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ABSTRACT

Sea surface height signatures of internal gravity waves

by

Anna Savage

Chair: Brian Arbic

Sea surface height (SSH) is a fundamental variable in physical oceanography and is

the key observable quantity in global satellite altimetry. SSH is a complicated man-

ifestation of many oceanic processes, and, as such, exhibits variability over a wide

range of space and time scales. It is well known that tides are of first order impor-

tance in SSH, but SSH contributions outside of this narrow band are also of great

interest. Satellite altimetry has become an invaluable tool in the study of the global

ocean. However, the long repeat period (of order ten to 40 days) of altimeters implies

that high-frequency motions will be aliased in altimeter records. In order to study

the lower-frequency SSH variability, the aliased high-frequency variability must first

be accurately removed. Some of these high-frequency motions, such as the stationary

component of surface and internal tides, can be adequately removed even from aliased

records, via harmonic analysis or response methods, as long as the signal-to-noise ra-

tio is relatively high. However, the challenge of removing SSH signals associated with

motions that are less predictable, for instance, the non-stationary component of the

internal tides, or the internal gravy wave (IGW) continuum, is much greater. To

quantify the magnitude of this challenge, high resolution global general circulation

xv



ocean models are used to simulate and study internal tides, the IGW continuum,

and other contributions to sea surface variability. Using these models, we examine

the space- and time-scales of SSH variability. For instance, we compute frequency-

horizontal wavenumber (ω−K) spectral densities over a several oceanic regions that

collectively represent different regimes of global ocean variability. These ω−K spec-

tral densities show high energy along lines representing the linear dispersion relations

predicted by the Sturm-Liouville problem for internal waves. In many oceanic re-

gions, the high-frequency motions dominate the small-scale (high-wavenumber) SSH

spectra. This has implications for upcoming wide-swath satellite altimeter missions,

which will focus on high-wavenumber SSH spectra. In addition to quantifying the

frequency-horizontal wavenumber spectral densities, we estimate the SSH variance

in subtidal, tidal, and supertidal phenomena through the use of frequency spectral

densities. This temporally driven approach allows us to create global maps of SSH

variance in these frequency bands. The global band-integrated maps are further di-

vided into steric and non-steric SSH components, which further helps to delineate

different classes of oceanic motions. These global band-integrated maps provide both

results consistent with previous studies (e.g., of subtidal steric SSH, dominated by

mesoscale eddies and well-measured by current generation satellite altimeters), as

well as unprecedented global maps of the non-stationary component of the internal

tides and of the IGW continuum. As global general circulation ocean models have

only begun to be able to partially resolve the IGW continuum, we believe that our

estimate represents a lower bound of variance in the IGW continuum, and will likely

increase with increased horizontal and vertical resolution of ocean models. Indeed,

comparisons of the models used here with in-situ data strongly suggest that the mod-

els used here underestimate the IGW continuum, while representing other motions

with a higher accuracy.
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CHAPTER I

Introduction

1.1 Internal gravity waves

In geophysical fluid dynamics, a gravity wave is defined simply as a wave for which

gravity acts as the restoring force. An internal gravity wave, or IGW, is a gravity

wave that has its maximal signals in the interior of a fluid, as opposed to at the

surface of the fluid. Internal gravity waves can only propagate in stratified fluids. In

the ocean, stratification is generally dominated by temperature, although salinity also

plays an important role, and tends to be more important than temperature in high-

latitude conditions. The continuous stratification of the ocean is often approximated

in models with a discrete set of layers that become progressively denser with depth.

Internal gravity waves take place at the interfaces of these layers and the at-depth

amplitudes of these waves can be as large as 100 m (Alford et al., 2015). These large

amplitude IGWs can be caused by a variety of internal and surface ocean dynamics.

Barotropic tides, the signals of large water mass movements caused primarily by the

gravitational pull of moon, are a large driver of internal gravity waves. The IGWs

in the Luzon Strait and north of the Hawai’ian islands, for example, are caused

primarily by the barotropic tide flowing over rough topography (Ray and Mitchum,

1997). Internal gravity waves with frequencies equal to the frequencies of barotropic

tidal constituents are known as internal, or baroclinic tides. As with the barotropic

1



tides they are forced by, internal tides can be either semidiurnal (twice per day), or

diurnal (once per day). Ocean currents, such as western boundary currents, can also

create IGWs as they flow over rough topography. Internal gravity waves also result

from wind blowing over the surface of the ocean. Such waves are called near-inertial

waves and have a frequency close to the Coriolis parameter f , to be defined later

(D’Asaro, 1984). As IGWs break, they facilitate mixing across stratified layers and

contribute to the total energy dissipation within the ocean interior. IGWs are of

interest due to the control they exert over deep ocean mixing (Munk and Wunsch,

1998; Ferrari and Wunsch, 2009); a control which covers a large range of space and

time scales (Garrett and Munk , 1972; Whalen et al., 2012).

While IGWs can have at-depth interface displacement signatures as large as 100 m,

their signatures at the surface are often only a few centimeters. These sea surface

height (SSH) signatures arise from baroclinic flow, defined as the displacement from

barotropic, or depth-averaged, flow. Steric SSH is sea surface height due to baroclinic

motions, or variations in the temperature and salinity structure of the water column.

These variations can be caused by phenomena such as fronts and eddies, as well as

IGWs. The steric SSH can be computed from temperature and salinity measurements

that span the entire water column. In-situ instruments that measure temperature and

salinity in the vertical, such as stationary moorings and mobile floats, are generally

not able to cover all ocean depths at all times, even in one location. The calculation

for dynamic height, which will be discussed in Chapter II, specifically Equation 2.4,

is similar to that of steric SSH, but can be computed over any pressure interval in

the water column. This similarity can be used to gain useful information about steric

SSH using available vertically sampled data.

As IGWs cover a wide range of time scales, we often refer to the IGW continuum

to describe IGWs that span frequencies (ω) between the buoyancy and inertial fre-

quencies (N < ω < f), to be defined later. Recently, high-resolution ocean models
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forced by both atmospheric fields and tides (Arbic et al., 2010, 2012) have begun

to resolve the IGW continuum (Müller et al., 2015). In Müller et al. (2015), two

simulations of the HYbrid Coordinate Ocean Model (HYCOM; Chassignet et al.,

2009) were compared against an array of moorings in the North Pacific. Frequency

spectral densities of surface kinetic energy computed from 1/12.5◦ and 1/25◦ sim-

ulations of HYCOM, and from a mooring, were shown against the Garrett-Munk

spectral slope (Garrett and Munk , 1975) for internal waves, that varies as ω−2. The

moorings most closely match the theoretical slope, followed by the spectral density

computed from the 1/25◦ simulation of HYCOM. Müller et al. (2015) also showed

kinetic energy frequency-horizontal wavenumber spectral density computed from a

box in the North Pacific in 1/25◦ HYCOM. This showed peaks at the near-inertial

and semidiurnal bands, and significant energy along the linear dispersion relation

curves for IGWs (described in Section 3.2.2), the latter in accordance with the no-

tion that an IGW spectrum is developing. Additionally, the nonlinear kinetic energy

transfers in frequency-horizontal wavenumber space computed in Müller et al. (2015)

showed that energy is being extracted from near-inertial and semidiurnal frequencies

and added at high-frequencies along the linear dispersion curves for internal waves.

Müller et al. (2015) was the first study to demonstrate that high-resolution general

circulation global ocean models with tidal and atmospheric forcing are beginning to

resolve the IGW continuum. The work done here builds upon the findings in Müller

et al. (2015), and examines the SSH signatures of internal gravity waves, using high-

resolution ocean models as well as observational data.

1.2 Ocean mixing and global climate

To quote Ferrari and Wunsch (2009), “That turbulent mixing processes in the

ocean are extremely important in determining the oceanic general circulation, and

are major limiting factors in the ability to calculate future climate states, is a cliché in
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oceanography and climate dynamics. Unlike some other hackneyed statements, this

one does retain much of its validity.” This is due, in great part, to the ocean’s role as

a heat engine; aiding the atmosphere in the redistribution of heat from warm equa-

torial regions to cold polar regions, known as meridional heat transport. Meridional

heat transport in the ocean accounts for a little less than half of the heat transported

poleward by both the atmosphere and ocean, and is the key means of transport at

low latitudes (Hastenrath, 1982). At the surface, poleward heat transport is acheived

in the strong western boundary currents, such as the Gulf Stream and Kuroshio cur-

rents. The Atlantic, like other ocean basins, participates in the global meridional

overturning circulation. The Atlantic branch is known as the Atlantic Meridional

Overturning Circulation (AMOC). After warm water is transported poleward via

western boundary currents, cold water must return equatorward to complete the cir-

culation. Cold, dense water in the North Atlantic sinks to depth due to the bouyancy

driven convection, and travels toward the equator as North Atlantic Deep Water.

This water is then mixed with warmer tropical and subtropical water, and brought

to the surface, or upwelled. The upwelling brings nutrient rich water from the deep

ocean to the surface, supporting marine life in the upper ocean. Abyssal mixing

due to processes including the breaking of IGWs is thought to provide ∼ 0.4 TW of

the 2.1 TW necessary to maintain circulation of the global meridional overturning

circulation (Munk and Wunsch, 1998; Wunsch and Ferrari , 2004), and contributes

greatly to the upwelling in tropical and subpolar regions. The AMOC, along with

other branches of global meridional overturning circulation, sets up a sort of conveyer

belt that transports not only temperature, but oxygen and nutrients as well. Abrupt

changes in these gyres have large impacts on our global climate (Alley , 2007), as they

help maintain the redistribution of the global heat budget.

As well as playing a large role in meridional heat transport, the ocean has been ob-

served to absorb excess heat introduced to the atmosphere by anthropogenic activities
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over the last century (Levitus et al., 2001). Between the years of 1955-1996, the heat

content of the ocean increased by approximately an order of magnitude more than

the heat content of the atmosphere, implying that the ocean has essentially acted as

a buffer for the atmosphere and has helped to moderate global atmospheric temper-

atures. In addition to heat, the ocean has acted as a large carbon dioxide sink. The

rate of carbon dioxide increase in the atmosphere is only half of the rate produced by

anthropogenic activity (Houghton et al., 2001), while the other half has been absorbed

into land and ocean. The ocean is the primary sink of carbon dioxide and certain

high absorption areas are becoming saturated. This saturation decreases the rate at

which these high absorption areas subsume excess carbon dioxide (Le Quéré et al.,

2007). Upper ocean mixing (Moum and Smyth, 2000), caused in part by breaking

IGWs and breaking surface waves, plays an important role in dissipating heat energy

and vertically mixing carbon dioxide, and thus contributes to the distribution of heat

and carbon dioxide throughout the ocean interior. The consequences of changes in

oceanic heat and carbon dioxide uptake include great changes to ocean biogeochem-

istry. The additional heat and ocean acidification caused by excess carbon dioxide

have lead to the deterioration and bleaching of many tropical reefs, including the

Great Barrier Reef, which has supported many endangered and endemic species, and

has experienced eight massive bleaching events since 1979 (Hennessy et al., 2007).

These bleaching events have large effects on the local biodiversity, which can, in turn,

effect the health of the global ocean.

1.3 Satellite altimetry

Although the most effective way to measure ocean mixing is via in-situ instrumen-

tation, this method suffers from severe spatial limitations. Ship board instruments

offer a unique opportunity to analyze frequently sampled oceanographic data, but

only at limited times and in limited locations. Autonomous vehicles, such as Argo
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floats (Roemmich and Owens , 2000), have helped to vastly improve the spatial cov-

erage of in-situ data, sampling globally on a relatively coarse ∼ 3◦ grid. This grid

spacing prohibits study of small scale ocean dynamics, including parts of the internal

gravity wave continuum.

As of the 1960s, satellites have been developed to collect data from the ocean

surface, such as temperature, salinity, chlorophyll, and sea surface height anomalies.

Satellite altimetry, which provides near-global coverage of sea surface height, is an in-

valuable tool in the study of the global ocean (Fu and Cazenave, 2001). Many studies

have used in-situ data in tandem with altimeter data. For example, Wunsch (1991)

used both types of data to examine global SSH variability, and Ray and Mitchum

(1997) used tide gauges and altimetry to examine internal tides. Altimeters have also

been used in tandem with other satellite missions, such as Chambers (2006), which

used the Gravity Recovery and Climate Experiment, GRACE satellite, in conjunction

with the current altimeter technology to study the seasonal variability of steric SSH.

Satellite altimetry has enabled global-scale examination of SSH, including calcu-

lations of SSH wavenumber spectral density whose slope has been used to diagnose

low-frequency dynamics of the ocean surface (Stammer , 1997; Le Traon et al., 2008;

Sasaki and Klein, 2012; Richman et al., 2012; Xu and Fu, 2012). Swath altimetry, as

in the upcoming Surface Water and Ocean Topography (SWOT) satellite mission, is

unlike current altimeter technology, which samples SSH along one-dimensional tracks.

Swath altimetry will sample SSH along two-dimensional swaths, which, for SWOT,

will measure 100 km wide with 1 km x 1 km pixels (Fu et al., 2012). These swaths

will provide a new opportunity to compute SSH wavenumber spectral density from

two-dimensional data (Fu et al., 2012). There is growing interest in the satellite

altimeter community in the SSH signatures of internal tides and the IGW contin-

uum, particularly because internal tides and IGWs have significant variance at high

wavenumbers (Richman et al., 2012; Callies and Ferrari , 2013; Rocha et al., 2016a).
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These high wavenumbers are targeted for study by planned two-dimensional swath

altimeter missions (Fu et al., 2012). As with previous altimeter missions, SWOT will

suffer from infrequent temporal sampling and will therefore alias the SSH signatures

of high-frequency motions, such as internal tides and the internal gravity wave con-

tinuum. The aliasing of such motions contaminates low-frequency signals in altimeter

data (Ray and Byrne, 2010; Shriver et al., 2012). Because the non-stationary internal

tides and the IGW continuum are less predictable than the stationary internal tides,

they may represent an even greater challenge to the altimetry community than do

stationary internal tides. Additionally, maps of SSH signatures of internal gravity

waves may aid in locating regions of high mixing activity.

1.4 Overview

Here we aim to develop estimates of SSH variance in internal tides and the in-

ternal gravity wave continuum through analysis of frequency, frequency-horizontal

wavenumber, and horizontal wavenumber spectral densities. We differentiate ocean

dynamics by frequency using four bands; a low-frequency band (subtidal), two tidal

bands (diurnal and semidiurnal), and a high-frequency band (supertidal). These

bands are shown over an example frequency spectral density of total SSH in Figure

1.1. The division of SSH dynamics into these frequency bands, and into steric and

non-steric components (non-steric being total SSH minus steric SSH, and related to

barotropic flow), aids in assigning variance to different phenomena. For example,

subtidal steric and non-steric SSH signatures include mesoscale eddies and seasonal

effects, the two tidal bands include SSH signatures of both barotropic (non-steric) and

baroclinic (steric) tides, and steric and non-steric SSH signatures in the supertidal

band include higher harmonics of tides and the IGW continuum.

In Chapter II, we compare two high-horizontal resolution ocean models to two

different datasets. Two simulations of the HYbrid Coordinate Ocean Model (HY-
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Figure 1.1: Example frequency spectral density of total SSH from the 1/25◦ simula-
tion of HYCOM near Hilo, Hawai’i (204.96E, 19.70N) with colors shading
the frequency bands used in this study. The pink region represents the
subtidal band, the teal region is the diurnal band, the purple region is the
semidiurnal band, and the yellow region represents the supertidal band.
Reprited from Savage et al. (2017a).
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COM; Chassignet et al., 2009) and one simulation of the Massachusetts Institute of

Technology general circulation model (MITgcm; Marshall et al., 1997), general cir-

culation models forced both by atmospheric fields and tides, are compared to two

in-situ data sets. We compared the frequency spectral density in HYCOM to the

frequency spectral density computed from a collection of 351 globally distributed tide

gauges. We also compare HYCOM, as well as MITgcm, to a collection of nine in-situ

profiling instruments. These instruments sample temperature and salinity at high

temporal and vertical resolution. From this we compare frequency spectral densities

of dynamic height—a quantity similar to steric SSH, that can be computed over any

pressure interval. The comparison of HYCOM to tide gauges has been published in

Savage et al. (2017a), while the comparison of HYCOM and MITgcm to in-situ depth

profiling instruments has been submitted in Savage et al. (2017b).

In Chapter III, we analyze SSH variance frequency-horizontal wavenumber spec-

tral density to demonstrate that high-frequency, high-wavenumber dynamics in the

simulations are primarily a result of internal gravity waves. We compare the frequency-

horizontal wavenumber spectral densities from seven regions around the globe in five

simulations of HYCOM and MITgcm. We then integrate the frequency-horizontal

wavenumber spectral densities over three frequency bands–subtidal, tidal and supertidal–

to examine which frequencies dominate at the large wavenumbers (small spatial scales)

of interest for the upcoming SWOT mission. The results in this chapter were sub-

mitted in Savage et al. (2017b).

In Chapter IV, we take advantage of the global coverage of HYCOM to create

maps of SSH variability in non-steric and steric SSH attributable to a variety of

phenomena in the ocean. We compute pointwise frequency spectral densities from a

subsampled 1/4◦ global map and integrate over the four frequency bands shown in

Figure 1.1. This method allows us to recreate maps of the SSH signatures of several

classes of well-documented oceanic motions, as well as create new global estimates of
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supertidal steric SSH variance, dominated by the internal gravity wave continuum,

as shown in Chapter III. The global maps in this chapter were published in Savage

et al. (2017a).

The final chapter, Chapter V, contains a summary of our findings and a discussion

on their bearings on ocean mixing and satellite altimetry. As much of the work

described here has been previously published, some of the passages are rewritten

verbatim from Savage et al. (2017a,b). Additionally, all of the following figures have

been reprinted from Savage et al. (2017a,b), identified in the figure captions.

10



CHAPTER II

Validation of two high-resolution global ocean

models

“Essentially, all models are wrong, but some are useful.”

- George Box

2.1 Introduction

In order to determine the accuracy of global general circulation ocean models in

representing true ocean dynamics, it is necessary to compare them against observa-

tional data. Several model-data comparisons have been performed with the HYbrid

Coordinate Ocean Model (HYCOM; Chassignet et al., 2009) tidal simulations. These

studies include a comparison of barotropic and internal tide SSH signatures to altime-

try (Shriver et al., 2012; Stammer et al., 2014; Ansong et al., 2015; Ngodock et al.,

2016), comparison of surface tidal elevations to pelagic tide gauges (Stammer et al.,

2014), comparison of tidal currents to moored current meter records (Timko et al.,

2012, 2013; Stammer et al., 2014), comparison of internal gravity wave (IGW) ki-

netic energy frequency spectral densities to current meter spectral densities (Müller

et al., 2015), and comparison of baroclinic tidal energy fluxes to fluxes computed

from current meter records (Ansong et al., 2017). The MIT general circulation model
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(MITgcm; Marshall et al., 1997) tidal simulations are newer than the HYCOM tidal

simulations, and have received much less vetting. The accuracy of the barotropic

and internal tides has not yet been tested on a global scale. Published model-data

comparisons to date are limited to a Drake Passage study (Rocha et al., 2016a), which

compared along-track wavenumber spectra of kinetic energy in a high-horizontal res-

olution simulation of MITgcm versus Acoustic Doppler Current Profiler data, and a

Kuroshio Extension study (Rocha et al., 2016b), which established that the upper

ocean stratification and variability in that region is well captured by several MITgcm

simulations.

To test model accuracy in both coastal and open-ocean regions, we compare model

output to tide gauge and in-situ depth profiling observations. We compare the sea

surface height (SSH) frequency spectral densities computed from HYCOM to those

computed from 351 tide gauges in a global database over all frequencies. Additionally,

we compare the frequency spectral densities of dynamic height computed from HY-

COM, from MITgcm and from 9 in-situ depth-profiling instruments. The small num-

ber of in-situ depth-profiling instruments used here feature high-frequency sampling

in time as well as high vertical resolution, thus enabling a model-data comparison of

dynamic height over tidal and supertidal bands. The tide gauge and in-situ vertical

profiler datasets we use here are the only observational datasets we are aware of that

offer a wide (quasi-global, in the case of the tide gauges) geographical coverage at the

same time that they cover a wide range of frequencies. For this reason, we compare

model output to both tide gauge and in-situ vertical profiler datasets, while being

fully aware that the two datasets are rather distinct.
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2.2 Models and observations

2.2.1 HYCOM simulations

General information about HYCOM can be found in Chassignet et al. (2009).

Two simulations of HYCOM are used in this study: one with a 1/12.5◦ horizontal

resolution (HYCOM12; ∼ 8 km), the other with a 1/25◦ horizontal resolution (HY-

COM25; ∼ 4 km). The hybrid coordinate vertical layers, that define models such

as HYCOM, are a combination of three popular vertical layer schemes: (1) z-layer

coordinates which are defined by depth, (2) isopycnals coordinate, which are defined

by density, and (3) σ cooridinates, which follow bottom topography. The hybrid

coordinate system uses all three schemes where appropriate. HYCOM uses z-layer

coordinates in the upper ocean, isopycnal coordinates in the open interior ocean, and

σ-coordinates in coastal and deep open ocean regions. Both simulations have 41 hy-

brid layers in the vertical direction. The atmospheric fields, including atmospheric

pressure, buoyancy, and wind forcing, used in both HYCOM simulations are taken

from the U.S. Navy Global Environmental Model, NAVGEM (Hogan et al., 2014).

HYCOM25 is forced by NAVGEM every three hours while HYCOM12 is forced hourly.

The HYCOM simulations are forced using a 0.5◦ application grid interpolated from

NAVGEM’s primary 37 km grid. The HYCOM simulations are simultaneously forced

by the astronomical tidal potential (Cartwright , 1999) of the two largest diurnal con-

stituents (K1 and O1) and the three largest semidiurnal constituents (M2, S2, and

N2). The five tidal constituents used in the HYCOM simulations account for ∼ 97%

of the global variance in the ten largest tidal constituents in the Global Ocean Tide

Model (GOT99.2; Ray (1999)). A Smagorinsky scheme, in which viscosity is nonlin-

early dependant on velocity, is used for vertical viscosity (Smagorinsky , 1993). For

horizontal diffusivity, a Laplacian scheme is used, while a K-Profile Parametrization

(KPP) scheme is used for vertical diffusivity and viscosity (Large et al., 1994). The
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self-attraction and loading (SAL, Hendershott (1972)) term is computed iteratively

as described in Buijsman et al. (2015). A topographic wave drag field, a parameteri-

zation for flow over rough topography used to dissipate energy in the deep ocean, is

taken from Jayne and St. Laurent (2001). The wave drag field is tuned to minimize

barotropic tidal errors with respect to the altimeter-constrained tide model TPXO

(Egbert et al., 1994). The same wave drag tuning computed for HYCOM12 was used

for HYCOM25. A description of the wave drag tuning can be found in Buijsman

et al. (2015), and more information on the importance of the wave drag on barotropic

and baroclinic tides can be found in Ansong et al. (2015) and Buijsman et al. (2016).

An Augmented State Ensemble Kalman Filter is implemented in both simulations to

reduce the global RMS error of M2 barotropic tidal elevations in waters deeper than

1 km, with respect to TPXO, to approximately 2.6 cm (Ngodock et al., 2016). The

HYCOM output is saved hourly for one full year, yielding ∼ 1 TB of SSH fields for

HYCOM25. HYCOM12 output spans October 2011 through September 2012, while

HYCOM25 output spans January 2014 through December 2014. The difference in

record periods has little effect on the frequency spectral densities used for analysis,

as both simulations have one year record durations.

2.2.2 MITgcm simulations

Three global ocean simulations of MITgcm (Marshall et al., 1997) are used in

this study: one with 1/12◦ (3-9 km) horizontal grid spacing (hereinafter MITgcm12),

one with 1/24◦ (2-5 km) grid spacing (MITgcm24), and one with 1/48◦ (.75-2.3 km)

grid spacing (MITgcm48). While only the highest resolution simulation of MITgcm

is compared to in-situ data in this chapter, the 1/12◦ and 1/24◦ simulations used in

Chapter III are described here. All three simulations have 90 z-levels in the vertical

direction with thicknesses ranging from 1 m at the surface to 480 m near the bottom

at a maximum model depth of 7 km. Bathymetry is from Smith and Sandwell (1997)
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Version 14.1 and IBCAO Version 2.23 (Jakobsson et al., 2008). The model is forced

at the surface with six-hourly atmospheric fields from the 0.14◦ European Center for

Medium-Range Weather Forecasts (ECMWF) atmospheric operational model anal-

ysis, which, starting in 2011, is converted to surface fluxes using the bulk formulae

of Large and Yeager (2004). Over ice-covered regions, ocean surface fluxes are com-

puted using the sea ice model of Losch et al. (2010). The model includes atmospheric

pressure forcing and tidal forcing for 16 tidal constituents, the latter applied to MIT-

gcm as additional atmospheric pressure forcing (Ponte et al., 2015). The 16 tidal

constituents are made up of 8 long-period tides, (Mt, Mf , Mm, Msm, Msf , Ssa, Ss, and

Ln) and the 8 largest diurnal (K1, O1, P1, and Q1) and semidiurnal (M2, S2, N2,

and K2) tidal constituents. An enstrophy conserving Leith scheme (Leith, 1996) is

used for horizontal diffusivity and a KPP scheme is used for vertical diffusivity (Large

et al., 1994). The MITgcm12 simulation is initialized on January 1, 2010 from a data

constrained 1/6◦ simulation provided by the Estimating the Circulation and Climate

of the Ocean, Phase II (ECCO2) project (Menemenlis et al., 2008) and integrated for

one year without tides with ERA-Interim (Dee et al., 2011) surface boundary con-

ditions. The application of tidal forcing and atmospheric boundary conditions from

the 0.14◦ ECMWF analysis starts on January 1, 2011. The MITgcm24 simulation

is initialized from MITgcm12 fields on January 17, 2011. The MITgcm48 simulation

is initialized from MITgcm24 fields on September 10, 2011. In this study, we use 90

days of hourly model output from the three MITgcm simulations for the following

periods: March 1, 2014 through May 29, 2014 for MITgcm12 and October 31, 2011

through January 28, 2012 for MITgcm24 and MITgcm48. The horizontal resolution

and record times for each HYCOM and MITgcm simulation are listed in Table 2.1

for reference.
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Model Horizontal resolution Record times

HYCOM12 1/12.5◦ October 1, 2011-September 31, 2012
HYCOM25 1/25◦ January 1, 2014-December 31, 2014
MITgcm12 1/12◦ March 1, 2014-May 29, 2014
MITgcm24 1/24◦ October 31, 2011-January 28, 2012
MITgcm48 1/48◦ October 31, 2011-January 28, 2012

Table 2.1: Horizontal resolution and record times of the five simulations used to com-
pute frequency-horizontal wavenumber spectral densities. Reprinted from
Savage et al. (2017b).

2.2.3 Tide Gauge Data

The tide gauge data are taken from the University of Hawai’i Sea Level Center

(UHSLC) tide gauge database (Caldwell et al., 2015). We use hourly tide gauge data,

to match the hourly HYCOM output. For each tide gauge, one year of continuous data

is extracted from the UHSLC database. The HYCOM output used for comparison

with the tide gauges is taken at the nearest neighbor model gridpoints corresponding

to the tide gauge locations. The one-year time period is dictated by the duration

of available tide gauge records in the UHSLC database as well as the duration of

available HYCOM output. Out of almost 1, 000 tide gauges in the UHSLC database,

351 tide gauge locations meet our criteria of having one year of continuous hourly

output. A map of the 351 locations is given in Figure 2.1a. As seen in Figure 2.1a,

there is a noticeable continental coastal bias in the tide gauge locations. At each tide

gauge location, the most recent full year of hourly data was chosen for comparison.

A histogram of the years covered by the tide gauge data is shown in Figure 2.1b. The

majority of the tide gauges used cover years in the 21st century.

2.2.4 McLane profilers

The locations of the 9 McLane profilers (Doherty et al., 1999) used in this study

are given in Table 2.2. The profilers are clustered in three regions in the Pacific:
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Figure 2.1: (a) Map of 351 tide gauges used in comparison of full SSH variance with
HYCOM results. The locations marked with the filled cyan squares (cir-
cled in black for emphasis) are used for comparison in Figure 2.3. Longi-
tude (latitude) is measured in degrees north (east) in Figures 2.1 and 2.5.
All tide gauges are in the University of Hawai’i Sea Level Center (UH-
SLC) database. Only gauges with one year of continuous hourly data are
used here. (b) Histogram of years of data collected from the UHSLC tide
gauge database. Reprinted from Savage et al. (2017a).
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Profiler Longitude Latitude Min. Pressure Max. Pressure Start Date Record Length

a 194.8◦E 25.5◦N 97 1403 Apr 25, 2006 36
b 196.5◦E 28.9◦N 97 1418 May 10, 2006 34
c 197.1◦E 30.1◦N 97 1430 Apr 25, 2006 22
d 200.8◦E 37.1◦N 97 1410 Apr 25, 2006 22
e 121.0◦E 19.3◦N 373 1223 June 17, 2011 51
f 117.9◦E 20.9◦E 111 1303 May 6, 2007 31
g 233.7◦E 43.2◦N 138 2121 Sept 15, 2005 40
h 234.9◦E 43.9◦N 73 1332 Sept 14, 2005 40
i 235.0◦E 43.2◦N 236 1063 Sept 13, 2005 40

Table 2.2: Location, minimum and maximum pressures (db), start date, and record
length (days) for each of the nine McLane profilers used in this study.
Profilers a-d are located in the North Pacific, profilers e and f are located
in the Luzon Strait, and profilers g-i are located off the Oregon coast of
the United States. Reprinted from Savage et al. (2017b).

profilers a-d are located in the central North Pacific near Hawai’i (Alford et al., 2007;

Zhao et al., 2010; MacKinnon et al., 2013a,b), profilers e and f are located in the

Luzon Strait (Alford et al., 2011), and profilers g-i are located off of the Oregon coast

(Nash et al., 2007; Martini et al., 2011, 2013). The McLane profilers travel vertically

at ∼ 25-33 cm/s, and sample temperature and salinity coincidentally throughout the

profile. The McLane profiler data is then interpolated in depth and time to even

2 db vertical intervals and hourly time intervals. Table 2.2 gives the maximum and

minimum pressures used in this study from each instrument. For each instrument, the

pressure intervals were chosen so that there were no missing data over the duration of

the record. Only profilers in water deeper than 1 km were chosen, as high-frequency

dynamic height in shallow water is not necessarily a good representation of internal

tides and the IGW continuum. The dynamic height is computed at each hourly time

step. Record durations range in length from approximately 22-51 days, and are given

in Table 2.2.
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2.3 Methodology

2.3.1 Frequency spectral density

Frequency spectral densities are computed from time series of SSH at each tide

gauge location and corresponding model gridpoint in HYCOM12 and HYCOM25 for

model validation against tide gauges. Frequency spectral densities are also computed

from the dynamic height computed from McLane profiler data, HYCOM25, and MIT-

gcm48 for comparison to open water in-situ data. Both a linear trend and mean are

removed from each time series. Each time series is multiplied by a Tukey window

having a taper-to-constant ratio of 0.2, which enforces the periodicity necessary for

Fourier transforms of this type. The dynamic height frequency spectral densities are

computed for each one year HYCOM25 time series, each three month MITgcm48

time series, and each McLane profiler time series, varying in length, whereas the

SSH frequency spectral densities computed from the tide gauges and HYCOM are all

computed from one-year long records. A discrete Fourier Transform is used, given by

η̂m(ωm) =
N−1∑
n=0

ηne
−2πimn

N , (2.1)

where ω denotes frequency, m and n are indices for the Fourier series and physical

series, respectively, and N is the total number of samples. The Fourier Transform is

then normalized to give the frequency spectral density

Spectral density =
2

N
|η̂(ω)|2. (2.2)

The variance in four frequency bands (Figure 1.1)—the subtidal [frequencies between

1/366 cpd and 0.86 cpd], the diurnal [frequencies between 0.87 cpd and 1.05 cpd], the

semidiurnal [frequencies between 1.86 cpd and 2.05 cpd] and the supertidal [frequen-

cies greater than 2.06 cpd]—are computed by integrating over the unsmoothed peri-
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odogram, |η̂(ω)|2 as

η2 =
2

N2

b/2∑
m=a/2

|η̂m(ωm)|2, (2.3)

where a and b are indices such that ωa and ωb are the limiting frequencies, defined

above. As the time series collected from the McLane profilers are of short duration,

the subtidal band was omitted from their comparison, but is used in the tide gauge

comparison.

2.3.2 Dynamic height

The comparison of modeled versus observed dynamic height variance is done using

methods similar to those used in Section 3.2 of Savage et al. (2017a). However,

whereas Savage et al. (2017a) integrated the model results from the maximum pressure

of the profiling instrument to the surface to estimate modeled steric SSH, here we

integrate both the models and observations over the pressure intervals covered by

the McLane profilers, yielding an improved model-data comparison. Dynamic height,

h(p1, p2), is computed as an integral of the specific volume, α, using the standard

definition (Knauss , 1997) given as

h(p1, p2) =
1

g

p2∫
p1

α(S, T, p)dp. (2.4)

The specific volume, α(S, T, p), is defined as 1/ρ(S, T, p) where ρ is density and S, T ,

and p denote salinity, temperature, and pressure, respectively. The factor of 1/g ac-

counts for gravity, and we solve for height, h(p1, p2), where p1 and p2 are the minimum

and maximum pressure levels over which we perform the integration. A trapezoidal

integration technique is used in Equation (2.4). Before integration, HYCOM25 tem-

perature and salinity are interpolated onto even 50 db pressure intervals, as the large

pressure intervals in the deep ocean in HYCOM output do not provide the vertical
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resolution necessary for computation of dynamic height. Dynamic height variance

at tidal frequencies is dominated by internal tides, while dynamic height variance

at supertidal frequencies is dominated by the IGW continuum. Figure 2.2 displays

time-pressure series of density profiles from one of the profilers off the Oregon coast

in (a) the McLane profiler, (b) HYCOM25, and (c) MITgcm48. The average number

of pressure levels used to compute dynamic height is ∼ 630 in the McLane profilers,

∼ 26 in HYCOM25, and ∼ 36 in MITgcm48. Over the pressure intervals shown in

the figure, the model profiles of background density gradient appear similar to the

McLane profiles, with MITgcm48 appearing less dense than the McLane profiler or

HYCOM25 near the bottom of the water column. The records shown are taken from

the first 200 hours of each dataset, and therefore do not span the same time intervals.

The McLane profiler data was collected beginning in September, the HYCOM25 data

shown is from January, and the MITgcm48 data shown begins in October (Tables 2.2

and 2.1). Time series of dynamic height anomaly about the time mean are shown in

(Figure 2.2d) McLane Profiler, (2.2e) HYCOM25, and (2.2f) MITgcm48. The vari-

abilities in the three time series span ∼ 4 cm, but while the HYCOM25 time series

of dynamic height (Figure 2.2e) appears to oscillate smoothly with the semidiurnal

signal, both the McLane profiler and the MITgcm48 time series appear to have higher

frequency signals in addition to the semidiurnal signal.

2.4 Results

2.4.1 Comparison to tide gauges

HYCOM versus tide gauge data frequency spectral density comparisons at three

example locations are given in Figure 2.3. The three locations are indicated on

Figure 2.1a by filled cyan squares. Figures 2.3a and 2.3c display the comparisons at

Eastport, Maine, and Lautoka, Fiji, which were chosen to represent continental and
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Figure 2.2: Density profile time series (kg/m3) over the pressure intervals sampled by
the McLane profiler located at 233.7◦E 43.2◦N from (a) a McLane profiler,
(b) HYCOM25, and (c) MITgcm48. The bottom row displays time series
of dynamic height anomaly (cm) computed as in equation (1) for (d) a
McLane profiler, (e) HYCOM25, (f) MITgcm48. Data is shown from the
first 200 hours of each dataset, and is therefore shown over different time
intervals (September for (a) and (d), January for (b) and (e), and October
for (c) and (f)). Reprinted from Savage et al. (2017b).

22



island locations, respectively, where the model performs well. The spectral densities

are relatively well matched, although the model is deficient at supertidal frequencies

in Figures 2.3a and 2.3b. In both the model output and the tide gauge data, large

peaks in SSH variance are seen at the diurnal and semidiurnal bands near one and two

cycles per day, showing large tidal signals. Many of the tide gauges display a relatively

flat spectrum at supertidal frequencies, which may be indicative of instrument noise

or poorly resolved coastal or harbor dynamics. Figure 2.3b, the comparison for Puerto

Armuelles, Panama, was chosen to exemplify a location with a greater model/data

discrepancy. The model/data differences are particularly large between frequencies

ranging from slightly less than diurnal to slightly more than semidiurnal.

We compute the variance in all four frequency bands shown in Figure 1.1 via Equa-

tion 2.3. The band-integrated variances in the model are reasonably well matched

with the band-integrated tide gauge variances. Figure 2.4 shows scatter plots of the

band-integrated SSH variances in the model vs. tide gauge data. In the subtidal

band, Figure 2.4a, the model shows scatter, but little to no bias. In the diurnal (Fig-

ure 2.4b) and semidiurnal (Figure 2.4c) bands, the model shows less scatter and little

bias, except at low-variance values in the semidiurnal plot, where the model is biased

high compared to the 1-to-1 (black dashed) line. In the supertidal band, Figure 2.4d,

the model shows scatter and a low model bias, in accordance with Figures 2.3a and

2.3b.

Discrepancies between the model and tide-gauge data could be due to a com-

bination of factors, including inadequate model representation of complex coastal

bathymetries and instrument noise at supertidal frequencies. The percent error in

HYCOM25-to-tide gauge band-integrated variances is calculated as

Error = 100× |TideGauge V ariance−HY COM25V ariance|
TideGauge V ariance

(2.5)

and is mapped in Figure 2.5. In the subtidal, diurnal, and semidiurnal maps, (Figures
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Figure 2.3: Example SSH frequency spectral densities of tide gauge data and cor-
responding model gridpoint output in (a) Eastport, Maine (b) Puerto
Armuelles, Panama and (c) Lautoka, Fiji. Dashed lines denote K1 diur-
nal and M2 semidiurnal tidal frequencies. The 95% confidence interval
shown accounts only for random error in spectral density calculations.
Reprinted from Savage et al. (2017a).
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Figure 2.4: Scatter plot of full SSH variance (cm2) in model output vs. tide gauge
data in (a) subtidal, (b) diurnal, (c) semidiurnal, and (d) supertidal fre-
quency bands. Axis limits differ between subplots. Reprinted from Savage
et al. (2017a).
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2.5a, 2.5b, and 2.5c), the error is approximately 10% over much of the globe, with

higher error near Japan in the subtidal band and in the Gulf of Mexico in the semidi-

urnal band. It is unclear why the model is not performing as well in the subtidal band

near Japan–a highly energetic region for the subtidal flows–as in other similarly high

subtidal variance regions. The supertidal band (Figure 2.5d) in general shows higher

error across the globe, approximately 100%, in most locations. Considering Figure

2.5d along with Figure 2.4d, we see that the error in the supertidal map is caused by

the model underestimating the supertidal variance at most locations. Again, this is

consistent with what is seen in the example frequency spectral densities, Figures 2.3a

and 2.3b.

The averages of the band-integrated full SSH variances, computed over the 351

tide gauge locations, from the tide gauge data and both HYCOM simulations, are

given in Table 2.3. HYCOM25 is more closely matched to the tide gauge data in

total, subtidal, and semidiurnal variance, but underestimates the variance in the

diurnal and supertidal frequency bands, where HYCOM12 performs better. These

rather substantial drops in variance from HYCOM12 to HYCOM25 (∼ 20% in the

diurnal band and ∼ 33% in the supertidal band) indicate that the resolution of

complex bathymetries is not the primary cause of HYCOM error in these two bands;

if it were, then the HYCOM25 simulations should perform better. In the supertidal

band, Figure 2.3 show that HYCOM25 is lower than HYCOM12 in all three locations.

In this band, coastal variances are in part associated with overtides (Ray , 2007), which

can be seen clearly in Figures 2.3a and 2.3c as peaks at ∼ 3, 4, and 6 cpd. Again,

HYCOM25 measures low compared to HYCOM12 in these overtidal peaks, suggesting

HYCOM25 may have lower amplitude overtides compared to HYCOM12 globally.

This may be related to the fact that the wave drag was not retuned in HYCOM25.

Ansong et al. (2015) shows that the strength of wave drag tuning substantially affects

the barotropic and internal tides in HYCOM. Egbert et al. (2004) and Arbic et al.
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Figure 2.5: Percent error of HYCOM25 variance relative to tide gauge variance (see
Equation 2.5) at each tide gauge location in (a) subtidal, (b) diurnal, (c)
semidiurnal, and (d) supertidal frequency bands. Reprinted from Savage
et al. (2017a).
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Tide Gauge HYCOM12 HYCOM25

Average total variance (∗103) 3.2 2.9 (0.91) 3.0 (0.94)
Average subtidal variance 103.7 82.9 (0.80) 104.4 (1.01)
Average diurnal variance 402.3 336.6 (0.84) 271.1 (0.67)
Average semidiurnal variance (∗103) 2.7 2.5 (0.93) 2.6 (0.96)
Average supertidal variance 13.1 6.3 (0.48) 4.1 (0.31)

Table 2.3: The mean of SSH variance in cm2 computed over all 351 tide gauge lo-
cations for tide gauges and corresponding model gridpoints in HYCOM12
and HYCOM25. The parenthetical values are ratios of HYCOM variance
to tide gauge variance. Reprinted from Savage et al. (2017a).

(2008) show that even barotropic tides are impacted by the resolution of models, and

that the optimal strength of wave drag in models depends on model resolution.

2.4.2 Comparison with McLane profilers

Dynamic height variance frequency spectral density comparisons between HY-

COM25, MITgcm48, and the 9 McLane profilers are shown in Figure 2.6. The order

of the subplots corresponds to the order of profilers in Table 2.2. At low frequencies,

(ω ≤ 0.2 cpd), both models agree with data in five of the nine locations. Large peaks

are seen at semidiurnal frequencies at six of the nine locations, indicative of large

semidiurnal internal tides. Additionally, large peaks are seen at diurnal frequencies

in Figures 2.6e and 2.6f, representing the Luzon Strait where diurnal internal tides are

known to be large (Jan et al., 2008). Diurnal peaks are also clear in Figures 2.6h and

2.6i, off the Oregon coast, where the strength of diurnal tides is known to be highly

variable (Erofeeva et al., 2003). In the Hawai’i cluster (Figures 2.6a-2.6d) as well as

Figure 2.6g (Oregon coast), both models are deficient compared to data at frequencies

ranging from ∼ 0.2 cpd − 1 cpd, for reasons that are not clear but may have to do

with the inability of the models to represent fast submesoscale motions. In most loca-

tions, MITgcm48 matches the observations better than HYCOM25 does in supertidal

frequencies (ω > 2.06 cpd), consistent with Savage et al. (2017a), that showed that
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HYCOM25 SSH is deficient compared to observations at supertidal frequencies.

This low bias of HYCOM25 at supertidal frequencies is confirmed in Table 2.4,

that lists the standard deviation (computed as the square root of the band-integrated

variance [Equation 3]) at all nine locations. The model performances are similar in

the diurnal and semidiurnal tidal ranges. However, in the supertidal band, MIT-

gcm48 is substantially closer to the McLane observations than HYCOM25 is, in five

of the nine locations. Figure 2.7 shows the band-integrated variance (the squares

of standard deviations listed in Table 2.4) in the form of scatter plots. In diurnal

and semidiurnal bands (Figures 2.7a and 2.7b), variance estimates from HYCOM25

and MITgcm48 agree with observations with respect to the 1-to-1 (black dashed)

lines. Additionally, the variance estimates from both models are near equal at all

locations. In Figure 2.7c, the supertidal band, HYCOM25 is biased low compared

to the 1-to-1 line, particularly at locations g-i, the profilers located off the Oregon

coast. This deficiency in HYCOM25 may be due to the lower horizontal and verti-

cal resolution of HYCOM25 relative to MITgcm48. It has been shown that model

horizontal resolution affects the strength of the IGW continuum (Müller et al., 2015;

Savage et al., 2017a). Another possible source of discrepancy between the model

estimates of supertidal variance is the lack of wave drag parametrization in MIT-

gcm, that would tend to yield strong high-frequency motions in MITgcm relative

to HYCOM. As there are only nine McLane profilers that provide the high vertical

resolution and high-frequency data necessary for calculation of dynamic height, this

model/observation comparison offers limited insight into which model, if either, is

accurately representing oceanic high-frequency dynamics. While MITgcm certainly

appears to be outperforming HYCOM in these nine locations, we cannot say that

this is representative of model performance on a global scale.
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Figure 2.6: Dynamic height variance frequency spectral densities from McLane pro-
filers and nearest neighbor HYCOM25 and MITgcm48 gridpoints. The
dashed vertical lines denote K1 diurnal and M2 semidiurnal tidal frequen-
cies. The shaded regions are the 95% confidence intervals, that account
only for random error in spectral density calculations. Reprinted from
Savage et al. (2017b).
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Figure 2.7: Scatter plots of band-integrated dynamic height variance vs. McLane pro-
filers in 1/25◦ HYCOM and 1/48◦ MITgcm in (a) diurnal, (b) semidiurnal,
and (c) supertidal frequency bands. Letters on scatter plots correspond
to profiler locations listed in Table 2.2. Reprinted from Savage et al.
(2017b).

Profiler a b c d e f g h i

Diurnal

McLane Profiler 0.541 0.144 0.154 0.160 2.039 2.930 0.078 0.302 0.207
HYCOM25 0.415 0.160 0.123 0.033 2.144 2.008 0.025 0.323 0.226
MITgcm48 0.576 0.178 0.119 0.029 3.178 2.048 0.040 0.366 0.305

Semidiurnal

McLane Profiler 1.869 1.969 0.573 0.654 1.239 2.713 0.333 0.263 0.367
HYCOM25 2.075 1.277 1.049 0.565 1.013 3.577 0.545 0.533 0.324
MITgcm48 2.461 1.047 1.153 0.707 1.194 4.534 0.445 0.644 0.467

Supertidal

McLane Profiler 0.587 0.433 0.512 0.782 0.486 1.687 0.265 0.471 0.226
HYCOM25 0.335 0.292 0.310 0.493 0.504 2.147 0.139 0.136 0.079
MITgcm48 0.559 0.555 0.446 0.497 0.693 3.142 0.424 0.390 0.252

Table 2.4: Standard deviation of dynamic height variance (cm) at each profiler loca-
tion for McLane profiler, HYCOM25, and MITgcm48 in diurnal, semidiur-
nal, and supertidal frequency bands. Reprinted from Savage et al. (2017b).
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2.5 Summary

In comparing both HYCOM and MITgcm to in-situ data, we find that both models

are relatively well matched to the available data. Full SSH frequency spectral densi-

ties computed from HYCOM are well matched compared to SSH frequency spectral

densities computed from tide gauges. We find that HYCOM is well matched to data

in subtidal, diurnal, and semidiurnal frequencies, but is deficient compared to data

in the supertidal band. We also find that there is no geographical dependence on

the error (Equation 2.5); HYCOM does not appear to be performing better in either

deep or coastal waters.

The comparison of dynamic height spectral densities computed from HYCOM25

and MITgcm48 to those computed from McLane profiler data shows that, once again,

HYCOM25 is well matched to data in the tidal (diurnal and semidiurnal bands), but

deficient in the supertidal band. MITgcm48 appears to be well matched to data in all

frequency bands. This low bias in HYCOM may be due to the lower horizontal and

vertical resolution of the HYCOM simulation, to the differences in vertical discretiza-

tion and/or subgridscale closures, or to the effects of wave drag parametrization in

HYCOM. As the observational data needed to study high-frequency and small scale

IGWs is very limited, models may be useful in creating global estimates of energy

contained in IGWs. Here, we have shown that two global high-resolution general

circulation ocean models–HYCOM and MITgcm–may be useful for such studies.
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CHAPTER III

Frequency-wavenumber spectral density of sea

surface height

3.1 Introduction

As discussed in Chapter I, high-resolution ocean models, like those studied in

Chapter II, are beginning to resolve a partial internal gravity wave (IGW) continuum

(Müller et al., 2015). Here, we build upon results in Müller et al. (2015) by exam-

ining SSH spectral density in seven regions in the HYbrid Coordinate Ocean Model

(HYCOM) and the MIT general circulation model (MITgcm), simulations forced by

both atmospheric fields and tides. We aim to quantify some of the differences in the

dynamics of these models, particularly at high-frequency and -wavenumber, where

global ocean models are only beginning to perform. In addition, we aim to provide

estimates of the contributions of different frequency bands to the small-scale dynam-

ics of interest for the Surface Water and Ocean Topography (SWOT; Fu et al., 2012)

mission.

To identify the differences between the two models, we use hourly HYCOM and

MITgcm output from two HYCOM simulations and three MITgcm simulations of

varying horizontal resolution to compute frequency-horizontal wavenumber spectral

density in seven regions. The seven regions were chosen to exemplify areas dominated
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by different ocean dynamics, e.g. internal tides versus mesoscale eddies. As in Müller

et al. (2015), we show that large peaks exist along the linear dispersion curves for the

first three vertical modes, indicating partial resolution of the IGW continuum. We

also examine the impact of horizontal resolution on the ability of models to simulate

the IGW continuum (Müller et al., 2015).

To study the contributions of different frequency bands to wavenumber spectral

density, we integrate the frequency-horizontal wavenumber spectral densities over

three frequency bands of interest: subtidal, tidal, and supertidal (as in Figure 1.1,

except the tidal band includes both the diurnal and semidiurnal bands and the fre-

quencies between them). We examine whether high-frequency motions dominate at

high-wavenumbers, as has been done in earlier studies (Richman et al., 2012; Callies

and Ferrari , 2013; Rocha et al., 2016a), and whether the dominance of high-frequency

motions increases with increased horizontal resolution of the models.

3.2 Methodology

3.2.1 Frequency-horizontal wavenumber spectral density

Frequency-horizontal wavenumber spectral densities of SSH are computed from

the HYCOM and MITgcm simulations over seven regions. The locations and bathyme-

tries of the seven regions are displayed in Figure 3.1a and the HYCOM25 subtidal

SSH variance in each region is shown in Figure 3.1b. The longitudinal and latitudinal

ranges of each region are listed in Table 3.1, along with abbreviations for each region

used in several figures. Three-month blocks of hourly data were used from all five

simulations. The three-month time period is dictated by the amount of data available

from the highest resolution model, MITgcm48, at the time of output collection. The

first three months of the records listed in Table 2.1 for HYCOM12 and HYCOM25

were used to computed frequency-horizontal wavenumber spectral densities. Before

34



Figure 3.1: (a) HYCOM25 bathymetries (m) from seven regions used to compute
frequency-horizontal wavenumber spectral densities overlaid on map of
regions. Bathymetries from MITgcm48 are comparable. Abbreviations
for the regions are listed in Table 3.1. Locations of nine McLane profilers
are overlaid on map as red stars. (b) Low frequency SSH variance (cm2)
from HYCOM25 computed as in Savage et al. (2017a) in seven regions
used in study. Reprinted from Savage et al. (2017b).
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the spectral densities are computed, the temporal and two-dimensional spatial trends

and means are removed and a Tukey window having a taper-to-constant ratio of 0.2 is

employed in time and along both spatial dimensions. Frequency-horizontal wavenum-

ber spectral density is computed via a discrete three-dimensional Fourier Transform,

given as

η̂p,h,m(kp, lh, ωm) =

Q−1∑
q=0

G−1∑
g=0

N−1∑
n=0

ηq,g,ne
−2πi( pq

Q
+hg
G

+mn
N

), (3.1)

where η denotes sea surface height, ω denotes frequency, k denotes zonal wavenumber,

and l denotes meridional wavenumber. Indices p, h, and m are for the Fourier series,

and q, g, and n are indices for the physical series. The total number of samples in the

zonal, meridional, and temporal directions are denoted as Q, G, and N , respectively.

The three-dimensional Fourier transform in (3.1) is used to compute a two-dimensional

spectral density, |η̂(K,ω)|2, along isotropic (radial) wavenumber, K (Lumley , 1970).

The isotropic wavenumber vector, K, is defined here as an evenly distributed discrete

set of wavenumbers whose length is arbitrarily chosen to equal the artithmetic mean

of the lengths of k and l. The minimum and maximum values of the vector K are

the minimum and maximum values of
√
k2 + l2, respectively. The spectral density

contribution to the rth element of isotropic wavenumber, Kr, can be computed as

|η̂r(Kr, ω)|2 =


2

QGN

[∑χ
p=1

∑ζ
h=1 |η̂p,h(kp, lh, ω)|2

]
, if r = 1

2
QGN

[∑χ
p=1

∑ζ
h=1 |η̂p,h(kp, lh, ω)|2

]
−
∑r−1

γ=1 |η̂γ(Kγ, ω)|2, if r > 1

(3.2)

where k2
χ + l2ζ < K2

r , and r is an index which spans 1 to the length of K. This

definition of |η̂(K,ω)|2 is computed iteratively. The first term on the right hand side

of Equation (3.2) is a sum over all values of |η̂(k, l, ω)|2 for which k and l satisfy the

condition k2
χ + l2ζ < K2

r , and the second term on the right hand side in the condition
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that r > 1 is a sum over all previously computed values of |η̂(K,ω)|2. This method

conserves variance when transforming from anisotropic to isotropic spectral density.

3.2.2 The dispersion relation for internal gravity waves

The dispersion relation for internal gravity waves describes the relationship be-

tween frequencies and wavenumbers for IGWs. In this study, the dispersion relation is

used to identify variance attributed to the IGW continuum. The following derivation

of the dispersion relation, and the following related description of the vertical modal

structure, is adopted from Kundu (1990). We begin with the linearized momentum

equations for zonal and meridional flow, and the equation for conservation of mass,

in an unstratified (barotropic) flow :

∂u

∂t
− fv = −g ∂η

∂x
(3.3)

∂v

∂t
+ fu = −g∂η

∂y
(3.4)

∂η

∂t
+H

[∂u
∂x

+
∂v

∂y

]
= 0 (3.5)

Here, (u, v) are the velocities in (x, y) respectively, g is the acceleration due to gravity,

f is the Coriolis parameter, H is water column height, and η is a perturbation sea

surface height under the condition H >> η. We assume that u, v, and η are of the

typical waveform u(x, y, t) = Uei(kx+ly−ωt), and H and f are assumed constant. We

can rewrite the above equations as:

−iωu− fv = −igkη (3.6)

−iωv + fu = −iglη (3.7)

−iωη + ikHu+ ilHv = 0. (3.8)
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This system of equations can be rewritten as the product of two matrices as


−iω −f igk

f −iω igl

ikH ilH −iω



u

v

η

 =


0

0

0

 . (3.9)

We can solve this system of equations by computing the determinant of the first

matrix, which must be equal to zero for non-trivial solutions. We have then derived

the relation

ω2 = f 2 + gH(k2 + l2) (3.10)

or, in terms of the isotropic wavenumber, K,

ω2 = f 2 + gHK2. (3.11)

This relationship is known as the dispersion relation and describes the relationship

between the propagation of gravity waves in time (ω) and space (K‘). Using dimen-

sional analysis, we can prove that a shallow water gravity wave in a homogeneous

layer propagates with a phase speed c =
√
gH. In a stratified fluid, each vertical

mode, denoted by a subscript n, is associated with a with phase speed cn. We can

rewrite the dispersion relation, solving for cn, as

c2
n =

ω2 − f 2

K2
n

. (3.12)

To understand the vertical mode structure of a stratified fluid, it can be convenient

to write a variable, such as zonal velocity u, as a summation over the vertical modes

as

u(x, y, z, t) =
∞∑
n=0

Un(x, y, t)Fn(z). (3.13)

We can now solve for the vertical structure, F (z), by solving the Sturm-Liouville
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equation for vertical modes

d

dz

( ω2 − f 2

N2 − ω2

dF

dz

)
+

1

λ2
F (z) = 0 (3.14)

with boundary conditions

dF

dz
= 0, z = 0,−H (3.15)

where λ are the eigenvalues, N2 is the Brunt-Väisälä frequency, defined as N2 =

−g
ρ̄
dρo
dz

, ρo(z) is a background density function, and ρ̄ is a constant density. We solve

for the eigenvalues and orthogonal eigenfunctions of this equation using the shooting

method. This method estimates the eigenvalues, checks whether the Sturm-Liouville

equations satisfy the boundary conditions, and adjusts the estimate based on the

error. The number of eigenvalues is dependent on the number of vertical modes of

interest. To create an accurate representation of the vertical structure of velocity, up

to 20 vertical modes can be necessary. However, for the display of SSH frequency-

horizontal wavenumber spectra that is focused on here, only the first three vertical

modes are needed. Each vertical mode has a distinct horizontal scale, and the eigen-

values can be defined as λ2
n = 1/K2

n. We then solve for each of the three constant

eigenspeeds (Munk , 1981) by setting ω equal to the M2 frequency in Equation 3.12.

The eigenspeeds then describe the relationship between all values of ω and K com-

puted as in Section 3.2.1. As in Müller et al. (2015), we use the extreme eigenspeed

values, computed for local values of f , N2, and H for each grid point on the north-

ern and southern boundaries of a region, in order to ascertain bounding dispersion

curves. Although both models are hydrostatic, the Sturm-Liouville equation that

we solve uses a non-hydrostatic vertical momentum equation. The differences that

may arise from this discrepancy would most prominently affect frequencies near the

buoyancy frequency, and would not greatly affect the frequencies of interest in this

study. Because the eigenspeeds are greatly dependent on water column depth, H, the
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Region Abbreviation Longitude range Latitude range Average transition length scale

North Pacific NP 200.0◦ E–220.0◦ E 25.0◦ N–45.0◦ N 80.0 km
South East Pacific SEP 260.0◦ E–279.9◦ E 18.6◦ S–37.9◦ S 58.3 km
Kuroshio KU 145.0◦ E–169.9◦ E 27.0◦ N–39.7◦ N 22.7 km
Equatorial Pacific EQPAC 204.2◦ E–218.3◦ E 3.4◦ S–3.4◦ N 124.2 km
South Pacific SP 200.0◦ E–220.0◦ E 20.3◦ S–40.0◦ S 53.6 km
North Atlantic NA 297.4◦ E–321.66◦ E 22.0◦ N–41.8◦ N 37.8 km
Indian Ocean IND 63.0◦ E–83.0◦ E 0◦-19.0◦ S 120.0 km

Table 3.1: Longitudinal and latitudinal ranges of the seven boxes used for calculation
of frequency-horizontal wavenumber spectral densities. The second column
lists the abbreviation for each region used in Figures 3.1 and 3.7. The final
column lists the average transition length scale across all five simulations
and is discussed in Section 4.3. Reprinted from Savage et al. (2017b).

extreme eigenspeeds were chosen from grid points with H > 1 km. The assumption of

a relatively constant bottom depth H is only really valid in the North Pacific region

(Figure 3.1a). While it is difficult to find large regions in the ocean that have nearly

constant bottom depth, we note that grid points with depths shallower than 500 m

comprise less than 0.5% of the grid points in each of the seven regions used for this

study. The validity of frequency-horizontal wavenumber spectral densities also hinges

on horizontal homogeneity of the fields. Figure 3.1b shows the HYCOM25 subtidal

SSH variance (computed as in Savage et al. (2017a)) in the boxes used in this study.

While the majority of our boxes are horizontally homogeneous, the Kuroshio and es-

pecially the North Atlantic regions have areas of large subtidal variance that changes

rapidly in space. However, we find that this horizontal inhomogeneity does not sig-

nificantly affect the IGW modes of main interest in this study. We also note that

the desire for large horizontal regions with relatively constant bottom depth prohibits

our ability to calculate frequency-horizontal wavenumber spectral density in regions

colocated with our in-situ data in the Luzon Strait and off of the Oregon coast.
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3.3 Results

3.3.1 Frequency-horizontal wavenumber spectral density of SSH

Sea surface height variance frequency-horizontal wavenumber spectral densities,

computed from MITgcm48 over all seven regions shown in Figure 3.1, are displayed in

Figure 3.2. Similar collections of frequency-horizontal wavenumber spectral densities

computed from HYCOM12, HYCOM25, MITgcm12, and MITgcm24 in all seven

regions are given in the supplementary material. To allow for easier comparison

across simulations, the wavenumber axis in all subplots of Figure 3.2, and in the

corresponding supplementary figures, is set to the maximum horizontal wavenumber

computed for HYCOM25. All of the subplots in Figure 3.2 show the linear dispersion

curves for the first three IGW vertical modes, depicted as white curves. The dispersion

curves are computed from the Sturm-Liouville problem at all the model gridpoints (in

water deeper than 1 km) along the northern and southern boundaries of the regions.

As in Müller et al. (2015), maxima and minima of the eigenspeeds are used to draw

bounding dispersion curves for each mode in each region. The IGW dispersion relation

curves vary greatly between regions. In each region, the areas within the bounding

dispersion curves stand out as having larger variance compared to the background,

and appear most prominently in the North Pacific (Figure 3.2a), the Equatorial Pacific

(Figure 3.2d) and the Indian Ocean (Figure 3.2g), all regions known to have a large

IGW SSH signature (Savage et al., 2017a). The Kuroshio (Figure 3.2c) and the North

Atlantic (Figure 3.2f) display large variance at low-frequency and low-wavenumber,

indicative of regions with strong mesoscale activity. The high variance lying along

the dispersion curves in these strongly eddying regions appear more blurred in the

wavenumber direction than in some weakly eddying regions, such as the North Pacific,

suggesting that the low frequency modulation of IGWs by mesoscale eddies in these

regions affects the dynamics of the IGW SSH signatures. The semidiurnal internal

41



tides are prominent (appearing as spots of large variance within the dispersion curves

at 2 cpd) in the spectral densities of all regions. These semidiurnal internal tides have

larger variance than the background semidiurnal tidal variance (horizontal stripes at

2 cpd) in the Kuroshio (Figure 3.2c), the Equatorial Pacific (Figure 3.2d), the North

Atlantic (Figure 3.2f), and the Indian Ocean (Figure 3.2g). The dispersion curves for

the other simulations, shown in the supplementary material, are qualitatively similar

to the MITgcm48 plots shown in Figure 3.2.

SSH variance frequency-horizontal wavenumber spectral densities in the North

Pacific region from all five simulations are shown in Figure 3.3. Increasing horizontal

resolution yields a more energetic IGW continuum (Müller et al., 2015). For instance,

the HYCOM25 spectral densities are noticeably more spread out along the dispersion

curves than the HYCOM12 spectral densities (Figure 3.3). Similarly, the MITgcm48

spectral densities are more spread out along the dispersion curves than the MITgcm24

spectral densities, that in turn are more filled out than the MITgcm12 spectral densi-

ties. There are large peaks at higher tidal harmonics; however they appear to be less

prominent in HYCOM25 than in HYCOM12. Similarly, it appears that the higher

harmonics become less prominent as resolution increases in the MITgcm simulations.

We speculate that the prominent higher harmonics arise from a combination of several

aspects of our analysis. These large variance horizontal stripes may be artifacts of the

lack of resolution of internal wave triads in lower resolution simulations. The higher

harmonics become less prominent as resolution increases and models are better able

to represent more wave triads, thus filling out the spectrum more completely (Müller

et al., 2015).

We also conjecture that these stripes are, to some extent, artifacts of the Tukey

window used to enforce periodicity prior to the calculation of the discrete Fourier

Transform (Equation 4). Tukey windows, like other rectangular windows, are known

to have problems with spectral leakage (Harris , 1976). We choose to use a Tukey
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Figure 3.2: Sea surface height variance frequency-horizontal wavenumber spectral
density [cm2/(cpd cpkm)] computed over seven regions from MITgcm48.
Wavenumber axes are set to the maximum wavenumber for each region
computed in HYCOM25. White curves show theoretical IGW linear dis-
persion relations for first (solid), second (dashed), and third (dashed-
dotted) vertical modes. Bounding curves for each vertical mode are com-
puted from the maximal and minimal eigenspeeds along the northern and
southern boundaries, as in Müller et al. (2015). Reprinted from Savage
et al. (2017b).
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window because using a windowing function that minimizes the spectral leakage also

removes more of the variability of interest. HYCOM12 and MITgcm12 show similar

dynamics, with slightly larger variance along the first mode in MITgcm12. Simi-

larly, MITgcm24 has more variance along the first mode than HYCOM25. In the

HYCOM25, MITgcm24, and MITgcm48 spectral densities, the high variance along

the dispersion curves folds back after reaching the Nyquist frequency of 12 cpd. This

indicates that the hourly sampling is insufficient because, in some regions, there is

significant variance in high-frequency motions that are not resolved with one hour

sampling. Additionally, the aliasing seems to be strong in the North Pacific (Figure

3.2a), the Equatorial Pacific (Figure 3.2d), and the Indian Ocean (Figure 3.2g), where

the IGW signal is known to be large.

3.3.2 Frequency band contributions to wavenumber spectral density

To quantify the contributions from different frequency bands to the wavenumber

spectral density, the frequency-horizontal wavenumber spectral densities (Equation

3.2) are integrated over three frequency bands: the subtidal band [ω < 0.86 cpd],

the tidal band [0.87 < ω < 2.05 cpd], and the supertidal band [ω > 2.06 cpd]. Due

to known impacts of dissipation schemes on the effective resolution of ocean models

(Soufflet et al., 2016), a caveat of this study is that we are unable to examine the high-

wavenumbers affected by the spectral roll off associated with eddy viscosity. This roll

off can be clearly seen at the high-wavenumber [∼ (3δx)−1] end of the wavenumber

spectral densities discussed in this section (Figures 3.4 and 3.5). For these reasons,

we limit our study to wavenumbers < (3δx)−1. The MITgcm48 wavenumber spectral

densities for all seven regions shown in Figure 3.1 from the three frequency bands of

interest are given in Figure 3.4. The ratio of supertidal variance to total variance is

plotted as a purple dashed-dotted line and references the right axes in Figures 3.4 and

3.5. Supplementary Figures 5-8 show the wavenumber spectral density contributions
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Figure 3.3: Sea surface height variance frequency-horizontal wavenumber spectral
density of [cm2/(cpd cpkm)] computed in North Pacific region in all five
simulations. Wavenumber axes are the same in each plot, and are set to
the maximum wavenumber for the HYCOM25 calculation. White curves
show theoretical IGW linear dispersion relations for first (solid), second
(dashed), and third (dashed-dotted) vertical modes. Bounding curves for
each vertical mode are computed from the maximal and minimal eigen-
speeds along the northern and southern boundaries, as in Müller et al.
(2015). Reprinted from Savage et al. (2017b).
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in the other four simulations. In all regions, supertidal phenomena contribute very

little at low wavenumbers, but are substantial at scales of approximately 100 km

and smaller. At scales smaller than ∼ 50 km, either the tidal or supertidal frequency

bands dominate in every region. In all regions, the ratio of supertidal variance to total

variance shows a sharp increase at ∼ 250 km where it is a minimum, and increases

continuously until it reaches nearly 1 at scales varying by location. The ratio of

supertidal to total variance drops off at the highest wavenumbers in the South East

Pacific, South Pacific, and Indian Ocean (Figures 3.4b, 3.4e, and 3.4g) and may be

related to high wavenumber roll off described above. The two humps prominent in the

Equatorial Pacific (Figure 3.4d) in the tidal and subtidal bands appear to occur at the

wavenumbers affected by the aliasing in Figure 3.2d. This suggests that the energy in

these two humps should actually be attributed to the supertidal frequency band, if the

temporal sampling allowed for resolution of higher frequency IGWs. Less prominent

humps can be seen in the North Pacific, South Pacific, and Indian Ocean regions,

suggesting that this contamination is prevalent in regions of high IGW activity.

The wavenumber spectral densities of subtidal, tidal, and supertidal frequency

bands for all five simulations in the Kuroshio region are shown in Figure 3.5. While the

contributions from the three frequency bands of interest at low-wavenumber (scales

∼ 100 km to 1, 000 km) are not strongly sensitive to model horizontal resolution,

below these scales, the behavior of the supertidal band changes as horizontal resolu-

tion changes. Across all simulations, the subtidal and tidal bands dominate at large

scales. The supertidal band appears to dominate in MITgcm24 and MITgcm48 (Fig-

ure 3.5d and 3.5e) at scales ∼ 50 km and smaller. The ratio of supertidal variance

to total variance has a minimum at scales of ∼ 250 km in all simulations, and nears

one at smaller length scales in the two highest resolution simulations of MITgcm.

In both HYCOM simulations, the supertidal contributions only appear to surpass

the subtidal and tidal contributions at wavenumbers unlikely to be truly resolved by
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Figure 3.4: Horizontal wavenumber spectral density of SSH variance in all regions
in MITgcm48 integrated over subtidal, tidal, and supertidal frequency
bands (see text for definition of bands). The 95% confidence intervals
span 76% to 137% of shown value for the subtidal band, 85% to 119% for
the tidal band, and 94% to 107% for the supertidal band. Right-hand axis
shows ratio of supertidal to total SSH variance as a function of isotropic
wavenumber. Reprinted from Savage et al. (2017b).
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the model (e.g., in the roll-off regime). Supplementary Figures 5-8 show that the

contribution of supertidal variance to total variance differs by region and horizontal

resolution, but is always largest at small scales. Additionally, the ratio of supertidal

to total variance nears one in the North Pacific, Equatorial Pacific, and Indian Ocean

regions, all regions known to have large IGW activity, in HYCOM25, MITgcm24,

and MITgcm48. This differs from the results shown in Figure 3.5, suggesting that

away from western boundary currents, the supertidal frequency band dominates at

small scales in HYCOM and MITgcm simulations with sufficiently high horizontal

resolution. While Richman et al. (2012) stated that the high-frequency contributions

to high-wavenumber spectra were due to internal tides, Müller et al. (2015) demon-

strated that some HYCOM simulations in fact carried a partial IGW continuum.

Here, we have shown that the IGW continuum also contributes to the high-frequency

portion of the SSH variance wavenumber spectral density (Figures 3.2-3.5), and in

some regions dominates in the highest resolution simulations. As in Qiu et al. (2017),

the length scale at which the supertidal band begins to dominate over the subtidal

band was averaged over all simulations in each region, and the length scales are listed

in the final column of Table 3.1. These length scales can be grouped into three cat-

egories: (1) highly eddying, high latitude regions (the Kuroshio and North Atlantic

regions), (2) low eddying, high latitude regions (the North Pacific, South Pacific, and

South East Pacific regions), and (3) low eddying, low latitude regions (the Equatorial

Pacific and Indian Ocean regions). The highly eddying, high latitude regions tend

towards the smallest transition length scales, whereas the low eddying, low latitude

regions tend towards the largest transition length scales. As with kinetic energy, the

transition length scales of SSH are dependent both on latitude and eddy activity (Qiu

et al., 2017). This suggests that the contamination of mesoscale and submesoscale

motions in the upcoming SWOT mission will depend on latitude and eddy activity,

correlating with the length scales at which supertidal frequencies dominate over the
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subtidal frequencies.

The differences in the prominence of supertidal motions at small scales with in-

creasing model resolution are more apparent in Figure 3.6, that plots the same spectral

densities as in Figure 3.5 but with the subplots separated by frequency band instead

of by horizontal resolution. In Figure 3.6 we therefore see spectral densities at dif-

ferent model resolutions on the same vertical scales. In addition, Figure 3.6 plots

spectral densities for the North Pacific as well as for the Kuroshio. In the subti-

dal and tidal frequency bands (Figures 3.6a-3.6d), the five simulations are relatively

well matched at low wavenumbers. The higher resolution simulations display greater

high-wavenumber variance in the subtidal and tidal bands in both the North Pacific

and Kuroshio regions. In the supertidal band (Figures 3.6e and 3.6f), the models

show different behaviors in the two regions shown. In the North Pacific, there is a

large increase in high-wavenumber variance as horizontal resolution increases in both

models (Figure 3.6e). HYCOM25 has larger variance at these wavenumbers than its

resolution counterpart, MITgcm24. However, in the Kuroshio, the increase of high-

wavenumber supertidal variance with increased model horizontal resolution is highly

pronounced in the MITgcm simulations, and less pronounced in the HYCOM simu-

lations. As the output from HYCOM25 and MITgcm48 was collected from similar

times of year, (October-January for MITgcm48 and January-March for HYCOM25),

the seasonality of the Kuroshio extension (Rocha et al., 2016b) is unlikely to con-

tribute to this mismatch.

To further examine that the increase in energy with model horizontal resolution,

the spectral slopes of the subtidal, tidal, and supertidal wavenumber spectral den-

sities shown in Figures 3.4-3.6, and Supplementary Figures 5-8, were computed in

all seven regions in all five simulations, and plotted in Figure 3.7. The slopes were

computed over scales ranging from 70-250 km (Xu and Fu, 2012; Richman et al.,

2012) for the subtidal and tidal bands, and over scales 30-70 km for the supertidal
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Figure 3.5: Horizontal wavenumber spectral density of SSH variance in Kuroshio re-
gion integrated over subtidal, tidal, and semidiurnal frequency bands in
all five simulations. See text for definition of bands. The 95% confidence
intervals span 76% to 137% of shown value for the subtidal band, 85% to
119% for the tidal band, and 94% to 107% for the supertidal band. Right-
hand axis shows ratio of supertidal to total SSH variance as a function of
isotropic wavenumber. Reprinted from Savage et al. (2017b).
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Figure 3.6: Horizontal wavenumber spectral density in Kuroshio and North Pacific
regions integrated over subtidal, tidal, and semidiurnal frequency bands
in all five simulations separated by frequency band. See text for definition
of bands. The 95% confidence intervals span 76% to 137% of shown value
for the subtidal band, 85% to 119% for the tidal band, and 94% to 107%
for the supertidal band. The wavenumbers between the dashed lines were
used to compute spectral slopes. Reprinted from Savage et al. (2017b).
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band. The wavenumber ranges are given by dashed black lines in Figure 3.6. The

wavenumber ranges used to compute spectral slopes in the supertidal band are chosen

to be different than those of the other two frequency bands because the large jump

in energy seen in the supertidal frequency band generally falls within the mesoscale

band, making calculation of slopes over that region impractical. Figure 3.7a, display-

ing spectral slopes calculated from the subtidal band, shows that the slopes in five of

the seven regions fall approximately within the internal quasi-geostrophy (k−5) and

surface quasi-geostophy (k−11/3) theoretical slopes (Stammer , 1997; Le Traon et al.,

2008; Sasaki and Klein, 2012), indicated by black horizontal lines labeled QG and

SQG, respectively. The slopes calculated from the Kuroshio region (labeled “KU” on

the x-axis) are closest to the theoretical interior QG slopes, yet shallower, consistent

with previous studies (Le Traon et al., 2008; Sasaki and Klein, 2012; Richman et al.,

2012). The North Pacific region (labeled “NP” on the x-axis) shows flatter slopes

than the other six regions, and shallower than the SQG prediction, similar to results

in Richman et al. (2012). In the tidal band (Figure 3.7b), the slopes in all regions tend

to shift upwards towards the k−2 (Garrett and Munk , 1972) internal gravity wave line

(indicated by a black horizontal line labeled “IGW”). While some of the simulations

in the North Atlantic (labelend “NA”) have steeper slopes, all other tidal slopes in

Figure 3.7b are shallower than k−3. It should be noted that the Garrett and Munk

(1972) predictions of k−2 are meant to be applicable to the supertidal IGW contin-

uum, and are not necessarily expected to hold for internal tides. In the supertidal

band (Figure 3.7c), the slopes measured span the full range shown, from almost k−7

in HYCOM12 in the Equatorial Pacific (labeled “EQPAC”) to ∼ k−1 in all regions

in MITgcm48. While there is little consistency regarding which simulation measures

the steepest or shallowest slopes in Figures 3.7a and 3.7b, there is a clear trend in

Figure 3.7c. Over all seven regions, the HYCOM25 slopes are always shallower than

the HYCOM12 slopes, and the MITgcm slopes become progressively shallower as
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resolution increases from MITgcm12 to MITgcm24 to MITgcm48. The MITgcm25

slopes generally lie closest to the predicted k−2 value, while the MITgcm48 slopes

are shallower, hovering around k−1. In the Kuroshio and North Atlantic regions, the

supertidal slopes measured in HYCOM12 and HYCOM25 are similar, consistent with

what is seen in Figure 3.6c. In the MITgcm simulations, the difference between the

slopes measured in MITgcm12 and MITgcm24 are larger than the difference between

slopes in MITgcm24 and MITgcm48 in the North Pacific, the Kuroshio, the Equato-

rial Pacific, and the North Atlantic regions. In most regions, the spectral slope of the

supertidal frequency band computed from both models increases similarly between

the ∼ 1/12◦ and ∼ 1/24◦ simulations. While neither HYCOM12 nor MITgcm12

consistently has slopes shallower than the other, the spectral slopes measured from

MITgcm24 are consistently shallower than those measured in HYCOM25, except in

the North Pacific, that appears as an outlier for HYCOM25 in Figure 3.7c. In gen-

eral, the slopes measured from the MITgcm simulations tend to be similar across all

regions for each horizontal resolution, but the slopes measured from the HYCOM

simulations vary greatly by region, particularly in HYCOM12. Both models need

to be compared to more data to discover which, if either, is more closely capturing

oceanic IGW dynamics. Figures 3.6 and 3.7 suggest that, while these two models

show some agreement at frequencies lower than ∼ 2 cpd, their differences in wave

drag, vertical discretization, subgridscale parametrizations, and resolution have a no-

ticeable effect at high-frequencies that are a component of the small-scale phenomena

(Richman et al., 2012; Callies and Ferrari , 2013; Rocha et al., 2016a) of interest for

the upcoming SWOT altimeter mission.

3.4 Summary

The frequency-horizontal wavenumber spectral densities of SSH variance, com-

puted over seven regions from five simulations of the two models, at horizontal reso-
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Figure 3.7: Spectral slopes computed from all five simulations in the (a) subtidal,
(b) tidal, and (c) supertidal frequency bands. Slopes were computed
over wavenumbers ranging from 1/250-1/70 cpkm in the subtidal and
tidal bands, and over wavenumbers ranging from 1/70-1/30 cpkm in the
supertidal band. Abbreviations for the regions are listed in Table 3.1.
Reprinted from Savage et al. (2017b).

lutions ranging from 1/12◦ to 1/48◦, display high variance along the linear dispersion

curves of low vertical mode IGWs. This demonstrates that global ocean models such

as HYCOM and MITgcm are beginning to resolve SSH signatures of the IGW contin-

uum. We have also shown that increasing the model horizontal resolution increases

the modeled IGW continuum SSH variance. The contributions to SSH wavenumber

spectral density from three frequency bands (subtidal, tidal, and supertidal), reiter-

ate the fact that high-frequencies contribute to, and sometimes dominate, the SSH

variance at small scales of interest for the SWOT mission. The transition length scale

where the supertidal band dominates the SSH variance wavenumber spectral density

over the subtidal band is dependent on latitude (where low latitudes tend towards

larger transition length scales) and eddy activity (where regions of high eddy activity

tend towards smaller transition length scales). This is consistent with the transition

length scales for kinetic energy derived from Acoustic Doppler Current Profiler obser-

vations, discussed in Qiu et al. (2017). Understanding this transition could be of vital

importance to the SWOT mission, that aims to study wavelengths down to 15 km.
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However, the differences in the HYCOM and MITgcm simulations, such as the pres-

ence of a topographic internal wave drag parametrization, differences in horizontal

and vertical resolution, differences in vertical discretization schemes, and differences

in subgridscale closures all impact the variance measured in the supertidal frequency

band at scales ∼ 70 km and smaller. Tidal and supertidal motions, aliased by satellite

altimetry, will need to be properly understood and mapped if we are to gain meaning-

ful insight regarding the dynamics of both high- and low-frequency motions at small

scales from this upcoming mission.
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CHAPTER IV

Global maps of non-steric and steric sea surface

height variance

4.1 Introduction

Global maps of sea surface height (SSH) variance attributed to different ocean dy-

namics have been displayed in numerous studies (Ducet et al., 2000; Le Provost , 2001;

Carrère and Lyard , 2003; Zhao et al., 2016) and have facilitated the understanding of

these dynamics. One simple way we can recreate many of these maps is by dividing

the SSH variance into different frequency bands associated with different physical pro-

cesses. Here, we use a 1/25◦ resolution simulation of the HYbrid Coordinate Ocean

Model (HYCOM) to construct global maps of SSH variability. The HYCOM output is

separated into steric and non-steric SSH, and into subtidal, diurnal, semidiurnal, and

supertidal frequency bands (Figure 1.1). The division of the modeled spectral densi-

ties into steric and non-steric components aids in associating the SSH variability with

physical processes. For instance, mesoscale eddies and western boundary currents

dominate subtidal steric SSH variability (Le Traon and Morrow , 2001). Atmospheric

pressure loading and winds contribute importantly to non-steric SSH variance over a

wide range of frequencies, from supertidal to annual and longer (Ponte and Gaspar ,

1999; Shriver and Hurlburt , 2000; Stammer et al., 2000; Tierney et al., 2000; Fu and
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Cazenave, 2001; Carrère and Lyard , 2003). Diurnal and semidiurnal barotropic tides

contribute importantly to non-steric SSH (Le Provost , 2001) and diurnal and semidi-

urnal internal tides contribute importantly to steric SSH variance (Ray and Mitchum,

1997; Shriver et al., 2012; Ray and Zaron, 2016). Finally, the internal gravity wave

continuum contributes to the steric supertidal SSH variance (Glazman and Cheng ,

1999).

A major focus of this study is the steric SSH variability due to stationary internal

tides, non-stationary internal tides, and the internal gravity wave (IGW) continuum.

As shown in Chapter III, high-frequency phenomena such as tides and IGWs have

significant variance at the high wavenumbers targeted by the upcoming Surface Water

and Ocean Topography (SWOT) satellite mission. Several previous studies have

developed empirical maps of stationary internal tides (Dushaw et al., 2011; Ray and

Zaron, 2016; Zhao et al., 2016). As the non-stationary internal tides and the IGW

continuum are less predictable than the stationary internal tides, their aliased signals

will be harder to identify than those of stationary internal tides, posing a greater

challenge to the altimeter community. We take a step towards understanding this

challenge by producing global maps of the geographical variability of non-stationary

and stationary internal tides and the IGW continuum.

4.2 Methodology

To map the SSH variance of steric and non-steric SSH, we use hourly global

HYCOM output (described in Section 2.2.1) that has been subsampled at ∼ 1/4◦

horizontal resolution as a time saving measure. The steric and non-steric SSH was

computed as given in Appendix B. We compute pointwise frequency spectral densities

(Equation 2.2) and integrate over the four frequency bands shown in Figure 1.1 using

Equation 2.3. From the maps, we compute a spatial average of SSH variance defined

as
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Spatial Average =

∫ ∫
η2dA∫ ∫
dA

, (4.1)

where η2 is the SSH variance and dA is the area of an individual gridpoint. We

compute the spatial average only over gridpoints in the deep ocean (seafloor depth>

1 km). While the global maps displayed in this chapter were created using output

from the 1/25◦ simulation of HYCOM, both the 1/12.5◦ (HYCOM12) and the 1/25◦

(HYCOM25) were used to create estimated spatial averages of variance to understand

the dependence of variance on horizontal model resolution. In the construction of

our global maps, within the diurnal and semidiurnal bands, we compute the total

and non-stationary SSH variances. The non-stationary component is calculated by

removing the harmonics of the five tidal constituents introduced into these HYCOM

simulations via harmonic analysis (Ray , 1998) before spectral densities and variances

are computed. The degree of non-stationarity computed here is a function of the one-

year record length of our HYCOM output, consistent with Ansong et al. (2015), that

showed that the non-stationarity of the tidal signal increases as the record length

increases. The dependence of non-stationary signals on record length could be an

important caveat in the study of tides via satellite altimetry.

4.3 Global Maps of SSH Variance

Here, we show global maps of steric and non-steric SSH integrated over subtidal,

diurnal, semidiurnal, and supertidal frequency bands. The spatial average values

(Equation 4.1) for the full, steric and non-steric SSH in subtidal, diurnal, semidiurnal,

and supertidal bands, and for the non-stationary components of the diurnal and

semidiurnal bands, are given in Table 4.1 and summarized visually in Figure 4.1,

both of which will be referenced throughout the remainder of this section.

The maps of band-integrated steric and non-steric variance in the four frequency
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Figure 4.1: Bar graph of HYCOM12 and HYCOM25 variance in cm2 in subtidal,
diurnal, non-stationary diurnal, semidiurnal, non-stationary semidiurnal,
and supertidal bands in (a) full, (b) steric, and (c) non-steric SSH. Vari-
ance was calculated over deep ocean gridpoints (seafloor depths greater
than 1 km). Axis limits differ between subplots. Reprinted from Savage
et al. (2017a).
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SSH Subtidal Diurnal Di. (non-stat.) Semidiurnal Semidi. (non-stat.) Supertidal

Full
H12 68.71 117.05 0.33 735.12 0.48 0.33
H25 69.24 97.41 0.30 785.06 0.58 0.25

Steric
H12 34.89 0.17 0.05 0.80 0.30 0.06
H25 34.83 0.15 0.05 1.05 0.43 0.15

Non-Steric
H12 39.63 116.96 0.30 734.79 0.31 0.31
H25 40.00 97.34 0.27 784.59 0.32 0.16

Table 4.1: Globally averaged variance (cm2) for full, steric, and non-steric SSH
in subtidal, diurnal (both full and non-stationary), semidiurnal (both
full and non-stationary), and supertidal bands in HYCOM12 (H12) and
HYCOM25 (H25). Variance was calculated over deep ocean gridpoints
(seafloor depths greater than 1 km). Reprinted from Savage et al. (2017a).

bands, shown in Figures 4.2-4.7, exhibit features familiar from earlier studies, which

will be discussed throughout this section. Note that the axis limits are not in gen-

eral equal across the subplots. Figure 4.2 shows maps of steric and non-steric SSH

variability in subtidal frequencies. The map of subtidal steric SSH, Figure 4.2a, high-

lights strongly eddying regions, such as western boundary currents, consistent with

many earlier analyses, e.g. Ducet et al. (2000). The non-steric subtidal map, Figure

4.2b, shows high variability in the high latitudes, due to wind and pressure forcing

(Stammer et al., 2000; Tierney et al., 2000; Carrère and Lyard , 2003). HYCOM

includes the dynamic effects of atmospheric pressure as well as the static inverted

barometer (IB) effect (Ponte and Gaspar , 1999). Pressure- and wind-forcing drive

non-steric SSH variability over all frequency bands studied here and yield particularly

strong variability at periods of 3-4 days, primarily at mid-high latitudes, where SSH

variability can be as large as 15 cm (Fu and Chelton, 2001). These large variations

occur primarily in the Southern Ocean where atmospheric pressure forcing is at a

maximum. Our maximum HYCOM25 subtidal non-steric SSH variance in the South-

ern Ocean is 22 cm. The subtidal non-steric SSH variance is likely dominated by

pressure-forcing and is also strongly impacted by atmospheric wind forcing (Carrère

and Lyard , 2003).
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Figure 4.2: Global SSH variance (cm2) from HYCOM25 in the subtidal band (fre-
quencies 1/366 cycles per day to 0.86 cycles per day). The 95% confidence
intervals range from 96% to 104% of shown value. In this and subsequent
figures, steric (a) and non-steric (b) variances are shown. Reprinted from
Savage et al. (2017a).
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The non-steric maps of the diurnal and semidiurnal bands, respectively shown in

Figures 4.3b and 4.4b, show the classic barotropic tidal patterns seen in many previ-

ous studies, e.g. Le Provost (2001) and Egbert et al. (1994). The HYCOM25 diurnal

non-steric map has a spatially averaged global variance of 97.41 cm2 and the semid-

iurnal non-steric map has a spatially averaged global variance of 785.06 cm2 (Table

4.1). The HYCOM tidal variances found here are comparable with those of previous

studies (Arbic et al., 2004), though the semidiurnal variances are smaller by about

10% for unknown reasons. The five constituents used in HYCOM12 and HYCOM25

contribute 97% of the global variance found in the ten largest tidal constituents in

GOT99.2 (?). Therefore, one could expect an increase in variance of a few percent in

the non-steric and steric SSH variance estimates in both the diurnal and semidiurnal

bands if more constituents were included in the HYCOM simulations. The steric di-

urnal and semidiurnal maps, Figures 4.3a and 4.4a, show the diurnal and semidiurnal

internal tidal signals. The diurnal steric SSH, Figure 4.3a, does not propagate pole-

ward of 30◦, consistent with theory (Gill , 1982; Shriver et al., 2012). The semidiurnal

steric sea level map (Figure 4.4a) displays a spatial distribution similar to maps of the

M2 internal tide constructed from altimeter data (Dushaw et al., 2011; Ray and Zaron,

2016; Zhao et al., 2016). The map in Figure 4.4a highlights regions of known large

semidiurnal internal tides, for example, north of the Hawai’ian islands, near French

Polynesia, and between Tasmania and Australia. In both the semidiurnal bands, the

global steric SSH (internal tide) variance increases from HYCOM12 to HYCOM25

(Figure 4.1), indicating that model resolution is an important factor in modeling the

internal tides. The global variance for the semidiurnal internal tide increases from

0.80 cm2 in HYCOM12 to 1.05 cm2 in HYCOM25 (Table 4.1), approximately equal

to the ∼ 0.96 cm2 estimated from Zaron (2015). For reasons we do not understand,

but which may have to do with the lack of retuning of the wave drag in HYCOM25,

the globally averaged full, steric, and non-steric SSH variances in the diurnal band
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decrease slightly from HYCOM12 to HYCOM25, in contrast to the results in the

semidiurnal band which shows increased variance with an increased resolution. The

geographies of diurnal and semidiurnal internal wave generation differ from each other

(Egbert and Ray , 2003), implying the wave drags for the two types of motions should

be tuned separately; this would be very difficult to do in present simulations.

Figures 4.5 and 4.6 respectively show global maps of the diurnal and semidi-

urnal tidal band variance after the stationary part of the tide has been removed.

Low-latitude and equatorial regions tend to display the largest signals in the non-

stationary diurnal and semidiurnal steric (internal tide) maps (Zaron, 2017), and

the high variance regions are correlated with the total internal tidal signals (Figures

4.3a and 4.4a). The global HYCOM25 maps of non-stationary steric SSH (internal

tides) have a spatially averaged global variance of 0.05 cm2 in the diurnal band and

0.43 cm2 in the semidiurnal band (Table 4.1), the latter being comparable to the

∼ 0.33 cm2 estimated from Zaron (2015). HYCOM25 variance is nearly equal to HY-

COM12 variance in the non-stationary diurnal band and is larger than HYCOM12

in the non-stationary semidiurnal band (Figure 4.1). The non-stationary component

of the non-steric semidiurnal SSH (0.32 cm2) is smaller than the non-stationary com-

ponent of the steric semidiurnal SSH (0.43 cm2; Table 4.1), consistent with the idea

that semidiurnal internal tide signals have a substantial non-stationary component

(Zilberman et al., 2011).

Maps of the supertidal variance are displayed in Figure 4.7. The largest non-

steric supertidal variance (Figure 4.7b) is along the coastlines where overtides (higher

harmonics of the barotropic tide) are largest (Ray , 2007). The non-steric supertidal

variance is approximately an order of magnitude smaller in the open ocean. The

variance in this band is due in part to wind and atmospheric pressure forcing (Carrère

and Lyard , 2003), and in part to overtides. The global non-steric supertidal variance

is 0.16 cm2 in HYCOM25, less than the value in HYCOM12 (Figure 4.1). The drop in
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Figure 4.3: Global SSH variance (cm2) from HYCOM25 in the diurnal band (fre-
quencies 0.87 cycles per day to 1.05 cycles per day). The 95% confidence
intervals range from 92% to 109% of shown value. Reprinted from Savage
et al. (2017a).
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Figure 4.4: Global SSH variance (cm2) from HYCOM25 in the semidiurnal band (fre-
quencies 1.86 cycles per day to 2.05 cycles per day). The 95% confidence
intervals range from 92% to 109% of shown value. Reprinted from Savage
et al. (2017a).
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Figure 4.5: Global SSH variance (cm2) from HYCOM25 in the diurnal band (frequen-
cies 0.87 to 1.05 cycles per day) after stationary tides have been removed
via harmonic analysis. The 95% confidence intervals range from 92% to
109% of shown value. Reprinted from Savage et al. (2017a).
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Figure 4.6: Global SSH variance (cm2) from HYCOM25 in the semidiurnal band (fre-
quencies 1.86 cycles per day to 2.05 cycles per day) after stationary tides
have been removed via harmonic analysis. The 95% confidence intervals
range from 92% to 109% of shown value. Reprinted from Savage et al.
(2017a).
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variance in the non-steric supertidal band from HYCOM12 to HYCOM25 is consistent

with Table 2.3 and is perhaps related to the low amplitudes of overtides in HYCOM25

as discussed in Chapter 2.4.1.

The steric supertidal map, Figure 4.7a, represents a global estimate of SSH vari-

ance in the internal gravity wave continuum. As with the semidiurnal steric SSH

map, the largest amplitudes are generally seen along the equator and in low lati-

tudes. Again, comparison of HYCOM12 and HYCOM25 in Figure 4.1 indicates that

increasing the horizontal resolution of the model yields increased variance in the IGW

continuum, consistent with results in Müller et al. (2015). The global continuum vari-

ance increases from 0.06 cm2 in HYCOM12 to 0.15 cm2 in HYCOM25 (Table 4.1). The

diurnal internal tidal band variance of 0.15 cm2, the semidiurnal internal tidal band

variance of 1.05 cm2, the non-stationary internal semidiurnal tidal band variance of

0.43 cm2, and the IGW continuum band variance of 0.15 cm2 are measurable signals

that contribute to the high-frequency, high-wavenumber variance of interest to SWOT

(Richman et al., 2012; Callies and Ferrari , 2013; Rocha et al., 2016a).

4.4 Summary

In this chapter, we use a global general circulation ocean model forced by atmo-

spheric fields and tides to map the global steric and non-steric SSH contributions

in subtidal, diurnal, semidiurnal, and supertidal frequency bands. Comparison with

previous results in the literature indicates that the model captures well-known phe-

nomena such as mesoscale eddies and western boundary currents (steric subtidal),

the barotropic tides (non-steric diurnal and semidiurnal), internal tides (steric diur-

nal and semidiurnal), and both low- and high-frequency barotropic motions driven

by atmospheric pressure loading and winds (non-steric subtidal and supertidal).

The semidiurnal internal tides have variances of 1.05 cm2 (0.43 cm2 in the non-

stationary component). The non-stationary component is most prominent at low-
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Figure 4.7: Global SSH variance (cm2) from HYCOM25 in the supertidal band (fre-
quencies 2.06 cycles per day to 12 cycles per day). The 95% confidence
intervals range from 98% to 101% of shown value. Reprinted from Savage
et al. (2017a).
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latitudes. In the supertidal band, having periods ranging from 2 to 12 hours, the

steric SSH variance increases from 0.06 cm2 in a 1/12.5◦ resolution simulation to

0.15 cm2 in a 1/25◦ resolution simulation, suggesting that the model has not yet

achieved numerical convergence. The supertidal steric SSH signals in the model are

generally most prominent in lower latitudes. The internal tides, both phase-locked

and non-stationary, and the supertidal IGW continuum will appear as sources of

“noise” in swath altimeter missions, and will obscure examination of low-frequency

phenomena unless they can be accurately identified and removed.
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CHAPTER V

Discussion

As internal gravity waves (IGWs) are small scale and high-frequency, they are dif-

ficult to observe and predict using current observational data. Here, we have shown

that global high-horizontal resolution general circulation ocean models, such as the

HYbrid Coordinate Ocean Model (HYCOM) and the MIT general circulation model

(MITgcm), can be useful in the study of the internal gravity wave continuum. Both

models have been compared to in-situ data. Frequency spectral densities were com-

puted from SSH data from a set of 351 tide gauges and from SSH output from nearest

neighbor grid points in 1/12.5◦ and 1/25◦ simulations of HYCOM. Comparison of the

spectral densities shows that both simulations match data relatively well in both

island and continental coastal locations. The variance in HYCOM, computed by

integrating the spectral densities over four frequency bands, is representative of vari-

ance measured by tide gauges in the subtidal, diurnal, and semidiurnal bands, but is

deficient compared to the tide gauge variance in the supertidal band. Comparison of

the global averages of frequency band separated variance in the tide gauge data versus

both HYCOM simulations shows that increasing the horizontal resolution increases

the variance in the subtidal, and semidiurnal bands, and decreases in the diurnal and

supertidal bands. The decrease of variance in these two bands may be due to the

sensitivity of SSH variance to parametrized topographic wave drag in the model.
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Frequency spectral densities of dynamic height were computed from both a 1/25◦

simulation of HYCOM and a 1/48◦ simulation of MITgcm and compared to those

computed from in-situ McLane profiler data in nine locations. In five of the nine

comparisons, both models resemble data relatively well across all frequencies. In

the other four, there is a large gap between both models and data at frequencies

just less than diurnal frequencies (ω < 1 cpd). In comparing variance integrated

over diurnal, semidiurnal, and supertidal frequencies, both HYCOM and MITgcm

perform similarly well in the diurnal and semidiurnal bands, but, again, the 1/25◦

simulation of HYCOM underestimates the variance in the supertidal band compared

to the in-situ data. The larger variance in the supertidal band in the 1/48◦ MITgcm

simulation is likely a result of its higher horizontal resolution, as this is known to have

an effect on the resolution of the internal gravity wave continuum. This validation

against in-situ data demonstrates both models’ potential to supplement the limited

data available for study of the IGW continuum.

After comparing both models to in-situ data, we take advantage of the hourly,

global coverage of the models to produce SSH variance frequency-horizontal wavenum-

ber spectral densities that would be unobtainable using available in-situ data. The

SSH variance frequency-horizontal wavenumber spectral densities were computed

from seven locations in five simulations of HYCOM and MITgcm to study both

regional dependence as well as model horizontal resolution dependence. In all simula-

tions in all regions, large variance is seen along the linear dispersion relation curves for

internal gravity waves. The large variance seen along these curves is more prominent

in regions known to have large internal gravity wave activity (e.g. North Pacific re-

gion), and is less prominent in regions of high mesoscale eddy activity (e.g. Kuroshio

an North Atlantic regions). It has been previously thought that high-frequency,

high-wavenumber variability was dominated by internal tides. Upon integrating the

frequency-horizontal wavenumber spectral densities over subtidal, tidal, and super-
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tidal frequency bands, it is clear that while sometimes it is the tidal band that is

dominant at small scales, in other regions the supertidal band dominates at scales

of ∼ 30-50 km. The large variance along the IGW dispersion relation curves shows

that it is likely the IGW continuum that dominates at these scales globally. However,

as both models provide vastly different estimates of the supertidal frequency band

contribution to small wavenumbers, more testing against data will be necessary in

the near future. The transition length scale, at which the supertidal band dominates

over the subtidal band, is also dependent on both latitude and eddy activity. As with

kinetic energy, the SSH transition length scale tends to be smaller in regions of high-

latitude, high-eddy activity. In regions of low-latitude, and low-eddy activity, the

transition length scales are much larger, implying that high-frequency contamination

of SWOT data will appear at larger scales in these areas.

Global maps of SSH variance arising from various oceanographic phenomena can

be created by computing pointwise frequency spectral densities in non-steric and

steric SSH output from both 1/12.5◦ and 1/25◦ simulations of HYCOM and inte-

grating over subtidal, diurnal, semidiurnal, and supertidal frequencies. This tech-

nique is confirmed in its ability to recreate familiar maps of steric subtidal variability

(mesoscale eddies and western boundary currents), non-steric diurnal and semidiurnal

variability (barotropic tides), and steric diurnal and semidiurnal variability (internal

tides). Because the SWOT mission will be primarily focused on small horizontal

scales, the small-scale, non-stationary semidiurnal steric SSH signals are of greater

interest to the SWOT mission than the larger-scale non-stationary semidiurnal non-

steric SSH signals. The maps of the steric SSH variability in the tidal bands after the

stationary part of the tide has been removed provide new estimates of non-stationary

internal tide variance, with globally averaged variance of 0.05 cm2 for the diurnal non-

stationary internal tide and 0.43 cm2 for the semidiurnal non-stationary internal tide

in the 1/25◦ simulation of HYCOM. This technique also produces the first global map
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of supertidal steric SSH variance, attributed to the IGW continuum. The supertidal

steric SSH map has a globally integrated variance of 0.16 cm2 with regions along the

equator having variance exceeding 10 cm2.

With two-dimensional SSH data soon to be available from the upcoming SWOT

satellite altimeter, wavenumber spectral densities will become available from a global

two-dimensional dataset. These spectral densities will likely be useful in diagnos-

ing ocean surface dynamics on a global scale. While SSH data provided by SWOT

will have unprecedented global coverage, it will suffer from contamination due to

aliasing of high-frequencies, as in previous altimeter missions. While phase-locked,

high-frequency dynamics such as tides can be accurately removed from aliased records,

aliasing of less predictable dynamics such as non-stationary tides and the IGW contin-

uum will more likely cause contamination in the estimation of low-frequency signals

from altimetry. The regions of large variance in the supertidal steric SSH maps,

discussed in Chapter IV, are likely indicative of regions of large IGW activity, and

may cause complications in the analysis of SSH data provided by SWOT. An ad-

ditional complication arises due to the fact that the high-wavenumbers of interest

for the SWOT mission are dominated by high-frequency phenomena such as internal

tides, both stationary and non-stationary, and the IGW continuum. In order to gain

meaningful insight concerning these small-scale dynamics, non-stationary tides and

the IGW continuum will have to be properly understood and accurately mapped and

removed before the low-frequency signals of interest can be accurately studied.

To continue the work presented here, two projects would likely provide invaluable

insight. Firstly, as stated in Chapter III, the global models used for study are not

expected to resolve submesoscale dynamics. The submesoscale is often thought to be

small-scale (∼ 10 km) and fall within the subtidal band. To study the submesoscale

with global ocean models, much higher horizontal and vertical resolution is required.

It would be advantageous to repeat the diagnostics used in Chapter III, and com-
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pute frequency-horizontal wavenumber spectral densities of SSH in simulations with

high enough resolution to resolve submesoscale dynamics. Currently, preparations

are being made to conduct such a study using an MITgcm simulation with 1/96◦

horizontal resolution and 300 vertical layers. It has been conjectured that in simu-

lations such as these, the subtidal band would dominate at scales not measurable in

the simulations described in this thesis, due to the models potential resolution of sub-

mesoscale dynamics. This could be crucial information to the SWOT community, as

the low-frequency submesoscale is of primary focus for the SWOT mission. Secondly,

an increased understanding of the physical manifestation of non-stationary internal

tides would provide further insight into some of the results discussed in this thesis.

As stated in Chapter IV, the non-stationary component of internal tides is largely

dependant on the duration of the record. Additionally, the mechanism by which

low-frequency eddies modulate the stationary tidal signal is not well understood. A

project is planned to study the non-stationary tide in more detail than presented

here. In this project, we will use models of simple harmonic oscillators and introduce

low-frequency modulation and noise into the system to see how the spectral peak of

the harmonic oscillator is affected. We will also take advantage of the steric/non-

steric SSH split in HYCOM to examine how non-stationarity effects barotropic vs.

baroclinic tides. An increased understanding of non-stationary tidal signals would

undoubtedly aid the altimetry community in the removal of such signals from aliased

data.

SWOT may be able to contribute to the study of the IGW continuum and its

influence on ocean mixing. If the community were able to extrapolate information

on the spatial distribution and dissipation of internal gravity waves, it may go a

long way to providing ocean mixing data with unprecedented global coverage. While

Argo floats have provided invaluable information regarding global mixing, still more

observational data is necessary to understand the influences of both abyssal and
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surface ocean mixing on the meridional overturning circulation and its associated

poleward heat transport. Global maps of SSH variability from IGWs may also assist

satellite missions measuring sea surface temperature and concentrations of carbon

dioxide in understanding the absorption of excess heat and carbon dioxide from the

atmosphere. The dataset to be provided by SWOT has the potential to provide vital

information regarding changes in ocean mixing, and could aid in the study of changes

in meridional overturning circulation and, in turn, our global climate.
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APPENDIX A

Sea surface height frequency-horizontal

wavenumber and wavenumber spectral density

figures to supplement Chapter III

A.1 Introduction

This appendix consists of eight figures that accompany Chapter III. These figures

were not included in the chapter for the sake of brevity. In the chapter, frequency-

horizontal wavenumber sea surface height variance spectral densities are computed

from two simulations of the HYbrid Cooridinate Ocean Model (HYCOM) and three

simulations of the Massachusetts Institute of Technology general circulation model

(MITgcm) in seven regions of the world ocean. For the sake of brevity, the frequency-

horizontal wavenumber spectral densities computed in all regions of only one simu-

lation are shown in the main article file. Figures A.1-A.4 show the SSH frequency-

horizontal wavenumber spectral densities in all seven regions in the remaining four

simulations. This article also investigates the frequency content to wavenumber by

integrating the frequency-horizontal wavenumber spectral densities over three fre-

quency bands of interest: the subtidal band [ω < 0.86 cpd], the tidal band [0.87 <
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ω < 2.05 cpd], and the supertidal band [ω > 2.06 cpd]. Again, the article shows the

frequency band integrated wavenumber spectral densities in all regions in just one

simulation. Figures A.5-A.8 show the horizontal wavenumber spectral densities in all

regions in the remaining four simulations.
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Figure A.1: Frequency-horizontal wavenumber spectral density of SSH variance
[cm2/(cpd cpkm)] computed over seven regions from HYCOM12.
Wavenumber axes are set to the maximum wavenumber for each region
computed in HYCOM25. White curves show theoretical IGW linear
dispersion relations for first (solid), second (dashed), and third (dashed-
dotted) vertical modes. Bounding curves for each vertical mode are com-
puted from the maximal and minimal eigenspeeds along the northern and
southern boundaries, as in Müller et al. [2015]. Reprinted from Savage
et al. (2017b).
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Figure A.2: Frequency-horizontal wavenumber spectral density of SSH variance
[cm2/(cpd cpkm)] computed over seven regions from HYCOM25.
Wavenumber axes are set to the maximum wavenumber for each region
computed in HYCOM25. White curves show theoretical IGW linear
dispersion relations for first (solid), second (dashed), and third (dashed-
dotted) vertical modes. Bounding curves for each vertical mode are com-
puted from the maximal and minimal eigenspeeds along the northern and
southern boundaries, as in Müller et al. [2015]. Reprinted from Savage
et al. (2017b).
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Figure A.3: Frequency-horizontal wavenumber spectral density of SSH variance
[cm2/(cpd cpkm)] computed over seven regions from MITgcm12.
Wavenumber axes are set to the maximum wavenumber for each region
computed in HYCOM25. White curves show theoretical IGW linear
dispersion relations for first (solid), second (dashed), and third (dashed-
dotted) vertical modes. Bounding curves for each vertical mode are com-
puted from the maximal and minimal eigenspeeds along the northern and
southern boundaries, as in Müller et al. [2015]. Reprinted from Savage
et al. (2017b).
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Figure A.4: Frequency-horizontal wavenumber spectral density of SSH variance
[cm2/(cpd cpkm)] computed over seven regions from MITgcm24.
Wavenumber axes are set to the maximum wavenumber for each region
computed in HYCOM25. White curves show theoretical IGW linear
dispersion relations for first (solid), second (dashed), and third (dashed-
dotted) vertical modes. Bounding curves for each vertical mode are com-
puted from the maximal and minimal eigenspeeds along the northern and
southern boundaries, as in Müller et al. [2015]. Reprinted from Savage
et al. (2017b).
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Figure A.5: Horizontal wavenumber SSH variance spectral density in all regions in
HYCOM12 integrated over subtidal, tidal, and supertidal frequency
bands (see text for definition of bands). The 95% confidence intervals
span 76% to 137% of shown value for the subtidal band, 85% to 119%
for the tidal band, and 94% to 107% for the supertidal band. Right-
hand axis shows ratio of supertidal to total SSH variance as a function
of isotropic wavenumber. Reprinted from Savage et al. (2017b).
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Figure A.6: Horizontal wavenumber SSH variance spectral density in all regions in
HYCOM25 integrated over subtidal, tidal, and supertidal frequency
bands (see text for definition of bands). The 95% confidence intervals
span 76% to 137% of shown value for the subtidal band, 85% to 119%
for the tidal band, and 94% to 107% for the supertidal band. Right-
hand axis shows ratio of supertidal to total SSH variance as a function
of isotropic wavenumber. Reprinted from Savage et al. (2017b).
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Figure A.7: Horizontal wavenumber SSH variance spectral density in all regions
in MITgcm12 integrated over subtidal, tidal, and supertidal frequency
bands (see text for definition of bands). The 95% confidence intervals
span 76% to 137% of shown value for the subtidal band, 85% to 119%
for the tidal band, and 94% to 107% for the supertidal band. Right-
hand axis shows ratio of supertidal to total SSH variance as a function
of isotropic wavenumber. Reprinted from Savage et al. (2017b).
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Figure A.8: Horizontal wavenumber SSH variance spectral density in all regions
in MITgcm24 integrated over subtidal, tidal, and supertidal frequency
bands (see text for definition of bands). The 95% confidence intervals
span 76% to 137% of shown value for the subtidal band, 85% to 119%
for the tidal band, and 94% to 107% for the supertidal band. Right-
hand axis shows ratio of supertidal to total SSH variance as a function
of isotropic wavenumber. Reprinted from Savage et al. (2017b).
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APPENDIX B

Formulation of steric SSH in HYCOM

Steric sea surface height (SSH) is related to conservation of mass. We first assume

local conservation of vertically integrated mass:

ρa(D + ηsa) = ρb(D + ηsb) (B.1)

where

D = rest water column thickness

ρa = depth averaged density at time a

ρb = depth averaged density at time b

ηsa = steric SSH at time a

ηsb = steric SSH at time b.

We rewrite Equation 1 as:

ηsb =
ρa
ρb
ηsa +

ρa − ρb
ρb

D. (B.2)
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If we define time b as our time of interest, and time a as the long term mean, we can

rewrite the standard steric SSH as

ηs =
ρ̄

ρ
η̄s +

ρ̄− ρ
ρ

D, (B.3)

where the long term mean depth-averaged density, ρ̄, is obtained from climatology or

from a long term model mean, and ρ is the instantaneous depth-averaged density. We

do not have an independent way to calculate mean steric SSH, η̄s, but we do have the

total (steric plus non-steric) mean SSH, η̄. Because most non-steric components are

high-frequency, we assume the total mean SSH is entirely steric, i.e. η̄s ≈ η̄. HYCOM

then calculates and writes out steric SSH as

ηs ≈ ρ̄

ρ
η̄ +

ρ̄− ρ
ρ

D. (B.4)
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