phenomena [45, 46].

The Hamiltonian contains the electron band that consists of a collection of un-

correlated states, the energy of the impurity orbital (designed to describe the

impurity atoms of the system) together with a Coulomb repulsive interaction U

when two electrons are located on the impurity site, and a hybridization between

the band states and the impurity state, i.e. for electrons to hop from the impurity

to the bath and back. In this thesis, we present the single impurity Anderson

model as

H =HD +Hbath +Hhyb, (1.2a)

HD =
∑
σ

εdnσ + Un↑n↓, (1.2b)

Hbath =
∑
αkσ

(
εk +

αV (t)

2

)
nαkσ, (1.2c)

Hhyb =
∑
αkσ

(Vαk c†αkσdσ + Vα∗k d†σcαkσ). (1.2d)

where H describes an interacting dot (HD) coupled to non-interacting leads

(Hbath) by tunneling processes (Hhyb). The dot Hamiltonian HD spans a Hilbert

space generated by d†↑ and d†↓ with four “atomic states” |φ〉 = |0〉, | ↑〉, | ↓〉, and

| ↑↓〉, which follows from the Pauli exclusion principle because one impurity site

can hold up to two electrons with different spins, and dot occupation is given

by nσ = d†σdσ. εd is the impurity level spacing, and U is the electronic repulsion

strength. Lead electrons are characterized by a spin index σ =↑↓, a momentum

quantum number k, and a lead index α = ±1, and are annihilated by the op-

erator cαkσ. Lead densities are nαkσ = c†αkσcαkσ and εk is the lead dispersion.

α = ±1 labels the left (+) and right (−) leads, but in general, the system can
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have any number of leads. Vαk is the tunneling matrix element describing hopping

processes between the impurity and the leads.

In this thesis, we consider two cases for the impurity model: the equilibrium

case, where none of the parameters are time-dependent and V (t) = 0; and the

case of a symmetric voltage quench V (t) = V θ(t), with θ(t) being a Heaviside

step function. In the second case, the system is in equilibrium for t < 0, and

for t > 0 the lead levels εk are instantaneously moved to εk ± V
2

, with the sign

depending on the lead index α.

1.3 Nonequilibrium Dynamical Mean Field The-

ory

As in the classic cases, the goal of a mean-field theory is to approximate a lattice

problem with many degrees of freedom by a single-site effective problem with

fewer degrees of freedom. The underlying idea is that the dynamics at a given

site can be thought of as the interaction of the degrees of freedom at this site

with an external bath created by all other degrees of freedom on other sites in

the system. An example of this is the Ising model with ferromagnetic couplings

solved by the Weiss mean-field theory. This idea can be directly extended to

quantum many-body systems. The dynamical mean field theory (DMFT) aims to

approximate the full quantum many-body problem by a single impurity problem,

where the dynamics of the rest of the system is expressed as a mean field that

needs to be determined self consistently.

The difference between the DMFT and the static mean-field theory is the single

site (impurity) in DMFT can dynamically exchange particles with the environ-

ment which represents local quantum fluctuations in the lattice system. Besides

this, a formal analogy to the classical mean-field theory remains: the local Green’s

function G(t, t′) is obtained from an effective model that involves only one site of

the lattice. This site is coupled to a fluctuating mean-field ∆(t, t′) that resembles
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Figure 1.3: Dynamical mean field theory (DMFT) of correlated-electron
solids replaces the full lattice of atoms and electrons with a single impurity
atom imagined to exist in a bath of electrons. The approximation captures
the dynamics of electrons on a central atom (in orange) as it fluctuates among
different atomic configurations, shown here as snapshots in time. In this illus-
tration of one possible sequence involving two transitions, an atom in an empty
state absorbs an electron from the surrounding reservoir in each transition [3].

the exchange of particles with the rest of the lattice and is to be determined self

consistently as a function of G(t, t′) because we do not know the right mean field

prior to the procedure [8, 20].

In this section, we will present a simplified derivation and discussion of the

nonequilibrium DMFT. We formulate the mapping from the single band Hub-

bard model to a single site Anderson impurity model in Sec. 1.3.1 and we state

the self-consistency equations in detail in Sec. 1.3.2.

1.3.1 Mapping of the models

To start, we rewrite the Hamiltonian of the single band Hubbard model in

Eq. (1.1) as

H = −
∑
〈i,j〉,σ

vijc
†
iσcjσ +

∑
i

H
(i)
loc (1.3)

where

H
(i)
loc = U

∑
i

c†i↑ci↑c
†
i↓ci↓ (1.4)
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so the action of the Hubbard model is

Shub =

∫
dt

∫
dt′

∑
iσ

c∗iσ(t)(i∂t + µ)ciσ(t′) +
∑
〈i,j〉,σ

vijc
∗
iσ(t)cjσ(t′)

−∑
i

∫
dtH

(i)
loc(t)

(1.5)

where µ is the chemical potential of the lattice electrons. We adapt the “ef-

fective medium interpretation” [47] and replace the interacting lattice model by

a non-interacting medium with a propagator Gmed(k; t, t′) specified by a local

self-energy Σ(k; t, t′) = Σ(t, t′) to be determined self-consistently. The action of

the effective medium thus reads

Smed =

∫
dt

∫
dt′
∑
kσ

c∗kσ(t)G−1
med(k; t, t′)ckσ(t′) (1.6)

and

G−1
med(k; t, t′) = i∂t + µ− εk − Σ(t, t′). (1.7)

One then imagines that a local interaction Un0↑n0↓ is introduced at a single site

0 of this effective medium, and that the self energy Σ has simultaneously been

removed at this single site. The action of this new resulting lattice model with a

single-site embedding thus reads

Semb = Smed − U
∫
dtn0↑(t)n0↓(t) +

∫
dt

∫
dt′
∑
σ

c∗0σ(t)Σ(t, t′)c0σ(t′). (1.8)

This can be turned into an effective action for site 0 only, by integrating out all

other sites. And because the sites i 6= 0 enter only quadratically Semb, it can be

performed exactly. Now we omit the subscript i = 0 and obtain

Seff =

∫
dt

∫
dt′
∑
σ

c∗σ(t)G−1
0,hyb(t, t′)cσ(t′)− U

∫
dtn↑(t)n↓(t) (1.9)

with

G−1
0,hyb(t, t′) = i∂t + µ−∆(t, t′) (1.10)

where ∆(t, t′) is the auxiliary mean field. Using Eq. (2.42), one can show that

this effective action is exactly the action of the Anderson impurity model after
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integrating out the bath degrees of freedom. And to be consistent with the effec-

tive medium approximation, one requires that the interacting Green’s function

obtained from the Seff coincides with the on-site (local) Green’s function of the

medium

Glatt(t, t
′) =

∑
k

Gmed(k; t, t′) (1.11)

=
∑
k

(i∂t + µ− εk − Σ(t, t′))
−1

(1.12)

=

∫
dε D(ε) [i∂t + µ− ε− Σ(t, t′)]

−1
(1.13)

where D(ε) is the non-interacting density of states of the lattice. And we can see

the transition from
∑

k to
∫
ε

is only possible for the local self-energy Σ(t, t′).

1.3.2 The self-consistency equations

Equations (1.9), (1.10) and (1.13) along with the Dyson equations form a set of

identities that can be employed to obtain a self-consistent solution of the effective

action in Eq. (1.9), as illustrated in Fig. 1.4.

This is an iterative procedure: we start with an initial guess for the bare Green’s

function G0,hyb(t, t′) of the impurity model. Note that this is the Green’s function

that is non-interacting but contains the hybridization between the bath and the

impurity in the Anderson impurity model. Often, the Green’s function for the

non-interacting lattice problem is one good starting point. Then using Eq. (1.10)

one gets the initial auxiliary mean field ∆(t, t′). Having obtaining such an initial

input, we need to solve the Anderson impurity model, i.e. obtain G(t, t′) that is

the fully interacting Green’s function of the impurity out of the initial ∆(t, t′).

This part is called an impurity solver and will be discussed in Chapters 3 and 4.

The impurity (local) self-energy can be computed by Dyson equation,

Σimp(t, t′) = G−1
0,hyb(t, t′)−G−1(t, t′) (1.14)
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Figure 1.4: The iterative self-consistency procedure of the nonequilibrium
DMFT in the most general case.

where the inverse ·−1 is a symbolic form and if

∫
dt̄ A(t, t̄) ·B(t̄, t′) = δ(t, t′) (1.15)

we denote B = A−1 and it associates with the matrix inverses in numerical

evaluations. Then we employ the self-consistent condition Eq. (1.13) and do the

on-site projection using the impurity (local) self-energy to get the local lattice

Green’s function

Glatt(t, t
′) =

∫
dε D(ε) [i∂t + µ− ε− Σimp(t, t′)]

−1
(1.16)

Note that this step illustrates the mean-field character of the DMFT equations

particularly clearly: the local Green function of the interacting system is given

by the non-interacting Green function with a shift of Σimp(t, t′). After this, using
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Figure 1.5: The iterative self-consistency procedure of the nonequilibrium
DMFT in the equilibrium case. Then the quantities are translational invariant,
so it is possible to work in the frequency space and save time from calculating
the inverse of matrices in the time space.

the Dyson equation,

G−1
0,hyb(t, t′) = Σimp(t, t′) +G−1

latt(t, t
′) (1.17)

we get a new guess for the bare Green’s function G0,hyb(t, t′) and therefore a new

input ∆(t, t′) for the impurity solver. In time-independent cases, one can switch

to the frequency space and avoid the explicit matrix inverses. And a similar

self-consistent procedure is illustrated in Fig. 1.5.

The self-consistency is remarkably stable: starting from an initial guess that

has approximately the right short-time behavior the loop converges after a few

iterations to a self-consistent solution on a Z →∞ Bethe lattice. Far away from

phase transitions this convergence is rather quick and is achieved within about

2–5 iterations. In the vicinity of phase transitions the convergence slows down
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considerably, but is usually achieved within at most 10 iterations. We did not

observe cases in which this self consistency did not converge or oscillate between

various (meta-) stable solutions.

1.4 The Bethe lattice

As we noted in the beginning of this chapter, the only case when the DMFT

approach yields an exact solution of the lattice properties is in the infinite co-

ordination limit. One of the common choices is the Bette lattice [48]. It has

the advantages that the band edges are well-defined and the bandwidth is finite.

Also, as we will see in this section, the self-consistent equations of DMFT can be

analytically inverted, allowing for a simple closed form expression of the lattice

self-energy from the impurity Green’s function.

A Bethe lattice or Cayley tree, introduced by Hans Bethe in 1935 [49], is an

infinite connected cycle-free graph where each node is connected to Z neighbours,

where Z is called the coordination number. Fig. 1.6 shows the Bethe lattice for

Z = 4, where a site is at each vertex. Starting from the central point, there are

four neighbors. Each of those four neighbors also has four neighbors. Thus each

point has the same symmetry.

Strictly speaking the Bethe lattice is a pseudolattice because it does not possess

the property of discrete translational symmetries in finite dimensions of Bravais

lattices. Nevertheless, it plays an important role in statistical and condensed-

matter physics because some problems involving disorder and/or interactions

can be solved exactly when defined on a Bethe lattice, for example, Ising mod-

els [49, 50], percolation [51, 52], and Anderson localization [53]. There are two

special properties that make the Bethe lattice particularly suited for theoreti-

cal investigations. One is its self-similar structure which may lead to recursive

solutions. The other is the absence of closed loops which restricts interference
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Figure 1.6: Part of the Bethe lattice with coordination number Z = 4. Any
two sites are connected by a unique shortest path of bonds. Starting from the
site marked by the open circle, horizontally shaded circles can be reached by
one lattice step (NN), vertically shaded circles by two lattice steps (NNN), and
doubly shaded circles by three lattice steps. Note that the lattice is infinite
and that all sites are equivalent; the shading appears only for visualization of
hopping processes [4].

effects of quantum-mechanical particles in the case of nearest-neighbor (NN) cou-

pling [4, 54]. In the following, we will see that the Green’s function of the non-

interacting Hubbard model (tight-binding Hamiltonian) with an uniform nearest

neighbor hopping v can be computed analytically on the Bethe lattice. Then

we take the Z → ∞ limit and obtain a simple closed form relation of ∆[G] for

the DMFT self-consistency condition in the case of a Bethe lattice with infinite

neighbors. The Hamiltonian with a chemical potential term reads

H = −v
∑
j,δ

c†jcj+δ − µ
∑
j

c†jcj (1.18)
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where the summation over δ runs over the Z neighbors. Spin plays no role in the

calculation and therefore can be omitted. Then we write the Hamiltonian as

H = H0 +K (1.19)

where H0 = −µN is considered as the non-interacting Hamiltonian and the hop-

ping kinetic energy K is considered as an interaction. The local non-interacting

Green’s function is then known as

G(0)(ω) = −i
∫
dteiωt

〈
T cj(t)c†j(0)

〉
=

1

ω + µ
(1.20)

Every site has the same Green’s function, so there is no need to put on a label

such as “j” in the expression. In order to obtain the full Green’s function we

need to determine the expression for the proper self-energy part Σ(ω) so that

G(ω) =
1

ω + µ− Σ(ω)
(1.21)

And the self-energy Σ(ω) is found using perturbation theory on K. Since the

interactions are simple and quadratic, it is possible to find the exact result. The

self-energy consists of the processes where electrons hop to their neighbors and

then hop back and each hop has an amplitude factor v. From the perturbation

expansion on K, we know that the total number of hops in each self-energy

term must be an even number 2n where n = 1, 2, 3 . . .. For 2n hops of electrons

returning back to the original site, we denote its contribution in the self-energy

as Σ(n).

The lowest order self-energy Σ(1), as shown in Fig. 1.7, originates from the process

where an electron hops to its neighboring sites and then hops back to its original

site. There are totally Z neighbors, and the intermediate propagator is given

by the local non-interacting Green’s function G(0)(ω). Thus, the lowest order

self-energy is given by

Σ(1)(ω) =
Zv2

ω + µ
(1.22)
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Figure 1.7: Diagrammatic expansion of the self-energy on the Bethe lattice.
The second order and the fourth order are shown. The lowest order self-energy
Σ(1) consists of the process where an electron hops to its Z neighboring sites
and then hops back to its original site. The next order self-energy Σ(2) includes
terms where electrons hop twice to a second-nearest neighbor, and then hop
back. The first hop has Z choices and the second one has only Z− 1 since the
hop back to the starting point has already been included in Σ(1).

The next order self-energy Σ(2) comes from the fourth order of perturbation the-

ory, and includes terms where electrons hop twice to a second-nearest neighbor,

and then hop back. The first hop has Z choices as before, whereas the second

one has only Z − 1 since the hop back to the starting point has already been

included in the lowest order contribution. Thus the next order self-energy has

the form

Σ(1)(ω) =
Z(Z − 1)v4

(ω + µ)3 (1.23)

We can rewrite these two terms of the self-energy as

Σ(1+2)(ω) =
Zv2

ω + µ

[
1 +

(Z − 1)v2

(ω + µ)2

]
(1.24)

=
Zv2

ω + µ− (Z−1)v2

ω+µ

−O(v6) (1.25)
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The terms in brackets [·] describe processes where, after hopping from the starting

point to the first neighbor, the electron hops to-and-from its neighbors multiple

times before returning back to the original site. It can only hop back to the

original site once, because when it hops away from the original site the second

time, it is counted as another self-energy contribution. Then we realize the

pattern of this “hopping away” self-energy in the denominator and define it as

ΣD(ω). We have

ΣD(ω) =
(Z − 1)v2

ω + µ− ΣD(ω)
(1.26)

and

Σ(ω) =
Zv2

ω + µ− ΣD(ω)
(1.27)

The quadratic equation can be solved exactly and yields

ΣD(ω) =
1

2

[
(ω + µ)− sign(ω)

√
(ω + µ)2 − 4(Z − 1)v2

]
(1.28)

and the full self-energy is

Σ(ω) =
2Zv2

ω + µ+ sign(ω)
√

(ω + µ)2 − 4(Z − 1)v2
(1.29)

=
Z

2(Z − 1)

[
ω + µ− sign(ω)

√
(ω + µ)2 − 4(Z − 1)v2

]
(1.30)

And this yields the full Green’s function

G(ω) =
1

ω + µ− Σ(ω)
(1.31)

=
2(Z − 1)

(Z − 2)(ω + µ) + sign(ω)Z
√

(ω + µ)2 − 4(Z − 1)v2
(1.32)

We can then compute the density of states

D(ε) = − 1

π
=G(ε+ i0) =

1

2π

√
4(Z − 1)v2 − ε2
Zv2 − ε/Z Θ

(
4(Z − 1)v2 − ε2

)
(1.33)

where Θ(·) is the heaviside step function. We see from this expression that the

bandwidth of the Bethe lattice scales with the coordination number as
√
Z − 1.
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Therefore, in order to maintain a finite bandwidth in the limit of Z → ∞, one

has to alter the definition of the hopping amplitude by scaling it as v → v/
√
Z.

With this new definition, the density of states becomes semielliptic in the limit

of infinite coordination Z →∞:

D(ε) =
1

2πv2

√
4v2 − ε2 Θ (2v − |ε|) (1.34)

Now, we will show that the DMFT self-consistency equations have a simple form

in the case of a Bethe lattice with infinite coordination number. The requirement

that the lattice self-energy of the interacting problem is momentum-independent

allows us to write the local Green’s function as the equation at the bottom of

Fig. 1.5:

Glatt(ω) =

∫
dε

D(ε)

ω + µ− ε− Σimp(ω)
(1.35)

Since we know that

G(ω) =

∫
dε

D(ε)

ω − ε (1.36)

we can write that

Glatt(ω) = G(ω + µ− Σimp(ω)) (1.37)

where G(ω) is the local non-interacting lattice Green’s function, for example,

Eq. (1.32) for the Bethe lattice. And from Eq. 1.32, we can derive that GB(ω), the

local non-interacting Bethe lattice Green’s function, obeys the following relation:

Zv2 − ω2

Z − 1
GB(ω) +

1

GB(ω)
=
Z − 2

Z − 1
ω (1.38)

where we have done the scaling v → v/
√
Z for finite bandwidth. We then obtain

the following relation for the Glatt(ω)

[
Zv2 − (ω + µ− Σimp(ω))2

Z − 1

]
Glatt(ω) +

1

Glatt(ω)
=
Z − 2

Z − 1
(ω + µ− Σimp(ω))

(1.39)
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And in the infinite coordination limit Z →∞ this simplifies to

v2Glatt(ω) +
1

Glatt(ω)
= ω + µ− Σimp(ω) (1.40)

Connecting the Dyson equation Eq. (1.14) written as

G−1
0,hyb(ω) = Σimp(ω) +G−1

latt(ω) (1.41)

we have

G−1
0,hyb(ω) = ω + µ− v2Glatt(ω) (1.42)

There we obtain a closed form self-consistency equation ∆[G]:

∆(ω) = ω + µ−G−1
0,hyb(ω) = v2Glatt(ω) = v2G(ω) (1.43)

where G(ω) is the full Green’s function for the impurity model and comes di-

rectly from the impurity solver. Even though the derivation is formulated in

the equilibrium case, it can be easily generalized to the nonequilibrium case and

reads

∆(t, t′) = v2G(t, t′) (1.44)

This relation is valid when the paramagnetic spin rotational symmetry holds. It

can be shown [20] that for antiferromagnetic cases, we can partition the Bethe

lattice into two sublattices with ferromagnetic ordering and obtain a similar

closed form relation

∆σ(t, t′) = v2Gσ̄(t, t′) (1.45)

where σ̄ denotes the opposite spin orientation.
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Chapter 2

Non-Equilibrium Strong

Coupling Perturbation Theory

As we discussed in the previous chapter, the Hubbard model provides a simplified

description of local electronic interactions that is generally accepted as describing

the qualitative features present in certain classes of strongly correlated materials.

However, this simplified version is still complicated enough that exact analytic

approach is impossible. Therefore, further simplifications are necessary. The

Dynamical Mean Field Theory, which was first developed for equilibrium com-

putations and was extended to calculate time-dependent correlation functions,

is one such simplification. This method solves the problem exactly when the on-

site self-energy is purely local, which is the case for infinite-dimensional lattices.

The solution can then be obtained by considering the mapping of the lattice

model to an equivalent Anderson impurity model, with the fermionic impurity

self-consistently embedded in an infinite conduction band. The resulting effective

Hamiltonian 1 reads:

H =
∑
kσ

εkc
†
kσckσ +

∑
kσ

(Vkc†kσdσ + V∗kd†σckσ) +
∑
σ

εdd
†
σdσ + Un↑n↓ (2.1)

1Omit the applied voltage and additional bath term in Eq. (1.2a) for simplicity. The result
can be easily generalized to those cases with εk → εk + αV (t)/2 and ∆ =

∑
α ∆α [55].
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The goal of this chapter is to construct the perturbation expansion in powers of

the dot-lead hybridization term
∑

kσ(Vkc†kσdσ + V∗kd†σckσ). In the following, we

will first introduce the contour formalism, mainly following the one outlined in

[56], in Sec. 2.1 that unifies the equilibrium and nonequilibrium problems to the

same framework. We perform explicitly the perturbation theory in case of strong

coupling in Sec. 2.2 and discuss semi-analytical approximations (NCA and OCA)

to the system in Sec. 2.3.

2.1 Time-dependent problems and the contour

idea

The time evolution of a system is governed by the Schrödinger equation:

i
d

dt
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (2.2)

with |Ψ(t)〉 the ket of the system at time t and ~ = 1 in Planck units. The

Schrödinger equation is a first-order differential equation in time, and therefore,

|Ψ(t)〉 is uniquely determined once the initial condition - ket |Ψ(t0)〉 is given. For

time-independent Hamiltonians Ĥ(t0) = Ĥ(t) for all times t and the Schrödinger

equation is solved by

|Ψ(t)〉 = e−iĤ(t0)(t−t0) |Ψ(t0)〉 (2.3)

To generalize Eq. (2.3), we write the general unitary evolution of the ket state as

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 (2.4)
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In the case of t > t0, with the introduction of time ordering operator T , the

evolution operator has a compact form:

Û(t, t0) = T
{
e
−i

∫ t
t0
dt̄ Ĥ(t̄)

}
(2.5)

=
∞∑
k=0

(−1)k

k!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtk T
{
Ĥ(t1)Ĥ(t2) . . . Ĥ(tk)

}
(2.6)

Similarly, if we introduce the anti-time ordering operator T̃ , then for t < t0, we

have

Û(t, t0) = T̃
{
e+i

∫ t0
t dt̄ Ĥ(t̄)

}
(2.7)

The definitions and notations follow from [56].

2.1.1 Forward-Backward Keldysh contour

With the generalized evolution operator, the time-dependent quantum average

of an operator Ô(t) at any time t, when the system is prepared in the state

|Ψ(t0)〉 ≡ |Ψ0〉 at time t0, is given by

〈Ô(t)〉 = 〈Ψ(t)| Ô(t) |Ψ(t)〉 = 〈Ψ0| Û(t0, t)Ô(t)Û(t, t0) |Ψ0〉 (2.8)

Inserting the explicit expressions in 〈Ô(t)〉, we find that

〈Ô(t)〉 = 〈Ψ0| T̃
{
e−i

∫ t0
t dt̄ Ĥ(t̄)

}
Ô(t)T

{
e
−i

∫ t
t0
dt̄ Ĥ(t̄)

}
|Ψ0〉 (2.9)

If we use Eq. (2.6) and expand the exponentials in powers of the Hamiltonian then

a generic term of the expansion consists of integrals over operators at different

times looks like

T̃
{
Ĥ(t′1) . . . Ĥ(t′m)

}
Ô(t)T

{
Ĥ(t1) . . . Ĥ(tn)

}
(2.10)

where all times {t1 . . . tn} and {t′1 . . . t′m} are between t0 and t. Reading the

expression from right to left, we note that 〈Ô(t)〉 is the overlap between the
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Figure 2.1: The forward-backward Keldysh contour in the complex time
plane. The contour consists of a forward and a backward branch along the
real axis between t0 and t. According to the orientation the points t2 >C t1.

initial bra state 〈Ψ0| and a ket state obtained by evolving |Ψ0〉 from t0 to t, after

which the operator Ô(t) acts and then evolving the ket backward from t to t0,

where the evolution consists of a number of projections of the Hamiltonian Ĥ at

different times in a time-ordered manner along the forward-backward direction.

With this general mathematical structure, we can introduce a few new definitions

to write the quantity in a more convenient way. First, we define the oriented

contour, also known as the forward-backward Keldysh contour, which goes from

t0 to t and then back to t0. The contour consists of two paths: a forward branch

C+ and a backward branch C−, as shown in Fig. 2.1. A generic point t1 can be

either on C+ or on C− and once the branch is specified, it can assume any value

between t0 and t. We say that t2 is later than t1 or t2 >C t1 if t2 occurs later than

t1 as we walk along the forward-backward direction of the contour. We further

define the contour time ordering operator TC which moves operators with later

contour arguments to the left:

TC
{
Â(t1)B̂(t2)

}
=

Â(t1)B̂(t2) if t1 >C t2

±B̂(t2)Â(t1) if t1 <C t2

(2.11)

with the “+” sign is for the case of bosons and “−” sign is for fermions.

With the definition, we can rewrite Eq. (2.10) as

TC
{
Ĥ(t′1) . . . Ĥ(t′m)Ô(t)Ĥ(t1) . . . Ĥ(tn)

}
(2.12)
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We can proceed further by introducing the contour integral between two points t1

and t2 on the forward-backward Keldysh contour in the same way as the standard

integral along any contour [56]. If t2 is later than t1 as in Fig. 2.1, then we have

∫ t2

t1

dt̄ Â(t̄) =

∫ t+

t1

dt̄ Â(t̄) +

∫ t2

t−
dt̄ Â(t̄) (2.13)

Then Eq. (2.9) takes the elegant form:

〈Ô(t)〉 = 〈Ψ0| TC
{
e−i

∫
C dt̄ Ĥ(t̄)Ô(t)

}
|Ψ0〉 (2.14)

where
∫
C denotes the contour integration

∫
C+⊕ C− ≡

∫ t+
t+0

+
∫ t−0
t−

.

2.1.2 Full Keldysh contour

So far we have assumed that the system we are interested in is an isolated system

of particles that can be represented by a pure initial state |Ψ0〉. In reality, the

isolated system is an idealization and it is not possible to completely isolate the

system from the surrounding environment. In this way, we need to use the lan-

guage of quantum statistical physics and assign a probability wn ∈ [0, 1] of finding

the system at time t0 in state |ψn〉, the
∑

nwn = 0. The states |ψn〉 may have

different energies, momentum, spin and also different numbers of particles. For

simplicity, we assume the states |ψn〉 are orthonormal, i.e. 〈ψm|ψn〉 = δm,n, where

δm,n is the Kronecker delta function. The idea of this approach is to describe the

system+environment in terms of the isolated system only and to account for the

interaction with the environment through the probability distribution wn that

depends on the features of the environment itself. Then the ensemble average of

an operator Ô(t) at the initial time t0 is defined as

〈Ô(t0)〉 =
∑
n

wn 〈ψn| Ô(t0) |ψn〉 (2.15)

and reduces to the quantum average Eq. (2.8) introduced in the case of pure

states. This means that if we imagine an ensemble of identical and isolated
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systems each in a different pure state |ψn〉, then the quantum average is the

result of calculating the weighted sum of the each system 〈ψn| Ô(t0) |ψn〉 with

wights wn. This leads us to introduce a useful quantity called the initial density

matrix operator ρ̂0 which contains all the statistical information of the initial

system at t0

ρ̂0 =
∑
n

wn |ψn〉 〈ψn| (2.16)

Then the ensemble average Eq. (2.15) can be rewritten in terms of ρ̂0 as

〈Ô(t0)〉 =
∑
n

〈
ψn

∣∣∣∣∣∑
k

wk |ψk〉 〈ψk| Ô(t0)

∣∣∣∣∣ψn
〉

(2.17)

=
∑
n

〈
ψn

∣∣∣ρ̂0Ô(t0)
∣∣∣ψn〉 (2.18)

=Tr
[
ρ̂0Ô(t0)

]
(2.19)

where the symbol Tr denotes a trace over all many-body states. From quan-

tum statistical mechanics, we know that the initial density matrix operator in a

canonical ensemble can be written as

ρ̂0 =
∑
n

e−βEn

Z
|ψn〉 〈ψn| =

e−βĤ0

Z
(2.20)

with Ĥ0 ≡ Ĥ(t0) and the partition function

Z ≡
∑
n

e−βEn = Tr
[
e−βĤ0

]
(2.21)

For grand canonical ensembles, just replace Ĥ0 with Ĥ0 − µN̂ where µ is the

chemical potential and N̂ is the total number operator for the system. And now

we let the system evolve and the quantum average 〈O(t)〉 at any time t, analogy

to Eq. (2.8) reads as

〈Ô(t)〉 =
∑
n

wn 〈ψn| Û(t0, t)Ô(t)Û(t, t0) |ψn〉 = Tr
[
ρ̂0Û(t0, t)Ô(t)Û(t, t0)

]
(2.22)
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Figure 2.2: The full Keldysh contour in the complex time plane. The contour
consists of a forward and a backward branch along the real axis between t0
and t, and an imaginary branch from t0 to t0 − iβ along the imaginary axis .
According to the orientation the points t3 >C t2 >C t1.

We notice the similarity of the exponential form between the time-independent

evolution operator Eq. (2.3) and the initial density matrix operator Eq. (2.20),

so we unify these two expressions by defining the temperature term β = 1/T

in the Boltzmann factor (in the Planck units, Boltzmann constant kB = 1) as

an imaginary time component t = t0 − iβ. Then e−βĤ0 = e−iĤ0(t0−iβ−t0) can

be seen as a time propagation from imaginary time t0 to t0 − iβ. With this

new propagation along the complex path, we add a new imaginary branch CM
to the forward-backward Keldysh contour and introduce the resulting full (or

“L”-shaped) Keldysh contour C = C+ ⊕C− ⊕CM. The full Keldysh contour goes

from t0 to t and then back to t0 then along imaginary axis to t0 − iβ. The

contour consists of three paths: a forward branch C+, a backward branch C− and

a imaginary branch CM, as shown in Fig. 2.2.

A generic point t1 can be either on C+, C− or CM and once the branch is specified,

it can assume any value between t0 and t, or t0 − iτ where τ ∈ [0, β]. Again, we

say that t2 is later than t1 or t2 >C t1 if t2 occurs later than t1 as we walk along

the forward-backward-imaginary direction of the contour. Similarly, we define
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the contour time ordering operator TC

TC
{
Â(t1)B̂(t2)

}
=

Â(t1)B̂(t2) if t1 >C t2

±B̂(t2)Â(t1) if t1 <C t2

(2.23)

with the “+” sign is for the case of bosons and “−” sign is for fermions, and the

additional contour integral along the imaginary branch

e−βĤ0 = e
−i

∫
CM

dt̄ Ĥ(t̄)
(2.24)

with Ĥ(t0 − iτ) ≡ Ĥ(t0). So if t3 is later than t1 as in Fig. 2.2, then we have

∫ t3

t1

dt̄ Â(t̄) =

∫ t+

t1

dt̄ Â(t̄) +

∫ t−0

t−
dt̄ Â(t̄) +

∫ t3

tM0

dt̄ Â(t̄) (2.25)

Then quantum average can be written as the unified form

〈Ô(t)〉 =
1

Z
Tr
[
e−βĤ0TC

{
e
−i

∫
C+⊕C−

dt̄ Ĥ(t̄)
Ô(t)

}]
(2.26)

=
Tr
[
e−βĤ0TC

{
e
−i

∫
C+⊕C−

dt̄ Ĥ(t̄)
Ô(t)

}]
Tr
[
e−βĤ0

] (2.27)

=
Tr
[
e−βĤ0TC

{
e
−i

∫
C+⊕C−

dt̄ Ĥ(t̄)
Ô(t)

}]
Tr
[
e−βĤ0 · TC

{
e
−i

∫
C+⊕C−

dt̄ Ĥ(t̄)
}] (2.28)

=
Tr
[
TC
{
e−i

∫
C dt̄ Ĥ(t̄) Ô(t)

}]
Tr
[
TC
{
e−i

∫
C dt̄ Ĥ(t̄)

}] (2.29)

where from line 2 to line 3 is because of the property of unitary evolution.

Now
∫
C includes the contour integration on three branches:

∫
C+ +

∫
C− +

∫
CM
≡∫ t+

t+0
+
∫ t−0
t−

+
∫ t0−iβ
tM0

. Since in the scope of this thesis, we only care the ordering on

the full Keldysh contour, we omit the “full” and call it the Keldysh contour, and

omit the subscript C in ≶C. In addition, with no loss of generality, we assume

t0 = 0. Furthermore, due to the cyclic property of traces, contours C+⊕C−⊕CM ,

CM ⊕ C+ ⊕ C− and C− ⊕ CM ⊕ C+ are essentially equivalent. For simplicity of
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representing the orderings, we use the first one (Keldysh contour) and the last

one (twisted Keldysh contour emerged in Sec. 2.2) for different contexts in this

thesis.

2.2 Strong coupling perturbation theory on the

Anderson Impurity Model

In this section, we apply the strong coupling perturbation theory explicitly on

the Anderson Impurity Model. Again, the Hamiltonian of a dot coupled to the

environment reads

H =
∑
kσ

εkc
†
kσckσ +

∑
kσ

(Vkc†kσdσ + V∗kd†σckσ) +
∑
σ

εdd
†
σdσ + Un↑n↓ (2.30)

And we split the Hamiltonian into three parts

H = Hbath +Hhyb +HD (2.31)

whereHbath =
∑

kσ εkc
†
kσckσ, Hhyb =

∑
kσ(Vkc†kσdσ+V∗kd†σckσ) andHD =

∑
σ εdd

†
σdσ+

Un↑n↓ and we want to perform the perturbation in terms of the hybridization

term Hhyb so we further write

H = H0 +Hhyb (2.32)

where H0 = Hbath + HD denotes the bare decoupled system. Note that this H0

is different from the notation used in the previous section where it was H(t0).

We switch to a path integral representation and introduce the action with the

Keldysh formalism as

S =

∫
C
dt

(∑
kσ

c∗kσ(t)i∂tckσ(t) +
∑
σ

d∗σ(t)i∂tdσ(t)−H(t)

)
(2.33)
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where we replaced the operators in Heisenberg representation with the respective

Grassmann variables and the integration is over the whole Keldysh contour as

indicated by
∫
C. This results in the following expression

S =

∫
C
dt

(∑
kσ

(c∗kσ(t)(i∂t − εk)ckσ(t)−
∑
kσ

(Vkc∗kσ(t)dσ(t) + V∗kd∗σ(t)ckσ(t))

+
∑
σ

d∗σ(t)(i∂t − εd)dσ(t)− Un↑(t)n↓(t)
)

(2.34)

Now if we discretize time on the Keldysh contour, then the integration on the

contour
∫
C dt, summation over different indices

∑
kσ can all be condensed into

vector-matrix multiplications. Consider a row-vector

c∗ =
(
c∗k1σ1(t1) . . . c∗k1σ1(tn)c∗k2σ1(t1) . . . c∗k2σ1(tn) . . . c∗knσ2(tn)

)
(2.35)

and column-vector c (same for d∗, d and other multiplying quantities). The

action then reads

S = c∗ (i∂t − εk)︸ ︷︷ ︸
G−1
c

c− c∗Vd− d∗Vc+ SD, (2.36)

where we define the nonequilibrium Green’s function as the contour-ordered ex-

pectation value and the Green’s function for the bath electron is

Gc(t, t
′) = −i

〈
TC c(t)c†(t′)

〉
bath

(2.37)

and we denote the action of the impurity as SD

SD = d∗(i∂t − εd)d− U
∫
C
dtn↑(t)n↓(t) (2.38)

We use the Hubbard-Stratonovich transformation twice

ed
∗AB−1Ad det(B) =

∫
Dc∗Dc e−c∗Bc−d∗Ac−c∗Ad (2.39)
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First time we choose two matrices A and B to be A = iV and B = −iG−1
c

resulting in AB−1A = iVGcV . Thus we define a hybridization function

∆(t, t′) ≡ VGcV =
∑
k

VkGc(k; t, t′)Vk (2.40)

where Vk indicates that in general the dot-lead coupling can be momentum-

dependent. But in this thesis, we assume Vk = V is a real constant. Then after

plugging A and B into Eq. (2.39), we have

e−id
∗∆d det(−iG−1

c ) =

∫
Dc∗Dc eic∗G−1

c c−id∗Vc−ic∗Vd (2.41)

Rearranging this expression and plugging the action Eq. (2.36) in, we have

∫
Dc∗Dc eiS = −i det(G−1

c )eiSDe−id
∗∆d (2.42)

Then we do the second time Hubbard-Stratonovich transformation by choosing

A = i and B = −i∆−1

e−id
∗∆d det(−i∆−1) =

∫
Dc∗Dc eic∗∆−1c−id∗c−ic∗d (2.43)

Therefore, we can write

∫
Dc∗Dc eiS =

det(G−1
c )

det(∆−1)

∫
Dc∗Dc eic∗∆−1c−id∗c−ic∗d+iSD (2.44)

where the factor det(G−1
c )

det(∆−1)
will enter the expressions for any observable and the

partition function, so it will always cancel out with each other. As a consequence,

we can ignore it and unify all baths to a single hybridization function ∆ and write

the effective action as (with ∆ 6= 0)

S = c∗∆−1c− d∗c− c∗d+ SD (2.45)

to simplify the notation and we further denote S = Sbath+Shyb+SD where Sbath =

c∗∆−1c, Shyb = −d∗c − c∗d to correspond to different parts in the Hamiltonian
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Eq. (2.31).

2.2.1 Second order expansion in coupling

Since the first order term in the expansion of the hybridization term Shyb =

−d∗c− c∗d is zero because our system conserves the number of particles during

the evolution, let us do the lowest order - second order expansion to get an idea

how general expressions for the average of some local operator 〈Ô(t)〉 at any time

t will look like. Beginning from Eq. (2.29), we get up to second order

〈Ô(t)〉 =
1

Z
Tr
[
TC
{
e−i

∫
C dt̄ Ĥ(t̄) Ô(t)

}]
(2.46)

=
1

Z

∫
C
Dd∗DdDc∗Dc O(t)eiS (2.47)

=
1

Z

∫
C
Dd∗DdDc∗Dc eic∗∆−1c+iSDO(t)

[
1−

∫
C
dt1dt2d

∗(t1)c(t1)c∗(t2)d(t2)

]
(2.48)

=
ZbathZD

Z
〈Ô(t)〉D −

i

Z

∫
C
dt1dt2Zbath∆(t1, t2)

∫
C
Dd∗DdeiSD [O(t)d∗(t1)d(t2)]

(2.49)

=
ZD

Z̃D
〈Ô(t)〉D −

i

Z̃D

∫
C

dt1dt2∆(t1, t2)TrD

{
TC e−βĤDÔ(t)d̂†(t1)d̂(t2)

}
(2.50)

where ·D denotes averaging with the bare dot Hamiltonian HD and partition

function Z̃D ≡ Z/Zbath is a dressed partition function of the impurity. There is

an implicit sum over spin indices σ in the vector representations of operators:

∆ = {∆σ} = {∆↑,∆↓}. Note that all expressions in the path integral form are

assumed to be time-ordered, so time-ordering operator TC appears only in the
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trace. Writing each configuration of times explicitly, we get

〈O(t)〉 =
ZD

Z̃D
〈O(t)〉D −

iZD

Z̃D

∑
σ

[
(2.51)

+

∫ t

0

dt2

∫ t

t2

dt1〈Ô(t)d̂†σ(t1)d̂σ(t2)〉D∆σ(t1, t2) (I, t2 < t1 < t)

(2.52)

+

∫ t

0

dt2

∫ −iβ
t

dt1〈d̂†σ(t1)Ô(t)d̂σ(t2)〉D∆σ(t1, t2) (II, t2 < t < t1)

(2.53)

+

∫ −iβ
t

dt2

∫ −iβ
t2

dt1〈d̂†σ(t1)d̂σ(t2)Ô(t)〉D∆σ(t1, t2) (III, t < t2 < t1)

(2.54)

−
∫ t

0

dt1

∫ t

t1

dt2〈Ô(t)d̂σ(t2)d̂†σ(t1)〉D∆σ(t1, t2) (IV, t1 < t2 < t)

(2.55)

−
∫ t

0

dt1

∫ −iβ
t

dt2〈d̂σ(t2)Ô(t)d̂†σ(t1)〉D∆σ(t1, t2) (V, t1 < t < t2)

(2.56)

−
∫ −iβ
t

dt1

∫ −iβ
t1

dt2〈d̂σ(t2)d̂†σ(t1)Ô(t)〉D∆σ(t1, t2)
]

(VI, t < t1 < t2)

(2.57)

Again, note that all of the integrals are contour integrals. And Z̃D also needs to

be evaluated separately. Similarly, it reads

Z̃D = ZD − i
∑
σ

∫
C
dt1dt2∆σ(t1, t2)TrD

{
TC e−βĤD d̂†σ(t1)d̂σ(t2)

}
(2.58)
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2.2.1.1 Atomic propagators

The correction to the bare partition function of the dot δZD = Z̃D − ZD reads

for t1 > t2

δZ
(I)
D = −i

∑
σ

∫ −iβ
0

dt1

∫ t1

0

dt2∆σ(t1, t2)TrD

{
e−βĤDeiĤDt1 d̂†σe

−iĤDt1eiĤDt2 d̂σe
−iĤDt2

}
(2.59)

Note that the evolution term e−iĤt is a symbolic form for the general case

TC
{
e−i

∫
C dt̄ Ĥ(t̄)

}
as we developed in Sec. 2.1 and it is solely for the purpose

of simplicity of notations. Therefore, the derivation is valid for general time-

dependent problems. Now using the cyclic property of trace, the last expression

reads:

δZ
(I)
D = −i

∑
σ

∫ −iβ
0

dt1

∫ t1

0

dt2∆σ(t1, t2)
∑
j

〈j
∣∣∣e−βĤDeiĤDt1 d̂†σe−iĤDt1eiĤDt2 d̂σe−iĤDt2∣∣∣ j〉

(2.60)

where |j〉 is one of the basis states of the impurity and it is useful to consider d̂σ

as a matrix in |j〉 space. Then the last expression is rewritten as

δZ
(I)
D = −

∑
σ

∫ −iβ
0

dt1

∫ t1

0

dt2∆σ(t1, t2)
∑
j

〈j
∣∣∣p̂(t2, 0+)p̂(−iβ, t1)d̂†σĝ(t1, t2)d̂σ

∣∣∣ j〉
(2.61)

where we have introduced atomic propagators as

p̂ (t1, t2)s1s2 =

−i
〈
s1

∣∣∣e−iĤDt1eiĤDt2∣∣∣ s2

〉
t1 > t2

−i〈s1|ξ̂e−iĤDt1e−βĤDeiĤDt2|s2〉 = iξ̂ [p̂(t1, 0)p̂(−iβ, t2)]s1s2 t1 < t2

(2.62)

and corresponding matrix in the basis space of dot as p̂. We have also introduced

operator ξ̂ = (−1)N̂ , where N̂ measures the number of electrons in the state. We

introduce diagonal matrix 1̂ = ξ̂2 into the trace and use [ξ̂, Ĥ] = 0 and [ξ̂, p̂] = 0

because our system does not flip the states at the beginning and at the end. The
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following relation holds : d̂ξ̂ = −ξ̂d̂. Then

δZ
(I)
D = i

∑
σ

∫ −iβ
0

dt1

∫ t1

0

dt2∆σ(t1, t2)
∑
j

〈j
∣∣∣ξ̂p̂(t2, t1)d̂†σĝ(t1, t2)d̂σ

∣∣∣ j〉 (2.63)

The second correction to the partition function (at t1 < t2) can be obtained in

an analogous way and reads

δZ
(II)
D =

∑
σ

∫ −iβ
0

dt2

∫ t2

0

dt1∆σ(t1, t2)
∑
j

〈j
∣∣∣p̂(t1, 0+)p̂(−iβ, t2)d̂p̂(t2, t1)d̂†σ

∣∣∣ j〉
(2.64)

Since we integrate over t1 and t2, we can swap them in the second expression

and get

δZ
(II)
D = −i

∑
σ

∫ −iβ
0

dt1

∫ t1

0

dt2∆σ(t2, t1)
∑
j

〈j
∣∣∣ξ̂p̂(t2, t1)d̂p̂(t1, t2)d̂†σ

∣∣∣ j〉 (2.65)

Combine these two cases and we now get the total correction to the dot partition

function as

δZD = i
∑
σ

∫ −iβ
0

dt1

∫ t1

0

dt2
∑
j

〈j
∣∣∣ξ̂p̂(t2, t1)

(
d̂†σp̂(t1, t2)∆σ(t1, t2)d̂σ − d̂σp̂(t1, t2)∆σ(t2, t1)d̂†σ

)∣∣∣ j〉
(2.66)

Introducing now “self-energy” as

Ŝ(t1, t2) = i
∑
σ

(
d̂†σp̂(t1, t2)∆σ(t1, t2)d̂σ − d̂σp̂(t1, t2)∆σ(t2, t1)d̂†σ

)
(2.67)

we get

δZD =

∫
C
dt1

∫ t1

0

dt2
∑
j

〈j
∣∣∣ξ̂p̂(t2, t1)Ŝ(t1, t2)

∣∣∣ j〉 (2.68)

2.2.1.2 Local operator averages

The correction to the partition function is known. Now, let us continue with the

expression of the second-order correction to the 〈Ô(t)〉: 〈δÔ(t)〉(2) = 〈Ô(t)〉 −
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〈Ô(t)〉D. It reads:

iZ̃D〈δÔ(t)〉(2) =
∑
σ

∑
j

[
(2.69)

−i
∫ t

0

dt1

∫ t1

0

dt2〈j
∣∣∣ξ̂p̂(t2, t)Ôp̂(t, t1)d̂†σp̂(t1, t2)d̂σ

∣∣∣j〉∆σ(t1, t2) (I, t2 < t1 < t)

(2.70)

−i
∫ t

0

dt2

∫ −iβ
t

dt1〈j
∣∣∣ξ̂p̂(t2, t1)d̂†σp̂(t1, t)Ôp̂(t, t2)d̂σ

∣∣∣j〉∆σ(t1, t2) (II, t2 < t < t1)

(2.71)

−i
∫ t1

t

dt2

∫ −iβ
t

dt1〈j
∣∣∣ξ̂p̂(t, t1)d̂†σp̂(t1, t2)d̂σp̂(t2, t)Ô

∣∣∣j〉∆σ(t1, t2) (III, t < t2 < t1)

(2.72)

+i

∫ t

0

dt2

∫ t2

0

dt1〈j
∣∣∣ξ̂p̂(t1, t)Ôp̂(t, t2)d̂σp̂(t2, t1)d̂†σ

∣∣∣j〉∆σ(t1, t2) (IV, t1 < t2 < t)

(2.73)

+i

∫ −iβ
t

dt2

∫ t

0

dt1〈j
∣∣∣ξ̂p̂(t1, t2)d̂σp̂(t2, t)Ôp̂(t, t1)d̂†σ

∣∣∣j〉∆σ(t1, t2) (V, t1 < t < t2)

(2.74)

+i

∫ t2

t

dt1

∫ −iβ
t1

dt2〈j
∣∣∣ξ̂p̂(t, t2)d̂σp̂(t2, t1)d̂†σp̂(t1, t)Ô

∣∣∣j〉∆σ(t1, t2)
]

(VI, t < t1 < t2)

(2.75)
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We swap t1 and t2 wherever there is p̂(t2, t1), do cyclic permutation to get

d̂p̂(t1, t2)d̂† and move ξ̂ to the beginning of each term, then we get

iZ̃D〈δÔ(t)〉(2) =
∑
σ

∑
j

[
(2.76)

−i
∫ t

0

dt1

∫ t1

0

dt2〈j
∣∣∣ξ̂p̂(t2, t)Ôp̂(t, t1)d̂†σp̂(t1, t2)d̂σ

∣∣∣j〉∆σ(t1, t2) (I, t2 < t1 < t)

(2.77)

+i

∫ t

0

dt1

∫ −iβ
t

dt2〈j
∣∣∣ξ̂d̂σp̂(t1, t2)d̂†σp̂(t2, t)Ôp̂(t, t1)

∣∣∣j〉∆σ(t2, t1) (II, t1 < t < t2)

(2.78)

−i
∫ −iβ
t

dt1

∫ t1

t

dt2〈j
∣∣∣ξ̂p̂(t, t1)d̂†σp̂(t1, t2)d̂σp̂(t2, t)Ô

∣∣∣j〉∆σ(t1, t2) (III, t < t2 < t1)

(2.79)

+i

∫ t

0

dt1

∫ t1

0

dt2〈j
∣∣∣ξ̂p̂(t2, t)Ôp̂(t, t1)d̂σp̂(t1, t2)d̂†σ

∣∣∣j〉∆σ(t2, t1) (IV, t2 < t1 < t)

(2.80)

−i
∫ t

0

dt1

∫ −iβ
t

dt2〈j
∣∣∣ξ̂d̂†σp̂(t1, t2)d̂σp̂(t2, t)Ôp̂(t, t1)

∣∣∣j〉∆σ(t1, t2) (V, t1 < t < t2)

(2.81)

+i

∫ −iβ
t

dt1

∫ t1

t

dt2〈j
∣∣∣ξ̂p̂(t, t1)d̂σp̂(t1, t2)d̂†σp̂(t2, t)Ô

∣∣∣j〉∆σ(t2, t1)
]

(VI, t < t2 < t1)

(2.82)
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Joining now the parts with the same integration limits we obtain

iZ̃D〈δÔ(t)〉(2) =
∑
σ

∑
j

[
(2.83)

−i
∫ t

0

dt1

∫ t1

0

dt2〈j
∣∣∣ξ̂p̂(t2, t)Ôp̂(t, t1)

(
d̂†σp̂(t1, t2)∆σ(t1, t2)d̂σ − d̂σp̂(t1, t2)∆σ(t2, t1)d̂†σ

)∣∣∣j〉
(2.84)

(I, t2 < t1 < t)

−i
∫ t

0

dt1

∫ −iβ
t

dt2〈j
∣∣∣ξ̂ (d̂†σp̂(t1, t2)∆σ(t1, t2)d̂σ − d̂σp̂(t1, t2)∆σ(t2, t1)d̂†σ

)
p̂(t2, t)Ôp̂(t, t1)

∣∣∣j〉
(2.85)

(II, t1 < t < t2)

−i
∫ −iβ
t

dt1

∫ t1

t

dt2〈j
∣∣∣ξ̂p̂(t, t1)

(
d̂†σp̂(t1, t2)∆σ(t1, t2)d̂σ − d̂σp̂(t1, t2)∆σ(t2, t1)d̂†σ

)
p̂(t2, t)Ô

∣∣∣j〉]
(III, t < t2 < t1) (2.86)

Substituting the “self-energy” Ŝ from Eq. (2.67), we get

iZ̃D〈δÔ(t)〉(2) =
∑
j

[
(2.87)

−〈j
∣∣∣ ∫ t

0

dt1

∫ t1

0

dt2 ξ̂p̂(t2, t)Ôp̂(t, t1)Ŝ(t1, t2)
∣∣∣j〉 (I, t2 < t1 < t) (2.88)

−〈j
∣∣∣ ∫ t

0

dt1

∫ −iβ
t

dt2 ξ̂Ŝ(t1, t2)p̂(t2, t)Ôp̂(t, t1)
∣∣∣j〉 (II, t1 < t < t2) (2.89)

−〈j
∣∣∣ ∫ −iβ

t

dt1

∫ t1

t

dt2 ξ̂p̂(t, t1)Ŝ(t1, t2)p̂(t2, t)Ô
∣∣∣j〉] (III, t < t2 < t1) (2.90)

Using [ξ̂, p̂] = 0 and [ξ̂, Ô] = 0 (since [x̂, Ĥ] = 0) we get

iZ̃D〈δÔ(t)〉(2) =
∑
j

[
(2.91)

−〈j
∣∣∣∫ t

0

dt1

∫ t1

0

dt2 ξ̂p̂(t, t1)Ŝ(t1, t2)p̂(t2, t)Ô
∣∣∣j〉 (I, t2 < t1 < t) (2.92)

−〈j
∣∣∣∫ t

0

dt1

∫ −iβ
t

dt2 ξ̂p̂(t, t1)Ŝ(t1, t2)p̂(t2, t)Ô
∣∣∣j〉 (II, t1 < t < t2) (2.93)

−〈j
∣∣∣∫ −iβ
t

dt1

∫ t1

t

dt2 ξ̂p̂(t, t1)Ŝ(t1, t2)p̂(t2, t)Ô
∣∣∣j〉] (III, t < t2 < t1) (2.94)
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Finally we get

〈δÔ(t)〉(2) =
i

Z̃D
TrD

{
ξ̂p̂ � Ŝ � p̂Ô

}
(2.95)

where the convolution operator on the Keldysh contour is defined as

[a � b](t1, t2) =


∫ t1
t2
dt′a(t1, t

′)b(t′, t2) t1 > t2∫ −iβ
t2

dt′a(t1, t
′)b(t′, t2) +

∫ t1
0
dt′a(t1, t

′)b(t′, t2) t1 < t2

(2.96)

which results in a Dyson’s equation of the dressed propagator P̂ up to the second

order in the following form

P = p+ p � S � p (2.97)

So at the end, we arrive to

〈Ô (t)〉 =
i

Z̃D
TrD

{
ξ̂P̂ (t+, t−)Ô

}
(2.98)

where the dressed propagator is going from t−, the time t on C− to t+, the

time t on C+. Note that this expression and the Dyson’s equation defines the

direction of the propagators on the Keldysh contour that we need to evaluate:

t− → 0− → 0M → −iβ → 0+ → t+, as shown in Fig. 2.3. We call this the twisted

contour ordering and denote t− ≺ 0− ≺ 0M ≺ −iβ ≺ 0+ ≺ t+. It is a direct

consequence of the fact that there is always a physical measurement at time t,

i.e. a projection onto atomic states of the impurity, also indicated by the last

equation where operator Ô at time t is arranged on the right-most side in the

trace. Notice the distinction between this and the Keldysh contour ordering.
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Figure 2.3: The twisted contour ordering in the complex time plane. The
starting point is t− and the end point is t+ and follows the direction t− → 0− →
0M → −iβ → 0+ → t+. And we denote t− ≺ 0− ≺ 0M ≺ −iβ ≺ 0+ ≺ t+.

2.2.2 Fourth order expansion in coupling

The purpose of this section is to check the behavior of the fourth order expansion

in coupling to get an idea how the signs work out:

〈Ô(t)〉 =
1

Z

∫
Dd∗DdDc∗DcO(t)eiS (2.99)

=
1

Z

∫
Dd∗DdDc∗Dc eic∗∆−1c+iSDO(t)

·
[
1 + 2nd order +

∫
C

dt1dt2dt3dt4d
∗(t1)c(t1)c∗(t2)d(t2)d∗(t3)c(t3)c∗(t4)d(t4)

]
(2.100)

〈δÔ(t)〉(4) =
1

Z

∫
C

dt1dt2dt3dt4

(∫
Dc∗Dc c(t1)c∗(t2)c(t3)c∗(t4)eic

∗∆−1c

)
·
(∫
Dd∗DdO(t)d∗(t1)d(t2)d∗(t3)d(t4)eiSD

)
(2.101)

We look at the bath term first. Since it is non-interacting, we could make use of

Wick’s theorem

∫
Dc∗Dc c(t1)c∗(t2)c(t3)c∗(t4)eic

∗∆−1c (2.102)

= Zbath ·∆(t1, t3; t4, t2) (2.103)

= Zbath · [∆(t1, t4) ·∆(t3, t2)−∆(t1, t2) ·∆(t3, t4)] (2.104)
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Then the fourth order correction is given by

〈δÔ(t)〉(4) =− Zbath

Z

∫
C

dt1dt2dt3dt4∆(t1, t2) ·∆(t3, t4)TrD

{
TCe−βĤDÔ(t)d̂†(t1)d̂(t2)d̂†(t3)d̂(t4)

}
(2.105)

+
Zbath

Z

∫
C

dt1dt2dt3dt4∆(t1, t4) ·∆(t3, t2)TrD

{
TCe−βĤDÔ(t)d̂†(t1)d̂(t2)d̂†(t3)d̂(t4)

}
(2.106)

We investigate only one possibility of the first term. When t4 < t3 < t2 < t1 < t

(I), we get

〈δÔ(t)〉(4)(I) =− 1

Z̃D

∑
σ

∑
j

∫
C(I)

dt1dt2dt3dt4∆σ(t1, t2) ·∆σ(t3, t4) (2.107)

·
〈
j
∣∣∣e−βĤDÔ(t)d̂†σ(t1)d̂σ(t2)d̂†σ(t3)d̂σ(t4)

∣∣∣ j〉 (2.108)

=− i

Z̃D

∑
σ

∑
j

∫
C(I)

dt1dt2dt3dt4∆σ(t1, t2) ·∆σ(t3, t4) (2.109)

·
〈
j
∣∣∣ξ̂p̂(t4, t)Ôp̂(t, t1)d̂†σp̂(t1, t2)d̂σp̂(t2, t3)d̂†σp̂(t3, t4)d̂σ

∣∣∣ j〉 (2.110)

=− i

Z̃D

∑
σ

∑
j

∫
C(I)

dt1dt2dt3dt4 (2.111)

·
〈
j

∣∣∣∣∣∣∣ξ̂p̂(t, t1) d̂†σ∆σ(t1, t2)p̂(t1, t2)d̂σ︸ ︷︷ ︸
−iŜ(t1,t2)

p̂(t2, t3) d̂†σ∆σ(t3, t4)p̂(t3, t4)d̂σ1︸ ︷︷ ︸
−iŜ(t3,t4)

p̂(t4, t)Ô

∣∣∣∣∣∣∣ j
〉

(2.112)

where the last step we used the commutation relation [ξ̂, p̂] = 0 and d̂ξ̂ = −ξ̂d̂.

Now imagine we combine this term with the cases t4 < t3 < t1 < t2 < t (C(II)),

t3 < t4 < t2 < t1 < t (C(III)) and t1 < t2 < t3 < t4 < t (C(IV)) and all other

possibility that do not involve crossings of hybridization lines, which are the

cases we care in the next section Sec. 2.3, we will get exactly the correction

expressed in terms of the “self-energy” as:

〈δO(t)〉(4)
(NCA) =

i

Z̃D
Tr
{
ξ̂p̂ � Ŝ � p̂ � Ŝ � p̂Ô

}
(2.113)
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2.3 Self-consistent approximations

2.3.1 Non-crossing approximation (NCA)

Apparently calculating the full expansion of the observable 〈Ô(t)〉 that we are

interested analytically is not feasible. Instead, we can sum part of the terms self-

consistently. So in this section, we develop the simplest self-consistent skeleton

approximation that is called non-crossing approximation (NCA) [57]. And in the

next chapter, we will know that this approximation corresponds to summing all

the terms (diagrams) without crossing of conduction-electron lines in the original

perturbation. It is generated by writing the Dyson’s equation Eq. (2.97) with

dressed propagators. We have

P = p+ p � SNCA � P (2.114)

ŜNCA(t1, t2) = i
∑
σ

(
d̂†σP̂ (t1, t2)∆σ(t1, t2)d̂σ − d̂σP̂ (t1, t2)∆σ(t2, t1)d̂†σ

)
(2.115)

As we have seen in the second and fourth order expansions, a higher order cor-

rection to P would generate an expression of this form: . . . p � S � p � S � . . ..

The convolution operator � guarantees the contour-ordering of the arguments,

so that every S “ends” before the next one starts. In either bare Hamiltonian H0

or NCA, the atomic propagators (p or P ) do not change the state of the impurity,

that is, only the diagonal elements in p̂ and P̂ are non-zero. Consequently, Ŝ is

also a diagonal matrix. Let’s define

P|s〉 (t1, t2) ≡
〈
s
∣∣∣P̂ (t1, t2)

∣∣∣ s〉 (2.116)

S|s〉 (t1, t2) ≡
〈
s
∣∣∣Ŝ (t1, t2)

∣∣∣ s〉 (2.117)

for each impurity state |s〉 (s = 0, ↑, ↓, ↑↓). Then
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• |s = 0〉 state

S|0〉 (t1, t2) = i
(
−∆|↑〉 (t2, t1) · P|↑〉 (t1, t2)−∆|↓〉 (t2, t1) · P|↓〉 (t1, t2)

)
(2.118)

• |s =↑〉 state

S|↑〉 (t1, t2) = i
(
+∆|↑〉 (t1, t2) · P|0〉 (t1, t2)−∆|↓〉 (t2, t1) · P|↑↓〉 (t1, t2)

)
(2.119)

• |s =↓〉 state

S|↓〉 (t1, t2) = i
(
+∆|↓〉 (t1, t2) · P|0〉 (t1, t2)−∆|↑〉 (t2, t1) · P|↑↓〉 (t1, t2)

)
(2.120)

• |s =↑↓〉 state

S|↑↓〉 (t1, t2) = i
(
+∆|↑〉 (t1, t2) · P|↓〉 (t1, t2) + ∆|↓〉 (t1, t2) · P|↑〉 (t1, t2)

)
(2.121)

And for the propagators P , in integral form explicitly as

P
(d)
|s〉 (t1, t2) = p|s〉 (t1, t2) +

∫ t1

t2

dη1

∫ η1

t2

dη2p|s〉 (t1, η1)S
(d)
|s〉 (η1, s2)P

(d−1)
|s〉 (η2, t2)

(2.122)

= p|s〉 (t1, t2) +

∫ t1

t2

dη1p|s〉 (t1, η1)

(∫ η1

t2

dη2S
(d)
|s〉 (η1, η2)P

(d−1)
|s〉 (η2, t2)

)
(2.123)

= p|s〉 (t1, t2) +

∫ t1

t2

dη1p|s〉 (t1, η1)
(
I

(d)
|s〉 (η1, t2)

)
(2.124)

where I
(d)
|s〉 (η1, t2) is the intermediate quantity and be aware of the constraint for

the time points t1 � η1 � η2 � t2. Therefore, a NCA solution is obtained by

summing over NCA terms via a Dyson equation. It involves an iterative pro-

cedure and self-consistently converges to a semi-analytic solution. More details

can be found in [58].
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2.3.2 One-crossing approximation (OCA)

The next order self-consistent approximate method is the one-crossing approx-

imation (OCA) [59, 60]. Previously, we looked into the behavior of the fourth

order perturbation in the aspect of NCA. There, we dropped out all the terms

that include hybridization lines crossings. Now we would like to bring them back

and include them as the next-order terms. Here we will omit the derivation and

state only the resulting formula. It is again generated by writing the Dyson’s

equation Eq. (2.97) with dressed propagators:

P = p+ p � SOCA � P (2.125)

and we define the self-consistent “self-energy” for OCA as

ŜOCA(t3, t4) = ŜNCA(t3, t4) + 4
∑
σ1

∑
σ2

∫ t3

t4

dt1

∫ t1

t4

dt2 (2.126)

·
(
d̂†σ1∆σ1(t3, t2)P̂ (t3, t1)d̂†σ2P̂ (t1, t2)d̂σ1P̂ (t2, t4)∆σ2(t1, t4)d̂σ2

(2.127)

− d̂σ1∆σ1(t2, t3)P̂ (t3, t1)d̂†σ2P̂ (t1, t2)d̂†σ1P̂ (t2, t4)∆σ2(t1, t4)d̂σ2

(2.128)

− d̂†σ∆σ1(t3, t2)P̂ (t3, t1)d̂σ2P̂ (t1, t2)d̂σ1P̂ (t2, t4)∆σ2(t4, t1)d̂†σ2

(2.129)

+ d̂σ1∆σ1(t2, t3)P̂ (t3, t1)d̂σ2P̂ (t1, t2)d̂†σ1P̂ (t2, t4)∆σ2(t4, t1)d̂†σ2

)
(2.130)

where ŜNCA is the NCA contribution of the “self-energy” in Eq. (2.115) and

the direction of integration should be consistent with the one in convolution

Eq. (2.96). Just like in NCA, the atomic propagators (p or P ) in OCA do not

change the state of the impurity, that is, only the diagonal elements in p̂ and P̂
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are non-zero. Consequently, Ŝ is also a diagonal matrix. Let’s define

P|s〉 (t1, t2) ≡
〈
s
∣∣∣P̂ (t1, t2)

∣∣∣ s〉 (2.131)

S|s〉 (t1, t2) ≡
〈
s
∣∣∣Ŝ (t1, t2)

∣∣∣ s〉 (2.132)

for each impurity state |s〉 (s = 0, ↑, ↓, ↑↓). Then

• |s = 0〉 state

S|0〉 (t1, t2) = S|0〉,NCA (t1, t2) (2.133)

− 4

∫ t1

t2

dη1

∫ η1

t2

dη2

(
∆|↑〉 (η2, t1) ∆|↓〉 (t2, η1) · P|↓〉 (t1, η1)P|↑↓〉 (η1, η2)P|↑〉 (η2, t2)

(2.134)

+ ∆|↓〉 (η2, t1) ∆|↑〉 (t2, η1) · P|↑〉 (t1, η1)P|↑↓〉 (η1, η2)P|↓〉 (η2, t2)
)

(2.135)

• |s =↑〉 state

S|↑〉 (t1, t2) = S|↑〉,NCA (t1, t2) (2.136)

+ 4

∫ t1

t2

dη1

∫ η1

t2

dη2

(
∆|↓〉 (η2, t1) ∆|↑〉 (η1, t2) · P|↑↓〉 (t1, η1)P|↓〉 (η1, η2)P|0〉 (η2, t2)

(2.137)

+ ∆|↑〉 (t1, η2) ∆|↓〉 (t2, η1) · P|0〉 (t1, η1)P|↓〉 (η1, η2)P|↑↓〉 (η2, t2)
)

(2.138)

• |s =↓〉 state

S|↓〉 (t1, t2) = S|↓〉,NCA (t1, t2) (2.139)

+ 4

∫ t1

t2

dη1

∫ η1

t2

dη2

(
∆|↑〉 (η2, t1) ∆|↓〉 (η1, t2) · P|↑↓〉 (t1, η1)P|↑〉 (η1, η2)P|0〉 (η2, t2)

(2.140)

+ ∆|↓〉 (t1, η2) ∆|↑〉 (t2, η1) · P|0〉 (t1, η1)P|↑〉 (η1, η2)P|↑↓〉 (η2, t2)
)

(2.141)
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• |s =↑↓〉 state

S|↑↓〉 (t1, t2) = S|↑↓〉,NCA (t1, t2) (2.142)

− 4

∫ t1

t2

dη1

∫ η1

t2

dη2

(
∆|↓〉 (t1, η2) ∆|↑〉 (η1, t2) · P|↑〉 (t1, η1)P|0〉 (η1, η2)P|↓〉 (η2, t2)

(2.143)

+ ∆|↑〉 (t1, η2) ∆|↓〉 (η1, t2) · P|↓〉 (t1, η1)P|0〉 (η1, η2)P|↑〉 (η2, t2)
)

(2.144)

And for the propagators P , the integral form of OCA stays the same as in NCA,

as they all follow from the Dyson’s equation. And in spite of self-consistent

approximations we choose, the correction to the expectation value of an equal-

time observable is always Eq. (2.98):

〈Ô (t)〉 =
i

Z̃D
TrD

{
ξ̂P̂ (t+, t−)Ô

}
(2.145)

where the dressed propagator P̂ is the corresponding dressed propagator from

the self-consistent approximation, such as NCA Eq. (2.114) or OCA Eq. (2.125).
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Chapter 3

Quantum Monte Carlo

Algorithm for Impurity Models

out of Equilibrium

The ongoing experimental progress has stimulated intensive research on the the-

oretical side. As we mentioned, a promising framework to capture both ultrafast

dynamics and strong electronic correlations is the nonequilibrium formulation of

dynamical mean-field theory (DMFT). The biggest challenge within the context

of nonequilibrium DMFT is the development of impurity solvers which allow to

compute the long-time dynamics after a perturbation.

Solving the interacting quantum impurity model is conceptually and algorithmi-

cally challenging and no analytical solution is available. There have been a wide

range of approximate techniques developed to solve the model. For example,

exact-diagonalization (ED) [61] approximates the continuum of bath levels by a

small number variationally chosen eigenstates and hybridization function, but is

limited by the number of bath site can be included. Density matrix renormaliza-

tion group (DMRG) [62] and numerical renormalization group (NRG) methods

both intelligently truncate the Hilbert space, where NRG is based on iterative

diagonalization using a logarithmic discretization of the energy spectrum of the

bath states and DMRG involves an isolation of the relevant low-lying states.
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However, they are particularly powerful in resolving collective states and low en-

ergy levels but encounter difficulties in providing information over a wide range

of frequencies.

Another approach, which we use in our calculations, is the so-called contin-

uous time Quantum Monte Carlo (CT-QMC) method. At equilibirum, there

have been a class of CT-QMC methods developed to accomodate different cou-

pling regimes and they have the advantage of avoiding the time discretization

of Hirsch-Fye quantum Monte Carlo methods [63] and providing very efficient

and flexible solvers at T > 0 [64]. At the side of its nonequilibrium extension,

however, no numerical “exact” solver has been developed. It requires a gener-

alization of the expansion on the imaginary time branch in equilibrium to the

full Keldysh contour to represent the time dependent dynamics. For example,

self-consistent perturbation expansion around the atomic limit (generalization of

NCA in Sec. 2.3.1 and OCA in Sec. 2.3.2) [58] are reliable at limited parameter

regimes, e.g. when interaction U is much larger than the bandwidth of the bath.

[65] and [55] are formulated on the forward-backward Keldysh contour thus are

lack of the physical initial conditions of the system.

In this chapter, we will present a detailed description of the numerical algorithm

we developed that is suitable for strong-coupling regimes. This is a generaliza-

tion of the continuous time hybridization expansion solver in [55] to Keldysh

contour. We will begin in Sec. 3.1 with a short derivation and formalism of the

general hybridization expansion approach in nonequilibrium on Keldysh contour.

In Sec. 3.2, we will outline the details of the Monte Carlo procedure performed

in the sampling of the configuration space. And we discuss the measurements

available in this method and state the procedures to calculate them. We examine

the dynamics of a correlated quantum dot in the mixed valence regime in Sec. 3.5

[66]. We perform numerically exact calculations of the current after a quantum

quench from equilibrium by rapidly applying a bias voltage in a wide range of

initial temperatures. The current exhibits short equilibration times and satu-

rates upon the decrease of temperature at all times, indicating Kondo behavior
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both in the transient regime and in steady state. The time-dependent current

saturation temperature connects the equilibrium Kondo temperature to a sub-

stantially increased value at voltages outside of linear response. These signatures

are directly observable by experiments in the time-domain.

3.1 Continuous-time QMC - hybridization ex-

pansion

CT-QMC methods start with the same basic idea of the perturbation theory –

splitting of the Hamiltonian. We are interested in the strongly coupling regime,

therefore we will perform the expansion in powers of the dot-lead hybridization

V . As in Eq. (2.32), we write

H = H0 +Hhyb (3.1)

where H0 = Hbath+HD denotes the bare decoupled system. And this corresponds

to writing

S = S0 + Shyb (3.2)

where S0 = c∗∆−1c+ SD and Shyb = −d∗c− c∗d in Eq. (2.2). Then we expand a

general average of some local operator in Eq. (2.29) in powers of Shyb and get

〈Ô(t)〉 =
1

Z̃D

∞∑
n=0

∑
oi=d,d†

∫ −iβ
0

dt1

∫ t1

t3

dt2 . . .

∫ tk−1

t

dtk

∫ t

tk+2

dtk+1 . . .

∫ t2n−1

0

dt2n

× Trsw(o1 . . . o2n, t1 . . . t2n,P , s) (3.3)

where

w(o1 . . . o2n, t1 . . . t2n,P , s) (3.4)

= (−i)2n(−1)P〈s|e−βĤD ô1(t1) . . . ôk(tk)Ô(t)ôk+1(tk+1) . . . ô2n(t2n)|s〉 · in det ∆(t1 . . . t2n)

(3.5)
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• the first (−i)2n comes from the prefactor in expanding eiS0+iShyb in powers

of Shyb to the 2nth order;

• (−1)P is a permutation factor that comes from the sign change from explicit

time ordering;

• −iβ ≥ t1 > . . . > tk > t > tk+1 > . . . > t2n ≥ 0+ follows the time-ordering

on the Keldysh contour;

• each operator ôi can be a d̂σ or a d̂†σ, and the numbers of d̂σ and d̂†σ have

to be the same;

• s denotes one of the four atomic states |0〉, | ↑〉, | ↓〉 and | ↑↓〉;

• the last term in det ∆(t1 . . . t2n) comes from applying the Wick’s theorem

to the n-particle Green’s function of the bath electrons that is obtained by

the expansion because they are non-interacting and

det ∆(t1 . . . t2n) ≡ det


∆(ti1 , tj1) ∆(ti1 , tj2) · · · ∆(ti1 , tjn)

∆(ti2 , tj1) ∆(ti2 , tj2) · · · ∆(ti2 , tjn)
...

...
. . .

...

∆(tin , tj1) ∆(tin , tj2) · · · ∆(tin , tjn)

 (3.6)

where ti1 . . . tin are the times where ôi’s are d̂†σ’s and tj1 . . . tjn are the times

where ôi’s are d̂σ’s.

We can further write the expectation in w(o1 . . . o2n, t1 . . . t2n,P , s) in terms of

the atomic propagators defined in Eq. (2.62) as

〈s|e−βĤD ô1(t1) . . . ôk(tk)Ô(t)ôk+1(tk+1) . . . ô2n(t2n)|s〉 (3.7)

= (−1)k〈s|ξ̂ôk+1(tk+1) . . . ô2n(t2n)ξ̂e−βĤD ô1(t1) . . . ôk(tk)Ô(t)|s〉 (3.8)

= (−1)ki2n+1〈s|ξ̂p̂(t, tk+1) . . . p̂(tk−1, tk)p̂(tk, t)Ô|s〉 (3.9)
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Therefore, splitting w into several parts gives

w(o1 . . . o2n, t1 . . . t2n,P , s) = in+1wlocwhybO(s) (3.10)

wloc = (−1)P(−1)k〈s|ξ̂p̂(t, tk+1) . . . p̂(tk−1, tk)p̂(tk, t)|s〉 (3.11)

whyb = det ∆(t1 . . . t2n) (3.12)

because for a non-vanishing contribution, the operator Ô should commute with

ĤD, therefore can be separated from the expectation expression and written as

a projected value on state s as O(s).

We interpret Eq. (3.3) as a sum over the configuration space that is the collection

of all possible hybridization line configurations on the Keldysh contour C: x =

{s, {t1, σ1, ζ1} , {t2, σ2, ζ2} , . . . , {t2n, σ2n, ζ2n}}, n = 0, 1, 2, . . ., s is the atomic

state at time t, the time indices ti ∈ C, the spin indices σi =↑ or ↓, and ζi = ±
denotes whether the operator ô at the particular time ti is d̂† (ζi = +) or d̂

(ζi = −). And each configuration has a weight 1
Z̃D
w(o1 . . . o2n, t1 . . . t2n,P , s).

One example with n = 3 is shown in Fig. 3.1 and it belongs to the 6th order

correction in the perturbation expansion.

The green lines are the hybridization lines that connect where electrons hop from

the impurity to the bath (open circles) and where electrons hop from the bath to

the impurity (filled circles). The top panel is one way to connect the hybridization

lines that originate from one of the terms in the determinant in whyb. And the

bottom panel shows the other non-zero possibility. From the construction of the

Hamiltonian, the evolution operator does not change the number of particles on

the impurity and conserves the spins. Thus the numbers of the filled circles (“+”

points) and the open circles (“−” points) have to be the same in order to get a

non-vanishing diagram. Also the two end points of a hybridization line have to

be of the same spin. Therefore the two diagrams shown in Fig. 3.1 are the only

two contributing terms in this configuration.

With the diagram interpretation, the self-consistent approximate methods, NCA

introduced in Sec. 2.3.1 and OCA in Sec. 2.3.2 associate with sums over some
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Figure 3.1: The two possibilities of drawing hybridization lines in configura-
tion x = {| ↑〉, {t1, ↑,+} , {t2, ↑,−} , {t3, ↓,−} , {t4, ↑,+} , {t5, ↓,+} {t6, ↑,−}}.
The green lines are the hybridization lines, the open circles denote the mo-
ments when electrons hop from the impurity to the bath, and the filled circles
denote the moments when electrons hop from the bath to the impurity. The
atomic states at each stage are also shown along the contour.
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Figure 3.2: Illustrations of NCA and OCA diagrams. Top panel: An example
of NCA diagrams. Hybridization lines are not allowed to cross with each
other, therefore the red line is prohibited. Bottom panel: An example of OCA
diagrams. Hybridization lines are not allowed to cross twice, so the red line
can not be added.
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subsets of the configuration space. The NCA subspace includes all diagrams with

no hybridization lines crossing with each other. And the OCA subspace consists

of the diagrams that have maximum one crossing with other hybridization lines.

These features are direct consequences of the constructions of their self-energies

and partial sums over these subspaces will recover the self-consistent approximate

solutions respectively.

In this way, computing an average is turned into an enumeration of all the possi-

ble configurations. And since the configuration space is large, the direct approach

is impractical. We use instead the statistical methods and estimate the average

values. The well-established procedure is a Monte Carlo sampling of the most

probable configurations, as described by [67] and first proposed in the equilib-

rium contious-time hybridization expansion (CT-HYB) study of AIM in [68]. We

rewrite the expectation value of a quantity Ô in Eq. (3.3) as an integration over

the configuration space C with weight w

〈Ô(t)〉 = 〈O〉w =
1

Z̃D

∫
C

dx O(x)w(x) (3.13)

where we group the rest of w(t1 . . . t2n, P, s) except O(x) to be w(x):

w(x) = in+1wloc(x)whyb(x). (3.14)

This weighed sum can be estimated in a Monte Carlo procedure by selecting M

configurations xi with a probability w(xi)dxi/Z̃D and averaging the contributions

O(xi):

〈O〉w ≈ 〈O〉MC ≡
1

M

M∑
i=1

O(xi) (3.15)

And according to the central limit theorem, if the number of configurations is

large enough, the estimate 〈O〉MC will be normally distributed around the exact

value 〈O〉w with variance

〈(∆O)2〉 ≡ 〈(OMC −Ow)2〉 =
VarO

M
(3.16)
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3.2 Monte Carlo procedure and details

Integrals with general distributions such as Eq. (3.13) are best sampled by gen-

erating configurations using a Markov process. A Markov process is fully charac-

terized by a transition matrix Wxy specifying the probability of going from state

x to state y in one step of the Markov process. Conservation of probabilities re-

quires
∑

yWxy = 1. Starting from an arbitrary distribution, the Markov process

will converge exponentially to a stationary distribution w(x) as we desire if the

following two conditions are satisfied:

• Ergodicity: It has to be possible to reach any configuration x from any

other configuration y in a finite number of Markov steps, i.e. for all x and

y there exists an integer N < ∞ such that for all n ≥ N the probability

(W n)xy 6= 0.

• Balance: Stationarity implies that the distribution w(x) fulfills the balance

condition ∫
C

dx w(x)Wxy = w(y), (3.17)

that is, w(x) is a left eigenvector of the transition matrix Wxy. A sufficient

but not necessary condition usually used instead of the balance condition

is the detailed balance condition

Wxy

Wyx

=
w(y)

w(x)
(3.18)

which we use in our calculations.

The first, and still most widely used, algorithm that satisfies the detailed balance

condition is the Metropolis-Hastings algorithm [67, 69]. The transition from a

configuration x to a new configuration y is proposed with a probability W prop
xy

but accepted only with probability W acc
xy . If the proposal is rejected, the old

59



configuration x is used again. The transition matrix is

Wxy = W prop
xy W acc

xy (3.19)

and the detailed balance condition Eq.(3.18) is satisfied by using the Metropolis-

Hastings acceptance rate:

W acc
xy = min {1, Rxy} . (3.20)

with the acceptance ratio Rxy given by

Rxy =
w(y)W prop

yx

w(x)W prop
xy

(3.21)

and Ryx = 1/Rxy. Notice that here, we omit the integral variable dx that is also

part of the distribution probability for neatness, but one should always keep in

mind its existence.

3.2.1 Updates and evaluations

The two basic updates required for ergodicity of the Markov process in CT-HYB

are the insertion of and the removal of a segment d̂†(η1)d̂(η2) or an antisegment

d̂(η1)d̂†(η2), η1 > η2. The strategy we choose for inserting a segment/antisegment

is the following: we pick a random time on C for the creation operator d̂†. If

it falls on an existing segment/antisegment of the same spin, the impurity is

already occupied, so w(xn+1) = 0 and the move is rejected. If it falls on an

empty space, we compute lm, the length from this position to either the next

segment or the next antisegment, whichever encountered first along the direction

of increasing contour time. If there are no segments/antisegments on the contour,

lm = l ≡ 2tmax + β, i.e. the total length of the Keldysh contour with tmax

being the time at the tip of the contour. The position of the new annihilation

operator d̂ is then chosen randomly in this interval of lm. The Keldysh contour

is cyclic around −iβ → 0+, so the searching of lm will wind around the end
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point −iβ till reaching η1, where η1 is the time of the creation operator. If the

annihilation operator is inserted at a later time η2 and η2 > η1, we have an

antisegment; and if η2 < η1, we have a segment. If we propose to remove a

randomly chosen segment/antisegment, the probability is 1/n, where n is the

total number of hybridization lines in the current configuration. In conclusion,

we have the proposal probabilities

W prop
xn→xn+1

=
∆t

l

∆t

lm
(3.22)

W prop
xn+1→xn =

1

n+ 1
(3.23)

where ∆t being the discretization of the Keldysh contour. In principal, one can

choose different discretizations on different branches or even non-uniform dis-

cretizations. For simplicity, we choose to have a uniform discretization through-

out the contour, as well as the derivation. Then

w(xn+1)

w(xn)
= i · (−1)Pn+1

(−1)Pn
(−1)kn+1

(−1)kn
det ∆(t1, . . . , t2n+2)

det ∆(t1, . . . , t2n)
dη1dη2 (3.24)

× 〈sn+1|ξ̂p̂(t, tkn+1+1) . . . p̂(tkn+1−1, tkn+1)p̂(tkn+1 , t)|sn+1〉
〈sn|ξ̂p̂(t, tkn+1) . . . p̂(tkn−1, tkn)p̂(tkn , t)|sn〉

(3.25)

where dη1 and dη2 are the integral variables that come directly from contour

integrals dxn+1 as the added times η1, η2 for the new segment/antisegment. And

dη = f · ∆t, with f being the “contour factors” (+1,−1, i) depending on the

branch of added time points t1, t2 on C+, C− or CM . Therefore the acceptance

ratio of adding a segment/antisegment is given by

Rxn→xn+1 =
w(xn+1)W prop

xn+1→xn

w(xn)W prop
xn→xn+1

(3.26)

= i · (−1)Pn+1

(−1)Pn
(−1)kn+1

(−1)kn
det ∆(t1, . . . , t2n+2)

det ∆(t1, . . . , t2n)

l · lm
n+ 1

f1f2

× 〈sn+1|ξ̂p̂(t, tkn+1+1) . . . p̂(tkn+1−1, tkn+1)p̂(tkn+1 , t)|sn+1〉
〈sn|ξ̂p̂(t, tkn+1) . . . p̂(tkn−1, tkn)p̂(tkn , t)|sn〉

(3.27)

where f1, f2 are the contour factors depending on the branch of added time points

η1, η2. Note that segments/antisegments can wind around the tip tmax and change
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the tip state |s〉 at the measurement point.

In addition to the basic insertions and deletions of segments/antisegments, we

also add the following two moves in order to increase the efficiency of sampling

the configuration space:

1. If the current configuration is empty, flip the state at the tip |s〉 to one of

the basis states.

2. Where there are no segments/antisegments for a certain spin σ, flip the

occupation state of that spin at the tip.

3. Shift the end points of the existing segments/antisegments to another al-

lowed position.

And all of these updates should satisfy the detailed balance condition.

3.2.2 Normalization

The MC average given by Eq. (3.15) is sufficient for computing any local ob-

servables. However, if we want to get specifically the value of, for example, the

dressed dot partition function Z̃D by putting Ô = Î in the formula, or dressed

propagators introduced in Sec. 3.3.1, a normalization procedure is necessary.

Consider a reference system, for example a self-consistent non-crossing approx-

imation (NCA) or one-crossing approximation (OCA) up to some fixed number

of order n, we have

Zref =

∫
dx Iref(x)w(x) (3.28)

Z̃D =

∫
dx w(x) (3.29)
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where

Iref(x) =

 1 if x = xref

0 otherwise
(3.30)

is an indicator function for configurations in the reference system and xref repre-

sents the configurations that the reference system includes, for example, finite-

order NCA/OCA diagrams. Dividing these two equations we get

Z̃D = Zref ·
∫
dx w(x)∫

dx Iref(x)w(x)
(3.31)

= Zref ·
1

〈Iref〉w
(3.32)

where Zref is known and 〈Iref〉w can be estimated by a MC average 〈Iref〉MC.

In this way, Z̃D can be computed by iterating over each permutation in every

configuration generated for measurements and identity whether it is one of the

reference diagrams.

At high temperatures, perturbation orders are often small and this normalization

method is feasible. However, at lower temperatures, large perturbation orders

are observed and we can perform a series of calculations, progressively increasing

the perturbation order and normalize with respect to lower order calculations as

reference systems until convergence is achieved.

3.3 Measurements

In this section, we outline the quantities that are of interest in this thesis and

state the methods to measure them.
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3.3.1 Dressed propagators

From Eq. (3.10) we realize that for any local operator Ô, the expression can be

divided into two independent parts:

w(o1 . . . o2n, t1 . . . t2n,P , s) = iξsP (o1 . . . o2n, t1 . . . t2n,P , s)O(s) (3.33)

and

P (o1 . . . o2n, t1 . . . t2n,P , s) = inξswlocwhyb (3.34)

can be interpreted as a 2nth order expansion of the dressed atomic propagators

P̂ (t1, t2)s1s2 =


−i
〈
s1

∣∣∣e−iĤt1eiĤt2∣∣∣ s2

〉
t1 > t2

−i〈s1|ξ̂e−iĤt1e−βĤeiĤt2|s2〉 = iξ̂
[
P̂ (t1, 0)P̂ (−iβ, t2)

]
s1s2

t1 < t2

(3.35)

The form is exactly identical to the definition of bare atomic propagators p̂

in Eq. (2.62) except for the full Hamiltonian Ĥ instead of the local impurity

Hamiltonian ĤD used in the expression. Here we integrate out the bath degrees

of freedom and incorporate them as hybridization functions in ∆. Now, instead

of sampling the local observables, we sample all the dressed propagators

P̂s(t1, t2) =
∞∑
n=0

∑
o=d,d†

∫ −iβ
0

dt1

∫ t1

t3

dt2 . . .

∫ tk−1

t

dtk

∫ t

tk+2

dtk+1 . . .

∫ t2n−1

0

dt2n

· P (o1 . . . o2n, t1 . . . t2n,P , s) (3.36)

for every time pair t1 � t2 (on twisted Keldysh contour) and normalize the

MC results using the technique in Sec. 3.2.2. Then any local observable has an

universal form, as in NCA or OCA:

〈Ô (t)〉 =
i

Z̃D
TrD

{
ξ̂P̂ (t+, t−)Ô

}
(3.37)
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and different algorithms, self-consistent approximate methods or numerically “ex-

act” QMC methods, all correspond to different samplings of dressed propagators.

3.3.2 Currents

We follow [70] and derive the currents through an interacting dot:

〈Î(t)〉 ≡
〈
dN̂(t)

dt

〉
(3.38)

By the equation of motion in the Heisenberg representation

i
∂X̂(t)

∂t
= [X̂(t), Ĥ(t)] (3.39)
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we have

〈Î(t)〉 = − i
〈

[N̂(t), Ĥ(t)]
〉

(3.40)

= − i
〈∑

σ

[
d̂†σ(t)d̂σ(t),V

∑
k

(
ĉ†kσ(t)d̂σ(t) + d̂†σ(t)ĉkσ(t)

)]〉
(3.41)

= − iV
∑
kσ

〈(
−ĉ†kσ(t)

{
d̂†σ(t), d̂σ(t)

}
d̂σ(t) + d̂†σ(t)

{
d̂σ(t), d̂†σ(t)

}
ĉkσ(t)

)〉
(3.42)

= − iV
∑
kσ

(〈
d̂†σ(t)ĉkσ(t)

〉
−
〈
ĉ†kσ(t)d̂σ(t)

〉)
(3.43)

= 2V
∑
kσ

=
{〈

d̂†σ(t)ĉkσ(t)
〉}

(3.44)

= 2V
∑
σ

=
{

1

Z

∫
Dd∗DdDc∗Dc d∗σ(t)cσ(t)eic

∗∆−1c+iSD (3.45)

×
(
−iV

∑
σ1

∫
dt1c

∗
σ1

(t1)dσ1(t1) + · · ·
)}

(3.46)

= 2
∑
σ

=
{∫

dt1∆σ(t, t1)

[
1

Z̃D

∫
Dd∗Dd eiSDd∗σ(t)dσ(t1) + · · ·

]}
(3.47)

= − 2
∑
σ

<
{∫
C
dt′ Gσ(t′, t)×∆σ(t, t′)

}
(3.48)

Therefore, in order to compute the current, the Green’s function of the impurity

is required and is introduced in the next part.

3.3.3 Green’s functions

In all methods discussed so far, diagrams or configurations are generated for lo-

cal operators Ô with weights contributing to the partition function Z̃D. Besides

this, we are also interested in quantities with operators at two times, in partic-

ular, Green’s functions. Single particle Green’s functions are the fundamental

objects of many-body theories. They describe single particle excitations as well

as statistical distributions of particles, and play a central role in the formulation
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of nonequilibrium DMFT, as seen in Sec. 1.3. They can be obtained by mod-

ifying such partition function configurations and sampling both series for Z̃D

and G(t, t′) simultaneously. This method was originally employed in the bosonic

context by [71] and it is often referred as the worm sampling.

We define the nonequilibrium Green’s function as the contour-ordered expecta-

tion value

Gσ(t, t′) ≡ −i
〈
TC d̂σ(t)d̂†σ(t′)

〉
(3.49)

where d̂†σ(d̂σ) is a creation (annihilation) operator of the impurity particles, and

t, t′ ∈ C. To get a flavor how the general weights look like, we write the expansion

of the Green’s function up to the second order in terms of Hhyb

〈
TC d̂σ (t1) d̂†σ (t2)

〉
=

1

Z

∫
Dd∗DdDc∗Dc dσ (t1) d∗σ (t2) eiS (3.50)

=
1

Z

∫
Dd∗DdDc∗Dc eic∗∆−1c+iSDdσ (t1) d∗σ (t2)

×
[

1−
∑
σ1

∫
C
dt3dt4d

∗
σ1

(t3) cσ1 (t3) c∗σ1 (t4) dσ1 (t4)

]
(3.51)

=
ZbathZD

Z

〈
TC d̂σ (t1) d̂†σ (t2)

〉
D

− i

Z

∑
σ1

∫
C
dt3dt4Zbath∆σ1 (t3, t4)

∫
Dd∗Dd eiSDdσ (t1) d∗σ (t2) d∗σ1 (t3) dσ1 (t4)

(3.52)

=
ZD

Z̃D

〈
TC d̂σ (t1) d̂†σ (t2)

〉
D

− i

Z̃D

∑
σ1

∫
C
dt3dt4∆σ1 (t3, t4) Tr

{
TCe−βĤD d̂σ (t1) d̂†σ (t2) d̂†σ1 (t3) d̂σ1 (t4)

}
(3.53)
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where the notations all follows from the previously defined ones. Therefore, the

general MC weight reads (with no loss of generality, we assume t1 > t2 here)

Z̃D
ZD

〈
TC d̂σ (t1) d̂†σ (t2)

〉
=

∞∑
n=0

∑
oi=d,d†

∫ −iβ
0

dt3

∫ t3

t5

dt4 · · ·
∫ tk−1

t1

dtk

∫ t1

tk+2

dtk+1 · · ·
∫ tl−1

t2

dtl

∫ t2

tl+2

dtl+1 · · ·
∫ t2n+1

0

dt2n+2

× Trsw (o3, . . . , o2n+2, t1, t2, . . . , t2n+2,P , s) (3.54)

where

w (o3, . . . , o2n+2, t1, t2, . . . , t2n+2,P , s)

= i2n(−1)P
〈
s
∣∣∣e−βĤD ô (t3) · · · ô (tk) d̂σ (t1) ôk+1 (tk+1) · · · ôl (tl) d̂†σ (t2) ôl+1 (tl+1) · · · ô2n+2 (t2n+2)

∣∣∣ s〉
· in det ∆ (t3,...,t2n+2) (3.55)

in which −iβ ≥ t2 > . . . > tk > t1 > tk+1 > . . . > tl > t2 > tl+1 > . . . > t2n+2 ≥
0+ follows the time-ordering on the Keldysh contour, and all the rest are the

same as in Sec. 3.1.

We can again write the expectation in w(o3, . . . , o2n+2, t1 . . . t2n+2,P , s) in terms

of the atomic propagators defined in Eq. (2.62) as

〈
s
∣∣∣e−βĤD ô (t3) · · · ô (tk) d̂σ (t1) ôk+1 (tk+1) · · · ôl (tl) d̂†σ (t2) ôl+1 (tl+1) · · · ô2n+2 (t2n+2)

∣∣∣ s〉
= (−1)l

〈
s
∣∣∣ξ̂ôl+1 (tl+1) · · · ô2n+2 (t2n+2) ξ̂e−βĤD ô (t3) · · · ô (tk) d̂σ (t1) ôk+1 (tk+1) · · · ôl (tl) d̂†σ (t2)

∣∣∣ s〉
= (−1)l i2n+2

〈
s
∣∣∣ξ̂p̂ (t2, tl+1) · · · p̂ (tk, t1) d̂σp̂ (t1, tk+1) · · · p̂ (tl, t2) d̂†σ

∣∣∣ s〉 (3.56)

Therefore, splitting w into several parts gives

w(o3, . . . , o2n+2, t1, t2, . . . , t2n+2,P , s) = in+2wlocwhyb (3.57)

wloc = (−1)P (−1)l
〈
s
∣∣∣ξ̂p̂ (t2, tl+1) · · · p̂ (tk, t1) d̂σp̂ (t1, tk+1) · · · p̂ (tl, t2) d̂†σ

∣∣∣ s〉
(3.58)

whyb = det ∆ (t3,...,t2n+2) (3.59)
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We can see that the expression for Green’s function is in complete analogy to the

partition function configurations: we can identify Green’s function configurations

as segment configurations with two additional d̂σ and d̂†σ operators. We have two

options to proceed:

1. Trying to insert the operators d̂σ (t1), d̂†σ (t2) into a configuration of the

partition function, and then compute the ratio of the local weights;

2. Identifying two operators in a partition function segment configuration,

and removing the hybridization lines between them.

With 2, we identify that a configuration for the partition function at order n is

thereby turned to a configuration of the Green’s function at order n − 1. If the

overall weight associated with a partition function configuration is

wZ (o1 . . . o2n+2, t1 . . . t2n+2,P , s)

= in+1 (−1)P (−1)l
〈
s
∣∣∣ξ̂p̂ (t2, tl+1) · · · p̂ (tk, t1) d̂σp̂ (t1, tk+1) · · · p̂ (tl, t2) d̂†σ

∣∣∣ s〉 · det ∆ (t1,...,t2n+2)

(3.60)

and the weight associated with a Green’s function configuration is

wG ({o3 . . . o2n+2, t3 . . . t2n+2} , (t1, t2) ,P , s)

= in+2 (−1)P (−1)l
〈
s
∣∣∣ξ̂p̂ (t2, tl+1) · · · p̂ (tk, t1) d̂σp̂ (t1, tk+1) · · · p̂ (tl, t2) d̂†σ

∣∣∣ s〉 · det ∆ (t3,...,t2n+2)

(3.61)

Therefore, we employ the “reweighted” expectation value formula

iG(t1, t2) =
〈
TC d̂ (t1) d̂† (t2)

〉
=

1

Z̃D

∫
C

dx
wG (x)

wZ (x)
wZ (x) (3.62)

and accumulate
wG
wZ

= i · det ∆ (t3,...,t2n+2)

det ∆ (t1,...,t2n+2)
(3.63)
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in the MC simulations. Thus, the Green’s function is given by

G(t1, t2) =

〈
det ∆ (t3,...,t2n+2)

det ∆ (t1,...,t2n+2)

〉
wZ

(3.64)

3.3.4 Spectral functions

One way to extract the spectral function A(ω) in equilibrium is by a direct

Fourier transform of the real-time Green’s function, which is not available in the

equilibrium QMC. We have

G≷(t1, t2) =

∫ +∞

−∞

dω

2π
e−iω(t1−t2)G≷(ω) (3.65)

G≷(ω) =

∫ +∞

−∞
dt eiω(t1−t2)G≷(t1, t2) (3.66)

and

G≷(t1, t2) = G(t1, t2) when t1 ≷ t2 and t1, t2 ∈ C+. (3.67)

G(t1, t2) is the contour-ordered Green’s function and is directly accessible from

the measurements. Then the spectral function is given by

A(ω) =
1

2π
= [G<(ω)−G>(ω)] (3.68)

There is an alternate way to produce the spectral functions firstly introduced in

[72, 73] and it is briefly discussed in Appendix. 5.3.3.

3.4 The sign problem

Until now we have tacitly assumed that the expansion coefficients of our expecta-

tion value are always positive or zero. This has allowed us to interpret the weights

as probability densities on the configuration space and the stochastic sampling of
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these configurations in a Monte Carlo simulation. If the weights w(x) becomes

negative or even complex, as is often the case in fermionic simulations due to the

anticommutation relations between fermionic operators, they can no longer be

regarded as probabilities. The common solution is to sample with respect to the

absolute value of the weight |w(x)| and reweight the measurements as follows

〈O〉w =
1

Z̃D

∫
C

dxO(x)w(x) (3.69)

=

∫
C
dx O(x) w(x)

|w(x)| |w(x)|∫
C
dx w(x)

|w(x)| |w(x)|
(3.70)

=
〈O · (w/|w|)〉|w|
〈w/|w|〉|w|

(3.71)

We denote sign(w) ≡ w(x)/|w(x)| then have

〈O〉w =
〈O · sign〉|w|
〈sign〉|w|

, (3.72)

so the average can be evaluated by sampling the numerator and denominator

separately with respect to the positive weight |w(x)|.

However, while sampling with the absolute value and reweighting allows Monte

Carlo simulations of systems with complex weights, it does not solve the so-called

“sign problem”: sampling of Eq. (3.72) suffers from exponentially growing errors.

We consider the average sign

〈sign〉|w| =
∫
C
dx sign(x)|w(x)|∫
C
dx |w(x)| =

Z̃D,w

Z̃D,|w|
∼ e−β∆F . (3.73)

We see it is the ratio of the partition function Z̃D,w and the partition function of

a “bosonic” system Z̃D,|w| with positive weights |w(x)|. We express it in terms of

the difference in free energies ∆F of these two systems and see that the quantity

decreases exponentially as the temperature is lowered or the volume of the system

is increased. Then the relative error after M measurements of MC procedures is
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given by

err(sign) =

√
Var sign/M

〈sign〉|w|
(3.74)

=

√(〈
sign2

〉
|w| − 〈sign〉2|w|

)
/M

〈sign〉|w|
(3.75)

∼
√

(1− e−2β∆F ) /M · eβ∆F (3.76)

∼ 1

M
eβ∆F (3.77)

which grows exponentially with decreasing temperature and increasing system

size. Fortunately, the equilibrium continuous-time QMC algorithms dot not have

a sign problem at any filling in the case of the single-orbital impurity model

[68, 74]. However, they generally suffer from a negative sign problem when

applied to a multiorbital or cluster impurity model with an internal structure in

which electrons can be exchanged [75], and the sign problem becomes worse as

the system becomes larger.

But more to our concern, the non-equilibrium extension of the CT-HYB has a

dynamical sign problem [55]: the factors of ±i associated with each order of

the expansion of the time evolution operator e±iHt cause the average sign of the

diagrams contributing to any quantity decays exponentially as the perturbation

order is increased. Configurations with “+” signs canceling with configurations

with “−” signs makes the MC sampling exponentially inefficient. To keep the

error on 〈O〉w constant, we need to increase the number of Monte Carlo steps (at

least) as 1/ 〈sign〉2|w|, which becomes impractical. In the nonequilibrium simula-

tion on a full Keldysh contour, the average perturbation order increases linearly

with the time interval to be simulated as shown in Fig. 3.3 and it is not surprising

that the signs drop down exponentially, as shown in Fig. 3.4, as an important

limiting factor in the simulations.

In the next chapter, we adapt a new idea of “Inchworm Algorithm”, based on
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Figure 3.3: The growth of average perturbation orders as a function of time
t along the real branch.

iteratively reusing the information obtained in previous steps to extend the prop-

agation to longer times. The algorithm largely reduces the required order at each

simulation and re-scales the exponential challenge to quadratic.

3.5 Application: Voltage quench dynamics of a

Kondo system

The Kondo effect is a many-body phenomenon in which localized and itiner-

ant electrons form a strongly correlated state [76]. It is an unusual scattering

mechanism of conduction electrons in a metal due to magnetic impurities, which

contributes a term to the electrical resistivity that increases logarithmically with

temperature as the temperature T is lowered (as log(T )). It shows signatures in

thermodynamic, spectral, and linear response transport properties [77, 78] and
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has since been observed in a wide variety of correlated electron systems ranging

from impurities adsorbed on surfaces [79, 80] to molecular transistors [81], heavy

fermion materials [82], and mesoscopic quantum wires [83]. Kondo behavior is

also observed in semiconducting quantum dot heterostructures, where a confined

interacting region is coupled to non-interacting leads [44, 84, 85]. Gating of these

systems allows to study Kondo physics over a wide parameter range [44].

Kondo correlations only emerge at low temperature. Their onset is character-

ized by the Kondo temperature TK that can be defined as the temperature at

which the zero-bias conductance reaches half of its low-temperature value [77].

In thermal equilibrium, the Kondo problem is well understood and quantitatively

described by a range of analytical and numerical methods [64, 86–89].

When a Kondo system is driven out of equilibrium, additional phenomena ap-

pear. For instance, the application of a (time-independent) bias voltage splits
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the Kondo peak [70, 85] and shows signatures in the double occupancy and mag-

netization [90]. At large voltages the voltage dependence of the conductance

decreases on an energy scale comparable to TK [91–93] and its temperature de-

pendence saturates at temperatures above TK [94, 95].

How observables evolve in time after a rapid change of parameters [96, 97] and

how they decay to their steady state limit is an open question. Recent experi-

mental progress in the measurement of time-dependent quantities on ever faster

time scales has enabled experimental studies of such transient dynamics [98, 99],

making a theoretical description of quenches from correlated initial states impor-

tant.

In this section we apply the nonequilibrium impurity solver to examine the dy-

namics of a correlated quantum dot in the mixed valence regime. We present

numerically exact results for the real time evolution of the single impurity An-

derson model following a symmetric voltage quench V (t) = V θ(t) in Eq. (1.2c)

from a correlated equilibrium ensemble to a non-equilibrium steady state. The

system is in equilibrium for t < 0, and for t > 0 the lead levels εk are instanta-

neously moved to εk± V
2

, with the sign depending on the lead index α. We show

results for transient and steady state currents and populations at temperatures

ranging from T � TK to T � TK , which have not previously been accessible in

numerical calculations.

Fig. 3.5 shows the behavior of the current IT (t) after a voltage quench. In panel

(a) we show IT (t) as a function of time t following a voltage quench from V = 0

to V = 2 for a set of temperatures 0.07 ≤ T ≤ 1 (between 0.7 and 11 K). Results

from semi-analytical approximations are shown as fine dotted lines (NCA) and

dash-dotted lines (OCA) for comparison. We observe that for all temperatures

the current equilibrates at time t ≈ 0.6 (≈ 2.5 ps) well within reachable times

of ∼ 1 (4 ps). As temperature is lowered from T = 1 (11 K) to T ∼ 0.2 (2 K)

the current at fixed times and in steady state increases. Further reducing T by

a factor of five yields no additional increase of current, illustrated by panel (b).
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Figure 3.5: Current IT (t) as a function of time t after a voltage quench, for
temperatures T indicated. Parameters U = 3, εd = 0, Γ = 0.3, D = 5 and
V = 2. (a) Monte Carlo (solid symbols, full lines), NCA (dotted lines) and
OCA (dash dotted lines) results. (b) The temperature dependence of IT (t) at
times t = 0.2− 0.9. (c) Behavior of the NCA and OCA currents up to t = 5.

We attribute the fast equilibration time to the high Kondo temperature of this

mixed valence system [64].

Results from NCA and OCA correctly capture the short-time behavior and the

overall shape of the current but underestimate both the transient and the steady

state value by ≈ 20%. This is known for systems with U < D [60], although the

quality of these methods will presumably improve in the strong interaction limit

and by including vertex corrections in OCA [100]. Both results are shown in panel

(c) for times much longer than presently accessible by QMC. No additional time-

dependence is visible, illustrating that our calculations are able to reach steady

state.

The temperature dependence of the transient voltage quench dynamics is ana-

lyzed in Fig. 3.6 for V = 2 and (a) Γ1 = 0.3, U1 = 3; (b) Γ2 = 0.2, U2 = 5. Shown

is the temperature dependence of the time-dependent current IT (t)/IT=0(t) and

static magnetic susceptibility χT/χT=0 normalized to the respective zero-temperature
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Figure 3.6: Normalized transient current IT (t)/IT=0(t) and static magnetic
susceptibility χT /χT=0 as a function of temperature T for a set of times at
V = 2, εd = 0, D = 5 and (a) Γ = 0.3, U = 3; (b) Γ = 0.2, U = 5. Dashed
line: value of 1/2. Vertical arrows: crossing points TK (susceptiblity) and Tt
(current). (c) IT (t)/IT=0(t) and χT /χT=0 (all points from panels (a) and (b))
rescaled as a function of T/Tt and T/TK correspondingly.

values, extracted from the converged low-T data 1. χT is defined as a re-

sponse to the infinitesimal local magnetic field h, χT =
d〈n↑−n↓〉

dh

∣∣∣
h→0

and is

time-independent for V = 2. Both quantities saturate at T . 0.2, which we

identify with Kondo behavior. The temperatures, at which current and mag-

netic susceptibility reach half of its zero-T value are the estimates for the Kondo

temperature Tt and TK respectively [77, 87]. We attribute the difference between

Tt and TK to the applied voltage V = 2. Being rescaled as the function of T/Tt

and T/TK all plots collapse on the single curve, as depicted in panel (c). This

shows that Kondo behavior can be detected based purely on short-time transient

dynamics with these parameters.

We proceed with studying the impact of the magnitude of the applied bias volt-

age. Fig. 3.7 shows the time dependence of the quantum dot occupancy (a) and

current (b) at a range of voltages between 0.8 and 10. At voltages V ≤ 2 (close

to linear response) the occupancy retains its equilibrium value and the current

1The value used is averaged over the T -independent plateau at low temperatures, consisting
of points within 2% of the mean value.
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Figure 3.7: (a) Dot occupancy and (b) current at U = 3, εd = 0,Γ = 0.3,
D = 5 and temperature T = 0.1 for voltages V = 0.8, 2, 4, 6 (equal to 2U), 8,
and 10 (equal to 2D).

shows a monotonic rise and saturation to the steady state value, which increases

with the applied voltage. Larger voltages V > 2 demonstrate linear response

behavior only at small times t < 0.3. At larger times the nonlinear behavior is

visible: the current decreases to the steady state value, which becomes smaller

with applied V , illustrating the breakdown of conductance at large voltages.

The temperature dependence of the current outside of the linear response regime

is analyzed in Fig. 3.8. Panel (a) shows IT (t)/IT=0(t) at V = 6 as a function of

temperature T . Different traces show different transient times, between 0.2 (1

ps) and 1 (4 ps). Similarly to the V = 2 case (Fig. ??), the current exhibits the

low temperature saturation at all times. The Kondo effect is therefore visible in

transient dynamics for all voltages. Outside linear response, the temperature Tt

at which the current saturates is strongly time-dependent. At short times (panel

(b)) Tt has the same value for all voltages. As time increases Tt increases by

≈ 60% and reaches its steady state value of Tt ' 2.9 for V = 6 (c). Further

increase of the voltage results in a non-monotonic temperature dependence of

the current [95].
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Figure 3.8: (a) Normalized current IT (t)/IT=0(t) as a function of T at t =
0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 1.0 and U = 3, εd = 0,Γ = 0.3, D = 5 and V = 6.
Dashed line: value of 1/2. (b) Normalized current IT (t)/IT=0(t) as a function
of T at t = 0.2 and (c) t = 0.8 for different V .
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Figure 3.9: (a) Current saturation temperature Tt (T at half of zero-
temperature current value) as a function of t at different V at U = 3, εd =
0,Γ = 0.3, D = 5. Solid lines: estimates of the steady-state Tt. (b) Tt as a
function of V at a set of t. Dashed line: linear fit at V > 2.
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In Fig. 3.9 we show the time (a) and voltage (b) evolution of Tt. For small

voltages, there is no time-dependence of Tt. In contrast, as V is increased up to

2U , Tt rapidly rises and equilibrates. Estimates of the steady-state Tt as defined

by the value at which the current reaches half of its low-T value for V = 2, 4, 6 are

given by the horizontal lines. Fig. 3.9b shows a separation of short- and long-time

behavior: no change in Tt is observed for short times t ≤ 0.4 (1.5 ps), whereas Tt

in the steady state is found to be increasing with V for V > 2 in agreement with

experiments [94] and predictions from the real time renormalization group [95].

To conclude, we have described the transient dynamics of a quantum dot in the

mixed valence regime following the instantaneous application of a bias voltage

in a range of temperatures below and above the Kondo temperature TK . We

have observed the full dynamics of the system from equilibrium to steady state.

At all times and all voltages below the lead bandwidth, the current saturates at

low temperature, exhibiting Kondo behavior. The current saturation tempera-

ture Tt describes the interplay of non-equilibrium (applied voltage) and strong

Kondo correlations in the system. Outside of the linear response regime Tt has

a strong time dependence and connects the equilibrium Kondo temperature to

the increased steady state value [94, 95].

The results presented here are exact within the error-bars and the current and

time-dependent Tt are directly accessible in time-resolved experiments. The dy-

namics of the mixed valence system is fast - the equilibration occurs on a picosec-

ond scale. We believe that the same physics can be observed at much larger time

scales by lowering the level spacing εd and, consequently, entering the Kondo

regime, thereby decreasing TK and exponentially increasing the relaxation time

τ ∝ exp(−TK) [64].
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Chapter 4

The Inchworm Algorithm as an

Impurity Solver

The Anderson impurity model [16] with time-dependent parameters or multi-

ple baths at different thermodynamic parameters [101] is one of the simplest

fermionic non-equilibrium quantum problems. The model contains localized im-

purity states coupled to a non-interacting bath and appears in a wide range

of contexts, including impurities embedded into a host material [16], confined

nanostructures [17] and molecules adsorbed on surfaces [18, 19].

Impurity models also appear as auxiliary models in non-equilibrium dynamical

mean field theory [8, 34, 35]. A solution of the dynamical mean field equations

requires the calculation of two-time quantities such as Green’s functions, for tem-

peratures low enough that the impurity model exhibits Kondo behavior and—in

quench setups—for times long enough that a new equilibrium or steady state

behavior can be observed [101]. Additionally, real-time solvers are of a great

interest in the equilibrium study as well. It is in particular useful for obtaining

spectral functions from the real time data, eliminating the need for the numer-

ically ill-conditioned analytical continuation procedure of imaginary time data.

In Sec. 3.4, we have seen that the severe dynamical sign problem is the main

limiting factor of preventing the simulation from accessing accurate information
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at longer times. Hence, methods that are numerically exact and offer a stringent

assessment of uncertainties are greatly desired.

In this chapter, we present a numerical method that fulfills all of these criteria.

It can treat general time-dependent setups of Anderson impurity models with

any number of baths. It captures initial correlations of equilibrated states, and

it is controlled in the sense that there is a small parameter that can be tuned in

practice in order to approach the exact solution.

Our method is a generalization of the inchworm [102] quantum Monte Carlo

(QMC) method, which was originally formulated on the forward-backward Keldysh

contour, to the full Keldysh contour with an additional temperature or imaginary-

time branch. This enables the treatment of interacting equilibrium initial states.

The Inchworm Monte Carlo algorithm is based on a reformulation of the nonequi-

librium hybridization expansion [55, 65, 66, 103] discussed in the previous chapter

in terms of bare and interacting atomic state propagators, which are iteratively

generated. Its main advantage as compared to other Monte Carlo methods is

that the dynamical sign problem [103], which causes an exponential amplifica-

tion of uncertainties as a function of real time, is mitigated or overcome [102],

providing access to substantially longer times.

In the following, we first introduce the inchworm idea and formalism in Sec. 4.1.

It provides a way of measuring propagators and Green’s functions at an iterative

manner, from shorter times to longer times. In Sec. 4.2, we modify our sampling

using the Wang-Landau algorithm [104, 105] in order to get enough normalization

overlaps. We compare our results with bare QMC calculations and show spectral

functions in various parameter regimes in Sec. 4.3 [106].
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4.1 Inchworm Expansion on the Keldysh con-

tour

4.1.1 Propagators

As illustrated in Sec. 3.3.1, the hybridization expansion can be formulated in

terms of dressed atomic state propagators P̂s, where P̂s(t1, t2) is defined in

Eq. (4.7) and contains all possible combinations of hybridization events between

the two times t1 and t2 that leave the system in atomic state |s〉 at times t1 and

t2. Propagators are “contour-causal” by construction, i.e. all contributions to a

propagator P̂s(t1, t2) are given in terms of propagators and hybridization events

with time indices between t1 and t2. And the time-dependent expectation values

of operators are expressed as in Eq. (3.37):

〈Ô(t)〉 =
1

Z
Tr
{
e−βĤeiĤtÔe−iĤt

}
=

i

Z̃D
TrD

{
ξ̂P̂ (t+, t−)Ô

}
(4.1)

The expression e−iĤt is a symbolic form that can represent either time-independent

or time-dependent evolutions, t+ denotes the time t on forward branch C+ and

t− denotes t on backward branch C−. Using the cyclic property of the trace, we

choose a time-ordering on the contour such that the “minus” branch describing

the evolution eiHtmax from tmax to 0 occurs before the equilibrium Matsubara

branch from 0 to −iβ, which occurs before the “plus” branch e−iHtmax from 0

to tmax, rather than the usual ordering e−βĤeiĤtÔe−iĤt, allowing us to insert

single-time operators at the beginning or end (rather than in the middle) of the

contour:

〈Ô(t)〉 =
1

Z
Tr
{
e−iĤte−βĤeiĤtÔ

}
=

i

Z̃D
TrD

{
ξ̂P̂ (t+, t−)Ô

}
(4.2)
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Figure 4.1: Illustration of hybridization expansion diagrams on the Keldysh
contour with equilibrium branch. Top panel: Full propagator on the “+”
branch from t2 to t1 (left diagram) is given by the the bare propagator (middle
diagram) plus all possible combinations of hybridization events between t2 and
t1, one of which is drawn as the right diagram. Bottom panel: Full propagator
spanning the “−”, equilibrium, and “+” contour containing diagrams that
span the contour.

This results in exactly the twisted contour ordering as illustrated in Fig. 2.3 and

defines the ordering of dressed propagators that need to be evaluated:

P̂s(t1, t2) for all t1 � t2 (4.3)

Propagators on the Keldysh contour are illustrated graphically in Fig. 4.1: The

top panel shows a propagator P̂s on the upper “+” branch, with t1 � t2, which

is given by the “bare” atomic state propagation defined in Eq. (2.62) in the

absence of hybridization events (middle diagram) and all possible connected and

disconnected combinations of hybridization lines, one of which is shown as the

diagram on the right. The bottom panel shows a propagator starting on the

lower “‘−” branch, propagating along the equilibrium branch, and continuing on

the upper “+” branch. It contains hybridization lines connecting the real time

“+” and “−” branches to the equilibrium branch, thereby introducing thermal

entanglement into the system.

The contour-causality of the propagators can be used to construct propagators
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Figure 4.2: Illustration of the diagrams generating a propagator in the inch-
worm formalism. The propagator from t2 to t1 (left diagram) is, at the lowest
inchworm order, given by the propagator from t2 to tsplit joined with a bare
propagator from tsplit to t1 1©. In higher order diagrams, hybridization lines
are either contained in the region between tsplit and t1 as in 2©; or, connected
by crossing to an endpoint in that region, as in 3©. Diagrams with inclu-
sions not obeying this rule, such as 4©, are already included in the inchworm
propagator and should not be summed over.

over longer time intervals from previously computed propagators over shorter in-

tervals. The concept is illustrated in Fig. 4.2, which shows how a propagator from

t2 to t1 can be expressed as a propagator from time t2 to tsplit multiplied by the

bare propagation from time tsplit to t1 (diagram 1©), supplemented by diagrams

which have hybridization events between time tsplit and t1. Of those, diagram 2©
only has hybridization events between tsplit and t1; diagram 3© has hybridization

events starting between tsplit and t1 and reaching backward in time to a position

between t2 and tsplit, along with additional hybridization lines that cross those

lines. In contrast, diagram 4© contains a separate cluster of hybridization lines

(red online) which are already contained in a propagator, and is therefore not

part of the series of diagrams to be summed in order to construct the propagator

over the full interval.

Therefore, the inchworm expansion reuses propagators obtained at shorter time

intervals and the dressed propagator P̂ (t1, t2) is given by a sampling of MC
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weights Eq. (3.34) with

wloc =(−1)P(−1)k〈s|ξ̂p̂(t1, t′k+1) . . . p̂(t′l, tsplit)P̂ (tsplit, t
′
l+1) . . . P̂ (t′k−1, t

′
k)P̂ (t′k, t2)|s〉

(4.4)

whyb =
∑

connected

(−1)sign(Dm)Dm(t′1 . . . t
′
2n) (4.5)

where t′1, . . . , t
′
2n with t′1 � . . . � t′2n are the time points of the newly inserted

hybridization lines in the inchworm MC simulation. Times t′k+1, . . . , t
′
l are in

[tsplit, t1] so bare atomic propagators p̂ are used. The whyb in bare QMC in

Eq. (3.6) used to be

det ∆(t′1 . . . t
′
2n) =

∑
all

(−1)sign(Dm)Dm(t′1 . . . t
′
2n) (4.6)

but now it evaluates only the subset of “connected” diagrams as illustrated in

Fig. 4.2 and Dm denotes a possible permutation/diagram in the determinant.

Computing corrections to known propagators rather than computing the entire

propagator at once is efficient if the propagator consists of many short-time

clusters of hybridization lines, so that most of the interaction contribution can

be absorbed in previously computed propagators. In the case of the forward-

backward Keldysh contour, it was shown that at least for some parameters this

procedure changed the scaling from exponential to polynomial, overcoming the

dynamical sign problem [102].

As evident in Fig. 4.2 and Eq. (4.4), computing the propagator from time t2 to

time t1 requires knowledge of all propagators from t′′ to t′, with t2 ≺ t′′ ≺ t′ ≺
tsplit. Fig. 4.3 shows the set of known propagators (blue) needed to compute a new

propagator (red), in this case with start time on the “−” contour and end time

on the “+” contour. This step, which we call “inching”, could be repeated any

number of times to generate longer propagators from sets of shorter ones. This

suggests an iterative algorithm, graphically illustrated in Fig. 4.4: the inchworm

quantum Monte Carlo method [102].
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Figure 4.3: Illustration of the causal structure of the inchworm propagators.
A propagator P̂s(t1, t2) (red) depends on all propagators with start point on
or after t2 and end point up to tsplit (blue).

The algorithm begins with the discretization of the backward, equilibrium, and

forward branches of the Keldysh contour into N equidistant time slices with dis-

tance ∆t, enumerated by k = 1, . . . , N . Same-time propagators between identical

contour times (which lie on the main diagonals of the matrices in Fig. 4.3) are

trivial, and can be evaluated analytically. In Fig. 4.4 and Fig. 4.5, these prop-

agators are shown in green. Next, propagators for short time differences n∆t

(with n a small integer chosen to be large enough that smoothly interpolated

functions can be obtained) can be computed straightforwardly using the bare

QMC method, which is efficient for short times. There are Nn such propagators,

with time arguments between times k∆t and (k + n)∆t. In Fig. 4.5, the mini-

mal number n = 1 is taken and the result is shown as cells with circles. In the

next step and each following step, propagators from any time k∆t to any time
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Figure 4.4: Illustration of the inchworm algorithm showing the values known
at some step (blue) and values that can be computed using known values in
blue (red). Green cells are trivial and can be evaluated analytically and cells
with circles are computed with the bare algorithm. Evaluation of the full
propagator proceeds diagonally towards the upper right corner from the initial
values as dictated by the causal structure of the propagators.

(k + n + 1)∆t need to be computed. We obtain them by stochastically gener-

ating all diagrams illustrated in Fig. 4.2, where t2 is k∆t, t1 is (k + n + 1)∆t,

and tsplit is set to (k + n)∆t. We then increase n by 1 and iterate the last step

of the procedure, simulating propagators from k∆t to (k + n + 1)∆t based on

any propagator with times between k∆t and k+ a∆t at each iteration, until the

propagator from time 0 to time N∆t is generated (top right corner of Fig. 4.4).

Fig. 4.5 shows the inchworm procedure step by step, with the elements par-

ticipating in each particular step highlighted in red. This illustrates the trivial
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1 2

3 4

Figure 4.5: A step-by-step illustration of the algorithm. Cells with circles are
evaluated with the bare algorithm and solid cells with inchworm. Red cells
represent propagators computed at a given step, while blue cells represent
already computed propagators. Green cells in all panels are trivial and can be
evaluated analytically.

elements (in green), the initial bare step (circles), and two inchworm steps (solid)

that gradually extend the known propagators along the Keldysh contour.

The complete procedure requires performing O(N2) interdependent Monte Carlo

simulations of diagrams, each of which is represented by a cell in the matrices

in Fig. 4.4. However, at any given step all the computations corresponding to

cells which can currently be evaluated—e.g., the cells colored in red at every step

of Fig. 4.5)—can be evaluated simultaneously and independently. Furthermore,

since the computation of each individual cell is a regular QMC simulation, the

work it entails can also be trivially split between any number of compute nodes.
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Figure 4.6: Illustration of the diagrams generating a Green’s function. The
Green’s function G(t, t′) is given at lowest order by the middle diagram, where
the dashed line is a virtual hybridization line from the Green’s function cre-
ation/annihilation operators. Higher order diagrams contain at least one hy-
bridization line that crosses the virtual line. A sample term is shown in the
right diagram.

The inchworm algorithm therefore lends itself to extremely efficient paralleliza-

tion strategies. However, since after every step at least some data synchroniza-

tion between cells is required, it is not “embarrassingly parallel” in the sense of

standard Monte Carlo methods.

4.1.2 Green’s functions

Currents and Green’s functions are two-time observables that cannot be obtained

from knowledge of just the local (population) propagators. However, as we have

seen in Sec. 3.3.3, the expansion for Green’s functions is given by all possible con-

tractions of hybridization lines in the presence of two additional local operators.

Therefore, we define the Green’s function propagators to be

P̂G>σ (t1, t2)s1s2 =− i
〈
s1

∣∣∣e−iĤt2e−βĤeiĤt1 d̂σe−iĤ(t1−t2)d̂†σ

∣∣∣ s2

〉
(4.7)

P̂G<σ (t1, t2)s1s2 =− i
〈
s1

∣∣∣e−iĤt2e−βĤeiĤt1 d̂†σe−iĤ(t1−t2)d̂σ

∣∣∣ s2

〉
(4.8)

with t1 > t2. Similar to the population propagators described in Sec. 4.1.1, we

can sample the Green’s function using expressions in Eq. (3.57) and the Monte
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Carlo weights of these two Green’s function propagators are then given by

P̂G>σ ,s(t, t
′) =

∞∑
n=0

∑
oi=d,d†

∫ −iβ
0

dt1 · · ·
∫ tk−1

t

dtk · · ·
∫ tl−1

t′
dtl · · ·

∫ t2n−1

0

dt2n

· PG>σ ({o1 . . . o2n, t1 . . . t2n}, (t, t′),P , s) (4.9)

with

PG>σ ({o1 . . . o2n, t1 . . . t2n}, (t, t′),P , s) = in+1wloc,G>σwhyb,G>σ (4.10)

wloc,G>σ = (−1)P (−1)l
〈
s
∣∣∣ξ̂P̂ (t′, tl+1) · · · P̂ (tk, t) d̂σP̂ (t, tk+1) · · · P̂ (tl, t

′) d̂†σ

∣∣∣ s〉
(4.11)

whyb,G>σ =
∑

all-crossing

(−1)sign(Dm)Dm(t1 . . . t2n) (4.12)

and

P̂G<σ ,s(t, t
′) =

∞∑
n=0

∑
oi=d,d†

∫ −iβ
0

dt1 · · ·
∫ tk−1

t

dtk · · ·
∫ tl−1

t′
dtl · · ·

∫ t2n−1

0

dt2n

· PG<σ ({o1 . . . o2n, t1 . . . t2n}, (t, t′),P , s) (4.13)

with

PG<σ ({o1 . . . o2n, t1 . . . t2n}, (t, t′),P , s) = in+1wloc,G<σwhyb,G>σ (4.14)

wloc,G<σ = (−1)P (−1)l
〈
s
∣∣∣ξ̂P̂ (t′, tl+1) · · · P̂ (tk, t) d̂

†
σP̂ (t, tk+1) · · · P̂ (tl, t

′) d̂σ

∣∣∣ s〉
(4.15)

whyb,G<σ =
∑

all-crossing

(−1)sign(Dm)Dm(t1 . . . t2n) (4.16)

where whyb terms sample “all-crossing” diagrams in which every hybridization

line has to either cross with the Green’s function d̂σ–d̂†σ line attached in the

configuration, or cross with such hybridization lines that cross with the Green’s

function line. A Green’s function propagator diagram is illustrated in Fig. 4.6. In

terms of the interacting propagators obtained in Fig. 4.1, the Green’s function is

given, to lowest order, by a product of propagators (middle diagram of Fig. 4.6).
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Higher order corrections consist of hybridization lines crossing the two Green’s

function operators, and all possible additional crossing lines. The right panel

of Fig. 4.6 shows an example of one such diagram. After obtaining the Green’s

function propagators, the interacting contour-ordered Green’s function Gσ(t, t′)

is constructed using the following formula

Gσ(t, t′) =



1
Z̃D

TrD

{
ξ̂P̂G<σ (t, t′)

}
|t| > |t′| & t ≷ t′ & t �≺ t

′

1
Z̃D

TrD

{
ξ̂P̂G>σ (t, t′)

}
|t| < |t′| & t ≷ t′ & t �≺ t

′

− 1
Z̃D

TrD

{
ξ̂P̂G<σ (t, t′)

}
|t| > |t′| & t ≶ t′ & t �≺ t

′

− 1
Z̃D

TrD

{
ξ̂P̂G>σ (t, t′)

}
|t| < |t′| & t ≶ t′ & t �≺ t

′

(4.17)

where |t| ≷ |t′| denotes the real-time magnitude comparison and the last two

comparisons in each case mean that either the upper or the lower signs are

fulfilled at the same time, for example, t > t′ & t � t′ or t < t′ & t ≺ t′ for the

first case.

In contrast to the case of single-time propagators, where we iteratively construct

diagrams at longer times using diagrams at shorter times, here we generate all

Green’s function diagrams at once, simulating them in parallel. And currents

can be obtained through the Green’s functions by Eq. (3.48).

4.1.3 Connections to self-consistent approximate meth-

ods

Each individual inchworm step is exact for any ∆t, provided that all intermedi-

ate propagators are exactly known. In practice the propagators, generated by

previous inchworm steps or a bare calculation, are interpolated on a grid with

discretization ∆t. This discretization introduces errors for large ∆t, especially

where propagators change on a time scale comparable to ∆t, and needs to be

controlled by extrapolating to ∆t→ 0.
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Figure 4.7: Top panel: Time evolution of the impurity occupation N af-
ter a voltage quench using the non-crossing and one-crossing approximations
(NCA and OCA, respectively). Black lines: semi-analytically computed NCA
and OCA solutions. Blue line: NCA solution generated from an inchworm
expansion truncated to order one. Red line: OCA solution from an inchworm
expansion truncated to order 2. Bottom panel: Statistical error estimate of
the quantities shown in the upper panel.

In the limit ∆t → 0, at most one hybridization event will occur between tsplit

and t1. In this limit, the method simplifies to the semi-analytic “N -crossing”

approximations when inchworm diagrams are restricted to low orders [102]. At

truncation to order n = 1, NCA results in Sec. 2.3.1 are obtained. Truncation

to order n = 2 yields the OCA in Sec. 2.3.2, the two-crossing approximation

(2CA) is generated for order n = 3, etc. Fig. 4.7 illustrates agreement within

error bars of numerical results for the propagators truncated to n = 1 and n = 2

to the NCA and OCA approximations. It is shown in Sec. 4.3 that the size of

the inchworm error does not strongly depend on time. This implies that for

“crossing” expansions on the order of the OCA and above, inchworm Monte

Carlo provides an efficient alternative to the direct integration of the equations
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of motion.

Continuous-time QMC requires the sampling of diagrams to all orders. In bare

expansions very high order diagrams are easily sampled, because (due to Wick’s

theorem) the sum over all diagrams for a particular configuration of order 2n,

of which there are n!, can be written as the determinant of a n × n matrix and

evaluated at polynomial scaling using linear algebra algorithms [64]. However, in

bold and inchworm Monte Carlo a factorial number of diagrams must be explicitly

summed over at each order, and the cost of enumerating these diagrams quickly

becomes prohibitive (evaluating the sum over permutations stochastically leads

to a sizable increase in the overall sign problem). We therefore truncate the

series at a predetermined maximum order and observe convergence as that order

is increased. This corresponds to observing convergence in the hierarchy NCA

→ OCA → 2CA · · · , each of which contains an infinite subseries of all the bare

diagrams, which extends to infinite order. In the simulations included for this

thesis, we typically truncate this hierarchy at order 5–7.

4.2 Normalization and Wang-Landau sampling

Additional technical complications arise when the inchworm algorithm is ex-

tended to the full Keldysh contour with the imaginary time branch. Monte Carlo

importance sampling does not generate absolute values of observables. Rather, it

generates probability ratios, or values up to an unknown normalization constant,

as described in Sec. 3.2.2. This normalization can be computed by comparing to

a known reference system, for example, a zero or first order diagram, as long as

the overlap of the series with that reference Iref(x) is large. With the normaliza-

tion technique in Eq. (3.32) and the “reweighted” measurements in Eq. (3.72),

the propagators are given by

P̂s(t1, t2)

P̂
(ref)
s (t1, t2)

=

〈
w
|w|

〉
|w|〈

Iref · w|w|
〉
|w|

(4.18)
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As shown in the equation, the resummed inchworm propagators P̂s(t1, t2) depend

on the sign of the configurations of the reference system in the denominator.

Therefore, the overlap between w(C) and w(Cref) is crucial to the precision of

the inchworm calculation.

In systems where the low-order diagrams are not important, the overlap with

the reference becomes small, causing a variance problem. This problem can be

solved by changing the sampling such that regions at low order are visited more

often using a generalized ensemble technique. We choose to modify our sampling

using the Wang–Landau algorithm [104, 105] to generate a flat histogram in

expansion orders. These algorithms, originally designed to overcome ergodicity

barriers at first order phase transitions, were previously extended to quantum

phase transitions [107] and applied to CT-QMC [108] to compute thermodynamic

potentials and overcome ergodicity problems [64, 109].

In order to generate this flat histogram and get the order distribution o(n) for

histogram reweighting, a Wang-Landau pre-run is required prior to the Monte-

Carlo simulation. The procedure is as follows:

1. Start with o(n) = 1, f = e, and a histogram of expansion orders H(n) = 0

initially.

2. Perform simulations until the histogram H(n) is “flat”:

(a) Attempt a Metropolis update using w′(x) = w(x)/o(n).

(b) Increase the histogram at the current order n: H(n)← H(n) + 1.

(c) Increase the estimate for o(n) at the current order n: o(n)← o(n) · f .

3. Once H(n) is flat, e.g. the mean is at least 95% of the maximum, reduce

f ← √f .

4. Set the histogram back to zero and repeat. Stop once f reaches a small

tolerance.
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Figure 4.8: Order distribution (red) and sampled “flat” histogram (blue) for
a Wang–Landau simulation of the inchworm propagators. The large overlap of
the reweighted distribution with order zero allows normalization to low order
diagrams.

Then it will be advantageous to sample configurations Cn with the new distribu-

tion w′(x) = w(x)/o(n). Then Eq. (4.18) becomes

P̂s(t1, t2)

P̂
(ref)
s (t1, t2)

=

〈
w
|w| · o(n)

〉
|w′|〈

Iref · w|w| · o(n)
〉
|w′|

(4.19)

Fig. 4.8 shows the expansion order histogram of an inchworm propagator sim-

ulation for a representative set of parameters Γ = 1, U = 4, εd = −2, D = 5,

T = 1 and V = 4 up to order 6. The red line shows the contribution of the

absolute value of the diagrams at each order to the inchworm propagator. It is

evident that diagrams at higher order acquire higher weight, and that diagrams

near order zero are strongly suppressed, making normalization to low order di-

agrams difficult. If, in contrast, the sampling weights are changed to produce a
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‘flat’ order distribution (see blue line in Fig. 4.8), each expansion order is visited

equally often, and normalization to low order diagrams is possible.

4.3 Results

In this section, we present the simulation results of the inchworm impurity solver

applied on the single impurity Anderson model Eq. (1.2a). We consider two

cases: the equilibrium case, where none of the parameters are time-dependent

and V (t) = 0; and the case of a symmetric voltage quench V (t) = V θ(t), with θ(t)

being a Heaviside step function. In the second case, the system is in equilibrium

for t < 0, and for t > 0 the lead levels εk are instantaneously moved to εk ± V
2

,

with the sign depending on the lead index α. The parameters Vαk and εk are

chosen such that

Γα (ω) = π
∑
k

|Vαk |2δ(ω − εk) (4.20)

describes a flat band centered at zero with a Fermi function-like cutoff,

Γα (ω) =
Γα

(1 + eν(ω−D)) (1 + e−ν(ω+D))
. (4.21)

Throughout the results section we use Γα = Γ = 1; half-bandwidth D = 5;

smoothing factor ν = 3 (unless specified as ν = 10); U = 4 and U = 10;

temperature T = 1. And we are predominantly interested in obtaining observable

estimates for densities, currents, and Green’s functions.

4.3.1 Populations

The top panel of Fig. 4.9 shows results for the time-evolution of the density

after a voltage quench of an impurity with parameters Γ = 1, U = 10, εd = 0,

D = 5, T = 1 and V = 6. Black triangles denote values obtained in a bare

QMC simulation, and colored lines are the inchworm results with respective
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Figure 4.9: Top panel: Time evolution of the density on the impurity after
a voltage quench with Γ = 1, U = 10, εd = 0, D = 5, T = 1 and V = 6.
Results obtained from a bare QMC calculation are shown for t ≤ 0.6. The
inchworm results with different orders agree with the bare result for t ≤ 0.6
and coincide with each other for longer times. Bottom panel: Error estimates.
Data obtained using the bare method shows an exponential increase of the
errors as a function of time, whereas inchworm errors grow slower as a function
of time.

maximum order constraints of order 3, 4, and 5 as labeled in the plot. At

short times (t ≤ 0.6 in these units), the inchworm results agree with the bare

calculation within error bars, but for t & 0.3 the bare QMC error bars are too

large to be useful. Inchworm results for orders 4 and 5 coincide within error

bars at long times, indicating that a solution obtained within a three-crossing

approximation calculation would be accurate. The bottom panel of Fig. 4.9

shows statistical error bars for the data shown in the top panel. Errors for

the bare calculation increase exponentially as a consequence of the dynamical

sign problem. In contrast, the statistical inchworm error estimate grows slowly,

allowing access to significantly longer times. We note that in order to account for

error propagation and non-linear cross-correlations from short-time propagators

98



to long-time propagators within the inchworm algorithm, the error bars have

been obtained by running multiple (in this case eight) complete independent

calculations, each of which includes a different realization of the statistical noise

at all times. The standard deviation between the different runs provides a useful

estimate of the confidence interval, whereas the standard deviation within each

run—which does not account for error propagation—grossly underestimates the

error.

It is remarkable that no exponential growth of the errors is seen, signaling that the

dynamical sign problem has been overcome. However, a gradual, approximately

linear increase of errors with time is visible.

4.3.2 Currents

Fig. 4.10 shows results for the time dependence of a current passing through the

impurity after a voltage quench from a thermalized equilibrium state. Parameters

are Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 4. In the top panel,

we observe that both NCA and OCA produce qualitatively wrong results for

both the transient and long-time response. In contrast, inchworm results at

orders 5–7 are in excellent agreement with each other, and order 4 is within

about a percent from the converged result. Convergence at order 5 is well within

reach of inchworm calculations but far beyond what could be realistically treated

with semi-analytical methods. The bottom panel shows a rough estimate of the

statistical error of the data shown in the top panel, obtained from the standard

deviation of eight independent simulations of this problem. As observed for

the densities, the inchworm error grows sub-exponentially in time and order

constraint, indicating that the algorithm is able to overcome the dynamical sign

problem.
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Figure 4.10: Top panel: The current dynamics after a voltage quench with
Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 4. The inchworm results with
different orders converge as max-order increases. Bottom panel: Error esti-
mates of inchworm data obtained by averaging eight independent calculations.
Errors increase as a function of time but avoid the exponential amplification
seen in bare calculations.

4.3.3 Green’s functions

Simulation of diagrams as shown in Fig. 4.6 enable both the simulation of currents

and of two-time Green’s functions. On the full Keldysh contour, a total of nine

different types of Green’s functions exist. One of them, the imaginary time

Green’s function, is shown in Fig. 4.11. The parameters used are Γ = 1, U = 4

and εd = −2 (such that the system is at half filling), D = 5, T = 1, and V = 0.

As is visible in the upper panel, orders 4, 5, and 6 agree perfectly within error bars

with the result obtained by a bare reference hybridization expansion calculation.

Statistical error bars, which do not estimate the systematic errors caused by the

order truncation, are shown in the lower panel of Fig. 4.11. These errors are on
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Figure 4.11: Top panel: The imaginary time Green’s function in equilibrium
(half-filling) with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 0. Inchworm
results with different orders all coincide and agree with the bare calculation.
Bottom panel: The error estimate for the inchworms data is approximately
constant in imaginary time.

the order of 10−4.

The remaining components of the Green’s function are similarly obtained by

simulating the diagrams of Fig. 4.6.

4.3.4 Spectral functions

Knowledge of Green’s functions and currents makes the calculation of interacting

single-particle spectral functions possible. Ref. [72] introduced a method for com-

puting steady state spectral functions A(ω) by obtaining steady state currents

in two narrow auxiliary leads attached at frequency ω.
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Figure 4.12: Top panel: A contour plot of the dynamics of auxilary current
spectrum Aaux(ω, t) after a voltage quench with Γ = 1, U = 4, εd = −2,
D = 5, T = 1 and V = 4. The maximum order cut-off for the inchworm
calculation is 6. A formation and a splitting of the Kondo peak are observed
as a function of time. Middle panel: Slices of auxiliary current spectrum at
different times from the top contour plot. A clear splitting of the spectrum is
shown. Bottom panel: Error estimate on the spectral function obtained from
eight independent simulations.

102



Fig. 4.12 shows the result in the spirit of the auxiliary lead scheme, but gener-

alized to the full Keldysh contour (see Appendix 5.3.3): initially, at t = 0, no

current is flowing. As the voltage in the main leads, along with the auxiliary

lead voltage, is instantaneously switched on, an auxiliary current starts flowing

and relaxes on a time scale of about 1.5 to 2.

The upper panel shows the time-evolution of this current as a false-color contour

plot. The vertical axis is time, the horizontal axis is frequency and the color

represents the value of the auxiliary spectral function A(ω) obtained from the

auxiliary currents. This quantity is equivalent to the physical spectral function

in steady states. The middle panel shows frequency cuts through these data,

illustrating a buildup of a more-or-less featureless spectral function at interme-

diate times (t = 0.5, t = 1.0), which splits into two sub-peaks (associated with

the onset of Kondo physics [73, 110]) as time is extended towards time t = 1.5

and 2.0. By time t = 1.5, all features are converged.

In this parameter regime, both the final steady state spectral function, and the

time-scale on which results converge are comparable after a quench from an

equilibrium thermal state and after a quench from a decoupled initial state [72,

73], illustrating that in this case the presence of equilibrium correlations in the

initial state did not substantially accelerate convergence.

The bottom panel shows the statistical errors of these data, obtained by com-

puting the standard deviation of numerical data from several independent cal-

culations. It is clearly visible that as t is increased, errors increase. However,

the errors do not increase exponentially, again hinting that the dynamical sign

problem has been overcome.

Fig. 4.13 shows the convergence of the data shown at the final time t = 2.0 in

Fig. 4.12 as a function of the maximum diagram order sampled. It is evident that

high orders & 5 are needed to accurately capture the split peak, hinting that its

correct description is related to strong dot–bath entanglement. It is also evident
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Figure 4.13: Top panel: The (half-filling) spectrum at t = 2.0 after a voltage
quench with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 4. The spectral
function shows the establishment of a split Kondo peak as the diagram order
is increased. The data for order 6 is identical to the data shown in Fig. 4.12.
Bottom panel: Error estimate for data shown in main panel. The error remains
constant as a function of frequency and increases as the maximum order is
increased.

that deviations remain between orders 5 and 6, indicating that even higher orders

may be necessary to fully capture the physics.

This is even more pronounced in the equilibrium case, Fig. 4.14, where contribu-

tions coming from long-lived correlations cause both an increase of the statistical

errors (bottom panel) and a substantial difference order-by-order (main panel).

No additional complications arise away from half filling. Fig. 4.15 shows a sample

steady state spectral function of a system obtained at time t = 2.0, away from

particle-hole symmetry, after a voltage quench. The result is once again obtained

with the auxiliary current setup, and is converged both in expansion order (orders

5 and 6 were needed) and time. While general features of the system are visible
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Figure 4.14: Top panel: The (half-filling) spectrum at t = 2.0 with no
applied voltage with Γ = 1, U = 4, εd = −2, D = 5, T = 1 and V = 0.
Bottom panel: error estimate for data shown in the main panel.

even within a low-order NCA approximation, finer details such as the precise

location of the peaks or their height and width clearly require analysis with more

precise methods.

In conclusion, we have generalized the inchworm quantum Monte Carlo method

to the full forward–backward–imaginary Keldysh contour. We have also intro-

duced a scheme to measure currents, Green’s functions, and spectral functions in

inchworm QMC. Our formalism for measuring these quantities is directly appli-

cable to inchworm calculations on the forward–backward Keldysh contour, but

the addition of the imaginary contour allows us to begin the simulation from a

correlated equilibrium initial condition. The method is numerically exact when

all diagrams to all orders are considered. It is controlled if a sequence of results

truncated to gradually increasing diagram orders is considered, and in particular
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Figure 4.15: Top panel: Spectral function away from half filling at t = 2.0
after a voltage quench with Γ = 1, U = 10, εd = −2, D = 5, T = 1 and V = 4.
Bottom panel: error estimate for data shown in the main panel.

generates non-crossing diagrams when truncated to order one, one-crossing dia-

grams when truncated to order two, and two-crossing diagrams when truncated

to order three. We showed that for the applications considered in this paper,

diagrams of order five to seven were sufficient to achieve convergence.

The method makes the simulation of a wide range of problem setups possible:

voltage and interaction quenches out of initially thermalized states, perturbations

with explicit time-dependence, long-time steady-state setups, and equilibrium

problems. It can in particular be used for obtaining spectral functions from the

real time data, eliminating the need for the numerically ill-conditioned analytical

continuation procedure of imaginary time data.

Inchworm Monte Carlo overcomes the dynamical sign problem in the sense that

as t is increased, the effort for reaching longer times increases sub-exponentially.

Unlike in the case of the forward–backward contour, we did not always observe
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a plateau of the error as a function of time, indicating that the scaling is gen-

erally worse than quadratic in time. Several exponential barriers remain in the

system: as temperature is lowered, higher orders proliferate and the number of

diagrams needed to be considered increases quickly. Similarly, a larger impurity

size exponentially increases the size of the local Hilbert space and thereby the

cost of simulating the system.

The results shown here illustrate that it is now possible to reliably calculate

currents, Green’s functions, and spectral functions for equilibrium and nonequi-

librium impurity problems with general time dependence, and imply that unbi-

ased impurity solvers, which form a fundamental component for non-equilibrium

dynamical mean field theory, are now available.

107



Chapter 5

Applications of Inchworm DMFT

on the Hubbard Model in

Equilibrium

In this chapter, we study the repulsive Hubbard Hamiltonian in equilibrium given

in Eq. (1.1) by means of the Dynamical Mean Field Theory (DMFT) formulated

on the L-shaped Keldysh contour introduced in Sec. 1.3. We employ the Inch-

worm quantum Monte Carlo solver described in Chapter 4 to obtain a numerically

exact solution of the effective single impurity Anderson model. We demonstrate

its power here for equilibrium for a testing purpose, because there are a large

variety of well-developed methods available for comparison. We restrict ourselves

to the case of a half-filled (µ = −U/2) infinite coordination number Bethe lattice,

characterized by a semi-elliptical bare density of states

D(ε) =
1

2πv2

√
4v2 − ε2, ε < 2v (5.1)

as derived in Sec. 1.4. Throughout this chapter we assume vij = v = 1, and use

the hopping amplitude as the unit of energy.
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Time-translation invariance of the Hamiltonian in equilibrium implies that the

two-time Green’s function is only dependent on time differences

G(t, t′) = G(t− t′). (5.2)

The DMFT self-consistency condition thus reads

∆(t− t′) = G(t− t′). (5.3)

Here, we consider only the paramagnetic solution of the Hubbard model, as the

temperatures being studied are higher than the Néel temperature [111].

In the following, we first briefly introduce the Mott metal-insulator transition

and crossover in Sec. 5.1. In Sec. 5.2, we show the results of both real time

Green’s functions and spectral functions that resolve signatures of metal-insulator

crossovers. We also demonstrate the convergence of the algorithms used in our

calculations in Sec. 5.3.

5.1 Mott metal-insulator transition and crossover

region

One of the most fascinating phenomena of strongly correlated electron systems

is the interaction-induced metal-insulator transition. Such a transition is fun-

damentally different from filling-induced transitions between metals and band

insulators since it cannot be understood in terms of effectively noninteracting

electrons. This mechanism is not substantially different from the band theory

picture, and the insulating state is viewed as a consequence of a band gap opening

at the Fermi surface [112].

Fig. 5.1 (work from [5]) shows the phase diagram of the half-filled paramag-

netic Hubbard model with semi-elliptic DOS in the Bethe lattice, obtained using

DMFT methods with equilibrium QMC solver [5]. Since the Fermi liquid metal
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Figure 5.1: Mott metal-insulator transition phase diagram. Critical end
point Tc, crossover region at higher temperature T > Tc, and coexistence
region at lower T < Tc between Uc1, Uc2 are shown. The figure is a work from
[5].

and the paramagnetic Mott insulator do not differ on symmetry grounds, these

two phases can coexist in a finite range of parameter space. Indeed, there is

such a metal-insulator coexistence region leading to a finite temperature first-

order phase transition line [20, 113, 114], with Uc1 and Uc2 as the lower and

upper edges of the coexistence region. Experimentally, an appreciable drop of

resistivity is seen as the system is driven though such a finite temperature Mott

transition, which separates the Mott insulating state and the metallic (Fermi

liquid) state [23]. Similarly as in standard liquid-gas systems, the coexistence

region, and the associated first-order line, terminate at the critical end-point

at T = Tc. Therefore, at very low temperature T < Tc, this model features a

first-order metal-insulator transition. For T > Tc, the phase transition vanishes,

however, the evolution from metal to insulator as a function of U occurs as a

smooth crossover. Interesting implications can be found in this region and a

recent work [115] established that this intermediate metal-insulator crossover re-

gion shows all the features expected in a quantum critical regime, including the
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Figure 5.2: The real and imaginary parts of the converged real time DMFT
Green’s function G(t), where t ∈ [0, tmax] with tmax = 2, with Γ = 1, U = 4,
εd = −2, D = 2 and V = 0 at temperatures T = 0.5, T = 0.1 and T = 0.05.

characteristic scaling behavior for the family of resistivity curves. In the follow-

ing section, we focus on the crossover region and show the explicit gap opening

in the density of states, obtained from the real-time solver.

5.2 Results

5.2.1 Real-time Green’s functions

Fig. 5.2 shows the converged Green’s functions G(t) with Γ = 1, U = 4, εd = −2,

D = 2 and V = 0 at temperatures T = 0.5, T = 0.1 and T = 0.05. Later

in Fig. 5.4, we can see that the change at long times in the imaginary parts of
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Figure 5.3: The real and imaginary parts of the converged real time DMFT
Green’s function G(t), where t ∈ [0, tmax] with tmax = 2, with Γ = 1, D = 2,
T = 0.5 and V = 0 at on-site interaction strengths U = 2, U = 4, U = 6 and
U = 8.

G(t) corresponds to the formation of a quasi-particle peak as the temperature is

lowered.

Fig. 5.3 shows the converged Green’s functions G(t) with Γ = 1, D = 2, T = 0.5

and V = 0 at on-site interaction strengths U = 2, U = 4, U = 6 and U = 8.

Later in Fig. 5.5, we can see that the change in the amplitude and the damping

rate of real time Green’s functions corresponds to the opening of the gap in the

density of states in the metal-insulator crossover region, as the on-site interaction

strength increases.

5.2.2 Spectral functions

Fig. 5.4 shows the converged spectral functions A(ω) with Γ = 1, U = 4, εd = −2,

D = 2 and V = 0 at temperatures T = 0.5, T = 0.1 and T = 0.05. The spectral
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Figure 5.4: The converged DMFT spectral function A(ω) obtained by di-
rectly performing the Fourier transform on the real time Green’s function with
a cutoff at tmax = 2, with Γ = 1, U = 4, εd = −2, D = 2 and V = 0 at tem-
peratures T = 0.5, T = 0.1 and T = 0.05. This figure indicates the formation
of the quasi-particle peak as the temperature is lowered. The oscillation on
both sides of the tails is an artificial effect due to the finite time cutoff of the
Fourier transform, and will disappear as the simulation time tmax is extended.

functions are obtained by direct Fourier transforms (Sec. 3.3.4) of the real time

Green’s functions G(t) as plotted in Fig. 5.2, where t ∈ [0, tmax] with tmax = 2.

The figure illustrates the formation of the quasi-particle peak as the temperature

is lowered.

Fig. 5.5 shows the converged spectral functions A(ω) with Γ = 1, D = 2, T = 0.5

and V = 0 at on-site interaction strengths U = 2, U = 4, U = 6 and U = 8.

The spectral functions are obtained by direct Fourier transforms (Sec. 3.3.4) of

the real time Green’s functions G(t) as plotted in Fig. 5.3, where t ∈ [0, tmax]

with tmax = 2. As the on-site interaction strength increases, a gap opening in
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Figure 5.5: The converged DMFT spectral function A(ω) obtained by di-
rectly performing the Fourier transform on the real time Green’s function with
a cutoff at tmax = 2 with Γ = 1, D = 2, T = 0.5 and V = 0 at on-site inter-
action strengths U = 2, U = 4, U = 6 and U = 8. This figure demonstrates
the metal-insulator crossover as the on-site interaction strength increases. The
oscillation on both sides of the tails is an artificial effect due to the finite time
cutoff of the Fourier transform at tmax, and disappears as the simulation time
tmax is extended.

the density of states is seen indicating the metal-insulator crossover. Thus the

metal-to-insulator crossover observed in real time indeed corresponds to metallic

and insulating behavior in the spectral function.
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Figure 5.6: The real and imaginary parts of the DMFT Green’s function
G(t) as a function of real time t, where t ∈ [0, tmax] with tmax = 2. Parameters
are Γ = 1, U = 8, εd = −4, D = 2, T = 0.5 and V = 0. Shown are DMFT
iterations 1, 4 and 5. Iterations 4 and 5 are indistinguishable within our noise,
which indicates the DMFT self-consistent loop is converged.

5.3 Convergence of the algorithms

5.3.1 DMFT self-consistency loop

Starting with the semi-elliptic density of states and far away from phase tran-

sitions, the non-equilibrium DMFT self-consistent loop converges quickly and a

solution is achieved within about 2–5 iterations at high temperatures. Fig. 5.6

and Fig. 5.7 show the Green’s function G(t) and the spectral function A(ω) at

various iterations with parameters Γ = 1, U = 8, εd = −4, D = 2, T = 0.5 and

V = 0. The spectral function is obtained by a direct Fourier transform of the

real time Green’s function G(t), where t ∈ [0, tmax] with tmax = 2 as in Fig. 5.6.
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Figure 5.7: The convergence of the DMFT spectral function A(ω) by directly
performing the Fourier transform on the real time Green’s function with a
cutoff at tmax = 2, with Γ = 1, U = 8, εd = −4, D = 2, T = 0.5 and V = 0
at DMFT iterations 0, 1, 4 and 5. The results from iteration 4 and iteration 5
exactly agree with each other, which indicates the DMFT self-consistent loop
is converged. The oscillation on both sides of the tails is an artificial effect
due to the finite time cutoff of the Fourier transform, and will disappear as
the simulation time tmax is extended.

Both parts from iteration 4 and iteration 5 exactly agree with each other, which

indicates the DMFT self-consistent loop is converged.

5.3.2 Inchworm order

Fig. 5.8 shows the comparison of the Matsubara Green’s function G(τ) computed

by the inchworm nonequilibrium QMC solver and an equilibrium continuous time

hybridization expansion (CT-HYB) solver (TRIQS/CTHYB) [6, 7]. They come

from a single-shot impurity calculation starting with the semielliptic density of
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Figure 5.8: Matsubara Green’s function G(τ) computed for the impurity
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Figure 5.9: The converged real and imaginary parts of the DMFT Green’s
function G(t) as a function of real time t, where t ∈ [0, tmax] with tmax = 2
and tmax = 4. Parameters are Γ = 1, U = 8, εd = −4, D = 2, T = 0.5 and
V = 0. Within interval t ∈ [0, 2], the results are consistent.

states at Γ = 1, U = 4.6, εd = −2.3 (half-filling), D = 2, and V = 0. The top

panel of Fig. 5.8 demonstrates that at high temperature T = 0.2, a maximum-

order 5 in the inchworm order truncation is sufficient. Nevertheless, the bottom

panel of Fig. 5.8 shows that as the temperature is lowered to T = 0.04, an

convergence of the inchworm calculations with order truncations set to 5, 6 and

7 to the equilibrium result is observed. This indicates that a higher order of

crossings is indeed essential for obtaining the correct results as the temperature

is decreased.

5.3.3 Fourier transform

As mentioned before, the spectral functions shown in this chapter are obtained

by direct Fourier transforms of the real-time Green’s function data. The cutoff

tmax in the Fourier integrals generates noises in spectral functions, for example,

the oscillations around zero at the tails, which is called the Nyquist limit in
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Figure 5.10: The converged DMFT spectral function A(ω) by directly per-
forming the Fourier transform on the real time Green’s function with a cutoff
at tmax = 2 (blue) and tmax = 4 (red), with Γ = 1, U = 8, εd = −4, D = 2,
T = 0.5 and V = 0. The oscillations on both sides of the density of states
become smaller because the data is extended to t = 4 and the resolution is
improved so that the fine structures are now seen in the red curve.

the area of discrete signal processing [116]. If a simulation with a longer time

limit tmax = 4 on the Keldysh contour is executed, as shown in Fig. 5.9, the

spectral functions obtained will have reduced oscillations. In addition, because

the Nyquist frequency of the longer-time simulation is higher, the resolution of

the results becomes better and the fine structures in the density of states can be

observed in Fig. 5.10.

In conclusion, we tested our nonequilibrium DMFT methods with the inchworm

impurity solvers on the Hubbard model on a infinite dimensional Bethe lattice

and demonstrated its power here for equilibrium, where a large variety of well-

developed methods are available for comparison. We showed results for real-time
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Green’s functions and spectral functions independent of analytical continuation

techniques. We observed the formation of a quasi-particle peak as the tem-

perature is lowered and the signature of an interaction-driven metal-insulator

crossover. In principle, the method can cover the full parameter range of the sys-

tem. However, so far these calculations have been limited to high temperatures

by computation powers. The phase transition is particularly of higher compu-

tational time complexity. The reason is twofold: (1) Near the phase transition,

the DMFT self-consistency loop requires more iterations to converge; (2) As seen

in Sec. 5.3.2, higher orders are necessary as the temperature is lowered. More

computation times should be devoted to cross these barriers and explore the full

phase diagram, and we will pursue this direction in the future.
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Summary

Recent progress on the experimental side of non-equilibrium quantum many-

particle physics has stimulated extensive numerical investigation of non-equilibrium

phenomena in strongly correlated electron systems, to the point that it is now one

of the most active and exciting branches of modern condensed matter physics.

Thesse studies provide rich new insights that could not be obtained from the

study of equilibrium systems, such as dynamical phase transitions [25], thermal-

ization behavior [117], excitations and relaxations [118] of quantum many-body

systems. In this thesis, we study two minimal models that are generally assumed

to capture most of the relevant physics in this context – the Hubbard model and

the Anderson impurity model.

The Hubbard model is the simplest fermionic lattice model that is believed to

contain the the main ingredients to describe strongly interacting electrons in

certain types of solids, such as cuprates and organics. The Anderson impurity

model is one of the simplest fermionic quantum impurity models. It mimics the

behavior of impurities embedded in a host material [16] and also appears as an

auxiliary model in the formulation of dynamical mean field theory (DMFT) [20].

In this thesis, we have presented the non-equilibrium formalism of DMFT, which

approximates lattice models, for example, the Hubbard model, by impurity mod-

els, in this case, the Anderson impurity model, supplied with a self-consistency

condition. We have derived the self-consistency condition in the case of a Z →∞
Bethe lattice, in which DMFT becomes exact.

In this project, we have constructed the non-equilibrium framework of quantum

many-body systems, which leads to calculations using the Keldysh formalism. We
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have performed explicitly the perturbation theory in case of strong coupling and

we introduced semi-analytical approximations for the Anderson impurity model.

We have explained the idea of the continuous time Quantum Monte Carlo (CT-

QMC) methods and presented a detailed description of this numerical algorithm

we developed that is suitable for strong-coupling regimes – the continuous time

hybridizaiton expansion (CT-HYB). We have outlined the techniques we took

for measurements and showed numerically exact results of the impurity model

after a quantum quench from equilibrium. We have presented the behavior of

time-dependent currents that are beyond linear response and observed the full

dynamics of the system, from equilibrium to steady state, exhibit Kondo behavior

at all times.

We have seen that the main problem with the approach lies in the time domain.

The bare impurity solvers with non-equilibrium Monte-Carlo fail because the

sign problem makes low temperatures and simulating real-time dynamics for long

times exponentially hard. To overcome this difficulty, we have adapted a new idea

of “Inchworm Algorithm”, based on iteratively reusing the information obtained

in previous steps to extend the propagation to longer times. The algorithm

largely reduces the required order at each simulation and re-scales the exponential

challenge to quadratic. We have also introduced a method to compute Greens

functions, spectral functions, and currents for inchworm Monte Carlo. In the

results part, we have shown that the inchworm solver produced results that are

identical to the bare QMC at short times and are able to extend the simulation

to longer time propagations with controlled errors.

In this way, the inchworm solver vastly outperforms previous algorithms and over-

comes the dynamical sign problem. Its result can be used in the non-equilibrium

DMFT loop to produce reasonable outcomes. Within this project, we have tested

our algorithms along with the nonequilibrium DMFT formulation to study the

one-band Hubbard model in equilibrium on a Bethe lattice. We have seen the

results of both real-time Green’s functions and spectral functions, which are

isolated from analytical continuation techniques, and have resolved signatures
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of interaction-driven metal-insulator crossovers. We also demonstrated the fine

structures of the Hubbard band when longer-time propagation is simulated.

In conclusion, the results shown in this thesis illustrate that it is now possible to

calculate reliable currents, Green’s fucntions, and spectral functions for equilib-

rium and nonequilibrium impurity problems with general time dependence. And

we are able to make use of this impurity solver as the key part of the DMFT

method to study lattice models, like the Hubbard model. These algorithms dra-

matically increases the current ability of the theoretical framework to reproduce

and understand non-equilibrium electron correlation phenomena. With the main

applications listed in Ref. [8], it is now conceivable to predict new behaviors of

strongly correlated lattice systems, and this is where this project will progress in

the future.
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Appendix

Spectral function from auxiliary

leads

A convenient method for extracting the spectral functionsA(ω) from non-equilibrium

Green’s functions G (t, t′) comes from considering the current through two auxil-

iary leads which are weakly coupled to the system only at a predefined frequency

ω′ [Γ(ω) = ηδ(ω − ω′)], where one lead is taken to be full and one to be empty

[73]. Using

∆σ (t, t′) =
∑
k

V2
k〈TCcαkσ(t)c†αkσ(t′)〉 (4)

=− i
∫
dωe−iω(t−t′)Γ (ω) [θC (t, t′)± fα (ω)] (5)

we have the hybridization functions

∆aux(t, t′) = −iηe−iω′(t−t′)[θC(t, t′)− fi] (6)

where

fi =

0 : i = 0 (empty)

1 : i = 1 (full)

(7)

and η is small. Using equation

〈Iα(t)〉 = 2<
(∑

σ

∫
C
dt′Gσ (t′, t)×∆ασ(t, t′)

)
(8)
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to calculate the currents Ie
A (ω, t), I f

A (ω, t) through the empty and full auxiliary

leads, we define the object

Aaux (ω, t) = lim
η→0
− 2h

eπη

[
I f
A (ω, t)− Ie

A (ω, t)
]

(9)

which reproduces the spectral function A(ω, t) in steady state [72, 73]. Here, we

perform this process as a post processing step on our non-equilibrium Green’s

functions so that the auxiliary leads are not included in our simulations. In our

experience this way of obtaining the spectral information provides results that

are more stable than an explicit Fourier transform of the time-dependent Green’s

function.
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