
C.5 65766

Figure C.25: GOI and TPDI of 65766. GOI (left), 20 ns after drive, and TPDI (right),
25 ns after drive, images from 65766. Single jet traveling toward the
viewer in TIM 6. This was the first shot of the day that was traveling
towards TIM 6. Here you can see the jet, the ring of the hole in the
block from which it’s emerging, and the faint glow of the laser-hit side
in the background.

Figure C.26: Thomson spectra for 65766. EPW (left) and IAW (right) images from
65766. Probe beam fired from 15 to 18 ns.
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Figure C.27: 65766 EPW data at 15.5 ns
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Figure C.28: 65766 IAW data at 15.5 ns
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Figure C.29: 65766 EPW data at 16.5 ns
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Figure C.30: 65766 IAW data at 16.5 ns
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Figure C.31: 65766 EPW data at 17.5 ns
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Figure C.32: 65766 EPW data at 17.5 ns
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C.6 65767

Figure C.33: GOI and TPDI of 65767. GOI (left), 20 ns after drive, and TPDI (right),
25 ns after drive, images from 65767. This was the first colliding jet shot
of the day. Compare this TPDI to 65766 (jet coming towards the viewer)
and 65764/65765 (jet going away from the viewer). In the foreground
we see the glow of the laser-hit side of the near target. Behind that
target we see one jet—the jet moving away from the viewer—emerging.
In the background we see the other jet—the one coming towards the
viewer—coming out. The bright spot in the middle is the collision.

Figure C.34: Thomson spectra of 65767. EPW (left) and IAW (right) images from
65767. Probe beam fired from 15 to 18 ns. The IAW data from this shot
and the other colliding jet shot are peculiar and have been relegated to
their own section.
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Figure C.35: 65767 EPW data at 15.5 ns
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Figure C.36: 65767 EPW data at 16.5 ns
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Figure C.37: 65767 EPW data at 17.5 ns
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C.7 65769

Figure C.38: GOI and TPDI of 65769. GOI (left), 25 ns after drive, and TPDI
(right), 30 ns after drive, images from 65769. Colliding jet shot. The
bright areas from the previous shot (at 25 ns) have grown.

Figure C.39: Thomson spectra of 65769. EPW (left) and IAW (right) images from
65769. Probe beam fired from 20 to 23 ns. The electron density was
too high and the plasma reflected the probe beam; no usable data were
obtained.
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C.8 65770

Data Not!
Available

Figure C.40: GOI and TPDI of 65770. TPDI (right), 20 ns after drive, images from
65770. Single jet moving away from the viewer in TIM 6. No GOI image
was obtained for this shot.

Figure C.41: Thomson spectra of 65770. EPW (left) and IAW (right) images from
65770. Probe beam fired from 12 to 15 ns.
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Figure C.42: 65770 EPW data at 12.5 ns
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Figure C.43: 65770 IAW data at 12.5 ns
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Figure C.44: 65770 EPW data at 13.5 ns

184



525 525.5 526 526.5 527 527.5 528
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Va =

220 km/s

Ti =

40 eV

Wavelength [nm]

N
o

rm
a

liz
e

d
 I
n

te
n

si
ty

65770 IAW Data at 13.5 ns

Figure C.45: 65770 IAW data at 13.5 ns
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Figure C.46: 65770 EPW data at 14.5 ns
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Figure C.47: 65770 EPW data at 14.5 ns
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C.9 65774

Figure C.48: GOI and TPDI of 65774. GOI (left), 30 ns after drive, and TPDI (right),
20 ns after drive, images from 65774. Colliding jets shot. Compared to
the later colliding shots (65767 at 25 ns and 65769 at 30 ns) this TPDI
image is clearer; the hott collision zone regions have yet to get really
bright.

Figure C.49: Thomson spectra of 65774. EPW (left) and IAW (right) images from
65774. Probe beam fired from 12 to 15 ns. As with 65767, the IAW
data are peculiar and have been relegated to their own section.
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Figure C.50: 65774 EPW data at 12.5 ns
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Figure C.51: 65774 EPW data at 13.5 ns
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Figure C.52: 65774 EPW data at 14.5 ns
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C.10 Colliding Jet Shot IAW Data

The colliding jet IAW data show signs of interpenetrating flows moving at different

velocities.
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Figure C.53: 65774 IAW data at 12.5 and 13.5 ns
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Figure C.54: 65774 IAW data at 14.5 and 65767 IAW data at 15.5 ns
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Figure C.55: 65767 IAW data at 16.5 and 17.5 ns
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APPENDIX D

Data from August 2013

D.1 70672

Figure D.1: Thomson data for Shot 70672; EPW (left) and IAW (right). Jet B was
launched 18 ns before Thomson probe; probe length was 1 ns. The probe
beam was fired much too early; later shots indicate that it needed to be
around 40 ns.
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Bottom CR-39Top CR-39

Figure D.2: Proton radiography data for Shot 70672. Backlighter fired 20 ns after
drive beams. MIFEDS charged for this shot. No evidence of jets is seen,
probably because the data were collected too early.
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D.2 70673

Figure D.3: Thomson data for Shot 70673; EPW (left) and IAW (right). Jet B was
launched 25 ns before Thomson probe; probe length was 1 ns. No good
data was obtained, probe was still timed too early.

Bottom CR-39Top CR-39

Figure D.4: Proton radiography data for Shot 70673. Backlighter fired 27 ns after
drive beams. MIFEDS did not charge for this shot. A faint “bubble”
from the jet emerging into the field of view is visible.
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D.3 70674

Figure D.5: Thomson data for Shot 70674; EPW (left) and IAW (right). Jet C was
launched 30 ns before Thomson probe; probe length was 1 ns. Good data
obtained.

Bottom CR-39Top CR-39

Figure D.6: Proton radiography data for Shot 70674. Backlighter fired 32 ns after
drive beams. MIFEDS did not charge for this shot. Oddly, this bubble
is oriented the same way it was for Shot 70673, even though Jet B was
fired that shot and Jet C was fired for this shot.
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D.4 70678

Figure D.7: Thomson data for Shot 70678; EPW (left) and IAW (right). Jet B was
launched 30 ns before Thomson probe; probe length was increased 3 ns
and no proton backlighter was used. This configuration did not use
MIFEDS. Problems with the EPW data persist, but the IAW data ap-
pears clear over the 3-ns pulse.

D.5 70679

Figure D.8: Thomson data for Shot 70679; EPW (left) and IAW (right). Jet B was
launched 40 ns before Thomson probe; probe length remained at 3 ns and
no proton backlighter was used. This configuration did not use MIFEDS.
This is some of the best IAW data obtained for this shot day.
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D.6 70680

Figure D.9: Thomson data for Shot 70680; EPW (left) and IAW (right). Jet B was
launched 50 ns before Thomson probe; probe length remained at 3 ns
and no proton backlighter was used. This configuration did not use
MIFEDS. Some IAW data is visible, but there is significant interference
from reflected light.
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D.7 70681

Figure D.10: Thomson data for Shot 70681; EPW (left) and IAW (right). Jet B was
launched 40 ns before Thomson probe; probe length was decreased back
to 1 ns. Good IAW data obtained.

Bottom CR-39Top CR-39

Figure D.11: Proton radiography data for Shot 70681. Backlighter fired 42 ns after
drive. MIFEDS was charged for this shot, but failed. The orientation
is odd–were the blocks inadvertently rotated in the developing process?
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D.8 70682

Figure D.12: Thomson data for Shot 70682; EPW (left) and IAW (right). Jet B was
launched 40 ns before Thomson probe; probe length remained at 1 ns.
IAW data is good.

Bottom CR-39Top CR-39

Figure D.13: Proton radiography data for Shot 70682. Backlighter fired 42 ns after
drive. MIFEDS was charged for this shot. A fainter bubble is visible—
the imposed field seems to interfere with the self-generated field.
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D.9 70683

Figure D.14: Thomson data for Shot 70683; EPW (left) and IAW (right). Jets B and
C were launched 40 ns before Thomson probe; probe length remained
at 1 ns. Interestingly, both EPW and IAW worked on this shot.

Bottom CR-39Top CR-39

Figure D.15: Proton radiography data for Shot 70683. Backlighter fired 42 ns after
drive. MIFEDS was charged for this shot. Only one bubble is visible
even though two were fired.
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D.10 70684

Figure D.16: Thomson data for Shot 70684; EPW (left) and IAW (right). Jets B and
C were launched 40 ns before Thomson probe; probe length remained
at 1 ns. Good EPW and IAW data obtained.

Bottom CR-39Top CR-39

Figure D.17: Proton radiography data for Shot 70684. Backlighter fired 42 ns after
drive. MIFEDS was not charged for this shot. Proton radiography
appears to have failed.
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APPENDIX E

Data from May 2014

E.1 73327

Figure E.1: Thomson data from 73327. Thomson data taken 16 ns after drive; EPW
(left) and IAW (right). As seen in the IAW image, the jet is barely in
range.
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Figure E.2: Visible light data from 73327. No discernible structures observed.
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E.2 73328

Figure E.3: Thomson data from 73328. Thomson data taken 20 ns after drive; EPW
(left) and IAW (right). The timing of this shot was good.

Figure E.4: Visible light data from 73328. No discernible structures observed.
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E.3 73330

Figure E.5: Thomson data from 73330. Thomson data taken 28 ns after drive; EPW
(left) and IAW (right). Densities were too high; the probe reflected off
the experimental plasma.

Figure E.6: Visible light data from 73330. No discernible structures observed.
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E.4 73331

Figure E.7: Thomson data from 73331. Thomson data taken 28 ns after drive; EPW
(left) and IAW (right). Densities were too high; the probe reflected off
the experimental plasma.

Figure E.8: Visible light data from 73331. No discernible structures observed.
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E.5 73334

Figure E.9: Thomson data from 73334. Thomson data taken 20 ns after drive; EPW
(left) and IAW (right). The timing of this shot was good.

Figure E.10: Visible light data from 73334. No discernible structures observed.
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E.6 73335

Figure E.11: Proton radiography data from 73335. Shot 73335 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
30 ns after drive, no field imposed.

E.7 73336

Figure E.12: Proton radiography data from 73336. Shot 73336 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
30 ns after drive, no field imposed.
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E.8 73337

Figure E.13: Proton radiography data from 73337. Shot 73337 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
30 ns after drive, 7 T field imposed.

E.9 73338

Figure E.14: Proton radiography data from 73338. Shot 73338 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
50 ns after drive, 7 T field imposed.
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E.10 73339

Figure E.15: Proton radiography data from 73339. Shot 73339 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
30 ns after drive, 3 T field imposed.

E.11 73340

Figure E.16: Proton radiography data from 73340. Shot 73340 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
50 ns after drive, 2.4 T field imposed.
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E.12 73341

Figure E.17: Proton radiography data from 73341. Shot 73341 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
70 ns after drive, 3 T field imposed.

E.13 73344

Figure E.18: Proton radiography data from 73344. Shot 73344 Particle Temporal
Diagnostic (PTD) data on left; proton radiography on right. Data taken
70 ns after drive, field failed.
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APPENDIX F

Data from May and October 2015

F.1 77250

Figure F.1: Visible light data for 77250. Seven beam drive; images taken 23 ns later.
This image used only an ND 2.0 filter, which resulted in damage to the
camera. No proton radiography or magnetic field used on this shot. Left
is the image from the CDD; right is the rotated, cropped image. This
format will be used on all subsequent shots.
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F.2 77251

Figure F.2: Visible light data for 77251. Seven beam drive; images taken 13 ns later.
Filtering was increased to ND 3.0+LP385 due to damage sustained during
the previous shot (77250). No proton radiography or magnetic field used
on this shot.
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F.3 77254

Figure F.3: Visible light data for 77254. A control shot; no jet was created but an
8 T magnetic field was imposed and proton radiography was used. In
addition to the ND 3.0 and LP385 filters used previously, a VG380 was
added. The dark splotch in the upper right of the cropped image is the
damage to the CCD from earlier in the day. It is seen in all subsequent
images.

Figure F.4: Proton radiography data for 77254; 3 eV image failed (CR-39 frosted),
15 eV image shown above. Notice the fiducial notch is not visible in this
image as it is in some of the others. We suspect this is because the
MIFEDS coils “squeezed together” during the shot.
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F.4 77255

Figure F.5: Visible light data for 77255. Image was taken 13 ns after drive (one
beam). An 8 T magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380).

Figure F.6: Proton radiography data for 77255; 3 eV image left, 15 eV image right.
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F.5 77256

Figure F.7: Visible light data for 77256. Image was taken 23 ns after drive (one
beam). An 8 T magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380).

Figure F.8: Proton radiography data for 77256; 3 eV image left, 15 eV image right.
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F.6 77258

Figure F.9: Visible light data for 77258. Image was taken 43 ns after drive (one
beam). An 8 T magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380).

Figure F.10: Proton radiography data for 77258; 3 eV image left, 15 eV image right.
In this pair of images, the fiducial notch is clearly visible.
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F.7 77259

Figure F.11: Visible light data for 77259. Image was taken 63 ns after drive (one
beam). An 8 T magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380).

Figure F.12: Proton radiography data for 77259; 3 eV image left, 15 eV image right.
Again, the fiducial notch is visible.
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F.8 77260

Figure F.13: Visible light data for 77260. Image was taken 23 ns after drive (one
beam). No magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380). The fiducial notch is visible in these images; we hypothesize
that it was not visible in previous images because the MIFEDS coils
obscured it.

Figure F.14: Proton radiography data for 77260; 3 eV image left, 15 eV image right.
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F.9 77261

Figure F.15: Visible light data for 77261. Image was taken 43 ns after drive (one
beam). No magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380). This TPDI image failed, perhaps because it was timed to be
ahead of the proton backlighter and could not make use of the reflected
glow of the backlighter.

Figure F.16: Proton radiography data for 77261; 3 eV image left, 15 eV image right.
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F.10 77262

Figure F.17: Visible light data for 77262. Image was taken 63 ns after drive (one
beam). No magnetic field was imposed and proton radiography was
used. Filtering was unchanged from the previous shot (ND 3.0+LP385
+VG380). Again, the fiducial notch is visible.

Figure F.18: Proton radiography data for 77262; 3 eV image left, 15 eV image right.
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F.11 79221

Figure F.19: Visible light data for 79221. Attempted re-do of Shot Shot 77261, the
shot where TPDI failed in May 2015. Image was taken 43 ns after drive
(one beam). No magnetic field was imposed and no proton radiography
was used. Filtering was ND 2.0+LP385; image appears to be over-
filtered.

F.12 79222

Figure F.20: Visible light data for 79222. Second attempted re-do of Shot Shot 77261.
Image was taken 43 ns after drive (one beam). No magnetic field was
imposed and no proton radiography was used. Filtering was reduced to
LP385 (ND 2.0 was dropped).
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