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ABSTRACT 
 

Polymers afford modular molecular designing thereby allowing development of 

polymeric materials with precisely tailored intrinsic properties as well as response to 

neighboring environment. This dissertation discusses molecular design strategies to 

develop amorphous polymers with enhanced thermal transport properties, and a bi-

functional polymer-based nanocomposite with thermally tunable behavior.  

In the first part, strategies to modulate polymer chain morphology, inter-chain 

interactions, and chain packing are explored to develop amorphous polymers with high 

thermal conductivities. The first system consists of a polymer blend of two mutually 

hydrogen-bonding polymers: one, a H-bond donor polymer with long flexible chains mixed 

with the second H-bond acceptor polymer with short and rigid chains. A high 

concentration of strong and homogeneously distributed H-bonds results in a locally 

extended morphology of the long flexible polymer and creates a percolating network of 

efficient thermal connections. In this system, thermal conductivity reaching up to 1.72 

Wm-1K-1 was achieved for nanoscale films, which is nearly an order of magnitude higher 

than that of typical amorphous polymers. In the second system of a weak polyelectrolyte, 

controlled ionization results in electrostatically-induced extended chain morphology, more 

compact chain packing, and chain stiffening which together promote enhanced thermal 
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transport. In a system with predominantly ionized (~90%) chains, thermal conductivity 

reached up to 1.17 Wm-1K-1 for nanoscale films, which was nearly 3.5 times higher than 

that in a completely unionized polyelectrolyte film (0.34 Wm-1K-1). Furthermore, thermal 

conductivities up to 0.62 Wm-1K-1 was achieved in micrometer-thick films. Overall, the two 

strategies discussed in this dissertation present a significant breakthrough in molecular 

engineering of polymers to realize high thermal conductivities in amorphous systems. 

In the second part, a unique polymer-graphene oxide (GO) nanocomposite film-

based planar microfluidic device is presented. The fabricated devices were used for 

sorting circulating tumor cells (CTCs) by their on-demand capture within the device and 

their subsequent release. The polymer provides a thermally tunable capture or release 

functionality and acts as the matrix to hold the functionalized GO sheets, which in turn 

are the scaffolds for the cell-capturing anti-EpCAM antibodies. Combining the 

temperature-sensitive modality of the polymer with the sensitive GO-mediated cell 

capture functionality yields a device that enables the study of CTCs without many of the 

shortcomings of the past technologies. At room temperature, the device captured more 

than 80% of the CTCs at flow rates of 1-3 mLh-1, and released more than 90% of the 

captured cells on cooling below the polymer’s lower critical solution temperature. Easy 

operationability of the devices affords their deployment for processing of clinical samples. 

Viable and structurally intact CTCs were successfully isolated from 10 out of the 13 

metastatic breast and pancreatic cancer patient blood samples processed. The CTCs 

isolated from the blood samples of metastatic breast cancer patients were further 

analyzed by fluorescence in situ hybridization (FISH), a standard cytogenetic technique. 
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Successful isolation of viable CTCs from clinical samples thus highlights the utility of the 

fabricated device in research and clinical settings.
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Chapter 1 

Introduction 

 

 
1.1 High Performance Functional Polymers 

Polymers have found widespread use in modern times ranging from the mundane 

such as packaging, fabrics, containers, non-stick cookware etc. to specialty applications 

such as automobiles, aircrafts, artificial hip joints etc. While in many applications such as 

rubber tires, foam cushions and insulation and high-performance sports equipment, 

polymers are the main ingredients whose properties are essential to the success of the 

particular technology, they are also used as additives to modify the properties of the host 

material, examples being motor oil, automobile windshields, cosmetics etc.1  

Polymers also play a central role in many emerging engineering technologies such 

as plastic electronics, optical data storage, electric cars and fuel cells.1 Given their tunable 

optoelectronic properties and advantages such as light-weight, flexibility and solution 

processability, conjugated polymers find use in fields like organic light-emitting diodes 

(OLEDs)2 and thin film transistors (OTFTs),3 photovoltaics,4 thermoelectrics5 and 

biosensors.6 Polymers are being increasingly investigated as biomaterials and their 
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properties range from the soft and delicate water-absorbing hydrogels used to make 

contact lenses, tough elastomers used in short- and long-term cardiovascular devices or 

the high-strength acrylics used in orthopedics and dentistry.7  

Since polymers are made by linking together a large number of small molecules 

(monomers), their properties can be finely controlled through rational molecular design of 

monomers, ratio of different monomers in the polymer chain, and architecture of the 

polymer chain. The modularity afforded by polymers allows to rationally design and 

develop polymeric materials with physical, optical, electrical, chemical or mechanical 

properties tailored for specific applications. 

 

1.1.1 Stimuli-responsive Polymers 

Stimuli-responsive or smart polymers are the class of polymers which have the 

ability to respond to external physical (temperature,8 light,9 electrical10 and magnetic11 

fields etc.), chemical (pH,12 redox,13 solvent14) and biological (enzyme,15 etc.) stimuli. 

Furthermore, the smart polymers can also be prepared to respond to multiple stimuli. The 

range of responses includes changes in shape, size, color, light transmittance, 

conductivity, wettability etc., and the degree of response can be controlled by the intensity 

of applied stimulus. Analogous to their biological counterparts such as proteins and 

nucleic acids, smart polymers show highly non-linear response. The weak interactions 

between the stimulus and monomers when summed up over thousands of catenated units 

provides a significant driving force for the process in the whole system.16 Applications of 

smart polymers include sensors, actuators, biochemomechanical systems, self-healing 

materials, anti-fouling surfaces, controlled drug delivery, biointerfaces etc.16-18 
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Among the multitude of stimuli, temperature is the most widely studied and applied 

stimulus to drive smart material systems.17 Thermo-responsive polymers can exhibit a 

variety of co-existence behavior such as upper critical solution temperature (UCST), lower 

critical solution temperature (LCST) or both. While the UCST behavior is enthalpically 

driven and is intuitive, like in the case of small molecules, that the solubility can be 

enhanced by increasing the temperature. The existence of LCST, i.e. critical temperature 

below which the polymer-solvent system is miscible in all proportions and above which 

phase separation occurs, is unique as it is entropically driven.19 At the LCST, the polymer 

starts to phase separate from solution due to the molecular transition from a coiled 

enthalpically favored structure to globular entropically favored one. The LCST is often 

observed in highly polar solvents like water and ethanol driven by H-bonding interactions 

between the solvent and the polymer chains. Occurrence of LCST behavior in aqueous 

polymer solutions coupled with the fact that the critical temperatures in many such cases 

are near ambient temperature makes it an exciting area of research.  

Poly(N-isopropylacrylamide) (PNIPAM) is the most widely studied polymer with an 

LCST of 32oC close to physiological temperature which makes it very apt for many 

biomedical applications.18 Apart from polyacrylamides several other classes of polymers 

such as poly(N-vinylalkylamides) and poly(oligoethyleneoxide)methacrylates also exhibit 

LCST phase behavior in aqueous solutions.17,18 The common feature of these polymers 

is that both the hydrophilic and hydrophobic chemical moieties are present on the same 

polymer chain. Thus, the LCST of the polymer can be modulated by changing the 

molecular structure of the monomer through incorporation of more 

hydrophilic/hydrophobic groups,20 and co-polymerization.21 The general rule is that 
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increasing the hydrophilic moieties in the polymer chain increases the LCST and vice-

versa.  

 

1.1.2 Inter-polymer Complex 

When polyacids are mixed with non-ionic polymers in solution, a phase separation 

can be observed resulting in the formation of what is termed as “inter-polymer complex” 

(IPC). IPC was first reported by Smith and co-workers in 1959 for poly(acrylic acid) and 

poly(ethylene oxide) in aqueous solution.22 Smith et. al.22 and Bailey et. al.23 

demonstrated that the interaction between 

these polymers is driven by H-bonding and 

the IPC stoichiometry approaches 1:1. H-

bond is a special type of dipole-dipole 

interaction between two molecules resulting 

from the attractive force between a hydrogen 

atom bound to an electronegative atom such 

as O, N, F and another electronegative atom. 

The energy of a single H-bond is 

comparatively low (2-167 kJ/mole) and bond length is in the range 1.2-3 Å.24 However, in 

the case when simultaneous co-operative H- bonding between H-bond donor and 

acceptor moieties on two macromolecules occurs, the strength of the bonding is 

substantial. In case of polymers, co-operative H-bonding results in ladder-like structure 

of IPC. In most cases, aggregation induced precipitation occurs (Figure 1.1).  

Figure 1.1| Schematic of inter-
polymer complex formations. Red 
circles depict solvent molecules.25 
(Reprinted from Ref. 25, Copyright 
2007, with permission from Elsevier.) 
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The most commonly used polyacids for preparing IPC are poly(acrylic acid) (PAA) 

and poly(methacrylic acid) (PMAA). These polymers form IPC with a various classes of 

non-ionic polymers such as polyacrylamides, poly alcohols, polysaccharides and 

polymers with lactam groups and ether groups in backbone.26 Since H-bonding occurs 

between the proton accepting groups of the non-ionic polymers and carboxylic hydrogen 

of the polyacids, the formation of IPC is dependent on the degree of ionization of the 

polyacids and, hence, the pH of the medium. IPC is formed in weakly or strongly acidic 

medium and starts disassociating as the pH of the medium is increased. In fact, the 

stability of IPC can be gauged from its critical pH (pHcrit), i.e. the pH at which the IPC 

starts disassociating.27 Higher the value for pHcrit, more stable is the IPC formed. pHcrit is 

a specific value for a given polymer-polymer system and depends on the nature of the 

polymers, molecular weight, concentration and presence of small molecules or ions in the 

solution.28-31 

In addition to H-bonding, formation of IPC in aqueous solutions is also stabilized 

by hydrophobic interactions which force the particles to coil up into globules to minimize 

the polymer-solvent interface.32 As such, the stability of IPC is affected by the 

hydrophobic/hydrophilic nature of the polymer. For example, PMAA which is more 

hydrophobic than PAA forms stronger complexes with higher pHcrit. Staikos and co-

workers demonstrated that polymers with LCST form more stable IPC due to more 

effective stabilization via hydrophobic interactions.33 The stability of IPC involving a LCST 

polymer is also influenced by temperature as there exists a fine balance between H-

bonding which is weakened at higher temperatures and hydrophobic effect which gets 
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stronger with increase in temperature.34 Thus, temperature and solution pH can 

effectively be used to modulate the stability of IPC.  

Many technical applications of H-bond stabilized IPC have been suggested. These 

include ion conducting materials, metal chelating materials, emulsifiers and polymeric 

membranes.35 H-bonded layer-by-layer (LbL) assembly has been investigated for pH and 

temperature-responsive drug delivery systems, materials with tunable mechanical 

properties, release films dissolvable at physiological conditions, humidity sensors and for 

controlling protein and cellular adhesion.25  

 

1.2 Polymers in Thermal Management Applications 

Effective thermal management is critically important for any application because 

the conversion of the primary forms of energy such as electrical, mechanical, and 

electromagnetic energy etc. into useful work 

necessarily results in generation of waste heat. 

For example, the wall-plug efficiency of high-

power light emitting diodes (LEDs) lies in the range 

of 5-40% implying that 60-95% of the input 

electrical energy is dissipated as heat.36 The waste 

heat generated through power dissipation during 

device operation often leads to overheating in critical components resulting in 

performance degradation and catastrophic failure over time. In fact, this heat build-up is 

the primary cause of premature failure of electronic components (Figure 1.2),37 and has 

prompted design and development of several thermal management techniques. While 

Figure 1.2 | Causes of failure in 
electronic devices37 
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mechanically-assisted active cooling techniques like air/liquid jet impingement, forced 

liquid convection, spray cooling, thermo-electric coolers, and refrigeration systems etc. 

are most commonly used for thermal management in large-scale units like power 

generators, automobile and aerospace technologies, telecommunication, server and data 

centers etc., small or portable consumer electronics like laptops generally rely on passive 

cooling via convective (either natural or forced) heat transfer from heat sinks and pipes, 

fins etc.37 Although the heat flux for such portable devices is much lower than that in high 

power density applications, these are usually housed in sealed enclosures with 

constrained space which adds further complexity to devising effective thermal 

management solutions.  

The ever increasing power densities of electronic, photonic, optoelectronic, and 

energy storage devices coupled with the current focus on miniaturization requires 

comprehensive efforts on materials, processes and design methodologies to develop 

effective thermal management solutions. Here, we focus on the materials aspect of 

thermal management, particularly on the applicability of polymeric materials in such 

applications. 

 

1.2.1 Importance of Thermal Conductivity in Polymers 

Compared to high thermal conductivities in metals (15-400 Wm-1K-1) and ceramics 

(1-40 Wm-1K-1), bulk polymers have low thermal conductivities in the range of 0.1-0.4 Wm-

1K-1 which renders them inadequate for thermal management applications. While metals 

and ceramics are the preferred materials for thermal management, their high price, high 

density, and limited machinability motivate the continued study of alternative materials 
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with good thermal performance. In fact, despite their poor κ, polymers are the material of 

choice in applications such as electronic encapsulants, cellphone casings, LED housings 

etc. due to their low cost and easy machinability. Similarly, elastomers such as epoxies 

and silicones find use as thermal interface materials to link Si die with the heat sink or as 

underfill materials in interstitial spaces between the solder bumps in 3D-stacked Si dies 

to prevent air gap.38,39 

Polymer-matrix composites (PMCs)40 present one class of materials that is 

increasingly becoming a viable alternative to metals and ceramics. In convection-limited 

cooling, metals usually present an over-engineered solution to thermal management. The 

fact that the same effective cooling rates can be achieved with materials with much lower 

thermal conductivities has given impetus to PMCs as an alternative to metals in several 

thermal management applications. Moreover, PMCs offer several advantages like easy 

manufacturability into intricate shapes and sizes, low density, excellent mechanical 

properties such as high flexural strength, high low-impact strength and tensile stiffness, 

and corrosion resistance.41 Compared to traditional material like aluminum, lower 

coefficient of thermal expansion (CTE) of PMCs matches better with that of the silicon 

and ceramic parts it contacts thereby reducing thermomechanical stresses at the 

interface.41 They further provide mold-in functionality and consolidation of parts thereby 

helping to avoid post-machining operations. For example, car radiators made from PMCs 

can be shaped fitting the contours of the bumper rather than the traditional square box 

shape. Applications of PMCs include motor or motor bobbin encapsulation, tubing of heat 

exchangers used in industrial equipment in corrosive environment, custom-molded heat 

sink on circuit boards, thermistor housing, diesel fuel pumps etc.41 They are also used in 



	 9	

the forms of heat spreaders like thermal pads and thermal interface materials like thermal 

grease or gels in electronic chips and consumer electronics such as laptops.42  

While efforts to increase the thermal conductivity of polymeric materials generally 

focuses on compounding with high-κ fillers,43 developing a method to increase thermal 

conductivity of pure unmixed polymers without significantly impacting their other 

properties (e.g., cost, weight, electrical conductivity) would enable them to displace more 

expensive materials in many more thermal management applications and further improve 

the functionality of existing polymer products. For example, device performance and 

reliability can benefit from high thermal conductivities of plastic encapsulants used for 

LEDs, electronic chips and cellphones. Furthermore, thermal conductivity of PMCs is also 

impacted by that of the polymer matrix, especially at lower filler loadings as the polymer 

acts as thermal barrier and is the limiting factor in heat conduction. Developing high-κ 

polymers will, thus, help to realize high thermal conductivity in polymer composites at 

lower filler loading thereby preserving the positive attributes like machinability and light-

weight afforded by polymers as well as reducing cost. 

The rapidly rising field of flexible electronics presents yet another severe challenge 

for thermal management as the circuit elements are generally built on flexible polymer 

substrates such polyetheretherketone (PEEK), polyimide (PI), polyethylene terephthalate 

(PET), polydimethylsiloxane (PDMS) etc. Although such devices will likely have very low 

power densities, low thermal conductivity of the substrate can aggravate heat build-up. 

Pure polymers with better heat dissipation properties can tremendously help to achieve 

higher performance in such devices.44 
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In addition to thermal management applications, industrial production of plastic 

parts and components is also expected to benefit from the high thermal conductivities in 

polymers. The price of finished plastic products is much higher than the cost of raw 

materials due to the high cost incurred during the production process. Since most plastic 

products are thermally machined, the intrinsic low thermal conductivity of polymers results 

in increased heating and cooling times during the molding processes like injection 

molding and extrusion which results in increased manufacturing time and cost.45  

 

1.2.2 Previous Efforts to Improve Thermal Conductivity of Polymers 

Thermal transport in polymers has been a subject of intense academic as well as 

industrial research. Primarily, two approaches have been adopted to fabricate high 

thermal conductivity polymeric materials: first, blending with high-κ filler particles, and 

second, inducing chain orientation and crystallization. 

 

1.2.2.1 Polymer Composites with High-κ Fillers 

The most commonly used method to enhance polymers’ thermal conductivity is to 

blend them with thermally conductive fillers such as metal46 or ceramic47-49 particles, and 

carbon-based fillers such as carbon fibers50, graphite51 or graphene flakes,52 carbon 

nanotubes (CNTs)53 etc. Since the thermal conductivity of such composites is dominated 

by thermal transport in fillers, research mostly focuses on the loading level, size, shape, 

orientation and distribution of fillers in the polymer matrix.43 The choice of fillers is dictated 

by the application of the composites, for example, electrically non-conducting ceramic 

fillers such as aluminum nitride and boron nitride are used if electrical insulation is 
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necessary. Carbon-based fillers such as graphite and CNTs or metal particles can be 

used if electrical insulation is not required. Achieving high κ in composites usually requires 

high filler loading to create a continuous conducting or percolating network through which 

heat can transfer efficiently.54 This results in unwanted properties such as loss of 

processability and machinability, increased weight, color and cost (CNTs: $1000/kg, 

PMMA: $2/kg). Moreover, thermal transport in composites is limited by poor filler 

dispersion in the polymer matrix, and interfacial thermal resistance55 between fillers and 

the matrix resulting in the achieved thermal conductivity that is far lower than the weighted 

average of those of the fillers and the polymer matrix. For example, thermal conductivity 

achieved in composites with spherical metal particles above the percolation threshold is 

on the order of 1 Wm-1K-1 (Ref. 46). Similarly, CNTs and graphite flake fillers also yield 

low thermal conductivities in absence of any orientation.56,57 

 

1.2.2.2 Polymer Chain Orientation and Crystallization 

Since heat is transferred more efficiently along the chain (intra-chain) than in the 

transverse direction (inter-chain), significantly higher thermal conductivity can be 

achieved in the direction of chain orientations.43 Directional orientations of crystalline or 

semi-crystalline polymers also result in enhanced polymer crystallization. Several 

techniques such as simple shearing,58 mechanical stretching,59 gel-spinning,60 

superdrawing,61-63 nano-porous template wetting64 and electro-spinning65 have been 

developed to realize high thermal conductivities in polymer fibers. While the thermal 

conductivity (κparallel) parallel to the direction of stretching rapidly increases with draw ratio, 

it drops slightly in the perpendicular direction (κperpendicular).
43 Thermal conductivity in 



	 12	

oriented PE has been widely studied. κparallel up to 42 Wm-1K-1 has been achieved in 

oriented PE microfibers super-drawn from single crystal mats to a draw ratio of ~350 (ref. 

63). Recently, a more advanced 2-step mechanical stretching method has been 

demonstrated to achieve κparallel 

as high as 104 Wm-1K-1 in PE 

nanofibers with diameter of 50-

500 nm and an estimated overall 

draw ratio of 60-800 (ref. 66; 

Figure 1.3a). These PE 

nanofibers were found to have 

single crystal structure which 

supports the notion that 

stretching results in re-

structuring of polymer chains 

into ordered crystals. Nanoscale 

size of these fibers further 

eliminated defects such as 

voids, impurities and chain 

entanglements which explains 

~2.5 times higher thermal conductivity achieved compared to microfibers. Similar to 

crystalline/semi-crystalline polymers, stretching of amorphous polymers such as PMMA 

and PS also results in enhanced thermal conductivity in the direction of orientation. 

However, the enhancement was found to be a rather modest two-fold in most cases.67-70 

a

b

Figure 1.3 | Chain oriented polymer systems with 
high κ. a, SEM image of a PE nanofiber fabricated 
by two-step mechanical stretching method (left), and 
κ as a function of draw ratio is shown (right).66 
(Reprinted by permission from Macmillan Publishers 
Ltd: Nature Nanotechnology (Ref. 66), copyright 
2010) b, SEM image of polythiophene nanofiber 
brush made by nano-template assisted 
electropolymerization (left) and κ as a function of 
fiber diameter (right).71 (Reprinted by permission 
from Macmillan Publishers Ltd: Nature 
Nanotechnology (Ref. 71), copyright 2014) 
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Thermal conductivity up to 4.4 Wm-1K-1 has been demonstrated in amorphous 

polythiophene nanofibers fabricated via nano-template assisted electropolymerization of 

thiophene monomers (Figure 1.3b).71 

Although, chain orientation and crystallization strategies can achieve high κ in pure 

polymer systems, the anisotropic nature of thermal conductivity greatly limits the 

application of such oriented fibers. Such strategies are also difficult to be applied at large 

scale at a reasonable cost. 

 

1.2.3 Models for Thermal Conductivity in Polymers  

A material’s ability to transfer heat energy through conduction is characterized and 

quantified by thermal conductivity (κ) which is related to heat flux density and temperature 

gradient by Fourier’s law of thermal conduction: 

! = 	−%∇' 

where,  

! is the amount of heat energy flowing through a unit area per unit time or local heat flux 

density (Wm-2), 

% is the material’s thermal conductivity (Wm-1K-1), and 

∇' is the temperature gradient (Km-1). 

In all materials, thermal energy is carried essentially by atomic motions. In case of 

metals, the mobile electrons are the majority heat carriers and contributions from lattice 

vibrations can be neglected.72 For dielectric crystals, heat is transported primarily by 

phonons which are energy quanta of lattice vibrations. Thermal conduction in bulk 

dielectric crystals is generally explained by phonon gas model (PGM)73 which treats 
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phonons or vibrations as quasi-particles and their transport is modeled like gas particles 

which carry energy (ℎ) in case of phonons) and scatter off each other. PGM gives thermal 

conductivity as:  

% = 	
1

3
	,-./ 

where, 

,- is specific heat capacity per unit volume, 

. is phonon velocity, and 

/ is the phonon mean free path (MFP) and is defined as product of . and relaxation time 

(0). 

Although PGM is widely invoked to explain thermal conductivity in all solids, its 

validity becomes questionable in case of disordered solids, including amorphous 

polymers. Critical to applicability of PGM is a well-defined phonon velocity which 

determines the speed at which energy transfers through the material following the 

temperature gradient. Since defining phonon velocity requires the phonon wave vector to 

be defined which in turn needs periodicity, phonon velocity cannot be unambiguously 

defined for amorphous materials which lack long-range order.73 Nevertheless, PGM can 

be invoked to gain physical insights as to why amorphous polymers generally have low 

thermal conductivities. Thermal conductivity of solids spans 5 orders of magnitude (0.1-

1000 Wm-1K-1). For all materials, specific heat capacity essentially reaches the same 

value of 312 per atom, and phonon velocities are proportional to sound of speed which 

lies in the range of 1-10 kms-1. This leaves phonon MFP to be the dominant factor which 

can explain the observed range of thermal conductivities. The relaxation time (and hence, 

MFP) of phonons in materials can span more than 3 orders of magnitude. The disordered 
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structure of polymers limits effective length scales over which thermal energy can 

propagate in amorphous polymers.73 Consequently, due to infinitesimally short phonon 

MFP on the order few monomer lengths (typically <10 nm) amorphous polymer have low 

thermal conductivities within a narrow range of 0.1-0.4 Wm-1K-1 (ref. 43). 

Building on the model of minimum thermal conductivity originally proposed by 

Einstein which assumes thermal transport through harmonic coupling of atomic vibrations 

with varying phases, Allen and Feldman further classified vibrational modes in amorphous 

materials as locons, diffusons and propagons to explain their contribution to thermal 

transport.74,75 Locons are localized vibrational modes and do not contribute to thermal 

conductivity in the harmonic approximation. Diffusons are non-propagating diffusive 

modes, and propagons are propagating modes analogous to phonons in crystalline 

solids.76 Separate studies have demonstrated important contributions to thermal 

conductivity from these modes.76-85 

Molecular dynamic (MD) simulations have demonstrated important contributions 

to thermal conductivity in polystyrene77 and proteins78,79 from anharmonic coupling 

between localized modes or localized and delocalized modes. However, the proposed 

mechanism has not been experimentally verified. The most commonly used model for 

disordered solids is the minimum thermal conductivity model (MTCM)76,80,81 which is 

based on Einstein’s model of harmonic oscillators. It assumes thermal transport through 

diffusion of vibrational energy on a timescale of half vibrational period and incorporates 

Debye density of vibrational states. In the high temperature limit, MTCM gives thermal 

conductivity as: 

% = 	
3

48

6
7
128
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where, 

8 is atomic density 

:; is longitudinal sound velocity 

:> is transverse sound velocity 

12 is Boltzmann constant. 

Although the discrepancy between MTCM predicted and measured thermal 

conductivities lies in the range of 20 – 40% (ref. 82), the fact that the thermal conductivities 

can be calculated from two experimentally measurable parameters (atomic density and 

speed of sound) makes it a powerful tool to study heat transport properties of disordered 

materials. The model has been shown to correctly predict thermal conductivities of 

amorphous inorganic solids,80 disordered crystals,81 and amorphous 

macromolecules.76,82,83 

Interestingly, few studies have demonstrated existence of propagating vibrational 

modes in amorphous solids which is contrary to the long-held notion that disordered or 

amorphous solids cannot support long-range phonon-like propagating modes.84,85 

Regner et. al. measured thermal conductivity of amorphous silicon oxide (SiO2) and 

amorphous silicon (a-Si) as a function of phonon MFP via broadband frequency domain 

thermoreflectance (BB-FDTR) which allows to modulate the thermal penetration depth 

(TPD) during measurement.84 Since any phonon with MFP > TPD would propagate quasi-

ballistically through the material, it would not contribute to the measured thermal 

conductivity. A constant value of κ measured for SiO2 as a function of MFP in the range 

of 60-900 nm suggested that any phonon-like mode would have MFP < 60 nm. 

Alternatively, thermal conductivity in SiO2 could also be diffuson dominated. In contrast 
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to SiO2, a-Si showed 35±7% contribution from phonon-like modes with MFP > 100 nm. In 

a recent study of the size-dependent thermal conductivity of amorphous Si nanotubes 

and films, existence of phonon-like modes with MFP ranging from 10 nm to 10 μm was 

established.85 Moreover, propagons with MFP > 1 μm were found to contribute ~30% to 

thermal conductivity at 300K. Bulk κ for a-Si was measured to be 5.5 Wm-1K-1 which is 

considerably higher than the amorphous limit of 1 Wm-1K-1 given by MTCM. These studies 

show that while propagating modes can exist in amorphous materials, it is highly 

dependent on the molecular make-up of the materials.  

 

1.2.4 Insights into Polymer Thermal Conductivity 

Due to their extremely high aspect ratios and ensuing configurational entropy gain, 

polymer chains assume thermodynamically favorable curvilinear shapes with easily 

accommodated bends and kinks resulting in a highly disordered and entangled 

amorphous structure.86 Such a molecular make-up along with inherent defects and chain-

ends act as scattering sites for propagating vibrational waves, leading to shortened 

phonon MFP. Furthermore, their inefficient chain packing causes voids (and low density) 

that further increase scattering and dampen heat transport. The anharmonic nature of 

soft bonds as well as the presence of many non-propagating vibrational degrees of 

freedom likewise contribute to increased scattering. Soft bonds present a particular 

bottleneck for inter-chain thermal transport, as weak (e.g., van der Waals (vdW)) 

interactions do not strongly transfer vibrational energy from one chain to another and 

hence lead to small inter-chain thermal conductances.87 Together, these effects cause 

thermal conductivities of amorphous polymers to fall primarily within a small range of 0.1-
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0.4 Wm-1K-1 (ref. 43). This is in stark contrast to the thermal conductivity of a single PE 

chain in extended conformation which is computed to be as high as 350 Wm-1K-1 for a 

chain length greater than 100 nm.66 Consequently, we can identify the following three 

parameters that together limit efficient heat transport in polymers, namely: a) highly coiled 

and entangled intra-chain structure, b) intrinsic amorphous loose packing and the 

existence of voids, and c) inter-chain interactions that are mainly weak (e.g., vdW, dipole-

dipole, etc.).  

The molecular make-up of polymers can be classified at three levels: 1) chemical 

structure including chain backbone, side groups and chain length, 2) chain morphology 

and orientation, and 3) inter-chain interactions. Although the three parameters are 

intertwined and collectively effect thermal transport properties of polymers, they are 

discussed separately to provide a clearer picture of materials-property relationship.  

 

1.2.4.1 Chemical Structure 

Simulation is the most commonly used tool to study the effect of molecular 

composition of the polymers which includes the polymer backbone as well as the side 

groups on their thermal transport properties. Zhang et. al. employed large scale MD 

simulation to investigate the effects of backbone structure on the thermal conductivity of 

nanofibers. π-conjugated systems such as polyacetylene (PA), polythiophene (PT), 

poly(p-pheneylene) (PPP) etc. were found to have higher κ compared to polymers with 

aliphatic backbone (Figure 1.4).88 This was attributed to stiffer backbone due to restricted 

bond rotation in such conjugated systems as the rigid backbones of π-conjugated 

polymers allow larger phonon group velocity as well as suppress segmental rotation 
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thereby minimizing phonon scattering. Liu et. al. investigated the effect of disorders 

related to bond-strength, mass, and orientation on the thermal conductivity of polymer 

single chains.89 Mixing covalent bonds of different strengths in the polymer backbone was 

found to create bond-strength disorder which resulted in lower κ in polybutadiene 

compared to that in PE or PA. Inclusion of heteroatom in an aliphatic or aromatic chain 

similarly created a mass disorder which localized vibrational modes thereby impeding 

heat transfer by delocalized, long wavelength propagating modes. For example, thermal 

conductivity for poly(ethylene oxide) was measured to be only 4% of that of PE for chains 

longer than 600 segments. In addition to mass disorder, inclusion of oxygen in poly(p-

phenylene) created misalignment of orientation of aromatic rings, i.e., orientational 

disorder, resulting in lower κ in poly(pheneylene ether). 

 

Figure 1.4 | Thermal conductivity and structure of polymer nanofibers at different 
temperatures. π-conjugated polymers are plotted by solid lines with circle markers, 
while others are plotted by dashed lines with rectangular markers.88 (Reprinted with 
permission from Ref. 88. Copyright 2014 American Chemical Society.) 
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Liao et. al. applied equilibrium MD simulation to study the effect of chain length, 

molecular weight of substituent atom (Model C-X) and the ratio of substituent atoms 

(Model C-HmYn) on C-C backbone on the thermal conductivity of single-stranded carbon 

chain.90 Thermal conductivities were found to be constant for polymer chains longer than 

10 nm and was inversely related to the atomic mass of the substituent atoms (mx) on the 

C-C backbone. Replacing a portion of H atoms with Y atoms at equal spacing also 

resulted in lower thermal conductivity; a mere 3% substitution of H atoms was found to 

lower thermal conductivity by ~75% (Figure 1.5). It is noted that the chain length 

dependence of thermal conductivity is in contrast to that reported by Liu et. al.89 who 

showed either divergent or convergent dependence.  

 

 

 

Figure 1.5 | The representative models and thermal conductivity (κ) of single-
stranded carbon chain polymer with different atomic masses of X atoms (mx) 
calculated by equilibrium molecular dynamics (EMD) simulations at room 
temperature. a, The thermal conductivity of single polyethylene chain (mx = 1 g/mol) 
versus chain length (L). b, The thermal conductivity of Model C-X with varied mx. c, 
The thermal conductivity of Model C-HmYn with variable fraction of H atoms ΦH, where 
ΦH is defined as the percentage of H atoms in the total H atoms and Y atoms.90 
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1.2.4.2 Chain Morphology and Orientation 

Polymer thermal conductivity is also affected by the morphology of individual 

chains.91-96 Since the dihedral angle strength and interchain interaction are the weakest 

interactions among different interatomic 

interactions in polymers, they can be easily 

activated and hence affect large motions of 

polymer chains. A lower dihedral angle 

strength can lead to easy segmental rotation 

of polymer chains inducing disorder in the 

chain. Such disorders result in phonon 

scattering thereby reducing thermal 

conductivity. For example, single chain PE κ 

was computed to increase with the dihedral 

angle strength; a 10-fold increase in dihedral 

energy resulted in more than five times 

enhancement in thermal conductivity (Figure 1.6).92 Compared to high κ in PE single 

chains66 (~350 Wm-1K-1), poly(dimethylsiloxane) (PDMS) single chains were computed to 

have low κ (~7 Wm-1K-1, ref. 93) even though the phonon group velocity for  PDMS (5600 

ms-1) was only three times smaller than that of PE (16000 ms-1). Low κ in PDMS was 

attributed to conformational disorder scattering of phonons due to the rotational softness 

of Si-O-Si-O bonds resulting in pretty flat torsional potential surface of Si-O-Si-O dihedral 

angle.93 Chain morphology is found to similarly affect thermal conductivity of amorphous 

Figure 1.6| Thermal conductivity of 
single PE chains with different 
dihedral energies. Inset: probability 
distribution of the dihedral angle of PE 
backbones with 1X, 10X, and 40X 
dihedral energy.92 (Reprinted from 
Ref. 92, with the permission of AIP 
Publishing.) 
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polymers. Large persistence length was found to enable polymer chains adopt extended 

conformation which allowed longer thermal transport path along the polymer backbone.97 

Since heat is more efficiently transferred along the polymer backbone than in 

between the chains, thermal conductivity can be significantly higher in the direction of 

chain orientation. Chain orientation leads to phonon focusing which results in 

enhancement of group velocity as well as MFP resulting in enhanced κ.98 Polymer chain 

orientation is a commonly used technique to make high κ polymer fibers as described in 

section 3.2. Following from above discussion, it becomes clear that ordering of polymer 

chains would result in higher thermal conductivity. For the same reason, crystalline 

polymers with their intrinsic order have higher thermal conductivities (~0.3-0.5 Wm-1K-1) 

than amorphous polymers (~0.1-0.2 Wm-1K-1) (ref. 43). Polypropylene (PP) which is a 

crystalline polymer is an interesting exception. Low κ (0.11-0.17 Wm-1K-1) in PP is 

generally attributed to low crystal density and possible phonon scattering by the methyl 

side group.43 Thermal conductivities are also affected by the crystal form of crystalline 

and semi-crystalline polymers. Generally, extended crystal structure and increased 

lamellar thickness results in higher κ.99 

 

1.2.4.3 Inter-chain Interactions 

Inter-chain interactions can affect the thermal conductivity of polymers in two ways: 

one, by influencing chain segmental motion through confinement effects (i.e., indirectly 

impacting thermal transport via chain backbone) and two, coupling polymer chains to 

enhance inter-chain heat transfer.100 However, the effect of inter-chain interactions is not 

clearly understood. MD simulation study of Nylon 6-6, Teflon, polyketone (PK) and Kevlar 
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nanofibers shows reduced segmental motion due to stronger inter-chain interactions like 

H-bonds in Nylon 6-6 and Kevlar, and strong dipole interactions in PK. Yet, it does not 

translate into enhanced thermal conductivity in these polymers when compared to PE. 

This can be attributed to presence of heteroatoms in the polymer backbone in case of 

Nylon 6-6 and Kevlar. Teflon, despite its strong dipole, suffers from segmental disorder 

and hence has low thermal conductivity.88 

Cross-linking polymer chains using covalent chains is a compelling strategy to 

harness the positive contributions of stronger inter-chain interactions on thermal 

conductivity as it is widely used in polymer product manufacturing. However, there are 

serious discrepancies in literature regarding the thermal conductivities of cross-linked 

polymers.101-105 While cross-linking can increase inter-chain conductance between prior 

weakly bonded polymer chains, it can also result in scattering of phonons along the main 

chain.100 This is exemplified by the miniscule enhancement in thermal conductivities 

achieved in cross-linked systems such as polystyrene (PS) cross-linked with divinyl 

benzene (PS-DVB)101 and polymethyl methacrylate (PMMA) cross-linked with 

triallylcyanurate (PMMA-TAC)101 as well as low κ in some H-bonding polymers (e.g., 

Nylon 6-6).106 On the other hand, thermal conductivity of some water soluble polymer 

such as poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA) and poly(4-styrene sulfonic 

acid) (PSS) was found to 1.5-2 times higher than that of non-water-soluble polymers.82 

H-bonding in these polymers was attributed for their higher κ. Interestingly, cross-linking 

in PAA through anhydride formation resulted in a drop in thermal conductivity.83 Similarly, 

salts of PAA, poly(vinyl sulfonic acid) (PVSA) and poly(vinyl phosphonic acid) (PVPA) 

were found to have higher thermal conductivity reaching up to 0.67 Wm-1K-1 in PVPA-
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Ca+2 salt.82 High κ was attributed to the presence of ionic inter-chain interactions which 

are stronger than H-bonding and van der Waals interactions. 

 

1.3 Functional Polymers in Cancer Diagnostics 

Cancer is a group of diseases that are characterized by abnormal or uncontrolled 

growth and spread of cells, and 

over 100 different types are 

identified in humans. It is the 

second leading cause of deaths 

worldwide behind heart 

diseases.107 Metastasis, or spread 

of tumor to distant parts of the 

body, is the cause for over 90% of cancer-related deaths (Figure 1.7).108,109 Circulating 

tumor cells (CTCs) are those cells that are responsible for tumor metastasis. They are 

shed into the vasculature from the primary tumor and seed secondary tumors at distant 

locations.110 CTCs were first discovered in 1869 by Thomas Ashworth who hypothesized 

that these cells could be the fundamental precondition to tumor metastasis.111 Compared 

to biopsy, the gold standard for cancer diagnosis, CTCs provide easy and non-invasive 

access to tumor cells. CTCs captured through minimally invasive blood test called ‘liquid 

biopsy’, which is amenable to serial sampling, can provide information about intra-tumor 

heterogeneity and tumor evolution. CTCs have clinical potential as prognostic biomarkers 

to predict treatment efficacy, progression-free survival, and overall survival in patients.112-

116 Through minimally invasive liquid biopsy, CTCs can also provide real time information 

Figure 1.7 | The metastatic cascade108 (From 
Ref. 108, Reprinted with permission from AAAS.) 
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on clonal evolution during therapy and disease progression. CTCs have been proposed 

as surrogate biomarkers in over 270 clinical trials.117 However, they have not been 

incorporated into clinical practice for management of cancer patients. The main challenge 

is the very low frequency (1-10 cells per 10 mL of blood) of CTCs in blood. Moreover, 

CTCs are obscured by billions of blood cells which makes their isolation extraordinarily 

difficult.  

 

1.3.1 Isolation Strategies for CTCs 

CTC isolation techniques (Figure 1.8) share many attributes of a conventional 

biosensor in that they should be highly sensitive to capture the extremely low and 

heterogeneous population of CTCs as well as demonstrate high specificity to substantially 

enrich CTCs against the blood cells. It is also important the techniques are repeatable, 

reliable, cost-effective and rapid.118 Moreover, they should be amenable to process 

automation, high-throughput to process clinically relevant volumes of blood, and 

compatible with downstream CTC analysis techniques.118 These techniques should be 

gentle enough not to result in loss of cell viability and/or potential changes in status or 

phenotype due to the separation process. The CTC isolation technologies are generally 

evaluated in term of several parameters such as capture efficiency, recovery, CTC 

enrichment, purity and vitality, processing time, sample capacity and pre-treatment.118 

The optimal isolation technology may require compromise among different parameters to 

yield a device best suited for the intended downstream analysis techniques to be 

employed.118  
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Isolation techniques can be classified according to the cell attributes they exploit 

to separate CTCs. Immunoaffinity-based isolation techniques exploit the highly specific 

interaction between the capture antibodies and the antigens expressed on the cells to 

either enrich CTCs against blood cells or deplete leucocytes.118 Introduction of 

immunomagnetic capture of CTCs by CellSearch system119 through antibody-coated 

ferrofluid nanoparticles provided the impetus for the early investigation of CTCs. 

CellSearch technology with its semi-automated and standardized kits allows robust 

validation and reliable comparison of results,120 and remains the only FDA-approved CTC 

isolation technology for metastatic breast, prostate and colorectal cancer.  

 

 

However, its large footprint and apparent lack of flexibility vis-à-vis further analysis 

of isolated cells has prompted the development of newer systems for isolation of CTCs. 

Figure 1.8 | Approaches for isolation of circulating tumor cells (CTCs) from 
whole blood118 (Reprinted from Ref. 118, Copyright 2014, with permission from 
Elsevier.) 
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Cell capture against capture antibodies tethered to solid substrates has been employed 

in conjunction with fluid handling systems such as microfluidic devices121 (discussed in 

detail later). Other systems include nanostructured surfaces (e.g., Si nanopillars)122 and 

microtubes123 decorates with capture antibodies. A medical wire decorated with capture 

antibodies and which could be inserted into patient’s cubital vein for 30 minutes has been 

used for in vivo sampling of large volumes (1.5-3 L) of blood.124 Immunoaffinity-based 

CTC isolation has many advantages such as high purity of the isolated cells afforded by 

the high specificity of antibody-antigen interactions, and the ability to employ a cocktail of 

antibodies against several antigens, thereby allowing to target different subpopulations of 

CTCs.125 The major drawback of antibody-based isolation is throughput. Antibody-antigen 

interactions are shear-dependent.121,126 At high flow rates, high shear may result in many 

cells being missed. On the other hand, too low a speed may result in contamination due 

to non-specific cell binding.127  

CTC isolation based on physical characteristics of CTCs exploit the differences in 

size, density, deformability and dielectric properties.118 The first attempt128 to isolate CTCs 

was made with microfiltration which works on the principle of retaining larger CTCs and 

allowing smaller leukocytes to flow through.129 Density gradient centrifugation130 has been 

used to separate CTCs from erythrocytes and granulocytes based on the difference in 

density. Microfluidic devices have been employed to achieve hydrodynamic separation of 

cells by subjecting cells based on their size and deformability to different flow forces.131-

133 Dielectrophoretic (DEP) separation employs application of non-uniform electric field to 

separate CTCs from normal blood cells.134 Physical properties based separation of CTCs 

affords higher throughput than immunoaffinity-based techniques and is not vulnerable to 
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variability in antigen expression on the CTCs or loss of epithelial markers like in the case 

of epithelial-to-mesenchymal (EMT) transitions.118 Centrifugation-based separation 

generally results in low purity. While microfiltration can process large volumes of blood, it 

is marred by clogging of filters135 and loss of cell viability due to high pressure exerted 

during the separation process.136 DEP separation has lower throughput and suffers with 

joule heating and generation of gases such as hydrogen and oxygen during operation 

which can result in loss of cell viability.137  

Direct analysis of the entire population of cells in the blood is one alternative to 

overcome the difficulty of isolating of CTCs.118 Towards this end, a fiber-optic array 

scanning technology138 has been developed which can analyze 300,000 cells per second. 

A micro-Hall sensor139 was used to enumerate CTCs by measuring the Hall voltage 

generated by the magnetic flux of each magnetic bead-conjugated CTC flowing through 

the device. While direct analysis approaches are promising as they are high throughput 

and less vulnerable to cell loss during operation, they are largely confined to enumeration 

and lack CTC enrichment necessary for the downstream analysis of these cells.118 

 

1.3.2 Immunoaffinity-based Microfluidic Devices for Isolation of CTCs 

Derived from micro total analysis systems (μTAS)140, microfluidic devices for CTC 

isolation fall within the broader field of “lab-on-a-chip” technology. Microfluidics refers to 

the technology of the systems that process or manipulate small quantities (10-6 – 10-15 

mL) of liquid using channels on the length scales of 10-100 μm.141 Microfluidic devices 

are fabricated using techniques developed in the semiconductor industry and are 

generally made of silicon, glass and polymers, particularly PDMS.142 Such devices have 
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small footprint for an analytical system, are low cost, use very small quantity of reagents, 

and allow sensitive separation and detection at rapid processing speeds.143 Moreover, 

the length scale of microfluidic devices is on par with that experienced by cells in human 

body.  

Nagrath et. al. developed the first microfluidic device for CTC isolation (Figure 

1.9).121 Named CTC Chip, the device had 78,000 100 μm tall microposts etched in silicon 

and covered with antibodies against 

epithelial cell adhesion molecule 

(EpCAM). The device could capture 

CTCs from whole blood flowing at 1 

mLh-1 through it. However, it had low 

capture efficiency (~60%) and low 

purity (50%). Subsequent 

developments tried to overcome the 

issues of low capture and purity. 

Geometrically enhanced differential 

immunocapture (GEDI)144 device 

combined the immune-affinity based 

capture of CTCs on microposts with 

hydrodynamic chromatography to 

reduce non-specific capture of 

leukocytes. OncoCEE (CEE, cell enrichment and extraction)145 used microposts covered 

with a cocktail of antibodies to enhance capture efficiency. Since the identification and 

Figure 1.9 | Isolation of CTCs from whole 
blood using a microfluidic device. a, The 
workstation setup for CTC separation. The 
sample is continually mixed on a rocker, and 
pumped through the chip using a pneumatic- 
pressure-regulated pump. b, The CTC-chip 
with microposts etched in silicon. c, Whole 
blood flowing through the microfluidic device. 
d, Scanning electron microscope image of a 
captured NCI-H1650 lung cancer cell spiked 
into blood (pseudo colored red). The inset 
shows a high magnification view of the cell.121 
(Reprinted by permission from Macmillan 
Publishers Ltd: Nature (Ref. 121), copyright 
2007) 
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enumeration of CTCs required immunostaining and high-resolution imaging, these 

devices with opaque 3D microposts posted challenges. Later developments focused on 

surface-capture microfluidic devices such as herringbone (HB) chip,146 geometrically 

enhanced mixing (GEM) chip,147 and the graphene oxide (GO) chip.148 The simplified 

structure of these devices enabled large-scale production as well as made imaging 

easier. OncoBean Chip127 with its radial flow profile enabled high throughput (10 mLh-1) 

processing of blood samples. 

The common problem with all the devices described above was that the captured 

CTCs could not be recovered (except for trypsin-mediated release149) from the devices 

for downstream analysis. This drawback greatly undermined the utility of these devices. 

This prompted development of several cell release mechanisms and their incorporation 

in microfluidic devices to assist post-capture recovery of CTCs. Most of these 

mechanisms were based on functional polymeric materials which are described in the 

following section. 

 

1.3.3 Stimuli-responsive Polymers for CTC Isolation Devices 

Polymeric materials that undergo changes in conformation, hydrophobicity, 

solubility, etc. when subjected to external stimuli such as temperature, pH, glucose 

concentration, voltage or current etc. have been explored as the cell release layer in the 

microfluidic CTC isolation devices. Enzymatic cleavage of polymeric layers has also been 

utilized to release captured cells from the surface of microfluidic devices. The cell release 

mechanisms generally employed can be categorized as: 

1. Thermo-responsive release 
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2. Enzymatic cleavage-assisted release 

3. Electro-responsive release 

4. Chemically induced release 

5. Light-responsive release 

 

1.3.3.1 Thermo-responsive Release 

The use of thermo-responsive polymers for cell release in microfluidic devices is 

inspired by the cell sheet technology wherein thermo-responsive cell culture plates are 

used to non-invasively obtain confluent cells as a single contiguous sheet with intact cell-

cell interactions and extra cellular matrix.150 Hou et. al. used thermo-responsive polymer 

brush grafted from Si nanowires for reversible capture/release of CTCs.151 The polymer 

brush made via surface initiated atom transfer radical copolymerization of N-isopropyl 

acrylamide and 3-aminoehtyl methacrylate showed reversible switching between 

hydrophobic (at 37oC) and hydrophilic (at 4oC) surface. Cells were captured at 37oC and 

released upon cooling down to 4oC. More than 90% of the cells were successfully 

captured and released using the platform. Similar approach has also been employed in 

other devices.152,153 Thermo-responsive approach has also been applied to deconstruct 

layer-by-layer assembly of biotinylated-gelatin and streptavidin.154 

  

1.3.3.2 Enzymatic Cleavage-assisted Release 

Trypsin, a serine protease, is commonly used to harvest cells from cell culture 

dishes. Aptamer cleavage has been demonstrated for release of captured CTCs.155 

Similar enzymatic cleavage approaches have been adopted with biopolymers. Shah et. 
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al. used a photo cross-linked alginate layer for cell capture/release.156 Post-capture 

treatment with alginate lyase deconstructed the alginate platform. The released cells were 

found to be viable and proliferative, underlining the effectiveness of the enzyme-mediated 

release mechanism. Alginate lyase was also used to deconstruct a layer-by-layer 

assembled alginate/polyallylamine hydrochloride (PAH) platform. Up to 80% capture 

efficiency and 95% release efficiency with 90% viability was achieved in the optimized 

system.157 

 

1.3.3.3 Electro-responsive Release 

Electrochemical degradation of polyelectrolyte single- or multi-layer polyelectrolyte 

film constructed on a conductive substrate in a layer-by-layer fashion has been used for 

triggered release of adhered cells.158 The same principle was employed for the 

detachment of adherent cells from thin films made of a water-soluble derivative of 

conducting polymer (CP) poly(3,4-ethylenedioxythiophene) (PEDOT). The CP film 

swelled and cracked into small flakes on application of potential (>0.7 V) between the film 

immersed in an electrolyte and a counter electrode. The detached cells, however, were 

required to be separated from the polymer through filtration.159 Chen and co-workers160 

developed a 3D CP-based bioelectronic interface coupled with an electronic device for 

CTC isolation. Biotin-modified poly-(L)-lysine-graft-polyethylene glycol (PLL-g-PEG-

biotin) was integrated onto 3D PEDOT nanorods. CTCs were captured on to the 

immobilized antibody conjugated to PLL-g-PEG-biotin which later desorbed from the 

PEDOT nanorods on electrical stimulation leading to release of captured cells. Jeon et. 

al. demonstrated a similar electrically-triggered cell release mechanism using biotin-
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doped polypyrrole (PPy) substrate.161 Application of negative potential resulted in >90% 

release in just 15 seconds. Reductive potential resulted in shrinkage of Ppy backbone 

thereby liberating the conjugated biotin and attached cells. 

 

1.3.3.4 Chemically Induced Release 

Chemically induced cell release has been achieved through modulation of pH and 

glucose concentration,162 and ligand exchange.163,164 pH and glucose dual-responsive 

surfaces were prepared by grafting poly(acrylamidophenylboronic acid) (polyAAPBA) 

from Si nanowires.162 MCF-7 cell capture was mediated through the overexpressed sialic 

acid in the membrane. Competitive binding of sialic acid and glucose with polyAAPBA at 

different pH conditions was exploited for reversible cell capture/release. Cell capture 

efficiency of about 60% and release efficiency over 90% was achieved through this dual-

responsive system. Deconstruction of ionically cross-linked sacrificial alginate substrate 

at low concentration of chelators has also been used for cell release.163 Recently, a cell 

release mechanism through disruption of thiol-gold interactions in the presence of excess 

thiol molecules has been demonstrated.164 Captured cells tethered to gold nanoparticles 

through thiol-gold interactions could be released upon addition of glutathione, a thiol-

containing tripeptide. Ligand exchange between the original ligands with tethered 

captured cells and added glutathione resulted in cell release.  

 

1.3.3.5 Light-responsive Release 

Photothermal effect of gold nanorods (GNR) coupled with a thermoresponsive 

hydrogel has been utilized for near infrared (NIR) mediated cell release.165 GNR-
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embedded gelatin hydrogel substrate was imprinted with target cancer cells to create 

artificial receptors for improved cell capture. Post capture, NIR activation of the photo-

thermal effects in GNR caused rapid increase in the temperature of the gelatin hydrogel. 

Rapid dissolution of gelatin at 37oC resulted in bulk release of the captured cells. Up to 

92% cell capture efficiency was achieved on an antibody-coated cell-imprinted gelatin 

substrate. Bulk dissolution of gelatin through direct temperature modulation released 95% 

of the captured cells. Site-selective cell release was achieved by selective irradiation of 

the gelatin substrate under a selected cell; this photo-thermal release mechanism could 

release up to 92% of the captured cells.  

 

1.4 Summary and Dissertation Outline 

In summary, Chapter 1 provides a general overview of functional polymers 

detailing their stimuli-responsive and inter-polymer complexation behaviors. Rational 

designing of polymers regulating their intra-chain and inter-chain interactions can be 

harnessed to develop polymeric materials for specific applications.  

Effective thermal management is critically important for the functioning of any 

device. As outlined in section 1.2 of this chapter, polymeric materials, driven by the current 

focus on portable, lightweight and flexible devices, are increasingly assuming more 

important roles in thermal management applications. The intrinsic low thermal 

conductivities of polymers have driven the scientific community to devise and develop 

newer strategies to achieve enhanced thermal transport in polymeric materials. 

Compounding with high-κ fillers43 and chain orientation/crystallization66,71 are the two 

most prominently used methods to fabricate thermally conductive polymeric materials. 

However, the drawbacks associated with these two methods leave much to be desired. 
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In this context, developing thermally conductive amorphous polymers without requiring 

compounding or specialized fabrication techniques and compatible with traditional 

manufacturing process is important. Past works on systematic investigation of the 

relationship between molecular make-up of polymers and their thermal transport 

properties as discussed in this chapter lay the framework for the work presented in 

Chapters 2 and 3. Specifically, Chapter 2 details the design strategies for developing 

amorphous polymer blends with high thermal conductivities. A high concentration of 

strong and homogeneously distributed H-bonds achieved through a rationally designed 

pair of H-bonding polymers is shown to result in enhanced thermal transport. Creation of 

an efficient percolating network of thermal connections resulted in thermal conductivities 

reaching up to 1.72 Wm-1K-1 in nanoscale films, which is nearly an order of magnitude 

higher than that of typical amorphous polymers. Chapter 3 presents an electrostatically 

engineered amorphous polymer with high thermal conductivity. Extension and stiffening 

of polymer chains along with better packing afforded by controlled ionization of the 

polyelectrolyte chains results in enhanced thermal conductivity. In a predominantly 

ionized polymer film, thermal conductivity up to 1.17 Wm-1K-1 – nearly 3.5 times larger 

than in completely unionized film – was achieved.  
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Compared to tissue biopsy, the standard method for cancer diagnosis, CTCs 

provide easy and non-invasive access to tumor cells and have proven to be valuable 

biomarkers for disease diagnosis and progression. Development of a microfluidic 

device121 with antibody-covered microposts for isolation of these rare cells from blood in 

2007 led to paradigm shift in their study and application in clinical research. As discussed 

in section 1.3 of this chapter, several different strategies have been since developed. 

Although immunoaffinity-based isolation of CTCs is a highly selective and sensitive 

technique, most of the devices suffer with a common problem: the cells captured cannot 

be removed from the devices thus limiting the extent of different cytopathological and 

cytogenetic testing techniques that can be used to study these rare cells. Functional 

polymers with various stimuli-responsive behaviors have been used different degrees of 

success to release the cells captured in a microfluidic device. Chapter 4 presents a 

unique polymer-graphene oxide (GO) nanocomposite film which can be applied to 

Figure 1.10 | Schematic representation of the research presented in this 

dissertation 
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microfluidic devices for isolation of CTCs. Combining the thermal tunability modality of a 

thermo-responsive polymer with the nanomaterial-assisted cell capturing functionality of 

GO provides a method of fabricating a planar microfluidic device via simple drop-casting. 

The fabricated devices demonstrate superior performance and were successfully used 

for processing clinical samples.  
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Chapter 2 

High Thermal Conductivity in Amorphous Polymer Blends by 

Engineered Interchain Interactions 

Nature Materials 14, 295-300 (2015); published by Nature Publishing Group 

 

 

2.1 Introduction 

Thermal conductivity is an important property for polymers, as it often affects 

product reliability (for example, electronics packaging), functionality (for example, thermal 

interface materials) and/or manufacturing cost.1 However, polymer thermal conductivities 

primarily fall within a relatively narrow range (0.1–0.5 Wm−1K−1) and are largely 

unexplored.  

A common method to enhance a polymer’s thermal conductivity (κ) is to blend it 

with high-κ fillers such as metal2 or ceramic3 particles, yielding reported values of κ that 

range from 1 to 10 Wm−1K−1 (refs. 2, 3). However, the large amount of fillers required to 

exceed the percolation threshold can not only significantly increase the material cost (for 

example, nylon-6,6: $2 kg−1 versus alumina particles: $100 kg−1) but may also change 

other important characteristics such as electrical and optical properties. Alignment of 

polymer chains4–7 has been another route explored to realize high κ in polymers, although 
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these high values of κ are limited to the direction of chain orientation and require certain 

fabrication techniques (for example, electrospinning4, nanoscale templating5, mechanical 

stretching8). For practical applications, high-κ polymers that are more compatible with 

conventional manufacturing processes (for example, solution casting) are desired, yet no 

such materials with κ > 0.6 Wm−1K−1 have been reported without the aid of high-κ fillers.  

The underlying mechanisms of thermal conductivity in amorphous materials are 

not completely understood, with separate studies indicating important contributions to 

heat transfer by the diffusion of energy through non-propagating vibrational modes9,10, 

the anharmonic coupling of localized modes11, and the ballistic propagation of delocalized 

modes12. In polymer systems, high κ measured in aligned systems4–7 suggests that heat 

is transferred much more efficiently along a covalently bonded chain than between chains 

bonded by weak van der Waals (vdW) interactions. Increasing the strength of a molecular 

bond has been shown to improve its thermal conductance in a nanomolecular 

monolayer13; improvements in interchain thermal conductance may likewise contribute to 

improvements in bulk polymer thermal conductivity. However, interchain bond strength 

alone does not dictate κ in bulk polymers, as evidenced by minuscule improvements in κ 

for crosslinked polymers14 as well as low values of κ for numerous polymers capable of 

strong hydrogen bonding (for example, nylon-6,6: 0.25 Wm−1K−1; ref. 15). 

Rather, maximizing interchain thermal conductance in a bulk polymeric material 

requires that strong intermolecular bonds used to replace weak vdW interactions must 

connect as closely as possible to the polymer backbones through a low-mass and short 

chemical linker. Furthermore, it is critical that a homogeneous distribution of these bonds 
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is achieved at a concentration above the percolation threshold to form a continuous 

thermal network (Figure 2.1). 

 

 

Hydrogen bonding (H-bonding) is approximately 10–100 times stronger than the 

vdW interaction16. There are numerous available H-bonding-capable moieties and linker 

units, allowing sufficient design flexibility to investigate thermally conductive interchain 

connections. To achieve a large number of inter-polymer H-bonds, the H-bond-donating 

and -accepting polymers should have high number densities of H-bond-capable moieties. 

To realize a uniform and homogeneous distribution of H-bonds, the H-bond-accepting 

and -donating polymers are required to be not only homogeneously dispersed, but also 

miscible at the molecular level to allow polymers to intertwine within the radius of 

gyration.17 Here, we show that a blend of two polymers with high miscibility and 

appropriately chosen linker structure can yield a dense and homogeneously distributed 

thermal network. A sharp increase in cross-plane thermal conductivity is observed under 

Heterogeneous distribution
of thermal connections

Homogeneous distribution 
of thermal connections 

Penetration of polymer 
A within the gyration 

radius of polymer B

Short and rigid polymer A

Long polymer B

Thermal interchain connection

(strong interchain bond
with short and light linker) 

Percolation pathway of

thermal connections

Figure 2.1 | High thermal conductivity in amorphous polymer blends by 
engineered interchain interactions. Illustrations of heterogeneous (left) and 
homogeneous (right) distributions of thermally conductive interchain connections at the 
same concentration of H-bonding moieties, showing how the homogeneity of the 
bonding distribution can affect the formation of percolating thermal pathways. The 
relatively short and rigid polymer A penetrates within the gyration radius of a longer 
polymer B and holds it in an extended conformation by means of strong interchain 
bonds, improving both intrachain and interchain heat transfer.  
 



	 54	

these conditions, reaching over 1.5 Wm−1K−1 in typical spin-cast polymer blend films of 

nanoscale thickness, which is approximately an order of magnitude larger than that of 

other amorphous polymers. 

 

2.2 Experimental Section 

2.2.1 Chemicals and Materials 

Acryloyl chloride (Fluka), azobisisobutyronitrile (AIBN) (Aldrich), piperidine 

(Aldrich), and triethylamine (Aldrich) were used without further purification. AIBN was 

recrystallized from methanol. Poly(acrylic acid) (PAA) (Aldrich, Mv = 450 kDa), poly(vinyl 

alcohol) (PVA) (Aldrich, 80% hydrolyzed, Mw = 10 kDa) and poly(4-vinyl phenol) (PVPh) 

(Aldrich, Mw = 25 kDa) were used without further purification. The weight average 

molecular weight (Mw) of PAA is expected to be somewhat larger than its viscosity 

average molecular weight (Mv) provided by Aldrich. Dichloromethane (DCM), diethyl 

ether, methanol, hexane, ethyl acetate, and anisole were used as solvents without further 

purification. N,N-dimethylformamide (DMF) (Aldrich, anhydrous, 99.8%) was used in 

sample preparation for thermal conductivity and IR measurements. 

 

2.2.2 Polymer Synthesis  

N-acryloyl piperidine was synthesized according to a previously reported method18 

with some modifications. In a typical reaction, 0.11 mole of piperidine and 0.12 mole of 

triethylamine were dissolved in 100 ml DCM. The solution was then added dropwise over 

3 hr under constant stirring to a 7.5 ml DCM solution of acryloyl chloride maintained at 3-

5 °C. After complete addition, the reaction mixture was stirred at room temperature for 24 
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hours. The resulting mixture was extracted using DCM and water and purified by column 

chromatography (hexane:ethyl acetate 1:1) to yield colorless to light yellow liquid. N-

acryloyl piperidine was polymerized via free radical polymerization using AIBN as initiator. 

In the polymerization process, 5 millimole of acryloyl piperidine and 0.015 millimole of 

AIBN were dissolved in anisole, and the solution was purged with argon for 30 minutes. 

The monomer/solvent weight ratio was kept at ~20% and the reaction was carried out at 

60-65 °C for 24 hours. The PAP polymer (Mw = 58 kDa) was precipitated in diethyl ether 

and dried under vacuum overnight (Figure 2.2). 

 

 

2.2.3 Sample Preparation 

1 wt.% of PAP, PAA, PVA, and PVPh were separately dissolved in DMF and 

heated to 150oC for 10 minutes to ensure complete dissolution. Solutions of PAA, PVA, 

and PVPh were then separately mixed with the PAP solution, and the mixed solutions 

were heated to 150oC for 5 minutes. The mixture ratio (i.e., φPAP) was calculated as (# 

PAP monomers) / (# PAP monomers + # H-bond donating monomers) in order to best 

quantify the control of φH by φPAP. DMF was chosen as a solvent to avoid polymer 

aggregation and precipitation due to H-bonding between the two polymers in solution.  

Solutions of various mixture ratios were spin-cast (Laurell Technologies 

Corporation, Model: WS-650MZ- 23NPP/LITE) on a pre-cleaned (sequential sonication 

Figure 2.2 | Synthetic scheme for poly(N-acryloyl piperidine), PAP 
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with detergent, deionized water, acetone, and isopropanol, followed by UV ozone 

treatment for 20 minutes) heavily doped silicon substrate at 1500 rpm for 30 seconds. 

The spin-cast films were annealed at 150oC for 15 minutes and kept in a vacuum chamber 

for 30 minutes. All processes from spin-casting to thermal annealing were done under 

nitrogen atmosphere. To create the reference region for 3ω measurement, part of the 

spin-cast film was removed after thermal annealing by a steel blade; the residual 

discontinuous film in this area was then further removed by a swab soaked in acetone 

and isopropanol, resulting in a clean substrate surface with no polymer residuals.  

 

2.2.4 Thermal Conductivity Measurement: Differential 3ω Method 

2.2.4.1 3ω Set-up and Measurement 

The differential 3ω method can be used to measure the temperature rise across a 

film of interest without uncertainties associated with the thermal properties of other layers. 

In our samples, the only difference between the sample and reference regions is the 

presence of the polymer film (Figure 2.3a), causing the difference in temperature rise for 

the two regions to represent the temperature rise across the polymer film. For a heater 

line with a large width (50 μm) compared to the film thickness (< 100 nm), heat conduction 

through the polymer film is approximately 1-dimensional, and κ can be calculated using 

Fourier’s 1D conduction law:  

%? =	
@A.CD

E;∆GD
																																																																												 (1)                      

where Ps is the heating power applied to the sample region, df is the polymer film 

thickness, w and l are the width and the length of the heater line, and y is the coordinate 
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perpendicular to the substrate. The temperature rise ∆Tf across the polymer film is given 

by19:  

∆'J

KL
=	
∆'L

KL
−	
∆'M

KM
																																																																						(2) 

where P and ∆T are the applied heating power and resulting temperature rise for 

heater lines on the sample (subscript “s”) and reference (subscript “r”) regions, 

respectively. It should be noted that Eq. 2 assumes identical w and l for the heater lines 

on the two regions. ∆Ts and ∆Tr can be experimentally determined from the measured 

voltages oscillating at 3ω and ω (measured by SR830 Lock-in Amplifier, Stanford 

Research Systems)20:  

∆' = 2N
O'

ON

P7Q

PQ
																																																																			(3) 

where dR/RdT is the temperature coefficient of electrical resistance in the metal line.  

The thermal penetration depth (δ) is given by (αsub/2ω)1/2 ,20,21 where αsub is the 

thermal diffusivity of the substrate. For a silicon substrate (αsub = 0.8 cm2s-1) that is heated 

by alternating current at 100 Hz, δ is calculated to be 252 μm. Since this is much larger 

than the half-widths of the heaters (1–2 μm or 25 μm), the heaters satisfy the condition of 

a line heat source, and since it is smaller than the substrate thickness (550 or 700 μm), 

the measured ∆T is independent of the boundary condition at the bottom of the substrate. 

Parasitic effects due to a penetration depth which is too short would be expected to 

appear as a nonlinearity in ∆T versus log(ω)20,21; however, as shown in Figure 2.3b, ∆Ts 

and ∆Tr are quite linear versus log(ω). Furthermore, the potential error due to a 

penetration depth which is too short would be greatly reduced by the differential nature of 

our measurement (∆Tf = ∆Ts – ∆Tr), particularly since the thicknesses of the sample films 
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(<75 nm) are much smaller than the penetration depths over the range of frequencies 

used and heat transfer within the films is 1-dimensional.  

 

 

For 3ω measurements with 50 μm heater line width, either a silicon substrate 

capped with a thin SiO2 layer or a bare silicon substrate on which a thin (40 nm) Al2O3 

Figure 2.3 | 3ω measurement of thermal conductivity (κ). a, Cross-section of the 
sample geometry for three different configurations used. While only wide heater lines 
defined by shadow masking were used for Configuration 1, narrow lines could be 
patterned by photolithography without damaging the polymer blend for Configuration 
3. b, Temperature rise on the sample (ΔTs) and reference regions (ΔTr), the difference 
of which is the temperature rise across the polymer film (ΔTf). c, Comparison of 
measured thermal conductivities in different PAP:PAA films measured using wide (left) 
and narrow (right) heater lines in Configurations 1 and 2 (closed symbols) or 3 (open 
symbols). d, κ measured for five different PAP:PAA samples at φPAP = 0.3 or 0.4 using 
Configuration 1 or 3. Narrow heater lines lead to decreased (∆Ts

2 +∆Tr
2)1/2/ ∆Tf and 

thereby improved signal-to-noise ratio.  
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layer (1.5 Wm-1K-1) was deposited at 80οC by atomic layer deposition following polymer 

coating was used; for 3ω measurements with 2–4 μm heater line width, a bare silicon 

substrate on which a thin (40 nm) Al2O3 layer was deposited at 80οC by atomic layer 

deposition following polymer coating was used. 50 μm wide heater lines (5 nm thick Ti 

followed by 300 nm thick Au) were then deposited by electron-beam deposition in vacuum 

simultaneously on both sample and reference regions. Narrow heater lines between 2 μm 

and 4 μm wide (measured with 0.18 μm error by optical microscopy) and 260 μm long 

were patterned by photolithography on an Al2O3 (40 nm thick, 1.5 Wm-1K-1) layer that was 

used to both electrically isolate the substrate from the gold heater line (the polymer films 

themselves being insulating) and shield the sample film from the chemicals used during 

photolithography. Thermal conductivities measured using 50 μm and 2-4 μm heater lines 

were similar in values (Figure 2.3c). Narrow heater lines gave lower error compared to 

the wider heater lines (Figure 2.3d). 

 

2.2.4.2 Error Analysis 

A key assumption for the differential 3ω technique is that all conditions between 

the sample and reference regions are identical except the presence of the thin film of 

interest. While uncertainties originating from variations in the thermal properties of the 

substrate and SiO2 can be minimized by making the sample and the reference regions 

close to each other (~10 mm) as well as by using a single crystal substrate, several 

parameters (e.g., df, dR/RdT, and w in Eqs. 1, 2, and 3) are subject to experimental 

uncertainties and must be independently determined.  
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Thickness measurements The polymer film thickness (df) was measured by three 

different methods: surface profilometry (Dektak XT Surface Profilometer), ellipsometry 

(Woollam M-2000DI ellipsometer), and atomic force microscopy (AFM) (Bruker ICON 

AFM). Among the three thicknesses measured by the Dektak, averaged AFM topography, 

and ellipsometry, we chose to use the thicknesses measured by ellipsometry for all 

compositions of PAP:PAA (and other blends) in order to set a lower bound for the derived 

κ, which is proportional to thickness (df). Ellipsometry has been shown to measure the 

thickness of a thin polymer film with an error less than 5 Å;22 the error in thickness for the 

films measured by ellipsometry in this work is set to be ±3% based on 5 Å error for the 

minimum film thickness (20 nm).  

Temperature coefficient of resistance and heating wire width dR/RdT and w were 

measured in forty heater lines to obtain standard deviations of ±2.7% and ±1.1%, 

respectively. While error in dR/RdT is largely mitigated when calculating the difference 

between ∆Ts and ∆Tr since the gold heater lines on the sample and reference regions are 

deposited at the same time, error in w is magnified19 by (ΔTs
2 +ΔTr

2)1/2/ΔTf and affects 

∆Ts and ∆Tr independently. In other words, a small independent variation in ∆Ts or ∆Tr 

can lead to a large variation in ∆Tf depending on the magnitude of (ΔTs
2 + ΔTr

2)1/2/ΔTf. 

For this reason, σSDEV,w × (ΔTs
2 + ΔTr

2)1/2/ΔTf rather than σSDEV,w was used when 

calculating the error in κ.  

Thermal boundary resistance Metal heaters and Al2O3 in the sample and reference 

regions were deposited at the same time on the same substrate with a small separation 

distance of 10 mm in order to minimize variations in thermal boundary conductances 

(TBCs) between the two regions. To assess the potential impact of TBC variations, we 
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can calculate the TBCs that would be required to generate the lumped thermal 

conductances (polymer film + TBCs above and below it) that were measured, if the 

polymer film were assumed to have a constant value of κ = 0.5 Wm-1K-1 for all blend 

fractions. Assuming a typical23 TBC of 100 MWm-2K-1 for the Ti/SiO2 interface in the 

reference region, the required total TBC (for interfaces on both sides of the polymer film) 

in  the  sample  region  is  plotted  in  Figure 2.4a.  For  the  samples  near φPAP = 0.3, the 

 

 

 

required TBC diverges, as a polymer film with κ = 0.5 Wm-1K-1 would not be able to fit the 

data even if the interfaces on either side of it had zero thermal resistance. This same 

concept is presented in Figure 2.4b, which plots the minimum thermal conductivity the 

polymer film would need to have in order to fit the data, if a TBC of 100 MWm-2K-1 were 

again assumed for the Ti/SiO2 interface in the reference region and the two interfaces in 

the sample region were allowed to have zero resistance. We note that in reality the 

a b

Figure 2.4 | Thermal boundary conductance and minimum κ. a, Total thermal 
boundary conductance (TBC) on either side the polymer film that is required to fit the 
measured data (from Configuration 1) under the assumption of a constant κ = 0.5 Wm-

1K-1 for the polymer film. TBC for Ti/SiO2 in the reference region is assumed to be 100 
MWm-2K-1. b, Minimum κ the polymer film would need to have in order to fit the 
measured data (from Configuration 1), if a TBC of 100 MWm-2K-1 is again assumed for 
the Ti/SiO2 interface in the reference region and the two interfaces in the sample region 
are allowed to have zero resistance.  
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thermal boundary resistance of the polymer/SiO2 interface is not zero and may well be 

larger than that of the Ti/SiO2 interface,23,24 making the true thermal conductivities of the 

blend films even larger than the values presented here. 

 

	

2.2.5 Materials Characterization 

2.2.5.1 Fourier Transform Infrared (FTIR) Spectroscopy and Calculation of H-bond 

Concentration 

FTIR was performed by a Nicolet 6700 spectrometer using the grazing angle 

accessory (Smart SAGA) at a grazing angle of 85°; 128 scans were taken for each sample 

followed by a blank measurement for calibration. IR spectra were deconvoluted using 

Origin 8 data analysis and graphing software. IR spectra of PAP:PAA and PAP:PVPh 

were fit with Gaussian function with five peaks and four peaks, respectively. While the 

width and peak center were user defined, the area under the curve was automatically 

calculated by the software. Figure 2.5a shows a representative IR spectrum with 

deconvoluted peaks for PAP:PAA (φPAP = 0.3) in the carbonyl (C=O) stretching region of 

PAP and PAA. It is well known that the C=O stretching peak is shifted to a lower 

wavenumber for an H-bond acceptor, while the shift is opposite for an H-bond donor.25-28 

H-bonding between PAP and PAA results in the PAP C=O stretching peak (Peak 1) 

shifting from 1645 cm-1 to a lower wavenumber near 1602-1614 cm-1; likewise, it results 

in the PAA C=O stretching peak (Peak 5) shifting from 1720 cm-1 to a higher wavenumber 

near 1737-1742 cm-1. Since the carboxyl groups in PAA have both H-bond donor (OH) 

and H-bond acceptor (C=O) units, it can form self-associated H-bonding, resulting in a 

shift in the carbonyl stretching peak (Peak 3) to a lower wavenumber near 1700-1702 cm-
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1. Given the fact that Peaks 1 and 5 originate from the same H-bonding, the fraction of 

intermolecular bonds in PAP:PAA that are H-bonds (φH) can be calculated by: 

RS = 	0.5
V@WXY6

V@WXY6 +	V@WXY9
R@Z@ +	

V@WXY[

V@WXY7 +	V@WXY\ +	V@WXY[
R@ZZ +	

V@WXY7

V-WXY7 + V@WXY\ +	V@WXY[
R@ZZ						(4) 

where ApeakX is the area of Peak X. 

 

 

 

Figure 2.5b shows a representative FTIR spectrum with deconvoluted peaks for 

the PAP:PVPh pair in the arene C=C stretching region of PVPh and the carbonyl C=O 

stretching region of PAP. Because the peak formed by H-bonded PAP carbonyl stretching 

overlaps with the third benzene C=C peak of pure PVPh (these benzene peaks being 

known29,30 to occur at 1513 cm-1 (Peak 1), 1596 cm-1 (Peak 2), and 1612 cm-1 (Peak 3)), 

we implemented a procedure to isolate the H-bonded PAP carbonyl stretching 

contribution as follows. The areal ratios of the three benzene C=C peaks were first 

obtained from the IR spectrum of pure PVPh (Apeak3 = 0.25Apeak1 and Apeak2 = 0.13Apeak1). 

The areal ratio of Peaks 1 and 2 was found to be nearly the same for pure PVPh and 

PAP:PVPh blends, but the areal ratio of Peaks 1 and 3 was found to be quite different, 

H-bonded PAP

Pristine PAP

Self H-

bonded

PAA

Non H-

bonded

H-bond to 

PAP

Phenol (C=C)1

Phenol (C=C)2

Phenol (C=C)3 

+ H-bonded PAP

Pristine PAP

a b

Figure 2.5 | Representative FTIR spectra with deconvoluted peaks. a, PAP:PAA. 
b, PAP:PVPh. 
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suggesting that H-bonded PAP carbonyl stretching has a strong contribution at 1612 cm-

1. The fraction of intermolecular bonds in PAP:PVPh that are H-bonds was then calculated 

by subtracting the areal contribution of the benzene C=C peak from the total peak area 

at 1612 cm-1 and comparing the resultant area to Peak 4 (which arises in PAP:PVPh due 

to non-H-bonded PAP carbonyl stretching):  

RS =	
V@WXY7 − 0.25V@WXY6

V@WXY7 − 0.25V@WXY6 +	V@WXY\
R@Z@																																												(5) 

 

It should be noted however that φH as calculated by Eq. 5 does not include the 

self-associated H-bonding of PVPh, as the hydroxyl (–OH) peak in PVPh is too broad 

(3200-3500 cm-1) to perform reliable deconvolution. For this reason, φH plotted for 

PAP:PVPh in Figure 2.7d is likely underestimated. 

 

2.2.5.2 Atomic Force Microscopy (AFM) 

Morphological and compositional properties of the polymer blends were studied 

using tapping-mode AFM (Bruker ICON AFM), the phase images of which are known to 

correlate with spatial variations in surface stiffness31 (which relates to the density of H-

bonds) and polymer chain density.32 The AFM tip and measurement settings were kept 

the same when obtaining images for PAP:PAA, PAP:PVA, and PAP:PVPh.  

 

2.2.5.3 Differential Scanning Calorimetry (DSC) 

Glass transitions of PAP:PAA at various φPAP were studied based on DSC curves 

measured under nitrogen gas by a TA Instruments Discovery Series DSC. PAP:PAA 

solutions (1 wt.%) were drop-cast on a glass substrate and annealed at 150oC for 20 
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minutes. Each dried film was ground to a fine powder and stored in a vacuum chamber 

for 10 hours, after which it was sealed in a Tzero hermetic pan and used for DSC 

measurements. DSC samples were first heated to 220oC at a rate of 20oCmin-1, then 

cooled down to 0oC at 15oCmin-1, and finally heated at a rate of 10oCmin-1; during this 

final heating, glass transition data was obtained.  

 

2.2.5.4 Positronium Annihilation Lifetime Spectroscopy (PALS) 

PALS data for PAP:PAA and PAP:PVPh blends were acquired using a focused 

positron beam having a positron implantation energy of 1.2 keV. PAP showed a 

positronium (Ps) intensity of (19±1) % with a corresponding Ps lifetime in its free volume 

voids of 1.70±0.05×10-9 s; PAA showed a low Ps intensity of (2.6±0.1)% with a 

corresponding Ps lifetime of (2.7±0.1)×10-9 s; and PVPh showed a Ps intensity of 

(10.3±0.3)% with a corresponding Ps lifetime of (2.4±0.1)×10-9 s. It is noted that the larger 

Ps intensity of PAP compared to that of PAA does not necessarily represent a larger free 

volume in PAP compared to PAA, since the Ps formation yield is different for each 

polymer due to their different chemistries. In contrast, changes in the product of Ps 

intensity and lifetime within the same polymer represent changes in its free volume. In 

polymer blends, Ps is formed and annihilated in each component polymer according to 

its weight fraction.  

 

2.2.5.5 Grazing-incidence X-ray Scattering  

Grazing-incidence small angle (GISAXS) and wide angle (GIWAXS) X-ray 

scattering measurements for spin-cast PAP:PAA thin films were carried out on a Rigaku 
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Rotating Anode X-Ray Diffractometer (X-ray wavelength: 1.54 Å). A single crystalline 

silicon substrate was used as it introduces negligible background signal at the grazing 

angle used (1o). Each PAP:PAA film used for GIXS measurements was prepared by 

multiple (50×) spin-castings in order to maximize the signal from the film.  

 

2.3 Results and Discussion 

To investigate the hypotheses put forth in Section 2.1, we rationally designed three 

polymer pairs in which the H-bond-accepting polymer, PAP, was fixed. PAP has a strong 

H-bond-accepting amide functional group as a side chain on every other carbon atom 

along its backbone, allowing a direct thermal connection to its backbone. Its piperidine 

ring is expected to make its backbone rigid33 and promote extended conformation for 

polymers with which it interacts through strong H-bonds. Three H-bond-donating 

polymers, viz., PAA, PVA, and PVPh, were chosen to examine the effects of several 

different H-bonding strategies on κ (Figure 2.6). PAA, PVPh, and PVA each has a H-

bond-donating –OH group associated with every other carbon atom along their 

backbones; however, they differ both in how the –OH group attaches to the polymer 

backbone and in the H-bond-donating power of the –OH group. The high acidities of the 

carboxylic acid (–COOH) in PAA and the phenol (–PhOH) in PVPh give their –OH groups 

a stronger H-bond-donating power than the –OH groups in PVA. While the –OH is closely 

connected to the backbone in PAA and PVA, it is linked to the backbone via a benzene 

ring in PVPh.  

Cross-plane thermal conductivities (perpendicular to the centrifugal force during 

spin-casting) of the spin-cast polymer blend films were measured by the differential 3ω 
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method.19,20 Figure 2.6 summarizes the measured thermal conductivities of PAP blend 

films with PAA, PVA, or PVPh at various fractions of PAP in the blend (φPAP). Certain 

blends of PAP:PAA yielded an exceptionally homogeneous distribution of strong H-bonds 

at a concentration that exceeded the percolation threshold (vide infra). For these blends, 

 

 

κ was measured to be greater than 1.5W m−1K−1, which is nearly an order of magnitude 

larger than that of its constituent components, PAP (0.19 ± 0.02Wm−1K−1) and PAA (0.22 

± 0.02 Wm−1K−1). While PAP:PVA shows a trend of increased κ  similar to PAP:PAA, its 

thermal conductivity gain is much smaller (κ = 0.38 ± 0.04 Wm−1K−1), consistent with its 

weaker H-bond strength. In contrast, the thermal conductivity of PAP:PVPh, which forms 

Figure 2.6 | Measured thermal conductivities of spin-cast blend films. a, 
PAP:PAA, b, PAP:PVA and c, PAP:PVPh films at various monomer mole fractions of 
PAP (φPAP). Error bars were estimated based on uncertainties associated with the film 
thickness, the temperature coefficient of electrical resistance for the heater, and the 
heater width. 
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stronger H-bonds than PAP:PVA, shows no enhancement relative to values for the pure 

PAP and PVPh constituents. As discussed in more detail below, we attribute this in part 

to the fact that the H-bond-donating hydroxyl group does not attach directly to the PVPh 

backbone but rather via a benzene ring as a linker, similar to crosslinked polystyrene.34 

  

 

 

FTIR spectroscopy was employed to quantify the strength and concentration of H-

bonding for the polymer blends. Since the carbonyl (-C=O) moiety of the amide group on 

PAP

PAP:PAA

PAP:PVA

PAP:PVPh

Δν =	41 cm-1

Δν =	2 cm-1
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ΦPAP = 0.6
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Figure 2.7 | FTIR spectra of polymer blends. a, FTIR spectroscopy data for 
PAP:PAA, PAP:PVPh and PAP:PVA at φPAP = 0.3 showing the relatively peak shifts 
for carbonyl (-C=O) stretching in PAP upon H-bonding with different H-bond donor 
polymers. b, c Hydroxyl (-OH) stretching region of FTIR spectra of PAP:PVA (b) and 
PAP:PVPh (c). d, Fraction of H-bonded monomer unit (φH) in PAP:PAA and PAP:PVPh 
as calculated by areal integrations of the deconvoluted H-bonded and pristine carbonyl 
stretching bands shown in a. Also shown is the bonding percolation threshold for a 
simple cubic lattice (solid line).  
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the H-bond acceptor polymer, PAP, is the primary H-bond accepting site, the strength of 

H-bond formed can be gauged by the shift in the carbonyl stretching peak compared to 

that in pristine PAP. As can be seen in Figure 2.7a, the shift of the carbonyl (C=O) 

stretching band in PAP due to H-bond formation is large in PAP:PAA (41 cm−1), modest 

in PAP:PVPh (33 cm−1), and small in PAP:PVA (2 cm−1), consistent with their reported H-

bond strengths.16 The relative H-bond strengths are further confirmed by the peak shift 

due to –OH single-bond stretching, which is large in PAP:PAA (500–1,000 cm−1), and 

similar in PAP:PVPh (200–350 cm−1; Figure 2.7b) and PAP:PVA (210 cm−1; Figure 2.7c). 

The fraction of intermolecular bonds that are H-bonds (φH) in PAP:PAA was 

estimated from the areal ratio of H-bond bands to pristine carbonyl stretching bands in 

FTIR spectroscopy data. We note that a certain number of H-bonds in PAP:PAA are self-

associated within PAA. Accounting for the fact that PAP cannot form H-bonds with these 

self-associated PAA units, the largest number of H-bonds between PAP and PAA is 

expected to occur at φPAP = 0.33, which is close to the observed maximum shown in 

Figure 2.7d at φPAP =0.3. For this blend, φH reaches 0.34, which is greater than the 

bonding percolation threshold for a simple cubic lattice (0.25; ref. 35). On the other hand, 

φH for PAP:PVPh reaches up to only ~0.18 signifying that PAP:PVPh blend films lack a 

continuous network of H-bonded domains required to assist efficient thermal conduction. 

It is noted that φH is underestimated for PAP:PVPh blends as it doesn’t include the self-

associated H-bonding of phenolic hydroxyl groups. 

Atomic force microscopy (AFM) was used to assess the homogeneity of H-bond 

distribution in the spin-cast blend films. Phase imaging in taping-mode AFM can 

characterize the spatial variations in surface stiffness31 and thereby distinguish the stiff 
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H-bonded regions from the relatively softer regions with only vdW interactions.36 Because 

the AFM tip interacts with soft materials longer, a negative phase shift (appearing as a 

dark color in the phase images of Figure 2.8a-c) represents a vdW-rich region, whereas 

a positive phase shift (appearing as a bright color) corresponds to an H-bond-rich region. 

Figure 8a-c show AFM phase images of PAP:PAA, PAP:PVA, and PAP:PVPh blends at 

various PAP monomer fractions (φPAP). The phase images of PAP:PAA are observed to 

get   smoother   (that   is,   exhibit   a   smaller   standard   deviation   (σsd)   in phase) as 

φPAP approaches 0.3 (Figure 2.8f), the fraction at which both the maximum φH and the 

maximum κ are observed. Also, the mean phase shift (θmean) becomes significantly 

positive at φPAP = 0.3 (Figure 2.8e), which together with low σsd indicates a 

homogeneously distributed dense network of H-bonds. We note that the rapid removal of 

the solvent during spin-casting as well as the thin solution concentration (1 wt.%) likely 

play important roles in producing a homogeneous network of H-bonds in the polymer 

blend film. In thicker solutions, PAP and PAA are expected to aggregate due to their 

strong H-bond interactions, leading to a heterogeneous H-bond network in the resulting 

solid film. Consistent with φH lower than the percolation threshold for PAP:PVPh, it 

showed significant phase roughness and a negative phase shift indicating film softness 

(probably due to interference between the piperidine and benzene rings which disrupts 

PAP and PVPh chain conformations) (Figure 2.8d).  
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More homogeneous 
distribution of H-bonds

Stiffer surface

e f

Figure 2.8 | Tapping-mode AFM topography and phase images for PAP:PAA, 
PAP:PVA and PAP:PVPh. AFM topography (upper) and phase (lower) images 
measured for PAP:PAA (a), PAP:PVA (b), and PAP:PVPh (c) at various φPAP. All 
images shown have a scanning area of 500nm × 500nm and were flattened (i.e., 
shifted to give zero mean value) for illustration purposes. d, Inverse of standard 
deviation extracted from AFM phase images (upper) and mean phase shift (before 
flattening) (lower) for PAP:PVA and PAP:PVPh. PAP:PVPh blends show the largest 
σSDEV and most negative θmean, which suggest a heterogeneous distribution of H-bonds 
and decreased chain packing density, respectively, and are consistent with its lack of 
enhancement in κ. e, θmean before image flattening, versus φPAP for PAP:PAA. f, 
Inverse of the standard deviation (1/σsd) of AFM phase data for PAP:PAA, indicating 
bonding homogeneity. PAP:PAA at φPAP =0.3 has the smallest σsd and largest θmean, 
indicating a dense and homogeneously distributed network of strong H-bonds.  
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The glass transition of a polymer blend provides information regarding the 

miscibility of its constituent polymers (Figure 2.9a).17 For all PAP:PAA mixture ratios, the 

glass transition was found to occur at a single temperature (Tg), indicating uniform 

physical dispersion  of PAP and PAA. Tg of PAP:PAA increased greatly for blends near 

φPAP = 0.3 (Figure 2.9b), indicating exceptionally strong H-bonding between PAP and 

PAA at that ratio. In fact, the difference of 48oC between measured (158oC) and 

theoretical Flory-Fox predicted (110oC) values is extraordinary among polymer blends in 

the literature.37,38 Furthermore, the temperature range over which the glass transition 

occurs (Tg) was found to be narrow for φPAP ≤ 0.4 (Figure 2.9d), indicating that PAP 

strongly interacts and intermixes with PAA within the PAA radius of gyration for this range 

of blends.17 The change in specific heat capacity during the glass transition (ΔCp) was 

found to decrease considerably as φPAP approaches 0.3 (Figure 2.9e). A primary 

contributor to a change in specific heat during a polymer’s glass transition is a change in 

the      degrees     of      freedom      that     occurs     when     the     polymer     transitions 

from a highly self-entangled state (Figure 2.9c) to a state in which the backbone is 

extended, as observed in polystyrene.39 
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The minimum ΔCp at φPAP = 0.3 therefore suggests that the backbones of both PAP and 

PAA are mostly extended for this blend before the glass transition at 158οC. In fact, ΔCp 

for PAP:PAA at φPAP =0.3 is similar to that pure PAP of pure PAP but far lower than that 

of pure PAA, implying that the relatively rigid and short PAP chains penetrate within the 

PAA gyration radius and hold the flexible PAA chains in an extended state by means of 

strong H-bonds.40 This extension of the PAA backbones is expected to improve intrachain 
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Figure 2.9 | Differential scanning calorimetry (DSC) data for PAP:PAA. a, 
Determination of glass transition temperature(Tg), glass transition width (ΔTg) and 
change in specific heat capacity at glass transition (ΔCp). Tg was set to the middle point 
of the solid line that connects two asymptotic dashed lines. b, Tg measured for 
PAP:PAA at various φPAP, indicating extraordinarily strong H-bonding for φPAP ≈0.3. 
The solid line indicates Tg as predicted by the Flory–Fox equation, with the dashed line 
drawn to illustrate the data trend. c, Illustration of glass transitions in polymer blends 
with different degrees of miscibility and entanglement. e, f, ΔTg (e) and ΔCp (f) for 
PAP:PAA at various φPAP. Polymer blends with ΔTg < 10oC are fully miscible, whereas 
those with ΔTg > 32οC approach immiscibility. Blends with larger ΔCp experience 
greater changes in their molecular degrees of freedom (DOF), indicating a transition 
from an un-extended to an extended conformation. Dashed lines were drawn to 
illustrate the data trend.  
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heat transport, similar to previous work in aligned polymers4–7; in contrast to studies of 

polymers at high hydrostatic pressures, in which the diffusion of energy through non-

propagating vibrational modes was shown to dominate heat transfer.10 While Tg exceeds 

the Flory–Fox prediction for φPAP ≤ 0.4 (Figure 2.9b), indicating strong H-bonding, the fact 

that it is smaller than the Flory–Fox prediction for φPAP > 0.4 suggests phase inversion 

from a PAA matrix to a PAP matrix for this high range of PAP concentrations. Reduction 

in Tg due to phase inversion has previously been observed.38 Likewise, Tg, ΔCp and σsd 

become large for φPAP > 0.4, suggesting heterogeneous rather than homogeneous blends 

of PAP and PAA; as a consequence of phase inversion, the relatively flexible PAA chains, 

which have a large molecular weight and large radius of gyration, do not penetrate 

efficiently into the matrix of smaller PAP chains, leading to heterogeneous blends. 

Consequently, κ in PAP:PAA did not exhibit a meaningful increase for φPAP > 0.4. 

To rule out any density- and crystallinity-related contributions to observed high 

thermal conductivity in PAP:PAA blends, positronium annihilation lifetime spectroscopy 

(PALS) and x-ray scattering were used to assess film porosity and crystallinity, 

respectively. PALS data indicate a smooth change in mass density between pure PAA 

and pure PAP, with no anomalies present that would suggest a density-related 

contribution to the sharply peaked increase in κ near φPAP = 0.3 (Figure 2.10b). PAP:PVPh 

too had a smooth reduction in density from pure PVPh to pure PAP, consistent with the 

measured decline in κ. Grazing-incidence small- and wide-angle x-ray scattering 

(GISAXS and GIWAXS) data did not show any sign of short or long-range order in 

PAP:PAA blend films (Figure 2.10c).  
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The amorphous nature of PAP:PAA blends can also be ascertained from the 

temperature dependence of measured κ as it is known to have different dependencies: 

T-1 for crystalline and Tx, x>0 for amorphous polymers. As shown in Figure 2.10a, κ in 

PAP:PAA at φPAP = 0.3 increases with T , which is consistent with its amorphous character 

(Figure 2.10c). Note that the crystalline PE fiber data shown in Figure 2.10a exhibit a 

a b

c

Figure 2.10 | Thermal and structural properties of PAP:PAA. a, κ(T) in PAP:PAA 
at φPAP =0.3 and 0.7, compared with κ(Τ)in other crystalline (polyethylene (PE)6) and 
amorphous (polythiophene (PT)5, polystyrene (PS)41) polymers. Dashed lines 
represent Tx. Error bars were estimated based on uncertainties associated with the 
film thickness, temperature coefficient of electrical resistance for the heater and the 
heater width. b, Positronium annihilation lifetime spectroscopy data for PAP:PAA and 
PAP:PVPh blends at various φPAP. The product of positronium (Ps) intensity and 
lifetime increases monotonically with φPAP for both blends, indicating a smooth change 
in density. Error bars were estimated based on the positron beam intensity fluctuation 
(the size of the error bars is comparable to that of the symbols). Dashed lines are linear 
fits. c, Grazing-incidence small- and wide-angle X-ray scattering (GISAXS, GIWAXS) 
data for a PAP:PAA spin-cast film at φPAP = 0.3, suggesting the absence of short- and 
long-range order, respectively. We note that the broad peak observed in GIWAXS, 
known as an amorphous halo, is characteristic of amorphous materials. 
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strong negative temperature dependence, indicating that the anharmonic scattering of 

acoustic modes dominates.6 The small dκ/dT for φPAP = 0.3 relative to that for φPAP = 0.7 

may indicate a lesser contribution of localized vibrational modes11 as weak VDW bonds 

are replaced by a homogeneous network of strong H-bonds with lower acoustic contrast 

relative to the backbone covalent bonds.  

To verify the low thermal conductivity in PAP:PVPh blends, we fabricated an 

additional blend sample by mixing PAP with poly(4-vinylbenzoic acid) (PVBA) which has 

a strong H-bond donating carboxylic acid group 

like PAA but connected to the polymer backbone 

via a benzene linker. Similar to PAP:PVPh, 

PAP:PVBA blend films showed miniscule 

enhancement in thermal conductivity (Figure 

2.11). In addition to the factors related to 

concentration and distribution of H-bonds in 

PAP:PVPh films, the heavy benzene ring presents 

a large impedance contrast to vibrational modes 

which transfer energy between PAP and PVPh or PVBA. It can also be attributed to the 

localization42 of the heat conducting vibrational states in the benzene moiety of PVPh and 

PVBA. 

 

2.4 Conclusions 

In summary, it was shown that large enhancement in thermal conductivity can be 

achieved through molecular engineering of the inter-chain interactions between two 
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Figure 2.11 | Thermal 
conductivity of PAP:PVBA 
blend as a function of φPAP. 
Chemical structure of PVBA is 
also shown. Similar to PAP:PVPh, 
no appreciable enhancement in κ 
is observed. 
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polymers in a blend. Replacing the weak vdW interactions with strong H-bonds distributed 

homogeneously and at a concentration higher than the percolation threshold creates a 

continuous network of thermally conductive pathways. Thermal conductivity was found to 

be strongly correlated to H-bond concentration (φH) and distribution homogeneity (σsd), 

as shown in Figure 2.12. We, however, note that this large κ was realized in films up to 

70 nm thick. 

 

 

2.5 Author Contributions 

Gun-Ho Kim*, Dongwook Lee*, Apoorv Shanker*, Lei Shao, Min Sang Kwon, 

David Gidley, Jinsang Kim, Kevin Pipe. High Thermal Conductivity in Amorphous Polymer 

Blends by Engineered Interchain Interactions. Nature Materials 14, 295-300 (2015) 

(*equal contribution) 

Figure 2.12 | Blend thermal conductivity as a function of concentration and 
distribution homogeneity of H-bonds. κ (color scale) of PAP:PAA (a) and PAP:PVPh 
(b) as a function of σsd and φH obtained from AFM phase image and FTIR 
spectroscopy, respectively, showing the strong dependence of κ on bonding 
homogeneity (that is, 1/σsd) above the percolation threshold for PAP:PAA. Low φH and 
inhomogeneous distribution of H-bonds (low 1/σsd) for PAP:PVPh results in 
inappreciable enhancement of κ. 
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Chapter 3 

High Thermal Conductivity in Electrostatically Engineered 

Amorphous Polymers 

 
 
3.1 Introduction 

Effective thermal management in applications such as batteries, automobile 

cooling systems and high power density electronic devices where heat accumulation can 

have deleterious effects is critically important to ensure system performance and 

reliability, and enhance lifetime. Despite their poor thermal conductivity (κ), various 

advantages including light weight, low cost and easy processability make polymers the 

material of choice for several heat intensive applications like electronic chip 

encapsulation, cellphone casing, LED housing, etc. These existing applications along with 

emerging technologies such as flexible electronics, for which the requirements on 

flexibility and light weight simply cannot be met by conventional thermal management 

materials (metals and ceramics), put greater technological incentives on developing 

thermally conductive polymers.  

Blending with high-κ fillers such as metal or ceramic particles, carbon nanotubes 

(CNTs), or graphene flakes is the most commonly used method to enhance polymers’ 
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thermal conductivity.1 However, the large volume fraction of fillers required to achieve 

appreciable enhancement in κ often leads to undesired optical or electrical properties, 

increased weight, high cost (e.g., CNT: ~$1000 kg-1 vs. PMMA: ~$2 kg-1), or loss of the 

easy processability generally associated with polymers.  

In contrast to low κ in bulk samples, constituent individual polymer chains are 

believed to have very large κ. The thermal conductivity of a single polymer chain, in which 

the elastic disorder2 between intra-chain covalent and inter-chain van der Waals bonds is 

absent, was calculated to be as large as few hundreds of Wm-1K-1 (ref. 3). Ultra-drawn 

crystalline nano-fibers with aligned polymer chains were measured to have κ over 100 

Wm-1K-1 in the alignment direction.4 The large thermal conductivities of single or few-chain 

fibers can be retained in amorphous polymers in the direction of chain orientation5,6 along 

which heat propagation occurs predominantly through intra-chain transport. Singh et al. 

reported a significant increase in κ in amorphous polythiophene fabricated via a nano 

template-assisted electrochemical method that allows polythiophene chains to be 

oriented in the vertical direction.7 Thermal conductivity greater than 2 Wm-1K-1 has been 

similarly reported for covalently grafted poly(3-methyl thiophene) brushes. Covalent 

grafting led to enhanced chain alignment as well as reduction in energetic and positional 

disorder in such surface-grafted films.8 These high thermal conductivities reported in 

polymers with extended chain conformation stand in contrast to surface-grown polymer 

brushes9 and polymer films under high pressure,10 in which the coiled conformation of 

polymer chains likely remained and enhancement in κ was found to be relatively 

moderate. However, these approaches either limit the orientation of chain extension to a 

certain direction or pose challenges in terms of scaling-up the nanoscale films for practical 
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applications. Therefore, it’s desirable to achieve high κ in both in- and out-of-plane 

directions in bulk amorphous polymers using common fabrication processes. 

 

 

While the mechanisms of thermal transport in amorphous materials continue to be 

studied,10-13 it is generally believed that the thermal conductivity in bulk amorphous 

polymers (a class of disordered solids) is inhibited by: a) highly coiled and entangled intra-

chain structure, b) loose chain packing with voids that dampen the speed at which 

vibrations propagate, and c) weak non-bonding inter-chain interactions (e.g., van der 

Waals, dipole-dipole).14 In this work, we demonstrate an unexplored molecular 

engineering route that attack these three bottlenecks simultaneously. By employing the 

coulombic repulsive forces between ionized pendant groups on the backbone of 

polyelectrolytes to “stretch” the main chain at the molecular level, we achieve significant 

Figure 3.1 | High thermal conductivity in polyelectrolyte thin films via controlled 
ionization. Illustrations of chain conformation and packing in spin-cast polymer films: 
coiled unionized polyelectrolyte (left) and extended ionized polyelectrolyte (right). The 
zoomed in images show chain confirmation at the molecular level. 
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enhancements of thermal conductivity in amorphous polymer with randomly oriented yet 

superiorly packed extended polymer chains and strong ionic inter-chain interactions 

(Figure 3.1). Moreover, the favorable conformation change is accomplished in a 

thermodynamically driven process, making it amenable for scale-up. 

 

3.2 Experimental Section 

3.2.1 Chemicals and Materials 

Atactic poly(acrylic acid) (PAA, MW 100 kDa and 450 kDa) and atactic poly(N-vinyl 

pyrrolidone) (PVP, MW 40 kDa) were purchased from Sigma Aldrich and were used 

without further purification. PAA (MW 100 kDa) supplied in the form of 35% aqueous 

solution was first concentrated at elevated temperature (<100oC) under reduced pressure 

and then further dried at 60oC under vacuum for 5 days prior to use. Sodium chloride 

(NaCl) and hydrochloric acid (HCl, 12N) were purchased from EMD Chemicals. Sodium 

hydroxide (NaOH) was procured from Acros. pH strips for ranges 0-6 and 7-14 with least 

count of 0.5 pH units and for range 6-7.7 with least count of 0.3 or 0.4 pH units were 

purchased from Sigma. Silicon wafers with 98 nm of oxide layer for thermal conductivity 

measurement and Si wafers without oxide layer (native oxide layer thickness ~1.8 nm) 

for SEM, AFM and XRD analyses were purchased from University Wafers.  

 

3.2.2 Sample Preparation 

Polymer Solution and Thin Film Preparation First, the required amount of polymer 

(PAA or PVP) was dissolved in de-ionized (DI) water by heating at 90oC to ensure 

complete dissolution. These solutions were then allowed to cool down to room 
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temperature and the pH was adjusted by adding freshly prepared 1M HCl or 1M NaOH 

solutions. The solutions were vortexed in between the acid or base additions to allow 

complete reaction between the base and the polymer (PAA in this case). Finally, the final 

concentration of solution was adjusted to 0.5 wt.% (PAA) or 1 wt.% (PVP) by adding DI 

water. The final pH was then measured using the pH strips. 

Silicon wafers were cleaned by sequential washing in detergent solution, DI water, 

acetone and isopropanol by sonicating for 5 minutes each followed by UV-ozone 

treatment for 20 minutes. The prepared solutions were spin-cast (Laurell Technologies 

Corporation, Model: WS-650MZ-23NPP/LITE) on pre-cleaned Si substrate at 1500 rpm 

for 30 seconds. The spin-cast films were then annealed at 100oC for 1 hour. Spin-coating 

as well as thermal annealing were carried out in a glove box under nitrogen atmosphere. 

For solvent vapor annealed samples, as-cast PAA films were solvent annealed for 30 

minutes under water vapor atmosphere and then annealed at 100oC for 30 minutes. For 

3ω measurement, Si wafer with 100 nm SiO2 layer was used. Si wafer without SiO2 layer 

was used for PALS, AFM and SEM analyses. For FTIR, Si substrate coated with Au layer 

was used. To create the reference region for 3ω measurement, part of the spin-coated 

film was scratched with a steel blade after which the residual polymer film was removed 

by a swab soaked in water and ethanol resulting in a clean surface without any polymer 

residue. Heater lines (5 nm thick Ti adhesion layer + 200 nm Au) were then 

simultaneously deposited on both sample and reference regions by electron-beam 

deposition under vacuum. If required, a Al2O3 capping layer (to block humidity) was 

sputter-coated prior to deposition of Au heater lines. 
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Solvent vapor annealing (SVA) For solvent vapor annealing, the as-made PAA 

films were kept in an enclosed chamber saturated with water vapor and heated at 90oC 

for 30 minutes. Post SVA, the samples were removed from the chamber and further 

annealed on a hot plate at 100oC for 15 minutes, after which all samples are sealed in 

either a vacuum desiccator or a N2-filled glovebox. 

Blade coating A computer controlled blade-coater from Newmark Systems Inc. 

(Model MS-1-24) was used to prepare thick film samples. A certain amount of polymer 

solution (PAA, 450 kDa, 2 wt.%) was dispensed on to the substrate kept on a hot plate at 

90oC. The gap between the coating blade and the substrate was then adjusted to get the 

desired thickness. The blade speed was kept constant at 0.02 mms-1 for all the samples. 

The film thickness is mainly controlled by the gap between the substrate and the blade, 

and solution concentration. The contact-coated films were very smooth and were 

annealed at 100oC for 1-2 hours. 

Since PAA and its salts are hygroscopic in nature, stringent care was taken during 

the experiments to avoid exposing the spin-coated and blade-coated samples to 

atmosphere for any prolonged duration of time. All the samples were stored under 

nitrogen atmosphere in a glove box prior to any measurement. All the samples were triple-

sealed for protection against humidity and usually transported in a desiccator. 

 

3.2.3 Thermal Conductivity Measurement: Differential 3ω Method 

3.2.3.1 3ω Set-up and Measurement 

A differential 3ω technique was used to measure thermal conductivity of polymer 

thin films.15,16 During 3ω measurement, an AC current with frequency ω is applied to 
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metal heater lines deposited on sample (subscript “s”) and reference (subscript “r”) 

regions, inducing a 3ω voltage. Temperature rise (ΔT) in the cross-plane direction is 

related to V3ω by15: 

    ]^ = 2
_CG

C_

à

b̀a
                        (1) 

where dR/RdT is the temperature coefficient of electrical resistance (TCR) for metal 

heater line and Vω is voltage applied. 

Temperature rises in sample (ΔΤs) and reference regions (ΔΤr) are extracted by 

measuring voltages that oscillate at frequency ω and 3ω with a lock-in amplifier (SR830 

Lock-in Amplifier, Stanford Research Systems), which are then used to calculate the 

temperature rise across thin film of interest (ΔΤf )
17: 
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=
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                                         (2) 

where P represents Joule heating power.  

Since the width of the heater line (44.7 μm) greatly exceeds the thickness (tf < 80 

nm) of spin-cast films, a 1-D heat transfer model based on Fourier’s law is sufficient for 

calculating cross-plane thermal conductivity (κz): 

            %h = Ki
>e

E;∙cGe
                                                                   (3) 

In the standard sample configuration (Figure 3.2a, center panel), a lithography-

fabricated shadow mask with precisely defined geometry (±1 μm) was attached on a 

silicon substrate (thickness = 500 μm) with 100 nm thermally-grown SiO2 for electrical 

insulation and spin-cast polymer film (on one half of the substrate) for heater line 

deposition. A 5 nm adhesion layer (Ti) was first deposited via electron beam evaporation 

(SJ-20 Evaporator, Denton Vacuum) followed by 200 nm of heater line material (Au). 
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Since PAA is hygroscopic and the absorbed humidity could alter charge density along the 

backbone as well as disrupt various hydrogen-bonds within the thin film, an alternative 

sample configuration (Figure 3.2a, right panel) with a 50 nm sputter-coated alumina 

capping layer (to block humidity) was also used for 3ω measurement. As the alumina 

capping layer was deposited on the sample and reference regions simultaneously, the 

temperature rises across it were approximately equal in both regions, making errors 

caused by the thin Al2O3 layer negligible. We note that, in order to minimize sample 

degradation due to humidity, all PAA samples were kept under vacuum prior to 3ω 

measurements, and consequently values of κ measured from both configurations are 

consistent within sample-to-sample variations (Figure 3.2c). 

A crucial assumption embedded in Eq. 2 is that the heater lines deposited in the 

sample and reference regions are identical. This is ensured by simultaneous deposition 

of closely-placed heater lines (distance ~10 mm) in both regions using shadow masks 

with precise and consistent dimensions. Four identical heater lines (indexed “1”, “2”, “3”, 

“4”) are deposited on sample and reference regions respectively to facilitate cross-

checking (i.e., obtain κ values from different combinations of heater lines in both regions). 

Good agreements between κ measured from various heater line combinations indicate 

minuscule variations among heater lines deposited using the same mask (Figure 3.2b).  

For spin-cast films, an upper limit of heating frequency (f) equal to 442 Hz was 

chosen to satisfy the line source approximation adapted in the thermal model. This 

corresponds to a lower bound of thermal penetration depth (TPD) equal to 120 μm (TPD 

= (αsub/2ω)1/2, where αsub = 0.8 cm2s-1 is the thermal diffusivity of the silicon substrate and 

ω = 2πf (refs. 17,18) that is much greater than heater line half-width (b = w/2 = 22.3 μm). 
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Meanwhile, the lower limit of heating frequency was set at 175 Hz, yielding an upper 

bound of TPD equal to 191 μm that is well below the substrate thickness (500 μm), 

validating the 1-dimensionalilty of heat transfer as well as semi-infinite substrate 

approximation. As for the blade-coated samples with large thicknesses (df > 2 μm), a 

lower range of heating frequencies were selected. A prior work17 has examined the 

deviation from 1-D heat transfer due to lateral (in-plane) heat spreading, which can be 

sizable as df becomes comparable to heater line half width. Furthermore, it is possible 

that shear-force-induced short-range chain ordering in the blade-coating direction (in-

plane)19 gives rise to a higher in-plane thermal conductivity (κx) than its cross-plane 

counterpart (κz), amplifying lateral heat spreading.17 However, using an analytical model 

developed in Ref. 17, we find the error in κz due to lateral heat spreading can be largely 

mitigated (<1% deviation from κ calculated using a 2-D thermal model) by replacing 

heater line width with a corrected value of (w + 0.88df). In addition, a range of heating 

frequencies was selected for blade-coated PAA films such that it was low enough to 

enlarge TPD/df and further suppress lateral heat transfer, but at the same time high 

enough to constrain the TPD (~460 μm for the lowest heating frequency used) within the 

substrate thickness (Figure 3.2f). As a check for semi-infinite substrate approximation, it 

is known that parasitic effect due to insufficient TPD appears as a deviation from linearity 

in ΔT vs. log(ω) (refs. 17, 18), which is not evident in our results (Figures 3.2d, e). 
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We note that in reality potential errors that usually stem from line source and 1-D heat 

transfer approximations can be largely mitigated by the differential nature of our 

1

1

a

b c

d e f

Figure 3.2 | Differential 3ω measurement of thermal conductivity (κ). a, Cross-
section (not drawn to scale) of sample geometry showing four identical heater lines 
(indexed “1”, “2”, “3”, “4”) deposited on both the sample and reference regions. Indices 
are the same for heater lines on both regions. Configuration 2 includes a 50 nm 
alumina capping layer to block humidity. b, κ of pH=4 and 10 samples measured from 
different combinations of heater lines (for example, “κ11” represents κ measured using 
heater line “1” in both sample and reference regions) using both sample configurations. 
c, Thermal conductivities of PAA as a function of solution pH measured from both 
configurations, showing good agreement of measured κ. d and e, Temperature rise on 
sample (ΔTs) and reference (ΔTr) regions for spun-cast (d) and blade-coated films (e), 
the difference of which is the temperate rise across PAA films (ΔTf). f, TPD versus 
heating frequencies (f). Several heating frequencies were chosen such that their 
corresponding TPDs were greater than 5 times the heater line half-width (5b=112 μm) 
but lower than the substrate thickness (500 μm), validating the semi-infinite substrate 
and 1-D heat transfer approximations adopted in the thermal model. 
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experiment. Lastly, to check measurement accuracy, thermal conductivities of spin-cast 

poly(methyl methacrylate) (PMMA) and PAA (dissolved in DMF) were measured to be 

0.21±0.02 Wm-1K-1 and 0.35±0.03 Wm-1K-1, respectively, agreeing well with reported 

values obtained by time-domain thermal reflectance for films of similar thicknesses and 

produced under identical conditions.20 

 

3.2.3.2 Error Analysis 

As mentioned above, the accuracy of differential 3ω technique depends primarily 

on heater lines and substrate conditions being identical in the sample and reference 

regions. While good agreement between values of κ measured from different heater line 

combinations indicates measurement robustness, several parameters (w, TCR, df and 

thermal boundary conductance) are subject to experimental uncertainties and their 

consequential errors are analyzed below.  

Heater line width, temperature coefficient of resistance and film thickness Widths 

(w) of forty heater lines measured by an optical microscope yielded a standard deviation 

(σSD, w) of 0.933%. Since σsd, w affects temperature rises in the sample and reference 

regions independently, it is magnified by the inverse of signal-to-noise ratio (ΔΤs
2 + 

ΔΤr
2)1/2/ΔΤf (ref. 18) so that a small variation in w may lead to an enlarged uncertainty in 

measured κ depending on the magnitude of (ΔΤs
2 + ΔΤr

2)1/2/ΔΤf. Therefore, σsd, w × (ΔΤs
2 

+ ΔΤr
2)1/2/ΔΤf was used for error calculation. TCRs of forty heater lines were measured 

previously in a cryogenic setup with a homemade LabVIEW data acquisition program. 

Since TCR varies for heater lines deposited using different deposition tools, the same e-
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beam evaporator has been used for all the experiments. σsd,TCR was found to be small 

(2.7%) and it is further minimized by the differential nature of our experiment.  

Thickness (df) of spin-cast PAA films was measured by ellipsometry (Woollam M-

2000DI Ellipsometer) and surface profilometry (Dektak XT Surface Profilometer) while df 

of blade-coated films were measured using only the latter due to their greater film 

roughness. Ellipsometry is ideal for measuring the thicknesses of smooth films, typically 

yielding a measurement error within 5 Å (ref. 21); assuming a lower bound of df equal to 

10 nm, we set the thickness error to be 5 % (5 Å/10 nm) for error calculation. During 

ellipsometry, the laser beam spot was focused on the same region where the heater lines 

were to be deposited later to ensure df and κ were measured in an overlapping region, 

thereby minimizing errors in κ caused by spatial variation within the film. Thicknesses of 

twenty PAA samples were cross-checked using Dektak surface profilometer. Prior to 

profilometry, thin grooves were made by scratching the polymer film with a steel blade 

(hardness: steel < SiO2) while keeping the SiO2 layer intact. Since Dektak stylus radius 

(12 μm) is smaller than the width of the steel blade (25 μm), it is able to measure the 

depth of the groove as the stylus sweeps across. Dektak-measured thicknesses 

(averaged over three positions along the groove) matched well with the ellipsometry-

measured values, which is consistent with smooth sample morphology. For blade-coated 

samples, the thickness was measured in a way that the stylus moved from a point close 

to the heater line in the sample region to the reference region. The error caused by 

intrinsic height variation due to this translational movement (which is around 1 cm) was 

estimated to be 20 nm (ref. 22), which is negligible compared to the film thickness (>2 

μm). 
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Thermal boundary conductance Previous study23 suggests that thermal boundary 

conductance (TBC) of polymer-inorganic interface could vary as the polymer film 

thickness becomes comparable to its radius of gyration, owing to polymer chain re-

orientation near the substrate. Conceivably, ionization-induced chain extension could 

lead to better adhesion between polymer and substrate, thereby enhancing the measured 

effective thermal conductivities of PAA spin-cast from high pH solutions due to a larger 

PAA/SiO2 TBC.24 However, we found the enhancement in TBC, if any, insufficient to 

account for the measured high thermal conductivities. Assuming an actual PAA (100kDa, 

pH = 10) thermal conductivity of 0.35 Wm-1K-1 and a Ti/SiO2 TBC of 100 MWm-2K-1 (ref. 

25) in the reference region, a diverging TBC on either side of PAA yielded only a 

measured κeff equal to 0.424 Wm-1K-1, significantly lower than the values measured for 

high pH samples (κ = 0.922 Wm-1K-1 for pH 10 sample, see Figure 3.3a).  

 

 

Similarly, as shown in Figure 3.3b, we calculated the minimum PAA conductivities 

(κmin) required to fit the measured values (κmeasured), assuming again an infinite TBC in the 

a b

Figure 3.3 | TBC analysis and minimum κ. a, b, κmeasured (Configuration 2) and κmin 
versus pH. κmin is the minimum thermal conductivities PAA films need to have in order 
to fit the measured values, by assuming an infinite TBC in the sample region and a 
Ti/SiO2 TBC equal to 100 MWm-2K-1 in the reference region. 
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sample region and a Ti/SiO2 TBC of 100 MWm-2K-1 in the reference region. We note that 

various experimental studies23,24,26,27 have reported smaller TBC values for 

inorganic/polymer interface compared to that of metal/ceramic interface (Ti/SiO2 in the 

reference region, see Figure 3.3a), such that in reality we could very well be 

underestimating the measured thermal conductivity values. In addition, since errors due 

to variations in TBC become negligible in thick (>2 μm) blade-coated samples due to large 

thermal resistance.  

 

3.2.4 Materials Characterization 

3.2.4.1 Fourier Transform Infrared (FTIR) Spectroscopy and Quantification of 

Degree of Ionization 

FTIR spectra were recorded on a Nicolet 6700 spectrometer using a grazing angle 

accessory (Smart SAGA) at a grazing angle of 85o. 128 scans were recorded for each 

sample followed by a blank measurement for calibration. Origin 8 software was used to 

deconvolute the IR spectra; a Gaussian function with 2 or 3 peaks was used to fit the PAA 

spectra.28,29 While the baseline was user-defined, peak center, peak width and the area 

under the curve (Apeak x, x = 1, 2 or 3 as described below) was calculated by the software. 

Figure 3.4 shows representative IR spectra with deconvoluted peaks for pH 4, 7 and 12 

samples. Peak 1 refers to asymmetric carboxylate (-COO-) stretching band (1556-1594 

cm-1), peak 2 (1678-1704 cm-1) refers to self-associated hydrogen bonding carbonyl 

stretching band of carboxylic acid (-COOH) and peak 3 (1722-1732 cm-1) to non H-

bonded carbonyl stretching bands of carboxylic acid. PAA film at pH 1 did not have any 

ionized groups and thus had no corresponding peak (peak 1) in FTIR spectrum. Films at 
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pH 1, 4 and 5.5 had both self H-bonded and non H-bonded carboxylic acid groups as 

evidenced from peak broadening that required two Gaussian peaks to fit. As the degree 

of ionization increased further, only self H-bonded carboxylic acid groups remained in 

addition to the ionized groups. The degree of ionization (α) was then calculated as: 

                               k = 	
Zlmno	p

Zlmno	pq	Zlmno	rq	Zlmno	b 	
	×	100%       (4)  

 

 

 

3.2.4.2 Viscosity Measurement 

Viscosity was measured on a TA Instruments Advantage Rheology G2 instrument 

using a cone plate configuration with a steel cone of 40 mm diameter and cone angle of 

2o. The plate temperature was maintained at 25oC. 2 wt.% solution of PAA (100 kDa) and 

8 wt.% solutions of PVP (40 kDa) with adjusted pH was used for viscosity measurement 

to get more reliable values. Measurements for PAA were done at three shear rates: 120 

s-1, 150 s-1 and 200 s-1 and the viscosity was found to be consistent across shear rates 

a b c

Figure 3.4 | Representative FTIR spectra with deconvoluted peaks. a, FTIR 
spectrum of pH 4 sample. b, FTIR spectrum of pH 7 sample and c, FTIR spectrum of 
pH 12 sample. Peaks were fitted assuming Gaussian distribution. Peak 1 refers to 
asymmetric carboxylate (-COO-) stretching band (1556-1594 cm-1), peak 2 (1678-1704 
cm-1) refers to self-associated hydrogen bonding carbonyl stretching band of carboxylic 
acid (-COOH) and peak 3 (1722-1732 cm-1) to non H-bonded carbonyl stretching 
bands of carboxylic acid. 
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with the least oscillation at the highest shear rate (reported here). For PVP, 

measurements were done at two shear rates of 120 s-1 and 200 s-1 (data shown here). 

Data was collected at intervals of 5 s for 2 minutes for each shear rate. 

 

3.2.4.3 Positronium Annihilation Lifetime Spectroscopy (PALS) 

PAA films were prepared by spin-casting polymer (100 kDa) solutions at different 

pH on Si wafers without an oxide layer. PALS data30 was obtained using a focused 

positron beam having a positron implantation energy of 0.7 keV. Fitting the PALS 

spectrum yields a positronium intensity, I (%), and lifetime (which is directly related to 

pore volume, V (nm3)). The relative change in the product of I and V represents the 

fractional change in film porosity. The fitted values of I were corrected for positron 

transmission through the thin film (primarily for films with pH < 6; pH 1 sample film 

thickness was too small for accurate PALS measurement).  Errors in the IV products are 

estimated from the standard deviations in the fitting of I and V (from lifetime) and the error 

in the beam transmission correction. 

 

3.2.4.4 Nano-indentation for Elastic Modulus Measurement 

Due to the inherent difficulty of measuring modulus for nano-scale spin-cast films, 

nano-indentation (Hysitron 950 triboindenter) was performed on thick blade-coated 

samples to quantify the modulus contribution to the measured high κ. The nano-indenter 

was equipped with a Berkovich probe that had a diamond tip with known geometry, 

controlled by a piezoelectric transducer with loading force resolution of 1 nN and 

displacement resolution of 0.02 nm. Prior to measurement, the probe was calibrated 
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against a fused quartz sample with known elastic modulus. We note that the elastic 

modulus (11.58 GPa) measured for pH = 1 film is similar to that measured for PAA thin 

film by picosecond acoustic measurement (E= ~9.86 GPa; E = 2C44(1+	:), C44 = 3.6 ± 0.1 

GPa, : = 0.37).31 All measurements were performed under a constant Ar gas flow over 

the sample mounted on the instrument stage and at a constant maximum indentation 

depth (“displacement”) of 400 nm. The samples were annealed at 100oC for 10 minutes 

right before transferring to the instrument where they were under constant Ar gas flow. 

This was done to avoid moisture absorption in the PAA films. Elastic modulus was 

measured on 4 different regions on each sample to yield an average value, with their 

standard deviation set as the error bar. Model fitting was done for the unloading part of 

the force-displacement curve (Figure 3.5). Reduced modulus (Er) was calculated 

according to the standard Oliver and Pharr method32:  

																																																																uv =	
w x

9 Z
																																																																(5) 

where S is the slope of the loading force vs. displacement curve in the upper portion of 

the unloading data and A is the probe/sample contact area, respectively. We note that 

due to the viscoelastic nature of PAA films, the fitting was carried out in the 20-80% range 

of the unloading data to avoid potential errors stemming from sticking of the polymer film 

to the probe during initial retraction.  
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Finally, the actual film modulus was calculated using the following relation32:  

																																																									
6yzr

{
=

6

{g		
−

6yz|
r

{|
																																																									(6) 

where :, :} and Ei are the Poisson’s ratio of PAA, Poisson’s ratio of the diamond tip (0.07) 

and the elastic modulus of the diamond tip (1140 GPa), respectively. To calculate E using 

equation 6, : = 0.37 was used for pH 1 and 4 samples, and : = 0.25 was used for pH 7, 

10 and 12 samples.31 

 

3.2.4.5 Atomic Force Microscopy 

AFM was carried out on a Bruker ICON AFM. Under AFM tapping mode, 

topography and phase images were recorded to visualize the sample surface morphology 

and to characterize the spatial variations in surface stiffness,33 respectively. 

Loading

Unloading

80%

20%

S

Figure 3.5 | A typical force vs. displacement curve from nano-indentation of a 
blade-coated PAA film. The unloading curve in the range of 20-80% was used for 
data fitting of S, which was then used to calculate the reduced modulus based on the 
Oliver and Pharr relation. A consistent maximum displacement equal to 400 nm was 
chosen for all measurements. 
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3.2.4.6 Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB)-assisted 

SEM 

SEM was carried out on FEI Nova 200 Nanolab SEM. Bare silicon substrate 

without thermally grown oxides was used for SEM imaging to facilitate charge dissipation. 

A relatively small acceleration voltage was used to avoid damaging PAA films, yet at the 

chosen voltage a few nanometer imaging depths can still be achieved.34 Focused ion 

beam (FIB)-assisted SEM was used to image the cross-section of a sample beneath the 

gold heater line. Focused ion beam (FIB) was used to etch out a 20 μm long and 10 μm 

deep indentation on a heater line, exposing a sharp cross-section centered around the 

boundary between sample and reference region. A thin layer of gold was then sputter-

coated for imaging. 

 

3.2.4.7 Grazing-incidence X-ray Diffraction (GI-XRD) 

GI-XRD measurements were carried out on a Rigaku Ultima IV diffractometer with 

Cu Kα source (λ = 1.54 Å). To maximize signal from the films, 3 wt.% PAA (100 kDa) 

solutions were used for preparing the spin-coated films on a Si substrate with 100 nm 

oxide layer. Incidence angle was set at 0.2o and data was collected from 5o to 50o at 0.1o 

intervals with a dwell time of 4 seconds per data point.  

 

3.2.5 Theoretical Calculations 

Theoretical calculation of degree of ionization (α) Degree of ionization (α) was 

theoretically calculated from the following equation: 

~q + �Äq = Å~y + [,ÅÅy]      (7) 
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Total number of carboxylic acid groups, [COOH], was calculated from the amount 

of polymer added in the prepared solution as number of repeating units (monomer MW = 

72 Da) ignoring the chain end groups. Concentration of Na+ ions ([Na+]) was calculated 

from the known amount of NaOH added in the solution and [H+] and [OH-] ions were 

calculated from the measured pH. Applying charge balance, concentration of carboxylate 

ions, [COO-], was obtained. Degree of ionization was then calculated as ratio of 

carboxylate ions to total carboxylic acid groups, i.e. [COO-]/[COOH], in the solution.  

Theoretical calculation of NaOH volume fraction The theoretical volume fraction of 

NaOH crystals (VNaOH) was similarly calculated for spin-cast thin films. Since majority of 

hydroxyl ions are consumed in the acid-base reaction with carboxylic acid groups, OH- 

ions instead of Na+ ions are the limiting species for NaOH crystal formation. With the PAA 

solution pH and amount of polymer as well as NaOH added known, we calculated the 

concentration of OH- ions in the solution based on charge balance. Assuming that ions 

and polymer chains are retained proportionally in the spin-cast film from the solution and 

that all left-over OH- ions form NaOH crystals, we calculated the volume fraction of 

crystals in the film (VNaOH) using standard values of densities35 for bulk PAA (VPAA = 1.41 

gcm-3) and NaOH (VNaOH = 2.13 gcm-3). We note that this calculation yields an upper 

bound of VNaOH since more polymer chains are retained in the film during spin-casting 

compared to the smaller Na+ and OH- ions and not all OH- ions may end up forming NaOH 

crystals.  
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3.3 Results and Discussion 

To test our idea, we used a weak polyelectrolyte, polyacrylic acid (PAA, atactic), 

made up of a C-C backbone with a carboxylic acid (-COOH) group at alternate carbon 

atoms that can be ionized to a carboxylate (-COO-) by addition of a base, i.e., with 

increase of the polymer solution pH. The close proximity of the densely packed ionizable 

groups to the polymer main chain allows the effect of electrostatic repulsion between them 

to easily translate to the backbone, resulting in chain extension with increasing ionization. 

As a negative control, a water soluble polymer, poly(N-vinyl pyrrolidone) (PVP, atactic), 

without an ionizable pendant group, was employed. Cross-plane thermal conductivities 

of spin-cast polymer films were measured by a differential 3ω method, which is a standard 

technique for such measurements in films with thicknesses as small as few 

nanometers.17,36 As shown in Figure 3.6a, the thermal conductivity of PAA increased from 

0.34 ± 0.04 Wm-1K-1 at pH 1 when the PAA chains are completely unionized to 1.17 ± 

0.19 Wm-1K-1 at pH 12 when the PAA chains are predominantly ionized (>90%, vide infra). 

The thermal conductivity of PVP, however, measured ~0.2 Wm-1K-1 across the entire pH 

range, consistent with its non-electrolyte nature. 
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Fourier transform infrared (FTIR) spectroscopy was used to confirm and quantify 

the extent of ionization of PAA. Figure 3.6b shows the FTIR spectra of PAA films spin-

cast from solutions of different pH. The decrease in intensity of the carbonyl (–C=O) 

stretching band (1680-1730 cm-1) of the carboxylic acid (-COOH) group with pH and 

Figure 3.6 | Thermal conductivity of PAA and PVP, and FTIR spectra of PAA as a 
function of pH. a, Cross-plane thermal conductivity of a weak polyelectrolyte, PAA 
(MW 100kDa), and a non-ionizable water soluble polymer, PVP (MW 40kDa) thin films 
spin-cast from polymer solutions of different pH. Error bars were calculated based on 
uncertainties in film thickness, temperature coefficient of electrical resistance for the 
heater, and heater width. Chemical structures of the polymers and ionization reaction 
for PAA are also shown. b, Fourier transform infrared (FTIR) spectra of PAA films spin-
cast from solution of different pH. c, Fraction of ionized carboxylic acid groups (α) as a 
function of solution pH: calculated from the FTIR spectra and by applying charge 
balance on PAA solutions. 
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concomitant increase in the intensity of the asymmetric carboxylate (-COO-) stretching 

band (1556-1594 cm-1) indicate ionization of the PAA chains.28 The degree of ionization 

(α) of PAA as a function of solution pH (Figure 3.6c), calculated from the areal ratio of 

peaks corresponding to ionized and unionized acidic groups fitted assuming Gaussian 

distributions and the same extinction coefficient for the two bands29 matches with 

previously reported trends.28 A theoretical charge balance calculation for the PAA solution 

yielded similar values for α confirming that PAA retains its ionization in the thin film state. 

In contrast, FTIR spectra did not show any change in chemical signature with pH for PVP 

(Figure 3.8a). 

We further measured viscosities of PAA solutions at different pH, and porosities 

and elastic moduli of PAA thin films fabricated from solutions at different pH to quantify 

the three ionization-induced effects, viz., polymer chain extension,37 chain packing,37 and 

chain stiffening,38 respectively. As shown in Figure 3.7a, the relative viscosity, ηr (= ηpolymer 

/ ηwater, ηwater = 10-3 Pa.s), increases with solution pH, indicating that coulombic repulsion 

between ionized carboxylic acid groups stretches out the PAA chains, resulting in an 

extended morphology and hence increased solution viscosity.39 Under the same spin-

casting conditions, the trend in film thickness (df) matches well with that of solution 

viscosity, suggesting that the extended conformations of PAA chains in solution are likely 

preserved in the thin films. We note that it is likely that upon spin-cast the sodium ions 

condense close to the negatively-charged pendant groups of PAA to maintain charge 

neutrality, reducing the degree of chain extension due to charge screening. However, a 

previous AFM study on spin-cast samples of a brush polymer with grafted PAA side 

chains demonstrated systematic extension in chain morphology as pH increased,40 
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corroborating our assertion that at least some level of chain extension has been 

preserved in the solid-state films. The viscosities of PVP solutions as well as the film 

thicknesses for spin-cast PVP samples remained unchanged across the pH range as 

expected (Figure 3.8b). 

 

 

Figure 3.7 | Effects of PAA ionization. a, Relative viscosity, ηr (= ηpolymer/ηwater, ηwater 
= 10-3 Pa.s), of a 2 wt.% solution of PAA, and film thickness, df, of spin-cast samples 
(from 0.5wt.% solution) as a function of pH. b, Positronium annihilation lifetime 
spectroscopy data for PAA films at different pH. The change in the product of 
positronium (Ps) intensity (I, %) and pore volume (V, in nm3) represents the change in 
film porosity. Error bars were estimated based on the errors from fitting I and V plus an 
estimate of the error in the positron transmission correction. c, Elastic modulus of 
blade-coated PAA (MW 450kDa) films measured by nano-indentation. The error bar 
shows standard deviation of measurements at four different points on the film. 
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Since polymer density in confined films is known to differ from the bulk value and 

depends on the film thickness,41 it was necessary to assess the change in density of PAA 

films with pH. Positronium annihilation lifetime spectroscopy (PALS)30 was used to 

measure porosity of spin-cast PAA films. PALS data (Figure 3.7b) shows a linear 

decrease in PAA film porosity with pH, which can be explained by better chain packing in 

the spin-cast thin films afforded by extended ionized chains. The measured ~33% drop 

in film porosity from pH 4 to pH 12 is consistent with the previously measured trend in 

bulk density of partially ionized PAA.35 Due to the inherent difficulty of performing nano-

indentation32 on nano-scale spin-cast films, micrometer-thick blade-coated PAA (MW 450 

kDa, atactic) films19 were used for elastic modulus (E) measurement. As shown in Figure 

3.7c, elastic modulus increased with pH, i.e., with ionization of PAA chains. A similar chain 

stiffening effect caused by reduced chain segmental mobility due to strong ionic 

interactions between the negatively charged polymer chains and the surrounding positive 

cationic coordination sphere42 is generally attributed for the large increase in glass 

transition temperature (Tg) of PAA with ionization.43 

 

 

Figure 3.8 | Characterization of PVP films and solutions. a, FTIR spectra of spin-
cast PVP films as a function of pH. b, Relative viscosities of 8 wt.% aqueous solutions 
of PVP and film thicknesses for the spin-cast samples shown in Fig. 3.6a. 
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Furthermore, grazing-incidence x-ray diffraction measurements carried out on 

spin-cast PAA films did not show any sign of polymer crystallinity (Figure 3.9) thereby 

ruling out any crystallinity-related contribution to the measured thermal conductivity. We 

note that the broad diffused peak, known as amorphous halo, seen for all samples is 

characteristic of amorphous polymers including PAA44 and PAA salts.45 

 

 

 

In order to rule out the possible contributions of NaOH crystals that could 

potentially act as high-κ fillers to measured thermal conductivity, we calculated the 

maximum possible volume fraction of NaOH crystals (VNaOH) in the resulting polymer 

films. Such NaOH crystals formed from residual Na+ and OH- ions in the polymer solution 

could act as high-κ fillers and contribute to thermal conductivity enhancement. However, 

Figure 3.9 | Grazing-incidence x-ray diffraction spectra of PAA films at different 
pH. The broad diffused peak from ~15o-30o, called amorphous halo, is characteristic 
of amorphous polymers. 
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based on the known amount of PAA and NaOH added in the polymer solutions at various 

pH, the calculated VNaOH was found to be negligible (VNaOH ~1.65% for the highest pH 12 

sample) except for an additional sample (not shown in the data of Figures 3.6a and Figure 

3.7) for which excess NaOH was added specifically to probe the potential contribution of 

NaOH crystals (shown in Figures 3.10a and 3.10b). While crystals were not observed in 

the samples except for the one with excess NaOH, a Maxwell model was nevertheless 

used to predict the thermal conductivities that would be expected if the NaOH crystals 

were homogeneously distributed within the film as nano-sized spherical fillers,46 for 

comparison with values measured for chain-extended PAA films. A volumetric percolation 

threshold equal to 25% is required for appreciable κ enhancement in such composites; 

this is not reached even for the highest pH PAA film (pH 12; VNaOH = 1.65%). The fact that 

the measured PAA thermal conductivities are significantly greater than Maxwell-predicted 

values (Figure 3.10e) indicates that κ enhancement due to ionization-induced effects 

dominates over the possible contributions of high-κ fillers over the range of pH selected.  

Tapping-mode atomic force microscopy (AFM) and scanning electron microscopy 

(SEM) analyses of the PAA films further corroborate the theoretical calculation of VNaOH. 

As can be seen in Figure 3.10a, AFM topography images show a smooth featureless film 

surface morphology for values of pH up to 12. Small spherical NaOH crystals can be seen 

in the thin film spin-cast from polymer solution with excess NaOH added. The standard 

deviation in AFM phase image (σSDEV) is small and shows no systematic trend as a 

function of pH, indicating compositional homogeneity (Figure 3.10c).  The mean phase 

shift (φmean) as a function of pH is shown in Figure 3.10d. The pH 12 sample has a 

significantly more positive phase shift, indicating a stiffened chain likely due to the 
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presence of excessive Na+ ions. SEM images were used to confirm surface morphology 

as well as investigate the potential presence of NaOH crystals buried within the film 

(Figure 3.10b). We did not observe any sign of NaOH crystals except for the sample with 

excess NaOH added, which is consistent with the AFM topography images.  

  

 

Percolation threshold (25%)
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Figure 3.10 | Tapping-mode AFM and SEM analyses of PAA films. a, Tapping-
mode topography (top) and phase (bottom) images (5 μm x 5 μm) of PAA films spin-
cast from solutions of different pH. AFM images have been shifted to zero mean values 
(i.e.” flattened”) for illustration purposes. Nano-sized NaOH crystals are only visible in 
sample with excess amount of NaOH added to the PAA solution. b, SEM images (5 
μm x 5 μm) of the same films analyzed by AFM. NaOH crystals can be seen only when 
excess NaOH is added, consistent with the AFM data. c, Standard deviation in AFM 
phase image for spin-cast PAA films. σSDEV is small and shows no systematic trend as 
a function of pH, indicating high level of film homogeneity over the entire pH range. d, 
Mean phase shift (prior to flattening) of spin-cast PAA films. The greater φmean found 
in the pH 12 sample may come from excessive Na+ ions causing stiffening of the 
polymer chains. e, Measured thermal conductivities, κspin-cast, for spin-cast films greatly 
exceeds the Maxwell-model predicted values, indicating enhancement is not primarily 
due to a high-κ filler effect.  
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To investigate whether preferential crystallization of NaOH occurs in the polymer 

film beneath the gold heater lines (i.e., metal-polymer interface) due to heterogeneous 

nucleation,47 FIB-assisted SEM was used to image the cross-section of a pH 10 sample 

beneath the gold heater line. From Figure 3.11 (right panel), small grains (~10 nm) of the 

Pt layer are clearly observed, indicating a SEM resolution that is sufficient to characterize 

features on similar length scale. No sign of NaOH crystals buried underneath the gold 

heart line was observed thereby ruling out the possibility of preferential crystallization of 

NaOH due to heterogeneous nucleation47 at the metal-polymer interface. 

 

 

 

To deconvolute the contributions to measured κ from the three ionization induced 

effects, we employed the minimum thermal conductivity model (MTCM)10,20,31 which 

describes thermal transport in amorphous and highly disordered materials. According to 

this model, κ scales with atomic density (ρatom) as ÑX>ÖÜ
6/à , which was approximated with 

Figure 3.11 | Cross-section view of a pH 10 PAA film under the Au heater lines. 
Focused ion beams (FIB) were used to etch an indentation on a heater line at the edge 
of sample and reference region (left panel). Polymer film, Au heater line, deposited Au 
layer for SEM imaging and protective Pt layers can be seen in the cross-sectional view 
(center panel). Zoomed in image of the sample cross-section doesn’t show any 
embedded NaOH crystals in the film (marked by red arrows) beneath the Au heater 
lines (right panel). 
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mass density (ρ) here, and linearly with sound velocity which further depends on elastic 

modulus as E1/2. Since the film density cannot be directly calculated from the PALS data, 

we interpolated densities at different degrees of ionization based on the bulk densities 

reported in ref. 35. Assuming that film density scales linearly with bulk density, a ~20% 

higher bulk density at pH 12 (α = 92.5%) compared to pH 1 (α = 0%) suggests a relatively 

small (~3%) density-related contribution to the enhanced κ. The modulus-related 

contribution to the measured κ was calculated to be ~61%. Based only on density- and 

modulus-related contributions to κ, the thermal conductivity at pH 12 is predicted to be 

~0.56 Wm-1K-1, a ~65% enhancement in κ over that of pH 1 (κ = 0.34 Wm-1K-1) that is 

substantially smaller than the ~250% enhancement measured. Figure 3.12a shows the 

various contributions to measured κ for each pH calculated by taking κ for pH 1 as the 

baseline. We note that the measured value (κ = 0.38±0.04 Wm-1K-1) for pH 4 sample is 

lower than the MTCM-calculated value (0.43 Wm-1K-1). Clearly, the MTCM, which is 

based on vibrational states that are neither fully localized nor propagating (diffusons), 

doesn’t entirely capture the enhancement in κ measured in this system. We speculate 

that the extended and stiffened PAA chains may result in increased diffusion lengths for 

diffusons. Since long-range propagating modes have been previously shown to exist in 

disordered solids like amorphous Si,13,48 it is also possible that a small population of 

“propagons” exist in the chain-extended PAA. However, further studies are necessary to 

understand the detailed heat transport mechanisms in these extended systems. We note 

that a prior work31 has examined the thermal conductivity of ionically-crosslinked polymer 

salt with κ reaching 0.67 Wm-1K-1. We attribute the additional κ enhancements shown in 

this study to the added chain extension effect in NaOH-treated PAA, which gives rise to 
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a greater persistence length and larger effective rigidity of the polymer chains.38 It is likely 

that the predominant vibrational transfer of heat along the covalently bonded polymer 

backbone afforded by the extended and stiffened chain morphology as well as enhanced 

interchain conductance due to stronger ionic bonds result in the substantial increment in 

κ. The measured increases in κ are consistent with a recent computational study that 

predicts large enhancements in κ with increasing persistence length in amorphous 

polyethylene.49  

 

 

To further confirm the contributions of extended chain morphology of the ionized 

PAA chains to measured thermal conductivity, we performed solvent vapor annealing 

(SVA) on spin-cast PAA films. SVA is a commonly used technique to control the 

morphology of polymer chains in films.50,51 During SVA, the polymer film absorbs solvent 

vapor which imparts increased degree of mobility to the polymer chains causing them to 

Figure 3.12 | Contributions of ionization-induced effects on PAA κ. a, 
Contributions from ionization effects shown in a-c towards enhancement in thermal 
conductivity of spin-cast PAA films. κ at different pH is noted above the bars. b, 
Thermal conductivities of solvent vapor-annealed PAA films compared to those of as-
made samples. PAA films were solvent-vapor annealed at 90oC for 30 minutes 
followed by annealing at 100oC for 15 minutes. 
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equilibrate to a thermodynamically more favorable coiled conformation. As shown in 

Figure 3.12b, the differences in thermal conductivity between “as-made” and “solvent-

annealed” samples are within experimental uncertainties for low pH samples, indicating 

that any disruption of ionic and H-bond interactions due to solvent annealing doesn’t 

change κ significantly. However, for pH 10 and 12 samples much lower thermal 

conductivities were measured for solvent-annealed samples, which can be explained by 

the coiling up (relaxation) of PAA chains during the solvent-annealing process. At pH 12 

specifically, thermal conductivity dropped by as much as ~32%. This signifies that 

kinetically frozen extended PAA chains are partially responsible for high thermal 

conductivities measured in the spin-cast films. 

We further compared the thermal conductivities of chain-extended PAA films with 

those of two types of composite films, PAA/NaCl and PVP/NaOH, composed of mutually 

unreactive polymer-salt mixtures. We assume that the salt added in these samples is 

proportionally retained in the thin film upon spin-casting from the polymer-salt solution 

and acts as a high-κ filler. As shown in Figure 3.13a, salt fillers have miniscule effect on 

composite thermal conductivities till ~20% filler volume fraction. This signifies that 

extended chain morphology may be more effective at transferring heat than composite 

strategies, where large thermal resistances may exist at filler-filler and filler-polymer 

interfaces. 
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As a demonstration of the applicability and potential for scale-up of chain-extended 

PAA, we fabricated ~1.5-5.5 μm thick PAA (MW ~450 kDa, atactic) films by blade-

coating,19 which is a method representative of large-scale roll-to-roll processing. The 

average κ measured for chain-extended samples (pH 7-12) was ~0.59 Wm-1K-1, which is 

Figure 3.13 | Comparison of thermal conductivities of chain extended PAA and 
polymer-salt composites. a, Thermal conductivity of thin films of water soluble 
polymers with added inorganic salts. Chain extended PAA refers to PAA films spin-
cast from solutions at different pH. Salts added in PAA/NaCl and PVP/NaOH samples 
do not react with respective polymers and act as high-κ fillers. The inset shows data 
for chain-extended PAA with abscissa on log scale. b, Thermal conductivity of thick 
PAA films blade-coated from solutions at different pH. The color map shows film 
thickness in micrometers. The error in κ was less than 4% for all samples and has not 
been shown. c, Measured thermal conductivities, κblade-coated, for blade-coated films 
greatly exceed the Maxwell-model predicted values, indicating enhancement is not 
primarily due to a high-κ filler effect. 
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nearly 80% enhancement over the average κ (~0.33 Wm-1K-1) measured for the coiled-

chain pH 1 samples (Figure 3.13b). The lower κ in the blade-coated samples likely results 

from the thermodynamic nature of the blade-coating method. While spin-casting freezes 

the polymer chains in a thermodynamically high energy state upon rapid solvent 

evaporation, slow evaporation during blade-coating allows the chains to relax into a more 

thermodynamically favorable coiled-up morphology, which is consistent with the decline 

in κ observed for the spin-cast films subjected to solvent vapor annealing. The highest κ 

(0.62 ± 0.02 Wm-1K-1) measured among the thick films is more than 50% larger than the 

κ (~0.4 Wm-1K-1) achieved in un-stretched ultra-high MW semi-crystalline (crystallinity 

~15%) polyethylene (UHMWPE) films of comparable thickness.52 The maximum value of 

VNaOH in such films was calculated to be only 1.64% (corresponding to pH 12). The 

measured thermal conductivities for these films at high pH (i.e., pH > 7) significantly 

exceed the Maxwell-predicted values (Figure 3.13c) ruling out any contribution to κ from 

NaOH crystals. Although directional shear force during blade-coating can potentially lead 

to some short-range ordering parallel to the substrate within the polymer films as has 

been previously reported for atactic PAA,53,54 any such ordering in the in-plane direction 

would likely cause the in-plane κ (κx) to be even greater than the measured cross-plane 

κ (κz). We also note that no such short-range ordering is deemed possible in the spin-cast 

films due to the kinetic nature of film formation. 

 

3.4 Conclusions 

In summary, we have employed electrostatic repulsive forces to stretch the 

polyelectrolyte backbone at the molecular level, resulting in extended conformations, 



	 116	

better packed chains and enhanced modulus, all of which contribute to significantly 

enhanced thermal conductivities.  For the spin-cast thin films, it is to be noted that 

centrifugal forces during spin-casting may cause polymer chains to be more expanded in 

the in-plane direction, possibly making in-plane thermal conductivity even greater than 

the measured cross-plane κ (ref. 6). This unexplored route for molecular engineering of 

polymer thermal conductivity is also extended to making micron-thick blade-coated films, 

with thermal conductivity reaching over 0.6 Wm-1K-1. 
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Chapter 4 

Tunable Thermal-Sensitive Polymer-Graphene Oxide 

Composite for Efficient Capture and Release of Viable 

Circulating Tumor Cells 

Advanced Materials 28, 4891-4897 (2016); published by John Wiley & Sons, Inc. 

 

 

4.1 Introduction 

With over 1600 people dying of cancer in the United States every day,1 the 

prevention of the second leading cause of death is a clear area of research interest in the 

medical community. The spread of tumor cells to distant locations in the body, or 

metastasis, is the cause of 90% of cancer related deaths,2 presenting an impetus for the 

study of those cells most responsible for cancer mortality. Circulating tumor cells (CTCs) 

are those cells shed from the primary tumor into the blood circulation, potentially en route 

to forming a secondary tumor, and are present at the incredibly low frequency of on the 

order of one in one billion normal blood cells in the peripheral blood of cancer patients.3 

CTCs can not only provide biological insight into primary and metastatic tumors but also 

have the potential to serve as real time biomarkers for making treatment decisions and 
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monitoring drug efficacy.4 Indeed, over 270 clinical trials have now been proposed using 

CTCs as surrogate bio-markers.5 However, to date, CTCs have not been incorporated 

into clinical practice for management of patients with cancer. The main challenges to this 

field include: (i) reaching the sensitivity needed to isolate these extremely rare cells from 

the sur- rounding blood cells (1 in 1 billion), (ii) minimizing processing to preserve the 

viability of cells, and (iii) achieving the specificity necessary to acquire pure population to 

enable meaningful genomic and functional analysis.  

Microfluidic technologies have emerged as a solution to isolate live CTCs from 

small amounts of blood collected from cancer patients. A common separation technique 

involves immunocapture, the tethering of an antibody against a CTC-specific marker to a 

surface or structure to bind CTCs but not the normal blood cells. Functionalized 

microposts have been used in a number of CTC isolation devices.6-10 Antibody- 

functionalized silicon microposts for CTC capture were used in the first microfluidic device 

designed for this purpose, the CTC Chip.6 Subsequent microfluidic CTC capture devices 

also featured micro-features coated with antibodies, such as the geometrically enhanced 

differential immunocapture (GEDI) chip,7 chaotic micromixer HB CTC Chip,11 high 

throughput micro- sampling unit (HTMSU),12 and the HD-CTC module of an integrated 

system.13 These immunocapture devices included features fabricated from polymers 

such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA), and cyclic 

olefin copolymer (COC). In order to push the field to realize the opportunities afforded by 

these cells, which may be captured at early stage as well as mid-metastasis, orthogonal 

techniques and materials would be necessary to enhance the sensitivity. Nanomaterials 

provide one such avenue, with advantageous properties such as a high surface area to 
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volume ratio and a length scale on the order of magnitude of extracellular features. Many 

different classes of nanomaterials have been incorporated into CTC research.8,14 One 

example, graphene oxide (GO) has a number of proven biomedical applications.15-17 A 

recently developed GO based device, the GO Chip, took advantage of the increased 

surface area afforded by graphene oxide for highly sensitive and selective cell capture.18 

CTCs were captured from peripheral blood samples from pancreatic, breast, and early 

stage lung cancer patients with low white blood cell contamination. However, this device 

shares the common draw-back across most immunoaffinity based technologies reliant on 

antibodies attached to a surface: the limitation of post-capture analysis because of the 

difficulty in releasing viable cells from the capture substrate.  

Thermoresponsive polymers, a class of stimuli-responsive polymers that respond 

to temperature changes by undergoing conformational changes, have found wide 

applications in drug delivery,19 tissue engineering,20 controlling cell adhesion21 and 

bacterial growth,22 protein encapsulation,23 and the release of captured CTCs from the 

surface of such capturing devices.24,25 Alternative CTC release techniques take 

advantage of alginate hydrogel26,27 or layer-by-layer assembled28 degradable capture 

substrates. However, these approaches all feature performance limitations in 

throughput,27 purity requiring additional processing,29 ability to process blood collected by 

standard conditions,26 immense fabrication facility requirements,24,29 time-consuming 

chemistry,25 and inconvenient experimental temperature conditions.25 

Graphene- and GO-based polymer composites are a new class of materials which 

combine the excellent properties of graphene, such as high surface-to-volume ratio, high 

Young’s modulus, and high thermal and electrical characteristics,30 with the easy 
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processability of polymers. Such composites have found uses in fields ranging from 

energy storage31 and electronic devices,32,33 to biomedical applications such as drug and 

gene delivery,34,35 cancer therapy,36 cell differentiation,37,38 coating of biomedical 

implants,39,40 and bio-imaging.35  

We hypothesized that the combined advantages of a biocompatible functionalized 

nanomaterial with a thermoresponsive polymer that promotes effective cell release could 

address the challenge of sensitive capture while simultaneously allowing viable cell 

release. This could lead to improvement in downstream analysis such as fluorescence in 

situ hybridization (FISH), molecular analysis, and single cell analysis. We present a new 

tunable thermal-sensitive polymer–GO Chip for highly efficient capture and subsequent 

release of CTCs incorporated into a microfluidic device (Figure 1a).  

In the current work, the microfluidic device bottom substrate was coated with a 

composite film of functionalized GO dispersed in a matrix of thermoresponsive polymer 

with a lower critical solution temperature (LCST) of 13°C. Surface available functionalized 

GO (described below) provided anchors for attaching the CTC capture antibody while the 

polymer matrix provided temperature dependent modulation of capture or release 

functionality. The microfluidic assembly facilitated the processing of patient blood 

samples within a simple planar device (Figure 1b). Drop-casting the polymer–GO blend 

on a patterned and surface modified substrate made such a device cheap and easy to 

fabricate. Moreover, the LCST of around 13°C for the polymer matrix made it possible to 

use the device at room temperature as opposed to higher temperatures,29 such that there 

are no concerns about inadvertently releasing the cells during the capture step. 

Additionally, cell release occurred under gentle conditions, maximizing the viability of 



	 125	

released cells. The consolidation of the advantageous properties of GO-based capture 

with superior release functionality of the chosen polymer yielded a device that enables 

the study of these clinically interesting cells without many of the shortcomings of past 

technologies, while simultaneously presenting an easy, scalable fabrication method.  

 

 

Figure 4.1 | Polymer-GO microfluidic device. a, Schematic concept of a polymer–
GO microfluidic device for the capture/release of CTCs. b, Enclosure within 
polydimethylsiloxane chamber and photograph of patient blood samples being 
processed by the polymer–GO devices.  
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4.2 Experimental Section 

4.2.1 Chemicals and Materials 

Acryloyl chloride was procured from Fluka. Piperidine, triethylamine, and basic 

alumina were purchased from Aldrich used without further purification. 

azobisisobutyronitrile (AIBN) was purchased from Aldrich, and was recrystallized from 

methanol before use. Anisole (Aldrich) used was anhydrous grade (99.7%). N,N-diethyl 

acrylamide was procured from TCI America. Dichloromethane, hexanes, and ethyl 

acetate used were solvent grade and were used without purification.  

Kapton polyimide tape was purchased from Cole Parmer. Ethanol, acetone, 

chloroform, and isopropanol were solvent grade and were used without further 

purification. Surface modifying agents – (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) 

trichlorosilane (HFTCS) and 2-methoxy(polyethyleneoxy) propyltrimethoxysilane (PEG-

silane) – were purchased from Gelest, Inc. Microscope glass slides were purchased from 

Fisher. An amine reactive dye, (5-(and-6)-carboxyfluorescein, succinimidyl ester (FSE, 

C1311) was purchased from Life Technologies. 

Single layer GO powder prepared by modified Hummer’s method was procured 

from Cheap Tubes, Inc. Tetrabutylammonium hydroxide (TBA) was purchased from 

Aldrich. Phospholipid-polyethylene-glyco-amine (PL-PEG-NH2) was obtained from NOF 

Co. Biotin, 5-fluorescein conjugate was procured from Sigma Aldrich. CellTrackerTM 

Green CMFDA Dye was purchased from Life Technologies / Thermo Fisher Scientific. 

Histogel for preparing cell blocks was purchased from Thermo Fisher. N-γ-

maleimidobutyryloxysulfosuccinimide ester (sulfo-GMBS) was procured from Thermo 

Fisher.  
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4.2.2 Polymer Synthesis 

N-acryloyl piperidine (AP) was synthesized via reaction between acryloyl chloride 

and piperidine.41 In short, 0.11 mole of piperidine and 0.12 mole of triethylamine were 

dissolved in 100 mL of dichloromethane maintained at 0-5oC. A solution of acryloyl 

chloride (0.10 mole) in 15 mL of dichloromethane was added drop-wise to the above 

solution over 2 hours under constant stirring. After complete addition, the reaction mixture 

was stirred at room temperature for 24 hours and was extracted with water and purified 

by column chromatography (hexane: ethyl acetate, 1:1) to yield colorless to light yellow 

liquid. N,N-diethyl acrylamide (DEA) was passed through a basic alumina column prior to 

polymerization. AIBN was recrystallized from methanol before use. In a typical 

polymerization reaction, the two monomers, AP and DEA, were dissolved in anisole in 

7:3 molar ratio, and 0.3 mole% (of total monomer content) of AIBN was added to the 

solution. The reaction flask was completely sealed and the solution was purged with 

Argon for 20 minutes. The reaction was carried out at 65°C for 20 hours. After the 

reaction, all the solvent was evaporated at high temperature under vacuum to obtain white 

solid residue. The residue was re-dissolved in chloroform and then twice precipitated in 

ethyl acetate to obtain white solid mass. The precipitate was recovered and dried at 60°C 

under vacuum for 2-3 days (Figure 4.2).  
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4.2.3 Polymer Characterization 

The synthesized polymers were characterized by gel permeation chromatography 

(GPC, Waters Inc., 1515 Isocratic HPLC pump and 2414 RI detector) using 3 Styragel 

columns – HR2, HR3 and HR4 – in series maintained at 35oC with chloroform as eluent 

(flow rate: 1 mLmin-1, total elution time: 40 minutes). The instrument was calibrated with 

polystyrene standards. LCST was ascertained by measuring UV-vis transmittance 

(Varian Cary 50 Bio) of a 0.1 wt.% aqueous solution of polymers as a function of 

temperature. A thermocouple was used for real-time measurement of temperature, with 

the metal junction dipped in the cuvette during the measurement. For effective 

measurement, the polymer solution was cooled down to 2-3°C along with the metal 

cuvette holder to slow down the heating up of sample in ambient condition. CaCl2 was 

placed inside the UV-vis spectrophotometer chamber to ensure humidity-free 

environment. This was necessary to prevent atmospheric water vapor from condensing 

on the cold cuvette walls. UV-vis spectrum was measured from 200-800 nm at every 0.2-

0.5°C step with more frequent measurements near the transition temperature. 

Figure 4.2 | Synthetic scheme for thermo-responsive copolymer, poly(N-acryloyl 
piperidine-co-N,N-diethyl acrylamide). 
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Transmittance at 400 nm was plotted against temperature; and, the temperature for 50% 

transmittance was noted as the LCST.  

 

4.2.4 Polymer-Graphene Oxide Nanocomposite: Fabrication and Characterization 

GO nanosheets were functionalized with PL-PEG-NH2 according to an earlier 

reported method to yield GO nanosheets with amine functional group (GO-PEG) (Figure 

4.3).18 The polymer-GO nanocomposite films were prepared through drop-casting a DMF 

solution of polymer and GO-PEG. The drop-cast films were dried at 60°C in oven for 2-3 

h to yield 3–4 μm thick composite film. 

 

 

To show the surface availability of the amine groups from the GO-PEG in polymer-

GO composite films, the drop-cast films were incubated with 0.25×10−3 M aqueous 

solution of an amine reactive dye, FSE, for 30 minutes at 40°C and then washed with 

copious amount of DI water. The dye treated films were then imaged with a fluorescence 

microscope (Olympus BX51 coupled with Olympus DP71 camera and EXFO X-cite Series 

120 light source). To determine the time dependence of dissolution of polymer-GO 

composite films in cold water, FSE dye-treated films were dipped in cold water for different 

lengths of time and the fluorescence images before and after dipping were compared. 

For 

bio-conjugation

Figure 4.3 | Schematic showing functionalization of graphene oxide (GO) 
nanosheets to yield functionalized GO-PEG with amine groups for subsequent 
bio-conjugation. 
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Films were dipped in cold water (5°C) for 5, 10, 20, and 30 minutes, and in room 

temperature water (20°C) for 30 minutes. The beakers with the dipped films were kept on 

an orbital shaker to weakly simulate conditions in microfluidic devices where the films are 

subjected to shearing by the flowing fluids.  

 

4.2.5 Device Fabrication 

The glass slides were sequentially washed with chloroform, acetone, and 

isopropanol via sonication for 5 minutes each, air dried and treated in a UV-ozone 

generator for 30 minutes to remove any carbon contamination and to obtain a high density 

of surface hydroxyl groups. The cleaned substrates were patterned using Kapton tape by 

masking the active device area. Kapton tape was chosen for its impermeability to silane 

vapors and good stability at high temperatures. The patterned substrates were then 

cleaned with wipes dipped in ethanol to remove any adhesive residue and treated with 

HFTCS via vapor phase surface modification at 100°C for 30 minutes. HFTCS treatment 

results in hydrophobic fluoroalkyl groups on the unmasked peripheral regions of the 

substrates which prevent the use of any physical confining barrier to pattern the device 

with polymer-GO film by drop-casting method. After HFTCS treatment, the Kapton tape 

mask was removed and the glass slides were washed with copious amounts of ethanol 

to remove any physisorbed silane as well as any adhesive residue. The second surface 

modification was done in liquid phase by immersing the glass slides in 3.35 mM of PEG-

silane in ethanol for 12-15 hours. Poly(ethylene glycol) (PEG) is well known to render 

surfaces non-fouling.42 The PEG monolayer was necessitated to avoid recapturing of the 

released CTCs on the glass substrate. Subsequently, the glass slides were again washed 
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with ethanol to remove any physisorbed silane. A polymer-GO blend solution containing 

10 mgmL-1 of polymer in 975 μL DMF and 25 μL of GO-PEG solution was then drop-cast 

in requisite amount on the surface modified glass substrates and allowed to dry at 60°C 

in an oven. The PDMS chamber was assembled on the glass substrate with polymer-GO 

composite film through corona discharge to produce a microfluidic device (Figure 4.4).  

 

 

 

The assembled microfluidic device was functionalized by immobilizing anti-EpCAM 

on the surface available GO through a cross-linker GMBS and avidin–biotin mediated bio-

conjugation, providing cell capture/release functionality (Figure 4.5).  

 

Figure 4.4 | Schematic showing the fabrication steps for the microfluidic device. 
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4.2.6 Cell Capture/Release Experiments 

Cells were stained with CellTrackerTM Green CMFDA dye according to the 

manufacturer’s protocol. The staining process takes approximately two hours and was 

performed in parallel with device preparation. Fluorescence-labeled cells of different cell 

lines were spiked in buffer or blood and flowed through the microfluidic device to establish 

the device performance parameters.  

 

 

4.2.7 Clinical Samples 

Blood samples from cancer patients were collected into EDTA tubes and were 

processed at a flow rate of 1 mL h−1. Following a washing step, cells were released from 

the chip and deposited/spun onto glass slides by a cytospin centrifuge. CTCs in these 

samples were identified by using standard immunostaining protocols. For 

cytopathological studies, CTCs released from the chip were subsequently made into “cell 

Sulfo-GMBS
(cross-linker)

NeutrAvidin

GO-PEG
(on composite film surface)

Antibody-conjugated 
GO-PEG

Biotinylated
anti-EpCAM

SH

Figure 4.5 | Schematic showing the bio-conjugation chemistry for immobilizing 
the antibody, anti-EpCAM, on the polymer-GO composite film surface. 
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blocks” by first fixing them with ethanol and then embedding them in Histogel. Blocks 

were then formalin fixed and stored in 70% ethanol until slide preparation. Blocks were 

paraffin embedded and sectioned at the University of Michigan Histology Core, and used 

for fluorescence in-situ hybridization (FISH) studies. FISH hybridization and image 

capture were performed essentially as previously described.43 

 

4.3 Results and Discussion 

To create a tunable thermal responsive polymer, copolymer poly(N-acryloyl 

piperidine-co-N,N-diethyl acrylamide) was synthesized via free radical polymerization 

using AIBN as an initiator and was 

characterized for its molecular weight 

and LCST (Table 4.1). LCST was 

modulated by employing a 

copolymerization technique using two 

acrylamide monomers with different 

degrees of hydrophobicity: N-acryloyl 

piperidine (AP) and N,N-diethyl 

acrylamide (DEA). The homopolymers 

poly(N-acryloyl piperidine) (PAP) and poly(N,N-diethyl acrylamide) (PDEA) have LCSTs 

of 4oC and 25°C respectively.44   The required capture/release modulation temperature 

for the CTC device can be achieved by changing the ratio of the two monomers in the 

copolymer. For example, a copolymer synthesized with 7:3 molar ratio of AP:DEA showed 

a critical temperature of around 12–13 °C, which was used in this study (Figure 4.6).  

Below LCST

Soluble

Above LCST

Insoluble

Lower Critical Solution Temperature 

(LCST): ~12oC

Figure 4.6 | UV–vis transmittance versus 
temperature plots for the copolymer 
showing LCST of ≈12°C.  
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Table 4.1 Molecular weights (MW), PDI, and LCST of different batches of synthesized 
copolymer used in the study  

 

Figure 4.7a shows the SEM image of polymer-GO composite film prepared by 

drop-casting; graphene flakes can be seen suspended on the surface of the film. The 

polymer-GO composite films should fulfill two conditions for use in the microfluidic device. 

One, it should have high surface density of amine groups for tethering the antibody 

against CTC markers, and two, it should allow time-bound dissolution to assist cell 

release. Surface density of the amine groups was determined by measuring the 

fluorescence of covalently tethered amine-reactive FSE dye molecules. While polymer-

GO composite films showed bright green fluorescence from the surface tethered dye, 

polymer-only films showed very low to no fluorescence. Though the possibility of 

physically adsorbed dye molecules cannot be completely ruled out, it is most likely that 

the dye molecules were primarily tethered to the surface through covalent bonding 

between the amine groups on film surface and succinimidyl ester groups on the dye, as 

suggested by large contrast in fluorescence intensity from polymer-GO and polymer-only 

films (Figure 4.7b). Figure 4.7c shows the fluorescent images of the films before and after 

dipping in water at 5°C for different durations of time. While the film was completely 

dissolved and washed off in 20-30 minutes under cold condition as evident from the 

gradual disappearance of green fluorescence, it remains stable and intact at room 

Polymer MW	(Mn,	kDa) PDI LCST	(oC)

P1 209.246 1.47 13.6

P2 151.332 1.67 12.7

P3 175.085 1.46 12.0

P4 173.019 1.75 11.8
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temperature even after 30 minutes. It is to be noted that in the actual device, the 

dissolution time is much shorter (~10 minutes), most likely due to the shear of the flowing 

buffer.  

 

 

To verify the ability to immobilize biotinylated antibody to the polymer-GO film 

surface, surface coverage by a fluorescently-labeled biotin was assessed (Figure 4.8a). 

Three polymer-GO films underwent the entirety of the conjugation chemistry (i.e. 

Polymer only Polymer-GO

5oC/5mins

5oC/10mins

5oC/20mins

5oC/30mins

20oC/30mins

As coated

As coated

As coated

As	coated

As coated

a

b

c

Figure 4.7 | Characterization of polymer-GO composite film. a, SEM image of 
polymer–GO composite surface. Arrows indicate suspended GO present on the 
surface of the film. b, Fluorescence images of polymer-only and polymer-GO films. 
The films were incubated with an amine-reactive dye (FSE, 0.25 x 10-3 M aq. solution) 
for 30 minutes at 40 °C. Scale bar: 20 μm. c, Fluorescence microscopy images of 
polymer-GO films incubated with FSE dye before and after being dipped in either cold 
(5°C) or room temperature (20°C) water for the specified time durations. Scale bar: 
200 μm.  
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treatment with the GMBS cross-linker and NeutrAvidin; termed “Condition”) with 

fluorescent biotin addition as the terminal step. To account for non-specific binding, three 

polymer-GO films were treated only with the fluorescent biotin to serve as a control in an 

analogous fashion to an isotype control (termed “Control”). ImageJ was used to quantify 

the fluorescence. This technique showed a statistically significant increase in 

fluorescence intensity relative to the control (Figure 4.8b). The results discussed above 

demonstrate that the fabricated polymer-GO composite film serves as an effective 

platform for antibody immobilization as well as provides effective release mechanism 

which can be employed for cell isolation. 

 

 

To further verify the steps of the conjugation chemistry, experiments were 

performed to compare capture by (1) a polymer film lacking GO alone; (2) a polymer film 

lacking GO with the addition of anti-EpCAM; and (3) the polymer–GO film with full 

conjugation chemistry. The two control films showed significantly lower levels of capture 

with the polymer film and the polymer film with antibody capturing at 6.4% and 11.0% the 

level of the full chemistry, respectively (Figure 4.9a). Slightly higher capture in case of the 

Polymer-GO 

composite film

Surface amine groups

Sulfo-GMBS

NeutrAvidin

Fluorescein-biotin

Condition

Physically adsorbed 

fluorescein-biotin

Control

a b

Figure 4.8 | Verification of antibody immobilization on polymer-GO composite 
film surface. a, Schematic represents fluorescent biotin assay and negative control. 
b, The full conjugation chemistry features statistically higher fluorescence than the 
negative control as assessed via optical density (p = 0.019).  
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polymer with antibody condition is likely a result of physically adsorbed anti-EpCAM. This 

also suggests that very little of the capture antibody on the fully functional device is non-

specifically bound.  

To test the performance of the GO-polymer device for CTC capture, fluorescence-

labeled human breast cancer cell lines MCF-7 cells (1000 cells mL−1) were spiked into 

buffer and flowed through the GO-polymer device at different flow rates (1–10 mLh−1). 

The captured cells in the device and the non-captured cells collected in the waste were 

then counted. As expected, the capture efficiency decreased with flow rate. We observed 

that the efficiency rapidly decreased at flow rates ≥ 5 mLh−1. In the 1–3 mLh−1 range, the 

average capture efficiency was over 88.2% (n = 6 at each flow rate) (Figure 4.9b) with 

the highest capture of 95.21% at 1 mLh−1. To further investigate the effect of tumor type 

and EpCAM expression on capture efficiency, three high EpCAM expressing cell lines for 

various cancer types (MCF-7 breast cancer cells, LNCaP prostate cancer cells, and 

H1650 lung cancer cells), one low EpCAM expressing cancer-cell line (Panc-1 pancreatic 

cancer cells), and one EpCAM negative cancer cell lines (Hs578T breast cancer cells) 

were selected for capture experiments at the flow rate of 1 mLh−1. The cells were 

fluorescently labeled and spiked into buffer at a concentration of 1000 cells mL−1. The 

results in Figure 4.9c indicate that the anti-EpCAM-coated GO-polymer device achieved 

high capture efficiency (84.93–95.21%) for EpCAM-positive cancer cells. In contrast, a 

relatively low number of EpCAM-negative cells (Hs578T) were captured. Furthermore, 

the device is comparably effective in capturing different tumor cells, indicating the robust 

sensitivity of the device. After capturing cells on the devices, cell release experiments 

were carried out by flowing 1 mL PBS through the devices in a room maintained at 5°C 
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at 100 μLmin−1 (Figure 4.9e). Quantification of the cells in the devices before and after 

release showed an average cell release of 95.21% and 91.56% in buffer and blood 

experiments, respectively (Figure 4.9d). Furthermore, we tested the viability of the 

released cells by live dead assay. 91.68% of cells remained viable after release.  

 

 

To demonstrate the CTC capture and release in clinical samples using the tunable 

polymer-GO composite film based device, we processed blood samples obtained from 

a b c

d e

Capture Release

inlet inlet

Figure 4.9 | Performance parameters of polymer-GO microfluidic device. a, 
Capture efficiency of microfluidic devices featuring only the thermosensitive polymer, 
the thermo-sensitive polymer and non-specifically bound anti-EpCAM, and the 
polymer-GO film with specific conjugation chemistry as normalized by this last 
condition. b, Cell capture efficiency of the microfluidic polymer-GO device at various 
flow rates evaluated using a breast cancer cell line (MCF-7). Error bars show standard 
deviations (n = 6). c, Capture efficiency of cell lines of varying origin and EpCAM 
expression levels. MCF-7 (n = 8), PANC1, H1650, LNCaP, Hs578T (n = 6). d, Release 
efficiency of the microfluidic polymer–GO device (MCF-7 cells were spiked into 1 mL 
of buffer or blood). e, Fluorescence microscope images of devices after capture and 
release of fluorescently labeled MCF-7 cells. Scale bar: 1000 μm. 
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10 metastatic breast cancer patients and 3 pancreatic cancer patients. Post-release, 

CTCs in these samples were identified as DAPI-positive (shown in blue) nucleated cells 

staining positive for tumor markers (cytokeratin 7/8, visualized with a secondary antibody 

tagged with Alexa Fluor 546, shown in red) and negative for leukocyte markers (CD45, 

visualized with a secondary antibody tagged with Alexa Fluor 488, shown in green) 

(Figure 4.10a). CTCs were successfully recovered from 8 breast cancer patient samples 

and 2 pancreatic cancer patients (ranging from 2 to 20 CTCs mL−1) (Figure 4.10b). The 

average number of CTCs recovered from breast samples was 5.6 CTCs mL−1 and from 

pancreatic samples was 8.3 CTCs mL−1.  

  

 

Released CTCs were viable and structurally intact, and hence could be readily 

investigated via standard clinical cytopathological and genetic testing. Here we examined 

the feasibility of detecting HER2 amplification by FISH. FISH was conducted using probes 

a b c

Figure 4.10 | Clinical samples: enumeration and cytopathological study. a, 
Fluorescence images of CTCs from breast cancer patient sample. Nucleated cells (blue) 
staining positive for cytokeratin 7/8 (CK, red) and negative for the white blood cell marker 
CD45 (green) were enumerated as CTCs. Scale bar = 10 μm. b, CTC enumeration 
results from 10 breast cancer patients and 3 pancreatic cancer patients. c, FISH image 
of CTCs of breast cancer patient sample Br10. HER2(green)/centromere 17 probe(red).  
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for HER2 (BAC clone RP11-94L15) and chromosome 17 control probe (BAC clone RP11-

100E5), revealing HER2 amplification in one breast cancer patient (Figure 4.10c). One 

green signal indicates the presence of one copy of HER2, while one red signal indicates 

one copy of centromere 17 probe; the multiple green signals in the figure imply HER2 

amplification.  

 

4.4 Conclusions 

To summarize, a microfluidic device with planar architecture was successfully 

fabricated. Through the incorporation of a composite that combines the advantages of a 

temperature-sensitive modality and sensitive nanomaterial-enabled capture, the polymer-

GO film that serves as the basis of this technology overcomes some of the key 

shortcomings of previous CTC capture technologies. As evidenced by data obtained from 

physiologic solutions containing spiked labelled cancer cells from multiple cancers and 

the processing of primary breast and pancreatic cancer patient blood samples, isolation 

of these rare cells with this device is highly feasible, completing the first step to unlocking 

the research opportunities presented by CTCs. The downstream analysis facilitated by 

the efficient release of captured cells highlights the potential for this device’s use in basic 

and clinical cancer investigation. 
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Chapter 5 

Conclusions and Future Outlook 

 
 

5.1 Research Summary 

Rational molecular designing is a powerful tool for development of polymeric 

materials which enables precise control of their intrinsic properties as well as their 

interaction with and response to the environment. This dissertation presents molecular 

design strategies to design and develop polymeric materials for two distinct applications. 

In Chapters 2 and 3, strategies to modulate polymer chain morphology, inter-chain 

interactions, and chain packing have been explored to realize enhanced thermal transport 

properties in amorphous polymers. Chapter 4 presents the application of a unique 

polymer composite system with tailored response to temperature towards isolation of rare 

cells from biological fluids.  

Contrary to the mechanical, optical and electronic or charge transport properties 

of polymers, thermal transport properties remain mostly unexplored in terms of chemical 

structure-property relationship. The most common methods, viz., blending with high-κ 

fillers1 and chain orientation,2,3 to enhance thermal conductivity of polymers usually 
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involve difficult manufacturing processes, high cost and loss of the advantageous 

attributes of polymers. Despite their low thermal conductivities, low cost and easy 

machinability of polymers make them the material of choice even for applications that 

require rather good heat dissipation. Realizing high thermal conductivities in amorphous 

polymers is crucially important for many existing applications like LED housings and 

thermal interface materials in electronic chips as well as for the upcoming field of flexible 

electronics. Chapter 2 details the design strategies for polymer blends to realize high 

thermal conductivity in an amorphous system. Through a rationally designed pair of H-

bonding polymers, which included one polymer with long flexible chains mixed with 

another polymer with short and rigid chains, a high concentration of strong and 

homogeneously distributed H-bonds was achieved. Such a system of H-bonded polymers 

with closely connected chains created an efficient percolating network of thermal 

connections resulting in thermal conductivities reaching up to 1.72 Wm-1K-1 which is 

nearly an order of magnitude higher than that of typical amorphous polymers. On the 

other hand, H-bonded polymer systems with either weak H-bonds or moderately strong 

H-bonds formed through large linker moieties didn’t show any appreciable enhancement 

in thermal conductivity. We further explored the thermal transport properties of a weak 

polyelectrolyte in Chapter 3. For a weak polyelectrolyte, controlled ionization was found 

to engender positive attributes in polymer chains vis-à-vis thermal transport. When 

ionized, polyelectrolyte chains attained extended morphology due to coulombic repulsion 

between adjacent like charges making intra-chain heat transfer more feasible. This is 

similar to high thermal conductivities measured along the direction of chain orientation in 

mechanically stretched fibers.2 Better chain packing afforded by the extended chains as 
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well as stiffening of ionized chains due to the presence of counter-ions further promoted 

enhanced thermal transport. In a system with predominantly ionized (~90%) chains, 

thermal conductivity up to 1.17 Wm-1K-1 was achieved, which is nearly 3.5 times higher 

than that of completely unionized polymer. The polyelectrolyte system was found 

amenable for fabricating micrometer thick amorphous films. Thermal conductivity up to 

0.6 Wm-1K-1 achieved in such films was 1.5 times higher than that of unstretched semi-

crystalline PE films of comparable thickness.4 Overall, the two strategies presented in this 

dissertation present a significant breakthrough in molecular engineering of polymers to 

realize high thermal conductivities in amorphous systems. 

The concept of molecular engineering was also extended to designing polymer 

composites with tailored stimulus-responsive behavior and applied for isolation of 

circulating tumor cells from blood. In chapter 4, we describe the fabrication of a 

microfluidic device with a thermo-responsive polymer-graphene oxide (GO) 

nanocomposite film platform. The consolidation of the advantageous properties of a 

biocompatible functionalized nanomaterial (GO) with the superior release functionality of 

the designed thermo-responsive polymer yielded a device that enabled the study of CTCs 

without many of the shortcomings such as performance limitations in throughput,5 purity 

requiring additional processing,6 ability to process blood collected by standard 

conditions,7 immense fabrication facility requirements,8 time-consuming chemistry,9 and 

inconvenient experimental temperature conditions9 associated with some of the past 

technologies, while simultaneously presenting an easy, scalable fabrication method. The 

designed bifunctional polymer-GO film acted as a substrate for tethering antibodies 

against the cell marker and also provided the release mechanism for flushing out the 



	 149	

captured CTCs from the microfluidic device. At temperatures higher than the lower critical 

solution temperature (LCST) of the polymer, the polymer-GO nanocomposite film 

remained intact resulting in capture of CTCs from blood flowing through the device. Post-

capture, lowering the temperature below the LCST resulted in deconstruction of the 

composite film thereby releasing the captured cells. The devices were successfully 

employed to isolate viable and structurally intact CTCs from clinical samples, thereby 

underlining their utility in research and clinical settings. 

 

5.2 Future Outlook 

The two amorphous polymeric systems with high thermal conductivities presented 

in this dissertation demonstrate the feasibility of modulating their thermal transport 

properties through molecular engineering strategies. To aid the development of thermally 

conductive, a complete understanding of the chemical structure-property relationship will 

be indispensable. As shown in chapters 2 and 3, thermal transport in polymers is 

predominantly affected by the chain morphology, which is consistent with the observed 

extraordinarily high κ in mechanically stretched2 and aligned polymer nanofibers3. While 

both H-bonding and electrostatically induced chain extension result in enhanced κ, the 

latter provides a more straightforward mechanism to systematically vary the degree of 

chain extension and investigate its effects on thermal conductivity. Assisted with a new 

thermoreflectance-based measurement technique,10 the effect of three important design 

parameters that together determine the polymer architecture, viz., tacticity, density of 

ionizable groups, and connectivity of these groups to the polymer backbone, on thermal 

conduction can be investigated. Explicitly controlling the ionization of polyelectrolytes can 
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provide better resolution of the minute differences in measured thermal conductivity. 

Similarly, developing a comprehensive understanding of thermal transport in cross-linked 

systems is critically important as these materials find widespread applications. Cross-

linking polymer chains using covalent bonds is a compelling strategy to accomplish this 

coupling as it is widely used in polymer product manufacturing. Therefore, another critical 

goal of a future study will be to fill the gap in understanding of the effects of bonding 

nature on thermal transport properties in such cross-linked or H-bonded systems. 

The microfluidic device presented in chapter 4 overcame many of the 

shortcomings of previous technologies. Efficient isolation of viable and structurally intact 

CTCs afforded by the polymer-GO device allows for the advanced downstream analysis 

of CTCs which could become a “real-time” indicator for monitoring tumor progression or 

efficacy of drugs leading to development of personalized therapy. Low cost and ease of 

fabrication makes it scalable for commercialization. Future study will need to optimize it 

for large-scale clinical study and investigate its clinical utility for therapeutic marker 

discovery, treatment selection, and management. 
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