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ABSTRACT 

 
 
 

The “big data” revolution of the past decade has allowed researchers to procure or 

access biological data at an unprecedented scale, on the front of both volume (low-cost 

high-throughput technologies) and variety (multi-platform genomic profiling).  This has 

fueled the development of new integrative methods, which combine and consolidate 

across multiple sources of data in order to gain generalizability, robustness, and a more 

comprehensive systems perspective.  The key challenges faced by this new class of 

methods primarily relate to heterogeneity, whether it is across cohorts from independent 

studies or across the different levels of genomic regulation.  While the different 

perspectives among data sources is invaluable in providing different snapshots of the 

global system, such diversity also brings forth many analytic difficulties as each source 

introduces a distinctive element of noise.  In recent years, many styles of data integration 

have appeared to tackle this problem ranging from Bayesian frameworks to graphical 

models, a wide assortment as diverse as the biology they intend to explain.  My focus in 

this work is dimensionality reduction-based methods of integration, which offer the 

advantages of efficiency in high-dimensions (an asset among genomic datasets) and 

simplicity in allowing for elegant mathematical extensions.  In the course of these 

chapters I will describe the biological motivations, the methodological directions, and the 

applications of three canonical reductionist approaches for relating information across 

multiple data groups. 

 



1 
 

 
 
 
 
 

CHAPTER I 

 
Introduction 

 
 
 

Background and Motivation 

 
The ability to measure, store, and process vast amounts of biological data has 

improved exponentially during the “big data” revolution of the past decade.  Low-cost 

high-throughput technologies such as genomic microarrays (Ventimiglia and Petralia, 

2013; Angenendt, 2005) as well as sequencing and mass spectrometry-based assay 

techniques (van Dijk et al., 2014; Yates et al., 2009) have led to the profiling of DNA, 

proteins, and small molecules at an unprecedented scale.  Even without the state-of the art 

tools, researchers can access at their fingertips petabytes (1015 bytes) of information 

available in public repositories (Cook et al., 2016; Weinstein et al., 2013).  Our strategies 

for computation are also transforming to keep pace with this deluge of data as more and 

more computing systems migrate to cloud-based (Dai et al., 2012) and heterogeneous 

environments (Schadt et al., 2010). 

Nevertheless many obstacles still lie ahead in the endeavor of explaining 

biological systems quantitatively.  As always there are technological considerations, such 

as balancing signal stability versus cost-effectiveness (Ventimiglia and Petralia, 2013) 

and conserving protein functionality during immobilization assays (Angenendt, 2005).  

Facilitating consistent curation and expedient exchange of data across publications and 

databases also remains an important task for preserving the value of data (Howe et al., 

2008).  Furthermore, there are data-related challenges that even improvements in analytic 

capabilities cannot fully address.  By the famous “curse of dimensionality” (Somorjai et 

al., 2003), achieving sufficient statistical power becomes difficult when the number of 

samples is dwarfed by the number of molecular measurements taken.  This bottleneck has 

led to, among other complications, highly unstable genomic signatures that change in 
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composition depending on the samples included (Ein-Dor et al., 2005).  On another front, 

the “horizontally exhaustive” approach of extensively analyzing single data types has 

often proved insufficient for modeling the multi-dimensional nature of biology (Hoheisel 

et al., 2006).  For this reason, researchers have begun to look across multiple “omics” 

data platforms (genomics, proteomics, metabolomics, etc.) to gain a broader view (Kitano, 

2002).  The advent of big data brought forth many promises, but our current ability to 

access information far outpaces our ability to comprehend it. 

What is perhaps the most central problem for biological data is that it is inherently 

complex and heterogeneous (Marx, 2013).  The molecular dynamics of the cell span 

numerous levels of regulatory networks (transcription, translation, epigenetic regulation, 

etc.) that comprise of countless members interacting both within and between levels.  

Moreover the molecular signatures (or any other biological attributes) are very noisy and 

tend to vary across individuals, which is especially problematic when sample sizes are 

small.  It should come as no surprise then that analyses restricted among single types of 

data or single sample cohorts experience limitations in scope.  To gain insight into more 

complex and consequential phenomena, evolving from a series of disconnected snapshots 

to a multi-faceted and holistic view of the biological system will be essential. 

The advancements in our data infrastructure and tools ushered in many new 

analytic approaches, one of which is the integration of multiple sources of data as a new 

class of methodologies.  Drawing upon multiple sources has two main advantages.  The 

first is that combining data across studies (across observations) grants higher statistical 

power and improves generalizability.  The second is that combining data across data 

types (across variables) provides a broader systems perspective from multiple vantage 

points.  In the past, limitations in data availability generally reduced the need for serious 

consideration on how to integrate data.  The handling of multiple datasets more often 

played a restricted role separate from the main analysis, for instance in the form of batch 

effect adjustment (Benito et al., 2004) or meta-analysis (Rhodes et al., 2002).  Now, as 

collecting and accessing large quantities of data from multiple sources become more 

feasible, a new wave of full-fledged integration-based techniques has emerged. 

Wei (2015) provides an extensive but not exhaustive review of recent integrative 

techniques.  Unsurprisingly, the statistical approaches represented are as diverse as the 
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biology they aim to model.  Perhaps the most abundant are Bayesian hierarchical models 

(Ruan and Yuan, 2011; Conlon et al., 2006; Wang et al., 2013; Lock and Dunson, 2013; 

Xing et al., 2011), whose flexible parameterizations offer a natural and interpretable way 

of combining different biological data types and relationships that connect them.  

Meanwhile, others adopt a more mathematical approach of using norm penalization to 

directly induce similarity in model coefficients across data groups (Ma et al., 2011; Fan 

and Li, 2002; Wang et al., 2009).  In order to leverage the unique relational information 

of genomic regulatory pathways and molecular interaction networks, a number of 

graphical methods feature ways to incorporate existing knowledge of pathways into 

traditional frameworks (Khatri et al., 2012; Mitrea et al., 2013) or to consolidate multiple 

networks into a single model (Kolar et al., 2014; Wang et al., 2014).  Finally, 

dimensionality reduction-based methods (Witten and Tibshirani, 2009; Zhang et al., 2012; 

Li et al., 2012; Lock et al., 2013) seek to alleviate the daunting complexity of biological 

data by decomposing or describing the observed variation with only a few key 

components or modules. 

 
 
 

Description and Outline 

 
In this thesis, I will introduce a series of novel dimensionality reduction-based 

techniques for analyzing multiple groups of data.  As with other methods of this class, the 

goal is to reduce complex patterns into simple elements in the hopes of improving 

interpretability and efficiency.  However, in the process of expanding this reductionist 

approach to multiple data sources, the intention is to explore the canonical ways in which 

data can be related across distinct groups.  Therefore although the motivating questions at 

play here all originate from biology, there will be more focus on statistical issues rather 

than domain-specific ones so as to establish sound principles applicable to general 

integrative problems.  Just as these methods are meant to decompose information across 

groups, so too do they represent strategies in decomposing the problem of data 

integration into its fundamental components. 

Chapter 2 will focus on the integration of multiple nonnegative datasets under a 

matrix factorization framework.  The problem arises in the cross-platform analysis of 
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omics expression data in which the goal is to find regulatory modules detectable across 

multiple data types (e.g. gene, protein, and miRNA expression).  Nonnegative data are 

well-suited for studying biological data as they can be readily interpreted as signal 

strengths (e.g. of microarray probes), and nonnegative factor solutions provide the 

intuitive perspective of explaining observed patterns as a sum of parts.  However, 

nonnegativity also brings analytic difficulties in the form of less uniquely defined 

solutions and unconventional algorithmic approaches.  With this in mind, an alternative 

factorization structure is proposed, which distinguishes between common and distinct 

variation across datasets.  Supplemented by an unconventional yet natural tuning 

procedure, this produces not only a flexible modeling of the heterogeneity among the data 

sources, but also an adaptive one. 

Chapter 3 will cover an integrative method for classification based on partial least 

squares, which is designed to consolidate multiple cohorts of predictor and response 

datasets.  This is relevant for developing gene expression-based prognostic signatures that 

are robust among heterogeneous data from different populations or studies.  The 

methodological basis is partial least squares discriminant analysis, a well-established 

prediction tool for genomic data that affords great efficiency thanks to its dimensionality 

reduction basis and iterative regression procedure.  The main challenge lies with 

accounting for additional data groups in a way that retains model simplicity.  To this end, 

a slightly modified parameterization is used which represents the commonality among the 

data groups in terms of alignment between partial least squares weights.  This adjustment 

proves to be highly compatible to the method’s factorized regression approach as well as 

its sequential algorithmic procedure, achieving robustness through simplicity. 

Finally, in Chapter 4 I will discuss an expansion of the principal component 

analysis framework to study principal variation across multiple data groups.  The method 

will be applied to systematically navigate the multiple experimental conditions of a 

factorial design cell line study.  Borrowing principles from analysis of variance, I 

establish an analogous multivariate decomposition of variation that preserves the original 

within- and between-group structure.  Translating to the multivariate setting requires a 

few additional considerations, such as the use of principal angles to quantify the 

discrepancy between groups.  The result is a novel view of multiple datasets in terms of a 
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reduced set of within and between group components, of which the complexity and 

commonality can be quantified and utilized for unique types of inferences. 
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CHAPTER II 

 
A Non-negative Matrix Factorization Method for Detecting Modules in 

Heterogeneous Omics Multi-modal Data 

 
 
 
2.1 Introduction 

 
Technological advances allow biomedical researchers to collect a wide variety of 

omics data on a common set of samples.  Data repositories such as The Cancer Genome 

Atlas (TCGA) provide multiple types of omics data, thus enabling in-depth investigation 

of molecular events at different stages of biology and for different tumor types.  However, 

the latter task requires developing methods for data integration, a topic that has received 

increased attention in the literature. 

In genomic studies the integration of multifaceted data is becoming increasingly 

viable and insightful (Gehlenborg et al., 2010; Jörnsten et al., 2011; Imielinski et al., 

2012; Mo et al., 2013).  Cellular signals and processes depend on the coordinated 

interaction and communication among a wide variety of biomolecules including genes, 

proteins, metabolites, and epigenetic regulators.  There are multiple layers in which 

regulation takes place, and therefore multiple vantage points from which to observe 

biological activity.  A joint analysis of data on the same set of samples from multiple 

omics sources has potential to achieve more perceptive results over separate analyses, as 

well as provide a more comprehensive global view of the biological system. 

A key challenge for integration methods is dealing with heterogeneous data.  Data 

from different sources are difficult to compare due to inherent discrepancies.  Different 

genomic variables are measured and collected in different ways, and they are associated 

with different types of noise and confounding effects.  Most importantly, they represent 

different aspects of the biological system.  The discrepancy among data sources 

contributes to a useful multifaceted view of the system, but it also brings forth a new 

level of complexity that makes it hard to distinguish the coordinated signal. 
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There are many integration techniques that deal with the complexity of multiple 

sources by relying on prior knowledge of the relationships that connect them.  Some 

procedures seek to map different experimental data types, such as gene expression, 

miRNA expression, and copy number variation to a common space of known biological 

pathways or sets (Khatri et al., 2012; Mitrea et al., 2013, and references therein).  Others 

select features or assign weights to features based on prior knowledge, possibly using 

such information in a linear-based model (Jensen et al., 2007; Stingo et al., 2011; 

Jauhiainen et al., 2012) or in a framework for identifying modules (Li et al., 2012; Srihari 

and Ragan, 2013).  All of these approaches require the consultation of an external 

resource, such as signaling pathways or gene interaction networks.  While this supervised 

approach is convenient (and sensible in certain respects), it relies heavily on the external 

information being valid and representative, which is not always guaranteed, even in the 

modern era of data availability.  In addition, relating variables based on previously 

established findings can introduce an element of bias and subjectivity that hinders the 

discovery of new associations. 

In contrast to such supervised approaches, our objective is to develop an 

integration method that directly leverages the advantage of multiple data sources in order 

to deal with heterogeneity.  In multiple data sets, the signal of interest is typically 

common among all sources (homogeneous), while extraneous effects tend to differ across 

sources (heterogeneous).  The main principle of our approach is to separate the 

homogeneous and heterogeneous effects among the sources in order to extract the 

coordinated signal from extraneous noise.  Many existing integration techniques similarly 

make the distinction between common and distinct effects across sources, such as those 

extending the Dirichlet mixture model (Lock and Dunson, 2013) and principal 

component analysis (Lock et al., 2013). 

Our proposed method extends an integrative nonnegative matrix factorization 

framework (Zhang et al., 2012) via a partitioned factorization structure that captures 

homogeneous and heterogeneous effects.  A novel tuning selection procedure allows the 

model to adapt to the level of heterogeneity among the data sets.  We apply our approach 

to an integrated study of ovarian cancer involving three types of genomic variables, and 
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discover multi-dimensional modules exhibiting topological patterns of expression across 

known cancer-related pathways. 

 
 
 
2.2 Methods 

 
2.2.1 Nonnegative Matrix Factorization 

 
Nonnegative matrix factorization (NMF) is a powerful tool for data reduction and 

exploration that has seen popular use in analyzing high-throughput genomic data (Brunet 

et al., 2004; Tamayo et al., 2007; Devarajan, 2008).  The method is related to principal 

component analysis (PCA), except that it employs the constraint of nonnegativity in lieu 

of orthogonality.  As a result, NMF solutions are less uniquely defined, but are more 

interpretable. 

Given nonnegative data matrix �8×9, NMF finds a nonnegative factorization �: 

of rank � that best approximates �, typically in terms of the Frobenius norm (Lee and 

Seung, 1999): 

min;,< 				 ∥ � −�: ∥?�  

s.t.				� ≥ 0,: ≥ 0. 
While Euclidean distance assumes a Gaussian distribution of values, alternative 

formulations of NMF using Bregman divergences have been proposed (Sra and Dhillon, 

2005).  Bregman divergences, which bear a strong connection with exponential families 

(Banerjee et al., 2005), emcompass a wide range of distributional assumptions (e.g. 

Poisson, Exponential, and probabilistic distributions).  Although we use Euclidean 

distance in the formulation of our method later, alternative loss functions may be 

accomodated via adjustments to the algorithm. 

The factor : ×9 can be interpreted as the basic components of the data, while the 

elements of �8×  can be thought of as latent factors associated with these components.  

Thus, each observation (row of � ) is approximated by a linear combination of 

components (rows of : ) with weights given by each row of � .  The full data is 

explained by a sum of additive parts.  In biological contexts, this is intuitive because 
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biological entities and mechanisms can be naturally described with a signal that is either 

present or absent. 

Due to the constraint of nonnegativity of the approximation elements, solutions to 

NMF are only unique up to scalings and rotations.  Specifically, scaling and rotating of 

the columns of � and rows of : appropriately will not alter the overall matrix product 

�: .  For this reason, what is of interest in practice is not the values of the matrix 

elements, but their relative magnitudes with respect to each column of � or row of :. 

At its core, NMF studies the data from a different vantage point (the origin) than 

orthogonality-based approaches (center of mass) such as PCA, partial least squares 

regression (PLS), and canonical correlation analysis (CCA).  Besides being more 

intuitive, this also offers certain advantages such as the ability to capture context-

dependent patterns (Devarajan, 2008).  Meanwhile, for our purposes, the flexibility of the 

factorization is also convenient for dealing with heterogeneous data. 

 
 
 
2.2.2 Joint NMF 

 
Joint NMF (jNMF) was developed as an extension to NMF for integrating 

multiple data sets with a common set of observations (Zhang et al., 2012).  For + data 

matrices (�!)8×9A , … , (�#)8×9B , the formal problem is: 

min;,<A,…,<B 				C ∥ �� −�:� ∥?�
#

�D!
 

s.t.				� ≥ 0,:� ≥ 0, G = 1, … , +, 
with �8× , (:�) ×9H  producing +  rank �  approximations.  The method can be 

described as multiple NMF problems subject to a shared factor matrix.  Other 

decomposition-based integration methods have been proposed, including multiple 

Canonical Correlation Analysis (Witten et al., 2009), multi-block Partial Least Squares 

(Li et al., 2012), and Joint and Individual Variation Explained (Lock et al., 2013).  Such 

approaches use the orthogonality constraint, whereas jNMF and our proposed method 

employ nonnegativity. 
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Figure 2.1: (a) An example of multi-dimensional modules across three different data sources.  Three modules are 
distinguishable in Scenario 1 as strong associations between subsets of variables across sources and a common subset 
of observations.  Scenario 2 contains the same data with added random noise and confounding effects.  (b) Low-
dimensional representations of the data (��), jNMF approximations (�), and iNMF approximations (�).  The modules 
are clearly detected by both methods in Scenario 1, but only by iNMF in Scenario 2. 
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The method was shown to be able to detect coordinated activity across multiple 

genomic variables in the form of multi-dimensional modules.  The exact definition of 

modules slightly differs across studies (Li et al., 2012; Roy et al., 2013; Jin and Lee, 

2015), but their general purpose is to group variables based on common function or 

association.  This serves as a useful preliminary step to reduce the dimensionality of the 

problem.  Multidimensional modules capture common signals across multiple sources of 

data (see Figure 2.1a).  In jNMF, as well as in our method, each module represents a 

biclustering of both observations and variables, which can be visualized as a block in the 

data matrix after appropriate rotation. 

A limitation of jNMF is that it is not methodologically different from standard 

NMF.  In fact it is easy to show that the problems are equivalent by setting � =
(�!, … , �#) and : = (:!, … , :#).  As a consequence, the optimization step of jNMF 

does not distinguish between different variable sources when integrating.  This is a 

disadvantage when dealing with heterogeneous data. 

The toy example in Figure 2.1 illustrates this.  The heatmaps (Figure 2.1a) depict 

two scenarios of a three-source integration problem.  In Scenario 1, three modules are 

easily distinguishable in all sources as blocks, which associate different subsets of 

variables with the common observation groups.  Scenario 2 contains the same data, 

except with added noise (generated as discussed in Section 3.1).  In particular, the 

additional block structures that are misaligned with the underlying modules represent 

confounding effects that vary from source to source. 

Figure 2.1b plots (in low-dimensional space) the data and the corresponding 

solutions of jNMF and our proposed method (iNMF).  Both methods clearly distinguish 

the signal when the signal is clean (Scenario 1), but jNMF is less robust to heterogeneous 

noise across the sources (Scenario 2).  While jNMF is very effective for detecting 

homogeneous effects, its factorization structure �:� leaves no room for heterogeneous 

approximations.  As a result, jNMF is especially sensitive to random noise and 

confounding effects, because they typically have different structures across sources.  We 

seek to remedy this via expanding the factorization structure. 
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2.2.3 Integrative NMF 

 
Our proposed method, integrative NMF (iNMF), leverages the advantage of 

multiple data sources in order to gain robustness to heterogeneous perturbations.  While 

jNMF considers homogeneous effects �:�, iNMF additionally considers heterogeneous 

effects I�:� .  Formally, for nonnegative observationally-linked data sets �!, … , �#  as 

defined previously, the optimization problem is the following: 

min;,<A,…,<B,JA,…,JB
				C ∥ �� − (� + I�):� ∥?�

#

�D!
+ �C ∥ I�:� ∥?�

#

�D!
 

s.t.				� ≥ 0,:� ≥ 0, I� ≥ 0, G = 1,… , +. 
To retain identifiability, we penalize the Frobenius norm of the heterogeneous effects 

I�:�, as �:� can always be expressed in terms of I�:� but not vice-versa.  Rewriting 

I�:� = (� + I�):� −�:�, we see that the objective function is simply a partitioned 

version of the jNMF objective, which penalizes �� −�:�. 

The idea of combining homogeneous and heterogeneous parts across sources is 

reminiscent of the one-way ANOVA model, in which the total variation is explained by 

joint and individual effects across groups: KL = M + 'N + OLN .  However, while the 

ANOVA common effect M is estimated to be the sample mean, the iNMF homogeneous 

effect �  is actually the element-wise minimum of the approximated latent factors 

� + I�, since I� ≥ 0.  For this reason, �,I� cannot be directly used to infer the level of 

joint and individual effects among the sources, since � will be overestimated (and I� 

underestimated) when parts of the individual effects are homogeneous.  Thus, it is more 

appropriate to refer to �,I� as approximations of the true joint and individual effects 

rather than their estimates. 

Interestingly, restricting � ≥ 0, I� ≥ 0  is methodologically equivalent to 

restricting � +I� ≥ 0, I� ≤ 0 .  In the latter, the approximated common factor � 

represents the element-wise maximum of � +I�, rather than the element-wise minimum.  

Therefore, imposing nonnegativity on I�  does not lead to bias issues, but instead a 

particular perspective on the joint effects.  It is also possible to allow for both positive 

and negative values for I� if we set � = mean(I�), for instance. 
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The parameter � can be viewed as the homogeneity parameter, since larger values 

induce smaller I�:�.  The advantage of iNMF can be summarized as follows.  When data 

sets from multiple sources contain homogeneous elements, performing separate analyses 

(� = 0) sacrifices power; when they contain heterogeneous elements, a purely joint 

analysis (� = +∞) is sensitive to extraneous noise.  In real applications, data consists of a 

mixture of both, and so iNMF functions as a mixture of jNMF and NMF. 

 
 
 
2.2.4 Algorithm 

 
The classical algorithm for NMF was introduced by Lee and Seung (2001), and 

consists of simple multiplicative updates derived from auxiliary functions.  Over the 

years, new approaches based on gradient descent and alternating least squares have been 

proposed (Berry et al., 2007; Lin, 2007), which offer faster convergence and better 

convergence guarantees.  However, these alternatives generally involve an explicit 

projection step to ensure nonnegativity of solutions, whereas with multiplicative updates 

nonnegativity is implicitly guaranteed.  We base our algorithm for iNMF on the original 

method of Lee and Seung (2001), as it provides a more natural and flexible foundation 

from which to develop extensions, although other approaches are certainly viable. 

Begining with random positive initializations, we perform the following element-

wise updates at each iteration until convergence: 

�LN ← �LN
(S ��:�T� )LN(S (� + I�):�:�T� )LN 

(:�)LN ← (:�)LN ((� + I�)T��)LN((� + I�)T(� + I�):� + �I�TI�:�)LN 
(I�)LN ← (I�)LN (��:�T)LN((� + I�):�:�T + �I�:�:�T)LN. 

Since the iNMF objective function is non-convex, one should perform many repetitions 

and choose the minimizer of the objective function as the final solution.  The proof of 

monotonicity of the objective function under these updates is provided in Appendix A.1. 
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2.2.5 Sparse Formulation 

 
Although NMF naturally gives rise to parsimonious solutions (Lee and Seung, 

1999), sparsity can be further induced via penalization.  We adopt a method similar to the 

one used in Mankad and Michailidis (2013), which applies the L1-norm to elements of 

:�.  This produces a slightly different objective function: 

C ∥ �� − (� + I�):� ∥?�
#

�D!
+ �C ∥ I�:� ∥?�

#

�D!
+ ��C ∥ :� ∥!

#

�D!
, 

and algorithm: 

�LN ← �LN
(S ��:�T� )LN(S (� + I�):�:�T� )LN 

(:�)LN ← (:�)LN ((� + I�)T��)LN((� + I�)T(� + I�):� + �I�TI�:�)LN + �� 
(I�)LN ← (I�)LN (��:�T)LN((� + I�):�:�T + �I�:�:�T)LN. 

A similar sparsity formulation involving the same penalization term can be derived for 

jNMF. 

 
 
 
2.2.6 Tuning Selection 

 
As with other sparse NMF formulations (Gao and Church, 2005; Kim and Park, 

2007; Mankad and Michailidis, 2013), the sparsity parameter �� is best left to be chosen 

manually to adjust for interpretability, although it should be noted that too large of a 

choice leads to degenerate solutions.  For selecting the number of modules �, a common 

method is to use a consensus-based approach (Brunet et al., 2004), which determines the 

credibility of each tuning choice based on the stability of the corresponding solutions.  

From basic intuition, given the most appropriate ranks ��, G = 1,… , + for individual data 

sets, the integrated rank should lie somewhere between max��� and ∑ ��� .  However, it 

is sometimes preferable to choose a smaller rank for a simpler representation consisting 

of the top � modules. 
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Although a consensus-based strategy may also be used for the homogeneity 

parameter �, the nature of the iNMF framework actually allows a simpler procedure.  To 

separate the homogeneous and heterogeneous parts, we rely on measuring the level of 

heterogeneity across the sources.  We do this by comparing the objective values of jNMF, 

which represent complete homogeneity, and separate NMFs (sNMF), which represent 

complete heterogeneity. 

Given a decreasing sequence of �, the procedure is as follows: 

1. Perform jNMF and sNMF on the data sets, and store the unsquared residual 

quantities: 

VW =C ∥ �� −�(W):�(W) ∥?�
, VX =C ∥ �� −��(X):�(X) ∥?�

. 
2. For each � in the decreasing sequence: 

a. Perform iNMF with homogeneity parameter � and store: 

VY(Z) =C ∥ �� −�(Y,Z):�(Y,Z) ∥?�
. 

b. If VY(Z) − VW > 2(VW − VX), then stop and select the previous �. 

By selecting the smallest � for which the threshold is not exceeded, we seek to attribute 

as much of the data as possible to heterogeneous effects (I�:�) before overfitting.  Here, 

overfitting is detected when the difference between the iNMF and jNMF residuals, 

VY(Z) − VW , becomes significantly large, as typically we would expect jNMF to detect 

some of the joint signal.  More discussion on this procedure can be found in Appendix 

A.3. 

 
 
 
2.3 Simulation Study 

 
We compare jNMF and iNMF based on their abilities to identify the structure of 

the true modules, which amounts to identifying the correct biclusters of observations and 

variables.  We generated data based on a joint block diagonal structure representing the 

modules (or joint effects) of interest.  We then perturbed the data using three different 

methods, as follows.  To simulate heterogeneous effects from extraneous factors, we 
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randomly add blocks with probability �� to the base structures.  These blocks are aligned 

with the columns of the modules, but not their rows so as to be heterogeneous with 

respect to variable sources.  To simulate random noise, we applied two types of error 

(scattered and uniform) independently to each data cell.  Scattered error switches each 

entry value between zero and nonzero with probability ��, while uniform error adds a 

random Unif(−��, ��) variable to the entry and takes the absolute magnitude.  Further 

details on the data generation process can be found in Appendix A.3.  The final generated 

data matrices resemble those in the bottom row of Figure 2.1a. 

The Frobenius norm error of the approximation is not useful here as a 

performance measure, since the goal is to identify the true modules rather than to 

approximate the data.  Instead, we measure the level of signal detected relative to noise 

by considering the matrices �:� , which represent the approximated homogeneous 

effects.  For each data set ��, the module detection score ` is defined as: 

` = (Msignal − Mnoise)a/Msignal, 
where Msignal, Mnoise are the averages of the values of �:� that lie inside and outside of the 

true modules, respectively.  This score is invariant to rotations and scalings of �,:�, and 

it measures how well observations and variables are grouped according to the true 

modules.  We take the average score `  over all +  data sources as the final module 

detection score. 
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Figure 2.2: Average ratios (iNMF:jNMF) of detection performance (S) over 25 trials (with standard errors) under four 
data and module dimensions, with three types of perturbations (uniform, scattered, heterogeneous). The leftmost 
common point in each subplot represents the error scenario �� = �� = �� = 0.01, while each trajectory represents 
raising the level of a single type of error. (a): 2 sources of 40 × 40, 4 modules of 8 × 8; (b): 2 sources of 80 × 80, 8 
modules of 8 × 8; (c): 2 sources of 72 × 72, 4 modules of 16 × 16; (d): 4 sources of 40 × 40, 4 modules of 8 × 8. 
 

We compared the performance of jNMF and iNMF (200 repetitions used in each) 

under four different data scenarios: baseline (a), large number of modules (b), large size 

of modules (c), and larger number of data sets (d).  Figure 2.2 plots the average ratios 

between the iNMF and jNMF detection scores.  Under high levels of scattered and 

heterogeneous error, iNMF significantly outperforms jNMF in identifying the true 

modules.  Higher levels of uniform error does not seem to lead to significant differences.  

The two methods are only comparable under homogeneous and noise-free settings, 

otherwise the advantage of iNMF is clear.  This adaptivity of iNMF makes it robust to 

heterogeneity and noise that would meanwhile confound jNMF. 
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2.4 Application to Detecting Multi-modal Modules of Ovarian Cancer 

 
2.4.1 Data Preparation and Preprocessing 

 
For our application, we conduct a joint analysis of genetic and epigenetic 

variables to study biomarkers associated with ovarian cancer.  The data was downloaded 

from The Cancer Genome Atlas (TCGA) on August 28, 2014 from the platforms Illumina 

27K (DM), Agilent G4502A-07-2, Agilent G4502A-07-3 (GE), and Agilent H-miRNA 

8x15K v2 (ME).  All variables were Level 3 processed.  The full data consists of 15661 

DNA methylation (DM), 14821 gene expression (GE), and 799 miRNA expression (ME) 

variables from a common set of 592 ovarian cancer samples. 

Variables with missing observations were omitted.  Variance stabilization and 

nonnegativity transformations were applied as follows.  GE data was randomly truncated 

at −4 + O and 4 − O where O ∼ i.i.d. Unif(0, 10fg), and then shifted +4 units.  This is 

equivalent to applying the function h(i) = min{max{i, −4 + O},4 − O} + 4 to each entry.  

Random truncations serve to prevent data singularity issues.  ME data was log2 

transformed, truncated at 2 + O and 6 − O with the same method, and shifted -2 units.  

Each data set (DM, GE, ME) was then normalized according to its within-source standard 

deviation.  Other normalization strategies are discussed in Appendix A.4.  Next, we 

removed DM variables with means below the 15th percentile, and then DM and GE 

variables with variances below the 15th percentile, which produced the final data sets 

described above.  This filtering procedure is similar to the one used in Zhang et al. (2011). 

 
 
 
2.4.2 Module Discovery and Validation 

 
We performed the sparse versions of jNMF and iNMF (200 repetitions each) on 

the post-processed TCGA data with � = 0.1 (as chosen by our selection procedure) for a 

range of sparsity parameter choices �� = 10fj, 10fg, 0.01,0.1,1.  We first evaluated the 

validity of the findings based on concordance with reference DM, GE, and ME variables 

clusters from relevant literature.  These reference clusters consist of either two or four 

groups of variables each, and so we chose � = 2,4  to allow for more appropriate 

comparisons.  Our own empirical variable clusters were computed from the factor 
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matrices :�. We normalized each row of :� by its mean, and assigned each variable to a 

cluster 1,… , � based on the maximum in each column. 

Our first two reference clusters were derived from an integrative study of ovarian 

cancer by Bell et al. (2011) using DNA methylation, gene expression, miRNA expression, 

and DNA copy number variation data from TCGA.  Consensus NMF clustering 

established four disease subtypes based on prominent gene markers in each cluster.  

These four groups of genes, and their associated DNA methylation variables (information 

provided by TCGA), comprised our reference GE and DM clusters.  Another integrated 

analysis by Creighton et al. (2012) identified sets of miRNAs significantly associated 

with better or worse survival rates for ovarian cancer patients.  We used these two groups 

of variables as our ME reference.  A full list of these reference clusters is provided in 

Appendix A.5. 

We assessed concordance between our empirical results and the reference using 

two metrics, the Gini impurity index (Hastie et al., 2009) and the cluster purity Kim and 

Park (2008).  The Gini index for empirical cluster k is defined as: 

�L =C *̂l,L(1 − *̂l,L)
 

lD!
, 

where *̂l,L  is the proportion of elements in empirical cluster k  belonging to reference 

cluster m.  For each data source, we compute this quantity for each empirical cluster 

k = 1, … , �, and take the average as the impurity score �.  The cluster purity is defined as: 

� = 1nCmax!olo n(m, k)
 

lD!
, 

where n  is the total number of members in all empirical clusters and n(m, k)  is the 

number of members of empirical cluster k belonging to reference cluster m.  Whereas � 
measures the level of disagreement within each empirical cluster, � measures the level of 

agreement between the empirical and reference clusters. 
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 DM GE ME DM GE ME 

mean 61 58 44 49 50 65 

st.dev. 4 7 2 5 8 1 

jNMF 57 42 42 58 69 65 
iNMF 52 33 35 58 77 76 

jNMF 64 12 44 58 92 65 

iNMF 46 22 41 67 85 68 

jNMF 61 40 44 50 69 65 

iNMF 53 18 16 58 85 91 

jNMF 64 12 42 50 92 65 

iNMF 62 32 39 58 77 71 

jNMF 58 32 42 50 77 65 

iNMF 55 32 37 58 77 74 

 

Table 2.1: Impurity ( � ) and purity ( � ) scores (in percentages) of 
empirical clusters obtained from jNMF and iNMF with respect to three 
reference clusters.  Shading indicates significantly (≥2 sd) higher 
concordance compared to both the alternative method and the null 
distribution. 

 �                        � 
 
 

Null clusters 
 

 �� = 1 

�� = 0.1 

�� = 0.01 

�� = 10−3 

�� = 10−4
 

 

 

For each of these statistics, we simulated null distributions (1000 samples) by 

randomizing cluster assignments.  Table 2.1 compares the impurity and purity scores with 

respect to all three reference clusters, applied to modules obtained by jNMF and iNMF 

(as well as from the null distribution) for a range of sparsity parameter choices.  We see 

that the iNMF clusters are generally more concordant with established findings as well as 

more stable, as evidenced by the scores corresponding to the GE reference.  This reflects 

iNMFs ability to more clearly distinguish the joint signals in the midst of heterogeneous 

confounders that are likely present among the DM, GE, and ME variables. 
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(a) csNMF 

I        P        D      M 

I 

P 

D 

M 

65 23      11     14 

2 105 16      6 

19      11 76 9 

22       2       34 83 

(b) netNMF 

1       2     3     4 

I 

P 

D 

M 

12     23    0    14 
15      47    0     9 

4      34    1     5 

39 18    1     3 

Table 2.2: Overlap in membership between observational clusters.  

Our results from iNMF are concordant with (a) csNMF clusters (498 

samples), but not with (b) netNMF clusters (225 samples).  Shading 

indicates maxima in both rows and columns. 

 
 

 
 
 
 
 
 
 
 

The second step of our validation involves assessing the observational clusters 

generated by our modules (using the results for � = 0.1, � = 4.  Similar to before, we 

partitioned our 592 observations into four groups based on the maximum value within 

each row of the column-mean normalized � matrix.  We compared these clusters with 

results from Bell et al. (2011) (results obtained from Verhaak et al. (2013)) and Hofree et 

al. (2013) who analyzed samples overlapping with ours.  The first group used consensus 

NMF (csNMF) clustering, while the second applied a network-regularized NMF 

(netNMF) based on networks from public databases.  Concordance tables are presented in 

Table 2.2. 

Our empirical clusters largely coincide with those of csNMF, indicating that the 

underlying true signal among DM, GE, and ME variables is strong.  However, there are 

some discrepancies, particularly among the modules (I) and (M).  This suggests that the 

samples from these modules contain higher levels of heterogeneous noise.  Because 

iNMF is able to adjust to this type of noise, its clusters are likely a more accurate 

reflection of the true clusters.  Meanwhile, there is not as strong concordance between 

iNMF and netNMF clusters, which is likely due to the influence of external network 

information in the latter method.  While the incorporation of such information brings in 

new perspectives, the reliability of the procedure is heavily dependent on the accuracy 

and relevance of the information.  In addition, tuning selection is a delicate issue, as it is 

difficult to determine where exactly the underlying truth lies between what are suggested 

by observed patterns and prior input. 

Although relying on external information can be useful in guiding the analysis, 

there are a few disadvantages.  One is that such information may be unreliable.  Although 

public databases are becoming increasingly extensive and well-curated, their results are 
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nevertheless aggregated from many studies with different designs and objectives, and are 

thus prone to accumulated errors and oversimplification.  Incorporating additional 

information can be misleading if the information is messy or incongruous with the 

research question, as demonstrated in our validation step with observational clusters. 

Furthermore, when the procedure is supervised, findings will naturally tend 

towards the reference.  This is somewhat favorable, since results that largely deviate from 

well-established findings are less credible.  However, for the purpose of discovery, there 

is limited utility in selecting new candidates based solely on to existing results.  It is less 

subjective to withhold external information until after the analysis.  We address both of 

these concerns by performing integration independently of enrichment, thereby allowing 

our module discovery step to be data-driven rather than input-driven. 

 
 
 
2.4.3 Follow-up Analysis of Modules 

 
Current methods of attaching biological relevance to discovered modules 

frequently involve enrichment according to either pathways gathered from various gene 

or interaction databases or experimental results (Zhang et al., 2012; Li et al., 2012; Roy et 

al., 2013; Jin and Lee, 2015).  In such studies, the number of modules being considered is 

very high, which is suitable for associating with large collections of biological pathways 

and interactions.  In contrast, our study deals with substantially fewer modules, which 

represent broader effects that are more appropriately associated with disease subtypes.  

Our analysis will span multiple cancer-related pathways extracted from BioCarta and 

relevant literature.  Based on the distribution of module expression among these 

pathways, we will observe topological patterns of genomic expression and connect them 

with ovarian cancer subtypes. 

For the rest of this section, we will focus on the modules discovered by iNMF at 

�� = 0.01, as they appear to be most concordant with the reference variable clusters, in 

particular the GE cluster that is associated with four subtypes of ovarian cancer: 

Immunoreactive, Proliferative, Differentiated, and Mesenchymal (Bell et al., 2011).  

These subtypes were defined based on high expression of gene markers associated with 
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responsiveness to antigens (I), proliferation (P), cell differentiation (D), stromal cell 

development (M). 
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As in our validation step, we assigned genes to modules (I/P/D/M) based on the 

maximum value within each column of the normalized :� matrix.  Thus, membership to 

a module means that a gene is most highly expressed in that module relative to other 

modules.  Figure 2.3 shows the distribution of the modules across multiple cancer-related 

processes, which include DNA repair (top right), cell cycle regulation (bottom), cell 

survival and proliferation (left), and cell migration (top left).  Visualization was 

performed with Cytoscape (Cline et al., 2007). 

The DNA repair pathway begins with the Rad9/Hus1/Rad1 and 

Rad50/Mre11/NBS1 complexes, which sense DNA damage.  The signal is transduced via 

the protein kinases ATM and ATR to checkpoint regulators p53, Chk1, and Chk2 that 

delay cell cycle progression, as well as to inducers of homologous repair BRCA1, 

BRCA2, and Rad51 (Yoshida and Miki, 2004; Houtgraaf et al., 2006).  Cell cycle 

progression is managed by CDK2-activated CDC45 (initiates DNA replication), 

transcription factors E2F (activate S phase progression), and CDK1 (promotes G2-M 

transition).  Also, Rb1 is a tumor suppressor involved in regulating many cellular 

processes, including G1-S transition, proliferation, and differentiation (Giacinti and 

Giordano, 2006). 

In the PI3-Kinase pathway, growth factors activate PI3K, of which p110 is a 

catalytic subunit, and directly opposes PTEN in phosphorylating PIP2 into the lipid 

messenger PIP3.  PIP3 recruits the kinase AKT, which begins a variety of signaling 

cascades that lead to growth, survival, and proliferation.  AKT inhibits proapoptotic BAD 

and growth-inhibiting TSC, as well as activates MCM2, which degrades the cell cycle 

regulator p53.  Phosphorylation of FOXO by AKT retains it in the cytoplasm and 

prevents its transcriptional activation of cell cycle regulation (via p21) and apoptosis (via 

FASLG), thus promoting proliferation and survival (Chalhoub and Baker, 2009).  Lastly, 

transmembrane integrin signals activate FAK and SHC which initiate cell migratory 

pathways involved in directional migration and random motility, respectively.  Both of 

these pathways are inhibited by PTEN via dephosphorylation. 

By viewing the collection of pathways in light of the module memberships, we 

see several interesting patterns and connections.  Members of module (I) are the most 

common, and are mainly distributed among the DNA repair and cell cycle regulation 
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pathways.  This may represent a baseline biomarker signature that is persistent 

throughout a cell’s life cycle.  Members of module (P) are associated, appropriately, with 

proliferation and survival pathways.  Genes in module (D) are more dispersed, and 

participate in a number of processes including checkpoint regulation, survival, and cell 

migration.  Finally, genes in module (M) seem to be involved in upstream regulation of 

cell migration as well as tumor suppression, indicating late stages of tumor development. 

It is important to note that our discovered modules do not necessarily equate to 

subtypes of observations or variables.  Although the modules can certainly be used to 

characterize subtypes as we have shown, there is not necessarily a one-to-one 

correspondence between the two.  For instance, in our above analysis (Figure 2.3) module 

(I) was most highly expressed among many variables, but the distribution of the other 

modules (P/D/M) may reveal alternative ways to subtype these variables.  The modules 

discovered here describe genomic and observational patterns that additively construct the 

observed data most efficiently.  In this sense, they represent the underlying latent 

mechanisms that give rise to both observation and variable subtypes, but not necessarily 

the subtypes themselves. 

 
 
 
2.5 Discussion 

 
As data collection technologies improve and data repositories expand, the quality 

and accessibility of data from multiple biological sources will continue to grow.  As a 

result, the combined perspectives from internal signatures (e.g. genes, proteins, and 

metabolites) as well as external information (e.g. clinical status, patient history, and 

environmental factors) are contributing to an increasingly rich and complex model of the 

biological system.  However, the abundance and diversity of data is accompanied by the 

problem of heterogeneity, both in the nature of data sources and in the data collection 

processes.  It is important for strategies of data integration to evolve alongside these new 

challenges. 

We have introduced a novel method of data integration based on a classical 

matrix decomposition technique.  Our method was applied to an integrative study of 

ovarian cancer, in which we discovered multi-dimensional modules consistent with 
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previously established variable-based subtypes as observational clusters.  These modules 

express notable topological patterns among cancer-related pathways, suggesting a 

connection with underlying biomarker signatures associated with disease subtypes. 

The key merits of our approach are as follows.  As with jNMF, iNMF is able to 

detect coordinated signals across multiple data sets.  However, iNMF is also equipped to 

deal with issues arising from heterogeneous data.  With its more flexible factorization 

structure, iNMF is able to adapt to the level of disparity between the data sets, in order to 

extract the joint signal of interest from heterogeneous confounders.  To distinguish 

between common patterns spanning multiple sources and distinct patterns unique to 

individual sources is the first step for developing a proper integration procedure. 

The basic framework of iNMF leaves room for further regularization beyond 

sparsity to be incorporated.  One possibility is to consider relationships between 

individual variables from the same data source (gene-gene interactions) or from different 

sources (miRNA-gene or DNA methylation-gene regulations) (Li and Li, 2008; Zhang et 

al., 2011).  Another approach is to induce adherence to known biological networks or 

observational relations by means of network statistics.  The main challenges are adapting 

the penalties to the NMF framework and finding effective strategies for tuning selection. 

Although our analysis examined several types of genomic variables, our results 

capture only a snapshot of cancer biology.  For future investigations, it may be fruitful to 

explore more types of genomic data, such as DNA copy number variation and mutation 

status, or even clinical information.  It may also be worthwhile to expand the analysis to 

multiple types of cancers.  With the right tools, having a wider selection of data sources 

will only help in understanding complex disease mechanisms. 
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CHAPTER III 

 
An Adaptive Partial Least Squares Classifier for Robust Prognostic Gene 

Signatures 

 
 
 
3.1 Introduction 

 
In recent years, studies on the genomic patterns of breast cancer have led to a 

number of molecular signatures associated with various disease attributes such as 

metastasis (Wang et al., 2005), p53 status (Miller et al., 2005), response to treatment 

(Ayers et al., 2004), and clinical outcome (Finak et al., 2008).  These results have led to a 

better understanding of the complex genetic landscape underlying the disease (Sørlie et 

al., 2003; Hu et al., 2006; Prat et al., 2010), as well as the development of new 

microarray-based tools for guiding treatment strategies such as MammaPrint (van’t Veer 

et al., 2002) and Oncotype (Paik et al., 2004).  However the clinical utility of these 

molecular signatures, or their value in helping to distinguish between high-risk and low-

risk cases, is limited in that they at best provide only incremental improvements from 

using standard clinicopathological parameters and are unable to replace them (Sotiriou 

and Lajos, 2009).  Moreover, the prognostic power of these signatures is primarily based 

on proliferation-related and estrogen receptor (ER) signaling-related genes (Weigelt et al., 

2012), which suggests that there is much potential variation of the disease not yet 

accounted for. 

One key obstacle for developing effective genomic signatures is the heterogeneity 

among studies, as the differences in tumor samples and experimental procedures 

inevitably confound the observed data and ultimately the findings.  Coupled with the 

complex correlation structure among genes, this leads to highly unstable and cohort-

dependent signature contents (Ein-Dor et al., 2005).  One answer is to combine multiple 

studies in order to dampen the cohort-specific noise (Hu et al., 2006; Teschendorff et al., 

2006; Wirapati et al., 2008), which has proved useful in identifying similar groups of 
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patients with poor outcome (Weigelt and Reis-Filho, 2010).  Since the molecular patterns 

of breast cancer are especially diverse (Sørlie et al., 2003; Hu et al., 2006), drawing upon 

multiple data sources may be essential to producing robust and generalizable results. 

Data integration methods in the genomics setting come in a large variety.  Meta-

analyses statistics such as the Cox regression score (Teschendorff et al., 2006) or the 

module score (Wirapati et al., 2008) take the most direct approach of summarizing the 

signal from each cohort with a convenient metric, but this only provides a snapshot of the 

information gathered from each study.  Methods such as those based on statistical 

discrimination (Marron et al., 2007) and surrogate variable analysis (Leek and Storey, 

2007) aim to eliminate systemic differences (batch effects) between datasets, but they are 

designed to adjust the data independently of the main analysis, and thus may be used 

concurrently with other integration techniques (such as this one).  Adaptivity is the 

hallmark of a Bayesian paradigm, and there have been a number of Bayesian frameworks 

which provide flexible modeling with a hierarchical structure (Shen et al., 2004; Conlon 

et al., 2006; Scharpf et al., 2009).  However, these approaches generally depend on a 

heavily parameterized model and such complexity may find it difficult to produce 

generalizable results for genomics applications.  Notably, the aforementioned papers do 

not approach validation on independent datasets. 

Not considered here, but of interest to the genomics setting, is the integration of 

data gathered from the same observations but across different platforms, such as gene 

expression, miRNA expression, DNA methylation, and clinical variables.  There have 

been a handful of methods designed to model the complex relationship between genetic 

and epigenetic variables.  These include approaches based on linear regulatory modules 

(Zhu et al., 2016), Bayesian hierarchical modeling (Wang et al., 2013), hypothesis testing 

(van Iterson et al., 2013), and partial least squares (Li et al., 2012).  These methods 

address a different problem than the one considered in this paper, which is the analysis of 

multiple datasets of the same data type. 

We introduce integrative partial least squares (iPLS), an new classification tool 

for consolidating multiple cohorts of data.  The method is a natural extension of a 

classical dimensionality reduction-based regression method known for its efficiency in 

high dimensions.  A simple but powerful modification results in an adaptive model that is 
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robust to heterogeneity between cohorts.  Simulation results and a data example for 

predicting cancer recurrence using multiple gene expression data cohorts demonstrate the 

method's advantage over existing benchmarks. 

 
 
 
3.2 Methods 

 
3.2.1 Partial Least Squares 

 
Partial least squares (PLS) regression has been widely used in genomics as a tool 

for classification (Nguyen and Rocke, 2002; Pérez-Enciso and Tenenhaus, 2003; Fort and 

Lambert-Lacroix et al., 2005), dimensionality reduction (Boulesteix, 2004; Gidskehaug et 

al., 2007), and more recently variable selection (Lê Cao et al., 2008; Chun and Keleş, 

2010; Li et al., 2012).  Fundamentally, PLS decomposes explanatory and response data 

into linear combinations of latent factors, which represent the underlying key 

mechanisms of the system.  The inherent dimensionality reduction step makes the method 

ideal for genomic data. 

The PLS weights are vectors that represent the most important patterns relating 

the predictors and the response, and are found by maximizing the covariance between the 

two.  Given data matrices �8×p, q8×r (whose columns are centered and normalized) and 

choice of dimension �, PLS finds � iterations of weights {sl, tl}lD!  by solving (Wold, 

1985): 

                                 sl, tl ← argmaxx,y:∥x∥D∥y∥D!cov(�s, qt) = sT�Tqt. (3.1) 

We consider here only univariate classification (z = 1) in which case the condition 

tl = 1 always holds and can be omitted. 

After each iteration of weight computations, the matrices �, q are adjusted (or 

deflated) to avoid overlapping solutions with the previous iteration.  Many versions of 

PLS exist which differ on their methods of deflation (Wegelin, 2000; De Jong, 1993): 

PLS-mode A, PLS2, PLS-SVD, and SIMPLS.  We focus here on the prediction-oriented 

PLS2, whose deflation step is: 

�new ← � − �slslT�T�/slT�T�sl , 
qnew ← q − �slslT�Tq/slT�T�sl. 
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Typically the weights (sl, tl), scores ({l, |l), and loadings (}l, ~l) for �, q respectively: 

{l = �sl, }l = �T�sl/slT�T�sl , 
|l = qtl , ~l = qT�sl/slT�T�sl, 

are computed and stored as columns in their respective matrices: 

sp× , tr× , {8× , |8× , }p× , ~r× , 
to facilitate calculations.  For PLS2, the prediction scores given new data �∗ is computed 

as q̂ = �∗�, with the coefficient �p×r given by: 

                                               � = (1/��) ⋅ s({T{)a~T ⋅ ��T , (3.2) 

where the column standard deviations (��)p×!, (��)r×!  of �, q  serve as normalizing 

constants, and �a  denotes the Moore-Penrose pseudoinverse of �  (Pedregosa et al., 

2011). 

For binary classification problems these prediction scores are used to rank new 

samples, to be later used for classification.  This method is known as partial least squares 

discriminant analysis (PLS-DA) (Pérez-Enciso and Tenenhaus, 2003), which we will 

focus on in the course of this paper.  The PLS solution can also be used as input for other 

classification techniques such as linear or quadratic discriminant analysis (Nguyen and 

Rocke, 2002) and logistic regression (Fort and Lambert-Lacroix et al., 2005). 

 
 
 
3.2.2 Integrative PLS 

 
Given multiple cohorts of data, two standard approaches are to apply PLS 

separately on each dataset (and average the resulting prediction scores) or to apply PLS 

jointly to the combined datasets.  We refer to these approaches as separate and joint PLS 

(sPLS and jPLS).  Broadly speaking, the level of differences among the groups of data 

determines the relative performance of the predictions generated from these approaches.  

If the data are largely homogeneous, then the joint analysis achieves higher power.  If 

there is substantial heterogeneity in the relationships mapping the predictors to the 

response, then the separate analysis is less affect by confounding.  While nature of these 

cohort differences is typically unknown, we propose that gains in accuracy can still be 

achieved from an adaptive model. 
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The principle of integrative PLS (iPLS) is to consider a spectrum of intermediate 

models between sPLS and jPLS by evaluating the similarity in weights across groups.  

Given +  cohorts of data pairs (��)8H×p, (q�)8H×!, G = 1,… , +  (whose columns are 

centered and normalized) and a choice of dimension �, we compute � iterations of + 

weights {{sl}�D!# }lD!  by solving: 

                           {sl,�}�D!# ← argmaxxH:∥xH∥D!
!
pS s�T��Tq�� + Z�#�S s�Ts���,�� , (3.3) 

for chosen commonality parameter �� ≥ 0 .  With the correlation computation in the 

second term, larger �� induces commonality across groups.  This computation also makes 

the objective non-convex, and so multiple iterations of our coordinate descent algorithm 

(discussed later) may be needed to bypass local optima.  As �� approaches 0 and +∞, the 

iPLS solution tends towards the solutions of sPLS and jPLS respectively. 

 
 
 
3.2.3 Algorithm 

 
Apart from the calculation of the weights, the majority of the iPLS algorithm 

resembles that of PLS.  Given + data pairs (��)8H×p, (q�)8H×!, G = 1,… , + as before, 

the weights are found by repeating the following update across G = 1,… , +  until 

convergence of the objective (Equation 3.3): 

s� ∝ 1*��Tq� + 2��+� C s��
����

, 
where the updated quantity is normalized to unit length.  This update maximizes the iPLS 

objective function with respect to s�  at each iteration.  This can be easily seen by 

rewriting Equation 3.3 as: 

ℱ~ = !
pS s�T��Tq�� + �Z�#� S s�Ts������ , 

which is equivalent due to the unit-length constraints on s�. 

We note that the algorithm appears to perform sufficiently well with only two 

repetitions, one with initialization at the sPLS solution and the other with initialization at 

the jPLS solution.  As with PLS, the weights (sl,�), scores ({l,�, |l,�), and loadings 

(}l,�, ~l,�) are stored as matrix columns and the coefficients �� are computed (as shown 
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in Equation 3.2) for each group G.  To make predictions on a new dataset �∗, we take the 

average of these coefficients and proceed as in standard PLS-DA with q̂ = �∗∑ �� /+. 

Selection of �, �� is performed with 10-fold cross validation with the area under 

the curve (AUC) of the receiver operating characteristic, stratified with respect to the 

response variable and the data group membership.  The following tuning ranges are 

suggested: � = 1 to 4, �� ∈ {10f�.�, 10f�.��, … , 10�.�}.  Since large ��  induces a wide 

range of iPLS solutions (s� only need to be close across G to produce large values in 

Equation 3.3), we improve stability by replacing the iPLS solution with that of jPLS if 

the largest selection of �� (i.e. 10�.�) is selected. 

 
 
 
3.3 Simulation Study 

 
For our simulations, we generated a system of +  data pairs 

(��)8H×p, (q�)8H×!, G = 1,… , + according to a basic linear model with normal errors as 

follows: 

(��)LN ∼ i.i.d.�(0,1), (O�)LN ∼ i.i.d.�(0,0.1), 
q� ∼ 1{���� + �� ≥ 0}. 

The regression coefficients ��  represent the causal structure between predictors and 

response for each group, with non-zero entries (all of which take unit value) representing 

the causal signal.  We specified that among these non-zero elements, �� are common and 

� ,�  are distinct across groups.  For instance, �� = 4,� ,!:� = {3,1} may produce the 

following slopes: 

�! = (1 1 1 1 1 1 1 0 0 ⋯), 
�� = (1 1 1 1 0 0 0 1 0 ⋯). 

We evaluated iPLS against a collection of standard prediction methods consisting 

of PLS, logistic regression (LR), support vector machines (Vapnik, 1998) with the 

Gaussian kernel (gSVM), and random forest (Breiman, 2001) (RF), all implemented with 

the scikit-learn package (Pedregosa et al., 2011) in Python.  With the exception of iPLS, 

all methods were performed with separate and joint approaches, meaning that they were 

applied to the cohorts independently and as a single merged dataset (denoted with the 
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prefixes “s-“ and “j-“ respectively).  Parameters for PLS-type methods were chosen as 

per the recommendations discussed above.  AUCs were computed from resulting 

predictions (or predicted probabilities) and averaged over 25 trials.  For each of the 

separate approaches, the average of the + sets of predictions was taken to be the final 

prediction, similar to the strategy for iPLS. 

To reflect the data example discussed in the next section, we simulated the case of 

training on three cohorts (+ = 3,�!:# = 150, * = 200) to make predictions on a fourth 

cohort (�#a! = 150, * = 200 ).  To study performance over all levels of similarity 

between groups, we varied the amount of overlapping signal ��  among {5,10, … ,50}.  
Note that the data was generated using + = 4 under the method described above so that 

the fourth dataset can be used for independent evaluation.  The number of non-

overlapping causal variables dictates the level of heterogeneity among cohorts 

We first consider the specifications � ,!:# = {150 − �� , 150 − �� , 150 − �� , 0} 
representing the setting in which the heterogeneity in the causal signal is distributed 

across training cohorts.  As Table 3.1 shows, the top predictors include iPLS, jPLS, sPLS, 

jLR, and jSVM, with jLR performing slightly better under total commonality between 

groups (�� = 50, i.e. total signal overlap) and iPLS and sPLS performing slightly better 

under minimal commonality (�� = 5  or minimal signal overlap).  In general, joint 

applications of methods tended to fare better than separate applications.  Random forest 

performs poorly in this setting most likely because the broad dependency structure of our 

generated data is difficult to capture via simple trees.  Importantly, iPLS maintains 

competitive accuracy across the range of signal overlap. 
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Table 3.1: Simulated predictive accuracy (average AUCs) evaluated on 

independent cohorts, under varying degrees of signal overlap (��).  Dimensions: (150 × 200) ∗ 3; signal structure: � ,!:# = {50 − �� , 50 − �� , 50 − �� , 0}. 
 ��  iPLS jPLS sPLS jLR sLR jSVM sSVM jRF sRF 

10 0.69 0.68 0.68 0.66 0.61 0.67 0.6 0.54 0.52 

15 0.73 0.72 0.73 0.7 0.66 0.72 0.64 0.55 0.52 

20 0.77 0.77 0.77 0.75 0.69 0.77 0.68 0.56 0.53 

25 0.8 0.8 0.79 0.78 0.71 0.79 0.69 0.57 0.55 

30 0.82 0.83 0.82 0.81 0.73 0.82 0.71 0.58 0.55 

35 0.84 0.84 0.83 0.83 0.74 0.83 0.72 0.58 0.55 

40 0.86 0.86 0.84 0.86 0.75 0.85 0.73 0.57 0.55 

45 0.89 0.89 0.86 0.89 0.78 0.87 0.76 0.59 0.56 

50 0.9 0.9 0.87 0.92 0.79 0.88 0.77 0.6 0.58 

 

Table 3.2 shows predictive performance under � ,!:# = {150 − �� , 0,0,0} 
representing the setting in which there is an uneven distribution of heterogeneity in the 

causal signal due to one problematic cohort.  Here, the advantage of iPLS over others is 

more pronounced under low levels of signal overlap.  Since the standard joint and 

separate applications of predictors do not take into account the level of discrepancy 

between groups, their approach to handling the noise in the first cohort amounts to 

distributing it across the analysis.  On the other hand, iPLS features a more adaptive 

approach in which the computation of its solution (s�) is intimately tied with how the 

solution differs across groups ( ∥ ∑ s�� ∥� ).  By searching among a spectrum of 

intermediate models of varying levels of discrepancy among groups, the method seeks to 

identify the best performing model to maximize robustness.  Importantly, iPLS achieves 

such adaptivity under a relatively simplistic framework and algorithm, which is precisely 

advantageous for the noisy and heterogeneous genomics data environments. 

Table 3.2: Simulated predictive accuracy (average AUCs) evaluated on 

independent cohorts, under varying degrees of signal overlap (��).  Dimensions: (150 × 200) ∗ 3; signal structure: � ,!:# = {50 − �� , 0,0,0}. 
 �� iPLS jPLS sPLS jLR sLR jSVM sSVM jRF sRF 

10 0.85 0.83 0.82 0.81 0.79 0.82 0.77 0.63 0.58 

15 0.86 0.85 0.83 0.84 0.79 0.83 0.77 0.61 0.58 

20 0.86 0.86 0.84 0.86 0.79 0.85 0.76 0.6 0.56 

25 0.88 0.88 0.85 0.87 0.79 0.86 0.77 0.61 0.58 

30 0.88 0.88 0.86 0.88 0.8 0.86 0.77 0.6 0.58 

35 0.89 0.89 0.87 0.89 0.8 0.87 0.77 0.6 0.56 

40 0.89 0.89 0.87 0.9 0.79 0.88 0.77 0.6 0.57 

45 0.9 0.9 0.87 0.91 0.79 0.88 0.77 0.58 0.57 

50 0.9 0.9 0.87 0.92 0.79 0.88 0.77 0.6 0.58 
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3.4 Application to Constructing Robust Prognostic Genetic Signatures 

 
3.4.1 Data Preparation and Preprocessing 

 
We obtained gene expression and clinical data from a total of 814 breast cancer 

samples from four cohorts: Sotiriou et al. (2006), Wang et al. (2005), Ivshina et al. (2006), 

and Pawitan (2005).  The datasets are available from their journal articles and the Gene 

Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo) with accession 

numbers GSE2990, GSE2034, GSE4922, and GSE1456.  Samples were selected based 

on availability of clinical information (event of relapse and ER status).  Only probe sets 

without missing values and present in all four cohorts were used.  Transformations were 

applied to convert the probe intensities (all measured on the Affymetrix Human Genome 

U133A Array) to a log2 scale.  Values from multiple probe sets mapping to the same 

gene were combined by taking the median. 

We conducted separate analyses for ER positive and ER negative patients, as the 

molecular distinction between the two diseases has been well-established (Gruvberger et 

al., 2001; Sørlie et al., 2003; Hu et al., 2006).  We considered in our analysis the top 200 

genes with the highest absolute correlation with the response (event of relapse).  While 

such a large quantity of genes may not necessarily optimize predictions, it allows for the 

inclusion of a broad range of genes to ameliorate the issue of volatile identifications of 

gene sets (Ein-Dor et al., 2005).  The final dimensions of the datasets were $(147 + 209 + 

211 + 62) \times 200$ for both ER positive and ER negative cancer samples. 

 
 
 
3.4.2 Prediction on Independent Cohorts 

 
We evaluated the same methods considered in our simulation study for predicting 

the event of relapse using gene expression profiles.  Parameters for iPLS and PLS were 

chosen with cross validation as previously described.  We note that the patients among 

these cohorts were heterogeneous in various aspects such as the type of treatment 

received (e.g. radiotherapy, systemic therapy) and duration of the follow-up.  

Nevertheless cancer recurrence serves as an important measure of disease severity which 

can guide treatment strategies.  To reproduce the effect of applying learned genomic 
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signatures on new samples, we trained on three of the cohorts (+ = 3 ) to make 

predictions on the remaining cohort.  This was repeated for each combination of cohorts 

and each ER status for a total of eight evaluations. 

Figures 3.1a and 3.1b shows the predictive accuracies for each method under each 

of the training-testing combinations.  In general, the most accurate predictions occurred 

on the Pawitan dataset, and the least accurate on the Wang dataset.  This is indicative of 

the heterogeneity between the cohorts involving the samples and methodology.  For 

instance, samples from the Wang cohort originated from the Netherlands while samples 

of the other cohorts originated from primarily Sweden.  Also, the Ivshina and Pawitan 

studies both employed the global mean method for normalizing raw expression data, 

while the Sotiriou and Wang studies each applied different normalization techniques.  In 

general, predictions among the ER positive group were more favorable, which reflects 

both the limited availability and molecular diversity of ER negative breast cancer samples. 

 

 

 

 

 



38 
 

 

 

Figure 3.1: Predictive accuracy (AUCs) in predicting cancer recurrence from gene expression profiles among the ER 
positive (a) and ER negative (b) samples.  Each dataset among the Sotiriou (STR), Wang (WNG), Ivshina (IVS), and 
Pawitan (PWT) cohorts was considered for independent testing.  Error bars denote the standard error of the average 
AUCs across combinations. 
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On average, iPLS was the most accurate in predicting cancer relapse for both the 

ER statuses, as well as the most stable among the top predictors.  Other methods (e.g. 

logistic regression and support vector machines) had at most competitive accuracy for 

only a fraction of cohort combinations that was not sustained for other combinations.  

Overall the instability in prediction can be attributed to the lack of adaptivity to cohort 

differences, a tendency to overfit, and difficulty in modeling the complex dependency 

structure of genes.  Importantly, we find that iPLS consistently performs at least as well 

as both the joint and separate applications of PLS, and significantly better when the 

common signal among cohorts is overshadowed by cohort discrepancies, as it appears to 

be the case for the ER negative sample. 

 
 
 
3.4.3 Follow-up Analysis of Signatures 

 
Although iPLS was designed for making robust predictions, we may also 

investigate its output to identify the most important contributing variables.  The average 

of the iPLS weights s� (the initial layer before deflation) across groups can be used to 

rank variables based on absolute magnitude.  The same ranking can be done for jPLS and 

sPLS, although due to an identifiability issue the sPLS predictor weights must be 

manually oriented to have positive pairwise correlation.  This is not a concern for iPLS as 

its optimization objective naturally induces the proper orientation.  For logistic regression 

and random forest, we ranked the variables based on absolute magnitude in the regression 

coefficient and variable importance respectively, and applied similar averaging for the 

separate approaches.  We could not obtain such gene signatures from support vector 

machines due to its non-linear kernel. 

The top 10 genes identified by each prediction method from the best performing 

cohort combination (testing on the Pawitan dataset) are shown in Tables B1 and B2 in 

Appendix B1.  Even when considering all methods, only a fraction of these top genes 

overlap with existing signatures such as a recurrence-predicting signature by Chanrion et 

al. (2008) (TPX2, PRC1, RRM2, CDK1, ASPM, MMP1), a cell proliferation-based 

signature by Dai et al., (2005) (PRC1, SNRPA1), and a consensus signature derived from 

meta-analysis by Teschendorff et al. (2006) (RACGAP1, ZWINT, CDCA8).  This 
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discrepancy reflects the highly variable nature of gene signature contents (Ein-Dor et al., 

2005), although it should be noted that our total of 200 considered genes overlapped with 

only 40-50\% of each of these three signatures.  There also appears to be better 

concordance with existing signatures among the ER positive group, which is expected 

due to the relative scarcity of ER negative breast cancers and the tendency of studies to 

base signatures on primarily or entirely ER positive samples. 

From Table B1 of Appendix B1, we can see that the most concordant signatures 

are produced by methods that are generally better predictors (i.e. PLS-type methods).  

However, predictive performance often differs despite similar gene rankings, as seen 

among the PLS-type methods.  In fact, as Table B3 of Appendix B1 shows, Methods with 

similarly strong prediction can have very similar regression coefficients (iPLS and jPLS) 

or very different ones (iPLS and sPLS).  While predictive and inferential accuracies are 

somewhat correlated, it appears that a good prognosis signature is not restricted to a 

stable set of members, which is attributable in part to the high dependency among the 

genetic drivers of the disease. 

From the gene ontology annotations, the signature developed from applying iPLS 

to the ER positive data (testing on the Pawitan cohort) primarily contain genes involved 

in cell division/mitosis (RACGAP1, PRC1, AURKA, NCAPG, KIF11, ASPM) and DNA 

replication (RRM2, GINS2, TOP2A).  RACGAP1 and TOP2A are two proliferation 

markers linked to early recurrence in luminal breast cancers (Milde-Langosch et al., 

2013).  High expression of RACGAP1 is associated with poor survival (Pliarchopoulou 

et al., 2013), while TOP2A appears to be predictive of responsiveness to treatment 

(Villman et al., 2006).  PRC1 and RRM2 are both potential therapeutic targets 

overexpressed in breast cancer and associated with tumor growth (Yun et al., 2008; 

Shimo et al., 2007; Putluri et al., 2014).  AURKA has been linked via a Wnt signaling 

pathway to metastatic spread and recurrence (Eterno et al., 2016), and PBK has been 

shown to facilitate tumor growth via DNA damage response (Ayllon and O’Connor, 

2007).  GINS2 is a recently discovered independent prognostic marker for relapse-free 

and metastasis-free survivals that is implicated in cell growth and aneuploidy (Zheng et 

al., 2014; Rantala et al., 2010).  The majority of genes identified in this group are 

associated with cancer cell proliferation. 
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For the ER negative group, the iPLS signature included genes with functions in 

lipid biosynthesis/metabolism (PTPLB, IDI1, CPT1A) and apoptosis regulation (MST4, 

HSPB1).  In fact, ER negative breast cancer cells have been found to undergo structural 

reorganization of lipid rafts during transition to invasiveness (Ostapkowicz et al., 2006), 

and recently lipid metabolism-related proteins have been implicated in the risk of ER 

negativity (Kim et al., 2015).  NUTF2 has been proposed as a strong prognostic factor 

that promotes cell proliferation and is repressed by estrogen (Oka et al., 2011).  PTPLB is 

another potential independent prognostic factor which correlates with ER status, although 

its role in breast cancer is yet to be fully determined (Soysal et al., 2013).  MST4 (along 

with MST3) is linked to tumor invasiveness via a STRIPAK complex-regulated 

promotion of cell migration and metastasis (Madsen et al., 2015).  NDRG1 encodes a 

protein associated with breast cancer cell differentiation and metastasis suppression 

(Fotovati et al., 2011; Ellen et al., 2008).  Recently, CPT1A has been identified as a 

potential anti-cancer therapeutic target, whose transcript variant induces anti-apoptosis 

and tumor invasiveness in place of its original function of fatty acid transportation (Pucci 

et al., 2016).  Although this ER negative signature contains fewer overlapping members 

with existing signatures, many of the genes identified represent fairly recent discoveries. 

Notably, the weights produced by jPLS and sPLS are precisely the covariances 

between the predictors (gene expression) and the response (cancer recurrence) for the 

datasets studied concurrently and separately respectively.  Meanwhile, iPLS weights lie 

between these two extremes as an adaptive intermediate, which we have seen produces 

better overall predictions.  In principle, we should expect iPLS to generate more 

concordant signatures, however there was little change in the rankings of prominent 

genes.  Although our results produced from iPLS appear to align with existing signatures 

no worse than the other binary classifiers for our data, there is still much work to be done 

to arrive at a stable set of genetic markers for breast cancer severity. 

 
 
 
3.5 Discussion 

 
Since the number of reliable samples in genomics data is typically fewer than the 

number of measured variables, combining multiple cohorts is often considered as a tool 
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for improving the statistical strength and generalizability of predictive signatures.  

However, the common signal of interest that is amplified in doing so is inevitably 

accompanied by cohort discrepancies that are unknown in nature.  We have presented 

here a predictive model for gauging and adapting to the extent of these discrepancies to 

arrive at more robust performance.  By augmenting the foundation of the PLS 

dimensionality reduction technique with a simple adjustment and algorithm, we are able 

to choose among a continuum of models.  With artificial and real data, we have 

demonstrated that such an adaptive approach can offer improvements over a purely joint 

or purely separate analysis. 

Normalization is an important consideration for studying multiple sources of data.  

In iPLS, we center and normalize the datasets as a single block in order to apply a 

common adjustment to the data that avoids undue bias.  This is one of the simplest 

approaches, and gives consideration to each data group proportional to its sample size.  

An alternative is to center and normalize within each dataset, but we felt that doing so in 

the setting of genomic expression data would produce less stable and more biased 

adjustments.  Additional options are to adjust weights according to relative confidence in 

the information of each cohort or similarities between subsets of data groups.  These 

strategies are easily implementable prior to the main iPLS algorithm to achieve optimal 

predictions. 

Accounting for the degree of cohort differences allows iPLS to somewhat reduce 

the confounding effects of combining multiple studies, although it does not completely 

eliminate these effects.  Careful consideration of batch effects and other confounders is 

still recommended, as the adaptations of iPLS handle a specific (albeit basic) type of 

heterogeneity among groups.  As with other strategies of analysis, a more diverse 

selection of cohort provides additional benefits to the robustness of model performance in 

terms of both prediction and inference. 
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CHAPTER IV 

 
An ANOVA-based Procedure for PCA, Decomposing Variation and Dimensionality 

 
 
 
4.1 Introduction 

 
In the modern age of information, the availability of biological data (particularly 

genomic data) far exceeds our ability to process it.  The wealth of information poses an 

analytic problem in terms of both volume and variety, as biological expression is not only 

typically high-dimensional but also notoriously heterogeneous (Marx, 2013).  While there 

exist techniques for operating under large *  small n  settings (Amini et al., 2008; 

Carvalho et al., 2008; Shao et al., 2011), the sparsity consideration alone does not address 

the fact that biological systems are complex in nature and that their observed patterns are 

both volatile across sample groups and diverse across variable types.  For this reason, the 

integration of data from multiple sources (Wei, 2015) is perhaps essential in providing a 

global systems-level perspective and a basis for robust and reproducible results.  In this 

work, we devise a method of data integration from the foundational perspective of 

dimensionality reduction, which aims to explore the consolidation of data patterns across 

groups in terms of its fundamental components. 

Dimensionality reduction is commonly used as a first step in navigating the 

complex landscape of biological expression data (Yeung and Ruzzo, 2001; Dai et al., 

2006; Teodoro et al., 2003; Das et al., 2006).  Its central goal is to reduce data patterns 

into relatively few basic components or dimensions of highest importance.  The 

definition of this “importance” will vary depending on the structure of the data and 

problem, ranging from the accuracy in reconstructing the data from nonnegative (Lee and 

Seung, 2001) or orthogonal (Wold et al., 1987) parts, to the ability to preserve local 

neighborhoods (Roweis and Saul, 2000) or pairwise distances (Kruskal, 1964) in low-

dimensional manifolds.  In any case, a simplified view is valuable (and oftentimes 
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necessary) for deriving meaningful insight from the observed patterns of many 

interconnected biological entities and processes.  In the face of prevalent heterogeneity in 

biological data, we aim to translate this value to the analysis of multiple data groups. 

Reducing dimensionality across multiple data groups presents the unique option 

of comparing these groups across their reduced components.  Since these components 

represent the key elements among the datasets, they provide a novel and potentially more 

efficient means of relating the patterns among them, such as in terms of the similarity and 

complexity among groups.  This has broad applicability in any study or experiment 

involving grouped or stratified data such as subtypes of diseases, subpopulations, or even 

different experimental conditions.  Just as traditional dimensionality reduction reduces 

the view of single datasets, the integrative variant we propose reduces the comparison of 

multiple datasets. 

There are currently a handful of approaches developed for adapting 

dimensionality reduction to multiple groups.  Multi-block partial least squares (Li et al., 

2012) applies weighted averaging on predictor variable scores to identify multi-

dimensional regulatory modules most highly associated with the response.  Multiple 

canonical correlation analysis (Witten and Tibshirani, 2009) combines simultaneous 

covariance calculations between all dataset pairs to extract highly correlated linear 

combinations of variables across groups.  Integrative nonnegative matrix factorization 

(Yang and Michailidis, 2015) distinguishes between and relates the strengths of common 

and distinct effects to distill homogeneous modules from heterogeneous noise.  In each 

case  the defining objective of the original reduction technique (maximizing covariance, 

maximizing correlation, minimizing residual error, etc.) is preserved while some 

modification (e.g. a penalty or constraint) is incorporated to offset the additional model 

flexibility.  We apply the same strategy for expanding the classical principal component 

analysis (PCA) to multiple datasets, a method known for its efficiency in explaining data 

patterns via variance-maximizing components. 

Our approach consists of two stages, the first of which borrows principles from 

analysis of variance to construct an overarching framework that relates variation between 

and within data groups.  This involves viewing PCA from the alternative perspective of 

residual minimization rather than variance maximization, and produces novel estimates 
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for the commonality and complexity shared among the data groups.  The next stage uses 

this estimate to formulate hypothesis-based inference on the patterns common and 

distinct across datasets.  We show how this inference can be applied to simply and shape 

the analysis procedure for a breast cancer cell line study with factorial design. 

 
 
 
4.2 Methods 

 
4.2.1 Principal Component Analysis 

 
Principal components analysis (PCA) is a popular dimensionality reduction tool 

used in virtually every field that handles high-dimensional data including bioinformatics 

(Price et al., 2006; Zheng et al., 2012), economics (Vyas and Kumaranayake, 2016; 

Olawale and Garwe, 2010), and computer vision (De la Torre and Black, 2001; Kim et al., 

2002).  The method essentially deconstructs the observed data into of a few basic layers 

that are defined by explaining maximum information.  Formally, given column-centered 

matrix �8×p , the goal is to find an orthogonal linear transformation of �  in lower 

dimensions � << * that retains maximal variance (Hastie et al., 2009): 

�̂ = argmax;�;DY� ∥ �� ∥?� , 
where ∥⋅∥? denotes the Frobenius norm. 

The loading matrix �̂p×  defines the mapping which transforms the data � to the 

lower dimensional space, whereas the score matrix (��̂)8×  is the mapped data whose 

variance is maximized.  The model can be interpreted as reducing the observed patterns 

of the data into a set of observational latent factors (scores, i.e. rows of ��̂) and key 

variable signatures (loadings, i.e. columns of �̂).  The solution is uniquely defined as is 

typically found via singular value decomposition (SVD): 

� = �ΣIT , 
where the top � right singular vectors (in I) are taken as the loadings �̂.  Note that this 

guarantees that the solutions are nested, i.e. incrementing the dimension � leads to larger 

sets of loadings and scores which include the previous loadings and scores. 
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The product of the scores and loadings is a low-rank approximation of the data 

consisting of � rank-1 layers, which are often referred to as principal components: 

��̂�̂T =���̂⋅l�̂⋅lT
#

�D!
. 

We will be considering an alternative but equivalent formulation of PCA (Zou et al. 

2006), which involves minimizing the sum-of-squares of the residuals of this PCA 

approximation: 

�̂ = argmin;�;DY� ∥ � − ���T ∥?� . 
 
 
 
4.2.2 The ANOVA Decomposition for PCA 

 
In classical one-way ANOVA (Cox, 2006), the variation of univariate data 

q ∈ ℝ8 decomposes into the variation within and between groups: 

C(q�L − q)�
�,L

=C(q�L − q�)�
�,L

+C��(q� − q)�
�

, 
where q�L represents each sample and q�, q denote the group and grand means.  Note that 

the center in each sum-of-squares term is a sample mean of some form.  Our approach to 

extending PCA involves constructing a similar decomposition for multivariate data 

� ∈ ℝ8×p in which the centers for the sum-of-squares terms are PCA approximations 

��̂�̂T. 

Suppose that we have +  observation groups of column-centered datasets �� ∈
ℝ8H×p, G = 1,… , + (letting � = ∑ ��� ) normalized as ��/∥ �� ∥?� .  Consider performing 

PCA on the full data �� = (��)�D!# ∈ ℝ8×p  jointly and each individual dataset �� 

separately, which entails solving: 

�̂� = argmin;�;DY� ∥ �� − ����T ∥?� , �̂� = argmin;�;DY� ∥ �� − ����T ∥?� . 
At the uniquely defined optima, the PCA approximation ���̂��̂�T becomes the rank-� 

center of the sum-of-squares term associated with �� , and each PCA approximation 
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���̂��̂�T  becomes the rank-�  center of the sum-of-squares term associated with its 

corresponding ��.  It is easy to notice that these sum-of-squares terms: 

        TSS =∥ �� − ���̂��̂�T ∥?� ,WSS =� ∥ �� − ���̂��̂�T ∥?�
�

. (4.1) 

can play an analogous role to the total and within group sum-of-squares of ANOVA. 

For the between-group sum-of-squares, the classical ANOVA approach is to 

compute the sum-of-squares of the group means q� with the center being the grand mean 

q, computed from taking the mean of the group means.  Similarly, we compute the sum-

of-squares of the separate PCA approximations ���̂��̂�T with the center obtained from 

applying PCA to these PCA approximations.  Thus we combine the separate 

approximations as a single matrix �̂� = (���̂��̂�T)�D!# ∈ ℝ8×p and reapply PCA, which 

means solving: 

�̂� = argmin;�;DY� ∥ �̂� − �̂���T ∥?� . 
At the unique optimum, the PCA approximation �̂��̂��̂�T becomes the rank-� center of 

the sum-of-squares term associated with ��: 
                                                  BSS =∥ �̂� − �̂��̂��̂�T ∥?� . (4.2) 

Combing the terms in Equations (4.1) and (4.2), we have the PCA analog to the 

ANOVA decomposition of sum-of-squares: 

               ∥ �� − ���̂��̂�T ∥?�≈� ∥ �� − ���̂��̂�T ∥?�
�

+∥ �̂� − �̂��̂��̂�T ∥?� . (4.3) 

A schematic is given in Figure 4.1, which summarizes the entire procedure as sequential 

applications of PCA.  The decomposition in Equation (4.3) can be viewed as the 

(approximate) equivalence of two paths for arriving at a rank-� approximation of the 

complete data.  One path is to perform rank-� PCA on the joint data ��.  The other is to 

perform rank-� PCA separately on each �� and reapply rank-� PCA on the combined 

approximations �� .  With general random matrices, Equation (4.3) appears to hold 

approximately, with small discrepancy due to the fact that data columns are centered 
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differently depending on whether PCA is applied jointly or separately.  Consequently, 

�̂� , �̂� are in general not identical. 

 
 

Figure 4.1: Schematic of the gPCA procedure: the multivariate extension of the ANOVA decomposition of sum-of-
squares can be viewed as the (approximate) equivalence of two paths for arriving at a rank-� approximation of the 

complete data.  One path is to perform rank-� PCA on the joint data �� .  The other is to perform rank-�  PCA 

separately on each �� and reapply rank-� PCA on the combined approximations ��. 
 

Using this ANOVA-based framework, we can arrive at estimates for the 

commonality ('̂ ), noise level (�̂), and common complexity (�̂ ) associated with the 

collective data groups: 

'̂l = 2+(+ − 1)���,��(�̂�;⋅lT �̂��;⋅l)
����

, 

�̂l� = WSS

BSS

m(+ − 1)(1 − '̂l�)+(* − m) , 
�̂ = argminlD!,…, � ¡�̂l, 

where �,��(⋅) denotes the smallest singular value of a matrix and �̂�;⋅,l  represents the 

empirical loading generated from the top m singular vectors.  The criterion �̂l produces a 

rank estimate �̂ which is used to evaluate �̂l , '̂l to obtain �̂, '̂. 
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The full derivation is provided in Appendix C.2 and C.3, and involves applying 

properties of principal angles.  As it is evident from this derivation, ' ∈ [0,1] represents 

the proportion of common signal (in terms of loadings) present among the data groups, 

assuming that the data is generated from a mixture of mutually orthogonal common and 

distinct components.  Meanwhile � > 0 represents the noise-to-signal level associated 

within each dataset.  Finally, � is the common rank of all PCA approximations used in 

the decomposition.  To improve stability, we can apply non-parametric bootstrapping 

(100 bootstrap samples) and take the average values as our estimates '̂l and �̂l. 

 
 
 
4.2.3 Groupwise PCA 

 

While �̂, �̂ provide useful insight about the structure and strength of the signal 

across data groups, they primarily serve to set an appropriate stage for the computation of 

'̂ .  The entire procedure, which we refer to as groupwise PCA (gPCA), consists of 

estimating ' and calculating significance via two complementary approaches.  We let 

*!(¤), *�(¤) denote the p-values associated with observing '̂ at least as large as ' and at 

least as small as ' respectively. 

For *!(¤) = �('̂ ≥ ¤), we invoke linear algebra theory (discussed in Appendix 

C.4) to obtain a probability distribution for '̂.  The probability of observing '̂ at least as 

large as ' is: 

*!(¤) = Γ(
� + 12 )Γ(* − � + 12 )
Γ(12)Γ(* + 12 ) (1 − ¤j) (pf )� ¦�,!(* − �2 , 12 ; * + 12 ; (1 − ¤j)� ), 

for ¤ ∈ (0,1]. 
where Γ(§) = ¨ ©ªf!«f¬m©­

®  is the gamma function and ¦�,!  is the Gaussian 

hypergeometric function of matrix argument.  For large * , we can approximate 

Γ(pf a!� )/Γ(pa!� ) with Sterling's formula: 

Γ(* − � + 12 )/Γ(* + 12 ) ≈ ( 2* − 1) /�. 
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The null hypothesis associated with this p-value is that originating subspaces are 

independently and uniformly generated on Grassmann manifold of �-planes in ℝp (with 

� < pa!
� ), which is the space of all �-dimensional linear subspaces of ℝp (Absil et al., 

2006). 

:®,pA: !̄, … , #̄ ∼ i.i.d. Grass(�, *). 
This is not the same as assuming ' = 0 (i.e. that these subspaces are orthogonal). 

For *�(¤) = �('̂ ≤ ¤), we use a different approach based on bootstrapping.  For 

G = 1,… , +, we reproduce new data groups of the same dimensions by sampling (with 

replacement) within the G -th data group only (1000 repetitions for each G ).  This 

simulates data with homogeneous distribution across groups, from which we can apply 

gPCA to compute '̂ under the null hypothesis of ' = 1. 

:®,p�: ' = 1. 
The proportion of simulated '̂ which is at least as large as ' is taken to be our p-value: 

*�(¤) = #{'̂boot ≤ ¤} �boot± . 
With our two measures of significance, we are equipped to apply both sides of hypothesis 

testing to our estimate of '. 

 
 
 
4.2.4 Connections with JIVE 

 
Recently, Lock et al. (2013) proposed Joint and Individual Variation Explained 

(JIVE), an integrative model which also adapts principles from PCA to decompose 

multiple datasets into joint (² = (²!T ⋯ ²#T)T) and individual (³�) structures: 

�! = ²! + ³! + O!, 
⋮ 

�# = ²# + ³# + O#. 
These structures are restricted to be of certain ranks, and their rows are constrained to be 

orthogonal. 

rank(²) = µ,rank(³�) = µ�, ²³�T = ¶8×8H . 
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The solution is found via an iterative algorithm that alternates between estimating ² and 

³!, … , ³#, the result of which can be factored into scores and loadings: 

²� = �·,��·T , ³� = �l,��l,�T , G = 1,… , +. 
The method relies on choosing the joint (µ) and individual µ�  ranks beforehand via a 

permutation testing procedure that generates null singular value distributions from 

disrupted joint or individual structures and compares singular values. 

The difference between gPCA and JIVE is evident in their model structures.  Both 

methods view the observed data �� as the sum of common and distinct (JIVE refers to 

these as joint and individual) components with orthogonal rows, i.e. �·T�l,� =
�l,�T �l,�� = 0 for all G ≠ G� .  However, gPCA scores remain the same across these 

components of the same group, whereas JIVE scores are free to vary. 

�� = �·,��·T + �·,��l,�T  (gPCA), �� = �·,��·T + �l,��l,�T  (JIVE). 
This means that gPCA has a stricter definition of group differences (perturbations of the 

loadings) than that of JIVE (perturbations of the data).  This also means that the common 

rank � of gPCA should be interpreted differently than the joint rank µ of JIVE.  The 

former represents the estimated collective rank of the data groups adjusted for group-

specific discrepancies in the variable signatures, while the latter represents the collective 

rank adjusted for group-specific orthogonal shifts in the data. 

The JIVE framework is worth mentioning here because it is very similar in spirit 

and structure to that of gPCA, but ultimately it addresses the separate analytic question of 

explaining groups of data in terms of orthogonal joint and individual components.  The 

estimation of the complexity of the joint component is accomplished with a permutation 

testing procedure comparing singular values, which is not based on the JIVE model.  In 

constrast, gPCA focuses on estimating the common complexity and commonality, 

providing a basis for any subsequent assessment of components. 

 
 
 
4.3 Simulation Study 

 
We provide here numerical results for the estimation of �  and '  as well as 

associated p-values.  Data was generated under the model provided in Appendix C.2.  In 
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short, we assume datasets �� ∈ ℝ8H×p (letting � = ∑ ��� ) to be generated under a basic 

factor model: 

�� = ¹���T + º�, (¹�)L⋅ ∼ i.i.d.�(0, �p), (º�)L⋅ = i.i.d.�(0, ���p), 
with true loadings �� composed of mixtures of common (�·) and distinct (�l,�) parts: 

�� = '�· +»1 − '��l,�, 
�·T = (� ¶ ×(pf )),�l,�T = (¶ ×� � ¶ ×(pf(�a!) )). 

The data lie primarily on the �-dimensional subspaces �̄  generated from �� .  The 

parameters ' and � denote the levels of commonality between groups and noise within 

groups respectively. 

We first evaluated the rate of gPCA correctly selecting the true common rank �, 

and compared with conventional PCA rank selection methods.  These include the Laplace 

method (Minka, 2000) and the Bayesian information criterion (Kass and Raftery, 1995), 

which focus on maximizing evidence under a Bayesian framework.  The Kaiser-Guttman 

method refers to the classical approach of using the average of eigenvalues as stopping 

threshold (Jackson, 1993), which is comparable to gauging the “elbow” point of the 

eigenvalue scree plot.  Kritchman and Nadler (2008) apply principles from random 

matrix theory to a sequential hypothesis testing procedure.  All methods were 

implemented in Python, with support from the scikit-learn package (Pedregosa et al., 

2011).  JIVE was also considered using its Matlab implementation (Lock et al., 2013).  

The dimensions were chosen in part to resemble the data application in the next section 

as well as to highlight stable performance even under small samples.  Results were 

averaged over � with 25 repetitions each for a total of 100 repetitions for each scenario. 

Tables 4.1 and 4.2 show the rates of correctly identifying the common rank � 

using gPCA, JIVE, and conventional PCA rank selectors.  The joint rank µ of JIVE was 

evaluated for its accuracy in selecting the common rank � .  As expected, gPCA 

drastically outperforms all others in selecting a quantity for which it was developed, 

simply because other model frameworks are incongruous to our heterogeneously 

generated datasets.  Even JIVE which was designed for extending PCA to multiple 

datasets is largely inaccurate except in the homogeneous setting.  This is due to the slight 

discrepancies in the model definitions and interpretations for the joint and common ranks 
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as previously discussed.  For the purpose of supporting further inference regarding group 

commonality ('), the gPCA common rank selector appears to provide the most reliable 

estimate of common complexity. 

Table 4.1: Accuracy rates for selecting �  using various integrative and non-

integrative methods across ' ∈ {0.0,0.1, … ,1.0}.  Results are averaged over � with 

25 repetitions each (100 in total).  Methods: gPCA, JIVE, Bayesian information 

criterion (BIC), Laplace method (LP), Kaiser-Guttman method (KG), Kritchman 

and Nadler's method (KN).  Specifications: {�� , *, +, �} = {13,16,3,0.1}  and � ∈ {1,2,3,4}, �,-. = 4. 
 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

gPCA 0.97 0.97 0.97 0.98 1.0 1.0 1.0 1.0 1.0 1.0 0.99 

JIVE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.38 0.51 0.75 

BIC 0.01 0.01 0.01 0.01 0.01 0.05 0.09 0.17 0.46 0.64 1.0 

 LP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13 0.36 0.75 1.0 

 KG 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.35 0.76 1.0 

 KN 0.0 0.0 0.01 0.02 0.04 0.09 0.17 0.23 0.25 0.26 0.97 

Table 4.2: Accuracy rates for selecting �  using various integrative and non-

integrative methods across ' ∈ {0.0,0.1, … ,1.0}.  Results are averaged over � with 

25 repetitions each (100 in total).  Methods: gPCA, JIVE, Bayesian information 

criterion (BIC), Laplace method (LP), Kaiser-Guttman method (KG), Kritchman 

and Nadler's method (KN).  Specifications: {�� , *, +, �} = {39,16,2,0.1}  and � ∈ {1,2,3,4}, �,-. = 4. 
 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 gPCA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 JIVE 0.01 0.01 0.02 0.03 0.04 0.04 0.04 0.04 0.26 0.45 0.66 

. BIC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.71 1.0 

 LP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.66 1.0 

 KG 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.74 1.0 

 KN 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.99 

Tables 4.3 and 4.4 display the distributions of '̂, *!, *�  across a range of true 

commonality levels.  The estimate '̂ appears to be accurate, except at low levels of ' 

where the common signal is comparable in strength to the noise.  Conveniently, the p-

values *!, *� appear to shrink towards zero as ' approaches above and below roughly 0.8 

respectively.  This makes *!, *� very appropriate for determining whether data groups 

can be characterized by total commonality.  As we demonstrate in the next section, this is 

useful not only for deciding whether groups can be combined for analytic purposes, but 

also for conducting multivariate comparisons analogous to the univariate ANOVA 

comparisons. 
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Table 4.3: Distributions of '̂, *!, *�  from gPCA averaged over �  with 25 

repetitions each (100 in total) across ' ∈ {0.0,0.1,… ,1.0} .  Specifications: {�� , *, +, �} = {13,16,3,0.1} and � ∈ {1,2,3,4}, �,-. = 4. 
 

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

 '¼ 0.17 0.17 0.18 0.22 0.3 0.41 0.52 0.63 0.73 0.84 0.95 *! 0.87 0.87 0.85 0.78 0.61 0.35 0.12 0.02 0.0 0.0 0.0 *� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.02 0.17 

Table 4.4: Distributions of '̂, *!, *�  from gPCA averaged over �  with 25 

repetitions each (100 in total) across ' ∈ {0.0,0.1,… ,1.0} .  Specifications: {�� , *, +, �} = {39,16,2,0.1} and � ∈ {1,2,3,4}, �,-. = 4. 
 	 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 	'¼	 0.12 0.12 0.14 0.23 0.35 0.46 0.57 0.67 0.78 0.88 0.99 *!	 0.93 0.93 0.91 0.76 0.48 0.22 0.07 0.02 0.0 0.0 0.0 *�	 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.09 

 

 
 
 
4.4 Application to Studying Growth Factor Responsiveness across Breast Cancer 

Subtypes 

 
4.4.1 Background and Data Processing 

 
Breast cancer is a very diverse disease both in terms of its clinical attributes 

(Anderson and Matsuno, 2006) and molecular signature (TCGAN, 2013).  Clinically, 

there are primarily four subtypes determined based on the presence of 

immunohistochemical markers estrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor receptor 2 (HER2) in the tissue (Parise et al., 2009), 

which are associated with different rates of survival (Onitilo et al., 2008) and treatment 

strategies (Weigel and Dowsett, 2010).  These subtypes have been shown to correlate 

with molecular subtypes derived from gene expression (Sorlie, 2003) and microRNA 

expression (Blenkiron et al., 2007) profiles.  Such molecular heterogeneity presents a 

significant challenge and opportunity not only for understanding breast cancer at the 

genomic level but also for developing more refined and personalized therapies that target 

clinical heterogeneity. 

In the following data application we demonstrate how the gPCA model can be 

used for group-wise inferences in a factorial design study investigating growth factor 

responsiveness in breast cancer cell lines.  The target study (Niepel et al., 2014) accounts 

for a variety of experimental conditions with replicated measurements across different 



55 
 

breast cancer subtypes, ligand (growth factor) types, concentrations of ligand, exposures 

times, and signaling pathways.  Using gPCA, we derive estimates for the complexity and 

commonality (along with significance calculations) to provide an ANOVA-based 

decomposition of variation along the levels of each of these factors.  This allows us to 

answer the main question of assessing ligand responsiveness across disease subtypes, 

while also accounting for each experimental factor in an efficient and comprehensive 

fashion. 

We obtained pre- and post-treatment phosphorylation levels of ERK and AKT 

kinases to quantify activity in their respective growth-related MAPK and PI3K/AKT 

pathways.  The log10 of fold-change (post- to pre-treatment ratio) was assessed for these 

two kinases following exposure to 15 different growth factors at two doses (1 and 100 

ng/ml) and three time points (10, 30, and 90 minutes).  Measurements were repeated 

across a total of 39 breast cancer cell lines spanning three clinical subtypes: 18 triple 

negative (TN, ER-/PR-/HER2-), 11 HER2-overexpressing (H2, HER2+), and 10 

hormone receptor positive (HR, ER+ or PR+).  The data can be found from 

http://lincs.hms.harvard.edu/niepel-bmcbiol-2014/. 

 
 
 
4.4.2 Multivariate Comparisons across Experimental Factors 

 
Given the relatively large number of ligand types, we elected to study how the 

distribution of responsiveness towards these ligands compares across each of the factors: 

ligand concentration, kinase type, time of measurement, and disease subtype.  For each of 

these factors, gPCA was applied globally (among all factor levels) and pairwise (between 

each pair of factor levels) with �,-. = 4.  In addition, we repeated the analysis over all 

combinations of the remaining factors, except for disease subtype as it was associated 

with the 39 cell line samples.  Tables C3-C6 in Appendix C.5 summarize our findings, 

which include estimates of complexity and commonality, the p-values for commonality, 

and the proportion of within group variation attributed (WSS
~ = WSS/(WSS+ BSS)).  

Data dimensions are provided for each scenario, along with the number of effective 

independent tests 2 , which we use for Bonferroni correction (i.e. significance level 

lowered to 0.05/2). 
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Across the first three experimental factors (Tables C3-C5 in Appendix C5), the 

distribution in growth factor responsiveness appears to be generally homogeneous, as 

evidenced by unanimous significance in *!.  In other words, ligand concentration, kinase 

type, and time of measurement seem to have little effect on the overall observed patterns 

of growth factor-induced kinase activity among the different cell line and ligand 

combinations.  This suggests that adjusting these experimental factors should not 

significantly alter the overall findings.  Had any one of these factors showed signs of 

heterogeneity (i.e. insignificant *!  or significant *� ) however, it would support 

conducting further analysis into potential discrepancies among their levels.  We note that 

performing traditional tests of homogeneity (e.g. with the one-way ANOVA framework) 

for each ligand across subtypes not only would require many more tests, but also does not 

consider the collective distribution of ligand responses as a whole. 

It is interesting that these findings of homogeneity contrast with those of the 

original study (Niepel et al., 2014) which found that responses among ligands were in 

fact significantly different when compared across measurement time, dosage, and kinase 

type.  We note that their comparisons generally focus on individual ligands or cell lines, 

whereas our comparisons are across many cell lines and ligands.  It is possible for 

individual combinations of cell lines and ligands to show marked differences across the 

factors while the collective data groups exhibit homogeneity as a whole.  One advantage 

of gPCA is that it allows for a more global comparison strategy over individual checks 

under each experimental factor. 

In addition to measuring the homogeneity among groups, gPCA provides 

additional insight in terms of the common complexity �̂  and proportion of variation 

attributable to within groups WSS
~

.  The observed patterns across ligand concentration, 

kinase type, and time of measurement were generally simplistic, reflecting the fact that a 

one-dimensional model was usually enough to adequately approximate the homogeneous 

data patterns across these factors.  Meanwhile, within group variation seems to correlate 

with commonality, which is expected since more variation attributed within groups 

implies less variation attributed to group differences.  This correlation is not perfect 
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because the similarity (') between each group's data signature is not tied to the relative 

noise level (�) within each group. 

When disease subtype was considered as the factor variable (Table C4 in 

Appendix C5), we observed some degree of heterogeneity in growth factor 

responsiveness, which was largely restricted to measurements of pAKT.  To investigate 

whether a subgroup of ligand types were primarily responsible for the variation in growth 

factor sensitivity, we separated the ligands into ErbB-associated (EGF, EPR, BTC, HRG) 

and non-ErbB-associated (VEGF165, INS, IGF-1/2, PDGF-BB, HGF, SCF, FGF-1/2, 

NGF-beta, EFNA1) groups.  Figures 4.2 and 4.3 show heatmaps of pAKT and pERK 

responsiveness to ligands in all cell lines, measured 30 minutes after treatment of 100 or 

1 ng/ml of ligand respectively.  Moreover the heterogeneity and homogeneity of patterns 

across subtypes in these respective settings can be readily observed. 

 

Figure 4.2: Heatmap of log10 fold change of pAKT measured 30 minutes in response to 100 ng/ml treatment of ligand, 
among all ligand types and all cell lines.  Breast cancer subtype and ligand subgroup memberships are indicated.  
Growth factor sensitivity of AKT is heterogeneous in distribution but similar in level across subtypes. 
 



58 
 

 

Figure 4.3: Heatmap of log10 fold change of pERK measured 30 minutes in response to 1 ng/ml treatment of ligand, 
among all ligand types and all cell lines.  Breast cancer subtype and ligand subgroup memberships are indicated.  
Growth factor sensitivity of ERK is homogeneous in distribution but different in level across subtypes. 
 

Using the gPCA procedure, we have reduced the vast range of combinations of 

experimental conditions to identify the main source of variation as the relationship 

between disease subtype and ligand type.  From this point, more targeted analysis may 

proceed.  In the original analysis, Niepel et al. (2014) report that cells of the TN subtype 

were the most responsive, while H2 and HR were particularly sensitive to certain classes 

of growth factors (ErbB2-related and FGF1/FGF2/HRG respectively).  These findings are 

evident in the heatmaps and can be confirmed statistically via univariate comparison 

techniques such as the F-test and t-test.  For instance, under the specifications of Figure 

4.2, the mean ErbB ligand response was significantly different ( © = 10.4 , p-value 

= 1.3«f!½) from that of non-ErbB ligands in the H2 subtype.  Under the specifications of 

Figure 4.3, the mean response of FGF1, FGF2, and HRG was significantly different 

(© = 4.28, p-value = 3.3«f�) than that of the rest in the HR subtype. 

Under these same two specifications, we used gPCA to compare ligand 

responsiveness among ligand types across disease subtypes, for ErbB and non-ErbB 

ligand subgroups (Tables 4.5 and 4.6).  For AKT, ligand response patterns were very 
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diverse across subtypes, particularly between TN and HR subtypes.  Meanwhile, non-

ErbB-induced responses of ERK were generally more homogeneous across subtypes than 

ErbB-induced responses.  It is interesting to compare these results with those of F-test 

comparisons from ANOVA (Tables 4.7 and 4.8).  For AKT, mean ErbB-induced activity 

was largely similar across subtypes, as was mean non-ErbB-induced activity to a lesser 

extent.  In contrast, we see dramatic differences in mean ligand-induced ERK response 

across almost all subtypes for both ligand subgroups.  Thus we see that growth factor 

sensitivity of AKT is heterogeneous in distribution but similar in level across subtypes, 

and that growth factor sensitivity of ERK is homogeneous in distribution but different in 

level across subtypes.  Although breast cancer subtype is a major determinant for growth 

factor-induced responsiveness for both kinases, it appears that different signal 

transduction pathways across subtypes are involved in activating AKT while similar 

pathways lead to activation of ERK at different magnitudes across subtypes. 

Table 4.5: Summary of gPCA findings (AKT only) for ligand responsiveness among ligand types across 

disease subtypes.  Data dimensions: (18 + 11 + 10 cell lines × 4 or 11 ligands).  Significance (denoted 

by shading) was assessed at level 0.05/2 for 2 = 8 independent tests in each scenario). 

 Specifications Factor levels D̂ α̂ p1 p2 WSS
~

 
 TN, H2, HR 1 0.796 2.51E-01 0.001 0.679 

100 ng/ml;  AKT; 30 min TN, H2 1 0.735 3.47E-01 0.065 0.741 

(ErbB  ligands) TN, HR 1 0.732 3.51E-01 0.002 0.697 

.  H2, HR 1 0.948 3.78E-02 0.175 0.868 

  TN, H2, HR 1 0.596 2.57E-01 0.002 0.643 

 100 ng/ml;  AKT; 30 min TN, H2 1 0.597 2.56E-01 0.386 0.866 

 (non-ErbB  ligands) TN, HR 1 0.452 5.25E-01 0.004 0.661 

  H2, HR 1 0.756 5.20E-02 0.092 0.788 

 

Table 4.6: Summary of gPCA findings (ERK only) for ligand responsiveness among ligand types across 

disease subtypes.  Data dimensions: (18 + 11 + 10 cell lines × 4 or 11 ligands).  Significance (denoted 

by shading) was assessed at level 0.05/2 for 2 = 8 independent tests in each scenario). 

 Specifications  Factor levels D̂ α̂ p1 p2 WSS
~

 
 TN, H2, HR 1 0.931 5.75E-02 0.055 0.699 

1 ng/ml;  ERK; 30 min TN, H2 1 0.962 2.43E-02 0.104 0.846 

(ErbB  ligands) TN, HR 1 0.9 9.60E-02 0.030 0.657 

.  H2, HR 1 0.951 3.49E-02 0.077 0.799 

  TN, H2, HR 1 0.929 2.93E-04 0.087 0.819 

 1 ng/ml;  ERK; 30 min TN, H2 1 0.912 7.95E-04 0.305 0.844 

 (non-ErbB  ligands) TN, HR 1 0.943 1.12E-04 0.082 0.916 

  H2, HR 1 0.927 3.37E-04 0.115 0.777 
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Table 4.7: Summary of ANOVA findings (AKT only) for growth factor responsiveness among ligand 

types across disease subtypes.  Data dimensions: (18 + 11 + 10 cell lines ×  4 or 11 ligands).  

Significance (denoted by shading) was assessed at level 0.05/2 for 2 = 8 independent tests in each 

scenario). 

 Specifications Factor levels F p-value Factor level Mean 

 TN, H2, HR 0.116 8.90E-01   
100 ng/ml;  AKT; 30 min TN, H2 0.346 5.58E-01 TN 3.8 

(ErbB  ligands) TN, HR 0.003 9.56E-01 H2 3.39 

.  H2, HR 0.109 7.42E-01 HR 3.74 

  TN, H2, HR 8.28 2.98E-04   
 100 ng/ml;  AKT; 30 min TN, H2 14.49 1.69E-04 TN 1.92 

 (non-ErbB  ligands) TN, HR 3.59 5.90E-02 H2 0.99 

  H2, HR 6.15 1.38E-02 HR 1.39 

 

Table 4.8: Summary of ANOVA findings (ERK only) for growth factor responsiveness among ligand 

types across disease subtypes.  Data dimensions: (18 + 11 + 10 cell lines ×  4 or 11 ligands).  

Significance (denoted by shading) was assessed at level 0.05/2 for 2 = 8 independent tests in each 

scenario). 

 Specifications Factor levels F p-value Factor level Mean 

 TN, H2, HR    13.4 4.32E-06   
  1 ng/ml;  ERK; 30 min TN, H2    14.1 2.80E-04 TN   18.28 

(ErbB  ligands) TN, HR    10.8 1.38E-03 H2 4.84 

.  H2, HR    16.4 1.18E-04 HR   48.27 

  TN, H2, HR 8.72    1.94E-04   
   1 ng/ml;  ERK; 30 min TN, H2  5.84    1.62E-02 TN 2.92 

 (non-ErbB  ligands) TN, HR 7.93    5.19E-03 H2 1.43 

  H2, HR   10.23    1.58E-03 HR 7.38 

 

Just as these standard statistical methods are used to compare univariate data 

across groups, gPCA provides the framework for comparing multivariate patterns across 

groups.  The former should be used to quantify differences in magnitude between data 

groups, while the latter should be used to quantify differences in variational signatures of 

the data.  This distinction is most obvious as we consider that information on the averages 

is forgoed in the column-centering process of PCA.  Altogether, the two methods offer 

complementary insights towards the characterization of data patterns across groups. 
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4.5 Discussion 

 
The availability of biological data is expanding in terms of not only volume but 

also variety.  This has led to growing interest in developing new analytic methods which 

are able to draw upon multiple data sources and consolidate the information within.  In 

this paper we have approached this challenge from the perspective of dimensionality 

reduction, a widely used tool for reducing complex biological patterns to fundamental 

components.  At the level of these core components, we construct an integrative 

framework that provides novel insight into the variational patterns within and between 

multiple data groups. 

Our approach combines the variation decomposition structure of ANOVA with 

the variation reduction procedure of PCA.  We expand the study of within and between 

variation to the multivariate setting, which deals with comparisons of subspaces of the 

groups signatures via principal angles.  This key element provides a novel estimation 

scheme for the complexity and commonality that characterizes multiple groups of data.  

Applying properties of principal angles in turn allows for theoretical significance 

calculations in addition to the conventional permutation-based calculations. 

In our data application, we have demonstrated the utility of this multivariate 

comparison framework to a factorial design study of growth factor response signatures.  

Not surprisingly, the method provides an ANOVA-type layout of conclusions composed 

of global assessments (of homogeneity or heterogeneity) across all data groups followed 

by pairwise assessments between groups.  Owing to the ability of PCA-type 

decompositions to reduce multivariate patterns, we have a way of performing such 

assessments over matrices of data values rather than vectors.  This allows a novel analytic 

approach for studying data organized into groups on a broader scale. 

Despite originating from fairly classical statistical methods, the style of inference 

provided by gPCA represents a unique approach to multivariate and multi-group analysis.  

However, there are many areas for refinement, such as in the assumptions used in 

deriving the gPCA estimators for commonality and common complexity.  In particular, 

the loadings of each data group play an important role to these estimators yet are assumed 

to be perfectly estimated in our model.  Random matrix theory may reveal further 

avenues for development.  Moreover, there may be other unexplored ways of deriving 
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insight from the gPCA model.  The perspective of data groups in terms of within and 

between complexity structures may give rise to alternative views of data patterns than the 

one presented in this work. 
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CHAPTER V 

 
Conclusion 

 
 
 

The main contribution of this work is the generalization of several canonical 

dimensionality reduction methods for the setting of multiple data groups, in ways that 

further each method’s underlying reduction approach.  A recurring theme among these 

integrative extensions is to develop an overarching framework which includes the 

standard joint and separate approaches as special cases.  Once this is accomplished, the 

remaining task (and the key innovative element) is to develop a strategy for selecting the 

most appropriate intermediate among a full spectrum.  Effectively, this amounts to 

selecting a level of heterogeneity relative to homogeneity for the resulting model that is 

most representative of the data or most conducive to positive performance.  In order to 

better identify or utilize the common signal among different data sources, it is merely 

principled to first tease out the distinctive noise. 

In Chapter 2, I proposed a partitioned factorization model intended for 

distinguishing between homogeneous and heterogeneous patterns among multiple sources 

of nonnegative data.  In this setting, such patterns are nonnegative signal components 

whose additive combination approximates the observed data.  This sum-of-parts 

perspective (though interpretable and biologically applicable) leads to non-uniqueness of 

the solution, particularly in the heterogeneous parts.  To deal with this, I enacted 

penalization on precisely these parts to counterbalance their unrestricted nature in the 

factorization.  However, the new problem then becomes how to achieve this balance, 

which is complicated by the unwieldly nonnegativity constraint on the algorithm, also a 

consequence of the sum-of-parts perspective.  Using a novel empirical approach that 

gauges the magnitude of approximation residuals, this balance is detected as the point at 

which the relationship among these residuals begins to deteriorate due to overfitting.  The 
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resulting integrative factorization demonstrates marked advantages in the detection of 

common regulatory modules in synthetic and real genomic data. 

In Chapter 3, I discussed a variant of the partial least squares classifier for 

adapting to heterogeneity across multiple cohort studies.  Here, the units of integration 

are not the patterns within each dataset, but the associations that connect them as 

captured by the regression coefficient.  To preserve the efficient iterative computation of 

these coefficients but also gain model flexibility, we introduced a simple modification 

that reduces the comparison across cohorts to a single correlation-based term.  Naturally, 

this translates to efficiency in the algorithm, mainly due to the ease with which this term 

is absorbed into the existing computations.  These adjustments grant improved robustness 

and accuracy over standard classifiers, as shown in simulations and real data applications 

on the development of molecular prognostic signatures. 

Lastly, in Chapter 4, I combined principles of variance decomposition and 

variance reduction to conduct multivariate comparisons across the many experimental 

conditions of a cell line study.  While our hybrid framework preserved many aspects 

ANOVA and PCA, the nature of these methods required additional considerations, the 

most pivotal of which was the incorporation of principal angles.  As the centers of the 

sum-of-squares elements are transformed from scalars to subspaces, the largest principal 

angle served as the crucial metric of distance for quantifying heterogeneity between data 

groups.  This led to new statistics for quantifying complexity and commonality, as well as 

significance calculations for the latter, which altogether provide novel insight and 

strategies for grouped data analysis. 

As noted before, the main intention of this work is to explore different styles of 

dimensionality reduction as they are adapted to handle multiple datasets.  In both iNMF 

and iPLS, the increased model flexibility produced by accommodating multiple groups 

was addressed via tuning selection.  For the latter, this was rather straightforward, as 

response data was available for performing cross validation.  For the former, this called 

for the alternative approach of gauging the residuals of the joint components of the 

dimensionality reduction, a strategy which takes advantage of the perspective of the data 

as nonnegative parts.  Due to the simple and direct nature of PCA solutions, the unique 

optimality of principal components was not as conducive to a tuned intermediate model 
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as was in the other methods.  This invited the application of principles from ANOVA that 

provided a novel view on principal variation as within and between groups, which 

ultimately led to not an intermediate model but rather an intermediate level of 

commonality.  Since accounting for the potential differences among multiple data groups 

naturally leads to higher degrees of freedom, any relaxation of a model’s framework to 

allow such differences must be coupled with restrictive measures.  As we have seen here, 

how each classical method approaches these measures reflects their respective data and 

problem structures. 
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APPENDIX A 

 
Supplementary Material for “A Non-negative Matrix Factorization Method for 

Detecting Modules in Heterogeneous Omics Multi-modal Data” 

 
 
 
A.1 Derivation of the iNMF Algorithm 

 
We show here that the multiplicative updates used to solve iNMF ensure that the 

objective function ℱ(�,:, I) is monotonically decreasing: 

ℱ(�,:, I) =C ∥ �� − (� + I�):� ∥?�
�

+ �C ∥ I�:� ∥?�
�

 

All quantities ��,�,:�, I� are as defined in the main article.  For convenience, we use : 

and I to denote {:!, … , :#} and {I!, … , I#}, respectively. 

 

1. The bulk of the proof involves auxiliary functions and some algebraic 

manipulation, but an application of duality theory reveals some useful relations. 

The corresponding dual problem of iNMF is: 

            max¾ inf;,<,Jℱ(�,:, I) + tr(Φ�T) +S tr(Ψ�:�T)� +S tr(Ξ�I�T)�  (A1) 

subject to:	Φ ≥ 0,Ψ� ≥ 0, Ξ� ≥ 0, G = 1, … , +, 
where Θ = {Φ,Ψ!, … , Ψ#, Ξ!, … , Ξ#}  are matrices whose elements are the 

Lagrangian multipliers for the elements of {�,:!, … , :#, I!, … , I#}, respectively.  

By definition, we have Φ ∈ ℝ8× , Ψ� ∈ ℝ ×9H  and Ξ� ∈ ℝ8×  for all G =
1, … , +. 

From the first order conditions of the Lagrangian function in Equation A1, 

we may solve for the Lagrangian multipliers: 

Φ = 2C(��:�T − (� + I�):�:�T)
�

 

Ψ� = 2((� + I�)T�� − (� + I�)T(� + I�):� − �I�TI�:�), G = 1, … , + 
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Ξ� = 2(��:�T − (� + I�):�:�T − �I�:�:�T), G = 1,… , + 

By the complementary slackness property, we have the following relations at the 

optimal solution for all indices (k, Ä): 
�LNC(��:�T − (� + I�):�:�T)LN

�
= 0 

(:�)LN((� + I�)T�� − (� + I�)T(� + I�):� − �ITI:�)LN = 0, G = 1,… , + 

(I�)LN(��:�T − (� + I�):�:�T − �I�:�:�T)LN = 0, G = 1,… , +. 
These relations lead to our multiplicative updates after some algebraic 

manipulation. 

 

2. The last portion of the proof involves auxiliary functions, defined below: 

Definition. Å(ℎ, ℎ�) is an auxiliary function for F(h) if the following are satisfied: 

Å(ℎ, ℎ�) ≥ ¦(ℎ)∀ℎ 

Å(ℎ, ℎ) = ¦(ℎ). 
Auxiliary functions have the following property: 

Lemma A1. If Å is an auxiliary function for ¦, and ℎ(¬a!) = ¤µÈ	2kn� Å(ℎ, ℎ(¬)), 
then 

¦(ℎ(¬a!)) ≤ ¦(ℎ(¬)). 
Proof. ¦(ℎ(¬a!)) ≤ Å(ℎ(¬a!), ℎ(¬)) ≤ Å(ℎ(¬), ℎ(¬)) = ¦(ℎ(¬)).  � 

If Å is easier to minimize than ¦, then we may take repeated iterations of ℎ(¬a!) =
arg	min� Å(ℎ, ℎ(¬)) instead of directly dealing with ¦. 

 

3. Each of the iNMF updates may be derived with an appropriate auxiliary function.  

We outline here only the derivation for I� update, but the updates for �,:� are 

similarly derived.  Since the updates are performed element-wise, it is enough to 

show that the update (I�)LN(¬a!) satisfies: 

                                            ℱ((I�)LN(¬a!)) ≤ ℱ((I�)LN(¬)). (A2) 

The first two derivatives of ℱ with respect to (I�)LN are: 

ℱLN� = ℱ�((I�)LN) = (−2��:�T + 2(� + I�):�:�T + 2�I�:�:�T)LN 
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ℱLN�� = ℱ��(ÉI�)LNÊ = 2(1 + �)(:�:�T)NN. 
Lemma A2. The function: 

Ë(ℎ, (I�)LN) = ℱ((I�)LN) + ℱ�((I�)LN)(ℎ − ÉI�)LNÊ 
+Ì(� + I� + �I�):�:�TÍLN(I�)LN (ℎ − (I�)LN)�, 

is an auxiliary function for ℱ. 

Proof. Ë((I�)LN, (I�)LN) = ℱ((I�)LN) is easy to see.  To show that Å(ℎ, (I�)LN) ≥
ℱ(ℎ), we write out the Taylor expansion of ℱ at (I�)LN: 
ℱ(ℎ) = ℱ((I�)LN) + ℱ�((I�)LN)(ℎ − ÉI�)LNÊ +	(1 + �)(:�:�T)NN(ℎ − (I�)LN)�. 

Thus, it is sufficient to show that: 

((� + I� + �I�):�:�T)LN(I�)LN ≥ (1 + �)(:�:�T)NN. 
By nonnegativity of the matrix factors, we have: 

Ì(� + I� + �I�):�:�TÍLN(I�)LN ≥ (1 + �) (I�:�:�T)LN(I�)LN 													 
																																																		= (1 + �)S (I�)LÎÎ (:�:�T)ÎN(I�)LN  

																																						= (1 + �)(:�:�T)NN.  � 

Combining Lemmas A1 & A2, we have that the update: 

(I�)LN(¬a!) = argmin� Å(ℎ, ÌI�)LN(¬)Í, 
guarantees Equation A2.  But this minimizer can be expressed as: 

arg	min� Å(ℎ, (I�)LN(¬)) = (I�)LN − (I�)LN ℱ�((I�)LN)
2Ì(� + I� + �I�):�:�TÍLN

									 

                                     						= (I�)LN − (I�)LN (f��H<H�a�(;aJH)<H<H�a�ZJH<H<H�)ÏÐ�((;aJHaZJH)<H<H�)ÏÐ  

											= (I�)LN (��:�T)LN((� + I� + �I�):�:�T)LN , 
which is exactly our iNMF update for (I�)LN. 
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A.2 Intuition for the Tuning Selection Procedure 

 

We discuss here the intuition behind the stopping threshold VY(Z) − VW > 2(VW −
VX) from the tuning selection procedure.  Let ��, G = 1,… , + be observationally linked 

data sets, and let ��X, ��W, ��Y  be the approximating solutions of sNMF, jNMF, and iNMF: 

��X = ��X:�X, ��W = �W:�W, ��Y = (�Y + I�Y):�Y . 
Suppose that we adjust these solutions entry-wise with respect to the jNMF solution: 

i~�,LNX = i�,LNX − i�,LNW , i~�,LNW = i�,LNW − i�,LNW , i~�,LNY,� = (�Y:�Y)�,LN − i�,LNW . 
Note that for iNMF we consider only the homogeneous portion.  We will omit subscripts 

for the sake of brevity. 
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Figure A1 plots the entries of the adjusted solutions i~X, i~Y,�, i~W computed from 

simulated data (see Appendix A.3) over different choices of � for iNMF.  Naturally, i~X 

(sNMF) are centered around i~W (jNMF).  Also, i~Y,� (iNMF, homogeneous) generally lie 

below i~W (jNMF), since the other heterogeneous portion of iNMF is nonnegative.  As the 

choice of � shrinks, the iNMF solution becomes less homogeneous and i~Y,� becomes less 

resembling of i~W.  When � is small enough, iNMF begins to over fit the data.  Our tuning 

selection procedure selects  = 0:1 for this particular example, which in fact leads to 

optimal performance. 

When we sort the adjusted solutions by i~Y,�, we see some interesting relations.  At 

the optimal � (Figure A1e), the iNMF homogeneous solutions i~Y,� lie slightly above the 

minimum of the distribution of the sNMF solutions i~X .  If the level of i~Y,�  had been 

higher (Figure A1d), then the full iNMF solution would deviate from the sNMF solution, 

and hence yield a poor approximation of the data.  If the level of i~Y,� had been lower 

(Figure A1f), then the approximation accuracy of iNMF will be slightly improved at the 

expense of losing detection of the joint signal.  In principle, the optimal iNMF solution 

must (1) achieve good fit on the data and (2) maximize the homogeneous portion used to 

achieve that fit. 

Now consider the distributions of the unsorted adjusted solutions (Figure A1a-c).  

What is notable about the iNMF solutions i~Y,� under optimal � = 0.1 (Figure A1b) is that 

its distribution appears to match the lower half of the distribution of i~X.  Similar to before, 

this is a distinguishing feature of an optimal iNMF solution.  Another way of describing 

this is to say that the deviation between the iNMF (under optimal �) and jNMF solutions 

is roughly twice the deviation between the jNMF and sNMF solutions.  In fact, our 

stopping threshold VY(Z) − VW > 2(VW − VX) takes advantage of precisely this relation.  As 

the selection procedure iteratively evaluates choices of �, it effectively tunes the relative 

magnitude of the iNMF homogeneous solution to a level that matches that of the optimal 

solution. 

In summary, selecting the optimal � is akin to finding the iNMF solution with the 

most appropriate level of deviation from the jNMF and sNMF solutions.  What remains is 
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to decide how to quantify this deviation for each data source.  We use the (unsquared) 

Frobenius  norm of the residuals for this task, summed across sources: 

VX,� =∥ �� − ��X ∥? , VW,� =∥ �� − ��W ∥? , VY,� =∥ �� −�Y:�Y ∥? 

Note the unconventional definition of the iNMF residual with respect to the 

homogeneous part only.  Since the sNMF and jNMF are minimizers of their respective 

objective functions, we have VX,� ≤ VW,� ≤ VY,�. 

Our primary reasons for using the unsquared residuals are that (1) they are on 

approximately the same scale as the solutions and (2) they are more robust than 

comparing the solutions directly, particularly due to the relative non-identifiability of 

NMF-type solutions with respect to scale and rotation.  Also, our tuning selection 

procedure suggests searching across a decreasing list of � until the threshold is exceeded.  

This is slightly more conservative (to avoid overfitting) than finding the �  such that 

VY(Z) − VW is closest to 2(VW − VX), although the latter is an option. 

 
 
 
A.3 Data Generation for the Simulation Study 

 
We outline here our method of generating data sets containing multi-dimensional 

modules with various types of perturbations. 

1. Generate a joint block diagonal support: 

a. Set �8×  and (:�) ×9H , G = 1,… , + to be binary and block diagonal (� 

blocks) so that their products �:� align with the desired data and module 

dimensions. 

b. Independently assign each nonzero entry in �  and :�  a random value 

according to Beta(2,2) ∗ 2 (this is arbitrary). 

c. Multiply to obtain the matrices �:�, G = 1, … , +. 

2. Introduce heterogeneous perturbations: 

a. Set (I�)8×  to be zero matrices, and consider the �� regions whose rows 

and columns align with the � blocks (modules) in �. 
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b. In each of the �� regions, introduce a heterogeneous perturbation (with 

independent probability ��) by assigning either the top or lower half (with 

equal probability) to be ones. 

c. Independently assign to each nonzero entry of (I�)8×  a random value 

according to Beta(2,2) ∗ 2. 

d. Add the products I�:� to the previous results to obtain �� = (� + I�):� 

(the data sets should resemble the ones in Scenario 2 of Figure A1a). 

3. Introduce scattered and uniform error: 

a. For each entry in �� , with independent probability �� , either replace a 

positive value with zero, or replace a zero with a randomly generated 

(Beta(2,2) ∗ 2)� value. 

b. For each entry in �� , with independent probability �� , add a random 

Unif(−��, ��) value, and take the absolute magnitude as the new entry. 

 
 
 
A.4 Normalization for iNMF 

 
In dealing with multiple data sources, integrative methods must find a way to 

represent the information from each source in a balanced way.  In iNMF, we may 

consider attaching weights Ñ� to each data matrix to control the level of influence of each 

source over the analysis: 

ℱ(�,:, I) =C ∥ Ñ��� − (� + I�):� ∥?�
�

+ �C ∥ I�:� ∥?�
�

 

Of course, this is equivalent to scaling each data set ��  by a factor of Ñ� .  Here, we 

explore how one should approach choosing these normalization coefficients. 
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DM GE 

�  
ME 

 
DM GE 

�  
ME 

mean 61 58 44 49 50 65 

st.dev. 4 7 2 5 8 1 

jNMF 58 23 36 50 77 74 
iNMF 56 49 24 58 62 85 

jNMF 58 26 30 50 77 79 

iNMF 55 43 27 58 69 82 

jNMF 62 30 26 50 77 82 

iNMF 46 31 27 67 69 82 

jNMF 45 56 30 67 54 79 

iNMF 48 48 27 67 62 82 

jNMF 56 31 41 58 69 68 

iNMF 54 62 27 58 54 82 

 

Table A1: Impurity (�) and purity (�) scores (in percentages) of empirical 
clusters obtained from jNMF and iNMF with respect to three reference 
clusters.  Shading indicates significantly (≥2 sd) higher concordance 
compared to both the alternative method and the null distribution. 
 

 
 

 
Null clusters 

 

 �� = 1 

�� = 0.1 

�� = 0.01 

�� = 10−3 

�� = 10−4
 

 

 

In our application, we normalized with respect to the within-source variance of 

each data set (i.e. Ñ� = 1/std(��)).  This accounts for the inherent levels of variation 

within the sources, but not the numbers of variables (about a 19:20:1 ratio).  Therefore, 

we also consider here normalizing with respect to the sum-of-squares of each data set (i.e. 

Ñ� = 1/»SS(��)).  Table A1 shows the validation results from repeating the analysis 

under this alternative normalization.  Compared with those of the previous normalization, 

the GE clusters are less concordant with the reference while the ME clusters are more 

concordant.  The scores for the DM clusters remain roughly consistent, likely due to these 

clusters having poor concordance to begin with. 

In principle, the normalization weights should be chosen to address discrepancies 

in the variability of data and the number of variables in each source.  However, the 

integrative value of a data source may depend on many other factors such as the 

reliability of each source, the relevance of each source to the research purpose, and the 

clarity of each source's signal.  Therefore, dimensionality and variability should not 

completely dictate the normalization.  As we have seen, applying the sum-of-squares 

normalization does not necessarily produce a more concordant joint approximation of 

modules, possibly due to differences in signal strength and fidelity between the sources. 



76 
 

As a general rule, dimensionality and data variability should guide the choice of 

normalization, but the nature of the sources themselves should also be taken into account.  

In our application, our follow-up analysis takes place in the space of genes, so it was 

natural to use the standard deviation normalization which produced more concordant GE 

results. 



77 
 

 

 

F
ig

u
re A

2
: M

o
d

u
le m

em
b

ersh
ip

s o
f g

en
es (fro

m
 iN

M
F

 w
ith

 altern
ativ

e su
m

-o
f-sq

u
ares n

o
rm

alizatio
n

) arran
g

ed
 acco

rd
in

g
 to

 p
ath

w
ay

s d
eriv

ed
 fro

m
 B

io
C

arta an
d
 

relev
an

t literatu
re. 



78 
 

In any case, it is recommended to check the robustness of the findings under 

different normalizations.  Under the sum-of-squares normalization, iNMF produced the 

most concordant results under � = 0.01 (Table A1).  Using this result, we applied the 

same procedure as used before to obtain the visualization in Figure A2.  Apart from 

minor discrepancies, all four modules (I/P/D/M) are distributed in roughly the same 

topological regions as before.  The empirical memberships of the genes in these pathways 

appear stable between the two normalizations. 

 
 
 
A.5 Reference Variable Clusters 

 
GE reference cluster: 

1. CXCL11, CXCL10, CXCR3 

2. HMGA2, SOX11, MCM2, PCNA 

3. MUC16, MUC1, SLPI 

4. FAP, ANGPTL2, ANGPTL1 

DM reference cluster: 

1. cg08046471, cg01288089, cg08843314 

2. cg03251079, cg20088964, cg08432727, cg20008332, cg10691006, cg15057726, 

cg02689825, cg04562739, cg25984124 

3. cg06420088, cg07399355, cg17257175, cg24512973, cg12966875, cg23889010 

4. cg08826839, cg09427311, cg11213150, cg07044282 

ME reference cluster: 

1. hsa-miR-19a, hsa-miR-19b, hsa-miR-136, hsa-miR-376c, hsa-miR-483-5p, hsa-

miR-572, hsa-miR-575, hsa-miR-638, hsa-miR-671-5p, hsa-miR-769-5p, hsa-

miR-923, hsamiR-1225-5p 

2. hsa-miR-15b, hsa-miR-98, hsa-miR-135b, hsa-miR-146a, hsa-miR-148a, hsa-

miR-148b, hsa-miR-150, hsa-miR-221*, hsa-miR-342-5p, hsa-miR-361-3p, hsa-

miR-362-3p, hsamiR-374a, hsa-miR-374b, hsa-miR-450a, hsa-miR-454, hsa-

miR-502-5p, hsa-miR-505, hsa-miR-532-3p, hsa-miR-582-5p, hsa-miR-625, hsa-

miR-652, hsa-miR-660 
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APPENDIX B 

 
Supplementary Material for “An Adaptive Partial Least Squares Classifier for 

Robust Prognostic Gene Signatures” 

 
 
 
B.1 Supplementary Tables for the Multi-Cohort Prognostic Signature Study 

 
Table B1: Top 10 genes of signatures identified from predictive methods (testing on Pawitan cohort, both 
ER statuses). 

ER+ 
 

iPLS jPLS sPLS jLR sLR jRF sRF 

RACGAP1 RACGAP1 RACGAP1 TPX2 LY6G6E VTCN1 MAB21L1 

PRC1 PRC1 RRM2 MRPL11 MMP12 MEIS3P1 UQCRC1 

AURKA AURKA GINS2 SNRPE ULK4 LOC100294145 MST4 

RRM2 RRM2 PRC1 CDCA3 KIF18A KIF11 FBXO5 

NCAPG NCAPG CCNB1 RRM2 EYA4 C15orf63 C3orf14 

PBK PBK CDK1 COG8 HMGB3 LTF CHMP1A 

GINS2 GINS2 AURKA C12orf35 UQCRC1 DTL SLC9A2 

KIF11 KIF11 KIF11 C12orf44 CXCL2 TMEM106C GTPBP4 

ASPM ASPM ZWINT SNRPA1 NQO1 RACGAP1 KERA 

       TOP2A TOP2A DTL SHFM1 LOC157562 SEMA3G CH25H 

 

ER–  

       iPLS               jPLS             sPLS               jLR              sLR                jRF                 sRF 
 

PTPLB PTPLB PTPLB MST4 S100P AURKA CPT1A 

IDI1 IDI1 IDI1 CPT1A MSMB ESRP2 SHCBP1 

MST4 NUTF2 ESRP2 SPAG16 ERCC6L C14orf139 SNRPG 

NDRG1 NDRG1 MST4 GINS1 MB ECT2 SEC61G 

NUTF2 MST4 CPT1A CKS1B UBE2S MSMB GIPC2 

MLF1IP MLF1IP S100P MRPL13 SHFM1 RAN TPX2 

C14orf156 C14orf156 C14orf156 CCNA2 CDC20 SHMT2 ENY2 

CPT1A ESRP2 MMP1 PGP CNTNAP2 CYP4B1 CDCA8 

HSPB1 MB NUTF2 PSMA7 CDCA8 SURF2 EIF4EBP1 

ESRP2 HSPB1 MLF1IP C7 EIF4EBP1 DTL C14orf156 
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Table B2: Pairwise correlations between regression coefficients generated from 
predictive methods (all cohort combinations and ER statuses).  Values in bold 
represent comparisons between methods with best performance (within 0.03 of 
highest AUC among these methods) in predicting cancer relapse. 

 

Testing  on Pawitan                               Testing  on Ivshina 

ER+ jPLS sPLS jLR sLR  ER+ jPLS sPLS jLR sLR 

iPLS 0.98 0.55 0.61 0.5  iPLS 0.78 0.32 0.32 0.66 

jPLS - 0.53 0.56 0.48  jPLS - 0.33 0.21 0.26 

sPLS - - 0.39 0.04  sPLS - - 0.5 0.09 

jLR - - - 0.56  jLR - - - 0.28 

ER- jPLS sPLS jLR sLR  ER- jPLS sPLS jLR sLR 

iPLS 0.98 0.75 0.72 0.44  iPLS 0.99 0.7 0.74 0.56 

jPLS - 0.74 0.69 0.42  jPLS - 0.72 0.75 0.56 

sPLS - - 0.64 0.55  sPLS - - 0.59 0.25 

jLR - - - 0.4  jLR - - - 0.49 
 

Testing  on Wang                               Testing  on Sotiriou 

ER+ jPLS sPLS jLR sLR  ER+ jPLS sPLS jLR sLR 

iPLS 1.0 0.4 0.59 0.4  iPLS 0.53 0.42 0.28 0.33 

jPLS - 0.4 0.59 0.4  jPLS - 0.73 0.62 0.31 

sPLS - - 0.19 0.32  sPLS - - 0.45 0.09 

jLR - - - 0.26  jLR - - - 0.22 

ER- jPLS sPLS jLR sLR  ER- jPLS sPLS jLR sLR 

iPLS 0.99 0.76 0.68 0.56  iPLS 1.0 0.88 0.77 0.54 

jPLS - 0.73 0.67 0.57  jPLS - 0.88 0.77 0.54 

sPLS - - 0.61 0.39  sPLS - - 0.69 0.45 

jLR - - - 0.58  jLR - - - 0.46 
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APPENDIX C 

 
Supplementary Material for “An ANOVA-based Procedure for PCA, Decomposing 

Variation and Dimensionality” 

 
 
 
C.1 Principal Angles 

 
Principal angles provide a notion of distance between subspaces, which is useful 

for studying the gPCA decomposition. 

Definition. Given � -dimensional linear subspaces Ò,Ó ⊆ ℝp , the principal angles 

Õ! ≤ ⋯ ≤ Õ ∈ [0, Ö/2] between Ò, Ó are defined recursively as follows: 

cos	Õl = 2¤i�∈Ò,y∈ÓØTt = ØlTtl , ∥ Ø ∥�=∥ t ∥�= 1, ØTØL = tTtL = 0, k = 1,… , m − 1. 
Each principal angle is defined as the smallest possible angle between two vectors 

chosen from Ò,Ó, such that these chosen vectors are orthogonal to all of its predecessors.  

The principal vectors Øl , tl are not uniquely defined, whereas the principal angles Õl are. 

Let matrices q, ¹  denote the orthogonal projections onto subspaces Ò, Ó 

respectively, and let ¹Ù be the orthogonal projection onto the orthogonal complement of 

Ó.  The following properties relate the principal angles to these projections. 

Lemma C1. The singular values of qT¹ are the cosines of the principal angles between 

Ò,Ó (Björch and Golub, 1973): 

�(qT¹) = {cos	Õ!, … , cos	Õ }. 
Lemma C2. The singular values of qT¹Ù are the sines of the principal angles between 

Ò,Ó (Qiu et al., 2005). 

�(qT¹Ù) = {sin	Õ , … , sin	Õ!}. 
The Grassmann manifold of �-planes in ℝp, denoted Grass(�, *), is the space of 

all �-dimensional linear subspaces of ℝp.  The following lemma provides the probability 

distribution for the largest principal angle (Absil et al., 2006). 
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Lemma C3. Let subspaces Ò,Ó  be independently generated from the uniform 

distribution on Grass(�, *) with � < pa!
� .  Then the probability distribution function of 

the largest principal angle Õ  between Ò,Ó is given by: 

�(Õ < Õ) = Γ Ì
� + 12 ÍΓ Ì* − � + 12 Í
Γ Ì12Í Γ Ì* + 12 Í (sin	Õ) (pf ) 

¦�,!(* − �2 , 12 ; * + 12 ; (sin�	Õ)� ), Õ ∈ [0, Ö2), 
where Γ(§) = ¨ ©ªf!«f¬m©­

®  is the gamma function and ¦�,!  is the Gaussian 

hypergeometric function of matrix argument. 

 
 
 
C.2 Approximation of WSS/BSS 

 
The ratio between the within and between sum-of-squares is WSS/BSS =

∑ WSS�� /∑ BSS��  where: 

WSS� =∥ �� − ���̂��̂�T ∥?� ,BSS� =∥ ���̂��̂�T − ���̂��̂�T�̂��̂�T ∥?� . 
In this section we derive an approximation for this quantity.  Script letters denote the 

subspaces generated from the span of the columns of the specified loading matrix (e.g. 

�̄ = span(��), �̄ = span(��)).  Principal angles (in ascending magnitude) between 

subspaces �̄,¯��  and �̄, �̄ are denoted as Õ�,��;l, Õ�,�;l , m = 1,… , � respectively. 

 

1. We begin by adopting some distributional assumptions.  Suppose that we have + 

datasets  (letting �� ∈ ℝ8H×p) generated under a basic factor model: 

           �� = ¹���T + º�, (¹�)L⋅ ∼ i.i.d.�(0, �p), (º�)L⋅ = i.i.d.�(0, ���p). (C1) 

Each ��  is generated from a product of true scores (¹� ∈ ℝ8× ) and loadings 

(�� ∈ ℝp× ) with normally distributed noise.  As a result, the data lie primarily 

on the �-dimensional subspaces �̄ generated from the true loadings �� of each 

group. 

Furthermore, we allow these loadings to be mixtures of common (�·) and 

distinct (�l,�) parts: 
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�� = '�· +»1 − '��l,�, 
�·T = (� ¶ ×(pf )),�l,�T = (¶ ×� � ¶ ×(pf(�a!) )). 

In other words, we have: 

                          ��T = ('� ¶ ×(�f!) '·� ¶ ×(pf(�a!) )). (C2) 

The columns of �·,�l,� are orthonormal in the sense that �·T�· = �l,�T �l,� =
�  and �·T�l,� = ¶ × , so that the columns of each ��  form an orthonormal 

basis (��T�� = � ).  The parameters ' and � denote the levels of commonality 

between groups and noise within groups respectively. 

For simplicity, we assume that the ��  are already column-centered and 

normalized: 

                               ��TÚ8H = ¶p, ∥ �� ∥?�=∥ ��� ∥?�= 1, ∀G, G�. (C3) 

We additionally assume that the empirical separate loadings coincide with the 

truth: 

                                                       �̂� = ��∀G. (C4) 

Although this never holds perfectly except in an asymptotic setting, our final 

model tends to be robust to imperfect estimation of loadings as it relies more so 

on the variability produced by these loadings than their exact orientation. 

 

2. Under these assumptions, we write: 

WSS� =∥ ��(�p −����T) ∥?� ,BSS� =∥ ������T(�p −����T) ∥?� . 
Here, �� = argmin;�;DY� ∥ �� − ����T ∥?�  where �� = (������T)�D!# ∈ ℝ8×p. 

Lemma C4. Given Assumptions C1-C4, WSS�  follows a scaled chi-squared 

distribution: 

WSS�/�� ∼ Û8H(pf )� . 
Proof. Under Assumptions C1-C4, the values which contribute to WSS�  are 

portions of the noise º� which are orthogonal to �̄: 

WSS� =∥ º�(�p −����T) ∥?� . 
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Since the distribution of º�  is rotationally invariant and ����T  is a rank-� 

orthogonal projection, the sum-of-squares of each row of º�(�p −����T)  is 

distributed as Ûpf �  scaled by �.  � 

 

3. The subspace �̄  is defined as capturing the maximal variation among the 

combined PCA approximations (������T)�D!# , which suggests that �̄  is 

oriented around the “center” of the subspaces of each group �̄.  We approximate 

this center by normalizing the columns of ∑ ��� , which we denote by �� ∝
∑ ��� .  Thus given Assumption C2, we are assuming: 

              ��T = ('� ÜÝ# � ⋯ ÜÝ# � ¶ ×(pf(#a!) ))/»'� + '·�/+, (C5) 

where '· = √1 − '�. 

As with our construction of ��  from a mixture of common (�· ) and 

distinct (�l) elements, this approximation of �� is a mixture of the loadings (��) 

from each group.  This approach is convenient for computations, but does not 

account for mixtures between columns of different rankings (e.g. (��)⋅!  with 

(���)⋅�) which may very well lead to better optimization of �� .  Moreover, 

weighting each group equally does not necessarily lead to the optimal ��.  These 

are important details to note, since imperfect estimation of ��  leads to 

overestimation of BSS.  However, this does not appear to undermine overall 

performance, since our final estimator involves minimizing across a range of 

quantities so that the relative difference in WSS/BSS across rank choices plays a 

larger role than its precise magnitude. 

The gPCA decomposition of sum-of-squares (Equation 4.3) is expected to 

hold under assumptions C1-C5.  While Assumptions C1 and C2 are related to the 

structure of the model, Assumptions C3-C5 are suggestive of a noise-free 

environment.  This decomposition is remarkably robust in numerical examples 

(Table C1), even as the noise level overwhelms the signal which muddles the 

estimation of the PCA loadings ��.  Where the gPCA method breaks down rather 

lies with the estimation of '. 
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Table C1: Distribution (mean and standard deviation) of the (WSS + BSS)/TSS 

ratio of gPCA across ' ∈ {0.0,0.1, … ,1.0}.  Results are averaged over 25 repetitions.  

Specifications: {�� , *, +} = {50,100,2}  and assuming correct selection of rank 

(� = 2). 
 

 � 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 1.006 1.006 1.006 1.005 1.005 1.005 1.004 1.004 1.003 1.002 1.001 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.5 1.013 1.013 1.013 1.013 1.013 1.014 1.014 1.014 1.015 1.016 1.017 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.9 1.014 1.014 1.014 1.014 1.014 1.014 1.014 1.014 1.015 1.015 1.015 
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 1.3 1.014 1.014 1.014 1.014 1.014 1.014 1.014 1.014 1.014 1.015 1.015 
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

The aspect of the gPCA method which is affected by high noise rather 

appears to be the estimation of ' , as shown in Table C2.  Estimation of the 

within- to between- sum-of-squares ratio is only stable if the common rank � is 

correctly estimated, but this relies on correct estimation of '.  On the other hand, 

estimation of � is more forgiving of inaccurate estimation of WSS and BSS as 

only their ratio contributes to the entire procedure. 

Table C2: Distribution (mean) of '̂ of gPCA across ' ∈ {0.0,0.1,… ,1.0}.  Results 

are averaged over 25 repetitions.  Specifications: {�� , *, +} = {50,100,2}  and 

assuming correct selection of rank (� = 2). 
 

 � 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.12 0.12 0.14 0.24 0.35 0.46 0.57 0.67 0.78 0.88 0.99 
0.2 0.17 0.17 0.18 0.21 0.3 0.42 0.53 0.64 0.75 0.86 0.97 
0.3 0.22 0.22 0.23 0.25 0.29 0.38 0.49 0.6 0.7 0.77 0.8 

 0.4 0.28 0.28 0.28 0.29 0.32 0.37 0.44 0.52 0.6 0.68 0.76 
 

 

4. We can arrive at a similar distributional statement for the non-error portion of 

BSS�, defined as: 

BSS
~

� =∥ ¹���T(�p −����T) ∥?� . 
Regarding the projected errors º�����T(�p −����T) as negligible, we use BSS

~
� 

to approximate BSS�. 

Lemma C5. Given Assumptions C1, C2, and C5, BSS
~

�  follows a scaled chi-

squared distribution: 

BSS
~

�+(1 − '�)(+ − 1) ∼ Û8H � . 
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Proof. Let ��,Ù be a matrix whose columns span the orthogonal complement of 

�̄ .  From Lemma C2, the singular values of ��T��,Ù  are the sines of the 

principal angles between �̄, �̄: 
�(��T��,Ù) = {sin	Õ�,�; , … , sin	Õ�,�;!}. 

This implies that the eigenvalues of ��T(�p −����T)�� = ��T��,Ù(��T��,Ù)T 

are the squared sines of these angles: 

                      �(��T(�p −����T)��) = {sin�	Õ�,�; , … , sin�	Õ�,�;!}. (C6) 

From Assumptions C1, C2, and C5, the principal angles between subspaces 

�̄, �̄ are given by: 

cos	Õ�,�;l = »'� + '·�/+, m = 1,… , �, 
which implies that: 

        sin�	Õ�,�;l = 1 − cos�	Õ�,�;l = 1 − '� − '·/+ = (1 − '�)(+ − 1)/+. (C7) 

With Equations C6 and C7, we have: 

 

∥ ¹���T(�p −����T) ∥?�= tr(¹���T(�p −����T)����T)    

                                           = trÉ¹�ß sin� Õ�,�; � ßT¹�TÊ 	(spectral decomposition) 

    =∥ ¹� ∥?� (1 − '�)(+ − 1)/+, 
which follows the scaled chi-squared distribution of the theorem.  � 

The variation between the separate PCA approximations in BSS is thus 

explained by an angular relationship between the primary subspaces on which 

each data group lies. 

 

5. Under Assumption C4 and considering the data �� as stochastic, WSS and BSS 

are independent since ��(�p −����T) and ������T are independent.  Therefore, 

combining Lemmas C4 and C5 (and assuming BSS
~

� ≈ BSS� ) gives our 

approximation for our sum-of-squares ratio: 

                                  WSS/BSS ≈ ��(* − �)/  (!fÜ�)(#f!)# . (C8) 

The numerator resembles that of the F-statistic from one-way ANOVA, 

with * − �  degrees of freedom associated with the within sum-of-squares.  
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However the denominator has a somewhat different form, which reflects the 

primary difference between decomposing variance in the univariate and 

multivariate settings.  In ANOVA, the sum-of-squares centered around a point (q), 

whereas in gPCA the sum-of-squares is centered around effectively a subspace 

(���T).  Unlike comparisons in Euclidean space, such comparisons between 

subspaces involve principal angles and their associated geometric properties. 

 
 
 
C.3 Estimation of Commonality and Complexity 

 

From Equation C8, we obtain the estimates for complexity �̂ and commonality '̂ 

for the gPCA procedure via an estimate of noise level �̂. 

 

1. Applying Lemma C1 to Assumption C2, we have that the principal angles 

between subspaces �̄,¯��  of any two groups are given by: 

                       �(��T���) = {cos	Õ�,��;!, … , cos	Õ�,��; } = {'�}lD! . (C9) 

This leads to a series of natural estimates for ' from the singular values of the 

covariance between group loadings, averaged over all group pairs: 

2+(+ − 1)���l(�̂�T�̂��)
����

, m = 1,… , �, 
where �l(⋅) denotes the m-th largest singular value. 

We consider only the estimate generated from the largest principal angle 

Õ̂�,��;  (i.e. smallest singular value �!), as it appears to produce the most accurate 

estimates for ': 

                                  '̂ = �
#(#f!)� ��,��(�̂�T�̂��)

����
. (C10) 

The reason for this is not entirely understood, however only the largest principal 

angle has been established as a metric on subspaces (Zhang, 2005), whereas the 

identifiability condition fails to hold for the remaining angles.  Moreover the sine 
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of the largest principal angle is equivalent to the projection 2-norm which is 

widely used in engineering applications (Absil, 2006). 

 

2. The estimate in Equation C10 would never be used in practice as it relies on 

knowledge of the true common complexity �, which determines the dimensions 

of each �̂�.  Thus, for a given rank m, our estimate of ' is the following: 

'̂l = 2+(+ − 1)���,��(�̂�;⋅lT �̂��;⋅l)
����

. 
Applying this estimate to Equation C8 and rearranging terms gives an estimate for 

� based on an input estimate for m: 

�̂l� = WSS

BSS

m(+ − 1)(1 − '̂l�)+(* − m) . 
 

3. To complete the estimates of ', �, what remains is to reliably estimate �, the rank 

of all PCA approximations used in the gPCA decomposition.  Interestingly, the 

minimizer of �̂ across a range of rank choices m = 1,… , �,-. tends to accurately 

select the true �. 

�̂ = argminlD!,…, � ¡�̂l. 
In classical PCA, the estimated level of noise always decreases for as the choice 

of rank increases (Tipping and Bishop, 1999).  This is natural since each new 

principal component adds a new layer of complexity to the nested solution 

structure, allowing more data variation to be explained.  Thus it is intriguing that 

our criterion �̂l is no longer monotonically related to the choice of rank, simply 

due to applying an ANOVA-like framework for decomposing variation.  Whereas 

the classical PCA model seeks to increase the variation explained within a single 

dataset (smaller residual sum-of-squares), the gPCA model seeks a balance 

between increasing the variation explained within data groups (smaller WSS) and 

decreasing the variation attributable to group differences (larger BSS). 
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C.4 Significance Calculation for Commonality 

 

We discuss here the computation of *Ü(¤) = �('̂ > ¤).  Lemma C3 provides the 

probability distribution function for the largest principal angle between subspaces 

generated independently on Grass(�, *)  with � < pa!
� .  From Equation C9, we have 

Õ�,�� = arccos	'� , which relates the principal angles between the gPCA loading 

subspaces and the true commonality level.  This can be used to rewrite the distribution 

function as: 

�('̂ > ¤) = Γ Ì
� + 12 Í Γ Ì* − � + 12 Í
Γ Ì12Í Γ Ì* + 12 Í (1 − ¤j) (pf )�  

¦�,!(* − �2 , 12 ; * + 12 ; (1 − ¤j)� ), ¤ ∈ (0,1]. 
This is the p-value for observing '̂ at least as large as ¤ under the null hypothesis that the 

originating subspaces are independently and uniformly generated on the space of all �-

dimensional linear subspaces of ℝp (with � < pa!
� ).  Note that this is not the same as 

assuming ' = 0, which is equivalent to assuming that these subspaces are orthogonal. 

For large *, we can approximate Γ(pf a!� )/Γ(pa!� ) with Sterling's formula: 

Γ(* − � + 12 )/Γ(* + 12 )
≈ »Ö(* − � − 1)(* − � − 12« )(pf f!)/�/»Ö(* − 1)(* − 12« )(pf!)/� 

 = »(* − � − 1)/(* − 1)(pf f!pf! )(pf f!)/�/(pf!�à ) /� 

     = (1 −  /�
(pf!)/�)(pf )/�/(pf!�à ) /� ≈ ( �

pf!) /�.   
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C.5 Supplementary Tables for the Growth Factor Responsiveness Study 

 
Tables C3-C6 summarize the output obtained from applying gPCA to compare 

ligand response patterns among cell lines across ligand concentration, kinase type, time 

of measurement, and breast cancer subtype. 

Table C3: Summary of gPCA findings for ligand responsiveness among ligand types across 

ligand concentrations.  Data dimensions: (39 cell lines × 15 ligands) × 2 concentrations.  

Significance (denoted by shading) was assessed at level 0.05/2 for 2 = 6 independent 

tests in each scenario). 

 Specifications  Factor levels D̂ α̂ p1 p2 WSS
~

 
AKT; 10 min 1, 100 ng/ml 1 0.949 1.71E-17 0.186 0.939 
AKT; 30 min 1, 100 ng/ml 1 0.934 2.88E-15 0.221 0.929 

AKT; 90 min 1, 100 ng/ml 1 0.924 4.91E-14 0.280 0.923 

 ERK; 10 min 1, 100 ng/ml 1 0.916 3.56E-13 0.334 0.916 

 ERK; 30 min 1, 100 ng/ml 1 0.945 7.54E-17 0.217 0.933 

 ERK; 90 min 1, 100 ng/ml 1 0.939 5.04E-16 0.215 0.931 
 

Table C4: Summary of gPCA findings for ligand responsiveness among ligand types across 

kinase types.  Data dimensions: (39 cell lines × 15 ligands) × 2 kinases.  Significance (denoted 

by shading) was assessed at level 0.05/2 for 2 = 6 independent tests in each scenario). 

 Specifications  Factor levels D̂ α̂ p1 p2 WSS
~

 
1 ng/ml;  10 min AKT, ERK 1 0.864 2.47E-09 0.270 0.862 
1 ng/ml;  30 min AKT, ERK 1 0.835 7.50E-08 0.059 0.841 

1 ng/ml;  90 min AKT, ERK 1 0.835 7.26E-08 0.069 0.845 

 100 ng/ml;  10 min AKT, ERK 1 0.871 9.85E-10 0.231 0.866 

 100 ng/ml;  30 min AKT, ERK 1 0.869 1.32E-09 0.062 0.863 

 100 ng/ml;  90 min AKT, ERK 1 0.836 6.89E-08 0.043 0.844 
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Table C5: Summary of gPCA findings for ligand responsiveness among ligand types across 

times of measurement.  Data dimensions: (39 cell lines ×  15 ligands) ×  3 time points.  

Significance (denoted by shading) was assessed at level 0.05/2 for 2 = 12 independent tests in 

each scenario). 

Specifications  Factor levels D̂ α̂ p1 p2 WSS
~

 
10, 30, 90 min    2    0.992 

 1 ng/ml; AKT         
10, 30 min         1    0.938 
10, 90 min        1    0.939 
30, 90 min        1    0.936 

2.47E-66 
7.23E-16 

5.60E-16 

1.60E-15 

0.221    0.927 
0.332    0.935 

0.342    0.935 

0.329    0.935 

10, 30, 90 min    2    0.931 

 1 ng/ml; ERK         
10, 30 min         1    0.856 
10, 90 min        1    0.862 
30, 90 min        1     0.95 

2.98E-28 
7.42E-09 

3.52E-09 

9.21E-18 

0.003 0.665 

0.089    0.852 
0.085    0.854 

0.283    0.945 

10, 30, 90 min    2    0.988 

 100 ng/ml; AKT       
10, 30 min         1    0.945 
10, 90 min        1     0.96 
30, 90 min        1    0.939 

2.08E-59 
6.65E-17 

1.18E-19 

5.38E-16 

0.193    0.931 
0.359    0.938 

0.349    0.952 

0.243    0.938 

10, 30, 90 min    2    0.943 

 100 ng/ml; ERK       
10, 30 min         1    0.879 
10, 90 min        1    0.885 
30, 90 min        1    0.958 

2.08E-31 
3.12E-10 

1.33E-10 

3.62E-19 

0.003 0.697 

0.096    0.869 
0.087    0.871 

0.279    0.948 
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TN, H2, HR 1 0.729 3.43E-02 0.022 0.766 

TN, H2 1 0.678 7.31E-02 0.132 0.857 

TN, HR 1 0.679 7.25E-02 0.028 0.771 

H2, HR 1 0.851 1.53E-03 0.146 0.865 

TN, H2, HR 1 0.804 6.86E-03 0.052 0.822 

TN, H2 1 0.745 2.59E-02 0.016 0.869 

TN, HR 1 0.695 5.84E-02 0.028 0.815 

H2, HR 1 0.931 1.46E-05 0.197 0.904 

TN, H2, HR 1 0.783 1.15E-02 0.061 0.818 

TN, H2 1 0.715 4.30E-02 0.169 0.854 

TN, HR 1 0.76 1.91E-02 0.055 0.849 

H2, HR 1 0.856 1.23E-03 0.192 0.873 

TN, HR  1  0.855  1.28E-03 0.030 0.788 

H2, HR  1  0.887     3.04E-04 0.074 0.779 

Table C6: Summary of gPCA findings for ligand responsiveness among ligand types across 

disease subtypes.  Data dimensions: 18 + 11 + 10 cell lines × 15 ligands.  Significance (denoted 

by shading) was assessed at level 0.05/2 for 2 = 48 independent tests in each scenario).  See 

second portion on the next page. 

          Specifications            Factor levels    D̂       α̂              p1              p2       WSS
~

_   
 
 

1 ng/ml;  AKT; 10 min 
 
 
 
 

1 ng/ml;  AKT; 30 min 
 
 
 
 

1 ng/ml;  AKT; 90 min 
 

. 
 

 TN, H2, HR      1     0.995 

 1 ng/ml;  ERK; 10 min         
TN, H2          1     0.994 

 TN, HR         1     0.993 
 H2, HR         1     0.997 

   3.48E-13 

   1.14E-12 

   2.85E-12 

   1.70E-14 

0.121    0.912 

0.121    0.924 

0.070    0.936 

0.244    0.934 

 TN, H2, HR      1     0.925 

 1 ng/ml;  ERK; 30 min         
TN, H2          1     0.927 

 TN, HR         1     0.917 
 H2, HR         1     0.944 

   2.28E-05 

   1.92E-05 

   4.49E-05 

   3.54E-06 

0.043    0.814 

0.184    0.865 

0.026    0.837 

0.057    0.820 

 TN, H2, HR     1     0.877 

                                                
TN, H2          1      0.896 

   4.96E-04 

   1.78E-04 

0.046    0.758 

0.266    0.841 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 ng/ml;  ERK; 90 min 
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TN, H2, HR 1 0.689 6.35E-02 0.014 0.728 

TN, H2 1 0.641 1.14E-01 0.069 0.830 

TN, HR 1 0.625 1.34E-01 0.015 0.748 

H2, HR 1 0.838 2.46E-03 0.115 0.827 

TN, H2, HR 1 0.605 1.64E-01 0.009 0.687 

TN, H2 1 0.537 2.79E-01 0.044 0.794 

TN, HR 1 0.525 3.01E-01 0.011 0.709 

H2, HR 1 0.822 4.05E-03 0.074 0.797 

TN, H2, HR 1 0.673 7.84E-02 0.008 0.675 

TN, H2 1 0.61 1.56E-01 0.008 0.748 

TN, HR 1 0.615 1.49E-01 0.006 0.756 

H2, HR 1 0.77 1.53E-02 0.035 0.666 

See legend and first portion on the previous page. 

          Specifications            Factor levels      D̂        α̂              p1              p2        WSS
~

_   
 
 

 100 ng/ml;  AKT; 10 min 
 
 
 
 

 100 ng/ml;  AKT; 30 min 
 
 
 
 

 100 ng/ml;  AKT; 90 min 
 

 
 

TN, H2, HR      1     0.989 

 100 ng/ml;  ERK; 10 min          
TN, H2          1     0.987 
TN, HR         1     0.988 
 H2, HR         1      0.99 

 6.18E-11 
 1.60E-10 

 1.35E-10 

 2.26E-11 

 0.125    0.881 
 0.044    0.905 

 0.098    0.929 

 0.180    0.885 

TN, H2, HR     1     0.918 

 100 ng/ml;  ERK; 30 min          
TN, H2          1     0.915 
TN, HR         1     0.923 
H2, HR         1     0.928 

 4.11E-05 
 5.40E-05 

 2.87E-05 

 1.77E-05 

 0.077    0.819 
 0.112    0.838 

 0.053    0.877 

 0.102    0.836 

TN, H2, HR     1      0.91 

 100 ng/ml;  ERK; 90 min          
TN, H2          1      0.92 
TN, HR         1     0.907 
H2, HR         1     0.909 

 7.20E-05 
 3.70E-05 

 8.98E-05 

 8.09E-05 

 0.072    0.826 
 0.152    0.884 

 0.047    0.866 

 0.084    0.820 
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