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ABSTRACT

Laboratory Astrophysics Experiments to Study Star Formation

by

Rachel Pierson Young

Co-chairs: R. Paul Drake and Carolyn C. Kuranz

As a thesis project, I devised and implemented a scaled accretion shock experiment

on the OMEGA laser (Laboratory for Laser Energetics). This effort marked the first

foray into the growing field of laser-created magnetized flowing plasmas for the Center

for Laser Experimental Astrophysical Research (CLEAR) here at the University of

Michigan.

Accretion shocks form when streams of accreting material fall to the surface of

a young, growing star along magnetic field lines and, due to their supersonic flow,

create shocks. As I was concerned with what was happening immediately on the

surface of the star where the shock forms, I scaled the system by launching a plasma

jet (the accreting flow) and driving it into a solid surface (the stellar surface) in the

presence of an imposed magnetic field parallel to the jet flow (locally analogous to

the dipole field of the star).

Early work for this thesis project was dedicated to building a magnetized flowing

plasma platform at CLEAR. I investigated a method for launching collimated plasma

jets and studied them using Thomson scattering, a method which measures parame-

ters such as temperature and density by scattering a probe beam off the experimental

xxii



plasma. Although the data were corrupted with probe heating effects, I overcame this

problem by finding the mass density of the jets and using it to determine they were

isothermal rarefactions with a temperature of 6 eV.

Scaling an astrophysical phenomenon to the laboratory requires tailoring the pa-

rameters of the experiment to preserve its physics, rather than creating an experiment

that merely superficially resembles it. I ensured this by distilling the driving physical

processes of the astrophysical system—accretion shocks—into a list of dimensionless

number constraints and mapping these into plasma parameter space.

Due to this project being the first magnetized flowing plasma effort at CLEAR, it

suffered the growing pains typical of a young research program. Of my two primary

diagnostics for the accretion shock experiment, visible light imaging was successful,

but proton radiography, which was intended to probe magnetic field structure, failed

twice for two independent reasons. The visible light data show that a shock forms

and grows rapidly. However, there are no observable structural differences between

the magnetized and un-magnetized shots. It may be that there were subtle structural

differences that would have been evident in proton radiographs but did not appear

in visible light images.

However, it may also be that the magnetic field was not strong enough to affect

the structure; given the plasma and magnetic field parameters of the shot day, the

experiment was analogous to a young star with a magnetic field of 325 Gauss, which

is weaker than the roughly 1 kilo-Gauss fields typically observed. If this experimental

effort continues after my departure, it would benefit from making use of one of the

novel low-density plasma stream generation techniques being developed at CLEAR.
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CHAPTER I

Introduction

1.1 Overview

While a scaled experimental version of a complicated system might seem a poor

substitute for the real thing, it offers researchers several advantages: it can be tested

under controlled conditions, altered easily, and fine-tuned to reveal insights in the

basic physics of the system. The scaled experiments the general public is most fa-

miliar with are model aircraft tested in wind tunnels. What the general public may

not be aware of is that wind tunnels predate flight by more than thirty years; the

Wright brothers’ historic accomplishment at Kitty Hawk would not have been possi-

ble without a generation of researchers investigating the basic physics of flight in a

scaled setting.

This thesis pertains to a different sort of scaled experiments, high-energy laser

experiments which are scaled to astrophysical systems. Conceptually, scaling an as-

trophysical system is similar to scaling an aircraft: it is an attempt to make a smaller

version of the real thing that preserves its physics and thus will tell the researcher

something useful about the system of interest. But model aircraft are only scaled

down by two or three orders of magnitude in size, while an astrophysical system

might be scaled down by ten or more orders of magnitude. Moreover, some astro-

physical phenomena, such as gravitation, cannot be reproduced in the laboratory.
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Scaling an astrophysical system, therefore, requires choices and tradeoffs: what are

the most important physical processes of the astrophysical system and how might

they be reproduced—or approximated—in a laboratory setting?

Fluid dynamicists have long used dimensionless numbers to distill the behavior

of a fluid system down to its essentials. To return to the model aircraft example

above, a researcher wishing to test a model wing in an wind tunnel would adjust

the air flow such that the Reynolds number1 of the wind tunnel system matched the

Reynolds number expected when the actual aircraft took flight. This basic process—

fiddling with experimental parameters to make dimensionless numbers line up—is

what researchers mean when they say a system is “well-scaled.”

For my thesis project, I designed and implemented a laser experiment which I

argue is well-scaled version of an accretion shock. Accretion shocks form in any

accreting system; I focused on those that occur during star formation at the surfaces

of young, growing stars. All stars form at the center of accretion disks, see Figure

1.1. The most widely accepted accretion model is magnetospheric accretion, wherein

the magnetic field of the young star is thought to control the accretion process, lifting

material out of the plane of the disk and funneling it to the stellar surface along

magnetic field lines. When the accreting material impacts at the surface of the star,

it creates a shock. From the perspective of a local observer on the surface of the star,

it would appear that accreting material was falling to the surface along field lines

that ran perpendicular to the surface (that is, up and down).

It was this specific part of the star formation process that I decided to scale

to laboratory experiment, see Figure 1.2. In the astrophysical system, a stream of

accreting material flows down along stellar magnetic field lines, impacts at the stellar

surface, and forms a shock. In the laboratory experiment, a plasma jet (the “accreting

flow”) is driven into a solid surface (the “stellar surface”) in the presence of an imposed

1The Reynolds number captures the importance of viscous effects.
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Figure 1.1: The star forming region M17 (left) and an artist’s conception of a young
star system (right). (Image credit: left, European Southern Observatory,
and right, Australian National University.)

magnetic field that runs parallel to the flow (analogous to the local field of the star).

To argue that the experiment was well-scaled, I tailored the plasma conditions of the

experiment to make a dimensionless-number-based scaling argument.

Stellar Surface

Magnetic!
Field

Accreting!
Flow

Solid Block

Plasma!
Jet

Magnetic!
Field

Figure 1.2: Diagram of the astrophysical and laboratory accretion shock systems. In
the astrophysical system (left), accreting plasma falls to the stellar surface
along magnetic field lines. This is translated into a laboratory experiment
(right) by driving a jet into a block in an imposed magnetic field.

The primary objective of this project was to investigate the role of the magnetic

field in the structure and evolution of accretion shocks. Based on existing astrophys-

ical simulation work, I hypothesized that magnetic fields would play a crucial role in

the structure of the post-shock material. I expected a strong field to trap the shock
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in a tight column of post-shock material, whereas a weak field would fail to contain

it, and it would splash out to the sides, much like a stream of water does when it hits

a surface.

1.2 Laboratory Astrophysics

My work in laboratory astrophysics stands on the shoulders of nearly twenty years

of work in scaling astrophysical systems to laboratory experiments with dimension-

less numbers (Ryutov et al., 1999; Remington et al., 2000, 2006). This project was

conducted under the auspices of The Center for Laser Experimental Astrophysical

Research (CLEAR). CLEAR is based at the University of Michigan and is lead in

part by my co-advisors, Paul Drake and Carolyn Kuranz. Examples of laboratory

astrophysics work previously conducted by CLEAR and its predecessor include the

work of Kuranz et al. (2009), who created Rayleigh-Taylor blast waves relevant to

supernovae remnants; and the work of Krauland et al. (2013), who created reverse

shocks relevant to interacting binaries.

This section will lay out hydrodynamic/magnetohydrodynamic (MHD) laboratory

astrophysics work in the sub-field of star formation. As related in the last section,

stars form at the center of accretion disks; these star-disk systems are accompanied

by bipolar jets that extend several light-years into the interstellar medium. Most

star-formation-related laboratory astrophysics focuses on the launch mechanism and

their structure of these jets. In addition to the wealth of experiments aimed at

exploring jet behavior, there are several studies of accretion disk behavior and one

other experimental team studying accretion shocks.

1.2.1 MHD Jets on MAGPIE

For over fifteen years, the Plasma Physics group at Imperial College London has

lead an effort to study astrophysically relevant jets on MAGPIE, a large pulsed-power
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generator. Pulsed-power devices such as MAGPIE create experimental plasmas by

discharging high current through some array of conductors (wires or thin metal foils),

completely vaporizing them. Lebedev et al. (2002) devised a new way to create plasma

jets that could be relevant for laboratory astrophysics: they used a conical array of

wires to launch a collimated plasma jet with velocity of ∼ 200 km s−1 and a Mach

number of ∼ 20. They found that higher Z materials had more radiative cooling

and produced tighter jets. These jets became the basis for later work, including

launching a conical-wire MAGPIE jet into a cross wind analogous to an astrophysical

jet encountering background movement in the interstellar medium (Lebedev et al.,

2004).

In 2005, Lebedev et al. built off the conical-wire idea to develop a platform that

has been the basis for over a decade of work. They substituted a flat radial array of

wires for the conical array. When MAGPIE fires, the wires are completely vaporized,

producing a magnetic tower above the wires with a toroidal magnetic field inside.

The toroidal field compresses plasma within the bubble into a jet along the axis. The

tower grows with time until the jet inside finally breaks free. These jets are radiatively

cooled (cooling parameter ∼ 1) and resultantly have very high Mach numbers (∼ 30)

(Lebedev et al., 2005b). Ciardi et al. (2007) sent such jets into a background plasma

in a jet-encounters-interstellar-medium experiment similar to that of (Lebedev et al.,

2004) earlier.

The genius of the radial-wires idea is that tweaking the experiment can make the

jet episodic like an astrophysical jet. When the radial wire vaporize, they leave a

small gap at the center. Ciardi et al. (2009) adjusted the experiment such that when

the jet breaks free, the plasma is able to fill-in that gap, see Figure 1.3. This sets up

conditions identical to those in place when MAGPIE originally fired and the filled-in

configuration is able to “refire.” Every time the experiment refires, the magnetic tower

grows once more, a jet forms within it and eventually breaks free. Later Suzuki-Vidal
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et al. (2010) replaced the radial wires with a thin circular conducting foil and achieved

three to four eruptions per experiment.

Magnetic 
bubbles

form

Jet
breaks up

New
bubble

New jet 40 mm

Figure 1.3: Plasma jet data from Ciardi et al. (2009). Over a period of roughly 200 ns,
a jet forms inside a magnetic bubble, breaks up, new magnetic bubbles
form, and the process repeats.

1.2.2 Jet-Obstacle Collisions on OMEGA

In 2005, Foster et al. began a series of experiments aimed at exploring the in-

teraction of dense plasma jets with a surrounding medium on OMEGA, a large laser

facility located at the University of Rochester. The Foster et al. jets (see also Coker

et al., 2007) were launched by irradiating a thin piece of titanium with a hohlraum,

a metal cylinder which its inner walls irradiated to create a radiative cavity. The jet

was collimated by a titanium washer and sent into a foam-filled cavity meant to be

analogous to the interstellar medium. The resulting structures show clear bow shocks

and turbulence, the same structures observed in the jets than emanate from young

star systems.

While experiments that send an astrophysically relevant jet into an ambient

medium are fairly common in laboratory astrophysics, the collaboration then seized

on a novel variation to it: they collided their jets with polystyrene (plastic) spheres
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meant to be analogous to large molecular cores in the interstellar medium (Hartigan

et al., 2009).

One remarkable thing about this collaboration is the lengths they have gone to to

connect their laboratory results to astronomical observations and vice versa. Hartigan

et al. (2011) used the Hubble Space Telescope to obtain time-progression data of

several jets from young stars2 and observed structures similar to those seen in the

jet-foam experiments, see Figure 1.4.

Figure 1.4: Comparison of Hartigan et al. (2009) experimental data (left) and Harti-
gan et al. (2011) observational data (right).

1.2.3 Jets on LULI

In 2007, Loupias et al. began a series of experiments that were aimed at created

astrophysically relevant jets on the LULI laser at L’Ecole Polytechnique. Their ex-

periments used an “ablator” to send a shock wave into foam. By driving the resulting

foam shock through a “conical washer” (basically, a converging nozzle), they created

a collimated plasma jet.

The ablator in this case was a thin piece of CH irradiated by the LULI laser. Just

as a rocket is propelled forward by ejecting material out the back, irradiated material

2Jets from young stars are known as “Herbig-Haro objects” in honor of the scientists who orig-
inally identified them. Hartigan et al. (2011) observed three HH objects, HH 1, HH 34, and HH
47.
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dissipating off the surface of the CH launches a shock forward through the foam. The

resultant jets have Mach number of ∼ 10, Reynolds number ∼ 1, and Péclet number

∼ 1, making them good candidates for astrophysical jet studies. The Loupias et al.

jets were later launched into an ambient medium of argon meant to be analogous to a

jet erupting into the interstellar medium (Gregory et al., 2010; Loupias et al., 2009).

1.2.4 MHD Jet Launching at CalTech

In the memorably titled Why current-carrying magnetic flux tubes gobble up plasma

and become thin as a result, Bellan (2003) proposed that MHD pumping explains an

array of phenomenon in the Universe. In You et al. (2005), the collaboration states

their concept thusly, “an MHD force resulting from the flared current profile drives

axial plasma flows along the flux tube; the flows convect frozen-in magnetic flux from

strong magnetic field regions to weak magnetic field regions; flow stagnation then piles

up this embedded magnetic flux, increasing the local magnetic field and collimating

the flux tube via the pinch effect.”

Figure 1.5: Evolution of an astrophysically relevant jet made with the Caltech plasma
gun (Bellan et al., 2009).

Since they proposed these ideas, this team has performed numerous experiments

using the Caltech plasma gun (Yun and Bellan, 2010). Unlike the other jet experi-

ments discussed in this section, these experiments are envy-inducingly large, reaching

20 cm or more, and the results resemble astrophysical jets or solar coronal loops, see

Figure 1.5. They have also experimented with sending their jets into an ambient
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medium (Moser and Bellan, 2012).

1.2.5 Accretion Disk Instabilities

These are not plasma physics experiments but I have included them because they

seek to understand star-formation-related hydrodynamic and MHD behavior. For

decades, accretion disk theorists have been plagued by a very basic problem: why

does disk material spiral in? The disk material must be losing angular momentum to

drag forces, much in the same way satellites in low-Earth-orbit lose angular momen-

tum due to atmospheric drag—without repositioning they would spiral in to Earth.

But whereas hydrodynamic viscosity is sufficient to explain the rate at which low-

Earth-orbit satellites lose angular momentum, it is insufficient to explain the angular

momentum loss in an accretion disk. Instead, the leading candidate is MHD viscosity

stemming from the magnetorotational instability.

Ji et al. (2006) used Taylor-Couette apparatus to a create a quasi-Keplerian rotat-

ing disk with Reynolds numbers up to 2×106. These experiments were not magnetic;

they used water or a water/glycerol mixture. Even at such high Reynolds numbers,

the flow was stable, underscoring the impossibility of explaining accretion disks with-

out MHD.

Other teams have used Taylor-Couette apparatus (or its spherical equivalent) to

pursue the the magnetorotational instability. These experiments are more compli-

cated tham the water/glycol experiment of Ji et al.; they required liquid metal and

an imposed magnetic field. Sisan et al. (2004) and Stefani et al. (2006) have observed

the magnetorotational instability, the latter at Reynolds numbers as low as 1000, in

stark contrast to the high-Reynolds-number stability of the non-magnetic system.
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1.2.6 POLAR Accretion Shocks

Finally, there is one laboratory-astrophysics project that complements my own

because it also pertains to accretion shocks. My work was aimed at producing a

scaled version of an accretion shock on the surface of a young star and exploring the

role of the surrounding magnetic field in containing the shock. The POLAR project

is aimed at producing a scaled version of an accretion shock on the surface of a white

dwarf3 and exploring the growth of the resulting column of radiatively cooled post-

shock material (Bouquet et al., 2010; Falize et al., 2012; Busschaert et al., 2013).

There are two crucial differences between their project and mine. First, their work

uses high-Z material to produce a shock with significant radiative cooling. Second,

their work relies on artificial means to collimate their “accretion shock.” While actual

white dwarf accretion shocks are collimated by the dwarf’s intense magnetic field, the

POLAR team used a shock tube to contain their experiment. Laboratory magnetic

fields high enough to be analogous to a white dwarf field are simply not achievable

with current technology. The first results of this effort are contained in Cross et al.

(2016), which found that the growth of the scaled radiative accretion column matches

numerical predictions.

Although the POLAR team is concerned with the growth of a radiating “accre-

tion shock column,” it does not appear that they expected to observe the famous

Chevalier and Imamura cooling instability.4 Their papers cite the work of Chevalier

and Imamura (1982) in passing but make no mention of seeing the instability in a

laboratory experiment. I suspect that the cooling timescale for their plasma condi-

3White dwarfs are late-in-life stars; our own Sun will one day be one. While all young stars
experience accretion during their formation, only binary white dwarfs experience accretion—without
captured material from a binary companion there would be nothing to accrete onto them. A sub-set
of these accreting white dwarfs are known as polar stars, hence the clever name of the laboratory-
astrophysics project.

4The story of the Chevalier and Imamura (1982) cooling instability is worth relating briefly.
Within a handful of years, it was observed in numerical simulations, described by analytic predic-
tions, and observed in the x-ray spectra of accreting white dwarfs, making it a lovely example of
numeric simulations actually leading the way in astrophysics.
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tions was too long for the instability to appear in their experiment; I calculated the

cooling timescale of my own experiment once and found that it was on the order

10−5 s—short by human standards but far to long for a field where experiments are

measured in nanoseconds.

To date, there is one plausible laboratory observation of the cooling instabil-

ity. Hohenberger et al. (2010) observed velocity oscillations in a radiatively cooled

shock, which they attribute to the cooling instability. However, their experiment

was intended to be a roughly scaled version of the cooling instability in supernovae

remnants, not accretion shocks.

1.3 The OMEGA Laser

All of the experiments included in this project were performed on the OMEGA

laser at the Laboratory for Laser Energetics (LLE) in Rochester, NY. Built in 1970

as part of the national effort to achieve fusion energy, OMEGA is a 30-kilojoule

60-beam frequency-tripled neodymium:glass (Nd:glass) laser system ideal for high-

energy physics investigations (Soures et al., 1996). As the laser was designed to

implode fuel capsules in fusion experiments, the beams are distributed around the

target chamber isotropically (or nearly so) making OMEGA flexible to configure for

non-fusion applications. It has a wavelength of 351 nm, the third harmonic (3ω) of

Nd:glass (Boehly et al., 1997).

While the OMEGA facility is run by its staff scientists, engineers and technicians,

experimental decisions are made on a shot-to-shot basis by the visiting experimental

team. It is standard practice at the Center for Laser Experimental Astrophysical

Research (CLEAR) to allow the graduate student primary investigator (PI) to make

these decisions, albeit with the advice of more senior scientists. The metaphor I would

use is student driving: senior scientists give advice and could in theory hit the brakes

if they thought it necessary, but the graduate student PI is driving the car. As a
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Figure 1.6: The target chamber of the OMEGA laser. (Image credit: University of
Rochester).

graduate student PI, I briefed the OMEGA staff on the experiment in the morning,

approved laser energy profiles, determined which configurations would be shot and

what timing was needed, provided feedback to the facility on the effectiveness of each

shot, and, most importantly, directed the alignment of the experimental target.

OMEGA is a remarkably flexible facility. Turn-around time between shots on

OMEGA is just under an hour and experimental parameters such as timing can be

altered up until a few minutes before the shot is fired. In many cases, data are

available shortly after the shot, so it is possible to use the results of the previous shot

to determine the course of action for the next shot. A good shot day might yield a

dozen shots, so even if the shot day is going well, the primary investigator must be

frugal and think critically about what pieces of data are truly crucial to answer the

driving questions of the campaign.

As a graduate student PI, I was responsible for coordinating each shot day from its

beginning—planning normally begins about a year in advance—to analyzing the data

collected. I defined the goals of the experiment, designed targets using a computer

aided design (CAD) program, and coordinated with the target fabrication team here
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at the University of Michigan to have the targets built.

1.4 Description of Chapters

This thesis progresses from the motivation of the work, to early scoping studies

of plasma jets, and finally to the full accretion shock experiment. The chapters are

as follows:

• Chapter II discusses the process for scaling accretion shocks to a laboratory

experiment. I begin with the history of our understanding of star formation,

including the currently accepted models and the direct evidence of accretion

shocks. I discuss how I determined the plasma conditions in astrophysical ac-

cretion shocks. I explain the dominant physics of the astrophysical accretion

system and related dimensionless numbers. I enumerate the dimensionless num-

ber constraints needed to scale the system and plot each one in plasma parame-

ter space, delineating the regions where the constraint is met and where it is not

met. I conclude with two options, each of which would produce a well-scaled

experiment.

• Chapter III analyzes the data obtained from collimated jet experiments in April

2012. Visible light imaging revealed that the jets were indeed collimated and

that they formed easily visible shocks when collided in a head-on configuration.

Thomson scattering was used to plot a mass vs. time profile for the jets, which

was compared to analytic predictions. Based on those comparisons, I concluded

the jets were behaving as isothermal rarefactions with Te ≈ 6 eV.

• Chapter IV presents the results of the accretion shock work. Unfortunately, I

was not able to observe a difference between the field and no-field shots due

to repeated failures of our primary diagnostic, proton radiography. However,
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visible light imaging was successful and I use this to prove that we were suc-

cessful in creating a shock. I relate the timing of shock formation to the scaling

arguments presented in Chapter II. I also connect this work to the timing of

shock formation for the collimated jet work presented in Chapter III.

• Chapter V presents all the proton radiography data. I used proton radiography

for three shot day, one day devoted to a multiple jet experiment and two devoted

to the accretion shock experiment. Unfortunately, proton radiography failed for

both accretion shock shot days. I discuss these failures and explain the data

that were obtained.

• Chapter VI presents the conclusions of this investigation and considers the

future of this work. In particular, I discuss the lack of an observable difference

between the field and no-field shots. This may be because proton radiography

failed, but it also may be that the magnetic field was too weak to affect the

flow. I consider both possibilities and their implications going forward.

• Appendix A provides background on the the OMEGA laser and the OMEGA

systems used for this thesis project, which include the Magneto-Inertial Fusion

Electrical Discharge System (MIFEDS), a system for imposing magnetic fields;

proton radiography using a D3He proton back-lighter, which images magnetic

field structure; Thomson scattering, a technique which probes parameters such

as temperature and density by scattering a probe beam off the experimental

plasma; and visible light imaging, in layman’s terms, taking a picture of the

experiment with self-emitted radiation.

• Appendix B provides a narrative of the four shot days involved in this thesis

project. Much of the effort of this project was dedicated to developing the

magnetized flowing plasma platform at CLEAR and our experimental team

experienced the growing pains typical of a young research program. This chap-
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ter summarizes each shot day, including what was attempted, what data was

gained, and what did not work as expected and resulted in a lesson learned for

the next shot day.

• Each shot day has an appendix dedicated to it which contains all the data,

including data that failed or was not useful.

15



CHAPTER II

Scaling Accretion Shocks

This chapter introduces the driving question of this thesis project, “How does

magnetic field strength affect accretion shock structure and evolution?”, and the

strategy to address it with a scaled laboratory-astrophysics experiment. As discussed

in Chapter I, a laboratory-astrophysics experiment is considered well scaled when

it preserves the dominant physics of the astrophysical system. To ensure this, I

developed a six step process, illustrated in Figure 2.1.

1. Qualitatively describe the astrophysical system and define the driving questions

of the investigation. These should be questions that the astrophysical commu-

nity needs answered and, ideally, they should currently elude direct observation

and accurate simulation from first principles. See Section 2.1.

2. Qualitatively describe the experiment and define its goals. What flows, objects,

and/or fields from Step 1 must be recreated in the lab? Ensure there is a strong

visual connection and determine what it is that one intends to measure. See

Section 2.2.

3. Research observational studies to determine astrophysical fluid parameters, such

as density, temperature, velocity, and so forth. See Section 2.3.
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Figure 2.1: The six steps for scaling an astrophysical system to a laboratory experi-
ment.

4. Identify the important physical processes and their associated dimensionless

parameters. Because these numbers are dimensionless, they can be used to

compare systems on different length scales, such as the astrophysical system

and the laboratory experiment. See Section 2.4.

5. Define a list of dimensionless number constraints. These constraints are based

on the conditions that exist in the astrophysical system; for the experiment to

be well-scaled they must hold true there as well. It is not always necessary to

make the dimensionless numbers match exactly, but they should be in similar

regimes. See Section 2.5.

6. Map the dimensionless number constraints into the experimental plasma pa-

rameter space using region plots that show where the parameter is and is not

satisfied. The overlap region where all constraints are satisfied at once defines

the parameter range where the experiment will be well-scaled. See Section 2.6.
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2.1 Accretion shocks

2.1.1 Evidence for accretion shocks

All stars form at the center of a rotating accretion disks. Our own Sun once

passed through this phase of life, and our Solar System is all that remains of the

original disk. At that point, the Sun could not sustain hydrogen to helium fusion in

its core. Instead it was powered by gravitational contraction and like all young stars,

was much more active and variable than it is today. Low mass (M < 2M�) pre-main-

sequence stars are called T Tauri stars (Joy , 1945; Herbig , 1962), while higher mass

ones (2M� < M < 8M�) are called Herbig Ae/Be stars (Herbig , 1960), see Table 2.1.

(Note: M� is the solar mass; R� is the solar radius.)

Figure 2.2: Conception of accreting star (left) and diagram of magnetospheric ac-
cretion (right).(Image credit: left, Australian National University, and,
right, Camenzind (1990).)

Parameter Unit T Tauri Herbig Ae/Be
Spectral type - K7 A2
Surface temperature, T∗ K 4000 9000
Peak wavelength, λpeak Å 7200 2900
Stellar mass, M∗ M� 0.8 3.0
Stellar radius, R∗ R� 2.0 3.0
Magnetic field, B G 2000 100

Table 2.1: Vital statistics for prototypic T Tauri and Herbig Ae/Be stars.

Both T Tauri and Herbig Ae/Be stars are thought to experience magnetospheric
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accretion. Originally proposed by Koenigl (1991), who extended the compact object

work of Ghosh and Lamb (1979a,b) to T Tauri stars, the magnetospheric accretion

model has material from the accretion disk lifted out of the plane of the disk and

“funneled” along the star’s magnetic field lines to its surface. (Figure 2.2 depicts

a beautiful illustration of this phenomenon.) Today, there is ample evidence that

magnetospheric accretion occurs on T Tauri stars (see Bouvier et al. (2007) and

references therein).

For Herbig Ae/Be stars, the picture is fuzzier. While T Tauri stars have intense

magnetic fields of several kiloGauss (Johns-Krull , 2007), Herbig Ae/Be stars have

magnetic fields of a few hundred Gauss or less (Hubrig et al., 2004, 2006). These

magnetic fields are too weak to truncate the star’s accretion disk, yet observations

suggest that there are gaps between Herbig Ae/Be stars and their disks (Hillenbrand

et al., 1992; Dullemond et al., 2001; Natta et al., 2001). There is also some evidence

of magnetospheric accretion—namely, emission lines that indicate accreting matter is

falling rapidly to the stellar surface (Muzerolle et al., 2004; Natta et al., 2000; Grinin

et al., 2001).

When the supersonic material impacts the surface of the young star—T Tauri or

Herbig Ae/Be—an accretion shock hot enough (T ∼ 106− 107 K) to emit soft X-rays

forms. There is ample evidence of this in the X-ray spectra of T Tauri stars (Kastner

et al., 2002; Stelzer and Schmitt , 2004; Schmitt et al., 2005; Günther et al., 2006;

Argiroffi et al., 2007; Robrade and Schmitt , 2007; Brickhouse et al., 2010; Argiroffi

et al., 2011), and evidence is growing that at least some Herbig Ae/Be stars exhibit

X-ray-emitting accretion shocks as well (Swartz et al., 2005; Testa et al., 2008; Grady

et al., 2010; Drake et al., 2014).
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2.1.2 Implications of accretion shocks

The mass accretion rate of a star (Ṁ , usually on the order of 10−8M� per year)

can be determined from the effect that these X-ray emitting accretion shocks have on

the star’s spectrum. The X-rays heat the surrounding photosphere, producing spots

of hot plasma (Calvet and Gullbring , 1998). Compared to a similar non-accreting

star, an accreting star ought to have excess emission in the optical and UV due to

these spots. From the amount of optical and UV excess, researchers can calculate

the fraction of the star’s surface covered with accretion streams of a given energy flux

(the traditional way to describe accretion streams; F = 1
2
ρu3

s, where us is the velocity

of the incoming material relative to the shock front), and from there get Ṁ . Using

this method, accretion rates for a large population of T Tauri stars are now available

(Hartigan et al., 1991; Valenti et al., 1993; Hartmann et al., 1998; Muzerolle et al.,

2005; Natta et al., 2006).

In principle, the optical/UV excess method ought to work for Herbig Ae/Be stars

as well (the physics is the same), but there is a complication: while T Tauri stars

peak in the red or infrared, Herbig Ae/Be stars peak in the blue or UV (see Table

2.1). Discerning their optical or UV excess, therefore, is difficult. Instead, the most

common method for measuring Herbig Ae/Be accretion rates depends on the Balmer-

γ (Brγ) luminosity (Garcia Lopez et al., 2006; Mendigut́ıa et al., 2011; Donehew and

Brittain, 2011). However, it should be noted that this method was calibrated using

the optical/UV excess method on low and intermediate-mass T Tauri stars (Muzerolle

et al., 1998; Calvet et al., 2004).

2.1.3 Open questions regarding structure

These accretion rate calculations are only as good as the understanding of ac-

cretion shock structure behind them. Because the surfaces of young stars cannot be

spatially resolved, the structure of accretion shocks has not been directly studied.
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For example, do accretion shocks penetrate the star’s photosphere, potentially hid-

ing much of the accretion shock’s energy from observers? Or, do accretion shocks

create large “splashes” when they hit the surface of the star, making it appear the

shock covers more surface area than it actually does? Either of these scenarios would

potentially change the calculated accretion rate significantly.

Brickhouse et al. (2010) addresses this problem head-on for one T Tauri star in

particular, TW Hydrae. (Because of its relative closeness and its “pole-on” orienta-

tion, TW Hydrae is easily the best studied T Tauri star.) Brickhouse et al. estimates

that 1.5% of the surface of TW Hydrae is covered with 3-MK plasma, and an addi-

tional 6.8% of the surface with 2-MK plasma.

Figure 2.3 illustrates two possible ways to interpret this finding. In Figure 2.3, the

cartoons above show a cross section view of accretion shocks hitting stellar surfaces;

the one on the left is uncontained and splashes outward violently (see arrows), while

the one on the right is contained by the magnetic field (field not shown). The cartoons

below correspond to the surface of the star in either scenario. One might have a

handful of “splashy,” uncontained shocks (see left), or many well-contained shocks

(see right). Both cartoon stars have an equal area covered by medium and dark pink,

and thus would have the same spectra.

Brickhouse et al. contend that the scenario on the left in Figure 2.3 explains their

data: the 3-MK plasma they observed is accretion shocks (dark pink) and the 2-MK

plasma they observed is rings (or donuts) of heated stellar atmosphere surrounding

the shocks, not additional accretion streams. They note that 3-D simulations by

Romanova et al. (2004) predict that accretion hotspots should be inhomogenous and

irregularly shaped. Similarly, simulations by Orlando et al. (2010) found that T Tauri

accretion shocks would produce violent outflows, particularly when the magnetic field

strength is too low to the contain the accretion shock, see Figure 2.4.

This question is by no means limited to TW Hydrae. In their study of accretion
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Figure 2.3: Comparison of two different accretion shock scenarios. Are accretion
shocks surrounded by violent splashes (left) or are they well-contained
(right)?

rates of intermediate-mass T Tauri stars, Calvet et al. (2004) write , “Shock models

also fail to explain the overall level of the far UV fluxes. . . An additional source of

emission must be contributing in this range, which we still have to identify.” They

suggest that the emission source might be the pre-shock portion of the accretion

column, but the simulations of Orlando et al. (2010) suggest that the outflows from

accretion shocks might have temperatures and densities similar to those in the pre-

shock plasma.

More recently, Ardila et al. (2013) published a study of hot gas lines of 28 T Tauri

stars and concluded that, “overall, the observations are consistent with the presence

of multiple accretion columns with different densities or with accretion models that

predict a slow-moving, low-density region in the periphery of the accretion column

[emphasis added].” Similarly, Ingleby et al. (2013) studied 21 T Tauri stars and found

that to explain both the UV and the optical excesses, the models required accretion

streams ranging from 1010 to 1012 erg s−1 cm−2.
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Figure 2.4: Accretion shock simulation results by Orlando et al. (2010). The weak
field case (left) has a large splash surrounding it, while the strong field
case (right) is contained.

This completes Step 1 of the scaling process, “Qualitatively describe the astro-

physical system and define the driving questions of the investigation.” The system

of interest is the region at the surface of the young star when an accretion shock

forms and the driving question is how well magnetic fields contain accretion shocks.

Ideally, the community needs some way of relating magnetic field strength (which can

be directly measured, see Section 2.3) to the degree of containment or the size of the

surrounding splash zone.

2.2 Defining the laboratory experiment

Creating an accretion shock motivated experiment requires reproducing the major

features of the astrophysical system in the laboratory. Based on the magnetospheric

accretion model, accreting flow funnels to the surface of the star along magnetic field

lines. It is neither possible nor necessary to reproduce all the aspects of magneto-

spheric accretion in an experiment. The scope of this experiment is restricted to the

area on the stellar surface where the accretion stream impacts to create a shock.
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From the frame of reference of an observer on the surface of the star, the stream

of accreting material falls (flows down) towards the surface along magnetic field lines

that run perpendicular to the stellar surface. (Farther away from the surface of the

star, both the streams and the field become more complicated, but this is excluded

from the experiment.) Figure 2.5 illustrates the accretion shock system (left) and the

laboratory experiment meant to emulate it (right). The experiment requires a plasma

jet (the “accreting material”) which flows toward a solid block (the “stellar surface”)

in the presence of a magnetic field running parallel to the jet and perpendicular to

the surface (the “stellar field”).

Stellar Surface

Magnetic!
Field

Accreting!
Flow

Solid Block

Plasma!
Jet

Magnetic!
Field

Figure 2.5: Diagram of astrophysical and laboratory accretion shock systems. In the
astrophysical system (left), accreting plasma falls to the stellar surface
along magnetic field lines (depicted here as a magnetic dipole at the pole
of the star). In the lab experiment (right), a plasma jet collides with a
solid block with a parallel background magnetic field.

The over-arching goal of the experiment was to determine the connection between

magnetic field strength and accretion structure. This was broken down into three

subgoals, which are illustrated in Figure 2.6: 1) create an accretion shock in a labora-

tory experiment (that is a bright/hot/dense region that is distinct from the incoming

flow), 2) observe a splash moving out to the sides as time progresses, 3) vary magnetic

field to observe a difference in the size and/or outward velocity of the splash.

This completes Step 2 of the scaling process, “Qualitatively describe the exper-
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Goal 1

Goal 2
Figure 2.6: Diagram of experi-

mental goals. Goals
1 and 2 are illus-
trated. Goal 3 was
to observe the outflow
varying with magnetic
field strength.

iment and define its goals.” Our experiment required a plasma jet, a solid block to

drive it into, and a surrounding magnetic field. The goals were to 1) observe a shock,

2) observe outflows from the shock zone (“splashes”) that move with time, and 3)

observe a difference in outflow based on magnetic field strength.

2.3 Plasma parameters in accretion shocks

Section 2.1 described the accreting star system on a qualitative level. Understand-

ing the accretion shock in detail requires delving into observational studies of young

stars.

X-ray spectra data from T Tauri stars offer important information about accretion

shocks, as the X-rays are emitted by the shocked matter. Astronomers typically

measure the intensities of many emission lines, anywhere from a dozen to several

dozen. The lines are known to be sensitive to the electron density and temperature

of the plasma emitting them, so by comparing their relative strengths to a relevant

database (generally, the Astrophysical Plasma Emission Database), the astronomers

can infer the plasma conditions in the accretion shock. This is not exact science;

every spectrum has a range of plasma conditions that could in theory cause it, and

that contributes to the error bars astronomers put on their electron density and

temperature measurements.

Mass density and incoming velocity can be calculated from incoming velocity as
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follows. Mass density is

ρ =
Ampne
Z

, (2.1)

where Amp is the atomic mass, ne is electron density, and Z is the average ionization.

The post-shock temperature is

kBT =
Amp

1 + Z2

u2
s

2(γ2 − 1)

(γ2 + 1)2
(2.2)

where us is the velocity of the incoming flow with respect to the shock front, kB is the

Boltzmann constant, T is temperature, and γ is the adiabatic index. The velocity of

the accreting material with respect to the star, uacc, and the velocity of the accreting

material with respect to the shock front, us, are not the same. (For a complete

derivation of this see Section 4.3.3.)

us = uacc
γ − 1

2
. (2.3)

Therefore, incoming velocity of the accreting material with respect to the star can be

calculated as,

uacc =

[
2(1 + Z)kBT

(γ − 1)Amp

]1/2

, (2.4)

assuming that the average atomic number and average mass number in the accretion

shock are assumed to be that of the sun: Z∗ = 1.1 and A∗ = 1.3. Table 2.2 presents

the findings of eight T Tauri spectral studies and calculated values for mass density,

ρ, and incoming velocity, uacc.

The velocity values in Table 2.2 are calculated from shock temperature, but in-fall

velocities can also be directly measured from Doppler shifts or calculated from the

free-fall velocity formula. Edwards et al. (1994) found that absorption lines in T Tauri
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Paper Subject T [MK] log[ne cm−3] log[ρ g cm−3] uacc[ km s−1]
Kastner et al. (2002) TW Hya 3 13 −10.7 400
Stelzer and Schmitt (2004) TW Hya 3 13 −10.7 400
Schmitt et al. (2005) BP Tau 2.5 11.5 −12.2 370
Günther et al. (2006) V4046 Sag 3 11.8 −11.9 400
Argiroffi et al. (2007) MP Mus 3 11.7 −12.3 400
Robrade and Schmitt (2007) RU Lup 2.8 11.5 −12.2 390
Brickhouse et al. (2010) TW Hya 2.5 12.5 −10.7 370
Argiroffi et al. (2011) V2129 Oph 3.5 12.1 −11.6 430

Table 2.2: Plasma conditions in accretion shocks, based on X-ray spectral analysis of
T Tauri stars.

spectra were redshifted 200 to 300 km s−1. The free-fall formula is

uff =

√
2GM

Rf

(
1− Rf

Ri

)
, (2.5)

where G is the gravitational constant, M is the mass of the star, Rf is the final radius,

and Ri is the initial radius. For typical T Tauri values of R∗ = 2R� and M∗ = 0.8M�

(see Table 2.1), and assuming Ri = 5R8, uff = 350 km s−1, so this is consistent.

Accretion shock studies quantify accretion stream strengths in terms of energy

flux, F = 1
2
ρ1u

3
1, where ρ1 and u1 are the density and velocity upstream of the

accretion shock. Calculated values of F range from 1010 to 1012 erg s−1 cm−3 (Ingleby

et al., 2013). If incoming velocities range from 200 to 400 km s−1, this corresponds

to ρ1 ≈ 10−13–10−10 g cm−3, which is consistent with the post-shock density values

found in Table 2.2.

Pre-shock temperature is difficult to observe directly, but can be estimated. Calvet

and Gullbring (1998) used a numerical simulation to determine the temperature of the

pre-shock region and found that it was 15, 000–25, 000 K, due to preheating from X-

ray emission from the accretion shock itself. Meanwhile, the background temperature

of a T Tauri star puts the lower limit of the incoming temperature at around 4000 K.

The last parameter is magnetic field strength, which can be determined from
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Zeeman broadening. The Zeeman effect is a single spectral line splitting due to the

presence of a magnetic field; in this application the split lines blur together. Johns-

Krull et al. (1999) measured Zeeman broadening in the infra-red spectrum of BP Tau

to determine that its field is 2.6 kG. Valenti and Johns-Krull (2004) applied the same

technique to seventeen T Tauri stars and found magnetic field strengths from 1 to

3 kG. This is consistent with later findings by Yang et al. (2005) and Johns-Krull

(2007).

Wade et al. (2007) studied circularly polarized light from a wide sample of Herbig

Ae/Be stars and found that most do not have a measurable field, although a handful

have fields on par with T Tauri stars (a kG or more). In general, Herbig Ae/Be stars

have fields of a few hundred G, if they have any at all.

Table 2.3 summarizes the findings of this section and completes Step 3, “Research

observational studies to determine astrophysical plasma parameters.”

Parameter Unit Range
Incoming velocity, u km s−1 200–400
Incoming energy flux, F erg s−1 cm−2 1010–1012

Incoming mass density, ρ g cm−3 10−13–10−10

Incoming temperature, T K 4000–25000
Magnetic field, B G 0–3000

Table 2.3: Plasma parameter ranges for accretion shocks

2.4 Physical processes and dimensionless numbers

Astrophysical systems can never be scaled and reproduced perfectly in the lab.

Having a worthwhile experiment, therefore, hinges on discerning which physical pro-

cesses are most important and translating them into an experiment appropriately.

Ryutov et al. (1999) lays out a theoretical basis for doing so: one must ensure that

dimensionless numbers (for example, Reynolds number) that define the system are at

least in similar regimes.
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To review from Section 2.2, our goals are 1) create an accretion shock in a labora-

tory experiment (that is a bright/hot/dense region that is distinct from the incoming

flow), 2) observe a splash moving out to the sides as time progresses, 3) vary magnetic

field to observe a difference in the size and/or outward velocity of the splash.

Accomplishing this requires, first and foremost, that plasma conditions allow a

shock to form in the first place. This requires a supersonic flow (see Section 2.4.1)

and, because the shock will form on the length scale of the ion-ion mean free path

(MFP), a relatively short MFP (see Section 2.4.2). In order to observe the effects

of a magnetic field, the magnetic diffusion length must be short enough to allow the

field to persist during the experiment (see Section 2.4.3). The ram plasma β (see

Section 2.4.4) is the ratio of field strength pressure to material pressure. Translating

this accurately into the lab is crucial to understanding the connection between field

strength and shock containment. Finally the Reynolds numbers must be in the same

rough regime (see Section 2.4.5).

2.4.1 Mach number

M is the Mach number, the ratio of the flow velocity of the jet to the speed of

sound inside the jet, M = u/cs. Sound speed was calculated according to

cs = 9.79× 105

√
γ(Z + 1)Te

A
cm s−1, (2.6)

where γ is the adiabatic index, Z is the average ionization, Te is the temperature in

eV, and A is the atomic mass in proton masses.

2.4.2 Mean free path

λMFP is the ion-ion mean free path inside the plasma. Any mean free path can be

expressed as λ = 1/(nσ), where n is the number density and σ is the cross-section.
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The ion-ion mean free path is

λMFP =
1

niσii904 ln Λii

, (2.7)

where ni is the ion density and σii904 ln Λii is the total cross section expressed as

the 90◦ cross-section, σii90, with a correction factor of 4 ln Λii to account for collisions

between ions that fail to deflect an ion a full 90◦. The 90◦ cross-section was calculated

according to

σii90 =
πe4Z4

miu4
, (2.8)

where e is the charge of an electron, Z is the average ionization, mi is the ion mass,

and u is the relevant velocity (in this case the flow velocity).

2.4.3 Magnetic diffusion length

`M is the magnetic diffusion length scale. Any diffusion length scale can be written

as ν/u, where ν is the diffusion coefficient and u is the relevant velocity. Here we are

concerned with magnetic diffusion in the post-shock region, so the diffusion coefficient

is νM and the velocity is u2 = u1/4, where u1 is pre-shock velocity and u2 is post-shock

velocity, taking the strong shock limit of the Rankine-Hugoniot shock conditions.

Therefore we have

`M =
νM
u2

=
4νM
u1

, (2.9)

The magnetic diffusivity in Gaussian CGS units is

νM =
c2η⊥
4π

, (2.10)

where η⊥ is the transverse Spitzer resistivity, yielding

`M =
c2η⊥
πu1

. (2.11)
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The expression for transverse Spitzer resistivity is taken from the Plasma Formulary,

(Huba et al., 2009):

η⊥ = 1.15× 10−14Z ln Λ

T
3/2
e

sec, (2.12)

where Z is the ionization, ln Λ is the Coulomb logarithm, and Te is the electron

temperature in eV.

2.4.4 Ram plasma β

βram is the ratio of ram pressure of the jet to the magnetic pressure of the field

βram =
ρu2

B2/8π
, (2.13)

where B is magnetic field strength.

2.4.5 Viscosity and Reynolds number

Re is the Reynolds number, the ratio of the viscous timescale to the dynamic

timescale, Re = Lu/ν, where L is the relevant length scale, u is the relevant velocity,

and ν is the ion-ion viscosity, which was calculated according to

νi =
u2
th,i

νii
= 2× 1019 T

5/2
i

niZ4
√
A ln Λ

cm2 s−1, (2.14)

where uth,i and νii are the ion thermal velocity and the ion-ion collisional frequency,

respectively, and expressions for both were taken from the Plasma Formulary, (Huba

et al., 2009). In the expression for νi, Ti is the ion temperature in eV, ni is the ion

density in cm−3, Z is the ionization, A is the atomic mass, and ln Λ is the Coulomb

logarithm.

This completes Step 4 of the scaling process, ”Identify the important physical

process and their associated dimensionless numbers.” The five dimensionless numbers
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of interest are Mach number, ion-ion mean free path, magnetic diffusion length scale,

ram plasma beta, and Reynolds number.

2.5 Constraints for the experiment

Section 2.4 laid out five dimensionless numbers that capture the relevant physics

of the accretion shock: Mach number, ion-ion mean free path, magnetic diffusion

length scale, ram plasma beta, and Reynolds number. Table 2.3 listed the ranges of

plasma parameters that one might expect in accretion shocks. Figure 2.7 shows the

five dimensionless numbers from Section 2.4 plotted over the range of inputs typical

of accreting star systems.
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Figure 2.7: Density-velocity space plots of dimensionless numbers in astrophysical ac-
cretion shocks. Plots of ion-ion MFP, Mach number, magnetic diffusion
length, ram plasma β, and Reynolds number for accretion shock condi-
tions. 33



We can draw the following conclusions from Figure 2.7:

1. The flow is highly supersonic. Over the range of velocities and temperatures

possible for the incoming flow, Mach numbers ranging from 5 to 50. This is

expected as accretion shock appear to be common on actively accreting stars.

We can translate this into the lab by imposing M > 1.

2. Ion-ion MFP is much less than the length scale of the system over the whole

range of inputs. For the ranges of incoming velocity and incoming density

possible, the ion-ion MFP ranges from 104–108 cm; the length scale of the as-

trophysical system is 109 cm. We can translate this into the lab by imposing

λMFP < L.

3. Magnetic diffusion length is much less than the length scale of the system. For

the ranges of incoming velocity and incoming density possible, the magnetic

diffusion length is 0.1–1 cm. We can translate this into the lab by imposing

`M < L.

4. Ram plasma beta, βram is plotted for magnetic field strength and incoming

material energy flux, which was defined in Section 2.3. Over the ranges of

field strengths and energy fluxes possible, βram = 10−3–103. That covers three

regimes: βram � 1, βram ≈ 1, and βram � 1. The high beta case is easy to

achieve; one can always run a control with a low field. Therefore the scaling ar-

guments presented in this thesis are for βram ≈ 1 and this was done by imposing

0.1 < βram < 10.

5. Reynolds numbers are much greater than a thousand across the input range.

We can translate this into the lab by imposing Re > 103.

This completes Step 5, “Define a list of dimensionless number constraints.” The

constraints that will be imposed on the laboratory experiment are listed in bold above.
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2.6 Mapping the constraints to parameter space

To be well-scaled, the experiment must have the five criteria listed at the end

of Section 2.5 be true at once. For every material, there is some four-dimensional

volume in Te–u–ρ–B space where all five of these criteria are simultaneously met.

A four dimensional space is difficult to visualize, much less translate into a figure.

In order to investigate the parameter space, I held Te and B constant and considered

the 2-D u–ρ space; this is illustrated in Figures 2.8 and 2.9. In each of the plots in

these figures, the shaded area represents the region in u–ρ space where the criterion

is not met. Obviously, this area will shift depending on material type, temperature

and magnetic field strength. Figures 2.8 and 2.9 give two temperature options for a

CH (plastic) plasma in a 10-T magnetic field. Plastic is a commonly used material

for target fabrication; it seemed a reasonable assumption for an experimental plasma.

MIFEDS can impose magnetic fields in the range of 5–15 T Fiksel et al. (2015); but

from the perspective of scaling, there is no disadvantage to having a high magnetic

field.

Considering Figures 2.8 and 2.9, one can see what conditions each criterion favors

and whether high or low temperatures are more limiting. Along the left hand side of

the plots, the first criterion, Mach number, and the third criterion, magnetic diffusion

length, rule out very low-velocity flows. Both favor high velocity becauseM∝ u and

`M ∝ 1/u. At low temperatures, `M is more limiting. As the temperature rises,

Mach number becomes more limiting as sound speed rise and `M drops according to

`M ∝ 1/T 3/2.

Along the bottom of the plots, the second criterion, ion-ion mean free path, and

the fifth criterion, Reynolds number, rule out low-density flows. The mean-free-path

constraint favors high density, low velocity conditions, because λMFP ∝ 1/ni and

λMFP ∝ u4. Reynolds number favors high velocity, high density conditions because

Re ∝ u and νi ∝ ni. At low temperatures, mean free path is more limiting, while
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Figure 2.8: Criteria region plots for a CH experiment at 10 eV with a 10 T field. Each
region plot delineates the region where the condition is met (blank) and
the region where it is not met (colored). Top row: Mach number, mean
free path, and magnetic diffusion length. Bottom row: ram plasma β,
Reynolds number, and all criteria plotted at once.

at high temperatures Reynolds number is more limiting. The mean-free-path trend

is due to ionization. Higher ionization raises the collisional cross-section of the ions;

larger cross section means more collisions. The Reynolds number trend is due to

ionization and the direct effects of temperature itself; the ion viscosity is thermal

velocity squared over ion-ion collisional frequency. Although ion-ion collisional fre-

quency increases with increasing temperature, the thermal velocity dependence wins

out and increasing temperature increases the viscosity, thus decreasing the Reynolds

number.

Finally, the fourth criterion, ram plasma β, rules out both low-density, low-velocity

flows due to the βram > 0.1 constraint, and high-velocity, high-density flows due to
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Figure 2.9: Criteria region plots for a CH experiment at 30 eV with a 10 T field.
Layout and color-coding are the same as Figure 2.8.

the βram < 10 constraint. Of the two, the βram < 10 constraint is more limiting; in

practice low-density, low-velocity flows are difficult to achieve on a laser. Because

βram has no temperature dependence, it does not change between Figures 2.8 and 2.9.

Taking all five constraints together, a 10-eV CH plasma, see Figure 2.8, would

require ρ ∼ 10−5 g cm−3 and u ∼ 100 km s−1, while a 30-eV CH plasma, see Figure

2.9, would require ρ ∼ 3× 10−6 g cm−3 and u ∼ 150 km s−1.

Table 2.4 presents the plasma parameters and calculated length scales and dimen-

sionless numbers for the astrophysical system and both experimental plasma options.

This completes Step 6, “Map the constraints into parameter space and find the

volume where all of them are satisfied.” When the highest plausible magnetic field on

OMEGA, 10 T, is imposed, the constraints are satisfied for a 10-eV CH plasma with

ρ ∼ 10−5 g cm−3 and u ∼ 100 km s−1, or a 30-eV CH plasma with ρ ∼ 3× 10−6 g cm−3
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Parameter Unit Accreting 10 eV 30 eV
Star Experiment Experiment

Mass density, ρ g cm−3 2× 10−11 10−5 3× 10−6

Average atomic number - 1.1 6.5 6.5
Average mass number - 1.3 3.5 3.5
Average ionization - 0.7 2.4 3.5
Electron density, ne cm−3 7× 1012 2× 1018 1018

Electron temperature, Te eV 1 10 30
Velocity, u km s−1 450 100 150
Magnetic field strength, B G 1000 105 105

Post-shock temperature, Ts eV 300 40 80
Length scale, L cm 109 0.1 0.1
Ion collisional MFP, λMFP,i cm 2× 106 0.02 0.03
Magnetic diffusion length, `M cm 200 0.03 0.01
Mach number, M - 30 4 3
Collisionality, λMFP,i/L - 0.002 0.2 0.3
Magnetic diffusion length ratio, λM/L - 2× 10−7 0.3 0.1
Ram Plasma Beta, βram - 1.0 2.5 1.7
Reynolds number, Re - 1010 3× 104 104

Table 2.4: Comparing typical numbers in an accretion stream to two options for ex-
perimental jets.

and u ∼ 150 km s−1. If the incoming plasma jet has parameters in either of these

ranges, or something in between, an experiment resembling Figure 2.5 will be well-

scaled.
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CHAPTER III

Collimated Jet Experiments

Chapter II related the process for scaling an astrophysical accretion shock to the

laboratory and ended with two sets of plasma parameters, either of which would yield

a well-scaled accretion shock experiment.

In April 2012, our collaboration dedicated a day of experiments on OMEGA to

testing a method for creating collimated jets with plasma parameters similar to those

determined in Chapter II.1 We conceived of a simple experiment: we would irradiate

the rear side of thin cones of acrylic to launch collimated plasma jets and charac-

terize them with optical Thomson scattering and 2-D visible light imaging. This

chapter discusses those experiments, the results we obtained, and my analysis of the

jet structure.

Section 3.1 discusses the motivation for developing collimated plasma jets and

related jet work by other researchers. Section 3.2 delves into my analytical theory of

how a conical target collimates the jet. Section 3.3 presents the experimental set-up,

experimental parameters used, and discusses what data were obtained.

Section 3.5 presents the Thomson data and its analysis. Thomson scattering is

a method for ascertaining parameters such as temperature and density of an experi-

mental plasma by scattering a laser beam of known wavelength off the experimental

1Chronologically, this work was completed before the accretion shock experiment was undertaken,
but even in April 2012 our collaboration anticipated needing steady, collimated jets for more complex
future experiments.
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plasma and analyzing the scattered spectrum. We obtained density, temperature and

velocity data from seven shots, two colliding jet and five single jet.

Section 3.4 presents the 2-D visible light images obtained; these self-emission

images clearly show the jets, their collimation, and how they evolve when collided

with each other.

Section 3.6 presents my conclusions.

3.1 Previous Work

Collimated plasma jets are an essential building block in more complicated ex-

periments. One commonly used technique for creating a collimated jet is irradiating

either side of a conical or V-shaped target. While plasma from a flat target will

expand in all directions without encountering any opposing flow, plasma from a V-

shaped or conical target will collide with the plasma flowing away from the opposite

side of the target, creating a collimated plasma jet, see Figure 3.1.

Figure 3.1: Plasma flows from flat vs. V-shaped or conical targets. Unlike a plasma
front emanating from a flat target (top), a V-shaped or conical target,
produces a collimated plasma jet (bottom). The yellow represents the
laser beams irradiating the rear side of the target, the gray represents the
target (seen here in cross-section), and the pink represents the plasma
created.

When a laser pulse hits a thin target, it immediately releases plasma on the
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irradiated surface and drives a shock wave into the target. The shock wave heats

the material as it passes through, vaporizing it and creating a hot, dense reservoir of

plasma that expands in both directions. The surface the laser hit is known as the

front surface; the opposite surface is known as the rear surface. The flow from the

front surface is the hot, fast initial release followed by the slower, denser expanding

rarefaction. However, when this surface is used to create jets (known as “front-

surface” jets) is it usually the hot, fast initial flow that is of interest. Thus front-

surface jets are typically hotter and faster than rear-surface jets. Table 3.1 presents

the results of four other teams that used V-shaped or conical targets. One team,

Li et al. (2013), had yet to publish when these experiments were designed, but is

included here because it represents a medium-Z material.

Parameter Unit Farley Shigemori Gregory Li
Irradiated surface - Front Front Rear Front
Material - Au Al Al CH
Mass density, ρ g cm−3 0.05 10−3 10−4 10−4

Electron temperature, Te eV 250 200 10 750
Velocity, v km s−1 500 700 300 1700

Table 3.1: Results of V-shaped or conical experiments. Studies cited are Farley et al.
(1999); Shigemori et al. (2000); Gregory et al. (2008); Li et al. (2013).

3.2 Theory

This section presents analytical calculations for the shape of the collimated jet that

were done prior to the April 2012 experiment. The underlying assumption is that a

stagnation shock forms. Outside the stagnation shock, the plasma flows perpendicular

to the original surface of the target (that is, towards the axis of the cone); inside the

shock, the radial flow is stagnated and the flow is entirely in the axial direction.

As illustrated in Figure 3.2, when the flow encounters the shock front, described

by r(z), its direction bends to be parallel to the axis. Locally, the incoming flow
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approaches an oblique shock with some angle φ1 with respect to the surface normal,

n̂, and leaves the shock with angle φ2 with respect to n̂. Some basic geometry yields

φ1 = θ − α and φ2 = 90◦ − α, where α is the local angle between the z-axis and the

shock profile and θ is the opening half-angle of the cone.
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Figure 3.2: Collimating shock profile diagram. When plasma encounters the shock
profile, described by r(z), it bends to become parallel to the z-axis. The
diagram on the right is a zoomed-in view of the dotted line box in the
diagram on the left.

From equation 4.33 of Drake (2006), the flow at the oblique shock front will bend

according to,

cotα = tan(θ − α)
M2

n(γ + 1)

M2
n(γ − 1) + 2

, (3.1)

where Mn is the normal upstream Mach number, Mn =M cos(θ − α).

Solutions to Equation 3.1 are illustrated in Figure 3.3 for θ = 80◦ and γ = 1.5. At

low Mach numbers, there are no solutions to Equation 3.1. Physically, this is due to

the assumption that ur = 0 in the post-shock region; the shock is not strong enough to

“bend” the flow all the way to the direction of the z-axis and the assumptions behind

Equation 3.1 no longer hold. At some critical Mach number,Mc, there is exactly one

solution and for M >Mc there are two solutions. Of these two solutions, the lower

branch is physical; a higher Mach number will produce a tighter jet. As M → ∞,

cotα = tan(θ−α)(γ+1)/(γ−1), which has the solution 2.5◦ for γ = 1.5 and θ = 80◦.

There is one final assumption for this problem: the flow coming off the surface of

the target (or more accurately, where the target was prior to the laser pulse) can be
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Figure 3.3: Bending angle vs. Mach number. For any Mach number over Mc, there
are two values of α that satisfy Equation 3.1.

described as a drifting rarefaction, that is, u = urare + udrift, where u is the velocity,

urare is the velocity in the frame of reference of the plasma reservoir, and udrift is a

drift velocity. udrift accounts for the added momentum the laser pulse imparts to the

system; it is the velocity of the plasma reservoir with respect to the lab.

I found r(z) using an iterative scheme in Mathematica:

1. Assume some shock profile, ri(z). This could in principle be any profile, but for

simplicity I used a straight line with an opening half-angle of θ/2.

2. For every point along ri(z), calculate its distance from the target wall, xi(z).

Calculate the Mach number, Mi(z), based on analytic models of rarefactions.

3. Having Mi(z), calculate the bending angle along the shock profile, αi(z).

4. Use αi(z) to construct a more refined shock profile, ri+1(z).

5. Repeat Steps 1–4 until rn(z) converges.

The Mach number will be a function of distance from the original target surface

and time. For an isothermal rarefaction with a drift velocity, ud, Mach number is

Miso(x, t) = 1 +
x

cst
+
ud
cs
, (3.2)
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where cs is the speed of sound. For an adiabatic rarefaction with a drift velocity, ud,

Mach number is

Mad(x, t) =

2
γ+1

(
co + x

t

)
+ ud

co − γ−1
2

x
t

(3.3)

where co is the speed of sound in the original reservoir. Figure 3.4 compares shock

profiles, r(z), created by comparable adiabatic and isothermal rarefactions. Because

the adiabatic rarefaction cools as it expands, it has higher Mach numbers and creates

a more collimated jet.
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Figure 3.4: Calculated collimating shock profiles for adiabatic and isothermal rarefac-
tions. Blue represents the shock profile created by an adiabatic rarefac-
tion with t = 30 ns, co = 40 km s−1, and ud = 20 km s−1. Red represents
the shock profile created by an isothermal rarefaction with t = 30 ns,
cs = 40 km s−1, and ud = 20 km s−1.

This analysis rests on several simplifying assumptions: that the flow off the sides

of the target was a perfect rarefaction (isothermal or adiabatic), that the reservoir of

plasma that launched the rarefaction never ran out, and that the flow stagnated com-

pletely inside the shock structure. The reality will inevitably be more complicated,

but the analysis of this chapter underscores the validity of using conical targets to

create a collimated jet.
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3.3 Experiment

In April 2012, our experimental team devoted a day of shots to launching jets

by irradiating thin cones similar to those sketched in Figure 3.1. We chose to

use Poly(methyl methacrylate) or PMMA (C5H8O2), hereafter referred to simply

as acrylic, to create the jets. Acrylic is a moderate Z-number material that is non-

toxic and lends itself to micro-machining. Using acrylic allowed us to have the targets

machined in-house at the University of Michigan, which provided flexibility during

the shot planning process.

As discussed in Section 3.1, if a thin target is irradiated, the resulting rarefaction

from either the front or the rear side may be used. Front-side jets tend to be hot-

ter, faster and shorter-lived, while rear-side jets are colder, slower and longer-lived.

We chose rear-side irradiation because we anticipated needing long-lived jets for ex-

periments lasting 10’s of nanoseconds. The experimental scheme is seen in Figure

3.5. Two cones 6 mm apart, and each 3 mm from target chamber center, were rear-

irradiated, launching collimated jets. These jets could each be launched individually

or they could be launched together to form a head-on collision; all three possibilities

were shot multiple times.

Conical!
Target

Drive Laser!
Beams

Thomson !
Probe Beam

To Thomson !
Spectrometer

Probed !
Volume

Figure 3.5: Experimental configuration from April 2012.

The primary diagnostic used was 2ω (526.5 nm) Thomson scattering aimed at the
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mid-point of the experiment (3 mm from each jet launch point). Thomson scattering

is a technique for measuring plasma parameters such as density and temperature by

scattering a probe laser beam at the experimental plasma and collecting and analyzing

the scattered spectrum. As a secondary diagnostic, we recorded self-emission images

of our jets with a 2-D visible light imager. The imager was gated to 3 ns (the shortest

possible gating time) and filtered with a 3ω long pass filter, which blocks wavelengths

shorter than 385 nm, and a 1.0 neutral density filter. Both of these diagnostics are

discussed in detail in Appendix A.

Table B.1 lists the experimental parameters for the collimated jet experiment.

Figure 3.6 shows renderings of the experiment done with a CAD program. Targets

were machined out of solid acrylic; the bulk of the mass of the target served to anchor

the stalk (seen in red in Figure 3.6) and to support the thin cone.

Target
Material PMMA C5H8O2

Solid density 1.18 g cm−3

Cone opening angle 160◦

Cone diameter 2 mm
Cone thickness 100µm
Distance to TCC 3 mm
Drive Beams
Drive beam wavelength 351 nm (3ω)
Number beams 7 per cone
Total drive energy 3150 J
Drive beam shape 1 ns, square
Drive beam radius 352µm (SG4)
Drive irradiance 8× 1014 W cm−2

2ω Thomson beam
Wavelength 526.5 nm
Energy 120 J
Shape 3 ns, square
Radius 70µm (best focus)
Angle between probe and collector 116.8◦

Table 3.2: Experimental parameters for April 2012.
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Figure 3.6: CAD renderings of the targets from April 2012 as seen from the point-of-
view of the 2-D imager.
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3.4 2-D Image Results and Analysis

Out of nine shots, we gained clear images of single jets on two shots and of colliding

jets on three shots. For the remaining four shots, the jet was moving away from the

imager and the target itself blocked the view. From a technical standpoint, these

images were successful (they are in focus), but they contain nothing useful; they can

be seen in Appendix C, which contains all of the data from this shot day. The visible

light images prove that we were successful in creating collimated jets and that these

jets formed well-defined shock structures when collided head-on.

The emission seen in the visible light images is free-free self-emission, or brem-

sstrahlung, wherein a free electron passes a free ion and has its path diverted. The

electron loses kinetic energy in this encounter and to conserve overall energy a photon

is emitted.

When this experiment was designed, the jets were expected to have a temperature

of ∼ 10 eV, which would make their blackbody spectra peak around 25 nm. In the

colliding jet configuration, the shocked material would have a temperature of ∼ 80 eV

and a blackbody peak of 3 nm. Despite these radiation peaks being in the far ultra-

violet and soft x-ray, respectively, we chose to image the experiment in the optical.

Systems for magnifying and focusing images in the optical are vastly easier to build

than similar systems for x-rays and resultantly OMEGA has an optical light imaging

system.

3.4.1 Single Jets

Figure 3.7 shows the two successful single-jet images as well as Computer Aided

Design (CAD) renderings of the target for reference.

In Figure 3.7, single jets are visible emerging from the counterbore. Some of the

features seen in the visible light images in Figure 3.7 are edges of the target: the

inner edge of the counterbore is glowing, as well as the surface of the target facing
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Laser spot

Stalk

Figure 3.7: Single jet self-emission images from April 2012. Above: CAD renderings
of the targets for reference. Below: Self-emission images of jets emerging
from targets at 20 ns and 25 ns after drive.

the jet. Although we were interested in the rear-surface rarefaction, when a target is

irradiated it completely vaporizes and rarefactions expand from both of its surfaces.

Thus, this experiment produced both a rear-surface rarefaction, which was responsible

for the collimated jet, and a front-surface rarefaction, which appears in the image as

an indistinct background halo.

Figure 3.7 shows well-collimated jets. In the images, the edge of the jet appears

brightest. This agrees with the analysis of Section 3.2, which shows that a surrounding

shock structure collimates the jet. Figure 3.7 also shows the tip of the jet broadening

between 20 ns and 25 ns. This could be the tip of the jet escaping the region where

the collimation effects of the cone are still felt and beginning to broaden. I estimate

that at their widest, the jets seen in Figure 3.7 were roughly 1 mm in diameter.
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3.4.2 Colliding Jets

Figure 3.8 shows colliding-jet images. Figure 3.7 (single jets) is useful for orienta-

tion here. Both targets are used in the colliding jet shots, the target used in Figure

3.7, and an additional target is placed in opposition to it. The glow in the foreground

is coming off the near side of the near target. This is the front surface irradiation

discussed above; with the near target involved in the experiment, it is visible. The

laser spot is marked in the CAD rendering in Figure 3.8. Behind that the sides of the

near target are dark, and behind one can see the jet from the near target emerging

(moving away from the viewer) and the jet from the far target coming to meet it.

Laser spot Jets

2D imager view

25 ns

2 mm

20 ns

2 mm

30 ns

2 mm

Figure 3.8: Colliding jet self-emission images from April 2012. Above and bottom
left: Self-emission images of colliding jet shots at 20 ns, 25 ns, and 30 ns
after drive. A bright, shocked region is visible that grows with time.
Bottom right: CAD renderings of both targets together.

In the 20 ns image, there is a bright area of shocked plasma where the jets meet.
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Unfortunately, we did not take an earlier image, so there is no way to know how early

this shock forms. However, judging from how quickly the shocked region appears to

grow in the 25 ns and 30 ns images, the shock cannot have been there long in the 20 ns

image. This suggests the leading edge of the material forming the shock is moving

somewhat faster than 3 mm/20 ns ∼ 150 km s−1.

3.5 Thomson Scattering Results

3.5.1 Velocity, Temperature and Density Data

Streaked 2ω (526.5 nm) Thomson scattering, the method employed here, uses a

long probe pulse, in our case 3 ns. We staggered the timing of the Thomson probe

beam between shots to gain data over extended amount of time. Firing the probe

beam from 7 ns to 10 ns did not return any scattered spectra; if any plasma had

reached 3 mm at that time, it was not dense enough to scatter the probe beam. Good

data was obtained from 12 ns to 15 ns and from 15 ns to 18 ns. We conducted one

shot from 20 ns to 23 ns, but the probe beam reflected uselessly off the plasma, a sign

that density was approaching the critical density (see Appendix A).

Figures A.8 and A.9 show examples of scattered Thomson spectra extracted from

a single-jet experiment 13.5 ns after drive. Both the Electron Plasma Wave or EPW,

and the Ion Acoustic Wave, or IAW, are driven by electron density fluctuations. The

EPW is the case where the ions are stationary and the electron oscillate; the IAW is

the case where the ions oscillate and thereby force the electrons to oscillate as well,

see Appendix A for a complete derivation.

The EPW data, seen in Figure A.8, show the intensity falling to zero in between

the two peaks. This is artificial; the EPW set-up uses a beam blocker to block

wavelengths around the probe beam (526.5 nm).

Every experimental spectrum obtained was hand fit using the spectrum generator
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Figure 3.9: Fitting EPW data. Single jet spectrum taken 13.5 ns after drive. Above:
the full spectrum with three potential Te values (left) and zoomed view of
the higher peak (right). Below: the full spectrum with three potential ne
values (left) and zoomed view of the higher peak (right). This spectrum
(taken 13.5 ns after drive) had the best fit with Te = 110 eV and ne =
1.6× 1018.

included in Froula et al. (2011), which is explained in detail in Appendix A. The

spectrum generator uses electron number density, ne, electron temperature, Te, ion

temperature, Ti, and velocity, va, as inputs and these are varied until a close fit is

obtained, see Figures A.8 and A.9. The electron plasma wave spectrum is used to

determine ne and Te, while the ion acoustic wave spectrum is used to determine va

and Ti. As seen in Figure A.9, the IAW spectra were not clear enough to distinguish

between different values of Ti; therefore data for Ti are not included here.
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Figure 3.10: Fitting IAW data. Many IAW appeared to have erroneous peaks due
to reflected light, but velocity data could still be obtained by fitting the
Doppler shift. Left: the IAW data corresponding to Figure A.8. Right:
One of the clearest examples of a IAW data we obtained.
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Figure 3.11 presents electron density, electron temperature, velocity, and mass

density data for the five single jet shots for which Thomson scattering was successful.

The error bars for ne, Te, and va seen in Figure 3.11 were customized for each indi-

vidual time-specific spectrum; they represent the limits of passable fitting as shown

for example in Figures A.8 and A.9.

Of the four parameters shown in Figure 3.11, the first three were directly obtained

from the Thomson data, but the fourth, mass density, was calculated according to

ρ = niAmp =
neAmp

Z(Te)
, (3.4)

where A is the average ion mass in proton masses, mp is the proton mass, and Z

is the average ionization. Average ionization is a function of temperature and was

obtained by solving the Saha equation (Drake, 2006)

Zbal =

√
kBTe
EH

√√√√ln

[
1

ne

gj
4gka3

o

(
kbTe
πEH

)3/2
]
− 1

2
, (3.5)

where Zbal is the average ionization assuming recombination balance, kB is the Boltz-

mann constant, EH is the hydrogen ionization energy, gj and gk are the statistical

weighting factors for states j and k (we assumed gj = gk), and ao is the Bohr radius.

Since our temperatures are already in energy units, we have

Zbal =

√
[Te eV]

13.6

√√√√ln

[
1

4nea3
o

(
[Te eV]

13.6π

)3/2
]
− 1

2
. (3.6)

As seen in Figure 3.11, electron number density ranges from 1017 cm−3 to 1019 cm−3;

electron temperature ranges from 50 eV to 400 eV, velocity ranges from 300 km s−1 to

100 km s−1, and mass density ranges from 10−6.5 g cm−3 to 10−4 g cm−3.
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Figure 3.11: Thomson data from April 2012. Electron density and electron temper-
ature increase with time, while velocity decreases. The electron density
and temperature numbers are corrupted by probe heating but mass den-
sity derived from them ought to be accurate.
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3.5.2 Probe Heating

The measured electron temperatures seemed implausibly high—generally temper-

atures of rear-surface ablations are on the order of 10 eV (Gregory et al., 2008). Froula

et al. (2011) estimates the increase in plasma temperature due to heating from the

Thomson probe beam as

∆Te
Te
' 1.28× 105 ni ln Λ

ω2
iA[Te]5/2

∫ τ

0

Pidt, (3.7)

where ln Λ is Coulomb lambda, A is the mean ion mass in mp, and
∫ τ

0
Pidt is the

incident power integrated over the pulse length. All quantities in Eq. 3.7 are in CGS

units except Te, which is in eV. See Appendix A for more background on Equation

3.7.

When the plasma parameters from Shot 65770 (the example given in Figures A.8

and A.9) are used in Equation 3.7, the probe heating is estimated as ∆Te/Te = 8.7.

Moreover, if the original (unheated) Te were much lower, perhaps ∼ 15 eV, then

Equation 3.7 would yield ∆Te/Te = 1300.

To further investigate the effect of probe heating, I built a simple model, assuming

that a plasma with electron density ne is irradiated by a laser beam with incident

wavelength λi, incident frequency ωi, total energy Ebeam, laser pulse time length τ ,

and laser beam diameter D. After some distance d, the original intensity, Io, will be

reduced according to

I = Ioe
−κEMd, (3.8)

where κEM is the spatial rate of absorption of laser energy (Drake, 2006),

κEM =
νieω

2
pe

cω2
i

1√
1− ne/nc

, (3.9)

where νie is the ion-electron collisional frequency, ωpe is the electron plasma frequency,
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ωi is the frequency of the incident probe beam, and nc is the critical density of the

plasma. The ion-electron collisional frequency is

νie = 3× 10−6ne ln ΛZ

T
3/2
e

s−1, (3.10)

where ln Λ is the Coulomb logarithm, and all quantities are in CGS except Te, which

is in eV (Drake, 2006). The electron plasma frequency, taken from the Plasma For-

mulary (Huba et al., 2009), is

ωpe = 5.64× 104n1/2
e rad s−1. (3.11)

The critical density is the electron density at which the electron plasma frequency

is equal to the incident laser frequency, nc = 1.1 × 1021/λ2
µ cm−3, where λµ is the

incident laser wavelength in microns.

For average plasma conditions, ne = 1018 cm−3 and Te = 15 eV, the fraction of

energy absorbed is low,

I

Io
= e−κEM(1 cm) = 0.9913. (3.12)

Taking a Taylor expansion, the incident laser energy absorbed by the plasma over

length d is Eab ≈ κEMdEbeam/τ .

In the case of the probe heating problem, energy is also lost at the edges of the

volume heated by the probe beam due to electron heat flux. Using the free-streaming

heat flux model found in Drake (2006), which assumes that energy is carried away at

the electron thermal velocity, vth,

QFS = feneTevth, (3.13)

where QFS has units of energy per area per time, and Te, once again, is in energy

units. The factor fe is known as the flux-limiter and is usually on the order of 0.1.
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Figure 3.12: Probe energy absorbed by the plasma (red) decreases with temperature,
while energy lost increases with temperature (blue).

Consider some cylinder of plasma with diameter D, defined by the focus of the

probe beam, and an arbitrary length d. In a steady state, energy rate in is equal to

energy rate out.

κEMd
Ebeam

τ
= feneTevthπDd, (3.14)

assuming that energy flows out of the cylinder across its sides (A = πDd) but not

across its top or bottom. Figure 3.12 shows the left (red) and right (blue) hand sides

of Equation 3.14 plotted for a 527-nm, 3-ns, 120-J probe incident on a plasma with

ne = 1018 cm−3. As seen in Figure 3.12, Equation 3.14 has a solution at Te = 109 eV.

I solved Equation 3.14 numerically over a range of inputs, fit the solution, and

found that the steady-state temperature the plasma reaches can be estimated by

T [eV] ≈ 145

(
E [J] ne [1018 cm−3]

τ [ns] D [µm]

)0.345

, (3.15)

where T is the temperature, E is the energy of the probe beam, ne is the electron

number density, τ is the time length of the probe beam and D is the diameter of
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the probe beam. Substituting the values of this problem, E = 120 J, τ = 3 ns, and

D = 60µm, I found

T eV ≈ 126(ne [1018 cm−3])0.345. (3.16)

Figure 3.13 compares the electron temperatures predicted by 3.16 (a function of

electron density) and the electron temperatures taken directly from the Thomson

data. The dashed line indicates perfect agreement between expected temperatures

found with 3.16 and the Thomson-measured temperatures. In general, there seems to

be agreement. The simple model in Equation 3.14 predicts the measured temperatures

reasonably well. This substantiated the contention that the measured temperature

data are the result of probe heating; they do not reflect the plasma conditions before

the probe turned on.
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Figure 3.13: Probe heating model predictions vs. measurements. Measured Te (from
Thomson data) agree with temperatures predicted by the probe heating
model, Equation 3.16.

3.5.3 Isothermal Rarefactions

A great deal of physical understanding can be gleaned from the mass density data

in Figure 3.11. By comparing the data to analytical expressions for rarefactions, I
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was able to determine that the jets were behaving as isothermal rarefactions and infer

their temperature.

A rarefaction forms when a reservoir of material with some initial density and

pressure is released and allowed to expand freely. The material may either cool

adiabatically as it expands or it may maintain some constant temperature. If it cools

adiabatically, then its density and velocity can be written as

ρ(x, t) = ρ0

(
2

γ + 1
− γ − 1

γ + 1

x

cot

)
, and (3.17)

u(x, t) =
2

γ + 1

(
co +

x

t

)
, (3.18)

where ρo is the initial density in the pre-expansion plasma, x is the distance from the

boundary of the initial reservoir, co is the speed of sound in the initial reservoir, and

γ is the adiabatic index (Drake, 2006). The speed of sound is taken from Huba et al.

(2009),

cs = 9.79× 105

√
γ(Z + 1)Te

A
cm s−1. (3.19)

If, rather than cooling adiabatically as it expands, the rarefaction maintains a

constant temperature, it is isothermal and its density and velocity can be written as

ρ(x, t) = ρoe
−(1+ x

cst
), and (3.20)

u(x, t) = cs +
x

t
, (3.21)

where ρo, x, and t are the same as in the isothermal case, and cs is the speed of sound

in the system (Drake, 2006).

Figures 3.14 and 3.15 compare the mass density and velocity data to analytic

predictions for adiabatic and isothermal rarefactions, respectively. For both figures,

ρo = 1.18 g cm−3, the solid density of CH, and x = 3 mm, the distance between the
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target and the Thomson probe beam. For the adiabatic case, I assumed γ = 1.5.
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Figure 3.14: Adiabatic rarefactions compared to single jet Thomson data. Density
(left) and velocity (right) of adiabatic rarefaction with initial reservoir
temperatures of 28 eV, 35 eV and 42 eV. Regardless of the choice of To,
an adiabatic mass density profile does not match the data.

As seen in Figure 3.14, the basic shape of the adiabatic mass density profile does

not match the data and varying the initial temperature does not salvage the situation.

The isothermal case, seen in Figure 3.15, is good match. Moreover, because the

isothermal density profile is highly sensitive to temperature, I was able to infer the

temperature of the jets: 6 ± 1 eV. This is far more reasonable than the previously

obtained values of 50 to 400 eV; Gregory et al. (2008) measured temperatures of 10 eV

for their rear-irradiation-launched aluminum jets.

(I should note, however, that our choice of ρo impacts the inferred temperature. If

we assume that ρo is 10ρCH, then the inferred temperature falls from 6 eV to 4.5 eV.)

Velocity profiles, as seen in Figures 3.14 and 3.15, do not change much between the

adiabatic and isothermal cases. Neither are they particularly sensitive to temperature.

The data show a faster decline in velocity than either the adiabatic or isothermal

expression; this is expected of rarefactions expanding into imperfect vacuums.

The isothermal behavior of the jets seems reasonable in light of the electron heat

conduction timescale. Drake (2011) shows that when tequil/texp remains small, where
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Figure 3.15: Isothermal rarefactions compared to single jet Thomson data. Density
(left) and velocity (right) of isothermal rarefactions with temperatures of
5 eV, 6 eV and 7 eV. An isothermal mass density profile with Te = 6 eV
matches the data.

tequil is the electron heat conduction timescale and texp is the experimental timescale,

a rarefaction will be isothermal. As conditions approach tequil ≈ texp, the rarefaction

will transition to adiabatic expansion.

Following Drake (2011), the electron heat conduction timescale, tequil, may be

found by applying unit analysis to the heat conduction equation, yielding

tequil =
ρCvL

2

κ
, (3.22)

where Cv is the specific heat at constant volume, Cv = (1 + Z)kB/(Amp), L is

the characteristic length scale, and κ is the heat conduction coefficient. The heat

conduction coefficient is defined by

κ =
128

3π

nekBTe
meνei

kB, (3.23)

where νei is the electron-ion collision rate, defined as

νei = 3× 10−6 ln Λ
neZ

T
3/2
e

s−1, (3.24)
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where ln Λ is the Coulomb logarithm and Te is in eV. Thus, the heat conduction

equilibrium timescale is defined by the density, temperature, material and length

scale. Table 3.3 shows the equilibrium timescale calculated for a range of L from

0.1 mm to 1 mm and a range of ρ from 10−7 to 10−4 g cm−3.

ρ[ g cm−3]→ 10−7 10−6 10−5 10−4

L[mm] ↓
0.1 0.04 0.3 3 20
0.3 0.9 8 60 500
1.0 4 30 300 2000

Table 3.3: Heat conduction equilibrium timescales, tequil, in nanoseconds, for ranges
of density and length scale for a CH plasma at 6 eV.

From Table 3.3, tequil < 10 ns for low densities and short length scales. Therefore

isothermal behavior would be expected at early times, which was the case for this

shot day. It would be beneficial to study jets such as these at later times to see if the

isothermal behavior endures, but this was precluded on shot day because we reached

the density limit of 2ω Thomson scattering.

3.6 Conclusion

The April 2012 shot day was my first day of experiments at OMEGA. Our collab-

oration was successful in creating collimated plasma jets by rear-irradiating 100µm-

thick CH conical targets. We found the following, which would prove useful in devel-

oping the accretion shock experiment later:

1. Both single-jet experiments and colliding-jet experiments show clear signs of

collimation in 2D self-emission images.

2. Colliding-jet images show a shock forming between them. This shock was evi-

dent in our earliest image (20 ns after drive) and appears to grow with time.
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3. Thomson scattering data were corrupted by probe heating, but velocity data

were unaffected and mass density data (derived from electron density and tem-

perature) are still accurate.

4. The mass density profile matches that of an isothermal rarefaction with Te =

6± 1 eV, giving an alternate approach to temperature measurement in light of

our difficulties with probe heating.
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CHAPTER IV

Accretion Shock Experiments

Chapter II introduced the scaled accretion shock experiment and concluded that

it would be well-scaled if a 10-T field were imposed on a 10-eV CH plasma with ρ ∼

10−5 g cm−3 and u ∼ 100 km s−1, or if a 30-eV CH plasma with ρ ∼ 3 × 10−6 g cm−3

and u ∼ 150 km s−1.

Chapter III presented experiments done to characterize collimated jets made by

rear-irradiating thin acrylic cones. It concluded that the jets were behaving like 6-eV

isothermal rarefactions with ρ ∼ 10−6.5–10−4.5 g cm−3 and u ∼ 100–250 km s−1.

This chapter presents the results of the accretion shock experiment, which used

jets similar to those developed in Chapter III to accomplish the experimental concept

articulated in Chapter II. Section 4.1 presents the experimental set-up. To translate

this system into a laboratory experiment, I designed an experiment with an incoming

plasma jet (the “accreting flow”), an impact surface for it to collide with (the “stellar

surface”) and a surrounding magnetic field which ran parallel to the jet velocity and

perpendicular to the impact surface.

This experiment used two primary diagnostics: 2-D visible light imaging (the

technique employed successfully for the collimated-jet experiments in Chapter III)

and proton radiography. Section 4.2 presents the visible light data of the accretion

shock experiment. The data show a jet clearly emerging, meeting the impact surface
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and creating a bright shock structure.

Section 4.3 puts the accretion shock visible light data into context by comparing it

to the collimated jet visible light data from Chapter III. The experiments are similar;

the collimated jets collided head-on with each other, while the accretion shock jet

collides with a wall.

Section 4.4 revisits the scaling argument made in Chapter II, and Section 4.5

presents my conclusions.

Unfortunately, while proton radiography was intended to be a primary diagnostic,

we encountered repeated difficulties with it and were never able to obtain conclusive

data. This is discussed in full in Chapter V.

4.1 Experimental Set-up

To scale an accretion shock to a laboratory experiment requires both reproducing

the basic elements of the astrophysical system and tailoring the plasma parameters

to preserve its physics. Scaling concerns for the actual experiment, as opposed to the

ideal experiments presented in Chapter II, are discussed in Section 4.4. This section

discusses the configuration of the experiment, which required an incoming plasma

jet (the “accreting flow”), an impact surface (the “stellar surface”) for it to collide

with, and a surrounding magnetic field which ran parallel to the jet velocity and

perpendicular to the impact surface, see Figure 4.1.

As seen in Figure 4.2, rear irradiation launches a single plasma jet, which travels

“down” to collide with the impact surface “below.” (Because the experiment lasts less

than 100 nanoseconds, gravity does not play a significant role; in the target chamber

it does not matter which way is literally down. I have used the terms “down” and

“below” to emphasize the connection to the astrophysical system of Figure 4.1.) The

experiment is suspended inside two MIFEDS current coils. Beginning before the shot

is fired, the high-voltage MIFEDS capacitors discharge through the wire loops, shown
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Figure 4.1: Translating the astrophysical system to the lab. This requires a plasma
flow, magnetic field and impact surface.

in 4.2 in cross-section. See Appendix A for more information on MIFEDS.

Plasma!
Jet

Laser!
Beam(s)

Current!
Loop

Magnetic!
Field

Impact!
Surface

Fiducial

Figure 4.2: Schematic for the accretion shock experiment.

The accretion shock target, seen in Figure 4.3, was entirely constructed from

acrylic and was micro-machined in-house at the University of Michigan, like the

collimated-jet targets from Chapter III. The target was made in two pieces: a large

acrylic block with two walls protruding from it on one end and an acrylic “roof,” with

a thin cone machined into it, that rested on the walls.

The two primary diagnostics for this experiment were visible light imaging and

proton radiography. We failed to obtain conclusive data for proton radiography;

Chapter V or Appendix B discusses this in full.
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Figure 4.3: Engineering rendering and photograph of the accretion shock target. Both
the drawing and the photo are of 2014 targets; it lacks the fiducial that
was added for the 2015 shot days.

Figure 4.4 shows CAD renderings of the accretion shock targets in the target

chamber and it highlights one of the fundamental difficulties of imaging this experi-

ment. The target must be maneuvered inside the current coils and behind the proton

backlighter and its associated shield, which protects the imaging system from the

backlighter blast. Thus there at least three things potentially standing between the

experiment and the imager: the coils, the backlighter, and shield protecting the back-

lighter. The experiment is designed to give the imager a clear line of sight, but if any

of these things shift unexpectedly data could be lost.

Table 4.1 provides a summary of experimental parameters. As seen in Table

4.1, the accretion shock experiment was done with either one or seven drive beams

launching the plasma jet. For the 2014 shot day, we used seven beams consistent with

the collimated jet work of Chapter III. For the 2015 shot days, we dropped down

to one drive beam in an attempt to reduce the density and velocity of the incoming

jet and thereby improve the scaling of the experiment. The ramifications of this are

discussed in Section 4.4.
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Figure 4.4: CAD views of the accretion shock experiment. A view from the perspec-
tive of the visible light imager on the left and a generic view on the right.
Note the similarity to the 2014 experiment; the addition of the shield (the
gold disk on the green stalk) is the only obvious difference in this view.

4.2 Visible Light Data

Figure 4.5 shows all the visible light data from the accretion shock experiment.

These images were taken using the 2-D imager that performed so well for the col-

limated jet work of Chapter III). As with the collimated jet images, the system

was gated to 3 ns and a long pass filter was used to block the drive beam frequency

(λ < 385 nm) along with one or more neutral density filters. Appendix A contains

more detail on the visible light imager and Appendix B lists the filtering for each

shot.

Shots 77250 and 77251 were used to get filtering right. Shot 77254 was a control

and Shot 77255 was the first good experimental data. After Shot 77255, we decided

to reduce the laser intensity by dropping from seven beams to one in order to reduce

the density and velocity of the incoming jet.

The top two rows (Shots 77250 to 77259) had MIFEDS inserted into the chamber

to impose a magnetic field, while the bottom row did not. The effect of MIFEDS

on the visible light images is easiest to see by observing 77254, a control shot for
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Target
Material PMMA
Solid density 1.18 g cm−3

Cone opening angle 160◦

Cone diameter 2 mm
Cone thickness 100µm
Drive Beams
Drive beam wavelength 351 nm (3ω)
Number beams 7 or 1
Total drive energy 3150 J or 450 J
Drive beam shape 1 ns, square
Drive beam radius 352µm (SG4)
Proton Backlighter Beams
BL beam wavelength 351 nm (3ω)
Number beams 15 (2014) or 18 (2015)
Total drive energy 6750 (2014) or 8100 (2015) J
BL beam shape 1 ns, square
MIFEDS
Type of field Parallel
Max field strength 7 T

Table 4.1: Experimental parameters for the accretion shock experiments. The
makeup shots in October 2015 shots were the same as the May 2014 and
May 2015 experiments, except the MIFEDS and proton backlighting were
dropped. Appendix B gives a complete synopsis of this.

which the drive beam(s) were not fired. Ideally, 77254 would be completely dark and

neither MIFEDS nor proton radiography would produce light to interfere with the

experimental image. Instead, the image for Shot 77254 shows glowing shapes above

and below the experimental region—either the MIFEDS coils are glowing or they are

reflecting light from the proton backlighter. There is also a dark shape cutting across

the top left corner; this is the stalk that supported the visible-light-system shield

mentioned in Section 4.1. These glowing shapes above and below the experimental

volume are seen on all of the other shots for which MIFEDS and proton radiography

were used, Shots 77254 through 77259.

The best visible light data obtained were the two time-series of shots, with and

without an imposed magnetic field. The magnetic-field shots (middle row of Figure
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77250, 7 Beams
0 T, 23 ns

77251, 7 Beams
0 T, 13 ns

77254, control
8 T

77255, 7 beams
8 T, 13 ns

77256, 1 beam
8 T, 23 ns

77258, 1 beam
8 T, 43 ns

77259, 1 beam
8 T, 63 ns

77260, 1 beam
0 T, 23 ns

79222, 1 beam
0 T, 43 ns

77262, 1 beam
0 T, 63 ns

= 2.4 mm

Figure 4.5: All visible light data from the accretion shock experiment. The top row
shows initial shots used to establish experimental parameters such as
number of drive beams and timing. The middle and bottom row each
show a time series of shots either with a magnetic field (middle row) or
without (bottom row).

4.5) and the no-field shots (bottom row of Figure 4.5), show some obvious differences

because they were taken with slightly different configurations. The magnetic-field

shots used MIFEDS, while the no-field shots did not. Thus, the no-field shots lack

the glowing shapes above and below the experimental volume.
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The fiducial, illustrated in Figure 4.2 and seen in the CAD renderings of Figure

4.4, is clearly visible in all three no-field shots, but is not evident in the magnetic-field

shots. This is troubling; the experiment was designed such that the fiducial ought

to have been visible with or without MIFEDS in use. Its disappearance suggests

that the MIFEDS coils might have been squeezing together when the current was

driven through them and thereby obscuring part of the experimental volume. This

is plausible; MIFEDS wires are bent completely out of shape when the coil is fired,

see Figure 4.6. Finally, the viewer will notice that Shot 79222 has a much crisper

image than all of the other shots. Shot 79222 is a makeup shot from October 2015;

no proton radiography was used and all the neutral density filters were removed, so

the imager was able to capture more detail.

Figure 4.6: A typical MIFEDS coil before being fired (left) and after (right). This
project used a similar design to the MIFEDS device pictured above; while
the above device has a thin wall of plastic connecting the upper and lower
coils, the accretion shock design did not. (Image credit: Sallee Klein)

Beyond the differences in experimental set-up between the magnetic-field and no-

field shots, there is very little observably different between two time series. Both show

a jet emerging from the top of the target at 23 ns (Shot 77256/77260), making contact

with the impact surface at 43 ns (Shot 77258/79222), and forming a hot, bright region

at 63 ns (Shot 77259/77262). Because of the MIFEDS distortion problem discussed

above, we cannot see the bottom of the experimental volume in the magnetic field
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time series.

Figure 4.7 shows intensity along the center line of two visible light images: Shot

79222, no field at 43 ns, and Shot 77262, no field at 63 ns. At 43 ns, the jet has reached

the impact surface. The impact surface is glowing brightly, as seen in the intensity

peak at x = 3 mm (x = 0 is the tip of the cone that launched the jet); this could be a

shock just beginning to form or it could be the surface itself glowing after being heated

by X-rays. The lineout at 63 ns, however, shows two clear zones of differing intensity,

which split at x = 1.8 mm, where x = 0 mm is the original position of the target and

x = 3 mm is the position of the impact surface. The discontinuity between the two

zones is 0.2 mm wide, making the height measurement with error x = 1.8± 0.1 mm.

There is a bright zone near the impact surface, which I conclude is shocked material,

and a less bright zone above it, which ought to be unshocked material.

4.3 Shock Evolution

Visible light imaging was used successfully for both the collimated jet campaign

and the accretion shock campaign. This section compares the data from both cam-

paigns to better understand the structure of incoming jets in the accretion shock

experiment and the evolution of the shocks that formed in both experiments.

4.3.1 Comparisons to Collimated Jets

In April 2012 our experimental team dedicated a day of shots to testing a method

for creating collimated plasma jets: rear irradiation of a thin cone of PMMA. As pre-

sented in Chapter, III, we launched these jets singly and in head-on collision configu-

rations; the primary diagnostics were Thomson scattering and visible light imaging.

Due to probe heating, the temperature data obtained were unreliable. However, I

was able to create mass density profiles based on the Thomson data, which I used to

determine that the jets were behaving as isothermal rarefactions with Te = 6± 1 eV.
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Figure 4.7: Intensity along the midline of the visible light data. The dashed white
line in the visible light images (left) indicates where the lineouts were
taken; these are plotted on the right. x = 0 mm indicates the location of
the original target; x = 3 mm indicates the location of the impact surface.

As stated in Section 4.1, while we used seven drive beams for the collimated jet

shots, we fell back to one drive beam for the second accretion shock shot day. Thus,

most of the visible light data are for shots with only one drive beam. These one-

beam jets were never probed with Thomson scattering, so their plasma properties

must be determined via scaling laws, see Table 4.2. The dependence of temperature

on direct laser irradiation intensity is Te ∝ I2/3 (Drake, 2006), which would make the

temperature of the one-beam jets Te = (1/7)2/3(6± 1 eV) = 1.6± 0.4 eV.

The dependence of ablation pressure on direct laser intensity is Pabl ∝ I2/3 (Drake,

2006). Since Pabl ∝ u2, this yields u ∝ I1/3. The 23–43–63 ns time series for 1-beam

accretion shock experiments would correspond to a hypothetical 12–22–33 ns time
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Collimated Accretion
Jets Shock

Date April 2012 May/Oct 2015
Jets creation method rear-irradiation, thin cone rear-irradiation, thin cone
Cone thickness 100µm 100µm
Cone material acrylic (PMMA) acrylic (PMMA)
Drive beams 7, full power 1, full power
Configuration collided head on collided with solid surface
Distance to collision 3 mm 3 mm
Visible light imager TPDI TPDI
Thomson scattering used yes no
Jet behavior isothermal isothermal*
Jet temperature 6± 1 eV 1.6± 0.4 eV*

Table 4.2: Comparing the collimated jet experiments and the accretion shock exper-
iments. *The 1-beam jets are assumed to be isothermal like the 7-beam
jets and their temperature is inferred from Te ∝ I2/3.

series for 7-beam colliding jet experiments. The actual time series taken the colliding

jet experiments was 20–25–30 ns, but there is good correspondence between both time

series as seen in Figure 4.8.

The earliest accretion shock image, 23 ns, is not equivalent to any of the colliding

jet images. The second accretion shock image, 43 ns, would be equivalent to 22 ns and

resembles the 20 ns colliding jet image. In both images, the jet(s) have just reached

the impact surface/collision point. In the colliding jet image, the bright spot at the

collision point is clearly a shock—there is nothing else for it to be. In the accretion

shock image, it could be a nascent shock structure forming or it could be the impact

surface itself glowing. If it is a shock, it has just formed. The final accretion shock

image, 63 ns, would be equivalent to 33 ns for the 7-beam case and resembles the 30-ns

colliding jet image. There is a bright volume of shocked material in both, although it

is harder to see its outline clearly in the colliding jet work because those images were

taken from an angle.
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77260, 1 beam!
0 T, 23 ns

77262, 1 beam!
0 T, 63 ns

Colliding jets,!
7 beams, 20 ns
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7 beams, 25 ns

Colliding jets,!
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Accretion shock,!
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Accretion shock,!
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Accretion shock,!
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Figure 4.8: Comparing the collimated jet experiments (above) and the accretion
shock experiments (below). These images have been rotated, cropped,
and adjusted for brightness.
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