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Preface

No scientific endeavor is free of bias, pitfalls, and unintended consequences, nor is it free of
a history. Unfortunately, engineering has a dark history of workers’ exploitation, resource
extraction, dispossession, population control, militaristic invasions, etc. As such, working
in this field should be done with care and with the explicit determination to end these
practices. Machine Learning, in specific, has been used recently to target the poor and the
racially oppressed to further exploitation and reproduce Machiavellian power dynamics, as
well as economic inequality. I must responsibly address this issue. My research is intended
to aid, among others, medical, environmental, and economic problems for the betterment
of society, it is NOT intended to aid parasitic financial institutions, murderous military
activity, discriminatory oppression by states, or similar malpractices. I strongly condemn
any misuse of my research, be it by individuals, governments, powerful corporations, or
the like.

iv



Contents

Dedication ii

Acknowledgments iii

Preface iv

Abstract ix

Chapter 1: Introduction 1
1.1 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Efficient Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Consistent KDE with Fixed Bandwidth . . . . . . . . . . . . . . . . . . . 4
1.5 Reproducing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Sparse Approximation of a Kernel Mean 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Motivation and Formal Setting . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Kernel Mean Embedding of Distributions . . . . . . . . . . . . . . 8
2.2.3 Generalized Notion of Kernel . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Abstract Problem Formulation . . . . . . . . . . . . . . . . . . . . 9

2.3 Related Work and Contributions . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Subset Selection and Incoherence-Based Bound . . . . . . . . . . . . . . 12

2.4.1 Connection to the Nyström Method . . . . . . . . . . . . . . . . . 13
2.4.2 An Incoherence-based Sparse Approximation Bound . . . . . . . . 13
2.4.3 Application to Kernel Means . . . . . . . . . . . . . . . . . . . . . 14

2.5 Bound Minimization Via k-center Algorithm . . . . . . . . . . . . . . . . 15
2.5.1 Generalization to nonradial kernels . . . . . . . . . . . . . . . . . 16
2.5.2 Computation of αI and Auto-selection of k . . . . . . . . . . . . . 17

2.6 Experiments: Speeding Up Existing Kernel Mean Methods . . . . . . . . 19
2.6.1 Euclidean Embedding of Distributions . . . . . . . . . . . . . . . 19
2.6.2 Class Proportion Estimation . . . . . . . . . . . . . . . . . . . . . 22
2.6.3 Mean-Shift Clustering . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.4 Comparison with Other Subset Selection Strategies . . . . . . . . 26
2.6.5 Other Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



Chapter 3: Further results for SKM 29
3.1 Dimension and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Kernel Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Euclidean Embedding of Distributions: KDE case . . . . . . . . . . . . . . 31
3.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Constrained Projection Bound . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4: Consistent Kernel Density Estimation with Non-Vanishing
Bandwidth 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Fixed bandwidth KDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Consistency of fα(n) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Convergence rates for fα(n) . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Convergence rates for the Box kernel . . . . . . . . . . . . . . . . 47

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1 The role of σγ and X . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.2 Inappropriate σ and sample size . . . . . . . . . . . . . . . . . . . 48
4.5.3 Performance for favorable σ . . . . . . . . . . . . . . . . . . . . . 50

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5: Concluding Remarks 64

Bibliography 65



List of Figures

2.1 A linear time 2-approximation algorithm for the k-center problem. . . . . 16
2.2 2-dimensional representation of flow cytometry data - KME case. . . . . 20
2.3 2-dimensional representation of flow cytometry data - KME case. D0 was

found through kernel herding. . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 The relative error and sparsity incurred by the SKM-based and HERD-based

matrices D0 as a function of ε, KME case. . . . . . . . . . . . . . . . . . 22
2.5 Class Proportion Estimation. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Error comparison among different methods for the banana data set. . . . 28

3.1 Error comparison among different dimensions . . . . . . . . . . . . . . . 30
3.2 Visualization aid for Table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Visualization aid for Table 3.2 . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Error comparison among different kernels for the banana data set. . . . . 32
3.5 Sparsity comparison among different kernels for the banana data set. . . 32
3.6 Time comparison among different kernels for the banana data set. . . . . 33
3.7 2-dimensional representation of flow cytometry data for the Laplacian

kernel and the KME case. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 2-dimensional representation of flow cytometry data for the Student-type

kernel and the KME case. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Class Proportion Estimation - Laplacian . . . . . . . . . . . . . . . . . . 34
3.10 Class Proportion Estimation - Student . . . . . . . . . . . . . . . . . . . 34
3.11 2-dimensional representation of flow cytometry data - KDE case. . . . . . 36
3.12 The relative error incurred by the SKM-based matrix D0 as a function of ε,

averaged over 10 runs - KDE case. . . . . . . . . . . . . . . . . . . . . . . 37

4.1 True density (solid) along with fbKDE for both a large σγ = .25 (dotted)
and a small σγ = .05 (dashed) . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 True density along with fbKDE, KDE and vKDE. All estimates use a kernel
with large bandwidth σ = .25. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 True density along with fbKDE, KDE and vKDE. All estimates use a kernel
with large bandwidth σ = .25. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 True density along with fbKDE, KDE and vKDE. . . . . . . . . . . . . . . 51
4.5 Bimodal, triangular, trimodal and kurtotic densities used to evaluate the

fbKDE performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Bimodal density and kernel estimators with training size 800. The stem

subplot indicates the values of α (centered offset for visualization). Note
that some of the α weights are negative. . . . . . . . . . . . . . . . . . . 53

vii



List of Tables

2.1 Time comparison for the Euclidean embedding of the flow cytometry dataset
- KME case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Computation times for both full and sparse KME, averaged over all values
of ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Time and Performance Comparison for Mean Shift algorithm. . . . . . . 25
2.4 Time complexity and memory comparison among selected methods. . . . 27
2.5 Sparsity level required for an accuracy of 10−3. . . . . . . . . . . . . . . . 27
2.6 Values of D(z̄‖zI) and D(zI‖z̄) for different data sets. . . . . . . . . . . . 28

3.1 d vs σ comparison of the relative error committed at a sparsity level of
10%. Gaussian case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 d vs σ comparison of the sparsity required for an accuracy of ε = 10−3. . . 31
3.3 Time and Performance Comparison for Mean Shift algorithm. Laplacian

kernel case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Time and Performance Comparison for Mean Shift algorithm. Cauchy

kernel case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Sparsity with respect to ε. The k0

k
values are shown for the KDE case. . . 36

3.6 Time Comparison for the Euclidean embedding of the Flow Cytometry
dataset - KDE case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Time in seconds required for an accuracy of 10−3 . . . . . . . . . . . . . 38

4.1 Performance comparison for different datasets and bandwidth selection
methods. For the synthetic datasets we drew 1000 samples, n = 800 of
which were used for training. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Performance comparison with respect to the sample size for the bimodal
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



Abstract

Nonparametric density estimation is a common and important task in many problems in
machine learning. It consists in estimating a density function from available observations
without making parametric assumptions on the generating distribution. Kernel means
are nonparametric estimators composed of the average of simple functions, called kernels,
centered at each data point. This work studies some relatives of these kernel means with
structural similarity but which assign different weights to each kernel unit in order to
attain certain desired characteristics. In particular, we present a sparse kernel mean
estimator and a consistent kernel density estimator with fixed bandwidth parameter.

First, regarding kernel means, we study the kernel density estimator (KDE) and the
kernel mean embedding. These are frequently used to represent probability distributions,
unfortunately, they face scalability issues. A single point evaluation of the kernel density
estimator, for example, requires a computation time linear in the training sample size. To
address this challenge, we present a method to efficiently construct a sparse approximation
of a kernel mean. We do so by first establishing an incoherence-based bound on the
approximation error. We then observe that, for any kernel with constant norm (which
includes all translation invariant kernels), the bound can be efficiently minimized by
solving the k-center problem. The outcome is a linear time construction of a sparse kernel
mean, which also lends itself naturally to an automatic sparsity selection scheme. We
demonstrate the computational gains of our method by looking at several benchmark
data sets, as well as three applications involving kernel means: Euclidean embedding of
distributions, class proportion estimation, and clustering using the mean-shift algorithm.

Second we address the bandwidth selection problem in kernel density estimation.
Consistency of the KDE requires that the kernel bandwidth tends to zero as the sample
size grows. In this work, we investigate the question of whether consistency is still possible
when the bandwidth is fixed, if we consider a more general class of weighted KDEs. To
answer this question in the affirmative, we introduce the fixed-bandwidth KDE (fbKDE),
obtained by solving a quadratic program, that consistently estimates any continuous
square-integrable density. Rates of convergence are also established for the fbKDE for
radial kernels and the box kernel under appropriate smoothness assumptions. Furthermore,
in a simulation study we demonstrate that the fbKDE compares favorably to the standard
KDE and the previously proposed variable bandwidth KDE.

ix



Chapter 1

Introduction

1.1 Kernel Density Estimator

Given an iid sample x1, . . . , xn ∈ X ⊂ Rd drawn from a probability distribution with
associated density function f , the kernel density estimator (KDE) is an estimator for f
given as

fKDE =
1

n

n∑
i=1

k(·, xi), (1.1)

where k is a kernel function with parameter σ. Shortly we will define a kernel function in
detail and provide some examples. An important and recurrent example is the Gaussian
kernel, defined as

k(x, x′) = (2πσ2)−d/2 exp(−‖x− x′‖2/2σ2).

The birth of the kernel density estimator was presaged by the unpublished report
of Evelyn Fix [1] on nonparametric density estimators. The report emphasized the
importance of these estimators for discriminant analysis (used for plug-in rules) and
outlined their desired consistency properties. A few years later a full development of
the KDE followed by Rosenblatt and Parzen [2, 3]. Since then, the KDE has found
numerous applications across a broad range of quantitative fields and it has become a key
ingredient in many machine learning methodologies. For example, a common approach to
classification is a plug-in rule that estimates the class-conditional densities with separate
KDEs [4, 5]. In anomaly detection, a detector of the form fKDE(x)><γ is commonly
employed to determine if a new realization comes from f [6, 7, 8, 9]. In clustering, the
mean-shift algorithm forms a KDE and associates each data point to the mode of the
KDE that is reached by hill-climbing [10]. Parallel to its many applications, the KDE has
also been the subject of extensive theoretical investigations, spawning several books (see,
e.g, [11, 12, 13, 14]) and hundreds of research articles.

Although the KDE is a simple and mathematically founded nonparametric density
estimator, two main drawbacks make its use sometimes undesirable. First, it is not scalable.
As seen in equation (1.1), a point evaluation of the KDE requires O(n) computations,
where n is the size of the data. Evaluating the KDE just on the original points already
requires O(n2) computations, hence an efficient way of computing or approximating the
KDE is necessary. In this work, we present a sparse approximation to the KDE which can
be computed efficiently. Second, each kernel has a smoothing or “bandwidth” parameter,
the selection of which turns out to be more important than the selection of the kernel
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itself [13]. Automatically selecting a bandwidth parameter is a hard task and the subject
of much research [15]. In order for the KDE to be consistent, the bandwidth is required
to approach zero. We address this issue not by presenting a new way of finding the
smoothing parameter but by proposing a consistent kernel density estimator with fixed
bandwidth. Note that both of the estimators we present are linear combinations of kernel
functions, just as the KDE, but the weights of each function differ, contrary to the KDE
whose weights are uniform.

1.2 Kernels

In this section we define different types of kernels. In the context of kernel density
estimation, the kernel function satisfies that for all x′,

∫
k(x, x′)dx = 1. In addition, k is

sometimes also chosen to be nonnegative, although this is not necessary for theoretical
properties such as consistency. In Chapter 2 we will be concerned with a kernel sum more
general than the KDE. We will be required, however, to work in inner product spaces.
This motivates the following general definition.

Definition 1. Let X ⊂ Rd. We say that k : X × X → R is a kernel if there exists an
inner product space H such that for all x in X , k(·, x) ∈ H.

In the case of kernel density estimation, all commonly used kernels satisfy k(·, x) ∈
L2(Rd) for all x ∈ Rd. Here, L2(Rd) is the space of equivalence classes of square integrable
functions. When we write k(·, x) ∈ L2(Rd), we view k(·, x) as a representative of its
equivalence class. In the case of a positive definite kernel (defined below), H can be the
associated reproducing kernel Hilbert space (defined in Section 1.5).

Definition 2. For x := {x1, . . . , xn} a subset of Rd and k a kernel with associated inner
product space H, we call

Kx :=
(
〈k(·, xi), k(·, xj)〉H

)
i,j∈[n]

the kernel matrix of k.

We have used the notation [n] := {1, . . . , n}. When the set x is understood, it is
convenient to use the notation K instead of Kx. When no ambiguity arises, for I ⊂ [n],
the kernel matrix of the set {xi ∈ x|i ∈ I} is denoted as KI .

Definition 3. A symmetric positive definite kernel is a kernel that is symmetric and for
which the matrix Kx is positive semidefinite for all finite subsets x ⊂ X .

For convenience we will sometimes refer to symmetric positive definite kernels as
PD kernels or, for reasons which will become clear later, as reproducing kernels. Every
symmetric positive definite kernel is associated to a unique Hilbert space of functions
called a reproducing kernel Hilbert space (RKHS). Further properties of PD kernels and
their RKHS’s will be discussed in Section 1.5.

Although some of our results hold more generally, we are interested in a particular
class of kernels, the radial kernels, which we now define.

Definition 4. We say k : X ×X → R is a radial kernel if k is a kernel as in Def. 7 and
there exists a strictly decreasing function g : [0,∞)→ R such that, for all x, x′ ∈ Rd,

〈k(·, x), (·, x′)〉H = g(‖x− x′‖2).
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We now review some common examples of kernels. The Gaussian kernel with parameter
σ > 0 has the form

k(x, x′) = cσ exp

(
−‖x− x

′‖2
2

2σ2

)
.

The Laplacian kernel with parameter γ > 0 has the form

k(x, x′) = cγ exp

(
−‖x− x

′‖2

γ

)
.

The Student-type kernel with parameters α, β > 0 has the form

k(x, x′) = cα,β

(
1 +
‖x− x′‖2

2

β

)−α
.

The uniform kernel with parameter u has the form

k(x, x′) = cu1{‖x−x′‖2<u}

The Epanechnikov kernel with parameter a has the form

k(x, x′) = ca

(
1− ‖x− x

′‖2
2

a2

)
1{‖x−x′‖2<a}.

The parameters cσ, cγ, cα,β, cu and ca can be set, if desired and depending on the application,
so as to normalize k to be a density estimation kernel.

These examples illustrate that the space H such that k(·, x) ∈ H is not unique. Indeed,
on one hand we may select H = L2(Rd). On the other hand, the first three kernels
are symmetric positive definite kernels, and therefore we may take H to be the RKHS
associated with k [16, 17]. Note that the last two kernels do not fit our definition of a
radial kernel.

Each of the three PD kernel examples is also a radial kernel. If we take H to be
the RKHS, then by the reproducing property we simply have 〈k(·, x), k(·, x′)〉 = k(x, x′),
and in each case, k(x, x′) = g(‖x− x′‖2) for some strictly decreasing g. These three
kernels are also radial if we take H = L2(Rd). For example, consider the Gaussian kernel,
and let us write k = kσ to indicate the dependence on the bandwidth parameter. Then
〈kσ(·, x), kσ(·, x′)〉L2 = k√2σ(x, x′). Similarly, for the Student kernel with α = (1 + d)/2
(the Cauchy kernel), we have 〈kβ(·, x), kβ(·, x′)〉L2 = k2β(x, x′). For other kernels, although
there may not be a closed form expression for g, it can still be argued that such a g exists,
which is all we will need.

1.3 Efficient Computation

A quick note on notation. Throughout this section and in Chapter 2 we denote a kernel
function by φ and reserve the letter k for an integer. Also, the results of Chapter 2 are
applicable to another type of kernel sum of the form (1.1), the empirical kernel mean
embedding. Therefore we refer to both the KDE and the empirical kernel mean embedding
as kernel means.

3



As mentioned before, evaluating the KDE at a single test point requires O(n) kernel
evaluations, which for some applications is undesirable and perhaps computationally
prohibitive. Several approaches have been taken to address this issue, many of which we
review in Chapter 2. In this work we are concerned about the efficient computation of a
sparse approximation of a KDE taking the form

n∑
i=1

αiφ(·, xi) (1.2)

where αi ∈ R and k := |{i : αi 6= 0}| � n. In other words, given x1, . . . , xn, a kernel φ,
and a target sparsity k, we seek a sparse linear combination of kernels (2.2) that accurately
approximates the KDE (1.1). A sparse kernel sum can be evaluated or manipulated much
more efficiently. In the large n regime, the sparse approximation algorithm itself must be
scalable, and as we argue in Chapter 2, existing sparse approximation strategies are too
slow.

In this work we propose an efficient algorithm for sparsely approximating a kernel
mean. This algorithm results from minimizing an “incoherence” based bound and holds
for both types of kernel means. Several experiments show the advantage of our approach.

We reiterate that point evaluations of the KDE require O(n) kernel evaluations, which
is prohibitive for large n. On the other hand, a sparse approximation with sparsity k
requires only O(k) kernel evaluations. In some instances we need to evaluate the KDE
multiple times for each query point, enhancing the problem further.

1.4 Consistent KDE with Fixed Bandwidth

One reason for the KDE’s success is that it is nonparametric and makes few if any
assumptions about f . Furthermore, the KDE is consistent, meaning that it converges
to f as n → ∞ [18]. To prove that the KDE is consistent it will be necessary for the
convolution of f and k to approach f under some norm, which in turns requires the
smoothing parameter σ to approach 0.

Correctly choosing the bandwidth is critical for practical applications of the KDE.
Indeed, choice of bandwidth is the primary factor that determines the performance of
the KDE, and is much more important than the choice of kernel [13]. At the same time,
bandwidth selection is a notoriously difficult problem, indeed, a recent survey cites a
couple dozen bandwidth selection methods [15].

In this work we do not propose a method of bandwidth selection. Instead, in Chapter 4
we aim at addressing the criticality of finding the optimal bandwidth by presenting an
estimator different to the KDE which is consistent for a fixed bandwidth. The estimator
takes the form

fα =
n∑
i=1

αik(·, zi),

where {zi}i∈[n] are not necessarily the data points {Xi}ni=1 and α ∈ An, An being an `1-ball
of data dependent size. Note that contrary to the KDE the α coefficients are not required
to be nonnegative nor to sum to 1.

4



1.5 Reproducing Kernels

In this section we list some useful properties of positive definite kernels and their associated
reproducing kernel Hilbert spaces. We start by recalling the definition of a positive definite
kernel.

Definition A positive definite kernel is a kernel that is symmetric and for which the
matrix Kx is positive semidefinite for all finite subsets x ⊂ X .

We have been mentioning the so called reproducing kernel Hilbert space. We now
define it (see [19, 16]).

Definition 5. Let X be a set. We call a Hilbert space of real-valued functions H a
reproducing kernel Hilbert space (RKHS) on X if for every x ∈ X the linear evaluation
functional δx : H → R defined as δx(f) = f(x) for f ∈ H, is bounded (equivalently,
continuous).

Recall that k is a kernel of an inner product space H if k(·, x) ∈ H for all x ∈ H. In
that case we have

Definition 6. A kernel of H is called a reproducing kernel if the reproducing property

f(x) = 〈f, k(·, x)〉H

holds for all f ∈ H and all x ∈ X .

The following properties will be used throughout the book:

• Every symmetric positive definite kernel is a reproducing kernel, and vice versa.

• Every reproducing kernel has a unique associated RKHS, and vice versa.

• Given a PD kernel k on X and its associated RKHS H, the set

H0 :=

{
n∑
i=1

cik(·, xi) | (ci, xi) ∈ R×X ∀ i ∈ [n], n ∈ N

}

is dense in H, under the norm induced by 〈·, ·〉H.

These properties are stated without proof, and they will be used throughout without
further justification. For more details see [19, 16, 20].

5



Chapter 2

Sparse Approximation of a Kernel
Mean

Overview

In this chapter we present a scalable sparse representation of kernel means. It is scalable in
that it can be efficiently computed is linear time with respect to both the sample size and
the dimension. To construct it we first bound the approximation error and observe that
for constant norm kernels this bound can be minimized by solving the k-center problem.
We then demonstrate experimentally that our method compares favorably to other sparse
approximation methods.

2.1 Introduction

A kernel mean is a quantity of the form

1

n

n∑
i=1

φ(·, xi), (2.1)

where φ is a kernel and x1, . . . , xn ∈ Rd are data points. We define kernels rigorously
below. Our treatment includes many common examples of kernels, such as the Gaussian
kernel, and encompasses both symmetric positive definite kernels and kernels used for
nonparametric density estimation.

Kernel means arise frequently in machine learning and nonparametric statistics as
representations of probability distributions. In this context, x1, . . . , xn are understood to
be realizations of some unknown probability distribution. The kernel density estimator
(KDE) is a kernel mean that estimates the density of the data. The kernel mean embedding
(KME) is a kernel mean that maps the probability distribution into a reproducing kernel
Hilbert space. These two motivating applications of kernel means are reviewed in more
detail below.

This work is concerned with efficient computation of a sparse approximation of a
kernel mean, taking the form

n∑
i=1

αiφ(·, xi) (2.2)

where αi ∈ R and k := |{i : αi 6= 0}| � n. In other words, given x1, . . . , xn, a kernel φ,
and a target sparsity k, we seek a sparse kernel mean (2.2) that accurately approximates
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the kernel mean (2.1). This problem is motivated by applications where n is so large
that evaluation or manipulation of the full kernel mean is computationally prohibitive. A
sparse kernel mean can be evaluated or manipulated much more efficiently. In the large
n regime, the sparse approximation algorithm itself must be scalable, and as we argue
below, existing sparse approximation strategies are too slow.

Our primary contribution is an efficient algorithm for sparsely approximating a kernel
mean. The algorithm results from minimizing a sparse approximation bound based on a
novel notion of incoherence. We show that for a broad class of kernels minimizing the
sparse approximation bound is equivalent to solving the k-center problem on x1, . . . , xn,
which in turn leads to an efficient algorithm. An advantage of our approach is that it
approximates an arbitrary kernel mean, so we need not address the KDE and KME
problems independently, but through a shared methodology.

The rest of the paper is outlined as follows. In Section 2.2 we review the KDE and
KME, which motivate this work, and also introduce a general definition of kernel that
encompasses both of these settings. We review related work and its connection to our
contributions in Section 2.3. In Section 2.4 we establish an incoherence-based sparse
approximation bound. We then use the principle of bound minimization in Section 2.5
to derive a scalable algorithm for sparse approximation of kernel means, and present
a sparsity auto-selection scheme. Finally, to demonstrate the efficacy of our approach,
Section 2.6 applies our methodology in three different machine learning problems that
rely on large-scale KDEs and KMEs, and also presents its performance on 11 benchmark
datasets. A preliminary version of this work appeared in [21]. A Matlab implementation
of our algorithm is available at [22].

2.2 Motivation and Formal Setting

Our work is motivated by two primary examples of kernel means. We review the KDE
and KME separately, and then propose a general notion of kernel that encompasses the
essential features of both settings and is sufficient for addressing the sparse approximation
problem. By way of notation, we denote [n] := {1, . . . , n}.

2.2.1 Kernel Density Estimation

Let {x1, . . . , xn} ⊂ Rd be a random sample from a distribution with density f . In
the context of kernel density estimation, a kernel is a function φ such that for all x′,∫
φ(x, x′)dx = 1. In addition, φ is sometimes also chosen to be nonnegative, although

this is not necessary for theoretical properties such as consistency. The kernel density
estimator of f is the function

f̂ =
1

n

∑
i∈[n]

φ(·, xi).

The KDE is used as an ingredient in a number of machine learning methodologies.
For example, a common approach to classification is a plug-in rule that estimates the
class-conditional densities with separate KDEs [4, 5]. In anomaly detection, a detector of

the form f̂(x)><γ is commonly employed to determine if a new realization comes from f
[6, 7, 8, 9]. In clustering, the mean-shift algorithm forms a KDE and associates each data
point to the mode of the KDE that is reached by hill-climbing [10].
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Evaluating the KDE at a single test point requires O(n) kernel evaluations, which is
undesirable and perhaps prohibitive for large n. On the other hand, a sparse approximation
with sparsity k requires only O(k) kernel evaluations. This problem is magnified in
algorithms such as mean-shift, where a (derivative of a) KDE is evaluated numerous times
for each data point. In our experiments below, we demonstrate the computational savings
of our approach in KDE-based algorithms for the embedding of probability distributions
and mean-shift clustering.

2.2.2 Kernel Mean Embedding of Distributions

Let {x1, . . . , xn} ⊂ Rd be a random sample from a distribution P . The idea behind the
kernel mean embedding is to select a symmetric positive definite kernel φ, and embed P
in the RKHS associated with φ via the mapping

Ψ(P ) :=

∫
φ(·, x)dP (x).

Since P is unknown, this mapping is estimated via the kernel mean

Ψ̂(P ) :=
1

n

∑
i∈[n]

φ(·, xi).

The utility of the KME derives from the fact that for certain kernels, Ψ is injective. This
permits the treatment of probability distributions as objects in a Hilbert space, which
allows many existing machine learning methods to be applied in problems where probability
distributions play the role of feature vectors [23, 24, 25, 26]. For example, suppose that
random samples of size n are available from several probability distributions P1, . . . , PN . A
KME-based algorithm will require the computation of all pairs of inner products of kernel
mean embeddings of these distributions. If x1, . . . , xn ∼ P and x′1, . . . , x

′
n ∼ P ′, then

〈Ψ̂(P ), Ψ̂(P ′)〉 = 1
n2

∑
i,j φ(xi, x

′
j) by the reproducing property. Therefore the calculation of

all pairwise inner products of kernel mean embeddings requires O(N2n2) kernel evaluations.
On the other hand, if we have sparse representations of the kernel means, these pairwise
inner products can be calculated with only O(N2k2) kernel evaluations, a substantial
computational savings. In our experiments below, we demonstrate the computational
savings of our approach in KME-based algorithms for the embedding of probability
distributions and class-proportion estimation.

2.2.3 Generalized Notion of Kernel

The problem of sparsely approximating a sample mean can be addressed more generally
in an inner product space. This motivates the following definition of kernel, which is
satisfied by both density estimation kernels and symmetric positive definite kernels.

Definition 7. We say that φ : Rd × Rd → R is a kernel if there exists an inner product
space H such that for all x in Rd, φ(·, x) ∈ H.

In the case of kernel density estimation, all commonly used kernels satisfy φ(·, x) ∈
L2(Rd) for all x ∈ Rd. Here, L2(Rd) is the space of equivalence classes of square integrable
functions. When we write φ(·, x) ∈ L2(Rd), we view φ(·, x) as a representative of its
equivalence class. In the case of the kernel mean embedding, we may simply take H to be
the RKHS associated with φ.
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Definition 8. For {x1, . . . , xn} a subset of Rd and φ a kernel with associated inner product
space H, we call K := (〈φ(·, xi), φ(·, xj)〉H)i,j∈[n] the kernel matrix.

Our proposed methodology applies to translation invariant kernels and beyond. For
concreteness, however, we focus on radial kernels because of the connection to Euclidean
geometry.

Definition 9. We say φ : Rd × Rd → R is a radial kernel if φ is a kernel as in Def. 7
and there exists a strictly decreasing function g : [0,∞)→ R such that, for all x, x′ ∈ Rd,

〈φ(·, x), φ(·, x′)〉H = g(‖x− x′‖2).

We now review some common examples of radial kernels. The Gaussian kernel with
parameter σ > 0 has the form

φ(x, x′) = cσ exp

(
−‖x− x

′‖2
2

2σ2

)
,

the Laplacian kernel with parameter γ > 0 has the form

φ(x, x′) = cγ exp

(
−‖x− x

′‖2

γ

)
,

and the Student-type kernel with parameters α, β > 0 has the form

φ(x, x′) = cα,β

(
1 +
‖x− x′‖2

2

β

)−α
.

The parameters cσ, cγ and cα,β can be set to 1 for the KME, or so as to normalize φ to be
a density estimation kernel, depending on the application.

These examples illustrate that the space H such that φ(·, x) ∈ H is not unique. Indeed,
each of these three kernels is a symmetric positive definite kernel, and therefore we may
take H to be the RKHS associated with φ [16, 17]. On the other hand, we may also select
H = L2(Rd).

Each of these three examples is also a radial kernel. If we take H to be the RKHS,
then by the reproducing property we simply have 〈φ(·, x), φ(·, x′)〉 = φ(x, x′), and in
each case, φ(x, x′) = g(‖x − x′‖) for some strictly decreasing g. These kernels are
also radial if we take H = L2(Rd). For example, consider the Gaussian kernel, and
let us write φ = φσ to indicate the dependence on the bandwidth parameter. Then
〈φσ(·, x), φσ(·, x′)〉L2 = φ√2σ(x, x′). Similarly, for the Student kernel with α = (1 + d)/2
(the Cauchy kernel), we have 〈φβ(·, x), φβ(·, x′)〉L2 = φ2β(x, x′). For other kernels, although
there may not be a closed form expression for g, it can still be argued that such a g exists,
which is all we will need.

2.2.4 Abstract Problem Formulation

In the interest of generality and clarity, we consider the problem of sparsely approximating a
sample mean in a more abstract setting. Thus, let (H, 〈·, ·〉) be an inner product space with
induced norm ‖·‖H, and let {z1, . . . , zn} ⊂ H. For α ∈ Rn, define ‖α‖0 := |{i | αi 6= 0}|.
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Given an integer k ≤ n, our objective is to approximate the sample mean z̄ = 1
n

∑
i zi as

a k-sparse linear combination of z1, . . . , zn. In particular, we want to solve the problem

minimize ‖z̄ − zα‖H (2.3)

subject to ‖α‖0 = k

where zα =
∑

i∈[n] αizi.

Note that problem (2.3) is of the form of the standard sparse approximation problem
[27], where {z1, . . . , zn} is the so-called dictionary out of which the sparse approximation
is built. Later we argue that existing sparse approximation algorithms are not suitable
from a scalability perspective. Instead, we develop an approach that leverages the fact
that the vector being sparsely approximated is the sample mean of the dictionary elements.
We are most interested in the case where zi = φ(·, xi) and φ is a kernel, but the discussion
in Section 2.4 is held in this more abstract sense.

2.3 Related Work and Contributions

Problem (2.3) is a specific case of the sparse approximation problem. Since in general it is
NP-hard many efforts have been made to approximate its solution in a feasible amount of
time. See [27] for an overview. A standard method of approximation is Matching Pursuit.
Matching Pursuit is a greedy algorithm originally designed for finite-dimensional signals,
i.e., H = Rd. Following the notation of Problem (2.3) let z̄ be the target vector we wish to
approximate. In Matching Pursuit the first step is to pick an “atom” in {z1, . . . , zn} which
captures most of z̄ as measured by the magnitude of the inner product. After this first
step the subsequent atoms are iteratively chosen according to which one captures more of
the portion of z̄ that hasn’t been accounted for [28]. Note that just the first step of this
algorithm requires to compute, for each zi, the quantity 〈z̄, zi〉 = 1

n

∑
j∈[n] 〈zi, zj〉. Since we

have n zi’s, the first step already takes Ω(n2) inner product (kernel) evaluations, which is
undesirable. A variant of matching pursuit specifically designed to approximate probability
distributions through kernel means is kernel herding [29]. While [29] chooses the nonzero
values of αi to equal 1/k, [30] proposes to use a line search to obtain nonuniform αi values.
In herding the complete kernel matrix is also computed, taking quadratic computational
time. Another general common approach to sparse approximation, Basis Pursuit, has
similar time complexity.

Several algorithms which focus specifically on the sparse KDE problem have been
developed. In [31] a clustering method is used to approximate the KDE at a point by
rejecting points which fail to belong to close clusters. In [32] a relevant subset of the data
is chosen to minimize the L2 error but at an expensive O(n2) cost. In [33, 34] a regression
based approach is taken to estimate the KDE through its cumulative density function.
These algorithms rely on the assumption that the kernel mean in question is a KDE, so
cannot be generalized to other kernel means.

When the kernel mean is thought of as a mixture model, the model can be collapsed
into a simpler one by reducing the number of its components through a similarity based
merging procedure [35, 36, 37]. Since these methods necessitate the computation of all
pairwise similarities, they present quadratic computational complexity. EM algorithms
for this task result in similar computational requirements [38, 39].

A line of work that tries to speed up general kernel sums comes historically from
n-body problems in physics, and makes use of fast multipole methods [40, 41]. The general
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idea behind these methods is to represent the kernel in question by a truncated series
expansion, and then use a space partitioning scheme to group points, yielding an efficient
way to approximate group-group or group-point interactions, effectively reducing the
number of kernel evaluations. These methods are usually kernel-dependent. For the case
of the Gaussian kernel, see [42, 43] for two different space partitioning methods. Note
that space partitioning schemes may suffer considerably in high dimensional settings.
Also, since the kernel function is truncated through its series expansion, the resulting
approximation may not integrate to 1. Contrary to these methods, our approach can still
yield a valid density (discussed below).

The efforts of rapidly approximating general kernel based quantities have led to the
use of ε-samples, or coresets. To define ε-samples, first denote the data A := {x1, . . . , xn}
and the kernel quantity of interest Q(A, x), where x is some query point (for example,
the KDE is Q(A, x) = 1

n

∑
i∈[n] φ(xi, x)). An ε-sample is a set A′ ⊂ A such that, for every

query point x, Q(A, x) and Q(A′, x) differ by less than ε with respect to some norm. See
[44, 45] for the KDE case with `∞ norm. For the KME using the RKHS norm, see [46].
Both cases allow for constructions of ε-samples in near linear time with respect to the
data size and 1/ε. Notice that our approach has the advantage that it handles both the
KDE and KME cases simultaneously, and that if desired it can yield a valid density as
the approximation.

Although most of the literature seems to concentrate on the KDE, there have also
been efforts to speed up computation time in problems involving the KME. As in the
ε-sample approach above, many of these problems require the distance between KMEs
in the RKHS, so they focus on speeding up this calculation. In [47], for example, a fast
method is devised for the specific case of the maximum mean discrepancy statistic used
for the two-sample test.

Computing the kernel mean at each of the original points {x1, . . . , xn} can be thought
of as a matrix vector multiplication, where the matrix in question is the kernel matrix.
Therefore, an algebraic approach to this problem consists of choosing a suitable subset
of the matrix columns and then approximating the complete matrix only through these
columns. Among the most common of these is the Nyström method. In the Nyström
method the kernel matrix K is approximated by the matrix QW+

r Q
T , where Q is composed

of a subset of the columns of K, indexed by I, W is the matrix with entries Kij for
(i, j) ∈ I × I, and W+

r is the best r-rank approximation to its pseudoinverse (see [48] for
details). The columns composing Q are typically chosen randomly under some sampling
distribution. See [49] for some examples of sampling distributions. As explained in Section
2.4.1, our approach is connected to the Nyström method and can be viewed as a particular
scheme for column selection tailored to kernel means. The Nyström approximation of the
kernel matrix is not the only one used though, and other algebraic approaches exist. In
[50] for example, an interpolative decomposition of the kernel matrix is proposed.

In [51] a “coherence” based sparsification criterion is used in the context of one-
class classification. The main idea is that each set of possible atoms {zi|αi 6= 0} can be
quantified by the largest absolute value of the inner product between two different atoms.
The method proposed requires the computation of the complete kernel matrix, and is
therefore not suitable for our setting, which involves large data. The motivation for their
coherence criterion, however, lies in the minimization of a bound on the approximation
error. As seen in Section 2.4.2, we propose a similar bound as a starting point for our
algorithm.
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Contributions

We list a summary of contributions in this chapter.

• We present a bound on the sparse approximation error based on a novel measure of
incoherence.

• We recognize that for radial kernels, and more generally for any kernel such that
‖φ(·, x)‖ is constant (which includes all translation invariant kernels), minimizing
the bound is equivalent to solving an instance of the k-center problem. The solution
to the k-center problem, in turn, can be approximated by a linear running time
algorithm.

• Our method for approximating the KDE can be implemented so that the sparse
kernel mean is a valid density function, which is important for some applications.
Note that some alternative methods cannot be adapted to do so.

• Our method provides amortization of computational complexity since the calculation
of the set I (introduced below) is only done once. Many subsequent calculations (e.g.,
kernel bandwidth search) can then be performed at a relatively small or negligible
cost.

• Our method is versatile in that it addresses different types of kernel means under a
common framework. In particular, it can be used to approximate both KMEs and
KDEs at the same time.

• Our method provides a scheme to automatically select the sparsity level.

• We demonstrate the improved performance of the proposed method in three different
applications, Euclidean embedding of probabilities (using both the KDE and the
KME), class proportion estimation (using the KME), and clustering with the
mean-shift algorithm (using the KDE), as well as on several additional benchmark
datasets.

2.4 Subset Selection and Incoherence-Based Bound

Let us now reformulate problem (2.3). Our approach will be to separate the problem into
two parts: that of finding the set of indices i such that αi is not zero, and that of finding
the value of the nonzero αi’s. Letting I ⊂ [n] denote an index set, we can pose problem
(2.3) as

min
I⊆[n]

|I|=k

min
(αi)i∈I

‖z̄ −
∑
i∈I

αizi‖2 . (2.4)

Note that the inner optimization problem is unconstrained and quadratic, and its solution,
which for fixed I and k we denote by αI ∈ Rk, is

αI = K−1
I κI ,

where KI = (〈zi, zj〉)i,j∈I and κI is the k-dimensional vector with entries 1
n

∑
j∈[n] 〈zj, zl〉,

l ∈ I.
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Let αI = (αI,i)i∈I and zI =
∑

i∈I αI,izi. Then we can rewrite problem (2.3) as

min
I⊆[n]

|I|=k

‖z̄ − zI‖ . (2.5)

2.4.1 Connection to the Nyström Method

Before continuing to the approximate solution of problem (2.5), we briefly highlight
its relationship to the Nyström method. Given a set I ⊂ [n], let K be the kernel
matrix of {zi | i ∈ [n]}, K := (〈zi, zj〉)i,j∈[n], and KI the kernel matrix of {zi | i ∈ I},
KI := (〈zi, zj〉)i,j∈I . Also, let QI be the binary matrix such that KQI is composed
of the columns of K corresponding to I. Then we can rewrite αI and KI as αI =(
QT
IKQI

)−1
QT
IK1n and KI = QT

IKQI , where 1n denotes the vector in Rn with entries
1/n. By doing so, we can express the objective of (2.5) as

‖z̄ − zI‖2 = 1Tn
(
K −KQIK−1

I QT
IK

T
)
1n

= 1Tn

(
K − K̃I

)
1n.

where K̃I := KQIK
−1
I QT

IK
T . We recognize K̃I as the Nyström matrix from the Nyström

method [49], which is the only term dependent on I in the objective. Therefore, our
work can be interpreted from the Nyström perspective: choose suitable columns of K and
approximate K through the Nyström matrix. The main difference is that the resulting
approximation is assessed using the induced norm of the inner product space where the
zi’s reside, instead of the commonly used spectral and Frobenius norms.

2.4.2 An Incoherence-based Sparse Approximation Bound

We now present our proposed algorithm to approximate the solution of problem (2.5).
Our strategy is to find an upper bound on ‖z̄ − zI‖ which is dependent on I and then
find the I that minimizes the bound. First, we present a lemma which will aid us in
finding the bound.

Lemma 1. Let (H, 〈·, ·〉) be an inner product space. Let S be a finite dimensional subspace
of H and PS the projection onto S. For any z0 ∈ H

‖PSz0‖ = max
z∈S,‖z‖=1

〈z0, z〉 .

Proof. First note that since S is finite dimensional, by the Projection Theorem z0 − PSz0

is orthogonal to S. Now, for any z ∈ S with ‖z‖ = 1, we have

〈z0, z〉 = 〈PSz0 + (z0 − PSz0), z〉
= 〈PSz0, z〉+ 〈z0 − PSz0, z〉
= 〈PSz0, z〉
≤ ‖PSz0‖ ‖z‖ = ‖PSz0‖ ,

where we have used the Cauchy-Schwartz inequality. To confirm the existence of a
vector z which makes it an equality and therefore reaches the maximum, just let z =
PSz0/ ‖PSz0‖.
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We can now present the theorem which will be the basis for our minimization approach.
First, define

νI := min
j /∈I

max
i∈I
〈zi, zj〉 ,

which we can think of as a measure of the “incoherence” of {zi | i ∈ I}. It is now possible
to establish a bound:

Theorem 1. Assume that for some C > 0 〈zi, zi〉 = C ∀i ∈ [n]. Then for every I ⊆ [n],

‖z̄ − zI‖ ≤
(

1− |I|
n

)√
1

C
(C2 − ν2

I).

Proof. The beginning of this proof is similar to the one in [51]. Let SI := span({zi | i ∈ I})
and denote PSI the projection operator onto SI and I the identity operator. We have

‖z̄ − zI‖ = ‖z̄ − PSI z̄‖ =
1

n
‖
∑
i∈[n]

(I − PSI)zi‖

≤ 1

n

∑
i∈[n]

‖(I − PSI)zi‖ =
1

n

∑
i/∈I

‖(I − PSI)zi‖

where we have used the triangle inequality, and the last equality is due to the fact that
zi = PSIzi when zi ∈ SI .

Now, since (zi − PSIzi) ⊥ PSIzi, we can use Pythagoras’ Theorem in H to get
‖zi − PSIzi‖2 = ‖zi‖2 − ‖PSIzi‖2.

By Lemma 1, ‖PSIzi‖ = max
z∈SI , ‖z‖=1

〈zi, z〉. Therefore, for i /∈ I,

‖PSIzi‖ =
1√
C

max
z∈SI ,‖z‖=

√
C
〈zi, z〉

≥ 1√
C

max
`∈I
〈zi, z`〉

≥ 1√
C

min
j /∈I

max
`∈I
〈zj, z`〉 =

1√
C
νI .

Thus, for i /∈ I,

‖zi‖2 − ‖PSIzi‖2 ≤ C − ν2
I
C

and finally

‖z̄ − zI‖ ≤
1

n

∑
i/∈I

√
C − ν2

I
C

=

(
1− |I|

n

)√
1

C
(C2 − ν2

I) .

2.4.3 Application to Kernel Means

We now apply the previous result in the context of approximating a kernel mean based on a
radial kernel. Recall that, in the kernel mean setting, zi = φ(·, xi) and 〈φ(·, xi), φ(·, xj)〉 =
g(‖xi − xj‖2), where φ is a radial kernel, {x1, . . . , xn} ⊂ Rd, and g is strictly decreasing
as in Definition 9. Also note that for any radial kernel the assumption in Theorem 1
is satisfied, since 〈φ(·, xi), φ(·, xi)〉 = g(0) = C > 0. Here f̄ and fI are defined in an
analogous way to z̄ and zI , with f̄ being a kernel mean and fI its sparse approximation.
The following corollary follows directly from Theorem 1.
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Corollary 1. Let φ be a radial kernel, with 〈φ(·, x), φ(·, x)〉H = C ∀x ∈ Rd. Then for
every I ⊆ [n], ∥∥f̄ − fI∥∥ ≤ (1− |I|

n

)√
1

C
(C2 − ν2

I).

For the case of symmetric positive definite kernels, with H the corresponding RKHS,
bounding the H norm implies bounding the L∞ norm, as stated in the following corollary.

Corollary 2. Let φ be a symmetric positive definite kernel with associated RKHS H, with
〈φ(·, x), φ(·, x)〉H = C ∀x ∈ Rd. Then for every I ⊆ [n],

∥∥f̄ − fI∥∥∞ ≤ (1− |I|
n

)√
C2 − ν2

I .

Proof. ∥∥f̄ − fI∥∥∞ = max
x

∣∣(f̄ − fI) (x)
∣∣

= max
x

∣∣〈f̄ − fI , φ(·, x)
〉∣∣

≤ max
x

∥∥f̄ − fI∥∥H ‖φ(·, x)‖H

=
√
C
∥∥f̄ − fI∥∥H ,

where the second line is due to the reproducing property and the third to the Cauchy-
Schwarz inequality.

For some applications, such as density estimation, one may desire the approximation
to belong to ∆ :=

{∑
i∈I αizi |

∑
αi = 1, αi ≥ 0

}
. A similar bound can be derived, but is

not as tight as the previous ones. It also suggests, however, the maximization of the term
νI . In particular, we have that, under the assumptions of Corollary 1, and letting f∆ be
the projection of f̄ onto ∆:

∥∥f̄ − f∆

∥∥ ≤√2

(
C −

(
1− |I|

n

)
νI

)
.

Details are shown in Chapter 3.

2.5 Bound Minimization Via k-center Algorithm

The bound in the previous corollaries can be minimized by maximizing the term νI . We
now present a procedure to accomplish this for the case of radial kernels. Let φ be a radial
kernel and define the set I∗ as

I∗ := arg min
I⊆[n]

|I|=k

max
j /∈I

min
i∈I
‖xi − xj‖ .

Then, since 〈φ(·, xi), φ(·, xj)〉 = g(‖xi − xj‖2) for g strictly decreasing, I∗ also maximizes
νI = min

j /∈I
max
i∈I

g(‖xi − xj‖). Therefore, I∗ is the set that minimizes the bound in Theorem
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input x1, . . . , xn, k
X ←− ∅
Y ←− {x1, . . . , xn}
Choose randomly a first index u ∈ [n]
X ←− X ∪ {xu}
Y ←− Y \{xu}
while |X| < k do

Choose the element y ∈ Y for which d(y,X) is maximized
X ←− X ∪ {y}
Y ←− Y \{y}

end while
output Ik = {i ∈ [n] |xi ∈ X}

Figure 2.1: A linear time 2-approximation algorithm for the k-center problem.

1. We have translated a problem involving inner products of functions to a problem
involving distances between points in Rd.

The problem of finding I∗ is known as the k-center problem. To pose the k-center
problem more precisely, we make a few definitions. For a fixed I, let XI = {xi | i ∈ I}
and YI = {xj | j /∈ I}, and for all xj ∈ YI define its distance to XI as d(xj, XI) =
min
xi∈XI

‖xi − xj‖. Furthermore, let W (XI) = max
xj∈YI

d(xj, XI). Then, the k-center problem is

that of finding the set I of size k for which W (XI) is minimized.
The k-center problem is known to be NP-complete [52]. However, there exists a greedy

2-approximation algorithm [53] which produces a set Ik such that W (XIk) ≤ 2W (XI∗).
This algorithm is optimal in the sense that under the assumption that P6=NP there is no
ρ-approximation algorithm with ρ < 2 [54]. The algorithm is described in Fig. 2.1, and
as can be seen, it has a linear time complexity in the size of the data n. In particular, the
algorithm runs in O(nkd) time.

To relate the output of the algorithm back to the bound of the theorem, note that νI =
g(W (XI)). Since the k-center algorithm guarantees that W (XIk) ≤ 2W (XI∗), in the most

general case we can say that
√
C2 − ν2

Ik =
√
C2 − g(W (XIk))

2 ≤
√
C2 − g(2W (XI∗))2.

Knowing more about the form of g yields more information. For example, for the Gaussian
kernel we have √

1

C

(
C2 − ν2

Ik

)
≤

√
1

C

(
C2 − 1

C6
ν8
I∗

)
≤
√

1

CC6
(C4 − ν4

I∗) (C4 + ν4
I∗)

≤
√

2C4

CC6
(C2 − ν2

I∗) (C2 + ν2
I∗) ≤ 2

√
1

C
(C2 − ν2

I∗).

2.5.1 Generalization to nonradial kernels

The preceding argument extends to certain nonradial kernels. For example, consider
kernels satisfying 〈φ(·, x), φ(·, x′)〉 = g(M(x, x′)), where M is a non-Euclidean metric on
Rd. Examples include the Gaussian kernel with anisotropic covariance where M is a
Mahalanobis distance, or a type of Laplacian kernel where M is the `1 distance. The
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k-center algorithm described previously applies in these settings as well, where distance
in the algorithm is computed using M .

Another example of a nonradial kernel is a discriminative kernel for classification
problems. Let x denote a feature vector and y ∈ {−1, 1} its label. If φ is a kernel on Rd,
then ψ((x, y), (x′, y′)) = yy′φ(x, x′) is a kernel on Rd × {−1, 1}. A kernel mean based on
this kernel is a well-known classification algorithm [?]. For the discriminative kernel, the
problem of maximizing the incoherence reduces to a variation of the k-center problem:
find k1 points in one class and k−1 points in the other class such that k1 +k−1 = k and the
maximum distance of a point to its nearest representative in the same class is minimized.
The k-center algorithm described previously can be easily adapted to solve this problem.

More generally, let φ be any kernel such that ‖φ(·, x)‖2 = C is independent of x. This
includes any translation invariant kernel. Then

〈φ(·, x), φ(·, x′)〉 =
1

2
(2C − ‖φ(·, x)− φ(·, x′)‖2).

Hence, the problem of solving

max
I⊆[n]

|I|=k

min
j /∈I

max
i∈I
〈φ(·, xi), φ(·, xj)〉

reduces to solving
min
I⊆[n]

|I|=k

max
j /∈I

min
i∈I
‖φ(·, xi)− φ(·, xj)‖ .

In other words, it suffices to solve the k-center problem in the kernel feature space H,
using the induced H norm, which can be calculated efficiently using the kernel. Once
again, the same k-center algorithm can be applied, where distances are now computed
as ‖φ(·, xi)− φ(·, xj)‖ =

√
2C − 2φ(xi, xj). We also note that Corollaries 1 and 2 also

hold in this generalized setting. It is worth noting that for the case of radial kernels the
k-center algorithm can be used in both the feature space as in Euclidean space, which will
potentially yield two different results. We have not empirically validated the nonradial
kernel case.

2.5.2 Computation of αI and Auto-selection of k

The k-center algorithm allows us to find the set I on which our approximation will be
based. After finding I we can determine the optimal coefficients αI . Since the main
computational burden is in the selection of I, we now have the freedom to explore different
values of αI in a relatively small amount of time. For example, we can compute αI for
each of several possible kernel bandwidths σ.

The optimal way to compute αI depends on the application. If the user has a good
idea of what the value of k is, then a fast way to compute αI for that specific value is
to apply their preferred method to solve the equation KIαI = κI . For example, since
for symmetric positive definite kernels the kernel matrix is positive semi-definite, the
preconditioned conjugate gradient method can be used to quickly obtain αI to high
accuracy. This approach has the advantages of being simple and fast.

A further advantage of our method is evident when the user can accept a maximum
tolerance value of k, say kmax, but would prefer to stop at a value k0 ≤ kmax that performs
about as well as kmax. To do this, at iteration m ≥ 1 in the k-center algorithm we compute
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αIm right after computing Im, which provides a record of all the αIj for 1 ≤ j ≤ k0. To
find k0, we use the information from the computed coefficients to form an error indicator
and stop when some error threshold is crossed. Before showing what these error indicators
are, we first provide an update rule to efficiently compute the α coefficients at each
iteration step.

Let Im be the set of the first m elements chosen by the k-center algorithm, and let
αIm , KIm and κIm be obtained by using Im. If we increase the number of components to
m+ 1, then as shown in [51] we have

KIm+1 =

[
KIm b
bT φ(xjm+1 , xjm+1)

]
where xj` is the `th element selected by the k-center algorithm, and b = (φ(xjm+1 , xi))i∈Im .
The resulting update rule for the inverse is

K−1
Im+1

=

[
K−1
Im 0
0 0

]
+ q0(qqT )

where q0 = 1/(φ(xjm+1 , xjm+1) − bTK−1
Imb) and q =

[
−bTK−1

Im 1
]T

. From here the user
can now compute αIm+1 by multiplying K−1

Im+1
with

κIm+1 =

[
κIm

1
n

∑n
i=1 φ(xjm+1 , xi)

]
.

Assuming we stop at kmax, the time complexity for computing all the αIm ’s is O(k3
max)

and the necessary memory O(k2
max).

Note that our incremental approach to construct αI does assume that the kernel matrix
KI is full rank, since it does compute K−1

I explicitly, and not the pseudeoinverse (as
opposed to, say, the Nyström method). For Gaussian and similar kernels, KI is positive
definite assuming the xi’s are distinct. Rank deficiency results from selecting centers that
are very close to each other, however, the k-center algorithm does the opposite and selects
elements far apart from each other, which supports the assumption of a full rank matrix
KI .

To automatically stop at some k0 ≤ kmax we need a stopping criterion based on some
form of error. We propose the following: using the notation of problem (2.5) we have that

‖z̄−zI‖2 =

〈
1

n

∑
`∈[n]

z`,
1

n

∑
`′∈[n]

z`′

〉

− 2

〈
1

n

∑
`∈[n]

z`,
∑
i∈I

αI,izi

〉
+

〈∑
i∈I

αI,izi,
∑
j∈I

αI,jzj

〉

= ‖z̄‖2 − 2 ·
∑
i∈I

αI,i ·
1

n

∑
`∈[n]

〈z`, zi〉+ αTIKIαI

= ‖z̄‖2 − αTIκI .

Since ‖z̄‖2 is a constant independent of I, we can avoid its O(n2) computation and only
use the quantities E|I| := −αTIκI as error indicators. Note that Et is nonincreasing with
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respect to t. Based on this we choose k0 to be the first value at which some relative error
is small. In this paper we use the test

|Ek0−1 − Ek0 |
|E1 − Ek0|

≤ ε

for some small ε. The overall complexity is then reduced to O(nk0d+ k3
0d).

A further consideration for computing αI should be made if the result is desired to be
a probability density function. In this case a k-dimensional αI can be projected into the

simplex ∆k−1 :=
{
ν ∈ Rk|

∑k
i=1 νi = 1, νi ≥ 0 ∀ 1 ≤ i ≤ k

}
after being obtained by any

of the discussed methods (see [55]). This extra step takes negligible time with respect to
the rest of the computations. Alternatively, a quadratic program which takes into account
the constraints of non-negativity and

∑k
i=1 αI,i = 1 can be solved.

A Matlab implementation of the complete Sparse Kernel Mean procedure can be found
at [22].

2.6 Experiments: Speeding Up Existing Kernel

Mean Methods

We have implemented our approach in three specific machine learning tasks that require
the computation and evaluation of a mean of kernels. In the first of these, we apply our
algorithm to the task of dimensionality reduction. In the second, we use it in the setting
of class proportion estimation. In the third, we explore its performance when used as
part of the mean shift algorithm. Finally, for 11 benchmark datasets we compare the
performance of our approach to four other similar methods.

In the following we refer to our algorithm or to the resulting kernel mean as SKM (for
Sparse Kernel Mean). We now provide a detailed description of each task and relevant
results. The implementation has been done in Matlab.

2.6.1 Euclidean Embedding of Distributions

In this experiment we embed probability distributions in a lower dimensional space for
the purpose of visualization. Given a collection of N distributions {P1, . . . , PN}, the
procedure consists of creating a dissimilarity matrix for some notion of dissimilarity among
these distributions and then performing a dimensionality reduction method. We consider
two cases. In the first case the dissimilarity matrix will be the distance between the
kernel mean embeddings of the distributions in the RKHS (KME case), while in the
second case it will be the (symmetrized) KL divergence between KDEs (KDE case). For
dimensionality reduction we will use ISOMAP [56]. In the setup we have access to each
of N distributions {P1, . . . , PN} through samples drawn from those distributions. The

sample drawn from the `th distribution is denoted
{
x

(`)
i

}n`
i=1

.

Notice that in the KDE case, in order to compute the KL divergence it is necessary to
obtain a valid density function. By choosing the coefficients as described in Section 2.5.2,
the resulting sparse approximation is a density function.

Let us start with the KME case, in which the dissimilarity is the difference between
the distributions’ KMEs. The first task is to estimate the KME using some symmetric
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Figure 2.2: 2-dimensional representation of flow cytometry data - KME case. Each point
represents a patient’s distribution. The embeddings were obtained by applying ISOMAP
to distances in the RKHS.

positive definite kernel φ. For the `th distribution, the empirical estimate of its KME is

Ψ̂(P`) =
1

n`

n∑̀
i=1

φ(·, x(`)
i ),

with a sparse approximation

Ψ̂0(P`) =
∑
i∈I(`)

α
(`)
i φ(·, x(`)

i ),

for some set I(`) and
{
α

(`)
i |α

(`)
i ∈ R

}
, where the α coefficients have been computed

according to the update method described in Section 2.5.2.
Given all the KMEs, we can now construct a distance matrix. Let H be the RKHS of

φ. We can use the distance induced by the RKHS to create the matrix D, with entries

D`,`′ :=
∥∥∥Ψ̂(P`)− Ψ̂(P`′)

∥∥∥
H

=

[
1

n2
`

∑
i,j

φ(x
(`)
i , x

(`)
j )− 2

1

n`n`′

∑
i,j

φ(x
(`)
i , x

(`′)
j )

+
1

n2
`′

∑
i,j

φ(x
(`′)
i , x

(`′)
j )

]1/2

.

We similarly define D0 based on the sparse KMEs. With such matrices ISOMAP can now
be performed to visualize the distributions in, say, R2.

Note that if the samples from P` and P`′ have n` and n`′ points, then D`,`′ takes
Θ(n2

` + n`n`′ + n2
`′) time to compute. Since we need all the pairwise distances, we need

Θ(N2) such computations. A sparse approximation of the KMEs of P` and P`′ of sizes k`
and k`′ would instead yield a computation of Θ(k2

` +k`k`′+k
2
`′) for each entry. Assuming all

samples have the same size n, and the sparse approximation size is k, then the computation
of the distance matrix is reduced from Θ(N2n2) to Θ(N2k2).

Inspired by the work of [57], we have performed these experiments on flow cytometry
data from N = 37 cancer patients, with sample sizes ranging from 8181 to 108343. We
have used the Gaussian kernel, chosen H to be its RKHS, and computed the bandwidth
based on the ‘iqr’ scale option in R’s KernSmooth package. That is, we have computed
the interquartile range of the data, averaged over each dimension, and divided by 1.35.
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Figure 2.3: 2-dimensional representation of flow cytometry data - KME case. D0 was
found through kernel herding.

Table 2.1: Time comparison for the Euclidean embedding of the flow cytometry dataset -
KME case.

Approximation D computation Total
Full 0 3.04hrs 3.04hrs
SKM 1.29mins 1.6s 1.31mins
HERD 30.38mins 1.8s 30.42mins

After the embedding has been done, we have performed Procrustes analysis on the points
so as to account for possible translation, scaling, and rotation.

To determine the maximum size k` of each sparse representation, we recall that the
SKM procedure takes O(n`k` + k3

` ) kernel evaluations, so in order to respect the n`k`
factor, we have chosen a small multiple of

√
n` for k`. In this case we picked k` to be the

largest integer smaller than 3
√
n` for each `. We have implemented the auto-selection

scheme described in Section 2.5.2. The results for the case of ε = 10−12 are shown in Fig.
2.2 and Table 2.1. As a comparison, we also compute an alternative D0 based on kernel
herding (see Section 2.3) and plot the result in Fig. 2.3. Note that although for this fixed
ε HERD seems to fit better the projection resulting from using the full kernel mean, as
seen in Table 2.1 it takes 30 minutes to do so. For the SKM an almost identical projection
can be generated in just over a minute.

Although k` is the largest allowed sparsity, each algorithm stops at some k0` ≤ k`.
The values k0`

k`
averaged over all `’s are shown in Fig. 2.4. To determine how well D0

approximates D, we have plotted the relative error
‖D−D0‖F
‖D‖F

for different values of ε. The

result is shown in Fig. 2.4.
The KDE case is similar. The dissimilarity matrix is composed of the symmetrized KL

divergence between the KDEs of the distributions, defined as dKL(p, q) := DKL(p‖q) +
DKL(q‖p), where DKL indicates the KL divergence. For the `th distribution, its KDE is

f̂` =
1

n`

n∑̀
i=1

φ(·, x(`)
i ),

with a sparse approximation

f̂0` =
∑
i∈I(`)

α
(`)
i φ(·, x(`)

i ).

for some set I(`) and
{
α

(`)
i |α

(`)
i ≥ 0 ,

∑
i α

(`)
i = 1

}
, which has again been calculated

according to the update method described in Section 2.5.2. Note that the KL divergence
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Figure 2.4: The relative error and sparsity incurred by the SKM-based and HERD-based
matrices D0 as a function of ε, KME case. Not included is the computation time, SKM
achieves an error of 10−12 in 1.3 minutes, while HERD takes more than 30 minutes.

requires two density functions as input. We achieve this by projecting onto the simplex as
indicated in 2.5.2. As in the KME case, we construct the dissimilarity matrix (D`,`′) :=

dKL(f̂`, f̂`′). Figures and Tables analogous to those for the KME case are shown in
Chapter 3, with similar results.

Figure 2.2 shows us that the resulting embedded points using the sparse approximation
keep the structure as of those using the full kernel mean. Notice also from Table 2.1 that
the sparse approximation is many times faster than the full computation (about 400 times
faster). Furthermore, the main computational investment is made in finding the elements
of the sets I(`), since the subsequent computation of D0 is of negligible time.

In summary, for the case ε = 10−12, SKM takes only 1.3 minutes and the resulting
embedding is almost identical to the full one, just as in Figure 2.3 shows for the herding case
(which takes 30 minutes to compute). The SKM embedding is practically indistinguishable
from that of the full one, being about 400 times faster than the full one and about 20
times faster than HERD.

2.6.2 Class Proportion Estimation

In this problem we are presented with labeled training data drawn from N distributions
{P1, . . . , PN} and with further testing data drawn from a mixture of these distributions
P0 =

∑N
i=1 πiPi, where πi ≥ 0 and

∑
i πi = 1. Each Pi represents a class in a multiclass

classification problem and the goal is to estimate the mixture proportions {π1, . . . , πN} of
each class in the unlableled data set represented by P0 (see [58, 59, 60]).

To do so we let Ψ̂(P`) represent the KME of P` for 0 ≤ ` ≤ N . We then find the
proportions {π̂i}Ni=1 that minimize the distance

‖Ψ̂(P0)−
N∑
i=1

πiΨ̂(Pi)‖2
H,

where H is the RKHS of the kernel used to construct the KME. By setting the derivative
to zero the optimal vector of proportions π̂− := [π̂1, . . . , π̂N−1]T , subject to

∑N
i=1 π̂i = 1

but not to π̂i ≥ 0, satisfies
D̂π̂− = ê,

where
D̂ij =

〈
Ψ̂(Pi)− Ψ̂(PN), Ψ̂(Pj)− Ψ̂(PN)

〉
H
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and
êi =

〈
Ψ̂(Pi)− Ψ̂(PN), Ψ̂(P0)− Ψ̂(PN)

〉
H
.

From here we can define

π̂ :=

[
π̂−

1−
∑N−1

i=1 π̂i

]
.

A parallel approach, using the KDE instead of the KME is shown in [59]. In that case the
distance in H was changed to the L2 distance.

Notice we have not enforced the constraint π̂i ≥ 0, for 1 ≤ i ≤ N . To do so a quadratic
program can be set. For most of our simulations we did not encounter the necessity to do
so, due to the fact that the true proportions we are approximating are also nonnegative,
although this is an empirical observation without theoretical support. Therefore, for the
few cases for which π̂ lied outside of the simplex, we have projected onto it as described
in [55].

We have used the handwritten digits data set MNIST, obtained from [61], which con-
tains 60, 000 training images and 10, 000 testing images, approximately evenly distributed
among its 10 classes (see [62] for details). We have only used the first five digits.

We present a comparison of the performance, measured by the `1 distance between
the true π and the estimate π̂, of the sparse KME compared to the full KME. We have
done this for different values of π, meaning different locations of π inside the simplex.
To do so, we sampled π from the simplex using the Dirichlet distribution with different
concentration parameter ω. As a reminder to the reader, a small value of ω implies sparse
values of π are most probable, ω = 1 means any value of π is equally probable, and ω > 1
means values of π for which all its entries are of similar value are most probable. We
varied ω over the set {.1, .2, . . . , 3.1}.

We have split the data in two and used the first half to estimate the kernel bandwidth
through the following process. We first sample a true π, then we construct the KME
and pick the bandwidth σ which minimizes ‖π − π̂‖`1 . We performed the search on σ
by using Matlab’s function fminbnd. For both the SKM and the full case we allowed for
100 iterations. We have used the Gaussian kernel to create the sparse KME of the `th

distribution, with sparsity level of k` =
√
n`, where n` is the size of the available sample

from distribution `. Since the α coefficients depend on σ, and for each set I(`) we perform
a search over several values of σ, we did not compute α iteratively as we constructed I(`).
Instead, once the construction of I(`) was finished, we used the preconditioned conjugate
gradient method to obtain α.

Once σ was estimated, we then accessed the second half of the data to test the
performance for both the SKM and the full KME for different values of ω. The results
are shown in Fig. 2.5. We have also plotted for perspective a “blind” estimation of π,
which uniformly at random picks a vector π̂. A comparison of the computation times for
the sparse KME and the full KME is shown in Table 2.2, where we have averaged over all
values of ω.

Notice from Table 2.2 that, in the SKM case, the estimation of σ takes about the
same time as the computation of π̂. This is due to the fact that the main bottleneck
of the algorithm is the computation of the set I which is independent of σ. It is in the
estimation of σ that the full kernel mean is many times slower than SKM, as seen in the
Table, SKM is about 10 times faster for the whole process.
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Figure 2.5: Class Proportion Estimation. `1 error of estimated proportions over a range
of concentration parameters.

Table 2.2: Computation times for both full and sparse KME, averaged over all values of ω.
σ estimation π̂ computation Total

Full 110.4s 5.08s 1.9mins
SKM 5.9s 5.07s 11s

2.6.3 Mean-Shift Clustering

We have based this experiment on the mean-shift algorithm as described in [63]. This
algorithm is used in several image processing tasks and we will use it in the context of
image segmentation. The goal is to form a clustering of the image pixels into different
segments.

Each pixel is represented by a 5-dimensional vector (3 dimensions to describe color, and
2 for the position in the image), and the distribution of these feature vectors is estimated
by the KDE. Denote the image pixels as {xi}ni=1, xi ∈ R5. The mean-shift algorithm shifts
each point lying on the surface of the density closer to its closest peak (mode). Given a
starting point x, the algorithm iteratively shifts x closer to its mode until the magnitude of
the shift is smaller than some quantity γ. The shift exerted on x at each iteration requires
the computation of the gradient of the KDE at the current position, making mean-shift
computationally expensive. Denote the shifted points as {yi}ni=1. Once all points are
shifted close to the different modes, then any clustering algorithm can be performed to
find the clusters. A clustering algorithm is described in [63], based on merging the modes’
neighborhoods which are close. We used a code following these guidelines found at [64],
slightly modified by increasing the distance used for modes’ neighborhoods to merge.

In our experiments we used a 500 × 487 image of a painting by Piet Mondrian
(Composition A), and compared our algorithm with the full density estimation case. We
chose kmax to be the largest integer smaller than

√
n and we have used the method for

auto-selecting k0 outlined in Section 2.5.2, with ε = 10−8. We have used the Gaussian
kernel and set the bandwidth according to Equation (18) in [65], which is specifically
suggested for mode-based clustering. We compare the SKM approach to a method based
on Locality Sensitive Hashing (LSH, see [66, 67]). This method finds for each point and
with high probability its nearest neighbors. It then approximates the KDE locally by only
using the effect from such neighbors. We chose 5 nearest neighbors and to implement
LSH we used the Matlab version of LSH available at [68] (we have used the e2lsh scheme
with three hash tables per picture). See [68, 69] for details on LSH.

We present two indicators to evaluate the performance between the clustering resulting
from the full KDE and that resulting from the approximate KDE. In the following, let B
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Table 2.3: Time and Performance Comparison for Mean Shift algorithm.
Time Performance

Preparation Mean Shift Total di(·,B) d̂H(·,B)
B 0 2.1hrs 2.1hrs 0 0
ASKM 15.65s 39.12s 54.77s 0.006 0.015
ALSH 12.7s 7.1mins 7.32mins 0.034 0.02

be used to indicate that the full kernel density estimate has been used, while A indicates
either the SKM or the LSH approaches. With a slight abuse of notation, let A and B also
indicate their resulting clusterings.

Discrepancy Index. Our first performance measure, which we call the discrepancy
index di, is somehow intuitive, and it describes the ratio of the number of vectors x` that
the approximate methods shifted by more than δ away from their full method counterpart.
δ is here some tolerance threshold, which we have set to three times the kernel bandwidth.
More precisely, if {x`}n`=1 indicate the picture pixels and yA` , yB` are the shifted versions of
x` according to density estimation methods A and B respectively, then

di(A,B) =
1

n

∑
`

1{‖yA` −yB` ‖>δ}.

Hausdorff Distance. The second performance measure, which describes the Hausdorff
distance between clusterings, was obtained from [70] and is denoted by dH . To define the
Hausdorff distance, let P be a distribution on Rd (in our case, P is the distribution of
the image pixels on R5). Furthermore, let X be the set of subsets of Rd such that the
distance between two sets A and B is ρ(A,B) := P (A∆B), where ∆ is the symmetric
difference (to be precise, we deal with equivalence classes, where two sets A and B
are equivalent if ρ(A,B) = 0). Notice X is a metric space. Let B ⊂ X , and define
ρ(A,B) := minB∈B ρ(A,B). We interpret a subset A of X as a clustering, and an element
A in X as a cluster. The Hausdorff distance between two clusterings is

dH(A,B) = max

{
max
A∈A

ρ(A,B), max
B∈B

ρ(B,A)

}
.

In words, dH measures the furthest distance between elements of A to the clustering
B and elements of B to the clustering A (that is, dH measures the less overlap between
clusters of different clusterings, as measured by P ). Since we don’t have access to P ,
the empirical version of dH proposed in [70] is obtained by replacing P by the empirical
probability measure. Letting ρ̂(A,B) := minB∈B

1
n

∑n
i=1 1{A∆B}(xi), we have

d̂H(A,B) = max

{
max
A∈A

ρ̂(A,B), max
B∈B

ρ̂(B,A)

}
.

We use this latter quantity to measure the SKM performance.
The results are presented in Table 2.3. In the table B indicates the full kernel density

estimate has been used, ASKM indicates the k-center based algorithm and ALSH the LSH
method. Note that both the SKM and the LSH approach present significant computational
advantages. The SKM approach, however, manages to be faster while incurring half the
discrepancy of the LSH and about the same Hausdorff distance.
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2.6.4 Comparison with Other Subset Selection Strategies

To further illustrate the performance of SKM, we look at the sparsity required to achieve
a given accuracy ε, that is, the smallest value k0/kmax for which the quantity Ē|I| :=

‖z̄ − zI‖2 / ‖z̄‖2 is smaller than ε, where k0 = |I|, (see Section 2.5.2). Note we selected
Ē|I| as opposed to the term E|I| used for autoselection because Ē|I| is more interpretable
and for these experiments we are not interested in efficient autoselection. We have applied
our method for 11 distinct benchmark datasets, listed in Table 2.5. We present these
sparsity values for ε = 10−3 and also the corresponding values for four other methods:1)
RAND, which chooses the set I uniformly at random, 2) L2, which chooses I by sampling
according to the squared norm of the columns of the kernel matrix (see [49]), 3) KMEANS
which picks as the representative set not a subset of the data but the results from the
k-means algorithm and constructs the kernel matrix according to these (see again [49]),
and 4) HERD, which uses kernel herding (see [30]) to select I and αI . Table 2.4 shows
the time and memory complexities for these algorithms. The Wilcoxon signed rank test
was performed pairwise comparing the performance of SKM to the other methods. The
p-values for SKM with respect to RAND, L2, KMEANS and HERD are respectively
.024, .001, .019, and .001 favoring SKM. Note that RAND and KMEANS have similar
performance, and in fact the p-value between the two is .64. We also present the complete
error plot for the banana dataset in Figure 2.6. Note that in this case other approximations
show an initial advantage because they are more likely to pick elements from dense areas,
which for small values of |I| represents better the full distribution. However, as the size
of I increases, the fine structure (e.g., the distribution tails) is better captured by SKM,
since the k-center algorithm picks points far apart from each other. Note that Table 2.5
shows that SKM achieves better sparsity for a given accuracy. Equivalently, we can say
SKM achieves better accuracy for a fixed sparsity level. In Chapter 3, we also report the
time required to achieve an accuracy of 10−3 and find a similar advantage for SKM.

The sparse approximation strategy proposed in this paper can be a valid density if the
αi’s are set to satisfy αi ≥ 0 and

∑
i αi = 1. Therefore, we also evaluate the performance

of the proposed sparse approximation according to the KL divergence, a common metric
between distributions whose arguments must be density functions.

For the same benchmark data sets listed above, we computed the KL divergences
D(z̄‖zI) and D(zI‖z̄) between the sparse and the full kernel mean. We used the auto-
selection scheme proposed in Section 2.5.2 with ε = 10−7, and projected the resulting
α onto the simplex to ensure we have a valid probability distribution. We have chosen
a Gaussian kernel and used the Jaakkola heuristic [71] to compute the bandwidth. We
compare the performance of SKM to that of RAND, which, as seen above, is similar to
that of KMEANS. We have performed the Wilcoxon signed rank test [72] to determine if
there is a significant advantage of the SKM. The test for both the case D(z̄‖zI) and the
case D(zI‖z̄) yields a p-value of 0.0186, favoring the SKM method. The results are shown
in Table 2.6. To understand this, note that in the extreme case in which one density is
zero in a particular region while the other is positive, the KL divergence is infinite, so
the KL divergence highly penalizes very low density approximations to positive density
regions. The SKM accurately approximates low density regions since it selects outliers,
while the random selection approach picks mostly points in populated regions.
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Table 2.4: Time complexity and memory comparison among selected methods. n is the
data size, k the approximation size, and T the number of iterations for the k-means
algorithm from MATLAB.

Method Selection time α computation time Memory
SKM nk k3 k2

RAND k log n k3 k2

L2 n2 ≤ k3 k2

KMEANS nkT k3 k2

HERD n2 + k3 (combined with selection) k2

Table 2.5: Sparsity level required for an accuracy of 10−3.
SKM RAND L2 KMEANS HERD

banana 0.6443 0.8905 1 0.9068 1
image 0.7367 0.7933 1 0.8540 1

ringnorm 0.6603 0.6779 1 0.6787 .8325
breast-cancer 0.6768 0.6062 1 0.5905 1

heart 0.7455 0.8386 1 0.8384 1
thyroid 0.7257 0.9410 1 0.9383 1
diabetes 0.6405 0.7885 1 0.7859 1
german 0.5648 0.5900 1 0.5889 .8

twonorm 0.6202 0.5962 0.9863 0.6002 .7725
waveform 0.6557 0.6876 1 0.6843 1

iris 0.7667 0.8536 1 0.8782 1

2.6.5 Other Results

We have performed additional experiments that explore the performance of SKM as
dimension increases. These results have been placed in Chapter 3. In conclusion, the
results suggest that the sparsity required to achieve a given accuracy increases as a
function of dimension and decreases as a function of bandwidth. We have also compared
the performance of SKM for the Laplacian and the Student-t kernels. In general they
both exhibit a similar performance as for the Gaussian kernel, in terms of relative error
Ē. For the Euclidean embedding and class proportion estimation experiments, however,
it is harder to set an effective bandwidth for the Student-t kernel.

2.7 Conclusion

We have provided a method to rapidly and accurately build a sparse approximation of a
kernel mean. We derived an incoherence based bound on the approximation error and
recognized that, for abroad class of kernels, including translation invariant kernels, its
minimization is equivalent to solving the k-center problem either on the feature space or
the Euclidean space where the data lies. If desired, our construction of the sparse kernel
mean may be slightly modified to provide a valid density function, which is important
in some applications. Hence, the algorithm is versatile in that it works for both kinds
of kernel means: the KDE and the KME. Our method also naturally lends itself to a
sparsity auto-selection scheme.
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Figure 2.6: Error comparison among different methods for the banana data set. SKM
incurs a larger initial error but quickly decreases as it captures more of the fine structure
of the distribution. Note that RAND and NKMEANS perform very similarly, this can also
be seen in table 2.5.

Table 2.6: Values of D(z̄‖zI) and D(zI‖z̄) for different data sets.
D(z̄‖zI) D(zI‖z̄)

RAND SKM RAND SKM
banana 0.092597 0.001805 0.129183 0.001613
image 0.451205 0.041305 0.212585 0.061584

ringnorm 0.003983 0.031736 0.009253 0.02853
breast-cancer 0.358253 0.002546 0.345895 4.56E-05

heart 0.001918 6.35E-16 0.005228 2.91E-16
thyroid 0.177317 0.000594 0.034616 0.000289
diabetes 0.031366 0.005474 0.014635 0.000102
german 0.008711 0.003855 0.008742 0.00203

twonorm 0.000131 0.000243 4.59E-05 0.000372
waveform 0.011473 0.000177 0.015064 0.000404

iris 0.043924 0.000395 0.022519 0.000104

We showed its computational advantages and its performance qualities in three specific
applications. First, Euclidean embedding of distributions (for both KDE and KME), in
which, for the KDE case, a valid density is needed to compute the KL divergence. Second,
class proportion estimation (for the KME), which presents the amortization advantages
of the SKM approach, in this case with respect to the bandwidth σ. Finally, mean-shift
clustering (for the KDE), in which with less computation time than the LSH-based
approach, it performs better with respect to the discrepancy index and similar with
respect to the Hausdorff distance. In most instances the proposed sparse kernel mean
method has shown to be orders of magnitude faster than the approach based on the full
kernel mean. Furthermore, we compared its performance in terms of error, sparsity, and
time with respect to four other subset selection schemes for several benchmark datasets.
We find that, with statistical significance, SKM outperforms these methods. Finally,
we also observed its performance in different settings, concerning dimension and kernel
variability. These latter results are presented in detail in Chapter 3.
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Chapter 3

Further results for SKM

In this chapter we supplement many of the experimental results of Chapter 2, and provide
a theoretical result related to the main theorem. In Section 3.1 we investigate the influence
of bandwidth and dimensionality on the performance of SKM. We proceed to compare
the performance among different kernels in Section 3.2. Section 3.3 contains the results of
SKM on the embedding of distributions experiments of Section 2.6.1 of Chapter 2 for the
KDE case. To supplement the results from section 2.6.4 of Chapter 2, in Section 3.4 we
present Table 3.7, which contains a time comparison among different methods. Finally,
in Section 3.5 we present a bound on the error between a kernel mean and a sparse
approximation which is constrained to have nonnegative weights.

3.1 Dimension and Bandwidth

We first look at the performance of SKM, as measured by the error quantity Ēk (defined in
Section 2.5.2 of Chapter 2), for similar datasets of different dimension. We have generated
five data sets of dimensions 1, 2, 10, 50, and 100, where the data points are randomly
iid sampled from a standard Gaussian distribution (case 1), and the t-distribution with 1
degree of freedom (case 2). Figure 3.1 contains the error plots for both cases and for two
heuristics for computing the bandwidth parameter: Scott’s rule of thumb and Jaakkola’s
heuristic (see [12, 71]). As seen in the figures, for these bandwidths the relationship
between performance and dimension is not straightforward, since in some instances higher
dimensions yield a better error, while in other instances lower dimensions result in smaller
error. To investigate this phenomena further, we look specifically at the relative error Ē
committed at a sparsity level of 10% for a range of dimension and bandwidth parameters,
listed in Table 3.1 for case 1. The values of the bandwidth parameter are 10 evenly
spaced points between .01 and 12, the minimum and maximum bandwidths across all
dimensions picked by the heuristics above for the data in question. The data size is
n = 500. Figure 3.2 serves as a visualization aid for Table 3.1. A similar comparison
is presented on Table 3.2 but regarding the sparsity needed for a relative error of 10−3,
with visualization aid in Figure 3.3. Table 3.1 suggests that, in case 1 and for fixed
dimension, increasing the bandwidth reduces the error for 10% sparsity, while for small
fixed bandwidth increasing dimension increases the relative error. Table 3.2 suggests that
for fixed dimension higher bandwidth requires smaller k for an error of ε = 10−3 and for
fixed bandwidth higher dimension requires a larger k to achieve the same error.
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Figure 3.1: Error comparison among different dimensions. Case 1 indicates the data
is drawn from a multivariate standard Gaussian distribution, while case 2 indicates the
t-distribution with one degree of freedom. S̀cott” and J̀aakkola” indicate, respectively,
that the bandwidth has been chosen according to Scott’s rule of thumb or Jaakkola’s
heuristic.

Figure 3.2: Visualization aid for Table 3.1
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Table 3.1: d vs σ comparison of the relative error committed at a sparsity level of 10%.
Gaussian case. The values of σ are evenly distributed between the minimum and maximum
values obtained by the heuristics of Scott and Jaakkola.

σ = .01 σ = 1.34 σ = 2.67 σ = 4 σ = 5.34 σ = 6.67 σ = 8 σ = 9.34 σ = 10.67 σ = 12
d = 1 0.7236 0.0001 0.0004 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 0.0001
d = 2 0.902 0.0005 0.0004 0.0004 0.0004 0.0004 0.0003 0.0005 0.0004 0.0003
d = 10 0.9 0.6936 0.0382 0.0047 0.0012 0.0009 0.0009 0.0009 0.0008 0.0008
d = 50 0.9 0.9 0.883 0.2874 0.0699 0.0242 0.0106 0.0062 0.0037 0.0025
d = 100 0.9 0.9 0.9005 0.8342 0.3681 0.1235 0.0540 0.0291 0.0173 0.0118

Table 3.2: d vs σ comparison of the sparsity required for an accuracy of ε = 10−3. Gaussian
case. The values of σ are evenly distributed between the minimum and maximum values
obtained by the heuristics of Scott and Jaakkola.

σ = .01 σ = 1.34 σ = 2.67 σ = 4 σ = 5.34 σ = 6.67 σ = 8 σ = 9.34 σ = 10.67 σ = 12
d = 1 0.5802 0.011 0.007 0.0062 0.0056 0.0046 0.0048 0.004 0.004 0.004
d = 2 0.9940 0.0298 0.0176 0.0104 0.0088 0.0082 0.0064 0.005 0.0048 0.0044
d = 10 1 0.9296 0.395 0.1854 0.1074 0.0606 0.0408 0.0286 0.0234 0.0196
d = 50 1 1 0.998 0.9404 0.7836 0.585 0.4246 0.2958 0.215 0.1702
d = 100 1 1 1 0.996 0.9684 0.8914 0.7694 0.6342 0.5256 0.427

3.2 Kernel Choice

To illustrate the performance of SKM for different kernels, we show a comparison of
the Gaussian, the Laplacian, and the Student-type kernels. For the student kernel we
set its parameter α = (d + 1)/2. Plots of error vs sparsity, sparsity vs accuracy, and
time vs accuracy for the banana dataset, averaged over 50 runs, are shown in figures
3.4, 3.5, and 3.6. The bandwidth was chosen according the the Jaakkola heuristic. The
error performance is comparable among these kernels, especially for the Gaussian and the
Student-type kernels. As we can see from the figures, the Gaussian kernel requires relative
less sparsity to achieve a given accuracy level, and therefore is also the fastest. We can
then conclude that, at least for a standard bandwidth selection scheme, the Gaussian
kernel is a reasonable choice.

Further, we ran our main experiments (Sections 2.6.1, 2.6.2, and 2.6.3 of Chapter 2)
for the Laplacian and Student-type kernels, with similar results. The relevant information
is shown in figures 3.7, 3.8, 3.9, 3.10 and Tables 3.3 and 3.4.

3.3 Euclidean Embedding of Distributions: KDE

case

Here we present the results of our method’s performance for the Euclidean embedding
experiment described in Section 2.6.1 of Chapter 2 for KDE case. To compute the KL
divergence we split the data in two, use the first half for estimation of the KDE, and the
second half for estimation of the KL divergence. We have chosen k` = 3

√
n` for each `, as

in the KME case, and used the same stopping criterion with ε = 10−9. The results are

shown in Figure 3.11 and tables 3.5 and 3.6, the plot of
‖D−D0‖F
‖D‖F

for several values of ε is

shown in Fig. 3.12.
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Figure 3.3: Visualization aid for Table 3.2

Figure 3.4: Error comparison among different kernels for the banana data set. The
bandwidth selection method is the Jaakkola heuristic.

Figure 3.5: Sparsity comparison among different kernels for the banana data set. The
bandwidth selection method is the Jaakkola heuristic.
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Figure 3.6: Time comparison among different kernels for the banana data set. The
bandwidth selection method is the Jaakkola heuristic.

Figure 3.7: 2-dimensional representation of flow cytometry data for the Laplacian kernel
and the KME case. As it is the case with the Gaussian kernel, the approximation is very
accurate.

Figure 3.8: 2-dimensional representation of flow cytometry data for the Student-type
kernel and the KME case. The overall shape is preserved, but it is not very accurate,
probably due to the suboptimal choice of the kernel’s bandwidth.
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Figure 3.9: Class Proportion Estimation - Laplacian. `1 error of estimated proportions
for the Laplacian kernel. The behavior shown is very similar to the case of the Gaussian
kernel.

Figure 3.10: Class Proportion Estimation - Student. `1 error of estimated proportions
for the Student-type kernel. Note that in this case the full method exhibits an erratic
behavior, this is because the number of allowed iterations to find the bandwidth is not
enough to find an appropriate bandwidth.
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Table 3.3: Time and Performance Comparison for Mean Shift algorithm. Laplacian kernel
case.

Time Performance

Preparation Mean Shift Total di(·,B) d̂H(·,B)
B 0 3.33hrs 3.33hrs 0 0
ASKM 6.7mins 1.7mins 8.4mins 0.035 0.04
ALSH 23.1s 9.94mins 10.3mins 0.082 0.03

Table 3.4: Time and Performance Comparison for Mean Shift algorithm. Cauchy kernel
case.

Time Performance

Preparation Mean Shift Total di(·,B) d̂H(·,B)
B 0 2.84hrs 2.84hrs 0 0
ASKM 7.98mins 1.85mins 9.83mins 0.007 0.04
ALSH 25.5s 7.75mins 8.17mins 0.01 0.02

3.4 Time

In this section we supplement Section 2.6.4 of Chapter 2. Under the same setup, we
present Table 3.7, which is analogous to Table 2.5, but instead of sparsity we look at the
times required to obtain an accuracy of 10−3. Note SKM is sometimes faster than RAND
because it is able to achieve the desired accuracy with smaller k, meaning it spends less
time computing α’s.

3.5 Constrained Projection Bound

In this section we present a bound on the error of the projection onto S∆ ={∑
i∈I αizi |

∑
αi = 1, αi ≥ 0

}
. We conclude that, although not as tight as the bounds

in Chapter 2, it also suggests the maximization of νI .
Let H be a Hilbert space and {z1, · · · , zn} ⊂ H such that C ≥ 〈zi, zj〉 ≥ 0

for all (i, j), let z̄ indicate the mean of these vectors. Furthermore let S∆ ={∑
i∈I αizi |

∑
αi = 1, αi ≥ 0

}
, and P z̄ the projection of z̄ onto this set. The following

two lemmas will be proven at the end.

Lemma 2.

−‖P z̄‖2 ≤ − 1

C

(
max
z∈S∆

〈z̄, z〉
)2

+
2

C
max 〈z̄, z〉 〈z̄ − P z̄, P z̄〉 − 1

C
〈z̄ − P z̄, P z̄〉2

Later it will be convenient to express this result as

−‖P z̄‖2 ≤ − 1

C
M2 +

2

C
MT − 1

C
T 2.

where T = 〈z̄ − P z̄, z̄〉 and M = maxz∈S∆
〈z̄, z〉.

Lemma 3.

max
z∈S∆

〈z̄, z〉 ≥ n− k
n

min
i/∈I

max
j∈I
〈zi, zj〉 .
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Table 3.5: Sparsity with respect to ε. The k0

k
values are shown for the KDE case.

ε 10−6 10−7 10−8 10−9 10−10

KDE case 0.2228 0.3615 0.5822 0.7724 0.8964

Figure 3.11: 2-dimensional representation of flow cytometry data - KDE case. Each point
represents a patient’s distribution. The embeddings were obtained by applying ISOMAP
to distances between KDEs as measured by the KL divergence.

Theorem 2.

‖z̄ − P z̄‖ ≤

√
2

(
C −

(
1− |I|

n

)
νI

)
.

Proof.

‖z̄ − P z̄‖2 = 〈z̄ − P z̄, z̄ − P z̄〉
= 〈z̄, z̄〉 − 2 〈z̄, P z̄〉+ 〈P z̄, P z̄〉
= 〈z̄, z̄〉 − 2 〈z̄ − P z̄ + P z̄, P z̄〉+ 〈P z̄, P z̄〉
= 〈z̄, z̄〉 − 2 〈z̄ − P z̄, P z̄〉 − 〈P z̄, P z̄〉 .
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Table 3.6: Time Comparison for the Euclidean embedding of the Flow Cytometry dataset
- KDE case.

k-center D computation Total
Full 0 2.18 hrs 2.18 hrs
SKM 5mins 2mins 7mins

Figure 3.12: The relative error incurred by the SKM-based matrix D0 as a function of
ε, averaged over 10 runs - KDE case. The average k-center and D0 computation times
range from 1 to 7.25 minutes, and from 35 to 160 seconds, respectively. The average ratio
k0/kmax ranges from 0.22 to 0.9.

so, using the result and notation from lemma 2, we have

‖z̄ − P z̄‖2 = ‖z̄‖2 − 2T − ‖P z̄‖2

≤ ‖z̄‖2 − 2T − 1

C
M2 +

2

C
MT − 1

C
T 2

= ‖z̄‖2 − 1

C
M2 − 2T

(
1− M

C

)
− T 2

C

= ‖z̄‖2 − 1

C
M2 +

1

C
(C −M)2 − 1

C
(C −M)2 − 2

C
T (C −M)− T 2

C

= ‖z̄‖2 − 1

C
M2 +

1

C
(C −M)2 − 1

C

[
(C −M)2 + 2T (C −M) + T 2

]
= ‖z̄‖2 − 1

C
M2 +

1

C
(C −M)2 − 1

C
((C −M) + T )2

≤ ‖z̄‖2 − 1

C
M2 +

1

C
(C −M)2

= ‖z̄‖2 − 1

C
M2 + C − 2M +

1

C
M2

= ‖z̄‖2 + C − 2M

≤ 2 (C −M) .

Finally, by lemma 3 we have

‖z̄ − P z̄‖2 ≤ 2

(
C −

(
1− |I|

n

)
νI

)
,

which justifies the maximization of νI .
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Table 3.7: Time in seconds required for an accuracy of 10−3. The symbol (-) indicates the
accuracy was never achieved

SKM RAND NL2 NKMEANS HERD
banana 0.3813 0.6796 6.5807 0.6591 -
image 17.6782 12.2856 238.3666 6.8079 -

ringnorm 0.4186 0.4116 5.7902 0.3580 .2443
breast-cancer 0.0735 0.0666 0.6592 0.0769 -

heart 0.0619 0.0739 0.4521 0.0910 -
thyroid 0.0399 0.0593 0.1874 0.0685 -
diabetes 0.6195 0.8336 9.1065 0.6702 -
german 1.4882 1.4861 37.1124 1.1943 1.1147

twonorm 0.3802 0.3207 6.9767 0.3063 .2286
waveform 0.4059 0.4195 6.8953 0.3961 -

iris 0.0474 0.0575 0.2873 0.0761 -

Proofs of Lemmas

In the following lemma, ”closed” is meant in the topological sense, not the algebraic sense.

Lemma 4 (Luenberger pg. 69). Let s∗ be a vector in a Hilbert space H and let S be a
closed convex subset of H. Then there is a unique vector s0 ∈ S such that

‖s∗ − s0‖ ≤ ‖s∗ − s‖

for all s ∈ S. Furthermore a necessary and sufficient condition that s0 be the unique
minimizing vector is that 〈s∗ − s0, s− s0〉 ≤ 0 for all s ∈ S.

Proof. See [?].

Proof of Lemma 2. Since SI is (topologically) closed, then, for any z ∈ S∆, we have:

〈z̄, z〉 = 〈z̄ − P z̄ + P z̄, z〉
= 〈P z̄, z〉+ 〈z̄ − P z̄, z〉
≤ ‖P z̄‖ ‖z‖+ 〈z̄ − P z̄, z − P z̄ + P z̄〉
= ‖P z̄‖ ‖z‖+ 〈z̄ − P z̄, z − P z̄〉+ 〈z̄ − P z̄, P z̄〉
≤ ‖P z̄‖ ‖z‖+ 〈z̄ − P z̄, P z̄〉
≤ ‖P z̄‖

√
C + 〈z̄ − P z̄, P z̄〉 .

For second inequality see Lemma 4. Also, note

max 〈z̄, z〉 ≤ ‖P z̄‖
√
C + 〈z̄ − P z̄, P z̄〉

→
max 〈z̄, z〉 − 〈z̄ − P z̄, P z̄〉 ≤ ‖P z̄‖

√
C

→
(max 〈z̄, z〉 − 〈z̄ − P z̄, P z̄〉)2 ≤ ‖P z̄‖2C

→
‖P z̄‖2C ≥ (max 〈z̄, z〉)2 − 2 max 〈z̄, z〉 〈z̄ − P z̄, P z̄〉+ 〈z̄ − P z̄, P z̄〉2
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where the third line follows since

〈z̄ − P z̄, P z̄〉 = 〈z̄, P z̄〉 − 〈P z̄, P z̄〉
≤ 〈z̄, P z̄〉
≤ max

z∈S∆

〈z̄, z〉 ,

and therefore max 〈z̄, z〉 − 〈z̄ − P z̄, P z̄〉 is nonnegative. So we have that

−‖P z̄‖2 ≤ − 1

C
(max 〈z̄, z〉)2 +

2

C
max 〈z̄, z〉 〈z̄ − P z̄, P z̄〉 − 1

C
〈z̄ − P z̄, P z̄〉2

≤ − 1

C
M2 +

2

C
MT − 1

C
T 2.

Proof of Lemma 3. Let ∆ = {α |
∑
αi = 1, αi ≥ 0}, then

max
z∈S∆

〈z̄, z〉 = max
α∈∆

〈
z̄,
∑
i∈I

αizi

〉
≥ max

i∈I
〈z̄, zi〉

= max
i∈I

1

n

∑
j∈[n]

〈zj, zi〉

≥ 1

n
max
i∈I

∑
j∈I

〈zi, zj〉+
∑
j /∈I

〈zi, zj〉


≥ 1

n
max
i∈I

∑
j /∈I

〈zi, zj〉

≥ 1

n
max
i∈I

∑
j′ /∈I

min
j /∈I
〈zi, zj〉

≥ n− k
n

max
i∈I

min
j /∈I
〈zi, zj〉 .

Note that the third inequality is true since, if z` = arg maxi∈I
∑

j /∈I 〈zi, zj〉, then

max
i∈I

∑
j /∈I

〈zi, zj〉 =
∑
j /∈I

〈z`, zj〉

≤
∑
j /∈I

〈z`, zj〉+
∑
j∈I

〈z`, zj〉

= n 〈z̄, z`〉
≤ nmax

i∈I
〈z̄, zi〉 ,

where the first inequality is true by the assumption 〈zi, zj〉 ≥ 0 ∀ (i, j).
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Chapter 4

Consistent Kernel Density
Estimation with Non-Vanishing

Bandwidth

Overview

The KDE is a widely used and thoroughly analyzed nonparametric estimator of a proba-
bility density function. Its convergence to the through density requires the bandwidth
to approach zero as the sample size approaches infinity. In this section we present the
fixed bandwidth kernel density estimator (fbKDE), which is a weighted KDE. We prove
the fbKDE, with a fixed bandwidth, consistently estimates square integrable densities
and provide convergence rates for symmetric positive definite radial kernels. We conduct
experiments and demonstrate that the fbKDE is superior to the KDE and a previously
proposed weighted KDE in the uniform norm, and that it compares favorably in square
norm.

4.1 Introduction

First recall the definition from Chapter 1. Given an iid sample X1, . . . , Xn ∈ Rd drawn
according to a probability density f , the kernel density estimator is

fKDE =
1

n

n∑
i=1

k(·, Xi),

where k is a kernel function with parameter σ.
A strength of the KDE is that it makes few assumptions about f and that it is

consistent, meaning that it converges to f as n → ∞ [18]. Analysis of the KDE stems
from the following application of the triangle inequality in some norm of interest, where ∗
denotes convolution:

‖fKDE − f‖ ≤ ‖fKDE − f ∗ k‖+ ‖f ∗ k − f‖.

Critical to the analysis of the KDE is the dependence of the bandwidth parameter σ on n.
The first term tends to zero provided nσd →∞, i.e, the number of data points per unit
volume tends to infinity. This is shown using properties of convolutions (since fKDE and
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f ∗k may be viewed as convolutions of the kernel with the empirical and true distributions,
respectively) and concentration of measure. For the latter term to tend to zero, σ → 0 is
necessary, so that the kernel behaves like a Dirac measure. With additional assumptions
on the smoothness of f , the optimal growth of σ as a function of n can be determined.

The choice of bandwidth determines the performance of the KDE, and automatically
selecting the optimal kernel bandwidth remains a difficult problem. Thus, researchers
have developed numerous plug-in rules and cross-validation strategies, all of which are
successful in some situations. A recent survey counts no fewer than 30 methods in the
literature and cites 6 earlier review papers on the topic [15].

As an alternative to the standard KDE, some authors have investigated weighted
KDEs, which have the form

fα =
n∑
i=1

αik(·, Xi).

The weight vector α = (α1, . . . , αn) ∈ Rn is learned according to some criterion, and such
weighted KDEs have been shown to yield improved performance over the standard KDE
in certain situations [73, 74, 75, 76]. Consistency of such estimators has been investigated,
but still under the assumption that σ → 0 with n [77, 78].

In this work we consider the question of whether it is possible to learn the weights of a
weighted KDE such that the resulting density estimator is consistent, for a broad class of
f , where the bandwidth σ remains fixed as n→∞. This question is of theoretical interest,
given that all prior work establishing consistency of a KDE, to our knowledge, requires
that the bandwidth shrinks to zero. The question is also of practical interest, since such
a density estimator could potentially be less sensitive to the choice of bandwidth than
the standard KDE, which, as mentioned above, is the main factor limiting the successful
application of KDEs in practice.

In Section 4.2 below, we introduce a weighted KDE that we refer to as the fixed-
bandwidth KDE (fbKDE). Its connection to related work is given in Section 4.3. The
theoretical properties of this estimator, including consistency and rates of convergence
with a fixed bandwidth, are established in Section 4.4. Our analysis relies on the RKHS,
a common machine learning structure seldom used to understand KDE’s. In Section 4.5,
a simulation study is conducted to compare the fbKDE against the standard KDE and
another weighted KDE from the literature. Our results indicate that the fbKDE is a
promising alternative to these other methods of density estimation.

4.2 Fixed bandwidth KDE

We start by assuming access to iid data X1, . . . , Xn sampled from an unknown distribution
with density f , having support S = supp {f} contained in the known domain X ⊂ Rd,
and with dominating measure µ. The set X is either compact, in which case µ is taken
to be the Lebesgue measure, or X = Rd, in which case µ is a known finite measure. We
study a weighted kernel density estimator of the form

fα =
n∑
i=1

αik(·, Zi) (4.1)

where α := (α1, . . . , αn)T ∈ An ⊂ Rn, Zi = Xi + Γi, and Γi is sampled iid from a known
distribution with density fΓ. Here, fΓ is chosen to ensure Zi ∈ X , but not necessarily in
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S. Note that fα is defined on X and k on X × X . Throughout, An is taken to be an `1

ball in Rn, that is

An = {α ∈ Rn | ‖α‖1 ≤ Rn} ,

for Rn ∈ R. The reason for centering the kernels at Zi = Zi + Γi instead of Xi is that
to accurately approximate f with a fixed bandwidth, we might need centers outside the
support of f .

To measure the error between fα to f we may consider the L2
µ (S) difference, where

L2
µ(S) is the space of equivalence classes of square integrable functions, and where (using

both f for the function and its equivalence class) ‖f‖2
L2
µ(S) :=

∫
S f

2dµ. However, we do

not know the set S and cannot compute said difference. Hence, we consider the L2
µ (X )

difference from fα to f .
To determine the scaling coefficients α we consider minimizing the L2

µ(X ) difference
between f and fα. We have the following minimization problem:

min
α∈An

‖f − fα‖2
L2
µ(X ) .

Since ‖f − fα‖2
L2
µ(X ) =

∫
f 2
α − 2

∫
ffα +

∫
f 2, and the term

∫
f 2 is independent of α,

the above problem is equivalent to minimizing

J(α) :=

∫
X
fα(x)2dµ(x)− 2

∫
X
fα(x)f(x)dµ(x)

=

∫
X
fα(x)2dµ(x)− 2

∫
S
fα(x)f(x)dµ(x)

=

∫
X
fα(x)2dµ(x)− 2H(α),

where

H(α) :=

∫
S
fα(x)f(x)dµ(x)

=
n∑
i=1

αi

∫
S
k(x, Zi)f(x)dµ(x)

=:
n∑
i=1

αihi.

Since we don’t know f , we don’t know the true form of H(α) and J(α). However, the
terms hi are expectations with respect to f so we can estimate the term H(α) using the
available data {Xi}ni=1. We use the leave-one-out estimator

Hn(α) :=
n∑
i=1

αi
1

n− 1

∑
j 6=i

k(Xj, Zi) =:
n∑
i=1

αiĥi.

With the aid of Hn(α), we define the function

Jn(α) :=

∫
X
fα(x)2dµ(x)− 2Hn(α) (4.2)
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to which we have access. Let J∗ := infα∈An J(α) and

α(n) := arg min
α∈An

Jn(α). (4.3)

The estimator

fα(n) =
n∑
i=1

α(n)
ik(·, Zi) (4.4)

is referred to as the fixed bandwidth kernel density estimator (fbKDE), and is our object
of study. In the following sections. this estimator is shown to be consistent for a fixed
kernel bandwidth σ under certain conditions on f, k, Rn, and fΓ.

4.3 Related work

The use of the L2 norm as an objective function for kernel density estimation is not new,
and in fact, choosing σ to minimize Jn, with αi = 1/n, is the so-called least-squares
leave-one-out cross-validation technique for bandwidth selection. Minimizing Jn subject
to the constraints αi ≥ 0 and

∑
i αi = 1 was proposed by [73], and later rediscovered by

[74], who also proposed an efficient procedure for solving the resulting quadratic program,
and compared the estimator to the KDE experimentally. This same estimator was later
analyzed by [77], who established an oracle inequality and consistency under the usual
conditions for consistency of the KDE.

Weighted KDEs have also been developed as a means to enhance the standard KDE
in various ways. For example, a weighted KDE was proposed in [75] as a form of multiple
kernel learning, where, for every data point, multiple kernels of various bandwidths were
assigned, and the weights optimized using Jn. A robust kernel density estimator was
proposed in [76], by viewing the standard KDE as a mean in a function space, and
estimating the mean robustly. To improve the computational efficiency of evaluating a
KDE, several authors have investigated sparse KDEs, as we did in Chapter 2 learned by
various criteria [79, 32, 45, 48, 29].

The one-class SVM has been shown to converge to a truncated version of f in the L2

norm [80]. If the truncation level (determined by the SVM regularization parameter) is
high enough, and the density is bounded, then f is consistently estimated. An ensemble
of kernel density estimators is studied by [78], who introduce aggregation procedures such
that a weighted combination of standard KDEs of various bandwidths performs as well as
the KDE whose bandwidth is chosen by an oracle.

In the above-cited work on weighted KDEs, whenever consistency is shown, it assumes
a bandwidth tending to zero. Furthermore, the weights are constrained to be nonnegative.
In contrast, we allow the weights on individual kernels to be negative, and this enables
our theoretical analysis below. Finally, we remark that the terms “fixed” or “constant”
bandwidth have been used previously in the literature to refer to a KDE where each data
point is assigned the same bandwidth, as opposed to a “variable bandwidth” KDE where
each data point might receive a different bandwidth, we instead use “fixed bandwidth” to
mean the bandwidth remains fixed as the sample size grows.
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4.4 Theoretical Properties

Notation The space Lpν(X ) is the set of functions on X for which the pth power of their
absolute value is ν-integrable over X . Lpν(X ) is the set of equivalence classes of Lpν(X ),
where two functions g1 and g2 are equivalent if

∫
X |g1 − g2|p dν = 0. The symbol ‖·‖2 will

denote both the Euclidean norm in Rd as well as the L2
ν norm; which is used will be clear

from the context, as the elements of Rd will be denoted by letters towards the end of the
alphabet (x, y, and z). The set C(X ) denotes the space of continuous functions on X .
Finally, the support of any function g is denoted by supp {g}. Also, recall we refer to
symmetric positive definite radial kernels as SPD radial kernels.

If k is a positive definite radial kernel then supx,x′∈X k(x, x) ≤ Ck for some Ck > 0.
This holds because

k(x, x′) = 〈k(·, x), k(·, x′)〉 ≤ ‖k(·, x)‖ ‖k(·, x′)‖
=
√
k(x, x)

√
k(x′, x′) =

√
g(0)

√
g(0)

= g(0).

We will make constant use of the following assumptions:

A0 The set X is either a compact subset of Rd, in which case µ is taken to be the
Lebesgue measure, or X = Rd, in which case µ is a known finite measure.

This assumption is always held throughout the paper. It will not be explicitly stated
in the statements of results below, but will be remembered in the proofs when needed.

A1 X1, . . . , Xn are sampled independently and identically distributed (iid) according
to f . Γ1, . . . ,Γn are sampled iid according to fΓ. Furthermore X1, . . . , Xn,Γi, . . . ,Γn are
independent.

Given {(Xi,Γi)}ni=1 as in A1, we define Zi := Xi + Γi for 1 ≤ i ≤ n. This notation will
be kept throughout the paper.

A2 The kernel k is PSD radial, with k(x, x) = Ck for all x ∈ X . Furthermore, k
is Lipschitz, that is, there exists Lk > 0 such that the inequality ‖k(·, x)− k(·, y)‖2 ≤
Lk ‖x− y‖2 holds for all x, y ∈ X .

Recall from equation (4.3) that α(n) is the minimizer of Jn over An. To show the
consistency of fα the overall approach of the following sections will be to show that J(α(n))
is close to J∗ = infα∈An ‖f − fα‖

2
2 with high probability, and then show that J(α) (and

therefore J∗) can be made arbitrarily small for optimal choice of α. We start by stating
an oracle inequality relating J(α(n)) and J∗.

Lemma 5. Let ε > 0. Let {(Xi,Γi)}ni=1 satisfy assumption A1. Let k satisfy supx,x′∈X k(x, x′) ≤
Ck and fα be as in Equation (4.1). Let δ = 2n exp

(
− (n−1)ε2

8C2
kR

2
n

)
. With probability ≥ 1− δ,

‖f − fα(n)‖2
2 ≤ ε+ inf

α∈An
‖f − fα‖2

2 .

This result allows us to concentrate on the term J∗ infα∈An ‖f − fα‖
2
2, which we proceed

to do in the following sections.
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4.4.1 Consistency of fα(n)

We state the consistency of fα(n) for positive definite radial kernels:

Theorem 3. Let ε > 0. Let {(Xi,Γi)}ni=1 satisfy A1, where f ∈ F(X ) := L2
µ(X ) ∩ C(X )

and supp {fZ} ⊇ X . Let k satisfy A2 and fα(n) be as in Equation (4.4). If An is such that
Rn →∞ but R2

nlog n/n→ 0 as n→∞, then

PX,Γ

{
‖f − fα(n)‖2

2 > ε
}
→ 0

as n→∞.

The sketch of the proof is as follows. To analyze the term J∗ = infα∈An ‖f − fα‖
2
2 from

Lemma 5, we will use the fact that for positive definite radial kernels H is dense in F
[17] in the sup-norm sense and that H0 :=

{∑N
j cjk(·, yj)|yj ∈ X , ci ∈ R, and N ∈ N

}
is

dense in H in the H−norm sense [16]. That is, there exists a function fH ∈ H arbitrarily
close to f and a function fβ ∈ H0 arbitrarily close to fH. The function fβ has the form

fβ :=
m∑
j=1

βjk(·, yj), (4.5)

where β = (β1, . . . , βm)T . Note this is an abuse of notation since the functions fα and fβ
do not have the same centers nor necessarily the same number of components. By the
triangle inequality we have for any α in An:

‖f − fα‖2 ≤ ‖f − fH‖2 + ‖fH − fβ‖2 + ‖fβ − fα‖2 . (4.6)

By the above denseness results, the first two terms are small. To make the third term
small we need two things: that An is large enough so that there is an α ∈ An matching β,
and that the centers {Zi}ni=1 of fα are close to the centers {yj}mj=1 of fβ, which will be
true with certain probability. In Section 4.7 we will prove all these approximations and
show that the relevant probability is indeed large and approaches one.

4.4.2 Convergence rates for fα(n)

The convergence rates for radial SPD kernels may be slow, since the kernels
are “universal” in that they can approximate arbitrary functions in L2

µ(X ) ∩
C(X ). To get better rates we can make stronger assumptions on f . Thus, let
Fk =

{
f | f ≥ 0 a.e.,

∫
f(x)dµ(x) = 1, f =

∫
X k(·, x)λ(x)dx, λ ∈ L1(X )

}
, that is, the

space of densities expressible as k-smoothed L1 functions. Then we obtain the following
convergence rates.

Theorem 4. Let δ ∈ (0, 1). Let S = X , k satisfy A2, {(Xi,Γi)}ni=1 satisfy A1 with f ∈ Fk,
and minz∈X {fZ(z)} > 0. Let fα(n) be as in Equation (4.4). If d > 4 and Rn ∼ n1/2−d/2,
then with probability ≥ 1− δ

‖f − fα(n)‖2
2 .

(
1

n

)2/d

log1/2 (n/δ) .
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If d ≤ 4 and Rn ∼ n(1−C)/2 for C an arbitrary constant in (0, 1), then with probability
≥ 1− δ

‖f − fα(n)‖2
2 .

(
1

n

)C/2
log2/d (n/δ) .

The symbol . indicates the first term is bounded by a positive constant (independent
of n and d) times the second term, and ∼ means they grow at the same rate. Note the
condition minz∈X {fZ(z)} > 0 is satisfied, for example, if X is compact and fΓ is Gaussian.
The first step in proving Theorem 4 is just a reformulation of the oracle inequality from
Lemma 5:

Lemma 6. Let δ1 ∈ (0, 1). Let {(Xi,Γi)}ni=1 satisfy assumption A1. Let k satisfy
assumption A2 and fα be as in Equation (4.1). Then with probability ≥ 1− δ1

J(α(n)) ≤ ε1(n) + J∗

where ε1(n) :=
√

8CkRn

√
log (4n/δ1)

n−1
.

Now, for the J∗ term in Lemma 6 we introduce the function fβ as in Equation (4.6)
and make the following decomposition, valid for any α ∈ An:

‖f − fα‖2 ≤ ‖f − fβ‖2 + ‖fβ − fα‖2 .

The following lemma concerns the term ‖f − fβ‖2, and is taken from [81]:

Lemma 7. Let f ∈ Fk. For any m ∈ N there are m points {yj}mj=1 ⊂ X and m coefficients

{cj}mj=1 ⊂ R such that ∥∥∥∥∥f −
m∑
i=1

cj ‖λ‖1

m
k(·, yj)

∥∥∥∥∥
∞

≤ ε2(m)

where ε2(m) := C ‖λ‖1

√
Vk
m

for some absolute constant C and where Vk is the VC-

dimension of the set {k(·, x) | x ∈ X}.

The VC dimension of a set {gi} is the maximum number of points that can be separated
arbitrarily by functions of the form gi − r, r ∈ R. For radial kernels, Vk = d+ 1 (see [82],
[83]).

Now let βj =
cj‖λ‖1
m

and fβ =
∑m

j=1 βjk(·, yj). For the remaining term ‖fβ − fα‖2 we
will proceed as in the proof of Theorem 3. That is, we need that for all yj there is a point
Zij close to it, and then we can approximate fβ with fα =

∑n
i=1 αik(·, Zi).

Lemma 8. Let δ2 ∈ (0, 1), let f,m, and fβ be as above. Let {(Xi,Γi)}ni=1 satisfy assump-
tion A1. With probability ≥ 1− δ2

inf
α∈An

‖fβ − fα‖2 ≤ ε3(n,m)

where ε3(n,m) := C
n1/d log1/d (m/δ2), for C a constant independent of n and m.

Putting Lemmas 6, 7, and 8 together and choosing the correct m(n) we obtain the
proof of Theorem 4.
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4.4.3 Convergence rates for the Box kernel

While the previous theorem considered SPD radial kernels, the oracle inequality applies
more generally, and in this section we present rates for a nonradial kernel, the box kernel. In
this section we assume X = [0, 1]d and that the kernel centers are predetermined according
to a uniform grid. precise details are given in the proof of Theorem 5. Thus the fbKDE
centered at {yi}Mi=1 is f̃α :=

∑M
i=1 αik(·, yi), where the α weights are learned in the same

way as before, the only change being the kernel centers. Let F = L1(X )∩L2(X )∩Lip(X ),
where Lip(X ) are the Lipschitz functions on X , and let Lf be the Lipschitz constant of f .
Also, let k be the box kernel k(x, y) = 1

(2σ)d
1{‖x−y‖∞≤σ} defined on X ± σ × X ± σ, and

for simplicity assume σ = 1
2q

for q a positive integer. The following theorem is proved in
the supplementary material.

Theorem 5. Let f ∈ F , supp {fZ} ⊃ X , {(Xi,Γi)}ni=1 satisfy A1, and Rn ∼ n(d−1)/(2d+2).
Let δ ∈ (0, 1). With probability at least 1− δ∥∥∥f − f̃α(n)

∥∥∥2

2
.

log1/2(n/δ)

n1/(d+1)
.

As with the previous results, the stochastic error is controlled via an oracle inequality.
Whereas the preceding results leveraged known approximation properties of SPD radial
kernels, in the case of the box kernel we give a novel argument for approximating Lipschitz
functions with box kernels having a non-vanishing bandwidth.

4.5 Experimental Results

We now explore the performance of fbKDE in a few different ways. First, we will observe
the influence of the γ variables and the set X on the approximation behavior of fbKDE.
Second, we will compare the performances of fbKDE to KDE and vKDE (defined below)
when the bandwidth is chosen too large as the sample size increases. Finally, we will
compare performance for many different datasets and for favorable choices of bandwidth.

A note on implementation

When implementing the fbKDE, there are a few considerations. First, when computing∫
X f

2
α(x)dµ(x), the first term of Jn(α), we must compute the integral

∫
X k(x, zi)k(x, zj)dµ(x).

For computational considerations we assume X = Rd and µ is the Lebesgue measure. This
deviates from our theory, which requires finite µ for X = Rd. Thus, for the Gaussian kernel,
which we use in our experiments, this leads to

∫
X k(x, zi)k(x, zj)dµ(x) = k√2σ(zi, zj). To

obtain the α weights we have to solve a quadratic program. We used the ADMM algorithm
described in [84], with the aid of the `1 projection algorithm from [55].

4.5.1 The role of σγ and X
We first study the behavior of fbKDE as the γ variables change and with respect to the
domain of error. For this let us consider n = 1000 samples from a triangular density
on [0, 1]. Besides being compact, the density has a discontinuity at the origin. The γ
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variables were drawn from a Gaussian distribution with parameter σγ. We look at two
possible values: σγ = .05 and σγ = .25, to contrast between small and large σγ. We
consider both the cases X = Rd and X compact, in which case we set it to be the interval
[min(xi)− σγ,max(xi) + σγ ]. We have used values of R = 5 and kernel bandwidth σ = .1.

Figure 4.1 shows the resulting fbKDE for the above setup. The errors Jn for large
and small σγ, in the case X = Rd, are, respectively, -1.2706 and -1.2702. The errors for
compact X are -1.2711 for large σγ and −1.2757 for small σγ. When the error is taken
over all of Rd the choice of σγ does not seem to affect much the behavior of fbKDE, even
for very different values of this parameter. When the error is taken over the compact
interval defined by σγ the fbKDE overshoots at the discontinuity. We also studied other
densities with compact support and discontinuities, like the uniform density and truncated
Gaussians, as well as other values of the kernel parameter σ, and the exhibited behavior
is similar.

The first behavior to observe is that outside the support of the density the fbKDE does
take negative values. By placing negative α weights in one side of the discontinuity and
positive weights in the other, portions of the positively weighted kernels are subtracted
off allowing for a sharp change, and a finer approximation. This behavior will be studied
with more care, compared to the standard KDE, in Section 4.5.2. Now, when the error is
taken over Rd the fbKDE, although it overshoots, stays close to zero since it is penalized
by differing much from the density even outside its support. When the error is taken
over a small compact set (small σγ), the fbKDE overshoots greatly outside said support.
This is because it tries to minimize the error inside the compact set without regard for its
consequences outside of it, hence it achieves the smallest error inside the compact set, to
the expense of larger deviations outside of it. When σγ is large, the behavior is similar to
that of the error taken over Rd because the set X is large and well outside the support
of the density, so the approximation also considers minimizing the error over the zero
portion of X .

4.5.2 Inappropriate σ and sample size

We now study the behavior of fbKDE when the bandwidth σ is too large, and we compare
to that of the standard KDE. We have chosen Gaussian γ’s but the results are similar
for the uniform case. We also compare to the behavior of the variable bandwidth Kernel
Density Estimator, which we refer as vKDE, see [85]. The vKDE has the form

fvKDE =
1

n

∑
i=1

nkσi(x,Xi)

where each data point has an individual bandwidth σi. [85] proposes to use

σi = σ

(
λ

fKDE(Xi)

)1/2

,

where σ is a global bandwidth parameter and λ is the geometric mean of {fKDE(Xi)}ni=1.
We consider three cases in which the kernel parameter σ has been kept large and

fixed at a value of .25. In Figure 4.2 we observe again the triangle density, as well as
the different estimates for two largely different sample sizes n = 40 and n = 2000. The
resulting Jn error terms for the fbKDE, KDE, and vKDE are, respectively, −.87, −.99,
and −.98 for the small sample case, and −1.25, −1.1, and −1.12 for the large sample case.
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Figure 4.1: True density (solid) along with fbKDE for both a large σγ = .25 (dotted) and a
small σγ = .05 (dashed). The top figure shows the case X = Rd. In this case the behavior
is similar for both small and large parameter: fbKDE overshoots at the discontinuity but
tries to keep a value close to zero. The bottom shows the case for compact X , taken to
be [min(xi)− σγ,max(xi) + σγ ]. For large σγ the behavior is similar to the top case, since
X contains a substantial region where the density is zero and for which fbKDE has to
approximate. For small σγ, the approximation outside the support is not important and
it highly overshoots but achieves the best error over X .

Figure 4.3 shows a mixture of Gaussian with equal mixture weight centered at −1 and
1 with shared standard deviation of 2/9. In the small sample case the resulting errors
−.171, −.275, and −.28. In the large sample case the respective errors −.31, −.278, and
−.287. Finally, Figure 4.4 shows a similar case for a mixture with standard deviations
.25 and .1 and equal weights. The resulting errors are −.12, −.41 and −.32 for the small
sample case, and −.92, −.74, and −.79 for the large sample case. In all cases and to better
understand the fbKDE we have plotted the α values (stem plots) and their respective
weighted components (light dashed curves). We have set R = 5 and σγ = .001.

Notice first, in the triangle case of Figure 4.2, that the fbKDE is able to skew more
towards the concentrated region of the triangle in spite of the sudden drop and the large
kernel bandwidth. This is because the allowance of negative mass outside but close to
the original support is able to erase some of the excess mass obtained by putting positive
weight close to the edge.This behavior is capable of approximating fine properties of
densities. Figure 4.3 illustrates a similar principle for continuous densities. In this case
the low density region between the two modes is hard to approximate with the large
inappropriate bandwidth, and in fact both the KDE and the vKDE assign excess mass
to this region even for large sample size. Furthermore the sample size does not seem to
aid their approximation when the bandwidth is kept fixed and large, as is expected from
their analytic properties. The fbKDE, however, does gain advantage as the sample size
grows, and even for such a large kernel bandwidth it is able to match the true density. It
does so by assigning slightly negative values to the α weights close to the center. These
negative values, as in the discontinuity case for the triangular density, are able to subtract
excess mass and refine the approximation. Thanks to the larger sample size it is able
to control better the trade-off between positive and negative weights. Finally Figure 4.4

49



Figure 4.2: True density along with fbKDE, KDE and vKDE. All estimates use a kernel
with large bandwidth σ = .25. The top figure shows the estimates for small sample size
n = 40. Even in this low sample regime the fbKDE is able to skew more towards the
origin thanks to the negative mass outside the original support. As the sample size grows
the approximation is refined for the fbKDE while it remains about the same for the other
estimates.

shows a similar case in which besides a mass valley there are two regions with different
approximation scales. The vKDE was indeed originally proposed for the purpose of
approximating densities with this behavior. Similar to the previous case, the fbKDE
improves better as the sample size grows, while the KDE and vKDE seem to stagnate.

4.5.3 Performance for favorable σ

We examine a few benchmark real datasets as well as synthetic data from 1-dimensional
densities. The synthetic densities are the triangular density as well as three Gaussian
mixtures, a bimodal, a trimodal and a kurtotic, as shown in Figure 4.5. We computed the
parameters σ, Rn, and σγ in two different ways. First we used rules of thumb. For σ, we
used Silverman’s rule of thumb ([11]). For Rn we used, based on the convergence rates,
(n/ log(n))1/3 for d ≤ 4 and (n/ log(n))(1/2−2/d) for d > 4. For σγ we used, inspired by the
Jaakkola heuristic [71], the median distance to the 5th nearest neighbor. Second we used
a V -fold CV procedure over 100 parameter combinations drawn randomly from Θd, with
V = 2 for n > 1000 and V = 3 otherwise (see [86]). Θd := [.1, .5]`×[1.1, 2

√
(n)]`×[.001, .1]`

for d ≤ 4, and Θd := [.1, 1]` × [1.1, 2n(1/2−2/d)]` × [.001, .1]` for d > 4, where the subscript
` indicates logarithmic spacing and where the range is chosen thus since the data is
standardized and, for the Rn range, informed by the convergence rates. Finally, we used
n to be 4/5 of the original data size for training and the rest for testing. We compute

the value JTn as
∫
fα(n)

2 − 2
∑n

i=1 α
(n)

i
1
nT

∑nT
`=1 k(x

(T )
` , zi), where

{
x

(T )
`

}nT
`=1

is the test set.

Figure 4.6 shows the bimodal density, the fbKDE, KDE, and vKDE along with the α
values for the fbKDE. Table 4.1 shows the Jn(α(n))T error as well as the ‖·‖∞ error, where
for some function g, ‖g‖∞ := maxx∈X |g(x)|.
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Figure 4.3: True density along with fbKDE, KDE and vKDE. All estimates use a kernel
with large bandwidth σ = .25. The valey between the modes poses a challenge for KDE
and vKDE for such a large kernel bandwidth, and a larger sample size does not aid their
approximation. The fbKDE, to the contrary, can control better the balance between
negative and positive mass and produces a very accurate approximation for the larger
sample size. Note that in this case the fbKDE is everywhere nonnegative, a desired quality.

Figure 4.4: True density along with fbKDE, KDE and vKDE. All estimates use a kernel
with large bandwidth σ = .25. In this case the estimates have to approximate the function
both under the challenge of a valley region and the challenge of different approximation
scales. The KDE and vKDE turn out too smooth, assigning extra mass to the valley
and less mass to the thinner component. The fbKDE, again by properly using negative
weights, can both approximate the valley and change approximation scales in spite of the
large kernel bandwidth.

51



Figure 4.5: Bimodal, triangular, trimodal and kurtotic densities used to evaluate the
fbKDE performance.

In Figure 4.6 the density has two Gaussian elements with different widths. It is difficult
for KDE and even for the vKDE to approximate such a density. The fbKDE, however, is
able to approximate components of different smoothness by making some weights negative.
These weights subtract excess mass in regions of refinement. Note that by doing so the
fbKDE may itself overshoot and become negative. A similar behavior is exhibited for
other densities, in which smoothness varies across regions. In Table 4.1 we report the
performance of the three estimators for both CV and rule of thumb. Note the fbKDE
often performs better in terms of the ‖·‖∞, and when the bandwidth is chosen according
to a rule of thumb. The fbKDE outperforms both the KDE and vKDE in about half of
the cases.

Finally we show, for the bimodal density, a comparison of the performance as the
sample size grows. We have chosen the parameters according to the rules of thumb
discussed above. Table 4.2 presents the errors. Note that as the sample size grows the
KDE and vKDE do not significantly improve, even though the bandwidth is being updated
according to Silverman’s rule. The fbKDE leverages new observations and refines its
approximation, and this effect is more obvious for the ‖·‖∞ case. Indeed, the ‖·‖∞ error
for fbKDE is smaller at n = 50 than at for KDE and vKDE at n = 2050. Similar results
hold for the other synthetic datasets. This highlights a notable property of the fbKDE,
that it can handle densities with differing degrees of smoothness.

4.6 Conclusion

We have presented a new member of the family of kernel estimators, the fixed bandwidth
kernel density estimator, with desirable statistical properties. In particular, we showed the
fbKDE is consistent for fixed kernel parameter σ, and we provided convergence rates. The
fbKDE is a good alternative to the KDE in cases where computing an optimal bandwidth
is difficult and for densities that are hard to approximate with inappropriate bandwidths.
In these cases and as is shown in the experimental section, the fbKDE can greatly improve
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Figure 4.6: Bimodal density and kernel estimators with training size 800. The stem
subplot indicates the values of α (centered offset for visualization). Note that some of the
α weights are negative.

on the KDE. The way in which fbKDE achieves a more refined approximation is by
balancing properly placed positive and negative weights, sometimes outside of the original
support, which is facilitated by the Γ variables, and which is not possible with the standard
KDE. A few problems of interest remain open. We have illustrated two possible rate of
convergence results, but expect many other such results are possible, depending on the
choice of kernel and smoothness assumptions. It also remains an open problem to extend
our results to more general domains X and to dependent data.

4.7 Proofs

Oracle Inequality

First recall the oracle inequality lemma:

Lemma 5 Let ε > 0. Let {(Xi,Γi)}ni=1 satisfy assumption A1. Let k satisfy assump-

tion A2 and fα be as in Equation (4.1). Let δ = 2n exp
(
− (n−1)ε2

8C2
kR

2
n

)
. With probability

≥ 1− δ,

‖f − fα(n)‖2
2 ≤ ε+ inf

α∈An
‖f − fα‖2

2 .

Proof of Lemma 5. For clarity in this section we will use capital letter to denote random
variables. Recall the following definitions from Section 4.2. For a random variable Γi ∼ fΓ

and for {Xi}ni=1 ∼ fn we define

hi = hi(Xi,Γi) :=

∫
S
k(x,Xi + Γi)f(x)dµ(x),
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Table 4.1: Performance comparison for different datasets and bandwidth selection methods.
For the synthetic datasets we drew 1000 samples, n = 800 of which were used for training.

Rule of Thumb Cross-Validation

fbKDE KDE vKDE fbKDE KDE vKDE

Bimodal
JTn -1.0180 -0.8110 -0.8765 -1.0660 -0.9785 -1.0413
‖·‖∞ 0.2287 1.0141 0.8468 0.1865 0.5534 0.2782

Triangular
JTn -1.2889 -1.2897 -1.2958 -1.2332 -1.2095 -1.2073
‖·‖∞ 1.0121 1.0200 1.0923 1.1599 1.1437 1.2242

Trimodal
JTn -0.3317 -0.2919 -0.3025 -0.3457 -0.3379 -0.3456
‖·‖∞ 0.2335 0.4571 0.4156 0.1212 0.1879 0.1032

Kurtotic
JTn -0.5444 -0.4735 -0.5271 -0.5831 -0.5647 -0.5894
‖·‖∞ 0.2800 0.8122 0.5540 0.1379 0.3902 0.1181

Banana JTn -0.0838 -0.0821 -0.0839 -0.0821 -0.0837 -0.0853
Ringnorm JTn 2.4E-09 -2.3E-10 -2.7E-10 -1.7E-10 -3.2E-10 -3.5E-10
Thyroid JTn -0.0932 -0.0448 -0.1415 -0.2765 -0.2514 -0.2083
Diabetes JTn -1.4E-05 -0.0004 -9.8E-04 -0.0010 -0.0007 -0.0010
Waveform JTn 1.5E-09 -1.2E-11 1.25E-11 -2.1E-12 -1.2E-11 -1.25E-11
Iris JTn 0.0166 -0.0204 0.0058 -0.0102 0.0027 0.0777

Table 4.2: Performance comparison with respect to the sample size for the bimodal density.

Sample size n

50 250 450 1050 1650 1850 2050

‖·‖∞ error
fbKDE 0.7046 0.5847 0.4836 0.3549 0.1807 0.1642 0.1761
KDE 1.1341 1.0567 1.1451 1.0833 0.9684 0.9420 0.9160
vKDE 1.0287 0.8811 1.0459 0.9670 0.8106 0.7562 0.7300

JTn error
fbKDE -0.8985 -0.9623 -0.7487 -1.0788 -0.9787 -1.0493 -0.9722
KDE -0.7099 -0.7639 -0.6859 -0.8220 -0.8284 -0.8728 -0.8277
vKDE -0.7763 -0.8284 -0.7091 -0.8793 -0.8782 -0.9372 -0.8839

and

ĥi = ĥi(X,Γi) :=
1

n− 1

∑
j 6=i

k(Xj, Xi + Γi),

were we have used the simplified notation (X,Γi) to represent (X1, . . . , Xn,Γi). To simplify
notation further, we let X/i represent (X1, . . . , Xi−1, Xi+1, . . . , Xn) and use PX,Γ {·} for
PX1,...,Xn,Γ1,...,Γn {·}, and the same goes for EX,Γ (·). We now look at the probability that
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Hn(α) is close to H(α). We have

PX,Γ

{
sup
α∈An

|Hn(α)−H(α)| > ε

}
= PX,Γ

{
sup
α∈An

∣∣∣∣∣
n∑
i=1

αiĥi(X,Γi)−
n∑
i=1

αihi(Xi,Γi)

∣∣∣∣∣ > ε

}

= PX,Γ

{
sup
α∈An

∣∣∣∣∣
n∑
i=1

αi(ĥi(X,Γi)− hi(Xi,Γi))

∣∣∣∣∣ > ε

}

≤ PX,Γ

{
sup
α∈An

n∑
i=1

|αi|
∣∣∣ĥi(X,Γi)− hi(Xi,Γi)

∣∣∣ > ε

}

≤ PX,Γ

{
Rn max

1≤i≤n

∣∣∣ĥi(X,Γi)− hi(Xi,Γi)
∣∣∣ > ε

}
≤

n∑
i=1

PX,Γ

{∣∣∣ĥi(X,Γi)− hi(Xi,Γi)
∣∣∣ > ε

Rn

}
.

Now let Ai :=
{

(x1, . . . , xn, γi) ∈ Sn × supp {fΓ} |
∣∣∣ĥi(x, γi)− hi(x, γi)∣∣∣ > ε

Rn

}
and note

that PX,Γ {Ai} = PX,Γi {Ai}. We have

PX,Γi {(X1, . . . , Xn,Γi) ∈ Ai} =

∫
supp{fΓ}

PX|Γi {(X1, . . . , Xn, γi) ∈ Ai | Γi = γi} fΓ(γi)dγi

=

∫
supp{fΓ}

PX {(X1, . . . , Xn, γi) ∈ Ai} fΓ(γi)dγi,

by independence. Furthermore,

PX {(X1, . . . , Xn, γi) ∈ Ai} =

∫
S

PX/i|Xi {(X1, . . . , xi, . . . , Xn, γi) ∈ Ai | Xi = xi} f(xi)dµ(xi)

=

∫
S

PX/i {(X1, . . . , xi, . . . , Xn, γi) ∈ Ai} f(xi)dµ(xi).

We now bound the term inside the integral, abbreviated as PX/i

{
(X/i, zi) ∈ Ai

}
. First,

note that hi(xi, γi) = EXj (k(Xj, zi)) for any j 6= i, therefore

EX/i|Xi,Γi
(
ĥi(X,Γi) | Xi = xi,Γi = γi

)
= EX/i

(
ĥi(X/i, xi, γi)

)
= hi(xi, γi).

Now, by assumption k is a positive definite radial kernel so there is a Ck such that
k(x, x′) ≤ Ck for all x, x′, hence:
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PX/i

{
(X/i, zi) ∈ Ai

}
= PX/i


∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

k(Xj, zi)− EX/i

 1

n− 1

n∑
j=1
j 6=i

k(Xj, zi)


∣∣∣∣∣∣∣∣ > ε


= PX/i


∣∣∣∣∣∣∣∣

1

n− 1

n∑
j=1
j 6=i

k(Xj, zi)−
1

n− 1
EX/i

 n∑
j=1
j 6=i

k(Xj, zi)


∣∣∣∣∣∣∣∣ > ε


= PX/i


∣∣∣∣∣∣∣∣
n∑
j=1
j 6=i

k(Xj, zi)− EX/i

 n∑
j=1
j 6=i

k(Xj, zi)


∣∣∣∣∣∣∣∣ > (n− 1)ε


≤ 2exp

{
−2(n− 1)ε2

C2
k

}
,

where we have used Hoeffding’s inequality. So we obtain

PX,Γ

{∣∣∣ĥi − hi∣∣∣ > ε

Rn

}
=

∫
supp{fΓ}

∫
S

PX/i

{
(X/i, zi) ∈ Ai

}
f(xi)fΓ(γi)dµ(xi)dγi

≤ 2exp

{
−2(n− 1)ε2

C2
kR

2
n

}
·
∫

supp{fΓ}
fΓ(γi)dγi ·

∫
S
f(xi)dµ(xi)

= 2exp

{
−2(n− 1)ε2

C2
kR

2
n

}
,

and

PX,Γ

{
sup
α∈An

|Hn(α)−H(α)| > ε

}
≤ 2nexp

{
−2(n− 1)ε2

C2
kR

2
n

}
.

Therefore, letting δ = 2nexp
{
−2(n−1)ε2

C2
kR

2
n

}
, for any α ∈ An

PX,Γ {|Jn(α)− J(α)| ≤ 2ε} = PX,Γ {|Hn(α)−H(α)| ≤ ε}
= 1− PX,Γ {|Hn(α)−H(α)| > ε}
≥ 1− δ.

So, with probability ≥ 1 − δ, Jn(α) ≤ J(α) + 2ε, and with probability ≥ 1 − δ,
J(α) ≤ Jn(α) + 2ε. Recall that Jn(α(n)) ≤ Jn(α) for all α ∈ An. Then with probability
≥ 1− 2δ,

J(α(n)) ≤ inf
α∈An

J(α) + 4ε.

If we substitute ε′ = 4ε we obtain the desired result.

Consistency of fα(n)

In the following we will make use of the fact that, for continuous positive definite radial
kernels, the RKHS norm dominates the sup-norm which in turn dominates the L2

µ(X )
norm. Let’s state this as a lemma.
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Lemma 9. Let k be a kernel satisfying Assumption A2 with RKHS H, then for any
h ∈ H we have

‖h‖2 ≤ ‖h‖∞ ≤ ‖h‖H .

Proof. By assumption k is bounded and continuous so by Lemma 4.28 of [16] so is every
element of H. Hence, for h ∈ H and for X either compact or all of Rd the essential
supremum equals the supremum, so we obtain

‖h‖2 =

(∫
X
|h(x)|2 dµ(x)

)1/2

≤ µ1/2(X ) sup
x∈X
{|h(x)|}

= µ1/2(X ) ‖h‖∞
≤ µ1/2(X ) sup

x∈X
{|〈h, k(·, x)〉H|}

≤ µ1/2(X )C
1/2
k ‖h‖H

where the penultimate inequality follows from the reproducing property and the last
inequality is just Cauchy-Swartz.

Now to prove Theorem 3 we need a couple intermediate lemmas.

Lemma 10. Let k satisfy assumption A2 and f ∈ L2
µ(X ) ∩ C(X ), then

‖fα − f‖2 ≤ ‖fα − fβ‖2 + 2µ(X )1/2ε.

Proof. If X is compact, then H is dense in C(X ) (see [17]). Therefore, for fixed ε, there
is an fH ∈ H such that

‖fH − f‖∞ ≤ ε,

and by lemma 9

‖fH − f‖2 ≤ µ(X )1/2ε.

If X = Rd, [17] tells us H is dense in L2
µ(X ), so it directly follows that there is an fH

satisfying, for any ε > 0,

‖fH − f‖2 ≤ µ(X )1/2ε.

Similarly, since H0 is dense in H [16], for any fixed ε there is an fβ ∈ H0 such that

‖fβ − fH‖H ≤ C−1/2ε,

hence, by lemma 9

‖fβ − fH‖2 ≤ µ(X )1/2ε.

Therefore:

‖fα − f‖2 ≤ ‖fα − fβ‖2 + ‖fβ − fH‖2 + ‖fH − f‖2

≤ ‖fα − fβ‖2 + 2µ(X )1/2ε.
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Note that fβ ∈ H0 implies fβ =
∑m

j=1 βjk(·, yj) for some m ∈ N and where (βj, yj) ∈
R×X for all 1 ≤ j ≤ m. To make the first term small, we first quantify the continuity of
the kernel k. Let ε′ = ε/ ‖β‖1 and define

ηε := µ1/2(X )
ε′

L(k)
,

where L(k) is the Lipschitz constant of k. Then for every x and y in X we have that
‖x− y‖2 ≤ ηε implies ‖k(·, x)− k(·, y)‖2 ≤ µ1/2(X )ε′.

Recall fα =
∑n

i=1 αik(·, Zi), with the above result in hand we now have to make sure
that at least a subset of the centers {Zi}ni=1 of fα are close to the centers {yj}mj=1 of fβ with

high probability. First, define Bj =
{
x ∈ X | ‖x− yj‖2 ≤ ηε,

}
and define PZ := PX+Γ.

Then we obtain the following lemma:

Lemma 11. Let ε > 0 and fβ, fα and Bj as above. Then

PZ

{
∀Bj ∃Zij ∈ {Zi}

n
i=1 3 Zij ∈ Bj

}
→ 1

as n→∞.

Proof of Lemma 11. Let the event ACj = {∀z ∈ {Zi}ni=1 , z /∈ Bj}. Then

PZ

{
ACj
}

= PZ {Z1 /∈ Bj, . . . , Zn /∈ Bj}

=
n∏
i=1

PZ {Zi /∈ Bj}

=
n∏
i=1

(1− PZ {Zi ∈ Bj})

=
n∏
i=1

(1− pj) = (1− pj)n,

where pj =
∫
Bj
fZ(z)dz. Let p0 := minj {pj} and recall that for p < 1 we have 1− p ≤ e−p.

Hence (1− pj)n ≤ e−npj ≤ e−np0 , and

PZ {∩mAj} = 1− PZ

{
∪ACj

}
≥ 1−

m∑
j=1

PZ

{
ACj
}

= 1−
m∑
j=1

(1− pj)n

≥ 1−
m∑
j=1

e−np0

= 1−me−np0 .

For this term to approach zero we need p0 := minj
∫
Bj
fZ(z)dz to be strictly positive.

This follows from the assumption that supp (fZ) ⊇ X . Since m and p0 only depend on ε
and other constants, we get

PZ {∩mAj} ≥ 1−me−np0 → 1

as n→∞. Finally, note that throughout the proof PZ is the same as PX,Γ
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Lemma 12. Let X , µ satisfy A0, {(Xi,Γi)}ni=1 satisfy A1, and k satisfy A2. Then, ∀
ε > 0 ∃C such that

PX,Γ

{
inf
α∈An

‖f − fα‖2 > ε

}
≤ Ce−np0

for sufficiently large n.

Proof. Let δ2 = m exp (−np0). With probability ≥ 1− δ2 we have that for every j there
is an ij such that

∥∥k(·, zij)− k(·, yj)
∥∥

2
≤ ε
‖β‖1

. Then, for α∗ defined as

α∗i =

{
βj : i = ij
0 : i 6= ij

we have

‖fα∗ − fβ‖2 =

∥∥∥∥∥
n∑
i=1

α∗i k(·, zi)−
m∑
j=1

βjk(·, yj)

∥∥∥∥∥
2

≤
m∑
j=1

|βj|
∥∥k(·, zij)− k(·, yj)

∥∥
2

≤
m∑
j=1

|βj|µ1/2(X )
ε

‖β‖1

= µ1/2(X )ε.

Note that if for two sequences {sn} , {s′n} we have sn ≤ s′n for n ≥ N0, then limn→∞ sn ≤
limn→∞ s

′
n, granted such limits exist. Let sn := PX,Γ

{
infα∈An ‖f − fα‖2 > 3µ1/2(X )ε

}
and s′n := δ2, note that for n large enough, say n = N0, Rn ≥ ‖β‖1 and therefore α∗ ∈ An.
So we can see that for n ≥ N0, the inequality

inf
α∈An

‖f − fα‖2 ≤ ‖f − fα∗‖2

≤ ‖f − fH‖2 + ‖fH − fβ‖2 + ‖fβ − fα∗‖2

≤ 3µ1/2(X )ε

holds with probability ≥ 1− δ2. That is, for n ≥ N0, sn ≤ s′n, hence since s′n = δ2 → 0,
we get sn → 0.

Proof of Theorem 3.

PX,Γ

{
J(α(n)) ≤ 4ε+

(
3µ1/2(X )ε

)2
}

(4.7)

≥ PX,Γ

{{
J(α(n)) ≤ J∗ + 4ε

}
∩
{
J∗ ≤

(
3µ1/2(X )ε

)2
}}

= 1− PX,Γ

{{
J(α(n)) ≤ J∗ + 4ε

}C ∪ {J∗ ≤ (3µ1/2(X )ε
)2
}C}

≥ 1−
(

PX,Γ

{
J(α(n)) > J∗ + 4ε

}
+ PX,Γ

{
J∗ >

(
3µ1/2(X )ε

)2
})

.

(4.8)

By Lemma 5 the middle term approaches zero and by Lemma 12 the last term does, so

lim
n→∞

PX,Γ

{
J(α(n)) ≤ ε′

}
= 1,

where ε′ = 4ε+
(
3µ1/2(X )ε

)2
.
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Convergence Rates of fα(n)

The proof of Lemma 7 is found in [81]. Recall Lemma 8:

Lemma 8 Let δ2 ∈ (0, 1), let f ∈ Fk and let fβ and m be as in (4.5). Let {(Xi,Γi)}ni=1

satisfy assumption A1, then with probability ≥ 1− δ2

inf
α∈An

‖fβ − fα‖2 ≤ ε3(n,m)

where ε3(n,m) := C
n1/d log1/d (m/δ2), for C a constant independent of n and m.

Proof of Lemma 8. Throughout this proof define fβ as in Lemma 7. Let η := ε3
L‖β‖1

.

Following an argument similar to that of Lemmas 11 and 12 we know that with probability
≥ 1−me−np0 the event that for all yj there is a data point Zij such that

∥∥yj − Zij∥∥2
≤ η

will hold. Recall p0 = minj
∫
Bj
fZ(z)dz, hence

p0 = min
j

∫
Bj

fZ(z)dz

≥ min
x∈X
{fZ(z)}min

j

∫
Bj

dz

≥ min
x∈X
{fZ(z)}min

j
vol(Bj)

= min
x∈X
{fZ(z)} c′ηd,

where c′ is the volume of the d-dimensional unit ball.
Now pick the α coefficients as in Lemma 11, then with probability ≥ 1−me−ncηd we

have:

inf
α∈An

‖fβ − fα‖2 ≤

∥∥∥∥∥
m∑
j=1

βj
(
k(·, yj)− k(·, zij)

)∥∥∥∥∥
2

≤ Lµ1/2(X ) ‖β‖1 η

= µ1/2(X )ε3.

Fixing δ2 ∈ (0, 1) and setting me−ncη
d(ε) = δ2, where c = c′minx∈X {f ∗(x)}, we obtain

ε3 =
L ‖β‖1

(nc)1/d
log1/d (m/δ2) .

Finally, noting that ‖β‖1 = ‖λ‖1, where λ is as in Lemma 7, yields the desired result.

We now prove Theorem 4.

Proof of Theorem 4. We will use the notation and results of Lemmas 6, 7 and 8. First,
note that from Lemma 7 we have ‖f − fβ‖2 ≤ µ1/2(X ) ‖f − fβ‖∞ ≤ µ1/2(X )ε2(m). So
putting the three Lemmas together we have that with probability ≥ 1− (δ1 + δ2)

‖f − fα(n)‖2
2 ≤ ε1(n) + µ(X )(ε2(m) + ε3(n,m))2,
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or, taking into account only the dependence on n,m, δ1 and δ2 for the different εi’s, we
have that ‖f − fα(n)‖2

2 is of the order of

‖f − fα(n)‖2
2 . log1/2 (n/δ1)

Rn

n1/2
+

1

m
+ log2/d (m/δ2)

1

n2/d
.

Now, we want the number m of centers in fβ close to but no larger than the number
n of data points, so we set m = nθ for some θ such that 0 < θ < 1. Furthermore, we need
Rn to grow accordingly, so that Rn = ncθ, for c > 0 a constant possibly dependent on d.
This yields, ignoring the log terms for now:

‖f − fα(n)‖2
2 .

1

n1/2−cθ +
1

nθ
+

1

n2/d
.

Setting the first two rates equal we obtain θ = 1/2(1 + c). Note that if d > 4 we can
match the third term by setting c = d/4− 1 to obtain an overall rate of 2/d. Otherwise
we can set c to any small number to obtain a rate 1/2(1 + c) slightly slower than 1/2.

Finally, for the log terms, just let δ1 = δ2 = δ/2 and note that if d > 4 then log1/2

dominates, and if d ≤ 4 then log2/d dominates.

Box rates

In this section we use the assumptions and notation from Section 4.4.3 To sketch the
proof we begin by reformulating Lemma 5 for the box kernel case:

Lemma 13. Let δ ∈ (0, 1). Let {(Xi)}ni=1 satisfy A1 and k satisfy supx,x′∈X k(x, x′) ≤ Ck.

If f̃α(n) is as above, then with probability ≥ 1− δ

J(α(n)) ≤ ε1(n) + inf
α∈An

∥∥∥f − f̃α∥∥∥
2

where ε1(n) :=
√

8CkRM

√
log (4M/δ1)

n−1
.

We now take care of the term infα∈An

∥∥∥f − f̃α∥∥∥
2
.

Lemma 14. Let f ∈ F . For any m ∈ N there is a function fβ of the form fβ =∑(mq)d

i=1 βik(·, yi), where {yi}(mq)d

i=1 ⊂ X ± σ and ‖β‖1 ≤ (mq)d−1Rf,σ satisfying

‖f − fβ‖2 ≤ ε2(m)

where ε2(m) :=
Lf
√
d

mq
.

Proof of Lemma 14. Let ι := (ι1, . . . , ιd) be a multi-index with positive elements and
associated index i related by the function h:

i = h(ι) = 1 +
d∑
`=1

(ι` − 1)(mq)`−1

and its inverse

h−1(i) =

(⌈
i mod (mq)1

(mq)0

⌉
,

⌈
i mod (mq)2

(mq)1

⌉
, . . . ,

⌈
i mod (mq)d

(mq)d−1

⌉)
.
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Divide X = [0, 1]d into (mq)d hypercube regions of equal volume to form the partition{
Πd
`=1

[
ι`−1
mq

, ι`
mq

]}(mq)

ι1,...,ιd=1
= {Ti}(mq)d

i=1 , where Ti = Πd
`=1

[
ι`−1
mq

, ι`
mq

]
. Now, let

fm =

(mq)d∑
i=1

f(xi)1{Ti}

where xi ∈ Ti. Any choice of xi works but for clarity we choose xi = (ι1/mq, · · · , ιd/mq).
Note that fm is close to f :

‖f − fm‖2
2 ≤

∫
X

(f(x)− fm(x))2dx

=

(mq)d∑
i=1

∫
Ti

(f(x)− fm(x))2 dx

=

(mq)d∑
i=1

∫
Ti

(f(x)− f(xi))
2 dx

≤
(mq)d∑
i=1

∫
Ti

(Lf ‖x− xi‖2)2 dx

≤
(mq)d∑
i=1

∫
Ti

(
Lf

√
d

mq

)2

dx

≤

(
Lf
√
d

mq

)2

.

Hence

‖f − fm‖2 ≤
Lf
√
d

mq
.

Now we note that fm can also be expressed as a sum of fixed bandwidth kernels:

fm =

(mq)d∑
i=1

βi(2σ)dk(·, yi),

where

yi =

[
ι1 − 1

mq
+ σ, · · · , ιd − 1

mq
+ σ

]T
and β is as follows. Let β1 = f(x1) and

βi = f(xi)−
Si∑
κ=si

βh(κ) − f(0)1{ι`=1 ∀`}

for i ≤ 2 ≤ (mq)d, where si = (max {1, ι1 − (m− 1)} , · · · ,max {1, ιd − (m− 1)}) and
Si = (max {1, ι1 − 1} , · · · ,max 1, ιd − 1) are multi-indices. Note that the βi’s sequentially
capture the residual of the function fm as we travel along the Ti regions.
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To find ‖β‖1 note that since ‖x1 − 0‖2 ≤ Lf
√
d/(mq), we have |β1| ≤ f(0) +

Lf
√
d/(mq). Also note βi = f(xi)− f(xi−1) for 2 ≤ ι1 ≤ m, hence for 2 ≤ i ≤ m

|βi| = |f(xi)− f(xi−1)|
≤ Lf ‖xi − xi−1‖2

≤ Lf

√
d

mq

For larger ι1 we have βi = f(xi) − f(xi−1) + βi−m − f(0)1{ι`=1 ∀`}. Note that when
ι1 = m+ 1 we have lost influence of β1, so

|βm+1| ≤ |f(xi)− f(xi−1)|+ |β1|+ f(0) ≤ 2Lf

√
d

mq
+ 2f(0)

and, similarly, |βi| ≤ 2Lf
√
d

mq
for m + 2 ≤ i ≤ 2m. The process continues such that, in

general

|βi| ≤
⌈ ι1
m

⌉(
Lf

√
d

mq
+ f(0)1{ι`=1 ∀`}

)

for i ≤ mq. Adding these we obtain q+1
2

(Lf
√
d+ qf0). Denote this quantity by e′. Then

this process is repeated over every dimension, having q chunks of multiples of e′, the first
multiple is 1m, the second 2m, and so on. The final sum is then

‖β‖1 ≤ (mq)d−1

(
q + 1

2

)2 (
qf(0) + Lf

√
d
)
.

Therefore

(2σ)d ‖β‖1 =
(m)d−1

q

(
q + 1

2

)2 (
qf(0) + Lf

√
d
)
.

Proof of Theorem 5. This proof is similar to the proof of Theorem P 4. Combining
Lemmas 13, 14, setting Rn′ ∼ m(d−1), ignoring the log terms for now and considering only
the dependence on n and δ we obtain

‖f − fα(n)‖2
2 .

md−1

n1/2
+

1

m2
.

Setting these terms equal we obtain m = n1/(2d+2), with an overall rate of n−1/(d+1).
Adding the log term we obtain

‖f − fα(n)‖2
2 .

log1/2(nd/(2d+2)/δ)

n1/(d+1)
.

log1/2(n/δ)

n1/(d+1)
.
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Chapter 5

Concluding Remarks

In this work we have studied modification of kernel nonparametric estimators. In particular,
we addressed two issues of importance for kernel estimators: scalability and bandwidth
choice.

To address the first issue we presented a scalable sparse representation of a kernel
mean, which we call sparse kernel mean (SKM) and prove approximation guarantees. To
show its performance with respect to other competing methods, and to the full estimators,
we compared the relative error for simple benchmark datasets. We also deviced three
experiments, eulidean embedding of distributions, class proportion estimation, and mean
shift clustering, in all of which the fbKDE is more accurate and faster than its competitors,
some times by an order of magnitude, and it is about two of magnitude faster than the
full procedure. Future research involves a similar framework in which SKM is modified
so that the bandwidth of the selected components is larger than the original bandwidth.
Also, due to research done on the k-center algorithm, it is possible to extend SKM so
as to be robust or accommodate easily for online streaming of data, and yet remain
computationally feasible.

To address the second issue, and in the specific case of kernel density estimation, we
present a novel estimator, the fixed bandwidth kernel density estimator (fbKDE), which
exhibits statistical consistency without the need for the kernel bandwidth parameter to
approach zero. We showed that for suboptimal fixed bandwidth the fbKDE outperforms
the KDE and vKDE as the sample size grows. We also showed that even for optimal
choices of bandwidth the fbKDE performs better, especially in terms of the uniform norm.
Future work points to studying non-universal kernels with possibly weaker approximating
properties. The fbKDE based on these kernels might only be consistent for smaller
function families but have possibly faster rates. Also, we conjecture our results can be
expanded to dependent data and more general structured domains, not just euclidean.
Finally, a combination of SKME and fbKDE remains to be done, if so, it would provide a
powerful tool for nonparametric estimation.
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