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ABSTRACT 
 
 
 
 

Over 15% of children worldwide suffer from neurodevelopmental disorders 

and diagnoses of autism spectrum disorder and attention-deficit/hyperactivity 

disorder have been increasing over the past several decades.  Widespread use 

of synthetic pesticides has concurrently grown, raising concerns that pesticide 

exposure may be contributing to the rise in prevalence of these disorders.  

Synthetic pesticides are toxic to biological systems by design, with neurotoxicity 

and disruption of central nervous system signaling as the primary mode of action 

for many. Early-life pesticide exposures during periods of rapid development are 

of particular concern for neurodevelopment because of the potential for long-term 

effects.  China is the world’s largest consumer of pesticides, but despite a 

potentially highly exposed population, very little is known about the levels of 

prenatal pesticide exposure or predictors of those exposures in China. 

Organophosphate insecticides (OPs) are used worldwide, and account for 

more than a third of all pesticide use in China, yet despite nearly ubiquitous 

exposure in the general population, few have been studied for 

neurodevelopmental effects. Laboratory studies indicate that OPs negatively 

affect a host of neuronal processes and epidemiological studies report 

associations between prenatal OP exposure and increased prevalence of 
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neurological disorders in childhood.  Little is known about how OP exposure 

during sensitive developmental periods may affect infant development of motor, 

visual or auditory pathways.  Alterations to the developmental timing or function 

of these pathways could potentially have profound effects on behavior and 

cognition in childhood. 

Therefore, the goals of this work were three-fold.  First, characterize the 

prenatal exposure of Chinese newborns to pesticides of all classes and identify 

predictors of those exposures. The second objective was to explore the effects of 

prenatal OP exposure on motor function in infancy, as measured by the Peabody 

developmental motor scales and infant neurological international battery.  The 

final goal was to examine the extent to which prenatal OP exposure affects infant 

visual and auditory function, as measured by grating visual acuity and auditory 

brainstem response.     

We found that season of birth was the strongest predictor of overall 

pesticide detects in cord blood.  We also found deficits in global motor function, 

visual acuity, and head circumference in 9-month-old infants prenatally exposed 

to OPs. Chlorpyrifos was associated with statistically significant decrements in 

global motor function and visual acuity, as well as reduced head circumference. 

Naled was significantly inversely associated with fine motor function.  

Methamidophos was consistently associated with lower global motor function and 

slower auditory signal transmission across the entire study period.  Phorate was 

not associated with the neurodevelopmental outcomes examined here, but was 

significantly associated with reduced head circumference.  Of these commonly 
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used OPs, only chlorpyrifos had been studied for neurodevelopmental effects in 

humans prior to this study.  

Early motor skill acquisition in infancy provides the foundation for non-

verbal communication in infancy and cognitive and socio-emotional development 

in childhood. Similarly, visual and auditory system development in infancy is 

crucial for the development of language and other forms of communication, as 

well as reading skills in childhood.  Therefore, disruption of motor or sensory 

systems maturation, possibly as a result of prenatal OP exposure, could 

potentially have detrimental long-term effects on learning or other cognitive 

functions in childhood. Even small, subclinical changes, that may seem negligible 

on an individual level, could have potentially detrimental effects at the population 

level.   
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CHAPTER I 

INTRODUCTION 

 

Neurodevelopmental disorders 

One in six children living in industrialized countries suffers from a 

neurodevelopmental disorder, including difficulties with language, speech, motor 

skills, behavior, memory, learning, and other neurological functions (WHO, 

2011).  Some disorders, such as autism spectrum disorder (ASD) and attention-

deficit/hyperactivity disorder (ADHD), appear to be increasing in prevalence over 

the last several decades (Grandjean & Landrigan, 2006; Landrigan, Lambertini, & 

Birnbaum, 2012; U.S. EPA, 2013; WHO, 2011).  While long-term trends can be 

difficult to assess, due to a lack of historical data and changes in awareness and 

diagnostic criteria, the available evidence does support a long-term rise in autism 

(Grandjean & Landrigan, 2014; Grupp‐Phelan, Harman, & Kelleher, 2007; 

Hertz‐Picciotto & Delwiche, 2009; Newschaffer, 2006; U.S.CDC, 2009) and other 

behavioral and learning disorders (Grandjean & Landrigan, 2014; Grupp‐Phelan, 

et al., 2007; Kelleher, McInerny, Gardner, Childs, & Wasserman, 2000; U.S. 

Dept. of Education, 2007).  

Neurodevelopmental disorders can be detrimental to a child’s quality of 

life, affecting behavior, and academic achievement, as well as having more long-

term effects on workplace productivity and overall welfare (Bellinger, 2009).
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Subclinical decrements in brain function, which may go undetected, may be even 

more common than these diagnosed disorders, however (Grandjean & 

Landrigan, 2014). While these small subclinical changes, such as a loss of a few 

IQ points, may be seem negligible on an individual level, they could have 

deleterious effects at the population level (Bellinger, 2009).  

The triggers for the current “pandemic” of neurodevelopmental disorders 

are only partially understood.  Most are thought to be highly multifactorial, with 

genetic and environmental risk factors contributing to their etiology.  Genetic 

factors are believed to be responsible for around 30-40% of all 

neurodevelopmental disorders, however genetics alone cannot explain the 

increases in prevalence (Grandjean & Landrigan, 2014).  Nearly ubiquitous 

exposure to chemicals in the environment is believed to play an important role in 

the global uptick of these disorders (Grandjean & Landrigan, 2014). 

 

 

Synthetic pesticides 

Synthetic pesticides have been implicated as possible contributors to the 

global rise in neurodevelopmental disorders. Synthetic pesticides are toxic to 

biological systems by design, with many of the most commonly employed 

classes utilizing a neurotoxic mode of action.  For example, organophosphate 

(OP), pyrethroid (PYR), carbamate (CARB), and some organochlorine (OC) 

insecticides disrupt signaling in the central nervous system (CNS), thereby 

inhibiting neurological function (Abdollahi & Karami-Mohajeri, 2012; Yang & 
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Deng, 2007). 

Synthetic pesticides are used extensively worldwide for pest management 

in a wide variety of agricultural, industrial, and residential settings. Globally 4.6 

million tons of synthetic pesticides are applied each year within the agricultural 

sector (U.S. EPA, 2011; W. Zhang, Jiang, & JF., 2011).  China is one of the 

world’s largest consumers of pesticides (Ding & Bao, 2013; U.S. EPA, 2011; W. 

Zhang, et al., 2011), with over 300,000 tons applied to food crops each year (Y. 

Zhang, et al., 2014).  The average amount of pesticides used in one field unit in 

China is up to five times higher than the global average (Y. Zhang, et al., 2014). 

Farmers overuse or improperly use pesticides in an attempt to improve crop 

yields, resulting in high residual levels at the time of harvest (Ding & Bao, 2013; 

Huang, Qiao, Zhang, & Rozelle, 2001).  A survey of vegetable and fruit markets 

of China indicated that more than half of the vegetable samples had detectable 

pesticide residuals, many of which grossly exceeded the national standard (W. 

Zhang, et al., 2011).  Additionally, 40% of pesticides on the market in China are 

sold under false brand names (Ding & Bao, 2013; PAN, 2003), likely also 

contributing to their misuse.  

In addition to large-scale agricultural uses, pesticides are also employed 

for a variety of residential pest control applications, such as control of termites, 

ants or cockroaches (Horton, et al., 2011).  They are used in topical treatments 

for lice, fleas and ticks. Pesticides have long been used for public health vector-

control programs, controlling transmission of mosquito-borne infectious diseases 

(van den Berg, et al., 2011).  Given this widespread use, exposure to synthetic 
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pesticides in the general population occurs via a multitude of pathways.  

Common routes of exposure include: consumption of food, water, soil or house 

dust contaminated with residual pesticides, inhalation of vapors or aerosols from 

spray drift, and dermal absorption if skin contact occurs (Costa, Giordano, 

Guizzetti, & Vitalone, 2008).   

However, despite nearly ubiquitous pesticide exposures among the non-

occupationally exposed population, there is a lack of data on the neurological 

health effects of low-level exposures.  In particular, little is known about the 

potential short- and long-term neurodevelopmental effects of pesticide exposure 

in utero and in early childhood.  Fetal and infant brains are rapidly developing, 

making them highly vulnerable to long-lasting effects of pesticide exposure 

(Garcia, Seidler, & Slotkin, 2005; Rice & Barone, 2000). Important windows of 

susceptibility occur in utero, during infancy, and in early childhood (V. A. Rauh & 

Margolis, 2016; Rice & Barone, 2000).  Exposure during these highly vulnerable 

periods, even to low levels that would have no effect in adults, can lead to 

permanent brain injury or alterations in brain architecture or circuitry (Garcia, et 

al., 2005; Grandjean & Landrigan, 2014). Fetal susceptibility to pesticides is 

further increased by the fact that many pesticides can cross the placenta 

(Bradman, et al., 2003).  Fetuses also have lower levels of detoxifying enzymes 

to metabolize pesticides (Eskenazi, et al., 2008) and immature metabolic 

pathways, which slow excretion (V. A. Rauh & Margolis, 2016).  Yet despite 

these concerns, there are hundreds of pesticides in active use that have never 

been tested for neurodevelopmental toxicity (Grandjean & Landrigan, 2014). 
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Aim 1 

China is the world’s largest consumer of pesticides, but despite potential 

for a highly exposed population, little has been published about the levels of 

prenatal pesticide exposure in China. Previous studies of pesticides in cord blood 

have focused on the OC class of insecticides (Cao, et al., 2011; Li, et al., 2014; 

Zhao, Xu, Li, Han, & Ling, 2007), which have now largely been phased out from 

use.  A few studies have concentrated on the more modern classes of non-

persistent pesticides, either OPs (Liu, et al., 2016; Y. Zhang, et al., 2014) or PYR 

(Qi, et al., 2012; Xue, et al., 2013), but these are limited by the use of non-

specific urinary metabolites for their exposure assessment, which make it difficult 

to attribute health effects to the parent pesticide.  Analyses of predictors of 

prenatal pesticide exposure in China have also been limited to either OCs (Cao, 

et al., 2011; Lee, et al., 2007; Qi, et al., 2012; Xue, et al., 2013) or PYR (Qi, et 

al., 2012; Xue, et al., 2013).  

Aim 1 of this dissertation sought to address some of these limitations in 

the literature by first characterizing the prenatal exposure of Chinese newborns 

to 96 pesticides of all classes by measuring the level of parent compound directly 

in cord blood.  The second part of aim 1 was to identify which demographic 

characteristics predicted those prenatal pesticide exposures.  I hypothesized that 

infants were exposed to wide range of pesticides and that parental occupation, 

family income, place of residence, and season of birth were predictors of that 
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exposure. 

 

 

Organophosphate insecticides (OPs) 

Aims 2 and 3 of this dissertation focus specifically on OPs, which account 

for more than a third of all insecticide use in China (Y. Zhang, et al., 2014).  OPs 

are the most commonly used insecticide in China’s agricultural sector (Ding & 

Bao, 2013).   OPs are non-persistent in the environment and were therefore 

considered a safe alternative to the highly persistent OCs, such as dichloro-

diphenyl-trichloroethane (DDT).  However despite their quick degradation, OPs 

actually have much greater acute toxicity than the OCs they were replacing 

(Rana, 2006).    

OPs have emerged as a particular concern for developmental 

neurotoxicity over the last couple decades. In 2001, the U.S. EPA banned the 

OPs, diazinon and chlorpyrifos, for residential use (U.S. EPA, 2011), and China 

similarly banned parathion, methamidophos, and phosphamidon in 2007 (W. 

Zhang, et al., 2011), because of concerns of neurotoxicity in infants. Despite this, 

OPs are still employed in farming in both countries, and are the most heavily 

used pesticides in the agricultural sector in China (Ding & Bao, 2013).  Given 

their heavy use in agriculture, the main route of OP exposure in the general 

population is via the diet.  More than 10% of fruits, vegetables, and cereal grains 

grown in China contain OP residues that exceed the national safety standards 

and banned OPs are regularly detected (Chen, et al., 2012; L. Wang, Liang, & 
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Jiang, 2008; S. Wang, Wang, Zhang, Wang, & Guo, 2013).  Additional exposure 

to OPs may also occur via contaminated drinking water, dust, and spray drift 

(Huang, et al., 2001).  

The mechanism of acute toxicity elicited by OPs is well understood.  OPs 

inhibit acetylcholinesterase (AChE), the enzyme responsible for terminating the 

neurotransmitter acetylcholine’s activity.  Without the inhibition of AChE, 

acetylcholine builds up in the synapse, leading to hyperstimulation of the 

cholinergic receptors at neuronal and neuromuscular junctions (Abdollahi & 

Karami-Mohajeri, 2012; Eddleston, Buckley, Eyer, & Dawson, 2008; Kamanyire & 

Karalliedde, 2004).  At low dose exposure levels, that do not elicit cholinergic 

toxicity or acetylcholinesterase inhibition, neurodevelopmental toxicity is still 

observed, however.  In laboratory studies, chlorpyrifos, a well-known OP, has 

been found to disrupt neuronal processes such as neuron replication and 

differentiation, axon formation, synaptogenesis, apoptosis, and neural circuit 

formation, even at low doses where cholinergic toxicity is not present (Slotkin, 

2004).  Epidemiological studies also provide evidence of associations between 

prenatal exposure to OPs and neurological effects in childhood such as IQ 

deficits (Bouchard, et al., 2011; Engel, et al., 2011; V. Rauh, et al., 2011) and 

cognitive delays (Bouchard, et al., 2011; Engel, et al., 2011; Eskenazi, et al., 

2007; V. Rauh, et al., 2011; V. A. Rauh, et al., 2006), as well as increased 

diagnoses of ASD (Shelton, et al., 2014), ADHD (Marks, et al., 2010; V. A. Rauh, 

et al., 2006), and pervasive developmental (Eskenazi, et al., 2007; V. A. Rauh, et 

al., 2006) disorders.  Despite a growing body of evidence that prenatal OP 
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exposure can affect these oft-studied neurological and cognitive endpoints in 

childhood, much less is known about how it may affect infant development of 

motor, visual or auditory pathways.  Any alteration to these developmental 

trajectories in infancy could potentially have profound effects on downstream 

behavior and cognition. 

 

 

Aim 2 

Motor skill acquisition in infancy provides the basis for cognitive and socio-

emotional development in childhood (Clearfield, 2004, 2011), as well as 

supplying the foundation for non-verbal communication (Bhat, Galloway, & 

Landa, 2012).  Motor functions improve rapidly in infancy with increasing CNS 

maturation and meeting early motor milestones serves as benchmark of healthy 

neurological development (De Felice, Scattoni, Ricceri, & Calamandrei, 2015; 

Noritz & Murphy, 2013).  Epidemiological studies provide preliminary evidence 

that prenatal OP exposure may negatively affect infant or child motor-related 

outcomes. Prenatal OP exposure has been associated with deficits in reflexes 

(Engel, et al., 2007; Young, et al., 2005; Y. Zhang, et al., 2014), psychomotor 

development (V. A. Rauh, et al., 2006), fine motor skills (Handal, Harlow, Breilh, 

& Lozoff, 2008), and motor speed and coordination (Harari, et al., 2010).  

However many of these studies are limited in their exposure assessment, using 

either nonspecific maternal urinary metabolites during pregnancy (Engel, et al., 

2007; Young, et al., 2005; Y. Zhang, et al., 2014) or self-reported maternal 
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occupational exposure during pregnancy (Handal, et al., 2008; Harari, et al., 

2010).  

Aim 2 of this dissertation sought to add to this literature by investigating 

the effects of prenatal exposure to five commonly used OPs, measured directly in 

cord blood, on infant motor function at two time points during infancy.  Motor 

function was assessed using two highly specific tests, the Peabody 

Developmental Motor Scales, 2nd edition (PDMS-2), a global motor test, and the 

Infant Neurological International Battery (INFANIB), a neuromotor test.  These 

tests are commonly used in clinical settings to identify issues with motor abilities 

in infancy and early childhood so that early interventions can be employed. I 

hypothesized that infants with prenatal exposure to OPs would have deficits in 

motor function, which would be evidenced by lower PDMS and INFANIB scores. 

 

 

Aim 3 

Proper visual and auditory system development in infancy is crucial to 

later learning processes such as the development of language and other forms of 

communication, as well providing the foundation for reading skills in childhood 

(Algarin, Peirano, Garrido, Pizarro, & Lozoff, 2003; Chonchaiya, et al., 2013). 

Only two epidemiological studies, to date, have examined the effects of prenatal 

OP exposure on visual or auditory-related outcomes (Handal, et al., 2008; 

Sturza, et al., 2016).  Prenatal OP exposure was associated with significantly 

higher odds of poor visual acuity in infants (Handal, et al., 2008), while number of 
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pesticides (OPs and other classes) in cord blood was associated with slower 

auditory signal transmission in infants (Sturza, et al., 2016). These studies 

provide some preliminary evidence that prenatal OP exposure may negatively 

affect early-childhood sensory-related functions, but both are limited by their 

exposure assessments. One study used self-reported maternal occupational 

exposure during pregnancy to define exposure (Handal, et al., 2008), while the 

other used “number of detects” (of all classes) in cord blood to classify exposure 

(Sturza, et al., 2016), making it hard to attribute any effects to specific OPs.  

Additionally the Sturza, et al. study, a pilot study for the current work, had very 

limited sample size. 

Therefore, Aim 3 of this dissertation sought to build on these studies by 

investigating the extent to which prenatal exposure to five OPs, measured 

directly in cord blood, affects visual and auditory function at three time points 

throughout infancy.  Visual function was assessed using a test of grating visual 

acuity (VA), while auditory function was assessed using auditory brainstem 

response (ABR).  These tests are used to clinically assess the intactness of 

visual and auditory pathways throughout infancy and early childhood.  I 

hypothesized that infants with prenatal exposure to OPs would have deficits in 

visual and auditory function, which would be manifested by lower grating VA 

scores and longer ABR latencies, indicating slower auditory signal transmission. 

 
 
 
 
Study population 
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This study was conducted in Zhejiang province, along the eastern coast of 

China. Agricultural pesticide use in Zhejiang is thought to be particularly high.  

Applications are reported to be nearly double the national rate (Huang, et al., 

2001) which would translate to nearly 10 times the global average (Y. Zhang, et 

al., 2014). Study participants were all residents of Fuyang County, a largely rural 

area located southwest of the capital city, Hangzhou.  Between 2008 and 2011, 

women with healthy, uncomplicated, singleton pregnancies were recruited at 37 

to 42 weeks gestation and consented to cord blood screening.  359 healthy, full-

term infants were enrolled at birth into a longitudinal study of iron deficiency and 

neurodevelopment. Pesticides were retroactively measured in stored cord blood 

samples.   
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CHAPTER II 

AIM 1: Distribution and predictors of pesticides in the umbilical cord blood 
of Chinese newborns 
 

!
Abstract 

Introduction: Rates of pesticide use in Chinese agriculture are five times greater 

than the global average, leading to high exposures via the diet.  Many are 

neurotoxic, making prenatal pesticide exposure a concern.   Previous studies of 

prenatal exposure in China focused almost entirely on organochlorines. Here 

study goals were to characterize exposure of Chinese newborns to all classes of 

pesticides and identify predictors of those exposures.   

Methods: 84 pesticides and 12 metabolites were measured in umbilical cord 

plasma of 336 infants.  Composite variables were created for total detects overall 

and by class. Individual pesticides were analyzed as dichotomous or continuous, 

based on detection rates. Relationships between demographic characteristics 

and pesticides were evaluated using generalized linear regression.   

Results: 75 pesticides were detected. The mean (SD) detected per sample was 

15.3 (6.1).  Increased pesticide detects were found in cord blood of infants born 

in the summer ("=2.2, p=0.01), particularly July ("=4.0, p=0.03). Similar trends 

were observed for individual insecticide classes.  
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Conclusions: A summer birth was the strongest predictor of pesticide detects in 

cord blood.  Associations were more striking for overall pesticide exposure than 

for individual pesticides, highlighting the importance of considering exposures to 

mixtures of pesticides, rather than individual agents or classes.  

 

 

Introduction 

Globally, nearly five million tons of synthetic pesticides are applied 

agriculturally each year (U.S.EPA, 2011; W. Zhang, Jiang, & JF., 2011).  China, 

one of the world’s largest consumers of pesticides (Ding & Bao, 2013; U.S. EPA, 

2011; W. Zhang, et al., 2011), applies over 300,000 tons to food crops annually, 

more than 2.5- to 5-fold higher than the global average per field unit (Y. Zhang, et 

al., 2014).  Rates in Zhejiang province, where this study was conducted, are 

some of the highest in China, at nearly double the national rate (Huang, Qiao, 

Zhang, & Rozelle, 2001). Farmers are thought to overuse or improperly use 

pesticides in an attempt to improve crop yields, resulting in high residual levels at 

the time of harvest (Ding & Bao, 2013; Huang, et al., 2001).   

Due to prolific pesticide use in agriculture, the most common route of non-

occupational exposure to pesticides is via consumption of contaminated food 

(Huang, et al., 2001).  Additional related exposures may also occur via 

contaminated drinking water and spray drift, especially in rural, farming 

communities, or from the use of residential pesticides in the home or yard 

(Huang, et al., 2001).  Organophosphate (OP) insecticides are the most heavily 



! %-!

used agricultural pesticide in China, while pyrethroid (PYR) insecticides are the 

most commonly used pesticides in residential settings (Ding & Bao, 2013). 

Many pesticides, and particularly insecticides, act by disrupting signaling 

mechanisms in the central nervous system (CNS), thereby inhibiting neurological 

function.  Because of their neurotoxic mode of action, pesticides have been 

implicated as possible contributors to the rise in neurodevelopmental disorders 

among children (Rosas & Eskenazi, 2008). Infant and fetal brains are rapidly 

developing, making them vulnerable to long-lasting effects of pesticide exposure, 

such as disruption of brain architecture or circuitry (Garcia, Seidler, & Slotkin, 

2005).  Pesticides are able to cross the placenta (Bradman, et al., 2003), and 

fetuses tend to have lower levels of detoxifying enzymes (Eskenazi, et al., 2008).  

Both characteristics are thought to increase fetal susceptibility. 

Despite having the world’s largest population coupled with the potential for 

high exposures, relatively little has been published about the levels of prenatal 

pesticide exposure in China.  Five studies reported pesticide levels in umbilical 

cord blood (Cao, et al., 2011; Guo, et al., 2014; Li, et al., 2014; Wickerham, et al., 

2012; Zhao, Xu, Li, Han, & Ling, 2007), while others examined maternal urinary 

metabolites during pregnancy (Qi, et al., 2012; Xue, et al., 2013; Y. Zhang, et al., 

2014).  Of the five cord blood studies, only one measured pesticides of varying 

classes (insecticides, herbicides, fungicides, and repellant) (Wickerham, et al., 

2012); all others focused solely on the organochlorine (OC) class of insecticides.   

Our exposure assessment extends these studies by examining 96 

pesticides and metabolites from a wide variety of classes, enabling us to begin to 



! &.!

consider the real world problem of multiple, concurrent pesticide exposures.  The 

goals of this study were to characterize pesticide exposures among Chinese 

newborns and identify predictors of those exposures.  This work lays the 

foundation for future work examining prenatal pesticide exposure and infant 

neurodevelopment in our cohort. 

 

!
Methods 

Ethics statement 

Institutional review board approval was obtained from the ethics 

committees of the University of Michigan and Children’s Hospital Zhejiang 

University.  Signed, informed consent was obtained from parents. 

Study population 

Pesticide analysis was performed for 336 infants from rural Fuyang county 

near Hangzhou, China in Zhejiang province. Pregnant women with healthy, 

uncomplicated, singleton pregnancies were recruited between 2008 and 2011 

from Fuyang Maternal and Children’s hospital at 37-42 weeks gestation and 

consented to cord blood screening (n=1187).  Of these infants, a subset (n=359) 

was then enrolled into a study of iron deficiency and infant neurodevelopment. 

The subset for neurodevelopmental assessment was selected based on cord 

blood iron status (low, marginal, normal) and parental consent for the 

developmental study.    Of those, 237 had a sufficient volume of cord blood 

available for pesticide analysis.  The remaining pesticide analysis samples 
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(n=99) were randomly selected from those with sufficient cord blood volume from 

the original cord blood screening cohort. 

Pesticides 

Following delivery, 20-30mL of cord blood was collected and immediately 

frozen.  Blood samples were transferred twice weekly on dry ice from Fuyang to 

Hangzhou, where they were separated and stored at -80C at Children’s Hospital 

Zhejiang University.  Funding was obtained for the pesticide study in 2012.  

Plasma samples were transferred on dry ice to the Institute of Toxicology at 

Nanjing Medical University for pesticide analysis. Pesticides were chosen based 

on usage data, concerns of neurotoxicity, method compatibility, and pilot data.  

We analyzed 96 compounds (84 pesticides and 12 metabolites): 24 

organophosphate (OP) insecticides, 6 OP metabolites, 12 pyrethroid (PYR) 

insecticides, 1 PYR metabolite, 3 carbamate (CARB) insecticides, 5 

organochlorine (OC) insecticides, 3 OC metabolites, 5 miscellaneous insecticides 

of undetermined classes, 14 fungicides, 2 fungicide metabolites, 18 herbicides, 

and 3 “other-use” chemicals/synergists.  

The pesticide analysis protocol was modified from previously published 

methods (Perez, et al., 2010; ThermoScientific).  800 #l plasma samples were 

mixed with 800 #L saturated ammonium sulfate. After centrifugation, the 

supernatant was subjected to solid-phase extraction (SPE) for cleaning and pre-

concentration. The sample was loaded onto a conditioned and equilibrated 

ProElut C18 SPE cartridge (200 mg/3 mL; 50/pk, Dikma, China). After cleaning, 

analytes were harvested by eluting with dichloromethane and n-hexane. The 
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SPE eluate was concentrated and reconstituted into 10 #L toluene prior to GC-

MS/MS analysis. The pesticides in serum were then separated with a Thermo 

Scientific TRACE GC Ultra gas chromatograph equipped with a column of TR-

PESTICIDE II (30m, 0.25mm, 0.25#m) and measured in timed-SRM mode with a 

triple quadrupole TSQ XLS mass spectrometer (QqQ, Thermo Fisher Scientific, 

Inc., USA).  Limits of detection (LODs) were determined by analyzing fortified 

serum on a signal-to-noise (S/N) ratio of three. Quality control samples were 

generated using blood samples with 0.675 and 1.35 ng/mL pesticide standards. 

Quality control samples and blanks were analyzed in parallel with study samples 

in each batch.  

Given the likelihood of multiple concurrent pesticide exposures, we 

created several composite exposure variables. As a preliminary step, we 

dichotomized exposure to each pesticide.  Concentrations below the limit of 

detection (< LOD) were assigned a value of 0, and those !LOD were assigned a 

value of 1.  To assess overall pesticide exposure, we summed these 

dichotomous variables to create two indices of exposure for each infant: total 

number of detects and total number of detects not including metabolites. 

Because certain classes of pesticides may have similar modes of action and 

shared target sites within the body, we also created composites by class, 

summing the total number of exposures for each of the following: insecticides, 

non-persistent insecticides (no OCs), OPs, PYRs, fungicides, and herbicides 

(Figure II.1). 
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Individual pesticides were also analyzed as continuous variables when 

detection rates were !80% (values <LOD were replaced with LOD/$2) or 

dichotomous variables (detect/non-detect), when detection rates were 10-79%. 

Predictors 

Demographic and other variables analyzed as possible predictors of 

pesticide exposure were determined by maternal interview at the infant’s 6-week 

follow-up visit.  Household variables included: number of family members living in 

home, total number of people living in home, amount of living space in square 

meters, place of residence (rural/urban), and annual income (<30,000/30,000-

49,999/50,000-99,999/!100,000 Yuan). Parental characteristics included 

maternal and paternal age in years, education (middle school or less/high school 

or secondary school/college), and occupation (maternal: housewife/other; 

paternal: professional or administrator/manager/factory worker/other).  Date of 

birth was used to create a season of birth variable (March-May/June-

September/October-December) as well as a month of birth variable.  All of the 

variables described here were analyzed as possible predictors of pesticide 

exposure. 

Statistical analysis 

Statistical analyses were conducted using SAS 9.3 (Cary, North Carolina).  

Descriptive statistics and frequencies for all variables of interest were examined.  

Percentile tables were created to determine the individual pesticide distributions 

within the sample.  Generalized linear models (GLM) were used to assess 

relations between predictors and composite pesticide variables, as well as 
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individual pesticides or metabolites with detection rates !80%.  Logistic 

regression models were used to assess relations between predictors and 

individual pesticides or metabolites with detection rates 10-79% (detect/non-

detect). 

 

!
Results 

75 of the 96 pesticides and metabolites analyzed were detectable in at 

least one cord blood sample.  The number of pesticides detected for individuals 

in the study population ranged from 0 to 48 with a mean (SD) of 15.3 (6.1) 

(Figure II.2).  Excluding metabolites, the number of overall detects ranged from 0 

to 41 with a mean (SD) of 12.5 (4.7).  For total insecticides the range was 0 to 26 

with a mean (SD) of 10.7 (3.7) (Figure II.2).  The distributions of all detectable 

pesticides and their LODs are shown in Table 1. LODs ranged from 0.003 to 6.08 

ng/mL, but the majority were well below 1 ng/mL.  Quality control analysis yielded 

coefficients of variation ranging from 5-34%. 

PYR and OP insecticides were the most commonly detected pesticides, 

with mean (SD) detects of 4.5 (2.1) and 3.4 (1.7), respectively.  Complete 

distributions of pesticide concentrations are shown in Table II.1.  Propoxur, a 

CARB insecticide, was the most commonly detected pesticide, found in all but 

two of the cord blood samples.  Three pesticides and one metabolite were 

detected in !80% of the samples (naled, propoxur, aldrin, 3-phenoxybenzoic 

acid).  Undetected pesticides (by class) included: OP- dicrotophos, dimethoate, 

formothion, phosphamidon, dimethylvinphos, methyl parathion, malathion, 
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dichlorvos; CARB- bendiocarb; fungicide- pyrimethanil, vinclozolin; fungicide 

metabolite- pentachloroaniline; herbicide- dimethipin, monolinuron, clomazone, 

isocarbamide, propyzamide, terbacil, dimethenamid, metribuzin, alachlor. 

Characteristics of the study population are presented in Table II.2.   Two-

thirds of the study population lived in a rural area.  Around 40% of mothers and 

fathers had a middle school education or less.  The most common maternal and 

paternal occupations were housewife and professional/administrative, 

respectively.  Despite the majority living in a rural area, only 4% of families had at 

least one parent classified as a rural worker, which included farmers, forestry 

workers, fishermen, and animal caretakers.  No infants were born during January 

or February since study enrollment did not occur around the Chinese New Year 

holiday.  

Infants born during the summer months of June to September had an 

average of 2.2 more pesticides detected in their cord blood than infants born 

between October and December (p=0.01) (Table II.3).   By month of birth, July 

was the strongest predictor of overall pesticide exposure (4.0 more pesticides 

detected, on average, than for December, p=0.03).  No other household, 

demographic, or parental characteristics appeared to influence overall pesticide 

exposure in our population (Appendix: Table II.A1). 

Analyses of individual classes of pesticides similarly revealed that infants 

born in the summer had higher number of pesticides detected in their cord blood 

(Table II.3).  Infants born between June and September had an average of 1.2 

more insecticides, 0.4 more OPs, 0.7 more PYRs, and 0.2 more herbicides 



! &*!

detected in their cord blood than babies born between October and December 

(p=0.03, 0.09, 0.03, and 0.05, respectively).  July was again the strongest 

predictor of insecticide exposure.  Infants born in July had an average of 2.1 

more insecticides, 1.5 more PYRs, and 0.7 more herbicides detected in their cord 

blood than infants born in December (p=0.04, 0.02, and 0.004, respectively).   

There were higher numbers of fungicides found in the cord blood of infants born 

in the spring, and the months of April, June, and October.   

Significant predictors of highly detected (>50% detection) individual 

pesticides are shown in Table II.4.  Key findings are summarized here.  On 

average, 3-phenoxybenzoic acid concentrations increased by 1.3 ng/mL for 

every year increase in maternal age (p= 0.05).  Women who were not 

housewives had lower odds of detectable methamidophos, compared to 

housewives.  Odds of detecting prothiophos were significantly higher in the 

spring, while odds of detecting trans-permethrin, and trichlorfon were significantly 

higher in the summer, when compared to fall/winter. Naled concentrations were 

also significantly higher in the summer, while propoxur and 3-phenoxybenzoic 

acid concentrations were significantly lower in the spring, compared to the 

fall/winter.  Additional significant findings for pesticides with lower detection rates 

(10-50%) can be found in the Appendix (Table II.A2). 

 

!
Discussion 

We found evidence of prenatal exposure to 75 pesticides or pesticide 

metabolites in a cohort of Chinese newborns in Zhejiang Province.  Neonates, on 
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average, had detectable levels of 15 pesticides in their cord blood.  Season of 

birth, specifically summer, was the strongest predictor of increased number of 

detects in cord blood.  Infants born in July had significantly greater detects of 

cord pesticides than infants born in December.  Similar trends were observed for 

individual classes of insecticides. 

Until now, no study of this scope has been completed in China or 

elsewhere. A few relevant studies in the U.S. have measured 14-29 pesticides of 

all classes in cord blood (Neta, et al., 2010; Whyatt, et al., 2003; Yan, et al., 

2009).  Previous Chinese studies using cord blood analyzed a limited number of 

pesticides within a single class, reporting levels of 6-18 OC insecticides (Cao, et 

al., 2011; Guo, et al., 2014; Li, et al., 2014; Zhao, et al., 2007).  Only our own 

pilot study reported cord blood levels for mixed classes (OPs, CARBs, 

herbicides, fungicides) (Wickerham, et al., 2012).  Chinese studies of other 

common classes of insecticides, such as OPs and PYRs, have used maternal 

non-specific urinary metabolites during pregnancy as biomarkers of prenatal 

exposure (Qi, et al., 2012; Xue, et al., 2013; Y. Zhang, et al., 2014).  

Of the pesticides measured in the present study, 29 were measured in 

previous U.S. (Neta, et al., 2010; Whyatt, et al., 2003; Yan, et al., 2009) or 

Chinese studies (Cao, et al., 2011; Guo, et al., 2014; Li, et al., 2014; Wickerham, 

et al., 2012; Zhao, et al., 2007).  Table II.5 compares the high ends of the 

exposure distributions across the studies.  In general, the 90th percentile 

concentrations in the Chinese studies are several orders of magnitude higher 

than the maximums reported in the U.S. studies.  For example, for cis-
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permethrin, a common pyrethroid insecticide, the 90th percentile for the current 

study was 28.32 ng/mL, while the comparable U.S. values were 0.001-0.010 

ng/mL (Neta, et al., 2010; Whyatt, et al., 2003; Yan, et al., 2009).   The pattern 

was similar for all pyrethroids, as well as many other pesticides.  Thus, it appears 

that some infants in our study population were prenatally exposed to very high 

levels or pesticides compared to U.S. infants.  However, we did not detect 

exposure to certain pesticides reported in U.S. or other Chinese studies.  These 

included dichlorvos, malathion, methyl parathion, bendiocarb, vinclozilin, and 

alachlor.  Dichlorvos and bendiocarb have never been measured in China before 

and may not be used there, or perhaps our methods were not sufficiently 

sensitive to detect them.  Malathion, methyl parathion, vinclozilin, and alachlor 

were previously detected in our pilot work (Wickerham, et al., 2012).  It is unclear 

why they were not detected with updated analytical methods. 

Several prior studies also analyzed demographic characteristics as 

predictors of OC or PYR exposure in China.  An exposure assessment of OCs in 

women of childbearing age reported lower OC levels in women with higher 

income and education (Lee, et al., 2007), while a study of OCs in cord blood 

found the opposite (Cao, et al., 2011). Two studies of PYR exposure in pregnant 

women found that maternal education was inversely related to PYR, with PYR 

urinary metabolites decreasing with higher education level (Qi, et al., 2012; Xue, 

et al., 2013).  Positive associations between PYR metabolites and work as a 

manual laborer were reported for both studies (Qi, et al., 2012; Xue, et al., 2013) 

and with being housewife in one study (Qi, et al., 2012). In contrast, we did not 
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observe any significant associations between overall cord pesticide levels, OC, 

or PYR exposure and either income or maternal education.  The number of 

fungicides detected were slightly lower in infants whose fathers had a secondary 

school versus college education, but this may be a chance finding.  There were 

no noticeable trends of pesticide exposure by category of parental occupation, 

though non-housewives were slightly less exposed overall to OPs and had lower 

odds of detection for methamidophos.  However, we had to rely on relatively 

broad, non-specific occupation categories and a dichotomous exposure metric 

(detect/non-detect).  Finally, we did not find higher exposures in rural versus 

urban areas in contrast to a previous study of PYR exposure (Xue, et al., 2013). 

No previous studies analyzed predictors of OP, CARB, herbicide, or fungicide 

prenatal exposure in China.    

Season of birth is a relatively unexplored predictor of prenatal pesticide 

exposure in China.  One previous study reported higher levels of PYR urinary 

metabolites in pregnant women in June through September (Qi, et al., 2012), and 

pesticide poisonings are most commonly reported in August and September in 

Zhejiang province, which coincides with the farming season (M. Zhang, et al., 

2013).  In our study, season of birth was the strongest and most consistent 

predictor of cord pesticides.  Total number of detects, total insecticides, and total 

OP, PYR, and fungicide detects were all higher in the cord blood of infants born 

in the summer months of June to September, compared to those born between 

October and December.  Findings for individual pesticides also varied 

significantly by season and specific month.  Although we were unable to find any 
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data on seasonal or monthly pesticide usage in China, it seems likely that these 

levels correlate with typical time of pesticide applications both agriculturally and 

residentially.   

There were some additional limitations to this work.  Because we 

measured a large number of pesticides with widely varying properties, the 

methods were not fully optimized for certain pesticides or classes of pesticides.  

This likely resulted in higher detection limits for some pesticides, compared to a 

more targeted approach. We were also unable to quantify exposure to some 

common pesticides and metabolites of interest, due to limitations in optimizing 

this high throughput methodology to all chemicals of interest.  Generally 

speaking, analysis of pesticides in blood can result in a high frequency of non-

detects, since pesticide levels in blood tend to be low, particularly for non-

persistent pesticides that are rapidly metabolized (Barr, et al., 1999). While our 

optimized GC-MS/MS methods helped to minimize this concern, we still had 

large numbers of non-detects, limiting our ability to analyze pesticides on an 

individual basis, and necessitating the use of crude measures of exposure, such 

as number of detects by pesticide class.  This approach is limited because it may 

not reflect dose or level of exposure.  Additionally, funding for pesticide analyses 

was not received until a year after cord blood collection was completed.  

Pesticides are biologically reactive and may break down over time (Barr, et al., 

1999; Munoz-Quezada, et al., 2013), although our blood collection and storage 

protocols were carefully designed to minimize these effects.  Similarly, most of 

the pesticides measured here, with the exception of OC insecticides, were non-
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persistent.  With only one measure of exposure, we were unable to address the 

temporal variability of exposure during pregnancy.   Another limitation is that we 

did not have data on lipid levels to adjust OC insecticide concentrations, as is the 

standard.  Furthermore, because this was not originally designed as an 

environmental exposure study, we did not have information about residential 

pesticide use, maternal diet during pregnancy, and proximity to agriculture, which 

would have made this study more robust. Infants were not enrolled during the 

Chinese New Year holiday season (January-February), which limits our data on 

prenatal pesticide exposures during those winter months.  Finally, the pesticide 

levels reported here for our infants from Zhejiang Province may not be 

representative of newborns elsewhere in China. 

Despite its limitations, this study has important strengths.  To our 

knowledge, it is the largest and most comprehensive exposure assessment of 

prenatal pesticide exposure anywhere in the world to date.  The use of umbilical 

cord blood, as opposed to non-specific urinary metabolites, provides unequivocal 

evidence of fetal exposure (Barr, et al., 1999; Munoz-Quezada, et al., 2013) and 

may be more likely to reflect the available dose, since the measured dose was 

not yet eliminated from the infant’s body (Needham, Ashley, & Patterson, 1995).  

These considerations are relevant for assessing and managing risk.   Our 

analysis of predictors of prenatal exposure is more comprehensive than in 

previous Chinese studies.  Our findings that associations between season of 

birth and exposure were more striking for overall pesticide exposure than for 

individual pesticides provide an important first step in highlighting the importance 
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of considering exposures to mixtures of chemicals, rather than focusing solely on 

individual agents or classes. 

 

!
Conclusions 

In conclusion, we reported pesticide exposure profiles in cord blood for 

336 Chinese infants.  75 of 96 possible pesticides/metabolites were detected in 

at least one sample.  On average, the infants had 15 pesticides detected in their 

cord blood samples, with some having as many as 48.  Infants born in the 

summer months, especially in July, had greater numbers of detected pesticides 

in their cord blood, compared to infants born in the winter.  Levels for many of the 

pesticides measured here, and particularly the pyrethroid insecticides, were 

orders of magnitude higher than those reported in cord blood in U.S. studies.  

Prenatal pesticide exposure is a concern, because the fetal brain is rapidly 

developing in utero and pesticide exposure during this period of critical 

development may have long-lasting effects on neurodevelopment. Many of the 

pesticides included in this analysis are proven or suspected developmental 

toxicants and future work in this cohort will seek to further elucidate the 

relationships between prenatal pesticide exposure and infant neurodvelopment. 

Although Chinese infants may be some of the most highly exposed in the world, 

due to high rates of pesticide use in Chinese agriculture, the pesticides targeted 

in this study are used worldwide.    

 

!
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Figure II.1. Creation of composite pesticide variables 1 

 

 

 
1- Analysis variables are shown in shaded boxes 
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Figure II.2. Distributions of number of detected pesticides and insecticides in 
cord blood plasma samples of infants from Zhejiang, China (n=336) 1 

 
1- Histograms have different scales 
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Table II.1. Distribution of pesticide concentrations in umbilical cord blood plasma (ng/mL) at delivery, Zhejiang 
Province, China (n=336) 
 

Pesticide Selected Percentiles 

 LOD n > LOD (%) 50th 75th  90th  95th  99th  Max 

Organophosphates (OP)         
Acephate 0.10 13 (3.9) ND ND ND ND 0.53 0.68 
Chlorpyrifos 0.68 136 (40.5) ND 0.96 3.85 6.24 9.08 11.40 
Chlorpyrifos-methyl 0.01 20 (6.0) ND ND ND 0.04 0.37 1.14 
Diazinon 0.003 1 (0.3) ND ND ND ND ND 0.38 
Fensulfothion 0.03 1 (0.3) ND ND ND ND ND 10.35 
Fosthiazate 0.07 1 (0.3) ND ND ND ND ND 7.82 
Isofenphos-methyl 0.13 6 (1.8) ND ND ND ND 0.57 14.70 
Methamidophos 1.52 218 (64.9) 4.23 24.54 63.85 115.94 231.96 496.86 
Methidathion 0.07 1 (0.3) ND ND ND ND ND 9.23 
Mevinphos 0.12 27 (8.0) ND ND ND 0.20 2.25 4.03 
Monocrotophos 0.01 1 (0.3) ND ND ND ND ND 0.05 
Naled 0.42 312 (92.9) 1.77 5.14 11.06 20.03 50.31 74.68 
Omethoate 1.35 116 (34.5) ND 12.38 44.49 63.10 106.64 213.22 
Phorate 1.79 103 (30.7) ND 2.77 7.81 11.10 25.92 50.13 
Terbufos 0.33 5 (1.5) ND ND ND ND 0.87 3.32 
Trichlorfon 0.35 189 (56.3) 0.73 2.84 9.74 19.61 35.75 43.25 

Carbophenothion sulfone m 0.02 43 (12.8) ND ND 0.22 0.55 1.64 18.83 
DEDTP m 0.06 99 (29.5) ND 0.43 1.09 1.55 2.44 3.63 
DMDTP m 1.74 21 (6.3) ND ND ND 2.12 4.87 21.93 
DMTP m 1.35 1 (0.3) ND ND ND ND ND 9.24 
Phorate sulfone m 0.01 6 (1.8) ND ND ND ND 0.04 1.19 
TCPY m 2.32 2 (0.6) ND ND ND ND ND 13.52 

 
Abbreviations: ND, non-detect; DEDTP, Diethyldithiophosphate; DMDTP, Dimethyldithiophosphate; DMTP, Dimethylthiophosphate; 
TCPY, 3,5,6-trichloro-2-pyridinol 
m Denotes a metabolite 
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Table II.1, continued 

Pesticide Selected Percentiles 

 LOD n > LOD (%) 50th 75th  90th  95th  99th  Max 
Pyrethroids (PYR)         
Cyfluthrin 0.84 114 (33.9) ND 1.49 3.06 4.00 10.55 1158.34 
λ-Cyhalothrin 0.51 180 (53.6) 0.75 4.35 8.79 12.76 18.99 24.86 
Cypermethrin 3.54 143 (42.6) ND 7.58 14.53 20.39 35.55 390.27 
Etofenprox 5.08 260 (77.4) 30.77 102.47 171.39 226.69 410.10 502.75 
Fenpropathrin 0.05 150 (44.6) ND 0.68 2.13 3.51 12.02 23.25 
Fenvalerate 5.06 40 (11.9) ND ND 5.59 7.87 13.76 206.13 
Flucythrinate 0.06 8 (2.4) ND ND ND ND 0.60 198.54 
Fluvalinate-tau 6.08 46 (13.7) ND ND 9.15 15.87 27.02 39.60 
Cis-Permethrin  2.19 252 (75.0) 6.92 15.57 28.32 39.28 278.91 470.05 
Trans-Permethrin 0.03 239 (71.1) 2.81 124.10 314.95 449.97 596.69 737.84 
Tefluthrin 0.17 7 (2.1) ND ND ND ND 0.21 0.95 
Tetramethrin 3.88 59 (17.6) ND ND 12.45 20.22 33.74 41.48 
3-Phenoxybenzoic acid m 0.12 297 (88.4) 4.16 45.70 87.43 115.86 174.02 202.24 
Carbamates (CARB)         
Pirimicarb 0.05 2 (0.6) ND ND ND ND ND 0.41 
Propoxur 0.01 334 (99.4) 0.13 12.73 29.00 35.29 49.44 58.66 
Organochlorines (OC)         
Aldrin 0.14 276 (82.1) 1.66 3.90 7.04 11.36 28.16 40.75 

Dicofol 2.54 28 (8.3) ND ND ND 3.39 8.94 25.56 
Dieldrin 5.57 31 (9.2) ND ND ND 7.87 19.57 30.40 
Mirex 0.003 77 (22.9) ND ND 0.07 0.16 1.59 120.00 
Pentachlorophenol 0.01 22 (6.5) ND ND ND 0.13 1.27 2.19 
β-BHC m 0.01 15 (4.5) ND ND ND ND 1.32 12.92 
o,p’-DDE m 0.04 88 (26.2) ND 0.08 1.22 2.95 16.70 28.98 
p,p’-DDE m 0.03 121 (36.0) ND 31.57 119.49 201.57 381.21 1101.73 

Abbreviations: ND, non-detect; β-BHC, β-Hexachlorohexane; o,p’-DDE, o,p’-dichlorodiphenyldichloroethylene; p,p’-DDE, p,p’-
dichlorodiphenyldichloroethylene;  m Denotes a metabolite 
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Table II.1, continued 

Pesticide Selected Percentiles 

 LOD n > LOD (%) 50th 75th  90th  95th  99th  Max 
Miscellaneous/ Unclassified Insecticides        
EPN 0.48 7 (2.1) ND ND ND ND 3.56 16.14 
Pyraclofos 0.04 1 (0.3) ND ND ND ND ND 13.22 
Prothiofos  5.06 149 (44.3) ND 13.08 30.12 44.98 70.44 104.49 
Pyridaben 0.30 26 (7.7) ND ND ND 0.51 1.49 18.54 
Spirodiclofen 0.04 3 (0.9) ND ND ND ND ND 24.20 
Fungicides         
Dicloran 0.003 1 (0.3) ND ND ND ND ND 0.05 
Difenoconazole 0.07 1 (0.3) ND ND ND ND ND 13.40 
Dimethomorph 0.01 1 (0.3) ND ND ND ND ND 10.95 
Furalaxyl 0.03 1 (0.3) ND ND ND ND ND 11.13 
Metalaxyl 0.01 68 (20.2) ND ND 0.22 0.42 0.61 0.66 
Myclobutanil 0.07 1 (0.3) ND ND ND ND ND 8.52 
Nuarimol 0.01 1 (0.3) ND ND ND ND ND 11.90 
Oxadixyl 0.01 104 (31.0) ND 0.32 1.25 4.74 17.83 60.07 
Paclobutrazole 1.35 1 (0.3) ND ND ND ND ND 10.56 
Triadimefon 0.07 1 (0.3) ND ND ND ND ND 9.76 
Triflumizole 0.02 2 (0.6) ND ND ND ND ND 8.86 
Quinoxyfen 0.34 18 (5.4) ND ND ND 0.35 4.21 35.43 
Tetrahydrophthalimide m 0.34 61 (18.2) ND ND 0.64 0.96 2.56 3.14 

 
Abbreviations: ND, non-detect; EPN, Ethyl p-nitrophenyl thionobenzenephosphonate 
m Denotes a metabolite 
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Table II.1, continued 

Pesticide Selected Percentiles 

 LOD n > LOD (%) 50th 75th  90th  95th  99th  Max 
Herbicides         
Atrazine 0.01 25 (7.4) ND ND ND 0.01 0.02 0.02 
Barban 5.57 1 (0.3) ND ND ND ND ND 8.25 
Dicamba 1.27 6 (1.8) ND ND ND ND 1.87 2.74 
Diphenamid 0.02 1 (0.3) ND ND ND ND ND 9.09 
2,4-D 0.51 73 (21.7) ND ND 1.26 1.80 4.05 58.24 
Diuron 0.04 12 (3.6) ND ND ND ND 1.25 12.84 
Fluridone 1.35 1 (0.3) ND ND ND ND ND 10.85 
Prometryn 0.02 208 (61.9) 1.20 7.50 17.34 29.30 64.12 182.18 
Simazine 0.25 63 (18.8) ND ND 0.45 0.71 1.68 2.87 
Other-use chemicals/ synergists        
1-Hydroxynaphthalene 1.29 56 (16.7) ND ND 1.44 1.84 2.60 3.31 

Piperonyl butoxide 0.22 14 (4.2) ND ND ND ND 1.30 16.57 
Triphenylphosphate 0.07 111 (33.0) ND 0.91 3.48 5.12 19.19 73.00 

 

Abbreviations: ND, non-detect; 2,4-D, 2,4-Dichlorophenoxyacetic acid 
m Denotes a metabolite 
Undetected pesticides: OP- dicrotophos, dimethoate, formothion, phosphamidon, dimethylvinphos, methyl parathion, malathion, 
dichlorvos; CARB- bendiocarb; FUNG- pyrimethanil, vinclozolin; FUNG metabolite- pentachloroaniline; HERB- dimethipin, monolinuron, 
clomazone, isocarbamide, propyzamide, terbacil, dimethenamid, metribuzin, alachlor. 
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Table II.2. Family and household characteristics of the study population (n=237) 

Characteristics N Mean (SD) Range 
# Family in home 220 5.1 (1.3) 1-11 
# People in home 210 4.3 (1.4) 1-9 
Living space (square meters) 215 214.1 (147.9) 18-720 

Maternal age (years)  216 26.1 (3.9) 18-41 
Paternal age (years)  205 28.4 (4.4) 19-47 

Characteristics N N (%) 
Place of residence 216   
Rural   141 (65.3) 
City   75 (34.7) 
Annual income 215   
< 30,000 Yuan   42 (19.5) 
30,000-49,999 Yuan   41 (19.1) 
50,000-99,999 Yuan   66 (30.7) 

≥100,000 Yuan   66 (30.7) 

Maternal education 221   

Middle school or less   84 (38.0) 

High school/secondary school   64 (29.0) 

College   73 (33.0) 

Paternal education 209   

Middle school or less   84 (40.2) 

High school/secondary school   57 (27.3) 

College   68 (32.5) 
Maternal occupation 221   
Housewife   91 (41.2) 
Other   130 (58.8) 
Paternal occupation 208   
Professional/Admin.   81 (38.9) 
Manager   32 (15.4) 
Factory worker   30 (14.4) 
Other   65 (31.3) 
Season of birth 237   
Spring (March-May)   62 (26.2) 
Summer (June-Sept.)   91 (38.4) 

Fall/Winter (Oct.-Dec.)   84 (35.4) 
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Table II.3. Selected results of generalized linear models for composite 
pesticide exposure variables, analyzing household, parental, and 
seasonal characteristics as predictors of exposure 

 

  
Total  

detects  

 Total  
detects  

(no metab.) 

Total 
insecticide 

detects 

Non-persistent 
insecticide 

detects 
Predictor  
(Referent) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Paternal education  
(College)     

Middle school or less 
-0.05  
(-1.66, 1.57) 

-0.06  
(-1.17, 1.29) 

0.07  
(-0.92, 1.06) 

0.04  
(-0.86, 0.93) 

High school/ 
secondary school 

-0.58  
(-2.38, 1.21) 

-0.28  
(-1.65, 1.09) 

-0.00  
(-1.10, 1.11) 

-0.05  
(-0.95, 1.04) 

Maternal occupation 
(Housewife)     

Other 
-0.84  
(-2.18, 0.49) 

-0.73  
(-1.75, 0.29) 

-0.66  
(-1.48, 0.16)  

-0.66  
(-1.40, 0.08)  

Season of birth  
(Fall/Winter)     

Spring 
0.64  
(-1.02, 2.30) 

0.77  
(-0.50, 2.04) 

0.65  
(-0.38, 1.67) 

0.63  
(-0.30, 1.55) 

Summer 
2.20 * 
(0.52, 3.88)  

1.59 *  
(0.31, 2.88)  

1.19 *  
(0.15, 2.22)  

1.13 * 
(0.19, 2.07)  

Month of birth  
(December)     

March 
-3.00  
(-7.69, 1.69) 

-1.93  
(-5.52, 1.65) 

-1.70  
(-4.58, 1.18) 

-1.42  
(-4.02, 1.17) 

April 
0.44  
(-2.70, 3.58) 

0.51  
(-1.90, 2.91) 

-0.09  
(-2.02, 1.84) 

-0.07  
(-1.80, 1.67) 

May 
-0.45  
(-3.73, 2.83) 

-0.27  
(-2.78, 2.23) 

-0.37  
(-2.37, 1.64) 

-0.48  
(-2.28, 1.34) 

June 
1.14  
(-2.30, 4.59) 

0.70  
(-1.94, 3.33) 

0.11  
(-2.00, 2.23) 

0.25  
(-1.66, 2.16) 

July 
4.04 * 
(0.42, 7.65)  

3.00 * 
(0.24, 5.76)  

2.15  
(-0.07, 4.37)  

2.09  
(0.09, 4.09) * 

August 
1.31  
(-2.34, 4.95) 

0.74 
(-2.04, 3.53) 

0.12  
(-2.12, 2.35) 

-0.15  
(-2.16, 1.87) 

September 
-0.38  
(-3.85, 3.08) 

-0.63  
(-3.28, 2.02) 

-1.12  
(-3.25, 1.01) 

-1.16  
(-3.08, 0.75) 

October 
-1.47  
(-4.90, 1.96) 

-1.08  
(-3.71, 1.54) 

-1.39  
(-3.50, 0.72) 

-1.25  
(-3.15, 0.65) 

November 
-0.52  
(-4.00, 2.97) 

-0.79  
(-3.45, 1.87) 

-1.03  
(-3.17, 1.11) 

-1.14  
(-3.07, 0.78) 

 
** = p < 0.01, * = p < 0.05,  = p < 0.10  
Additional results can be found in Table II.A1 (Appendix) 
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Table II.3, continued 

  OP detects PYR detects 
Fungicide 

detects 
Herbicide 
detects 

Predictor  
(Referent) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Paternal education  
(College)     

Middle school or less 
0.03  
(-0.43, 0.48) 

-0.03  
(-0.58, 0.52) 

-0.01  
(-0.27, 0.24) 

0.01  
(-0.22, 0.23) 

High school/ 
secondary school 

-0.04  
(-0.55, 0.46) 

0.01 
(-0.60-0.62) 

-0.29 * 
(-0.57, -0.01)  

0.01  
(-0.25, 0.26) 

Maternal occupation 
(Housewife)     

Other 
-0.33   
(-0.71, 0.05)  

-0.28  
(-0.74, 0.19) 

0.00  
(-0.21, 0.22) 

-0.07  
(-0.26, 0.12) 

Season of birth  
(Fall/Winter)     

Spring 
0.00  
(-0.48, 0.47) 

0.40  
(-0.17, 0.98) 

-0.12  
(-0.38, 0.15) 

0.24 * 
(0.01, 0.48)  

Summer 
0.41   
(-0.07, 0.88)  

0.63 * 
(0.04, 1.21)  

0.17  
(-0.10, 0.44) 

0.24  
(0.00, 0.47) 

Month of birth  
(December)     

March 
-1.31   
(-2.65, 0.03) 

0.06  
(-1.55, 1.66) 

-0.46  
(-1.21, 0.29) 

0.22  
(-0.44, 0.88) 

April 
-0.14  
(-1.04, 0.76) 

0.01  
(-1.06, 1.09) 

0.02  
(-0.49, 0.52) 

0.58 *  
(0.14, 1.02)  

May 
-0.45  
(-1.39, 0.49) 

0.05  
(-1.08, 1.17) 

-0.19 
(-0.71, 0.34) 

0.28  
(-0.18, 0.74) 

June 
-0.10  
(-1.08, 0.89) 

0.44  
(-0.74, 1.62) 

0.07  
(-0.48, 0.62) 

0.51 * 
(0.02, 0.99)  

July 
0.57  
(-0.46, 1.61) 

1.52 * 
(0.28, 2.76)  

0.11  
(-0.47, 0.69) 

0.74 **  
(0.23, 1.25)  

August 
0.00  
(-1.03, 1.05) 

0.06  
(-1.19, 1.30) 

0.33  
(-0.25, 0.91) 

0.30  
(-0.21, 0.81) 

September 
-0.14  
(-1.13, 0.85) 

-0.80  
(-1.98, 0.39) 

0.27  
(-0.29, 0.82) 

0.22  
(-0.27, 0.71) 

October 
-0.69  
(-1.68, 0.29) 

-0.25  
(-1.42, 0.92) 

-0.14  
(-0.69, 0.41) 

0.44  
(-0.38, 0.93)  

November 
-0.16  
(-1.15, 0.84) 

-0.72  
(-1.91, 0.48) 

0.20  
(-0.36, 0.76) 

0.04  
(-0.45, 0.53) 

 
 
** = p < 0.01, * = p < 0.05,  = p < 0.10  
Additional results can be found in Table II.A1 (Appendix) 
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Table II.4. Significant results of generalized linear models for 
individual pesticides with ≥80% detection rate and logistic regression 
models for pesticides with detection rates of 50-80%, analyzing 
household, parental, and seasonal characteristics as predictors of 
exposure 

 
 Continuous Pesticide Results Dichotomous Pesticide Results 

Predictor  
(Referent) β (95% CI) 1 OR (95% CI) 2 

Maternal age 3-PBA: 1.20 (0.05, 2.34) *  
Maternal occupation  
(Housewife)   

Other  Methamidophos: 1.92 (1.20, 3.08) 
Season of birth  
(Fall/Winter)   

Spring 3-PBA: -21.54 (-33.50, -9.60) *** 
Propoxur: -7.19 (-10.62, -3.76) *** 
Aldrin: 1.37 (-0.16, 2.89)  

Prometryn: 0.44 (0.25, 0.78) 

Summer Naled: 4.17 (1.42, 6.92) ** Trichlorfon: 0.55 (0.31, 0.95) 
Trans-permethrin: 0.49 (0.26, 0.91) 

Month of birth  
(December) 

  

March Propoxur: -8.08 (-17.50, 1.35)   
June Aldrin: 3.07 (0.10, 6.24)   
July Naled: 8.81 (3.13, 14.49) **  

September 3-PBA: 22.73 (-1.62, 47.08)  
Propoxur: 5.84 (-1.12, 12.81)  

 

November 3-PBA: 25.95 (1.45, 50.44) * 
Propoxur: 8.03 (0.99, 15.07) * 

Prothiophos: 3.91 (1.15, 13.28) 

 

 

1  *** p < 0.001, ** p < 0.01, * p < 0.05,  p < 0.10 
2 Modeled the probability that pesticide <LOD, so a value <1 means higher odds of detection, while a 
value >1 means lower odds of detection. 
Abbreviations: 3-PBA, 3- Phenoxybenzoic Acid; OR, odds ratio 
Additional results can be found in Table II.A2 (Appendix) 

 

 

 



	   47	  

Table II.5. Comparison of cord blood serum or plasma samples from 
the current study and previously published studies in the U.S. and 
China (ng/mL) 

 Current study 1  U.S. studies 2 China studies 1  
Organophosphates (OP)    
Chlorpyrifos 3.85 0.014 [d] 

0.002 [g] 
0.065 [e]*  

0.17 [f]  

Diazinon 0.38 max  ND [d] 
0.003 [g] 
0.013 [e]*  

0.27 [f]  

Dichlorvos ND 0.005 [e]*  NM  
Malathion ND 0.048 [e]*  3.13 [f]  
Methyl parathion ND 0.016 [e]*  1.43 [f]  
Phorate 7.81 0.010 [e]*  NM  
Terbufos 3.32 max 0.071 [e]*  0.27 [f]  
Pyrethroids (PYR)    
Cyfluthrin 3.06 0.084 [d]  NM  
Cyhalothrin 8.79 ND [d]  NM  
Cypermethrin 14.53 ND [d]  NM  
Fenvalerate 5.59 ND [d]  NM  
Cis-Permethrin  28.32 0.010 [d] 

0.001 [g] 
0.004 [e]*  

NM  

Trans-Permethrin  314.95 0.028 [d] 
0.002 [g] 
0.005 [e]*  

NM  

Tetramethrin 12.45 ND [d]  NM  
Carbamates (CARB)    
Bendiocarb ND 0.032 [e]*  NM  
Propoxur 29.00 0.033 [d] 

0.670 [e]*  
0.19 [f] 

Organochlorines (OC)    
Aldrin 7.04 NM  5.56 max, [a]  
Dieldrin 7.87 95th NM  20.79 max, [a]  
Mirex 0.07 0.03 [d]  0.16 max, [b]*  
β-BHC m 12.92 max NM  9.69 max, [a] 

0.09 med, [c]* 
1.79 max, [b]* 
0.07, 0.33, 0.14 max, [h]*  

o,p’-DDE m 1.22 NM  0.03 max, [b] 
ND med, [c]*  

p,p’-DDE m 119.49 17.73 [d]  31.66 max, [a] 
1.32 med, [c]* 
17.16 max, [b]* 
1.37, 9.76, 85.19 max, [h]*  

Fungicides (FUNG)    
Dicloran 0.05 max 0.03 [e]*  4.73 [f]  
Metalaxyl 0.22 0.02 [g] 

0.26 [e]*  
18.60 max, [f]  

Vinclozolin ND NM  0.94 [f]  
Tetrahydrophthalimide m 0.64 0.01 [g] 

0.04 [e]*  
 

Herbicides (HERB)    
Alachlor ND 0.02 [e]*  2.21 [f]  
Atrazine 0.01 95th 0.01 [e]*  1.47 [f]  
Non-pesticide/synergist    
Piperonyl butoxide 16.57 max 0.0001 [e]  NM  
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Abbreviations: ND, non-detect; NM, not measured.  
m Denotes a metabolite.  
1  90th percentile concentrations are shown unless otherwise indicated.  
2  Maximum concentrations are shown unless otherwise indicated.  
max  Maximum; 95th 95th percentile; 90th 90th percentile; med Median.  
 [a] Cao, 2011; [b] Guo, 2014; [c] Li, 2014; [d] Neta, 2010; [e] Whyatt, 2013; [f] Wickerham, 2012; [g] Yan, 
2009; [h] Zhao, 2007 
* Denotes an estimated value: [e]- data estimated by converting from pg/g plasma to ng/mL by multiplying by 
1.03/1000 (weight of plasma is 1.03 g/mL; there are 1000 pg per ng); [b, c, h]- data estimated by converting 
from ng/g lipid to ng/mL (non-lipid adjusted) by multiplying by 6.84/1000 (calculated average of lipid 
concentration as 6.84 g lipid/L**; there are 1000 ml per L). 
**Reported levels of triglyceride (TG)= 3.02 mmol/L and cholesterol, LDL = 3.07 mmol/L and HDL= 1.76 
mmol/L in Hangzhou infant cord blood (Hou, et al., 2014).  We converted these values to mg/dl and 
determined total lipids using the equation: total lipid (g/L) = 0.9 + 1.3(chol (g/L) + TG (g/L)) (Li, et al., 2014; 
Rylander, Nilsson-Ehle, & Hagmar, 2006).  Using this equation we estimated a total lipid concentration in 
Chinese infants to be 6.84 g lipid/L.  
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Chapter II Appendix 

 

Table II.A1. Additional results of generalized linear models for composite 
pesticide exposure variab1.25les, analyzing household, parental, and 
seasonal characteristics as predictors of exposure 

 

  Total detects  

 Total 
detects  

(no 
metabolites) 

Total 
insecticide 

detects 

Total 
insecticide 

detects  
(no OCs) 

Predictor  
(Referent) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

# Family in home 
-0.12  
(-0.63, 0.39) 

-0.05  
(-0.44, 0.33) 

-0.07  
(-0.39, 0.24) 

-0.08  
(-0.36, 0.20) 

# People in home  
0.04  
(-0.42, 0.50) 

0.05  
(-0.31, 0.40) 

0.02  
(-0.26, 0.31) 

0.00  
(-0.26, 0.26) 

Living space 
0.00  
(-0.01, 0.00) 

0.00  
(-0.00, 0.00) 

0.00  
(-0.00, 0.00) 

0.00  
(-0.00, 0.00) 

Residence  
(Urban)     

Rural 
-0.06  
(-1.47, 1.35) 

0.04  
(-1.03, 1.12) 

0.01  
(-0.86, 0.87) 

0.03  
(-0.75, 0.81) 

Income  
(≥100,000 Yuan)     

< 30,000 Yuan 
-0.49  
(-2.42, 1.44) 

-0.46  
(-1.93, 1.01) 

-0.21  
(-1.39, 0.97) 

-0.15  
(-1.22, 0.91) 

30,000-49,999 Yuan 
0.44  
(-1.59, 2.47) 

0.07  
(-1.48, 1.61) 

0.23  
(-1.01, 1.47) 

0.08  
(-1.04, 1.19) 

50,000-99,999 Yuan 
0.28  
(-1.59, 2.46) 

0.15  
(-1.26, 1.56) 

0.06  
(-1.07, 1.20) 

0.02  
(-1.00, 1.04) 

Maternal age 
0.05  
(-0.13, 0.24) 

0.02  
(-0.13, 0.16) 

0.00  
(-0.11, 0.12) 

-0.01  
(-0.12, 0.09) 

Paternal age 
-0.06  
(-0.22, 0.10) 

-0.05  
(-0.18, 0.07) 

-0.04  
(-0.14, 0.05) 

-0.03  
(-0.12, 0.05) 

Maternal education 
(College)     

Middle school or less 
0.14  
(-1.42, 1.70) 

0.14  
(-1.06, 1.33) 

0.26  
(-0.70, 1.22) 

0.25  
(-0.62, 1.11) 

High school/ 
Secondary school 

0.12  
(-1.58, 1.82) 

0.32  
(-0.98, 1.62) 

0.37  
(-0.67, 1.41) 

0.42  
(-0.53, 1.36) 

Paternal occupation 
(Prof./Tech./Admin.)     

Manager 
0.21  
(-1.77, 2.19) 

0.04  
(-1.47, 1.56) 

-0.15  
(-1.36, 1.07) 

-0.13  
(-1.23, 0.97) 

Factory worker 
0.50 
(-1.44, 2.45) 

0.31  
(-1.18, 1.80) 

0.15  
(-1.05, 1.34) 

0.02  
(-1.06, 1.10) 

Other 
-0.09  
(-1.81, 1.62) 

-0.01  
(-1.31, 1.30) 

-0.09  
(-1.14, 0.96) 

-0.25  
(-1.20, 0.70) 
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Table II.A1, continued 
 

  OP detects PYR detects 
Fungicide 

detects 
Herbicide 
detects 

Predictor  
(Referent) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

# Family in home 
0.03  
(-0.12, 0.17) 

-0.12  
(-0.30, 0.05) 

-0.02  
(-0.10, 0.06) 

0.04  
(-0.04, 0.11) 

# People in home  
0.08  
(-0.05, 0.21) 

-0.08  
(-0.24, 0.08) 

0.02  
(-0.05, 0.10) 

0.00  
(-0.07, 0.07) 

Living space 
0.00  
(-0.00, 0.00) 

0.00  
(-0.00, 0.00) 

0.00  
(-0.00, 0.00) 

0.00  
(-0.00, 0.00) 

Residence  
(Urban)     

Rural 
-0.09  
(-0.49, 0.31) 

0.10  
(-0.39, 0.58) 

-0.01  
(-0.24, 0.21) 

0.08  
(-0.12, 0.27) 

Income  
(≥100,000 Yuan)     

< 30,000 Yuan 
-0.01  
(-0.55, 0.54) 

-0.15  
(-0.81, 0.52) 

-0.04  
(-0.34, 0.27) 

-0.21  
(-0.49, 0.06) 

30,000-49,999 Yuan 
0.26  
(-0.31, 0.84) 

-0.27  
(-0.97, 0.43) 

0.03  
(-0.30, 0.35) 

-0.19  
(-0.47, 0.10) 

50,000-99,999 Yuan 
-0.08  
(-0.61, 0.44) 

0.01  
(-0.65, 0.63) 

0.17  
(-0.13, 0.47) 

-0.08  
(-0.34, 0.18) 

Maternal age 
0.02  
(-0.04, 0.07) 

-0.02  
(-0.09, 0.04) 

0.02  
(-0.01, 0.05) 

-0.01  
(-0.04, 0.02) 

Paternal age 
0.00  
(-0.05, 0.04) 

-0.02  
(-0.07, 0.03) 

-0.00  
(-0.03, 0.02) 

-0.01  
(-0.03, 0.02) 

Maternal education 
(College)     

Middle school or 
less 

0.04  
(-0.40, 0.48) 

0.13  
(-0.41, 0.66) 

-0.03  
(-0.27, 0.22) 

-0.10  
(-0.32, 0.12) 

High school/ 
Secondary school 

0.20  
(-0.29, 0.68) 

0.12  
(-0.47, 0.70) 

-0.05  
(-0.32, 0.22) 

0.00  
(-0.24, 0.24) 

Paternal occupation 
(Prof./Tech./Admin.)     

Manager 
-0.06  
(-0.63, 0.49) 

-0.03  
(-0.71, 0.65) 

0.03  
(-0.28, 0.35) 

0.16  
(-0.12, 0.43) 

Factory worker 
-0.05  
(-0.61, 0.50) 

0.10  
(-0.57, 0.76) 

0.09  
(-0.22, 0.40) 

0.08  
(-0.20, 0.35) 

Other 
-0.23  
(-0.72, 0.25) 

-0.03  
(-0.61, 0.56) 

0.08  
(-0.19, 0.36) 

0.00  
(-0.24, 0.24) 
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Table II.A2. Significant results of logistic regression models for pesticides 
with detection rates of 10-50%, analyzing household, parental, and 
seasonal characteristics as predictors of exposure 

 
 Dichotomous Pesticide Results 

Predictor  
(Referent) OR (95% CI) 1 

# People in home  Mirex: 0.83 (0.70, 0.99) 
Income  
(≥100,000 Yuan) 

 

30,000-49,999 Yuan Omethoate: 0.44 (0.22, 0.90) 
Maternal age DEDTP: 0.92 (0.86-0.98) 

Carbophenothion sulfone: 0.91 (0.84, 0.99) 
Mirex: 0.92 (0.86, 0.99) 
Metalaxyl: 0.92 (0.86, 0.99) 

Paternal age o,p’-DDE: 1.08 (1.01, 1.15) 
Maternal education  
(College) 

 

Middle school or less 2,4-D: 2.02 (1.09, 3.75) 
Paternal education  
(College) 

 

High school/ 
secondary school 

Carbophenothion sulfone: 0.40 (0.16, 0.99) 
Oxadixyl: 2.36 (1.22, 4.56) 

Maternal occupation  
(Housewife) 

 

Other Fluvalinate-tau: 2.07 (1.10, 3.90) 
Tetramethrin: 1.78 (1.01, 3.14) 

Season of birth  
(Fall/Winter) 

 

Spring Omethoate: 2.55 (1.37, 4.74) 
Chlorpyrifos: 0.41 (0.22, 0.77) 
DEDTP: 2.55 (1.37, 4.74) 
Cypermethrin: 0.36 (0.20, 0.65) 
Fenvalerate: 0.32 (0.10, 0.98) 
Tetramethrin: 2.95 (1.42, 6.13) 
o,p’-DDE: 0.43 (0.22, 0.85) 
p,p’-DDE: 2.07 (1.16, 3.69) 
Prothiophos: 0.47 (0.27, 0.83) 

Summer Chlorpyrifos: 0.25 (0.13, 0.46) 
Fenvalerate: 0.26 (0.09, 0.80) 
o,p’-DDE: 0.48 (0.24, 0.95) 
Tetrahydrophthalimide: 0.45 (0.21, 0.95) 

Month of birth  
(December) 

 

March Cypermethrin: 0.12 (0.02, 0.71) 
April Cypermethrin: 0.23 (0.07, 0.76) 

Tetramethrin: 6.50 (1.71, 24.75) 
June Chlorpyrifos: 0.15 (0.04, 0.55) 

Tetramethrin: 8.25 (1.46, 46.60) 
o,p’-DDE: 0.24 (0.07, 0.88) 

July Chlorpyrifos: 0.10 (0.03, 0.41) 
2,4-D: 0.16 (0.03, 0.82) 

 
1 = Modeled the probability that pesticide <LOD, so a value <1 means higher odds of 
detection, while a value >1 means lower odds of detection. 
Abbreviations: 2,4-D, 2,4-Dichlorophenoxyacetic acid 
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CHAPTER III 

AIM 2: Prenatal exposure to organophosphate insecticides and infant 
motor function 
 
 

Abstract  

Background: Organophosphate insecticides (OPs) are used worldwide, yet 

despite nearly ubiquitous exposure in the general population, few have been 

studied outside the laboratory. Fetal brains undergo rapid growth and 

development, leaving them susceptible to long-term effects of neurotoxic OPs.  

The objective of this study was to investigate the extent to which prenatal 

exposure to OPs affects infant motor development. 

Methods: 30 OPs were measured in umbilical cord blood using gas 

chromatography tandem mass spectrometry in a cohort of Chinese infants. Motor 

function was assessed at 6-weeks and 9-months using Peabody Developmental 

Motor Scales 2nd edition (PDMS-2) (n=199). Outcomes included subtest scores: 

reflexes, stationary, locomotion, grasping, visual-motor integration (V-M), 

composite scores: gross (GM), fine (FM), total motor (TM), and standardized 

motor quotients: gross (GMQ), fine (FMQ), total motor (TMQ).  Neuromotor 

function was assessed using a secondary test, the Infant Neurological 

International Battery (INFANIB).  INFANIB outcomes included subscales for 
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spasticity/muscle tone, head and trunk control, vestibular function, legs/lower 

limb function, French angles, and total score. 

Results: Naled, methamidophos, trichlorfon, chlorpyrifos, and phorate were 

detected in ≥10% of samples. Prenatal naled and chlorpyrifos were associated 

with decreased 9-month motor function. Scores were 0.55, 0.85, and 0.90 points 

lower per 1 ng/mL increase in log-naled, for V-M (p=0.04), FM (p=0.04), and 

FMQ (p=0.08), respectively. For chlorpyrifos, scores were 0.50, 1.98, 0.80, 1.91, 

3.49, 2.71, 6.29, 2.56, 2.04, and 2.59 points lower for exposed versus unexposed 

infants, for reflexes (p= 0.04), locomotion (p=0.02), grasping (p=0.05), V-M 

(p<0.001), GM (p=0.007), FM (p=0.002), TM (p<0.001), GMQ (p=0.01), FMQ 

(p=0.07), and TMQ (p=0.008), respectively. INFANIB analyses did not yield any 

significant associations, however general trends indicate reduced INFANIB 

scores at 6 weeks for infants with higher prenatal OP exposures. Girls appeared 

to be more sensitive to the negative effects of OPs on 9-month motor function 

than boys. 

Conclusions: We found deficits in 9-month motor function in infants with prenatal 

exposure to naled and chlorpyrifos. Naled is being aerially sprayed to combat 

mosquitoes carrying Zika virus, yet this is the first non-occupational human study 

of its health effects. Delays in early-motor skill acquisition may be detrimental for 

downstream development and cognition. 
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Introduction 

Synthetic pesticides are used extensively for pest management in a wide 

range of residential, occupational, and agricultural settings. China reports some 

of the highest pesticide usage rates in the world (Ding & Bao, 2013; U.S. EPA, 

2011; W. Zhang, Jiang, & JF., 2011), at up to 5 times the global average (Huang, 

Qiao, Zhang, & Rozelle, 2001; Y. Zhang, et al., 2014). Organophosphate 

insecticides (OPs) account for more than a third of all insecticide use in China (Y. 

Zhang, et al., 2014).  The primary route of OP exposure in the general population 

is via the diet, though exposure can also occur from ingestion of contaminated 

drinking water or dust, residential pest control applications, or topical treatments 

(CDC, 2016; Huang, et al., 2001; NPIC, 2010). Additionally, warming 

temperatures have seen a surge in the transmission of mosquito-borne infectious 

diseases (Bai, Morton, & Liu, 2013), likely leading to aerial OP spraying to 

combat disease spread.  

OPs are neurotoxicants, and over the last couple of decades have 

emerged as a particular concern for developmental neurotoxicity. Developing 

fetal brains undergo rapid growth and maturation, leaving them susceptible to 

possible long-term effects of exposure (Garcia, Seidler, & Slotkin, 2005).  

Associations have been reported between prenatal exposures to OPs and 

deficits in IQ (Bouchard, et al., 2011; Engel, et al., 2011; V. Rauh, et al., 2011), 

and increases in autism spectrum (Shelton, et al., 2014), attention deficit-

hyperactivity (Marks, et al., 2010; V. A. Rauh, et al., 2006), and pervasive 

developmental disorder (Eskenazi, et al., 2007; V. A. Rauh, et al., 2006).  
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Despite a growing body of evidence regarding prenatal OP exposure and 

such neurodevelopmental endpoints, less is known about effects on early-life 

motor function. Motor skill acquisition in infancy provides a foundation for 

downstream cognitive and socio-emotional development in childhood (Clearfield, 

2004, 2011). Motor functions improve rapidly in infancy with increasing central 

nervous system maturation and serve as an early benchmark of healthy 

neurological development (Noritz & Murphy, 2013). Delays in meeting early 

motor milestones may be indicative of a developmental disorder (De Felice, 

Scattoni, Ricceri, & Calamandrei, 2015; Noritz & Murphy, 2013). 

Epidemiological studies provide preliminary evidence that prenatal OP 

exposure may negatively affect infant or child motor function. Maternal urinary 

OP metabolites during pregnancy (total dialkyl phosphates [DAPs] (Young, et al., 

2005; Y. Zhang, et al., 2014), dimethylphosphates [DMPs] (Young, et al., 2005), 

diethylphosphates [DEPs] (Engel, et al., 2007; Young, et al., 2005), and 

malathion dicarboxylic acid [MDA] (Engel, et al., 2007)) have been associated 

with deficits in infant/newborn reflexes. Chlorpyrifos, measured directly in 

umbilical cord plasma, has been found to be inversely associated with 

psychomotor development in 3-year-olds (V. A. Rauh, et al., 2006). Two studies 

of maternal occupational exposure to unspecified OPs during pregnancy found 

deficits in fine, but not gross, motor skills in infants (Handal, Harlow, Breilh, & 

Lozoff, 2008) and reduced motor speed and coordination in 6- to 8-year-olds 

(Harari, et al., 2010).  
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The current study sought to investigate the effects of prenatal OP 

exposure, measured directly in cord blood, on infant motor function. 

 

 

Methods 

Pregnant women with healthy, uncomplicated, singleton pregnancies 

(n=359) were recruited at 37-42 weeks gestation from Fuyang Maternal and 

Children’s hospital between 2008 and 2011 and enrolled into a longitudinal study 

of iron deficiency and infant neurodevelopment. Of the 359 participants, 237 had 

a sufficient volume of cord blood for pesticide analysis. Written informed consent 

was obtained, and the institutional review boards of the University of Michigan 

and Zhejiang University Children’s Hospital approved this study. 

Cord blood pesticides 

The protocol for the determination of pesticides in cord blood has been 

described elsewhere (Silver, et al., 2016). Briefly, cord blood plasma samples 

were at analyzed the Institute of Toxicology at Nanjing Medical University using 

gas chromatography tandem mass spectrometry (GC-MS/MS).  Methods were 

modified from previously published protocols (Perez, et al., 2010; 

ThermoScientific).  We analyzed for 24 organophosphate (OP) insecticides and 6 

OP metabolites.  Limits of detection (LODs) were determined by analyzing 

fortified serum on a signal-to-noise (S/N) ratio of three. Quality control samples 

were generated using serum samples with 0.675 and 1.35 ng/mL pesticide 
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standards. Quality control samples and blanks were analyzed in parallel with 

study samples in each batch.  

Individual OPs were treated as continuous when detection rates were 

≥80% (values below the limit of detection [<LOD] were replaced with LOD/√2), 

three-level ordinal (<LOD/medium/high [median split for those above LOD]) when 

detection rates were 40-79%, and dichotomous (<LOD/detect) when detection 

rates were 10-39%.  Naled (99.6% detected) was log-transformed prior to 

statistical analysis to account for a right-skewed distribution. Methamidophos and 

trichlorfon (64.6% and 51.0% detected) were converted to 3-level ordinal 

variables, while chlorpyrifos and phorate (36.7% and 16.9% detected) were 

treated as dichotomous. A “number of OP detects” variable was created by 

assigning OP measurements <LOD a value of 0, while detects were assigned a 

value of 1; these were summed to create an index of OP exposure for each infant 

(Wickerham, et al., 2012). 

Peabody Developmental Motor Scales 2nd edition (PDMS-2) 

 Peabody Developmental Motor Scales (PDMS-2) (Folio & Fewell, 1983, 

2000) was used as the primary test of motor function in this study.  PDMS-2 is a 

standardized test that assesses gross and fine motor abilities in children from 

birth through 5 years.  PDMS-2 was administered here around 6 weeks and 9 

months of age. The PDMS-2 has been proven to have excellent internal 

consistency (r = 0.89-0.97), test-retest reliability (r = 0.89-0.96), and inter-rater 

reliability (r =0.96-0.99) (Folio & Fewell, 2000).  For this study, PDMS-2 testing 

was performed by four examiners, with one serving as reference. After training, 
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agreement between the reference and the other three examiners was 95% or 

higher.  Inter- and intra-tester reliability measures were also monitored over the 

course of the study. 

The gross motor function assessment is comprised of 4 multi-item 

subtests (reflexes, stationary, and locomotion) that measure interrelated motor 

abilities of large muscle systems (Folio & Fewell, 1983, 2000). Gross motor 

subtest scores were summed to create a composite gross motor raw score (GM). 

The fine motor function assessment is comprised of two multi-item subtests 

(grasping and visual-motor integration [V-M]) that measure the development of 

fine muscle systems. Fine motor subtest scores were summed to create a 

composite fine motor raw score (FM).  GM and FM were summed to create a 

composite total motor raw score (TM) to measure overall motor abilities.  

Additionally, raw subtest scores were converted to standard scores using PDMS-

2 guidelines.  Standard scores were then summed and converted to gross 

(GMQ), fine (FMQ), and total motor quotients (TMQ) according to PDMS-2 

guidelines (Folio & Fewell, 1983).  PDMS-2 data was available for 199 infants. 

Infant Neurological International Battery (INFANIB) 

The Infant Neurological International Battery (INFANIB) (Ellison, 1986; 

Ellison, Horn, & Browning, 1985) was used as a secondary test of motor function.  

INFANIB is a neuromotor examination of reflexes, joints angles, and posture in 

infants from birth through 18 months of age.  For this study, INFANIB was 

assessed at 6 weeks and 9 months.  The test is comprised of 20 items, each of 

which are scored 1 to 5, where 1 is severely abnormal and 5 is normal (Ellison, 
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1986; Ellison, et al., 1985).  The subtests include: spasticity/muscle tone (4 

items), head and trunk control (4 items), vestibular function (4 items), legs/lower 

limb function (4 items), and French angles (shoulder and hip angles) (4 items).  

Subscale scores were summed to create a total score of overall neurological 

integrity.  We examined INFANIB outcomes as raw individual subscale scores 

and total score.  INFANIB data was available for 197 infants. 

Statistical analysis 

Statistical analyses were conducted using SAS 9.3 (Cary, North Carolina). 

Percentile tables were created to determine the individual OP distributions within 

the sample.  Descriptive statistics and frequencies were examined for all 

covariates of interest, including sex, age at motor testing, cord ferritin, gestational 

age, birth weight, maternal education and occupation, family income, and season 

of motor testing.   

Linear mixed models (LMM) with random intercepts were used to evaluate 

associations between cord OP exposures and PDMS raw scores (subtest 

[reflexes, stationary, locomotion, grasping, V-M] and composite scores [GM, FM, 

TM]), as well as motor quotients (GMQ, FMQ, TMQ), at 6 weeks and 9 months. 

LMM was also used to evaluate associations between cord OP exposures and 

INFANIB raw scores (subscales [spasticity/muscle tone, head and trunk control, 

legs/lower limb function, and French angles] and total score), at 6 weeks and 9 

months. Vestibular function was only assessed at 9 months so it was analyzed 

using generalized linear models (GLM).  A number of covariates, including 

maternal education and occupation, income, and season in which motor testing 
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took place, were considered, but ultimately excluded, from the final models. We 

previously reported that income and education were not associated with OP 

exposure in our sample, while season and naled and maternal occupation and 

methamidophos were significantly associated (Silver, et al., 2016).  Of these 

factors, only season of testing was associated with both OP exposure and motor 

outcomes.  Inclusion of season in the models did not significantly influence the 

results, therefore the most parsimonious model was chosen to maximize sample 

size.  Final models were adjusted for sex, age at testing, and cord ferritin.  To 

enable comparisons of effect estimates at both of the time points, we included 

“time” as a class variable and “time*OP” in our LMM models.  We used the 

“lsmeans” procedure to compare estimates for the categorical OP exposures. For 

continuous exposures (number of OP detects, log-naled), the parameter of 

interest was the slope estimating change in 6-week or 9-month motor scores per 

1 unit increase in OP.  For categorical exposures (methamidophos, trichlorfon, 

chlorpyrifos, phorate), the parameter of interest was the difference in mean 6-

week or 9-month motor score by category of OP exposure. To investigate 

differences in the effect of prenatal OP exposure on infant motor function by sex, 

we carried out LMM modeling stratified by infant sex. Finally, we determined the 

odds of an “abnormal” motor outcome at 6 weeks or 9 months, following prenatal 

OP exposure, using logistic regression.  An “abnormal” PDMS score was 

defined, according to PDMS guidelines, as a subtest standard score or a motor 

quotient in the lowest 25th percentile. An “abnormal” INFANIB score was defined, 

according to INFANIB guidelines, as a total score below 66 for 6-week-olds or 83 
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for 9-month-olds.  Logistic regression was only completed if at least 10% of 

infants had scores that could be defined as “abnormal”. Logistic regression 

models were adjusted for sex, age at testing, and cord ferritin. 

 

 

Results 

Infants were born to term and of healthy birth weight. Pertinent sample 

characteristics are presented in Table III.1. Additional household and parental 

characteristics of the study sample have been previously published (Silver, et al., 

2016). Levels of OP exposure for those with and without PDMS data are 

compared in Appendix Table III.A1.  There were no statistically significant 

differences in exposure between the two groups.  Of the 30 OPs and OP 

metabolites, 18 were detectable in at least one cord blood sample.  The mean 

(standard deviation) number of OPs detected per sample was 2.9 (1.6) and 

ranged from 1 to 8. Distributions of detectable OPs and their LODs are shown in 

Table III.2.  There were no underlying differences in cord blood pesticide levels 

by infant sex (Table III.A2). 

There were no significant associations between any of the OPs measured 

and PDMS outcomes at 6 weeks (Appendix Table III.A3).  Adjusted LMM results 

for PDMS outcomes at 9 months are shown in Table III.3.  Log-naled was 

associated with deficits in fine motor function (Table III.3).  In adjusted analyses, 

9-month raw scores were 0.55 and 0.85 points lower per 1 ng/mL increase in log-

naled for V-M (p=0.04) and FM (p=0.04), respectively. 9-month FMQs were 0.90 
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points lower per 1 ng/mL increase in log-naled (p=0.08).  High prenatal 

methamidophos exposure (compared to ND) was consistently associated with 

deficits in PDMS outcomes, though results were not statistically significant.  

Detectable chlorpyrifos was associated with lower scores for all PDMS subtest 

and composite scores at 9 months of age (Table III.3). In adjusted analyses, 9-

month raw scores were 0.50, 1.98, 0.80, 1.91, 3.49, 2.71, and 6.29 points lower 

for chlorpyrifos-exposed versus unexposed infants, for reflexes (p= 0.04), 

locomotion (p=0.02), grasping (p=0.05), V-M (p<0.001), GM (p=0.007), FM 

(p=0.002), and TM (p<0.001), respectively. 9-month motor quotients were also 

2.56, 2.04, and 2.59 points lower in chlorpyrifos-exposed versus unexposed 

infants, for GMQ (p=0.01), FMQ (p=0.07), and TMQ (p=0.008), respectively. 

No statistically significant associations were observed between prenatal 

OP exposure and infant INFANIB scores at either time point (Table III.4 and 

Table III.A4 for 6-weeks and 9-months, respectively). However, 6-week subscale 

and total INFANIB scores were generally lower in infants with higher prenatal OP 

exposure, compared to unexposed infants (Table III.4).  

Bivariate analyses did not revealed any underlying differences in PDMS 

scores by infant sex (Table III.A5).  Sex-stratified LMM results for OP/PDMS 

associations are shown in Table III.A6 (6 weeks) and Figure III.1 (9 months). 

Overall, girls seemed to be more sensitive to negative effects of prenatal OP 

exposure on 9-month motor function than boys (Figure III.1).  For example, 9-

month V-M scores were 1.69 points lower per 1 ng/mL increase in log-naled for 

girls (p=0.04) compared to only 0.06 points lower for boys (p=0.91). For girls, 
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estimated changes in V-M, FM, FMQ, and TMQ at 9 months were negative for all 

OPs examined. Chlorpyrifos consistently yielded deficits in 9-month motor 

scores, regardless of sex, though results were stronger in girls for many PDMS 

outcomes (stationary, locomotion, GM, GMQ, FMQ, TMQ). 9-month raw V-M, 

FM, and TM, results were statistically significant for both sexes.  Scores were 

1.96 (p=0.02) and 1.90 (p=0.009) points lower for V-M, 2.76 (p=0.03) and 2.66 

(p=0.03) points lower for FM, and 8.16 (p=0.003) and 4.61 (p=0.06) points lower 

for TM, for chlorpyrifos-exposed girls and boys, respectively, compared to 

unexposed infants of the same sex.   

Bivariate analyses showed no significant differences in INFANIB scores by 

infant sex (Table III.A7).  Sex-stratified LMM results for OP/INFANIB associations 

are shown in Figure III.2 (6 weeks) and Table III.A8 (9 months).  No clear 

sexually dimorphic trends were evident, except for 6-week total INFANIB score. 

For girls, estimated changes in total score were negative at 6 weeks for all OPs 

examined (-0.43, -0.41, -0.92, -1.79, -0.72, and -2.44 for total OPs, log-naled, 

methamidophos, trichlorfon, chlorpyrifos and phorate, respectively). 

Odds of an abnormal PDMS-2 or INFANIB outcome are shown in Tables 

III.5 and III.6, respectively. Infants prenatally exposed to chlorpyrifos had 2.79 

(95% CI: 1.16, 6.75) higher odds of an abnormally low GMQ at 9 months, 

compared to infants who were not exposed (Table III.5).  Odds of an abnormally 

low INFANIB score were consistently higher with greater OP exposure, though 

not statistically significant (Table III.6). 
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Discussion 

Prenatal naled and chlorpyrifos exposure was associated with decreased 

motor function in 9-month-old infants.  For naled, negative effects were observed 

for fine motor outcomes, while chlorpyrifos was associated with deficits in both 

gross and fine motor function. Girls appeared to be more sensitive to the effects 

of prenatal OP exposure than boys. Additionally, odds of abnormal 9-month 

GMQ was nearly three times higher in infants prenatally exposed to chlorpyrifos, 

compared to those who were not exposed. No significant findings were observed 

at 6-weeks.  While PDMS-2 is indicated for use in children from birth to five 

years, test validity and reliability to tend to be low in infants less than 6 months of 

age, possibly contributing to the lack of findings at the early time point (Folio & 

Fewell, 2000; Snider, Majnemer, Mazer, Campbell, & Bos, 2009). 

No statistically significant associations were observed between prenatal 

OP exposure and infant INFANIB scores at either time point, though trends 

revealed that infants with more OP exposure had lower INFANIB scores and 

higher odds of an abnormal score at 6 weeks of age.  Sex-specific findings for 

total INFANIB score were similar to those seen for PDMS-2. 

Of the OPs measured in this study, 7 have been previously reported in 

cord blood in U.S. or Chinese cohorts.  A comparison of the high ends of the 

exposure distributions across these studies has been published elsewhere 

(Silver, et al., 2016). For the current study, the 90th percentile concentration for 

chlorpyrifos (1.92 ng/mL) is several orders of magnitude higher than the 
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maximums reported in the U.S. (0.002-0.065 ng/mL) (Neta, et al., 2010; Whyatt, 

et al., 2003; Young, et al., 2005). Cord blood naled has not previously been 

reported.  

Chlorpyrifos is employed widely in agricultural, land management, 

industrial, and vector control settings (NPIC, 2010). However, concerns of 

developmental neurotoxicity have led more governments to restrict its use over 

the past couple of decades (U.S. EPA, 2015). While chlorpyrifos has been highly 

studied as a neurotoxicant, relatively little has been published about naled.  

Naled’s primary use is controlling adult mosquito populations (EPA, 2016).  It has 

been employed for routine mosquito control in the U.S. and following hurricanes 

and floods (EPA, 2016) and is currently being sprayed aerially in southern Florida 

(U.S.) as part of a campaign to combat the spread of Zika virus (Frieden, 

Schuchat, & Petersen, 2016). Both chlorpyrifos and naled are able to cross the 

placenta(Abdel-Rahman, et al., 2002; EXTOXNET, 1993). 

The findings from the current study are consistent with previous literature.  

Similar to a study that found deficits in infant fine motor function following 

maternal occupational exposure to unspecified OPs during pregnancy (Handal, 

et al., 2008), we observed deficits in raw FM at 9 months following prenatal 

exposure to all of the OPs analyzed in our study, with statistically significant 

results for naled and chlorpyrifos.  Naled and chlorpyrifos also contributed to 

significant deficits in raw V-M, a fine motor subtest, as well as marginally 

significant deficits in FMQ. The only previous study to also use cord blood to 

assign exposure found associations between chlorpyrifos and psychomotor 
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development in 3-year-olds (V. A. Rauh, et al., 2006). We observed deficits in 

most 9-month PDMS measures following prenatal chlorpyrifos exposure, even 

with our relatively modest sample size.  Two previous studies reported 

associations between maternal total urinary DEPs during pregnancy and 

infant/newborn reflexes (Engel, et al., 2007; Young, et al., 2005); 2 of the 3 DEPs 

used for the total DEP measurement (Engel, et al., 2007; Young, et al., 2005) are 

non-specific metabolites of chlorpyrifos (Bradman, et al., 2011). We similarly 

observed significant deficits in 9-month reflexes in infants with prenatal exposure 

to chlorpyrifos.  

While nearly all studies of prenatal OP exposure and motor-related 

functions control for sex in their analyses, few report sex-specific results 

(Eskenazi, et al., 2007; V. A. Rauh, et al., 2006; Y. Zhang, et al., 2014).  The 

effect of prenatal OP exposure on psychomotor development did not differ by sex 

in two studies (Eskenazi, et al., 2007; V. A. Rauh, et al., 2006).  However, a 

study that found inverse associations between reflexes and maternal urinary total 

DAPs during pregnancy reported that associations were slightly stronger for girls 

(Y. Zhang, et al., 2014).  Interestingly, when total DMPs and total DEPs were 

examined separately, the authors found that DMPs were significantly associated 

with deficits in reflexes in girls, while DEPs were significantly associated with 

deficits in reflexes in boys (Y. Zhang, et al., 2014). We observed stronger 

negative effects of prenatal OP exposure on 9-month motor function in girls for 

nearly all of the motor outcomes examined in this study. 
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The mechanism of acute toxicity elicited by high exposures to OPs is well 

understood.  OPs inhibit acetylcholinesterase (AChE), the enzyme responsible 

for terminating the neurotransmitter acetylcholine’s activity.  Without functional 

AChE, acetylcholine builds up in the synapse, leading to hyperstimulation of the 

cholinergic receptors at neuronal and neuromuscular junctions (Abdollahi & 

Karami-Mohajeri, 2012; Eddleston, Buckley, Eyer, & Dawson, 2008; Kamanyire & 

Karalliedde, 2004).  Cholinergic toxicity, as a result of acute chlorpyrifos 

poisoning, can result in motor dysfunction such as incoordination, loss of 

reflexes, muscle twitching, tremors, and paralysis (Kamanyire & Karalliedde, 

2004).   

However, low dose exposure levels, typical of those seen in non-

occupational settings like this study, do not usually elicit cholinergic toxicity or 

acetylcholinesterase inhibition, yet effects on motor function are still observed.  

Low-dose prenatal or neonatal chlorpyrifos administered to laboratory rodents 

has been associated with deficits in motor-related outcomes. One study reported 

significant effects on neonatal motor patterns and delayed motor maturation in 

mice, following prenatal exposure to chlorpyrifos (De Felice, et al., 2015).  

Another similarly found motor abnormalities in developing rats following neonatal 

chlorpyrifos exposure (Dam, Seidler, & Slotkin, 2000).  Interestingly, these 

findings were sex-specific. Deficits in coordination were observed almost 

immediately following chlorpyrifos administration in female rats only, while a 

delayed effect on locomotion was seen in male rats only.  Both of these effects 

were largely independent of cholinesterase inhibition (Dam, et al., 2000).  
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Laboratory animal data concerning the neuromotor effects of naled are scarce.  

California EPA government reports note that naled at high exposure at levels can 

elicit gait alterations, tremors, reduced grasp, and hypoactivity in adult rats of 

both sexes (CalEPA, 2004), while an additional study reported sporadic tremors 

in high-dose female, but not male, rats (ACGIH, 2013).   We were unable to find 

any published toxicology studies of gestational or neonatal naled exposure and 

motor-related outcomes in animal models. 

The mechanisms by which OPs elicit these low-dose effects on motor 

function are unclear. An in-depth examination is beyond the scope of this 

discussion, but rodent models have yielded some plausible mechanisms that 

deserve mention.  Briefly, low-dose prenatal chlorpyrifos has been found to have 

long-lasting effects on monoaminergic pathways of the brain (Aldridge, Seidler, & 

Slotkin, 2004).  Specifically, it has been shown to perturb the development of 

serotonin (5HT) receptor circuits in the developing rat brain, leading to 

dysfunction of 5HT systems and behavioral abnormalities (Slotkin & Seidler, 

2007b).   These monoaminergic pathways play an important role in the 

maturation of spinal locomotor networks (De Felice, et al., 2015). Disruption of 

the timing of their development, as result of prenatal OP exposure, could have 

potentially negative consequences on early-life motor function.  An alternative 

hypothesis is that OPs may affect motor function via the disruption of glial cell 

development and function in the brain (Garcia, Seidler, Crumpton, & Slotkin, 

2001; Garcia, Seidler, Qiao, & Slotkin, 2002; Garcia, Seidler, & Slotkin, 2003; 

Zurich, Honegger, Schilter, Costa, & Monnet-Tschudi, 2004). Rodent studies 
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have shown that low-level chlopyrifos and diazinon exposure during the onset of 

myelination elicits deficits in expression of genes involved in oligodendrocyte 

function and myelination processes (Garcia, et al., 2001; Garcia, et al., 2002; 

Garcia, et al., 2003; Slotkin & Seidler, 2007a).  Gains in motor function and 

mobility during infancy correspond to increases in corticospinal tract myelination, 

a process that begins in late pregnancy (Carlson, 2014; Da̜mbska & Wisniewski, 

1999). Therefore, prenatal OP exposure during the onset of corticospinal tract 

myelination has the potential to disrupt motor-related outcomes in infancy.   

Our study is limited in several ways. The OPs measured here were non-

persistent. Having measures of exposure at only a single time point (birth) limited 

our ability to address the temporal variability of OP exposure during pregnancy 

and infancy; thus, we may have missed some exposure at sensitive 

developmental stages (Eskenazi, et al., 2007). Since we measured a large 

number of pesticides with widely varying properties, our methods were not 

optimized solely for OP detection (Silver, et al., 2016). This likely resulted in 

higher detection limits and greater numbers of non-detects for some OPs, 

compared to a more targeted approach.  In general, OP levels in blood tend to be 

low anyway, due to short half-lives (<48 hours), which also likely contributed to 

large number of non-detects (Barr, et al., 1999). This necessitated the use of 

crude exposure categories (<LOD/detect or <LOD/medium/high) for many of the 

OPs examined and limited the scope of our statistical analyses. We did not have 

information about parental interaction or play with the infants, while it may not 

directly confound the relationship between OP exposure and motor function, it is 
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almost certainly associated with the outcome and could have added precision to 

the estimates. Finally, the findings here may not be generalizable to infants born 

in other parts of China or elsewhere around the world, especially considering that 

all the infants included in this study were carried to term and otherwise healthy.  

Low birth weight or pre-term infants are more likely to have delayed or impaired 

motor development (Snider, et al., 2009) and may potentially be more 

susceptible to effects of prenatal pesticide exposures.  The effects of prenatal 

OPs on infant motor function should be assessed in these vulnerable 

populations.  

Despite its limitations, this study has a number of strengths.  It used 

specific measurements of OP parent compounds in umbilical cord blood to 

assign prenatal exposure, rather than non-specific metabolites in maternal urine, 

thus providing direct evidence of fetal exposure (Barr, et al., 1999; Munoz-

Quezada, et al., 2013). OP levels in cord blood may also be more likely to reflect 

the available dose, since the measured OPs have not yet been eliminated from 

the infant’s body (Needham, Ashley, & Patterson, 1995). Of the previously 

published studies of prenatal OPs and motor function, only one directly 

measured concentrations of the parent pesticide in cord blood to assign prenatal 

exposure (V. A. Rauh, et al., 2006); other studies used non-specific urinary 

metabolites during pregnancy (Engel, et al., 2007; Engel, et al., 2011; Eskenazi, 

et al., 2010; Eskenazi, et al., 2007; Young, et al., 2005; Y. Zhang, et al., 2014) or 

maternal occupation (Handal, et al., 2008; Harari, et al., 2010) to assign 

exposure. This study also examined a large number of OPs (18 detected out of 
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30 analyzed), many of which have not been previously investigated for 

neurodevelopmental effects in infants. To our knowledge, this is the first non-

occupational human study of the health effects of naled. Additionally, we 

assessed motor development at two time points (6 weeks and 9 months).  The 

longitudinal design, as well as the use of a motor test that was sensitive to 

changes in both gross and fine motor function, gives a more comprehensive view 

of overall motor function in infancy than previous studies. 

 

 

Conclusions 

Prenatal naled and chlorpyrifos exposure was significantly associated with 

decreased motor function in Chinese infants. The clinical significance of these 

small, yet significant, deficits in infant motor development are unknown. Both 

chlorpyrifos and naled are used around the world. These results warrant further 

exploration of the effects of commonly used OPs on motor development.  Proper 

motor skill acquisition in infancy is essential to downstream neurodevelopment 

and cognitive processes. 
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Table III.1. Study sample characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GM Denotes geometric mean 
 
 

 

Demographics Exposures (cord blood) 
Variable N Mean (SD) Variable N Mean (SD) 

Age (days) at 6 week testing 204 43.1 (5.4) # OP detects 206 2.9 (1.6) 
Age (days) at 9 month testing 205 283.0 (10.6) Naled (ng/mL) 200 2.1 (2.7) GM 

Gestational age (weeks) 206 39.6 (1.0)   N (%) 

Birth weight (kg) 233 3.4 (0.4) Methamidophos (ng/mL) 206  
   High (>18.2)  66 (32.0) 
  N (%) Medium (1.5-18.2)  66 (32.0) 
Sex 206  <LOD (<1.5)  74 (35.9) 

Male  106 (51.5) Trichlorfon (ng/mL) 206  
Female  100 (48.5) High (>1.7)  49 (23.8) 

Maternal occupation 194  Medium (0.4-1.7)  55 (26.7) 
Housewife  84 (43.3) <LOD (<0.4)  74 (35.9) 

Other  110 (56.7) Chlorpyrifos (ng/mL) 206  
Maternal education  194  Detect (≥0.4)  71 (34.5) 

College  63 (32.5) ND (<0.4)  135 (65.5) 
High/secondary school  55 (28.4) Phorate (ng/mL) 206  

Middle school or less  76 (39.2) Detect (≥1.8)  32 (15.5) 
Family income (Yuan/year) 189  ND (<1.8)  174 (84.5) 

≥ 100,000  57 (30.2) Serum ferritin (µg/L) 193  
50,000-999,999  55 (29.1) Normal (75-370)  157 (81.3) 

30,000-49,999  37 (19.6) Low (≤75)  36 (18.7) 
<30,000  40 (20.2)    
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Table III.2. Distribution of OP insecticide concentrations in umbilical cord blood plasma samples (ng/mL) at 
delivery, Zhejiang Province, China (n=237) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* Denotes a metabolite 
ND, non-detect; DEDTP, diethyldithiophosphate; DMTP, dimethylthiophosphate; TCPY, 3,5,6-trichloro-2-pyridinol; DMDTP, dimethyldithiophosphate 

 
 

Organophosphate LOD N >LOD (%) 50th 75th 90th 95th 99th Max 
Acephate 0.10 7 (3.0) ND ND ND ND 0.57 0.68 
Chlorpyrifos 0.40 87 (36.7) ND 0.56 1.92 2.71 4.65 7.33 
Chlorpyrifos-methyl 0.01 18 (7.6) ND ND ND 0.07 0.47 1.14 
Fensulfothion 0.03 1 (0.4) ND ND ND ND ND 10.35 
Fosthiazate 0.07 1 (0.4) ND ND ND ND ND 7.82 
Isofenphos-methyl 0.13 2 (0.8) ND ND ND ND ND 14.70 
Methamidophos 1.52 153 (64.6) 6.11 28.10 59.60 113.71 231.96 496.86 
Methidathion 0.07 1 (0.4) ND ND ND ND ND 9.23 
Mevinphos 0.12 15 (6.3) ND ND ND 0.14 0.25 0.26 
Naled 0.42 236 (99.6) 1.51 4.33 9.17 12.22 22.13 29.23 
Omethoate 1.35 19 (8.0) ND ND ND 1.83 4.37 9.34 
Phorate 1.79 40 (16.9) ND ND 3.10 5.14 7.02 12.82 
Terbufos 0.33 3 (1.3) ND ND ND ND 0.39 3.32 
Trichlorfon 0.35 121 (51.0) 0.46 1.69 3.65 5.52 10.56 11.30 
*Carbophenothion sulfone 0.02 16 (6.8) ND ND ND 0.49 1.64 18.83 
*DEDTP 0.06 2 (0.8) ND ND ND ND ND 0.69 
*DMTP 1.35 1 (0.4) ND ND ND ND ND 9.24 
*TCPY 2.32 1 (0.4) ND ND ND ND ND 13.52 
Undetected: 
Diazinon, Dicrotophos, Dimethoate, Formothion, Phosphamidon, Dimethylvinphos, Parathion-methyl, 
Malathion, Dichlorphos, Monocrotophos, *Phorate sulfone, *DMDTP 
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Table III.3. Adjusted a change/difference in PDMS motor scores at 9 months by OP exposure 
 

 Raw Subtest Scores 
OP Insecticide Reflexes (n=182) Stationary (n=188) Locomotion (n=187) Grasping (n=191) V-M (n=192) 

Continuous β (95% CI) for OP b 
# OP Detects 0.03  

(-0.10, 0.17) 
0.08  
(-0.18, 0.33) 

0.04  
(-0.44-0.53) 

-0.08  
(-0.32, 0.17) 

-0.21  
(-0.54, 0.13) 

Log-Naled 0.08  
(-0.14, 0.30) 

0.07  
(-0.33, 0.47) 

0.06  
(-0.71, 0.83) 

-0.30  
(-0.68, 0.08) 

-0.55 * 
(-1.07, -0.30)  

3-level 
(High/Med./ND) Difference in least square means (95% CI) c 

Methamidophos   
(High vs ND) 

-0.12  
(-0.66, 0.41) 

-0.31  
(-1.29, 0.67) 

-1.03  
(-2.91, 0.85) 

-0.70  
(-1.63, 0.23) 

-0.55  
(-1.83, 0.73) 

Methamidophos   
(Med. vs ND) 

0.06  
(-0.48, 0.59) 

-0.13  
(-1.10, 0.84) 

0.13  
(-1.73, 1.99) 

-0.13  
(-1.06, 0.79) 

-0.01  
(-1.28, 1.26) 

Trichlorfon   
(High vs ND) 

0.28  
(-0.27, 0.83) 

0.59  
(-0.40, 1.58) 

1.19  
(-0.71, 3.09) 

0.08  
(-0.87, 1.03) 

-0.10  
(-1.40, 1.21) 

Trichlorfon   
(Med. vs ND) 

0.30  
(-0.23, 0.84) 

-0.17  
(-1.14, 0.80) 

-0.06  
(-1.92, 1.81) 

-0.54  
(-1.46, 0.39) 

0.07  
(-1.34, 1.21) 

2-level (Detect/ND) Difference in least square means (95% CI) c 

Chlorpyrifos  
(Detect vs ND) 

-0.50 * 
(-0.96, 0.04)  

-0.67  
(-1.52, 0.18) 

-1.98 * 
(-3.62, -0.35)  

-0.80 † 
(-1.61, 0.01)  

-1.91 *** 
(-3.01, -0.81)  

Phorate  
(Detect vs ND) 

0.22  
(-0.39, 0.82) 

0.70  
(-0.40, 1.80) 

0.49  
(-1.64, 2.61) 

0.66  
(-0.40, 1.73) 

-1.01  
(-2.45, 0.44) 

 
 

a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in 9-month motor score per 1 unit increase in OP 
c Difference in mean 9-month motor score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; 7phorate ≥1.8/ND 
Abbreviations: V-M, visual-motor integration 
†p<0.10, *p<0.05, **p<0.01, ***p<0.001
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Table III.3, continued 
 

 Composite Raw Scores Motor Quotients 
OP Insecticide GM  (n=180) FM (n=191) TM (n=179) GMQ (n=180) FMQ (n=191) TMQ (n=179) 

Continuous β (95% CI) for OP b 
# OP Detects 0.12  

(-0.64, 0.88) 
-0.29  
(-0.80, 0.23) 

-0.14  
(-1.21, 0.93) 

0.11  
(-0.48, 0.69) 

-0.23  
(-0.89, 0.43) 

-0.03  
(-0.60, 0.53) 

Log-Naled 0.36  
(-0.84, 1.55) 

-0.85 * 
(-1.65, -0.06)  

-0.53  
(-2.20, 1.15) 

0.44  
(-0.48, 1.36) 

-0.90  † 
(-1.92, 0.12)  

-0.10  
(-0.99, 0.79) 

3-level 
(High/Med./ND) Difference in least square means (95% CI) c 

Methamidophos   
(High vs ND) 

-1.30  
(-4.24, 1.65) 

-1.25  
(-3.21, 0.71) 

-2.77  
(-6.89, 1.36) 

-1.32  
(-3.51, 0.87) 

-1.67  
(-4.18, 0.85) 

-0.62  
(-2.90, 1.67) 

Methamidophos   
(Med. vs ND) 

0.41  
(-2.53, 3.35) 

-0.18  
(-2.11, 1.77) 

0.46  
(-3.64, 4.57) 

0.07  
(-2.12, 2.25) 

0.25  
(-2.25, 2.75) 

-0.23  
(-2.52, 2.06) 

Trichlorfon   
(High vs ND) 

2.12  
(-0.88, 5.12) 

-0.05  
(-2.06, 1.96) 

2.39  
(-1.84, 6.61) 

2.07  
(-0.24, 4.38) 

0.70  
(-1.87, 3.26) 

1.77  
(-0.46, 4.00) 

Trichlorfon   
(Med. vs ND) 

-0.28  
(3.20, 2.64) 

-0.60  
(-2.55, 1.35) 

-0.75  
(-4.84, 3.33) 

-0.26  
(-2.53, 2.01) 

-0.97  
(-3.47, 1.54) 

-0.50  
(-2.67-1.67) 

2-level (Detect/ND) Difference in least square means (95% CI) c 

Chlorpyrifos  
(Detect vs ND) 

-3.49 ** 
(-6.03, -0.95)  

-2.71 ** 
(-4.40, -1.02)  

-6.29 *** 
(-9.83, -2.75)  

-2.56 *  
(-4.53, -0.59)  

-2.04 † 
(-4.23, 0.15)  

-2.59 ** 
(-4.49, -0.70)  

Phorate  
(Detect vs ND) 

1.28  
(-2.00, 4.57) 

-0.38  
(-2.62, 1.86) 

1.07  
(-3.59, 5.73) 

0.79  
(-1.74, 3.33) 

0.51  
(-2.35, 3.37) 

0.69  
(-1.77, 3.16) 

 
 

a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in 9-month motor score per 1 unit increase in OP 
c Difference in mean 9-month motor score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: GM, gross motor score; FM, fine motor score; TM, total motor score; GMQ, gross motor quotient; 
FMQ, fine motor quotient, TMQ, total motor quotient 
†p<0.10, *p<0.05, **p<0.01, ***p<0.001
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Table III.4. Adjusted a change/difference in INFANIB scores at 6 weeks by OP exposure 
 

 Subscale scores Total score 

OP insecticide 
Spasticity  

(n=197) 
Head/trunk 

(n=197) 
Legs 

(n=197) 
French angles 

(n=197) 
Total 

(n=197) 

Continuous β (95% CI) for OP b 
# OP Detects -0.01  

(-0.10, 0.08) 
-0.06  
(-0.23, 0.12) 

-0.04  
(-0.20, 0.11) 

-0.13  
(-0.38, 0.13) 

-0.24  
(-0.82, 0.33) 

Log-Naled -0.08  
(-0.22, 0.07) 

0.08  
(-0.20, 0.35) 

-0.13  
(-0.37, 0.12) 

-0.27  
(-0.68, 0.14) 

-0.44  
(-1.34, 0.47) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND) 

-0.16  
(-0.52, 0.19) 

-0.05  
(-0.74, 0.63) 

-0.01  
(-0.61, 0.60) 

-0.28  
(-1.30, 0.74) 

-0.48  
(-2.74, 1.78) 

Methamidophos   
(Med. vs ND) 

0.23  
(-0.13, 0.58) 

-0.11  
(-0.79, 0.56) 

-0.03  
(-0.63, 0.58) 

0.10  
(-0.91, 1.11) 

0.10  
(-2.14, 2.34) 

Trichlorfon   
(High vs ND) 

-0.04  
(-0.40, 0.32) 

-0.42  
(-1.10, 0.26) 

-0.17  
(-0.78, 0.44) 

-0.30  
(-1.32, 0.72) 

-1.15  
(-3.42, 1.13) 

Trichlorfon   
(Med. vs ND) 

0.10  
(-0.25, 0.46) 

0.04  
(-0.64, 0.72) 

0.28  
(-0.33, 0.88) 

-1.00 †  
(-2.02, 0.01)  

-0.59  
(-2.85, 1.68) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.01  
(-0.29, 0.32) 

-0.08  
(-0.66, 0.51) 

-0.12  
(-0.64, 0.41) 

-0.32  
(-1.19, 0.55) 

-0.47  
(-2.41, 1.47) 

Phorate  
(Detect vs ND) 

-0.21  
(-0.59, 0.17) 

-0.38  
(-1.11, 0.34) 

-0.48  
(-1.13, 0.16) 

-0.49  
(-1.56, 0.59) 

-1.52  
(-3.91, 0.87) 

 
a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in 6-week INFANIB score per 1 unit increase in OP 
c Difference in mean 6-week INFANIB score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10
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Figure III.1. Sex-stratified change/difference (95%) in PDMS motor scores at 9 
months by OP exposure a 
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1.) Estimated change in 9-month PDMS motor score per 1 unit increase in OP exposure 
2.) Difference in mean 9-month PDMS motor score by category of OP exposure 
 
a Models adjusted for age at testing and cord ferritin 
b Categories of OP exposure: high versus ND and medium versus ND  
c Categories of OP exposure: exposed versus ND 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10, *p<0.05, **p<0.01 
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Figure III.2. Sex-stratified change/difference (95%) in INFANIB motor scores at 6 
weeks by OP exposure a 
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1.) Estimated change in 6-week INFANIB motor score per 1 unit increase in OP exposure 
2.) Difference in mean 9-month INFANIB motor score by category of OP exposure 
 
a Models adjusted for age at testing and cord ferritin 
b Categories of OP exposure: high versus ND and medium versus ND  
c Categories of OP exposure: exposed versus ND 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10, *p<0.05 
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Table III.5. Adjusted a odds (95% CI) of clinically defined abnormally low PDMS scores at 6-weeks or 9-months by 
OP exposure 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Models adjusted for sex, age at testing, and cord ferritin 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 

 
 
 
 
 
 
 
 
 

 6 weeks 
 Standardized subtest scores Motor quotients 

OP insecticide Stationary (n=197) Grasping (n=197) V-M (n=197) FMQ (n=197) TMQ (n=197) 
Continuous OR (95% CI)  
# OP Detects 1.01  

(0.81, 1.22) 
0.98  
(0.82, 1.16) 

1.04  
(0.87, 1.25)  

0.98  
(0.82, 1.17) 

1.02  
(0.85, 1.24) 

Log-Naled 1.22  
(0.80, 1.70) 

0.96  
(0.73, 1.26) 

0.84  
(0.62, 1.14) 

0.79  
(0.59, 1.05) 

0.93  
(0.69, 1.26) 

3-level  
(High/Med./ND) OR (95% CI) 
Methamidophos   
(High vs ND) 

1.05  
(0.48, 2.31) 

0.63  
(0.32, 1.27) 

0.94  
(0.44, 1.99) 

0.82  
(0.41, 1.66) 

1.15  
(0.55, 2.42) 

Methamidophos   
(Med. vs ND) 

1.47  
(0.65, 3.31) 

0.79  
(0.40, 1.58) 

1.37  
(0.67, 2.80) 

0.95  
(0.48, 1.90) 

1.01  
(0.48, 2.13) 

Trichlorfon   
(High vs ND) 

0.77  
(0.35, 1.70) 

1.08  
(0.53, 2.19) 

0.82  
(0.38, 1.79) 

1.46  
(0.72, 2.97) 

1.29  
(0.61, 2.72) 

Trichlorfon   
(Med. vs ND) 

1.21  
(0.52, 2.82) 

1.01  
(0.50, 2.02) 

1.63  
(0.80, 3.34) 

1.41  
(0.70, 2.82) 

1.06  
(0.50, 2.25) 

2-level (Detect/ND) OR (95% CI) 
Chlorpyrifos  
(Detect vs ND) 

0.98  
(0.49, 1.96) 

1.17  
(0.65, 2.13) 

0.80  
(0.42, 1.52) 

0.82  
(0.45, 1.50) 

1.18  
(0.62, 2.22) 

Phorate  
(Detect vs ND) 

0.86  
(0.37, 2.00) 

0.71  
(0.34, 1.49) 

0.99  
(0.45, 2.16) 

0.65  
(0.30, 1.40) 

0.72  
(0.31, 1.66) 
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Table III.5, continued 
 

 9 months 
 Standardized subtest scores Motor quotient 

OP insecticide Reflexes (n=182) Locomotion (n=187) GMQ (n=180) 

Continuous OR (95% CI) 

# OP Detects 
0.99 
(0.74, 1.33) 

0.86 
(0.72, 1.04) 

1.02 
(0.78, 1.33) 

Log-Naled 
0.93 
(0.58, 1.50) 

0.85 
(0.64, 1.15) 

0.96 
(0.62, 1.48) 

3-level 
(High/Med./ND) OR (95% CI) 
Methamidophos 
(High vs ND) 

1.02 
(0.32, 3.29) 

0.92 
(0.45, 1.88) 

0.89 
(0.31, 2.59) 

Methamidophos 
(Med. vs ND) 

1.34 
(0.45, 3.99) 

0.96 
(0.47, 1.95) 

1.14 
(0.42, 3.13) 

Trichlorfon 
(High vs ND) 

0.99 
(0.32, 3.10) 

0.66 
(0.32, 1.35) 

0.67 
(0.22, 2.04) 

Trichlorfon 
(Med. vs ND) 

0.88 
(0.28, 2.74) 

0.72 
(0.35, 1.47) 

0.75 
(0.26, 2.12) 

2-level (Detect/ND) OR (95% CI) 
Chlorpyrifos 
(Detect vs ND) 

2.07 
(0.81, 5.30) 

0.91 
(0.48, 1.68) 

2.79 * 
(1.16, 6.75) 

Phorate 
(Detect vs ND) 

0.56 
(0.12, 2.58) 

0.96 
(0.40, 2.01) 

1.38 
(0.46, 4.10) 

 
 

a Models adjusted for sex, age at testing, and cord ferritin 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
*p<0.05 
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Table III.6. Adjusted a odds (95% CI) of clinically defined abnormally low 
INFANIB total score at 6-weeks or 9-months by OP exposure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a Models adjusted for sex, age at testing, and cord ferritin 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
*p<0.05 
 

OP insecticide 6 weeks (n=197) 9 months (n=184) 
Continuous OR (95% CI) 

# OP Detects 
1.10  
(0.89, 1.35) 

0.84  
(0.68, 1.05) 

Log-Naled 
1.19  
(0.86, 1.65) 

1.07  
(0.78, 1.48) 

3-level 
(High/Med./ND) OR (95% CI) 
Methamidophos 
(High vs ND) 

1.64  
(0.74, 3.62) 

0.73  
(0.34, 1.59) 

Methamidophos 
(Med. vs ND) 

1.42  
(0.66, 3.04) 

0.52  
(0.23, 1.16) 

Trichlorfon 
(High vs ND) 

1.32  
(0.59, 2.95) 

0.58  
(0.25, 1.36) 

Trichlorfon 
(Med. vs ND) 

1.35  
(0.61, 3.00) 

1.22  
(0.57, 2.59) 

2-level (Detect/ND) OR (95% CI) 
Chlorpyrifos 
(Detect vs ND) 

1.17  
(0.59, 2.29) 

1.02  
(0.52, 2.01) 

Phorate 
(Detect vs ND) 

1.66  
(0.67, 4.14) 

0.80  
(0.34, 1.88) 
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Chapter III Appendix 
 
 
Table III.A1. Comparison of OP exposures for infants with and without motor 
data 
 

 
 
 
 

OP Insecticide 
Motor data  

(n=199) 
No motor data  

(n=39) Test statistic 
Continuous Mean (SD) Mean (SD) T (p) 

# OP detects 3.01 (1.65) 2.85 (1.31) -0.68 (0.50) 
Log-naled 0.77 (1.02) 0.56 (0.86) -1.18 (0.24) 
    

Categorical N (%) N (%) X2 (p) 
Methamidophos   0.47 (0.79) 

High 63 (31.7) 14 (35.9)  
Medium 64 (32.2) 13 (33.3)  

<LOD 72 (36.2) 12 (30.8)  
Trichlorfon   0.00 (1.00) 

High 51 (25.6) 10 (25.6)  
Medium 51 (25.6) 10 (25.6)  

<LOD 72 (48.7) 19 (48.7)  
Chlorpyrifos   1.00 (0.32) 

≥LOD 70 (35.2) 17 (43.6)  
<LOD 129 (64.8) 22 (56.4)  

Phorate   1.59 (0.21) 
≥LOD 37 (18.6) 4 (10.3)  
<LOD 162 (81.4) 35 (89.7)  
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Table III.A2.  Comparison of cord blood pesticide exposures by infant sex 
 

OP Insecticide 
Boys 

(n=171) 
Girls 

(n=165) Test statistic 
Continuous Mean (SD) Mean (SD) T (p) 

# OP detects 3.4 (1.8) 3.5 (1.7) -0.52 (0.61) 
Log-naled 2.1 (3.6) 2.3 (3.2) -0.76 (0.45) 

Categorical N (%) N (%) X2 (p) 
Methamidophos   0.27 (0.87) 

High 48 (28.1) 46 (27.9)  
Medium 61 (35.7) 63 (38.2)  

<LOD 62 (36.3) 56 (33.9)  
Trichlorfon   0.60 (0.74) 

High 62 (36.3) 55 (33.3)  
Medium 34 (19.9) 38 (23.0)  

<LOD 75 (43.9) 72 (43.6)  

Chlorpyrifos   0.03 (0.86) 

≥LOD 70 (40.9) 66 (40.0)  

<LOD 101 (59.1) 99 (60.0)  
Phorate   0.11 (0.74) 

≥LOD 51 (29.8) 52 (31.5)  
<LOD 120 (70.2) 113 (68.5)  

 
 



	   92	  

Table III.A3. Adjusted a change/difference in PDMS motor scores at 6 weeks by OP exposure 
 

 
 Raw Subtest Scores 

OP Insecticide 
Reflexes 
(n=197) 

Stationary 
(n=197) 

Locomotion 
(n=197) 

Grasping 
(n=197) 

V-M 
(n=197) 

Continuous β (95% CI) for OP b 

# OP Detects 0.01  
(-0.12, 0.13) 

0.04  
(-0.20, 0.29) 

0.03  
(-0.43, 0.50) 

-0.03  
(-0.26, 0.21) 

-0.02  
(-0.34, 0.30) 

Log-Naled -0.05  
(-0.26, 0.15) 

-0.27  
(-0.65, 0.11) 

-0.03  
(-0.76, 0.70) 

-0.07  
(-0.44, 0.29) 

0.03  
(-0.47, 0.53) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 

Methamidophos   
(High vs ND) 

0.00  
(-0.52, 0.52) 

-0.55  
(-1.51, 0.40) 

0.06  
(-1.77, 1.89) 

0.23  
(-0.68, 1.15) 

0.20  
(-1.07, 1.46) 

Methamidophos   
(Med. vs ND) 

-0.05  
(-0.56, 0.47) 

-0.14  
(-1.09, 0.81) 

0.15  
(-1.66, 1.96) 

0.35  
(-0.55, 1.26) 

0.02  
(-1.23, 1.27) 

Trichlorfon   
(High vs ND) 

-0.14  
(-0.66, 0.38) 

0.24  
(-0.72, 1.20) 

0.10  
(-1.74, 1.93) 

-0.32  
(-1.24, 0.60) 

-0.27  
(-1.54, 1.00) 

Trichlorfon   
(Med. vs ND) 

0.03  
(-0.48, 0.55) 

-0.05  
(-1.00, 0.90) 

0.08  
(-1.74, 1.91) 

-0.35  
(-1.26, 0.57) 

-0.10  
(-1.36, 1.17) 

2-level (Detect/ND) Difference in least square means (95% CI) c 

Chlorpyrifos  
(Detect vs ND) 

0.14  
(-0.31, 0.58) 

-0.07 
(-0.89, 0.74) 

0.14  
(-1.41, 1.70) 

0.08 
(-0.71, 0.86) 

0.27  
(-0.80, 1.34) 

Phorate  
(Detect vs ND) 

0.04  
(-0.50, 0.59) 

0.76 
(-0.25, 1.77) 

0.18  
(-1.75, 2.12) 

0.20  
(-0.77, 1.17) 

-0.11  
(-1.44, 1.22) 

 
 

a Models adjusted for sex, age at testing, and cord ferritin at birth 
b Estimated change in 6-week motor score per 1 unit increase in OP 
c Difference in mean 6-week motor score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: V-M, visual-motor integration 
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Table III.A3, continued 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a Models adjusted for sex, age at testing, and cord ferritin at birth 
b Estimated change in 6-week motor score per 1 unit increase in OP 
c Difference in mean 6-week motor score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: GM, gross motor score; FM, fine motor score; TM, total motor score; GMQ, gross motor quotient; 
FMQ, fine motor quotient, TMQ, total motor quotient 
 

 
 
 

 Composite Raw Scores Motor Quotients 

OP Insecticide 
GM 

(n=197) 
FM 

(n=197) 
TM 

(n=197) 
GMQ 

(n=197) 
FMQ 

(n=197) 
TMQ 

(n=197) 
Continuous β (95% CI) for OP b 

# OP Detects 0.08  
(-0.63, 0.80) 

-0.05  
(-0.53, 0.44) 

0.04  
(-0.96, 1.04) 

0.00  
(-0.55, 0.55) 

-0.04  
(-0.67, 0.58) 

-0.01  
(-0.54, 0.52) 

Log-Naled -0.36  
(-1.49, 0.77) 

-0.04  
(-0.81, 0.73) 

-0.40  
(-1.98, 1.17) 

-0.58  
(-1.44, 0.29) 

0.12  
(-0.87, 1.10) 

-0.31  
(-1.14, 0.53) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 

Methamidophos   
(High vs ND)  

-0.49  
(-3.31, 2.33) 

0.43 
(-1.50, 2.33) 

-0.07  
(-4.00, 3.87) 

-0.26  
(-2.34, 1.82) 

0.70  
(-1.76, 3.17) 

-0.84  
(-3.02, 1.34) 

Methamidophos   
(Med. vs ND) 

-0.04  
(-2.83, 2.75) 

0.37  
(-1.54, 2.29) 

0.34 
(-3.56, 4.23) 

-0.04  
(-2.10, 2.01) 

0.51  
(-1.93, 2.95) 

-0.44 
(-2.59, 1.72) 

Trichlorfon   
(High vs ND)  

0.20  
(-2.63, 3.03) 

-0.58  
(-2.53, 1.36) 

-0.38  
(-4.34, 3.58) 

-0.06  
(-2.23, 2.12) 

-0.95  
(-3.43, 1.53) 

-0.36  
(-2.45, 1.73) 

Trichlorfon   
(Med. vs ND)  

0.08  
(-2.74, 2.89) 

-0.43  
(-2.37, 1.50) 

-0.35  
(-4.29, 3.58) 

0.05  
(-2.12, 2.21) 

-1.08  
(-3.54, 1.38) 

-0.41  
(-2.48, 1.67) 

2-level (Detect/ND) Difference in least square means (95% CI) c 

Chlorpyrifos  
(Detect vs ND) 

0.20  
(-2.20, 2.59) 

0.34  
(-1.29, 1.98) 

0.53  
(-2.80, 0.86) 

0.00  
(-1.85, 1.85) 

0.29  
(-1.82, 2.40) 

0.20  
(-1.57, 1.97) 

Phorate  
(Detect vs ND) 

0.98  
(2.00, 3.96) 

0.09  
(-1.96, 2.14) 

1.06  
(-3.11, 5.24) 

0.65  
(-1.65, 2.95) 

0.73  
(-1.89, 3.34) 

0.80  
(-1.41, 3.00) 
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Table III.A4. Adjusted a change/difference in INFANIB motor scores at 9 months by OP exposure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in 9-month INFANIB score per 1 unit increase in OP 
c Difference in mean 9-month INFANIB score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10 

 
 
 
 

 Subscale scores Total score 

OP insecticide 
Spasticity  
(n=188) 

Head/trunk  
(n=187) 

Vestibular 
(n=180) 

Legs  
(n=183) 

French angles  
(n=184) 

Total  
(n=184) 

Continuous β (95% CI) for OP b 
# OP Detects -0.01  

(-0.10, 0.09) 
0.19 † 
(-0.01, 0.37)  

0.08  
(-0.25, 0.41) 

0.02  
(-0.15, 0.18) 

0.04  
(-0.23, 0.31) 

0.30  
(-0.30, 0.90) 

Log-Naled 0.04  
(-0.11, 0.18) 

-0.01  
(-0.30, 0.28) 

0.04  
(-0.48, 0.57) 

0.21  
(-0.05, 0.46) 

-0.06  
(-0.49, 0.36) 

0.16  
(-0.79, 1.10) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.05  
(-0.41, 0.32) 

-0.03  
(-0.74, 0.68) 

-0.61  
(-1.90, 0.68) 

0.54 † 
(-0.08, 1.17)  

0.28  
(-0.78, 1.34) 

0.31  
(-2.03, 2.65) 

Methamidophos   
(Med. vs ND) 

-0.02  
(-0.38, 0.35) 

0.29  
(-0.41, 0.98) 

0.54  
(-0.74, 1.81) 

0.50  
(-0.13, 1.14) 

0.43  
(-0.62, 1.48) 

1.56  
(-0.77, 3.89) 

Trichlorfon   
(High vs ND)  

-0.09  
(-0.45, 0.28) 

0.76 † 
(-0.06, 1.46)  

0.69  
(-0.59, 1.98) 

0.00  
(-0.63, 0.63) 

-0.20  
(-1.25, 0.85) 

0.81  
(-1.52, 3.14) 

Trichlorfon  
(Med. vs ND)  

-0.03  
(-0.39, 0.34) 

0.05  
(-0.64, 0.75) 

0.41  
(-0.88, 1.69) 

-0.52  
(-1.1, 0.11) 

0.21  
(-0.83, 1.25) 

-0.08  
(-2.40, 2.24) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.01  
(-0.32, 0.30) 

-0.08  
(-0.67, 0.52) 

-0.37  
(-1.47, 0.73) 

0.16  
(-0.38, 0.70) 

-0.45  
(-1.35, 0.44) 

-0.80  
(-2.79, 1.19) 

Phorate  
(Detect vs ND) 

-0.02  
(-0.41, 0.36) 

0.50  
(-0.24, 1.24) 

0.28  
(-1.06, 1.63) 

-0.51  
(-1.17, 0.14) 

-0.25  
(-1.35, 0.84) 

0.11  
(-2.33, 2.54) 
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Table III.A5. Comparison of key PDMS-2 variables by infant sex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: V-M, visual-motor integration; GM, gross motor score; FM, fine motor score; TM, total motor score;  
GMQ, gross motor quotient; FMQ, fine motor quotient, TMQ, total motor quotient 

 
 
 
 

 6 weeks 9 months 

 
Overall 
(n=199) 

Boys 
(n=105) 

Girls 
(n=94) 

Test 
statistic Overall Boys Girls 

Test 
statistic 

PDMS-2 
Outcome 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

T 
(p) n 

Mean 
(SD) n 

Mean 
(SD) n 

Mean 
(SD) 

T 
(p) 

Reflexes 2.1  
(0.9) 

2.1  
(0.8) 

2.1  
(1.0) 

-0.4  
(0.68) 

196 14.0  
(2.0) 103 

14.0  
(2.1) 93 

14.1  
(1.8) 

-0.7  
(0.50) 

Stationary 3.7  
(2.5) 

3.6  
(2.4) 

3.9  
(2.5) 

-0.8  
(0.44) 

202 33.2  
(3.1) 104 

33.0  
(3.2) 98 

33.4  
(3.0) 

-0.8  
(0.42) 

Locomotion 6.3  
(0.9) 

6.4  
(0.1) 

6.3  
(0.1) 

0.6  
(0.53) 

201 37.1  
(7.9) 103 

37.1  
(7.4) 98 

37.0  
(8.4) 

0.2  
(0.88) 

Grasping 3.3  
(1.9) 

3.3  
(1.8) 

3.3  
(2.0) 

0.0  
(0.99) 

205 36.1  
(3.3) 106 

35.9  
(3.3) 99 

36.3  
(3.2) 

-1.0  
(0.34) 

V-M 3.9  
(1.3) 

3.8  
(1.3) 

3.9 
(1.3) 

-0.5  
(0.64) 

206 45.5  
(5.2) 106 

44.8  
(4.5) 100 

46.2  
(5.7) 

-1.9  
(0.06) 

GM 12.2  
(3.1) 

12.0  
(2.9) 

12.3  
(3.3) 

-0.5  
(0.59) 

194 84.4  
(11.7) 101 

84.2  
(11.2) 93 

84.7  
(12.3) 

-0.3  
(0.79) 

FM 7.2  
(2.6) 

7.2  
(2.3) 

7.3  
(2.8) 

-0.2  
(0.80) 

205 81.6  
(7.7) 106 

80.7  
(7.2) 99 

82.5  
(8.1) 

-1.6  
(0.11) 

TM 19.4  
(4.7) 

19.2  
(4.1) 

19.5  
(5.4) 

-0.48  
(0.63) 

193 166.1  
(16.4) 101 

164.9  
(15.2) 92 

167.3  
(17.6) 

-1.0  
(0.30) 
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Table III.A6. Sex-stratified change/difference in PDMS motor scores at 6 weeks 
by OP exposure a 

 
a Models adjusted for age at testing and cord ferritin 
b Estimated change in 6-week PDMS score per 1 unit increase in OP 
c Difference in mean 6-week PDMS score 
†p<0.10 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: V-M, visual-motor integration 
 
 

 Raw Subtest Scores for BOYS (n=103) 
OP Insecticide Reflexes Stationary Locomotion Grasping V-M 

Continuous β (95% CI) for OP b 
# OP Detects 0.06  

(-0.14, 0.25) 
0.05  
(-0.30, 0.40) 

-0.03  
(-0.68, 0.61) 

0.02  
(-0.32, 0.36) 

-0.04  
(-0.46, 0.37) 

Log-Naled 0.03  
(-0.29, 0.34) 

-0.22  
(-0.79, 0.35) 

0.09  
(-0.95, 1.14) 

0.23  
(-0.32, 0.77) 

0.05  
(-0.62, 0.72) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.07  
(-0.83, 0.69) 

-0.55  
(-1.94, 0.84) 

0.21  
(-2.35, 2.77) 

0.97  
(-0.35, 2.29) 

0.36  
(-1.27, 1.99) 

Methamidophos   
(Med. vs ND) 

-0.12  
(-0.84, 0.59) 

-0.47  
(-1.77, 0.83) 

0.08  
(-2.32, 2.47) 

0.64  
(-0.60, 1.88) 

-0.28  
(-1.80, 1.24) 

Trichlorfon   
(High vs ND)  

-0.05  
(-0.83, 0.73) 

0.39  
(-1.03, 1.80) 

-0.31  
(-2.89, 2.27) 

-0.33  
(-1.69, 1.03) 

-0.21  
(-1.88, 1.47) 

Trichlorfon   
(Med. vs ND)  

0.29  
(-0.43, 1.02) 

0.34  
(-0.98, 1.65) 

0.25  
(-2.14, 2.65) 

-0.29  
(-1.55, 0.97) 

0.04  
(-1.51, 1.60) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.40  
(-0.23, 1.04) 

0.15  
(-1.02, 1.33) 

-0.08  
(-2.23, 2.07) 

-0.18  
(-1.30, 0.93) 

0.18  
(-1.17, 1.52) 

Phorate  
(Detect vs ND) 

0.07  
(-0.73, 0.88) 

0.42  
(-1.02, 1.86) 

-0.08  
(-2.74, 2.58) 

-0.14  
(-1.53, 1.25) 

-0.07  
(-1.77, 1.63) 

 Raw Subtest Scores for GIRLS (n=94) 

OP Insecticide Reflexes Stationary Locomotion Grasping V-M 
Continuous β (95% CI) for OP b 
# OP Detects -0.05  

(-2.33, 0.13) 
0.06 
(-0.28, 0.40) 

0.06 
(-0.62-0.73) 

-0.10  
(-0.43-0.23) 

-0.04  
(-0.54, 0.45) 

Log-Naled -0.11  
(-0.39, 0.16) 

-0.29  
(-0.82, 0.23) 

-0.16  
(-1.21-0.89) 

-0.36  
(-0.86-0.14) 

0.00  
(-0.75, 0.75) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.04  
(-0.68, 0.76) 

-0.46  
(-1.82, 0.90) 

-0.25  
(-2.95, 2.46) 

-0.60  
(-1.89, 0.70) 

-0.00  
(-1.98, 1.98) 

Methamidophos   
(Med. vs ND) 

0.08  
(-0.66, 0.83) 

0.30  
(-1.11, 1.71) 

0.28  
(-2.52, 3.08) 

-0.02  
(-1.37, 1.32) 

0.39  
(-1.66, 2.44) 

Trichlorfon   
(High vs ND)  

-0.27  
(-0.98, 0.44) 

0.15  
(-1.20, 1.50) 

0.28  
(-2.40, 2.96) 

-0.39  
(-1.66, 0.89) 

-0.52  
(-2.48, 1.44) 

Trichlorfon   
(Med. vs ND)  

-0.36  
(-1.11, 0.40) 

-0.46  
(-1.89, 0.97) 

-0.20  
(-3.05, 2.64) 

-0.52  
(-1.87, 0.83) 

-0.56  
(-2.64, 1.52) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.16  
(-0.78, 0.45) 

-0.34  
(-1.50-0.82) 

0.29  
(-2.01, 2.58) 

0.36  
(-0.77, 1.48) 

0.43  
(-1.25, 2.11) 

Phorate  
(Detect vs ND) 

-0.05  
(-0.82, 0.71) 

1.22 †  
(-0.22, 2.66)  

0.31  
(-2.57, 3.19) 

0.42  
(-0.97, 1.82) 

-0.43  
(-2.53, 1.67) 



	   97	  

Table III.A6, continued 
 

 Composite Raw Scores for BOYS (n=103) 
OP Insecticide GM FM TM 

Continuous β (95% CI) for OP b 
# OP Detects 0.08  

(-0.92, 1.07) 
-0.02  
(-0.70, 0.65) 

0.06  
(-1.29, 1.40) 

Log-Naled -0.11  
(-1.73, 1.50) 

0.28  
(-0.81, 1.37) 

0.17  
(-2.00, 2.34) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.42  
(-4.36, 3.52) 

1.34  
(-1.31, 3.98) 

0.95  
(-4.35, 6.25) 

Methamidophos   
(Med. vs ND) 

-0.53   
(-4.22, 3.16) 

0.36  
(-2.12, 2.83) 

-0.18  
(-5.13, 4.78) 

Trichlorfon   
(High vs ND)  

0.10  
(-3.88, 4.08) 

-0.53  
(-3.24, 2.19) 

-0.40  
(-5.77, 4.97) 

Trichlorfon   
(Med. vs ND)  

0.89  
(-2.80, 4.58) 

-0.24  
(-2.76, 2.29) 

0.68  
(-4.30, 5.66) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.46  
(-2.85, 3.77) 

-0.01  
(-2.22, 2.19) 

0.44  
(-3.98, 4.86) 

Phorate  
(Detect vs ND) 

0.44  
(-3.64, 4.52) 

-0.20  
(-2.98, 2.58) 

0.26  
(-5.27, 5.78) 

 Composite Raw Scores for GIRLS (n=94) 

OP Insecticide GM FM TM 
Continuous β (95% CI) for OP b 
# OP Detects 0.05  

(-0.99, 1.10) 
-0.14  
(-0.86, 0.58) 

-0.08  
(-1.60, 1.43) 

Log-Naled -0.57  
(-2.19, 1.06) 

-0.36  
(-1.45, 0.73) 

-0.92  
(-3.25, 1.42) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.65  
(-4.83, 3.53) 

-0.60  
(-3.47, 2.26) 

-1.25  
(-7.25, 4.75) 

Methamidophos   
(Med. vs ND) 

0.67  
(-3.67, 5.00) 

0.36  
(-2.61, 3.33) 

1.02  
(-5.20, 7.25) 

Trichlorfon   
(High vs ND)  

0.12  
(-4.03, 4.28) 

-0.90  
(-3.73, 1.94) 

-0.75  
(-6.75, 5.25) 

Trichlorfon   
(Med. vs ND)  

-1.07  
(-5.43, 3.39) 

-1.08  
(-4.09, 1.94) 

-2.11  
(-8.48, 4.26) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.19  
(-3.73, 3.36) 

0.79  
(-1.67, 3.24) 

0.60  
(-4.52, 5.71) 

Phorate  
(Detect vs ND) 

1.44  
(-3.02, 5.89) 

-0.00  
(-3.08, 3.07) 

1.50  
(-4.97, 7.96) 

 
a Models adjusted for age at testing and cord ferritin 
b Estimated change in 6-week PDMS score per 1 unit increase in OP 
c Difference in mean 6-week PDMS score 
†p<0.10 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: GM, gross motor score; FM, fine motor score; TM, total motor score 
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Table III.A6, continued 
 

 Motor Quotients for BOYS (n=103) 
OP Insecticide GMQ FMQ TMQ 
Continuous β (95% CI) for OP b 
# OP Detects 0.13  

(-0.66, 0.93) 
0.07  
(-0.81, 0.94) 

0.11  
(-0.61, 0.84) 

Log-Naled -0.38  
(-1.67, 0.91) 

0.64  
(-0.76, 2.04) 

0.00  
(-1.17, 1.18) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 

Methamidophos   
(High vs ND)  

0.64  
(-2.22, 3.49) 

3.00 †  
(-0.40, 6.39)  

-0.93  
(-4.08, 2.21) 

Methamidophos   
(Med. vs ND) 

-0.71  
(-2.75, 3.61) 

0.18  
(-2.99, 3.36) 

-1.21  
(-4.16, 1.73) 

Trichlorfon   
(High vs ND)  

0.43  
(-2.75, 3.61) 

-0.36  
(-3.86, 3.14) 

0.23  
(-2.67, 3.13) 

Trichlorfon   
(Med. vs ND)  

1.29  
(-1.66, 4.24) 

-0.27  
(-3.52, 2.98) 

0.66  
(-2.03, 3.35) 

2-level (Detect/ND) Difference in least square means (95% CI) c 

Chlorpyrifos  
(Detect vs ND) 

0.90  
(-1.75, 3.54) 

-0.45  
(-3.33, 2.43) 

0.34  
(-2.06, 2.74) 

Phorate  
(Detect vs ND) 

0.66  
(-2.61, 3.93) 

0.60 
(-2.99, 4.19) 

0.75  
(-2.22, 3.73) 

 Motor Quotients for GIRLS (n=94) 

OP Insecticide GMQ FMQ TMQ 
Continuous β (95% CI) for OP b 
# OP Detects -0.12  

(-0.89, 0.66) 
-0.19  
(-1.11, 0.73) 

-0.14  
(-0.92, 0.65) 

Log-Naled -0.73  
(-1.94, 1.67) 

-0.36  
(-1.78, 1.05) 

-0.55  
(-1.77, 0.67) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-1.01  
(-4.15, 2.12) 

-1.50  
(-5.14, 2.15) 

-0.64  
(-3.78, 2.49) 

Methamidophos   
(Med. vs ND) 

0.78  
(-2.47, 4.03) 

0.81  
(-2.97, 4.58) 

0.58  
(-2.67, 3.83) 

Trichlorfon   
(High vs ND)  

-0.53  
(-3.62, 2.56) 

-1.64  
(-5.23, 1.95) 

-0.93  
(-4.04, 2.18) 

Trichlorfon   
(Med. vs ND)  

-1.40  
(-4.68, 1.88) 

-2.37  
(-6.19, 1.44) 

-1.80  
(-5.11, 1.50) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.97  
(-3.60, 1.67) 

1.18  
(-1.97, 4.33) 

0.05  
(-2.63, 2.72) 

Phorate  
(Detect vs ND) 

0.70  
(-2.62, 4.02) 

0.73  
(-3.19, 4.66) 

0.90  
(-2.46, 4.27) 

 
a Models adjusted for age at testing and cord ferritin 
b Estimated change in 6-week PDMS score per 1 unit increase in OP 
c Difference in mean 6-week PDMS score 
†p<0.10 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: GMQ, gross motor quotient; FMQ, fine motor quotient, TMQ, total motor quotient     
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Table III.A7. Comparison of INFANIB variables by infant sex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 6 weeks 9 months 

 
Overall 
(n=199) 

Boys 
(n=105) 

Girls 
(n=94) 

Test 
statistic 

Overall Boys Girls Test 
statistic 

INFANIB 
Outcome 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

T 
(p) 

n Mean 
(SD) 

n Mean 
(SD) 

n Mean 
(SD) 

T 
(p) 

Spasticity 18.5  
(1.4) 

18.5  
(1.3) 

18.6  
(1.5) 

-0.3  
(0.74) 

203 19.9  
(0.5) 106 

19.9  
(0.4) 97 

19.9  
(0.6) 

0.7  
(0.48) 

Head/trunk 14.3  
(1.4) 

14.3  
(1.4) 

14.4  
(1.3) 

-0.5  
(0.59) 

202 16.5  
(2.4) 107 

16.5  
(2.6) 95 

16.4  
(2.3) 

0.0  
(0.98) 

Vestibular 
    

195 17.3  
(3.5) 103 

17.3  
(3.4) 92 

17.4  
(3.7) 

-0.1  
(0.90) 

Legs 13.4  
(1.6) 

13.5  
(1.5) 

13.3  
(1.7) 

0.9  
(0.39) 

198 15.0  
(1.9) 102 

15.0  
(1.8) 96 

15.0  
(2.1) 

-0.1  
(0.94) 

French 
angles 

16.1  
(3.1) 

16.4  
(2.8) 

15.8  
(3.4) 

1.4  
(0.16) 

199 17.3  
(2.8) 102 

17.2  
(2.8) 97 

17.3  
(2.9) 

-0.2  
(0.87) 

Total 62. 4  
(4.3) 

62.7  
(4.09) 

62.0  
(4.5) 

1.1  
(0.28) 

199 85.5  
(8.2) 105 

85.2  
(8.3) 94 

85.9  
(8.1) 

-0.5  
(0.59) 
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Table III.A8. Sex-stratified change/difference in INFANIB motor scores at 9 months by OP exposure a 
 

 Subscale scores for BOYS 
Total score 
for BOYS 

OP Insecticide 
Spasticity 

(n=106) 
Head/trunk 

(n=107) 
Vestibular 

(n=103) 
Legs 

(n=102) 
French angles 

(n=102) 
Total 

(n=105) 
Continuous β (95% CI) for OP b 
# OP Detects 0.00  

(-0.13, 0.14) 
0.36 * 
(0.08, 0.65)  

0.30  
(-0.19, 0.79) 

0.00  
(-0.23, 0.23) 

0.07  
(-0.32, 0.46) 

0.75 † 
(-0.14, 1.65)  

Log-Naled 0.05  
(-0.15, 0.25) 

0.00  
(-0.43, 0.44) 

-0.03  
(-0.77, 0.71) 

-0.15  
(-0.51, 0.20) 

0.23  
(-0.36, 0.82) 

0.14  
(-1.22, 1.51) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 

Methamidophos   
(High vs ND)  

0.05  
(-0.44, 0.53) 

0.09  
(-0.95, 1.13) 

0.06  
(-1.72, 1.84) 

0.35  
(-0.48, 1.18) 

0.66  
(-0.76, 2.09) 

1.42  
(-1.85, 4.69) 

Methamidophos   
(Med. vs ND) 

0.05  
(-0.40, 0.50) 

0.02  
(-0.95, 0.99) 

0.77  
(-0.88, 2.42) 

0.49  
(-0.32, 1.29) 

0.08  
(-1.25, 1.42) 

1.23  
(-1.86, 4.32) 

Trichlorfon   
(High vs ND)  

-0.00  
(-0.48, 0.47) 

1.16 * 
(0.12, 2.19)  

1.73 † 
(-0.07, 3.54)  

0.24  
(-0.60, 1.09) 

-0.05  
(-1.49, 1.39) 

2.47  
(-0.83, 5.77) 

Trichlorfon   
(Med. vs ND)  

0.00  
(-0.46, 0.46) 

0.47  
(-0.52, 1.46) 

0.72  
(-0.97, 2.41) 

-0.43  
(-1.24, 0.38) 

-0.17  
(-1.53, 1.20) 

0.78  
(-2.38, 3.94) 

2-level (Detect/ND) Difference in least square means (95% CI) c 

Chlorpyrifos  
(Detect vs ND) 

-0.05  
(-0.46, 0.35) 

0.17  
(-0.71, 1.04) 

-0.41  
(-1.92, 1.10) 

0.06  
(-0.67, 0.79) 

-0.33  
(-1.53, 0.87) 

-0.84  
(-3.63, 1.94) 

Phorate  
(Detect vs ND) 

-0.08  
(0.60, 0.44) 

0.77  
(-0.36, 1.90) 

0.25  
(-1.71, 2.22) 

-0.56  
(-1.46, 0.35) 

0.10  
(-1.44, 1.63) 

0.77  
(-2.80, 4.34) 

 
 

a Models adjusted for age at testing and cord ferritin 
b Estimated change in 9-month INFANIB score per 1 unit increase in OP 
c Difference in mean 9-month INFANIB score 
†p<0.10, , *p<0.05 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
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Table III.A8, continued 
 

 Subscale scores for GIRLS 
Total score 
for GIRLS 

OP Insecticide 
Spasticity 

(n=97) 
Head/trunk 

(n=95) 
Vestibular 

(n=92) 
Legs 

(n=96) 
French angles 

(n=97) Total (n=94) 
Continuous β (95% CI) for OP b 
# OP Detects -0.01  

(-0.15, 0.13) 
0.07  
(-0.16, 0.31) 

-0.09  
(-0.56, 0.38) 

0.05  
(-0.18, 0.28) 

-0.00  
(-0.39, 0.38) 

-0.09  
(-0.92, 0.75) 

Log-Naled 0.02  
(-0.20, 0.25) 

-0.00  
(-0.39, 0.38) 

0.11  
(-0.66, 0.88) 

0.51 ** 
(0.14, 0.88)  

-0.35  
(-0.98 0.28) 

0.11  
(-1.24, 1.46) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.12  
(-0.70, 0.47) 

0.04  
(-0.95, 1.02) 

-1.32  
(-3.31, 0.66) 

0.81  
(-0.17, 1.78) 

-0.18  
(-1.82, 1.45) 

-0.77  
(-4.28, 2.73) 

Methamidophos   
(Med. vs ND) 

-0.10  
(-0.70, 0.51) 

0.69  
(-0.32, 1.69) 

0.18  
(-1.89, 2.26) 

0.57  
(-0.45, 1.58) 

0.79  
(-0.90, 2.48) 

1.91  
(-1.74, 5.56) 

Trichlorfon   
(High vs ND)  

-0.16  
(-0.73, 0.41) 

0.46  
(-0.49, 1.41) 

-0.24  
(-2.19, 1.71) 

-0.10  
(-1.06, 0.86) 

-0.37  
(-1.97, 1.22) 

-0.81  
(-4.23, 2.61) 

Trichlorfon   
(Med. vs ND)  

-0.08  
(-0.68, 0.51) 

-0.49  
(-1.48, 0.50) 

0.20  
(-1.89, 2.28) 

-0.53  
(-1.53,0.47) 

0.81  
(-0.85, 2.48) 

-1.11  
(-4.71, 2.48) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.04  
(-0.45, 0.53) 

-0.39  
(-1.20, 0.42) 

-0.34  
(-2.01, 1.34) 

0.27  
(-0.56, 1.09) 

-0.63  
(-1.99, 0.74) 

-0.97  
(-3.89, 1.96) 

Phorate  
(Detect vs ND) 

0.05  
(-0.53, 0.64) 

0.43  
(-0.55, 1.41) 

0.35  
(-1.61, 2.30) 

-0.37  
(-1.34, 0.60) 

-0.69  
(-2.32, 0.93) 

-0.39  
(-3.83, 3.05) 

 
 

a Models adjusted for age at testing and cord ferritin 
b Estimated change in 9-month INFANIB score per 1 unit increase in OP 
c Difference in mean 9-month INFANIB score 
†p<0.10, , *p<0.05, , **p<0.01 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
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CHAPTER IV 

AIM 3: Prenatal exposure to organophosphate insecticides and infant 
sensory function 
 
 

Abstract 

Background: Occupational studies suggest that exposure to organophosphate 

insecticides (OPs) can lead to vision or hearing loss, yet the effects of early-life 

exposure on visual and auditory function are unknown. Here we examined the 

effects of prenatal OP exposure on grating visual acuity (VA) and auditory 

brainstem response (ABR) during infancy.  

Methods: 30 OPs were measured in umbilical cord blood using gas 

chromatography tandem mass spectrometry in a cohort of Chinese infants. 

Grating visual acuity (VA) (n=198) and auditory brainstem response (ABR) 

(n=181) were assessed at 6 weeks, 9 months, and 18 months. Outcomes 

included VA score and ABR wave V latency, central conduction time ([CCT], 

wave V - wave I latencies), and the III-V and I-III inter-peak intervals ([IPI] wave 

V- wave III and wave III- wave I latencies, respectively). 

Results: Prenatal chlorpyrifos exposure was associated with lower 9-month 

grating VA scores; scores were 0.64 (95% CI: -1.22, -0.06) points lower for 

exposed versus unexposed infants (p=0.03).  None of the OPs examined were 

associated with infant ABR latencies, though chlorpyrifos and phorate were both
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significantly inversely associated with head circumference (HC) at 9 months; HCs 

were 0.41 (95% CI: 0.75, 0.6) cm and 0.44  (95% CI: 0.88, 0.1) cm smaller for 

chlorpyrifos (p=0.02) and phorate (p=0.04), respectively. 

Conclusions: We found deficits in grating VA and HC in 9-month-old infants with 

prenatal exposure to chlorpyrifos.  The clinical significance of these small but 

statistically significant deficits are unclear, however the disruption of visual and 

auditory pathway maturation in infancy could potentially negatively affect 

downstream cognition. 

 

 

 Introduction 

Synthetic pesticides are employed for pest management in a wide variety 

of agricultural, residential, occupational, and industrial settings worldwide. 

However the largest consumer of pesticides is by far the agricultural sector. 

Annual global estimates report that nearly five million tons of pesticides are 

applied to crops each year (U.S. EPA, 2011; W. Zhang, Jiang, & JF., 2011). 

China is one of the largest consumers of pesticides worldwide (Ding & Bao, 

2013; U.S. EPA, 2011; W. Zhang, et al., 2011).  Synthetic pesticide use in 

Chinese agriculture is reported to be up to five times the global average, per field 

unit (Y. Zhang, et al., 2014). Pesticide applications are thought to be even higher 

in Zhejiang province, the site of this study, at nearly twice the national rate 

(Huang, Qiao, Zhang, & Rozelle, 2001). 
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Organophosphate insecticides (OPs) are the most heavily used class of 

pesticides in China’s agricultural sector (Ding & Bao, 2013) and account for more 

one-third of overall insecticide use there (Y. Zhang, et al., 2014).  The primary 

route of OP exposure in China is thought to be via consumption of food grown in 

OP-treated fields.  Chinese national food surveys have found that over 10% of 

fruits, vegetables, and cereal grains contain OP residues higher than the national 

safety standards and OPs that have been banned for years are still regularly 

detected (Chen, et al., 2012; L. Wang, Liang, & Jiang, 2008; S. Wang, Wang, 

Zhang, Wang, & Guo, 2013).  In addition to the diet, additional OP exposure may 

also occur from the consumption of contaminated drinking water or dust, topical 

treatments, residential pest control applications for common household pests (eg: 

termites, cockroaches), or aerial spraying for mosquitoes (Bai, Morton, & Liu, 

2013; CDC, 2016; Huang, et al., 2001; NPIC, 2010). 

The mechanism of acute OP neurotoxicity is the inhibition of 

acetylcholinesterase (AChE). This leaves the neurotransmitter acetylcholine 

unchecked and results in the hyperstimulation of cholinergic receptors in the 

central nervous system (Kamanyire & Karalliedde, 2004).  Cholinergic toxicity 

following acute or high OP exposures has been associated with a variety of 

deficits in neurological function in both laboratory animals and occupationally 

exposed adults (Abdollahi & Karami-Mohajeri, 2012; Kamanyire & Karalliedde, 

2004; Yang & Deng, 2007).   

OPs have also emerged as a concern for developmental neurotoxicity, 

even at relatively low-levels of exposure where cholinergic toxicity would not be 
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present. Due to concerns of early-life neurotoxicity, a number of commonly used 

OPs have been banned for residential uses (U.S.EPA, 2011; W. Zhang, et al., 

2011). Rapidly developing fetal brains may be susceptible to possible long-term 

effects of prenatal OP exposure (Garcia, Seidler, & Slotkin, 2005).  Studies of 

prenatal exposure to OPs provide evidence of associations with neurological 

effects in childhood such as IQ deficits (Bouchard, et al., 2011; Engel, et al., 

2011; V. Rauh, et al., 2011) and cognitive delays (Bouchard, et al., 2011; Engel, 

et al., 2011; Eskenazi, et al., 2007; V. Rauh, et al., 2011; V. A. Rauh, et al., 

2006), as well as increased diagnoses of autism (Shelton, et al., 2014), attention 

deficit-hyperactivity (Marks, et al., 2010; V. A. Rauh, et al., 2006), and pervasive 

developmental (Eskenazi, et al., 2007; V. A. Rauh, et al., 2006) disorders.  

Despite a growing body of evidence regarding early-life OP exposure and 

these commonly studied neurodevelopmental and cognitive endpoints, much less 

is known about how exposure to OPs may affect childhood sensory functions, 

such as visual and auditory function. Proper visual and auditory system 

development in infancy is crucial to later learning processes such as the 

development of language and other forms of communication, as well providing 

the foundation for reading skills in childhood (Algarin, Peirano, Garrido, Pizarro, 

& Lozoff, 2003; Chonchaiya, et al., 2013).  Only two epidemiological studies to 

date have examined prenatal OP exposure and either visual or auditory-related 

outcomes (Handal, Harlow, Breilh, & Lozoff, 2008; Sturza, et al., 2016).  Maternal 

self-reported occupational OP exposure during pregnancy was associated with 

significantly higher odds of poor visual acuity in infants (Handal, et al., 2008), 
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while number of pesticides (OPs and other classes) in cord blood was associated 

with slower auditory signal transmission in infants (Sturza, et al., 2016). These 

studies provide some preliminary evidence that prenatal OP exposure may 

negatively affect early-childhood sensory-related functions.    

The current study sought to investigate the extent to which prenatal OP 

exposure, as measured in cord blood, affects visual and auditory function at 

three time points throughout infancy. 

 

 

Methods 

Ethics Statement 

Study protocols received institutional review board approval from both the 

University of Michigan and Zhejiang University Children’s Hospital.  Signed, 

informed consent was obtained prior to commencing the study. 

Study Sample 

Pregnant women were recruited late in gestation (37-42 weeks) from 

Fuyang Maternal and Children’s hospital between 2008 and 2011.  359 women 

with healthy, uncomplicated, singleton pregnancies were enrolled into a 

longitudinal study of iron deficiency and infant neurodevelopment. 237 women 

had a sufficient volume of cord blood available for pesticide analysis.  Infant 

development was assessed at three follow-up visits around 6 weeks, 9 months, 

and 18 months of age. 

Organophosphate Insecticides (OPs) 
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The protocol for the determination of pesticides in cord blood has been 

described elsewhere (Silver, Shao, et al., 2016).  Briefly, cord blood plasma 

samples were analyzed for 24 OPs and 6 OP metabolites at the Institute of 

Toxicology at Nanjing Medical University using gas chromatography tandem 

mass spectrometry (GC-MS/MS) (Perez, et al., 2010; ThermoScientific).  Limits 

of detection (LODs) were determined by analyzing fortified serum on a signal-to-

noise (S/N) ratio of three. Quality control samples were generated using plasma 

samples and a known amount of OP standard (0.675 or 1.35 ng/mL). Quality 

control samples and blanks were analyzed concurrently with samples.  

Individual OPs were treated as continuous variables when detection rates 

were ≥80% (values <LOD were replaced with LOD/√2), three-level ordinal 

(<LOD, medium, high [median split for those above LOD]) when detection rates 

were 40-79%, and dichotomous (<LOD/detect), when detection rates were 10-

39%. Naled (99.6% detected) was log-transformed prior to statistical analysis to 

account for its right-skewed distribution; methamidophos (64.6% detected) and 

trichlorfon (51.0% detected) were converted to 3-level ordinal variables; 

chlorpyrifos (36.7% detected) and phorate (16.9% detected) were treated as 

dichotomous. A “number of OP detects” variable was created by assigning OPs 

<LOD a value of 0 and detects a value of 1; these were then summed to create 

an index of OP exposure for each infant (Wickerham, et al., 2012). 

Grating Visual Acuity (VA) 

Grating VA was estimated here using the Teller acuity card (TAC) 

preferential looking procedure.  This test provides a quantitative measure of 
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binocular grating acuity for infants and nonverbal children.  Grating VA improves 

throughout in infancy and childhood with the maturation of the visual pathway in 

the developing brain (Tau & Peterson, 2010).  

Grating VA was measured at three time points, 6 weeks, 9 months, and 18 

months using a TAC procedure.  The ambient lighting luminance was 85 

candelas/m2.  Examiners were blinded to infant exposure status.  Infants faced a 

TAC test stage (38 cm away) and were held upright by their mothers.  Examiners 

presented a series of mounted prints, with black and white vertical gratings to 

one side and a gray blank on the other side, through a rectangular opening in the 

test stage.  Gratings ranged from coarse to fine (0.44-27 cycles/degree) and 

cards had 35% reflectance.  Cards were presented in descending order, with 

wider (coarse) gratings presented first.  Gratings were presented on both the left 

and right sides of the print to avoid habituation. Examiners observed the infants’ 

looking behavior through a small central aperture in the test stage and 

determined which cards the infants could see.  Examiners repeated the 

presentation several times until a confident judgment could be made based on 

consistent looking toward the location of the grating.  Grating VA score was 

estimated as the spatial frequency of the finest grating that the infant could 

resolve.  If the tester was uncertain about the acuity estimate, a second examiner 

(blinded to the results of the first testing) re-tested the infant.  If the infant was 

uncooperative, parents were asked to return for testing another day.  Grating VA 

data was available for 196 infants at 6-week testing, 200 infants at 9-month 

testing, and 179 infants at 18-month testing. 
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Auditory Brainstem Response (ABR) 

ABR measures electrical activity in the brain by quantifying the activation 

of neurons along the auditory pathway following an auditory stimulus.  ABRs in 

infants consist of three prominent peaks or waves.  Wave I corresponds to the 

activation of the distal cochlear nerve, wave III, the distal cochlear nuclei, and 

wave V, the lateral lemniscus nucleus (DeBonis & Donohue, 2008; Hall, 2007).  

Observed decreases in ABR peak latencies (increased rates of signal 

transmission) during infancy directly correspond to increasing maturation of the 

auditory pathways in the developing brain (Hecox & Galambos, 1974; Jiang, 

1995).  

ABR was measured in 6-week-, 9-month-, and 18-month-old infants during 

unsedated sleep using a Biologic Navigator (Bio-Logic Systems Corp., 

Mundelein, IL)/Traveler evoked potential system.  Infants first underwent a 

standard hearing screening protocol.  Stimuli for the hearing screening test were 

a series of square wave rarefaction monophasic clicks delivered to both ears by 

insert transducers with a presentation rate of 31.3/second, a duration of 100 µs, 

and an intensity of 30 dB, nHL.  Infants who passed the hearing screening 

continued on to the ABR protocol. Stimuli for the ABR test were also square 

wave rarefaction monophasic clicks delivered to each ear by insert transducers 

with a presentation rate of 11.7/second, a duration of 100 µs, and an intensity of 

80 dB, nHL. The recording epoch was 74.67 ms. ABRs were recorded by 

silver/silver chloride electrodes attached to infant's forehead in three locations: 

midline below the hairline (non-inverting), mastoid on ipsilateral mastoid 
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(inverting) and contralateral mastoid (ground). The impedance was <10 kΩ. The 

program rejected ABR traces contaminated by high-amplitude artifacts (voltage 

>±23.80 µV). 1300 sweeps were averaged for each run and two succesive 

averages were obtained for each ear (2600 sweeps).  Right and left ears were 

averaged (5200 sweeps) to obtain a single measurement for each infant.  

ABR outcomes included wave V latency, central conduction time ([CCT], 

wave V latency – wave I latency), and the III-V and I-III inter-peak intervals ([IPI] 

wave V latency – wave III latency and wave III latency – wave I latency, 

respectively).  Wave V ABR latencies were available for 183 infants at 6-week 

testing, 176 infants at 9-month testing, and 139 infants at 18-month testing. Other 

ABR data (waves I and III) was available for 182, 154, and 106 infants for the 6-

week, 9-month and 18-month time points, respectively. 

Covariates 

Sex was recorded at the time of birth. Cord blood iron status was defined 

using serum ferritin, which was measured using chemiluminescent immunoassay 

(IMMULITE, Diagnostic Products) and categorized into deficient or sufficient (≤75 

and >75 µg/L).  Serum ferritin values >370 µg/L were excluded due to the 

possibility of infection or inflammation.   Infant age was recorded at time of 6-

week, 9-month, and 18-month testing.  Maternal education, occupation, and 

family income were obtained by maternal self-report from a family background 

questionnaire administered at the 6-week follow-up visit.  Season of testing was 

determined categorizing the month of the developmental testing into spring 

(March-May), summer (June-September), or fall/winter (October-February).  
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Head circumference was measured at the 6-week, 9-month, and 18-month 

follow-up visits using a soft plastic tape placed just above the eyebrows and 

wrapped around the widest part of the head.  

Statistical analysis 

Statistical analyses were conducted using SAS 9.3 (Cary, North Carolina). 

Descriptive statistics and frequencies were examined for all variables of interest, 

including sex, age at sensory testing, cord ferritin, gestational age, birth weight, 

maternal education and occupation, family income, and season of testing. To 

explore the possibility of retention bias, levels of OP exposure for those with and 

without sensory data were compared across the three time points. 

Linear mixed models (LMM) with random intercepts were used to evaluate 

associations between cord OP exposures and either grating VA scores or ABR 

outcomes (wave V latency, CCT, IPI I-III, IPI III-V) at 6 weeks, 9 months, and 18 

months.  Given our small sample sizes, especially for the 18-month time point, 

we took a conservative approach to choosing covariates for our models.  Sex, 

age at testing, and cord ferritin were chosen a priori.  Additional covariates 

considered for inclusion were maternal education and occupation, income, and 

season in which neurological testing took place.  Bivariate analyses revealed that 

season of testing was the only variable with the potential to be a true confounder, 

since it was associated with both OP exposure and the outcomes.  However, 

inclusion of season in the models did not significantly influence the results.  

Therefore, to maximize our power, final models were minimally adjusted for sex, 

age at testing, and cord ferritin. To enable comparisons of effect estimates at 
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each of the three time points, we included “time” as a class variable and 

“time*OP” in our LMM models.  We used the “lsmeans” procedure to compare 

estimates for the categorical OP exposures. For continuous exposures (number 

of OP detects, log-naled), the parameter of interest was the slope estimating 

change in 6-week, 9-month or 18-month VA score or ABR latencies per 1 unit 

increase in OP.  For categorical exposures (methamidophos, trichlorfon, 

chlorpyrifos, phorate), the parameter of interest was the difference in mean 6-

week, 9-month or 18-month VA score or ABR latencies by category of OP 

exposure.   

To examine for sex dimorphic effects we ran our LMM models stratified by 

infant sex.  We additionally examined the potential effects of iron as an effect 

modifier by stratifying by cord iron status (sufficient/deficient).  Iron deficiency 

was previously found to strengthen associations between overall pesticide 

exposure and ABR latencies (Sturza, et al., 2016).  We also explored the 

hypothesis that prenatal exposure might be associated with reduced head 

circumference (Berkowitz, et al., 2004).  Head circumference may be directly 

associated with auditory pathway length and has been used as a rough proxy for 

pathway length in previous studies of lead exposure and ABR (Rothenberg, 

Poblano, & Schnaas, 2000; Silver, Li, et al., 2016). Therefore, we explored 

associations between prenatal OP exposure and head circumference at our three 

time points, as well as head circumference as a confounder of our OP/ABR 

analyses. 
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Results 

5 OPs were detected in ≥10% of cord blood samples: naled, 

methamidophos, trichlorfon, chlorpyrifos, and phorate. Distributions of the 

detectable OPs in cord blood and their LODs have been reported previously 

Table III.2).  There were no underlying differences in OP exposure among those 

with and without sensory data at 6 weeks or 9 months (Table IV.A1).  Many 

infants were missing ABR wave I and III data at 18 months (n=132); 

methamidophos exposure was significantly different among infants with and 

without 18 month ABR data (Table IV.A1). We previously reported that there 

were no significant differences in cord blood pesticides by infant sex (Table 

III.A2). 

Sample characteristics are shown in Table IV.1. The mean (standard 

deviation) of OP detects per sample was 3.0 (1.6). Infants all had healthy birth 

weights and were carried to full-term. Additional characteristics of the study 

population have been reported previously (Silver, Shao, et al., 2016). 

Adjusted LMM results for grating VA score are shown in Table IV.2.  In 

general, 9-month grating VA scores were lower for most of the cord OP 

exposures, though only chlorpyrifos was statistically significant.  Infants with 

prenatal exposure to chlorpyrifos had 9-month grating VA scores that were, on 

average, 0.64 points lower than unexposed infants (p=0.03). Prenatal OP 

exposure was not significantly associated with VA scores at 6 weeks or 18 

months (Table IV.2).   



	   114	  

Adjusted LMM results for the ABR outcomes are shown in Table IV.3.  

The results are largely null.  ABR latencies are slightly longer (indicating slower 

auditory signal transmission) for infants with high prenatal methamidophos 

exposure, compared to unexposed infants, across all ABR outcomes at all three 

time points, though these differences were not statistically significant (Table 

IV.3). 

Bivariate analyses revealed that 6-week grating VA scores differed 

significantly by infant sex (Table IV.4).  6-week scores were lower in males 

compared to females; means (SD) were 1.07 (0.37) for boys and 1.28 (0.68) for 

girls (p=0.01).  VA scores did not significantly differ by sex at the other time 

points (Table IV.4). Sex-stratified LMM results for OP/grating VA associations are 

shown in Figure IV.1.  There are no noticeable differences by sex at the early 

time points, however by 18 months, differences start to emerge for some of the 

OP exposures (OP detects, methamidophos, chlopryrifos and phorate).  For 

these four OP exposures, VA scores appeared to be consistently lower in 

exposed girls and consistently higher in exposed boys.  For example, 18-month 

VA scores were 0.94 points lower for chlorpyrifos-exposed girls, compared to 

unexposed (p=0.08), while scores were 0.68 points higher for exposed boys, 

compared to unexposed (p=0.08) (Figure IV.1). 

Bivariate analyses similarly revealed that ABR scores differed significantly 

by infant sex at all three time points (Table IV.5).  Wave V and CCT latencies 

were consistently higher in girls compared to boys.  For example, at 6 weeks, 

Wave V means (SD) were 6.45 (0.26) ms for boys and 6.55 (0.27) ms for girls 
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(p<0.0001).  Similar effects were seen for the other time points (Table IV.5).  

Sex-stratified LMM results for OP/ABR associations were largely inconclusive 

and are shown in Figure IV.2 (6 weeks) and Table IV.A2 (9 and 18 months).  

Differences by sex seemed to be the most pronounced at 6 weeks, though the 

only consistent sex-specific differences across ABR outcomes were observed for 

naled at 6-weeks.  Estimates were -0.011, -0.003, -0.003, and -0.001 for boys for 

wave V, CCT, IPI III-V and IPI I-III, respectively, while for girls they were 0.017, 

0.030, 0.014, and 0.016, respectively (Figure IV.2).   

Further analysis of our ABR models stratified by cord iron status 

(sufficient/deficient) did not show any significant evidence of effect modification 

by iron in our sample (Table IV.A3). Our exploration of head circumference 

revealed that infants prenatally exposed to chlorpyrifos and phorate had reduced 

head circumferences at 9 months, compared to unexposed infants (Table IV.6).  

Head circumferences were 0.41 (95% CI: 0.75, 0.6) cm and 0.44  (95% CI: 0.88, 

0.1) cm smaller in infants exposed to chlorpyrifos (p=0.02) and phorate (p=0.04), 

respectively, compared to unexposed.  However, despite evidence of these 

associations, we did not find any confounding by head circumference when we 

added it to our OP/ABR models (Table IV.A4).  

 

 

Discussion 

Here we found that infants prenatally exposed to chlorpyrifos had lower 

grating VA scores at 9 months, compared to unexposed infants.  None of the 
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other OP exposures were associated with VA scores at 6 weeks, 9 months, or 18 

months.  By 18 months of age, VA scores were consistently lower in girls with 

more prenatal exposure to overall OPs, methamidophos, chlorpyrifos, and 

phorate, compared to unexposed, while scores were consistently higher in 

exposed boys, compared to unexposed.  Prenatal OP exposure was not 

significantly associated with infant ABR latencies in our cohort.  Sex-specific 

analyses of associations between prenatal OPs and infant ABRs were also 

inconclusive.  We did not see any effect modification by cord iron status nor did 

we find any confounding by infant head circumference, despite finding reduced 

head circumferences in infants exposed to chlorpyrifos and phorate prenatally.  

To our knowledge there are only two previous studies that have examined 

the effects of prenatal OP exposure on visual- or auditory-related functions in 

infancy or childhood. Ecuadorian infants, aged 3-23 months, whose mothers 

were exposed to unspecified OPs during pregnancy through work in the cut-

flower industry, had nearly five times higher odds of poor visual acuity, compared 

to infants whose mothers did not work in the industry (Handal, et al., 2008).  We 

similarly found deficits in visual acuity at 9 months in infants prenatally exposed 

to chlorpyrifos.   

Our previous small pilot study of 9-month-old Chinese infants found that 

number of pesticides (mixed classes, including OPs) detected in cord blood was 

positively associated with ABR wave V latencies and CCTs (Sturza, et al., 2016).  

The association with CCT was additionally modified by iron status, where effect 

estimates were larger in the low cord ferritin group. The pilot study did not find 
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any significant associations between number of OP detects and ABR latencies 

and no individual OPs were examined (due to detection rates <50%) (Sturza, et 

al., 2016). We similarly did not find any associations between number of OP 

detects or individual OPs and ABR latencies, and, contrary to these early pilot 

results, did not see any effect modification by iron status. The number of iron 

deficient infants with ABR data was small (n=30, 30, and 16, for 6 weeks, 9 

months, and 18 months, respectively), which may have limited our power to 

detect an effect. 

Berkowitz and colleagues previously reported inverse associations 

between maternal urinary metabolites of chlorpyrifos during the third trimester of 

pregnancy and head circumference at birth, but only after controlling for maternal 

paraoxonase (PON1) levels (Berkowitz, et al., 2004).  We similarly found 

significant deficits in 9-month head circumference following prenatal chlorpyrifos 

exposure.  Though it is unclear why we observe significant effects on grating VA 

and head circumference at 9 months only, and not the earlier or later time point.  

It may be the case that 6 weeks is too early observe significant effects on these 

outcomes.  Assessment of infants at this very young age may be likely to 

increase the chance of error, especially for the VA measurement.  It is unclear 

why we don’t see any effects at the 18-month time point.  The smaller sample 

size at the 18-month time point may have limited our power to detect an effect.   

 Occupational studies and case studies of OP exposure provide evidence 

of adverse ocular and auditory effects in adults.  Vision loss (Pham, et al., 2016), 

retinopathy (Pham, et al., 2016), myopia (Dementi, 1994), Saku disease 
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(Dementi, 1994), and retinal (Dementi, 1994) and macular degeneration (Misra, 

Nag, Misra, Mehra, & Ray, 1985) have all been reported in rural workers 

exposed to high levels of OPs.  Auditory-related abnormalities such as hearing 

loss (Hoshino, Pacheco-Ferreira, Taguchi, Tomita, & Miranda Mde, 2008), 

deficits in auditory temporal processing (Camarinha, Frota, Pacheco-Ferreira, & 

Lima, 2011), and delays in auditory stimulation classification (Dassanayake, et 

al., 2008) have also been found in OP-exposed workers.   

The mechanism of acute toxicity elicited by high exposures to OPs is well 

understood.  OPs inhibit acetylcholinesterase (AChE), the enzyme responsible 

for terminating the neurotransmitter acetylcholine’s activity.  Without functional 

AChE, acetylcholine builds up in the synapse, leading to hyperstimulation of the 

cholinergic receptors at neuronal and neuromuscular junctions (Abdollahi & 

Karami-Mohajeri, 2012; Eddleston, Buckley, Eyer, & Dawson, 2008; Kamanyire & 

Karalliedde, 2004).  However, low dose exposure levels, typical of those seen in 

non-occupational settings, do not usually elicit cholinergic toxicity or 

acetylcholinesterase inhibition, yet neurodevelopmental toxicity is still observed.  

The most well-studied OP, chlorpyrifos, has been demonstrated to disrupt 

neuronal processes such as neuron replication and differentiation, axon 

formation, synaptogenesis, apoptosis, and neural circuit formation, even at low 

doses where cholinergic toxicity is not present (Slotkin, 2004).    

Changes in brain morphology following low-dose early-life chlorpyrifos 

exposure have also been reported in laboratory rats and human children.  

Chlorpyrifos in the early postnatal period has been shown to affect both numbers 
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and types glial cells and neurons in four brain regions associated with cognition, 

mood, and behavior: the hippocampus, striatum, septal nucleus, and 

somatosensory cortex in rodents (Roy, Seidler, & Slotkin, 2004; Roy, Sharma, 

Seidler, & Slotkin, 2005).   Postnatal chlorpyrifos has also been associated with 

glial scarring, a common response to cellular injury (Roy, et al., 2005), while 

prenatal chlorpryifos was associated with glial cell markers (Garcia, Seidler, 

Qiao, & Slotkin, 2002).  A recent study of 5- to 11-year-old school children 

similarly found that prenatal chlorpyrifos exposure was associated with 

enlargements of white matter in brain regions associated with language, 

cognition, attention, emotion, and inhibitory control: the superior temporal (MST), 

posterior middle temporal (MT), and inferior postcentral gyri, and the frontal 

gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right 

hemisphere (V. A. Rauh, et al., 2012).  The authors speculated that the 

increased white matter may be representative of glial scarring, similar to the 

effects seen in the rodents (V. A. Rauh, et al., 2012; Roy, et al., 2005). Both the 

MST and the MT are part of the extrastriate visual cortex, on the dorsal stream 

pathway from the primary visual cortex (Blumberg & Kreiman, 2010).  MT and 

MST are primarily involved in processing visuospatial information, including the 

detection of motion, position, and depth perception (Born & Bradley, 2005; 

Maunsell, 1995).  Lesions in the MT have been associated with visual deficits in 

monkeys, especially with regards to their motion perception (Born & Bradley, 

2005). The cuneus is also thought to play a role in the signaling between the 

primary visual cortex and the extrastriate visual cortices (Vanni, Tanskanen, 
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Seppa, Uutela, & Hari, 2001).  It is unclear whether the MST, MT, or cuneus 

might also be related to grating acuity in infancy.   Given that prenatal 

chlorpyrifos has been associated with increased white matter or glial scarring in 

the MST or MT in children, it is possible that this may be one pathway that 

chlorpyrifos could possibly affect visual function. 

Our study has some limitations. OPs are non-persistent with short half-

lives.  Thus, having measures of exposure only at birth limited our ability to 

address the temporal variability of OP exposure during pregnancy and infancy.  

Due to this shortcoming, we were unable to characterize exposure at all sensitive 

developmental stages (Eskenazi, et al., 2007).  Since this was part of a larger 

study of 96 pesticides and metabolites, our methods were not optimized for OP 

detection (Silver, Shao, et al., 2016), likely resulting in higher detection limits and 

great numbers of non-detects, compared to a more targeted approach.  OP 

levels in blood tend to be low anyway, likely also contributing to the high levels of 

non-detects (Barr, et al., 1999).  The many non-detects necessitated the use of 

crude exposure categories (<LOD/detect or <LOD/medium/high) for nearly all of 

the OPs examined, thereby limiting the scope of our statistical analyses.  

Additionally, although our neurodevelopmental testers were highly trained, 

assessing young infants, as we did here, does augment the chance of error, 

particularly for grating VA.  Furthermore, solely presenting the VA gratings in 

descending order, as is recommended in the testing manual, may result in 

habituation, which could possibly confound the estimated VA score.  This issue 

can be addressed by presenting the cards in both descending and ascending 
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order, however limitations in the attention spans of young infants necessitated a 

quick completion of the testing, thereby eliminating this as a viable option.  

Finally, the findings from our relatively small cohort may not be generalizable to 

infants in other parts of the world, especially considering that all the infants 

included in this study were carried to term and otherwise healthy.  Low birth 

weight or pre-term infants may be more likely to have delayed development and 

the effects of prenatal OPs on infant sensory function in these vulnerable 

populations should be assessed in future work.  

Despite its limitations, this study has a number of strengths.  It used 

specific measurements of OP parent compounds in umbilical cord blood to 

assign prenatal exposure, rather than non-specific metabolites in maternal urine, 

thus providing direct evidence of fetal exposure (Barr, et al., 1999; Munoz-

Quezada, et al., 2013), and providing important information for regulatory 

considerations.  Additionally, OP levels in cord blood may be more likely to reflect 

the available dose, since the OPs have not yet been eliminated from the infant’s 

body (Needham, Ashley, & Patterson, 1995). Of the previously published studies 

of prenatal OPs and visual or auditory function, one used a crude “number of 

pesticide detects” in cord blood to define exposure (Sturza, et al., 2016), while 

the other used self-reported maternal occupational exposure during pregnancy 

(Handal, et al., 2008). The current study also examined a large number of OPs 

(18 detected out of 30 analyzed), many of which have not been previously 

examined for neurodevelopmental effects in humans. Additionally, we assessed 

sensory development at three time points (6 weeks, 9 months, and 18 months).  
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The longitudinal design gives a more comprehensive view of overall sensory 

development in infancy than previous studies. The tests of sensory function, ABR 

and grating VA, provided a non-invasive way of measuring auditory and visual 

function and maturation throughout infancy. 

 

 

Conclusions 

Prenatal exposure to chlopyrifos was significantly associated with deficits 

in grating visual acuity at 9 months. Chlorpyrifos and phorate were also both 

associated with deficits in head circumference at 9 months.  The clinical 

significance of these small but statistically significant deficits are unclear, yet 

warrant further study given that chlorpyrifos and phorate are used worldwide.  

The proper maturation of the visual and auditory pathways in infancy provides 

the foundation for later learning processes in childhood.  Disruption of this 

essential neurodevelopmental stage could potentially have detrimental effects on 

downstream cognition. 
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Table IV.1. Study sample characteristics 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GM- denotes geometric mean 
 
 

Demographics   Exposures (cord blood)   
Variable N Mean (SD) Variable N Mean (SD) 
Age (days) at 6 wk testing 196 43.3 (5.1) # OP detects 200 3.0 (1.6) 
Age (days) at 9 m testing 200 282.8 (10.4) Naled (ng/mL) 200 2.0 (2.8) GM 

Age (days) at 18 m testing 179 554.7 (10.6)   N (%) 

Gestational age (weeks) 200 39.6 (1.0) Methamidophos (ng/mL) 200  
Birth weight (kg) 200 3.4 (0.4) High (>18.2)  64 (32.0) 
6 wk head circ. (cm) 199 38.0 (1.2) Medium (1.5-18.2)  65 (32.5) 
9 m head circ. (cm) 199 45.1 (1.5) <LOD (<1.5)  71 (35.5) 
18 m head circ. (cm) 186 47.4 (1.4) Trichlorfon (ng/mL) 200  
  N (%) High (>1.7)  50 (25.0) 
Sex 200  Medium (0.4-1.7)  52 (26.0) 

Male  107 (53.5) <LOD (<0.4)  98 (49.0) 
Female  93 (46.5) Chlorpyrifos (ng/mL) 200  

Maternal occupation 186  Detect (≥0.4)  72 (36.0) 
Housewife  75 (40.3) ND (<0.4)  128 (64.0) 

Other  111 (59.7) Phorate (ng/mL) 200  
Maternal education  186  Detect (≥1.8)  36 (18.0) 

College  62 (33.3) ND (<1.8)  164 (82.0) 
High/secondary school  53 (28.5) Serum ferritin (µg/L) 199  

Middle school or less  71 (38.2) Normal (75-370)  160 (80.4) 
Family income (Yuan/year) 183  Low (≤75)  39 (19.6) 

≥ 100,000  52 (28.4)    
50,000-999,999  58 (31.7)    

30,000-49,999  35 (19.1)    
<30,000  38 (20.1)    



	   129	  

Table IV.2. Adjusted a longitudinal change/difference in VA score by OP 
exposure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in VA score per 1 unit increase in OP 
c Difference in mean VA score 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: VA, grating visual acuity 
*p<0.05 

 Grating VA score 
OP insecticide 6 weeks 

(n=195) 
9 months 
(n=198) 

18 months 
(n=164) 

Continuous β (95% CI) for OP b 
# OP Detects 0.03  

(-0.15, 0.20) 
-0.10  
(-0.28, 0.08) 

0.02  
(-0.17, 0.21) 

Log-Naled 0.06  
(-0.21, 0.34) 

0.11  
(-0.16, 0.39) 

-0.01  
(-0.31, 0.29) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.09  
(-0.60, 0.78) 

0.19  
(-0.49, 0.87) 

0.39  
(-0.37, 1.14) 

Methamidophos   
(Med. vs ND) 

0.16  
(-0.53, 0.84) 

-0.15  
(-0.83, 0.53) 

0.23  
(-0.52, 0.97) 

Trichlorfon   
(High vs ND)  

0.15  
(-0.54, 0.85) 

-0.22  
(-0.91, 0.47) 

0.21  
(-0.52, 0.94) 

Trichlorfon   
(Med. vs ND)  

-0.06  
(-0.74, 0.62) 

-0.46  
(-1.14, 0.21) 

-0.57  
(-1.33, 0.18) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.04  
(-0.63, 0.55) 

-0.64 * 
(-1.22, -0.06)  

-0.05  
(-0.68, 0.58) 

Phorate  
(Detect vs ND) 

0.20  
(-0.54, 0.94) 

 -0.28  
(-1.02, 0.45) 

-0.37  
(-1.13, 0.40) 
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Table IV.3. Adjusted a longitudinal change/difference in ABR latencies by OP exposure 
 

 ABR outcome 
 6 weeks 9 months 18 months 

OP insecticide 
Wave V 
(n=181) 

CCT 
(n=180) 

Wave V 
(n=165) 

CCT 
(n=146) 

Wave V 
(n=126) 

CCT 
(n=94) 

Continuous β (95% CI) for OP b 

# OP Detects 
0.01  
(-0.01, 0.03) 

0.01  
(-0.01,0.03) 

-0.02  
(-0.04, 0.01) 

-0.01  
(-0.03, 0.01) 

0.00  
(-0.03, 0.02) 

0.00  
(-0.03, 0.02) 

Log-Naled 
0.00  
(-0.03, 0.04) 

0.01  
(-0.02, 0.05) 

0.00  
(-0.04, 0.03) 

0.01  
(-0.02, 0.05) 

0.00  
(-0.04, 0.04) 

0.00  
(-0.04, 0.04) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.05  
(-0.03, 0.14) 

0.07 † 
(-0.01, 0.15)  

0.00  
(-0.08, 0.09) 

0.06  
(-0.02, 0.15) 

0.02  
(-0.07, 0.11) 

0.05  
(-0.04, 0.15)  

Methamidophos   
(Med. vs ND) 

-0.02  
(-0.11, 0.06) 

-0.01  
(-0.09, 0.07) 

-0.02  
(-0.10, 0.06) 

-0.03  
(-0.11, 0.06) 

-0.03  
(-0.12, 0.06) 

0.01  
(-0.09, 0.11) 

Trichlorfon   
(High vs ND)  

0.04  
(-0.04, 0.13) 

0.02  
(-0.06, 0.11) 

-0.02  
(-0.10, 0.06) 

-0.02  
(-0.10, 0.07) 

-0.02  
(-0.11, 0.07) 

0.01  
(-0.08, 0.11) 

Trichlorfon   
(Med. vs ND)  

0.00  
(-0.08, 0.08) 

0.00  
(-0.08, 0.08) 

-0.04  
(-0.13, 0.05) 

-0.04  
(-0.13, 0.04) 

0.01  
(-0.09, 0.10) 

-0.02  
(-0.11, 0.08) 

2-level 
(Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.02  
(-0.09, 0.05) 

-0.01  
(-0.08, 0.06) 

-0.02  
(-0.10, 0.05) 

-0.01  
(-0.08, 0.06) 

-0.01  
(-0.09, 0.07) 

-0.04  
(-0.12, 0.04) 

Phorate  
(Detect vs ND) 

0.03  
(-0.06, 0.11) 

0.03  
(-0.05, 0.12) 

-0.06  
(-0.15, 0.04) 

-0.02  
(-0.11, 0.07) 

0.01  
(-0.09, 0.10) 

-0.01  
(-0.11, 0.08) 

 
a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time 
†p<0.10, *p<0.05 
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Table IV.3, continued 
 

 ABR outcome 
 6 weeks 9 months 18 months 

OP insecticide 
IPI III-V 
(n=181) 

IPI-I-III  
(n=180) 

IPI III-V  
(n=147) 

IPI-I-III  
(n=94) 

IPI III-V  
(n=94) 

IPI-I-III  
(n=94) 

Continuous β (95% CI) for OP b 

# OP Detects 
0.00  
(-0.01, 0.02) 

0.01  
(-0.01, 0.02) 

-0.01  
(-0.02, 0.01) 

0.00  
(-0.01, 0.02) 

0.00  
(-0.02, 0.02) 

0.00  
(-0.02, 0.02) 

Log-Naled 
0.01  
(-0.02, 0.03) 

0.01  
(-0.02, 0.03) 

0.00  
(-0.02, 0.03) 

0.01  
(-0.01, 0.04) 

0.00  
(-0.03, 0.03) 

0.00  
(-0.02, 0.03) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.02  
(-0.04, 0.08) 

0.05  
(-0.01, 0.11) † 

0.00  
(-0.06, 0.07) 

0.06  
(0.00, 0.12) † 

0.04  
(-0.04, 0.11) 

0.02  
(-0.04, 0.09) 

Methamidophos   
(Med. vs ND) 

0.02  
(-0.08, 0.04) 

0.01  
(-0.05, 0.06) 

-0.01  
(-0.08, 0.05) 

-0.01  
(-0.07, 0.05) 

0.01  
(-0.07, 0.09) 

0.00  
(-0.07, 0.07) 

Trichlorfon   
(High vs ND)  

0.05  
(-0.01, 0.11) 

-0.03  
(-0.08, 0.03) 

0.00  
(-0.06, 0.07) 

-0.01  
(-0.07, 0.05) 

0.00  
(-0.08, 0.07) 

0.01  
(-0.06, 0.08) 

Trichlorfon   
(Med. vs ND)  

0.04  
(-0.02, 0.11) 

-0.05  
(-0.11, 0.01) † 

0.00  
(-0.07, 0.07) 

-0.04  
(-0.10, 0.02) 

0.02  
(-0.05, 0.10) 

-0.04  
(-0.11, 0.03) 

2-level 
(Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.00  
(-0.05, 0.05) 

-0.01  
(-0.06, 0.04) 

-0.01  
(-0.06, 0.05) 

0.00  
(-0.05, 0.05) 

-0.01  
(-0.07, 0.06) 

-0.03  
(-0.09, 0.03) 

Phorate  
(Detect vs ND) 

0.04  
(-0.03, 0.10) 

0.00  
(-0.06, 0.06) 

-0.04  
(-0.11, 0.03) 

0.02  
(-0.05, 0.08) 

0.00  
(-0.08, 0.08) 

-0.01  
(-0.08, 0.06) 

 
a Models adjusted for sex, age at testing, and cord ferritin 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; IPI, inter-peak interval 
†p<0.10, *p<0.05 
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Table IV.4. Comparison of grating VA scores by infant sex 
 
 

 Overall Boys Girls 
Test 

statistic 

Time point n 
Mean 
(SD) n 

Mean 
(SD) n 

Mean 
(SD) 

T 
(p) 

6 weeks 177 
1.17  
(0.55) 103 

1.07  
(0.37) 93 

1.28  
(0.68) 

-2.63  
(0.01) 

9 months 200 
7.65  
(2.33) 107 

7.77  
(2.18) 93 

7.52  
(2.51) 

0.74  
(0.46) 

18 months 158 
9.48  
(2.49) 95 

9.49  
(2.14) 84 

9.42  
(3.00) 

0.17  
(0.86) 
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Figure IV.1. Sex-stratified change/difference (95%) in grating VA scores by OP 
exposure a 
 

 
 
 
1.) Estimated change in grating VA score per 1 unit increase in OP exposure 
2.) Difference in mean grating VA score by category of OP exposure 
 
a Models adjusted for age at testing and cord ferritin 
b Categories of OP exposure: high versus ND and medium versus ND  
c Categories of OP exposure: exposed versus ND 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10, *p<0.05 
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Table IV.5. Comparison of key ABR latency variables by infant sex 
 

Time point Overall Boys Girls 
Test 
statistic  

Wave V n 
Mean 
(SD) n 

Mean  
(SD) n 

Mean  
(SD) 

T 
(p) 

6 weeks 183 
6.45  
(0.26) 95 

6.55  
(0.27) 88 

6.34  
(0.22) 

5.48  
(<0.0001) 

9 months 176 
5.90  
(0.26) 91 

5.98  
(0.26) 85 

5.81  
(0.23) 

4.61  
(<0.0001) 

18 months 139 
5.71  
(0.23) 73 

5.80  
(0.20) 66 

5.61  
(0.22) 

5.39  
(<0.0001) 

CCT        

6 weeks 182 
4.94  
(0.27) 94 

5.05  
(0.26) 88 

4.83  
(0.23) 

6.12  
(<0.0001) 

9 months 153 
4.40  
(0.25) 77 

4.49  
(0.24) 76 

4.31  
(0.23) 

4.77  
(<0.0001) 

18 months 106 
4.20  
(0.21) 55 

4.27  
(0.19) 51 

4.13  
(0.21) 

3.53  
(0.001) 
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Figure IV.2. Sex-stratified change/difference (95%) in 6-week ABR scores by OP 
exposure a 

 

 
 
 
1.) Estimated change in ABR latency per 1 unit increase in OP exposure 
2.) Difference in mean ABR latency by category of OP exposure 
 
a Models adjusted for age at testing and cord ferritin 
b Categories of OP exposure: high versus ND and medium versus ND  
c Categories of OP exposure: exposed versus ND 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10, *p<0.05, **p<0.01 
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Table IV.6. Adjusted a longitudinal change/difference in head circumference by 
OP exposure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Models adjusted for sex, age, and cord ferritin 
b Estimated change in head circumference per 1 unit increase in OP 
c Difference in mean head circumference 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
†p<0.10, *p<0.05 
 
 

 Head circumference (cm) 

OP insecticide 
6 weeks 
(n=199) 

9 months 
(n=199) 

18 months 
(n=186) 

Continuous β (95% CI) for OP b 
# OP Detects 0.04  

(-0.06, 0.14) 
-0.07  
(-0.17,0.04) 

-0.02  
(-0.12, 0.09) 

Log-Naled 0.09  
(-0.07, 0.25) 

0.02  
(-0.14, 0.19) 

0.07  
(-0.10, 0.23) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND) 

0.28  
(-0.12, 0.68) 

0.20  
(-0.21, 0.60) 

0.25  
(-0.17, 0.67) 

Methamidophos   
(Med. vs ND) 

0.39 † 
(-0.00, 0.78)  

0.35  
(-0.05, 0.75) 

0.42 † 
(-0.02, 0.82)  

Trichlorfon   
(High vs ND) 

0.26  
(-0.14, 0.66) 

-0.07  
(-0.48, 0.34) 

-0.02  
(-0.43, 0.39)  

Trichlorfon   
(Med. vs ND) 

-0.15  
(-0.55, 0.25) 

-0.17  
(-0.58, 0.23) 

-0.11  
(-0.52, 0.31) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.03  
(-0.31, 0.37) 

-0.41 * 
(-0.75, -0.06)  

-0.16  
(-0.51,0.19) 

Phorate  
(Detect vs ND) 

-0.09  
(-0.52, 0.33) 

 -0.45 *  
(-0.88, -0.01)  

-0.28  
(-0.72,0.15) 
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Chapter IV Appendix 
 
 

Table IV.A1. Comparison of OP exposures for infants with and without sensory data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Grating VA 
 6-week data? 9-month data? 18-month data? 
OP Insecticide Yes (n=196) No (n=42) Test Yes (n=200) No (n=38) Test Yes (n=179) No (n=59) Test 

Continuous 
Mean  
(SD) 

Mean 
(SD) T (p) 

Mean  
(SD) 

Mean  
(SD) T (p) Mean (SD) Mean (SD) T (p) 

# OP detects 3.0 (1.6) 3.0 (1.4) -0.0 (1.0) 3.0 (1.6) 2.9 (1.5) -0.3 (0.8) 3.1 (1.6) 2.7 (1.5) -1.7 (0.1) 
Log-naled 0.8 (1.0) 0.6 (0.9) -0.9 (0.4) 0.8 (1.0) 0.6 (0.9) -0.8 (0.4) 0.7 (1.0) 0.7 (1.0) -0.3 (0.8) 
Categorical N (%) N (%) X2 (p) N (%) N (%) X2 (p) N (%) N (%) X2 (p) 
Methamidophos   1.2 (0.6)   0.1 (1.0)   0.5 (0.8) 

High 61 (31.1) 16 (38.1)  64 (32.0) 13 (34.2)  58 (32.4) 19 (32.2)  
Medium 63 (32.1) 14 (33.3)  65 (32.5) 12 (31.6)  56 (31.3) 21 (35.6)  

<LOD 72 (36.7) 12 (28.6)  71 (35.5) 13 (34.2)  65 (36.3) 19 (32.2)  
Trichlorfon   0.3 (0.9)   0.3 (0.9)   2.3 (0.3) 

High 49 (25.0) 12 (28.6)  50 (25.0) 11 (29.0)  50 (27.9) 11 (18.6)  
Medium 51 (26.0) 10 (23.8)  52 (26.0) 9 (23.7)  46 (25.7) 15 (25.4)  

<LOD 96 (49.0) 20 (47.6)  98 (49.0) 18 (47.4)  83 (46.4) 33 (55.9)  
Chlorpyrifos   1.7 (0.2)   0.2 (0.7)   3.0 (0.1) 

≥LOD 68 (34.7) 19 (45.2)  72 (36.0) 15 (39.5)  71 (39.7) 16 (27.1)  
<LOD 128 (65.3) 23 (54.8)  128 (64.0) 23 (60.5)  108 (60.3) 43 (72.9)  

Phorate   0.3 (0.6)   0.5 (0.5)   2.7 (0.1) 
≥LOD 35 (17.9) 6 (14.3)  36 (18.0) 5 (13.2)  35 (19.6) 6 (10.2)  
<LOD 161 (82.1) 36 (85.7)  164 (82.0) 33 (86.8)  144 (80.5) 53 (89.8)  
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Table IV.A1, continued 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ABR Wave V 
 6 week data? 9 month data? 18 month data? 
OP Insecticide Yes (n=183) No (n=55) Test Yes (n=176) No (n=62) Test Yes (n=139) No (n=99) Test 

Continuous 
Mean  
(SD) 

Mean 
(SD) T (p) 

Mean  
(SD) 

Mean  
(SD) T (p) Mean (SD) Mean (SD) T (p) 

# OP detects 2.9 (1.6) 3.2 (1.5) 1.0 (0.3) 3.0 (1.6) 2.9 (1.6) -0.4 (0.7) 3.1 (1.6) 2.9 (1.6) -0.9 (0.4) 
Log-naled 0.8 (1.0) 0.6 (0.9) -1.5 (0.1) 0.7 (1.0) 0.7 (1.0) -0.3 (0.7) 0.7 (1.0) 0.8 (1.0) 0.7 (0.5) 
Categorical N (%) N (%) X2 (p) N (%) N (%) X2 (p) N (%) N (%) X2 (p) 
Methamidophos   0.7 (0.7)   1.0 (0.6)   4.0 (0.1) 

High 57 (31.2) 20 (36.4)  58 (33.0) 19 (30.7)  47 (33.8) 30 (30.3)  
Medium 59 (32.2) 18 (32.7)  59 (33.5) 18 (29.0)  38 (27.3) 39 (39.4)  

<LOD 67 (36.6) 17 (30.9)  59 (33.5) 25 (40.3)  54 (38.9) 30 (30.3)  
Trichlorfon   2.1 (0.3)   0.7 (0.7)   1.7 (0.4) 

High 43 (23.5) 18 (32.7)  47 (26.7) 14 (22.6)  39 (28.1) 22 (22.2)  
Medium 47 (25.7) 14 (25.5)  43 (24.4) 18 (29.0)  37 (26.6) 24 (24.2)  

<LOD 93 (50.8) 23 (41.8)  86 (48.9) 30 (48.4)  63 (45.3) 53 (53.5)  
Chlorpyrifos   2.4 (0.1)   0.0 (0.9)   0.4 (0.6) 

≥LOD 62 (33.9) 25 (45.5)  64 (36.4) 23 (37.1)  53 (38.1) 34 (34.3)  
<LOD 121 (33.9) 30 (54.6)  112 (63.6) 39 (62.9)  86 (61.9) 65 (65.7)  

Phorate   0.0 (0.8)   0.3 (0.6)   1.1 (0.3) 
≥LOD 31 (16.9) 10 (18.2)  29 (16.5) 12 (19.4)  27 (19.4) 14 (14.1)  
<LOD 152 (83.1) 45 (81.8)  147 (83.5) 50 (80.7)  112 (80.6) 85 (85.9)  
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Table IV.A1, continued 
 
 
 
 

 ABR CCT 
 6 week data? 9 month data? 18 month data? 
OP Insecticide Yes (n=182) No (n=56) Test Yes (n=154) No (n=84) Test Yes (n=106) No (n=132) Test 

Continuous 
Mean  
(SD) 

Mean 
(SD) T (p) 

Mean  
(SD) 

Mean  
(SD) T (p) Mean (SD) Mean (SD) T (p) 

# OP detects 2.9 (1.6) 3.1 (1.5) 0.9 (0.4) 3.0 (1.6) 3.0 (1.6) 0.2 (0.8) 3.1 (1.7) 2.9 (1.5) -0.9 (0.4) 
Log-naled 0.8 (1.0) 0.6 (0.9) -1.4 (0.2) 0.8 (1.0) 0.7 (1.1) -0.6 (0.6) 0.7 (1.0) 0.8 (1.0) 0.3 (0.7) 
Categorical N (%) N (%) X2 (p) N (%) N (%) X2 (p) N (%) N (%) X2 (p) 
Methamidophos   0.8 (0.7)   0.1 (0.9)   8.7 (0.01) 

High 57 (31.3) 20 (35.7)  49 (31.8) 28 (33.3)  37 (34.9) 40 (30.3)  
Medium 58 (31.9) 19 (33.9)  51 (33.1) 26 (31.0)  24 (22.6) 53 (40.2)  

<LOD 67 (36.8) 17 (30.4)  54 (35.1) 30 (35.7)  45 (42.5) 39 (29.6)  
Trichlorfon   1.7 (0.4)   0.3 (0.9)   3.0 (0.2) 

High 43 (23.6) 18 (32.1)  41 (26.6) 20 (23.8)  30 (28.3) 31 (23.5)  
Medium 47 (25.8) 14 (25.0)  38 (24.7) 23 (27.4)  31 (29.3) 30 (22.7)  

<LOD 92 (50.6) 24 (42.9)  75 (48.7) 41 (48.8)  45 (42.5) 71 (53.8)  
Chlorpyrifos   2.1 (0.2)   1.5 (0.2)   1.3 (0.2) 

≥LOD 62 (34.1) 25 (44.6)  52 (33.8) 35 (41.7)  43 (40.6) 44 (33.3)  
<LOD 120 (65.9) 31 (55.4)  102 (66.2) 49 (58.3)  63 (59.4) 88 (66.7)  

Phorate   0.0 (0.9)   0.8 (0.4)   0.9 (0.3) 
≥LOD 31 (17.1) 10 (17.9)  24 (15.6) 17 (20.2)  21 (19.8) 20 (15.2)  
<LOD 151 (83.0) 46 (82.1)  130 (84.4) 67 (79.8)  85 (80.2) 112 (84.9)  
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Table IV.A2 Sex-stratified change/difference in ABR latencies at 9 months 
and 18 months by OP exposure a 

 

 BOYS at 9 months 
OP insecticide Wave V (n=85) CCT (n=74) IPI III-V (n=74) IPI-I-III (n=75) 

Continuous β (95% CI) for OP b 
# OP Detects -0.02  

(-0.06, 0.01) 
-0.01  
(-0.05, 0.02) 

-0.01  
(-0.04, 0.01) 

0.00  
(-0.02, 0.02) 

Log-Naled -0.00  
(-0.05, 0.05) 

0.01  
(-0.04, 0.06) 

0.01  
(-0.03, 0.05) 

0.00  
(-0.03, 0.04) 

3-level (High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.01  
(-0.14, 0.11) 

0.05  
(-0.08, 0.17) 

0.01  
(-0.08, 0.11) 

0.03  
(-0.05, 0.11) 

Methamidophos   
(Med. vs ND) 

0.04  
(-0.08, 0.16) 

0.00  
(-0.11, 0.12) 

-0.03  
(-0.11, 0.06) 

0.03  
(-0.04, 0.11) 

Trichlorfon   
(High vs ND)  

-0.02  
(-0.11, 0.14) 

-0.01  
(-0.13, 0.11) 

-0.01  
(-0.10, 0.09) 

0.00  
(-0.07, 0.08) 

Trichlorfon   
(Med. vs ND)  

-0.10  
(-0.21, 0.04) 

-0.14 *  
(-0.26, -0.02)  

-0.07  
(-0.17, 0.02) 

-0.05  
(-0.14, 0.03) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.07  
(-0.18, 0.03) 

-0.06  
(-0.17, 0.04) 

-0.03  
(-0.12, 0.05) 

-0.02  
(-0.10, 0.04) 

Phorate  
(Detect vs ND) 

-0.07  
(-0.21, 0.07) 

-0.03  
(-0.16, 0.11) 

-0.01  
(-0.12, 0.09) 

-0.01  
(-0.11, 0.08) 

 GIRLS at 9 months 
OP insecticide Wave V (n=80) CCT (n=72) IPI III-V (n=73) IPI-I-III (n=73) 

Continuous β (95% CI) for OP b 
# OP Detects -0.01  

(-0.04, 0.02) 
-0.00  
(-0.03, 0.03) 

-0.00  
(-0.03, 0.02) 

0.00  
(-0.02, 0.02) 

Log-Naled -0.00  
(-0.05, 0.04) 

0.01  
(-0.03, 0.06) 

-0.00  
(-0.04, 0.04) 

0.02  
(-0.02, 0.05) 

3-level (High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.03  
(-0.09, 0.14) 

0.08  
(-0.04, 0.20) 

0.00  
(-0.09, 0.10) 

0.08 † 
(-0.01, 0.16)  

Methamidophos   
(Med. vs ND) 

-0.09  
(-0.21, 0.03) 

-0.05  
(-0.18, 0.0.07) 

0.00  
(-0.10, 0.10) 

-0.06  
(-0.15, 0.03) 

Trichlorfon   
(High vs ND)  

-0.04  
(-0.16, 0.07) 

-0.02  
(-0.14, 0.10) 

0.02  
(-0.07, 0.12) 

-0.04  
(-0.13, 0.05) 

Trichlorfon   
(Med. vs ND)  

0.03  
(-0.09, 0.16) 

0.06  
(-0.07, 0.18) 

0.09 † 
(-0.01, 0.18)  

-0.03  
(-0.12, 0.06) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.02  
(-0.08, 0.12) 

0.03  
(-0.08, 0.13) 

0.01  
(-0.07, 0.10) 

0.02  
(-0.06, 0.09) 

Phorate  
(Detect vs ND) 

-0.02  
(-0.15, 0.10) 

0.00  
(-0.13, 0.13) 

-0.05  
(-0.16, 0.05) 

0.05  
(-0.05, 0.15) 

 
a Models adjusted for age at testing, and cord ferritin 
b Estimated change in 9-month ABR latency per 1 unit increase in OP 
c Difference in mean 9-month ABR latency 
†p<0.10; *p<0.05 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time; IPI, inter-peak 
interval 

 
 
 
 



	   141	  

Table IV.A2, continued 

 

 BOYS at 18 months 
OP insecticide Wave V (n=68) CCT (n=50) IPI III-V (n=50) IPI-I-III (n=50) 

Continuous β (95% CI) for OP b 
# OP Detects -0.00  

(-0.04, 0.03) 
-0.01  
(-0.04, 0.03) 

-0.00  
(-0.03, 0.03) 

-0.00  
(-0.03, 0.02) 

Log-Naled 0.00  
(-0.05, 0.06) 

0.00  
(-0.06, 0.06) 

0.01  
(-0.04, 0.05) 

-0.00  
(-0.04, 0.04) 

3-level (High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.00  
(-0.13, 0.13) 

0.03  
(-0.10, 0.16) 

0.05  
(-0.06, 0.15) 

-0.01  
(-0.10, 0.08) 

Methamidophos   
(Med. vs ND) 

-0.00  
(-0.12, 0.12) 

-0.00  
(-0.13, 0.13) 

-0.01  
(-0.11, 0.09) 

0.02  
(-0.07, 0.11) 

Trichlorfon   
(High vs ND)  

-0.01  
(-0.14, 0.12) 

-0.01  
(-0.14, 0.12) 

-0.02  
(-0.12, 0.09) 

-0.01  
(-0.10, 0.08) 

Trichlorfon   
(Med. vs ND)  

-0.02  
(-0.15, 0.12) 

-0.09  
(-0.22, 0.04) 

-0.03  
(-0.13, 0.07) 

-0.06  
(-0.15, 0.03) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.01  
(-0.12, 0.11) 

-0.04  
(-0.15, 0.07) 

0.01  
(-0.08, 0.09) 

-0.05  
(-0.13, 0.03) 

Phorate  
(Detect vs ND) 

-0.03  
(-0.17, 0.11) 

-0.01  
(-0.15, 0.13) 

0.02  
(-0.09, 012) 

-0.03  
(-0.13, 0.06) 

 GIRLS at 18 months 
OP insecticide Wave V (n=58) CCT (n=44) IPI III-V (n=44) IPI-I-III (n=44) 

Continuous β (95% CI) for OP b 
# OP Detects 0.00  

(-0.03, 0.04) 
0.00  
(-0.03, 0.04) 

-0.00  
(-0.03, 0.03) 

0.00  
(-0.02, 0.03) 

Log-Naled 0.00  
(-0.05, 0.05) 

-0.00  
(-0.05, 0.05) 

-0.01  
(-0.05, 0.04) 

0.01  
(-0.03, 0.05) 

3-level (High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.06  
(-0.07, 0.18) 

0.09  
(-0.05, 0.22) 

0.05  
(-0.06, 0.16) 

0.04  
(-0.06, 0.14) 

Methamidophos   
(Med. vs ND) 

-0.06  
(-0.20, 0.08) 

0.02  
(-0.13, 0.17) 

0.02  
(-0.11, 0.15) 

-0.01  
(-0.13, 0.10) 

Trichlorfon   
(High vs ND)  

-0.00  
(-0.13, 0.13) 

0.06  
(-0.08, 0.20) 

0.02  
(-0.09, 0.14) 

0.03  
(-0.08, 0.14) 

Trichlorfon   
(Med. vs ND)  

0.06  
(-0.07, 0.20) 

0.08  
(-0.06, 0.22) 

0.10  
(-0.02, 0.21) 

-0.02  
(-0.13, 0.09) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.00  
(-0.12, 0.11) 

-0.04  
(-0.15, 0.08) 

-0.02  
(-0.11, 0.08) 

-0.01  
(-0.10, 0.08) 

Phorate  
(Detect vs ND) 

0.08  
(-0.05, 0.22) 

-0.01  
(-0.15, 0.14) 

-0.01 
 (-0.13, 0.11) 

0.01  
(-0.10, 0.12) 

 
a Models adjusted for age at testing, and cord ferritin 
b Estimated change in 18-month ABR latency per 1 unit increase in OP 
c Difference in mean 18-month ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time; IPI, inter-peak 
interval 
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Table IV.A3. Cord iron-stratified change/difference in ABR latencies at by 
OP exposure a 

 

 Iron sufficient 
 6 weeks 

OP insecticide Wave V 
(n=151) 

CCT  
(n=150) 

IPI III-V 
(n=151) 

IPI-I-III 
(n=150) 

Continuous β (95% CI) for OP b 
# OP Detects 0.02  

(-0.00, 0.04) 
0.02  
(-0.00, 0.04) 

0.01  
(-0.01, 0.02) 

0.01  
(-0.00, 0.03) 

Log-Naled 0.01  
(-0.02, 0.05) 

0.02  
(-0.01, 0.06) 

0.01  
(-0.01, 0.03) 

0.02  
(-0.01, 0.04) 

3-level 
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.08 † 
(-0.01, 0.17)  

0.09 † 
(0.00, 0.17)  

0.02  
(-0.04, 0.09) 

0.06 † 
(0.00, 0.12)  

Methamidophos   
(Med. vs ND) 

-0.03  
(-0.12, 0.06) 

-0.02 (-0.11, 
0.06) 

-0.03  
(-0.10, 0.04) 

0.00  
(-0.06, 0.06) 

Trichlorfon   
(High vs ND)  

0.08 † 
(-0.01, 0.17) 

0.06  
(-0.03, 0.14) 

0.07 †  
(0.00, 0.13)  

-0.01  
(-0.07, 0.05) 

Trichlorfon   
(Med. vs ND)  

0.03  
(-0.06, 0.12) 

0.03  
(0.06, 0.11) 

0.05  
(-0.01, 0.12) 

-0.03  
(-0.09, 0.03) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.02  
(-0.05, 0.09) 

0.01  
(-0.06, 0.09) 

0.01  
(-0.05, 0.07) 

0.00  
(-0.05, 0.06) 

Phorate  
(Detect vs ND) 

0.05  
(-0.3, 0.11) 

0.06  
(-0.03, 015) 

0.06  
(-0.01, 0.13) 

0.01  
(-0.06, 0.07) 

 Iron deficient 
 6 weeks 

OP insecticide Wave V (n=30) CCT (n=30) IPI III-V (n=30) IPI-I-III (n=30) 
Continuous β (95% CI) for OP b 
# OP Detects -0.04  

(-0.10, 0.02) 
-0.04  
(-0.10, 0.03) 

-0.01  
(-0.05, 0.04) 

-0.03  
(-0.07, 0.01) 

Log-Naled -0.07  
(-0.17, 0.02) 

-0.06  
(-0.16, 0.05) 

-0.01  
(-0.08, 0.06) 

-0.05  
(-0.11, 0.01) 

3-level 
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.12  
(-0.37, 0.13) 

-0.07  
(-0.33, 0.19) 

-0.02  
(-0.20, 0.17) 

-0.06  
(-0.22, 0.10) 

Methamidophos   
(Med. vs ND) 

-0.03  
(-0.24, 0.19) 

0.04  
(-0.19, 0.27) 

0.04  
(-0.11, 0.19) 

-0.01  
(-0.14, 0.13) 

Trichlorfon   
(High vs ND)  

-0.14  
(-0.38, 0.11) 

-0.14  
(-0.41, 0.12) 

-0.02  
(-0.20, 0.17) 

-0.12  
(-0.28, 0.03) 

Trichlorfon   
(Med. vs ND)  

-0.14  
(-0.39, 0.12) 

-0.20  
(-0.48, 0.07) 

-0.01  
(-0.20, 0.18) 

-0.19 * 
(-0.35, -0.03)  

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.11  
(-0.30, 0.07) 

-0.08  
(-0.28, 0.12) 

-0.03  
(-0.16, 0.10) 

-0.05  
(-0.17, 0.07) 

Phorate  
(Detect vs ND) 

-0.13  
(-0.42, 0.17) 

-0.14  
(-0.45, 0.16) 

-0.07  
(-0.28, 0.14) 

-0.07  
(-0.26, 0.12) 

 
a Models adjusted for sex and age at testing 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time; IPI, inter-peak 
interval 
†p<0.10, *p<0.05 
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Table IV.A3, continued 

 

 Iron sufficient 
 9 months 

OP insecticide Wave V 
(n=135) 

CCT 
(n=118) 

IPI III-V 
(n=118) 

IPI-I-III 
(n=119) 

Continuous β (95% CI) for OP b 
# OP Detects -0.02  

(-0.04, 0.01) 
-0.00  
(-0.03, 0.02) 

-0.01  
(-0.03, 0.01) 

0.00  
(-0.01, 0.02) 

Log-Naled -0.00  
(-0.04, 0.04) 

0.01  
(-0.02, 0.05) 

0.00  
(-0.03, 0.03) 

0.01  
(-0.01, 0.04) 

3-level 
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

-0.00  
(-0.09, 0.09) 

0.06  
(-0.03, 0.15) 

0.01  
(-0.06, 0.08) 

0.05  
(-0.02, 0.12) 

Methamidophos   
(Med. vs ND) 

-0.03  
(-0.12, 0.07) 

-0.04 (-0.13, 
0.05) 

-0.03  
(-0.10, 0.05) 

-0.01  
(-0.08, 0.05) 

Trichlorfon   
(High vs ND)  

-0.03  
(-0.12, 0.06) 

-0.01  
(-0.10, 0.08) 

0.00  
(-0.07, 0.08) 

-0.01  
(-0.07, 0.06) 

Trichlorfon   
(Med. vs ND)  

-0.03  
(-0.12, 0.06) 

-0.04  
(-0.13, 0.05) 

0.01  
(-0.06, 0.08) 

-0.05  
(-0.12, 0.02) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.01  
(-0.09, 0.07) 

0.02  
(-0.06, 0.10) 

0.01  
(-0.06, 0.07) 

0.02  
(-0.04, 0.08) 

Phorate  
(Detect vs ND) 

-0.04  
(-0.14, 0.06) 

0.02  
(-0.08, 0.12) 

-0.03  
(-0.11, 0.06) 

0.04  
(-0.03, 0.11) 

 Iron deficient 
 9 months 

OP insecticide Wave V (n=30) CCT (n=29) IPI III-V (n=29) IPI-I-III (n=29) 
Continuous β (95% CI) for OP b 
# OP Detects -0.00  

(-0.06, 0.06) 
-0.03  
(-0.09, 0.04) 

-0.01  
(-0.05, 0.04) 

-0.02  
(-0.06, 0.02) 

Log-Naled 0.00  
(-0.10, 0.11) 

0.01  
(-0.10, 0.11) 

0.01  
(-0.07, 0.08) 

0.00  
(-0.06, 0.07) 

3-level 
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.03  
(-0.21, 0.27) 

0.06  
(-0.19, 0.32) 

-0.01  
(-0.19, 0.16) 

0.09  
(-0.07, 0.24) 

Methamidophos   
(Med. vs ND) 

-0.02  
(-0.25, 0.27) 

0.03  
(-0.21, 0.26) 

0.02  
(-0.14, 0.18) 

0.02  
(-0.13, 0.16) 

Trichlorfon   
(High vs ND)  

0.07  
(-0.16, 0.31) 

-0.04  
(-0.29, 0.22) 

0.03  
(-0.14, 0.20) 

-0.06  
(-0.21, 0.08) 

Trichlorfon   
(Med. vs ND)  

-0.04  
(-0.29, 0.21) 

-0.05  
(-0.32, 0.22) 

-0.02  
(-0.20, 0.17) 

-0.01  
(-0.17, 0.15) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.05  
(-0.24, 0.13) 

-0.14  
(-0.33, 0.06) 

-0.05  
(-0.18, 0.08) 

-0.08  
(-0.20, 0.04) 

Phorate  
(Detect vs ND) 

-0.08  
(-0.35, 0.20) 

-0.18  
(-0.47, 0.12) 

-0.07  
(-0.26, 0.12) 

-0.11  
(-0.29, 0.07) 

 
a Models adjusted for sex and age at testing 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time; IPI, inter-peak 
interval 
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Table IV.A3, continued 

 

 Iron sufficient 
 18months 

OP insecticide Wave V  
(n=101) 

CCT  
(n=78) 

IPI III-V  
(n=78) 

IPI-I-III  
(n=78) 

Continuous β (95% CI) for OP b 
# OP Detects 0.00  

(-0.02, 0.03) 
0.00  
(-0.02, 0.03) 

0.00  
(-0.02, 0.02) 

0.00  
(-0.02, 0.02) 

Log-Naled -0.00  
(-0.04, 0.04) 

-0.01  
(-0.05, 0.03) 

-0.01  
(-0.04, 0.03) 

0.00  
(-0.03, 0.03) 

3-level (High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.02  
(-0.08, 0.12) 

0.04  
(-0.06, 0.14) 

0.04  
(-0.04, 0.12) 

0.00  
(-0.07, 0.08) 

Methamidophos   
(Med. vs ND) 

-0.04  
(-0.14, 0.06) 

-0.02  
(-0.12, 0.09) 

-0.01  
(-0.10, 0.08) 

0.00  
(-0.08, 0.08) 

Trichlorfon   
(High vs ND)  

-0.00  
(-0.10, 0.09) 

0.03  
(-0.07, 0.13) 

0.01  
(-0.08, 0.09) 

0.02  
(-0.06, 0.09) 

Trichlorfon   
(Med. vs ND)  

0.04  
(-0.06, 0.14) 

0.01  
(-0.09, 0.11) 

0.03  
(-0.05, 0.12) 

-0.03  
(-0.10, 0.05) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.01  
(-0.08, 0.10) 

-0.01  
(-0.10, 0.07) 

0.02  
(-0.06, 0.09) 

-0.03  
(-0.09, 0.04) 

Phorate  
(Detect vs ND) 

0.04  
(-0.06, 0.14) 

0.02  
(-0.09, 0.12) 

0.02  
(-0.06, 0.11) 

-0.01  
(-0.09, 0.07) 

 Iron deficient 
 18 months 

OP insecticide Wave V (n=16) CCT (n=16) IPI III-V (n=16) IPI-I-III (n=16) 
Continuous β (95% CI) for OP b 
# OP Detects -0.01  

(-0.07, 0.05) 
-0.02  
(-0.09, 0.06) 

-0.01  
(-0.06, 0.04) 

-0.00  
(-0.05, 0.04) 

Log-Naled 0.02  
(-0.08, 0.12) 

0.05  
(-0.07, 0.17) 

0.04  
(-0.04, 0.13) 

0.02  
(-0.06, 0.10) 

3-level (High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.11  
(-0.14, 0.36) 

0.17  
(-0.11, 0.45) 

0.07  
(-0.13, 0.28) 

0.11  
(-0.07, 0.29) 

Methamidophos   
(Med. vs ND) 

0.05  
(-0.18, 0.28) 

0.12  
(-0.14, 0.37) 

0.09  
(-0.10, 0.28) 

0.04  
(-0.13, 0.20) 

Trichlorfon   
(High vs ND)  

-0.00  
(-0.25, 0.25) 

-0.03  
(-0.32, 0.26) 

0.00  
(-0.21, 0.21) 

-0.04  
(-0.22, 0.14) 

Trichlorfon   
(Med. vs ND)  

-0.07  
(-0.31, 0.17) 

-0.06  
(-0.35, 0.22) 

0.02  
(-0.18, 0.22) 

-0.09  
(-0.26, 0.08) 

2-level (Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.07  
(-0.26, 0.12) 

-0.17  
(-0.39, 0.05) 

-0.13  † 
(-0.29, 0.02) 

-0.03  
(-0.17, 0.11) 

Phorate  
(Detect vs ND) 

-0.10  
(-0.38, 0.18) 

-0.17  
(-0.48, 0.14) 

-0.08  
(-0.30, 0.13) 

-0.07  
(-0.27, 0.12) 

 
a Models adjusted for sex and age at testing 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; 
chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time; IPI, inter-peak 
interval 
†p<0.10
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Table IV.A4. Adjusted a longitudinal change/difference in ABR latencies by OP exposure 
 

 ABR outcome 
 6 weeks 9 months 18 months 

OP insecticide 
Wave V 
(n=181) 

CCT 
(n=180) 

Wave V 
(n=165) 

CCT 
(n=147) 

Wave V 
(n=126) 

CCT 
(n=94) 

Continuous β (95% CI) for OP b 

# OP Detects 
0.01  
(-0.01, 0.03) 

0.01  
(-0.01, 0.03) 

-0.02  
(-0.04, 0.01) 

-0.01  
(-0.03, 0.01) 

-0.00  
(-0.03, 0.02) 

-0.00  
(-0.03, 0.02) 

Log-Naled 
0.00  
(-0.0.3, 0.04) 

0.01  
(-0.02, 0.05) 

-0.00  
(-0.04, 0.03) 

0.01  
(-0.02, 0.05) 

-0.00  
(-0.04, 0.04) 

-0.00  
(-0.04, 0.04) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.05  
(-0.03, 0.14) 

0.07 † 
(-0.01, 0.15)  

0.00  
(-0.08, 0.08) 

0.06  
(-0.03, 0.14) 

0.02  
(-0.07, 0.11) 

0.05  
(-0.04, 0.14) 

Methamidophos   
(Med. vs ND) 

-0.03  
(-0.11, 0.06) 

-0.01  
(-0.09, 0.07) 

-0.02  
(-0.10, 0.06) 

-0.03  
(-0.11, 0.06) 

-0.03  
(-0.12, 0.06) 

0.01  
(-0.09, 0.10) 

Trichlorfon   
(High vs ND)  

0.04  
(-0.04, 0.13)  

0.02  
(-0.06, 0.10) 

-0.02  
(0.11, 0.06) 

-0.06  
(-0.10, 0.07) 

-0.02  
(-0.11, 0.07) 

0.01  
(-0.08, 0.11) 

Trichlorfon   
(Med. vs ND)  

-0.00  
(-0.09, 0.08) 

-0.00  
(-0.08, 0.08) 

-0.04  
(-0.13, 0.05) 

-0.04  
(-0.13, 0.04) 

0.01  
(-0.08, 0.11) 

-0.01  
(-0.11, 0.08) 

2-level 
(Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

-0.02  
(-0.09, 0.05) 

-0.01  
(-0.08, 0.06) 

-0.02  
(-0.10, 0.05) 

-0.01  
(-0.08, 0.07) 

0.02  
(-0.07, 0.11) 

0.05  
(-0.04, 0.14) 

Phorate  
(Detect vs ND) 

0.03  
(-0.06, 0.11) 

0.03  
(-0.05, 0.12) 

-0.06  
(-0.15, 0.04) 

-0.02  
(-0.11, 0.08) 

-0.03  
(-0.12, 0.06) 

0.01  
(-0.09, 0.10) 

 
 

a Models adjusted for sex, age at testing, cord ferritin, and head circumference 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; CCT, central conduction time 
†p<0.10, *p<0.05 
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Table IV.A4, continued 
 

 ABR outcome 
 6 weeks 9 months 18 months 

OP insecticide 
IPI III-V 
(n=181) 

IPI-I-III  
(n=180) 

IPI III-V  
(n=147) 

IPI-I-III  
(n=148) 

IPI III-V  
(n=94) 

IPI-I-III  
(n=94) 

Continuous β (95% CI) for OP b 

# OP Detects 
0.00  
(-0.01, 0.02) 

0.01  
(-0.01, 0.02) 

-0.01  
(-0.03, 0.01) 

0.00  
(-0.01, 0.02) 

-0.00  
(-0.02, 0.02) 

0.00  
(-0.02, 0.02) 

Log-Naled 
0.01  
(-0.02, 0.03) 

0.01  
(-0.02, 0.03) 

0.00  
(-0.02, 0.03) 

0.01  
(-0.01, 0.04) 

-0.00  
(-0.03, 0.03) 

0.00  
(-0.03, 0.03) 

3-level  
(High/Med./ND) Difference in least square means (95% CI) c 
Methamidophos   
(High vs ND)  

0.02  
(-0.04, 0.08) 

0.05  
(-0.01, 0.10) 

0.00  
(-0.06, 0.07) 

0.05 † 
(-0.00, 0.11)  

0.04  
(-0.04, 0.11) 

0.02  
(-0.05, 0.08) 

Methamidophos   
(Med. vs ND) 

-0.02  
(-0.08, 0.04) 

0.00  
(-0.05, 0.06) 

-0.01  
(-0.08, 0.05) 

-0.01  
(-0.07,0.05) 

0.01  
(-0.07, 0.09) 

0.00  
(-0.07, 0.07) 

Trichlorfon   
(High vs ND)  

0.05  
(-0.01, 0.11) 

-0.03  
(-0.09, 0.03) 

0.00  
(-0.06, 0.07) 

-0.01  
(-0.07, 0.05) 

-0.00  
(-0.08, 0.07) 

0.01  
(-0.06, 0.08) 

Trichlorfon   
(Med. vs ND)  

0.05  
(-0.02, 0.11) 

-0.05 † 
(-0.10, 0.01)  

0.00  
(-0.07, 0.07) 

-0.04  
(-0.10, 0.02) 

0.02  
(-0.05, 0.10) 

-0.04  
(-0.10, 0.03) 

2-level 
(Detect/ND) Difference in least square means (95% CI) c 
Chlorpyrifos  
(Detect vs ND) 

0.00  
(-0.05, 0.05) 

-0.01  
(-0.06, 0.04) 

-0.01  
(-0.06, 0.05) 

0.00  
(0.05, 0.05) 

-0.01  
(-0.07, 0.06)  

-0.03  
(-0.09, 0.03) 

Phorate  
(Detect vs ND) 

0.04  
(-0.03, 0.10) 

-0.00  
(-0.06, 0.06) 

-0.04  
(-0.11, 0.04) 

0.02  
(-0.05, 0.09) 

-0.00  
(-0.08, 0.08) 

-0.01  
(-0.08, 0.06) 

 
a Models adjusted for sex, age at testing, cord ferritin, and head circumference 
b Estimated change in ABR latency per 1 unit increase in OP 
c Difference in mean ABR latency 
High/Medium/ND cut-offs (ng/mL): methamidophos >18.2/1.5-18.2/ND; trichlorfon >1.7/ 0.4-1.7/ND; chlorpyrifos ≥0.04/ND; phorate ≥1.8/ND 
Abbreviations: ABR, auditory brainstem response; IPI, inter-peak interval 
†p<0.10, *p<0.05 
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CHAPTER V 

DISCUSSION 
 

 

Summary of research findings 

This dissertation work provides important information about the levels of 

prenatal exposure of Chinese infants to many classes of pesticides.  It also gives 

valuable insight into the effects of prenatal OP insecticide exposure on infant 

neurodevelopment, specifically the motor and sensory tracts of the brain.   

In the first aim we characterized the prenatal exposure of Chinese 

newborns to 96 pesticides of all classes in cord blood and identified predictors of 

that exposure. We found evidence of prenatal exposure to 75 pesticides; 

neonates were exposed to detectable levels of 15 pesticides, on average. OP 

and PYR levels were several-fold higher than those reported in cord blood in the 

U.S. Season of birth was the strongest and most consistent predictor of cord 

pesticides. The total number of pesticides detected, the total insecticides, and the 

total OPs, PYRs, and fungicides detected were all higher in the cord blood of 

infants born in the summer months of June to September, compared to those 

born between October and December.  When pesticides were analyzed on an 

individual basis we also found that pesticides varied significantly by 

season/month. It is likely that the increased pesticide levels in cord blood in the
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summer correspond with maternal consumption of fresh food grown during 

farming season in Zhejiang (June to September) (M. Zhang, et al., 2013). 

In the second aim we investigated the effects of prenatal OP exposure on 

infant motor function using the PDMS-2 and INFANIB.  Here we found that 

prenatal naled and chlorpyrifos exposure was associated with decreased motor 

function in 9-month-old infants.  For naled, we observed negative effects on fine 

motor outcomes only, while chlorpyrifos was associated with deficits in both 

gross and fine motor function. Additionally, odds of abnormal gross motor 

quotient (GMQ) at 9 months was nearly three times higher in infants prenatally 

exposed to chlorpyrifos, compared to those who were not exposed. No 

statistically significant associations were observed between prenatal OP 

exposure and infant INFANIB scores at either time point.  Trends revealed that 

infants with more OP exposure had lower INFANIB scores and higher odds of an 

abnormal score at 6 weeks of age, but results were not statistically significant.  

Interestingly, sex-specific analyses revealed that girls seemed to be more 

sensitive to the effects of prenatal OP exposure on motor outcomes than boys. 

In the third aim we examined the effects of prenatal OP exposure on infant 

visual and auditory function, using grating VA and ABR, respectively.  We found 

that infants prenatally exposed to chlorpyrifos had lower grating VA scores at 9 

months of age, compared to unexposed infants. Differences by sex were not 

evident early in the study period, however by 18 months of age, exposed girls 

seemed to have consistently lower VA scores, while exposed boys actually had 

significantly higher VA.  We did not observe any statistically significant 
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associations between prenatal OP exposure and infant ABR latencies, though 

trends revealed that infants exposed to methamidophos had consistently longer 

ABR latencies, indicating slower auditory signal transmission. In a supplementary 

analysis, we additionally found reduced 9-month head circumferences in infants 

exposed to chlorpyrifos and phorate prenatally.  

In this dissertation work, we present associations between prenatal 

exposure to certain OPs and deficits in global motor function, visual acuity, and 

head circumference. Chlorpyrifos was associated with statistically significant 

deficits in both global motor function and visual acuity, as well as reduced head 

circumference, in 9-month-old infants. Naled was significantly associated with 

deficits in 9-month fine motor function.  Methamidophos was consistently 

associated with deficits in 9- month global motor and slower auditory signal 

transmission across the three time points, yet results never reached statistical 

significance.  Phorate was not associated with any of the neurodevelopmental 

outcomes examined here, but was significantly associated with reduced head 

circumference at 9 months of age.  Of these commonly used OPs, only 

chlorpyrifos had been studied for neurodevelopmental effects in humans prior to 

this study.  

Interestingly, many of our results seem to be sexually dimorphic. Sex-

specific differences in early-life motor function and visual acuity are common.  

Female infants tend to have better fine motor functioning, while males excel at 

gross motor tasks (Piek, Gasson, Barrett, & Case, 2002). Sex-specific effects of 

OPs on motor outcomes have been reported in rodent (ACGIH, 2013; Dam, 
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Seidler, & Slotkin, 2000) and human studies (Y. Zhang, et al., 2014), yet no clear 

patterns emerge. VA maturation is also thought to be accelerated in girls, 

compared to boys, during the first six months of life (Makrides, Neumann, & 

Gibson, 2001), though sex-specific effects of OPs on visual related outcomes 

have not previously been examined. 

 

 

Synthesis of proposed mechanisms 

Low doses of OPs have been reported to disrupt a host of neuronal 

processes such as DNA synthesis, neuronal replication and differentiation, axon 

formation, synaptogenesis, apoptosis, neural circuit formation and signaling, and 

to enhance reactive oxygen species formation (Garcia, Seidler, & Slotkin, 2005; 

Slotkin, 2004).  In chapters three and four, we explored a variety of possible 

mechanisms for how prenatal OP exposure may affect either motor or visual 

outcomes in infancy.  Synthesis of those mechanisms revealed that several may 

be relevant across both motor and visual outcomes; those findings are 

synthesized here.  

One of the ways chlorpyrifos has been shown to induce neurotoxicity is via 

the disruption of the development and function of 5HT receptor circuits in the 

brain (Slotkin & Seidler, 2007b). Dysfunction of the 5HT signaling systems has 

been associated with a variety of behavioral abnormalities in rats (Slotkin & 

Seidler, 2007b).  These 5HT serotonergic pathways play an important role in the 

maturation of spinal locomotor networks (De Felice, Scattoni, Ricceri, & 
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Calamandrei, 2015) and in the plasticity and long-term potentiation of the visual 

cortex synaptic plasticity in infancy (Edagawa, Saito, & Abe, 2001).  Therefore, it 

is possible that disruption of the timing of 5HT circuit development, as result of 

prenatal OP exposure, could potentially have negative consequences on early-

life motor and visual functions.   

Laboratory studies also reveal that OPs can elicit neurotoxicity by 

disrupting glial cell development and function in the brain (Garcia, Seidler, 

Crumpton, & Slotkin, 2001; Garcia, Seidler, Qiao, & Slotkin, 2002; Garcia, 

Seidler, & Slotkin, 2003; Zurich, Honegger, Schilter, Costa, & Monnet-Tschudi, 

2004).  Glial cells (astrocytes, oligodendrocytes, microglia) provide important 

support functions for neurons and alterations in their development can affect 

synaptic plasticity, architectural modeling, and myelination processes (Garcia, et 

al., 2005).  Rodent studies have shown that early life exposure to chlorpyrifos 

and diazinon, during the onset of myelination, elicits deficits in expression of 

genes involved in oligodendrocyte function and myelination processes (Garcia, et 

al., 2001; Garcia, et al., 2002; Garcia, et al., 2003; Slotkin & Seidler, 2007a).  

Gains in motor function and mobility during infancy correspond to increases in 

corticospinal tract myelination (Carlson, 2014; Da̜mbska & Wisniewski, 1999).  

Similarly, improvements in grating VA also directly correlate with increasing 

myelination and maturation of the visual pathway (Tau & Peterson, 2010).  Both 

of these tracts begin myelinating late in pregnancy (Carlson, 2014; Da̜mbska & 

Wisniewski, 1999; Tau & Peterson, 2010). Therefore, prenatal OP exposure that 

occurs during the onset of corticospinal or visual tract myelination may also have 
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the potential to disrupt motor- and visual-related outcomes. 

Neurotoxicological effects at the cellular level are difficult to determine in 

infants and children; however, recent brain imaging studies provide some clues 

about long-term morphologic changes that may be associated with prenatal OP 

exposure.  A recent magnetic resonance imaging (MRI) study revealed that 

prenatal chlorpyrifos exposure was associated with enlargements of white matter 

in the superior temporal (MST), posterior middle temporal (MT), and inferior 

postcentral gyri, and the frontal gyrus, gyrus rectus, cuneus, and precuneus in 

the right hemisphere of 5-11-year-old children (Rauh, et al., 2012).  The authors 

speculated that the increased white matter was likely representative of glial 

scarring, a common response to cellular injury, and an effect which has been 

observed in rodents following early-life chlorpyrifos exposure (Roy, Sharma, 

Seidler, & Slotkin, 2005). As previously mentioned, OPs have been found to 

disrupt glial cell formation and function in the developing brain (Garcia, et al., 

2005).  It may, therefore, be plausible that this early-life glial cell dysfunction 

could eventually manifest in childhood as scarring and white matter enlargement. 

Several of the brain areas that are reportedly affected by prenatal 

chlorpryifos exposure (Rauh, et al., 2012) may also be associated with motor and 

visual function.  The precuneus has cortical connections with the premotor area 

and supplementary motor areas of the frontal cortex (Cavanna & Trimble, 2006).  

An MRI study revealed that grey matter volume in the right precuneus of 12-

month-olds is directly correlated with 18-month fine motor function (Sanz-Cortes, 

et al., 2010).  Interestingly, the precuneus has also been implicated in ASD and 
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ADHD.  Children with ASD and ADHD have significantly higher levels of brain 

activation in the precuneus, compared to controls (Christakou, et al., 2013).   

The cuneus is important in modulating signaling between the primary 

visual cortex and the extrastriate visual cortices (Vanni, Tanskanen, Seppa, 

Uutela, & Hari, 2001), and the MST and MT are on the dorsal stream of the 

extrastriate visual cortex (Blumberg & Kreiman, 2010).  MT and MST are 

involved in processing visuospatial information, including the detection of motion, 

position, and depth perception (Born & Bradley, 2005; Maunsell, 1995).  Lesions 

in the MT have been associated with visual deficits in monkeys (Born & Bradley, 

2005).    

It is unclear whether the precuneus directly affects infant motor function, 

or whether the cuneus, MST, or MT might directly influence grating acuity in 

infancy.  However, given that prenatal chlorpyrifos has been associated with 

increased white matter or glial scarring in the precuneus, cuneus, MST and MT in 

children, it is possible that this may be one mechanism by which OPs could 

possibly affect motor or visual function.  

 

 

Impact and innovation 

This is the largest and most comprehensive exposure assessment of 

prenatal pesticide exposure anywhere in the world to date.  We measured 

prenatal exposure to 96 pesticides of all classes in the cord blood of a potentially 

highly exposed population of infants. Measuring pesticide parent compounds 
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directly is preferable to other, more commonly used, exposure assessment 

methods because it provides direct evidence of fetal exposure (Barr, et al., 1999; 

Munoz-Quezada, et al., 2013), may more accurately reflect the available dose 

(Needham, Ashley, & Patterson, 1995), and informs regulatory agencies’ risk 

assessments.   

This work also presents the first analyses of the health effects of naled, 

methamidophos, trichlorfon, and phorate in non-occupationally exposed human 

populations. Naled is used in public health vector-control campaigns for 

controlling diseases that are spread by adult mosquitoes, and has recently been 

employed in Florida to combat Zika virus (U.S. EPA, 2016; EXTOXNET, 1993a; 

Frieden, Schuchat, & Petersen, 2016).  Methamidophos, trichlorfon, and phorate 

are applied widely to control insects and rootworms in field and root crops, 

livestock, and pine forests, and parasites in fish and domestic animals 

(EXTOXNET, 1993b, 1993c, 1995).  Therefore, this work provides some vital 

initial insights about the neurodevelopmental effects of prenatal exposure to 

these commonly used, yet grossly understudied, OPs. 

The motor assessment utilized here presents a significant advantage over 

the assessments used in previous studies. The PDMS-2 is sensitive to changes 

in both gross and fine motor function, and is considered a gold standard for 

predicting motor development (Liao, et al., 2012).  This test provides a more 

comprehensive view of overall motor function in infancy than the motor portions 

of the Bayley (Engel, et al., 2011; Eskenazi, et al., 2010; Eskenazi, et al., 2007; 

Rauh, et al., 2006) or Brazleton (Engel, et al., 2007; Young, et al., 2005) tests 
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that have been employed previously.  The secondary motor test, the INFANIB, 

further provides an additional unique lens through which to examine motor, and 

more specifically neuromotor, development.  

 Pesticides have largely not been studied for their visual and auditory 

effects in infants and children. The current work represents the largest study of 

prenatal pesticide exposure and VA and ABR, to date. There are only two former 

studies and both were limited by small sample sizes and imprecise exposure 

estimates (Handal, Harlow, Breilh, & Lozoff, 2008; Sturza, et al., 2016). The 

grating VA and ABR tests provide a non-invasive way of measuring the 

maturation of the visual and auditory pathways throughout infancy.  Additionally, 

these tests were assessed at three time points over the course of infancy. This 

longitudinal study design provides a more comprehensive view of sensory 

development than the two previous studies.  

 

 

Recommendations for future research 

This data-rich cohort offers many opportunities for further study.  An 

obvious next step should be to examine the remaining pesticides for associations 

with infant neurodevelopment in this cohort.  There is little to no information 

regarding the health effects of exposure to the majority of the pesticides we 

measured in the general population, and even less is known in regards to 

developmental neurotoxicity (Grandjean & Landrigan, 2014).  Second, while this 

dissertation was an important step in assessing the associations of individual 
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pesticides with the neurodevelopmental outcomes of interest, it will be important 

for future work to address the health effects of exposure to pesticide mixtures.  

Environmental pollutants are regulated as single chemicals, so it is imperative to 

study them as such, like we did here, yet is also important to study them as 

humans are exposed in the environment, as mixtures. In this cohort, infants were 

exposed to 15 pesticides on average, not one pesticide at a time.  Therefore, the 

next step of this research should be to employ modeling techniques that allow for 

the consideration of exposure to mixtures of pesticides. Similarly, future work in 

this cohort should also involve further exploration of pesticide-iron deficiency 

interactions. 

There are a number of factors that should be considered in the design of 

future, related studies.  New studies should strive to include multiple time points 

for the exposure assessment. The biggest weakness of the current study was 

that exposure was only measured at one time point.  Multiple time points are 

needed to get an accurate assessment of exposure to the non-persistent 

pesticides on the market today (Eskenazi, et al., 2007; Grandjean & Landrigan, 

2014).  Ideally, future studies should include maternal pesticide levels during 

pregnancy and infant/child levels at multiple time points over the study period.  

Longer follow-up times are also warranted to determine if small, subclinical 

effects observed during infancy are later manifested as neurological disorders in 

childhood.  This is important because brain functions develop sequentially, the 

full effects of early neurotoxic damage from pesticides might not become 

apparent until later in childhood (Grandjean & Landrigan, 2014) 
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Since the current study was not originally designed to examine 

environmental exposures, it is missing some secondary information that would be 

helpful to understanding exposure and vulnerability in this population.  Collection 

of additional lifestyle data could potentially enrich future studies.  For example, 

information on residential pesticide use, maternal diet during pregnancy, 

proximity to agricultural areas, and additional detail about parental occupation 

would improve insights into pesticide exposures in this population.  Similarly, 

genetic polymorphisms are believed to play an important role in the metabolism 

of pesticides in humans, thereby influencing individual susceptibility (Engel, et al., 

2011).  Incorporating genotyping analyses into future studies could provide 

additional important insights.  Additional considerations for susceptible infants 

should include those who are born pre-term or low birth weight (LBW).  LBW or 

premature infants are more likely to experience developmental delays (Chan, 

Johnson, Leaf, & Vollmer, 2016; Spittle & Treyvaud, 2016) and it is important to 

consider the effects of prenatal pesticide exposure on neurodevelopmental 

outcomes in these vulnerable groups. 

 

 

Overall conclusions 

This dissertation provides important information about the prenatal 

exposure of Chinese infants to pesticides, as well as providing critical insights 

about the effects of prenatal OP exposure on infant neurodevelopment, 

specifically the motor and sensory pathways of the brain.  This study provides the 
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first information regarding the developmental neurotoxicity of four OPs previously 

unstudied in humans.  We report deficits in fine and gross motor function, visual 

acuity, and head circumference in OP-exposed infants at 9 months. Early motor 

skill acquisition in infancy provides the basis for cognitive and socio-emotional 

development in childhood (Clearfield, 2004, 2011), as well as providing the 

foundation for non-verbal communication (Bhat, Galloway, & Landa, 2012). 

Similarly, visual and auditory system development in infancy is crucial for the 

development of language and other forms of communication, as well as reading 

skills in childhood (Algarin, Peirano, Garrido, Pizarro, & Lozoff, 2003; 

Chonchaiya, et al., 2013).  Therefore, delays or altered timing of motor or 

sensory systems maturation, possibly as a result of prenatal OP exposure, could 

potentially have detrimental long-term effects on learning or other cognitive 

functions in childhood. Even small, subclinical changes, that may seem negligible 

on an individual level, could have potentially detrimental effects at the population 

level.  Given the nearly ubiquitous exposure among the general population, the 

dearth of information regarding the developmental neurotoxicity of so many of the 

pesticides on the market today, the unique vulnerability of fetal and infant brains, 

and the potential for long-term effects on cognition and behavior, this work is 

both relevant and necessary.
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