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Abstract

This dissertation investigates the tactical dynamic pricing decisions in industries where sellers

sell multiple types of capacity-constrained products/services to their customers. Motivated

by operational frictions posed by business considerations, I develop dynamic pricing heuris-

tics that have both provably good revenue performance and nice features which can address

these operational frictions. The first essay studies how to do effective dynamic pricing with-

out too many price changes. In practice, many sellers have concerns about dynamic pricing

due to the computational complexity of frequent re-optimizations, the negative perception

of excessive price adjustments, and the lack of flexibility caused by existing business con-

straints. To address these concerns, I develop a pricing heuristic which is computationally

easy to implement and only needs to adjust a small number of prices and do so infrequently to

guarantee a strong revenue performance. In addition, when not all products are equally ad-

missible to price adjustment, my heuristic can replace the price adjustment of some products

by their similar products and maintain an equivalent revenue performance. These features

allow the sellers to achieve most of the benefit of dynamic pricing with much fewer price

changes and provide extra flexibility to manage prices. While the first essay assumes that

the sellers know the underlying demand function, this information is sometimes unavailable

to the sellers in practice. The second and the third essays study how to jointly learn the

demand and dynamically price the products to minimize revenue loss compared to a stan-

dard revenue upper bound in the literature. The second essay addresses the parametric case

where the seller knows the functional form of the demand but not the parameters; the third

essay addresses the nonparametric case where the seller does not even know the functional

form of the demand. There is a considerable gap between the revenue loss lower bound

under any pricing policy and the performance bound of the best known heuristic in the lit-

erature. To close the gap, in my second essay, I propose a heuristic that exactly match the

lower bound for the parametric case, and show that under a demand separation condition,

a much sharper revenue loss bound can be obtained; in my third essay, I propose a heuristic

whose performance is arbitrarily close to the lower bound for the nonparametric case. All

the proposed heuristics are computationally very efficient and can be used as a baseline for

developing more sophisticated heuristics for large-scale problems.
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Chapter 1 Introduction

Revenue Management practice has become a crucial component in firms’ operations in many

industries such as airlines, hospitality, fashion and ground transportation. In these industries,

sellers sell multiple types of capacity-constrained products/services to their customers during

a finite selling season. Often times, the capacity is fixed during the selling season, unused

capacity has little salvage value, and the customer demand is uncertain. In such scenarios

where the sellers need to match fixed supply with uncertain demand, dynamic pricing is

very useful: by adjusting the prices, the sellers can effectively influence how fast the demand

arrives over time during the selling season to better match supply with demand.

Although the idea of dynamic pricing is straightforward, implementing it effectively is

not an easy task. Indeed, for large-scale real-world applications where the sellers need to sell

many different types of products which may share common capacity constrained resources,

finding the optimal dynamic pricing policy is computationally untractable. Moreover, despite

the potential benefit of dynamic pricing, in practice some sellers still adopt a static pricing

policy due to the following operational frictions: (1) business considerations and constraints

may disallow too many price changes; (2) a dynamic pricing policy may be less useful than

a more static one when demand function is not perfectly estimated. Motivated by these

concerns of using dynamic pricing, in my dissertation, I develop effective dynamic pricing

heuristics to address these operational frictions.

The first essay studies how to do effective dynamic pricing without too many price

changes. In practice, many business considerations can make excessive price adjustment

undesirable or infeasible. For one thing, a seller may be unwilling to adjust prices too fre-

quently because excessive price adjustment may leave customers with negative perceptions

of the seller and affect long-term profitability. For another, a seller may not even be able

to adjust the prices for some of the product/services he offers due to contractual agreement

with certain segments of his customers. In this essay, I develop a family of pricing heuristics

called Linear Price Correction (LPC) to address how a seller should dynamically price his

products/services with price change restrictions. LPC is computationally easy to implement;

it requires only a single optimization at the beginning of the selling season and automatically

adjusts the prices over time, taking into account the restrictions on when and what price

1



can be adjusted. Moreover, under LPC, to guarantee a strong revenue performance, it is

sufficient to adjust the prices of a small number of products and do so infrequently. This

property helps the seller focus his effort on the prices of the most important products instead

of all products. In addition, in the case where not all products are equally admissible to

price adjustment due to existing business constraints, LPC can immediately substitute the

price adjustment of the original products with the price adjustment of similar products and

maintain an equivalent revenue performance. This property provides the seller with extra

flexibility in managing his prices.

The remainder of my dissertation addresses how to do effective dynamic pricing when

the underlying demand function is unknown and needs to be estimated. Since sellers may

have different levels of knowledge of the underlying demand function, I consider two cases

separately in my second and third essays. The second essay addresses the parametric case

where the seller knows the functional form of the underlying demand function but not the

exact parameters; the third essay addresses the nonparametric case where the seller does

not even know the functional form of the demand function. In both cases, the seller needs

to jointly learn the demand and dynamically price the products/services. Developing effec-

tive pricing policy is hard since the seller has to deal with the tension between learning the

demand function (exploration) and using an effective dynamic pricing policy based on the

estimated demand function (exploitation). Following the convention, my goal is to find pric-

ing heuristics that minimize sellers’ expected revenue loss compared to a standard revenue

upper bound in the literature. The lower bound of the revenue loss of any pricing policy

under either case is well-known in the literature, but there is a considerable gap between

this lower bound and the performance bound of the best known heuristic in the literature.

To close the gap, I develop several self-adjusting heuristics with strong performance bounds.

In my second essay, I develop a heuristic called Parametric Self-adjusting Control (PSC)

which combines maximum likelihood estimation and a self-adjusting pricing scheme. I show

that the revenue loss under PSC exactly matches the revenue loss lower bound. In addition,

I show that if the parametric demand function family further satisfies a separation condi-

tion, the seller can learn the demand function much faster due to a property which I call

passive learning. To tap into this nice property, I develop another heuristic called Accelerated

Parametric Self-adjusting Control (APSC), which combines a doubling re-estimation scheme

with a self-adjusting pricing scheme. I show that this heuristic can attain a much sharper

revenue loss bound when the separation condition holds.

In my third essay, I propose a heuristic called Non-parametric Self-adjusting Control

(NSC) which combines spline estimation, functional approximations and a self-adjusting

pricing scheme for the nonparametric case. I show that as long as the underlying demand
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function is sufficiently smooth, the revenue loss of NSC can be arbitrarily close to the revenue

loss lower bound. My results suggest that in terms of performance, the nonparametric

approach can be as robust as the parametric approach, at least asymptotically. All the

proposed heuristics are computationally very efficient and can be used as a baseline for

developing more sophisticated heuristics for large-scale problems.
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Chapter 2 Pricing with Minimal and

Flexible Price Adjustment

2.1 Abstract

I study a standard dynamic pricing problem where the seller (a monopolist) possesses a finite

amount of inventories and attempts to sell the products during a finite selling season. Despite

the potential benefits of dynamic pricing, many sellers still adopt a static pricing policy due to

(1) the complexity of frequent re-optimizations, (2) the negative perception of excessive price

adjustments, and (3) the lack of flexibility caused by existing business constraints. In this

essay, I develop a family of pricing heuristics that can be used to address all these challenges.

My heuristic is computationally easy to implement; it requires only a single optimization at

the beginning of the selling season and automatically adjusts the prices over time. Moreover,

to guarantee a strong revenue performance, the heuristic only needs to adjust the prices of

a small number of products and do so infrequently. This property helps the seller focus his

effort on the prices of the most important products instead of all products. In addition, in

the case where not all products are equally admissible to price adjustment (due to existing

business constraints such as contractual agreement, strategic product positioning, etc.), my

heuristic can immediately substitute the price adjustment of the original products with the

price adjustment of similar products and maintain an equivalent revenue performance. This

property provides the seller with extra flexibility in managing his prices.

2.2 Introduction

Nowadays, Revenue Management (RM) practice has become very prevalent in many in-

dustries such as airlines, hospitality, fashion, ground transportation, and many others. (See

Talluri and van Ryzin (2005, chap.10) for more examples.) In a typical RM setting, the seller

possesses a finite amount of inventories and attempts to maximize his revenue by selling a

collection of products during a finite selling season. Often times, replenishment of inventory

is not viable during the selling season and the leftovers have little salvage value (e.g., empty
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hotel rooms). There are two types of RM commonly found in practice: quantity-based RM

and price-based RM. In the first category, prices are fixed over the selling season and the

focus is on making a dynamic resource allocation. As for the second category, prices become

the key decision variables and the seller adjusts his prices as often as he wishes and sells

all products until stock-out. Although the two types of RM are not mutually exclusive,

market context and the seller’s value proposition may dictate which of the two is more ap-

propriate. In this dissertation I am primarily interested in price-based RM. (For a review of

quantity-based RM, see Talluri and van Ryzin (2005, chap.2).)

Pricing is, without doubt, one of the most important decisions that affect the seller’s

profitability. According to a study by McKinsey & Company, “Pricing right is the fastest

and most effective way for managers to increase profits” (Marn et al. 2003). The study

argues that a 1% price increase in a typical S&P 1500 company would generate an 8%

increase in operating profit, an impact which is almost 50% greater than that of a 1%

reduction in variable cost and more than three times greater than that of a 1% increase

in volume. Perhaps more strikingly, an annual report of the operating profit for airlines

and rental car companies in the US during 2009 reveals that a 1% increase in average price

improved total operating profit by up to 67% and 30%, respectively (Sen 2013). (Although

a 67% improvement in profit is arguably rather unusual, a moderate 8%− 25% increase via

dynamic pricing is not uncommon (Sahay 2007).) And yet, despite its apparent benefit,

dynamic pricing still poses several serious challenges. First, the complexity of the required

large-scale optimization leads to prohibitive computational burden. To illustrate, a typical

major US airline operates thousands of flights daily and posts fares several months into

the future. Accounting for the number of different booking classes per flight, this can easily

translate into daily pricing decisions formillions of itineraries. Hotel industry is no exception.

Koushik et al. (2012) reports that a single run of price optimization at the InterContinental

Hotels Group (excluding the estimation time) takes about four hours to complete. Similarly,

Pekgun et al. (2013) also reveals that it takes about six hours for the Carlson Rezidor Hotel

Group to complete its price optimization once. Given the increased competition in many

industries where the prices of some products are now being adjusted even hourly (Rigby et al.

2012), this begs the question whether there exists a scalable pricing heuristic which can be

easily implemented in real-time.

Second, dynamic pricing typically involves frequent price adjustments of many products,

which may not be desirable for the firms. For one thing, even when full-scale dynamic

pricing tools are readily available, the seller may want to intentionally avoid excessive price

adjustments due to brand positioning and customer relationship considerations. Widely

accepted as it is in the airline industry, dynamic pricing suffers a considerable setback in
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some other industries due to negative customers’ perception. For example, in hotel industry,

the most common criticism of dynamic pricing is that it treats customers unequally and

unfairly (Ramasastry 2005), and lab experiments confirm the unfairness perception of price

discrimination (Haws and Bearden 2006). Aside from the customers’ perception issue, fre-

quent price adjustments of many products may also not be feasible due to existing business

constraints, i.e., the seller may not have the flexibility to adjust the prices of some products

because of existing regulations and contractual agreement. For example, hotels often face

customers from the so-called negotiated segment and provide fixed corporate rates for large

travel buyers such as IBM and HP (Koushik et al. 2012). Thus, hotels are practically forced

to provide a fixed price that cannot be adjusted over time to the negotiated segment while

at the same time are free to dynamically adjust the prices for other customer segments. This

situation is not unique to hotel industry alone. The practice of selective dynamic pricing,

which combines dynamic pricing of some products with fixed pricing of other products, is

not uncommon and can be found in many industries (e.g., with the exception of Sears, Ama-

zon.com, and Kmart, most retailers only change their prices daily on less than 10% of their

assortments (Rigby et al. 2012)). And yet, despite its common practice, I am not aware of

any work in the academic literature that rigorously analyzes the feasibility and effectiveness

of such approach.

The preceding discussions lead to several important research questions: (1) Can we con-

struct a pricing heuristic that is easy to implement and does not require frequent price

adjustments? (2) Can we adjust the price of only a small number of products in order to

mitigate customers’ negative perception while at the same time maintaining a decent rev-

enue performance? If such minimal price adjustment is possible, (3) how should we pick the

set of products whose prices are to be updated? Is there a simple rule that can be used

as a guidance? Moreover, in the case where the seller’s business constraints disallow him

to dynamically adjust the prices of some products, (4) can he still maintain an equivalent

revenue performance by dynamically adjusting the price of other products? If yes, which

other products should be used? In this essay I address all these questions. In particular, I

will construct a family of real-time heuristics which, depending on the firm’s need, can be

used to address any of the aforementioned issues.

Static price control and re-optimization. There is a rich operations management

(OM) literature on dynamic pricing. (For overviews, see Bitran and Caldentey (2003) and

Elmaghraby and Keskinocak (2003).) In the RM context, motivated by the well-known curse

of dimensionality of Dynamic Program (DP), many existing works have focused on the con-

struction of easy-to-use heuristics. There are two popular approaches that can be found in the

literature. The first is based on the so-called Approximate Dynamic Programming (ADP).
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Some works along this line are Erdelyi and Topaloglu (2011) and Kunnumkal and Topaloglu

(2010). The second approach, which is closer to my work in this essay, is based on solv-

ing a deterministic analog of the original stochastic problem. One of the seminal works on

this approach is Gallego and van Ryzin (1997). The trade-off between the two approaches

is obvious. On the one hand, the sophisticated ADP requires more computational power

than the deterministic approach. On the other hand, while the former yields an “adaptive”

price sequence, which depends on sales realization, the latter only results in a determin-

istic (static) price. The good news is that static price control is asymptotically optimal

(Gallego and van Ryzin 1997). This may partly explain its decent performance, hence its

wide adoption, in many industries. Yet, a considerable amount of revenue is still lost. As

noted earlier, the main drawback of static pricing is that it completely ignores the observed

demand realizations and the remaining inventory levels. One potential way of utilizing

this progressively revealed information is to periodically re-optimize the aforementioned de-

terministic optimization. The impact of re-optimization in quantity-based RM has been

extensively studied in the literature (e.g., see Chen and de Mello (2010), Reiman and Wang

(2008), Secomandi (2008), Ciocan and Farias (2012), Jasin and Kumar (2012, 2013)). As for

price-based RM, Maglaras and Meissner (2006) is the first to show that re-optimizing static

price control guarantees at least the same asymptotic performance as static price without

re-optimization. Thus, although re-optimization does not necessarily result in a monoton-

ically increasing revenue, it cannot severely degrade revenue either. This is in contrast to

the potentially negative impact of re-optimization in quantity-based RM (Jasin and Kumar

2013). Chen and Farias (2013) analyze the impact of re-optimization in the presence of im-

perfect forecast for a single product RM. They show that a combination of re-optimization

and re-estimation yields a significant improvement in revenue. The paper that is perhaps

closest to ours is Jasin (2014). The author provides a tighter bound for the expected revenue

loss of the re-optimized static price control studied in Maglaras and Meissner (2006). This

confirms the theoretical benefit of re-optimization for a very general class of multi-product

and multi-resource RM. In addition, the author also proposes a simple pricing heuristic that

can be implemented in real-time. (See Section 2.5 for further discussions on this.) A parallel

but independent work by Atar and Reiman (2012) studies a continuous time version of the

same problem and shows that the problem can be reduced to a diffusion control problem

whose optimal solution is a Brownian bridge. The Brownian bridge structure motivates them

to develop a diffusion-scale dynamic pricing heuristic that has similar error correction terms

as the simple heuristic developed in Jasin (2014).

Although re-optimization is intuitively appealing and enjoys a good theoretical guarantee,

unfortunately, it is not always practically feasible. As previously discussed, even a single
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optimization of a large-scale real problem instance can take hours to complete (Pekgun et al.

2013). This obviously serves as a bottleneck for the number of re-optimizations that can

be implemented in one day. A recent work by Golrezaei et al. (2014) in the context of

assortment optimization also highlights the same issue. The problem being re-optimized in

their setting is a linear program, which is considered by many as one of the most tractable

family of optimization problems. And yet, their simulation shows that the running time of

frequent re-optimizations can be 800 times larger than that of a single optimization. While

the resulting time-lag due to re-optimization may not be too detrimental for brick-and-mortar

stores who update their prices less frequently, it is clearly less feasible for online retailers

with more frequent price adjustments. In such settings, any proposed control must ideally

be implementable in real-time without unnecessarily invoking large-scale re-optimization.

The proposed heuristic. In this essay, I introduce a new family of dynamic pricing heuris-

tics, which I call Linear Price Correction (LPC). LPC only requires a single deterministic

optimization at the beginning of the selling season and can be implemented in real-time. In

addition, LPC only needs to adjust the price of a small number of products, admits a general

asynchronous update schedule, and allows update substitution among “similar” products.

Needless to say, it is also possible to couple LPC with occasional re-optimizations to further

improve its performance. All these properties taken together allow the seller to enjoy the

benefit of dynamic pricing while at the same time reducing the computational burden of

re-optimization and mitigating the negative effect of frequent price changes on customers’

perception.

The remainder of the essay is organized as follows. Section 2.3 describes the problem

setting and the asymptotic approach I take to analyze the performance of any dynamic

pricing heuristic. The proposed heuristic LPC is formally introduced in Section 2.4 where I

also discuss its minimal and asynchronous price adjustment properties which allow LPC to

achieve good performance by adjusting the prices of only a small number of products and do

so infrequently. In Section 2.5, I show the flexibility of LPC in choosing the prices of which

products to adjust by demonstrating how to achieve equivalent revenue performances by

adjusting prices of different sets of products that are “equivalent”. Section 2.6 uses numerical

experiments to show the strong performance of LPC and its modifications, and to illustrate

the managerial insights drawn from previous sections. Finally, Section 2.7 concludes. The

proofs of all my results are deferred to Appendix A.1.
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2.3 Problem Formulation

Consider a multi-period and multi-product pricing problem where the seller sells a catalog

of n products (indexed by j), each of which is made up of a combination of m types of

resources (indexed by i) whose initial inventory levels are given by C ∈ Rm. As is usually

the case, the number of products is much larger than the number of resources. Denote by

A = [Aij] the consumption matrix, whose element Aij indicates the amount of resource i

required by one unit of product j. Without loss of generality, I assume that the rows of

A are linearly independent. The selling season is finite and divided into T periods. At the

beginning of period t, the seller posts the price pt = (pt,j). The price then induces a demand

Dt(pt) = (Dt,j(pt)) with rate λ(pt) = E[Dt(pt)]. As is common in the literature, I allow at

most one customer arrival per period. Hence, the function λ(pt) can also be interpreted as

the arrival probability in period t. Let r(pt) := p′t λ(pt) denote the revenue rate in period

t, where p′t indicates the transpose of pt. Let Ωp and Ωλ denote the convex set of feasible

prices and demand rates, respectively. I make the following assumptions:

(A1) The demand function λ(pt) : Ωp → Ωλ is invertible, twice differentiable, monotonically

decreasing in its individual argument, and bounded from above by λ̄.

(A2) The revenue function r(pt) = p′t λ(pt) = λ′t p(λt) = rt(λt) is continuous, strictly jointly

concave in λt, and bounded from above by r̄.

(A3) For each product j, there exists a turn-off price p∞j such that if {pk} is any price

sequence satisfying pkj → p∞j , then I have λj(p
k) → 0.

(A4) The absolute eigenvalues of ∇2λj(pt) and ∇2r(pt) are bounded from above by v̄.

Assumptions (A1) - (A3) are similar to the standard regularity conditions in the liter-

ature (Gallego and van Ryzin 1997). (A1) is a mild assumption to ensure basic analytical

properties of the demand rate. (A2) follows from the invertibility assumption in (A1) and

is needed to guarantee that the function r(.) has a unique, bounded optimizer. The revenue

functions under a vast class of demand models such as linear and logit demand satisfy these

assumptions. As for (A3), the existence of turn-off prices allows a seller to effectively shut

down the demand for any product whenever desirable. (A4) is easily satisfied in general,

especially for compact Ωp. The constants λ̄, r̄ and v̄ are independent of t.
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The RM pricing problem. The optimal stochastic pricing problem can be written as:

(SPP): JStoc = max
π∈Πp

E

[
T∑
t=1

(pπt )
′Dt(p

π
t )

]
s.t. A

[
T∑
t=1

Dt(p
π
t )

]
≤ C,

where Πp is the set of all non-anticipating pricing policies and the constraints must hold

almost surely. Alternatively, by the invertibility of demand function, I can also use {λt} as

the decision variables and replace pt and Dt(pt) with pt(λt) and Dt(λt) respectively. I then

replace the random variables in SPP by their mean and obtain a more tractable deterministic

formulation below.

(DPP): JDet = max
T∑
t=1

r(λt) s.t.
T∑
t=1

Aλt ≤ C and λt ∈ Ωλ, ∀t.

Let {λDt } denote the unique optimal solution to DPP. Correspondingly, I define pDt :=

p(λDt ). Since demand is time-homogeneous, it can be shown that λDt = λD1 := λD and

pDt = pD1 := pD for all t. This explains the name static pricing. For analytical tractability, I

will assume that λD lies in the interior of Ωλ. I formally state this assumption below.

(A5) There exist strictly positive constants ϕL and ϕU such that [λD−ϕLe, λD+ϕUe] ⊆ Ωλ.

Assumption (A5) essentially says that all products matter. It implies the optimal de-

terministic price is neither so low that it induces too many requests nor so high that it

completely shuts down the demand of some products. As a practical rule of thumb, if some

products are not profitable (i.e. λDj = 0 for some j), they can be discarded from the catalog

and one can re-run the optimization. This helps the seller to focus on the products that

matter. Hence, (A5) is not restrictive at all.

Performance measure and asymptotic regime. Ideally, one would like to define revenue

loss of any control π as the difference between the revenue earned under the optimal pricing

policy and the revenue earned under the control. Since the former is not easy to compute, I

resort to using an upper bound as an approximation. It is known that JStoc ≤ JDet. (This is

a standard result in the literature and is an immediate consequence of Jensen’s inequality. I

omit its proof.) Let Rπ denote total revenue earned under heuristic π throughout the selling

season. The expected revenue loss of heuristic π is then defined as: RLπ = JDet − E[Rπ].

Following Gallego and van Ryzin (1997), in this essay I consider a sequence of increasing

problems parameterized by θ > 0. To be precise, in the θth problem, I scale both the

length of selling season and the initial inventory levels by a factor of θ while keeping all the

other parameters unchanged. Let T (θ) and C(θ) denote the length of the selling season and

10



initial inventory levels in the θth problem, respectively. Then T (θ) = θT and C(θ) = θC.

One may interpret the parameter θ as the scale, or relative size, of the problem. (If C is

normalized to 1, then θ has an immediate interpretation as the size of initial inventory levels.

Alternatively, if T is normalized to 1, the scale θ can be interpreted as the size of potential

demands.) Notationwise, I will simply attach (θ) as a reference to the θth problem. Observe

that the optimal solution of the scaled deterministic problem is the same as the optimal

solution of the unscaled one (i.e., λDt (θ) = λD and pDt (θ) = pD), so I have JDet(θ) = θJDet.

2.4 Minimal and Asynchronous Price Adjustments

In this section, I will develop a pricing heuristic that adjusts the prices of only a small number

of products and admits a general asynchronous update schedule. I show that my heuristic

guarantees a strong asymptotic performance despite the fact that it only adjusts the prices

of a small number of products. This has an obvious managerial significance. For example,

at Chicago O’Hare airport, United Airlines operates more than forty routes to and from the

North East and another thirty or so routes to and from the West Coast and the Mountain

Area (see www.united.com). Assuming one fare class per flight, the company needs to price

approximately 40 × 30 = 1, 200 itineraries from the North East to the West Coast and the

Mountain Area that make one stop at O’Hare airport. My result suggests that United only

needs to dynamically price 40 + 30 = 70 itineraries instead of 1, 200. Moreover, the price of

these 70 itineraries can be adjusted asynchronously instead of simultaneously.

To introduce my heuristic, I start with a notion of a base. (This is the set of products

whose prices are to be adjusted under the heuristic. I will allow more adjustable prices in

Section 2.5.) A subset of products B is said to be a base if (1) it contains exactly m products

and (2) the products in B span the resource space, meaning the columns of matrix A∇λ(pD)
that correspond to the products in B (by the same index) span the whole Rm. Note that,

since the rows of A are linearly independent and ∇λ(pD) is invertible, the rank of A∇λ(pD)
is m. So, there always exists at least one base. Let H be a real n by m matrix satisfying

AH = I, where I is an m by m identity matrix. I call H a projection matrix and say

that a projection matrix H selects the base B if the rows of ∇p(λD)H (by the same index)

that correspond to the products not in B are all zero vectors. As will be evident shortly, a

proper choice of matrix H is important to ensure that only the prices of the base products

are dynamically adjusted while the prices of the non-base products are never changed. The

following lemma establishes the existence of a projection matrix for any given base.

Lemma 2.4.1 For any base B, there exists a unique projection matrix H that selects it.

11



The heuristic. Fix a base B and assume without loss of generality that B = {1, . . . ,m}.
For each j ∈ B, define γj = {tjl : 1 ≤ l ≤ Kj} to be the updating schedule for product j. (An

updating schedule can be viewed as a business constraint that prescribes when the price of

a given product is adjustable.) In particular, the lth updating time is denoted by tjl and the

number of updates is Kj. For convenience, I will write t
j
0 = 1 and tjKj+1 = T + 1. Let kjt =

max
{
k : tjk ≤ t

}
denote the number of price updates for product j by time t. This setting is

very general: I allow the price of each product in the base to be updated asynchronously (i.e.,

independently of the other products in the base). Let H be a projection matrix that selects B.
For any set A ⊆ {1, . . . , n}, let EA denote an n by n diagonal matrix with EA

ii = 1 if i ∈ A
and 0 otherwise. (This matrix helps select a set of rows of another matrix when it is left-

multiplied, e.g., Ej∇p(λD)H is a matrix whose jth row is the same as the jth row of∇p(λD)H
and all its other rows are zeros.) Define ∆t(pt) := Dt(pt) − E[Dt(pt)] = Dt(pt) − λ(pt) and

∆̃j
l :=

∑tjl−1

s=tjl−1

∆s(ps), l = 1, . . . , Kj+1. The term ∆t(pt) can be interpreted as demand error

during period t and the term ∆̃j
l can be interpreted as cumulative demand errors between

two subsequent updating times for product j. (For brevity, whenever there is no confusion,

I will often suppress notational dependency on pt and simply write ∆t, Dt, and λt.) Let Ct

denote the remaining inventory levels at the end of period t. The definition of my heuristic

is given below.

Linear Price Correction (LPC)

1. During period 1, set p1 = pD .

2. At the beginning of period t > 1, do:

a. First compute p̂t = pD −
m∑
j=1

Ej ∇p(λD)H

 kjt∑
l=1

A∆̃j
l

T − tjl + 1

 .

b. Set the price according to the following rule:

(1) If Ct−1 ≥ Aj for all j, and p̂s ∈ Ωp for all s ≤ t, set pt,j = p̂t,j;

(2) Otherwise, set pt,j = p∞j .

The idea behind LPC is to use static price pD as baseline prices and apply real-time

adjustment to only the prices of m products in the chosen base. The proposed adjustment

has an intuitive interpretation: If past demand realization is higher than expected (i.e., the

term ∆̃’s are positive), then LPC immediately increases future prices; if, on the other hand,

past demand realization is lower than expected, then LPC immediately decreases future

prices. To see that the given update formula only adjusts prices of base products, define

ξ̃jl ej := Ej ∇p(λD)HA∆̃j
l and ξ

j
sej := Ej ∇p(λD)HA∆s, where ej is a vector with proper
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size whose jth element equals one and any of its other elements equals zero. Note that I can

write p̂t as:



p̂t,1
...

p̂t,m

p̂t,m+1

...

p̂t,n


=



pD1 −
∑k1t

l=1
ξ̃1l

T−t1l +1

...

pDm −
∑kmt

l=1
ξ̃ml

T−tml +1

pDm+1
...

pDn


.

Obviously, only the prices of the first m products are adjusted. Moreover, for each j ∈ B,
if the current period t is such that tjl−1 < t < tjl for some l, then pt,j = pt−1,j. So, the price of

product j ∈ B in the periods between two subsequent updating times does not change. To

help the reader better understand the mechanism of this pricing heuristic, I give an example

below.

Example 1. Consider a network RM with 3 products and 2 resources. Without loss of

generality, I assume that B = {1, 2} is a base. Suppose that γ1 = {2, 5, ...} and γ2 = {4, 5, ...}
(i.e., I want to adjust the price of product 1 in periods 2, 5, etc. and the price of product 2

in periods 4, 5, etc.). Assuming no stock-out, the price formula for the first five periods, are

given by:


p1,1

p1,2

p1,3

 =


pD1

pD2

pD3

 ,

p2,1

p2,2

p2,3

 =


pD1 − ξ11

T−1

pD2

pD3

 ,

p3,1

p3,2

p3,3

 =


pD1 − ξ11

T−1

pD2

pD3

 ,


p4,1

p4,2

p4,3

 =


pD1 − ξ11

T−1

pD2 − ξ21+ξ
2
2+ξ

2
3

T−3

pD3

 , and


p5,1

p5,2

p5,3

 =



pD1 −
(

ξ11
T−1

+
ξ12+ξ

1
3+ξ

1
4

T−4

)
pD2 −

(
ξ21+ξ

2
2+ξ

2
3

T−3
+

ξ24
T−4

)
pD3


.

General performance bound. I will now discuss the performance of LPC. I first provide
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a general bound that can be applied to arbitrary updating schedule and then I discuss its

implication for several specific schedules. For the sake of generality, I will allow the choice

of updating schedule to also depend on θ, i.e., γj(θ) = {tjl (θ) : 1 ≤ l ≤ Kj(θ)}, j ∈ B. Let

RH,γB(θ) denote the total revenue earned under LPC with projection matrix H and updating

schedules γB := {γj(θ)}j∈B. Let ||.||2 denote the usual spectral norm of a matrix, i.e., ||X||22
equals the maximum eigenvalue of X ′X. I state my result below.

Theorem 2.4.1 There exist positive constants Ψ and Ψ̄ independent of θ ≥ 1, the projection

matrix H that selects B, and the choice of updating schedules {γj(θ)}j∈B such that

JDet(θ)−E [RH,γB(θ)] ≤ Ψ + Ψ̄
∑
j∈B

T (θ)−1∑
t=1

min
{
1,
∣∣∣∣∇p(λD)HA

∣∣∣∣2
2
U j
1 (T (θ), t)

}

+ Ψ̄
∑
j∈B

T (θ)−1∑
t=1

min
{
1,
∣∣∣∣∇p(λD)HA

∣∣∣∣2
2
U j
2 (T (θ), t)

}
,

where the terms U j
1 (T, t) and U

j
2 (T, t) are defined as

U j
1 (T, t) =

t− tj
kjt

+ 1

(T − t)2
+

kjt∑
l=1

tjl − tjl−1(
T − tjl + 1

)2 and U j
2 (T, t) =

1

T − t

t∑
s=1

kjs∑
l=1

tjl − tjl−1(
T − tjl + 1

)2 .

I want to stress: The above bound is very general. It characterizes the performance

of LPC for any given base and any given updating schedule1, either synchronous or asyn-

chronous. (The implications of Theorem 2.4.1 for specific schedules will be discussed below.)

Note that the bound is separable over the products in the base. This suggests that the

seller cannot compensate the lack of updating of one product in the base by applying more

frequent updates to the remaining product(s) in the base. If there exist multiple feasible

bases, the bound in Theorem 2.4.1 suggests that I use the base B and the corresponding

projection matrix H that minimizes ||∇p(λD)HA||2. Although, in general, it is not possible

to explicitly characterize the “optimal” base products chosen by this selection rule, it turns

out that I can provide a very intuitive characterization of the “optimal” base product for

the case of single-resource RM.

1In the setting of quantity-based RM, Jasin and Kumar (2012) also provide a bound for revenue loss
which depends on a general choice of updating schedule. However, they assume that the admission control
for all products must be simultaneously updated at the same time. In contrast, LPC allows each product
to have its own updating schedule. This level of generality, together with the non-linearity of the objective
function and capacity constraints, introduces non-trivial analytical subtleties which do not previously exist
in the analysis of Jasin and Kumar (2012).
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Lemma 2.4.2 Suppose that m = 1. Among all projection matrices that select a base, the

projection matrix H∗ that achieves the smallest ||∇p(λD)HA||2 selects the base that consists

of product j∗ = argmaxj=1,...,n

∣∣(A∇λ(pD))j∣∣.
The intuition of the above lemma is most easily explained if one considers a special

case of single-resource RM with A = [1, . . . , 1] and separable demands (i.e., λj(p) only

depends on pj). In this setting, A∇λ(pD) becomes a row vector whose jth element equals

the demand sensitivity of product j with respect to its own price, λ′j(p
D
j ). Thus, under LPC,

the optimal projection matrix selects the most price-sensitive product into the base. This can

be intuitively explained as follows: Among all products, product j∗ needs the smallest price

perturbation to correct the same demand error. Since I am using the deterministic model as

my performance benchmark, ideally, I would want to have a price trajectory that stays as

close as possible to the baseline price pD. This can be achieved by adjusting the product that

requires the smallest perturbation. As for the more general case of single-resource RM with

general demand and general capacity consumption matrix A, a similar intuition also holds:

one wants to pick the product whose price adjustment has the largest impact on capacity

consumption.

Special updating schedules. I will now apply the result of Theorem 2.4.1 to derive an

explicit performance bound for several special updating schedules that only adjust the prices

of base products and draw some managerial insights. I start with the most commonly used

update schedule where prices are being adjusted periodically according to some frequencies.

Corollary 2.4.1 (h-Periodic Schedule) Fix h(θ) ≥ 1 and define tjl (θ) = tl(θ) = l h(θ)+

1 for all j ∈ B. There exist positive constants Ψ, Ψ̂, and Ψ̄ independent of θ ≥ 1 and h(θ) ≥ 1

such that the expected revenue loss of LPC is bounded by Ψ+ Ψ̂
√
h(θ) + Ψ̄ log2 θ.

Two comments are in order. First, if h(θ) = T (θ), then the periodic schedule reduces

to static pricing and the revenue loss is O(
√
θ). This bound is consistent with the result in

Gallego and van Ryzin (1997). If, on the other hand, h(θ) = 1, the revenue loss is reduced

to O(log2 θ). Since LPC requires only one optimization followed by simple price updates, it

provides a significant improvement2 over static pricing with negligible computational effort.

Second, although Corollary 2.4.1 assumes a synchronous schedule, it is not difficult to derive

a bound for an asynchronous periodic update schedule because the bound is separable in

2Since θ represents the size of the problem, the percentage revenue loss under LPC is approximately
log2 θ

θ × 100% whereas the percentage revenue loss under static pricing is about
√
θ
θ x 100%. Numerically,

for a problem instance with initial inventory levels equal to 100, as in a typical airplane with 100 seats, my
experiments in Section 2.6 show a 2% improvement in revenue, which is quite significant for typical RM
applications.
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individual product. For example, one plausible asynchronous schedule would be to adjust the

prices of base products on weekly basis, but on different days of the week. The asymptotic

performance bound will remain the same as in Corollary 2.4.1. One caveat of periodic

schedule is that, in order to reduce the revenue loss to O(log2 θ), a very frequent updates of

the prices of all base products (roughly Θ(θ) times) is required. But, per my discussions in

Section 2.2, this may not be practically feasible – or even if it is, it may not be strategically

desirable due to customers’ perception issue. To address this, below I propose two schedules

that still guarantee O(log2 θ) revenue loss albeit with much fewer price updates.

Corollary 2.4.2 (α-Power Schedule) Fix α ≥ 1. For all j ∈ B, let tj0(θ) = t0(θ) = 1

and define tjl (θ) = tl(θ) =
⌈
T (θ)−

∑K(θ)−l+1
s=1 sα

⌉
for 1 ≤ l ≤ K(θ), where K(θ) :=

{k :
∑k

s=1 s
α < T (θ),

∑k+1
s=1 s

α ≥ T (θ)}. Then K(θ) ≤ ((α + 1)T (θ))1/(α+1) and there exist

positive constants Ψ and Ψ̄ independent of θ ≥ 1 such that the expected revenue loss of LPC

is bounded by Ψ+ Ψ̄ log2 θ.

Corollary 2.4.3 (β-Geometric Schedule) Fix β > 1. For all j ∈ B, let tj0(θ) = t0(θ) =

1, and for l ≥ 1, iteratively define tjl (θ) = tl(θ) =
⌈
(β−1)T (θ)+ tl−1(θ)

β

⌉
as long as tl−1(θ) <

T (θ). Let K(θ) be such that tjK(θ)(θ) = T (θ). Then, K(θ) ≤ 1 + logβ T (θ), and there exist

positive constants Ψ and Ψ̄ independent of θ ≥ 1 such that the expected revenue loss of LPC

is bounded by Ψ+ Ψ̄ log2 θ.

Corollaries 2.4.2 and 2.4.3 offer two interesting insights. First, by carefully choosing the

update times, one can use a small number of updates (only about θ
1

α+1 updates with power

schedule and logβ θ updates with geometric schedule) to guarantee a O(log2 θ) revenue loss.3

Second, for both schedules, most of the updates happen near the end of the selling season.

This implies that the crucial moments for dynamic pricing is near the end of the selling

season instead of at the beginning, which suggests that the seller can perhaps apply static

price at the beginning of the season and only switch to dynamic pricing later. Needless to

say, although Corollaries 2.4.2 and 2.4.3 assume synchronous schedules, it is also possible to

use asynchronous schedules. For example, the prices of some base products can be updated

using power schedule and the prices of other base products can be updated using geometric

schedule. Again, since the bound in Theorem 2.4.1 is separable over the products in the

base, the O(log2 θ) bound still holds.

3My simulations show that the non-asymptotic performance of 1-Power schedule is almost the same as
that of 1-Periodic schedule. This is very impressive since when θ = 500, 1-Power needs 44 adjustments
while 1-Periodic requires 500 adjustments. For larger θ, the difference is even bigger.
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The impact of adjusting the prices of fewer, or more, than m products. Since

adjusting the price of all products may not be desirable, or even feasible, it is important to

understand the impact of restricting the number of adjustable products on revenue. Corol-

laries 2.4.1 - 2.4.3 partially answer this question by showing a surprising result that adjusting

the prices of onlym products (in the base) is sufficient to guarantee a O(log2 θ) revenue loss.4

This is a powerful result because, in most RM applications, the number of resources m is

typically much smaller than the number of products n. In particular, it provides an impor-

tant managerial insight that the seller does not need to aggressively adjust the prices of all

products to benefit from dynamic pricing. The result on minimal price adjustment, however,

leads to two interesting questions. First, can one still guarantee the O(log2 θ) revenue loss

by adjusting the prices of fewer than m products? The answer is unfortunately negative and

the revenue loss under such scenario is of order
√
θ in general. To understand why this is

so, consider the case where demands are separable and A = I is an m by m identity matrix.

Since this corresponds to an aggregate of m independent problems (e.g., m independent

one-stop flights), if one only dynamically adjusts the price of m′ < m products, then it is

equivalent to applying static price control to the remaining m−m′ problems, which is known

to have Θ(
√
θ) revenue loss in general (Jasin 2014). Second, what is the incremental benefit

of adjusting the prices of more than m products? To answer this, I again consider the case of

a single-resource RM. (By minimal price adjustment property, I already know that one only

needs to adjust the price of one product to guarantee a significant improvement over static

pricing. The question is whether adjusting the prices of more products has a significant

impact on performance.) Let b = (A∇λ(pD))′ and denote by b(i) the i
th largest element (in

absolute value) of b. For k ≥ 1, let Πk denote the set of all non-anticipating pricing policies

that adjust the price of at most k products in each period. (If the price of product j is not

adjusted in period t under π ∈ Πk, then p
π
t,j = pπt−1,j.) Then, the following result holds.

Theorem 2.4.2 Suppose that m = 1. There exist positive constants Ψ and Ψ̄ independent

of θ ≥ 1 and 1 ≤ k ≤ n such that

min
π∈Πk

{
JDet(θ)− E[Rπ(θ)]

}
≤ Ψ+

Ψ̄∑k
i=1 b

2
(i)

log2 θ.

4Since I only have m resources, it seems “intuitive” that I should be able to perform well by adjusting the
prices of only m products. However, since adjusting the prices of only m products also affects the demands
for the other n − m products whose prices are not adjusted, it is not immediately clear what impact this
would have on revenue. My result is different from the so-called action-space reduction discussed in pg. 220
of Talluri and van Ryzin (2005). Under the action-space reduction scenario, one first computes the optimal
aggregate decision variable and then disaggregates this variable to recover the optimal price for each product.
However, there is no guarantee that this disaggregation will result in the adjustment of only the prices of m
products. In contrast, under my scenario, the prices of n−m products are never changed.

17



The above performance bound suggests that the incremental benefit of adjusting the price

of an additional product decreases as the number of the adjustable products increases. To

see this, suppose that A = [1, . . . , 1] and demands are separable and identical across different

products with λj(.) = λ1(.) for all j. This implies pDj = pD1 for all j and b(i) = λ′1(p
D
1 ) for

all i. Then, the bound in Theorem 2.4.2 is of order log2 θ
k

. Since the function 1/k drops

quickly for small k and slowly for large k, this suggests that it is not necessary for the

seller to adjust the prices of too many products to get most of the potential revenue. (See

Section 2.6 for numerical evidence of this observation in the multi-resource case. My results

show that the revenue improvement of adjusting the price of m products over static pricing is

about 80− 90% of the revenue improvement of adjusting the price of all n products, in most

cases. Moreover, in terms of revenue loss, while adjusting the price of m products reduces

the revenue loss of static pricing by about 1− 1.2%, adjusting the price of n products only

further reduces the revenue loss by an additional 0.1− 0.2% in most cases. (See Table 2.2 in

Section 2.8.) Given that the average margins in RM industries are typically very small, only

about 3% (Irvine 2014), this highlights the practical significance of minimal adjustments for

real-world implementation.) In particular, if the seller wishes to adjust the prices of more

than m products to further increase revenue, then s/he only needs to consider adjusting the

prices of a few more products instead of all.

2.5 Equivalent Performance via Adjusting the Prices

of Other Products

Corollaries 2.4.2 and 2.4.3 in the previous section provide an important managerial insight:

Managers need to update the prices of only a small subset of their products, and do so suf-

ficiently rarely, to guarantee a strong revenue performance. Those results, however, assume

that only the prices of the same m products are updated throughout the selling season. Can

we do better? For example, why should we update the price of one product ten times and

the other products not at all if a major concern of some practitioners is that customers get

upset by frequent price changes? Can we reduce the number of price updates per product by

somehow distributing the required adjustments across different products over different time

periods (e.g., one price update per product for ten different products instead of ten price

updates for one product)? Also, what if the seller dictates that the price of some products

should not, or cannot, be changed either due to existing business constraints or contractual

agreements? Can we somehow re-assign the scheduled update for these products to other

“similar products”? As discussed in Section 2.2, although these questions have significant

practical relevance and are faced by many sellers, I am not aware of any existing work in the
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literature addressing these issues. In this section, I will discuss a generalization of LPC that

partially addresses these issues. My proposed heuristic provides important practical insights

on how to do equivalent pricing via adjusting the prices of similar products. To illustrate

the basic idea, I start with two examples.

Example 2. Consider a single flight RM with n types of ticket. I assume that each ticket

only requires one seat and demands are separable. Note that ∇λ(pD) is a diagonal matrix.

As Corollary 2.4.3 indicates, it is sufficient to adjust the price of only one type of ticket

Θ(log2 θ) times to obtain O(log2 θ) revenue loss. If I evenly distribute these adjustments

to all n tickets, the number of price updates per ticket is about ⌈(log2 θ)/n⌉. It turns out

that this still guarantees O(log2 θ) revenue loss. Thus, dynamically adjusting one type of

ticket Θ(log2 θ) times is equivalent to dynamically adjusting n types of tickets Θ((log2 θ)/n)

times for each. This has an important managerial implication. As an illustration, consider

economy seats. There are usually about 13 different fare classes for economy seats. Since a

typical US passenger flight has fewer than 500 seats and log2(500) = 8.96, by my previous

arguments, I can either adjust the price of one fare class nine times or the price of any nine

fare classes once during the selling season.

Example 3. Consider a network RM problem with 3 resources and 6 products and suppose

that

A∇λ(pD) =

 -1 0 0 0 0 -2

0 -1 0 -2 -2 0

0 0 -1 -2 0 -1

 .
Obviously, B = {1, 2, 3} forms a base. Suppose that the previously prescribed schedule for B
is γ1 = {2, 3, 5}, γ2 = {3, 4, 5}, and γ3 = {4, 6}. Unlike in the previous example where I can

arbitrarily pick any nine products, here, the choice of “similar products” is more subtle. A

new set of products is similar to the original set of products if its corresponding columns (by

the same index) in A∇λ(pD) can linearly represent the columns in A∇λ(pD) that correspond
to the original set of products. In my example, this means that I can replace updating {2, 3}
in period 4 with {4, 5}, or replace updating {3} in period 6 with {4, 5}. I cannot directly

replace the price adjustment of product 3 in period 4 with product 4 because column 4 is

not parallel to column 3. But, since product 2 will be adjusted in period 4 under both the

original schedule and the new schedule, I can achieve an equivalent revenue by bundling the

price adjustment of product 2 and 3 in period 4 and substituting it with the price adjustment

of {2, 4}.
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Equivalent pricing control. I now formally state the idea behind the preceding examples.

For clarity, I assume that B = {1, . . . ,m} is a base and H is a projection matrix that selects

B. Let γB := {γj(θ)}mj=1 denote the existing updating schedule for base products. I will

show in this section that, for any equivalent schedule of γB (to be formally defined below), I

can construct a pricing heuristic that guarantees the same asymptotic performance as LPC

under γB. In other words, if the seller wants to modify the current price updating schedules

to a new one for strategic considerations, then I can provide a new pricing control that

guarantees an equivalent performance as long as the new updating schedule is equivalent to

the current updating schedule. Before introducing equivalent schedule, I first introduce the

concept of equivalent set : A set of products G ⊆ {1, . . . , n} is said to be equivalent to the

set S ⊆ B (mathematically, I write: G ∼B S) if the columns in A∇λ(pD) that correspond to

the products in S can be written as a linear combination of the columns in A∇λ(pD) that
correspond to products in G. (Note that, by my definition, G ∼B S does not imply S ∼B G.)
Let St ⊆ B be a subset of products that are adjusted in period t under γB. Let Gt be one

of the (possibly) many sets that are equivalent to St. I say that a price updating schedule

γ is an equivalent schedule of γB if in each period t only products in Gt are adjusted under

γ. Let Γ(γB) denote the set of all equivalent schedules of γB. I now define an equivalent

pricing control for any γ ∈ Γ(γB). Let Gt ∼B St and denote by St and Gt the submatrices of

A∇λ(pD) whose columns correspond to the products in St and Gt, respectively. By definition

of equivalent set, there exists a |Gt| by |St| matrix Yt such that St = GtYt. For any such Gt, St
and Yt, I can construct a unique n by n matrix Qt = Q(Yt,Gt,St) as follows: its submatrix

with rows and columns not in Gt ∪ St equals an identity matrix, its submatrix with rows in

Gt and columns in St equals Yt, and any of its other elements equals 0. I call Q(Yt,Gt,St) a
transformation matrix because, from its construction, it uses the matrix Yt to transform the

price adjustment for products in St into price adjustment for products in Gt. The following

lemma provides some important properties of Q(Yt,Gt,St).

Lemma 2.5.1 For any Gt ∼B St and any Yt such that St = GtYt, let Qt = Q(Yt,Gt,St).
Then, the following holds:

(1) A∇λ(pD)QtE
B = A∇λ(pD)EB = A∇λ(pD)EGt∪(B−St)Qt;

(2) There exists a projection matrix Ht such that ∇p(λD)Ht = Qt∇p(λD)H and the rows

in ∇p(λD)Ht that correspond to products not in Gt ∪ (B − St) are zeros;

(3) The rows in QtE
St∇p(λD)H that correspond to products not in Gt are zeros.

Define Qt(γ) := argminQ{||Q||2 : Q = Q(Y,Gt,St), St = GtY } in each period t. (This

optimization problem turns out to be a convex optimization with linear constraints and can
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be efficiently solved off-line.) I am now ready to introduce the concept of equivalent pricing.

Let γ be an equivalent schedule of the existing schedule γB. Then, a pricing control π with

schedule γ is said to be equivalent to an existing LPC with updating schedule γB if, in Step

2a in the definition of LPC, it uses the following update formula:

p̂t = pD −
m∑
j=1

kjt∑
l=1

Qtjl
Ej∇p(λD)H A∆̃j

l

T − tjl + 1

for some Qt ∈ Qt(γ)
5 in each period t. (In light of part (3) of Lemma 2.5.1, the above update

formula guarantees that only adjustable products under γ are adjusted in each period.)

Example 2 (cont’d). Consider again the single flight problem described in Example

2. Suppose that n = 3 and assume, without loss of generality, that B = {1} with the

corresponding projection matrix H = (1, 0, 0)′. Suppose that the seller originally plans to

periodically adjust the price of only product 1 at the beginning of every period using the

following update formula:


pt,1

pt,2

pt,3

 = pD −
t−1∑
s=1

∇p(λD)H A∆s

T − s
=


pD1 −

∑t−1
s=1 p

′
1(λ

D
1 )

∆s

T−s

pD2

pD3

 .

To develop an equivalent pricing control, which alternates among the three products such

that the price of only one product is being adjusted in every period, I construct a sequence

of transformation matrices {Qtl} for each update time tl as follows. Let Q1 be a 3 by 3

identify matrix. For j ∈ {2, 3}, denote by Qj the transformation matrix that transforms

the price adjustment of product 1 into price adjustment of product j. In particular, by the

construction of transformation matrix

Q2 =


0 0 0

p′2(λ
D
2 )

p′1(λ
D
1 )

0 0

0 0 1

 , Q3 =


0 0 0

0 1 0
p′3(λ

D
3 )

p′1(λ
D
1 )

0 0

 .
5Note that, given γ ∈ Γ(γB), Qt(γ) may not be a singleton. However, as can be seen in the proof of

Theorem 2.5.1, the performance bound of an equivalent pricing control under γ depends on Qt only via
its spectral norm ||Qt||2. In particular, the smaller the norm, the smaller the revenue loss bound. This
observation motivates my definition of Qt(γ) where ||Qt||2 is minimized. Since all matrices in Qt(γ) have
the same spectral norm, my performance bound does not depend on the particular selection of Qt within
Qt(γ).
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For all l satisfying l ≡ j (mod 3), set Qtl = Qj. The resulting equivalent pricing control is

then given by p̂t = pD−
∑t−1

s=1Qs∇p(λD)H A∆s

T−s . Assuming no stock-out, the explicit formulae

of the price of all three products for the first five periods are:


p1,1

p1,2

p1,3

 =


pD1

pD2

pD3

 ,

p2,1

p2,2

p2,3

 =


pD1 − p′1(λ

D
1 )

∆1

T−1

pD2

pD3

 ,

p3,1

p3,2

p3,3

 =


pD1 − p′1(λ

D
1 )

∆1

T−1

pD2 − p′2(λ
D
2 )

∆2

T−2

pD3

 ,

p4,1

p4,2

p4,3

 =


pD1 − p′1(λ

D
1 )

∆1

T−1

pD2 − p′2(λ
D
2 )

∆2

T−2

pD3 − p′3(λ
D
3 )

∆3

T−3

 , and


p5,1

p5,2

p5,3

 =


pD1 − p′1(λ

D
1 )

∆1

T−1
− p′1(λ

D
1 )

∆4

T−4

pD2 − p′2(λ
D
2 )

∆2

T−2

pD3 − p′3(λ
D
3 )

∆3

T−3

 .

Thus, in this example, I have shown how to adjust the prices of three products T/3 times

each instead of adjusting the price of one product T times using equivalent pricing.

Performance result. For any updating schedule γ ∈ Γ(γB), let Q ∈ Q(γ) := {{Qt}Tt=1 :

Qt ∈ Qt(γ)} denote a sequence of transformation matrices that correspond to γ and let

RQ
H,γB,γ

denote the resulting revenue. The following theorem provides a uniform performance

bound for equivalent pricing control under any updating schedule γ that is equivalent to γB.

Theorem 2.5.1 There exist positive constants Ψ and Ψ̄ independent of θ ≥ 1, the projection

matrix H that selects B, and the choice of updating schedules γB such that

sup
γ∈Γ(γB)

sup
Q∈Q(γ)

{
JDet(θ)−E

[
RQ
H,γB,γ

(θ)
]}

≤ Ψ + Ψ̄
∑
j∈B

T (θ)−1∑
t=1

min
{
1, ||∇p(λD)HA||22U

j
1 (T (θ), t)

}

+ Ψ̄
∑
j∈B

T (θ)−1∑
t=1

min
{
1, ||∇p(λD)HA||22U

j
2 (T (θ), t)

}
,

where the terms U j
1 (T, t) and U

j
2 (T, t) are defined as in Theorem 2.4.1.

Observe that the bound in Theorem 2.5.1 is similar to the bound in Theorem 2.4.1. This

shows that, for any schedule γ that is equivalent to the base schedule γB, the seller can use

equivalent pricing to guarantee the same asymptotic performance as the LPC under the base

schedule γB. This result provides the seller with an extra flexibility to manage his prices.
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LPC with synchronous price adjustment of more than m products. Although

the LPC discussed in Section 2.4 allows for arbitrary asynchronous price adjustment, it

is restricted to adjust the price of exactly m products. Generalizing LPC to the case of

arbitrary asynchronous price adjustment of more than m products is not a trivial task and

beyond the scope of this essay. It is, however, possible to use equivalent pricing to develop a

version of LPC that synchronously adjusts the prices of k ≥ m products. To illustrate how

to use equivalent pricing to do synchronous price adjustment for k ≥ m products, consider

the LPC discussed in Section 2.4 where the base is B and γj(θ) = γ1(θ) for all j ∈ B. Let G
denote a set of k ≥ m products that span the resource space (i.e., the set of products whose

corresponding columns (by the same index) in A∇λ(pD) span Rm). Since G ∼B B, I can

construct a transformation matrix Q as described above and apply equivalent pricing with

Qt = Q for all t. The resulting price update formula is given by

p̂t = pD −
k1t∑
l=1

Q∇p(λD)H A∆̃1
l

T − t1l + 1
= pD −

k1t∑
l=1

∇p(λD)H̃ A∆̃1
l

T − t1l + 1
,

where the second equality follows from the second part of Lemma 2.5.1 with H̃ being a

projection matrix such that the rows in ∇p(λD)H̃ that correspond to products not in G
are zeros. Note that such pricing control has a practical implication: It provides the seller

with an extra flexibility to trade off the negative impact of excessive price adjustment with

the incremental improvement in revenue due to adjusting the price of more products. (See

Theorem 2.4.2 and numerical experiments in Section 2.6 for further discussions.)

The difference between LPC and LRC. As briefly mentioned in Section 2.2, Jasin

(2014) has developed a dynamic pricing heuristic which he calls Linear Rate Correction

(LRC), and it adjusts the price in period t using the update formula p̂t = p
(
λD −H

∑t−1
s=1

A∆s

T−s

)
,

where H is a projection matrix. To see the difference between LPC and LRC, first, note that,

since p(·) is not always separable, the prices of all n products under LRC must be simulta-

neously updated at the same time. (Even if the projection matrix H is chosen to select a

certain base, there is no guarantee that LRC will adjust the price of only the products in the

base.) Thus, minimal price adjustment of only m products is, in general, not possible with

LRC. Second, since p(·) is not always separable, there is no analog of the general LPC up-

date formula for LRC. This means that neither asynchronous update nor equivalent pricing

is possible with LRC, which may limit the applicability of LRC for real-world implementa-

tion (e.g., due to existing business constraints). Indeed, aside from the fact that LRC and

LPC are examples of linear control6, they are close only in the special case where the prices

6Linear control has been widely studied in engineering (Ben-Tal et al. 2009) and finance (Calafiore 2009),
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of all products are updated at the same time (e.g., the synchronous 1-Periodic schedule). In

that special case, the update formula of LPC can be viewed as a linearization of the update

formula of LRC. (The generic asynchronous LPC, however, is not a linearization of any form

of LRC.)

2.6 Numerical Experiments

In this section, I run several experiments to illustrate the theoretical results in Sections 2.4

and 2.5 as well as to highlight the applicability of my heuristic in practice and its managerial

implications. For my simulations, I use a multinomial logit demand with 10 products and 4

resources. (See Appendix A.2 for more detail.) I use T = 1 and Ci = 0.1 for each resource i.

Note that, per my definition, the actual number of selling periods and initial inventory levels

are given by θT and θC, respectively. For example, θ = 1, 000 corresponds to a problem

instance with 1,000 selling periods and initial inventory levels equal to 100. I compare the

expected revenue loss under different heuristics for a wide range of θ’s. In particular, since

typical RM firms sell about 100-1,000 inventories per season (e.g., mid-size airplanes have

about 100-500 seats and large-size hotels can easily have more than 1,000 rooms), I use θ

ranging from 500-10,000.

I denote by Static the static price control developed in Gallego and van Ryzin (1997),

and by LRC the linear rate control developed in Jasin (2014). As for my heuristics, I denote

by LPC-k the LPC that simultaneously adjusts the prices of k ≥ m products in every

period. (Recall that to ensure LPC adjusts at most k prices, I only need to find a proper

transformation matrix. I select the transformation matrix following the proposed guideline

in Section 2.4.) Correspondingly, I use RSC-k to denote the heuristic that adjusts the prices

of the same k products as in LPC-k via exact re-optimization of DPP in every period, with

an additional constraint that the prices of the unadjustable products remain the same as

the static price. In addition to the said heuristics, I also test two simple modifications of

LPC-k that only adjust the same k prices and can improve the non-asymptotic performance

of the vanilla LPC-k. The first one is a projection-based LPC where, in each period, I apply

LPC update formula followed by a projection into [(1 − α%)pD, (1 + α%)pD]; I denote the

and has only been recently studied in operations management (Bertsimas et al. 2010, Atar and Reiman 2012,
Jasin 2014). In general, a linear control assumes the form of a baseline control plus a linear combination
of past system perturbations. (This explains the forms of LRC and LPC.) While most existing literature
on linear control focuses on finding a way to compute the optimal control parameters, my work explicitly
constructs a particular form of linear control, which has certain desirable properties, and proposes a particular
choice of parameters values that yields a strong performance guarantee. Needless to say, once the form is
assumed, it may be possible to apply standard techniques in the literature to optimize the parameters of
LPC. However, this is beyond the scope of this essay.
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resulting heuristic by Proα-k. If α is small, Proα-k is very similar to static price control;

if α is large, Proα-k is very similar to LPC-k. Per my discussions in Section 2.4, since I

am using static price as my benchmark, I would ideally like to have a heuristic whose price

trajectory stays as close as possible to the static price. However, since demands are random,

I must also allow some room for price adjustments to account for demand variability. This

motivates the use of projection as a way to control the intensity of price fluctuation. The

second modification of LPC-k is a re-optimization-based LPC, denoted by Hybβ-k, where I

re-optimize DPP at the first β updating times of the 2-Geometric schedule and apply LPC

in the remaining periods.

Experiment 1: Performance of LPC. Figure 2.1 illustrates the performance of LPC-

10 and other existing heuristics. Consistent with my asymptotic results, LPC-10 performs

much better than Static.7 Figure 2.1 also shows that LPC-10 performs slightly worse than

LRC and RSC-10, which is not surprising because both LRC and RSC-10 are known to

have a slightly stronger performance guarantee of O(log θ) than LPC (Jasin 2014). I want

to stress that although RSC-10 performs very well, it is also very time-consuming (see

Table 2.1). In contrast, LPC-10 is computationally very fast. Admittedly, there is still a

revenue gap between the “ideal but not implementable” RSC-10 and LPC-10. The question

is whether there is a cheap way to improve the performance of LPC-10 without resorting to

heavy frequent re-optimizations. It turns out that I can significantly narrow the gap between

RSC-10 and LPC-10 by simple modifications of LPC-10. The first plot in Figure 2.2 shows

that Pro30-10, which enforces the prices of LPC to fluctuate within a 30% band around

the static price, can reduce the revenue loss gap by almost a half. This indicates that a

simple projection can have a significant impact on revenue. (In general, I can also use

product-dependent α parameters and optimize them by running an off-line Monte-Carlo

optimization.) The second plot in Figure 2.2 further shows that Hyb8-10, which combines

LPC with only 8 optimizations, can reduce the revenue loss gap by more than 75%. This is

fairly impressive considering the fact that, even for small θ = 500, RSC-10 already requires

500 re-optimizations. It highlights the versatility of LPC for practical implementation; in

particular, I can use LPC in combination with occasional re-optimizations in the case where

frequent re-optimizations is clearly not feasible.

7It is interesting to note that not all linear price controls are guaranteed to perform well. For
example, under 1-Periodic schedule, one intuitively appealing linear price control is p̂t = pD −∑m

j=1 E
j∇p(λD)H

∑t−1
s=1 A∆s. Similar to LPC, this heuristic also adjusts prices to compensate for ran-

domness in demand realizations. But, in contrast to LPC, this heuristic adjusts the price in a myopic
manner; it attempts to fully correct the errors made in the previous period in the next period. Although
this heuristic appears reasonable at first sight, my numerical experiments suggest that it is not even asymp-
totically optimal. This highlights that developing a linear price control that has strong performance is not
a trivial task.

25



Experiment 2: Minimal price adjustment. In this experiment, I test the minimal ad-

justment property discussed in Section 2.4. The plots in Figure 2.3 show the comparison

between LPC-4 and RSC-4, as well as the two types of modified LPC with the same pro-

jection matrix as LPC-4. All these heuristics adjust the prices of the same m = 4 products.

(Note that LRC cannot be included in this comparison because it cannot adjust prices of

fewer than n = 10 products.) Similar to experiment 1, while RSC-4 performs very well, it

requires a lot of re-optimizations, which may not be feasible in practice. The two simple

modifications of LPC-4, Pro30-4 and Hyb8-4, which are computationally much cheaper, can

attain a similar performance as RSC-4.

At the end of Section 2.4, I discussed the impact of increasing the number of adjustable

products on revenue performance. Figure 2.4 illustrates my theoretical results. (See also

Table 2.2.) The first plot in Figure 2.4 shows that, in comparison to Static that adjusts

no prices at all, allowing m = 4 adjustable products yields a significant reduction in rev-

enue loss. This is due to the minimal adjustment property of LPC. Beyond the initial four

products, although allowing more adjustable products further decreases the revenue loss, its

incremental benefit becomes much smaller. In particular, the plot shows that the impact of

allowing two additional adjustable products (see the gap between LPC-4 and LPC-6 ) cap-

tures almost half of the benefit of allowing six more adjustable products (see the gap between

LPC-4 and LPC-10 ). I observe the same phenomenon in the second plot in Figure 2.4 for

Hyb8 heuristics. This suggests that the managerial insights drawn from Theorem 2.4.2 still

hold in network setting: If the seller wishes to adjust the prices of more than m products to

increase revenue, then adjusting a few more products is sufficient to capture pretty much all

the potential benefit of adjusting all products.

Experiment 3: Equivalent pricing with business constraints. In this experiment, I

study a case where the seller has additional constraints on when and what prices to adjust.

I assume that (1) the prices of products 5, 8 and 9 cannot be adjusted, (2) the prices of

products 2, 3, 4 can only be adjusted in the second half of the selling season, and (3) the

prices of products 6, 7, 10 can only be adjusted in the first half of the selling season. These

are plausible constraints motivated by practical applications. For example, products 5, 8

and 9 can be viewed as corporate rate rooms that cannot be adjusted over time. Products

2-4 and 6, 7, 10 can be viewed as special rate rooms for certain events (e.g., conference)

whose prices cannot be adjusted in a certain time window. Based on my discussions in

Section 2.5, LPC can be automatically adapted to this setting via equivalent pricing with an

original base of B = {1, 2, 3, 4}; I denote this heuristic simply as LPC. Similar to previous

experiments, I can apply re-optimized static price control with the additional constraints

that certain prices cannot be adjusted in particular periods; I denote the resulting heuristic
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simply as RSC. It is also possible to use the modified LPC, which I denote as Proα and Hybk,

accordingly. Figure 2.5 shows that simple modifications of LPC, which is computationally

easy, can attain a similar performance as RSC which requires frequent re-optimizations and

may not be implementable in practice. This highlights the versatility of LPC for practical

implementation in the presence of business constraints.

2.7 Closing Remarks

In this essay, I consider a standard dynamic pricing problem and propose a new family of

pricing heuristics, which I call LPC. I show that LPC provides a strong improvement over

static pricing: The revenue loss is reduced from O(
√
θ) to O(log2 θ). In addition, it also has

desirable features that can be used to address practical concerns. First, LPC only requires a

single optimization and can be implemented in real-time, which makes it useful for solving

large-scale problems where other computationally intensive heuristics are not viable. Second,

LPC guarantees a strong revenue performance by adjusting the price of a few “important”

products infrequently. This helps address the issue of acceptability of dynamic pricing in

the eyes of customers due to excessive price adjustments. Third, LPC allows the seller to

maintain an equivalent revenue performance via adjusting the prices of other products. This

not only can be used to further reduce the number of required price changes per product, but

also provides an extra flexibility for the sellers to manage his prices in the presence of various

business constraints. My simulation results show that LPC not only has a good theoretical

performance but also works well numerically. Furthermore, its performance can be further

improved by simple modifications such as projection and occasional re-optimizations. To

conclude, I believe that my work provides novel managerial insights that make dynamic

pricing more applicable and practically appealing for real-world implementation.
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2.8 Tables

Table 2.1: Simulation time for RSC-10, LPC-10 and Hyb8-10
θ RSC-10 LPC-10 Hyb8-10

500 8305.0 13.3 209.7
5000 87552.4 86.2 212.3

Typical running time measured in milliseconds for a single simulation for selected heuristics.

Table 2.2: Comparison of revenue loss (R.L.) and revenue improvement (R.I.)
% R.L. compared to revenue upper bound % R.I. over static pricing control. % R.I. of LPC-4

θ Static LPC-4 LPC-6 LPC-8 LPC-10 LPC-4 LPC-6 LPC-8 LPC-10 % R.I. of LPC-10

500 5.94% 5.19% 4.59% 4.23% 4.15% 0.79% 1.43% 1.82% 1.90% 41.6%
1000 4.22% 3.00% 2.61% 2.60% 2.28% 1.28% 1.69% 1.69% 2.02% 63.3%
2000 2.99% 1.72% 1.57% 1.43% 1.37% 1.32% 1.46% 1.61% 1.67% 78.6%
3000 2.48% 1.25% 1.09% 1.05% 0.99% 1.27% 1.43% 1.47% 1.53% 82.8%
4000 2.13% 0.98% 0.86% 0.82% 0.77% 1.18% 1.30% 1.34% 1.40% 84.1%
5000 1.94% 0.81% 0.70% 0.69% 0.65% 1.15% 1.26% 1.28% 1.31% 88.0%
6000 1.81% 0.67% 0.61% 0.55% 0.58% 1.16% 1.22% 1.29% 1.25% 92.5%
7000 1.64% 0.59% 0.54% 0.50% 0.47% 1.07% 1.12% 1.16% 1.20% 89.1%
8000 1.58% 0.55% 0.48% 0.43% 0.40% 1.04% 1.12% 1.16% 1.20% 87.2%
9000 1.42% 0.50% 0.42% 0.41% 0.39% 0.94% 1.01% 1.02% 1.05% 89.3%
10000 1.34% 0.45% 0.42% 0.39% 0.35% 0.90% 0.93% 0.96% 1.00% 90.0%
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2.9 Figures

Figure 2.1: Revenue loss under different
heuristics
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Figure 2.2: Improving LPC-10 using projection and occasional re-optimizations
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Figure 2.3: Improving LPC-4 using projection and occasional re-optimizations
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Figure 2.4: Revenue impact of the number of adjustable products for LPC and Hyb8

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

θ

E
xp

ec
te

d 
re

ve
nu

e 
lo

ss

 

 
Static
LPC−4
LPC−6
LPC−8
LPC−10
RSC−10

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

θ

E
xp

ec
te

d 
re

ve
nu

e 
lo

ss

 

 
Static
Hyb8−4
Hyb8−6
Hyb8−8
Hyb8−10
RSC−10

Figure 2.5: Improving LPC using projection and occasional re-optimizations
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Chapter 3 Pricing with Unknown Demand:

Parametric Case

3.1 Abstract

Consider a multi-period network revenue management (RM) problem where a seller sells

multiple products made from multiple resources with finite capacity in an environment where

the the demand function form is known but the exact parameters are unknown a priori (i.e.,

the parametric case). The objective of the seller is to jointly learn the demand and price

the products to minimize his expected revenue loss. It is widely known in the literature that

the revenue loss of any pricing policy in the parametric case is at least Ω(
√
k). However,

there is a considerable gap between this lower bound and the performance bound of the best

known heuristic in the literature. To close the gap, I develop several self-adjusting heuristics

with strong performance bound. For the general parametric case, my proposed Parametric

Self-adjusting Control (PSC) attains a O(
√
k) revenue loss, matching the theoretical lower

bound. If the parametric demand function family further satisfies a well-separated condition,

by taking advantage of passive learning, my proposed Accelerated Parametric Self-adjusting

Control achieves a much sharper revenue loss of O(log2 k). All the proposed heuristics are

computationally very efficient and can be used as a baseline for developing more sophisticated

heuristics for large-scale problems.

3.2 Introduction

Revenue management (RM) has wide applications in many industries such as airlines, hotels,

fashion goods, car rentals, etc.. (Talluri and van Ryzin 2005) The common trait in these in-

dustries is that the seller uses a fixed amount of resources, which cannot be replenished during

the selling season, to produce products which are used to satisfy the uncertain demand. Any

unused resources have little salvage value when the selling season ends. Since the uncer-

tainty of demand only gradually resolves as customers with heterogenous willingness-to-pay

arrive over time, the seller needs to make important operational decisions to ensure that the
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products are sold to the right customer at the right time at the right price to maximize the

profit. One of such operational leverages that the sellers often use is dynamic pricing.

An effective use of dynamic pricing requires a good knowledge of the market response

to price changes. This requirement poses a practical problem because usually sellers do not

possess such information. Therefore, an important question that sellers need to address is

how to use dynamic pricing when the demand function is not perfectly known a priori. Since

demand estimation is always subject to estimation errors, one common approach the sellers

use in practice is to rely on frequent re-optimization. The idea is that the inaccuracy of

demand estimation can be mitigated out by frequent re-optimization. However, for most

RM applications, the problem being re-optimized is very large in size which makes frequent

re-optimization computationally difficult. Therefore, an important research question which

is both of theoretical interest and practical implications is how sellers should learn the de-

mand function and adjust price over time to achieve a good performance without necessarily

incurring a lot of computational burden. In this essay, I develop a joint learning and pricing

heuristic to address this question.

Dealing with computational burden. There is a large body of OM literature that

studies this dynamic pricing problem. It turns out that even for the simpler case where the

demand function is known, finding the optimal pricing policy is already computationally

difficult due to the curse of dimensionality of Dynamic Programming (DP). As a result,

most of the early work in this area focuses specifically on the simpler known demand case,

and develop computationally implementable heuristics instead of solving for the optimal

pricing control. (See Bitran and Caldentey (2003) and Elmaghraby and Keskinocak (2003)

for a comprehensive literature review for dynamic pricing with known demand functions.)

One popular approach is to develop heuristics using Approximate Dynamic Programming

techniques. (See Erdelyi and Topaloglu (2011) and Kunnumkal and Topaloglu (2010).) This

method can adaptively adjust the price over time according to the demand realization, but it

is still computationally intensive and may not be amenable for large scale problems. Another

stream of work is based on solving a deterministic counterpart of the original stochastic

problem. Some seminar works along this line are Gallego and van Ryzin (1994, 1997). They

propose the well-known static price control where the static price obtained by solving the

deterministic problem at the beginning is used throughout the entire selling season. However,

since this heuristic cannot adjust the price over time to account for the demand realization,

there is room for improvement. Indeed, one straightforward extension is to re-optimize the

deterministic problem over time to utilize the progressively revealed information on demand.

Maglaras and Meissner (2006) is the first to show that re-optimized static price control has

at least the same asymptotic performance as static price control without re-optimization. A
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recent work by Jasin (2014) proves a much tighter bound for the expected revenue for re-

optimized static price control and also develops a re-optimization free self-adjusting control

with comparable good performance. A follow-up work by Chen et al. (2016) develops another

simple self-adjusting control heuristic with similar performance and shows that in order to

get good performance, it is sufficient to adjust the prices of a small subset of all products.

Incorporating demand learning. Motivated by the fact that demand function is often

unknown in practice, the more recent literature on dynamic pricing has shifted the focus

to finding good dynamic pricing policies when the seller also needs to learn the underlying

demand function. The central tension is learning the demand function (exploration) and

using the optimal price based on the estimated demand function (exploitation). The more

time the seller spends on learning demand function by price experimentation, the less op-

portunity there is for him to fully tap the knowledge of the demand function he has learned.

However, if he spends too little time on exploration, he may end up with a poor estimation

of the demand function which limits the revenue he can earn during exploitation.

Learning demand is a crucial part of this problem and researchers either take a non-

parametric approach or a parametric approach for demand estimation. It has been proved

in the literature that the revenue loss of any feasible pricing control (the absolute revenue

loss to a clairvoyant optimal revenue) is at least Ω(
√
k) where k is the size of the problem.

(See Section 3.3 for more details on the asymptotic setting.) Therefore, a considerable size

of literature focuses on developing heuristics to approach this lower bound. In the non-

parametric case, the seller has no information about the structure of the demand function

other than some regularity conditions. Besbes and Zeevi (2009) is one of the first to inves-

tigate this problem in the single product setting. They propose a non-parametric heuristic

that attains a revenue loss of O(k3/4). A recent work by Wang et al. (2014) develops a more

sophisticated heuristic that achieves an improved revenue loss of O(
√
k log9/2 k). However,

their bound only applies to single product case where some special structure of the problem

can be utilized. It is not clear how to extend their heuristic to a more general setting where

the seller sells multiple products made from multiple resources. The only heuristic that can

be used in this more general setting is developed by Besbes and Zeevi (2012). However, the

performance bound of their heuristic deteriorates as the number of products increases.

The non-parametric case assumes no prior information about the demand function, but

in reality, sellers may have some useful knowledge of the structure of the demand function

based on their past experience and historical demand data. Motivated by this observation, in

this essay, I take the parametric approach in which the underlying demand function belongs

to a family of parameterized functions. The seller knows the functional form of the demand

function but doesn’t know the underlying parameters. Intuitively, the revenue loss bound
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of parametric case can be no worse than the non-parametric case since all non-parametric

heuristics can be used in a parametric setting. Surprisingly, the best revenue loss bound for

parametric approach in the literature is no sharper than that for non-parametric approach.

This gives rise to two important theoretical questions. Is there a heuristic that exactly

achieves the revenue loss lower bound Θ(
√
k) in the parametric case? Is the structural

information of the demand functional form useful at all?

Other related literature. Although the performance result for the parametric case is

limited, there is a stream of literature that discovers some nice results for a more stylized un-

capacitated problem where there is no inventory constraints. Broder and Rusmevichientong

(2012) study the general parametric demand family and propose a heuristic based on Max-

imum Likelihood Estimation (MLE) which achieves the lowest possible revenue loss bound

O(
√
k). They also show that if the demand function family satisfies the so-called well-

separated condition, the bound reduces to O(log k). Other researchers study linear or gener-

alized linear demand families and develop various kinds of heuristics based on Least Square

Estimation approach. Their work highlights the impact of information accumulation rate on

the expected revenue. (See den Boer and Zwart (2014), Keskin and Zeevi (2014), den Boer

(2014)). However, all these papers essentially ignore the inventory constraints which is

present in most RM applications. From a technical point of view, finding the optimal price

is much more straightforward in the uncapacitated problems than the capacitated problems

I study where decisions in different periods affect each other via the inventory constraints.

Note also that if the initial inventory is very large, the capacitated problem reduces to an

uncapacitated problem. Therefore, the problem I study is indeed more general than theirs.

It is worth noting that there are other approaches that tackle this uncapacitated problem.

For example, both Harrison et al. (2012) and Farias and van Roy (2010) take a Bayesian

approach to model the uncertainty of the underlying demand function. This approach can

be traced back to earlier economics literature where the importance price experimentation

is investigated. (See Rothschild (1974), McLennan (1984), Easley and Kiefer (1988)).

Although in reality the demand function may change over time, I do not address this issue

in this essay and only focus on the case when the underlying demand function is stationary.

There is some recent work in OM that looks into the demand learning problem in a non-

stationary environment (e.g., Besbes et al. (2015), Keskin and Zeevi (2016)). There is also

a fast growing literature of Convex Online Optimization in computer science literature that

studies a similar problem. I refer the readers to Hazan et al. (2016) for a literature review.

Proposed heuristic and contributions. For the general parametric case, I develop a

heuristic called Parametric Self-adjusting Control (PSC) that combines Maximum Likeli-

hood (ML) estimation with self-adjusting price updates, and derive an analytical perfor-
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mance bound. To the best of my knowledge, this is the first essay that develops a joint

learning and pricing heuristic in the network RM setting with parametric demand model.

I show that PSC is rate-optimal. To be precise, the revenue loss of PSC is O(
√
k) (Theo-

rem 3.4.1), which matches the theoretical lower bound. In addition, I also show that if the

parametric demand function family satisfies the so-called well-separated condition which was

first introduced by Broder and Rusmevichientong (2012), then there exists heuristics that

can outperform the Ω(
√
k) lower bound. I develop an Accelerated Parametric Self-adjusting

Control (APSC), a variation of PSC, that attains a much sharper performance bound of

O(log2 k) (Theorem 3.5.1).

My contribution is two-fold. On the theoretical end, I develop a heuristic for the most gen-

eral joint learning and pricing problem for the parametric case that achieves the best revenue

loss rate among all feasible controls. On the practical end, my re-optimization free heuristics

are computationally tractable, overturning the common impression that re-optimization is

a necessity to achieve good performance when the underlying demand is unknown. It also

highlights the applicability of self-adjusting idea in dynamic pricing problems, which can

provide guidelines for companies to develop more sophisticated dynamic pricing controls.

The remainder of the essay is organized as follows. I first formulate the problem in

Section 3.3. I then introduce PSC and evaluate its performance for the general parametric

in Section 3.4. Next, I introduce the well-separated condition and APSC, and evaluate the

performance of APSC in Section 3.5. Finally, I conclude the essay in Section 3.6. All the

proofs of the results can be found in Appendix A.3.

3.3 Problem Formulation

Notation. The following notation will be used throughout the essay. (Other notation will

be introduced when necessary.) Denote by R, R+, and R++ the set of real, nonnegative

real, and positive real numbers respectively. For column vectors a = (a1; . . . ; an) ∈ Rn, b =

(b1; . . . ; bn) ∈ Rn, denote by a ≽ b if ai ≥ bi for all i, and by a ≻ b if ai > bi for all i. Similarly,

denote by Z, Z+, and Z++ the set of integers, nonnegative integers, and positive integers

respectively. Denote by · the inner product of two vectors and by ⊗ the tensor product

of sets or linear spaces. I use a prime to denote the transpose of a vector or a matrix, an

I to denote an identity matrix with a proper dimension, and an e to denote a vector of

ones with a proper dimension. For any vector v = [vj] ∈ Rn, ||v||p := (
∑n

j=1 |vj|p)1/p is its

p-norm (1 ≤ p ≤ ∞) and, for any real matrixM = [Mij] ∈ Rn×n, ||M ||p := sup||v||p=1 ||Mv||p
is its induced p-norm. For example, ||M ||1 = max1≤j≤n

∑n
i=1 |Mij|, ||M ||2 = the largest

eigenvalue of M ′M , and ||M ||∞ = max1≤i≤n
∑n

j=1 |Mij|. (Note that ||M ||1 = ||M ′||∞.) For
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any function f : X → Y , denote by ||f(.)||∞ := supx∈X ||f(x)||∞ the infinity-norm of f . I

use ∇ to denote the usual derivative operator and use a subscript to indicate the variables

with respect to which this operation is applied to. (No subscript ∇ means that the derivative

is applied to all variables.) If f : Rn → R, then ∇xf = ( ∂f
∂x1

; . . . ; ∂f
∂xn

); if, on the other hand,

f = (f1; . . . ; fn) : Rn → Rn, then

∇xf =


∂f1
∂x1

· · · ∂fn
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fn
∂xn

 .

The model. I consider the problem of a monopolist selling his products to incoming cus-

tomers during a finite selling season and aiming to maximize his total expected revenue.

There are n types of products, each of which is made up of a combination of a subset of

m types of resources. For example, in the airline setting, a product refers to a multi-flight

itinerary and a resource refers to a seat in a single-leg flight; in the hotel setting, a product

refers to a multi-day stay and a resource refers to a one-night stay at a particular room.

Denote by A = [Aij] ∈ Rm×n the resource consumption matrix, which characterizes the

types and amounts of resources needed by each product. To be precise, a single unit of

product j requires Aij units of resource i. Without loss of generality, I assume that the

matrix A has full row rank. (If this is not the case, then one can apply the standard row

elimination procedure to delete the redundant rows. See Jasin (2014).) Denote by C ∈ Rm

the vector of initial capacity levels of all resources at the beginning of the selling season.

Since, in many industries (e.g., hotels and airlines), replenishment of resources during the

selling season is either too costly or simply not feasible, following the standard model in the

literature (Gallego and van Ryzin 1997), I will assume that the seller has no opportunity to

procure additional units of resources during the selling season. In addition, I also assume

without loss of generality that the remaining resources at the end of the selling season have

zero salvage value.

Consider a discrete-time model with T decision periods, indexed by t = 1, 2, ..., T . At the

beginning of period t, the seller first decides the price pt = (pt,1; . . . ; pt,n) for his products,

where pt is chosen from a convex and compact set P = ⊗n
l=1[pl, p̄l] ⊆ Rn of feasible price

vectors. The posted price pt, in turn, induces a demand, or sale, for one of the products

with a certain probability. Here, I implicitly assume that at most one sale for one product

occurs in each period. This is without loss of generality since I can always slice the selling

season fine enough to guarantee that at most one customer arrives in each period. Let

∆n−1 := {(x1; . . . ; xn) ∈ Rn|
∑n

i=1 xi ≤ 1, and xi ≥ 0 for all i} denote the standard (n− 1)-
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simplex. Contrary to most existing RM literature where it is assumed that the seller knows

the purchasing probability vector under any price a priori, in this essay, I simply assume that

it can be estimated using statistical learning approaches. Specifically, let λ(.; .) : P × Θ →
∆n−1 denote the family of demand functions where Θ is a compact subset of Rq and q ∈ Z++

is the number of unknown parameters. I denote by θ∗ the true parameters for the underlying

demand function1. Under the parametric demand case, the seller knows the functional form

of demand λ(.; θ) for any θ ∈ Θ, but he does not know θ∗. Let Λθ := {λ(p; θ) : p ∈ P}
denote the set of feasible demand rates under some parameter vector θ ∈ Θ. I assume that

Λθ is convex. (It can be shown that, under the most commonly used parametric function

families such as linear, logit, and exponential demand, Λθ is convex for all θ ∈ Θ.)

Let Dt(pt) = (Dt,1(pt); . . . ;Dt,n(pt)) denote the vector of realized demand in period t

under price pt. It should be noted that, although demands for different products in the

same period are not necessarily independent, demands over different periods are assumed to

be independent (i.e., Dt only depends on the posted price pt in period t). By definition, I

have Dt(pt) ∈ D := {D ∈ {0, 1}n :
∑n

j=1Dj ≤ 1} and Eθ∗ [Dt(pt)] = λ(pt; θ
∗). This allows

me to write Dt(pt) = λ(pt; θ
∗) + ∆t(pt), where ∆t(pt) is a zero-mean random vector. For

notational simplicity, whenever it is clear from the context which price pt is being used, I will

simply write Dt(pt) and ∆t(pt) as Dt and ∆t respectively. The sequence {∆t}Tt=1 will play

an important role in my analysis later. The one-period expected revenue function under θ

is given by the revenue function defined as r(p; θ) := p · λ(p; θ). I assume that for all θ ∈ Θ,

λ(p; θ) is invertible (see parametric family assumptions below); so, by abuse of notation,

I can write r(p; θ) = p · λ(p; θ) = λ · p(λ; θ) = r(λ; θ). I make the following regularity

assumptions about λ∗(.) and r∗(.). (These are all standard assumptions in the literature and

are immediately satisfied by commonly used demand function families such as linear, logit

and exponential.)

Parametric Family Assumptions. There exist positive constants r̄, v, v̄, ω, v, v̄ such that

for all p ∈ P and for all θ ∈ Θ:

P1. λ(.; θ) : P → Λθ is in C2(P) and it has an inverse function p(.; θ) : Λθ → P that is

in C2(Λθ). λ(p; .) : Θ → ∆n−1 is in C1(Θ). For all λ, λ′ ∈ Λθ, ||p(λ; θ) − p(λ′; θ)||2 ≤
ω||λ− λ′||2.

1Although I implicitly assume that the demand function is stationary, my heuristics can be extended to
accommodate some time-varying demand scenarios if the time-dependence of demand function has certain
structural form. For example, in the fashion industry, irrespective of the condition of the market, the seller
usually knows the fractions of the total sales that will be realized at multiple milestones over the selling
season. This can be captured by incorporating in my demand model additively a time factor which is a
known time-dependent fraction of an unknown total market size. Note that this model can be handled under
the current stationary estimation framework by treating the unknown total market size as an additional
parameter.
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P2. For all 1 ≤ i, j ≤ n, ||λ(p; θ) − λ(p; θ∗)||2 ≤ ω||θ − θ∗||2, |∂λj
∂pi

(p; θ) − ∂λj
∂pi

(p; θ∗)| ≤
ω||θ − θ∗||2.

P3. ||r(.; θ)||∞ ≤ r̄ and r(.; θ) is strongly concave in λ, i.e., −v̄I ≼ ∇2
λλr(λ; θ) ≼ −vI for

all λ ∈ Λθ.

P4. There exists a set of turn-off prices p∞j ∈ R ∩ {∞} for j = 1, . . . , n such that for any

p = (p1; . . . ; pn), pj = p∞j implies that λj(p; θ) = 0 for all θ ∈ Θ.

Assumptions P1 and P2 are fairly natural and are easily satisfied by many demand

functions, e.g., linear demand, logit demand, and exponential demand. As for Assumption

P3, the boundedness of r(.; θ) follows from the compactness of Θ and Λθ and the smoothness

of r(.; θ). The strong concavity of r(.; θ) as a function of λ is a standard assumption in

the literature and is satisfied by many commonly used demand functions such as linear,

exponential, and logit functions. It should be noted that although some of these functions,

such as logit, do not naturally correspond to a concave revenue function when viewed as a

function of p, they are nevertheless concave when viewed as a function of λ. This highlights

the benefit of treating revenue as a function of demand rate instead of as a function of price.

Assumption P4 is common in the literature. (See Besbes and Zeevi (2009) and Wang et al.

(2014).) In particular, the existence of turn-off prices p∞j allows the seller to effectively shut

down the demand for any product whenever needed, e.g., in the case of stock-out. Additional

assumptions will be provided later.

Admissible controls and the induced probability measures. Let D1:t := (D1, D2,

. . . , Dt) and p1:t := (p1, p2, . . . , pt) denote respectively the observed vectors of demand and

price realizations up to and including period t. Let Ht denote the σ-field generated by D1:t

and p1:t. I define a control π as a sequence of functions π = (π1, π2, . . . , πT ), where πt is

a Ht−1-measurable real function that maps the history D1:t−1 to P ∪ {p∞}. This class of

controls is often referred to as non-anticipating controls because the decision in each period

depends only on the accumulated observations up to the beginning of the period. Under

policy π, the seller sets the price in period t equal to pπt = πt(D1:t−1; p1:t−1) almost surely

(a.s.). Let Πθ denote the set of all admissible controls. That is,

Πθ :=

{
π :

T∑
t=1

ADt(p
π
t ; θ) ≤ C and pπt = πt(Ht−1) a.s.

}
.

(Although the true underlying parameter is θ∗, I define above the set of admissible controls

for any θ ∈ Θ.) Note that I require the capacity constraint to hold almost surely for all
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π ∈ Πθ, which can be satisfied by using turn-off prices p∞ in case of stock-out. Let Pπ,θt
denote the induced probability measure of D1:t under admissible control π ∈ Πθ. For any

realization D1:t = d1:t := (d1, d2, . . . , dt), where ds = (ds,j) ∈ D, s = 1, . . . , t, I have:

Pπ,θt (d1:t) =
t∏

s=1

(1− n∑
j=1

λj(p
π
s ; θ)

)(1−∑n
j=1 ds,j) n∏

j=1

λj(p
π
s ; θ)

ds,j

 ,
where pπs = πs(d1:s−1). (By definition of λ(p; θ), the term 1−

∑n
j=1 λj(p

π
s ; θ) can be interpreted

as the probability of no-purchase in period s under price pπs .) For notational simplicity, I

will write Pπθ := Pπ,θT and denote by Eπ
θ the expectation with respect to probability measure

Pπθ . Total expected revenue under π ∈ Πθ is then given by:

Rπ
θ = Eπ

θ

[
T∑
t=1

(pπt )
′Dt(p

π
t ; θ)

]
.

Whenever it is clear that the prices p1:t ∈ P t are generated by an admissible control π, it is

also convenient to write Pp1:t,θt (d1:t) =
∏t

s=1[(1−
∑n

j=1 λj(ps; θ))
(1−

∑n
j=1 ds,j)

∏n
j=1 λj(ps; θ)

ds,j ].

Maximum likelihood estimator. As noted earlier, the seller does not know the true

parameter vector θ∗. But, he can estimate this parameter vector using statistical methods.

In this essay, I will focus primarily on Maximum Likelihood (ML) estimation. (The anal-

ysis of other statistical methods is beyond the scope of this essay.) The behavior of ML

estimator has been intensively studied in the statistics literature. It not only has certain

desirable theoretical properties, but is also widely used in practice. To guarantee the regular

behavior of ML estimator, certain statistical conditions need to be satisfied. To formalize

these conditions, it is convenient to first consider the distribution of a sequence of demand

realizations when a sequence of q̃ ∈ Z++ fixed price vectors p̃ = (p̃(1), p̃(2), . . . , p̃(q̃)) ∈ P q̃

have been applied. For all d1:q̃ ∈ Dq̃, I define the distribution Pp̃,θ as follows:

Pp̃,θ(d1:q̃) =

q̃∏
s=1

(1− n∑
j=1

λj(p̃
(s); θ)

)(1−∑n
j=1 ds,j) n∏

j=1

λj(p̃
(s); θ)ds,j

 .
Let Ep̃

θ denote the expectation with respect to Pp̃,θ. The PSC and APSC that I will

develop later use a set of “exploration prices” p̃ in the first L periods and then use maximum

likelihood estimation to estimate the demand parameters. The exploration prices that I use
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need to satisfy the following conditions to guarantee the regular behavior of ML estimator:

Statistical Conditions on Exploration Prices. There exist constants 0 < λmin <

λmax < 1, cf > 0, and a sequence of prices p̃ = (p̃(1), . . . , p̃(q̃)) ∈ P q̃ such that:

S1. Pp̃,θ(.) ̸= Pp̃,θ′(.) whenever θ ̸= θ′;

S2. For all θ ∈ Θ, 1 ≤ k ≤ q̃ and 1 ≤ j ≤ n, λj(p̃
(k); θ) ≥ λmin and

∑n
j=1 λj(p̃

(k); θ) ≤ λmax.

S3. For all θ ∈ Θ, I(p̃, θ) ≽ cfI where I(p̃, θ) := [Ii,j(p̃, θ)] ∈ Rq×q is a q by q matrix

defined as

Ii,j(p̃, θ) = Ep̃
θ

[
− ∂2

∂θi∂θj
logPp̃,θ(D1:q̃)

]
.

I call p̃ the exploration prices. Some comments are in order. S1 and S2 are crucial

to guarantee that the estimation problem is well-defined, i.e., the seller is able to identify

the true parameter vector by observing sufficient demand realizations under the exploration

prices p̃. (If this is not the case, then the estimation problem is ill-defined and there is no hope

for learning the true parameter vector.) The symmetric matrix I(p̃, θ) defined in S3 is known

as the Fisher information matrix in the literature, and it captures the amount of information

that the seller obtains about the true parameter vector using the exploration prices p̃. S3

requires the Fisher matrix to be strongly positive definite; this is needed to guarantee that the

seller’s information about the underlying parameter vector strictly increases as he observes

more demand realizations under p̃. All the results in this section require assumptions P1-P4

and S1-S3 to hold.

Remark 3.3.1 I want to point out that, given the demand function family, it is easy to find

such exploration prices. For example, for linear and exponential demand function families,

any q̃ = n + 1 price vectors p̃(1), . . . , p̃(n+1) constitute a set of exploration prices if (a) they

are all in the interior of P and (b) the vectors (1; p̃(1)), . . . , (1; p̃(n+1)) ∈ Rn+1 are linearly

independent. For logit demand function family, any q̃ = 2 price vectors p̃1, p̃2 constitute

a set of exploration prices if (a) they are both in the interior of P and (b) p̃
(1)
i ̸= p̃

(2)
i for

all i = 1, . . . , n. The choice of exploration prices is related to the literature of optimum

experimental design. Although it is possible to “optimally” choose the exploration prices

using techniques in optimal experiment design, it is beyond the scope of this essay. Interested

readers are referred to Pzman (2013) for more details.

The deterministic formulation and performance measure. It is common in the
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literature to consider the deterministic analog of the dynamic pricing problem. Specifically,

for any θ ∈ Θ, define:

(P(θ)) JDθ := max
p∈P

{
T∑
t=1

r(pt; θ) :
T∑
t=1

Aλ(pt; θ) ≼ C

}
,

or equivalently, (Pλ(θ)) JDθ := max
λt∈Λθ

{
T∑
t=1

r(λt; θ) :
T∑
t=1

Aλt ≼ C

}
.

By assumption P3, Pλ(θ) is a convex program and it computationally easy to solve. (To

avoid triviality, I assume that for all θ ∈ Θ, P(θ) is feasible.) It can be shown that JDθ is in

fact an upper bound for the expected revenue of any admissible control. That is, Rπ
θ ≤ JDθ

for all π ∈ Πθ. (See Besbes and Zeevi (2012) for proof.) This allows me to use JDθ as a

benchmark to quantify the performance of any admissible pricing control. In this essay, I

follow the common convention and define the expected revenue loss of an admissible control

π ∈ Πθ∗ as ρ
π := JDθ∗−Rπ

θ∗ . Denote by p
D(θ) (resp. λD(θ)) the optimal solution of P(θ) (resp.

Pλ(θ)). In addition, denote by µD(θ) the optimal dual solution corresponding to the capacity

constraints of P(θ). (Note that µD(θ) is also the optimal dual solution corresponding to the

capacity constraints of Pλ(θ).) Observe that P(θ∗) is equivalent to P defined in the sense that

λD(θ∗) = λD, pD(θ∗) = pD, µD(θ∗) = µD, and JDθ∗ = JD. Let Ball(x, r) denote a Euclidean

ball centered at x with radius r. I state my last parametric assumption below:

P5. (Interior Assumption) There exists ϕ > 0 such that Ball(pD(θ∗), ϕ) ⊆ P .

Assumption P5 is sufficiently mild and is satisfied by most problem instances. Intuitively,

it states that the static price should neither be too low that it attracts too much demand

nor too high that it induces no demand. The same interior assumption has also been made

in Jasin (2014) and Chen et al. (2016).

Asymptotic setting. As briefly discussed in Section 3.2, most revenue management in-

dustries can be categorized as either moderate or large size. Thus, following the standard

convention in the literature (e.g., Besbes and Zeevi (2009) and Wang et al. (2014)), I will

consider a sequence of increasing problems where the length of the selling season and the

initial inventory levels are both scaled by a factor of k > 0. (One can interpret k as the

size of the problem. For example, k = 500 could correspond to a flight with capacity 500

seats and k = 5, 000 could correspond to a large hotel with capacity 5,000 rooms.) To be

precise, in the kth problem, the length of selling season and the initial inventory levels are
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given by kT and kC respectively whereas the optimal deterministic solution is still λD(θ)

and the optimal dual solution is still µD(θ). Let ρπ(k) denote the expected revenue loss

under admissible control π ∈ Πθ∗ for the problem with scaling factor k. I am primarily

interested in identifying the order of ρπ(k) for large k. Intuitively, one would expect that

a better-performing control should have a revenue loss which grows relatively slowly with

respect to k. The following notation will be used throughout the remainder of the essay.

For any two functions f : R → R and g : R → R, I write f(k) = Ω(g(k)) if there exists

M > 0 independent of k such that f(k) ≥ Mg(k). Similarly, I also write f(k) = Θ(g(k))

if there exists M,K > 0 independent of k such that Mg(k) ≤ f(k) ≤ Kg(k), and write

f(k) = O(g(k)) if there exists M > 0 independent of k such that f(k) ≤Mg(k).

3.4 General Demand Function Family

I am now ready to discuss my heuristic for the general family of parametric demand. My

main result in this section is to show that PSC is rate-optimal, i.e., it attains the perfor-

mance lower bound. It has been repeatedly shown in the literature (e.g., Besbes and Zeevi

(2012), Broder and Rusmevichientong (2012), Wang et al. (2014)) that, in the most gen-

eral setting, no admissible pricing control can have a better performance than Ω(
√
k), i.e.,

ρπ(k) = Ω(
√
k) for all π ∈ Π. This obviously poses a fundamental limitation on the perfor-

mance of any pricing control that I could hope for. An important question of both theoretical

and practical interest is whether this lower bound is actually tight and whether there exists

an easily implementable pricing control that guarantees a O(
√
k) revenue loss. In the gen-

eral parametric setting with only a single product and without capacity constraints (i.e., the

uncapacitated setting), this question has been answered by Broder and Rusmevichientong

(2012). If, on the other hand, the resources have limited capacity (i.e., the capacitated set-

ting), Lei et al. (2014) recently propose a hybrid heuristic that guarantees a O(
√
k) revenue

loss. Thus, the question of the attainability of the lower bound in the single-product setting

has been completely resolved. As for the general parametric setting with multiple products

and capacity constraints, I am not aware of any result that guarantees a O(
√
k) revenue

loss. The heuristics analyzed in Wang et al. (2014) and Lei et al. (2014) are not easily gen-

eralizable to multiproduct setting. (This is because their heuristics exploit the structure of

the optimal deterministic solution in the single-product setting. Unfortunately, no analogs

of such structures exist in the multiproduct setting.) Moreover, the analysis of multiproduct

setting with capacity constraints introduce new subtleties that do not previously exist in

the uncapacitated setting. A family of self-adjusting controls, i.e., Linear Rate Correction

(LRC), has been shown to perform very well in the capacitated multiproduct setting when
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the demand function is known to the seller (Jasin (2014)). Motivated by this result, I will

adapt LRC and develop a family of self-adjusting controls called Parametric Self-adjusting

Control (PSC) that can be employed in the unknown demand setting. I will show that PSC

attains the best achievable revenue loss bound for the joint learning and pricing problem. I

explain PSC below.

Parametric Self-adjusting Control. The idea behind PSC is to divide the selling season

into two stages: the exploration stage, where I do price experimentations using the explo-

ration prices, and the exploitation stage, where I apply LRC using the parameter estimate

computed at the end of the exploration stage. The exploration stage lasts for L periods (L

itself is a decision variable to be optimized) while the exploitation stage lasts for T −L peri-

ods. Let Q ∈ Rn×n be a real matrix satisfying AQ = A and let θ̂L denote the ML estimate of

θ∗ computed at the end of the exploration stage. For all t ≥ L+1, define ∆̂t := Dt−λ(pt; θ̂L).
Let Ct denote the remaining capacity at the end of period t. The complete PSC procedure

is given below.

Parametric Self-adjusting Control (PSC)

Tuning Parameter: L

Stage 1 (Exploration)
a. Set exploration prices {p̃(1), p̃(2), ..., p̃(q̃)}. (See below.)
b. For t = 1 to L, do:

- If Ct−1 ≻ 0, apply price pt = p̃(⌊(t−1)q̃/L⌋+1) in period t.
- Otherwise, for product j = 1 to n, do:

- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

Stage 2 (Exploitation)
a. Compute the ML estimate θ̂L given p1:L and D1:L.
b. Solve the deterministic optimization Pλ(θ̂L).
c. For t = L+ 1 to T , do:

- If Ct−1 ≻ 0, apply the following price in period t

pt = p

(
λD(θ̂L)−

t−1∑
s=L+1

Q∆̂s

T − s
; θ̂L

)
.

- Otherwise, for product j = 1 to n, do:
- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

Please note that in the PSC the exploration prices that satisfy conditions S1-S3 are set
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as described in Remark 3.3.1 and, as I will show below, an optimal tuning parameter for

L is to set L = ⌈
√
kT ⌉. In comparison to the original LRC, which uses pt = p(λD(θ∗) −∑t−1

s=1
Q∆s

T−s ; θ
∗)2, since the underlying parameter vector θ∗ is not known and the sequence

{∆s} is not observable, I use θ̂L and {∆̂s} as their substitute in PSC. Intuitively, one would

expect that if θ̂L is sufficiently close to θ∗, then PSC should retain the strong performance of

LRC. This intuition, however, is not immediately obvious. It should be noted that while LRC

only deals with the impact of natural randomness due to demand fluctuations, as captured

in {∆s}, PSC also introduces a sequence of systematic biases due to estimation error as

captured in {∆̂s} (by definition, Eπ[∆̂s] ̸= 0). Thus, despite the strong performance of

LRC, it is not a priori clear whether linear rate adjustments alone, without re-optimizations

and re-estimations, is sufficient to reduce the impact of estimation error on revenue loss.

Interestingly, the answer is yes. In fact, PSC is rate-optimal.

Theorem 3.4.1 (Rate-Optimality of PSC) Suppose that I use L = ⌈
√
kT ⌉. Then,

there exists a constant M1 > 0 independent of k ≥ 1 such that ρPSC(k) ≤ M1

√
k for all

k ≥ 1.

As a comparison, if I apply the same static price pt = pD(θ̂L) throughout the exploitation

stage, subject to capacity constraints, then the optimal length of exploration stage is of the

order k2/3 and the resulting revenue loss is O(k2/3 log0.5 k) (Besbes and Zeevi 2009). This

underscores an important point that a simple and autonomous price update is sufficient to

reduce the revenue loss from O(k2/3 log0.5 k) to O(k1/2). Let E(t) := ||θ∗ − θ̂t||2 and define

ϵ(t) := Eπ[E(t)2]1/2. The proof of Theorem 3.4.1 depends crucially on the following lemmas.

Lemma 3.4.1 (Continuity of the Optimal Solutions) There exist constants κ > 0

and δ̄ > 0 independent of k > 0, such that for all θ ∈ Ball(θ∗, δ̄),

a. pD(θ) ∈ Ball(pD(θ∗), ϕ/2), Ball(pD(θ), ϕ/2) ⊆ P and ||λD(θ∗)− λD(θ)||2 ≤ κ||θ∗ − θ||2,

b. µD(.) : Θ → Rm
+ is continuous at θ∗;

c. The capacity constraints of Pλ(θ) that correspond to the rows {i : µDi (θ∗) > 0} are

binding.

Lemma 3.4.2 (Bounds for ML Estimator with I.I.D Observations) There exist

positive constants η1, η2, η3 independent of k > 0, such that for all δ > 0, I have Pπ(E(L) >
δ) ≤ η1 exp(−η2Lδ2) and ϵ(L) ≤ η3/

√
L.

2Jasin (2014) uses Q = HA for some H satisfying AH = I.
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Lemma 3.4.3 (Exploitation revenue under PSC) Let δ̄ be as defined in Lemma 3.4.1.

Let R̂PSC(k) denote the revenue under PSC during the exploitation stage. There exists a con-

stant M0 > 0 independent of L > 0 and k ≥ 3 such that for all k ≥ 3,

kT∑
t=L+1

r(λD(θ∗); θ∗)−Eπ
[
R̂PSC(k)

]
≤ M0

[
ϵ(L)2k +

log k

1− Pπ(E(L) > δ̄)
+ L +

1 + k Pπ
(
E(L) > δ̄

)
1− Pπ(E(L) > δ̄)

]
.

Some comments are in order. Lemma 3.4.1 means that the deterministic problem P(θ̂L) is

similar to the deterministic problem P(θ∗) as long as the estimate θ̂L is sufficiently close to θ∗.

In particular, the Lipschitz continuity of λD(θ) is useful to quantify the size of perturbation in

the deterministic solution as a function of the estimation error. Lemma 3.4.2 is a typical sta-

tistical result that is needed to bound the size of the estimation error at the end of the explo-

ration stage. Lemma 3.4.3 is the key. It characterizes the trade-off between exploration and

exploitation by establishing the impact of the length of the exploration stage on the total rev-

enue loss incurred during the exploitation stage; this, in turn, helps me to determine the opti-

mal length of the exploration stage. I want to stress: The result of Lemma 3.4.3 is rather sur-

prising. To see this, note that, if the true parameter vector is misestimated by a small error ϵ,

then λD(θ̂L) is roughly ϵ away from λD(θ∗) as suggested by Lemma 3.4.1(a). If the seller sim-

ply uses the static price pD(θ̂L) throughout the exploitation stage, then the one-period rev-

enue loss is roughly r(λD(θ∗); θ∗)−r(λD(θ̂L); θ∗) ≈ ∇λr(λ
D(θ∗); θ∗)·(λD(θ∗)−λD(θ̂L)) ≈ Θ(ϵ),

which leads to a total revenue loss of O(ϵ k). This is in contrast to the analysis in the un-

capacitated setting where ∇λr(λ
D(θ∗); θ∗) = 0 (because in this case λD(θ∗) is the global

unconstrained optimizer of r(λ; θ∗)), and thus a smaller revenue loss of order ϵ2 is incurred

in each period, which yields a total revenue loss of O(ϵ2k) (see Broder and Rusmevichientong

(2012)). This explains why the results in the uncapacitated setting are not directly applica-

ble to the capacitated setting. In PSC, I use a feedback correction mechanism (i.e., the term

−
∑t−1

s=L+1
∆̂s

T−s) that has the ability to mitigate the impact of systematic error ϵ on revenue

loss. To further highlight the strength of self-adjusting price update, I report a numerical

simulation in Table 3.1. Let STA denote the control that uses the deterministic price in

the exploitation stage instead of adjusting prices using PSC’s price update formula. (This

control is the network RM version of the control in Besbes and Zeevi (2009).) Table 3.1

displays the revenue loss (RL) for PSC and STA and shows that PSC significantly outper-

forms STA. Finally, it should be noted that, although my analysis holds for all Q satisfying

AQ = A, different choices of Q may lead to a different non-asymptotic performance. In par-

ticular, from the proof of Lemma 3.4.3, it can be seen that the constant M0 is O(1+ ||Q||22).
Therefore, one approach to determine Q is to solve min{||Q||2 : s.t. AQ = A}. Note that
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this optimization is a convex program and A is known to the seller before the selling season;

thus, the seller can solve the optimal Q off-line very efficiently.

3.5 Well-Separated Demand Function Family

The joint learning and pricing problem studied in Section 3.4 is very general: It allows both

a general parametric demand form and an arbitrary number of unknown parameters. In this

general case, the problem is naturally hard not only because active price experimentations

are costly but also because, as it turns out, not all prices are equally informative. An exam-

ple of the so-called uninformative price can be seen in Figure 3.1. Intuitively, if the seller

experiments with an uninformative price, then he will not be able to statistically distinguish

the true demand curve from the wrong one regardless of the choice of the estimation pro-

cedure. Indeed, as pointed out by Broder and Rusmevichientong (2012), this is the reason

why one cannot improve on the Ω(
√
k) lower bound for revenue loss in general. To guaran-

tee a stronger performance bound than Θ(
√
k), I need to impose additional assumptions on

the demand model. One condition that has been studied in the literature is the so-called

well-separated condition of the family of demand functions for a single product proposed

by Broder and Rusmevichientong (2012) (see Figure 3.1). They show that, for the case of

the uncapacitated single-product RM, if the demand function family is well-separated, the

Ω(
√
k) lower bound on revenue loss can be reduced to Ω(log k). This is a significant improve-

ment in terms of the potentially achievable performance of an admissible pricing control. It

is not, however, a priori clear whether a similar result also holds in the more general network

RM setting with multiple products and capacity constraints. In what follows, I first provide

the definition of well-separated condition in multidimensional parameter space, and then I

discuss a heuristic called Accelerated Parametric Self-adjusting Control (APSC), which is

specifically designed to address this setting.

Well-separated demand. To formalize the definition of well-separated demand, it is con-

venient to first consider the distribution of a sequence of demand realizations D1:t = d1:t

under a sequence of prices pπ1:t ∈ P t generated by an admissible control π, which is defined

as

Pπ,θt (d1:t) = Pp
π
1:t,θ
t (d1:t) =

t∏
s=1

(1− n∑
j=1

λj(p
π
s ; θ)

)(1−
∑n

j=1 ds,j) n∏
j=1

λj(p
π
s ; θ)

ds,j

 .
DefineW(λ̃min, λ̃max) := {p ∈ P :

∑n
j=1 λj(p; θ) ≤ λ̃max, λj(p; θ) ≥ λ̃min, j = 1, . . . , n, for all θ ∈
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Θ}, for some 0 < λ̃min < λ̃max < 1. I state the well-separated assumptions below. All the

results in this section require these additional assumptions to hold.

Well-Separated Assumptions. For any 0 < λ̃min < λ̃max < 1, there exists cf > 0 such

that:

W1. For all p ∈ W(λ̃min, λ̃max), Pp,θ(.) ̸= Pp,θ′(.) whenever θ ̸= θ′;

W2. For all θ ∈ Θ, p ∈ W(λ̃min, λ̃max), I(p, θ) ≽ cfI for I(p, θ) := [Ii,j(p, θ)] ∈ Rq×q defined

as

[I(p, θ)]i,j = Ep
θ

[
− ∂2

∂θi∂θj
log Pp,θ(D)

]
= Ep

θ

[
− ∂

∂θi
log Pp,θ(D)

∂

∂θj
log Pp,θ(D)

]
.

W3. For any p1:t = (p1, . . . , pt) ∈ W(λ̃min, λ̃max)
t, log Pp1:t,θt (D1:t) is concave in θ on Θ.

Assumptions W1 and W2 are the multiproduct multiparameter analogs of the well-

separated condition given in Broder and Rusmevichientong (2012). A necessary condition

for W1 to hold is that there is no “redundancy”. This means that the number of products

must be at least as many as the number of the unknown parameters. If the number of

products is strictly smaller than the number of unknown parameters (i.e. n < q), then I am

essentially trying to solve a system of n equations with q unknowns, which may result in the

non-uniqueness of θ. Note that W2 is analogous to condition S3 and it ensures that seller’s

information about the parameter vector strictly increases as he observes more demand re-

alizations under any p ∈ W(λ̃min, λ̃max). The last condition W3 requires the log-likelihood

function to behave nicely. This is easily satisfied by many commonly used demand func-

tions such as linear, logit, and exponential demand functions. Note that this well-separated

condition is not overly restrictive as it permits, for example general demand functions with

unknown additive market size (i.e., for each product j, its demand is λj(p) = aj+gj(p) where

the market size aj is unknown and gj : P → [0, 1] is a known function) and general demand

functions with unknown multiplicative market size (i.e., for each product j, its demand is

λj(p) = ajgj(p) where the market size aj is unknown and gj : P → [0, 1] is a known function).

For more examples of well-separated demand in the single-product/single-parameter setting,

see Broder and Rusmevichientong (2012).

Passive learning with APSC. Estimating the unknown demand parameters from a fam-

ily of well-separated candidate functions is considerably much easier than estimating the

unknown parameters in the general setting. As discussed earlier, in the general parametric

case, not all prices are equally informative. In contrast, under the well-separated condition,
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all prices are informative. This means that the demand data under any price will help im-

prove the estimation, and the seller can continue to passively learn the demand parameter

vector during the exploitation stage. The following result on ML estimation is the analog of

Lemma 3.4.2 for non-i.i.d observations when the demand function family is well-separated.

Lemma 3.5.1 (Estimation Error of ML Estimator with Non-I.I.D Observa-

tions) Fix some 0 < λ̃min < λ̃max < 1. Suppose that an admissible control π satis-

fies ps = πs(D1:s−1) ∈ W(λ̃min, λ̃max) for all 1 ≤ s ≤ t. Then, under W1-W3, there

exist constants η4, η5, η6 > 0, such that ∀δ > 0,Pπ(E(t) > δ) ≤ η4t
q−1 exp(−η5tδ2) and

ϵ(t) ≤ η6
√
[(q − 1) log t+ 1]/t.

Remark 3.5.1 The result derived in Broder and Rusmevichientong (2012) (Theorem 4.7)

can be viewed as a special case of ours. In particular, their result holds for the single product

and single parameter setting whereas my result holds for a multidimensional setting with

multiple products and multiple parameters. Although Hellinger distance and likelihood ratio

are the common arguments used in deriving bounds in both results, I want to point out

that the multidimensional parameter space is more complicated. To be precise, in the single

dimension case, all candidate parameters lie on a line. Therefore, if ML estimator θ̂t is δ

away from θ∗, then there are only two possibilities: Either θ̂t > θ∗ + δ or θ̂t < θ∗ − δ. Thus

deriving the tail bound reduces to bounding the probability that, given the observations, the

likelihood of θ∗ is smaller than either of the two points: θ∗− δ and θ∗+ δ. In contrast, in the

multidimensional parameter case, if ML estimation error is larger than δ, one needs to bound

the probability that the likelihood of θ∗ is smaller than any of an infinite number of points

that lie on the boundary of a multidimensional ball. This makes my extension nontrivial.

Another observation is that as the dimension of the parameter space increases, the bounds

deteriorate. This results in the different orders of regret bounds for the single parameter and

the multiple parameters cases. However, since the bounds do not deteriorate too much, I am

still able to attain a sharp performance bound for APSC when multiple parameters need to

be estimated.

Accelerated Parametric Self-adjusting Control (APSC) divides the selling season into

two stages similar to PSC: the initial exploration stage, which lasts L periods, and the

exploitation stage, which lasts T −L periods. However, unlike PSC, which stops learning the

value of the underlying parameter vector once it exits the exploration stage, APSC continues

to incorporate passive learning during its exploitation stage. To do this, APSC further

divides the exploitation stage into small segments with increasing length (see Figure 3.2). Let
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tz, z = 1, . . . , Z+1, be a sequence of strictly increasing integers satisfying t1 = L, t2 = L+1,

tZ+1 = T , tz =
⌈
tz+1−L

2

⌉
+ L for all z = 2, . . . , Z, and let segment z contains all the periods

in (tz, tz+1] := {tz + 1, tz + 2, ..., tz+1}. (Note that when T and L are given, the sequence

of integers is uniquely determined. It is not difficult to see that Z, the number of segments

obtained under the procedure mentioned above, satisfies Z ≤ ⌈log2(T −L+1)⌉ ≤ ⌈log2 T ⌉.)
The idea is to re-estimate the parameter vector at the beginning of each segment and use

the new estimate to update the deterministic solution over time. The re-estimation periods

are spaced in a way that updates occur more frequently during the early part of the selling

season, when my estimate is still highly inaccurate, and gradually phase out as the estimation

accuracy improves. Once the parameter estimate is updated, ideally, the seller can update

his deterministic solution by re-optimization. However, recall that frequent re-optimizations

may still be computationally challenging for large-scale RM applications. To address this

concern, I propose a re-optimization-free subroutine to update the deterministic solution

at re-estimation points: (1) At the beginning of segment 1 (i.e., the beginning of period

L+1), solve the deterministic optimization problem P(θ̂1) to obtain the exact deterministic

solution λD(θ̂1); (2) At the beginning of segment z ≥ 2 (i.e., the beginning of period tz +1),

use Newton’s method (see more details below) to obtain an approximate solution of P(θ̂z).

Since this procedure involves some subtleties, I discuss this subroutine below before laying

out the full description of APSC.

To better explain the intuition behind the subroutine, I first briefly review Newton’s

method for the multi-variate equality constrained problem. Let X be a convex set in Rn, f

be a strongly concave function, and F and G be a matrix and a vector, respectively, with

a proper dimension. I write down a nonlinear programming (NP) problem with equality

constraints and its Karush-Kuhn-Tucker (KKT) conditions below:

(NP) max
x∈X

{f(x) : Fx = G} , (KKT) {∇xf(x
∗) = F ′µ∗, Fx∗ = G} ,

where (x∗;µ∗) is the optimal pair of primal and dual solution. Since KKT conditions are

both necessary and sufficient for the prescribed setting, to solve NP, I only need to solve

the system of equations characterized by the KKT to which I will apply iterative Newton’s

method. To be precise, suppose that I have an approximate pair of primal and dual solution

(xz;µz). Then, my next pair of solution is given by (xz+1;µz+1) = (xz;µz)+(∆x; ∆µ), where

the Newton steps ∆x and ∆µ are characterized by the following:
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∇f(xz +∆x) = F ′(µz +∆µ)

F (xz +∆x) = G
≈

∇f(xz) +∇2f(xz)∆x = F ′µz + F ′∆µ

Fxz + F∆x = G

⇔

[
∆x

∆µ

]
=

[
−∇2f(xz) F ′

F 0

]−1 [
∇f(xz)− F ′µz

G− Fxz

]
.

The key result for Newton’s method is that it has a locally quadratic convergence rate,

i.e., there exists some positive constants γ and ξ such that if ||xz − x∗||2 ≤ γ, then ||xz+1 −
x∗||2 ≤ ξ||xz − x∗||22 (see Boyd and Vandenberghe (2004) for details). My idea is to tap

into this locally quadratic convergence of Newton’s method, coupled with the convergence

result of ML estimator in Lemma 3.5.1, to develop a procedure for obtaining a sequence of

solutions {λNTz }Zz=1 that closely approximates {λD(θ̂tz)}Zz=1. To implement this, I need to

approximate Pλ(θ̂tz) with an equality constrained problem ECP(θ̂tz) (to be defined shortly)

so that Newton’s iteration can be properly applied. Let Ci− (AλD(θ̂t1))i denote the amount

of slack for the ith capacity constraint in Pλ(θ̂t1) and define B := {i : Ci/T−(AλD(θ̂t1))i ≤ η}
to be the set of potential binding constraints in Pλ(θ

∗), where η is a threshold level to be

chosen by the seller. (Since I do not know which constraints are actually binding in Pλ(θ
∗),

I use B as my estimate. It can be shown that the constraints in B coincide with the binding

constraints in Pλ(θ
∗) with a very high probability as k → ∞ if η is properly chosen. I address

how η should be chosen in Theorem 3.5.1 below.) Let B and CB denote the submatrix of A

and subvector of C with rows corresponding to the indices in B respectively. Similarly, let

N and CN denote the submatrix of A and subvector of C with rows corresponding to the

indices not in B respectively. Define the Equality Constrained Problem (ECP) as follows:

ECP(θ) max
x∈Rn

{
r(x; θ) : Bx =

CB
T

}

Denote by xD(θ) the optimal solution of ECP(θ). Note that if B coincides with the set of

binding constraints of Pλ(θ
∗) at the optimal solution λD(θ∗), then not only xD(θ∗) coincides

with λD(θ∗), but also a stability result similar to Lemma 3.4.1(a) holds: there exist positive

constants δ̃, κ̃ such that for all ||θ − θ∗||2 ≤ δ̃, ||xD(θ) − λD(θ∗)||2 = ||xD(θ) − xD(θ∗)||2 ≤
κ̃||θ − θ∗||2. This means that ECP(θ) closely approximates Pλ(θ

∗) when θ is close to θ∗. I

define the Newton iteration for ECP(θ̂tz) in segment z as follows:
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Newtonz(x, µ) :=

[
x+∆x

µ+∆µ

]
=

[
x

µ

]
+

[
−R−1 B′

B O

]−1 [
G−B′µ

CB −Bx

]

=

[
x

µ

]
+

[
−R +RB′S−1BR RB′S−1

S−1BR S−1

][
G−B′µ

CB −Bx

]

where R = [∇2
λλr(x; θ̂tz)]

−1, G = ∇λr(x; θ̂tz), and S = BRB′. (This formula is derived using

the formula for Newton step in multi-variate equality constrained problem and the block

matrix inversion formula.) Let Sz := Λθ̂tz ∩{λ ∈ Rn : Nλ ≤ CN , Bλ = CB} for z = 1, . . . , Z.

I can now state the Deterministic Price Update Procedure (DPUP) below which will be a

part of the APSC described later.

Deterministic Price Update Procedure

Tuning Parameter: η

For z = 1, do:
a. Solve Pλ(θ̂t1) and obtain λD(θ̂t1)
b. Identify B := {i : Ci/T − (AλD(θ̂t1))i ≤ η}
c. Set xNT1 := λD(θ̂t1), µ

NT
1 = (BB′)−1B∇λr(x

NT
1 ; θ̂t1), and let λNT1 := xNT1 .

For z ≥ 2, do:
a. Set (xNTz ;µNTz ) := Newtonz(x

NT
z−1, µ

NT
z−1)

b. Let λNTz be the projection of xNTz on Sz, i.e., λNTz := argminλ∈Sz
||xNTz − λ||2

I briefly explain the intuition behind DPUP. Recall that my goal is to obtain an approx-

imate solution for each Pλ(θ̂tz), z = 1, . . . , Z, without re-optimization. Since ECP(θ̂tz) and

Pλ(θ̂tz) are similar, the projection of xD(θ̂tz) on Sz should be a very good approximation of

λD(θ̂tz). Therefore, if I can find a good approximation of xD(θ̂tz), say xz, then by projecting

xz on Sz, I can attain a good feasible approximation of λD(θ̂tz). This is where I need to

apply Newton’s method to approximately solve each ECP(θ̂tz). In particular, segment 1

carries out two objectives: (1) I want to find the set of potential binding constraints B and

(2) I need to compute an initial pair of approximate primal and dual solution (xNT1 ;µNT1 ) to

ECP(θ̂t1). I use λD(θ̂t1) as my initial primal solution xNT1 . The approximate dual solution

µNT1 is computed using the formula proposed in Boyd and Vandenberghe (2004). (Naturally,

since ∇λr(x
D(θ̂t1); θ̂t1) = B′µD(θ̂t1) must hold at the optimal primal and dual solution of

ECP(θ̂t1), this suggests that I use µNT1 = (BB′)−1B∇λr(x
NT
1 ; θ̂t1).) For any later segment

z > 1, I first use (xNTz−1;µ
NT
z−1) as an initial feasible point for ECP(θ̂tz) and apply a single

iteration of Newton update to obtain a much better (due to the locally quadratic conver-

gence of Newton’s method) approximate solution (xNTz ;µNTz ) of ECP(θ̂tz). Then, I project

51



xNTz to Sz to obtain a feasible solution, λNTz , to Pλ(θ̂tz). By doing this, I manage to re-

place the full-scale re-optimization of Pλ(θ̂tz) into one Newton update and one projection. It

should be noted that, although it is theoretically possible to apply two (or more) iterations

of Newton update, it is asymptotically unnecessary due to the locally quadratic convergence

of Newton’s method. Indeed, I show that ||xNTz − λD(θ∗)||2 = Θ(||θ̂tz − θ∗||2). Thus, in

light of Lemma 3.4.1(a), xNTz approximates λD(θ∗) as well as λD(θ̂tz) in terms of the order

of approximation error. (See Figure 3.3 for an illustration of DPUP.) Below, I provide the

full description of APSC heuristic.

Accelerated Parametric Self-adjusting Control (APSC)

Tuning Parameters: L, η

Stage 1 (Exploration)
a. Set exploration prices {p̃(1), p̃(2), ..., p̃(q̃)}. (See below.)
b. For t = 1 to L, do:

- If Ct−1 ≻ 0, apply price pt = p̃(⌊(t−1)q̃/L⌋+1) in period t,
- Otherwise, for product j = 1 to n, do:

- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

Stage 2 (Exploitation)
For time segment z = 1 to Z, do:

a. At the beginning of period tz + 1, compute ML estimate θ̂tz
b. Use DPUP(η) to obtain λNTz .
c. For t = tz + 1 to tz+1, do:

- If Ct−1 ≻ 0, apply the following price in period t

pt := p

(
λNTz −

t−1∑
s=t1+1

Q∆̂s

T − s
; θ̂tz

)
,

- Otherwise, for product j = 1 to n, do:
- If product j requires any resource that has been depleted, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

Please note that in APSC the exploration prices that satisfy conditions S1-S3 are set as

described in Remark 3.3.1. Moreover, under the choice of L, η described in the following

theorem, APSC has a strong revenue performance as stated in the theorem below.

Theorem 3.5.1 Fix any ϵ > 0. Suppose that I use L = ⌈ log1+ϵ(kT ) ⌉ and η = log−ϵ/4 k.

There exists a constant M2 > 0 independent of k ≥ 3 such that ρAPSC(k) ≤ M2 [log
1+ϵ k +

(q − 1) log2 k] for all k ≥ 3.
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Remark 3.5.2 Broder and Rusmevichientong (2012) has established that, under the well-

separated case with one unknown parameter, the best achievable lower bound on the perfor-

mance of any admissible pricing control in the uncapacitated single product case is Ω(log k)

and this bound is achievable by a heuristic called MLE-GREEDY. An open research question

is whether this bound is also achievable in the more general case of capacitated network RM

with well-separated demand. My result gives a partial answer. I show that the revenue loss of

APSC is worse than O(log k) by a factor of log k. However, in the case where there is only

one parameter to estimate, the revenue loss of APSC is O(log1+ϵ k). Since ϵ can be chosen

to be arbitrarily small, APSC almost attains the best achievable performance bound for the

special case with a single unknown parameter.

3.6 Closing remarks

I study the multi-product/multi-resource dynamic pricing problem in the presence of in-

ventory constraint and unknown general parametric demand functions. I develop the PSC

heuristic which first learns the demand function parameter by price experimentation and

then adjusts the price over time according to the realized demand. The heuristic is compu-

tationally appealing since it only requires one estimation and one optimization. Surprisingly,

the heuristic has a very strong performance as its revenue loss rate is only O(
√
k), matching

the best achievable revenue loss rate. This is the first heuristic for the parametric case that

attains the exact revenue loss lower bound for capacitated network RM problems.

I also study the case when the family of the demand functions satisfies a so-called “well-

separated” condition. Under this condition, demand parameter estimation becomes much

easier and the seller can now spend more time on exploitation. Indeed, I develop the APSC

heuristic, a modification of PSC, that reduces the revenue loss to O(log2 k). APSC conducts

re-estimations according to a doubling schedule. Under APSC, the seller only needs to

conduct one optimization and O(log2 k) estimations.

My results also suggest the wide applicability of self-adjusting idea in dynamic pricing

problems. This self-adjusting idea can be used as a guideline for the companies to develop

more sophisticated dynamic pricing policies in practice. Another surprising take-away it that

even if the demand function is unknown, re-optimization is not indispensable to achieving a

good performance.
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3.7 Tables

Table 3.1: Performance comparison of STA and PSC
Revenue STA PSC

k upper bd. RL(Std.) % of RL RL(Std.) % of RL

100 24970 9876 (48) 39.5% 7711 (82) 30.9%
300 74911 20133 (169) 26.9% 14323 (205) 19.1%
1000 249702 45817 (443) 18.3% 29587 (437) 11.8%
3000 749107 97342 (1080) 13.0% 55633 (896) 7.4%
10000 2497023 223564 (2855) 9.0% 110542 (2012) 4.4%
30000 7491069 459024 (6274) 6.1% 205426 (4683) 2.7%
100000 24970230 1035790 (14572) 4.1% 371655 (9497) 1.5%
300000 74910689 2174142 (31567) 2.9% 702589 (21923) 0.9%

In this numerical example, I set n = 2,m = 2, A = [1, 1; 0, 2], C = [1; 1]. The demand
model is a logit function, and [λ1(p1, p2);λ2(p1, p2)] = (1 + exp(4 − 0.015p1) + exp(8 −
0.02p2))

−1 [exp(4− 0.015p1); exp(8− 0.02p2)]. For each heuristic, I vary the scale k from
100 to 300000 and run 1000 trials for each k.
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3.8 Figures

Figure 3.1: Uninformative prices (left) and well-separated demand family (right)

Note: For a general demand function family (left), there may be uninformative prices
where the true demand curve and alternative demand curves intersect. The seller cannot
statistically distinguish the true demand function from the alternatives when using those
prices. This phenomenon does not occur in well-separated demand function family (right).

Figure 3.2: Illustration of APSC

Note: In this example, the first L periods are dedicated to exploration and the remaining
periods are divided into five exploitation segments. The seller estimates the demand

parameters and optimizes for the deterministic solution at the beginning of period t1 + 1.
The demand parameters are then re-estimated and the deterministic solution is updated

accordingly at the beginning of periods t2 + 1, t3 + 1, t4 + 1, t5 + 1.
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Figure 3.3: Geometric illustration of DPUP for segment z = 2

Note: In segment 2, step (a) is to apply Newton’s method to the previous approximate
solution xNT1 to obtain a better solution to ECP(θ̂t2), i.e., x

NT
2 . This solution may not be

feasible to Pλ(θ̂t2), so in step (b), xNT2 is projected on S2, which is a ray in this example, to
obtain λNT2 .
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Chapter 4 Pricing with Unknown Demand:

Nonparametric Case

4.1 Abstract

I study a multi-period network revenue management problem where a seller sells multiple

products, made from multiple resources with finite capacity, in an environment where the

underlying demand function is a priori unknown (in the nonparametric sense). The objective

of the seller is to simultaneously learn the unknown demand function and dynamically price

his products to minimize the expected revenue loss. For the problem where the number of

selling periods and initial capacity are scaled by k > 0, it is known that the expected revenue

loss of any non-anticipating pricing policy is Ω(
√
k). However, there is a considerable gap

between this theoretical lower bound and the performance bound of the best known heuristic

control in the literature. In this essay, I propose a Nonparametric Self-adjusting Control and

show that its expected revenue loss is O(k1/2+ϵ log k) for any arbitrarily small ϵ > 0, provided

that the underlying demand function is sufficiently smooth. This is the tightest bound of

its kind for the problem setting that I consider in this essay and it significantly improves

the performance bound of existing heuristic controls in the literature. In addition, my

intermediate results on the large deviation bounds for spline estimation and nonparametric

stability analysis of constrained optimization are of independent interest and are potentially

useful for other applications.

4.2 Introduction

Revenue management (RM), which was first implemented in the 1960s by legacy airline

companies to maintain their edge in the competitive airline market, has recently become

widespread in many industries such as hospitality, fashion goods, and car rentals (for more

detail, see Talluri and van Ryzin (2005)). The sellers in these industries face the common

challenge of allocating a fixed capacity of perishable resources (e.g., seats in a jet, rooms in

a hotel, etc.) to satisfy volatile demand of products or services. If the seller fails to satisfy
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demand appropriately, a considerable amount of profit is at stake either due to the zero

salvage value of unused capacity or the loss of potential revenue. (For example, in the airline

industry, it is known that the benefit of using RM is roughly comparable to the airline’s

annual margin, which is about 4-5% of total revenue (Talluri and van Ryzin 2005).) Given

this, RM is aimed at helping the sellers to make optimal decisions such that the right product

is sold to the right customer at the right time and at the right price. One type of operational

leverage often employed by the sellers is dynamic pricing : By adjusting the prices over time,

the seller can effectively control the rate at which demand arrives so he can better match

demand with available resources.

Despite its known benefits (Talluri and van Ryzin 2005), the efficacy of dynamic pricing

hinges upon the seller’s knowledge of market’s response to different prices, i.e., the underlying

demand function. Unfortunately, in most (if not all) real-life applications, this underlying

demand function is not easily accessible to the sellers. Although many sellers have adopted

sophisticated statistical methods, the estimated demand function is inevitably subject to

estimation error, which in turn affects the quality of the sellers’ pricing decisions. The

negative impact of inaccurate demand estimation is further magnified in practice because

typical RM industries tend to have a large sales volume; thus, even small errors can lead to

a significant revenue loss in absolute term. Given this limitation, one pressing issue faced

by RM practitioners is how to dynamically price their products when the underlying demand

function is unknown a priori. This essay studies joint learning and pricing problem in a

general network RM setting with multiple products and multiple capacitated resources for

the nonparametric demand case. (By nonparametric, I mean the case where the seller does

not even know the functional form of demand. This is in contrast to the so-called parametric

case where the seller a priori knows the form of demand function (e.g., linear, exponential,

logit, etc.) and he only needs to estimate the unknown parameters (e.g., the intercept and

the slope of a linear demand function)). In this essay, I construct a heuristic control that

is not only easy to implement for large-scale problems but also has a provable analytical

performance bound. My bound significantly improves the performance bound of existing

heuristic controls in the literature.

Literature review. A large body of RM literature has investigated the canonical dynamic

pricing problem where the seller knows the underlying demand function. The prevailing

view is that, even in the case where learning is not in play, computing an optimal control is

already challenging to do. This is so because the common technique for solving sequential

decision problems, the so-called Dynamic Programming (DP), suffers from the well-known

curse of dimensionality. This curse of dimensionality is exacerbated in many RM industries

because the sellers typically have to manage the price of at least thousands of products on a
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daily basis. To illustrate, a typical major US airline operates more than a thousand flights

daily, each of which has more than ten different booking classes that are characterized by

different combinations of service level and purchase restriction. Since passengers book tickets

in advance, the airline needs to price not only the tickets for the same-day flights but also

those with departure dates several months in the future. All these factors put together can

easily translate into a daily pricing decision for millions of itineraries. Due to this challenge,

instead of finding the optimal pricing control, a considerable body of existing literature has

focused on developing computationally implementable heuristic controls with provably good

performance guarantee. (See Bitran and Caldentey (2003) and Elmaghraby and Keskinocak

(2003) for a comprehensive review of the literature.)

Within the canonical RM literature, some works have focused on developing heuristic

controls based on the solution of a deterministic pricing problem, i.e., the deterministic

counterpart of the original stochastic control problem, which is computationally much easier

to solve than the DP. This approach was first proposed by Gallego and van Ryzin (1994).

They develop a static price control by first solving a convex optimization problem at the be-

ginning of the selling season and then using its optimal solution as static price throughout the

selling season, subject to available resources. Although the proposed heuristic control is easy

to implement, its drawback is obvious: It ignores the observed demand realizations, which

leaves room for further improvement. One intuitively appealing idea that has been studied in

the literature involves frequent re-optimization of the deterministic pricing problem through-

out the selling season. Maglaras and Meissner (2006) show that the re-optimized static price

control (RSC) cannot perform worse than static price control without re-optimization (in

asymptotic sense). However, it is not immediately clear from their analysis alone whether

re-optimization actually guarantees a better performance (and if so, by how much). A recent

work by Jasin (2014) answers this question in the affirmative by showing that RSC does sig-

nificantly improve the performance of static price control (again, in asymptotic sense). While

existing literature has shown frequent re-optimization to be beneficial, its implementation

can be very time-consuming especially when applied to large-scale problems that often arise

in practice; this has motivated the development for computationally much easier yet equally

effective heuristic controls. For example, motivated by the optimal structure of the diffusion

control problem of the continuous-time dynamic pricing problem, Atar and Reiman (2012)

develop a re-optimization-free bridge pricing control that guarantees the same asymptotic

performance as RSC. An equally effective heuristic control is also obtained in Jasin (2014).

Motivated by the structure of the re-optimized prices under RSC, Jasin (2014) proposes a

real-time control, called Linear Rate Correction (LRC), that has a similar structure as the

bridge control and does not require any re-optimization at all. To be precise, LRC only
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requires a single optimization at the beginning of the selling season and automatically ad-

justs the price according to a pre-specified update rule throughout the remaining selling

season. Inspired by the strong performance of bridge pricing control and LRC in the setting

with known demand function, in this essay, I construct a nonparametric self-adjusting con-

trol akin to LRC and show that its asymptotic performance is very close to the theoretical

lower bound on the performance of any feasible pricing control in the setting with unknown

demand function. Below, I discuss the literature on joint learning and pricing.

There is a growing literature that studies joint demand learning and pricing problem.

Most existing works have combined a particular statistical learning procedure (e.g., Maxi-

mum Likelihood, Least Squares, etc.) with a certain dynamic pricing control (most notably,

the static price control). A central highlight in this literature is the trade-off between the

cost of learning the demand function (exploration) and the reward of using the “optimal”

price computed using the estimated demand function (exploitation). The longer the time the

seller spends on learning the demand function, the less opportunity there is to exploit the

knowledge of the newly estimated demand function. On the flip side, if the exploration time

is too short, it will result in a poor estimation, which yields highly sub-optimal prices. What

is the best performance that any non-anticipating pricing control can achieve in the setting

with unknown demand function? Suppose that I scale the length of the selling season and the

initial resource capacity by a factor of k > 0. (The constant k can be interpreted as the size

of the problem. See Section 4.3 for more discussions on this.) One way to measure the per-

formance of a feasible control is to study the order of expected revenue loss which is defined

as the order (with respect to k) of the gap between the total expected revenue earned under

this control and a well-established deterministic upper bound. (See Section 4.3 for more

details on this performance metric.) It is widely known in the literature that the expected

revenue loss of any feasible pricing control in general is Ω(
√
k) (e.g., Besbes and Zeevi (2009),

Broder and Rusmevichientong (2012), Keskin and Zeevi (2014)). For the case of uncapaci-

tated RM, where there is no limit on the number of resources that can be used, this lower

bound has been repeatedly shown to be tight (e.g., Broder and Rusmevichientong (2012),

Keskin and Zeevi (2014)). As for the case of capacitated RM, most existing literature has

primarily focused on the setting of a single-product and single-resource RM (often called

single-leg RM due to the early application of RM in airline industry). Besbes and Zeevi

(2009) is among the first to investigate this problem under both parametric and nonpara-

metric cases. Their proposed heuristic control for the parametric case yields an expected

revenue loss of O(k2/3 log0.5 k) whereas their proposed heuristic control for the nonparamet-

ric case guarantees an expected revenue loss of O(k3/4 log0.5 k). This suggests that there is

a considerable gap between the performance of parametric and nonparametric approaches.
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Recent works by Wang et al. (2014) and Lei et al. (2014) have managed to significantly

shrink this gap; they develop sophisticated nonparametric heuristic controls that guaran-

tee a O(
√
k log4.5 k) and O(

√
k) expected revenue loss, respectively. Thus, for the case of

capacitated RM in single-leg setting, existing works in the literature have managed to not

only completely close the gap between the performance of parametric and nonparametric

approaches, at least in the asymptotic sense, but also show that the theoretical lower bound

of Ω(
√
k) is indeed tight.

The general network RM problem with multiple products and multiple limited resources

is more difficult to analyze than the single-leg RM. (In Section 4.5, I will explain why the

proofs and the arguments in the uncapacitated setting cannot be applied to the capacitated

setting. Moreover, the arguments in Wang et al. (2014) and Lei et al. (2014) for the single-

leg capacitated RM also cannot be applied to the more general network RM setting. This is

so because both Wang et al. (2014) and Lei et al. (2014) heavily exploit the special structure

in the single-leg RM. Unfortunately, no analogous structure is known for the network RM.)

To the best of my knowledge, the only paper that addresses the joint learning and pricing

problem for general network RM is Besbes and Zeevi (2012). They consider the nonpara-

metric case only and show that the performance bound of their proposed heuristic control

(i.e., so-called Algorithm 2 in their paper) is O(k(n+2)/(n+3) log0.5 k), where n is the number of

products. Note that the fraction (n+2)/(n+3) in the bound highlights the curse of dimen-

sionality for network RM since the performance bound quickly deteriorates as the number

of products n increases. If, however, the true demand function is sufficiently smooth (e.g.,

infinitely differentiable), this bound can be reduced; they propose another nonparametric

heuristic control (Algorithm 3) that guarantees a O(k2/3+ϵ log0.5 k) expected revenue loss for

some ϵ > 0 that can be arbitrarily small. As one can see, there is still a considerable gap

between the lower bound of Ω(
√
k) and the performance bound of O(k2/3+ϵ log0.5 k). My

proposed heuristic control in this essay significantly reduces this gap from k2/3+ϵ to k1/2+ϵ

(up to logarithmic terms).

I would like to note here that all the results discussed above for the joint learning and

pricing problem are derived for the setting where the seller can use a continuum of prices

drawn from a certain convex and compact set. This distinction is crucial as the complexity

of the problem changes as I switch from a continuum setting to the setting where the set of

feasible prices is finite. Besbes and Zeevi (2012) have also considered this finite set setting

and proposed a heuristic control (Algorithm 1) with a performance bound of O(k2/3 log0.5 k).

A recent work by Ferreira et al. (2016) improves this bound to O(
√
k log k log log k) by using

a Thompson sampling-based heuristic control. Note that although the best known perfor-

mance bound that I am aware of for the network RM with finite price set setting is already
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close to
√
k, it is not clear that the theoretical lower bound for this setting is still Ω(

√
k).

In fact, a recent work by Flajolet and Jaillet (2015) show that the UCB-Simplex control

they propose attains a logarithmic performance bound in a simpler setting where there is

only one capacity constraint (besides time). This seems to suggest that the lower bound

of the general network RM with finite price set setting could be as small as logarithmic.

More broadly, when the set of feasible prices is finite, the joint learning and pricing problem

is closely related to the bandit problems extensively studied in the Reinforcement Learning

literature (e.g., Lai and Robbins (1985), Auer et al. (2002a), etc.). This stream of literature

had not considered the inter-temporal constraints on actions over time (such as the capacity

constraint in the network RM setting) until only very recently (e.g., Badanidiyuru et al.

(2013), Badanidiyuru et al. (2015), Combes et al. (2015), etc.). Badanidiyuru et al. (2013)

is among the first to consider the so-called bandit with knapsack (BwK) problem. In BwK, a

decision maker has a fixed amount of resources and needs to accumulate rewards by sequen-

tially selecting from a finite set of arms whose reward distributions are unknown. Pulling

each arm stochastically depletes those resources according to an unknown consumption dis-

tribution of that arm, and the decision maker stops collecting rewards when he runs out of

resources. Note that the general RM with finite price set and unknown demand fits into

the BwK framework by treating each feasible price vector as a bandit and viewing time as

a resource with deterministic depletion rate. Badanidiyuru et al. (2015) show that the per-

formance lower bound of BwK is Ω(
√
k) and propose two heuristic controls that match this

lower bound up to logarithmic factors. While the network RM with finite number of feasi-

ble prices is a special case of the BwK problem, I would like to point out that the bounds

derived in Badanidiyuru et al. (2015) cannot be directly compared to the bounds derived

in all the RM papers discussed above since the quantification order used in evaluating the

asymptotic bounds are different. To be precise, Badanidiyuru et al. (2015) allow the under-

lying demand distribution to vary in k while existing RM works assume that the underlying

demand distribution does not vary as k scales; hence, both the lower and upper bounds

in Badanidiyuru et al. (2015) have weakly larger asymptotic order. (This phenomena is not

unique to Badanidiyuru et al. (2015) alone. For example, the gap in performance bounds due

to the use of different quantification orders also arises in the traditional bandit setting such as

in the logarithmic bounds of Auer et al. (2002a) versus the square-root bounds of Auer et al.

(2002b)—see page 50 in Auer et al. (2002b) for more discussions.) Finally, I want to point

out that, in order to derive the order of performance bound discussed above, the heuristic

controls developed for finite price setting are typically compared with a revenue upper bound

benchmark under the finite price setting while the heuristic controls developed for the con-

tinuum price setting are compared with a larger revenue upper bound benchmark under the
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continuum setting. Since the two upper bound benchmarks are different, with the former

being smaller than the latter, the heuristic controls developed under the two settings are not

easily comparable by simply looking at the order of their performance bounds as a function

of k. Moreover, one also cannot simply extend existing heuristic controls developed in fi-

nite price setting to continuum price setting since the performance bounds of these heuristic

controls (e.g., Badanidiyuru et al. (2013), Badanidiyuru et al. (2015), Ferreira et al. (2016))

deteriorate quickly as the number of the feasible prices increases. This is so because these

heuristic controls do not exploit existing relationship between expected demand value at

different price points and need to learn the expected demand value at most price points

separately, which is not very efficient if the number of price points is large.

Apart from the RM and joint learning and optimization literature, my work is also closely

related to Spline Regression in the statistics literature. A typical problem in statistics is to

estimate the mean response as a function of some input variables. (The demand learning

aspect of my problem is one such problem: my goal is to estimate the mean demand of

each product as a function of the prices of all products.) Spline Regression generates an

estimate in the form of a linear combination of spline basis functions (originally studied

in Applied Mathematics to approximate deterministic functions) and uses Least Squares

criterion to compute the corresponding coefficients. (See Gyorfi et al. (2002) for more details

on Spline Regression.) To the best of my knowledge, most existing literature on Spline

Regression is mostly concerned with the estimation accuracy of the response function; thus,

the typical convergence result for Spline Regression is limited to only the estimation error

of the response function itself. In my problem, estimation and optimization are intertwined

and it is crucial to understand how the estimation error affects the subsequent optimization.

This requires results on bounds of the error between higher order partial derivatives of the

response function and its spline estimate. To derive these bounds, deviating from the Spline

Regression approach, I generate my spline estimate by using a specific linear operator (i.e.,

L defined in Step 3 of Technical Details for Spline Approximation part (b) in Section 4.4.1)

instead of using Least Squares criterion. (I call my estimation method Spline Estimation to

differentiate my approach from Spline Regression. For more details on Spline Estimation,

see Section 4.4.1. I want to emphasize here that although I choose Spline Estimation in

combination with my optimization, this is only for the purpose of mathematical analysis.

In general, I suspect that the seller can also use other estimation schemes such as Spline

Regression, local polynomial approximation, etc. in lieu of Spline Estimation in my proposed

heuristic control and still enjoys a strong performance.) This linear operator, also known

as a quasi-interpolant in Schumaker (2007), is originally devised to analyze the error of

using spline functions to approximate a deterministic function. I generalize the analysis of
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spline approximation for deterministic functions in Schumaker (2007) to estimating response

functions using spline functions. I manage to not only derive large deviation bounds of the

estimation error of the demand function itself but also its partial derivatives, which are very

useful in analyzing my proposed heuristic control.

Contributions and the organization of the essay. My contributions in this essay

can be summarized in the following two points:

1. I develop a nonparametric control called Nonparametric Self-adjusting Control (NSC)

that can be applied to the general network RM setting with multiple products and mul-

tiple limited resources. I show that if the underlying demand function is sufficiently

smooth, the expected revenue loss of NSC is O(k1/2+ϵ log k) for some ϵ > 0 that can

be arbitrarily small (see Theorem 4.5.1 in Section 4.5). This is the tightest bound of

its kind for the setting that I am considering (i.e., the continuum price setting): It

significantly improves the O(k2/3+ϵ log0.5 k) bound of Besbes and Zeevi (2012) and is

only slightly worse than the theoretical lower bound of Ω(
√
k). In a nutshell, NSC

is a combination of four elements: (1) Spline Estimation of the underlying demand

function, (2) linear approximation of the estimated demand function, (3) quadratic

approximation of the estimated revenue function, and (4) approximate self-adjusting

control akin to the one developed in Jasin (2014). In this essay, I show that although

each of these elements introduces its own error (and some of them are not even unbi-

ased), under properly selected tuning parameters, the cumulative impact of these errors

is asymptotically only slightly larger than Θ(
√
k). This makes it possible to prove the

strong performance guarantee of NSC. Note that, per my discussions above, the first

element (i.e., using Spline Estimation to estimate the underlying demand function) is

only for the purpose of the analysis; in practice, the seller can still use other estimation

schemes in combination with the other three elements. Although the proper selection

of the tuning parameters will depend on the specific estimation scheme being used, I

suspect that the resulting heuristic control still enjoys a similar strong performance

guarantee.

2. In addition to contributing to the RM literature, my intermediate results in this es-

say also contribute to the more general statistics and optimization literature. For the

nonparametric estimation, I generalize the analysis of spline approximation for de-

terministic functions in Schumaker (2007) to the setting with noisy observations and

derive large deviation bounds for the estimation error of the function itself and its

higher order partial derivatives (see Lemma 4.4.1 in Section 4.4). These bounds seem
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to be new—although spline functions have been used in statistics, I am not aware of ex-

isting large deviation bound for higher order partial derivatives of the estimate—and

are particularly useful for my analysis because the resulting spline estimate is ulti-

mately used in the subsequent optimization phase in my heuristic control. Moreover,

the bound for partial derivatives also facilitates the stability analysis of the optimal

solution. Aside from the statistical error bound, for the analysis of NSC, I also need

to derive a nonparametric Lipschitz-type stability result for the optimal solution of

a perturbed optimization problem (see Lemma 4.4.2 in Section 4.4). This result also

seems to be new—although parametric stability analysis of optimization problem has

been intensively studied in the literature (see Bonnans and Shapiro (2000)), nonpara-

metric stability analysis is very rare. As of the writing of this essay, I am not aware

of any existing result on nonparametric stability analysis that can be directly used

for my purpose. Aside from its use in the analysis of NSC, my stability result is of

independent interest and is potentially applicable to other optimization problems.

The reminder of this essay is organized as follows. I first formulate the problem in

Section 4.3. My nonparametric approach is discussed in Sections 4.4 - 4.6. In particular,

Section 4.4 provides some preliminaries on spline approximation and nonparametric stability

analysis; Section 4.5 describes the proposed NSC and its performance bound (Theorem 4.5.1);

Section 4.6 provides the proof of Theorem 4.5.1. Finally, I conclude the essay in Section 4.7.

Unless otherwise noted, all the extra details of the proofs can be found in Appendix A.4.

4.3 Problem formulation

In this section I describe the problem setting, modeling assumptions, and the asymptotic

regime.

Notation. The following notation will be used throughout this essay. (Additional notation

will be introduced when necessary.) Denote by R, R+, and R++ the set of real, non-negative

real, and positive real numbers respectively. For column vectors a = (a1; . . . ; an) ∈ Rn, b =

(b1; . . . ; bn) ∈ Rn, denote by a ≽ b if ai ≥ bi for all i, and by a ≻ b if ai > bi for all i.

Similarly, denote by Z, Z+, and Z++ the set of integers, non-negative integers, and positive

integers respectively. For any a, b ∈ Z with a ≤ b, let [a, b] := {a, a + 1, . . . , b − 1, b}. I

denote by · the inner product of two vectors and by ⊗ the tensor product of sets or function

spaces. I use a prime to denote the transpose of a vector or a matrix, an I to denote

an identity matrix with a proper dimension, and an e to denote a vector of ones with a

proper dimension. For any vector v = [vj] ∈ Rn, ||v||p := (
∑n

j=1 |vj|p)1/p denote its p-norm

(1 ≤ p ≤ ∞) and, for any real matrix M = [Mij] ∈ Rn×n, ||M ||p := sup||v||p=1 ||Mv||p
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denote its induced p-norm. For example, ||M ||1 = max1≤j≤n
∑n

i=1 |Mij|, ||M ||2 = the largest

eigenvalue of M ′M , and ||M ||∞ = max1≤i≤n
∑n

j=1 |Mij|. (Note that ||M ||1 = ||M ′||∞.) For

any function f : X → Y , I denote by ||f(.)||∞ := supx∈X ||f(x)||∞ the infinity-norm of f .

I use ∇ to denote the usual derivative operator and a subscript to indicate the variables

with respect to which this operation is being applied to. (No subscript ∇ means that the

derivative is applied to all variables.) If f : Rn → R, then ∇xf = ( ∂f
∂x1

; . . . ; ∂f
∂xn

); if, on the

other hand, f = (f1; . . . ; fn) : Rn → Rn, then

∇xf =


∂f1
∂x1

· · · ∂fn
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fn
∂xn

 .

Denote by Cs(S) the set of functions whose first sth order partial derivatives are contin-

uous on its domain S, and by Ps([a, b]) the set of single variate polynomial functions with

degree s on an interval [a, b] ⊆ R, e.g., P1([0, 1]) is the set of all linear functions on the

interval [0, 1].

The model. I consider the setting of a monopolist selling his products to incoming customers

during a finite selling season, aiming to maximize his total expected revenue. There are n

types of products, each of which is made up of a combination of a subset of m types of

resources. For example, in the airline setting, a product refers to a multi-flight itinerary

and a resource refers to a seat in a jet of a single-leg flight; in the hotel setting, a product

refers to a multi-day stay and a resource refers to a one-night stay at a particular room.

I denote by A = [Aij] ∈ Rm×n the resource consumption matrix, which characterizes the

types and amounts of resources needed by each product (i.e., a single unit of product j

requires Aij units of resource i). Without loss of generality, I assume that the matrix A has

full row rank. (If this is not the case, then I can first apply the standard row elimination

procedure to delete the redundant rows. See Jasin (2014).) Denote by C ∈ Rm the vector of

initial capacity levels of all resources at the beginning of the selling season. Since, in many

industries (e.g., hotels and airlines), replenishment of resources during the selling season

is either too costly or simply not feasible, following the standard model in the literature

(Gallego and van Ryzin 1997), I will assume that the seller has no opportunity to procure

additional units of resources during the selling season. In addition, I also assume without

loss of generality that the remaining resources at the end of the selling season have zero

salvage value.

The selling season is divided into T discrete periods, indexed by t = 1, 2, ..., T . At the

beginning of period t, the seller first decides the price pt = (pt,1; . . . ; pt,n) for his products,
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where pt is chosen from a convex and compact set P = ⊗n
l=1[pl, p̄l] ⊆ Rn of feasible price

vectors. The posted price pt, in turn, induces a demand, or sale, for one of the products with

a certain probability. Here, I implicitly assume that at most one sale for one product occurs

in each period. (I have made this assumption and chosen to focus on discrete time model

to simplify the presentation of the analysis. My analysis can be easily extended to either a

discrete-time model with bounded demand arrivals in each period or continuous-time model

with Poisson arrivals.) Let ∆n−1 := {(x1; . . . ; xn) ∈ Rn|
∑n

i=1 xi ≤ 1, and xi ≥ 0 for all i}
denote the standard (n− 1)-simplex. Let λ∗(.) : P → ∆n−1 denote the induced demand rate

or purchase probability vector; I also call λ∗(.) the underlying demand function. Contrary

to most existing RM literature where it is assumed that the seller knows λ∗(.) a priori, in

this essay, I simply assume that this function can be estimated using statistical learning

procedures. Let Λλ∗ := {λ∗(p) : p ∈ P} denote the convex and compact set of feasible

demand rates and let Dt(pt) = (Dt,1(pt); . . . ;Dt,n(pt)) denote the vector of realized demand

in period t under price pt. It should be noted that, although demands for different products in

the same period are not necessarily independent, demands over different periods are assumed

to be independent (i.e., Dt only depends on the posted price pt in period t). By definition,

I have Dt(pt) ∈ D := {D :
∑n

j=1Dj ≤ 1, Dj ∈ {0, 1} for all j} and E [Dt(pt)] = λ∗(pt). This

allows me to write Dt(pt) = λ∗(pt) + ∆t(pt), where ∆t(pt) is a zero-mean random vector.

For notational simplicity, whenever it is clear from the context which price pt is being used,

I will simply write Dt(pt) and ∆t(pt) as Dt and ∆t respectively. The sequence {∆t}Tt=1 will

play an important role in my analysis later. Define the revenue function r∗(p) := p · λ∗(p)
to be the one-period expected revenue that the seller can earn under price p. It is typically

assumed in the literature that λ∗(.) is invertible (see the regularity assumptions below). I

can then write r∗(p) = p · λ∗(p) = p∗(λ) · λ = r∗λ(λ) to emphasize the dependency of revenue

on demand rate instead of on price. I make the following regularity assumptions on λ∗(.),

r∗(.) and r∗λ(.):

Regularity Assumptions. There exists positive constants r̄, v < v̄ such that:

R1. λ∗(.) : P → Λλ∗ is in C2(P) with Lipschitz continuous second order partial derivatives,

and it has an inverse function p∗(.) : Λλ∗ → P that is in C2(Λλ∗);

R2. There exists a set of turn-off prices p∞j ∈ [p
j
, p̄j] for j = 1, . . . , n such that for any

p = (p1; . . . ; pn), pj = p∞j implies that λ∗j(p) = 0.

R3. ||r∗λ(.)||∞ ≤ r̄, r∗λ(.) is strongly concave, and all the eigenvalues of ∇2r∗λ(λ) are between

−v̄ and −v for all λ ∈ Λλ∗.

Assumption R1 is fairly natural and is easily satisfied by many popular demand functions
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such as linear, logit, and exponential functions. Assumption R2 is common in the literature.

(See Besbes and Zeevi (2009) and Wang et al. (2014) for similar assumptions.) Its purpose

is to allow the seller to effectively shut down the demand for any product whenever needed,

e.g., in the case of stock-out. (The existence of such turn-off prices follows naturally when

one considers truncated demand functions. It is also possible to consider an unbounded set

of feasible prices instead of the compact set I assume above, with a potentially infinite turn-

off price; in such setting, my results still hold.) As for Assumption R3, the boundedness of

r∗λ(.) follows from the compactness of Λλ∗ and the continuity of r∗λ(.). The strong concavity

of r∗λ(.) is a standard assumption in the literature and is satisfied by many commonly used

demand functions such as linear, exponential, and logit functions. It should be noted that

although some of these functions, such as logit, do not naturally correspond to a concave

revenue function when viewed as a function of p, they are nevertheless concave when viewed

as a function of λ. This highlights the benefit of treating revenue as a function of demand

rate instead of as a function of price.

In addition, following Besbes and Zeevi (2012) and the literature on nonparametric es-

timation, I will assume that the function λ∗(.) has a certain level of smoothness. Let s̄

denote the largest integer such that
∣∣∂a1,...,anλ∗j(p)/∂pa11 . . . ∂pann

∣∣ is uniformly bounded for

all j ∈ [1, n] and 0 ≤ a1, . . . , an ≤ s̄. I call s̄ the smoothness index. I make the following

smoothness assumptions:

Nonparametric Function Smoothness Assumptions.

N1. s̄ ≥ 2.

N2. There exists a constant W > 0 such that for all j ∈ [1, n] and p ∈ P and integers

0 ≤ a1, . . . , an ≤ s̄, I have
∣∣∣∂a1,...,anλ∗j (p)
∂p

a1
1 ...∂pann

∣∣∣ ≤ W .

The above assumptions are fairly mild and are satisfied by most commonly used demand

functions, including linear, polynomial with higher degree, logit, and exponential with a

bounded domain of feasible prices. I note that very similar assumptions are also made in

Besbes and Zeevi (2012). More broadly, this type of smoothness assumptions are commonly

made in the nonparametric estimation literature in statistics (see, for example, Gyorfi et al.

(2002)). The smoothness index s̄ indicates the level of difficulty in estimating the corre-

sponding demand function: The larger the value of s̄, the smoother the demand function,

and the easier it is to estimate its shape because its value cannot have a drastic local change.

Admissible controls and the induced probability measures. Let D1:t := (D1, D2,

. . . , Dt) and p1:t := (p1, p2, . . . , pt) denote respectively the observed vectors of demand and

price realizations up to and including period t. Let Ht denote the σ-field generated by
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D1:t and p1:t. I define a control π as a sequence of functions π = (π1, π2, . . . , πT ), where πt

is a Ht−1-measurable real function that maps the history D1:t−1 and p1:t−1 to ⊗n
j=1[pj, p̄j].

This class of controls is referred to as non-anticipating controls because the decision in each

period depends only on the accumulated information up to the beginning of the period.

Under control π, the seller sets the price in period t equal to pπt = πt(D1:t−1, p1:t−1). Let Π

denote the set of all admissible controls. That is,

Π :=

{
π :

T∑
t=1

ADt(p
π
t ) ≼ C a.s., and pπt = πt(Ht−1)

}
.

Note that, even though the seller does not know the underlying demand function, the

existence of turn-off prices p∞1 , . . . , p
∞
n guarantees that the capacity constraints can be satis-

fied if the seller applies p∞j for product j as soon as the remaining capacity is not sufficient

to produce one more unit of product j. Let Pπλ∗,t denote the induced probability measure

under an admissible control π ∈ Π, i.e.,

Pπλ∗,t(d1:t) = Pπλ∗,t(D1:t = d1:t) =
t∏

s=1

(1− n∑
j=1

λ∗j(p
π
s )

)(1−∑n
j=1 ds,j) n∏

j=1

λ∗j(p
π
s )
ds,j

 ,
where pπs = πs(d1:s−1) and ds = [ds,j] ∈ D for all s = 1, . . . , t. (By definition, the term

1 −
∑n

j=1 λ
∗
j(p

π
s ) can be interpreted as the probability of no-purchase in period s under

price pπs .) For notational simplicity, I will simply write Pπλ∗,T as Pπλ∗ and denote by Eπ
λ∗ the

expectation with respect to the probability measure Pπλ∗ . The total expected revenue under

π ∈ Π is Rπ = Eπ
λ∗ [
∑T

t=1 p
π
t ·Dt(p

π
t )].

The deterministic formulation and performance metric. The following optimization

is the deterministic analog of the original stochastic pricing problem:

JD := max
pt∈P

{
T∑
t=1

r∗(pt) :
T∑
t=1

Aλ∗(pt) ≼ C

}
,

or equivalently, JD := max
λt∈Λλ∗

{
T∑
t=1

r∗λ(λt) :
T∑
t=1

Aλt ≼ C

}
.

By assumption R3, the second optimization above is a convex program and can be effi-

ciently solved. (To avoid triviality, I assume that both optimizations are feasible.) It can be

shown that JD is in fact an upper bound for the total expected revenue under any admissible

control. That is, Rπ ≤ JD for all π ∈ Π. (See Besbes and Zeevi (2012) for more details.)
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This allows me to use JD as a benchmark to quantify the performance of any admissible

pricing control. In this essay, I follow the standard convention and define the expected rev-

enue loss of an admissible control π ∈ Π as ρπ := JD − Rπ. Since r∗λ(.) is strongly concave,

by Jensen’s inequality, it can be shown that the optimal solutions of JD are static, i.e.,

pt = pD and λt = λD for all t, where pD and λD can be obtained by solving the following

“one-period” optimizations, respectively:

(P) rD := max
p∈P

{
r∗(p) : Aλ∗(p) ≼ C

T

}
,

and, (Pλ) rD := max
λ∈Λλ∗

{
r∗λ(λ) : Aλ ≼ C

T

}
.

Note that pD = p∗(λD) and TrD = JD. Moreover, the optimal dual variables that

correspond to the capacity constraints in P are the same as the optimal dual variables that

correspond to the capacity constraints in Pλ; I denote these dual variables as µD. Let

Ball(x, r) denote a closed Euclidean ball centered at x with radius r. I state my fourth

regularity assumption below:

R4. (Interior Assumption) There exists ϕ > 0 such that Ball(pD, ϕ) ⊆ P .

Assumption R4 is sufficiently mild. Intuitively, it states that the static price should

neither be too low that it attracts too much demand nor too high that it induces no demand.

A similar interior assumption has also been made in Jasin (2014) and Chen et al. (2016).

Asymptotic setting. Following the convention in the literature (e.g., Besbes and Zeevi

(2009) and Wang et al. (2014)), in this essay, I will consider a sequence of increasing problems

where the length of the selling season and the initial resource capacity are scaled by a factor

of k > 0. To be precise, in the kth problem, the length of the selling season and the initial

capacity are given by kT and kC, respectively. (One can interpret k as the size of the

problem. For example, in single-leg setting, C = 1 and k = 50 could correspond to a small

jet with capacity 50 seats and k = 500 could correspond to a large jet with capacity 500

seats.) The optimal solutions for P and Pλ in the kth problem are still pD and λD; the

optimal dual solution corresponding to the capacity constraints in P and Pλ is still µD.

But, the deterministic upper bound becomes JD(k) = kTrD = kJD. Let ρπ(k) denote

the expected revenue loss under an admissible control π ∈ Π for the problem with scaling

factor k. I am primarily interested in identifying the order of ρπ(k) for large k. (Intuitively,

one would expect that a better heuristic control will have an expected revenue loss that

grows more slowly with respect to k.) The following notations will be used throughout the
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remainder of the essay. For any two functions f : Z++ → R and g : Z++ → R+, I write

f(k) = Ω(g(k)) if there exists M > 0 independent of k such that f(k) ≥ Mg(k). Similarly,

I write f(k) = O(g(k)) if there exists K > 0 independent of k such that f(k) ≤ Kg(k).

4.4 Supporting technical results

In this section, I present some technical results on spline estimation and nonparametric

stability analysis of a perturbed optimization problem, and I will also introduce a quadratic

programming approximation of P. I will use these technical results in the analysis of NSC in

Section 4.5. As noted in Section 4.2, many of these results are of independent interest and

can potentially be used in different application areas.

4.4.1 Spline approximation

I first describe the problem of approximating a deterministic function from noiseless ob-

servations using spline approximation and then I will discuss the problem of estimating a

function from noisy observations. Spline functions have been widely used in engineering to

approximate complicated functions, and their popularity is primarily due to their flexibility

in effectively approximating complex curve shapes (Schumaker 2007). This flexibility lies

in the piecewise nature of spline functions—a spline function is constructed by attaching

piecewise polynomial functions with a certain degree, and the coefficients of these polyno-

mials are computed in such a way that a sufficiently high degree of smoothness is ensured

in the places where the polynomials are connected. More formally, for all l ∈ [1, n], let

p
l
= xl,0 < xl,1 · · · < xl,d < xl,d+1 = p̄l be a partition that divides [p

l
, p̄l] into d + 1 sub-

intervals of equal length where d ∈ Z++. Let G := ⊗n
l=1Gl denote a set of grid points,

where Gl = {xl,i}d+1
i=0 . I define the function space of tensor-product polynomial splines

of order (s; . . . ; s) ∈ Rn with a set of grid points G as S(G, s) := ⊗n
l=1Sl(Gl, s), where

Sl(Gl, s) := {f ∈ Cs−2([p
l
, p̄l]) : f is a single-variate polynomial of degree s − 1 on each

sub-interval [xl,i, xl,i+1), for all i ∈ [0, d− 1] and [xl,d, xl,d+1]}. One of the key questions that

spline approximation theory addresses is the following: Given an arbitrary function f that

satisfies N1-N2, find a spline function g∗ ∈ S(G, s) that approximates f well. Among the vari-

ous approaches, one of the most popular approximations is using the so-called tensor-product

B-Spline basis functions (Schumaker 2007). This approach is based on the key observation

that S(G, s) is actually a linear space of dimension (s + d)n. This means that there exists

a set of (s + d)n basis functions (this set is not necessarily unique) such that any function

in S(G, s) can be represented by a linear combination of these basis functions. I choose to

use tensor-product B-Spline basis functions, denoted by {Ni1,...,in(x1, . . . , xn)}
s+d,...,s+d
i1=1,...,in=1, as
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the set of basis functions. These functions are defined formally in the Technical Details part

(a) below. Given the basis functions, for any spline function g ∈ S(G, s), there exists a set

of coefficients {ci1,...,in}
s+d,...,s+d
i1=1,...,in=1 such that g(x) =

∑s+d
i1=1 · · ·

∑s+d
in=1 ci1,...,inNi1,...,in(x) for all

x ∈ P . Therefore, the problem of finding g∗ is reduced to the problem of computing the

coefficients for representing g∗, which I address below in the Technical Details part (b). For

a more comprehensive discussion of this approach, see Schumaker (2007).

Technical Details for Spline Approximation: The B-Spline Approach

(a) Tensor-product B-Spline Basis Functions.

Step 1: For each l ∈ [1, n], define an extended partition Gel := {yl,i}2s+di=1 , where

yl,1 = · · · = yl,s = xl,0, yl,s+1 = xl,1, . . . , yl,s+d = xl,d, yl,s+d+1 = · · · = yl,2s+d = xl,d+1.

Step 2: For il ∈ [1, s+ d], l ∈ [1, n], define the tensor-product B-Spline basis function as

Ni1,...,in(x1, . . . , xn) =
∏n

l=1N
s
l,il
(xl), where

N s
l,i(xl) =


(−1)s(yl,i+s − yl,i)[yl,i, . . . , yl,i+s](xl − y)s−1

+ , if yl,i ≤ xl < yl,i+s

0, otherwise

for all xl ∈ [p
l
, p̄l] for all l ∈ [1, n] and for all i ∈ [1, s+ d], where

(xl − y)+ = max{0, xl − y}, and [t1, . . . , tr+1]f(y) is the r
th order divided difference of a

single variate real function f over the points t1 < t2 < · · · < tr < tr+1 defined as follows

(see Definition 2.49 and Theorem 2.50 in Schumaker (2007) for more discussion):

[t1, . . . , tr+1]f(y) :=
r+1∑
i=1

f(ti)∏r+1
j=1,j ̸=i(ti − tj)

.

(b) Calculating the Linear Coefficients.

Step 1: For l ∈ [1, n], i ∈ [1, s+ d], let

τl,i,j = yl,i + (yl,i+s − yl,i)
j − 1

s− 1
and βl,i,j =

j∑
v=1

(−1)v−1

(s− 1)!
ϕ
(s−v)
l,i,s (0)ψ

(v−1)
l,i,j (0), for j ∈ [1, s],

where ϕl,i,s(t) =
∏s−1

r=1(t− yl,i+r), ψl,i,j(t) =
∏j−1

r=1(t− τl,i,r), ψl,i,1(t) ≡ 1.
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Step 2: For any f ∈ C0(P), define a set of linear functionals {γl,i : C0([p
l
, p̄l]) → R}n,s+dl=1,i=1

as:

γl,if :=
s∑
j=1

βl,i,j[τl,i,1, . . . , τl,i,j]f =
s∑
j=1

βl,i,j

j∑
r=1

f(x1, . . . , xl−1, τl,i,r, xl+1, . . . , xn)∏j
s=1,s ̸=r(τl,i,r − τl,i,s)

,

where f is viewed as a single variate function of xl here, and the second equality follows by

Theorem 2.50 in Schumaker (2007) (note that for any given l and i, τl,i,1, . . . , τl,i,s are

pairwise distinct). Define another set of linear functionals {γi1,...,in}
s+d,...,s+d
i1=1,...,in=1 such that

γi1,...,inf = γ1,i1 ◦ γ2,i2 · · · ◦ γn,inf,

where γl,il is understood as being applied to f as a function of xl. By the construction of

γl,il , basic algebra yields:

γi1,...,inf =
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

f(τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il,jl∏n
l=1

∏jl
sl=1,sl ̸=rl(τl,il,rl − τl,il,sl)

.

Step 3: Define a linear operator Ll : C0([p
l
, p̄l]) → Sl(Gl, s) as

Llf(xl) =
∑s+d

i=1 (γl,if)N
s
l,i(xl), for all l ∈ [1, n]. Similarly, define a linear operator

L : C0(P) → S(G, s) as

Lf(x1, . . . , xn) =
s+d∑
i1=1

· · ·
s+d∑
in=1

(γi1,...,inf)Ni1,...,in(x1, . . . , xn).

Note that L = L1 ◦ L2 ◦ · · · ◦ Ln, where this composition of linear operators is understood

as Ll being applied to a function of xl.

Step 4: Set g∗ = Lf .

Spline approximation with noisy observations. I now discuss the estimation of

demand function λ∗(.) using spline approximation under noisy observations. Let G̃ :=

{(τ1,i1,j1 ; . . . ; τn,in,jn) : il ∈ [1, s+ d], jl ∈ [1, s] for all l ∈ [1, n]}. Note that the constants

{γi1,...,inλ∗j}
s+d,...,s+d
i1=1,...,in=1 depend on λ∗j(.) only via λ∗j(p), p ∈ G̃. So, if the seller could observe

the demand rate of product j under prices in G̃, he could construct an approximation of λ∗j(.)

using a linear combination of tensor-product B-splines. In my problem, the seller cannot

observe λ∗j(p) for p ∈ G̃, but only its noisy observation Dj(p) = λ∗j(p) +∆j. To address this,

I use empirical mean as a surrogate for λ∗j(p) and propose the following Spline Estimation
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algorithm to estimate the demand.

Spline Estimation

Input Parameters: L0, n, s; Tuning Parameter: d

Algorithm:

Step 1: Estimate λ∗(p) at points p ∈ G̃. For each p ∈ G̃
a. Apply price p L0 times

b. Let λ̃(p) be the sample mean of the L0 observations.

Step 2: Construct spline approximation.

a. For all j ∈ [1, n] and il ∈ [1, s+ d], l ∈ [1, n], calculate coefficients cji1,...,in as:

cji1,...,in =
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

λ̃j(τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il,jl∏n
l=1

∏jl
sl=1,sl ̸=rl(τl,il,rl − τl,il,sl)

.

b. Construct a tensor-product spline function λ̃(p) = (λ̃1(p); . . . ; λ̃n(p)), where

λ̃j(p) =
s+d∑
i1=1

· · ·
s+d∑
in=1

cji1,...,inNi1,...,in(p).

Note that the algorithm above conducts L̃0 := L0(s+ d)nsn samples. The idea of Spline

Estimation is as follows. In Step 1, I apply each p ∈ G̃ as many as L0 times and calculate

its empirical mean λ̃(p). In Step 2, I approximate the underlying demand function λ∗(.)

using a spline function. In particular, I use a modified version of B-Spline approach by

replacing the actual function value λ∗(p) (p ∈ G̃) with its empirical mean λ̃(p). Note that

my estimation approach is different from the so-called Spline Regression (see Gyorfi et al.

(2002)). While Spline Regression uses Least Squares to compute the linear coefficients for

each of the spline basis function, I use the empirical means at sample points and a specific

linear operator (originally devised and analyzed in the deterministic approximation theory

of spline functions, see Schumaker (2007)) to compute the linear coefficients. I choose to

use Spline Estimation in my heuristic instead of Spline Regression because it allows me to

use existing results on Spline Approximation Theory to derive the large deviation bounds

for Spline Estimation in Lemma 4.4.1. I suspect that similar results also hold for Spline

Regression. Let a ∧ b = min{a, b}. The following lemma shows how well λ̃(.) approximates

λ∗(.).
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Lemma 4.4.1 Set d = ⌈(L1/2
0 / log k)1/(s+n/2)⌉ and let L0 ≥ log3 k be a positive integer that

may depend on k. Suppose that s ≥ 2. There exist positive constants Ψr for each r ∈
[0, (s− 2) ∧ s̄] and K independent of k ≥ 1 such that for all j ∈ [1, n] and rl ∈ Z+, l ∈ [1, n]

satisfying
∑n

l=1 rl = r, the following holds:

Pπ
(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(.)− λ̃j(.))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ Ψr

(
log k√
L0

) s∧s̄−r
s+n/2

)
≤ K exp(− log2 k). (4.1)

The condition L0 ≥ log3 k implies (log k/
√
L0)

s∧s̄−r
s+n/2 → 0 as k → ∞. This means that

the difference between the rth order partial derivatives of the underlying demand function

and the spline approximation is uniformly small with a high probability for large k. When

r = 0, my bound becomes a large deviation bound for the function estimate itself and

is similar to the known bound for Spline Regression. (Suppose I set s = s̄ and re-write

my bound in a Hoeffding-type form, see Remark 4.4.1 below. Integrating the right hand

side with respect to x over R+, I obtain the ∞-risk of Spline Estimation which is of order

(1/
√
L̃0)

2s̄/(2s̄+n). This is to be compared with the well-known 2-risk of Spline Regression

which is of order (
√
log L̃0/L̃0)

2s̄/(2s̄+n), see Corollary 15.1 in Gyorfi et al. (2002).) I want to

stress that the large deviation bound for the function estimate itself is not sufficient for my

purpose. Specifically, I need additional large deviation bounds for the first and second order

partial derivatives of the estimated demand function, as in Lemma 4.4.1, in order to conduct

a stability analysis of the deterministic optimization problem P in my analysis later.

Remark 4.4.1 (Interpreting (4.1) as a Hoeffding-type Error Bound) Hoeffding-type

error bounds commonly appear in statistical estimations. Informally, they relate a measure

of estimation error (e.g., 2-norm of the parameter estimation error in parametric models)

with the number of samples L0 in the following way:

P(Error ≥ x) ≤ C1 exp(−C2L0x
2) ,

for some constants C1 and C2 that are independent of x and L0. Note that, in Hoeffding-type

of inequality, the right hand side converges to zero as x tends to zero and the variable x shows

up as a quadratic term in the exponent. In contrast, when I write (4.1) into a similar form,

I obtain

Pπ
(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(.)− λ̃j(.))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ x

)
≤ K exp(−Ψ̄rL0x

2s+n
s∧s̄−r ) ,
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where Ψ̄r = Ψ
− 2s+n

s∧s̄−r
r . Due to the well-known curse of dimensionality in nonparametric func-

tion estimation, the right hand side of my inequality does not tend to zero as fast as a typical

Hoeffding-type inequality (i.e., x2 > x
2s+n
s∧s̄−r when x is small). Moreover, the convergence rate

on the right hand side also depends on model parameters. In particular, it is decreasing in

n and r, and is increasing in s̄. This makes intuitive sense: as the problem dimension n

increases, estimation becomes more difficult; as the order of derivative r decreases or as the

smoothness index s̄ increases, the underlying demand function (or the partial derivative of

the underlying demand function) becomes smoother and is easier to estimate. The conver-

gence rate is increasing in s when s ≤ s̄ because higher s allows more flexibility in spline

approximation. Interestingly, when s > s̄, the convergence rate actually decreases in s. This

is possibly due to the fact that, when s is higher than smoothness index s̄, the extra flexibility

introduces unnecessary complexity (i.e., redundant linear coefficients to be estimated), which

leads to more sampling.

4.4.2 Stability analysis

In this subsection, I first present a nonparametric stability result for a class of optimiza-

tion problems, and then apply this result to the perturbation analysis of my deterministic

optimization P. Consider the following non-linear optimization problems:

(NP) max
x∈X

{f(x) : Ug(x) ≼ V } and (ÑP(δ)) max
x∈X

{
f̃(x) : Ug̃(x) ≼ V − δ

}
.

where X is a convex compact subset of Rn, f : X → R and g : X → Rn are both twice con-

tinuously differentiable functions, f̃ : X → R and g̃ : X → Rn are continuously differentiable

approximations of f and g, δ ∈ Rm, V ∈ Rm, and U is an m by n non-negative matrix that

has full row rank. Let x∗ and x̃δ denote the optimal solution of NP and ÑP(δ) respectively

(i.e., if they are feasible). I state a useful stability result.

Proposition 4.4.1 Suppose that the following conditions hold:

(i) g(.) has a twice continuously differentiable inverse function g−1(.) : Y → X where

Y := g(X ) is a convex compact subset of Rn;

(ii) f(g−1(.)) : Y → Rn is strongly concave;

(iii) NP is feasible;

(iv) x∗ is in the interior of X .
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Then, there exist δ̄ > 0 and K > 0 such that for all δ, f̃(.) and g̃(.) satisfying ||Ug(.)−
Ug̃(.) + δ||∞ ≤ δ̄, ÑP(δ) is feasible and

||x∗ − x̃δ||2 ≤ K
(
||(∇f(.)−∇f̃(.))′||∞ + ||g(.)− g̃(.)||∞ + ||δ||∞

)
.

The above result can be viewed as a Lipschitz-type stability result for a family of non-

parametric optimization problems. Per my discussions in Section 4.2, although stability

analysis of parametric optimization problems has been intensively studied in the literature

(e.g., Bonnans and Shapiro (2000)), stability results for nonparametric optimization prob-

lems are very rare. (See Remark 4.4.2 for a brief discussion on the relationship between

Proposition 4.4.1 and existing results on parametric stability analysis.) In my case, since

the original unperturbed optimization can be transformed into a convex optimization, I can

use a convexity argument to establish Proposition 4.4.1.

I now apply Proposition 4.4.1 to my deterministic optimization problem P. Using the

spline approximate λ̃(p) derived in Section 4.4.1, I can formulate an approximate optimiza-

tion of P as follows:

(P̃) r̃D := max
p∈P

{
r̃(p) : Aλ̃(p) ≼ C

T

}
where r̃(p) = p · λ̃(p). Let p̃D denote an optimal solution of P̃ if it is feasible and let

λ̃D = λ̃(p̃D). The following lemma follows directly from Proposition 4.4.1 and provides a

characterization of p̃D.

Lemma 4.4.2 Suppose that s ≥ 3. Then, there exist constants δ̄ > 0 and K > 0 such that

if ||λ∗(.) − λ̃(.)||∞ ≤ δ̄, P̃ is feasible and ||pD − p̃D||2 ≤ K(||λ∗(.) − λ̃(.)||∞ + ||(∇λ∗(.) −
∇λ̃(.))′||∞).

Lemma 4.4.2 means that if demand estimation error is small, P̃ is feasible and its optimal

solution p̃D lies in close proximity of pD. This observation is crucial for my analysis later.

Remark 4.4.2 (On Proposition 4.4.1 and Existing Parametric Stability Results)

The existing Lipschitz stability result of the optimal solution of a parameterized optimization

problem (e.g., Theorem 5.53 part (a) in Bonnans and Shapiro (2000)) can be viewed as a

special case of my nonparametric Lipschitz-type stability result in Proposition 4.4.1. Let

U ⊆ Rq, q ∈ Z++, be a compact parameter set. Suppose that the objective functions f and

f̃ come from a family of parameterized functions {f(.;u)}u∈U where f(.) = f(.;u0) and
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f̃(.) = f(.; v) for u0, v ∈ U . Also, suppose that the constraint functions g and g̃ come from

a family of parameterized functions {g(.;u)}u∈U where g(.) = g(.;u0) and g̃(.) = g(.; v) for

u0, v ∈ U . For simplicity, assume δ = 0. In the perturbation analysis of parametric optimiza-

tion problems, f(.; .) and g(.; .) are typically assumed to be twice continuously differentiable,

which means that ||(∇f(.;u0) −∇f(.; v))′||∞ = O(||u0 − v||∞) and ||g(.;u0) − g(. : v)||∞ =

O(||u0 − v||∞). Applying Proposition 4.4.1 to this setting immediately yields Theorem 5.53

part (a) in Bonnans and Shapiro (2000).

4.4.3 An approximate quadratic program

In this subsection, I introduce a quadratic program approximation of P. (This will be useful

when I discuss my heuristic in Section 4.5.) The idea is simple: I approximate the objective

of P with a quadratic function and its constraints with linear functions. My objective

here is to show that if the parameters of the quadratic and linear functions are correctly

chosen, the resulting quadratic program will have the same optimal solution as P and it will

possess some very useful stability properties. To begin with, I first linearize the constraints

of P. Since the capacity constraints form an affine transformation of the demand function, I

will simply linearize the demand function. For any a ∈ Rn, B ∈ Rn×n, let B1, . . . , Bn be the

columns of B and define θι = (a;B1; . . . ;Bn) ∈ Rn2+n, where the subscript ι stands for linear

demand. I denote a linear demand function by λ(p; θι) = a+B′p. Next, I discuss a quadratic

approximation for the objective of P. For any E ∈ R, F ∈ Rn, G ∈ Rn×n, let G1, . . . , Gn

denote the columns of G and define θo = (E;F ;G1; . . . ;Gn) ∈ Rn2+n+1 where the subscript o

stands for objective. I denote the resulting quadratic function by q(p; θo) = E+F ′p+ 1
2
p′Gp.

Finally, let θ = (θo; θι) ∈ R2n2+2n+1. For any θ ∈ R2n2+2n+1, δ ∈ Rm, I can define a quadratic

program QP(θ; δ) as follows:

(QP(θ; δ)) max
p∈P

{
q(p; θo) : Aλ(p; θι) ≼

C

T
− δ

}
.

If I choose the parameters θ and δ carefully, QP(θ; δ) can be a very good approximation

of P. Specifically, let θ∗ι = (a∗;B∗
1 ; . . . ;B

∗
n), where B

∗ := ∇λ∗(pD) and a∗ := λD − (B∗)′pD.

Define an n by n symmetric matrix H∗ := B∗∇2r∗λ(λ
D)(B∗)′ − B∗ − (B∗)′. Then, one can

verify that

H∗
ij = −(u∗ij)

′(B∗)−1λD, where u∗ij =

[
∂2λ∗1(p

D)

∂pi∂pj
; . . . ;

∂2λ∗n(p
D)

∂pi∂pj

]
. (4.2)
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(See Appendix A.4.4 for derivation.) Let θ∗o = (E∗;F ∗;G∗
1; . . . ;G

∗
n) where

E∗ :=
1

2
(pD)′H∗pD, F ∗ := a∗ −H∗pD, G∗ := B∗ + (B∗)′ +H∗,

and let θ∗ := (θ∗o; θ
∗
ι ). Note that QP(θ∗;0) is a very intuitive approximation of P since the

function λ(p; θ∗ι ) = a∗ + (B∗)′p = λD + (B∗)′(p − pD) can be viewed as a linearization of

λ∗(.) at pD. (Since ∇λ∗(pD) is invertible as implied by R1 and R4, I can write p(λ; θ∗ι ) =

pD + ((B∗)′)−1(λ − λD) as the inverse demand function). Note also that the gradients of

the objective function and the constraints in QP(θ∗;0) at pD coincide with those in P.

By Karush-Kuhn-Tucker (KKT) optimality conditions, it can be shown that the optimal

solution of QP(θ∗;0) is the same as the optimal solution of P. I formally state these results

in Lemma 4.4.3 below. Let pDδ (θ) and µ
D
δ (θ) denote the optimal primal and dual solutions

of QP(θ; δ) respectively (if they exist), and let λDδ (θ) = λ(pDδ (θ); θι).

Lemma 4.4.3 There exist constants κ > 0, ω > 0 and δ̄ > 0 such that, for all θι ∈
Ball(θ∗ι , δ̄), θo ∈ Ball(θ∗o, δ̄) and δ ∈ Ball(0, δ̄), the following results hold:

(a) B is invertible and ||(B′)−1||2 ≤ ω;

(b) For all p ∈ P and for all i, j ∈ [1, n], ||λ(p; θι)−λ(p; θ∗ι )||2 ≤ ω||θι−θ∗ι ||2 and |∂λj
∂pi

(p; θι)−
∂λj
∂pi

(p; θ∗ι )| ≤ ω||θι − θ∗ι ||2;

(c) For all λ, λ′ ∈ λ(P ; θι), ||p(λ; θι)− p(λ′; θι)||2 ≤ ω||λ− λ′||2;

(d) q(p(.; θι); θo) is strongly concave.

(e) pD = pD0 (θ
∗), λD = λD0 (θ

∗), µD = µD0 (θ
∗);

(f) QP(θ; δ) is feasible and has a unique optimal solution. Moreover, pDδ (θ) ∈ Ball(pD0 (θ
∗), ϕ/2),

Ball(pDδ (θ), ϕ/2) ⊆ P, ||pD0 (θ∗)− pDδ (θ)||2 ≤ κ(||θ∗ − θ||2 + ||δ||2), ||λD0 (θ∗)− λDδ (θ)||2 ≤
κ(||θ∗ − θ||2 + ||δ||2), and the constraints of QP(θ; δ) that correspond to the rows

{i : µD0,i(θ∗) > 0} are binding.

Note that Lemma 4.4.3 part (f) not only establishes Lipschitz continuity of the opti-

mal solution, but also provides additional results regarding the properties of the capacity

constraints at the optimal solution. These play an important role in deriving a sharp per-

formance bound of my heuristic.
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Remark 4.4.3 (On the Quadratic Revenue Function Approximation) Note that, as

the equation below shows, q(p; θ∗o) can be viewed as the revenue function under the approxi-

mate linear demand function plus an additional correction term:

q(p; θ∗o) =
1

2
(pD)′H∗pD + p′(a∗ −H∗pD) +

1

2
p′(B∗ + (B∗)′ +H∗)p

= p′(a∗ + (B∗)′p) +
1

2
(p− pD)′H∗(p− pD)

= r(p; θ∗ι ) +
1

2
(p− pD)′H∗(p− pD),

where r(p; θ∗ι ) := p · λ(p; θ∗ι ) is the natural revenue function under the approximate linear

demand function. I add a correction term above in order to ensure that if I do a change of

variables p = p(λ; θ∗ι ) to change the pricing decision to demand rate decision, the resulting

objective function is actually the second order Taylor’s expansion of r∗λ:

q(p(λ; θ∗ι ); θ
∗
o)

= r(p(λ; θ∗ι ); θ
∗
ι ) +

1

2
(p(λ; θ∗ι )− pD)′H∗(p(λ; θ∗ι )− pD)

= λ′(pD + ((B∗)′)−1(λ− λD)) +
1

2
(λ− λD)′(B∗)−1H∗((B∗)′)−1(λ− λD)

= λ′(pD + ((B∗)′)−1(λ− λD))− (λ− λD)′((B∗)′)−1(λ− λD) +
1

2
(λ− λD)′∇2r∗λ(λ

D)(λ− λD)

= λ′pD + (λ− λD)′(B∗)−1λD +
1

2
(λ− λD)′∇2r∗λ(λ

D)(λ− λD)

= r∗λ(λ
D) + (λ− λD)′(pD + (B∗)−1λD) +

1

2
(λ− λD)′∇2r∗λ(λ

D)(λ− λD)

= r∗λ(λ
D) +∇r∗λ(λD)′(λ− λD) +

1

2
(λ− λD)′∇2r∗λ(λ

D)(λ− λD). (4.3)

Hence, in light of R3, q(p(λ; θ∗ι ); θ
∗
o) is strongly concave in λ. This observation is important

because it allows me to use the general result in Proposition 4.4.1 to derive perturbation result

for the optimal primal and dual solutions of QP(θ; δ) (see condition (ii) in Proposition 4.4.1).

4.5 Main result

I am now ready to describe Nonparametric Self-adjusting Control (NSC) and discuss its

asymptotic performance; the proof of this result is given in Section 4.6. NSC consists of an

exploration procedure and an exploitation procedure. The exploration procedure uses the

Spline Estimation algorithm discussed in Section 4.4.1 to construct a spline approximation

λ̃(.) of the underlying demand function λ∗(.). This function λ̃(.) is then used to construct
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a linear function λ(.; θ̂ι) that closely approximates λ(.; θ∗ι ) in the neighborhood of pD and

a quadratic program that closely approximates P. During the exploitation phase, I use the

optimal solution of the approximate quadratic program as baseline control and automatically

adjust the price according to a pre-determined price update rule. Further detail will be

provided below. Recall that L̃0 is the duration of the Spline Estimation algorithm. Let

Ct denote the remaining capacity at the end of period t. Let θ̂ := (θ̂o; θ̂ι), where θ̂ι :=

(â; B̂1; . . . ; B̂n), θ̂o := (Ê; F̂ ; Ĝ1; . . . ; Ĝn) for

B̂ := ∇λ̃(p̃D), â := λ̃− B̂′p̃D, Ê := 1
2
(p̃D)′Ĥp̃D, F̂ := â− Ĥp̃D,

Ĝ := B̂ + B̂′ + Ĥ, and Ĥ = [Ĥij]

where Ĥij := −û′ijB̂−1λ̃D and ûij :=

[
∂2λ̃1(p̃

D)

∂pi∂pj
; . . . ;

∂2λ̃n(p̃
D)

∂pi∂pj

]
.

(From Section 4.4.2, p̃D is an optimal solution of P̃.) My proposed NSC heuristic is given

below.

Nonparametric Self-adjusting Control (NSC)

Input parameters: n, s, Tuning Parameters: d, L0

Stage 1 (Exploration Phase 1 - Spline Estimation)

a. For t = 1 to L̃0 ∧ T :
- If Ct−1 ≺ Aj for some j = 1, . . . , n, set pt,j = p∞j for all j = 1, . . . , n.

- Otherwise, follow Step 1 in Spline Estimation algorithm.

b. At the end of period L̃0 ∧ T , do:
- If L̃0 ≥ T , terminate NSC.

- If L̃0 < T and CL̃0
≺ Aj for some j = 1, . . . , n:

- For all t > L̃0, set pt,j = p∞j for all j = 1, . . . , n.

- Terminate NSC.

- If L̃0 < T and CL̃0
≽ Aj for all j = 1, . . . , n:

- Follow Step 2 in Spline Estimation algorithm to get λ̃(.).

- Go to Stage 2 below.

Stage 2 (Exploration Phase 2 - Function Approximation)

a. Solve P̃ and obtain the optimizer p̃D.

b. Let δ := C/T − CL̃0
/(T − L̃0).

c. Compute â, B̂, Ê, F̂ , Ĝ, Ĥ and θ̂ = (θ̂o; θ̂ι).

- If B̂ is invertible, go to Stage 2(d) below.
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- Otherwise, for t = L̃0 + 1 to T :

- If Ct−1 ≽ Aj for j = 1, . . . , n, apply pt = p̃D.

- Otherwise, for product j = 1 to n, do:

- If Ct−1 ≺ Aj, set pt,j = p∞j .

- Otherwise, set pt,j = pt−1,j.

d. Solve QP(θ̂; δ) for its static price pDδ (θ̂).

Stage 3 (Exploitation)

For t = L̃0 + 1 to T :

- Compute: p̂t = pDδ (θ̂)−∇λp(λ
D
δ (θ̂); θ̂ι) ·

∑t−1

s=L̃0+1
∆̃s

T−s , where

∆̃t := Dt − λ(pt; θ̂ι).

- If p̂t ∈ P and Ct−1 ≽ Aj for j = 1, . . . , n, apply pt = p̂t.

- Otherwise, for product j = 1 to n, do:

- If Ct−1 ≺ Aj, set pt,j = p∞j .

- Otherwise, set pt,j = pt−1,j.

I now explain the main ideas behind NSC. The exploitation part (Stage 3) of NSC is

motivated by LRC heuristic developed in Jasin (2014), which (roughly) uses

pt = p∗

(
λD −

t−1∑
s=1

∆s

T − s

)
, where ∆t = Dt(pt)− λ∗(pt)

and has a strong performance guarantee in the setting of known demand function. In my

setting, the demand function λ∗(.) is unknown (hence, the inverse demand function p∗(.) is

also unknown) and the sequence {∆t}Tt=1 is not observable. If I still wish to use LRC, an

intuitive fix is to replace λ∗(.) and {∆t}Tt=1 with their best estimates. This motivates the use

of Spline Estimation in Stage 1 to compute an approximate demand function λ̃(.). However,

although λ̃(.) can approximate λ∗(.) well by tapping into the smoothness of λ∗(.), the piece-

wise nature of spline functions and the shape of the spline basis functions imply that λ̃(.)

may not be invertible, i.e., λ̃(.) may not admit a well-defined inverse demand function. But,

this is crucial since LRC uses p∗(.) to adjust the prices. This motivates me to use demand

linearization in Stage 2. The objective of Stage 2 is to construct a linear function that closely

approximates the linearization of the true demand function λ∗(.) around pD and construct

a quadratic program that closely approximates P around its optimal solution pD. I choose

to use linear approximation of the demand function and quadratic approximation of the

revenue function because, by Lemma 4.4.3 part (e), the optimal solution of the constructed

approximate quadratic program coincides with the optimal solution of P if the parameters
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are chosen to be (θ∗,0) (see Section 4.4.3 for more discussions). Although θ∗ is unknown

to the seller, I can utilize the spline approximation λ̃(.) to construct parameters θ̂ that

closely approximate θ∗. To see why this is so, note that if L0 is carefully selected, the

spline estimation procedure yields a spline function λ̃(.) that closely approximates λ∗(.),

together with its first and second order partial derivatives (by Lemma 4.4.1), with a very

high probability; this in turn indicates that any optimizer p̃D of P̃ lies in a close proximity

of pD (by Lemma 4.4.2). Since θ∗ (resp. θ̂) can essentially be viewed as a function of pD

(resp. p̃D), λ∗(pD) (resp. λ̃(p̃D)) and its first and second order derivatives evaluated at

pD (resp. p̃D), this suggests that θ̂ = (θ̂o; θ̂ι) is a good approximation of θ∗ = (θ∗o; θ
∗
ι ). It

is worth stressing that Spline Estimation is crucial for determining reasonably good linear

demand and quadratic revenue function approximations. As mentioned above, among all

possible approximate linear demand functions, only those that are linearized at a point close

to pD are effective. (Similarly for the revenue functions.) To find a point that is close to pD

(i.e., p̃D in my NSC) via optimizing the approximate deterministic pricing problem, I need

to use Spline Estimation to get an approximate function that uniformly approximates the

underlying demand function well.

Finally, after obtaining λ(.; θ̂ι), I replace p
∗(.) and ∆t in LRC with p(.; θ̂ι) and ∆̃t. This

leads to the price update formula in Stage 3:

p̂t = pDδ (θ̂)−∇λp(λ
D
δ (θ̂); θ̂ι) ·

t−1∑
s=L̃0+1

∆̃s

T − s
.

It is natural to expect that if λ(.; θ̂) approximates λ∗(.) well, then NSC should retain the

strong performance of LRC, this intuition is not immediately obvious and requires a mathe-

matical justification. Note that, in addition to demand randomness, there are at least three

sources of errors that affect the performance of NSC: (1) errors from functional estimation

(i.e., due to estimating λ∗(.) with λ̃(.)), (2) errors from function approximation (i.e., due to

demand linearization and quadratic approximation), and (3) errors from systematic biases

due to the terms {∆̃t}Tt=1. (In LRC, the perturbation term
∑t−1

s=1∆s/(T − s) is unbiased

because Eπ
λ∗ [∆t] = 0. In contrast, in NSC, the perturbation term

∑t−1

s=L̃0+1
∆̃s/(T − s) is

biased because Eπ
λ∗ [∆̃t] ̸= 0. This means that I am systematically introducing new biases in

each period. It is not a priori clear what kind of impact these biases will have on revenue

performance.) Thus, despite the strong performance of LRC in the known demand function

setting, it is not a priori clear whether self-adjusting alone, without re-optimizations and

without re-estimations during Stage 3, is sufficient to reduce the impact of these errors on

expected revenue loss. Interestingly, the following result states that the performance of NSC
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is close to the best achievable (asymptotic) performance bound.

Theorem 4.5.1 Suppose that I use s ≥ 4, L0 = ⌈(kT )(s+n/2)/(2s+n−2)(log(kT ))(2s+n−4)/(2s+n−2)⌉
and d = ⌈(L1/2

0 / log(kT ))1/(s+n/2)⌉. There exists a constant M1 > 0 independent of k > 3

such that for all s ≥ 4, I have

ρNSC(k) ≤ M1k
1
2
+ϵ(n,s,s̄) log k, where ϵ(n, s, s̄) = 1

2

(
2s−2(s∧s̄)+n+2

2s+n−2

)
.

Some comments are in order. First, unlike the heuristic proposed in Besbes and Zeevi

(2012), which requires the knowledge of s̄, NSC does not require the knowledge of the

smoothness index s̄. This is practically appealing because it is usually difficult to guess

the smoothness index of a function when the function itself is unknown. Second, since

most commonly used demand functions such as polynomial with arbitrary degree, logit, and

exponential are infinitely differentiable (i.e., s̄ can be arbitrarily large), for any fixed ϵ > 0,

I can select integers s ≥ (n + 2)/(4ϵ) − (n − 2)/2 such that the performance under NSC

is O(k1/2+ϵ log k). Theoretically, this means that the asymptotic performance of NSC is

very close to the best achievable performance lower bound of Ω(
√
k). Third, despite the

systematic biases it introduces, self-adjusting control in Stage 3 (surprisingly) plays a vital

role in guaranteeing the stated performance bound. To illustrate, consider the case where s̄

is arbitrarily large. Suppose that I only apply static price pt = pDδ (θ̂) throughout Stage 3,

subject to capacity constraints. Then, under the optimally tuned L0 and s, one can show

that the resulting expected revenue loss is O(k2/3+ϵ log k), which is significantly worse than

the bound in Theorem 4.5.1. This underscores the importance of self-adjusting price update

in reducing the expected revenue loss from O(k2/3+ϵ log k) to O(k1/2+ϵ log k). Finally, to

further validate the theoretical result in Theorem 4.5.1, I conduct a simple numerical study

with two types of products and two types of resources. Table 4.1 shows that NSC performs

well: For problems with a wide range of k, its relative revenue loss (i.e., ρπ(k)/JD(k)) is

about 3 - 8% lower than the relative revenue loss of Algorithm 3 in Besbes and Zeevi (2012).

To implement NSC for large-scale problems, the main computational burden lies in solving

the nonlinear optimization P̃ because λ̃(p) is stitched together by many (not necessarily

concave) multinomial function. (In fact, Algorithm 3 in Besbes and Zeevi (2012) also suffers

from this computational complexity. Moreover, I would also like to point out that, in contrast

to local polynomial approximation used in Algorithm 3 in Besbes and Zeevi (2012), my spline

approximation is globally differentiable and is more amenable to optimizations.) Thus, for

problems with many different types of products and resources, one may want to optimize

an approximation of P̃ that is computationally more tractable. The question of which
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approximation should be used is an important and practically relevant one; however, it is

beyond the scope of the current essay and I leave it for future research pursuit.

Remark 4.5.1 (On the analysis of uncapacitated vs. capacitated RM) Per my dis-

cussions in Section 4.2, most existing literature on joint learning and pricing focus on the set-

ting of uncapacitated RM where there is no limit on the number of resources that can be used.

In such setting, it has been repeatedly shown in the literature that the Ω(
√
k) lower bound

is actually tight for both single product and multiple products settings (see Besbes and Zeevi

(2009), Broder and Rusmevichientong (2012), Keskin and Zeevi (2014)). The presence of

capacity constraints makes the problem significantly more challenging. To see this, note that,

if I mis-calculate pD by ϵ (i.e., I use p̃D = pD + ϵ), by the strong concavity of r∗λ(.) and

Lipschitz property of demand, r∗(pD) − r∗(p̃D) is approximately on the order of ϵ2 in the

uncapacitated setting (because ∇r∗(pD) = 0 due to pD being the unconstrained optimizer

of r∗(p)). Thus, the expected revenue loss during T periods is O(Tϵ2). In contrast, in the

capacitated setting, ∇r∗(pD) ̸= 0 in general. This means that r∗(pD)−r∗(p̃D) is on the order

of ϵ, which implies that the expected revenue loss during T periods is O(Tϵ). This is the

reason why the analysis in uncapacitated RM is not directly applicable to capacitated RM.

Remark 4.5.2 (Applying NSC in deterministic demand arrival case) Although my

NSC is designed for the stochastic demand case, it can be readily adapted and applied in

the deterministic demand case as well. In this case, there is no random noise in demand

observations, so one can simply set L0 = 1 in the Spline Estimation subroutine. The other

tuning parameter d needs to be adjusted accordingly. Specifically, given L0 = 1, for any s ≥ 4

and d, the estimation error of the demand function and its first order partial derivatives are in

the order of ϵ := O(d−(s∧s̄−1)) by a similar analysis as in Step 1 in the proof of Lemma 4.4.1.

The expected revenue loss during the exploration stages is in the order of the number of

prices being tested, i.e., O(dn), while the expected revenue loss during the exploitation stage

is O(ϵ2k). Hence, the expected revenue loss throughout the selling season is O(ϵ−
n

s∧s̄−1 +ϵ2k),

which is minimized at ϵ = k−
s∧s̄−1

2(s∧s̄)+n−2 . Thus, by setting d = k
1

2(s∧s̄)+n−2 , the performance

bound of NSC for deterministic demand is O(k
n

2(s∧s̄)+n−2 ). This means that when the demand

function is sufficiently smooth (i.e., s̄ = ∞), for any ϵ > 0, I can choose s large enough so

that the performance of NSC in the deterministic demand setting is O(kϵ). This highlights

the fact that stochastic and deterministic demand cases have different complexities.

Remark 4.5.3 (On my demand linearization approach) Although the estimated spline

function is not used in the exploitation stage once the function approximations (i.e., linear
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demand approximation and quadratic revenue approximation) are conducted, I would like to

re-iterate that Spline Estimation is crucial in NSC as it ensures that the demand function is

linearized at a point that is sufficiently close to pD so that the resulting function approxima-

tions are reasonably good. Other demand linearization approaches have been proposed in the

literature as well. For example, in the single product without capacity constraint setting, by

using the simple structure of the optimal price λ(p∗)+p∗λ′(p∗) = 0, Besbes and Zeevi (2015)

propose a simpler and more direct demand linearization approach that works well in their

setting. This approach is unlikely to work in my multiple products with multiple capacity

constraints setting because the optimal solution pD does not permit the same simple structure

anymore; instead, it is characterized by the KKT conditions (i.e., one needs to compare a

combinatorial number of KKT points to find pD).

4.6 Proof of Theorem 4.5.1

In this section, I provide a complete proof of Theorem 4.5.1. I first discuss an outline of

the proof, together with the key ideas and key lemmas, in Section 4.6.1 and then I fill in

the remaining details in Sections 4.6.2 - 4.6.4. Throughout this section, I fix π= NSC and

assume that T = 1 (this is without lost of generality).

4.6.1 Key ideas and outline of the proof

The proof of Theorem 4.5.1 uses a combination of large deviation arguments, stability anal-

ysis, and stopping time arguments. Below, I divide the proof into three parts.

Part 1

In this part, I argue that, if k is large, ||θ∗ − θ̂||2 is small with a very high probability. This

result allows me to use the perturbation result in Lemma 4.4.3 when analyzing the revenue

loss later (in Part 3). Let ϵ(L0) = (log k/
√
L0)

((s∧s̄)−2)/(s+n/2) and define E := {||θ∗ − θ̂||2 ≤
M2ϵ(L0)}, where M2 is as defined in Lemma 4.6.1 below.

Lemma 4.6.1 There exist constants M2,M3 > 0 independent of k ≥ 1 and L0 such that if

L0 ≥ log3 k and s ≥ 4, then Pπλ∗(||θ∗ − θ̂||2 > M2ϵ(L0)) ≤ M3/k.

The complete proof of Lemma 4.6.1 is given in Section 4.6.2. Here, I simply provide

some basic intuition behind the proof. The proof uses Lemma 4.4.1 and Lemma 4.4.2. In

particular, recall that Lemma 4.4.1 indicates that, with a very high probability, the spline

function λ̃(.) closely approximates the underlying demand function λ∗(.) both in terms of
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the function value and its first and second order partial derivatives when s ≥ 4 and s̄ ≥ 2.

This result together with the nonparametric perturbation result in Lemma 4.4.2 establishes

that p̃D is very close to pD with very high probability. But then, the first and second order

derivatives of λ̃(.) evaluated at p̃D also closely approximate those of λ∗(.) evaluated at pD.

Note that by construction, θ∗ (resp. θ̂) can essentially be viewed as a function of pD (resp.

p̃D), λ∗(pD) (resp. λ̃(p̃D)) and its first and second order derivatives evaluated at pD (resp.

p̃D). Hence, θ̂ closely approximates θ∗ with a very high probability.

In the remainder of this part, I first discuss some observations that follow from Lemma 4.6.1

and then use these observations to define a constant Ω1, which will be used in Parts 2 and

3. (As will be clear later, the problem behaves nicely and the prerequisite of Lemma 4.4.3

is satisfied when k ≥ Ω1. This sets the stage for the analysis in Parts 2 and 3.) Four ob-

servations are in order. First, note that, as k becomes large, the probability of E tends to

one. Second, ϵ(L0) → 0 as k → ∞ under the condition that L0 > log3 k, and this condition

is satisfied for all sufficiently large k because my selection of L0 implies

k
s+n/2
2s+n−2 (log k)

2s+n−4
2s+n−2 ≤ L0 ≤ 2k

s+n/2
2s+n−2 (log k)

2s+n−4
2s+n−2 , (4.4)

and log3 k is smaller than the left hand side of (4.4) for large k. In light of Lemma 4.6.1,

this observation means that if k is large, θ∗ and θ̂ can be arbitrarily close with a very high

probability. By (4.4), I have the following bounds for ϵ(L0) as well:

2−
s∧s̄−2
2s+n

(
log k√
k

) s∧s̄−2
2s+n−2

≤ ϵ(L0) ≤
(
log k√
k

) s∧s̄−2
2s+n−2

. (4.5)

Third, by definition of L̃0 and my choice of d in Theorem 4.5.1, I can bound

L̃0 = sn(s+ d)nL0 ≤ sn(s+ 1)ndnL0 ≤ sn(s+ 1)n2n+2k
s+n

2s+n−2 (log k)
2(s−2)
2s+n−2 , (4.6)

where the second inequality follows from (4.4). The above inequality implies L̃0/k → 0 as

k → ∞. So, there exists a constant Ω0 > 0 such that for all k > Ω0, I have L̃0 ≤ k/2.

Fourth, there exists a constant M4 > 0 independent of k ≥ Ω0 such that for all k ≥ Ω0,

||δ||2 =

∣∣∣∣∣∣∣∣C −
CL̃0

k − L̃0

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣(kC − L̃0C)− (kC − A

∑L̃0

s=1Ds)

k − L̃0

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣A
∑L̃0

s=1Ds − L̃0C

k − L̃0

∣∣∣∣∣
∣∣∣∣∣
2

≤ 2 (||Ae||2 + ||C||2)
L̃0

k
≤ 2 (||Ae||2 + ||C||2) sn(s+ 1)n2n+2(log k/

√
k)

2(s−2)
2s+n−2

≤ 2 (||Ae||2 + ||C||2) sn(s+ 1)n2n+2(log k/
√
k)

2(s∧s̄−2)
2s+n−2 ≤ M4ϵ(L0)

2
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where the first inequality follows because L̃0 ≤ k/2 for k ≥ Ω0 and I have at most one arrival

per period, the second inequality follows from (4.6), and the last inequality follows from

(4.5).

Let δ̄ be defined as in Lemma 4.4.3. Putting together the four observations above, I

conclude that there exists a constant Ω1 > 0 independent of k such that for all k ≥ Ω1 the

following holds:

Pπλ∗(E) ≥ 1−M3/k ≥ 1/2; (4.7)

Conditioning on E , ||θ∗ − θ̂||2 ≤M2ϵ(L0) ≤ δ̄; (4.8)

||δ||2 ≤M4ϵ(L0)
2 ≤ δ̄. (4.9)

Inequality (4.7) indicates that I only need to focus on the revenue loss on the event E .
Inequalities (4.8) and (4.9) are crucial; they ensure that, for k ≥ Ω1, conditioning on E , the
prerequisite of Lemma 4.4.3 is satisfied and the perturbation bounds therein can be used to

analyze the performance of NSC.

Part 2

In this part, I define a stopping time τ and analyze its properties. This will be crucial for my

analysis in Part 3. In particular, it helps me to quantify the amount of revenue loss under

NSC during the exploitation phase. (Stopping time argument is also used in Jasin (2014).

However, unlike the arguments in Jasin (2014), which assume known demand function, here

I also need to deal with estimation errors, approximation errors, and systematic biases.) I

first define τ and state its properties in Lemmas 4.6.2 and 4.6.3. For clarity, I delay the

complete proof of these two lemmas in Section 4.6.3 and only discuss the intuition here. Let

τ be the minimum of k and the first time t ≥ L̃0 + 1 such that the following condition (†) is
violated:

(†) ψ > S(t), where ψ :=
√
ϵ(L0), S(k) := ∞ and ∀t ∈ [1, k − 1],

S(t) :=
∣∣∣∣∣∣∑t

s=L̃0+1
∆̃s

k−s

∣∣∣∣∣∣
2
+ 1

k−t .

(Recall that ∆̃s = ∆s + λ∗(ps)− λ(ps; θ̂ι).) The purpose of condition (†) is to guarantee

that p̂t is not too far way from pDδ (θ̂) (see the pricing formula in Stage 3 of NSC) before

τ and the cumulative deviation of the actual demand realizations from the target average

demand is not too large before τ . Let Ω1 and E be as defined in Part 1. I state two lemmas.
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Lemma 4.6.2 Suppose that L0 ≥ log3 k. There exists a constant Ω2 > Ω1 independent of

k ≥ 1 such that for all k ≥ Ω2 and all sample paths on E, p̂t ∈ P (i.e., pt = p̂t) and Ct ≽ Aj

for all j ∈ [1, n] and t ∈ [L̃0 + 1, τ − 1].

Lemma 4.6.3 There exists a constant M5 > 0 independent of k ≥ 1 such that, for all

k ≥ Ω2, I have Eπ
λ∗ [k − τ |E ] ≤M5(ϵ(L0)

2k + ϵ(L0)
−1 log k + ϵ(L0)

−2).

Lemma 4.6.2 essentially says that, when k is sufficiently large, everything behaves “nicely”

before the stopping time τ on E . As will be clear in Part 3, this enables me to explicitly

characterize the cumulative revenue loss under NSC before τ . After τ , NSC may end up

charging the turn-off prices (i.e., due to stock-out) and the characterization of pt becomes

less tractable. Fortunately, Lemma 4.6.3 implies that Eπ
λ∗ [k− τ ] is small for large k (i.e., τ is

large). So, by regularity condition R3, I can simply bound the per period revenue loss after

τ with r̄.

The complete proof of Lemma 4.6.3 is deferred to Section 4.6.3. For now, I provide the

main intuition and highlight how my argument differs from that in Jasin (2014). Note that,

since Eπ
λ∗ [k − τ |E ] =

∑k−1
t=1 Pπλ∗(τ ≤ t|E), the proof of Lemma 4.6.3 boils down to computing

a bound (for each t) for the conditional probability Pπλ∗(τ ≤ t|E). Roughly speaking, this

is equivalent to analyzing the probability that S(s) is smaller than the threshold ψ for

L̃0 + 1 ≤ s ≤ t. Note that S(t) can be bounded as follows:

S(t) ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2︸ ︷︷ ︸

random noise

+

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

λ∗(ps)− λ(ps; θ̂ι)

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2︸ ︷︷ ︸

systematic biases

+
1

k − t
,

where the random noise comes from the stochasticity of demand and the systematic bias

comes from the estimation error due to Spline Estimation and demand linearization. The

systematic biases term does not appear in Jasin (2014); here, it is the primary driving force

of the order of Eπ
λ∗ [k−τ |E ]. In the proof, I use Markov’s inequality and integration inequality

to bound that term. Note that in order to derive a tight bound using Markov’s inequality,

I need to make sure that the order of ||λ∗(ps) − λ(ps; θ̂ι)||2 is small enough. It turns out

that, for all s < τ , the definitions of τ and ψ ensure that ps is very close to pD; moreover,

since λ(.; θ∗ι ) is a good approximation of λ∗(.) in the neighborhood of pD, λ(ps; θ
∗
ι ) is very

close to λ∗(ps) as well. This observation together with Lemma 4.6.1 further implies that,

conditioning on E , for all s < τ , the order of ||λ∗(ps)−λ(ps; θ̂ι)||2 = O(ϵ(L0)) (see derivation

in (4.44) for more details) is sufficiently small. However, for s ≥ τ , ps is not guaranteed

to be sufficiently close to pD and the order of ||λ∗(ps) − λ(ps; θ̂ι)||2 could be as large as
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Θ(1), which will blow up the Markov’s bound I derive. (Although the spline estimate λ̃(.) is

uniformly close to λ∗(.), its linear approximation λ(.; θ̂ι) is not always close to λ∗(.), except

for prices that are sufficiently close to pD, see (4.44).) This means that I cannot use Markov’s

inequality directly on τ as it is defined in (†). The culprit here is the term S(t) which, by

definition of ∆̃s, includes the summation of many systematic biases terms that may turn out

to be very large. To address this, I introduce another stopping time τ̃ as the minimum of k

and the first time t ≥ L̃0 + 1 such that the following condition (††) is violated:

(††) ψ > S̃(t), where S̃(k) := ∞ and ∀t ∈ [1, k − 1],

S̃(t) :=
∣∣∣∣∣∣∑t

s=L̃0+1
∆s

k−s +
∑t

s=L̃0+1
λ∗(ps)−λ(ps;θ̂ι)

k−s 1{s≤τ}

∣∣∣∣∣∣
2
+ 1

k−t .

I prove in Lemma 4.6.3 (see Section 4.6.3) that τ̃ actually equals τ on every sample path,

but τ̃ is easier to work with because the term S̃(t) in the stopping criterion only involves

one systematic bias term that may be large (i.e., (λ∗(pτ )− λ(pτ ; θ̂ι))/(k − τ)). The desired

result can then be attained by Markov’s inequality and integration inequality.

Part 3

Finally, I analyze the revenue loss of NSC as a function of k. Here, I collect the results from

Parts 1 and 2 and use standard arguments to “count” the revenue loss incurred throughout

the selling season (see, for example, Jasin (2014)). If k = O(1), the revenue loss can be

bounded by a constant; if k is large, all the useful properties of τ and E derived above

(Lemmas 4.6.1 - 4.6.3) hold and I can use them to analyze the revenue loss of NSC. I

break down the revenue loss of NSC into three parts: (i) revenue loss incurred during the

exploration stage, (ii) revenue loss incurred during the exploitation stage before τ , and (iii)

revenue loss incurred during the exploitation stage after τ . Since the length of the exploration

stage is L̃0, by R3, I can bound (i) with L̃0r̄. As for (ii) and (iii), I derive an upper bound

by conditioning on E and Ec. Since Pπλ∗(Ec) is very small for large k, the majority of the

revenue loss comes from the expected revenue loss conditioning on E . This means that,

roughly speaking, (iii) can be bounded by r̄Eπ
λ∗ [k− τ |E ]. The remaining work is to carefully

bound (ii) conditioning on E using Taylor’s expansion.

Let Ω := max{Ω1,Ω2,Ω3}, where Ω1 is as defined in Part 1, Ω2 is as defined in Lemma 4.6.2,

and Ω3 is a constant independent of k such that ϵ(L0) < 1 for all k ≥ Ω3. If k < Ω,

ρπ(k) < r̄Ω = O(1). So, I can focus on the case k ≥ Ω. Let Rπ
t denote the revenue earned

in period t under policy π, and let R̂π
λ∗(k) :=

∑k
t=L̃0+1R

π
t denote the revenue earned dur-

ing the exploitation stage. For notational brevity, I will simply write λt = λ∗(pt). Let

∆̄t := Rπ
t − r∗(λt). Note that {∆̄t}k−1

t=L̃0+1
is a martingale difference sequence with re-
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spect to filtration {Ht}k−1

t=L̃0+1
. Thus, by R3 and Optional Stopping Time Theorem, I have

−Eπ
λ∗ [
∑τ−1

t=L̃0+1
∆̄t] = −Eπ

λ∗ [
∑τ

t=L̃0+1 ∆̄t] + Eπ
λ∗ [∆̄τ ] = Eπ

λ∗ [∆̄τ ] ≤ r̄. Therefore, for k ≥ Ω,

ρπ(k) can be bounded as follows:

ρπ(k) = Eπ
λ∗

 L̃0∑
t=1

(
rD −Rπ

t

)
+

τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)− ∆̄t

)
+

k∑
t=τ

(
rD −Rπ

t

)
≤ r̄L̃0 + r̄ + Eπ

λ∗

 τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)

)
+

k∑
t=τ

(
rD −Rπ

t

)
= r̄(1 + L̃0) + Eπ

λ∗

 τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)

)
+

k∑
t=τ

(
rD −Rπ

t

) ∣∣∣∣∣∣ Ec
Pπλ∗(Ec)

+Eπ
λ∗

 τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)

)
+

k∑
t=τ

(
rD −Rπ

t

) ∣∣∣∣∣∣ E
Pπλ∗(E)

≤ r̄(1 + L̃0) + r̄kPπλ∗(Ec) + Eπ
λ∗

 τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)

)
+

k∑
t=τ

(
rD −Rπ

t

) ∣∣∣∣∣∣ E


≤ r̄(1 + L̃0) + r̄kPπλ∗(Ec) + Eπ
λ∗

 τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)

) ∣∣∣∣∣∣ E
+ r̄Eπ

λ∗ [k − τ + 1 | E ]

≤ r̄
(
2 +M3 + L̃0 + Eπ

λ∗ [k − τ | E ]
)
+ Eπ

λ∗

 τ−1∑
t=L̃0+1

(
rD − r∗λ(λt)

)∣∣∣∣∣∣ E
 , (4.10)

where the last inequality follows because kPπλ∗(Ec) ≤ M3 by Lemma 4.6.1. To bound the

second term in (4.10), I use Taylor’s expansion. Note that, by R3,

rD − r∗λ(λt) = r∗λ(λ
D)− r∗λ(λt) ≤ ∇r∗λ(λD) · (λD − λt) +

v̄

2
||λD − λt||22.

I will show in Section 4.6.4 that there exist constants M6,M7 > 0 independent of k ≥ Ω

such that

Eπ
λ∗

 τ−1∑
t=L̃0+1

∇r∗λ(λD) · (λD − λt)

∣∣∣∣∣∣ E
 ≤M6

(
1 + ϵ(L0)

2k + ϵ(L0)
−1 log k + ϵ(L0)

−2
)
;(4.11)

v̄

2
Eπ
λ∗

 τ−1∑
t=L̃0+1

||λD − λt||22

∣∣∣∣∣∣ E
 ≤M7

(
log k + ϵ(L0)

2k
)
. (4.12)

91



Combining (4.5)-(4.6) and (4.10)-(4.12) with Lemma 4.6.3, I conclude that there exist

constants M8,M9 > 0 independent of k > Ω such that for all k > Ω, I have:

ρπ(k) ≤ M8

(
ϵ(L0)

2k + ϵ(L0)
−1 log k + ϵ(L0)

−2 + r̄L̃0

)
≤ M8

k( log2 k

k

) s∧s̄−2
2s+n−2

+ 2
s∧s̄−2
2s+n log k

( √
k

log k

) s∧s̄−2
2s+n−2

+ 2
2(s∧s̄−2)

2s+n

(
k

log2 k

) s∧s̄−2
2s+n−2


+M8

[
r̄sn(s+ 1)n2n+2k

s+n
2s+n−2 (log k)

2(s−2)
2s+n−2

]
≤M9k

2s−s∧s̄+n
2s+n−2 log k.

Letting M1 =M9 + r̄Ω completes the proof of Theorem 4.5.1.

4.6.2 Part 1: Proof of Lemma 4.6.1

Define F := F1 ∩ F2, where

F1 :=
{
||pD − p̃D||2 ≤ C0ϵ(L0)

}
,

F2 :=
{∣∣∣∣∣∣∂r(λ∗j (.)−λ̃j(.))

∂p
r1
1 ...∂prnn

∣∣∣∣∣∣
∞
< C1ϵ(L0),∀j ∈ [1, n], r ∈ [0, 2], rl ∈ Z+, l ∈ [1, n],

∑n
l=1 rl = r

}
,

C0 is a positive constant to be chosen later and C1 := max{Ψ0,Ψ1,Ψ2} (recall that Ψ0,Ψ1,Ψ2

are the constants discussed in Lemma 4.4.1). Let Φ := max{Φ1,Φ2}, where Φ1 > 3,Φ2 > 3

are constants to be chosen later. I first derive an upper bound for ||θ∗ − θ̂||2 conditioning

on F for k ≥ Φ. (Unless otherwise noted, in what follows, I will simply assume that F is

satisfied and k ≥ Φ.)

By R1 (i.e., Lipschitz continuity of the second order partial derivatives of λ∗(.)), the

compactness of P , and the continuity of λ̃(.) (note that s ≥ 4 > 2 implies λ̃(.) ∈ C(P)), there

exists a constant C2 > 0 such that, conditioning on F , for all r ∈ [0, 2], rl ∈ Z+, l ∈ [1, n]

satisfying
∑n

l=1 rl = r, p ∈ P , and j ∈ [1, n], I have:∣∣∣∣∣∂r(λ∗j(pD)− λ∗j(p̃
D))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣ ≤ C2||pD − p̃D||2 ≤ C2C0ϵ(L0) and |λ̃j(p)| ≤ C2. (4.13)
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So, the following two inequalities hold:

||λ∗(pD)− λ∗(p̃D)||2 ≤
√
n ||λ∗(pD)− λ∗(p̃D)||∞

=
√
n max
j=1,...,n

|λ∗j(pD)− λ∗j(p̃
D)| ≤

√
nC2C0ϵ(L0) and (4.14)

||u∗ij − ûij||2 =

√√√√ n∑
l=1

∣∣∣∣∣∂2λ∗l (pD)∂pi∂pj
− ∂2λ∗l (p̃

D)

∂pi∂pj
+
∂2λ∗l (p̃

D)

∂pi∂pj
− ∂2λ̃l(p̃D)

∂pi∂pj

∣∣∣∣∣
2

≤

√√√√ n∑
l=1

2

∣∣∣∣∂2λ∗l (pD)∂pi∂pj
− ∂2λ∗l (p̃

D)

∂pi∂pj

∣∣∣∣2 + n∑
l=1

2

∣∣∣∣∣
∣∣∣∣∣∂2λ∗l (.)∂pi∂pj

− ∂2λ̃l(.)

∂pi∂pj

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤
√
2nC2

0C
2
2ϵ(L0)2 + 2nC2

1ϵ(L0)2 = ϵ(L0)
√

2nC2
0C

2
2 + 2nC2

1 . (4.15)

Let ||.||F denote the Frobenius norm. By similar arguments as above, there exists a

constant C3 > 0 independent of k such that:

||B∗ − B̂||F =

√√√√ n∑
i=1

n∑
j=1

∣∣∣∣∣∂λ∗i (pD)∂pj
− ∂λ∗i (p̃

D)

∂pj
+
∂λ∗i (p̃

D)

∂pj
− ∂λ̃i(p̃D)

∂pj

∣∣∣∣∣
2

≤

√√√√ n∑
i=1

n∑
j=1

2

∣∣∣∣∂λ∗i (pD)∂pj
− ∂λ∗i (p̃

D)

∂pj

∣∣∣∣2 + n∑
i=1

n∑
j=1

2

∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)

∂pj

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤
√

2n2C2
2C

2
0ϵ(L0)2 + 2n2C2

1ϵ(L0)2 ≤ C3ϵ(L0). (4.16)

I now derive a bound for ||H∗ − Ĥ||2. To do this, I need to first find a bound for

||B̂−1||2. Let σmax(X) and σmin(X) denote the maximum and the minimum eigenvalues

of a symmetric real matrix X, respectively. Since B∗ = ∇λ∗(pD) is invertible, B∗(B∗)′ is

positive definite; so, σ̄∗ := σmax(B
∗(B∗)′) > 0 and σ∗ := σmin(B

∗(B∗)′) > 0. Moreover,

since C3ϵ(L0) → 0 as k → ∞, by (4.16), there exists Φ1 > 0 such that, for all k > Φ1,

||B∗ − B̂||2 ≤ ||B∗ − B̂||F ≤ C3ϵ(L0) ≤ σ∗/(4
√
σ̄∗). Therefore, for all v ∈ Rn with ||v||2 = 1,

v′B̂′B̂v = v′(B̂ −B∗ +B∗)′(B̂ −B∗ +B∗)v

= v′(B∗)′B∗v + v′(B∗)′(B̂ −B∗)v + v′(B̂ −B∗)′B∗v + v′(B̂ −B∗)′(B̂ −B∗)v

≥ σ∗ − 2||v||22||B∗||2||B̂ −B∗||2 ≥ σ∗ − 2
√
σ̄∗σ∗/(4

√
σ̄∗) = σ∗/2.
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This means that σmin(B̂
′B̂) ≥ σ∗/2 > 0. Since (B̂′B̂)−1 = B̂−1(B̂−1)′,

||B̂−1||2 =
√
σmax(B̂−1(B̂−1)′) =

√
σmin(B̂′B̂)−1 ≤

√
2/σ∗. (4.17)

By telescoping, I can bound

|H∗
ij − Ĥij| = |(u∗ij)′(B∗)−1λ∗(pD)− û′ijB̂

−1λ̃(p̃D)|

≤ |(u∗ij)′(B∗)−1λ∗(pD)− (u∗ij)
′(B∗)−1λ̃(p̃D)|

+ |(u∗ij)′(B∗)−1λ̃(p̃D)− (u∗ij)
′B̂−1λ̃(p̃D)|+ |(u∗ij)′B̂−1λ̃(p̃D)− û′ijB̂

−1λ̃(p̃D)|

≤ ||u∗ij||2 ||(B∗)−1||2 ||λ∗(pD)− λ̃(p̃D)||2
+ ||u∗ij||2 ||(B∗)−1||2 ||B∗ − B̂||2 ||B̂−1||2 ||λ̃(p̃D)||2
+ ||u∗ij − ûij||2 ||B̂−1||2 ||λ̃(p̃D)||2 (4.18)

where the last inequality follows because (B∗)−1− B̂−1 = (B∗)−1(B̂−B∗)B̂−1. I now bound

the three terms on the right hand side of (4.18) one by one. For the first term of (4.18), by

(4.14) and the definition of F2, I have:

||u∗ij||2||(B∗)−1||2||λ∗(pD)− λ̃(p̃D)||2
≤ ||u∗ij||2||(B∗)−1||2(||λ∗(pD)− λ∗(p̃D)||2 + ||λ∗(p̃D)− λ̃(p̃D)||2)

≤ ||u∗ij||2||(B∗)−1||2(
√
nC2C0ϵ(L0) +

√
n max
j=1,...,n

{||λ∗j(.)− λ̃j(.)||∞})

≤ ||u∗ij||2||(B∗)−1||2(
√
nC2C0ϵ(L0) +

√
nC1ϵ(L0)) = O(ϵ(L0)).

For the second term of (4.18), by (4.13), (4.16) and (4.17),

||u∗ij||2||(B∗)−1||2||B∗ − B̂||2||B̂−1||2||λ̃(p̃D)||2
≤ ||u∗ij||2||(B∗)−1||2C3ϵ(L0)

√
2/σ∗

√
nC2 = O(ϵ(L0)).

For the last term of (4.18), by (4.13), (4.15) and (4.17),

||u∗ij − ûij||2||B̂−1||2||λ̃(p̃D)||2 ≤ ϵ(L0)
√
2nC2

0C
2
2 + 2nC2

1

√
2/σ∗

√
nC2 = O(ϵ(L0)).

So, |H∗
ij − Ĥij| = O(ϵ(L0)) and there exists a constant C4 > 0 independent of k ≥ 1 such

that

||H∗ − Ĥ||2 ≤ ||H∗ − Ĥ||F =
√∑n

i=1

∑n
j=1 |H∗

ij − Ĥij|2 ≤ C4ϵ(L0). (4.19)
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Using similar arguments as above, by telescoping and (4.14) - (4.19), there exist constants

C5, C6, C7, C8 > 0 independent of k ≥ 1 such that on F I have

||a∗ − â||2 ≤ ||λ∗(pD)− λ̃(p̃D)||2 + ||(B∗)′pD − B̂′p̃D||2
≤ ||λ∗(pD)− λ∗(p̃D)||2 + ||λ∗(p̃D)− λ̃(p̃D)||2

+||B∗||2||pD − p̃D||2 + ||p̃D||2||B∗ − B̂||2
≤

√
nC2C0ϵ(L0) +

√
nC1ϵ(L0) + ||B∗||2C0ϵ(L0) + (

∑n
l=1 p̄

2
l )

1/2C3ϵ(L0)

= C5ϵ(L0) (4.20)

||E∗ − Ê||2 ≤ ||1
2
(pD − p̃D)′H∗pD||2 + ||1

2
(p̃D)′H∗(pD − p̃D)||2 + ||1

2
(p̃D)′(H∗ − Ĥ)p̃D||2

≤ (
∑n

l=1 p̄
2
l )

1/2||H∗||2C0ϵ(L0) +
1
2
(
∑n

l=1 p̄
2
l )C4ϵ(L0) = C6ϵ(L0), (4.21)

||F ∗ − F̂ ||2 ≤ ||a∗ − â||2 + ||H∗||2||pD − p̃D||2 + ||H∗ − Ĥ||2||p̃D||2
≤ C5ϵ(L0) + ||H∗||2C0ϵ(L0) + (

∑n
l=1 p̄

2
l )

1/2C4ϵ(L0) = C7ϵ(L0), (4.22)

||G∗ − Ĝ||F ≤ 2||B∗ − B̂||F + ||H∗ − Ĥ||F ≤ 2C3ϵ(L0) + C4ϵ(L0) = C8ϵ(L0). (4.23)

Putting (4.16) and (4.20) - (4.23) together, for all k ≥ Φ, I obtain:

||θ∗ − θ̂||2 ≤ ||a∗ − â||2 + ||B∗ − B̂||F + ||E∗ − Ê||2 + ||F ∗ − F̂ ||2 + ||G∗ − Ĝ||F
≤ C9ϵ(L0) (4.24)

where C9 := C3 + C5 + C6 + C7 + C8. Let M2 = C9 + 1. Since F implies E (i.e., because

||θ∗ − θ̂||2 < M2ϵ(L0) on F), I can bound:

Pπλ∗(Ec) ≤ Pπλ∗(F c) ≤ Pπλ∗(F c
1) + Pπλ∗(F c

2). (4.25)

I will now bound each Pπλ∗(F c
1) and Pπλ∗(F c

2) separately. Note that

Pπλ∗(F c
2) ≤

n∑
j=1

2∑
r=0

∑
rl≥0,

∑n
l=1 rl=r

Pπλ∗

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(.)− λ̃j(.))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ C1ϵ(L0)

)

≤
n∑
j=1

2∑
r=0

∑
rl≥0,

∑n
l=1 rl=r

Pπλ∗

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(.)− λ̃j(.))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ Ψr

(
log k√
L0

) s∧s̄−r
s+n/2

)

≤ n(n+ 1)(n+ 2)

2

K

k
, (4.26)
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where the first inequality follows by the definition of F2 and the union bound, the sec-

ond inequality follows by the definition of C1 and ϵ(L0), and the last inequality follows by

Lemma 4.4.1. To compute a bound for Pπλ∗(F c
1), first note that

Pπλ∗(F c
1) = Pπλ∗(F c

1 |F2)Pπλ∗(F2) + Pπλ∗(F c
1 |F c

2)Pπλ∗(F c
2) ≤ Pπλ∗(F c

1 ∩ F2) + Pπλ∗(F c
2). (4.27)

So, it suffices that I find a bound for Pπλ∗(F c
1∩F2). By Lemma 4.4.2, there exist constants

δ̄, C10 > 0 independent of k ≥ 1 such that if ||λ∗(.)− λ̃(.)||∞ ≤ δ̄, then

||pD − p̃D||2 ≤ C10(||λ∗(.)− λ̃(.)||∞ + ||(∇λ∗(.)−∇λ̃(.))′||∞)

= C10 sup
p∈P

||λ∗(p)− λ̃(p)||∞ + C10 sup
p∈P

||(∇λ∗(p)−∇λ̃(p))′||∞

= C10 sup
p∈P

max
j=1,...,n

|λ∗j(p)− λ̃j(p)|+ C10 sup
p∈P

max
i=1,...,n

n∑
j=1

∣∣∣∣∣∂λ∗i (p)∂pj
− ∂λ̃i(p)

∂pj

∣∣∣∣∣
≤ C10 max

j=1,...,n
||λ∗j(.)− λ̃j(.)||∞ + C10 max

i=1,...,n

n∑
j=1

∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)

∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

.

≤ C10 max
j=1,...,n

||λ∗j(.)− λ̃j(.)||∞ + C10

n∑
j=1

max
i=1,...,n

∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)

∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

.(4.28)

Since C1ϵ(L0) → 0 as k → ∞, there exists a constant Φ2 > 0 such that, conditioning on

F2, for all k ≥ Φ ≥ Φ2, ||λ∗(.) − λ̃(.)||∞ = maxj=1,...,n ||λ∗j(.) − λ̃j(.)||∞ ≤ C1ϵ(L0) ≤ δ̄; so,

(4.28) holds. Let C0 = C10C1(1 + n). Then, for all k ≥ Φ,

Pπ
λ∗(Fc

1 ∩ F2) = Pπ
λ∗({||pD − p̃D||2 > C0ϵ(L0)} ∩ F2)

≤ Pπ
λ∗

C10 max
j=1,...,n

{
||λ∗

j (.)− λ̃j(.)||∞
}
+ C10

n∑
j=1

max
i=1,...,n

{∣∣∣∣∣
∣∣∣∣∣∂λ∗

i (.)

∂pj
− ∂λ̃i(.)

∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

}
> C10C1(1 + n)ϵ(L0)


≤ Pπ

λ∗

(
max

j=1,...,n

{
||λ∗

j (.)− λ̃j(.)||∞
}
> C1ϵ(L0)

)
+

n∑
j=1

Pπ
λ∗

(
max

i=1,...,n

{∣∣∣∣∣
∣∣∣∣∣∂λ∗

i (.)

∂pj
− ∂λ̃i(.)

∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

> C1ϵ(L0)

})

≤
n∑

j=1

Pπ
λ∗

(
||λ∗

j (.)− λ̃j(.)||∞ > Ψ0

(
log k√
L0

) s∧s̄
s+n/2

)
+

n∑
j=1

n∑
i=1

Pπ
λ∗

(∣∣∣∣∣
∣∣∣∣∣∂λ∗

i (.)

∂pj
− ∂λ̃i(.)

∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

> Ψ1

(
log k√
L0

) s∧s̄−1
s+n/2

)
≤ n(n+ 1)K/k,

where the first inequality follows from (4.28), the third inequality follows since log k/
√
L0 ≤ 1

for L0 ≥ log3 k and k ≥ Φ ≥ 3, the last inequality follows by Lemma 4.4.1.
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Let M3 = max{Φ, n(n+1)(n+3)K}. Putting all the bounds together, for k ≥ Φ, I have

Pπλ∗(Ec) ≤ n(n+ 1)K/k + n(n+ 1)(n+ 2)K/k = n(n+ 1)(n+ 3)K/k ≤M3/k.

As for k ≤ Φ, by definition of M3, Pπλ∗(Ec) ≤ 1 ≤ Φ/k ≤ M3/k. This completes the

proof.

4.6.3 Part 2: Proofs of Lemma 4.6.2 and Lemma 4.6.3

Let λt := λ∗(pt) and λ̂t := λ(pt; θ̂ι). I prove Lemmas 4.6.2 and 4.6.3 in turn.

Proof of Lemma 4.6.2: Let Ω2 = max{Ω1, K1, K2, K3}, where Ω1 is as defined in the

last paragraph of Part 1 in Section 4.6.1 and K1, K2, K3 are positive constants to be defined

later. Throughout the proof, I will implicitly assume that E is satisfied. I first highlight four

inequalities (see (4.29) - (4.32)) that will be useful for the proof. Let δ̄, κ, ω be as defined

in Lemma 4.4.3 and ϕ as defined in R4. First, recall that ||θ̂ι − θ∗ι ||2 ≤ ||θ̂ − θ∗||2 ≤ δ̄ and

||θ̂o − θ∗o||2 ≤ ||θ̂ − θ∗||2 ≤ δ̄ by (4.8), and ||δ||2 ≤ δ̄ by (4.9). Thus, in light of part (f) of

Lemma 4.4.3,

||pD0 (θ∗)− pDδ (θ̂)||2 ≤ ϕ/2. (4.29)

Second, since ωψ = ω
√
ϵ(L0) → 0 as k → ∞ (recall that log k/

√
L0 ≤ 1 for k ≥ 3 since

L0 ≥ log3 k), there exists a constant K1 > 0 such that, for all k ≥ K1,

ωψ ≤ ϕ/4. (4.30)

Third, note that R4 implies λD ≻ λLe ≻ 0 for some λL ∈ R. Hence, there exits a

constant K2 > 0 such that, for all k ≥ K2, ψ ≤ λL (because ψ :=
√
ϵ(L0) → 0 as k → ∞)

and

λDδ (θ̂) = λD − λD0 (θ
∗) + λDδ (θ̂) ≽ λD − ||λDδ (θ̂)− λD0 (θ

∗)||2e

≽ λD − κ(||θ∗ − θ̂||2 + ||δ||2)e

≽ λD − κM2ϵ(L0)e− κM4ϵ(L0)
2e ≽ λLe, (4.31)

where the first equality and the second inequality follow by part (e) and (f) of Lemma 4.4.3

respectively, and the last inequality follows by (4.9) and the definition of E .
Finally, L̃0/k → 0 as k → ∞. So, there exists a constant K3 > 0 such that, for all
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k ≥ K3,

CL̃0
≽ kC − L̃0Ae ≽ Ae. (4.32)

The rest of the proof follows by induction. Fix some k ≥ Ω2. If τ ≤ L̃0 + 1, there is

nothing to prove. Suppose that τ > L̃0 + 1. Note that pL̃0+1 = p̂L̃0+1 because CL̃0
≽ Ae (by

(4.32)) and p̂L̃0+1 = pDδ (θ̂) ∈ Ball(pD, ϕ/2) ⊆ P (by (4.29)). Hence,

CL̃0+1 = CL̃0
− ADL̃0+1 = CL̃0

− AλDδ (θ̂)− A∆̃L̃0+1

≽ (k − L̃0 − 1)A

(
λDδ (θ̂)−

∆̃L̃0+1

k−L̃0−1

)
≽ (k − L̃0 − 1)Ae

(
λL −

∣∣∣∣∣∣∣∣ ∆̃L̃0+1

k−L̃0−1

∣∣∣∣∣∣∣∣
2

)
≽ (k − L̃0 − 1)Ae

(
ψ −

∣∣∣∣∣∣∣∣ ∆̃L̃0+1

k−L̃0−1

∣∣∣∣∣∣∣∣
2

)
≽ Ae, (4.33)

where the first inequality follows since AλDδ (θ̂) ≼ kC/k − δ = CL̃0
/(k − L̃0) (recall that

λDδ (θ̂) is feasible to QP(θ̂; δ)), the second inequality follows by (4.31), the third inequality

follows from the fact that ψ ≤ λL for k ≥ Ω2 ≥ K2, and the fourth inequality follows by the

definition of τ in (†). Since A is non-negative, CL̃0+1 ≽ Ae ≽ Aj for all j ∈ [1, n]. This is

my induction base case. Now, suppose that Cs ≽ Aj and p̂s ∈ P for all j = 1, . . . , n for all

s ∈ [L̃0 + 1, t− 1] and t− 1 < τ . If t ≥ τ , I have finished the induction. Otherwise,

∣∣∣∣∣∣p̂t − pDδ (θ̂))
∣∣∣∣∣∣

2
=

∣∣∣∣∣∣
∣∣∣∣∣∣(B̂′)−1

t−1∑
s=L̃0+1

∆̃s

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ω

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆̃s

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ωψ ≤ ϕ

4
, (4.34)

where the first equality follows because by the definition of p(., θ̂ι) I have∇λp(λ; θ̂ι)
′ = (B̂′)−1

for all λ, the first inequality follows by Lemma 4.4.3 part (a), the second inequality follows

by (†), and the last inequality follows by (4.30). Combining (4.29) and (4.34), I have p̂t ∈
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Ball(pD, 3ϕ/4) ⊆ P . By the same arguments as in (4.33),

Ct = CL̃0
−
∑t

s=L̃0+1ADs = CL̃0
−
∑t

s=L̃0+1A(λ̂s + ∆̃s)

= CL̃0
−

t∑
s=L̃0+1

A

λDδ (θ̂)− s−1∑
v=L̃0+1

∆̃v

k − v
+ ∆̃s


≽

k∑
s=t+1

AλDδ (θ̂)−
t∑

s=L̃0+1

A∆̃s −
s−1∑

v=L̃0+1

A∆̃v

k−v


=

k∑
s=t+1

AλDδ (θ̂)−
t∑

s=L̃0+1

(k − t)A∆̃s

k − s

≽ (k − t)Ae

λL −

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆̃s

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

 ≽ Ae ≽ Aj,

for all j ∈ [1, n]. This completes the induction.

Proof of Lemma 4.6.3: Fix k ≥ Ω2. Recall that I have defined at the end of Part 2 in

Section 4.6.1 an auxiliary stopping time τ̃ as the minimum of k and the first time t ≥ L̃0+1

such that the following condition (††) is violated:

(††) ψ > S̃(t), where S̃(k) := ∞ and ∀t ∈ [1, k − 1],

S̃(t) :=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k − s
+

t∑
s=L̃0+1

(λs − λ̂s)

k − s
1{s≤τ}

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

k − t
.

where ψ is as defined in the definition of τ in (†). I first show that τ = τ̃ almost surely. If

τ = t′ < k, by definition of τ , ψ ≤ S(t′) and ψ > S(t) for all t < t′. So,

S̃(t) =

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k − s
+

t∑
s=L̃0+1

(λs − λ̂s)

k − s
1{s≤τ}

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

k − t

=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k − s
+

t∑
s=L̃0+1

(λs − λ̂s)

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

k − t
= S(t).

for all t≤t′. But, this implies ψ ≤ S̃(t′) and ψ > S̃(t) for all t < t′, which means that τ̃ = t′.

If τ = k, immediately I have S̃(t) = S(t) for all t < k. Moreover, since, ψ > S(t) = S̃(t) for
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t < k, I must have τ̃ = k = τ . Define the following two terms:

S̃r(t) =

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k − s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

and S̃s(t) =
t∑

s=L̃0+1

||λs − λ̂s||2
k − s

1{s≤τ}.

Since S̃(t) ≤ S̃r(t) + S̃s(t) + (k − t)−1 and τ̃ is non-negative, I have:

Eπ
λ∗ [k − τ |E ] = Eπ

λ∗ [k − τ̃ |E ] =
k−1∑
t=1

Pπλ∗(τ̃ ≤ t|E) ≤
k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)} ≥ ψ

4

∣∣∣∣ E)

+
k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃s(s)} ≥ ψ

2

∣∣∣∣ E)+
k−1∑
t=1

Pπλ∗
(

1

k − t
≥ ψ

4

∣∣∣∣ E) . (4.35)

Note that {S̃r(t)2}k−1

t=L̃0+1
is a submartingale with respect to {Ht}k−1

t=L̃0+1
. So, I can bound

the first term after inequality in (4.35) as follows. For t ≤ k − 1,

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)} ≥ ψ

4

∣∣∣∣ E) = Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)2} ≥ ψ2

16

∣∣∣∣ E)
≤ 1

Pπλ∗(E)
Pπλ∗

(
max

L̃0+1≤s≤t
{S̃r(s)2} ≥ ψ2

16

)
≤ 32

ψ2
Eπ
λ∗

[
S̃r(t)

2
]
≤ 32

ψ2
Eπ
λ∗

[
t∑

s=1

||∆s||22
(k − s)2

]

≤ 32

ψ2

[
2

(k − t)2
+

2

k − t

]
≤ 128

ψ2(k − t)
, (4.36)

where the second inequality follows by Doob’s submartingale inequality and (4.7), the third

inequality follows beacuse Eπ
λ∗ [∆

′
s∆t] = 0 if s ̸= t, the fourth inequality follows by integral

comparison and the fact that ||∆t||22 ≤ 2, and the last inequality follows because k − t ≥ 1.

Thus, there exists K5 > 0 independent of k ≥ Ω2 such that

k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)} ≥ ψ

4

∣∣∣∣ E) ≤ 128

ψ2

k−1∑
t=1

1

k − t
≤ K5ψ

−2 log k = K5ϵ(L0)
−1 log k,

where the equality follows by the definition of ψ in (†). I now bound the second term in

(4.35). By Lemma 4.4.3 part (b) and (4.8), there exists a constant K4 > 0 independent of k
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such that, for all k ≥ Ω2 ≥ Ω1, I have:

||λs − λ̂s||2 = ||λ∗(ps)− λ(ps; θ̂ι)||2
≤ ||λ∗(ps)||2 + ||λ(ps; θ∗ι )||2 + ||λ(ps; θ∗ι )− λ(ps; θ̂ι)||2
≤

√
n||λ∗(.)||∞ +

√
n||λ(.; θ∗ι )||∞ + ωδ̄ ≤ K4, (4.37)

Conditioning on E , for s < τ , I can derive a sharper bound, i.e., ||λs − λ̂s||2 ≤ ω0ϵ(L0)

for some constant ω0 independent of k (see (4.44) for the derivation). Now, observe that the

following holds:

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃s(s)} ≥ ψ

2

∣∣∣∣ E) = Pπλ∗
(
S̃s(t) ≥

ψ

2

∣∣∣∣ E) ≤ 16

ψ4
Eπ
λ∗

[
S̃s(t)

4
∣∣∣ E]

=
16

ψ4
Eπ
λ∗

 t∑
s=L̃0+1

||λs − λ̂s||21{s<τ}

k − s
+

t∑
s=L̃0+1

||λs − λ̂s||21{s=τ}

k − s

4∣∣∣∣∣∣ E


≤ 128

ψ4
Eπ
λ∗

 t∑
s=L̃0+1

||λs − λ̂s||21{s<τ}

k − s

4∣∣∣∣∣∣ E
+

128

ψ4
Eπ
λ∗

 t∑
s=L̃0+1

||λs − λ̂s||21{s=τ}

k − s

4∣∣∣∣∣∣ E


≤ 128ω4
0ϵ(L0)

4

ψ4
log4

(
k

k − t

)
+

128

ψ4

(
K4

k − t

)4

= 128ω4
0ϵ(L0)

2 log4
(

k

k − t

)
+ 128K4

4ϵ(L0)
−2

(
1

k − t

)4

(4.38)

where the first equality follows by the monotonicity of S̃s(t), the first inequality follows

by Markov’s inequality, the second inequality follows since (a + b)4 ≤ 8a4 + 8b4, the third

inequality follows by (4.37) and (4.44), and the last equality follows since ψ =
√
ϵ(L0). Note

that
∑k−1

t=1 log
s( k
k−t) ≤ s!k; so, there exists a constant K6 > 0 independent of k ≥ Ω2 such

that:

k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃s(t)} ≥ ψ

2

∣∣∣∣ E) ≤
k−1∑
t=1

128ω4
0ϵ(L0)

2 log4
(

k

k − t

)
+ 128K4

4ϵ(L0)
−2

k−1∑
t=1

(
1

k − t

)4

≤ K6

(
ϵ(L0)

2k + ϵ(L0)
−2
)
.

The third term of (4.35) can be bounded as follows:

k−1∑
t=1

Pπλ∗
(

1

k − t
≥ ψ

4

∣∣∣∣ E) =
k−1∑
t=1

Pπλ∗
(

1

k − t
≥ ψ

4

)
= 4/ψ = 4ϵ(L0)

−1/2.

Putting the bounds for the three terms in (4.35) together, I conclude that there exists
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a constant M5 > 0 such that, for all k ≥ Ω2, I have Eπ
λ∗ [k − τ |E ] = Eπ

λ∗ [k − τ̃ |E ] ≤
K5ϵ(L0)

−1 log k+K6ϵ(L0)
2k+K6ϵ(L0)

−2+4ϵ(L0)
−1/2 ≤M5(ϵ(L0)

2k+ϵ(L0)
−1 log k+ϵ(L0)

−2).

4.6.4 Part 3: Derivation of (4.11) and (4.12)

For simplicity, I suppress the dependency of ϵ(L0) on L0 and simply write ϵ(L0) as ϵ through-

out this section. Recall that I define λt := λ∗(pt) and λ̂t := λ(pt; θ̂ι) in Section 4.6.3. Also,

by Lemma 4.6.2, for all k ≥ Ω2 and all sample paths on E ,

λ̂t = λ(p̂t; θ̂ι) = λDδ (θ̂)−
t−1∑

s=L̃0+1

∆̃s

k − s
for all t < τ. (4.39)

These will be used multiple times in the derivation of (4.11) and (4.12).

Derivation of inequality (4.11). Note that ∇r∗λ(λD) = ∇λq(p(λ
D; θ∗ι ); θ

∗
o) by (4.3)

and λD0 (θ
∗) = λD by Lemma 4.4.3 part (e). So, I can write: ∇r∗λ(λD) · (λD − λt) =

∇λq(p(λ
D
0 (θ

∗); θ∗ι ); θ
∗
o)·(λD0 (θ∗)−λt) = µD0 (θ

∗)′A(λD0 (θ
∗)−λDδ (θ̂)+λDδ (θ̂)−λ̂t+λ̂t−λt), where

the last equality follows by the Karush-Kuhn-Tucker(KKT) optimality condition. Therefore,

for all k ≥ Ω, the first term of (4.11) can be broken into two parts:

Eπ
λ∗

[∑τ−1

t=L̃0+1
∇r∗λ(λD) · (λD − λt)

∣∣∣ E]
= Eπ

λ∗

[∑τ−1

t=L̃0+1
µD0 (θ

∗)′(AλD0 (θ
∗)− AλDδ (θ̂))

∣∣∣ E]
+Eπ

λ∗

[∑τ−1

t=L̃0+1
µD0 (θ

∗)′A(λDδ (θ̂)− λ̂t + λ̂t − λt)
∣∣∣ E] (4.40)

By Lemma 4.4.3 part (f), for all sample paths on E , the set of constraints of QP(θ∗;0) that

have non-zero optimal dual variables are binding at the optimal solution λDδ (θ̂) in QP(θ̂; δ).

This implies that the first expectation after the equality in (4.40) is zero because, for all i,

either I have µD0,i(θ
∗) = 0 or (AλD0 (θ

∗))i − (AλDδ (θ̂))i = 0. As for the second expectation, by

(4.39) and the definition of ∆̃t (i.e., ∆̃t = ∆t + λt − λ̂t), I can write:

Eπ
λ∗

[∑τ−1

t=L̃0+1
µD0 (θ

∗)′A(λDδ (θ̂)− λ̂t + λ̂t − λt)
∣∣∣ E]

= Eπ
λ∗

 τ−1∑
t=L̃0+1

µD0 (θ
∗)′

 t−1∑
s=L̃0+1

A∆̃s

k − s
+ A∆t − A∆̃t

∣∣∣∣∣∣ E


= Eπ
λ∗

 τ−1∑
t=L̃0+1

µD0 (θ
∗)′A∆t

∣∣∣∣∣∣ E
+ Eπ

λ∗

 τ−1∑
t=L̃0+1

(
τ − t− 1

k − t
− 1

)
µD0 (θ

∗)′A∆̃t

∣∣∣∣∣∣ E
 .(4.41)
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Since {∆t}k−1

t=L̃0+1
is a martingale difference sequence with respect to {Ht}k−1

t=L̃0+1
,

Eπ
λ∗

[∑τ−1

t=L̃0+1
µD0 (θ

∗)′A∆t

∣∣∣ E]
=

µD0 (θ
∗)′A

Pπλ∗(E)

{
Eπ
λ∗

[∑τ−1

t=L̃0+1
∆t

]
− Eπ

λ∗

[∑τ−1

t=L̃0+1
∆t

∣∣∣ Ec]Pπλ∗(Ec)}
≤ µD0 (θ

∗)′Ae
1 + kPπλ∗(Ec)

Pπλ∗(E)
≤ 2(1 +M3)µ

D
0 (θ

∗)′Ae, (4.42)

where the first inequality follows from Eπ
λ∗ [
∑τ−1

t=L+1∆t] = Eπ
λ∗ [
∑τ

t=L+1∆t] − Eπ
λ∗ [∆τ ] (by

Optional Stopping Time Theorem) and the fact that |∆t| ≺ e, and the second inequality

follows by Lemma 4.6.1 and (4.7). The second term of (4.41) can be bounded as follows:

Eπ
λ∗

 τ−1∑
t=L̃0+1

(
τ − t− 1

k − t
− 1

)
µD0 (θ

∗)′A∆̃t

∣∣∣∣∣∣ E


≤ Eπ
λ∗

(k − τ + 1)

∣∣∣∣∣∣µD0 (θ∗)′
τ−1∑

t=L̃0+1

A∆̃t

k − t

∣∣∣∣∣∣
∣∣∣∣∣∣ E


≤ Eπ
λ∗

(k − τ + 1)
∣∣∣∣µD0 (θ∗)∣∣∣∣2 ||A||2

∣∣∣∣∣∣
∣∣∣∣∣∣

τ−1∑
t=L̃0+1

∆̃t

k − t

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣ E


≤ ψ
∣∣∣∣µD0 (θ∗)∣∣∣∣2 ||A||2 (Eπ

λ∗ [k − τ | E ] + 1)

≤ ||µD0 (θ∗)||2||A||2[M5(ϵ
2k + ϵ−1 log k + ϵ−2) + 1]. (4.43)

where the third inequality follows by (†), and the fourth inequality follows by Lemma 4.6.3

and the fact that ψ =
√
ϵ(L0) < 1 for k ≥ Ω ≥ Ω3. Putting together (4.40) - (4.43) yields

Eπ
λ∗

[∑τ−1

t=L̃0+1
∇r∗λ(λD) · (λD − λt)

∣∣∣ E] ≤ M6(1 + ϵ2k + ϵ−1 log k + ϵ−2)

where M6 = 2(1 +M3)µ
D
0 (θ

∗)′Ae+ ||µD0 (θ∗)||2||A||2(1 +M5).

Derivation of inequality (4.12). By definition, λ(pt; θ
∗
ι ) = λ∗(pD)+ (∇λ∗(pD))′(pt− pD).

Since λ∗(pt) = λ∗(pD) + ∇λ∗(pD)′(pt − pD) + (pt − pD)′∇2λ∗(ξ)(pt − pD) for some ξ ∈ P
and supξ̂∈P ||(pt − pD)′∇2λ∗(ξ̂)(pt − pD)||2 ≤ κ0||pt − pD||22 for some κ0 > 0 (by R1 and the

compactness of P),

||λ∗(pt)− λ(pt; θ
∗
ι )||2 ≤ κ0||pt − pD||22.

103



So, conditioning on E , for all t < τ , I have:

||λt − λ̂t||2 = ||λ∗(pt)− λ(pt; θ̂ι)||2
≤ ||λ∗(pt)− λ(pt; θ

∗
ι )||2 + ||λ(pt; θ∗ι )− λ(pt; θ̂ι)||2

≤ κ0||pt − pD||22 + ωM2ϵ

= κ0||pt − pDδ (θ̂) + pDδ (θ̂)− pD0 (θ
∗)||22 + ωM2ϵ

≤ 2κ0||pt − pDδ (θ̂)||22 + 2κ0||pDδ (θ̂)− pD0 (θ
∗)||22 + ωM2ϵ

≤ 2κ0||p̂t − pDδ (θ̂)||22 + 2κ0κ
2(||δ||2 + ||θ̂ − θ∗||2)2 + ωM2ϵ

≤ 2κ0ω
2ψ2 + 2κ0κ

2(M4ϵ
2 +M2ϵ)

2 + ωM2ϵ ≤ ω0ϵ (4.44)

where the second inequality follows by Lemma 4.4.3 part (b) and the definition of E , the
fourth inequality follows by Lemma 4.6.2 (i.e., pt = p̂t for t < τ) and Lemma 4.4.3 part (f),

and the fifth inequality follows by (4.9), (4.34) and the definition of E . Now,

1

2
Eπ
λ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)− λt||22 |E


≤ Eπ

λ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)− λ̂t||22 |E

+ Eπ
λ∗

 τ−1∑
t=L̃0+1

||λ̂t − λt||22 |E


= Eπ

λ∗

 τ−1∑
t=L̃0+1

||
t−1∑

s=L̃0+1

∆̃s

k − s
||2 |E

+ Eπ
λ∗

 τ−1∑
t=L̃0+1

||λ̂t − λt||22 |E


≤ 2Eπ

λ∗

 τ−1∑
t=L̃0+1

||
t−1∑

s=L̃0+1

∆s

k − s
||2 +

 t−1∑
s=L̃0+1

||λs − λ̂s||2
k − s

2∣∣∣∣∣∣ E


+Eπ
λ∗

 τ−1∑
t=L̃0+1

||λ̂t − λt||22 |E


≤ 2

Pπλ∗(E)
Eπ
λ∗

[
τ−1∑
t=1

||
t−1∑
s=1

∆s

k − s
||2
]
+ 2Eπ

λ∗

 τ−1∑
t=1

(
t−1∑
s=1

ω0ϵ

k − s

)2
∣∣∣∣∣∣ E
+ ω2

0kϵ
2

≤ 4
k−1∑
t=1

t−1∑
s=1

Eπ
λ∗ [||∆s||22]
(k − s)2

+ 2ω2
0ϵ

2

k−1∑
t=1

(
t−1∑
s=1

1

k − s

)2

+ ω2
0kϵ

2

≤ 8
k−1∑
t=1

t−1∑
s=1

1

(k − s)2
+ 2ω2

0ϵ
2

k−1∑
t=1

log2
(

k

k − t

)
+ ω2

0ϵ
2k

≤ 8 log k + 5ω2
0ϵ

2k := M10(log k + ϵ2k), (4.45)
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where the third inequality follows from (4.44), the fourth inequality follows by (4.7) and the

fact that Eπ
λ∗ [∆

′
s∆t] = 0 if s ̸= t, and the last two inequalities follows by integral comparison

and the fact that
∑k−1

t=1 log
s( k
k−t) ≤

∫ k
1
logs( k

k−t)dt ≤ s!k.

The derivation of inequality (4.12) is completed by noting that

v̄

2
Eπ
λ∗

 τ−1∑
t=L̃0+1

∣∣∣∣λD0 (θ∗)− λt)
∣∣∣∣2

2

∣∣∣∣∣∣ E


≤ v̄Eπ
λ∗

 τ−1∑
t=L̃0+1

||λD0 (θ∗)− λDδ (θ̂)||22

∣∣∣∣∣∣ E
+ v̄Eπ

λ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)− λt||22

∣∣∣∣∣∣ E


≤ v̄kEπ
λ∗

[(
κ||θ∗ − θ̂||2 + κ||δ||2

)2∣∣∣∣ E]+ v̄Eπ
λ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)− λt||22

∣∣∣∣∣∣ E


≤ 2v̄k
(
κ2M2

2 ϵ
2 + κ2M2

4 ϵ
4
)
+ 2v̄M10(log k + ϵ2k)

≤ 2v̄M10 log k + (2v̄M10 + 2v̄κ2M2
4 + 2v̄κ2M2

2 )ϵ
2k =M7(log k + ϵ2k)

where M7 := 4v̄M10 + 2v̄κ2M2
4 + 2v̄κ2M2

2 . The second inequality follows by Lemma 4.4.3

part (f), the third inequality follows by the definition of E , (4.9) and (4.45), and the fourth

inequality follows by the fact that ϵ < 1 for k ≥ Ω ≥ Ω3.

To summarize, the proofs of Lemma 4.6.1 in Section 4.6.2, Lemma 4.6.2 and Lemma 4.6.3

in Section 4.6.3, and the derivation of (4.11) and (4.12) in Section 4.6.4 fill in the gaps in

the outline in Section 4.6.1. This completes the proof of Theorem 4.5.1.

4.7 Closing remarks

I study the problem of joint learning and pricing in a general capacitated network RM prob-

lem with multiple products and multiple limited resources. I develop a heuristic called NSC

that combines Spline Estimation, linear approximation of the estimated demand function,

quadratic approximation of the estimated revenue function, and self-adjusting price updates.

I show analytically that if the underlying demand function is sufficiently smooth, the revenue

loss under NSC is O(k1/2+ϵ log k) for any fixed ϵ > 0. This is the tightest bound of its kind

and is very close to the known theoretical lower bound of Ω(
√
k). My result suggests the

applicability of self-adjusting controls in dynamic pricing problems. Moreover, in proving my

main result, I derive large deviation bounds for spline estimation and prove a nonparametric

stability result of the optimal solution of a constrained optimization problem. These results

are of independent interest and are potentially useful for other application areas.
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4.8 Tables

Table 4.1: Revenue loss of Algorithm 3 in Besbes and Zeevi (2012) and NSC
Algorithm 3 in Besbes and Zeevi (2012) NSC

k Revenue loss Stdev Relative revenue loss(%) Revenue loss Stdev Relative revenue loss(%)

500 5331 53 52.6 4681 11 46.2
1000 10490 114 51.8 8823 46 43.5
2000 20307 214 50.1 17320 85 42.7
3000 30074 300 49.5 26647 240 43.8
4000 39167 392 48.3 34421 289 42.5
5000 48922 466 48.3 40796 307 40.3
6000 57804 522 47.5 49578 477 40.8
7000 65459 594 46.1 57310 605 40.4
8000 74990 688 46.3 62319 640 38.4
9000 82891 721 45.4 70797 800 38.8
10000 89703 734 44.3 75179 814 37.1
100000 500623 2972 24.7 426665 8173 21.1
1000000 3173343 17856 15.7 1829065 40502 9.0
10000000 20342474 68912 10.0 8105010 26139 4.0

In this numerical example, I set n = 2,m = 2, A = [1, 1; 0, 2], C = [0.1; 0.1]. The true
demand function is a logit function, and [λ1(p1, p2);λ2(p1, p2)] = (1+exp(0.4−0.015p1)+
exp(0.8 − 0.02p2))

−1 [exp(0.4 − 0.015p1); exp(0.8 − 0.02p2)]. For ease of performance
comparison, I use s = 4 for both Algorithm 3 in Besbes and Zeevi (2012) and NSC. I
vary k from 500 (a capacity level of 50 for each resource) to 10000000 (a capacity level
of 1000000 for each resource) and run 1000 trials for each k. The fourth and the seventh
columns correspond to the relative revenue loss for the corresponding heuristic π defined
as ρπ(k)/JD(k).
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Appendix

A.1 Proofs of Results in Chapter 2

A.1.1 Proof of Lemma 2.4.1

Throughout, I use superscript j and subscript i to indicate the jth column and the ith row of

a matrix respectively. Define Ā := A∇λ(pD). By definition, a base must span the resource

space which has rank m, so it must contain at least m products. Without loss of generality,

suppose that B = {1, 2, ...,m}. The matrix [Ā1 Ā2 ... Ām] is invertible and I can define its

inverse Ū = [Ā1 Ā2 ... Ām]−1. I now construct an n by m matrix U as follows: Ui = Ūi for

i = 1, . . . ,m and Ui = 0 otherwise. Observe that A∇λ(pD)U = ĀU = I. LetH = ∇λ(pD)U .
Since only the first m rows of ∇p(λD)H = U are non-zeros and B = {1, 2, ...,m}, I conclude
that H selects B. To show the uniqueness of H, I use contradiction. Suppose not, then I

have at least two n by m matrices H ̸= H̃ that select B. Let U = ∇p(λD)H, Ũ = ∇p(λD)H̃.

Since ∇p(λD) is full rank and H − H̃ ̸= 0, I conclude that U − Ũ ̸= 0. Since the last n−m

rows of U and Ũ are all zero vectors, I conclude that Ui ̸= Ũi for some 1 ≤ i ≤ m which

contradicts with the uniqueness of the inverse of Ā.

A.1.2 Proof of Theorem 2.4.1

The key to the proof lies in the definition of a stopping time τ(θ) for each of the θth problem,

which can be roughly interpreted as the time when the first stock-out of any of the resources

occurs. I use a martingale argument to derive an upper bound of the expectation of the

remaining length of the selling season after τ(θ), namely E[T (θ) − τ(θ)]. The main idea of

the proof is to consider the revenue loss incurred before and after τ(θ) separately. I show

that both of them are in the order of E[T (θ) − τ(θ)]. Therefore, our primary task is to

obtain an upper bound of E[T (θ)− τ(θ)]. The basic outline of the proof is as follows: (1) I

show that, under some conditions, the resource consumption error can be explicitly written

as a function of past demand errors, namely ∆s’s; (2) I introduce some technical conditions

and define a stopping time τ(θ). This can be roughly interpreted as the stock-out time of
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the first depleted resource. I then compute an upper bound for E[T (θ) − τ(θ)]; (3) I break

down our analysis of revenue loss into two parts, before and after period τ . Not surprisingly,

the latter is in the order of E[T (θ) − τ(θ)], thanks to the bounded revenue assumption in

(A2). The rest of the proof shows that the revenue loss before τ(θ) is also in the order of

E[T (θ)− τ(θ)].

Without loss of generality, assume T = 1. Then T (θ) = θ. For notational clarity, I

suppress the dependency on θ whenever there is no confusion. Fix a projection matrix H

that selects B. I proceed in several steps.

STEP 0

I present a well-known result in linear algebra without proof. I will use this result several

times.

Lemma A.1.1 For any real symmetric n by n matrix S, there exists an n by n orthonormal

matrix Q ∈ Rn ×Rn such that Q−1SQ = Λ, where Λ = diag(θ1, . . . , θn) is a diagonal matrix

whose elements are the eigenvalues of the matrix S. In addition, for any vector v ∈ Rn, I

have: v′Sv ≤ max1≤i≤n |θi| · v′v.

STEP 1

In this step I derive an explicit formula for resource consumption error.

Define δs := A∆s, δ̃
j
l := A∆̃j

l , and ϵt :=
∑m

j=1E
j∇p(λD)H

∑kjt
l=1 δ̃

j
l /(θ− tjl +1). (I follow

the convention that if the lower limit of a summation is bigger than the higher limit, then

the sum is zero.) By Taylor’s expansion,

λt = λD −∇λ(pD)ϵt +
1

2
ϵ′t∇2λ(ηt)ϵt , ηt ∈ [pD, pD − ϵt], (46)

where, by a slight abuse of the notation, I use

ϵ′t∇2λ(ηt)ϵt :=


ϵ′t∇2λ1(ηt)ϵt
...

ϵ′t∇2λn(ηt)ϵt

 ,

and ∇2λj is the Hessian matrix of λj(pt). (Formula (46) holds if λt lies in the interior

of Ωλ. I will address this in STEP 2.) Since H is the projection matrix that selects B.
By definition, there exists an invertible m by m matrix M such that ∇p(λD)H = [M ′ 0′ ]′

and A∇λ(pD) = [M−1| . . . ], where the latter holds because A∇λ(pD)∇p(λD)H = AH = I.

Define M j to be a square matrix whose jth row is the same as M while the other rows are

zeros. By definition, M j δ̃jl = ξ̃jl ej, where ej is a column vector with a proper size whose jth
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element is one and the others are zeros. I can write ϵt as:

ϵt =

 ∑m
j=1

∑kjt
l=1

Mj δ̃jl
θ−tjl+1

0

 =

 ∑m
j=1

∑kjt
l=1

ξ̃jl ej

θ−tjl+1

0

 .
Because A∇λ(pD) = [M−1|...], I have A∇λ(pD)Ej∇p(λD)H =M−1M j which allows me

to write the following identity as long as λt lies in the interior of Ωλ:

Aλt − AλD = −A∇λ(pD)
m∑
j=1

Ej∇p(λD)H
kjt∑
l=1

δ̃jl
θ − tjl + 1

+
1

2
Aϵ′t∇2λ(ηt)ϵt (47)

= −M−1

m∑
j=1

kjt∑
l=1

M j δ̃jl
θ − tjl + 1

+
1

2
Aϵ′t∇2λ(ηt)ϵt

= −M−1

m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1
+

1

2
Aϵ′t∇2λ(ηt)ϵt.

STEP 2

I define a stopping time τ and give an upper bound for E[θ − τ ]. Recall that in (A4), I

assume that the absolute values of the eigenvalues of the matrices ∇2λj, j = 1, . . . , n are

bounded above by v̄. Let λL = λD − ϕLe and ψ = min
{
ψ′, ψ′2}, where

ψ′ = min

{
min {ϕL, ϕU}

max {v̄, 2 · ||∇λ(pD)||∞}
,

min {AλL}
max {||Ae||∞ , 2 · ||M−1||∞}

}
.

One can directly verify that ψ > 0. Define a stopping time τ to be the minimum of θ and

the first time when any of the following conditions is violated.

(E1) ψ > 1
θ−t

∣∣∣∑t
s=1

(
ξjs −

∑kjs
l=1

ξ̃jl
θ−tjl+1

)∣∣∣ ,∀j = 1, . . . ,m;

(E2) ψ > v̄
θ−t
∑t

s=1

∣∣∣∣∣∣∑m
j=1

∑kjs
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2
;

(E3) ψ >
∣∣∣∣∣∣∑m

j=1

∑kjt
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2
.

The three conditions listed above are somewhat technical and not easy to interpret.

However, they are just stronger conditions of the two conditions below which have more

obvious meaning.
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(E1*) λs ∈ [λD − ϕLe, λ
D − ϕUe] ⊆ Ωλ, ∀s ≤ t;

(E2*) Ct > 0,

where Ct denotes the remaining inventory at the end of period t. The first condition states

that all the target demand rates under LPC up to period t (including t) are feasible, so are

the corresponding prices. The second condition states that no stock-out happens by the end

of period t. Per our discussion in STEP 1, (E1*) ensures the validity of expression (46) and

(47). In addition, (E2*) ensures that all the demand requests up to period t are satisfied, so

the dynamics of the resource consumption can be fully expressed by the demand error ∆s’s.

Hence, under (E1*) and (E2*), I can track the inventory levels by explicitly quantifying

them using past demand errors. (I emphasize that the purpose of (E1)-(E3) is simply for

analytical tractability.) The following lemma reveals the connection between (E1)-(E3) and

(E1*)-(E2*).

Lemma A.1.2 I have: (E1)-(E3) ⇒ (E1*)-(E2*). In other words, (E1*)-(E2*) hold when

t < τ .

The next lemma provides an upper bound of E[θ− τ ] as a function of updating schedule

{γj}mj=1.

Lemma A.1.3 Let U j
1 (T, t) and U

j
2 (T, t) be as defined in Theorem 2.4.1. Then, there exists

a constant Ψ̄, independent of θ and the choice of the projection matrix H such that:

E[θ − τ(θ)] ≤ Ψ̄
m∑
j=1

θ−1∑
t=1

(
min

{
1,
∣∣∣∣∇p(λD)HA∣∣∣∣2

2
U j
1 (θ, t)

}
+min

{
1,
∣∣∣∣∇p(λD)HA∣∣∣∣2

2
U j
2 (θ, t)

})
.

Although the two lemmas above are crucial and their proofs are quite subtle, I defer the

details for now and focus on the main thread of the proof.

STEP 3

I analyse the revenue loss incurred by LPC. Let Rt(pt) denote the revenue collected in period

t under the posted price pt. So, RH,γB =
∑θ

t=1Rt(pt). Define ∆̄t := Rt(pt)− E[Rt(pt)|Ft] =

Rt(pt) − r(pt). Since pD is the optimal solution to DPP, JDet = pD
′
λ(pD) = r(pD). This

yields
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JDet − E [RH,γB ] = JDet − E

[
θ∑
t=1

Rt(pt)

]

= E

[
τ−1∑
t=1

(
r(pD)−Rt(pt)

)]
+ E

[
θ∑
t=τ

(
r(pD)−Rt(pt)

)]

≤ E

[
τ−1∑
t=1

(
r(pD)−Rt(pt)

)]
+ E

[
θ∑
t=τ

r(pD)

]

≤ E

[
τ−1∑
t=1

(
r(pD)−Rt(pt)

)]
+ r̄E[θ − τ + 1].

For t < τ , by Taylor’s expansion at pD, I have r(pt) = r(pD) −∇r(pD)ϵt + 1
2
ϵ′t∇2r(ρt)ϵt

for some ρt ∈ [pD, pD − ϵt]. So, the first term after the last inequality above can be bounded

as follows:

E

[
τ−1∑
t=1

(
r(pD)−Rt(pt)

)]
= E

[
τ−1∑
t=1

(
r(pD)− r(pt)− ∆̄t

)]

= E

[
τ−1∑
t=1

(
∇r(pD)ϵt −

1

2
ϵ′t∇2r(ρt)ϵt − ∆̄t

)]

= E

[
τ−1∑
t=1

∇r(λD)∇λ(pD)ϵt

]
− 1

2
E

[
τ−1∑
t=1

ϵ′t∇2rt(ρt)ϵt

]
− E

[
τ−1∑
t=1

∆̄t

]

≤ E

[
τ−1∑
t=1

∇r(λD)∇λ(pD)ϵt

]
− 1

2
E

[
τ−1∑
t=1

ϵ′t∇2rt(ρt)ϵt

]
− E

[
τ∑
t=1

∆̄t

]
+ r̄,

where the third equality holds by the chain rule ∇r(λD)∇λ(pD) = ∇r(pD) and the last

inequality follows because E
[
∆̄τ

]
≤ E [Rτ (pτ )] = E [E [Rτ (pτ )|τ ]] ≤ r̄. Note that {∆̄t}θt=1 is

a martingale with respect to the natural filtration and τ is bounded, so E
[∑τ

t=1 ∆̄t

]
= 0 by

the optional stopping theorem. Therefore, I only need to derive upper bounds for the first

two terms above, which will be the primary focus of STEP 4 and 5.

STEP 4

I derive an upper bound for E
[∑τ−1

t=1 ∇r(λD)∇λ(pD)ϵt
]
. Let π and µ denote the duals

associated with the inventory constraints and the constraints λt ∈ Ωλ of DPP respectively.

Note that neither depends on θ. By assumption (A5), the optimal solution of DPP is

interior. As a result of Karush-Kuhn-Tucker (KKT) optimality condition, I have ∇r(λD) =
π′A (note that µ = 0 by complementary slackness). Thus, E

[∑τ−1
t=1 ∇r(λD)∇λ(pD)ϵt

]
=

E
[∑τ−1

t=1 π
′A∇λ(pD)ϵt

]
. By definition of ϵt and A∇λ(pD)Ej∇p(λD)H =M−1M j (see STEP
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1), I can write

E

[
τ−1∑
t=1

∇r(λD)∇λ(pD)ϵt

]
= E

τ−1∑
t=1

π′M−1

m∑
j=1

kjt∑
l=1

M j δ̃jl
θ − tjl + 1


= π′M−1

m∑
j=1

M jE

τ−1∑
t=1

kjt∑
l=1

δ̃jl
θ − tjl + 1


= π′M−1

m∑
j=1

M jE

kjτ−1∑
l=1

(
1− θ − τ + 1

θ − tjl + 1

)
δ̃jl

 . (48)

The last term (48) can be further broken down into two parts as follows:

π′M−1

m∑
j=1

M jE

kjτ−1∑
l=1

(
1− θ − τ + 1

θ − tjl + 1

)
δ̃jl + (1− 1) ·

(
δt

k
j
τ−1

+ · · ·+ δτ−1

)
= π′M−1

m∑
j=1

M jE

δt
k
j
τ−1

+ · · ·+ δτ−1 +

kjτ−1∑
l=1

δ̃jl

−

δt
k
j
τ−1

+ · · ·+ δτ−1 +

kjτ−1∑
l=1

θ − τ + 1

θ − tjl + 1
δ̃jl


≤ π′M−1

m∑
j=1

M jE

δt
k
j
τ−1

+ · · ·+ δτ−1 +

kjτ−1∑
l=1

δ̃jl


+π′E

 ∣∣∣∣∣∣M−1

m∑
j=1

M j

δt
k
j
τ−1

+ · · ·+ δτ−1 +

kjτ−1∑
l=1

θ − τ + 1

θ − tjl + 1
δ̃jl

∣∣∣∣∣∣
 . (49)

Since
∑m

j=1M
j =M , by definition of δs and δ̃

j
l (see STEP 1), I can write

π′M−1

m∑
j=1

M jE

δt
k
j
τ−1

+ · · ·+ δτ−1 +

kjτ−1∑
l=1

δ̃jl

 = π′M−1

m∑
j=1

M jE

[
τ−1∑
s=1

δs

]
= π′E

[
τ−1∑
s=1

δs

]
.

Observing that {
∑t

s=1∆s}θt=1 is a martingale and τ is bounded, E [
∑τ

s=1∆s] = 0 by

optional stopping theorem. Also, the elements in π and A are all nonnegative. This implies

that π′AE[∆τ ] = π′AE[E[∆τ |τ ]] ≤ π′Aλ̄e. Thus, the first term in (49) can be bounded by

π′E

[
τ−1∑
s=1

δs

]
= π′AE

[
τ−1∑
s=1

∆s

]
≤ π′AE

[
τ∑
s=1

∆s

]
+ π′Aλ̄e = π′Aeλ̄. (50)
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As for the second term in (49), I have the following:

π′E

∣∣∣∣∣∣M−1

m∑
j=1

M j

δt
k
j
τ−1

+ · · ·+ δτ−1 +

kjτ−1∑
l=1

θ − τ + 1

θ − tjl + 1
δ̃jl

∣∣∣∣∣∣


= π′E

∣∣∣∣∣∣M−1

m∑
j=1

ξjt
k
j
τ−1

+ · · ·+ ξjτ−1 +

kjτ−1∑
l=1

θ − τ + 1

θ − tjl + 1
ξ̃jl

 ej

∣∣∣∣∣∣


≤ π′E

∣∣∣∣M−1
∣∣∣∣

∞ max
j=1,...,m

∣∣∣∣∣∣ξjtkjτ−1

+ · · ·+ ξjτ−1 +

kjτ−1∑
l=1

(θ − τ + 1)ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣ e


= π′E

∣∣∣∣M−1
∣∣∣∣

∞ max
j=1,...,m

∣∣∣∣∣∣
τ−1∑
s=1

ξjs − kjs∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣ e


≤ π′E

[
AλL
2

(θ − τ + 1)

]
≤ π′Aeλ̄

2
E [θ − τ + 1] , (51)

where the last equality holds because

τ−1∑
s=1

ξjs − kjs∑
l=1

ξ̃jl
θ − tjl + 1

 = ξjt
k
j
τ−1

+ · · ·+ ξjτ−1 +

kjτ−1∑
l=1

(θ − τ + 1)ξ̃jl
θ − tjl + 1

, (52)

and the second to the last inequality results from the definition of ψ, the condition (E1)

used to define τ , and the fact that min{AλL}e ≤ AλL. Combining (50) − (51), I get:

E
[∑τ−1

t=1 ∇r(λD)∇λ(pD)ϵt
]

≤ π′Aeλ̄+ 1
2
π′Aeλ̄E[θ − τ + 1].

STEP 5

I now derive an upper bound for −1
2
E
[∑τ−1

t=1 ϵ
′
t∇2rt(ρt)ϵt

]
as follows:

−1

2
E

[
τ−1∑
t=1

ϵ′t∇2rt(ρt)ϵt

]
≤ E

[∣∣∣∣∣
τ−1∑
t=1

ϵ′t∇2rt(ρt)ϵt

∣∣∣∣∣
]

≤ v̄E

τ−1∑
t=1

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

 ≤ ψE [θ − τ + 1] ,

where the second inequality follows from Lemma A.1.1 and assumption (A5), and the last

inequality follows from condition (E2) in the definition of τ .
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STEP 6

Putting together results in STEP 1 - 5 proves Theorem 2.4.1. I only need to prove Lemma

A.1.2 and A.1.3 which I do below.

Proof of Lemma A.1.2. I need to show that if t < τ , then (E1*) and (E2*) hold. I first

show that (E1*) holds:

∣∣ϵ′t∇2λ(ηt)ϵt
∣∣ ≤ v̄ e ϵ′tϵt = v̄ e

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

< min {ϕL, ϕU} e.

The last inequality follows from (E3) in the definition of τ . In addition, I also have

∣∣∣∣∇λ(pD)ϵt∣∣∣∣∞ =

∣∣∣∣∣∣
∣∣∣∣∣∣∇λ(pD)

m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤
∣∣∣∣∇λ(pD)∣∣∣∣∞ ·

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

=
∣∣∣∣∇λ(pD)∣∣∣∣∞ · max

j=1,...,m

∣∣∣∣∣∣
kjt∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣ ≤
∣∣∣∣∇λ(pD)∣∣∣∣∞

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

< ψ′ ∣∣∣∣∇λ(pD)∣∣∣∣∞ ≤ 1

2
min {ϕL, ϕU} .

By combining the two inequalities above with (46), I get

|λt − λD| ≤
∣∣∇λ(pD)ϵt∣∣+ ∣∣∣∣12Aϵ′t∇2λ(ηt)ϵt

∣∣∣∣ ≤ ∣∣∣∣∇λ(pD)ϵt∣∣∣∣∞ e+

∣∣∣∣12Aϵ′t∇2λ(ηt)ϵt

∣∣∣∣ ≤ min {ϕL, ϕU} e.

So, (E1*) holds. I next show that (E1)-(E3) imply (E2*). Since (E1)-(E3) imply (E1*),

I know formula (46) holds for all s ≤ t. As a result, the resource consumption error for-

mula (47) also holds. Define CD
t := C −

∑t
s=1Aλ

D. Then, the remaining inventory at the

end of period t satisfies

Ct ≥ C −
t∑

s=1

ADs = C −
t∑

s=1

A(∆s + λs + λD − λD) = CD
t −

t∑
s=1

A(∆s + λs − λD)

= CD
t −

t∑
s=1

δs −M−1

m∑
j=1

kjs∑
l=1

M j δ̃jl
θ − tjl + 1

+
1

2
Aϵ′s∇2λ(ηs)ϵs


≥ CD

t −

∣∣∣∣∣∣M−1

t∑
s=1

m∑
j=1

ξjsej − kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣−
∣∣∣∣∣12

t∑
s=1

Aϵ′s∇2λ(ηs)ϵs

∣∣∣∣∣ . (53)
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Because {λD} is the optimal solution to DPP, I know that it must satisfy inventory

constraint. So, CD
t = C −

∑t
s=1Aλ

D ≥
∑θ

s=t+1Aλ
D. Since I also have λD > λLe, it must

hold that CD
t ≥

∑θ
s=t+1Aλ

D ≥ AλL(θ− t). As for the second term in (53), by (E1), I have

∣∣∣∣∣∣M−1

t∑
s=1

m∑
j=1

ξjsej − kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
≤

∣∣∣∣M−1
∣∣∣∣

∞ ·

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

t∑
s=1

ξjsej − kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

· e

≤
∣∣∣∣M−1

∣∣∣∣
∞ · max

j=1,...,m

∣∣∣∣∣∣
t∑

s=1

ξjs − kjs∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣ e
<

∣∣∣∣M−1
∣∣∣∣

∞ ψ(θ − t)e <
AλL
2

(θ − t) ≤ 1

2
CD
t .

For the third term in (53),the following holds by Lemma A.1.1.

∣∣∣∣∣12
t∑

s=1

Aϵ′s∇2λ(ηs)ϵs

∣∣∣∣∣ ≤ 1

2
A

t∑
s=1

∣∣ϵ′s∇2λ(ηs)ϵs
∣∣ ≤ 1

2
Av̄e

t∑
s=1

ϵ′sϵs

=
1

2
Av̄e

t∑
s=1

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

<
1

2
Ae(θ − t)ψ ≤ 1

2
||Ae||∞ e(θ − t)ψ ≤ AλL

2
(θ − t) ≤ 1

2
CD
t .

Combining the two bounds above with (53), I get Ct > 0. So, (E2*) holds.

Proof of Lemma A.1.3. Let τ j1 denote the minimum of θ and the first time t such that

condition (E1) is violated for jth resource. Also, let denote τi, i = 2, 3, denote the minimum

of θ and the first time t such that condition (Ei) is violated. Note that, by definition,

τ = min{(minj τ
j
1 ), τ2, τ3}. Since τ is nonnegative, E[τ ] =

∑θ−1
t=0 Pr(τ > t). So, I can write

E[θ − τ ] = θ − E[τ ] =
∑θ−1

t=1 Pr(τ ≤ t). Since τ ≤ t can only happen if either τ j1 (for some

j) or τ2 or τ3 gets hit by time t, by sub-additivity property of probability, I can bound:

Pr(τ ≤ t) ≤
∑m

j=1 Pr(τ
j
1 ≤ t) + Pr(τ2 ≤ t) + Pr(τ3 ≤ t). So, it suffices to derive a bound

for each component after the inequality. I do this in turn.

STEP 1

I derive an upper bound for Pr(τ j1 ≤ t), j = 1, . . . ,m. Fix t. For each j = 1, . . . ,m, I define
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a hitting time τ̃ j1 to be the minimum of t and the first time v ≤ t such that ψ ≤ |Sjv|, where

Sjv =



ξj
t
j

k
j
v

+···+ξjv

θ−tj
k
j
v+1

+1
+
∑kjv

l=1

ξ̃jl
θ−tjl+1

, 1 ≤ v ≤ tj
kjt
− 1

ξj
t
j

k
j
v

+···+ξjv

θ−v +
∑kjv

l=1

ξ̃jl
θ−tjl+1

, tj
kjt

≤ v ≤ t

.

I now state a lemma which reveals the connection between τ j1 and τ̃ j1 , see STEP 4 below

for proof.

Lemma A.1.4 Pr(τ j1 ≤ t) ≤ Pr(τ̃ j1 ≤ t).

Observe that for any given t, {Sv}tv=1 is a martingale with respect to the natural filtration

{Fv}tv=1. Hence, {|Sv|}tv=1 is a submartingale. By Doob’s submartingale inequality and

identity in (52), I have

Pr(τ j1 ≤ t) ≤ Pr(τ̃ j1 ≤ t) = Pr

max
v≤t

∣∣∣∣∣∣∣
ξj
tj
k
j
v

+ · · ·+ ξjv

θ − v
+

kjv∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣∣ ≥ ψ



≤ min

1,
1

ψ2
E


∣∣∣∣∣∣∣
ξj
tj
k
j
t

+ · · ·+ ξjt

θ − t
+

kjt∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣∣
2



= min

1,
1

ψ2


t∑

s=tj
k
j
t

E
[
(ξjs)

2
]

(θ − t)2
+

kjt∑
l=1

E

[(
ξ̃jl

)2]
(
θ − tjl + 1

)2

 ,

where the last equality holds because E[ξjsξ
j
v] = 0 for s ̸= v, E[ξ̃jl ξ̃

j
w] = 0 for l ̸= w, and

E[ξjs ξ̃
j
l ] = 0 for s ≥ tj

kjt
and l ≤ kjt . Now I want to estimate the expectations in the upper

bound above. I start with the term (ξjs)
2. By matrix norm inequality, (ξjs)

2 ≤
∑m

i=1 (ξ
i
s)

2
=

(MA∆s)
′ (MA∆s) ≤ ||MA||22∆′

s∆s =
∣∣∣∣∇p(λD)HA∣∣∣∣2

2
∆′
s∆s ≤

∣∣∣∣∇p(λD)∣∣∣∣2
2
||H||22 ||A||22 ∆′

s∆s.

Taking expectation on both sides and using E[∆′
t∆t] = Var(∆t) ≤ 1 (due to the assumption

that at most one customer arrives in each period) yields E[(ξjs)
2] ≤

∣∣∣∣∇p(λD)∣∣∣∣2
2
||H||22 ||A||22.
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By definition, ξ̃jl =
∑tjl−1

s=tjl−1

ξjs . So I have

E

[(
ξ̃jl

)2]
=

tjl−1∑
s=tjl−1

E
[(
ξjs
)2] ≤ ∣∣∣∣∇p(λD)HA∣∣∣∣2

2

tjl−1∑
s=tjl−1

E [∆′
s∆s] ≤

∣∣∣∣∇p(λD)HA∣∣∣∣2
2

(
til − til−1

)
.

Putting the inequalities together, I obtain that
∑m

j=1

∑θ−1
t=1 Pr(τ

j
1 ≤ t) ≤

∑m
j=1

∑θ−1
t=1 min

{
1,

||∇p(λD)HA||2
2

ψ2 U j
1 (θ, t)

}

STEP 2

I derive an upper bound for Pr(τ2 ≤ t). Since
∣∣∣∣∣∣∑m

j=1

∑kjs
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2
≥ 0 and v̄ ≥ 0, I con-

clude that for all v ≤ t, v̄
θ−t
∑t

s=1

∣∣∣∣∣∣∑m
j=1

∑kjs
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2
≥ v̄

θ−v
∑v

s=1

∣∣∣∣∣∣∑m
j=1

∑kjs
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2
.

Therefore, by Markov’s inequality, the following holds:

Pr(τ2 ≤ t) = Pr

max
v≤t

v̄

θ − v

v∑
s=1

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≥ ψ


≤ Pr

 v̄

θ − t

t∑
s=1

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≥ ψ


≤ min

1,
v̄

ψ(θ − t)

t∑
s=1

E

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

 .

By similar arguments as in STEP 1, I can bound

E

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjs∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

 ≤ E

 m∑
j=1

kjs∑
l=1

(
ξ̃jl

θ − tjl + 1

)2
 ≤

m∑
j=1

kjs∑
l=1

E

[(
ξ̃jl

)2]
(θ − tjl + 1)2

≤
∣∣∣∣∇p(λD)HA∣∣∣∣2

2

m∑
j=1

kjs∑
l=1

tjl − tjl−1

(θ − tjl + 1)2
.
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As a result, I obtain

θ−1∑
t=1

Pr(τ2 ≤ t) ≤
m∑
j=1

θ∑
t=1

min

1,
v̄
∣∣∣∣∇p(λD)HA∣∣∣∣2

2

ψ(θ − t)

t∑
s=1

kjs∑
l=1

tjl − tjl−1

(θ − tjl + 1)2


=

m∑
j=1

θ∑
t=1

min

{
1,
v̄
∣∣∣∣∇p(λD)HA∣∣∣∣2

2

ψ
U j
2 (θ, t)

}
.

STEP 3

I derive an upper bound for Pr(τ3 ≤ t). Observe that for all j,
{∑kjt

l=1
ξ̃jl

θ−tjl+1

}θ
t=1

is a mar-

tingale. Since
∣∣∣∣∣∣∑m

j=1

∑kjt
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2
=
∑m

j=1

(∑kjt
l=1

ξ̃jl
θ−tjl+1

)2
,

{∣∣∣∣∣∣∑m
j=1

∑kjt
l=1

ξ̃jl ej

θ−tjl+1

∣∣∣∣∣∣2
2

}θ
t=1

is

also a submartingale. So, by Doob’s submartingale inequality and arguments in STEP 1,

Pr(τ3 ≤ t) = Pr

max
v≤t

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjv∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≥ ψ

 ≤ 1

ψ
E


∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

kjt∑
l=1

ξ̃jl ej

θ − tjl + 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2


≤ min

1,

∣∣∣∣∇p(λD)HA∣∣∣∣2
2

ψ

m∑
j=1

kjt∑
l=1

tjl − tjl−1

(θ − tjl + 1)2

 .

As a result, the following inequality holds:

θ−1∑
t=1

Pr(τ3 ≤ t) ≤
m∑
j=1

θ−1∑
t=1

min

1,

∣∣∣∣∇p(λD)HA∣∣∣∣2
2

ψ

kjt∑
l=1

tjl − tjl−1

(θ − tjl + 1)2


=

m∑
j=1

θ−1∑
t=1

min

{
1,

∣∣∣∣∇p(λD)HA∣∣∣∣2
2

ψ
U j
1 (θ, t)

}
.

STEP 4

Putting together all the results in STEP 1-3 completes the proof of Lemma A.1.3. The last

thing to do is to prove Lemma A.1.4 from STEP 1. I do this now.

Proof of Lemma A.1.4. It suffices to show that for all v ≤ t, if τ j1 = v occurs, then τ̃ j1 ≤ v

occurs as well. By definition of Sv, this is immediately true if tj
kjt

≤ v ≤ t. So, I only need

to check the case 1 ≤ v ≤ tj
kjt
− 1. Assuming 1 ≤ v ≤ tj

kjt
− 1, by definition of (E1) in STEP
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1, τ j1 = v means

ψ ≤

∣∣∣∣∣∣∣
ξj
tj
k
j
v

+ · · ·+ ξjv

θ − v
+

kjv∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣∣ and ψ >

∣∣∣∣∣∣
kjv∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣
which imply that ψ ≤

∣∣∣∣∣∣∣
ξj
tj
k
j
v

+ · · ·+ ξjv

θ − tj
kjv+1

+ 1
+

kjv∑
l=1

ξ̃jl
θ − tjl + 1

∣∣∣∣∣∣∣ = |Sjv|.

So, τ̃ j1 ≤ v and hence Pr(τ j1 ≤ t) ≤ Pr(τ̃ j1 ≤ t).

A.1.3 Proof of Lemma 2.4.2

I will prove a more general result of picking the best k prices. For any v ∈ Rn define ||v||0 :=
|{i : vi ̸= 0}|. Let a = A′, x = ∇p(λD)H, b = (A∇λ(pD))′. Since m = 1, a, x, b are all vec-

tors in Rn. The optimization problem minH{||∇p(λD)HA||2 : AH = 1, ||∇p(λD)H||0 ≤ k} is

equivalent to minx{||xa′||22 : b′x = 1, ||x||0 ≤ k}. Since xa′ax′ is a rank one matrix, its maxi-

mum eigenvalue is just its trace. So ||xa′||22 = tr(xa′ax′) = tr(x′xa′a) = ||x||22||a||22. Note also
that the equality constraint is equivalent to ||b||2||x||2 cos(b, x) = 1, where cos(b, x) is the co-

sine of the angle between vectors b and x. Therefore, as long as ||x||2 = 1/(||b||2 cos(b, x)), the
equality constraint can be satisfied. So the problem becomes minx{||a||22||b||−2

2 cos−2(b, x) :

||x||0 ≤ k}.Let b(i) denote the ith largest element in absolute value in b, then the optimal

solution x∗ is parallel with a vector bk which has the exact same elements as b in the k

largest elements in absolute values but zeros in other elements. The optimal objective value

is ||a||22(
∑k

i=1 b
2
(i))

−1.

A.1.4 Proof of Corollary 2.4.1

I compute, part by part, the bound in Theorem 2.4.1 under periodic price update schedule.

Without loss of generality, I assume that T = 1. For notational clarity, I suppress the

dependence on θ whenever there is no confusion. I start with the summation over U j
1 (θ, t).

First of all, I have

∑m
j=1

∑θ−1
t=1 min

{
1,
∣∣∣∣∇p(λD)HA∣∣∣∣2

2
U1(θ, t)

}
≤ max{1,

∣∣∣∣∇p(λD)HA∣∣∣∣2
2
}
∑m

j=1

∑θ−1
t=1 min

{
1, U j

1 (θ, t)
}
.

I bound the summation after the inequality as follows:
∑m

j=1

∑θ−1
t=1 min

{
1, U j

1 (θ, t)
}

=

m
∑θ−1

t=1 min
{
1, t−hkt

(θ−t)2 +
∑kt

l=1
tl−tl−1

(θ−tl+1)2

}
≤ m

∑θ−1
t=1 min

{
1, t−hkt

(θ−t)2 +
tkt−tkt−1

(θ−tkt+1)
2 +

∫ tkt
1

1
(θ−x+1)2

dx

}
≤
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m
∑θ−1

t=1 min
{
1, 2h

(θ−t)2 +
1
θ−t .
}
. The first equality follows since I update the price of the m

products at the same time. The first inequality is the integral approximation and the last in-

equality follows from the fact that 0 ≤ t−kt h ≤ h. Now define t∗ =
⌊
θ −

√
h
⌋
. I make further

approximation of the inequality above by breaking down the summation over t into two parts,

before and after t∗:
∑m

j=1

∑θ−1
t=1 min {1, U1(θ, t)} ≤ m

[∫ t∗
1

2h
(θ−x)2 dx+

∫ t∗
1

1
θ−x dx+ θ − t∗

]
≤

m
(

2h
θ−t∗ + log

(
θ−1
θ−t∗

)
+ θ − t∗

)
≤ m

(
1 + 3

√
h+ log θ

)
where the first inequality follows from

the integration approximation and the third inequality follows from the fact that 1 ≤
√
h ≤

θ− t∗ ≤
√
h+1. Now I compute the summation over U j

2 (θ, t). Similarly, it suffices to bound

the following:
∑m

j=1

∑θ−1
t=1 min

{
1, U j

2 (θ, t)
}

≤ m
∑θ−1

t=1 min
{
1, 1

θ−t
∑t

s=1

(
h

(θ−s)2 +
1
θ−s

)}
.

Again, I break the summation into two parts and use integral approximation:

m∑
j=1

θ−1∑
t=1

min {1, U2(θ, t)}

≤ m

[
t∗−1∑
t=1

1

θ − t

∫ t+1

1

(
h

(θ − x)2
+

1

θ − x

)
dx+ θ − t∗

]

≤ m

[
t∗−1∑
t=1

(
h

(θ − t− 1)2
+

1

θ − t− 1
log

(
θ − 1

θ − t− 1

))
+ θ − t∗

]

≤ m

[
h

(θ − t∗)2
+

∫ t∗−1

1

h

(θ − x− 1)2
dx+

t∗−1∑
t=1

1

θ − t− 1
log

(
θ − 1

θ − t− 1

)
+ θ − t∗

]
≤ m

(
2 + 2

√
h+ log θ + log2 θ

)
,

where the last inequality holds because
∑t∗−1

t=1
1

θ−t−1
log
(

θ−1
θ−t−1

)
≤ log( θ−1

θ−t∗ )
θ−t∗ +

∫ t∗−1

1

log( θ−1
θ−t−1)

θ−t−1
dt ≤

log θ + log2 θ.

A.1.5 Proof of Corollary 2.4.2

I assume without loss of generality that T = 1 and suppress the dependence on θ for

brevity. Note that K(θ) is well-defined since
∑k

s=1 s
α is strictly increasing in k and is

unbounded as k → ∞ for all α ≥ 1. Since θ >
∑K

s=1 s
α ≥ Kα+1/(α + 1), I have

K ≤ ((α+1)θ)1/(α+1). I now analyze the performance bound. I first derive bound for the sum-

mation over U j
1 (θ, t). Similar to the proof of Corollary 2.4.1, it suffices to bound the following:∑m

j=1

∑θ−1
t=1 min

{
1, U j

1 (θ, t)
}
. By definition, for 1 ≤ l ≤ K, I have θ− tl + 1 ≥

∑K−l+1
s=1 sα ≥

(K−l+1)α+1

α+1
≥ (K−l+2)α+1

2α+1(α+1)
. In addition, I also have that for 2 ≤ l ≤ K, tl−tl−1 ≤ (K− l+2)α+

1 ≤ 2(K−l+2)α, and for l = 1, t1−t0 ≤ θ+1−
∑K

s=1 s
α−1 ≤ (K+1)α ≤ 2(K+1)α. Then, for
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t < θ−1, since kt < K, I have U j
1 (θ, t) ≤

∑kt+1
l=1

tl−tl−1

(θ−tl+1)2
≤
∑kt+1

l=1
2(K−l+2)α(α+1)222α+2

(K−l+2)2α+2 = (α+

1)222α+3
∑kt+1

l=1
1

(K−l+2)α+2 . Hence,
∑m

j=1

∑θ−1
t=1 min{1, U j

1 (θ, t)} ≤
∑m

j=1(1+
∑θ−2

t=1 U
j
1 (θ, t)) ≤

m+m
∑K

l=1 2(K − l+2)α
∑l

s=1
(α+1)222α+3

(K−s+2)α+2 ≤ m+m
∑K

l=1 2(K − l+2)α
∫ l+1

1
(α+1)222α+3

(K−s+2)α+2ds ≤
m + m(α + 1)22α+4

∑K
l=1

(K−l+2)α

(K−l+1)α+1 ≤ m + m(α + 1)23α+4
∑K

l=1
1

(K−l+1)
≤ m + m(α +

1)23α+4 logK. Since K ≤ ((α+ 1)θ)
1

α+1 ,
∑m

j=1

∑θ−1
t=1 min{1, U j

1 (θ, t)} ≤ m(1 + 23α+4 log(α+

1) + 23α+4 log θ). As for the summation over U j
2 (θ, t), I have

∑m
j=1

∑θ−1
t=1 min{1, U j

2 (θ, t)} ≤
m+

∑m
j=1

∑θ−2
t=1 U

j
2 (θ, t) ≤ m+

∑m
j=1

∑θ−2
t=1

1
θ−t
∑t

s=1 U
j
1 (θ, s) ≤ m+

∑m
j=1

∑θ−2
t=1

1
θ−t
∑θ−2

s=1 U
j
1 (θ, s) ≤

m(1 + 23α+4 log(α + 1) log θ + 23α+4 log2 θ).

A.1.6 Proof of Corollary 2.4.3

I assume without loss of generality that T = 1 and suppress the dependence on θ for brevity.

I first show that K ≤ 1 + logβ θ. Note that since {tl} are strictly increasing integers,

so K is well defined and by definition of tl I have tK−1 ≤ θ − 1. By definition, I have

tl ≥ [(β−1)θ+ tl−1]/β, so θ− tl ≤ (θ− tl−1)/β ≤ θ/βl. Therefore, θ−1 ≥ tK−1 > θ−θ/βK−1

which implies that K ≤ 1 + logβ θ. I now analyze the performance bound. By definition, I

have tl ≤ [(β−1)θ+tl−1]/β+1, so I have the following useful bound which will be used a couple

of times later: for l ≤ K, (⋆) tl−tl−1

θ−tl+1
≤ {[(β−1)θ+tl−1]/β+1}−tl−1

θ−{[(β−1)θ+tl−1]/β+1}+1
= (β−1)(θ−tl−1+1)+1

θ−tl−1
≤ 2β − 1.

I derive an upper bound for the summation over U j
1 (θ, t) first. Similar to the proof of

Corollary 2.4.1, it suffices to bound the following:

∑m
j=1

∑θ−1
t=1 min

{
1, U j

1 (θ, t)
}

≤ m
θ−1∑
t=1

(
t− tkt + 1

(θ − t)2
+

kt∑
l=1

2β − 1

θ − tl + 1

)

≤ m
θ−1∑
t=1

(
tkt+1 − 1− tkt + 1

(θ − t)(θ − tkt+1 + 1)
+

kt∑
l=1

2β − 1

θ − tl + 1

)

≤ m
θ−1∑
t=1

(
2β − 1

(θ − t)
+

kt∑
l=1

2β − 1

θ − tl + 1

)

≤ m(2β − 1)

(
log θ +

θ−1∑
t=1

kt∑
l=1

1

θ − tl + 1

)
,

where the first and the third inequalities follow from (⋆). Note that
∑θ−1

t=1

∑kt
l=1

1
θ−tl+1

=∑K−1
j=0

∑tj+1−1
t=tj

∑j
l=1

1
θ−tl+1

=
∑K−1

j=0

∑j
l=1

tj+1−tj
θ−tl+1

=
∑K−1

j=1
θ−tj
θ−tj+1

≤ K − 1 ≤ logβ θ. Hence, I

have
∑m

j=1

∑θ−1
t=1 min

{
1, U j

1 (θ, t)
}
≤ m(2β−1)

(
log θ + logβ θ

)
. Now I approximate the sum-

mation over U j
2 (θ, t) as follows:

∑m
j=1

∑θ−1
t=1 min

{
1, U j

2 (θ, t)
}
≤ m

∑θ−1
t=1

1
θ−t
∑θ−1

s=1

∑ks
l=1

2β−1
θ−tl+1

≤
m(2β − 1) log θ logβ θ.
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A.1.7 Proof of Theorem 2.4.2

I use a slight modification of LPC with synchronous 1-Periodic Schedule as follows: fol-

low the LPC heuristic but uses p̂t = pD − ∇p(λD)H
∑t−1

s=1
A∆s

T−s , where H is a projection

matrix. Call this heuristic πH . Pick an H that satisfies ||∇p(λD)H||0 ≤ k. Then I have

πH ∈ Πk. Following a similar argument as Theorem 2.4.1, there exist positive constants

Ψ and Ψ̂ such that JDet − E[RπH (θ)] ≤ Ψ + Ψ̂||∇p(λD)HA||22 log2 θ. By the proof of

Lemma 2.4.2, if I minimize ||∇p(λD)HA||2 subject to AH = 1 and ||∇p(λD)H||0 ≤ k,

the optimal projection matrix H∗ attains ||∇p(λD)H∗A||22 = ||a||22(
∑k

i=1 b
2
(i))

−1. There-

fore, minπ∈Πk
{JDet − E[Rπ(θ)]} ≤ JDet − E[RπH∗ (θ)] ≤ Ψ + Ψ̄(

∑k
i=1 b

2
(i))

−1 log2 θ, where

Ψ̄ = Ψ̂||a||22.

A.1.8 Proof of Lemma 2.5.1

By the construction of Q(Yt,Gt,St), it is straightforward to verify that A∇λ(pD)QtE
B =

A∇λ(pD)EB = A∇λ(pD)EGt∪(B−St)Qt holds. (See Figure A.1 for an illustration.) This

proves (1). For (2), constructHt := ∇λ(pD)Qt∇p(λD)H. Note thatHt is a projection matrix

since AHt = A∇λ(pD)Qt∇p(λD)H = A∇λ(pD)QtE
B∇p(λD)H = A∇λ(pD)EB∇p(λD)H =

A∇λ(pD)∇p(λD)H = I where the second and the fourth equality follows by the fact that

only the first m rows of ∇p(λD)H are nonzero. Note also that ∇p(λD)Ht = Qt∇p(λD)H.

So, to verify that rows in ∇p(λD)Ht that correspond to products not in Gt ∪ (B − St) are

zeros, I only need to verify it for Qt∇p(λD)H. For any j /∈ Gt ∪ (B − St), either (a) j ∈ St
and j /∈ Gt, or (b) j /∈ B ∪ Gt. In case (a), the result holds since the jth row of Qt is a zero

vector. In case (b), the only nonzero element in row j of Qt is the j
th element, but the jth

row of ∇p(λD)H is a zero vector. This proves (2). Finally, since the only nonzero elements

in QtE
St are in the submatrix consisting of rows in Gt and columns in St, I conclude that

the rows in QtE
St∇p(λD)H that correspond to products not in Gt are zero vectors. This

completes the proof of (3).

A.1.9 Proof Sketch of Theorem 2.5.1

The proof of Theorem 2.5.1 follows the same outline of the proof for Theorem 2.4.1 with

three nontrivial twists.

1) Resource Correction Equivalence. I first show that in terms of error correction, equiva-

lent pricing is “equivalent” to LPC. In particular, let ϵ̃t =
∑m

j=1

∑kjt
l=1Qtjl

Ej∇p(λD)H A∆̃j
l

T−tjl+1
.

For simplicity, disregard the second order term of Taylor expansion of λt, then I have exactly
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Figure A.1: Illustration of Lemma 2.5.1 part (1)

the same capacity error below as (47) in the proof of Theorem 2.4.1:

Aλt − AλD = −A∇λ(pD)ϵ̃t = −
m∑
j=1

kjt∑
l=1

A∇λ(pD)Qtjl
Ej∇p(λD)H A∆̃j

l

T − tjl + 1

= −
m∑
j=1

kjt∑
l=1

A∇λ(pD)Ej∇p(λD)H A∆̃j
l

T − tjl + 1

= −M−1

m∑
j=1

kjt∑
l=1

ξ̃jl ej

T − tjl + 1
,

where the third equality follows by Lemma 2.5.1 part (1).

2) A uniform upper bound of ||Qt||22. For any set I ⊆ {1, . . . , n} and any m by n matrix

M , let MI denote the submatrix of M that consists of columns j ∈ I. Then, for any

pair of I1 ⊆ {1, . . . , n}, I2 ⊆ {1, . . . , n} I write I1 ≈ I2 if (A∇λ(pD))I1 and (A∇λ(pD))I2

expands the same subspace of Rm and |I1| = |I2|. Note that I1 ≈ I2 implies that there

exists a unique |I1| by |I1| invertible matrix Y (I1, I2) such that MI1 = MI2Y (I1, I2). Let

Q̄ := sup{||Q(Y (I1, I2), I2, I1)||22 : I1 ≈ I2}. Note that Q̄ is bounded because there are

only finite pairs of I1, I2 that satisfy I1 ≈ I2. In addition, Q̄ only depends on A∇λ(pD). I

now claim that for any B, γB, γ ∈ Γ(γB), t and Q ∈ Qt(γ), ||Q||22 ≤ Q̄. This is because, by

definition, for any set of products St ⊆ B being adjusted in period t under γB, and any set

of Gt being adjusted in period t under schedule γ ∈ Γ(γB), Gt is equivalent to St and there

exists a set G ′
t ⊆ Gt such that G ′

t ≈ St. Without loss of generality, assume G ′
t corresponds
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to the first |St| elements in Gt. Then construct a |Gt| by |St| matrix Yt whose submatrix

with rows in G ′
t and columns in St equal Y (St,G ′

t) and remaining elements equal 0. Then,

by optimality, I have that for any Qt ∈ Qt(γ), ||Qt||22 ≤ ||Q(Yt,Gt,St)||22 ≤ Q̄.

3) Bounding E[T − τ ]. Note that in the proof of Theorem 2.4.1, I have (E2): ψ >
v̄

T−t
∑t

s=1 ϵ
′
tϵt and (E3): ψ > ϵ′tϵt. Now, because the price deviation becomes ϵ̃t, I redefine (E2)

and (E3) by replacing ϵt by ϵ
′
t. Then the rest of the argument in the proof of Theorem 2.4.1

holds except that the argument and the bound in Lemma A.1.3 will be slightly different. In

particular, the bounding of τ2, τ3 requires extra care. Let qtjl
(j′, j) denote the j′-th row j-th

column element of the matrix Qtjl
. Then, the bound in STEP 2 of Lemma A.1.3 becomes:

Pr(τ2 ≤ t) = Pr

(
max
v≤t

v̄

T − v

v∑
s=1

ϵ̃′sϵ̃s ≥ ψ

)
≤ Pr

(
v̄

T − t

t∑
s=1

ϵ̃′sϵ̃s ≥ ψ

)

= Pr

 v̄

T − t

t∑
s=1

 n∑
j′=1

 m∑
j=1

kjs∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2 ≥ ψ


≤ min

1,
v̄

ψ(T − t)

t∑
s=1

E

 n∑
j′=1

 m∑
j=1

kjs∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2
Note that I have,

E

 n∑
j′=1

 m∑
j=1

kjs∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2 ≤ E

 n∑
j′=1

 m∑
j=1

∣∣∣∣∣∣
kjs∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

∣∣∣∣∣∣
2

≤ E

 n∑
j′=1

m
m∑
j=1

 kjs∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2
= m

m∑
j=1

kjs∑
l=1

E

 n∑
j′=1

q2
tjl
(j′, j)

(
ξ̃jl

)2
(T − tjl + 1)2

 = m
m∑
j=1

kjs∑
l=1

E

[
||Qtjl

Ej∇p(λD)HA∆̃j
l ||22

(T − tjl + 1)2

]

≤ m

m∑
j=1

kjs∑
l=1

||Qtjl
Ej∇p(λD)HA||22E

[
||∆̃j

l ||22
]

(T − tjl + 1)2
≤ m

m∑
j=1

kjs∑
l=1

Q̄
∣∣∣∣∇p(λD)HA∣∣∣∣2

2

tjl − tjl−1

(T − tjl + 1)2

where the first equality follows because ∀l ̸= l′,E[ξ̃jl ξ̃
j
l′ ] = 0 by the martingale property. With
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the inequality above, I conclude that:

T−1∑
t=1

Pr(τ2 ≤ t) ≤
m∑
j=1

T∑
t=1

min

{
1,
mv̄Q̄

ψ
||∇p(λD)HA||22U

j
2 (T, t)

}

≤ max{1, mv̄Q̄
ψ

}
m∑
j=1

T∑
t=1

min{1, ||∇p(λD)HA||22U
j
2 (T, t)}.

I use a similar argument to modify STEP 3 in Lemma A.1.3.

Pr(τ3 ≤ t) = Pr

(
max
v≤t

ϵ̃′v ϵ̃v ≥ ψ

)
= Pr

max
v≤t

 n∑
j′=1

 m∑
j=1

kjv∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2 ≥ ψ


≤ Pr

max
v≤t

m

n∑
j′=1

m∑
j=1

 kjv∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2

≥ ψ


≤ min

1,
m

ψ
E

 n∑
j′=1

m∑
j=1

 kjt∑
l=1

qtjl
(j′, j)ξ̃jl

T − tjl + 1

2



The above inequality implies that:

T−1∑
t=1

Pr(τ3 ≤ t) ≤
m∑
j=1

T−1∑
t=1

min

{
1,
m2Q̄

ψ
||∇p(λD)HA||22U

j
1 (T, t)

}

≤ max{1, m
2Q̄

ψ
}

m∑
j=1

T−1∑
t=1

min
{
1, ||∇p(λD)HA||22U

j
1 (T, t)

}
.
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A.2 Simulation Parameters in Chapter 2

In all the experiments, I have 10 products and 4 resources. I use a multinomial logit demand

(i.e., λt,i = exp(ai − bipt,i)/(1 +
∑n

j=1 exp(aj − bjpt,j))) with the following parameters:

a =
[

0.5 0.4 0.3 0.4 0.5 0.3 0.2 0.4 0.6 0.8

]′
,

b =
[

0.015 0.020 0.020 0.015 0.020 0.025 0.015 0.020 0.020 0.020

]′
,

A =

 1 0 0 0 1 0 0 1 1 0

0 1 0 0 1 1 0 0 0 1

0 0 1 0 0 1 1 1 0 0

0 0 0 1 0 0 1 0 1 1

 and C =

 0.1

0.1

0.1

0.1

 .
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A.3 Proof of Results in Chapter 3

In this section, I first provide some known results for the Maximum Likelihood Theory

and the Newton’s Method. I then prove the results in Chapter 3. All the proofs of other

supporting lemmas which are used to prove Lemma 3.4.3, Lemma 3.5.1 and Theorem 3.5.1

are deferred to Section A.3.8.

A.3.1 Results for the Maximum Likelihood Theory and the New-

ton’s Method

Theorem A.3.1 (Tail Inequality for MLE Based on IID Samples, Theorem

36.3 in Borovkov (1999)) Let Θ ∈ Rq be compact and convex, and let {Pθ : θ ⊆ Θ} be a

family of distributions on a discrete sample space Y. Suppose Y is a random variable taking

value in Y with distribution Pθ, and the following conditions hold:

(i) Pθ ̸= Pθ′ whenever θ ̸= θ′;

(ii) For some r > q, supθ∈Θ Eθ[||∇θ logPθ(Y )||r2] = γ <∞;

(iii) The function θ →
√

Pθ(Y ) is differentiable on Θ for any Y ∈ Y;

(iv) The Fisher information matrix, whose (i, j)th entry is given by Eθ

[
− ∂2

∂θi∂θj
logPθ(Y )

]
,

is positive definite.

If Y1, Y2, ... is a sequence of i.i.d. random variables taking value in Y with distribution Pθ, and
θ̂(t) = argmaxθ∈Θ

∏t
l=1 Pθ(Yl) is the maximum likelihood estimate based on t i.i.d. samples,

then, there exist constants η1 > 0 and η2 > 0 depending only on r, q, Pθ and Θ such that for

all t ≥ 1 and all δ ≥ 0,Pθ(||θ̂(t)− θ||2 > δ) ≤ η1 exp(−tη2δ2).

Theorem A.3.2 (Quadratic Convergence of Newton’s Method for Convex

Unconstrained Optimization Problems, Section 9.5.3 in Boyd and Vandenberghe

(2004)) Suppose g(z) is a concave function whose unconstrained optimizer is x∗. Let

{x(k)}∞k=1 be a sequence of points obtained by Newton’s method. Assume there exist posi-

tive constants m,M,L such that

(i) ||∇2g(z)−∇2g(y)||2 ≤ L||z − y||2, and

(ii) −MI ≼ ∇2g(z) ≼ −mI.
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Then, there exists constant η = min{1, 3(1 − 2α)}m2/L where α ∈ (0, 0.5) such that if

||∇g(x(k))||2 < η, then ||∇g(x(k+1))||2 ≤ L
2m2 ||∇g(x(k))||22.

A.3.2 Proof of Theorem 3.4.1

Throughout the proofs of this section, I fix π = PSC and assume without loss of generality

that T = 1. Let L = ⌈
√
k⌉. For k ≥ 3, the total expected revenue loss under PSC is:

ρπ(k) ≤ Lr̄ +M0

[
ϵ(L)2k +

log k

1− Pπ(E(L) > δ̄)
+ L+

1 + k Pπ
(
E(L) > δ̄

)
1− Pπ(E(L) > δ̄)

]

where the inequality follows because the revenue function in each period is bounded be-

tween 0 and r̄ and also by Lemma 3.4.3. Since, by Lemma 3.4.2, kPπ(E(L) > δ̄) ≤
kη1 exp(−η2δ̄2⌈

√
k⌉) → 0 as k tends to infinity, there exists a constant K ≥ 3 such that

for all k > K, I have kPπ(E(L) > δ̄) < 1
2
and (1− Pπ(E(L) > δ̄))−1 < 2. So, for all k > K,

I can bound

ρπ(k) ≤ ⌈
√
k⌉r̄ + M0 η

2
3 k

⌈
√
k⌉

+ 2M0 log k +M0⌈
√
k⌉+ 3M0

≤ 2
√
kr̄ +M0 η

2
3

√
k + 2M0

√
k + 2M0

√
k + 3M0

√
k

≤ (2r̄ +M0η
2
3 + 7M0)

√
k,

where η3 is as in Lemma 3.4.2. As for k < K, I have ρπ(k) ≤ Kr̄. The result of Theorem 3.4.1

then follows by letting M1 = max{Kr̄, 2r̄ +M0η
2
3 + 7M0}. This completes the proof.

A.3.3 Proof of Lemma 3.4.1

I will prove each part of the lemma in turn. Let δ̄ = min{δ1, δ2} where δ1 and δ2 are strictly

positive constants to be defined shortly.

Proof of part (a). This is an immediate corollary of Proposition 4.4.1. Note that, by

assumption P2, I have ||λ(p; θ∗) − λ(p; θ)||∞ ≤ ||λ(p; θ∗) − λ(p; θ)||2 ≤ ω||θ∗ − θ||2 and

||(∇λ(p; θ∗) − ∇λ(p; θ))′||∞ = max1≤i≤n
∑n

j=1 |
∂λi
∂pj

(p; θ) − ∂λi
∂pj

(p; θ∗)| ≤ nω||θ∗ − θ||2 for all

θ ∈ Θ, p ∈ P . Hence, ||λ(.; θ∗)− λ(.; θ)||∞ = supp∈P ||λ(p; θ∗)− λ(p; θ)||∞ ≤ ω||θ∗ − θ||2 and

||(∇λ(.; θ∗) − ∇λ(.; θ))′||∞ = supp∈P ||(∇λ(.; θ∗) − ∇λ(.; θ))′||∞ ≤ nω||θ∗ − θ||2. Therefore,

by Proposition 4.4.1, ||pD(θ∗) − pD(θ)||∞ ≤ nM6ω||θ∗ − θ||2. Let δ1 = ϕ(2n3/2M6ω)
−1. For

all θ satisfying ||θ − θ∗||2 ≤ δ̄ ≤ δ1, I have ||pD(θ∗) − pD(θ)||2 ≤ n1/2||pD(θ∗) − pD(θ)||∞ ≤
n3/2M6ωδ1 ≤ ϕ/2. Hence, pD(θ) ∈ Ball(pD(θ∗), ϕ/2). Since Ball(pD(θ∗), ϕ) ⊆ P by P5, I
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conclude that Ball(pD(θ), ϕ/2) ⊆ P .

Since λ(.; θ∗) is continuously differentiable with respect to p ∈ P as implied by P1, and

P is compact, there exists a constant K > 0 independent of k > 0 such that

||λD(θ∗)− λD(θ)||2 = ||λ(pD(θ∗); θ∗)− λ(pD(θ); θ)||2
≤ ||λ(pD(θ∗); θ∗)− λ(pD(θ); θ∗)||2 + ||λ(pD(θ); θ∗)− λ(pD(θ); θ)||2
≤ K||pD(θ∗)− pD(θ)||2 + ω||θ∗ − θ||2
≤ (ω + n3/2KM6ω)||θ∗ − θ||2,

where the second inequality also follows by P2. The result follows by letting κ = ω +

n3/2KM6ω. Part (a) is proved.

Proof of part (b). Since Pλ(θ) is a convex program for all θ ∈ Θ, by the Karush-Kuhn-

Tucker optimality condition, ∇λr(λ
D(θ); θ) = A′µD(θ). By my assumption, A has full row

rank. Thus, there exists some m by n matrix Ā such that µD(θ) = Ā∇λr(λ
D(θ); θ). Since

the right hand side is continuous at θ∗, I conclude that µD(.) is continuous at θ∗ as well.

Part (b) is proved.

Proof of part (c). Let µ = min1≤i≤n{µDi (θ∗) : µDi (θ∗) > 0}. Since µD(.) is continuous at θ∗

by part (b), there exists δ2 > 0 such that ||µD(θ)−µD(θ∗)||2 < µ for all θ ∈ Ball(θ∗, δ2). This

means for θ ∈ Ball(θ∗, δ̄), I also have µDi (θ) > 0 whenever µDi (θ
∗) > 0, which implies that the

corresponding constraints in P(θ) are binding due to Karush-Kuhn-Tucker condition. Part

(c) is proved.

A.3.4 Proof of Lemma 3.4.2

The proof of Lemma 3.4.2 is a multiproduct extension of Lemma 3.7 in Broder and Rus-

mevichientong (2012), and is based on a well-known result in Maximum Likelihood Theory.

I state this result in Theorem A.3.1 (see Section A.3.1).

To apply Theorem A.3.1 to my setting, I simply need to verify conditions (i)-(iv). First,

note that Θ is a compact subset of Rq and Dq̃ is a discrete-valued sample space. Conditions

(i) and (iv), they are immediately satisfied because of S1 and S3. As for conditions (ii) and

(iii), recall that
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∣∣∣∣∇θ logPp̃,θ(D1:q̃)
∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣

q̃∑
s=1

1−
n∑

j=1

Ds,j

∇θ log

1−
n∑

j=1

λj(p̃
(s); θ)

+
n∑

j=1

Ds,j∇θ log λj(p̃
(s); θ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
q̃∑

s=1

∣∣∣∣∣∣
∣∣∣∣∣∣∇θ log

1−
n∑

j=1

λj(p̃
(s); θ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
n∑

j=1

∣∣∣∣∣∣∇θ log λj(p̃
(s); θ)

∣∣∣∣∣∣
2

 .

By Assumption P1 and S2, for all 1 ≤ s ≤ q̃ and 1 ≤ j ≤ n, λj(p̃
(s); .) ∈ C1(Θ) and is

bounded away from zero, and
∑n

j=1 λj(p̃
(s); .) ∈ C1(Θ) is also bounded away from one. These

imply that ||∇θ log
(
1−

∑n
j=1 λj(p̃

(s); .)
)
||2 and ||∇θ log λj(p̃

(s); .)||2, j = 1, . . . , n, are both

continuous functions of θ for s = 1, . . . , q̃ and are, due to compactness of Θ, bounded. So, (ii)

follows. As for (iii), note that Pp̃,θ(D1:q̃) is continuous in θ and it is also bounded away from

zero. (In fact, Pp̃,θ(D1:q̃) ≥ [λnmin(1−λmax)]
q̃ by S2.) So, θ →

√
Pp̃,θ(D1:q̃) is differentiable on

Θ for all D1:q̃ ∈ Dq̃. I have thus verified all the conditions of Theorem A.3.1.

I will now use Theorem A.3.1 to prove Lemma 3.4.2. A direct application of Theo-

rem A.3.1 leads to Pπ(E(L) > δ) ≤ η1 exp(−η2Lδ2). Also, since ϵ(L)2 = Eπ [E(L)2] =∫∞
0

Pπ(E(L)2 ≥ x)dx =
∫∞
0

Pπ(E(L) ≥
√
x)dx ≤

∫∞
0
η1e

−η2Lxdx = η1/(η2L), the result

follows by taking η3 =
√
η1/η2.

A.3.5 Proof of Lemma 3.4.3

Fix π = PSC. Without loss of generality, I assume that T = 1. Let A denote the event that

E(L) ≤ δ̄. I first define a stopping time and show some useful properties of this stopping

time on the event of A. Let λL > 0 be such that AλLe ≺ C. Define ψ = min{ϕ,2λL}
max{2,4ω||Q||2}

and define the cumulative demand at the end of period t as St :=
∑t

s=1Ds. Let τ be the

minimum of k and the first time t ≥ L+ 1 the following condition is violated:

(C1) ψ >

∣∣∣∣∣
∣∣∣∣∣

t∑
s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣SL − LλLe

k − t

∣∣∣∣∣∣∣∣
2

.

Let Ct denote the available capacity level at the end of period t. I denote by λ̂t :=

λD(θ̂L)−
∑t−1

s=L+1
Q∆̂s

k−s the demand rate that the seller believes he induces in period t, and by

λt := λ(p(λ̂t; θ̂L); θ
∗) the actual induced demand rate upon applying price p(λ̂t; θ̂L) in period

t. Note that, by definition, I can also write λ̂t = λ(p(λ̂t; θ̂L); θ̂L). I state two useful lemmas.

Lemma A.3.1 For sample paths in A, I have Ct ≻ 0 and λ̂t ∈ Λθ̂L for all L+ 1 ≤ t < τ .
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Lemma A.3.2 There exists K0 > 0 independent of k ≥ 3 such that for all k ≥ 3

Eπ[k − τ |A] ≤ K0

[
log k

1− Pπ(E(L) > δ̄)
+ ϵ(L)2k + L

]
.

Lemma A.3.1 essentially says that, on A, the remaining capacity Ct is always positive

and the price p(λ̂t; θ̂L) is always feasible before τ , and Lemma A.3.2 establishes a bound for

the expected remaining time after τ . Define rD(θ∗) := r(λD(θ∗); θ∗) and let Rπ
t denote the

revenue earned during period t under policy π. Let ∆̄t := Rπ
t − r(λt; θ

∗). I have:

k∑
t=L+1

rD(θ∗)− Eπ
[
R̂π(k)

]
= Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)−Rπ

t

)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)]

= Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt; θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)]
− Eπ

[
τ−1∑
t=L+1

∆̄t

]

≤ Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt; θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
Pπ(A) + r̄kPπ(Ac)− Eπ

[
τ−1∑
t=L+1

∆̄t

]

≤ Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt; θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
+ r̄kPπ(Ac) + r̄

= Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt; θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
+ r̄ + r̄kPπ(E(L) > δ̄). (54)

The first inequality follows because r̄ is the upper bound on revenue rate for each period,

which is also the maximum possible revenue loss for a single period on average. As for the

second inequality, note that {∆̄t}k−1
t=L+1 is a martingale difference sequence with respect to

{Ht}k−1
t=L+1. Thus, by the Optional Stopping Time Theorem, I have −Eπ

[∑τ−1
t=L+1 ∆̄t

]
=

−Eπ
[∑τ

t=L+1 ∆̄t

]
+Eπ

[
∆̄τ

]
≤ r̄, so the second inequality holds. I now analyze the first two

terms in (54). By Taylor expansion and P3,

Eπ

[
τ−1∑
t=L+1

(
rD(θ∗)− r(λt; θ

∗)
)
+

k∑
t=τ

(
rD(θ∗)−Rπ

t

)∣∣∣∣∣A
]
+ r̄

≤ Eπ

[
τ−1∑
t=L+1

∇r(λD(θ∗); θ∗) · (λD(θ∗)− λt)

∣∣∣∣∣A
]
+
v̄

2
Eπ

[
τ−1∑
t=L+1

||λD(θ∗)− λt||22

∣∣∣∣∣A
]

+r̄ (Eπ[k − τ |A] + 2) (55)
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By Lemma A.3.1, λ̂t = λD(θ̂L) − Q
∑t−1

s=L+1
∆̂s

k−s ∈ Λθ̂L before τ . Also, recall that, by

definition, ∆̂t = Dt − λ̂t = ∆t + λt − λ̂t. So, I can write the first term in (55) as follows:

Eπ

[
τ−1∑
t=L+1

∇r(λD(θ∗); θ∗) · (λD(θ∗)− λt)

∣∣∣∣∣A
]

= Eπ

[
τ−1∑
t=L+1

µD(θ∗)
′
A
(
λD(θ∗)− λ̂t + λ̂t − λt

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑
t=L+1

µD(θ∗)
′
(
AλD(θ∗)− AλD(θ̂L) +

t−1∑
s=L+1

A∆̂s

k − s
+ A∆t − A∆̂t

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑
t=L+1

µD(θ∗)
′
(
AλD(θ∗)− AλD(θ̂L)

)∣∣∣∣∣A
]

+Eπ

[
τ−1∑
t=L+1

µD(θ∗)
′
(

t−1∑
s=L+1

A∆̂s

k − s
+ A∆t − A∆̂t

)∣∣∣∣∣A
]
. (56)

By Lemma 3.4.1(c), for all sample paths on A, the set of constraints of P(θ∗) that have

nonzero optimal dual variables also have nonzero optimal dual variables in P(θ̂L) and are

thus binding at the optimal solution λD(θ̂L). This implies that the first expectation in (56)

is zero because, for all i, either I have µDi (θ
∗) = 0 or (AλD(θ∗))i − (AλD(θ̂L))i = 0. As for

the second term of (56), I can further write:

Eπ

[
µD(θ∗)′

τ−1∑
t=L+1

(
t−1∑

s=L+1

A∆̂s

k − s
+ A∆t − A∆̂t

)∣∣∣∣∣A
]

= Eπ

[
τ−1∑
t=L+1

µD(θ∗)′A∆t

∣∣∣∣∣A
]
+ Eπ

[
τ−1∑
t=L+1

(
τ − t− 1

k − t
− 1

)
µD(θ∗)′A∆̂t

∣∣∣∣∣A
]
.

Since {∆t}k−1
t=L+1 is a martingale difference sequence with respect to {Ht}k−1

t=L+1, I can

bound:

Eπ

[
τ−1∑
t=L+1

µD(θ∗)′A∆t

∣∣∣∣∣A
]

=
µD(θ∗)′A

Pπ(A)

{
Eπ

[
τ−1∑
t=L+1

∆t

]
− Eπ

[
τ−1∑
t=L+1

∆t

∣∣∣∣∣Ac

]
Pπ(Ac)

}

≤ µD(θ∗)′Ae
1 + kPπ(E(L) > δ̄)

1− Pπ(E(L) > δ̄)
,
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where the inequality follows because Eπ[
∑τ−1

t=L+1∆t] = Eπ[
∑τ

t=L+1∆t] − Eπ[∆τ ] ≺ e (by

Optional Stopping Time Theorem) and the fact that |∆t| ≺ e. As for the second term, note

that, by (C1) in the definition of τ ,

Eπ

[
τ−1∑
t=L+1

(
τ − t− 1

k − t
− 1

)
µD(θ∗)′A∆̂t

∣∣∣∣∣ A
]

≤ Eπ

[
(k − τ + 1)

∣∣∣∣∣µD(θ∗)′
τ−1∑
t=L+1

A∆̂t

k − t

∣∣∣∣∣
∣∣∣∣∣ A
]

≤ Eπ

[
(k − τ + 1)

∣∣∣∣µD(θ∗)∣∣∣∣
2
||A||2

∣∣∣∣∣
∣∣∣∣∣
τ−1∑
t=L+1

∆̂t

k − t

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣ A
]

≤ ψ
∣∣∣∣µD(θ∗)∣∣∣∣

2
||A||2 (Eπ [k − τ | A] + 1) .

Putting this together with Lemma A.3.2, for the first term in (55), I have:

Eπ

[
τ−1∑
t=L+1

∇λr(λ
D(θ∗); θ∗) · (λD(θ∗)− λt)

∣∣∣∣∣ A
]

≤ K1

[
log k

1− Pπ(E(L) > δ̄)
+ ϵ(L)2k + L +

1 + kPπ(E(L) > δ̄)

1− Pπ(E(L) > δ̄)

]
,

where the constant K1 = µD(θ∗)′Ae+ (1 +K0)ψ||µD(θ∗)||2||A||2 is independent of k ≥ 3.

I now bound the second term in (55). Note that

v̄

2
Eπ

[
τ−1∑
t=L+1

||λD(θ∗)− λt||22

∣∣∣∣∣ A
]

≤ v̄Eπ

[
τ−1∑
t=L+1

∣∣∣∣∣∣λ̂t − λt

∣∣∣∣∣∣2
2

∣∣∣∣∣ A
]

+ v̄Eπ

[
τ−1∑
t=L+1

∣∣∣∣∣∣λD(θ∗)− λ̂t

∣∣∣∣∣∣2
2

∣∣∣∣∣ A
]
. (57)

Since λt = λ(p(λ̂t; θ̂L); θ
∗) and λ̂t = λ(p(λ̂t; θ̂L); θ̂L), by P2, I have

v̄Eπ[
τ−1∑
t=L+1

||λ̂t − λt||22|A] ≤ v̄ω2kEπ[||θ∗ − θ̂L||22 | A] ≤ v̄ω2kEπ[||θ∗ − θ̂L||22] ≤ v̄ω2ϵ(L)2k.
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(By definition of A, Eπ[||θ∗− θ̂L||22 | A] ≤ Eπ[||θ∗− θ̂L||22].) As for the second term in (57),

v̄Eπ

[
τ−1∑
t=L+1

∣∣∣∣∣∣λD(θ∗)− λ̂t

∣∣∣∣∣∣2
2

∣∣∣∣∣ A
]

= v̄Eπ

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣λD(θ∗)− λD(θ̂L) +Q

t−1∑
s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣ A


≤ 2v̄kEπ

[∣∣∣∣∣∣λD(θ∗)− λD(θ̂L)
∣∣∣∣∣∣2

2

∣∣∣∣ A] + 2v̄ ||Q||22E
π

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣ A


≤ 2v̄κ2ϵ(L)2k + 2v̄ ||Q||22 E
π

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣ A
 (58)

where the second inequality follows by Lemma 3.4.1(a). Using ∆̂t = Dt− λ̂t = ∆t+ λt− λ̂t,

I can bound the second term in (58) as follows:

Eπ

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 2Eπ

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
+ 2Eπ

 τ−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

λs − λ̂s
k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 2

Pπ(A)
Eπ

 k−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 2Eπ

 k−1∑
t=L+1

(
t−1∑

s=L+1

ωE(L)

k − s

)2
∣∣∣∣∣∣A


≤ 2

Pπ(A)
Eπ

 k−1∑
t=L+1

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 2
k−1∑
t=L+1

[
t−1∑

s=L+1

√
Eπ [ω2E(L)2| A]

k − s

]2

≤ 2

Pπ(A)
Eπ

[
k−1∑
t=L+1

t−1∑
s=L+1

||∆s||22
(k − s)2

]
+ 2

k−1∑
t=L+1

(
t−1∑

s=L+1

ωϵ(L)

k − s

)2

≤ 16

1− Pπ(E(L) > δ̄)
log k + 6ω2ϵ(L)2k (59)

where the second inequality holds by the law of total expectation and P2, the third inequality

follows by first expanding the square of the sum and then applying Cauchy-Swartz inequality

to the cross-terms, the fourth inequality follows by the orthogonality of martingale differences

{∆s} and Eπ[E(L)2|A] ≤ ϵ(L)2, and the fifth inequality holds by integral approximation. In

particular, the first term after the fourth inequality can be bounded using ||∆s||2 = ||Ds −
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λs||2 ≤ ||Ds||2 + ||λs||2 ≤ 2 and
∑k−1

t=L+1

∑t−1
s=L+1

1
(k−s)2 ≤

∑k−1
t=L+1

1
k−t ≤ 1 + log k ≤ 2 log k

(recall that k ≥ 3) whereas the second term can be bounded using the following integral

comparison:

k−1∑
t=L+1

(
t−1∑

s=L+1

1

k − s

)2

≤
k−1∑
t=1

(
t−1∑
s=1

1

k − s

)2

≤
k−1∑
t=1

(∫ t

1

1

k − s
ds

)2

≤
k−1∑
t=1

log2
(

k

k − t

)
≤ log2 k +

∫ k−1

1

log2
(

k

k − t

)
dt ≤ log2 k + 2k ≤ 3k, (60)

where the last inequality follows because log2 k < k for k ≥ 1.

Thus, for the second term in (55), I have

v̄

2
Eπ

[
k−1∑
t=L+1

||λD(θ∗)− λt||22

∣∣∣∣∣ A
]

≤ K2

[
log k

1− Pπ(E(L) > δ̄)
+ ϵ(L)2k

]
,

where K2 = v̄ω2+2v̄κ2+32v̄||Q||22+12ω2v̄||Q||22. Combining all results together, I conclude

that

k∑
t=L+1

rD(θ∗)− Eπ
[
R̂π(k)

]
≤ M0

[
log k

1− Pπ(E(L) > δ̄)
+ ϵ(L)2k + L+

1 + k Pπ
(
E(L) > δ̄

)
1− Pπ(E(L) > δ̄)

]
,

where M0 = K1 + K2 + r̄K0 + 3r̄. (Note that the last term in (54) can be bounded by

r̄(1 + kPπ(E(L) > δ̄))/(1− Pπ(E(L) > δ̄)).) This completes the proof of Lemma 3.4.3.

A.3.6 Proof of Lemma 3.5.1

I first illustrate the idea using Figure A.2. Note that E(t) > ϵ is equivalent to the event

that ML estimator θ̂t is in the outside of the ball V := Ball(θ∗, ϵ). In addition, under the

concavity assumption of the log-likelihood, θ̂t ̸= Ball(θ∗, ϵ) implies that at least one point on

the surface of a hypercube S, which is centered at θ∗ and is a subset of V , has a larger log-

likelihood than the log-likelihood at θ∗. The probability of this event is a valid upper bound

of Pπ(E(t) > ϵ). However, the challenge is that there are a continuum of such potential

points. The idea of the proof is to consider a grid of points on the surface of that hypercube

S, and the granularity of the grid is set to be fine enough so that any point on the surface of

that hypercube can be closely approximated by one point on the grid. I will show that the

existence of a point on the surface of S with a higher log-likelihood than the true parameter

vector θ∗ is extremely unlikely. I now rigorously prove this lemma.
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Figure A.2: Geometric illustration of Lemma 3.5.1

Note: This illustrates the case when there are two parameters to estimate (q = 2). V
denotes the disk (ball) centered at θ∗ with radius ϵ. Note that the event of ||θ∗ − θ̂t||2 > ϵ
corresponds to the event when θ̂t lies in the exterior of V . In this example, the surface of

the rectangle(hypercube) S consists of four edges.

Step 1

Fix some 0 < λ̃min < λ̃max < 1. First, I will show that for allD ∈ D, for all p ∈ W(λ̃min, λ̃max)

and for all θ ∈ Θ, ∇θ logPp,θ1 (D) is jointly continuous in θ and p. Recall that∇θ logPp,θ1 (D) =

((∂/∂θ1) logPp,θ1 (D); . . . ; (∂/∂θn) logPp,θ1 (D)) where for all 1 ≤ k ≤ n,

∂ logPp,θ1 (D)

∂θk
= −

(1−
∑n

j=1Dj) log
(
1−

∑n
j=1 λj(p; θ)

)
1−

∑n
j=1 λj(p; θ)

(
n∑
j=1

∂λj(p; θ)

∂θk

)

+
n∑
j=1

Dj log (λj(p; θ))

λj(p; θ)

∂λj(p; θ)

∂θk
.

Since λj(p; .) ∈ C1(Θ) and λ(.; θ) ∈ C2(P) by P1 and the denominators are strictly greater

than zero, ∇θ logPp,θ1 (D) is jointly continuous in θ and p.

Step 2

Since Θ and W(λ̃min, λ̃max) are compact, D is finite and ∇θ logPp,θ1 (D) is jointly continuous

in θ and p for all D ∈ D, there exists a constant cg > 0 independent of θ, p,D such that

for all θ ∈ Θ, p ∈ W(λ̃min, λ̃max), and v ∈ Rq satisfying ||v||2 = 1, ∇θ logPp,θ1 (D) · v < cg.

Therefore, for any v, ||v||2 = 1, if pπs ∈ W(λ̃min, λ̃max) for 1 ≤ s ≤ t, then I have:

∇θ logPπ,θt (D1:t) · v =
t∑

s=1

∇θ logPp
π
s ,θ

1 (Ds) · v < cgt. (61)
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Now, fix ϵ > 0 and consider a hypercube S ∈ Rq centered at the origin with edge

2ϵ/
√
q. Let ∂S denote the surface of S, its area is given by cq(ϵ/

√
q)q−1 for a constant cq

that depends only on q. Cover ∂S with a set of identical hypercubes in Rq−1 with edge

2η (see Figure A.2 for an illustration) and denote by N the number of cubes needed to

cover ∂S. Then, N = (ϵ/(
√
qη))q−1. Let vj ∈ ∂S, j = 1, . . . , N denote the center of those

2η−cubes. These points constitute a set of grid points on the surface. Then for any x ∈ ∂S,

minj=1,...,N ||x− vj||2 ≤
√
qη. By W3, I have that for any θ′ ∈ S + θ∗ and any j = 1, . . . , N ,

logPπ,θ
′

t (D1:t)− logPπ,θ
∗+vj

t (D1:t) ≤ ∇θ logP
π,θ∗+vj
t (D1:t) · (θ′ − θ∗ − vj)

Let j∗(θ) = argminj=1,...,N ||θ − θ∗ − vj||2. I then have

logPπ,θ
′

t (D1:t)− logPπ,θ
∗+vj∗(θ′)

t (D1:t) ≤ cgt||θ′ − θ∗ − vj∗(θ′)||2 ≤ cg
√
qηt. (62)

where the first inequality follows by (61). The following is the key argument for this proof:{
||θ̂t − θ∗||2 > ϵ

}
⊆

{
||θ̂t − θ∗||∞ >

ϵ
√
q

}
⊆

{
logPπ,θ

∗+v
t (D1:t) ≥ logPπ,θ

∗

t (D1:t), for some v with ||v||∞ = ϵ√
q

}
⊆

{
logPπ,θ

∗+vj∗(θ∗+v)

t (D1:t) + cg
√
qηt ≥ logPπ,θ

∗

t (D1:t), for some v with ||v||∞ = ϵ√
q

}
⊆ ∪Nj=1

{
logPπ,θ

∗+vj
t (D1:t) + cg

√
qηt ≥ logPπ,θ

∗

t (D1:t)
}

= ∪Nj=1 {Zπ
t (vj, D1:t) ≥ exp(−cg

√
qηt)} ,

where Zπ
t (u,D1:t) := Pπ,θ

∗+u
t (D1:t)/Pπ,θ

∗

t (D1:t) is the likelihood ratio for any u ∈ Θ− θ∗. The

first inclusion follows by norm inequality, the second inclusion follows by the concavity of

the log-likelihood function and the definition of ML estimator, the third inclusion follows by

(62), the fourth inequality follows because by definition j∗(θ∗ + v) ∈ {1, . . . , N} for all v. I

state a lemma below.

Lemma A.3.3 Fix some 0 < λ̃min < λ̃max < 1. Suppose that an admissible control π

satisfies ps = πs(D1:s−1) ∈ W(λ̃min, λ̃max) for all 1 ≤ s ≤ t. Then there exists a constant

ch > 0 such that for all π and for all u ∈ Θ− θ∗, Eπ[
√
Zπ
t (u,D1:t)] ≤ exp(−ch||u||22t/2).
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By Lemma A.3.3, the following holds

Pπ
(
||θ̂t − θ∗||2 > ϵ

)
≤

N∑
j=1

Pπ (Zπ
t (vj, D1:t) ≥ exp(−cg

√
qηt))

≤
N∑
j=1

exp

(
cg
√
qηt

2

)
Eπ

[√
Zπ
t (vj, D1:t)

]

≤
N∑
j=1

exp

(
cg
√
qηt

2
− ch||vj||22t

2

)

≤
(

ϵ
√
qη

)q−1

exp

(
−chϵ

2t

2q
+
cg
√
qηt

2

)
,

where the second inequality follows by the Markov’s inequality, the third inequality fol-

lows by Lemma A.3.3, and the last inequality follows because N = (ϵ/(
√
qη))q−1 and

minj=1,...,N ||vj||2 ≥ minj=1,...,N ||vj||∞ ≥ ϵ/
√
q. Now, let η = ϵ/t, then I have

Pπ
(
||θ̂t − θ∗||2 > ϵ

)
≤ min

{
1, q−

q−1
2 tq−1 exp

(
−chϵ

2t

2q
+
cg
√
qϵ

2

)}
.

Note that when ϵ ≤ 1, exp((−chϵ2q−1t + cg
√
qϵ)/2) ≤ exp(cg

√
q/2) exp(−chϵ2q−1t/4). Note

also that when ϵ > 1, there exists M > 0 independent of ϵ such that exp((−chϵ2q−1t +

cg
√
qϵ)/2) ≤ exp(−chϵ2q−1t/4),∀t > M . With these two observations, I consider two cases

below.

Case 1: t > M . In this case, I have Pπ
(
||θ̂t − θ∗||2 > ϵ

)
≤ η̃4t

q−1 exp(−η5tϵ2), where η̃4 =

q−(q−1)/2 max{1, exp(cg
√
q/2), and η5 = chq

−1/4.

Case 2: t ≤M . Let θ̄ be the largest distance between any two points in Θ. (θ̄ <∞ because

Θ is bounded.) Then, I claim that for this case, Pπ
(
||θ̂t − θ∗||2 > ϵ

)
≤ η̄4t

q−1 exp(−η5tϵ2)
where η5 is defined as in Case 1 and η̄4 = exp(η5Mθ̄2). The claim is true because: if

ϵ > θ̄, Pπ
(
||θ̂t − θ∗||2 > ϵ

)
= 0, so the bound holds; if ϵ ≤ θ̄, Pπ

(
||θ̂t − θ∗||2 > ϵ

)
≤ 1 =

η̄4 exp(−η5Mθ̄2) ≤ η̄4t
q−1 exp(−η5tϵ2).

Combining the two cases above yields Pπ
(
||θ̂t − θ∗||2 > ϵ

)
≤ min{1, η4tq−1 exp(−η5tϵ2)}
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where η4 = max{η̃4, η̄4}. Hence,

Eπ
[
||θ̂t − θ∗||22

]
=

∫ ∞

0

Pπ
(
||θ̂t − θ∗||22 ≥ x

)
dx

=

∫ ∞

0

min
{
1, η4t

q−1 exp (−η5tx)
}
dx

≤
∫ 2(q−1) log t

η5t

0

dx+

∫ ∞

2(q−1) log t
η5t

[
η4t

q−1 exp

(
−η5tx

2

)]
exp

(
−η5tx

2

)
dx

≤ 2(q − 1) log t

η5t
+ η4

∫ ∞

2(q−1) log t
η5t

exp

(
−η5tx

2

)
dx

≤ 2(q − 1) log t

η5t
+

2η4
η5t

≤ 2max{1, η4}
η5

(q − 1) log t+ 1

t

where the fourth inequality holds because for all x ≥ 2(q−1) log t
η5t

, η4t
q−1 exp

(
−η5tx

2

)
≤ 1. I

complete the proof by letting η6 =
√

2max{1, η4}/η5.

A.3.7 Proof of Theorem 3.5.1

I first state an analog of Lemma 3.4.1(a) for ECP(θ) below.

Lemma A.3.4 Suppose that B coincides with the set of binding constraints of P (θ∗) at the

optimal solution. There exist δ̃ > 0 and κ̃ > 0 independent of k > 0 such that for all

θ ∈ Ball(θ∗, δ̃), ||xD(θ∗)− xD(θ)||2 ≤ κ̃||θ∗ − θ||2.

The proof of Lemma A.3.4 is similar to the proof of Lemma 3.4.1 and so is omitted. I

now proceed to prove Theorem 3.5.1 in several steps.

Step 1

Fix π = APSC and let k ≥ 3 throughout the proof. Throughout this section, I will assume

that T = 1. (This is without loss of generality.) Set L = ⌈(log k)1+ϵ⌉ and η = (log k)−ϵ/4.

I first show that the set of binding constraints of P(θ∗) at the optimal solution can be

correctly identified with a very high probability. Let Ei := {Ci = (AλD(θ∗))i, i /∈ B}∪{Ci >
(AλD(θ∗))i, i ∈ B} denote the event that the ith capacity constraint is wrongly classified.

(The event Ei is a union of two events: either the ith constraint is actually binding but not
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included in B or it is not binding but is included in B.) By definition of η,

Pπ
(
Ci = (AλD(θ∗))i, i /∈ B

)
= Pπ

(
Ci = (AλD(θ∗))i, Ci − (AλD(θ̂t1))i > η

)
= Pπ

(
(AλD(θ∗)− AλD(θ̂t1))i > η

)
≤ Pπ (κ||A||2E(t1) > η)

≤ η1 exp

(
−η2t1

η2

κ2||A||22

)
≤ η1 exp

(
− η2
κ2||A||22

(log k)1+
ϵ
2

)
,

where the first inequality follows by Lemma 3.4.1(a), the second inequality follows by

Lemma 3.4.2, and the last inequality holds by definition of t1 and η. Define s := min{Ci −
(AλD(θ∗))i : Ci − (AλD(θ∗))i > 0, i = 1, . . . ,m}. Since s does not scale with k, there exists

a constant Ω0 > 0 such that η < s/2 for all k ≥ Ω0. So, for k ≥ Ω0, by Lemmas 3.4.1(a) and

3.4.2, I can bound:

Pπ
(
Ci > (AλD(θ∗))i, i ∈ B

)
= Pπ

(
Ci ≥ (AλD(θ∗))i + s, Ci − (AλD(θ̂t1))i ≤ η

)
≤ Pπ

(
(AλD(θ̂t1)− AλD(θ∗))i ≥ s− η

)
≤ Pπ (κ||A||2E(t1) ≥ s− η)

≤ η1 exp

(
−η2t1

(s− η)2

κ2||A||22

)
≤ η1 exp

(
− η2 s

2

4κ2||A||22
log1+ϵ k

)
.

Putting the above two bounds together, for k ≥ Ω0, the probability of wrongly identifying

the binding constraints can be bounded as follows:

Pπ (∪mi=1Ei) ≤
m∑
i=1

[
Pπ
(
Ci = (AλD(θ∗))i, i /∈ B

)
+ Pπ

(
Ci > (AλD(θ∗))i, i ∈ B

)]
≤ mη1

[
exp

(
− η2
κ2||A||22

(log k)1+
ϵ
2

)
+ exp

(
− η2 s

2

4κ2||A||22
(log k)1+ϵ

)]
. (63)

Step 2

Let τ be the minimum of k and the first time t ≥ t1 + 1 such that the following condition

(C1) is violated: ψ > ||
∑t

s=t1+1
∆̂s

k−s ||2 + ||SL−LλLe
k−t ||2, where ψ is as defined in the proof

of Theorem 3.4.1 and ∆̂s = Ds − λ(ps; θ̂tz) for s ∈ (tz, tz+1] and 1 ≤ z ≤ Z. Define

A := {∩mi=1Eci }∩
{
E(tz) ≤ min{δ̂, (log tz)−ϵ/4}, for all tz < τ

}
, where δ̂ = min{δ̄, δ̃, ϕ/(2ωκ)}

and δ̄ and δ̃ are as defined in Lemma 3.4.1 and Lemma A.3.4 respectively. (Event A can be

interpreted as the event where all binding constraints are correctly identified and the size of

all subsequent estimation errors are sufficiently small.)
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Note that for tz < τ , λD(θ∗) ∈ Λθ̂tz onA. This is because ||p(λD(θ∗); θ̂tz)−p(λD(θ̂tz); θ̂tz)||2 ≤
ω||λD(θ∗)−λD(θ̂tz)||2 ≤ ωκ||θ∗−θ̂tz ||2 ≤ ϕ/2, where the first inequality follows by P1, the sec-

ond inequality follows by Lemma 3.4.1(a) and the fact that δ̂ ≤ δ̄, and the last inequality fol-

lows since δ̂ ≤ ϕ/(2ωκ). I then have λD(θ∗) ∈ Λθ̂tz since p(λD(θ∗); θ̂tz) ∈ Ball(pD(θ̂tz), ϕ/2) ⊆
P , where the last inclusion follows by Lemma 3.4.1(a). The two important lemmas below

establish the approximation error of DPUP and some important properties of the stopping

time τ .

Lemma A.3.5 There exist positive constants γ and ξ independent of θ ∈ Θ such that if

||xD(θ)− xNTz−1||2 ≤ γ, then ||xD(θ)− xNTz ||2 ≤ ξ||xD(θ)− xNTz−1||22.

Lemma A.3.6 There exist positive constants 0 < λ̃min < λ̃max < 1, Ω1, and constants Γ1

and Γ2 independent of k ≥ Ω1, such that λ̃min ≤ λmin, λ̃max ≥ λmax, and for all k ≥ Ω1 and

all sample paths on A:

(a) ||xD(θ̂tz)− xNTz ||22 ≤ Γ1(log tz)
−ϵ/2 for tz < τ .

(b) Ct ≻ 0, pt ∈ Ball(pD(θ∗), 7ϕ/8) ⊆ W(λ̃min, λ̃max) and λ̂t ∈ Λθ̂tz for all t ∈ (tz, tz+1] ∩
[t1, τ).

(c) Eπ[||xD(θ̂tz)− xNTz ||22 1{tz<τ} | A] ≤ Γ2/tz

Lemma A.3.5 essentially establishes a uniform locally quadratic convergence of the New-

ton’s method for solving ECP(θ̂tz) for all z, which is used for proving Lemma A.3.6(a) and (c).

Lemma A.3.6(a) and (c) establish the approximation errors between xNTZ and the determinis-

tic optimal solution xD(θ̂tz). Note that Lemma A.3.6(b) states that pt ∈ Ball(pD(θ∗), 7ϕ/8) ⊆
W(λ̃min, λ̃max) for all t1 ≤ t < τ . In addition, for t ≤ t1, pt ∈ {p̃(1), . . . , p̃(q̃)} ⊆ W(λ̃min, λ̃max)

due to λ̃min ≤ λmin, λ̃max ≥ λmax and S2. Therefore, the condition for Lemma 3.5.1 is
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satisfied. There exists a constant Ω2 ≥ max{Ω0,Ω1} such that, for all k ≥ Ω2,

kPπ(Ac) ≤ k
Z∑
z=1

[
Pπ(E(tz) > δ̂) + Pπ(E(tz) > (log tz)

− ϵ
4

]
+ k Pπ (∪mi=1Ei)

≤ k

Z∑
z=1

η4t
q−1
z

[
exp

(
−η5tz δ̂2

)
+ exp

(
− η5tz

(log tz)
ϵ
2

)]
+ k Pπ (∪mi=1Ei)

≤ 2k(log2 k)

[
exp

(
−η5(log k)

1+ϵδ̂2

2

)
+ exp

(
−η5(log k)

1+ϵ

2(log k)
ϵ
2

)]
+ k Pπ (∪mi=1Ei)

≤ 2k(log2 k)

[
exp

(
−η5(log k)

1+ϵδ̂2

2

)
+ exp

(
−η5(log k)

1+ ϵ
2

2

)]

+ mη1k

[
exp

(
− η2
κ2||A||22

(log k)1+
ϵ
2

)
+ exp

(
− η2 s

2

4κ2||A||22
(log k)1+ϵ

)]
≤ 1

2
,

where the second inequality follows by Lemma 3.5.1, the third inequality follows by a combi-

nation of η4t
q−1
z exp(−η5tz δ̂2/2) → 0 and η4t

q−1
z exp(−η5tz(log tz)−ϵ/2/2) → 0 as k → ∞, tz ≥

t1 ≥ (log k)1+ϵ for z ≥ 1, and Z ≤ ⌈log2 k⌉ ≤ 2 log2 k, the fourth inequality follows by (63),

and the last inequality follows because the formula after the fourth inequality goes to zero as

k → ∞. Note that the above inequality also implies Pπ(A) > 1
2
when k ≥ Ω2. Define Ψϵ :=∑k−1

t=t1+1

(∑t−1
s=t1+1

ϵ̄(s)
k−s

)2
and Φϵ :=

∑k−1
t=t1+1 ϵ̄(s)

2, where ϵ̄(s) := η6
√

[(q − 1) log tz + 1]/tz

for all s ∈ (tz, tz+1]. By Lemma 3.5.1, Eπ[||θ̂t − θ∗||221{t<τ}|A] ≤ ϵ̄(t)2. The following result

is useful to derive my bounds later.

Lemma A.3.7 Under APSC, there exists a constant K3 > 0 independent of k ≥ 1 such

that Ψϵ < K3(1 + (q − 1) log k) and Φϵ < K3[1 + log k + (q − 1)(log k)2].

Step 3

Let K = max{Ω0,Ω1,Ω2, 3}. If k < K, the total expected revenue loss can be bounded

by Kr̄. So, I will focus on the case k ≥ K. By the same arguments as in (54) and (55),

ρπ(k) ≤ Lr̄ +
∑k

t=t1+1 r
D(θ∗)− E [R̂π(k)] and

k∑
t=t1+1

rD(θ∗)− E
[
R̂π(k)

]
≤ Eπ

[
τ−1∑

t=t1+1

µD(θ∗)′A(λD(θ∗)− λt)

∣∣∣∣∣A
]
+
v̄

2
Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λt||22

]
+ r̄Eπ[k − τ |A] + 2 r̄ + r̄ kPπ(Ac) (64)
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Note that on A I have µD(θ∗)′AλD(θ∗) = µD(θ∗)′AλNTz (because BλD(θ∗) = CB = BλNTz

and µD(θ∗)i = 0 for all i ̸∈ B by KKT conditions). Therefore, similar to the proof of

Lemma 3.4.3, I can bound the first term in (64) with K4E
π[k − τ + 1|A] where K4 :=

3µD(θ∗)′Ae+ ψ||µD(θ)||2||A||2 is independent of k ≥ K.

As for the second term in (64), recall that λ̂t = λNTz(t) − Q
∑t−1

s=t1+1
∆̂s

k−s denotes the de-

mand rate that the seller believes he is inducing during period t where z(t) is the unique

integer z such that t ∈ (tz, tz+1]. Note that (57) still holds. I can bound two term in (57)

respectively using: v̄Eπ
[∑τ−1

t=t1+1 ||λ̂t − λt||22
∣∣∣A] = v̄

∑k−1
t=t1+1E

π
[
ω2||θ̂t − θ∗||22 1{t<τ}

∣∣∣A] ≤
v̄ω2

∑k−1
t=t1+1 ϵ̄(t)

2 ≤ v̄ω2Φϵ (by P2), and

v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λ̂t||22

∣∣∣∣∣A
]

≤ 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λNTz(t)||22

∣∣∣∣∣A
]
+ 2v̄Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣Q

t−1∑
s=t1+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A


≤ 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λNTz(t)||22

∣∣∣∣∣A
]

+2v̄||Q||22

Eπ

 τ−1∑
t=t1+1

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

∣∣∣∣∣∣A
+ Eπ

 k−1∑
t=t1+1

(
t−1∑

s=t1+1

ωE(s)1{s<τ}

k − s

)2
∣∣∣∣∣∣A


≤ 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λNTz(t)||22

∣∣∣∣∣A
]

+2v̄||Q||22

 16

Pπ(A)
log k +

k−1∑
t=t1+1

 t−1∑
s=t1+1

√
Eπ
[
ω2E(s)21{s<τ}

∣∣A]
k − s

2


≤ 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λNTz(t)||22

∣∣∣∣∣A
]
+ 2v̄||Q||22(32 log k + ω2Ψϵ)

≤ K5(Ψϵ + log k) + 2v̄Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λNTz(t)||22

∣∣∣∣∣A
]

for some constant K5 > 0 independent of k ≥ K (the second and the third inequalities follow

by the same argument as in (58) and (59) and recall that K ≥ 3), and the fourth inequality

follows since Eπ
[
E(s)21{s<τ}

∣∣A] ≤ ϵ̄(s)2. I now analyze the last term of the above. Note
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that, on A, I have for all t < τ

∣∣∣∣λD(θ∗)− λNTz(t)
∣∣∣∣

2
≤

∣∣∣∣λD(θ∗)− xNTz(t)
∣∣∣∣

2
+
∣∣∣∣λNTz(t) − xNTz(t)

∣∣∣∣
2

≤ 2
∣∣∣∣λD(θ∗)− xNTz(t)

∣∣∣∣
2

= 2
∣∣∣∣xD(θ∗)− xNTz(t)

∣∣∣∣
2

≤ 2
∣∣∣∣∣∣xD(θ∗)− xD(θ̂tz(t))

∣∣∣∣∣∣
2
+ 2

∣∣∣∣∣∣xD(θ̂tz(t))− xNTz

∣∣∣∣∣∣
2
, (65)

where the second inequality follows because λD(θ∗) lies in Sz(t) where xNTz(t) is projected

into (note that on A, (1) θ̂tz(t) ∈ Ball(θ∗, ϕ/(2ωκ)) for t < τ which implies that, as shown

previously, λD(θ∗) ∈ Λθ̂tz(t)
, and (2) the binding constraints of P(θ∗) at λD(θ∗) are correctly

identified which means that BλD(θ∗) = CB and NλD(θ∗) ≤ CN) and the equality follows

because λD(θ∗) = xD(θ∗) on A due to the strongly concavity of the objective and the fact

that λD(θ∗) is an interior solution. By Lemma A.3.4

Eπ

[
τ−1∑

s=t1+1

||xD(θ∗)− xD(θ̂tz(s))||
2
2

∣∣∣∣∣A
]
=

k−1∑
s=t1+1

Eπ
[
κ̃2||θ∗ − θ̂tz(s)||

2
21{s<τ}

∣∣∣A] ≤ κ̃2Φϵ

Furthermore, by Lemma A.3.6(a) and the fact that tz+1 − tz ≤ 2tz for all z, I have

Eπ

[
τ−1∑

s=t1+1

||xD(θ̂tz(s))− xNTz(s)||22

∣∣∣∣∣A
]

=
k−1∑

s=t1+1

Eπ
[
||xD(θ̂tz(s))− xNTz(s)||221{s<τ}

∣∣∣A]
≤

Z∑
z=1

(tz+1 − tz)
Γ2

tz
≤ 2Z Γ2 ≤ 4Γ2 log2 k.

Combining the inequalities above, the second term of (64) can be bounded as follows:

v̄

2
Eπ

[
τ−1∑

t=t1+1

||λD(θ∗)− λt||22

]
≤ v̄ω2Φϵ +K5(Ψϵ + log k) + 4v̄κ̃2Φϵ + 16v̄Γ2 log2

≤ K6(1 + log k + (q − 1) log2 k)

for K6 = (v̄ω2+4v̄κ̃2+K5)K3+K5+16v̄ Γ2. To bound the third term in (64), the following

lemma is useful.

Lemma A.3.8 There exists a constant K7 > 0 independent of k ≥ K such that for all

k ≥ K, Eπ[k − τ |A] ≤ K7(log k + L).

144



Combining all the above and recalling that L = ⌈(log k)1+ϵ⌉, for all k ≥ K, I have:

ρπ(k) ≤ 2r̄(log k)1+ϵ + (K4 + r̄)(Eπ[k − τ |A] + 1) +K6(1 + log k + (q − 1) log2 k) +
5

2
r̄

≤
(
2r̄ +K4 + r̄ +K6 +

5

2
r̄

)[
1 + (log k)1+ϵ + (q − 1) log2 k

]
≤ K8[(log k)

1+ϵ + (q − 1) log2 k],

for some constant K8 independent of k ≥ K. The result of Theorem 3.5.1 follows by using

M2 = max{r̄K,K8}.

A.3.8 Proof of Supporting Lemmas

Proof of Lemma A.3.1. As in the proof of Lemma 3.4.3, I assume without loss of generality

that T = 1. First, note that λ̂t ∈ Λθ̂L is equivalent to pt ∈ P . Consider sample paths on

A. If τ ≤ L + 1, then there is nothing to prove. Suppose that τ > L + 1, I will use

an induction argument to establish the result. Since E(L) ≤ δ̄ on A, by Lemma 3.4.1(a),

Ball(pD(θ̂L),
ϕ
2
) ⊆ P . For t = L + 1, ||pL+1 − pD(θ̂L)||2 = 0 < ϕ

2
, so pL+1 ∈ P and hence

λ̂L+1 ∈ Λθ̂L . In addition, I also have:

CL+1 = CL − ADL+1 = kC − ASL − A
(
λ̂L+1 + ∆̂L+1

)
= kC − LC + LC − ASL − A

(
λD(θ̂L) + ∆̂L+1

)
≽ (k − L− 1)C + LC − ASL − A∆̂L+1

≽ (k − L− 1)AλLe+ LAλLe− ASL − A∆̂L+1

= (k − L− 1)A

(
λLe−

SL − LλLe

k − L− 1
− ∆̂L+1

k − L− 1

)

≽ (k − L− 1)A

(
λLe−

∣∣∣∣∣∣∣∣SL − LλLe

k − L− 1

∣∣∣∣∣∣∣∣
2

e−

∣∣∣∣∣
∣∣∣∣∣ ∆̂L+1

k − L− 1

∣∣∣∣∣
∣∣∣∣∣
2

e

)
≻ (k − L− 1) (λL − ψ)Ae

≽ 0

(recall that St =
∑t

s=1Ds) where the first inequality follows because AλD(θ̂L) ≼ C, the

second inequality follows because AλLe ≼ C by definition of λL, the fourth (strict) inequality

follows by (C1) and Ae ≻ 0, and the last inequality follows by the definition of ψ. This is

my base case. Now, suppose that Cs ≻ 0, λ̂s ∈ Λθ̂L for all s = L + 1, L + 2, . . . , t − 1, and
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t− 1 < τ . If t ≥ τ , I have finished the induction. If, on the other hand, t < τ ,

∣∣∣∣∣∣pt − pD(θ̂L)
∣∣∣∣∣∣

2
≤ ω||Q||2

∣∣∣∣∣
∣∣∣∣∣
t−1∑

s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

< ω||Q||2ψ ≤ ϕ

4

where the first inequality follows by pt = p(λ̂t; θ̂L), p
D(θ̂L) = p(λD(θ̂L); θ̂L) and P1, the

second inequality follows by (C1) and the last inequality follows by the definition of ψ. So,

by Lemma 3.4.1(a), I still have pt ∈ P and hence λ̂t ∈ Λθ̂L . As for the remaining capacity

level Ct, by similar argument as before, I have

Ct = CL −
t∑

s=L+1

ADs = kC − ASL −
t∑

s=L+1

A
(
λ̂s + ∆̂s

)
= kC − tC + tC − ASL −

t∑
s=L+1

A

(
λD(θ̂L)−Q

s−1∑
v=L+1

∆̂v

k − v
+ ∆̂s

)

≽ (k − t)C + LC − ASL −
t∑

s=L+1

(
A∆̂s −

s−1∑
v=L+1

A∆̂v

k − v

)

≽ (k − t)AλLe+ LAλLe− ASL −
t∑

s=L+1

(
A∆̂s −

s−1∑
v=L+1

A∆̂v

k − v

)

= (k − t)A

(
λLe−

SL − LλLe

k − t
−

t∑
s=L+1

∆̂s

k − s

)

≽ (k − t)A

(
λLe−

∣∣∣∣∣∣∣∣SL − LλLe

k − t

∣∣∣∣∣∣∣∣
2

e−

∣∣∣∣∣
∣∣∣∣∣

t∑
s=L+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

e

)
≻ (k − t)A(λL − ψ)e

≽ 0.

This completes the induction.

Proof of Lemma A.3.2. As in the proof of Lemma 3.4.3, I assume without loss of generality

that T = 1. Because τ is non-negative, I can write Eπ[k − τ |A] = k −
∑k−1

t=0 Pπ(τ > t|A) =∑k−1
t=1 Pπ(τ ≤ t|A). I now bound Pπ(τ ≤ t|A). By the union bound, I have

Pπ(τ ≤ t|A) = Pπ
(

max
L+1≤s≤t

{∣∣∣∣∣∣∣∣SL − LλLe

k − s

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆̂v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

}
≥ ψ

∣∣∣∣∣A
)

≤ Pπ
(

max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆̂v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣∣A
)

+ Pπ
(

max
L+1≤s≤t

∣∣∣∣∣∣∣∣SL − LλLe

k − s

∣∣∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣A) .
(66)
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I first bound the first term in (66) below.

Pπ
(

max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆̂v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣∣A
)

≤ Pπ
 max

L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

2

≥ ψ2

16

∣∣∣∣∣∣A
+ Pπ

(
max

L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||2
k − v

≥ ψ

4

∣∣∣∣∣A
)

≤ 1

Pπ(A)
Pπ
 max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

2

≥ ψ2

16

+ Pπ
( t∑

s=L+1

||λs − λ̂s||2
k − s

)2

≥ ψ2

16

∣∣∣∣∣∣A


≤ 16

ψ2Pπ(A)
Eπ

∣∣∣∣∣
∣∣∣∣∣

t∑
s=L+1

∆s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

2

+
16

ψ2
Eπ

( t∑
s=L+1

||λs − λ̂s||2
k − s

)2
∣∣∣∣∣∣A


≤ 16

ψ2Pπ(A)
Eπ

[
t∑

s=L+1

||∆s||22
(k − s)2

]
+

16

ψ2

 t∑
s=L+1

√
Eπ[||λs − λ̂s||22|A]

k − s

2

≤ 16

ψ2Pπ(A)

[
4

(k − t)2
+

4

k − t

]
+

16

ψ2

[
2ω2ϵ(L)2

(k − t)2
+ 2ω2ϵ(L)2

(
log

(
k

k − t

))2
]
,

where the first inequality follows by the definition of ∆̂v, the triangle inequality of the norms

and union bound, the second inequality follows by the law of total probability for the first

term and the monotonicity of max-operator for the second term, the third inequality follows

by the Doob’s sub-martingale inequality for the first term and Markov’s inequality for the

second term, the fourth inequality follows by the orthogonality of martingale differences for

the first term and Cauchy-Schwartz inequality for the second term, and the last inequality

follows by Eπ[E(L)2|A] ≤ ϵ(L)2 and the same integral approximation bound as in (59).

As for the second term in (66), I can apply Markov’s inequality and get:

Pπ
(
max
1≤s≤t

∣∣∣∣∣∣∣∣SL − LλLe

k − s

∣∣∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣A) ≤ Pπ
(
||SL − LλLe||22

(k − t)2
≥ ψ2

4

∣∣∣∣∣A
)

≤ max

{
1,

4

ψ2
Eπ

[
||SL − LλLe||22

(k − t)2

∣∣∣∣∣A
]}

≤ max

{
1,

4n(1 + λL)
2L2

ψ2(k − t)2

}
,

where the last inequality follows because ||SL − LλLe||2 ≤ ||Le+ LλLe||2 =
√
n(1 + λL)L.
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Putting all the bounds together, I have for all k ≥ 3:

Eπ[k − τ |A] ≤
k−1∑
t=1

{
16

ψ2Pπ(A)

[
4

(k − t)2
+

4

k − t

]
+

16

ψ2

[
2ω2ϵ(L)2

(k − t)2
+ 2ω2ϵ(L)2 log2

(
k

k − t

)]}

+
k−1∑
t=1

max

{
1,

4n(1 + λL)
2L2

ψ2(k − t)2

}

≤ 128

ψ2Pπ(A)

k−1∑
t=1

1

k − t
+

32ω2ϵ(L)2

ψ2

k−1∑
t=1

1

(k − t)2
+

32ω2ϵ(L)2

ψ2

k−1∑
t=1

(
log

(
k

k − t

))2

+
k−L−1∑
t=1

4n(1 + λL)
2L2

ψ2(k − t)2
+ L

≤ 128

ψ2Pπ(A)
(1 + log k) +

64ω2

ψ2
ϵ(L)2 +

96ω2

ψ2
ϵ(L)2k +

(
4n(1 + λL)

2

ψ2
+ 1

)
L

≤ 256

ψ2

log k

1− Pπ(E(L) > δ̄)
+

160ω2

ψ2
ϵ(L)2k +

(
4n(1 + λL)

2

ψ2
+ 1

)
L

where the third inequality follows by integral approximation. The result follows by letting

K0 =
256
ψ2 + 160ω2

ψ2 + 4n(1+λL)
2

ψ2 + 1.

Proof of Lemma A.3.3. Recall that D = {D ∈ {0, 1}n :
∑n

j=1Dj ≤ 1}. I define the

conditional Hellinger distance as follows:

Hπ
t (θ1, θ2, Dt|D1:t−1) :=

∑
Dt∈D

(√
Pπ,θ1t (Dt|D1:t−1)−

√
Pπ,θ2t (Dt|D1:t−1)

)2

.

I state a lemma and postpone its proof to the end of this subsection.

Lemma A.3.9 Fix some 0 < λ̃min < λ̃max < 1. Suppose that an admissible control π

satisfies ps = πs(D1:s−1) ∈ W(λ̃min, λ̃max) for all 1 ≤ s ≤ t. Then there exists a positive

constant ch such that Hπ
t (θ1, θ2, Dt|D1:t−1) ≥ ch||θ1 − θ2||22 for all θ1, θ2 ∈ Θ.

For u ∈ Θ − θ∗, define Zπ
t (u,Dt|D1:t−1) := Pπ,θ

∗+u
t (Dt|D1:t−1)/Pπ,θ

∗

t (Dt|D1:t−1). Using
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Lemma A.3.9, I can derive a bound for its moment below:

Eπ
[√

Zπ
t (u,Dt|D1:t−1)

]
=

∑
Dt∈D

√
Pπ,θ∗+ut (Dt|D1:t−1)

Pπ,θ∗t (Dt|D1:t−1)
Pπ,θ

∗

t (Dt|D1:t−1)

=
∑
Dt∈D

√
Pπ,θ∗+ut (Dt|D1:t−1)Pπ,θ

∗

t (Dt|D1:t−1)

= 1− Hπ
t (θ

∗, θ∗ + u,Dt|D1:t−1)

2

≤ exp

(
−H

π
t (θ

∗, θ∗ + u,Dt|D1:t−1)

2

)
≤ exp

(
−ch||u||

2
2

2

)
.

The result of Lemma A.3.3 can now be proved by repeated conditioning: by definition,

Eπ
[√

Zπ
t (u,D1:t)

]
= Eπ

[
Eπ
[√

Zπ
t (u,D1:t)

∣∣∣D1:t−1

]]
= Eπ

[√
Zπ
t−1(u,D1:t−1) E

π

[√
Zπ
k (u,Dt|D1:t−1)

]]
≤ Eπ

[√
Zπ
t−1(u,D1:t−1)

]
exp

(
−ch||u||

2
2

2

)
≤ exp

(
−ch||u||

2
2t

2

)
.

This completes the proof.

Proof of Lemma A.3.5. Fix θ ∈ Θ. Note that ECP(θ) is a convex optimization with

linear equality constraints. Let mB denote the number of columns of B, and define F to

be an n by n −mB matrix whose columns are linearly independent and BF = 0. (In case

there are multiple matrices that satisfy this condition, pick any one of them.) Then {x :

Bx = CB/T} = {x : x = Fz+ x̂, z ∈ Rn−mB} where x̂ satisfies Bx̂ = CB/T . Hence, ECP(θ)

is equivalent to an unconstrained optimization problem maxz∈Rn−mB g(z; θ) := r(Fz + x̂; θ)

in the sense that there is a one-to-one mapping between the optimizer of ECP(θ) xD(θ)

and the optimizer of the unconstrained problem zD(θ): (1) xD(θ) = FzD(θ) + x̂, and (2)

zD(θ) = (F ′F )−1F ′(xD(θ) − x̂). In addition, by Section 10.2.3 in Boyd and Vandenberghe

(2004), if a feasible point of ECP(θ) x(k) and a feasible point of the unconstrained problem

z(k) satisfy x(k) = Fz(k) + x̂, then the Newton steps for ECP(θ) (to obtain a new feasible

point x(k+1)) and the unconstrained problem (to obtain a new feasible point z(k+1)) coincide

in the sense that x(k+1) = Fz(k+1) + x̂. This relationship enables me to analyze the behavior

of x(k) by studying z(k) whose convergence behavior is characterized by Theorem A.3.2 (see

Section A.3.1).
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Before applying Theorem A.3.2, I first show that the conditions in Theorem A.3.2 hold.

Note that since Λθ is compact, the linear transformation of it, Zθ := {z : z = (F ′F )−1F ′(x−
x̂), x ∈ Λθ} is also compact. Also note that since p(.; θ) ∈ C2(Λθ) by P1, r(.; θ) ∈ C2(Λθ)

and g(.; θ) ∈ C2(Zθ). Hence condition (i) holds: there exists some constant L such that

||∇2
zzg(z; θ) − ∇2

zzg(y; θ)||2 ≤ L||z − y||2. Denote by σmin(.), σmax(.) the smallest and the

largest eigenvalues of a squared matrix. Since ∇2
zzg(z; θ) = F ′∇2

λλr(Fz+ x̂; θ)F and −MI ≼
∇2
λλr(Fz+ x̂; θ) ≼ −mI by P3, I conclude that (ii) holds: −M̄I ≼ ∇2

zzg(z; θ) ≼ −m̄I where

M̄ =Mσmax(F
′F ) and m̄ = mσmin(F

′F ). Then, by Theorem A.3.2, I have that there exists

a constant η = min{1, 3(1 − 2α)}m̄2/L for some α ∈ (0, 0.5) independent of θ such that

if ||∇zg(z
(k); θ)||2 < η, then ||∇zg(z

(k+1); θ)||2 < L
2m̄

||∇zg(z
(k); θ)||22. Note that by strong

convexity of g(.; θ), M̄−1||∇zg(z; θ)||2 ≤ ||z − zD(θ)||2 ≤ 2m̄−1||∇zg(z; θ)||2. Also note that

for x = Fz + x̂, ||x− xD(θ)||2 ≤ ||F ||2||z − zD(θ)||2 and ||z − zD(θ)||2 ≤ ||(F ′F )−1F ′||2||x−
xD(θ)||2. Therefore,

||x(k+1) − xD(θ)||2 ≤ ||F ||2||z(k+1) − zD(θ)||2 ≤ 2m̄−1||F ||2||∇zg(z
(k+1); θ)||2

≤ Lm̄−2||F ||2||∇zg(z
(k); θ)||22 ≤ Lm̄−2M̄ ||F ||2||z(k) − zD(θ)||22

≤ Lm̄−2M̄ ||F ||2||(F ′F )−1F ′||22||x(k) − xD(θ)||22

Let γ = η and ξ = Lm̄−2M̄ ||F ||2||(F ′F )−1F ′||22. Note that they are both independent of

θ. The result follows by letting x(k+1) = xNTz and x(k) = xNTz−1.

Proof of Lemma A.3.6. Let Ω1 = maxi=1,..,4{Vi}, where Vi’s are positive constants to be

defined later. I prove the results one by one.

(a) Let κ̄ = max{κ, κ̃} where κ and κ̃ are defined in Lemma 3.4.1 and Lemma A.3.1 (see

Section A.3.7) respectively. Let Γ1 = max{1, 4κ̄2}. I proceed by induction. If t1 ≥ τ , there

is nothing to prove, so I consider the case when t1 < τ . Note that by DPUP algorithm,

xNT1 = λD(θ̂t1) and x
D(θ∗) = λD(θ∗) on A. Thus, when t1 < τ I have

||xD(θ̂t1)− xNT1 ||22 = ||xD(θ̂t1)− λD(θ̂t1)||22
≤

(
||xD(θ̂t1)− xD(θ∗)||2 + ||λD(θ∗)− λD(θ̂t1)||2

)2
≤ 4κ̄2E(t1)

2 ≤ Γ1(log t1)
− ϵ

2

where the last inequality follows by the definition of A. This is my base case. I now do the

inductive step. Suppose that tz−1 < τ and ||xD(θ̂tz−1)− xNTz−1||22 ≤ Γ1(log tz−1)
−ϵ/2. If tz ≥ τ

there is nothing to prove. If tz < τ , then I need to show that ||xD(θ̂tz)−xNTz ||22 ≤ Γ1(log tz)
−ϵ/2

also holds. Let V1 > 0 be the smallest integer satisfying ⌈(log V1)1+ϵ⌉ > e2. Then, for
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k ≥ Ω1 ≥ V1, I have∣∣∣∣∣∣xD(θ̂tz)− xNTz−1

∣∣∣∣∣∣2
2

≤ 3
∣∣∣∣∣∣xD(θ̂tz)− xD(θ∗)

∣∣∣∣∣∣2
2
+ 3

∣∣∣∣∣∣xD(θ∗)− xD(θ̂tz−1)
∣∣∣∣∣∣2

2
+ 3

∣∣∣∣∣∣xD(θ̂tz−1)− xNTz−1

∣∣∣∣∣∣2
2

≤ 3κ̄2

(log tz)
ϵ
2

+
3κ̄2

(log tz−1)
ϵ
2

+
3Γ1

(log tz−1)
ϵ
2

≤ 3κ̄2

(log tz)
ϵ
2

+
3κ̄2

(log
√
tz)

ϵ
2

+
3Γ1

(log
√
tz)

ϵ
2

≤ 3
[
κ̄2 + 2

ϵ
2 (κ̄2 + Γ1)

] 1

(log tz)
ϵ
2

,

where the second inequality follows by definition of A and induction hypothesis, the third

inequality follows because tz−1 ≥ tz
2

≥
√
tz ≥

√
t1 =

√
⌈(log k)1+ϵ⌉ > e when k ≥ Ω1 ≥

V1. Let V2 ≥ V1 be such that for all k ≥ V2 and z = 1, . . . , Z, the following holds: (1)

(log tz)
ϵ/2 ≥ 3γ−2

[
κ̄2 + 2ϵ/2(κ̄2 + Γ1)

]
and (2) 9ξ2

[
κ̄2 + 2ϵ/2(κ̄2 + Γ1)

]2
(log tz)

−ϵ/2 ≤ 1 ≤ Γ1.

(Recall that γ and ξ are the constants for the locally quadratic convergence of Newton’s

method defined in Lemma A.3.5.) Inequality (1) ensures that ||xD(θ̂tz)− xNTz−1||2 ≤ γ for all

k ≥ Ω1 ≥ V2 and inequality (2) ensures, by the locally quadratic convergence of the Newton’s

method, that ||xD(θ̂tz)− xNTz ||22 ≤ ξ2||xD(θ̂tz)− xNTz−1||42 ≤ Γ1(log tz)
−ϵ/2. This completes the

induction.

(b) First, I claim that there exist 0 < λ̃min < λ̃max < 1 such that (1) λ̃min ≤ λmin and

λ̃max ≥ λmax, and (2) if pt ∈ Ball(pD(θ∗), 7ϕ/8) for t ∈ [t1+1, τ), then pt ∈ W(λ̃min, λ̃max) for

all 1 ≤ t < τ , which will be used to prove Lemma A.3.6(c). If this is true, then Lemma 3.5.1

can be used to bound E(tz) as long as tz < τ . I now find such λ̃min, λ̃max below.

I first consider p ∈ Ball(pD(θ∗), 7ϕ/8). Define Vp := Ball(pD(θ∗), 7ϕ/8) (note that by my

notation, Vp is a closed ball) and Vλ(θ) := {x ∈ Λθ : x ∈ λ(p; θ), p ∈ Vp}. Also, define

Op := {p ∈ P : ||p− pD(θ∗)||2 < ϕ} (note that this is an open ball) and Oλ(θ) := {x ∈ Λθ :

x ∈ λ(p; θ), p ∈ Op}. Note that Vp ⊆ Op ⊆ P by P5. This implies that Vλ(θ) ⊆ Oλ(θ) ⊆ Λθ.

In addition, since p(.; θ) is continuous in λ by P1 and Op is an open set, Oλ(θ) is an open

set. Therefore, Oλ(θ) lies in the interior of Λθ, and hence, Vλ(θ) ⊆ Oλ(θ) also lies in the

interior of Λθ. This implies that for any θ ∈ Θ, λmin(θ) := infp∈Vp min1≤j≤n λj(p; θ) > 0

and λmax(θ) := supp∈Vp
∑n

j=1 λj(p; θ) < 1. Since Θ is compact and λmin(θ) and λmax(θ) are

continuous functions, there exists some θ′, θ′′ ∈ Θ such that supθ∈Θ λmax(θ) = λmax(θ
′) < 1

and infθ∈Θ λmin(θ) = λmin(θ
′′) > 0. Hence, for all p ∈ Ball(pD(θ∗), 7ϕ/8) = Vp and for all θ,

1−
∑n

j=1 λj(p; θ) ≥ 1− supθ∈Θ supp∈Vp
∑n

j=1 λj(p; θ) = 1− supθ∈Θ λmax(θ) = 1−λmax(θ
′) > 0

and λj(p; θ) ≥ infθ∈Θ infp∈Vp min1≤j≤n λj(p; θ) ≥ infθ∈Θ λmin(θ) ≥ λmin(θ
′′) > 0 for all 1 ≤ j ≤

n. Set λ̃max = max{λmax, λmax(θ
′)}, λ̃min = min{λmin, λmin(θ

′′)} where λmax and λmin are as

defined in S2. Note that by S2, for p ∈ {p̃(1), . . . , p̃(q̃)}, 1−
∑n

j=1 λj(p; θ) ≥ 1−λmax ≥ 1−λ̃max
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and λj(p; θ) ≥ λmin ≥ λ̃min for all 1 ≤ j ≤ n and for all θ ∈ Θ. This completes the proof

of the claim: if t ≤ t1, then pt ∈ {p̃(1), . . . , p̃(n)} ⊆ W(λ̃min, λ̃max); if t1 < t < τ , then

pt ∈ Ball(pD(θ∗), 7ϕ/8) ⊆ W(λ̃min, λ̃max).

Note that λ̂t ∈ Λθ̂t is equivalent to pt ∈ P which is immediately satisfied if pt ∈
Ball(pD(θ∗), 7ϕ/8) ⊆ Ball(pD(θ∗), ϕ) ⊆ P (the last inequality follows by P5). This means

that I only need to show Ct ≻ 0 and pt ∈ Ball(pD(θ∗), 7ϕ/8) for t1 ≤ t < τ . Let V3 ≥ V2

be such that for all k ≥ V3 and z = 1, . . . , Z,
(
2
√
Γ1 + 3κ

)
(log tz)

−ϵ/4 < ϕ/(8ω). I now

prove the result by induction. If τ ≤ t1 + 1, then there is nothing to prove. Suppose that

τ > t1 + 1. Since E(t1) ≤ δ̄ on A, by Lemma 3.4.1(a), pD(θ̂1) ∈ Ball(pD(θ∗), ϕ/2). For

t = t1+1, I then have ||pt1+1− pD(θ∗)||2 = ||pD(θ̂1)− pD(θ∗)||2 ≤ ϕ/2, so pt1+1 ∈ P . In addi-

tion, similar to Lemma A.3.1, I also have Ct1+1 = kC−LC+LC−ASL−A(λNT1 +∆̂t1+1) ≽
(k − L− 1)C + LC − ASL − A∆̂t1+1 ≻ 0 where the first inequality follows by the fact that

AλNT1 ≼ C, and the second inequality follows by the same argument as in Lemma A.3.1.

This is the base case. Now suppose Cs ≻ 0, ps ∈ W(λ̃min, λ̃max) for all s ≤ t − 1 for some

t− 1 < τ with t− 1 ∈ [tz, tz+1). If t ≥ τ , there is nothing to prove. So I only need to show

that Ct ≻ 0, pt ∈ W(λ̃min, λ̃max) when t < τ . Note that when t < τ , I have tz ≤ t < τ .

Hence, by definition of A, I have

||pt − pD(θ∗)||2 ≤ ||pt − p(λNTz ; θ̂tz)||2 + ||p(λNTz ; θ̂tz)− pD(θ̂tz)||2 + ||pD(θ̂tz)− pD(θ∗)||2

≤ w||Q||2

∣∣∣∣∣
∣∣∣∣∣

t−1∑
s=t1+1

∆̂s

k − s

∣∣∣∣∣
∣∣∣∣∣
2

+ ||p(λNTz ; θ̂tz)− p(λD(θ̂tz); θ̂tz)||2 +
ϕ

2

≤ ϕ

4
+ ω||λNTz − λD(θ̂tz)||2 +

ϕ

2
≤ ϕ

4
+
ϕ

8
+
ϕ

2
=

7ϕ

8

where the second inequality follows by Lemma 3.4.1(a) and the fact that E(tz) < δ̄ on A,

the last inequality results from the following inequality∣∣∣∣∣∣λNTz − λD(θ̂tz)
∣∣∣∣∣∣

2
≤

∣∣∣∣λNTz − λD(θ∗)
∣∣∣∣
2
+
∣∣∣∣∣∣λD(θ∗)− λD(θ̂tz)

∣∣∣∣∣∣
2

≤ 2
∣∣∣∣∣∣xNTz − xD(θ̂tz)

∣∣∣∣∣∣
2
+ 2

∣∣∣∣∣∣xD(θ̂tz)− xD(θ∗)
∣∣∣∣∣∣

2
+
∣∣∣∣∣∣λD(θ∗)− λD(θ̂tz)

∣∣∣∣∣∣
2

≤ 2
√
Γ1(log tz)

− ϵ
4 + 3κ̄E(tz)

≤
(
2
√
Γ1 + 3κ̄

)
(log tz)

− ϵ
4 <

ϕ

8ω
,

where the second inequality follows by (65) and the fourth inequality follows by the definition

of A. Hence, pt ∈ Ball(pD(θ∗), 7ϕ/8). For Ct, by a similar argument to Lemma A.3.1, I have

Ct = kC − tC + tC − ASL −
∑t

s=t1+1A(λ
NT
z(s) − Q

∑s−1
v=t1+1

∆̂v

k−v + ∆̂s) ≽ (k − t)C + LC −
ASL −

∑t
s=t1+1(A∆̂s −

∑s−1
v=t1+1

A∆̂v

k−v ) ≻ 0. This completes the induction.
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(c) Let V4 ≥ V3 be such that 27ξ2
(
5κ̄4 [8η4 + 4(q − 1)2(log tz)

2]/(η25tz) + 2Γ1Γ2/(log tz−1)
ϵ
2

)
<

1 for all k ≥ V4 and z = 1, . . . , Z, where Γ2 = max{1, 4κ̄2η23}, η4 and η5 are as in Lemma 3.5.1.

Again, I show by induction. For z = 1, I have:

Eπ[||xD(θ̂t1)− xNT1 ||221{t1<τ}|A] = Eπ[||xD(θ̂t1)− λD(θ̂t1)||221{t1<τ}|A]

≤ 2Eπ[||xD(θ̂t1)− xD(θ∗)||221{t1<τ}|A] + 2Eπ[||λD(θ̂t1)− λD(θ∗)||221{t1<τ}|A]

≤ 4κ̄2
η23
t1

≤ Γ2

t1
,

where the second to the last inequality follows by Lemma 3.4.2. This is my base case. I

now do the inductive step. Suppose that Eπ[||xD(θ̂ts) − xNTs ||221{ts<τ}|A] ≤ Γ2t
−1
s holds for

s = z − 1, I need to show that same thing holds for s = z. Then, for k ≥ Ω1 ≥ V4, I have:

Eπ

[∣∣∣∣∣∣xD(θ̂tz)− xNTz

∣∣∣∣∣∣2
2
1{tz<τ}

∣∣∣∣A] ≤ ξ2Eπ

[∣∣∣∣∣∣xD(θ̂tz)− xNTz−1

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]
≤ 27ξ2

{
Eπ

[∣∣∣∣∣∣xD(θ̂tz)− xD(θ∗)
∣∣∣∣∣∣4

2
1{tz<τ}

∣∣∣∣A]+ Eπ

[∣∣∣∣∣∣xD(θ∗)− xD(θ̂tz−1)
∣∣∣∣∣∣4

2
1{tz<τ}

∣∣∣∣A]
+Eπ

[∣∣∣∣∣∣xD(θ̂tz−1)− xNTz−1

∣∣∣∣∣∣4
2
1{tz<τ}

∣∣∣∣A]}
≤ 27ξ2

{
κ̄4Eπ[E(tz)

41{tz<τ}|A] + κ̄4Eπ
θ∗ [E(tz−1)

41{tz<τ}|A] +
Γ1

(log tz−1)
ϵ
2

Γ2

tz−1

}
≤ 27ξ2

{
8η4 + 4(q − 1)2(log tz)

2

η25t
2
z

κ̄4 +
8η4 + 4(q − 1)2(log tz−1)

2

η25t
2
z−1

κ̄4 +
Γ1

(log tz−1)
ϵ
2

2Γ2

tz

}
≤ 27ξ2

{
5κ̄4 [8η4 + 4(q − 1)2(log tz)

2]

η25tz
+

2Γ1Γ2

(log tz−1)
ϵ
2

}
1

tz

≤ 1

tz
≤ Γ2

tz
,

where the first inequality follows by Lemma A.3.6(a), the third inequality follows by Lemma A.3.4,

Lemma A.3.6(a) and the induction hypothesis, and the fourth inequality holds because

Lemma A.3.6(b) shows that ps ∈ W(λ̃min, λ̃max) for s < τ which means that the condition
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for Lemma 3.5.1 is satisfied, so

Eπ
[
E(t)41{t<τ}

∣∣A]
≤

∫ ∞

0

Pπ
(
||θ̂t − θ∗||42 ≥ x

)
dx

≤
∫ ∞

0

min
{
1, η4t

q−1 exp
(
−η5t

√
x
)}
dx

≤
∫ (

2(q−1) log t
η5t

)2

0

dx+

∫ ∞

(
2(q−1) log t

η5t

)2

[
η4t

q−1 exp

(
−η5t

√
x

2

)]
exp

(
−η5t

√
x

2

)
dx

≤ 4(q − 1)2(log t)2

η25t
2

+ η4

∫ ∞

(
2(q−1) log t

η5t

)2
exp

(
−η5t

√
x

2

)
dx

≤ 4(q − 1)2(log t)2

η25t
2

+ η4

∫ ∞

0

exp

(
−η5t

√
x

2

)
dx

≤ 8η4 + 4(q − 1)2(log t)2

η25t
2

.

This completes the induction.

Proof of Lemma A.3.7. I first derive a bound for Φϵ. By definition tz = ⌈(tz+1−L)/2⌉+L
for z > 1, so tz −L ≥ (tz+1 −L)/2. This implies that tz+1 − tz ≤ tz for all z > 1. For z = 1,

I also have t2 − t1 = 1 ≤ L = t1. Recall that Z ≤ ⌈log2 k⌉ ≤ 2 log2 k. Thus, I can bound Φϵ

as follows:

Φϵ =
k−1∑

s=t1+1

ϵ̄(s)2 =
Z∑
z=1

(tz+1 − tz)ϵ̄(tz)
2 ≤

Z∑
z=1

(tz+1 − tz) η
2
6

(q − 1) log tz + 1

tz

≤ η26Z[(q − 1) log k + 1]

≤ KΦ[1 + log k + (q − 1) log2 k]

for some positive constant KΦ independent of k ≥ 1.

I now derive a bound for Ψϵ. To do that, I first show that there exists a constant K > 3

such that for all k ≥ K, I have (1)(log k)1+ϵ/k < 1/19, (2)Z ≥ 3 and (3)tZ−2 ≤ k/3. Note

that as k → ∞, I have (log k)1+ϵ/k → 0, Z → ∞ and tz+1 −L→ ∞ for z = Z − 2, Z − 1, Z.

This implies that tz − L = ⌈(tz+1 − L)/2⌉ ≤ 2(tz+1 − L)/3 for z = Z − 2, Z − 1, Z when

k is large. Therefore, there exists a constant K > 3 such that for all k ≥ K, I have

(log k)1+ϵ/k < 1/19, Z ≥ 3 and tZ−2 ≤ 8
27
(tZ+1 − L) + L = 8

27
k + 19

27
(log k)1+ϵ < k

3
.

Since ϵ̄(tz) = η6
√

[(q − 1) log tz + 1]/tz ≤ η6
√
q, I conclude that for k < K, Ψϵ ≤
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k(kη6
√
q)2 ≤ K3η26q. I now focus on the case when k ≥ K. Note that,

Ψϵ =
k−1∑

t=t1+1

(
t−1∑

s=t1+1

ϵ̄(s)

k − s

)2

≤ 2
k−1∑

t=t1+1

(
tZ−2∑
s=t1+1

ϵ̄(s)

k − s

)2

+ 2
k−1∑

t=tZ−2+1

 t−1∑
s=tZ−2+1

ϵ̄(s)

k − s

2

.

(67)

Since tZ−2 > k/4 (recall that tz+1 ≤ 2tz and tZ+1 = k), I have ϵ̄(s) < η6
√

4[(q − 1) log k + 1]/k

for all s > tZ−2. So, for all k ≥ K, the second term in (67) can be bounded by

8η26[1 + (q − 1) log k]

k

k−1∑
t=tZ−2+1

 t−1∑
s=tZ−2+1

1

k − s

2

≤ 8η26[1 + (q − 1) log k]

k
3k ≤ KΨ,2[1 + (q − 1) log k]

for some positive constant KΨ,2 = 24η26 independent of k ≥ K, where the first inequality

follows by a similar argument as in (60) and k ≥ K > 3. As for the first term in (67), for all

k ≥ K, I have

2
k−1∑

t=t1+1

(
tZ−2∑
s=t1+1

ϵ̄(s)

k − s

)2

≤ 2k

(
tZ−2∑
s=t1+1

ϵ̄(s)

k − s

)2

≤ 2k

Z−3∑
z=1

tz+1 − tz
k − tz+1

η6

√
1 + (q − 1) log tz

tz

2

≤ 4kη26

(
Z−3∑
z=1

tz+1 − tz
k − tz+1

√
1 + (q − 1) log k

tz+1

)2

≤ 4kη26[1 + (q − 1) log k]

(∫ tZ−2

1

1

k − x

√
1

x
dx

)2

≤ 4kη26[1 + (q − 1) log k]

(
2 log(

√
2√

2−1
)

√
k

)2

≤ KΨ,1[1 + (q − 1) log k]

where KΨ,1 = 16η26 log
2(

√
2√

2−1
). The second inequality follows by Lemma 3.5.1. The third

inequality follows because tz+1 ≤ 2tz. Note that the function f(x) = 1
(k−x)

√
x
is decreasing

when x < k
3
. Since tZ−2 <

k
3
, the fourth inequality holds by integral approximation. The
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fifth inequality follows by∫ tZ−2

1

1

k − x

√
1

x
dx =

1√
k

∫ tZ−2

1

(
1√

k −
√
x
+

1√
k +

√
x

)
d
√
x

≤ 2√
k
log

( √
k − 1√

k −
√
tZ−2

)
≤

2 log(
√
2√

2−1
)

√
k

.

Thus, I conclude that there exists some positive constant KΨ independent of k ≥ 1 such

that Ψϵ ≤ max{(KΨ,1 +KΨ,2)[1 + (q − 1) log k], K3η26q} ≤ KΨ[1 + (q − 1) log k]. I complete

the proof by letting K3 = max{KΦ, KΨ}.

Proof of Lemma A.3.8. The proof of Lemma A.3.8 is very similar to that of Lemma A.3.2,

with some nontrivial twists. Per the proof of Lemma A.3.2, I only need to bound Pπ(τ ≤ t|A).

Note that I have

Pπ(τ ≤ t|A)

≤ Pπ
(

max
L+1≤s≤t

{∣∣∣∣∣∣∣∣SL − LλLe

k − s

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

+
s∑

v=L+1

||λv − λ̂v||21{v≤τ}

k − v

}
≥ ψ

∣∣∣∣∣A
)

≤ Pπ
(

max
L+1≤s≤t

∣∣∣∣∣∣∣∣SL − LλLe

k − s

∣∣∣∣∣∣∣∣
2

≥ ψ

2

∣∣∣∣A)+ Pπ
(

max
L+1≤s≤t

∣∣∣∣∣
∣∣∣∣∣

s∑
v=L+1

∆v

k − v

∣∣∣∣∣
∣∣∣∣∣
2

≥ ψ

4

∣∣∣∣∣A
)

+Pπ
(

max
L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||21{v≤τ}

k − v
≥ ψ

4

∣∣∣∣∣A
)

≤ max

{
1,

4n(1 + λL)
2L2

ψ2(k − t)2

}
+

16

ψ2Pπ(A)

[
4

(k − t)2
+

4

k − t

]
+Pπ

(
max

L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||21{v≤τ}

k − v
≥ ψ

4

∣∣∣∣∣A
)

(68)

where the last inequality follows by the same argument in Lemma A.3.2. I now bound the
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last term in (68):

Pπ
(

max
L+1≤s≤t

s∑
v=L+1

||λv − λ̂v||21{v≤τ}

k − v
≥ ψ

4

∣∣∣∣∣A
)

≤ 16

ψ2

 t∑
s=L+1

√
Eπ[||λs − λ̂s||221{τ≤s}|A]

k − s

2

≤ 16

ψ2

 t∑
s=L+1

√
Eπ[||λs − λ̂s||221{τ<s}|A]

k − s
+

√
Eπ[||λs − λ̂s||221{τ=s}|A]

k − s

2

≤ 32

ψ2

 t∑
s=L+1

√
Eπ[||λs − λ̂s||221{τ<s}|A]

k − s

2

+
32

ψ2

 t∑
s=L+1

√
Eπ[||λs − λ̂s||221{τ=s}|A]

k − s

2

≤ 32ω2

ψ2

(
t∑

s=L+1

ϵ̄(s)

k − s

)2

+
32

ψ2

(
t∑

s=L+1

√
2
√
Eπ[1{τ=s}|A]

k − s

)2

≤ 32ω2

ψ2

(
t∑

s=L+1

ϵ̄(s)

k − s

)2

+
128

ψ2

(
1

k − t

)

where the first inequality follows the same argument as in the proof of Lemma A.3.2, the

fourth inequality follows by Lemma 3.5.1 and the fact that for any two points x1, x2 ∈ ∆n−1 I

have ||x1−x2||22 ≤ 2, and the last inequality follows because by Cauchy-Schwartz inequality,(
t∑

s=L+1

√
Eπ[1{τ=s}|A]

k − s

)2

≤

(
t∑

s=L+1

1

(k − s)2

)(
t∑

s=L+1

Eπ[1{τ=s}|A]

)
≤ 1

(k − t)2
+

1

k − t
≤ 2

k − t

Finally, I have for all k ≥ K ≥ Ω2 ≥ 3,

Eπ[k − τ |A] =
k−1∑
t=1

Pπ(τ ≤ t|A) ≤ 256

ψ2

log k

1− Pπ(E(L) > δ̄)
+

(
4n(1 + λL)

2

ψ2
+ 1

)
L

+
32ω2

ψ2

k−1∑
t=1

(
t∑

s=L+1

ϵ̄(s)

k − s

)2

+
128

ψ2

k−1∑
t=1

(
1

k − t

)
≤ 256

ψ2

log k

1− Pπ(E(L) > δ̄)
+

(
4n(1 + λL)

2

ψ2
+ 1

)
L

+
64ω2

ψ2

k−1∑
t=1

(
t−1∑

s=L+1

ϵ̄(s)

k − s

)2

+
64ω2

ψ2

k−1∑
t=1

ϵ̄(t)2

(k − t)2
+

128

ψ2

k−1∑
t=1

(
1

k − t

)
≤ 512

ψ2
log k +

(
4n(1 + λL)

2

ψ2
+ 1

)
L+

64K3ω
2q

ψ2
log k +

128ω2η26q

ψ2
+

128

ψ2

≤ K7(log k + L)
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where K7 = 640/ψ2 + 64K3ω
2q/ψ2 + 128ω2η26q/ψ

2 + (4n(1 + λL)
2/ψ2 + 1), the first inequal-

ity follows by a similar argument as in Lemma A.3.2, and the third inequality follows by

Lemma A.3.7 and the fact that ϵ̄(t) ≤ η6
√
q.

Proof of Lemma A.3.9. Note that, for any θ1, θ2 ∈ Θ, θ1 ̸= θ2, by Fatou’s lemma, I have

lim inf
θ′→θ1,θ′′→θ2

Hπ
t (θ

′, θ′′, Dt|D1:t−1)

||θ′ − θ′′||22
= lim inf

θ′→θ1,θ′′→θ2

∑
Dt∈D

(√
Pπ,θ′t (Dt|D1:t−1)−

√
Pπ,θ′′t (Dt|D1:t−1)

)2

||θ′ − θ′′||22

≥
∑
Dt∈D

lim inf
θ′→θ1,θ′′→θ2

(√
Pπ,θ′t (Dt|D1:t−1)−

√
Pπ,θ′′t (Dt|D1:t−1)

)2

||θ′ − θ′′||22

=
Hπ
t (θ1, θ2, Dt|D1:t−1)

||θ1 − θ2||22
> 0, (69)

where the last inequality follows by W1. Let σ(.) denote the smallest eigenvalues of a

real symmetric matrix. If I now set θ1 = θ2 = θ, since
√

Pπ,θt (Dt|D1:t−1) is continuously

differentiable in θ, there exists θ̃ on the line segment connecting θ′ and θ′′ such that

lim inf
θ′→θ,θ′′→θ

Hπ
t (θ

′, θ′′, Dt|D1:t−1)

||θ′ − θ′′||22

≥
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

[(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′
θ′ − θ′′

||θ′ − θ′′||2

]2
=
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

(θ′ − θ′′)′

||θ′ − θ′′||2

(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′
θ′ − θ′′

||θ′ − θ′′||2

≥
∑
Dt∈D

lim inf
θ′→θ,θ′′→θ

σ

((
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θ̃t (Dt|D1:t−1)

)′)
=
∑
Dt∈D

σ

((
∂

∂θ

√
Pπ,θt (Dt|D1:t−1)

)(
∂

∂θ

√
Pπ,θt (Dt|D1:t−1)

)′)

=
∑
Dt∈D

σ
(
( ∂
∂θ
Pπ,θt (Dt|D1:t−1))(

∂
∂θ
Pπ,θt (Dt|D1:t−1))

′
)

4Pπ,θt (Dt|D1:t−1)

=
1

4

∑
Dt∈D

σ

((
∂

∂θ
logPπ,θt (Dt|D1:t−1)

)(
∂

∂θ
logPπ,θt (Dt|D1:t−1)

)′)
Pπ,θt (Dt|D1:t−1)

≥ cf
4

> 0 (70)

where the first inequality follows by Fatou’s Lemma as in (69) and the Mean Value Theorem,
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and the third equality follows because

∂

∂θ

√
Pπ,θt (Dt|D1:t−1) =

∂
∂θ
Pπ,θt (Dt|D1:t−1)

2
√
Pπ,θt (Dt|D1:t−1)

(by chain rule) and the last two inequalities follow by the definition of Fisher information and

W2. To prove Lemma A.3.9, it suffices to show that, for any θ1, θ2 ∈ Θ, Hπ
t (θ1, θ2, Dt|D1:t−1)/||θ1−

θ2||22 ≥ ch for some ch > 0 independent of θ1, θ2. (If θ1 = θ2, the ratio is to be understood

as its limit.) Suppose not, since the ratio is always non-negative, there exists two sequences

θn1 → θ1, θ
n
2 → θ2 such that lim infn→∞Hπ

t (θ
n
1 , θ

n
2 , Dt|D1:t−1)/||θn1 − θn2 ||22 = 0. But, this

contradicts with (69) when θ1 ̸= θ2 and with (70) when θ1 = θ2. This completes the proof.
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A.4 Proofs of Results in Chapter 4

A.4.1 Proof of Lemma 4.4.1

.

Let δ̄l := (p̄l− p
l
)/(d+1). The proof of Lemma 4.4.1 depends on two important lemmas,

which I first state and prove later:

Lemma A.4.1 Define X := ⊗n
l=1[0, x̄l] where 0 < x̄l ≤ 1 for all l ∈ [1, n]. Let f : X → R be

a function that satisfies N1-N2. Let s be a positive integer and s̄ be as defined in N1. There

exists g ∈ ⊗n
l=1P

(s∧s̄)−1([0, x̄l]) such that for any r ∈ [0, s ∧ s̄], and any rl ∈ Z+, l ∈ [1, n]

satisfying
∑n

l=1 rl = r, the following holds∣∣∣∣∣∣∣∣ ∂r(f − g)(.)

∂xr11 . . . ∂x
rn
n

∣∣∣∣∣∣∣∣
∞

≤ Cn,rW

[
max
l=1,...,n

{x̄l}
]s∧s̄−r

,

where Cn,r > 0 only depends on n, r and W is as defined in N2.

Lemma A.4.2 Suppose s ≥ 2. Let L, {yl,i}n,2s+dl=1,i=1, {βl,i,j}
n,s+d,s
l=1,i=1,j=1 and {Ni1,...,in(.)}

s+d,s+d
i1=1,...,in=1

be as defined in the Technical Details for Spline Approximations in Section 4.4.1. The fol-

lowing properties hold:

a. Lf = f, ∀f ∈ ⊗n
l=1P

s−1([p
l
, p̄l]).

b. For all l ∈ [1, n], i ∈ [1, s+ d], j ∈ [1, s], I have |βl,i,j| ≤ (yl,i+s − yl,i)
j−1 ≤ (sδ̄l)

j−1.

c. For all il ∈ [1, s+ d], l ∈ [1, n], any r ∈ [0, s− 2] and any rl ∈ Z+, l ∈ [1, n] satisfying∑n
l=1 rl = r, Ni1,...,in(.) is nonnegative and ∂rNi1,...,in(p)/(∂p

r1
1 . . . ∂p

rn
n ) = 0 for all

p /∈ ⊗n
l=1(yl,il , yl,il+s).

d.
∑s+d

i1=1 · · ·
∑s+d

in=1 |Ni1,...,in(p)| = 1 for all p ∈ P.

e. Fix any r ∈ [0, s− 2] and any rl ∈ Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r,∣∣∣∣∣∣∣∣∂rNi1,...,in(.)

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣∣∣∣
∞

≤ Cr,s

[
min
l=1,...,n

{δ̄l}
]−r

where Cr,s > 0 is a constant that only depends on r and s.

I first discuss the meaning of the two lemmas above. Since a spline function is essentially

a sequence of local polynomial functions attached together, to understand its approximation
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accuracy, I need to first answer the following question: Suppose that I use a polynomial

function g to approximate a deterministic function f on a small region, how does the ap-

proximation error depend on the smoothness index of f , the degree of g, and the size of the

region? Lemma A.4.1 derives a bound for approximation error as a function of these factors.

Lemma A.4.2 summarizes some useful properties of the spline function constructed using the

B-Spline approach (see Section 4.4.1 for more details). I now proceed to prove Lemma 4.4.1.

Let K ′ = max{K1, K2, K3} where the constants K1 is defined below and K2, K3 are

defined later in Step 3 (below (82)). Let K = exp(log2K ′). Since L0 ≥ log3 k, d → ∞ as

k → ∞. So there exists a constant K1 ≥ 3 such that for all k ≥ K1 and for all l ∈ [1, n],

2sδ̄l ≤ 1. This observation allows me to invoke Lemma A.4.1 later. Note that for k ≤ K ′,

the desired result holds because for any x > 0,

P

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ x

)
≤ 1 = K exp(− log2K ′).

Hence, in the remaining of the proof, I will focus only on the case when k > K ′. I proceed

in several steps:

Step 1

My objective in this step is to compute an upper bound for∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(.)− λ̃j(.))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

.

Fix some ĩl ∈ [s, s+ d] for all l ∈ [1, n], j ∈ [1, n] and r ∈ [0, (s− 2) ∧ s̄]. Define

two hypercubes Hĩ1,...,̃in
:= ⊗n

l=1[yl,̃il , yl,̃il+1] and H̃ĩ1,...,̃in
:= ⊗n

l=1[yl,̃il−s+1, yl,̃il+s]. For any

p ∈ Hĩ1,...,̃in
, and any rl ∈ Z+, l ∈ [1, n] satisfying

∑n
l=1 rl = r, I have:∣∣∣∣∣∂r(λ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣ ≤
∣∣∣∣∂r(λ∗j(p)− Lλ∗j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣+
∣∣∣∣∣∂r(Lλ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣ . (71)

I now bound the terms after the inequality separately.

Bounding the first term in (71). Let X = H̃ĩ1,...̃in
. Since 2sδ̄l ≤ 1 for k ≥ K ′ ≥ K1,

by Lemma A.4.1, there exists g ∈ ⊗n
l=1P

(s∧s̄)−1 ([p
l
, p̄l]) such that for all p ∈ H̃ĩ1,...,̃in

and
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r ∈ [0, (s− 2)∧s̄],∣∣∣∣∂r(λ∗j(p)− g(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣ ≤ Cn,rW

[
max
l=1,...,n

{2sδ̄l}
]s∧s̄−r

≤ Cn,rW (2s)s∧s̄−r
[
max
l=1,...,n

{
p̄l − p

l

d

}]s∧s̄−r
, (72)

where Cn,r is a positive constant that only depends on n and r. Note that for all il ∈
[̃il − s+ 1, ĩl] and for all rl ∈ [1, s], l ∈ [1, n], I have (τ1,i1,r1 , . . . , τn,in,rn) ∈ H̃ĩ1,...,̃in

. Thus,

there exists a constant C0 independent of k such that for any il ∈ [̃il − s+ 1, ĩl], l ∈ [1, n],

the following holds:

∣∣γi1,...,inλ∗j − γi1,...,ing
∣∣

≤
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

(
∏n

l=1 βl,il,jl) |λ∗j(τ1,i1,r1 , . . . , τn,in,rn)− g(τ1,i1,r1 , . . . , τn,in,rn)|∣∣∣∏n
l=1

∏jl
sl=1,sl ̸=rl(τl,il,rl − τl,il,sl)

∣∣∣
≤

s∑
j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

∏n
l=1(δ̄ls)

jl−1∏n
l=1(δ̄l/s)

jl−1
|λ∗j(τ1,i1,r1 , . . . , τn,in,rn)− g(τ1,i1,r1 , . . . , τn,in,rn)|

=
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

s2(
∑n

l=1 jl−n)|λ∗j(τ1,i1,r1 , . . . , τn,in,rn)− g(τ1,i1,r1 , . . . , τn,in,rn)|

≤
(
s+ s2

2

)n
s2(ns−n)Cn,0W (2s)s∧s̄

[
max
l=1,...,n

{
p̄l − p

l

d

}]s∧s̄
≤ C0

ds∧s̄
, (73)

where the first inequality follows by the definition of γi1,...,in , the second inequality follows by

Lemma A.4.2 part (b), and the third inequality follows by (72). Then, for any p ∈ Hĩ1,...,̃in
,

I have:∣∣∣∣∂r(Lλ∗j(p)− Lg(p))
∂pr11 . . . ∂p

rn
n

∣∣∣∣ ≤
s+d∑
i1=1

· · ·
s+d∑
in=1

∣∣γi1,...,inλ∗j − γi1,...,ing
∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

∣∣∣∣
=

ĩ1∑
i1=ĩ1−s+1

· · ·
ĩn∑

in=ĩn−s+1

∣∣γi1,...,inλ∗j − γi1,...,ing
∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

∣∣∣∣
≤ sn

C0

ds∧s̄
Cr,s

[
min
l=1,...,n

{δ̄l}
]−r

≤ snC0Cr,s
ds∧s̄

[
min
l=1,...,n

{
p̄l − p

l

2d

}]−r

≤ 2rsnC0Cr,s

[
min
l=1,...,n

{
p̄l − p

l

}]−r
dr−s∧s̄, (74)
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where the equality follows because, by Lemma A.4.2 part (c), ∂rNi1,...,in(p)/(∂p
r1
1 . . . ∂p

rn
n ) = 0

for p /∈ ⊗n
l=1(yl,il , yl,il+s), the second inequality follows by (73) and Lemma A.4.2 part (e),

and the third inequality follows since d+ 1 ≤ 2d.

Putting things together, by Lemma A.4.2 part (a) (note that s∧ s̄ ≤ s), (72) and (74), I

have the following inequality for all p ∈ Hĩ1,...,̃in
:∣∣∣∣∂r(λ∗j(p)− Lλ∗j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣ ≤
∣∣∣∣∂r(λ∗j(p)− g(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣+ ∣∣∣∣∂r(g(p)− Lg(p))
∂pr11 . . . ∂p

rn
n

∣∣∣∣+ ∣∣∣∣∂r(Lg(p)− Lλ∗j(p))
∂pr11 . . . ∂p

rn
n

∣∣∣∣
≤

[
Cn,rW

[
2s max

1≤l≤n
{p̄l − p

l
}
]s∧s̄−r

+ 2rsnC0Cr,s

[
min
l=1,...,n

{
p̄l − p

l

}]−r] 1

ds∧s̄−r

≤ C1

ds∧s̄−r
, (75)

for some C1 independent of k. Since the right hand side of (75) does not depend on ĩ1, . . . , ĩn,

the inequality holds uniformly for all p ∈ P .

Bounding the second term in (71). Define ξji1,...,in := max1≤r1,...,rn≤s{|λ∗j(τ1,i1,r1 , . . . , τn,in,rn)−
λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|} and ξj := max1≤i1,...,in≤s+d{ξ

j
i1,...,in

}. For any il ∈ [̃il − s+ 1, ĩl],

l ∈ [1, n], by similar argument as in (73), I have:

∣∣γi1,...,inλ∗j − cji1,...,in
∣∣

≤
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

(
∏n

l=1 βl,il,jl) |λ∗j(τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|∣∣∣∏n
l=1

∏jl
sl=1,sl ̸=rl(τl,il,rl − τl,il,sl)

∣∣∣
≤

s∑
j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

s2(
∑n

l=1 jl−n)|λ∗j(τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|

≤
(
s+ s2

2

)n
s2(ns−n) ξji1,...,in .

So, for all p ∈ Hĩ1,...,̃in
, there exists constant C2 > 0 independent of k and ĩ1, . . . , ĩn such
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that ∣∣∣∣∣∂r(Lλ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣ ≤
s+d∑
i1=1

· · ·
s+d∑
in=1

∣∣γi1,...,inλ∗j − cji1,...,in
∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

∣∣∣∣
=

ĩ1∑
i1=ĩ1−s+1

· · ·
ĩn∑

in=ĩn−s+1

∣∣γi1,...,inλ∗j − cji1,...,in
∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

∣∣∣∣
≤ sn

(
s+ s2

2

)n
s2(ns−n)ξjCr,s

[
min
l=1,...,n

{δ̄l}
]−r

≤
(
1 + s

2

)n
s2nsξjCr,s

[
min
l=1,...,n

{
p̄l − p

l

2d

}]−r

= 2r−nCr,s (1 + s)n s2ns
[
min
l=1,...,n

{
p̄l − p

l

}]−r
ξjdr = C2ξ

jdr, (76)

where the second inequality follows by Lemma A.4.2 part (e) and Cr,s only depends on r

and s, the third inequality follows since d+ 1 ≤ 2d.

Note that the right hand side of (76) does not depend on ĩ1, . . . , ĩn, (76) holds uniformly

for all p ∈ P . So, by (71), (75) and (76), I conclude that there exists C3 independent of k

such that∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(.)− λ̃j(.))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

= sup
p∈P

∣∣∣∣∣∂r(λ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
≤ max

s≤ĩ1,...,̃in≤s+d

{
sup

p∈Hĩ1,...,̃in

{∣∣∣∣∂r(λ∗j(p)− Lλ∗j(p))
∂pr11 . . . ∂p

rn
n

∣∣∣∣+
∣∣∣∣∣∂r(Lλ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
}}

≤
(

C1

ds∧s̄−r
+ C2ξ

jdr
)

≤ C3

(
1

ds∧s̄−r
+ ξjdr

)
. (77)

Step 2

I now analyze the term ξj. Note that ξj = maxp∈G̃ |λ∗j(p)−λ̃j(p)| where G̃ := {(τ1,i1,j1 ; . . . ; τn,in,jn) :
il ∈ [1, s+ d], jl ∈ [1, s],∀l ∈ [1, n]} is as defined in Section 4.4.1. So, for all x ≥ 0, I can

bound

P
(
max
p∈G̃

|λ∗j(p)− λ̃j(p)| ≥ x

)
≤ P

(
max
p∈G̃

{λ̃j(p)− λ∗j(p)} ≥ x

)
+ P

(
max
p∈G̃

{λ∗j(p)− λ̃j(p)} ≥ x

)
.(78)

I now bound the two terms after the inequality separately. For x ≥ 0 and t > 0, since
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|G̃| = sn(s+ d)n, the following holds:

P
(
max
p∈G̃

{λ̃j(p)− λ∗j(p)} ≥ x

)
= P

(
tmax
p∈G̃

{λ̃j(p)− λ∗j(p)} ≥ tx

)
≤ exp(−tx)E

[
exp

(
tmax
p∈G̃

{λ̃j(p)− λ∗j(p)}
)]

≤ exp(−tx)
∑
p∈G̃

E
[
exp

(
t(λ̃j(p)− λ∗j(p))

)]
≤ exp(−tx)sn(s+ d)nmax

p∈G̃

{
E
[
exp

(
t(λ̃j(p)− λ∗j(p))

)]}
. (79)

Note that there exists a p∗ ∈ G̃ such that the expectation E
[
exp

(
t(λ̃j(p)− λ∗j(p))

)]
in (79)

attains its maximum. So, for all 0 < t ≤ L0,

max
p∈G̃

{
E
[
exp

(
t(λ̃j(p)− λ∗j(p))

)]}
= E

[
exp

(
t(λ̃j(p

∗)− λ∗j(p
∗))
)]

= exp(−tλ∗j(p∗))
{
E

[
exp

(
t

L0

Bernoulli(λ∗j(p
∗))

)]}L0

= exp(−tλ∗j(p∗))
{
1− λ∗j(p

∗) + λ∗j(p
∗) exp

(
t

L0

)}L0

≤ exp(−tλ∗j(p∗))
{
exp

(
λ∗j(p

∗)

[
exp

(
t

L0

)
− 1

])}L0

= exp(−tλ∗j(p∗)) exp

(
λ∗j(p

∗)L0

∞∑
j=1

1

j!

(
t

L0

)j)

= exp

(
λ∗j(p

∗)L0

∞∑
j=2

1

j!

(
t

L0

)j)
≤ exp

(
λ∗j(p

∗)t2/L0

)
≤ exp(t2/L0), (80)

where the second equality follows because λ̃j(p
∗) is the average of L0 independent Bernoulli

random variables with success probability λ∗j(p
∗) and the last inequality follows from the

fact that
∑∞

j=2(j!)
−1 (t/L0)

j ≤ (t/L0)
2∑∞

j=2[j(j− 1)]−1 ≤ (t/L0)
2. Hence, by (79) and (80),

for all 0 < t ≤ L0,

P
(
max
p∈G̃

{λ̃j(p)− λ∗j(p)} ≥ x

)
≤ exp(t2/L0 − tx+ log(sn(s+ d)n)). (81)
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Following similar arguments, for all 0 < t ≤ L0, there exists some q∗ ∈ G̃ such that

P
(
max
p∈G̃

{λ∗j(p)− λ̃j(p)} ≥ x

)
≤ exp(−tx)

[
max
p∈G̃

{
E
[
exp

(
t(λ∗j(p)− λ̃j(p))

)]}]
sn(s+ d)n

≤ exp(−tx)

[
exp(tλ∗j(q

∗)) exp

(
λ∗j(q

∗)L0

∞∑
j=1

(−1)j

j!

(
t

L0

)j)]
sn(s+ d)n

≤ exp(λ∗j(q
∗)t2/L0 − tx)sn(s+ d)n

≤ exp(t2/L0 − tx+ log(sn(s+ d)n)). (82)

Pick x = 4L
−1/2
0 (s + d)n/2sn/2 log k and t = L0x/2. I now show that under this choice of x

and t, the inequalities (81) and (82) hold for large k, i.e., t ≤ L0 when k is large. Recall that

I have set d = ⌈(L1/2
0 / log k)1/(s+n/2)⌉. Since L0 ≥ log3 k, for k ≥ 3, I have L

1/2
0 / log k ≥ 1.

This implies that

(L
1/2
0 / log k)1/(s+n/2) ≤ d ≤ 2(L

1/2
0 / log k)1/(s+n/2). (83)

I then have that for all k ≥ 3, the following holds

x =
4 log k√
L0

(s+ d)
n
2 s

n
2 ≤ 4 log k√

L0

(s+ 1)
n
2 s

n
2 d

n
2 ≤ 4(s+ 1)

n
2 s

n
2 2

n
2

(
log k√
L0

) s
s+n/2

→ 0, as k → ∞.

Hence, there exists a constant K2 ≥ 3 such that for all k ≥ K2 ≥ 3, I have x ≤ 2 and hence

t = L0x/2 ≤ L0. The following inequality holds for k ≥ K2:

P
(
ξj ≥ 4L

−1/2
0 d

n
2 (s+ s2)

n
2 log k

)
≤ P

(
ξj ≥ 4L

−1/2
0 s

n
2 (s+ d)

n
2 log k

)
= P

(
max
p∈G̃

|λ̃j(p)− λ∗j(p)| ≥ 4L
−1/2
0 s

n
2 (s+ d)

n
2 log k

)
≤ 2 exp

(
−x

2L0

4

)
sn(s+ d)n = 2sn(s+ d)n exp

(
−4sn(s+ d)n log2 k

)
≤ 2sn(s+ d)n exp (−2sn(s+ d)n) exp

(
− log2 k

)
≤ K3 exp

(
− log2 k

)
, (84)

where K3 = supx≥0{x exp(−x)} is a positive constant, the first inequality follows since

s + d ≤ (s + 1)d for d ≥ 1, the second inequality follows by (78), (81) and (82). Let
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Ψr = C3(1 + 2n/2+r+2(s+ s2)n/2) which is independent of k (C3 is defined in (77)), then

Ψr

(
log k√
L0

) s∧s̄−r
s+n/2

≥ C3

[(
log k√
L0

) s∧s̄−r
s+n/2

+ 2
n
2
+r+2(s+ s2)

n
2

(
log k√
L0

) s−r
s+n/2

]

≥ C3

(
1

ds∧s̄−r
+

4 log k√
L0

(s+ s2)
n
2 d

n
2
+r

)
, (85)

where the first inequality follows since log k/L
1/2
0 ≤ 1 and the second inequality follows by

(83). So,

P

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ Ψr

(
log k√
L0

) s∧s̄−r
s+n/2

)

≤ P

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j(p)− λ̃j(p))

∂pr11 . . . ∂p
rn
n

∣∣∣∣∣
∣∣∣∣∣
∞

≥ C3

(
1

ds∧s̄−r
+

4 log k√
L0

(s+ s2)
n
2 d

n
2
+r

))

≤ P
(
C3

(
1

ds∧s̄−r
+ ξjdr

)
≥ C3

(
1

ds∧s̄−r
+

4 log k√
L0

(s+ s2)
n
2 d

n
2
+r

))
≤ P

(
ξj ≥ 4 log k√

L0

d
n
2 (s+ s2)

n
2

)
≤ K3 exp(− log2 k) ≤ K exp(− log2 k),

where the first inequality follows by (85), the second inequality follows by (77) and the fourth

inequality follows by (84). This completes the proof.

Proof of Lemma A.4.1: For k ∈ Z++, define Ik := {a = (a1; . . . ; an) : al ∈ [0, k], for all l ∈
[1, n], and

∑n
l=1 al = k}. Define g(x) =

∑(s∧s̄)−1
k=0

∑
a∈Ik hf (x,0, a) for all x ∈ X where

hf (x, y, a) :=
∂a1+···+anf(y)

∂xa11 . . . ∂xann

n∏
l=1

(xl − yl)
al

al!
, ∀y ∈ X .

It is straightforward to verify that g(.) ∈ ⊗n
l=1P

s∧s̄−1([0, x̄l]). For some k ∈ [0, s ∧ s̄], consider
any a = (a1; . . . ; an) ∈ Ik, any x, y ∈ X , any r ∈ [0, k], and any rl ∈ Z+, l ∈ [1, n] satisfying∑n

l=1 rl = r. If al < rl for some l ∈ [1, n], ∂rhf (x, y, a)/(∂x
r1
1 . . . ∂x

rn
n ) = 0. Hence, the

following hold:

∣∣∣∣ ∂rhf (x, y, a)

∂xr1
1 . . . ∂xrn

n

∣∣∣∣ =


0, if al < rl, ∀l ∈ [1, n];∣∣∣∂a1+···+anf(y)

∂x
a1
1 ...∂xan

n

∏n
l=1

(xl−yl)
al−rl

(al−rl)!

∣∣∣ ≤ W∏n
l=1(al−rl)!

[
max

l=1,...,n
{x̄l}

]k−r

, otherwise,
(86)

where the inequality follows by N2, x̄l ≤ 1 and al−rl ≥ 0 for all l ∈ [1, n], and
∑n

l=1(al−rl) =

167



k − r. So, for any r ∈ [0, s ∧ s̄] and for any rl ∈ Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r,∣∣∣∣∣∣∣∣ ∂r(f − g)(.)

∂xr11 . . . ∂x
rn
n

∣∣∣∣∣∣∣∣
∞

= sup
x∈X

∣∣∣∣∂r(f − g)(x)

∂xr11 . . . ∂x
rn
n

∣∣∣∣ ≤ ∑
a∈Is∧s̄

sup
x,y∈X

∣∣∣∣∂rhf (x, y, a)∂xr11 . . . ∂x
rn
n

∣∣∣∣
≤ W

[
max
l=1,...,n

{x̄l}
]s∧s̄−r ∑

∑n
l=1 al=s∧s̄

al≥rl,∀l∈[1,n]

1∏n
l=1(al − rl)!

= W

[
max
l=1,...,n

{x̄l}
]s∧s̄−r

1

(s ∧ s̄− r)!

∑
∑n

l=1 wl=s∧s̄−r
wl∈Z+,∀l∈[1,n]

(s ∧ s̄− r)!∏n
l=1wl!

= W

[
max
l=1,...,n

{x̄l}
]s∧s̄−r

ns∧s̄−r

(s ∧ s̄− r)!

where the first inequality follows by the Lagrangian remainder formula, the second inequality

follows by (86), and the last inequality follows by the multinomial theorem. The result follows

by letting Cn,r = supk≥r n
k−r/(k − r)! ≤ nn/n! <∞.

Proof of Lemma A.4.2: Recall that N s
l,il
(.) are defined in Section 4.4.1 as the building

blocks of the tensor-product B-Spline basis functions. Let Dσ, Dσ
+, D

σ
− respectively denote

the σth order derivative, right derivative, left derivative of a single variate real function. I

first state some known results of spline functions that will be used to prove Lemma A.4.2.

Theorem A.4.1 (Theorem 6.18 in Schumaker (2007)) For any l ∈ [1, n], Llf = f

for all f ∈ Ps−1([p
l
, p̄l]).

Theorem A.4.2 (Lemma 6.19 in Schumaker (2007)) For all l ∈ [1, n], i ∈ [1, s+ d], j ∈
[1, s], |βl,i,j| ≤ (yl,i+s − yl,i)

j−1 ≤ (s δ̄l)
j−1.

Theorem A.4.3 (Theorem 4.17 in Schumaker (2007)) Let s > 1. Fix l ∈ [1, n]

and il ∈ [1, s+ d]. Suppose yl,il < yl,il+s. Then N s
l,il
(pl) > 0 when pl ∈ (yl,il , yl,il+s), and

N s
l,il
(pl) = 0 when pl /∈ [yl,il , yl,il+s]. At the end points of (yl,il , yl,il+s),

(−1)k+s−µl,ilDk
+N

s
l,il
(yl,il) = 0 k = 0, 1, . . . , s− 1− µl,il

(−1)s−νl,il+sDk
−N

s
l,il
(yl,il+s) = 0 k = 0, 1, . . . , s− 1− νl,il+s

where µl,il = max{j : yl,il =, . . . ,= yl,il+j−1} and νl,il+s = max{j : yl,il+s =, . . . ,= yl,il+s−j+1}.
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Theorem A.4.4 (Theorem 4.20 in Schumaker (2007)) Fix l ∈ [1, n] and il ∈ [s, s+ d].

For all pl ∈ [yl,il , yl,il+1),
∑il

vl=il+1−sN
s
l,vl

(pl) = 1.

Theorem A.4.5 (Theorem 4.22 in Schumaker (2007)) Fix l ∈ [1, n]. Suppose that k

and pl are such that yl,k ≤ pl < yl,k+1, and define δl,il,k,j = min{(yl,v+j − yl,v) : yl,il ≤ yl,v ≤
yl,k < yl,k+1 ≤ yl,v+j ≤ yl,il+s}, for j ∈ [1, s]. Suppose σ > 0 and δl,il,k,s−σ+1 > 0. Then

|Dσ
+N

s
l,il
(pl)| ≤ Γs,σ/(

∏σ
q=1 δl,il,k,s−q) where Γs,σ = (s−1)!

(s−σ−1)!

(
σ

⌊σ/2⌋

)
≤ 2σ (s−1)!

(s−σ−1)!
.

I now proceed to prove each part in Lemma A.4.2 one by one.

Proof of part (a)

Note that L = L1 ◦ L2 ◦ · · · ◦ Ln. For any f ∈ ⊗n
l=1P

s−1[p
l
, p̄l], I can apply Theorem A.4.1

iteratively n times to obtain Lf = L1 ◦ · · · ◦ Lnf = L1 ◦ · · · ◦ Ln−1f = · · · = f , where Llf is

understood as applying Ll to f which is viewed a single variate function of pl.

Proof of part (b)

This follows directly from Theorem A.4.2.

Proof of part (c)

By my definition of {yl,i}n,2s+dl=1,i=1, µl,il = νl,il+s = 1 for all l ∈ [1, n] and il ∈ [1, s+ d]. Hence,

by Theorem A.4.3, for any l ∈ [1, n], il ∈ [1, s+ d] and rl ∈ [0, s− 2], N s
l,il
(.) is nonnegative

and DrlN s
l,il
(pl) = 0 for all pl /∈ (yl,il , yl,il+s). Hence Ni1,...,in is nonnegative and, for any

r ∈ [0, s− 2] and any rl ∈ Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r,

∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

=
n∏
l=1

DrlN s
l,il
(pl) = 0

for all p /∈ ⊗n
l=1(yl,il , yl,il+s), where the second equality follows since rl ≤ r ≤ s− 2.

Proof of part (d)

Let Hi1,...,in = ⊗n
l=1[yl,il , yl,il+1] for any il ∈ [s, s+ d], l ∈ [1, n]. By Theorem A.4.4 and

the fact that {Ni1,...,in(.)}
s+d,...,s+d
i1=1,...,in=1 are all continuous functions (because s ≥ 2), I have∑i1

v1=i1+1−s · · ·
∑in

vn=in+1−sNv1,...,vn(p) = 1 for p ∈ Hi1,...,in . Moreover, by Lemma A.4.2 part

(c), Ni1,...,in(.) is nonnegative and Ni1,...,in(p) = 0 for p = (p1; . . . ; pn) /∈ ⊗n
l=1(yl,il , yl,il+s).

Fix some ĩl ∈ [s, s+ d], l ∈ [1, n]. For all p ∈ Hĩ1,...,̃in
,
∑s+d

i1=1 · · ·
∑s+d

in=1 |Ni1,...,in(p)| =∑s+d
i1=1 · · ·

∑s+d
in=1Ni1,...,in(p) =

∑ĩ1
v1=ĩ1+1−s · · ·

∑ĩn
vn=ĩn+1−sNv1,...,vn(p) = 1. The result follows

since the equality holds for all ĩl ∈ [s, s+ d], l ∈ [1, n], and P = ∪s+d,...,s+d
ĩ1=s,...,̃in=s

Hĩ1,...,̃in
.
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Proof of part (e)

Fix r ∈ [0, s− 2], and consider any rl ∈ Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r. Since N s
l,il
(.) ∈

Cs−2([p
l
, p̄l]) and rl ≤ r ≤ s − 2, Drl

+N
s
l,il
(pl) = Drl

−N
s
l,il
(pl) = DrlN s

l,il
(pl) for all pl ∈ [p

l
, p̄l].

Fix some il ∈ [s, s+ d] for all l ∈ [1, n]. Suppose that pl ∈ [yl,il , yl,il+1). Then, if rl = 0,

|DrlN s
l,il
(pl)| = |N s

l,il
(pl)| ≤ 1 = 20 (s−1)!

(s−0−1)!
δ̄0l where the inequality follows by Lemma A.4.2

part (d). Otherwise, rl ≥ 1, and s − rl ≥ s − r ≥ 2 > 1. So δl,il,k,s−q ≥ δ̄l > 0 for all

q = 1, . . . , rl (recall that δl,il,k,j is as defined in Theorem A.4.5). Then, by Theorem A.4.5,

|DrlN s
l,il
(pl)| ≤ 2rl (s−1)!

(s−rl−1)!
δ̄−rll .

Now, for any p = (p1; . . . ; pn) ∈ P , if pl ∈ (yl,il , yl,il+s) for all l ∈ [1, n], the following

holds,∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

∣∣∣∣ =
n∏
l=1

∣∣DrlN s
l,il
(pl)
∣∣ ≤ n∏

l=1

2rl
(s− 1)!

(s− rl − 1)!
δ̄−rll ≤ 2r

[
(s− 1)!

(s− r − 1)!

]n [
min
l=1,...,n

{δ̄l}
]−r

.

Otherwise, there exists some l0 such that pl0 /∈ (yl0,il0 , yl0,il0+s). By Lemma A.4.2 part (c),

∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂p
rn
n

∣∣∣∣ = 0 ≤ 2r
[

(s− 1)!

(s− r − 1)!

]n [
min
l=1,...,n

{δ̄l}
]−r

.

So the result follows by letting Cr,s = 2r[(s− 1)!/(s− r − 1)!]n.

A.4.2 Proof of Proposition 4.4.1

I first show the feasibility of ÑP(δ). Define h̃(.) = f̃(g−1(.)) : Y → Rn and h(.) = f(g−1(.)) :

Y → Rn. By condition (ii), h(.) is strongly concave. Also, define δ̃(y) := g̃(g−1(y)) − y.

Consider the following two optimization problems:

(NPy) max
y∈Y

{h(y) : Uy ≼ V } and (ÑPy(δ)) max
y∈Y

{
h̃(y) : Uy + Uδ̃(y) ≼ V − δ

}
.

Note thatNPy is equivalent toNP and ÑPy(δ) is equivalent to ÑP(δ). Thus, y∗ := g(x∗)

is the optimal solution to NPy and Uy∗ ≼ V . Since g−1(.) is continuous by condition (i)

and x∗ is in the interior of X by condition (iv), y∗ is in the interior of Y and there exists

a constant ϕ̄ > 0 such that y∗ − ϕ̄e ⊆ Y . Let δ̄ = mini{ϕ̄(Ue)i} (note that since U

does not have zero rows and all its components are non-negative, δ̄ > 0). I claim that if

||Ug(.)−Ug̃(.) + δ||∞ ≤ δ̄, then y∗ − ϕ̄e is a feasible solution of ÑPy(δ). To see this, simply
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note that

||Uδ̃(.) + δ||∞ = sup
y∈Y

||Ug̃(g−1(y))− Uy + δ||∞ = sup
y∈Y

||Ug̃(g−1(y))− Ug(g−1(y)) + δ||∞

= sup
x∈X

||Ug̃(x)− Ug(x) + δ||∞ = ||Ug(.)− Ug̃(.) + δ||∞.

So, U(y∗ − ϕ̄e)+Uδ̃(y∗ − ϕ̄e)+ δ ≼ Uy∗ − ϕ̄Ue+ ||Uδ̃(.)+ δ||∞e ≼ Uy∗ + δ̄e− ϕ̄Ue ≼ V,

where the last inequality follows by the definition of δ̄ and the fact that y∗ is feasible to NPy.

This proves that ÑPy(δ) is feasible. Thus, ÑP(δ) is feasible. Since the feasible region of

ÑPy(δ) is compact and h̃(.) is continuous, ÑPy(δ) has an optimal solution. Let ỹδ denote

an optimal solution of ÑPy(δ) (note that ỹδ may not be unique).

I now proceed to derive a bound of ||y∗ − ỹδ||2, which will be used later to obtain the

desired bound for ||x∗ − x̃δ||2. To bound ||y∗ − ỹδ||2, I will use the optimal solution of an

auxiliary optimization problem below:

(ÑP
ax

y (δ)) max
y∈Y

{
h(y) : Uy + Uδ̃(y) ≼ V − δ

}
.

The above problem has the same feasible region as ÑPy(δ), so it is feasible. Let yaxδ
denote an optimal solution of ÑP

ax

y (δ). Since ||y∗ − ỹδ||2 ≤ ||y∗ − yaxδ ||2 + ||yaxδ − ỹδ||2, to
bound ||y∗ − ỹδ||2, I only need to bound ||y∗ − yaxδ ||2 and ||yaxδ − ỹδ||2. To derive an upper

bound of ||y∗ − yaxδ ||2, I need to use the following lemma (the proof is given later).

Lemma A.4.3 Consider the family of perturbed optimization problems below:

(NPy(ϵ)) max
y∈Y

{h(y) : Uy ≼ V + ϵ} .

Suppose that h(.) is strongly concave and twice continuously differentiable, Y is a convex

compact set, U is a non-negative matrix and has full row rank, and the optimal solution

of NPy(0) lies in the interior of Y. If y∗(ϵ) is an optimal solution for NPy(ϵ), then

||y∗(0)− y∗(ϵ)||2 ≤ K||ϵ||∞ for some K > 0 independent of ϵ.

Note that the assumptions of Lemma A.4.3 hold (i.e., h(.) = f(g−1(.)) is twice continu-

ously differentiable because f(.) and g−1(.) are both twice continuously differentiable. Also,

as shown earlier, the optimal solution of NPy(0), y
∗(0) = y∗, is in the interior of Y). By the

strong concavity of h(.), yaxδ is the unique optimal solution of NPy(−δ − Uδ̃(yaxδ )). Thus,

by Lemma A.4.3, there exists a constant K1 > 0 independent of f̃ , g̃, δ such that

||y∗ − yaxδ ||2 ≤ K1||Uδ̃(yaxδ ) + δ||∞ ≤ K1(||U ||∞||g(.)− g̃(.)||∞ + ||δ||∞). (87)
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I now derive a bound for ||ỹδ − yaxδ ||2. Since ÑP
ax

y (δ) and ÑPy(δ) have the same con-

straints, ỹδ is feasible for ÑP
ax

y (δ) and yaxδ is feasible for ÑPy(δ). By the strong concavity

of h(.), there exists a constant v > 0 depending only on h(.) such that

h(ỹδ) ≤ h(yaxδ ) +∇h(yaxδ ) · (ỹδ − yaxδ )− v

2
||ỹδ − yaxδ ||22 ≤ h(yaxδ )− v

2
||ỹδ − yaxδ ||22, (88)

where the last inequality follows because ∇h(yaxδ ) · (ỹδ − yaxδ ) ≤ 0 (otherwise, yaxδ cannot be

the optimal solution of ÑP
ax

y (δ)). Note also that h̃(yaxδ ) ≤ h̃(ỹδ). Combining this with (88),

by Mean Value Theorem, I have

v

2
||ỹδ − yaxδ ||22 ≤ [h(yaxδ )− h̃(yaxδ )]− [h(ỹδ)− h̃(ỹδ)] ≤ (∇h(ξ)−∇h̃(ξ))′(yaxδ − ỹδ)

≤ ||(∇h(.)−∇h̃(.))′||∞||ỹδ − yaxδ ||∞ ≤ ||(∇h(.)−∇h̃(.))′||∞||ỹδ − yaxδ ||2,

for some ξ ∈ Y . This means that ||ỹδ− yaxδ ||2 ≤ 2
v
||(∇h(.)−∇h̃(.))′||∞. Combining this with

(87),

||y∗ − ỹδ||2 ≤ ||y∗ − yaxδ ||2 + ||yaxδ − ỹδ||2

≤ K1||U ||∞||g(.)− g̃(.)||∞ +K1||δ||∞ +
2

v
||(∇h(.)−∇h̃(.))′||∞

≤ K1||U ||∞||g(.)− g̃(.)||∞ +K1||δ||∞ +
2

v
||(∇g−1(.))′||∞||(∇f(.)−∇f̃(.))′||∞,(89)

where the last inequality holds because ∇h(y)−∇h̃(y) = ∇g−1(y)[∇f(g−1(y))−∇f̃(g−1(y))]

for all y ∈ Y . This means that the following inequality also holds:

||x∗ − x̃δ||2
≤
√
n||g−1(y∗)− g−1(ỹδ)||∞ ≤

√
n||(∇g−1(.))′||∞||y∗ − ỹδ||∞ ≤

√
n||(∇g−1(.))′||∞||y∗ − ỹδ||2

≤
√
n||(∇g−1(.))′||∞

(
K1||U ||∞||g(.)− g̃(.)||∞ +K1||δ||∞ +

2

v
||(∇g−1(.))′||∞||(∇f(.)−∇f̃(.))′||∞

)
≤ K(||(∇f(.)−∇f̃(.))′||∞ + ||g(.)− g̃(.)||∞ + ||δ||∞),

where K =
√
n||(∇g−1(.))′||∞(K1||U ||∞ +K1 +

2
v
||(∇g−1(.))′||∞). This completes the proof.

Proof of Lemma A.4.3. I claim that there exists ϵ̄ := min{ϵ̄1, ϵ̄2} > 0, where ϵ̄1, ϵ̄2 are

strictly positive constants to be defined later, such that, for all ||ϵ||∞ ≤ ϵ̄, ||y∗(0)−y∗(ϵ)||2 ≤
K1||ϵ||∞ for some K1 > 0 independent of ϵ. Note that, if this claim is true, Lemma A.4.3

can be proven as follows. Define l := supy1,y2∈Y ||y1 − y2||2 and let K2 = l/ϵ̄. Then, for all ϵ

with ||ϵ||∞ > ϵ̄, ||y∗(ϵ)− y∗(0)||2 ≤ l = K2ϵ̄ ≤ K2||ϵ||∞. So, Lemma A.4.3 follows by letting

K = max{K1, K2}. I now prove my claim.
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I first introduce two optimization problems whose optimal solutions are closely related to

y∗(0) and y∗(ϵ). The first optimization problem is almost identical to NPy(0) except that

the domain is Rn instead of Y :

(N̄Py) max
y∈Rn

{h(y) : Uy ≼ V } .

To define my second optimization problem, first note that, since U has full row rank, there

exists an n by m matrix H such that UH = I. For any ϵ ∈ Rm, by a change of variables

y = z +Hϵ, I can transform NPy(ϵ) into an equivalent optimization problem below:

(NPz(ϵ)) max
z∈Y−Hϵ

{hϵ(z) : Uz ≼ V } ,

where hϵ(z) := h(z +Hϵ). Two important observations are in order. The first observation

relates y∗(0) to the first optimization problem N̄Py whereas the second observation relates

y∗(ϵ) to the second optimization problem NPz(ϵ).

Observation 1: y∗(0) is the unique optimal solution to N̄Py.

Suppose that this is not true. Then, there exists ỹ ̸= y∗(0) satisfying Uỹ ≼ V such

that h(ỹ) ≥ h(y∗(0)). Let d = (ỹ − y∗(0))/||ỹ − y∗(0)||2. Since y∗(0) is in the interior of

Y , Uy∗(0) ≼ V and Uy∗(0) + Ud||ỹ − y∗(0)||2 = Uỹ ≼ V ; so, for sufficiently small t > 0,

ȳd(t) := y∗(0) + td is a feasible solution for NPy(0). Note that, by the strong concavity of

h(.), h(y∗(0))+∇h(y∗(0))·(ỹ−y∗(0)) > h(ỹ) ≥ h(y∗(0)). This means that ∇h(y∗(0))·d > 0.

Hence, for sufficiently small t > 0, h(ȳd(t)) = h(y∗(0)) + t∇h(y∗(0)) · d+O(t2) > h(y∗(0)).

However, by the strong concavity of h(.), y∗(0) is the unique optimal solution of NPy(0).

A contradiction is found. Hence, Observation 1 holds.

Observation 2: There exists ϵ̄1 > 0 such that for all ϵ with ||ϵ||∞ ≤ ϵ̄1, NPy(ϵ) has a unique

optimal solution y∗(ϵ) and z∗(ϵ) := y∗(ϵ)−Hϵ is the unique optimal solution of NPz(ϵ).

I now prove Observation 2. Since y∗(0) lies in the interior of Y , there exists a constant

ϕ̄ > 0 such that {x : ||x−y∗(0)||∞ ≤ ϕ̄} ⊆ Y . Let ϵ̄1 := mini{ϕ̄(Ue)i}. Note that ϵ̄1 > 0 since

U is non-negative and has full row rank. Moreover, for all ϵ with ||ϵ||∞ ≤ ϵ̄ ≤ ϵ̄1, y
∗(0)−ϕ̄e ∈

Y is a feasible solution of NPy(ϵ) because U(y
∗(0) − ϕ̄e) ≼ V − ϕ̄Ue ≼ V − ϵ̄1e ≼ V + ϵ.

This means that NPy(ϵ) has a unique optimal solution y∗(ϵ) (because its feasible region is

convex, compact, not empty, and its objective function h(.) is strongly concave). Hence, by

definition of NPz(ϵ), z
∗(ϵ) is its unique optimal solution. So, Observation 2 holds.

To bound ||y∗(0)−y∗(ϵ)||2, I first derive a bound for ||y∗(0)−z∗(ϵ)||2. Let ϵ̄2 := ϕ̄/||H||∞.

Then, for all ϵ with ||ϵ||∞ ≤ ϵ̄ ≤ ϵ̄2, since ||y∗(0)+Hϵ− y∗(0)||∞ = ||Hϵ||∞ ≤ ||H||∞||ϵ||∞ ≤
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ϕ̄, y∗(0) +Hϵ ∈ Y . This means that y∗(0) is feasible for NPz(ϵ) and hϵ(y
∗(0)) ≤ hϵ(z

∗(ϵ)).

Note that z∗(ϵ) ∈ Rn is also feasible for N̄Py, so

h(z∗(ϵ)) ≤ h(y∗(0)) +∇h(y∗(0)) · (z∗(ϵ)− y∗(0))− v

2
||z∗(ϵ)− y∗(0)||22

≤ h(y∗(0))− v

2
||z∗(ϵ)− y∗(0)||22 (90)

for some v > 0 that only depends on h(.). The first inequality follows by the strong concavity

of h(.) and the second inequality follows because ∇h(y∗(0)) · (z∗(ϵ)− y∗(0)) ≤ 0 (otherwise,

y∗(0) cannot be the optimal solution of N̄Py). Note also that, for all ϵ with ||ϵ||∞ ≤ ϵ̄, the

following holds

v

2
||z∗(ϵ)− y∗(0)||22 ≤ h(y∗(0))− h(z∗(ϵ))− hϵ(y

∗(0)) + hϵ(z
∗(ϵ))

= (∇h(ξ1)−∇hϵ(ξ1)) · (y∗(0)− z∗(ϵ))

≤ ||∇h(ξ1)−∇hϵ(ξ1)||∞||y∗(0)− z∗(ϵ)||∞
≤ ||∇h(ξ1)−∇h(ξ1 +Hϵ)||∞||y∗(0)− z∗(ϵ)||2
= ||∇2h(ξ2)Hϵ||∞||y∗(0)− z∗(ϵ)||2
≤ K0||H||∞||ϵ||∞||y∗(0)− z∗(ϵ)||2 (91)

for some ξ1 ∈ Z, ξ2 ∈ Z̄ where Z := {z : ||z − y||∞ ≤ ϕ̄ for some y ∈ Y} and Z̄ := {z :

||z−x||∞ ≤ ϕ̄ for some x ∈ Z} are both compact and convex, and K0 := supz∈Z̄ ||∇2h(z)||∞
only depends on h(.). The first inequality of (91) follows by (90) and hϵ(y

∗(0)) ≤ hϵ(z
∗(ϵ)).

The first equality of (91) follows by the Mean Value Theorem and the fact that y∗(0) ∈ Z and

z∗(ϵ) ∈ Z (the latter inclusion holds because, since z∗(ϵ) ∈ Y−Hϵ, there exists a y ∈ Y such

that ||z∗(ϵ)− y||∞ = ||Hϵ||∞ ≤ ||H||∞ϵ̄ ≤ ||H||∞ϵ̄2 = ϕ̄). Similarly, the second equality also

follows by the Mean Value Theorem and the fact that ξ1 ∈ Z ⊆ Z̄ and ξ1+Hϵ ∈ Z̄ (the latter

inclusion holds since ξ1 ∈ Z and ||ξ1+Hϵ−ξ1||∞ ≤ ||H||∞ϵ̄ ≤ ||H||∞ϵ̄2 = ϕ̄). Note that (91)

is equivalent to ||z∗(ϵ)− y∗(0)||2 ≤ 2v−1K0||H||∞||ϵ||∞. Let K1 = 2v−1K0||H||∞+ ||H||2
√
n.

Then, for all ϵ with ||ϵ||∞ ≤ ϵ̄, I can bound:

||y∗(ϵ)− y∗(0)||2 = ||z∗(ϵ) +Hϵ− y∗(0)||2 ≤ ||z∗(ϵ)− y∗(0)||2 + ||H||2||ϵ||2
≤ 2v−1K0||H||∞||ϵ||∞ + ||H||2||ϵ||2 ≤ K1||ϵ||∞.

This proves the claim I stated at the beginning and completes the proof of Lemma A.4.3.
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A.4.3 Proof of Lemma 4.4.2

I now prove Lemma 4.4.2 using Proposition 4.4.1. Let g(.) = λ∗(.), g̃(.) = λ̃(.), f(.) =

r∗(.), f̃(.) = r̃(.), U = A, V = C/T, δ = 0,X = P,Y = Λλ∗ . Note that r∗(.), λ∗(.) are

twice continuously differentiable by P1 and r̃(.), λ̃(.) are continuously differentiable since

λ̃(.) ∈ Cs−2(P) and s− 2 ≥ 1. Also P is convex and A is nonnegative with full row rank. I

first verify the conditions (i) - (iv) in Proposition 4.4.1. By P1, λ∗(.) has a twice continuously

differentiable inverse function p∗(.), and Λλ∗ is assumed to be convex, so (i) holds. By R3,

r∗λ(.) := r∗(p∗(.)) is strongly concave, so (ii) holds. By R4, P is feasible and its optimal

solution pD lies in the interior of P, so both (iii) and (iv) hold. For any p ∈ P , I have

||(∇r∗(p)−∇r̃(p))′||∞ = ||(λ∗(p) +∇λ∗(p)p− λ̃(p)−∇λ̃(p)p)′||∞
≤ ||(λ∗(p)− λ̃(p))′||∞ + ||p′(∇λ∗(p)−∇λ̃(p))′||∞
≤ n||λ∗(p)− λ̃(p)||∞ + ||p′||∞||(∇λ∗(p)−∇λ̃(p))′||∞
≤ n||λ∗(.)− λ̃(.)||∞ + (

∑n
l=1 p̄l)||(∇λ∗(.)−∇λ̃(.))′||∞.

Therefore, by Proposition 4.4.1, there exists δ̄1 > 0 and K1 > 0 such that for all λ̃(.)

satisfying ||Aλ(.)− Aλ̃(.)||∞ ≤ δ̄1, P̃ is feasible and

||pD − p̃D||2 ≤ K1(||Aλ∗(.)− Aλ̃(.)||∞ + ||(∇r∗(.)−∇r̃(.))′||∞)

≤ K1[(n+ ||A||∞)||λ∗(.)− λ̃(.)||∞ + (
∑n

l=1 p̄l)||(∇λ∗(.)−∇λ̃(.))′||∞]

≤ K(||λ∗(.)− λ̃(.)||∞ + ||(∇λ∗(.)−∇λ̃(.))′||∞)

where K = K1(n + ||A||∞ +
∑n

l=1 p̄l) is independent of λ̃(.). Let δ̄ := δ̄1/||A||∞. Since

||λ(.)− λ̃(.)||∞ ≤ δ̄ means that ||Aλ(.)− Aλ̃(.)||∞ ≤ ||A||∞δ̄ = δ̄1, the result follows.

A.4.4 Derivation of the equality (4.2)

Recall that u∗ij := [
∂2λ∗1(p

D)

∂pi∂pj
; . . . ; ∂

2λ∗n(p
D)

∂pi∂pj
]. Note that the following identity holds:

H∗
ij =

[
B∗∇2r∗λ(λ

D)(B∗)′
]
ij
− [B∗ + (B∗)′]ij

=
n∑
l=1

n∑
k=1

∂λ∗k(p
D)

∂pi

∂2r∗λ(λ
D)

∂λk∂λl

∂λ∗l (p
D)

∂pj
−

[
∂λ∗i (p

D)

∂pj
+
∂λ∗j(p

D)

∂pi

]
. (92)
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Note also that r∗(p) = p′λ∗(p) = r∗λ(λ
∗(p)). Taking its second order derivative, I have

∂2r∗(pD)

∂pi∂pj
=

n∑
l=1

n∑
k=1

∂λ∗k(p
D)

∂pi

∂2r∗λ(λ
D)

∂λk∂λl

∂λ∗l (p
D)

∂pj
+

n∑
l=1

∂r∗λ(λ
D)

∂λl

∂2λ∗l (p
D)

∂pi∂pj
(93)

∂2r∗(pD)

∂pi∂pj
=

∂λ∗i (p
D)

∂pj
+
∂λ∗j(p

D)

∂pi
+

n∑
l=1

pDl
∂2λ∗l (p

D)

∂pi∂pj
. (94)

Hence, combining (93) and (94) with (92), I have H∗
ij =

∑n
l=1(p

D
l − ∂r∗λ(λ

D)

∂λl
)
∂2λ∗l (p

D)

∂pi∂pj
=

(u∗ij)
′(pD − ∇r∗λ(λD)). Note that λ∗(pD) + ∇λ∗(pD)pD = ∇r∗(pD) = ∇λ∗(pD)∇r∗λ(λD), so

pD −∇r∗λ(λD) = −∇λ∗(pD)−1λ∗(pD) = −(B∗)−1λD. Hence, H∗
ij = −(u∗ij)

′(B∗)−1λD.

A.4.5 Proof of Lemma 4.4.3

I will prove each part of the lemma in turn. Let δ̄ = min{δ̄1, δ̄2, δ̄3, δ̄4, δ̄5}, κ = max{κ1, κ2},
where δ̄1, . . . , δ̄5 and κ1, κ2 are strictly positive constants to be defined shortly.

Proof of Parts (a)-(c)

Let σmax(X) and σmin(X) denote the maximum and minimum eigenvalues of a symmetric

real matrix X, respectively. Since B∗ = ∇λ∗(pD) is invertible, B∗(B∗)′ is positive definite;

so, σ̄∗ := σmax(B
∗(B∗)′) > 0 and σ∗ := σmin(B

∗(B∗)′) > 0. Define δ̄1 = σ∗/(4
√
σ̄∗) > 0.

Note that, for all θι ∈ Ball(θ∗ι , δ̄), ||B−B∗||2 ≤ ||B−B∗||F ≤ ||θι−θ∗ι ||2 ≤ δ̄ ≤ δ̄1. Therefore,

for all v ∈ Rn such that ||v||2 = 1, I have:

v′B′Bv = v′(B −B∗ +B∗)′(B −B∗ +B∗)v

= v′(B∗)′B∗v + v′(B∗)′(B −B∗)v + v′(B −B∗)′B∗v + v′(B −B∗)′(B −B∗)v

≥ σ∗ − 2||v||22||(B∗)′||2||B −B∗||2 ≥ σ∗ − 2
√
σ̄∗ σ∗/(4

√
σ̄∗) = σ∗/2.

This means that σmin(B
′B) ≥ σ∗/2 > 0 and B is invertible. Since (B′B)−1 = B−1(B−1)′,

||(B′)−1||2 =
√
σmax(B−1(B−1)′) =

√
σmin(B′B)−1 ≤

√
2/σ∗.

By definition, λ(p; θι) = a+ B′p, λ(p; θ∗ι ) = a∗ + (B∗)′p,
∂λj
∂pi

(p; θι) = Bij,
∂λj
∂pi

(p; θ∗ι ) = B∗
ij for

all i, j ∈ [1, n], and p(λ; θι) = −(B′)−1a + (B′)−1λ (recall that B is invertible). So, for all
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p ∈ P and λ, λ′ ∈ λ(P ; θι),

||λ(p; θι)− λ(p; θ∗ι )||2 ≤ ||a− a∗||2 + ||(B −B∗)′||2||p||2

≤ ||a− a∗||2 + ||(B −B∗)′||F

(
n∑
l=1

p̄2l

) 1
2

≤

1 +( n∑
l=1

p̄2l

) 1
2

 ||θι − θ∗ι ||2,∣∣∣∣∂λj∂pi
(p; θι)−

∂λj
∂pi

(p; θ∗ι )

∣∣∣∣ = |Bij −B∗
ij| ≤ ||θι − θ∗ι ||2, and

||p(λ; θι)− p(λ′; θι)||2 = ||(B′)−1(λ− λ′)||2 ≤ ||(B′)−1||2||λ− λ′||2 ≤
√

2/σ∗||λ− λ′||2.

The results follow by letting ω = max{1 + (
∑n

l=1 p̄
2
l )

1
2 ,
√
2/σ∗}.

Proof of part (d)

To prove that q(p(.; θι); θo) is strongly concave, I need to show that its Hessian, B−1G(B′)−1,

is negative definite. Let δ̄2 = ||G∗||2. For all θo ∈ Ball(θ∗o, δ̄), ||θo − θ∗o||2 ≤ δ̄ ≤ δ̄2, so

||B∗ −B||2 ≤ ||B∗ −B||F ≤ δ̄ (95)

||G∗ −G||2 ≤ ||G∗ −G||F ≤ δ̄ (96)

||G||2 ≤ ||G∗||2 + ||G−G∗||2 ≤ ||G∗||2 + δ̄2 = 2||G∗||2. (97)

Recall that, by Lemma 4.4.3 part (a), B is invertible and ||B−1||2 = ||(B′)−1||2 ≤ ω. So,

||(B∗)−1G∗((B∗)′)−1 −B−1G(B′)−1||2
= ||((B∗)−1 −B−1)G∗((B∗)′)−1 +B−1(G∗ −G)((B∗)′)−1 +B−1G(((B∗)′)−1 − (B′)−1)||2
≤ ||(B∗)−1 −B−1||2||G∗||2||((B∗)′)−1||2 + ||B−1||2||G∗ −G||2||((B∗)′)−1||2

+||B−1||2||G||2||((B∗)′)−1 − (B′)−1||2
≤ ||(B∗)−1||2||B∗ −B||2||B−1||2||G∗||2||((B∗)′)−1||2 + ||B−1||2||G∗ −G||2||((B∗)′)−1||2

+||B−1||2||G||2||(B∗)−1||2||B∗ −B||2||B−1||2
≤ ||B−1||2||(B∗)−1||2(||(B∗)−1||2||G∗||2 + 1 + 2||G∗||2||B−1||2)δ̄

≤ ω||(B∗)−1||2(||(B∗)−1||2||G∗||2 + 1 + 2||G∗||2ω)δ̄

≤ Cδ̄,

for some C > 0 that only depends on θ∗ and ω. The second inequality above holds because
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(B∗)−1 −B−1 = (B∗)−1(B −B∗)B−1 and the third inequality follows from (95)-(97).

By (4.3), (B∗)−1G∗((B∗)′)−1 = ∇2r∗λ(λ
D). So, σmax((B

∗)−1G∗((B∗)′)−1) ≤ −v by R3.

Let δ̄3 = v/(2C). Then, for all v such that ||v||2 = 1,

v′(B−1G(B′)−1)v = v′((B∗)−1G∗((B∗)′)−1)v + v′(B−1G(B′)−1 − (B∗)−1G∗((B∗)′)−1)v

≤ σmax((B
∗)−1G∗((B∗)′)−1) + ||B−1G(B′)−1 − (B∗)−1G∗((B∗)′)−1||2

≤ −v + Cδ̄ ≤ −v + Cδ̄3 = −v/2.

This means that B−1G(B′)−1 is negative definite and, thus, q(p(.; θι); θo) is strongly concave.

Proof of part (e)

Consider the following optimization problem:

(QPλ(θ; δ)) max
λ∈λ(P;θι)

{
q(p(λ; θι); θo) : Aλ ≼ C

T
− δ

}
.

This problem is equivalent to QP(θ; δ), except that it optimizes over λ instead of p. Recall

that, by Lemma 4.4.3 part (d), q(p(.; θι); θo) is strongly concave; so, QPλ(θ; δ) is a convex

program and, if it is feasible, it has a unique optimal solution that is characterized by the

KKT condition. Since Pλ is a convex program and has a unique optimal solution λD ∈ Λλ∗ ,

by the KKT conditions, I have:
∇r∗λ(λD) = A′µD

(AλD − C
T
)′µD = 0

µD ≽ 0, AλD ≼ C
T

which, by (4.3), implies


∇λq(p(λ

D; θ∗ι ); θ
∗
o) = A′µD

(AλD − C
T
)′µD = 0

µD ≽ 0, AλD ≼ C
T

Since λD = λ(pD; θ∗ι ) ∈ λ(P ; θ∗ι ) is feasible to QPλ(θ
∗;0), by the sufficiency of KKT condi-

tions for optimality in a strongly convex program, λD and µD are also the unique optimal

primal and dual solution of QPλ(θ
∗;0). Hence, pD = p(λD; θ∗ι ) is also the unique optimal

solution of QP(θ∗;0). This proves that λD = λD0 (θ
∗), µD = µD0 (θ

∗) and pD = pD0 (θ
∗).

Proof of part (f)

The proof relies on Proposition 4.4.1. Let g(.) = λ(.; θ∗ι ), g̃(.) = λ(.; θι), f(.) = q(.; θ∗o), f̃(.) =

q(.; θo), U = A, V = C/T,X = P ,Y = λ(P ; θ∗ι ). I first verify conditions (i)-(iv) of Proposi-

tion 4.4.1. Since λ(.; θ∗ι ) is linear and B
∗ = ∇λ∗(pD) is invertible, it has an inverse function

p(.; θ∗ι ) that is linear and, hence, twice continuously differentiable. Moreover, the set λ(P ; θ∗ι )

is convex because P is convex and convexity is preserved under affine transformation. So, (i)

holds. By (4.3) and the fact that r∗λ(.) is strongly concave, q(p(.; θ∗ι ); θ
∗
o) is strongly concave,
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so (ii) holds. As shown earlier, pD is the optimal solution of QP(θ∗;0) and it is in the interior

of P , so (iii) and (iv) hold. Therefore, by Proposition 4.4.1, there exists some constant δ̃ > 0

such that if ||Aλ(.; θ∗ι )−Aλ(.; θι) + δ||∞ ≤ δ̃, then QP(θ; δ) is feasible and there exists some

constant K independent of θ such that the unique optimal solution of QP(θ; δ) (i.e., pDδ (θ))

satisfies the following:

||pD0 (θ∗)− pDδ (θ)||2
≤ K (||(∇q(.; θ∗o)−∇q(.; θo))′||∞ + ||λ(.; θ∗ι )− λ(.; θι)||∞ + ||δ||∞)

= K

(
sup
p∈P

{||(F ∗ + p′G∗ − F − p′G)′||∞}+ sup
p∈P

{||λ(p; θ∗ι )− λ(p; θι)||∞}+ ||δ||∞
)

≤ K

(
sup
p∈P

{||(F ∗ + p′G∗ − F − p′G)′||2}+ sup
p∈P

{||λ(p; θ∗ι )− λ(p; θι)||2}+ ||δ||∞
)

≤ K

(
||F ∗ − F ||2 + sup

p∈P
{||p′||2}||G∗ −G||2 + ω||θ∗ι − θι||2 + ||δ||2

)
≤ K

(
||F ∗ − F ||2 + (

∑n
l=1 p̄

2
l )

1/2||G∗ −G||F + ω||θ∗ι − θι||2 + ||δ||2
)

≤ K
(
1 + (

∑n
l=1 p̄

2
l )

1/2
)
||θ∗o − θo||2 +Kω||θ∗ι − θι||2 +K||δ||2

≤ κ1 (||θ∗ − θ||2 + ||δ||2)

≤ κ(||θ∗ − θ||2 + ||δ||2),

where κ1 = K(2 + (
∑n

l=1 p̄
2
l )

1/2 + ω). Let δ̄4 = min{δ̃/2, δ̃/(2ω||A||2), ϕ/(6κ)}. Then, for

θι ∈ Ball(θ∗ι , δ̄) and δ ∈ Ball(0, δ̄), I have

||Aλ(.; θ∗ι )− Aλ(.; θι) + δ||∞ ≤ sup
p∈P

||Aλ(p; θ∗ι )− Aλ(p; θι)||∞ + ||δ||∞

≤ sup
p∈P

||Aλ(p; θ∗ι )− Aλ(p; θι)||2 + ||δ||2 ≤ ω||A||2||θ∗ι − θι||2 + ||δ||2

≤ ω||A||2δ̄ + δ̄ ≤ ω||A||2δ̄4 + δ̄4 ≤ ω||A||2
δ̃

2ω||A||2
+
δ̃

2
= δ̃.

Moreover, pDδ (θ) ∈ Ball(pD0 (θ
∗), ϕ/2) because

||pD0 (θ∗)− pDδ (θ)||2 ≤ κ(||θ∗ − θ||2 + ||δ||2) ≤ κ(||θ∗ι − θι||2 + ||θ∗o − θo||2 + ||δ||2)

≤ 3κδ̄ ≤ 3κδ̄4 ≤ 2κϕ/(6κ) = ϕ/3 < ϕ/2.

Since Ball(pD0 (θ
∗), ϕ) ⊆ P (by R4 and pD0 (θ

∗) = pD), Ball(pDδ (θ), ϕ/2) ⊆ P . Let κ2 =
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2κ1||B∗||2 + ω. I have:

||λD0 (θ∗)− λDδ (θ)||2 = ||λ(pD0 (θ∗); θ∗ι )− λ(pDδ (θ); θι)||2
≤ ||λ(pD0 (θ∗); θ∗ι )− λ(pDδ (θ); θ

∗
ι )||2 + ||λ(pDδ (θ); θ∗ι )− λ(pDδ (θ); θι)||2

≤ ||B∗||2||pD0 (θ∗)− pDδ (θ)||2 + ω||θ∗ − θ||2
≤ (κ1||B∗||2 + ω)||θ∗ − θ||2 + κ1||B∗||2||δ||2
= κ2(||θ∗ − θ||2 + ||δ||2)

≤ κ(||θ∗ − θ||2 + ||δ||2).

I will now show that the constraints of QP(θ; δ) that correspond to rows {i : µD0,i(θ∗) > 0}
are binding. SinceQPλ(θ; δ) is a feasible convex program, by KKT condition,∇λq(p(λ

D
δ (θ); θι); θo) =

A′µDδ (θ). By my assumption, A has full row rank. So, there exists some m by n ma-

trix Ā such that µDδ (θ) = Ā∇λq(p(λ
D
δ (θ); θι); θo). Since the right hand side is jointly

continuous in (θ; δ) at (θ∗;0), µDδ (θ) must also be continuous in (θ; δ) at (θ∗;0). Let

µ := min1≤i≤n{µD0,i(θ∗) : µD0,i(θ
∗) > 0}. By continuity, there exists δ̄5 > 0 such that

||µDδ (θ)− µD0 (θ
∗)||2 < µ for all θ = (θo; θι) and δ satisfying ||θι − θ∗ι ||2 ≤ δ̄5, ||θo − θ∗o||2 ≤ δ̄5

and ||δ||2 ≤ δ̄5. Since, by definition, δ̄ ≤ δ̄5, for all θ = (θo; θι) and δ satisfying ||θι−θ∗ι ||2 ≤ δ̄,

||θo− θ∗o||2 ≤ δ̄ and ||δ||2 ≤ δ̄, I have µDδ,i(θ) > 0 whenever µD0,i(θ
∗) > 0; so, the corresponding

constraints in QPλ(θ; δ) are binding due to the KKT condition that (AλDδ (θ)− C
T
)′µDδ (θ) = 0.
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