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ABSTRACT

To mitigate infectious diseases via vaccination, quarantine, or sanitation, it is necessary

to understand the mechanisms by which pathogens are spread from the environment or

person to person. This work provides a spatiotemporal characterization of human birth

seasonality across the northern hemisphere, in which births replenish the pool of individuals

susceptible to disease. Additionally I investigated the role of digital epidemiology when

no clinical case data were available, and scrutinized the hypothesized mechanisms behind

herpesvirus transmission and reactivation. While birth rates have previously been shown to

impact infectious disease dynamics, birth timing and birth amplitude had not been previously

explored in this context. By digitizing 78 years of monthly birth data for every continental

US state, I revealed rich intra-annual patterns in birth seasonality in the United States,

which I then incorporated into theoretical disease transmission models to demonstrate that

birth timing can either increase or decrease the magnitude of an outbreak. Secondly, I

established that birth amplitude could alter the timing and magnitude of disease outbreaks.

My second research chapter tested whether Google trends could be used to predict chickenpox

outbreaks. This work determined chickenpox searches were seasonal around the world, and

correlated well to clinical case reports of chickenpox, especially in countries that did not

immunize. I built a forecasting model, which was able to accurately predict the timing

and magnitude of chickenpox outbreaks, and further demonstrated that in countries that

xix



immunize, chickenpox search seasonality had all but disappeared, validating the effectiveness

of chickenpox immunization. My third research chapter explored herpesviruses transmission

and reactivation dynamics using varicella zoster virus (chickenpox and shingles) as a study

system. This work revealed seasonal patterns in shingles reactivation, which was previously

unknown, and the strong association between shingles and it’s likely driver of reactivation

- ultraviolet irradiation. I then fit both the transmission and reactivation dynamics using

a model, and examined what effect immunization might have had on disease dynamics if

it had been implemented when licensed. I revealed that more than a half-million cases of

chickenpox could have been prevented during our 9-year study period. The results suggest

this could be accomplished with little impact on shingles dynamics, however this is difficult

to determine without further study. This work has the potential to drastically reduce global

disease burden by informing policy makers with: (1) an understanding of the global variation

in birth seasonality which allows for locally tailored immunization campaigns, (2) model-

based outbreak predictions and counterfactuals when data are lacking, providing opportunity

for prevention, and (3) insights into the mechanisms driving herpesvirus transmission and

reactivation.
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CHAPTER I

Introduction

Seasonality exists in almost all ecological systems. The earth’s tilt and rotation around the

sun drives seasonal changes in temperature, day length, rainfall, and other abiotic factors.

These abiotic components in turn drive the seasonality of biotic factors such as phytoplank-

ton blooms, migration, and breeding cycles. Biotic factors such as breeding have previously

been shown to be strongly tied to season [28], and many infectious diseases have been shown

to be driven by seasonal mechanisms [2,149]. However, because seasonality is so widespread,

it is difficult to discern correlation from causation without a dedicated effort involving in-

formation from multiple locations over many years. By examining inter-annual deviations

which occur from year-to-year, we can inform models and inferences about these processes.

However, even then, it remains difficult to understand, as relationships between mechanism

and seasonality may vary across a spatial landscape. Thus, one must combine seasonality

in a spatial context with these inter-annual deviations to understand the processes regulat-

ing seasonality. This research; (1) characterizes human birth seasonality on a global scale,

examining the intra- and inter-annual heterogeneity, verifying its potential to alter the mag-

nitude and timing of childhood infectious disease outbreaks, (2) utilizes alternative data and

methodologies to identify previously unknown spatial complexities of childhood infectious

disease dynamics using digital epidemiology, and (3) reveals previously unknown herpesvirus

reactivation dynamics, and diligently links it to seasonal environmental variables.
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In disease ecology one can use long time series with high spatial resolution to understand

the mechanisms driving disease persistence and transmission. For example, the spatial vari-

ation in the timing of pertussis outbreaks in the US during the 1950s led Choisy and Rohani

to discover that nearby cities had synchronized outbreaks that catalyzed outbreaks in local

regions that then moved inward towards the interior of the country from both coasts [47].

Similarly, Grenfell et al. [89] demonstrated that the historical persistence of measles in Eng-

land and Wales was driven by seasonal outbreaks in larger cities which re-seeded smaller

populations where the virus had previously gone extinct. These source-sink dynamics have

also been identified in historical US polio epidemics [133] Finally, human demographics have

been shown to play an important role in early childhood infections, where regions with

higher birth rates had their peak rotavirus season months prior to regions with lower birth

rates [151]. These studies combined long-term, spatially replicated data with disease-specific

transmission models to discern what drove the seasonality and persistence of disease trans-

mission. Spatiotemporal studies such as those mentioned are invaluable to discern the mech-

anisms which drive disease transmission; however high resolution data across a long time

series are rare, which has limited our ability to perform thorough and extensive research on

the mechanisms driving disease dynamics.

Many studies have been performed attempting to link causative mechanisms to the out-

break dynamics of childhood pathogens. The population dynamics of infectious diseases in a

variety of organisms show seasonality in their incidence [2,88]. Childhood infectious diseases

such as measles, mumps, rubella, diphtheria, and chickenpox have been previously identified

to occur seasonally [9,88,136]. It is understood that seasonal changes in behavior, such as a

change in contact rates [127] can drive the magnitude and frequency of epidemics in directly

transmitted diseases such as measles, mumps, and rubella [20, 76, 77, 180]. While pre-20th

century epidemics of typhoid fever and polio may be attributed to poor water treatment,

by the early 1920’s all major cities had proper water treatment facilities, indicating that

contaminated water reservoirs were unlikely the major mechanism of transmission in these
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two pathogens [183]. A strong correlation between clinical cases of typhoid fever and temper-

ature has been identified and proposed as a mechanism, but not yet rigorously tested using

models [183, 195]. Similarly there is evidence of increased polio transmission at higher tem-

peratures [193,232] and higher humidity [94]. Meanwhile, in directly transmitted respiratory

infections such as influenza, the seasonal mechanism has been shown to include humid-

ity [128, 190] and dynamic changes social contacts [68]. Other winter respiratory infections

such as scarlet fever and diphtheria, have been shown to be affected by temperature [115],

dry summers [142], and humidity [206], but not social contacts [142]. Despite the evidence

demonstrating that seasonal forcings, such as environmental and behavioral variables, have

been shown to shape disease dynamics in measles, mumps, and rubella [69], mechanisms

driving seasonal patterns of incidence remain poorly understood, and untested, for many

notifiable childhood diseases, including typhoid fever, polio, scarlet fever, and diphtheria.

To better understand childhood infectious disease dynamics, one must first understand

the role demographics play in these outbreaks. Demographics consist of many aspects, but

here I will focus on birth dynamics, concentrating on birth seasonality. Birth seasonality

consists of three components, the birth rate, the strength of the birth pulse, and the timing

of when that birth pulse occurs. Reproduction is seasonal across all living organisms, from

plants [27], and insects [201,236], to reptiles [105,125], birds [56,231], and mammals [6, 30],

including humans [132]. The first documentation of seasonality in human births goes back

to European studies in the early 19th century [154, 220]. In developed countries located in

the northern hemisphere, modern humans exhibit a strong annual rhythm in reproduction

tied to latitude [132]. However, this pattern weakens as you move closer to the equator, and

there remains a lack of research focused on birth seasonality in developing countries. There

have been many proposed mechanisms of human birth seasonality including environmental,

biological, and socioeconomic variables.

Environmental mechanisms related to latitude, such as temperature and photoperiod, are
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the most extensively studied mechanisms driving birth seasonality. Temperature has a strong

negative correlation with conceptions in many countries [13, 14, 45, 160, 169, 198]; however,

since 1950 conception timing has become independent of ambient temperatures [163, 164],

potentially due to industrialization [137, 184]. Additionally, in many countries tempera-

ture alone cannot fully explain birth seasonality, and humidity in regions where tempera-

tures exceed 25 degrees C has been linked to reduced conceptions [130]. Roenneberg and

Aschoff proposed that the seasonality of births seemed to be a function either tempera-

ture or photoperiod, where regions with extreme temperatures typically had biannual birth

peaks [163, 164]. Others found that intercourse increased in cooler temperatures and that

both nutrition and temperature drove ovulation cycles [14]. Meanwhile, it has been argued

that in eskimos, photoperiod explains the variation of births [71]. Others have discovered

that the seasonality of conception is more likely driven by socioeconomic behaviors combined

with temperature rather than just photoperiod itself [130]. In a long-term study of births

in 20th century Scotland, mechanisms varied depending on social status, with temperature

being the main driver pre-industrialization, but declining sharply as the standard of living

increased [171]. The majority of studies on birth rhythms have been based on long time

series within a specific geographical region [52] or on a few short time series from selected

regions across the globe [10]. Thus, while photoperiod, temperature, and latitude have all

been shown to have an effect on the seasonality of births, no single environmentally related

mechanism can fully explain global birth seasonality, specifically in developing countries

where social factors seem to play a larger role.

Social and cultural mechanisms have also been examined for their potential role in driving

the seasonality of birth. In historically Catholic countries, the spring peak in births has

been linked to the traditional July/August wedding season [163]. But elsewhere, the annual

distribution of marriages correlates only weakly to births occurring 9 to 15 months later [179].

Social status has been mentioned as a potential mechanism of birth seasonality, with high-

income groups having more seasonality than low-income groups [22]. However, historical
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comparisons within country of urban and rural populations [163], as well as differences

in occupation (which included seasonal laborers, farmers, and office jobs) revealed little

difference in the timing of the birth peak [198] yet large differences in the amplitude of

birth seasonality, with rural regions having larger amplitudes than those in urban cores [14].

Recently, a study proposed that global populations are a mixture of photoperiodic responders

and non-responders, thus providing an explanation as to why specific mechanisms seem to

explain the seasonality in certain locations, but not others [31]. While the mechanisms

driving birth seasonality continue to be debated, the one clear result is that industrialization,

and thus the increased use of air conditioning, indoor work, and fewer seasonal jobs, has

diminished the amplitude of birth seasonality [137,162–164,184]

Jürgen Aschoff remarked that the lack of experimental possibilities to investigate birth

seasonality must be compensated by a comparative analysis of data that are widely dis-

tributed in time and area [7]. Unlike the annual rhythmicity of animal reproduction, the

rhythm of human reproduction only becomes evident in large population studies [163]. To

date there has been a scarcity of globally distributed, long-term, peer-reviewed studies of

birth seasonality due to the lack of available data.

Due to this dearth of data, for chapter 2 I digitized 78 years of monthly birth data

for each state in the continental U.S. and more than 100 other countries located in the

northern hemisphere in order to examine the role of birth seasonality on childhood infectious

disease dynamics. As mentioned earlier, birth rates have been shown to play a role in

childhood infectious disease dynamics by altering the supply of susceptible individuals for

infection. A higher birth rate allows for larger, or annual, outbreaks, while lower birth rates

produces weaker, or multi-enniel outbreaks. By examining intra-annual heterogeneity in

births, I will be able to reveal both the inter- and intra-annual variability of birth seasonality

across a spatiotemporal landscape. Then, I will build a theoretical model to test what role

birth seasonality, in terms of peak birth timing and birth amplitude, plays in childhood

infectious disease dynamics This work examines birth seasonality across a spatiotemporal
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scale, providing accurate demographic data, which is critical for understanding the potential

mechanisms governing childhood infectious disease dynamics.

Because high resolution, long-term time series data aren’t always available, and in some

cases real-time data are required, other methods need to be implemented. Digital epidemi-

ology – the application of real-time mobile or social digital data– is one such method. The

increase in big data, which includes digital epidemiology, has created an enormous database

of mineable data. This data can be harnessed to assist in understanding disease dynamics,

when local clinical case data are unavailable. Digital epidemiology is perhaps best known

for its ability to forecast influenza outbreaks [84], an ability that was quickly destroyed due

to its inability to predict outbreaks once the research made national news, because of the

overwhelming amount of ‘influenza’ searches [122]. However it has since been successfully

implemented in observing the movement of individuals during an outbreak [17], indicating

its potential.

Chapter 3 focuses on utilizing digital epidemiology to identify patterns of an extremely

common, easily identifiable disease - chickenpox. As with many other diseases, there remains

a lack of spatiotemporal data chickenpox due to its non-notifiable status. Disease surveillance

systems largely focus on infectious diseases with high mortality, while benign diseases often

go unreported. Using chickenpox as an example, I demonstrated that internet queries can be

used as a proxy for disease incidence when reporting is lacking. This work demonstrates that

alternative data can be used to understand childhood infectious disease dynamics across a

broad geographic and temporal landscape when clinical case data are lacking.

Herpesviruses are defined by their latent, recurring infections. All human herpesviruses are

transmitted, typically in childhood, and many will reactivate later in life, sometimes multiple

times. This is the only known family of pathogens where one is symptomatic from an initial

transmission and, potentially, multiple reactivations. Unfortunately, our understanding of

herpesvirus dynamics is limited because chickenpox is the only notifiable disease, and those
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data are also rare. Chickenpox is the symptomatic manifestation of disease caused by the

varicella zoster virus (VZV), which retreats to the nervous ganglia once immune antibodies

are produced, and the infection is fought off. However, as with all herpesviruses, the virus

is not cleared. In approximately 20-30% of individuals, reactivation will occur, causing

shingles. Due to shingles and other herpesviruses being non-notifiable, there have been no

population-level studies examining the mechanisms by which they are reactivated.

Furthermore, a highly effective and safe chickenpox vaccine was licensed in 1995, however

it remains contentious and most countries have not yet implemented it. It is controversial

because of the potential interaction between chickenpox and shingles. It has been shown in

most childhood diseases, that exposure to a pathogen after one has been previously infected

will ‘boost’ their immunity by stimulating an antibody response. Antibody boosting, in the

context of VZV, is thought to increase VZV antibodies in adults when exposed to children

recently infected with chickenpox, thus providing a ‘boost’ to their immunity. By vaccinating

children against VZV, this boosting would not occur, as fewer natural chickenpox infections

would limit the boosting, thus increasing the rate at which antibodies wane. This waning,

in turn, would theoretically increase shingles incidence. Thus, to introduce VZV immuniza-

tion (a booster dose is also available for adults), one must carefully consider all potential

dynamical impacts for both chickenpox and shingles.

In chapter 4, I examined herpesvirus dynamics with the goal of uncovering the mech-

anisms driving transmission and reactivation. While not spatiotemporal, it is the first

work to examine potential mechanistic drivers of herpesvirus reactivation dynamics at the

population-level. By understanding these mechanisms, this work will provide policy makers

on the impacts of various immunization strategies.

This research investigates potential processes that drive infectious disease seasonality

across space and time. First, by examining the intra- and inter-annual variation in birth

seasonality, which seasonally contribute to the susceptible pool for all childhood infectious
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diseases, I will expose one of the complexities driving variation of disease dynamics across

geographic regions. Second, by utilizing alternative data and methods to identify the under-

lying seasonality of childhood infectious disease, I will demonstrate the usefulness of surrogate

data when clinical case reports are lacking. Third, by analyzing an obscure dataset I will

unveil the undiscovered mechanisms driving the seasonality of herpesvirus transmission and

reactivation. Finally, I will assemble appropriate biologically based models to examine; (1)

the effects birth seasonality has on the seasonal outbreaks of childhood infectious diseases,

(2) whether alternative data can be used to forecast childhood infectious disease outbreak

seasonality, and (3) what underlying mechanisms drive the seasonality of herpesvirus trans-

mission and seasonality.
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CHAPTER II

Human Birth Seasonality: Latitudinal Gradient and

Interplay with Childhood Disease Dynamics

2.1 Preface

This chapter of my dissertation was published in the Proceedings of the Royal Society:

Biological Sciences in 2014 (DOI: 10.1098/rspb.2013.2438). Authors include M. Martinez-

Bakker, A. King, P. Rohani, and myself. I was responsible for the collection and analyses

of the human birth data, which identified birth seasonality in the United States and other

developed countries in the Northern Hemisphere. Together with my co-first author, M.

Martinez-Bakker, we developed a theoretical model to explore the range of outbreak possi-

bilities under various birth seasonality conditions. It was during this work when I received

my first hands-on training with pomp [112], which is an R package for fitting process-based

models to time series. Pomp is computational in nature, and can be utilized to efficiently

explore parameter space. I utilized this model-fitting software in each of my additional chap-

ters. M. Martinez and I wrote the manuscript together under the guidance of P. Rohani and

A. King; additional analyses and additional modeling and analyses are included in Appendix

A. Pomp code for this chapter, as well as Chapters 3 & 4 are included in Appendix D.
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2.2 Abstract

More than a century of ecological studies have demonstrated the importance of demog-

raphy in shaping spatial and temporal variation in population dynamics. Surprisingly, the

impact of seasonal recruitment on infectious disease systems has received much less atten-

tion. Here, we present data encompassing 78 years of monthly natality in the United States,

and reveal pronounced seasonality in birth rates, with geographic and temporal variation in

both the peak birth timing and amplitude. The timing of annual birth pulses followed a lat-

itudinal gradient, with northern states exhibiting spring/summer peaks and southern states

exhibiting fall peaks, a pattern we also observed throughout the northern hemisphere. Ad-

ditionally, the amplitude of US birth seasonality was more than two-fold greater in southern

states versus those in the north. Next, we examined the dynamical impact of birth season-

ality on childhood disease incidence using a mechanistic model of measles. Birth seasonality

was found to have the potential to alter the magnitude and periodicity of epidemics, with

the effect dependent on both birth peak timing and amplitude. In a simulation study, we

fitted an SEIR model to simulated data, and demonstrated that ignoring birth seasonality

can bias the estimation of critical epidemiological parameters. Finally, we carried out sta-

tistical inference using historical measles incidence data from New York City. Our analyses

did not identify the predicted systematic biases in parameter estimates. This may be due

to the well-known frequency-locking between measles epidemics and seasonal transmission

rates or may arise from substantial uncertainty in multiple model parameters and estimation

stochasticity.

2.3 Introduction

The ubiquity of seasonal variation in the incidence of infectious diseases has driven much

epidemiological research focused on understanding the responsible undelrying mechanisms

[77, 127, 136, 166, 192]. Surprisingly, there remains much uncertainty regarding the drivers
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of seasonal incidence for numerous infections including polio, pertussis, scarlet fever, diph-

theria, rotavirus, among others [83, 136, 165, 209]. Early work on diphtheria and measles

implicated elevated contact rates among children in school as the driver of pulsed transmis-

sion [192, 203–205], leading to much emphasis on school-term forcing [68, 77, 108, 127, 136].

More recently, additional mechanisms of seasonal transmission have been identified, includ-

ing climatic drivers of pathogen survival [94], transmission [128, 190], and vector activ-

ity [126,129], seasonal host migration [19], and seasonal fluctuations in host immunity [36,65].

Here, we propose that seasonality in host recruitment rates may also shape epidemiology.

This is a possiblity that has been appreciated in studies of wildelife diseases [3,23,67,100,108].

For instance, studying cowpox virus in voles, Begon et al. found that susceptible recruit-

ment is seasonal, and higher breeding-season birth rates delayed epidemic peaks [16]. How-

ever, despite evidence demonstrating the importance of host demography in recurrent epi-

demics [32,69,151,199], and the ubiquitous appreciation of seasonal reproduction in broader

ecology and evolution [80], we submit that a deep understanding of the dynamical impact

of birth seasonality on infectious diseases of humans is currently lacking.

To explore this phenomenon, we first characterize the landscape of birth seasonality in

modern human populations, and second determine if/how it can impact epidemic dynamics,

particularly for immunizing childhood infections. Some precedent has been set in the field

of demography, with seasonal variation in human births first documented in the early 1800s

[154, 220] and currently recognized as a global characteristic of humans [15, 50, 52, 117].

Early studies of vital statistics in various US regions established a national-level seasonal

pattern of births with troughs in the spring and peaks in autumn [52, 169]. Subsequent

research has focused on either a few locations over long time periods, or many locations over

short time periods. Collectively, these studies showed that northern and southern states

have differences in their seasonal birth amplitude [29, 50, 52, 117, 169] and birth/conception

minima [29, 138, 184]. Studies of births in Africa and Asia have been sparse, but seasonal
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peak-trough differences in conception ranging from 11–64% have been documented in Africa

and 8–58% in Asia [15]. To date there has been no long term, large scale, spatiotemporal

analysis of births in either the US or worldwide.

We have compiled the most extensive spatiotemporal data set on human births to date, and

explored the effect of birth seasonality on childhood disease incidence using simulated and

empirical data. Measles was chosen because it is the paradigmatic example of a childhood

disease, with two key features: (i) a low mean age of infection during the pre-vaccine era,

with infections occurring in the youngest age group, the size of which is tightly linked to the

birth rate, and (ii) seasonal transmission, which is a feature of many childhood diseases. We

focus on birth seasonality in the presence of seasonal transmission to explore the interplay

between these two forces. Our novel demographic data set is comprised of birth records

across the globe, consisting of 7.3 × 108 births. Specifically, these data consist of monthly

births spanning a 78-year period (1931–2008) for each state in the continental US along with

over 200 additional time series from countries spanning the Northern Hemisphere. We have

analyzed these data in combination with a transmission model and statistical inference tools

to examine the dynamic implications of birth seasonality on childhood infection.

2.4 Data

Monthly state-level time series of live births from 1931–2008 were downloaded from US

Vital Statistics [216] and digitized. Annual state-level population size data were collected

from the US Census Bureau [215] and used to construct monthly time series of birth rates

per 1000 individuals per month. Worldwide monthly births were retrieved from the United

Nations database [214] and filtered for countries containing at least 5 years of consecutive

data.
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Figure 2.1: Temporal patterns of birth rates (per 1000 individuals per month) in the US organized
by geographic region, separated into three eras: Pre-Baby Boom (1931–1945), Baby Boom (1946–
1965), and Modern Era (1965–2008). The time series for Louisiana is plotted at the top as an
example.

The US data were split into three eras, to account for the baby boom: (i) Jan 1931–Dec

1945, which we term the Pre-Baby Boom Era, (ii) Jan 1946–Dec 1964, the Baby Boom Era,

and (iii) Jan 1965–Dec 2008, the Modern Era. To test for periodicity, a wavelet spectral

analysis [210] was performed independently for each US state in each era and for each coun-

try in the global data set. The significance of each period was tested by comparing the power

of each period against a noise background, using a lag–1 autocorrelation test. For each data

series significant at a 1 year period, phase angle time series were constructed to determine

the timing of birth peaks occurring at 11–13 month intervals. Independently, seasonal de-

composition was run on all data series to filter out noise, and the seasonal amplitude was

calculated by taking one-half the difference between the maxima and minima, measured as a

percent of the annual mean (Eq A.1–A.5). Inter-annual variation was examined by analyzing
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the percent change in mean birth rates from one year to the next.

2.5 Measles Models

We used a discrete-time SEIR model of measles adapted from Earn et al. [69], with school-

term forcing based on the England & Wales school year (Table A.1; [108]). We incorporated

seasonality in births using a sine function with varying amplitude and phase. The equations

describing the model (Eq A.6–A.13) and parameter values (Table A.2) are provided in the

Supporting Information.

We conducted statistical inference on both simulated and empirical measles incidence data

to test for the effect of birth seasonality on epidemic dynamics and parameter estimation.

This work aimed to answer the question: how does the omission of birth seasonality affect the

precision and bias of estimated parameters? Using a Markovian analogue of our SEIR model

(Eq A.6–A.14), three time series were generated assuming the following parameterizations:

a birth peak day of either 162, 295, or 351 and a 28% birth amplitude (see Table A.3

for parameter values). For each simulated time series, our stochastic SEIR model was fit

assuming constant births (birth amplitude set to 0%) and an unknown mean transmission

rate. All other parameters were assumed known. Thus, the only free parameter was the

mean transmission rate, which is directly proportional to R0. The transmission rate was

profiled and the likelihood was calculated using a particle filter (Appendix A: Materials &

Methods) [112].

In order to test for bias in parameter estimation using real world data, we utilized historical

measles case reports from New York City. These data are from the Baby Boom Era, when

the birth amplitude was low, approximately 7% for the state of New York. To account for

maternal antibodies, we fit models which lagged births 3, 6, or 9 months (see Appendix A

for methods). We used both maximum likelihood via iterated filtering [112] and the TSIR
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methodology of Finkenstadt & Grenfell [20,78] to quantify the impact of seasonal births on

parameter estimates (Fig 2.5).

2.6 The Seasonal Timing of Births

Figs 2.1 and A.3 provide an overview of birth rates in the US. Most states had significant

seasonal (1 year) birth pulses in the Pre-Baby Boom Era, while all states showed significant

birth seasonality in the Baby Boom and Modern Eras. Of the 210 time series analyzed

outside the US, 132 (63%) had significant birth seasonality. Most of the locations for which

seasonality was not significant were short time series (5–7 years) or countries with less than

100 births per month.

We observed a latitudinal gradient in the timing of the birth peak across the US; this same

gradient was observed throughout the Northern Hemisphere (Figs 2.2 & 2.3). In general, the

birth peak occurs earlier in the year in locations further from the equator. For example, in

the Pre-Baby Boom Era the birth peak occurred as early as June in the northern states of

Oregon and Maine, whereas the peak occurred as late as November in Florida. The variation

in birth peak timing was largest during the Pre-Baby Boom Era, when the most out-of-phase

states differed by more than 5 months.

During the Baby Boom Era, most states had birth peaks that occurred in August or

later. The only peaks which occurred prior to August were in seven northern states and

this pattern continued during the Modern Era. The earliest birth peaks always occurred in

northern states, followed by mid-latitude states, and the latest peaks occurred in southern

states. Across all eras, the latest peak was consistently in Florida, where the peak timing

ranged from early October in the Modern Era, to early November in the Pre-Baby Boom

Era.
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Figure 2.2: Spatiotemporal patterns of seasonal birth peak timing and amplitude in the US.
(Top panels) Pre-Baby Boom (1931–1945), (Middle panels) Baby Boom (1946–1964), and (Bottom
panels) Modern Era (1965–2008). Maps depict the latitudinal gradient in the timing of the birth
peak. Colors indicate the mean timing of the birth peak for each state. Hatched regions represent
states in which a significant bi-annual peaks were discernible and are color coded based on the
timing of their primary annual birth pulse (also see Figs A.1 & A.2). States shown in white did not
exhibit a significant periodicity. Regressions show the latitudinal variation in seasonal amplitude,
with the colors representing the peak birth timing for the respective period.

The latitudinal gradient in peak birth timing seen in the US was reflective of a worldwide

pattern. The worldwide timing also followed a latitudinal gradient with birth peaks occurring

earlier at higher latitudes and later for countries closer to the equator (Fig 2.3). However, at

any given latitude there was a large amount of variation in the timing of the birth peak. In

the highest latitude countries (> 50◦ N), birth peaks occurred between April and July. While

there were two outlying mid-latitude countries with birth peaks in March and April (Italy,

1970–1985 and Tajikstan, 1989–1994), typical mid-latitude locations (20–50◦ N) had peaks

between May and November. Countries in the vicinity of the equator (0–20◦ N) displayed

the least amount of variation in timing. The equatorial countries, such as those in the
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Figure 2.3: Northern
Hemisphere patterns of
seasonal birth pulses
color coded by region.
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2011.

Caribbean, consistently had birth peaks between September and November, with the latest

birth peak occurring in Saint Vincent and the Grenadines during the period 1992–2005.

In addition to the annual birth peaks, in the US a significant bi-annual (6 month) birth

pulse was detected in 24 states. In the Pre-Baby Boom Era, all states with bi-annual period-

icity were clustered in the lower midwest, deep south, and southeast (Figs 2.2, A.1, & A.2).

In the Baby Boom Era, only 13 states continued to exhibit a bi-annual period. Arkansas is

the only state where this bi-annual birth pulse persists in the Modern Era.

2.7 The Amplitude of Seasonal Births

Birth amplitude was measured for each time series, each year, as the one-half peak-trough

difference with noise removed. Amplitudes are represented as a percent of the mean annual

birth rate (Appendix A: Materials & Methods). As with the seasonal timing, in the US the

amplitude of birth seasonality displays a latitudinal gradient. Fig 2.2 depicts the negative

relationship between birth amplitude and latitude. We found that 29–53% of the variation in
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birth amplitude can be explained by latitude (p < 4.6e-5). However, the amount of variation

in birth amplitude explained by latitude decreased through time, perhaps due to the decline

in birth amplitude throughout southern states during the Modern Era (Figs 2.2 & A.4). We

did not observe a latitudinal gradient in birth amplitude outside of the US (Fig A.5).

As expected, the mean combined amplitude across all states was found to be comparable

to the national level amplitude reported in the literature [92] and was 9.0%, 9.8%, and 8.5%

for the Pre-Baby Boom, Baby Boom, and Modern Eras, respectively. Interestingly, due to

the geographical variation in birth peak timing, state-level births are out of phase. Thus,

aggregated US birth data has a deceptively low amplitude that is not reflective of individual

states. Birth amplitudes > 15% were observed in many southern states throughout the time

series (Fig A.4).

Prior work has shown that the levels of inter-annual variation in births observed in the

US can have a dynamical impact on disease incidence [69]. It would follow logically that

variability of this same magnitude over a shorter time period may also be important. Thus,

we sought to compare the magnitude of the seasonal variation in births with inter-annual

variation. Inter-annual variation was measured for each state as the percent change in mean

birth rate from one year to the next. We found that in almost every instance, seasonal

variation exceeded inter-annual variation, with seasonal variation in the Modern Era being

2–3 times larger than the variation from year to year (Fig A.6).

2.8 The Effects of Birth Seasonality on Epidemic Dynamics

We investigated the impact of birth seasonality on epidemics of childhood disease by

employing models of measles transmission. As shown in Fig 2.4A, birth seasonality can have

the effect of amplifying or dampening incidence during epidemic years. Crucially, the impact

of birth seasonality depends on the amplitude and phase relationship between susceptible
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recruitment and transmission seasonality. In our simulation study we did not account for

maternal antibodies, thus the peak in susceptible recruitment was equivalent to the birth

peak. However, inclusion of maternal antibodies would translate into a lag between the peak

in births and the peak in susceptible recruitment. We found that if the peak in susceptible

recruitment occurs at the beginning of the year, when children are in school and measles

transmission is elevated, the epidemic is amplified due to the availability of susceptibles. In

contrast, if the peak in susceptible recruitment occurs at the end of the school year, when

children are entering summer break, the epidemic is dampened (Fig 2.4A).

Independent of the timing of the birth peak, the effect of birth seasonality on measles

epidemics depends on the birth amplitude (Figs 2.4B & A.7). The larger the birth amplitude

the greater the change in measles incidence. Not only does the amplitude affect incidence,

but birth rates with high amplitude fluctuations (> 40%) can alter incidence to such an

extent that they can drive dynamical transitions (Fig 2.4B).

Statistical inference on simulated data led to small biases in the estimate of R0 for measles

(Fig 2.4C). For the time series in which the birth peak occurred in mid-December, day 351,

a time at which susceptible recruitment increases epidemic year incidence, omitting birth

seasonality resulted in over-estimating R0 in order to capture the elevated epidemic year

incidence. In contrast, when the birth peak was set to either early June (day 162) or late

October (day 295), times at which susceptible recruitment dampens epidemic year incidence

and elevates skip-year incidence, we under-estimated R0. However the bias in R0 was small,

approximately ≤0.4–1.3%.

We found that models with seasonal births effectively capture measles dynamics in New

York City (Fig 2.5A). In contrast to our simulation study, however, when multiple unknown

parameters were estimated simultaneously, the small predicted bias in R0 was masked by

uncertainty in parameters and Monte Carlo error (Fig 2.5). Hence, the maximum likelihood
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Figure 2.4: Impact of birth seasonality on childhood disease. (A) Epidemic and skip-year incidence
varies with birth peak timing along the x-axis. Solid curve shows the change in epidemic year
incidence when birth seasonality is added to the measles model. Dashed curve shows the change in
the skip-year. The phase relationship between seasonal births and transmission determines whether
birth seasonality has an effect on incidence. The greatest increase in epidemic year incidence is
when the birth peak occurs after children return from winter holiday (orange points). A decrease in
epidemic year incidence occurs when births peak prior to summer vacation (green points). School
terms are noted and vertical arrows mark the timing of incidence peaks during the epidemic year.
(Inset) Time series from the constant birth model (black), and time series corresponding to the
color-matched points on the main graph. (B) Bifurcation diagram showing the change in epidemic
and skip-year peak incidence with increasing birth amplitude. In the absence of birth seasonality,
epidemics are biennial. As birth amplitude increases, skip-year incidence increases and epidemic
year incidence decreases. When birth amplitude reaches ∼40% epidemics become annual. Time
series in the inset correspond to the points in the main graph; blue time series are biennial, and
golden are annual. Arrows denote the birth amplitude observed in Switzerland, Cuba, Egypt,
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are from [64]. (C) Bias in R0 estimates due to the exclusion of birth seasonality in a SEIR model.
Time series were generated using a SEIR model with a birth peak day of 162 (turquoise), 295
(blue), or 351 (orange). Each time series was fit to the SEIR model with a birth amplitude of 0%.
The actual R0 value is shown by the dashed line and the likelihood profiles show that maximum
likelihood estimate of R0 is either over- or under-estimated when birth seasonality is excluded from
the model. 95% confidence intervals for MLE are indicated on profiles.

20



m
on

th
ly

 c
as

es

1949 1963

0
50

00
1e

4 Seasonal births lag 3 mo.
Seas lag 6
Seas lag 9
constant
data

year

A

∆ 
lo

g 
lik

el
ih

oo
d

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ● ●

●
●

● ●
●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●●
● ●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●
●

●

● ● ● ●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

● ●
●

● ●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

● ●

●
●● ● ●

●
●

●

● ●
●

●● ●
●

●
● ●

●

●
●

●● ●

●
●

●
●

●
●
●

●

●

●●

●

● ●
●

●

●
●

18 19 20 21 22

−
2

−
1

0

●
●

●
●

B

tr
an

sm
is

si
on

 r
at

e

20
30

40
50

C

D

basic reproductive ratio, R0 month

tr
an

sm
is

si
on

 r
at

e

1 12 24

−
40

0
40

(%
 fr

om
 m

ea
n)

Figure 2.5: Measles cases in New York City. (A) Measles incidence (black) and a stochastic
realization using the MLE for each type of birth covariate: seasonal births with a 3 month lag
(blue), seasonal births with a 6 month lag (green), seasonal births with a 9 month lag (yellow),
and births with no seasonality (maroon). Legend applies to all of Fig 2.5. (B) The shape of the
likelihood surface with respect to R0. The MLE R0s are indicated by points and the standard errors
are represented by horizontal lines. (C) MLE transmission splines for each model. (D) Transmission
splines estimated using TSIR [20, 78] for each type of birth covariate. The MLEs differed with
and without birth seasonality, but the differences in the point estimates were overwhelmed by
uncertainty in parameter estimates (Figs 2,5B & 2.5C). No difference in transmission parameters
was observed using the TSIR method.

parameter estimates (MLEs) for models with and without birth seasonality were nearly

identical. The MLEs of the basic reproductive number, R0, ranged from 19.3–20.3. Thus,

the incorporation of birth seasonality into the model did not substantially change parameter

estimates, and the dynamics of baby-boom era measles in New York City can be captured

by the model without birth seasonality (Fig 2.5A).

2.9 Discussion

Seasonal fluctuations in human births are observed throughout the world. The timing of

the birth peak displayed a marked latitudinal gradient throughout the Northern Hemisphere.

The latitudinal gradient in peak birth timing was observed in the US for the entirety of our
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data, and was reflective of a much broader geographic pattern. National level birth data

from Asia, Europe, the Americas, and the Caribbean also exhibited this latitudinal gradient

with birth peaks occurring months earlier at locations further from the equator.

Contemporary seasonal birth amplitudes are substantial with a range of 7–12% in the US

and 6–35% in other Northern Hemispheric countries. Along with the latitudinal gradient

in peak birth timing, in the US we also observed a latitudinal gradient in birth amplitude.

States in the southern US have larger seasonal fluctuations in births than northern states.

This negative relationship between latitude and amplitude was more pronounced in the Pre-

Baby Boom and Baby Boom Eras, relative to the Modern Era. However, this pattern was

not observed outside of the US, suggesting this may either be a localized phenomenon or

strongly correlated with social, economic, and/or cultural factors in the US.

In addition to the striking geographical variation in timing and amplitude of the annual

birth peak, these data displayed additional complexity with the occurrence of bi-annual peaks

across the lower midwest, deep south, and southeastern US in the Pre-Baby Boom Era. This

bi-annual pulse was lost over time, with only Arkansas exhibiting bi-annual periodicity in the

Modern Era. Bi-annual fluctuations in births have been documented in previous studies [29],

but our data suggests that bi-annual birth pulses in the US are a relic of the past, lost to

societal changes [29,184], yet may still exist in other countries. Given the robustness of birth

seasonality as a global phenomenon of contemporary human populations, it is surprising

that mechanisms driving these patterns remain poorly understood. Demographers have

implicated a host of social, environmental, and physiological factors that may interact to

drive birth seasonality. While a consensus has yet to be reached, and mechanisms vary

geographically, hypothesized drivers include income, culture, race, holidays, rainfall, cold

winters, and seasonally variable sperm quality [22, 29, 118, 119, 124, 157, 168, 194]. Although

we focused on characterizing the variation in birth seasonality, rather than the mechanisms

underlying this variation, it is our hope that the latitudinal gradient in peak birth timing
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and amplitude observed here will help elucidate the primary drivers of birth seasonality.

Despite our high resolution birth data for the Northern Hemisphere, Southern Hemispheric

data proved difficult to obtain. Our analysis focused solely on the US and countries where

birth data were readily available. Unfortunately this leaves out many South American and

African countries where vaccine preventable childhood diseases are most prevalent. Southern

Hemispheric birth data may help us understand the variation observed in the seasonality of

childhood infections. For instance, historical work in Africa has shown that measles incidence

peaks in April in Uganda, Kenya, and Tanzania, but earlier (November–January) in their

southern neighbors Zambia, Zimbabwe, and Malawi [139]. Knowing the seasonal birth peak

timing and amplitude in these locations may allow us to better understand this variation.

We anticipate the latitudinal gradient in peak birth timing will also be found in the Southern

Hemisphere.

The impacts of birth seasonality on epidemic dynamics were explored here in the context

of childhood diseases. Our theoretical predictions indicate birth seasonality has the potential

to influence the dynamics of fully immunizing infections of childhood – for which susceptible

recruitment most heavily relies on births [69, 108]. We demonstrated that birth amplitude

and the timing of the birth peak relative to peak transmission determine whether, and to

what extent, birth seasonality affects disease incidence patterns. In our inference study using

simulated data, we found that ignoring birth seasonality can bias parameter estimation. As a

proof of concept study, we tested for these biases using New York City measles data from the

pre-vaccine era. However, we did not detect any systematic biases. There may be a number

of reasons for this finding. First, during the time span of these data, the seasonal birth

amplitude was low in New York City. Second, the short infectious period of measles is known

to lead to pronounced frequency-locking with forcing in transmission [11, 108, 165], which

may swamp any dynamical impacts of weakly seasonal susceptible recruitment. Finally,

the combination of process- and measurement-noise in the data, combined with uncertainty
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in parameter estimates and Monte Carlo error may have made it impossible to detect the

predicted estimation bias.

Our simulation studies demonstrated that high amplitude birth seasonality, currently ob-

served in many African and Asian countries (Table A.5 and [15, 64]), can affect disease

periodicity and epidemic magnitude. In these settings, our findings have the potential to

explain some of the spatial and temporal variation observed in the periodicity of diseases

such as measles, rotavirus, and polio; and present a promising avenue for future research.

Indeed, a recent study of birth seasonality across developing countries found that the timing

of the birth peak influences epidemic timing, and a high birth rate magnifies the effect of

birth seasonality on measles epidemics [64]. Although our study—focused exclusively on

measles epidemiology—suggests that high amplitude birth seasonality is required to alter

disease incidence, we predict that lower birth amplitudes may have a dynamical effect when

coupled with a higher mean birth rate or for childhood diseases with longer infectious peri-

ods that may exhibit less frequency-locking with seasonal transmission [165]. Ultimately, our

experience with these systems indicate that the impact of seasonal births on epidemiology

will likely be determined by multiple factors, including: the age-distribution of infections,

age-specific pattern of contacts, differences in R0, and the demographic context.

Dynamical consequences of birth seasonality aside, we emphasize that the spatial variation

in birth seasonality documented here is pertinent when developing time-specific vaccination

campaigns. For example, the World Health Organization implements time-specific vaccina-

tion campaigns to supplement routine immunization for the control of measles and polio in

Africa, the Eastern Mediterranean, and South-East Asia. Clearly, if these infant immuniza-

tion campaigns occur prior to the birth pulse, they will be inefficient. Thus, it is our hope

that future studies aimed at mitigating childhood diseases will utilize birth seasonality to

reduce the burden of disease and tackle some of the unanswered questions in disease ecology.
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CHAPTER III

Digital Epidemiology Reveals Global Childhood

Disease Seasonality and the Effects of Immunization

3.1 Preface

This chapter of my dissertation was published in the Proceedings of the National Academy

of Sciences (PNAS) in 2016 (DOI: 10.1073/pnas.1523941113). The authors include M.

Martinez-Bakker, B. Helm, T. Stevenson, and myself. In March 2015 I was forwarded a

set of figures showing the seasonality of Google searches for four childhood infectious dis-

eases in the United Kingdom and Australia from co-author T. Stevenson (e.g. Fig 5.1). From

my previous work on the TYCHO dataset [218], I quickly realized that the seasonal Google

search patterns were similar to the seasonal incidence of chickenpox. Together with Mi-

caela, we brainstormed on the formulation of a model, and acquired location-specific Google

searches for the word ‘chickenpox’, for more than 30 countries across the globe. I performed

the analyses and fitted the models with much cooperation from Micaela. Additional analy-

ses and models, which were done for a time series analysis course taught by Ed Ionides (a

committee member) in which I participated, are included in Appendix B. All pomp code for

this chapter, as well as Chapters 2 & 4 are included in Appendix D.
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3.2 Abstract

Public health surveillance systems are important for tracking disease dynamics. In re-

cent years, social and real-time digital data sources have provided new means of studying

disease transmission. Such affordable and accessible data have the potential to offer new

insights into disease epidemiology at national and international scales. We used the exten-

sive information repository Google Trends to examine the digital epidemiology of a common

childhood disease, chicken pox, caused by varicella zoster virus (VZV), over an eleven-year

period. We (1) report robust seasonal information seeking behavior for chicken pox using

Google data from 36 countries, (2) validate Google data using clinical chicken pox cases,

(3) demonstrate that Google data can be used to identify recurrent seasonal outbreaks and

forecast their magnitude and seasonal timing, and (4) reveal that VZV immunization sig-

nificantly dampened seasonal cycles in information seeking behavior. Our findings provide

strong evidence that VZV transmission is seasonal and that seasonal peaks show remarkable

latitudinal variation. We attribute the dampened seasonal cycles in chicken pox information

seeking behavior to VZV vaccine-induced reduction of seasonal transmission. These data and

the methodological approaches provide a novel way to track the global burden of childhood

disease, and illustrate population-level effects of immunization. The global latitudinal pat-

terns in outbreak seasonality could direct future studies of environmental and physiological

drivers of disease transmission.

3.3 Introduction

Childhood infectious diseases continue to be a major global problem, and surveillance is

needed to inform strategies for the prevention and mitigation of disease transmission. Our

ability to characterize the global picture of childhood diseases is limited, as detailed epidemio-

logical data are generally nonexistent or inaccessible across much of the world. Available data

suggest that recurrent outbreaks of acute infectious diseases peak within a relatively consis-
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tent, but disease-specific seasonal window, which differs geographically [2, 88, 127, 136, 218].

Geographic variation in disease transmission is poorly understood, suggesting substantial

knowledge gains from methods that can expand global epidemiological surveillance. Seasonal

variations in host-pathogen interactions are common in nature [134]. In humans, the immune

system undergoes substantial seasonal changes in gene expression, which is inverted between

European locations and Oceana [63]. The regulation of seasonal changes in both disease in-

cidence and immune defense is known to interact with environmental factors such as annual

changes in day length, humidity and ambient temperature [197]. Accordingly, quantification

of global spatio-temporal patterns of disease incidence can help to disentangle environmen-

tal, demographic, and physiological drivers of infectious disease transmission. Furthermore,

the recognition of the regional timing of outbreaks would establish the groundwork for an-

ticipating clinical cases, and when applicable, initiating public health interventions.

Since childhood disease outbreaks are often explosive and short-lived [108], temporally

rich (i.e., weekly or monthly) data are needed to understand their dynamics. Similarly, in

order to establish the recurrent nature of outbreaks that occur at annual or multi-annual

frequencies, long-term data are needed. Thus, ideal disease incidence data have both high

temporal resolution and breadth (i.e., frequent observations over many years). Over the

past decade, the internet has become a significant health resource for the general public and

health professionals [33,96]. Internet query platforms, such as Google Trends, have provided

powerful and accessible resources for identifying outbreaks and for implementing intervention

strategies [34, 103, 175]. Research on infectious disease information seeking behaviour has

demonstrated that internet queries can complement traditional surveillance by providing a

rapid and efficient means of obtaining large epidemiological datasets [58,59,84,175,189]. For

example, epidemiological information contained within Google Trends has been used in the

study of rotavirus, norovirus, and influenza [58, 59, 103, 189]. These tools offer substantial

promise for the global monitoring of diseases in countries that lack clinical surveillance but

have sufficient internet coverage to allow for surveillance via digital epidemiology.
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Figure 3.1: Left Figure: Global seasonality of chicken pox outbreaks measured using Google
Trends as a proxy for chicken pox dynamics. Countries are organized by geographic region and
latitude. Latitudinal variation in seasonal chicken pox information seeking behavior was observed
for countries with wavelet confirmed significant seasonality. The seasonality was estimated by
fitting a General Additive Model (GAM) to the detrended Google data from each country. GAM
values using week number as the predictive variable for Google data are shown in the heatmap and
correspond to the GAM curves to the right. Right Figure: Data processing and regional GAM
values (Top row) Data processing steps. (Top row, left panel) Detrended Google data for Italy.
(Top row, middle panel) Box-and-whisker plot of Google data for Italy: 1st-to-3rd quartiles in solid
color with whiskers representing 95% confidence intervals. All other panels represent GAM values
using week number as the predictive variable for Google data in each country. European countries
include Finland, Sweden, Denmark, Ireland, Netherlands, Poland, UK, Hungary, France, Romania,
Italy, Spain, and Portugal. Asian countries include Vietnam, India, Thailand, and the Philippines.
Americas include Mexico (with peak in week 10), Colombia, Brazil, and Argentina.

Here we focused on one common childhood disease, chicken pox, as a study system be-

cause it would allow us to validate internet query data using clinical data from the small

number of geographically distinct countries that report cases, and to address the impact

of VZV vaccination on outbreaks. Chicken pox—a highly contagious disease caused by

VZV—has low mortality but exceptionally high morbidity, with most unvaccinated children

infected by age 15 in developed countries [185, 225]. The burden of VZV extends beyond

chicken pox, because a VZV infection causes fluid filled blisters, which eventually burst,

creating the opportunity for infection from various invasive bacterial pathogens (e.g., Group
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A streptococcal infections) [221]. Chicken pox is not included in the World Health Orga-

nizations (WHO) global monitoring system for vaccine preventable diseases [227], meaning

there are few countries which report clinical cases. In the United States (US), a country

that immunizes against VZV; chicken pox was historically a notifiable disease. A lapse in

national surveillance 1981–2001 compromised the ability of researchers to examine the long-

term disease dynamics and the impact of immunization. [39, 41, 218]. Although the clear

symptomatology of chicken pox makes the disease readily observable at the individual level,

the lack of reporting makes VZV transmission dynamics cryptic at the population-level and

obscures its spatio-temporal patterns.

The VZV vaccine is on the WHO list of essential medicines, which specifies the most

important medicines needed for basic health systems [224], and is available as either stand-

alone VZV or as the measles, mumps, rubella, and varicella vaccine (MMRV). However, the

US, Germany, Canada, Uruguay, Australia and regions of Spain and Italy are among the few

locations that have included VZV vaccination in their childhood immunization schedules for

multiple years [70,113,150,155,191]. Short term surveillance studies in select locations of the

US have demonstrated that moderate levels of vaccine coverage were able to dramatically

reduce chicken pox incidence [12, 188], partially through the effect of herd immunity [48].

However, the effects of VZV vaccination on morbidity and mortality remain poorly under-

stood [70] because global chicken pox report rates are low (e.g., the US rate is estimated

to range from < 0.1% to 20% [38]). Therefore, the public health community is faced with

a scarcity of chicken pox data to inform VZV vaccination policy. In certain locations (e.g.,

Madrid), VZV immunization has ceased, possibly due to the lack of information regarding

the effects of immunization that can be used to assess health gains and economic feasibility.

Clearly, there remains a lack of research, especially in countries that have recently introduced

the VZV vaccine into the childhood immunization schedule [42, 70].

In this study, we took advantage of the extensive data available in Google Trends to

study the global seasonal transmission of chicken pox. We (1) data mined chicken pox
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information seeking behavior using language-specific Google queries of “chicken pox” from 36

countries spanning 5 continents over an eleven-year period (Table B.3), and characterized the

seasonality of outbreaks. We then (2) validated Google Trends data using detailed time series

of clinical cases from 5 countries within 4 continents. We (3) confirmed that statistical models

have a profound ability to forecast outbreaks in unvaccinated and vaccinated populations.

Finally, we (4) verified the impact of VZV vaccination on the seasonality of chicken pox

outbreaks.

3.4 Seasonality of Chicken Pox Information Seeking & Validation

We detected significant seasonality of the Google Trends data [86] in 27 out of the 34 coun-

tries for which weekly data were available. Each geographic region in our study displayed

distinct seasonal patterns of information seeking behaviour (Fig 3.1). A strong latitudi-

nal pattern was clearly discernible (Fig 3.1), with peaks early in the year in the Northern

Hemisphere and later in the Southern Hemisphere, corresponding to springtime outbreaks

worldwide. These spring peaks agree with the seasonal timing found in historical datasets

and previous studies of chicken pox [93,127,187,218,219] (Fig B.8). European countries were

mostly unimodal, with a peak in March–May, but some had an additional, smaller, peak in

late December. Several countries in the Southern hemisphere, including Australia, New

Zealand, South Africa, and those located in South America, had a single discernible peak at

various times of the year. China and Japan had bimodal peaks, which occurred March–May

and December–January, balanced by deep summer troughs occurring July–August. Other

Asian countries had a single peak that occurred February–March punctuated by a relatively

shallow trough.

To validate Google Trends as a reasonable proxy for chicken pox dynamics, we compared

clinical data to Google Trends data from five countries. We found that in the three countries

lacking VZV vaccination—Mexico, Thailand, and Estonia—chicken pox information seeking

was significantly correlated with reported cases of chicken pox, with R2 = 0.70, 0.81, and
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0.65 respectively (Fig 3.2). The correlation was reduced, but still significant, in Australia

(R2 = 0.26), which implemented nationwide immunization in 2005. In the US, which has

actively vaccinated since 1995, the association between information seeking and reported

chicken pox cases was low (R2 = 0.018). To better understand the patterns in these coun-

tries, we investigated the context of the language-specific Google searches of “chicken pox”.

We compared the context of top searches containing “chicken pox” to determine whether

they were searches for disease, symptoms, or treatment (i.e., indicative of disease in the

household/community) or vaccination (i.e., not necessarily related to disease incidence).

The proportion of searches related to disease—rather than chicken pox vaccination or

other search contexts—differed between focal countries. In Mexico and Thailand, which do

not vaccinate, we classified the relative frequency of the top searches indicating disease to be

0.82 and 0.80 (Fig B.7). In both Australia and the US, where the VZV vaccine is required,

vaccination and other search contexts had a higher relative frequency, while disease indicators

had a frequency of 0.71 and 0.66, respectively. Interestingly, in the US, the second highest

query involved chicken pox vaccination (Table B.2). Estonia had low search volume and the

top searches were not available.

These data indicate the value of adding further layers to search terms. By doing so, we

identified two patterns in information seeking: i) the data reflected seasonal dynamics in most

countries (Mexico, Thailand, Estonia, and Australia); and ii) in the US, where vaccination

has long been introduced, the data reflected a shift in the motivation of information seeking.

These findings suggest that Google Trends reflect chicken pox dynamics more closely in

countries that do not vaccinate versus countries that do vaccinate, and highlight the dynamic

nature of information seeking. This likely explains why chicken pox information seeking in

Mexico, Thailand, Estonia, and Australia, but not in the US, strongly reflected reported

cases.
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Figure 3.2: Relationship between chicken pox cases and information seeking. (Left column) Time
series of reported chicken pox cases and information seeking behaviour for chicken pox (i.e., Google
Trends data) in Mexico, the US, Thailand, Australia, and Estonia. Google data were detrended to
remove long-term trends and focus on seasonal variation in information seeking. (Right column)
Relationship between reported cases of chicken pox and chicken pox information seeking when both
were available, with applicable R2 and p values. Chicken pox case data from Mexico and the US
were weekly, whereas chicken pox case data from Thailand, Australia, and Estonia were monthly.
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3.5 Forecasting Outbreaks using Google Trends

To determine whether the information seeking behaviour observed in Google data, T, was

able to forecast chicken pox outbreak magnitude and timing, we built and fitted eight differ-

ent statistical models to forecast chicken pox case data. We evaluated the epidemiological

information contained in Google Trends by comparing these Google Trends models with a

seasonal null model that did not incorporate Google data (Table B.1, Figs B.1, B.2). Three

models that included the Google data fit better than the null model, however we focused on

the model with best fit, and refer to it as the Google model hereafter. The null model lacked

information seeking in the force of infection parameter, which we defined as the monthly per

capita rate at which children age 0–14 years are infected. In order to estimate the number of

symptomatic VZV infections per month, we multiplied the force of infection with an estimate

of the population aged 0–14 years (Eq B.3). Both the Google and null models were fitted

to the case data from a VZV-unvaccinated population (Thailand), which showed robust sea-

sonality, and a VZV-vaccinated population (Australia), which exhibited reduced seasonality.

To estimate the number of symptomatic VZV infections each month, It, we used Google

Trends data from the previous two months, Tt−1 and Tt−2, where t is time in monthly time

steps. The chicken pox process model tracked the force of infection, λt,

λt =

[
β1cos

(
2π

12
(t+ ω)

)
Tt−1 + β2|Tt−1 − Tt−2|+ β3

]
εt. (3.1)

The model also contained environmental stochasticity, εt, which was drawn from a gamma

distribution with a mean of 1 and variance θ. We estimated 6 parameters for the model: the

mean and the phase of the seasonality (β1 and ω), a parameter scaling the Google Trends

data (β2), the baseline force of infection (β3), the process noise dispersion parameter (θ),

and the reporting dispersion parameter (τ) of a normal distribution, with a mean of 1, from

which case reports were drawn. The parameters were estimated using maximum likelihood

by iterated particle filtering (MIF) in the R-package pomp [111,112].
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The Google Trends model fit the case data (Fig B.1) and performed better than the null

model (which estimated 5 parameters) for both Australia and Thailand; null model AICs

were > 28 units above Google Trends model AICs in both locations. Since each model was

seasonally forced, all models captured the seasonal timing of outbreaks. However, the Google

Trends model was able to predict the interannual variation in outbreak size (Fig 3.3), while

the null model could not (Appendix B, Fig B.1).

3.6 The Signature of Varicella Zoster Immunization

We investigated the signature of VZV immunization by examining Google Trends data in

countries that actively immunize and those that do not. Seasonality of information seeking

behaviour was much stronger in countries lacking active immunization programs than in

countries that include the VZV vaccine as part of the childhood immunization schedule

(Fig 3.3). Germany, which made the VZV vaccine mandatory in July 2004 [113, 158], had

weakening seasonality in information seeking until 2009, when a second VZV booster dose

was added to the immunization schedule, drastically reducing information seeking seasonality

(Figs B.5, B.6). In Australia, where the VZV vaccine was publicly funded in November 2005

[37], the amplitude of information seeking was severely dampened by the end of 2007. In the

US, immunization began in 1995 [188] while Canada required the vaccination starting in 2000

[200]. In these two countries, where the VZV vaccine introduction predated Google Trends

data, little seasonality was observed in the Google Trends data (Figs 3.3, B.9). In Spain and

Italy, where only a few regions or municipalities require VZV immunization [70], minimal

change was observed in the Google Trends dynamics following immunization implementation.

However, in Spain there was a reduction in search amplitude when immunization efforts were

at their maximum, likely indicating a reduction in searches following immunization, similar

to Germany (Fig B.6).

Since information seeking behavior strongly correlates with seasonal outbreaks of chicken

pox (Fig 3.2), the loss of information seeking seasonality in countries that immunize can

35



Figure 3.3: Left figure Forecasting chicken pox cases using Google Trends. (Top) Forecasting
model schematic, Google Trends data from months t − 2 and t − 1 are used to predict chicken
pox cases in month t. (Bottom left) Observed and predicted chicken pox cases in Australia (ac-
tive immunization) and Thailand (no immunization) from 10000 simulations of the fitted models
parameterized with the maximum likelihood estimates; overpredicted (green hash marks) and un-
derpredicted (red hash marks) regions are indicated. (Bottom right) Model predicted cases versus
observed chicken pox cases along the dotted 1-to-1 line. Right figure Detrended chicken pox
information seeking in relation to immunization. Data are weekly; x-axes indicate time, and y-axes
are the detrended Google data (same scale for all panels). Countries with universal (national) im-
munization in red, countries with select (regional or municipal) immunization in blue, and countries
lacking any mandatory immunization in black. Panels 1-2: the UK and Brazil, two countries with
no immunization. Panels 3-4: Spain and Italy, two countries with no universal (national) immuniza-
tion, but with select regional or municipal immunization. Vertical lines identify the implementation
(blue for select, red for national) or termination (black) of immunization efforts. Cities and regions
on these panels indicate where these efforts were focused. Panels 5-6: Australia and Germany,
two countries that implemented national immunization since 2004. Australia had the vaccine since
2001, but nationwide immunization was not funded by the government until November 2005. Ger-
many required a single dose for every child in July 2004, provided nationalized payment in 2007,
and required a second dose in 2009. Panel 7: the US, which has had national immunization since
1995, required a booster dose in 2006.
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signal the loss of recurrent seasonal chicken pox outbreaks, indicating outbreak mitigation

driven by VZV immunization. We suggest that if (i) disease transmission is seasonal—as

it is for chicken pox and other childhood diseases— and (ii) vaccination reduces disease

transmission, then the impact of immunization can be measured as the reduction in seasonal

outbreak amplitude. This is because vaccination will strongly diminish the transmission rate

during the high-transmission season. In the case of chicken pox, the reduction of seasonal-

ity in information seeking is likely due to diminished outbreak seasonality seen in clinical

data (Figs 3.2, B.8) and the subsequent shift of information seeking from disease queries to

vaccination queries.

3.7 Discussion

In this study, we used digital epidemiology of chicken pox to (1) reveal previously unre-

ported seasonal outbreaks on a global scale, which displayed robust latitudinal dependence,

(2) confirm the reliability of the Google data against known clinical cases, (3) forecast the

size of annual outbreaks, and (4) uncover the population-level effects of routine VZV immu-

nization. The lack of contemporary reporting, due to the benign nature of infections and

the increased use of immunization, have made it difficult to decipher modern VZV global

epidemiology. Here, we established that information seeking behaviour can be applied to

reveal the underlying epidemiology of a childhood disease, chicken pox.

Our analyses reveal profound, global patterns of seasonality in chicken pox transmission

dynamics. These seasonal patterns are spatially structured: we have demonstrated a lati-

tudinal pattern in the timing of outbreaks, with inverted phases between the southern and

northern hemisphere and an apex in the spring. Evidence of the underlying biological basis

for seasonality in chicken pox transmission remains an open question. There is a significant

latitudinal shift (i.e., near 6 months) in chicken pox outbreak timing from the northern to

southern hemisphere, which suggests an influence of environmental, biological, and/or be-

havioral drivers that vary with latitude, such as seasonal immunity, environmental factors,
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and/or school terms. Interestingly, Google Trends also revealed seasonal variation in croup,

fifth disease, and hand, foot, and mouth disease; each of these childhood diseases exhibited a

unique annual peak with little overlap in their seasonal window of outbreak occurrence. The

lack of synchrony among childhood diseases likely indicates that school terms and holidays

are not the primary drivers determining outbreak timing (Fig B.3). We speculate that sea-

sonal information seeking behaviour linked to childhood illnesses reflects biologically based

seasonality of host-pathogen interactions [63, 134]. Our present data open new possibili-

ties for extensive global analyses, which could disentangle contributions of different seasonal

drivers to a broad range of infectious diseases. There is a pressing need for such knowledge as

global seasonality is becoming rapidly modified and disrupted through human action, with

potentially far-reaching implications for infectious disease transmission [196].

By taking advantage of freely available, real-time, internet search query data, we were

able to validate information seeking behaviour as an appropriate proxy for otherwise cryptic

chicken pox outbreaks and use those data to forecast outbreaks one month in advance. Our

modeling approach, which incorporated Google Trends and the knowledge of spring peaks,

was able to better forecast outbreaks than models that ignored Google Trends. While this

was particularly clear for Thailand, which does not immunize against VZV, it also held for

Australia, a country that vaccinates. These results suggest that information seeking can be

used for rapid forecasting, when the reporting of clinical cases is unavailable or too slow.

Comparisons of Google Trends data with the reported cases in countries that lacked VZV

immunization revealed a significant positive relationship (70%, 81%, and 65% of variation in

Google Trends explained by variation in reported cases). However, the relationship signifi-

cantly decreased in countries that included VZV vaccination in their childhood immunization

schedule and displayed either no seasonality or low-amplitude seasonal cycles (e.g., the US,

1.8% and Australia, 26%). Interestingly, in Italy and Spain, where the VZV vaccine was

only required in specific regions or municipalities of the country, no change in seasonal infor-

mation seeking behaviour was detected in the face of vaccination, implying that widespread
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immunization is necessary to mitigate seasonal cycles of disease and information seeking.

These findings, particularly from the highly vaccinated countries in our data—the US and

Australia—indicate that immunization programs diminish seasonal information seeking be-

haviour and likely represent decreased seasonality of outbreaks.

Studies of disease transmission at the global level, and the success of interventions, are

limited by data availability. Disease surveillance is a major obstacle in the global effort

to improve public health, and is made difficult by under–reporting, language barriers, the

logistics of data acquisition, and the time required for data curation. We demonstrated that

seasonal variation in information seeking reflected disease dynamics, and as such, we were

able to reveal global patterns of outbreaks and their mitigation via immunization efforts.

Thus, digital epidemiology is an easily accessible tool that can be used to complement tradi-

tional disease surveillance, and in certain instances, may be the only readily available data

source for studying seasonal transmission of non-notifiable diseases. We focused on chicken

pox and its dynamics to demonstrate the strength of digital epidemiology for studying child-

hood diseases at the population level, because VZV is endemic worldwide and the global

landscape of VZV vaccination is rapidly changing. Unfortunately, there is still a geographic

imbalance of data sources: the vast majority of digital epidemiology data are derived from

temperate regions with high internet coverage. However, because many childhood diseases

remain non-notifiable throughout the developing world, digital epidemiology provides a valu-

able approach for identifying recurrent outbreaks when clinical data are lacking. It remains

an open challenge to extend the reach of digital epidemiology to study other benign and

malignant diseases with under-reported outbreaks and to identify spatio-temporal patterns,

where knowledge about the drivers of disease dynamics are most urgently needed.

3.8 Materials and Methods

Google Trends data for ‘chicken pox’ were downloaded, and examined for seasonality.

These data were then compared against reported cases of chicken pox in countries where
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case reports were available. We then constructed and tested multiple statistical models to

determine whether Google Trends data could forecast chicken pox seasonality. Finally, we

examined the effect of national immunization campaigns on the seasonality and amplitude

of Google searches. Further methodological descriptions are included in the supporting

information. This study was done with freely available, de-indentified, pre-existing data,

thus no consent was required.
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CHAPTER IV

The Underpinnings of Herpesvirus Dynamics:

Transmission & Reactivation of Varicella Zoster Virus

4.1 Preface

This work is co-authored by M. Pascual, M. Eisenberg, and M. Martinez. This chapter

also materialized from the information seeking figure I received (Fig 5.1), noting that shingles

displayed a seasonal peak in incidence. Since shingles is non-transmissible, and all previous

studies have demonstrated that it lacks seasonal reactivation, we decided to investigate

the spatial complexities of shingles reactivation and the potential processes underlying these

dynamics. My co-author, M. Martinez and I conceived the study and formulated the models.

I was responsible for all data analyses, modeling efforts, and wrote the first few drafts of the

manuscript. The other co-authors provided modeling input, including specifics on how to

incorporate and test antibody boosting, and helped with later drafts of the manuscript. All

pomp code for this chapter, as well as Chapters 2 & 3 are included in Appendix D.

4.2 Abstract

Herpesviruses are among the most widespread pathogens in humans; nearly every per-

son will have been infected with at least one herpesvirus in their lifetime. Herpesviruses,

though they vary in many aspects of their biology, have a commonality in that they cause
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recurrent disease due to viral latency in the host and subsequent reactivation. Of the nine

herpesviruses that infect humans, varicella zoster virus (VZV), which causes chickenpox and

reactivates as shingles, has the richest legacy of research into its transmission dynamics,

primarily because chickenpox is a notifiable, vaccine-preventable childhood disease. Data

availability, as well as pressing policy questions surrounding chickenpox vaccination, make

it a favorable study system for understanding the integrated transmission and reactivation

dynamics of herpesvirus more generally. In order to reveal the underpinnings of VZV’s natu-

ral dynamics in the absence of intervention, we utilized data from Thailand, which does not

vaccinate for chickenpox or shingles. We developed generalizable mechanistic mathematical

models of herpesvirus transmission and reactivation to examine hypotheses on: (1) drivers

of transmission and reactivation of VZV, and (2) immune-modulated interactions between

chickenpox transmission and shingles reactivation. In particular, our models were used to

elucidate the cause of the observed seasonal patterns in both chickenpox and shingles, along

with the association between ultraviolet (UV) irradiation and shingles. The fitted models

suggest independent seasonal drivers of chickenpox transmission and shingles reactivation,

with the level of UV exposure being a candidate mechanistic driver of elevated risk of shin-

gles reactivation. Moreover, model simulations suggested that Thailand could have avoided

500,000 chickenpox cases during our 9-year study period with the inclusion of the chicken-

pox vaccine in their childhood immunization schedule. The best-fit model also suggested the

introduction of chickenpox vaccination would not result in an increase in shingles incidence,

although the results are preliminary, and further work to answer this question is warranted.

With contention surrounding VZV vaccination worldwide, along with vaccines against four

other members of the herpesvirus family in clinical trials, a better understanding of the

biology driving herpesvirus dynamics is crucial for vaccination and policy, especially the

unknowns surrounding reactivation and virus population ecology.
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4.3 Introduction

Viral infections in humans are typically identified when they become symptomatic; how-

ever, most viruses cause minimal to no clinical symptoms. The herpesvirus family, which

infect nearly all humans at some point in their life, is unique in that they are able to cause

recurring disease due to cycles of lytic (transmission) and latent (reactivation) life stages

Nine herpesviruses infect humans, including herpes simplex 1 & 2 (HSV-1 & HSV-2), which

cause oral and genital herpes, Epstein-Barr virus (EBV), which may cause mononucleosis,

cytomegalovirus (CMV), which may result in congenital CMV, and varicella zoster (VZV)

— which can present as both chickenpox and shingles. Initial infection with herpesviruses re-

quires close-contact. Typically, infection occurs via saliva/respiratory or sexual transmission

modes. Subsequent reactivation of herpesviruses is highly complex at the molecular level, and

the conditions favoring reactivation remain relatively unknown. In animal models, trauma

and stress (e.g., elevated body temperature) can induce reactivation [178]. Human HSV cold

sores on the other hand, have been shown to correlate with fatigue and ultraviolet (UV)

irradiation [229,233]; and reactivation of EBV has occurred in vitro after B-cell stimulation,

suggesting that a response to another infection may trigger EBV reactivation [144]. While

VZV transmission, in the form of chickenpox, has been well-studied, immunity from VZV is

not well understood, and the mechanisms causing shingles reactivation remain unknown.

Varicella zoster virus is transmitted when it presents as chickenpox, but later reactivates

from latency as shingles. By the age of 15 years, 99% of individuals across the world have

antibodies to VZV [185,225], but only approximately 30% of individuals will ever experience

a symptomatic reactivation of VZV expressed as shingles [61]. In general, chickenpox is the

only notifiable herpesvirus disease. Since chickenpox dynamics are known to be impacted by

transmission during school-terms [104,127], VZV is the ideal study system for understanding

herpesvirus reactivation using population-level approaches. This is because (1) data are

available for study and (2) since the transmission process is well understood, it reduces

the dimensionality of the unknowns to be focused on the reactivation process. Chickenpox
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is characterized by explosive springtime outbreaks [9], while shingles has been noted to

lack seasonal patterns in incidence [24, 40, 46, 79, 97, 156, 182]. VZV reactivation has been

hypothesized to be modulated by UV irradiation, which has been shown to reactivate HSV

[233] by suppressing immunity [57, 81, 185, 238], but to date there have been no definitive

studies linking UV as a mechanism driving shingles dynamics.

Despite the VZV vaccine being first approved in the US in 1995, vaccination policy for

VZV is a topic of much debate. It is a live-attenuated vaccine administered in two doses

during childhood, while a booster dose (i.e., the shingles vaccine) later in life suppresses

potential VZV reactivation in adults [185]. Because it is attenuated, those immunized as

children have a greatly reduced potential for later reactivation. Childhood VZV vaccination

is only included in the vaccine schedule in a limited number of countries. The vaccine is

contentious because childhood immunization against VZV has been hypothesized to prevent

VZV circulation, and adult exposure could result in natural boosting of immunity, reducing

the risk of VZV reactivation later-in-life as shingles [26,97,145,146,207]. Complications from

chickenpox are rare, with less than 1% of infected individuals ever experiencing complications

[221], though with an estimated 4 million cases prevented by vaccination each year in the

United States [41] this is not a trivial number.

The hypothetical reduction of VZV antibodies in adults due to a decrease in antibody

boosting, is the primary reason VZV vaccination has not been implemented worldwide. We

refer to antibody boosting here as a proxy for cellular immunity, which is primary immune

mechanism that protects from shingles reactivation [146]. Theoretical models examining

chickenpox and shingles interactions that utilize antibody boosting have all predicted a

sharp increase in shingles with the inclusion of the chickenpox vaccine [25, 26, 90, 107, 152,

181, 217]. Empirical evidence from surveillance programs in locations that immunize are

less conclusive, observing both an increase [85,123,235] and no change [106,131] in shingles

incidence. Other countries, such as Canada [24, 172], the United Kingdom [24], and pre-

vaccine United States [156] have previously experienced an increase in shingles cases without
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vaccination. In Spain, which vaccinates in some regions (e.g. Madrid [9]), shingles incidence

has been steadily increasing, partially due to demographic changes via a sharp drop in

birth rates [135]. With the availability of the VZV vaccine, and EBV [72], CMV [239], and

HSV [49] vaccines currently in clinical trials, a better understanding of the biology driving

herpesvirus dynamics, specifically reactivation, is needed.

In this study, we took advantage of population-level data on chickenpox and shingles to

examine herpesvirus transmission and reactivation, using the following procedures:

I) We obtained spatiotemporal chickenpox and shingles monthly clinical case reports,

and annual age-specific incidence from Thailand, spanning 2003-2011 to characterize the

population dynamics at the national and regional scale.

II) Since herpesviruses have been identified to reactivate from latency by UV irradiation,

we acquired national and regional UV data for Thailand, to examine the relationship between

UV and shingles incidence.

III) We built eight mechanistic models to test various drivers of herpesvirus transmission

and reactivation.

IV) Finally, we simulated the best-fit model under various conditions of immunization in

Thailand which suggested that more than 500,000 chickenpox cases could have been avoided

during this time period.

4.4 Data

Here we took advantage of clinical case notifications of chickenpox and shingles made

publicly available by the Ministry of Health in Thailand [202] to examine herpesvirus trans-

mission and reactivation. We obtained regionally-resolved monthly chickenpox and shingles

case reports, and annual age-specific incidence from 2003-2011. To test for potential effects of

UV on shingles, we also collated complementary UV covariate data from the National Center

for Atmospheric Research (NCAR) [1]. Case data and covariates were coupled with mech-

anistic transmission-reactivation models to test hypotheses regarding seasonality of VZV

45
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(see	  below)	  
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IVZ	  =	  #	  of	  chickenpox	  cases	  

(A)	  

(B)	  

(C)	  

(D)	  

Figure 4.1: (A) Biological structure of the eight model variants fit to the chickenpox and shingles
data from Thailand. AB is antibody boosting, where it is either present (AB+) or absent (AB-) in
the model. (B) Model schematic, model variants differed in the λ and κ parameters which can be
seen in Eqs C.16-C.19. State transitions and the force of infection are described in Eqs C.1-C.15.
(C) The equation for new shingles infections (IHZnew), Eqn C.15, is described in detail. φ is the
antibody boosting multiplier, γ is a fixed death rate parameter, and ι is a fixed rate of reactivation.
(D) Functional form of antibody boosting tested in half of the model variants. Antibody boosting
assumes high chickenpox incidence boosts VZV antibodies in adults through exposure, examples
curves are shown in red. The equation for antibody boosting, Eqn C.20, is shown here.

transmission and reactivation, as well as immunological interactions between chickenpox

and shingles. All analyses were done in R.
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Figure 4.2: Chickenpox and shingles cases in Thailand with complementary UV covariates. (A)
Monthly log-detrended cases of chickenpox (black) and shingles (red). (B) Boxplot of log-detrended
chickenpox cases in Thailand. (C) Boxplot of log-detrended shingles cases in Thailand. (D) The
correlation between (log-detrended) shingles cases and UV, monthly.

4.5 Models

Since the mechanisms driving the transmission and reactivation of herpesviruses are not

well understood, multiple biological hypotheses were considered to interpret VZV dynamics

at the population level (Fig 4.1A). A modular compartmental model, a redeveloped classical

S-I-R [109], was utilized for its simplicity, appropriateness, and potential to be easily trans-

formed and applied to other herpesvirus systems. The model included seasonal variation in

the transmission rate (i.e., transmission resulting in chickenpox) and the reactivation rate

(i.e., reactivation resulting in shingles). We used model variants that allowed us to estimate

the shape of seasonal variation in transmission and reactivation such that the model could

capture (i) effects of elevated transmission when children were in school, (ii) variation in reac-

tivation due to hypothesized climate effects, such as UV radiation, or (iii) other unidentified

seasonal drivers (Fig 4.1). Model variants include those that assumed chickenpox trans-

mission and shingles reactivation have (1) identical or (2) independent seasonal variation
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in rate. We also tested models that explicitly included UV irradiation data as a covariate

driving seasonality. Importantly, all model variants were formulated in combination with the

inclusion of antibody boosting to test whether the data support immunological interactions

between VZV transmission and reactivation (Fig 4.1). Lastly, we simulated our best-fit

model under three hypothetical conditions of VZV vaccination. We incorporated uptake

data from the measles and hepatitis vaccine rollouts for Thailand [228], and a hypothetical

ideal vaccine rollout where 99% coverage would be achieved at the end of the first year and

maintained. In these simulations, we only immunized newborns, as we assumed there would

be no national immunization days, or catch-up campaigns, for VZV vaccinations. For this

simulation, we accessed chickenpox data going back to 1995 (shingles data were unavailable),

when the VZV vaccine was first licensed in the US. We then estimated the number of chick-

enpox cases that would have been averted had VZV immunization been realized. All models

were implemented in the R package pomp and fit using Maximum Likelihood by Iterated

Particle Filtering (mif) [111]. Each model variation searched a minimum of 500,000 unique

parameter combinations. Additional modeling details, including all equations, can be seen

in the Appendix C & D information.

4.6 VZV Dynamics

As anticipated, strong seasonal cycles were detected in chickenpox dynamics. Surpris-

ingly, shingles cases also displayed seasonal variation of incidence (Fig 4.2A,C). Chickenpox

dynamics were characterized by explosive outbreaks which began at the end of the year,

where the epidemic take-off was Nov–Dec, culminating with seasonal peaks from Feb–Mar,

followed by deep troughs that lasted Jun–Oct. The seasonal peak in shingles cases occurred

May–Jun, with an annual trough in December. Interestingly, January consistently had a

relatively high number of shingles cases, but the reactivation take-off was then stunted by a

three-month trough from Feb–Apr, before an eventual two month long annual reactivation

peak from May–Jun (Fig 4.2A,C). This peak was followed by a slow decline in cases through
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December. When examined using a cross-wavelet analysis, both diseases displayed signifi-

cant annual (12-month) periodicity, with a quarter-year lag (3 months) between chickenpox

and shingles incidence (Fig C.8).

Since country-level shingles case reports indicated a novel seasonal pattern, we inves-
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Figure 4.4: The relationship between shingles and UV in Northern Thailand. (A) Monthly log-
detrended shingles cases (blue) and monthly UV index (orange). (B) Cross-correlation between
shingles and UV. (C) Correlation between UV and log-detrended shingles cases. (D) Correlation
between log-detrended shingles cases and UV the previous month. (E-F) Boxplots showing the
seasonal distribution of UV index and log-detrended shingles cases.

tigated the possibility of spatial variation in seasonal incidence by region. A latitudinal

gradient was observed in shingles seasonality, with the highest latitude region having the

strongest consistent seasonality (Fig 4.3A), a pattern which diminished in the southern re-

gions. The northern region, where the strongest seasonal signal of both shingles and UV was

located, also had the highest shingles incidence rates in Thailand (Fig C.3).

We observed a significant correlation between the monthly UV index and monthly number

of shingles cases. Country level patterns were striking, with increased shingles cases (R2 =

0.425) in months with higher UV exposure (Fig 4.2D). On a regional scale, the UV-shingles

relationship was stronger in the northern, northeastern, and central regions than southern

(Figs C.4, C.5). Thailand, as a country, spans a latitudinal gradient from 5-21 degrees North,

with the northern region encompassing roughly 15-21 degrees north, and the southern region

including 5-12 degrees north. Throughout the study-period, 12 month periodicities in both

UV and shingles were significant, with a 1/8 year (approximately 1.5 month) lag between
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the initial increase of UV and the increased number of shingles cases (Fig C.7). If the UV-

shingles relationship is due to the hypothesized UV effects on the immune system, then this

lag could be due to the time it takes for (1) UV to affect the immune system, (2) VZV

to reactivate and cause shingles, (3) health-care seeking, and (4) subsequent reporting of

clinical cases.
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Figure 4.5: Comparison of simulated monthly cases of chickenpox and shingles from the best
fit model (#3) with reported clinical cases in Thailand 2003-2011. (A) Reported clinical cases
of chickenpox (black) with the mean simulated fit from 10000 simulations (purple) with standard
deviation (aqua) through 2010, with forecasted (not fitted) values shown for 2011 (dark blue).
(B) Maximum likelihood (B-spline) estimate of the monthly seasonal forcing for chickenpox from
the best fit model (black), and school terms for Thailand (green). (C) Reported clinical cases
of shingles (black) with the mean simulated fit from 10000 simulations (purple) with standard
deviation (aqua) through 2010, with forecasted (not fitted) values shown for 2011 (dark blue). (D)
Maximum likelihood (B-spline) estimate of the the monthly seasonal forcing for shingles from the
best fit model (red), and mean monthly UV values for Thailand (orange).

4.7 Model Fitting

The current best fit model, model #3, utilized separate seasonal drivers to fit the chick-

enpox and shingles clinical case reports (Table C.1) (Fig 4.5). This is unsurprising because
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the method we used to estimate seasonality, B-splines, are able to encompass all seasonal

processes, including any regular seasonal patterns, such as our other proposed mechanism,

UV irradiation. This B-spline seasonal driver is a non-parametric representation of seasonal

forcing that can account for flexible seasonal patterns, however it is unable to account for

any inter-annual variation (deviations) in seasonality. The best-fit mechanistic model, model

#3, was simulated 10,000 times and compared with observed cases of chickenpox and shin-

gles (Fig 4.5A,C). The seasonal transmission and reactivation parameters estimated from

this model were highly seasonal and closely matched known school terms in Thailand for

chickenpox (Fig 4.5B), and national level UV for shingles (Fig 4.5D.) Interestingly, it was

unable to fit the early (Feb-Apr) drop in shingles cases (Fig 4.2A & Fig 4.5C)

Furthermore, while model #3 mathematically fits best, the model variation (#5) that

included a seasonal forcing for chickenpox and a UV irradiation function for shingles reac-

tivation also fit well, as did the associated models that contained antibody-boosting (#4 &

#6) (Table C.1). Further model testing will be required to tease apart these two models,

especially since the inclusion of antibody boosting in models (all even numbered models)

did not improve AIC (Table C.1). Because all models that do not include antibody-boosting

(models 1, 3, 5, & 7) are nested within those that include antibody-boosting (models 2,

4, 6, & 8), the full models (that include antibody-boosting) should always have a better

log-likelihood, but they do not. The fact they do not fit as well is likely due to the fact

that the models have not yet converged at their maximum likelihoods. However, given the

difficulty these models have with meeting, much less exceeding, their model counterparts

lacking antibody-boosting, it seems that antibody-boosting is unable to explain a significant

amount of additional variance in the data, which we could further examine with F-tests.

Thus, even though model #3 fit both chickenpox and shingles dynamics well, with out-of-fit

predictions correctly estimating the seasonality and predicting a similar amount of cases for

both diseases, it is not yet possible to rule out alternatives, such as the more mechanistic

model #6. For now, model #3 does demonstrate that, though simple, it was able to capture
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the dynamics of both diseases. (Fig 4.5).

Model Simulations

Model simulations that included immunization demonstrated a surprisingly large drop in

the number of chickenpox cases (Fig 4.6). Utilizing the conservative uptake values from the

Thailand measles vaccine rollout, where coverage of newborns didn’t eclipse 50% until the

4th year, 75% until the 9th year, and 90% until the 13th year (Fig 4.6E), approximately

500,000 cases would have been prevented during our study period 2003-2011 (Fig 4.6D).

Alternatively, a more efficient rollout, such as the one for hepatitis would have prevented

550,000 cases; while an ideal scenario of 99% coverage would have prevented 570,000 cases

(Fig 4.6D). Since we were intentionally conservative in these simulations by only immunizing

newborns, any VZV catch-up immunization campaigns would further reduce the number of

simulated cases. Due to the lack of interaction between chickenpox transmission and shingles

reactivation in model #3, the simulations had minimal effect on shingles incidence.

4.8 Discussion

In this study we utilized population level herpesvirus data in Thailand to (1) reveal sea-

sonal patterns of chickenpox transmission and shingles reactivation, (2) confirm the strong

relationship between ultraviolet irradiation and shingles incidence, (3) identify that chick-

enpox transmission and shingles reactivation are driven by separate mechanisms and (4)

simulate the best fit model under immunization conditions to suggest that 500,000 cases of

chickenpox could have been prevented in Thailand had the vaccine been implemented when

first licensed.

Our analyses indicated a strong springtime chickenpox transmission pulse, and surpris-

ingly, a 3-month lagged seasonal shingles reactivation peak (Fig 4.2). Previous studies of

shingles reactivation at smaller scales (e.g. hospitals or towns) indicated a lack of observable
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Figure 4.6: Best fit model simulations under three immunization regimes. For all panels; reported
chickenpox cases (black), simulated chickenpox cases (blue), simulated chickenpox cases utilizing
the data from the 1984 measles vaccine rollout in Thailand (magenta), simulated chickenpox cases
utilizing the data from the 1992 hepatitis B, 3rd dose vaccine rollout in Thailand (orange), and
simulated chickenpox cases utilizing and ideal rollout where near-perfect (99%) coverage is achieved,
and maintained. (A) Time series of monthly cases since 1995. (B) Total number of chickenpox
cases over the 17 year period. (C) Time series of simulated models under immunization regimes,
during our study period (2003-2011). (D) Total number of chickenpox cases over our 9 year study
period. (E) Vaccine uptake used for the three immunization simulations - uptake data for measles
and hepatitis are from the actual Thailand rollouts for these vaccines.

seasonality in reactivation [24,40,46,79,97,156,182]. Two possible explanations for the lack

of shingles seasonality in previous studies, and in the southern region of our study, include:

There could be regional differences in seasonality, with some regions lacking seasonal vari-

ation in reactivation risk. For example, the mechanism driving reactivation may not vary

seasonally or may not affect a large enough part of the population (e.g. if UV drove shingles

reactivation, but everyone worked inside). Alternatively, it could be that seasonal variation

in reactivation risk exists across regions, but due to the low amplitude of the variation, it is

hard to distinguish from noise in locations with low incidence/fewer cases; thus, having less

power to detect seasonality. In our study it became more difficult to identify seasonality as
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we broke the data into regions and zones (Figs C.2, C.4, & C.5). Shingles incidence displayed

a latitudinal gradient of seasonality (Fig S2 & S4), similar to transmissible diseases such as;

polio [133], influenza [98], rotavirus [51], chickenpox [9], bacterial meningitis [147], and res-

piratory syncytial virus [21]. We identified a strong correlation between shingles reactivation

and UV irradiation, providing evidence that UV could have a biological impact on shingles

reactivation, similar to the effect it has on HSV.

The best-fit models (#3 — #6) revealed the drivers of chickenpox transmission and

shingles reactivation are distinct (Fig 4.5). The fitted seasonal force of infection function for

VZV transmission contained increased seasonality in Jan-Feb and a smaller increase in Aug-

Sep, both which lagged Thailand school terms. Decreased seasonal forcing for chickenpox

was seen in May-Jun and Oct-Nov, both of which were preceded by weeks when students were

on vacation (Fig 4.5B). Model #3 identified that the shingles peak reactivation forcing was

lagged from the UV-peak, which could be due to the time between the start of the cellular

reactivation pathway and the appearance of symptoms [237] (Fig 4.5D). Alternatively, this

reactivation delay may be from the time it takes for an accumulation of immune-related stress

from extended UV exposure. It is also possible for a reporting lag to exist between symptom

appearance and a clinic/doctor visit. UV may, therefore, play a role in the reactivation of

shingles, albeit delayed. Molecular investigation of this potential interaction could shed light

on the biology underlying herpesvirus reactivation in general. Additional testing of models,

especially those examining model #6, will be done, potentially including a lag-function for

the relationship between UV and shingles incidence.

The role of antibody-boosting remains unresolved. While model #3 demonstrated that

chickenpox exposure need not have any effect on immune boosting and shingles reactivation

risk to explain the data, this contradicts prevailing concerns that the VZV vaccine will result

in higher shingles incidence by reducing antibody-boosting. This model was also unable to

fit the Feb-Apr trough in shingles cases or the inter-annual variation in chickenpox cases,

specifically in 2004 and 2009. Additionally, the next best fit model with different mecha-
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nisms driving seasonality, model #6, identified antibody-boosting as a critical component

for model-fit. Moreover, the models have not all yet converged to their maximum likelihood

estimates, as evidenced by the fact that nested models such as #3 & #4 do not show the

expected likelihoods (e.g. #4 should be able to do at least as well as #3 but does not).

Thus, further work needs to be done to delineate between these two models and, specifically,

what effect antibody boosting has on model fit.

In addition to the convergence and estimation issues making distinguishing a single best-

fit model difficult, the issue is further complicated by the flexibility of the spline forms.

Because the chickenpox data is highly seasonal (and the model fit even more so), much of the

effects of antibody-boosting can likely be instead captured by the B-splines, similarly to how

the B-splines appear to be capturing term-forcing and UV effects. This suggests that using

model fit alone to uncover the antibody-boosting and the other proposed mechanisms (such

as UV) will depend strongly on the inter-annual variation, which the splines do not capture

(which is also at least partly why the current best-fit model does not capture the inter-

annual variation well). Thus, further fitting of the near-best fit models (#4-6) is warranted.

However, since UV does not appear to be a driver for chickenpox, we do not have any

inter-annually-varying driver that can affect the model-fitted chickenpox (and thus provide

inter-annual variation in antibody-boosting), which may limit our ability to determine the

role of antibody-boosting without additional time series data on chickenpox drivers (e.g.

demographics or contact pattern data). One approach to addressing the lack of time series

data on chickenpox drivers might be to fit a reduced model of shingles-only, which uses the

inter-annually varying chickenpox data itself as a driver for shingles, via antibody boosting.

Another option would be to use the reported monthly chickenpox cases as a covariate in our

antibody-boosting function, rather than the model-estimated chickenpox cases (which again,

has little inter-annual variation due to the B-spline).

Given that much of the effects of antibody-boosting can be captured with the B-splines,

this makes simulation of counterfactuals regarding shingles patterns difficult. Antibody-
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boosting effects that are captured in the spline patterns will not respond to changes in

chickenpox dynamics as a mechanistic antibody boosting model would, and so won’t be

affected by simulated vaccination interventions. Thus, we must be careful before interpreting

the shingles predictions. By contrast, chickenpox predictions will be less affected by the

mechanistic uncertainty in our models, and thus likely to be more robust to the model

uncertainty shown here. In future work, we plan to use the set of best-fit candidate models

for our intervention simulations, to better capture the range of uncertainty in the antibody-

boosting effects.

Because the current best-fit model does not include interaction between chickenpox trans-

mission and shingles reactivation—via the boosting of VZV antibodies in adults—there was

minimal effect of vaccination on the number of shingles cases when childhood vaccination was

included in the fitted our model. These simulated results are in-line with the US experience

with VZV vaccination, which had a 67–84% reduction in overall cases after only 5 years of

immunization [188]. While long-term VZV antibody boosting may still be affected by chick-

enpox incidence, a decrease in boosting is likely unavoidable, as previous epidemiological

studies have shown a drop in boosting due to demographic shifts in the population struc-

ture, via a decreased birth rate [135]. In Thailand, a massive demographic shift has been

occurring over the last four decades, driven by a decreasing birth rate, which has been shown

to impact other diseases [54]. Regardless, any drop in antibody-boosting due to chickenpox

immunization could be countered by dropping the recommended age for shingles vaccination.

The model was intentionally modular and simple, allowing us to test competing hypothe-

ses for the biological drivers of herpesvirus transmission and reactivation. Our generalized

model could be utilized for other herpesviruses, allowing for multiple movements between

the infected and latent classes for HSV-1 and HSV-2. For CMV, the model could be al-

tered to include congenital infection in newborns instead of (shingles) reactivation. Finally,

a model for EBV would include only one diseased class (mononucleosis), but reactivation

would allow the possibility of transmission to susceptible individuals. Simulations which
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included realistic immunization uptake rates demonstrated the potential for a substantial

drop of nearly a half million chickenpox cases during our 9-year study period (Fig 4.6). As

expected, increased vaccine coverage reduced the total number of cases; however, we found

that even low vaccine uptake would drastically reduce chickenpox morbidity if higher targets

(e.g. ≥ 95%) were not feasible.

Herpesviruses are incredibly contagious and the nine viruses within the family possess

unique lytic (transmission) and latent (reactivation) life stages, both of which need to be

better understood. With almost 100% infection risk globally, herpesviruses silently persist

within the human body during latent periods. Likewise, since herpesvirus diseases are non-

notifiable, they silently persist within human populations, contributing to the hidden burden

of disease. Though uncommon, complications from herpesviruses are severe. With a proven

safe, and effective VZV vaccine that protects against chickenpox and shingles, and clinical

trials for four other herpesvirus vaccines currently underway, knowledge of the underpinnings

of herpesvirus dynamics can unlock the potential for prevention and control of these diseases

4.9 Acknowledgements

I would like to thank Robert Woods, Pej Rohani, and John Drake for multiple discussions

and feedback regarding this manuscript.

58



CHAPTER V

Conclusions

This work examined human birth and disease dynamics across both space and time to

better understand the mechanisms that may be responsible for the observed inter- and

intra-annual variation seen in infectious disease outbreak dynamics. In addition to these

three chapters, I have other research projects in progress; both in terms of understanding

birth seasonality and its role in childhood disease dynamics, but also an investigation into

the infectious disease dynamics across a broad spatiotemporal landscape.

Chapter 2 [132], focused on characterizing the birth seasonality of each state in the US over

a period of 78 years. This research included analyses of birth data from developed countries

in the Northern Hemisphere via the World Health Organization (WHO) [226]. I discovered

a strong latitudinal relationship to the timing of the birth peak, with countries further from

the equator having an earlier birth peak, and those closer to the equator having a later

birth peak, indicating a similar mechanism acting on developed countries in the northern

hemisphere [132]. Northern US states had birth peaks which occurred 2 − 4 months prior

to states located in the Southern US, a pattern which also epitomized developed Northern

Hemispheric countries. Additionally, in the US a strong latitudinal gradient was observed

in the strength of the birth pulse, with states in the south exhibiting much stronger pulses,

despite that pulse occurring later in the year. Finally, I implemented this knowledge into a

Susceptible-Infected-Recovered (SIR) model to examine whether the seasonality in human
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births had the potential to play a role in childhood disease dynamics. I discovered that the

timing and strength of the birth pulse in the US was sufficient to alter the magnitude of

measles epidemics in 20th century America. Additionally, I found that a stronger seasonal

pulse, such as those reported in developing countries [64, 132] would have the potential to

significantly alter childhood disease dynamics, especially in diseases which infect younger

children (such as rotavirus or respiratory syncytial virus).

While Chapter 2 focused on characterizing birth seasonality in developed countries in

the northern hemisphere [132], one of the main critiques of that work was the lack of data

from either developing countries or those located in the southern hemisphere. These types of

records do not exist for more than a dozen or so countries, so I looked elsewhere, eventually

being granted access to a demographic survey database from 102 countries. These survey

data were taken over the course of 25 years in developing countries in Africa, Southeast Asia,

and South America [60]. This research will take advantage of these long term surveys from

developing countries and explore the multivariate facets of birth seasonality (timing and

amplitude), and incorporate annual birth rates from the World Health Organization [226],

allowing for a full reconstruction of historical monthly birth data in these countries. From

these DHS survey data, I have discovered that (I) birth seasonality exists in developing coun-

tries and (II) that across developing countries, birth seasonality does not have a latitudinal

gradient similar to the developed world [132], but rather a heterogeneous pattern.

In my second chapter, I found that the amplitude of birth seasonality has been decreasing

in the United States since the baby-boom [132] A similar pattern was identified in a study

focused on births in Spain from 1941-2000 [35]. This led me to ask: how long has this

decline in birth amplitude been occurring? I subsequently found, and digitized, 300 years of

monthly birth and death data, ranging from the years 1541-1836, from England and Wales,

to analyze the season of birth. Upon examining the 60 million births from this period, I

found that births were bi-annual from the start of the time series (1541) until the end of the

17th century, around the same time deaths started to decrease and the overall population of
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England began to increase rapidly. Birth amplitude was large at the start of the study, due

to the small population size, and steadily decreased through the time series. This pattern

is surprising, because the decreasing amplitude in birth seasonality has previously been

attributed to modern medicine, changes in the workplace environment (farm to office), and

the invention of air-conditioning, all of which are 20th century phenomena. Death had an

annual periodicity that persisted across the entire time series (47M deaths), and I was able

to link periods of increased death to historical pathogen outbreaks (i.e. the Great Plague of

London, various influenza epidemics, and repeated smallpox outbreaks.) Combined, these

analyses have revealed that the loss of amplitude in birth seasonality has been occurring for

much longer than previously identified, that the switch from bi-annual to annual birth peaks

in the U.K. transitioned hundreds of years before it occurred in the U.S., and allowed for

the linking of increased patterns of deaths to historical disease epidemics.

With all the work I have done characterizing historical birth seasonality around the world,

and the less-than-expected impact it has on measles epidemics in the U.S. [132], under what

conditions can birth seasonality play a role in childhood disease dynamics? Multiple studies

have demonstrated the importance of demographics for understanding childhood infectious

disease transmission, particularly the importance of (i) birth seasonality [64, 132] and (ii)

age-stratified contact rates [167]. Chapter 2 demonstrated that birth seasonality, in terms

of the timing and amplitude of seasonal birth pulses, can independently impact disease dy-

namics [132]. A recent study that quantified age-stratified contacts across multiple countries

in Europe [140] has since been integrated into transmission models of childhood infection

to explain demographic shifts in disease incidence [167]. However, these two mechanisms,

birth seasonality and an age-stratified network, have never been considered in combination.

This work is unique from my previous research, because in an age-stratified model, births

enter the first age class rather than a single age class representing the entire population,

and term-time forcing can be applied to the appropriate age classes rather than the entire

population. This work will allow me to explore how the global range of birth seasonality
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(timing, amplitude, rate) parameters affect disease dynamics. Additionally, this work will

disentangle the dynamical effects of birth seasonality, independent of term-time forcing on

childhood infectious diseases. This research will combine an age-stratified contact network

with birth seasonality parameters from across the world to determine how they interact to

alter disease epidemic magnitude, timing, and frequency.

While Chapter 2 examined the role of birth seasonality in the dynamics of childhood

infectious disease outbreaks, there remained a lack of accessible population-level clinical case

reports for many diseases. These are mandatory to begin understanding which mechanisms

may be driving seasonal outbreaks of disease. Chapters 3 & 4 were motivated by Fig 5.1,

which I received from Tyler Stevenson (a co-author on [9] - Chapter 3).

B	  A	  

Figure 5.1: Information seeking behaviour data from Google Trends, for (A) chicken pox and (B)
shingles searches in the United Kingdom, monthly averages from 2004-2013.

The first of these two chapters [9], Chapter 3, examined digital epidemiology, and the al-

ternate avenues to examine disease dynamics when clinical case data are unavailable. Disease

surveillance systems largely focus on infectious diseases with high mortality, while benign

diseases often go unreported. Using chicken pox as an example, I demonstrated that internet

queries can be used as a proxy for disease incidence when reporting is lacking. I established

that Google Trends accurately reflected clinical cases in countries with surveillance, and
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thus, population-level dynamics of chicken pox incidence. Then I discovered robust seasonal

variation in query behavior, with a striking latitudinal gradient on a global scale. Third,

I showed that real-time data-mining of queries could forecast the timing and magnitude of

outbreaks. Finally, the analyses revealed that countries with government-mandated vaccina-

tion programs have significantly reduced seasonality of queries, indicating vaccination efforts

mitigated chicken pox outbreaks.

Other research of mine has focused on understanding the spatial complexities in the tim-

ing of historical childhood infectious disease outbreaks in the US and across the world, with

a goal of identifying the environmental or demographic mechanisms driving these patterns.

Understanding the spatial and temporal variation of infectious disease incidence is perti-

nent to understanding the ecology governing disease transmission. To date, the testing of

hypotheses regarding the mechanisms that generate patterns of disease across a landscape

have been limited by the lack of longitudinal disease data. Here, I take advantage of a re-

cently digitized historical dataset of clinical case reports spanning the 20th century in the

United States [218] and from over 90 countries traversing the years 1943-1975 [226]. Us-

ing these data, I ask (I) do these 17 notifiable infectious diseases occur seasonally, (II) does

heterogeneity exist in the epidemic timing of these diseases, and if so, (III) is the heterogene-

ity driven by seasonally forced environmental or demographic mechanisms? Initial analyses

have revealed that all seventeen of these diseases have significant annual outbreaks, with

measles, mumps, and rubella displaying multienniel periodicities. A south (early)-to-north

(late) gradient in the timing of the outbreak peak for both polio and typhoid fever was de-

tected. A strong geographical pattern in the timing of the outbreak peak for diphtheria and

scarlet fever were also identified, with states in the southeast had outbreak peaks 2 months

earlier than those states in the midwest, northeast and western US. Analyses are ongoing

for country level data, but all examined thus far display annual periodicities. With this

knowledge, I will examine the association between three environmental variables (rainfall,

temperature, and humidity) and four demographic variables (birth rate, timing, amplitude,
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population size) and the incidence of any diseases (so far; typhoid fever, scarlet fever and

diphtheria) that display a geographic pattern with a mechanistic model. Finally, I will inte-

grate gravity-coupling into my mechanistic models to capture the spatiotemporal properties

of these epidemics.

One of these diseases is polio, which is the next human disease slated for eradication.

The first recorded outbreaks of Wild Poliovirus (WPV) are over 100 years old, when an

almost simultaneous appearance of epidemic WPV appeared across Scandinavia, Western

Europe, and the United States [121]. Prior to the introduction of the polio vaccine in

the 1950s [176], WPV outbreaks were strongly seasonal in temperate regions, with increased

incidence in the summer months [102], while seasonality was virtually absent near the equator

[73,186]. The seasonal patterns of WPV incidence have led to hypotheses that link seasonal

environmental factors, such as temperature, humidity, or rainfall to the seasonality of WPV

transmission [5, 94, 102, 193, 232]. However, to date there has been no definitive study to

identify which factors are most strongly correlated to the seasonal patterns observed in WPV

outbreaks [141]. With the 2016 re-emergence of WPV in Nigeria, there are currently three

countries experiencing endemic transmission; Afghanistan, Nigeria, and Pakistan [87]. Polio

is a viral infection transmitted fecal-orally. Symptomatic infections last for approximately

10 days and include fever, sore throat, headache, and stiffness. Paralytic polio infections are

rare, comprising less than 1% of all infections. A typical infection lasts 5-45 days, which

includes the infectious period where an infected individual is actively transmitting WPV to

other individuals [141,141,176].

WPV seasonality has been noted for its irregular and non-synchronized dynamics across

space in temperate regions [102,133]. In regions near the equator, little to no seasonality has

been observed in WPV dynamics [73, 186]. Recent work has illustrated that in order to re-

duce or eradicate any infectious pathogen, it is essential to understand the local climatic [114]

and demographic [75] conditions. This research will explore environmental, demographic,

and social factors that may be associated with WPV seasonality across a spatially resolved
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landscape in both temperate and tropical regions. By examining WPV seasonality across

latitudinal and longitudinal gradients, I will gain an understanding of the factors most com-

monly associated with WPV incidence in each location. In order to infer which of these

factors are most important, I will combine process-based dynamical models with long-term

time series spatially replicated across populations, to understand the environmental, de-

mographic, and social factors associated with WPV persistence and transmission. Similar

methods have been used in the study of other seasonal childhood infectious diseases; for ex-

ample, the spatial variation in the timing of pertussis outbreaks in the US during the 1950s

led Choisy and Rohani to discover that nearby cities had synchronized outbreaks that cat-

alyzed outbreaks in local regions that then moved inward towards the interior of the country

from both coasts [47]. Similarly, Grenfell et al. [89] demonstrated that the historical persis-

tence of measles in England and Wales was driven by seasonal outbreaks in larger cities which

re-seeded smaller populations where the virus had previously gone extinct. These studies

combined long-term, spatially replicated data with disease-specific transmission models to

discern what drove the seasonality and persistence of disease transmission.

Despite more than 100 years of polio outbreaks, there remains a lack of understanding

as to why polio transmission and incidence has such strong seasonality. While the link

between environmental variables and transmission has been suggested, there are no data-

driven modeling efforts to link a specific factor with WPV seasonality. This work will use

extensive historical records to examine which environmental, demographic, or social factors

are most strongly associated with historical polio outbreaks, by constructing models that

test these hypotheses.

The Global Polio Eradication Initiative (GPEI) has set and missed four polio eradication

deadlines. Current immunization strategies include national and subnational/supplementary

immunization activities wherein eradication campaigners maximize vaccination efforts for

certain days during the year [87]. Despite the GPEIs efforts in distributing the attenuated

Oral Polio Vaccine (OPV), WPV remains endemic in Pakistan, Afghanistan, and Nigeria.
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In 2014, these countries re-seeded WPV in Central Africa, the Horn of Africa, war-torn

Syria, and the Middle East [62]. In Nigeria in 2016, where WPV was thought extinct, new

cases emerged in the northern regions of war-torn (Boko Haram) Borno state [87]. With

global unrest in Syria and multiple African nations unlikely to end soon, a new strategy

must be considered to maximize vaccine coverage in the global push towards final eradica-

tion. Historical work on polio has established that individuals vaccinated with OPV shed

this attenuated poliovirus seasonally, which can then indirectly immunize others within the

population against polio infection [18, 95, 101, 116, 127, 223]. Furthermore, historical sewage

sampling has revealed that OPV shedding is maximal at the same peak timing of WPV

incidence [66]. Thus, by identifying which environmental, demographic, or social factors

are most strongly associated with seasonal WPV transmission, public health officials will be

able to geographically tailor OPV campaigns to facilitate OPV shedding, thus maximizing

immunization coverage.

In Chapter 4, I utilized models to examine which factors were associated with herpesvirus

transmission and reactivation. This work has not been previously done due to the lack of

spatio-temporal data, despite nearly every person in the world being infected with at least

one herpesvirus in their lifetime. There are nine herpesviruses which vary slightly in their

biology, however they are all defined by their latent, recurring infections. Chickenpox, caused

by the varicella zoster virus (VZV) is the only herpesvirus studied at the population scale.

In the approximately 20% of individuals, VZV reactivates, causing shingles. Here, I used

spatiotemporal data from Thailand to examine the potential drivers of chickenpox trans-

mission and shingles reactivation, including an exploration of potential immune-modulated

interactions between the two disease manifestations. Preliminary models indicate that the

mechanisms driving transmission and reactivation are independent, with a strong associa-

tion between ultraviolat irradiation and reactivation. Additionally, the models suggested

that more than a half-million chickenpox cases could have been prevented during the 9-year
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study period had immunization been initiated, including more than 2000 hospitalizations

and 84 deaths. The current best-fit model also indicated that the vaccine would have little-

to-no effect on shingles incidence. Had chickenpox vaccination demonstrated that shingles

reactivation would increase, the shingles vaccine could be included into the immunization

schedule to prevent VZV reactivation. With the global controversy surrounding VZV im-

munization, and its potential effects on VZV reactivation, this work recommends that all

countries introduce mandatory chickenpox and shingles immunization.

In this dissertation, I have identified previously unknown spatiotemporal patterns in birth

seasonality and infectious disease dynamics. In addition to describing these patterns, I have

attempted to discern (work-in-progress) the mechanisms driving childhood infectious disease

dynamics. While most the data I use are historical, they can be applied to modern-day

outbreaks. Diphtheria had 30, 000 reported cases and 3, 000 reported deaths in the year 2000

[226], and recent scarlet fever outbreaks in England are the highest levels in 24 years [143].

Typhoid fever, a summer occurring disease, is estimated to have infected more than 21 million

and killed more than 200, 000 worldwide in the year 2000 alone [53], and while more than 400

cases of polio were reported as recently as 2013 [153], recent studies have indicated that silent

transmission, where visible infection is lacking, may raise this estimate by multiple orders

of magnitude [133]. Despite the high global morbidity and mortality of childhood infectious

disease, the mechanisms driving most childhood infections remain poorly understood. It is

my goal in the coming years to assist in the final eradication of wild poliovirus transmission,

by gaining insights into the mechanisms driving the seasonal transmission patterns of this

virus, and others. By employing large datasets, in terms of demographic, environmental,

and clinical case reports, I hope to provide public health officials with the information they

need to decrease the worldwide burden of infectious disease.
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APPENDIX A

Supporting Information: Human Birth Seasonality:

Latitudinal Gradient and Interplay with Childhood

Disease Dynamics

A.1 Human Birth Seasonality: Latitudinal Gradient and Inter-

play with Childhood Disease Dynamics: Supporting Infor-

mation

A.1.1 Birth Timing and Amplitude

In our analyses we followed the work of Rosenberg, who stated that adjusting for the

differing number of days in each month had little effect on analyses of birth seasonality [169].

Thus, we did not make any adjustments of our time series to account for the different number

of days in each month.

In the wavelet spectral analysis we tested for birth periodicity with periods ranging from

2 months to one-third the length of each data series. Since a significant 1 year period was

observed, we constructed monthly phase angle time series for each data series using an 11-13
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month period. The phase angle time series were subsequently used to determine the timing

of the annual birth peak for each location. Peak-birth months were then averaged for each

individual data series, with the U.S. states mapped to visualize the geographical variation in

the timing of the annual birth peak. When biannual peak-births occurred in the U.S., they

were separated into two 6 month periods: summer (May-Oct) and winter (Nov-April) (Figs.

A.1 & A.2).

The analysis of seasonal birth amplitude, or percent deviation from the annual mean, was

done using seasonally decomposed time series. The stl function in the stats package in R

was used to decompose the data into seasonal (S), trend (T ), and noise (N ) components for

each data series. The noise free time series were constructed as:

F = S + T (A.1)

The deviation from the mean during the birth peak was calcualted for each year, i, as:

x = max(Fi)−mean(Ti) (A.2)

The deviation from the mean during the birth trough was calculated for each year, i, as:

y = min(Fi)−mean(Ti) (A.3)

Thus, the one-half peak-trough difference is:

z =
x− y

2
(A.4)

The seasonal amplitude, measured as a percent deviation from the mean, was calculated
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as:

amplitude =
z

mean(Ti)
(A.5)

A.1.1.1 Simulation Study

For the simulation study we used a daily discrete-time SEIR model of measles adopted

from Earn et al. 2000 [69]. The model has a daily time step and uses school-term forcing of

seasonal transmission based on the school terms of England & Wales. The models assume

transition probabilities follow a Poisson process. The difference equations are as follows:

St+1 = µtNt + Ste
−(βtIt+δ) (A.6)

Et+1 = St
(
1− e−(βtIt+δ)

) βtIt
βtIt + δ

+ Ete
−(φ+δ) (A.7)

It+1 = Et
(
1− e−(φ+δ)

) φ

φ+ δ
+ Ite

−(γ+δ) (A.8)

Rt+1 = It
(
1− e−(γ+δ)

) γ

γ + δ
+Rte

−δ (A.9)

Nt = St + Et + It +Rt (A.10)

Incidencet = Et
(
1− e−(φ+δ)

) φ

φ+ δ
(A.11)

µt =
ν + A sin(ωt+ σ)

30
(A.12)
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βt =
B0

1
365

((1 + b1)273 + (1− b1)92)
(1 + b1Termt) (A.13)

Termt is based off the the school term schedule. When school is in session Termt = 1 and

when students are on holiday Termt = −1. See Table A.1 for the school term schedule. The

parameter values used for the simulation study can be found in Table A.2. All simulations

were run for 100 - 150 yrs. to ensure that the trajectories were past the transient phase.

Holiday Model Days Calendar Days

Christmas 356 - 6 Dec 21 - Jan 6

Easter 100 - 115 Apr 10 - 25

Summer 200 - 251 Jul 19 - Sept 8

Autumn Half Term 300 - 307 Oct 27 - Nov 3

Table A.1: School term schedule. When students are on holiday Termt = −1 otherwise 1.
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Parameter Value Parameter Value

R0 16 (basic reproductive no.) b1 0.25

D 1 - 365 (birth peak day) µ0
1

18250
day−1

δ 1
18250

day−1 (50 yr life span) β0
R0

5
day−1

φ 1
8

day−1 (8 day latent period) S0 0.06

γ 1
5

day−1 (5 day infectious period) E0 0.001

ν 30
18250

month−1 (balances δ) I0 0.001

A 0 - 0.0009208 month−1 (0 - 56% birth amp.) R0 0.938

ω 2π
365

radians
day

N0 S0 + E0 + I0 +R0

σ π
2
− 2π

365
D Incidence0 0

B0
R0

5

Table A.2: Parameters used in simulation study, main text Figure 1.4A & 1.4B.
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A.1.2 Inference Study Using Simulated Data

For the inference study we coupled our SEIR model (Eqs. A.6 - A.13) with a stochastic

measurement model. The measurement model is as follows:

casest ∼ normal(ρIncidencet, ρτ) (A.14)

In order to test whether the seasonality in births influences parameter estimation, we

simulated case data using three parameterizations of our model, each differing in the timing of

the birth peak. The parameters used to generate the data are given in Table A.3. Simulations

were run to year 50 to ensure the transient phase had passed.
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Parameter Value Parameter Value

R0
6250
365

(basic reproductive no.) b1 0.25

D 162, 295, or 351 (birth peak day) µ0
1

18250
day−1

δ 1
18250

day−1 (50 yr life span) β0
R0

5
day−1

φ 1
8

day−1 (8 day latent period) S0 0.06

γ 1
5

day−1 (5 day infectious period) E0 0.001

ν 30
18250

month−1 (balances δ) I0 0.001

A 0.000456 month−1 (∼ 28% birth amp.) R0 0.938

ω 2π
365

radians
day

N0 1

σ π
2
− 2π

365
D Incidence0 0

B0
R0

5

Table A.3: Parameters used to generate data for study, main text Figure 1.4C.
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The three time series generated using the stochastic SEIR model were then fit to the SEIR

model with a 0% birth amplitude, i.e. A = 0. The mean transmission rate, B0, was the only

free parameter. All other parameters, aside from A and B0, were fixed at the values used

to generate the data. Only the last 6 years of the time series were used for fitting, thus, the

initial conditions were set to match those at the beginning of data used for inference.

For each time series B0 was profiled and the likelihoods of the parameter sets with varying

values of B0 were calculated using a particle filtering in the R package pomp [112]. A particle

filter (a.k.a. Sequential Monte Carlo) is a method of integrating state variables of a stochastic

system and estimating the likelihood of the model for a fixed parameter set, given the data.

However, since our model lacked process noise, we were able to obtain the exact likelihood

for each parameter set.

A.1.3 Inference Study Using New York City Measles Data

For the New York inference study we utilized a Partially Observed Markov Process

(POMP) model which are suited for dealing with epidemiological data where the state vari-

ables (susceptible, infected, recovered individuals) are not observed in the data, rather the

infected individuals are partially observed through case reports [112]. For our process model

we used a stochastic biweekly discrete-time SIR model. Similar to the model used for the

simulation study, transitions were modeled using a Poisson process. The process model is as

follows:

λt =

(
βt
It
Nt

+ ψ

)
εt (A.15)

%t = e−dt(λt+δ) (A.16)

St+1 = dtBt + %tSt (A.17)
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It+1 = (1− %t)St
λt

λt + δ
(A.18)

The transmission rate βt was modeled using a periodic B-spline with 6 bases, a degree

of 2, and a period of 1 year. The process noise εt was modeled as εt ∼ normal(1, βsd).

The covariates Bt, monthly number of individuals entering the susceptible class, and Nt,

population size, were taken from data. All parameters were estimated using iterated particle

filtering [112] (discussed later), with the exception of the death rate which was fixed at

δ = 1
600

month−1, i.e. 50 yr. life span, and dt = 1
2

fixing the time step to biweekly. In order

to couple our model with measles case data we overlaid the process model with a stochastic

measurement model. The measurement model is as follows:

casest ∼ normal(ρIt, τIt) (A.19)

The case data, gathered from [69], consisted of monthly measles cases for New York City

from January 1949 - December 1962. Although we did not have birth data for New York

City we did have per capita monthly births for the state of New York. Thus, we assumed

the per capita monthly birth rate for New York City was equal to the per capita monthly

birth rate for New York state. The population size of New York City was taken from the

decadal census and the population size was interpolated for non-census years. Taking the

New York City population size together with the time series of per capita monthly births we

constructed a time series of the number of monthly births, Bt, in New York City (not to be

confused with Bt in Eqn. A.16, which will be explained in the next section).

In order to test whether the seasonality in births influences model parameterization, we

used four variants of our model (Eqn. A.20-A.23), each differing in the susceptible recruit-

ment covariate, Bt. The first three models contain birth seasonality and account for the
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existence of maternal antibodies for 3-9 months. Whereas, in the fourth model we removed

the birth seasonality. The first model variant lags the births by 3 months to account for a

scenario where maternal antibodies confer protection from measles for the first 3 months of

life:

Bt = Bt−3 (A.20)

In the second model variant we lag births by 6 months.

Bt = Bt−6 (A.21)

In the third model variant we lag births by 9 months.

Bt = Bt−9 (A.22)

In the fourth model variant we removed the seasonality of births by making the monthly

births constant within each year by setting them equal to the mean monthly births for the

year:

Bt =

∑12
i=1 Bi,j
12

; j ∈ [1948 : 1962], (A.23)

where i is the month and j is the year.

Each of the four model variants were independently fit to the data using Maximization

by Iterated particle Filtering (MIF) using the R package POMP. MIF is a state-of-the-

art simulation based method for parameter estimation that uses likelihood as the objective

function. The basis of MIF is particle filtering (a.k.a. Sequential Monte Carlo), which is a

method of integrating state variables of a stochastic system and estimating the likelihood

of the model for a fixed parameter set, given the data. Unlike particle filtering, which uses
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fixed parameter values, MIF varies parameter values throughout the filtering process and

selectively propagates particles (in the simplest sense, parameter sets) that have the highest

likelihood. Thus, by initializing MIF throughout parameter space one can get a picture of

the likelihood surface and identify the maximum likelihood parameter combinations within

that space. For each of our models, MIF was initialized with 80000 parameter sets generated

using a Sobol design, which pseudo-randomly samples parameters across parameter space in

order to evenly sample the space. After this initial phase of MIF, parameter sets were passed

through 15 successive stages of MIF, which included profiling. In total, for each model MIF

was initialized at over 424000+ locations in parameter space to estimate the shape of the

likelihood surface and identify the maximum likelihood parameter set(s). Table A.4 provides

the maximum likelihood estimate (MLE) parameter set for each model.

A.1.4 Results.

A.1.4.1 Detailed Results

Biannual birth pulses. During the pre-baby boom and baby boom eras, we found that

some states had two birth pulses per year, i.e. they had a significant biannual period. All

states significant for the biannual period were clustered together in the lower-midwest, deep

south, and southeast (Figs. A.1 & A.2). In the baby boom era, some of the states lost their

significant biannual period and transitioned to having only a single seasonal birth pulse (Figs.

A.1, & A.2). In the modern era, Arkansas remained the only state with a biannual period.

The clustering of the states with a significant 6 month period in the southeastern U.S. may

have been due to now defunct cultural factors (Figs. A.1 & A.2).

Birth rates. Raw birth rates in the pre-baby boom era ranged from 0.89/1000/month in

Nevada (February, 1936) to 2.80/1000/month in New Mexico (May, 1932), with the mean

and median both approximately 1.60/1000/month; while in the baby boom era Maryland

had the lowest birth rate at 1.13/1000/month (April, 1950), New Mexico with the highest
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(a)

(b)

Jan 28th

Feb 15th

March 4th

(c)

Supplementary Figure A.1: Bi-annual winter (November-April) birth peak timing by period.
(a) pre-baby boom (1931-1945), (b) baby boom (1946-1965), and (c) present period (1965-2008).
States shown in white were not significant.

birth rates at 3.36/1000/month (October, 1946), and the mean and median both approx-

imately 2.04/1000/month. In the present period Vermont had the lowest birth rate at

0.67/1000/month (July, 2005), and Utah had the highest at 2.61/1000/month (July, 1977)

with the mean and median falling in around 1.27/1000/month. Worldwide birth rates were

not calculated, because we did not have population size data for our 200+ countries, rather

raw birth values per month were used for wavelet spectral analysis. See Figure A.3 for maps
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(a)

(b)

July 15th

Aug 11th

Sept 8th

(c)

Supplementary Figure A.2: Bi-annual summer (May-October) birth peak timing by period.
(a) pre-baby boom (1931-1945), (b) baby boom (1946-1965), and (c) present period (1965-2008).
States shown in white were not significant.

of the mean birth rates in each state and each era.

The seasonal birth pulse. Examining the phase angle time series at a period ranging

from 11-13 months, the U.S. data had twenty four states significant in the pre-baby boom

era, whereas all were significant in the baby boom and present eras. Of the 210 worldwide

data series analyzed, 132 (63%) were significant at an 11-13 month period. Many of those

found insignificant were shorter time series (5-7 years) or countries with extremely low birth
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Average birth rate: Pre−Baby Boom Era (1931−1945)

Average birth rate: Baby Boom Era (1946−1964)
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Average birth rate: Present Period Era (1965−2008)

Supplementary Figure A.3: Maps of mean birth rates for each state, in each era. Top to bottom:
pre-baby boom, baby boom, and present era. No geographic pattern could be easily discerned.

values (<100 individuals/month). Those states and countries found to be significant were

then analyzed for the timing of the peak birth month using a wavelet spectral analysis.

U.S. timing of the seasonal birth peak. During the pre-baby boom era, of the states

with a significant 1 year period, Oregon (June 12th) and Maine (June 10th) had the earliest
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Supplementary Figure A.4: Seasonal amplitude of births in U.S. states during each era. Note
the high amplitude in the southern states (far right in all panels).

peak birth timing —excluding New Mexico, which is an outlier because it has an early peak

in all eras yet is located in the southern U.S. Florida (Nov 10th) had the latest peak birth

timing in early November. The median peak birth timing was July 3rd, and the mean was

July 26th. The range of peak birth timing was at a maximum in the pre-baby boom era

with a length of 156 days, approximately 5 months. In this era there was a subtle pattern

in the birth peak timing, with the northeast and northwest having earlier peaks than that

of the deep south, the southeast and California.

In the baby boom era, when all states were significant at the 1 year period, there was a

clear latitudinal gradient in birth amplitude and peak birth timing. Northern states saw an

earlier peak birth timing; Utah beginning with a peak birth timing in mid-July (July 13th),

followed by Washington with a peak birth timing a few days later (July 18th) with no other

peak birth timing occurring for at least another week after that. Again, Florida had the

latest peak birth timing 3 months later in mid-October (Oct 21st). The mean (Sept 4th)

and median (Sept 8th) both occurred in early September. In the baby boom era, other than
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Maine and those states already mentioned, the only states to have a peak prior to August 1st

were also located in the northwestern U.S. (Idaho, Montana, North Dakota, and Oregon).

In the modern era, the spatial pattern of peak births was further elucidated with the mid-

latitude states acting as a gradient for the northern and southern states. Utah again had

the earliest peak birth timing in late June (June 26th), while Florida had the latest peak

birth timing in early October (Oct 5th). The mean (Aug 11th) and median (Aug 7th) in

this era both occurred in early August. Maine and Vermont also had peak birth timing prior

to July 15th, which were the earliest peaks east of the Rocky Mountains. As with the baby

boom era, many of the northwest states (Utah, Idaho, Montana, Oregon, Washington, and

Wyoming) had peaks prior to July 15th in the present era. Over all eras, Florida consistently

had the latest peak ranging from early October in the present period, to early-November in

the pre-baby boom era.

Worldwide timing of the seasonal birth peak. The worldwide birth peak timing

followed a similar pattern as observed in the U.S., with countries at higher latitudes having

an earlier birth peak than those closer to the equator. The earliest peak was in Italy during

the period 1970-1985 (March 22nd) followed closely by Tajikstan in the period 1989-1994

(April 15th). The latest birth peak occurred in Saint Vincent and the Grenadines during the

period 1992-2005 (November 17th). The mean worldwide peak (U.S. states not included)

was mid-August (August 17th). The overall pattern is clear, with Europe (high latitude)

having an earlier birth peak, and the Caribbean having a later peak. Both the Asian/Middle

Eastern and Non-U.S. data are difficult to categorize as they span broad geographical ranges.

Seasonal birth amplitude. In the U.S., the largest seasonal amplitude in the pre-baby

boom era was 20% from the mean (Louisiana, 1945), and the minimum was 4.2% from the

mean in 1931 South Dakota (Fig A.4 top panel). These values increased during the baby

boom era with a maximum 21.3% variation from the mean (Louisiana, 1954), and a minimum
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Supplementary Figure A.5: Seasonal (intra-annual) amplitude of northern hemispheric data
plotted vs latitude.

of 5.5% (Connecticut, 1957) (Fig A.4 middle). In the modern era, the maximum variation

from the mean dropped to 17.4% (Louisiana, 1965) with the minimum staying relatively

similar 5.4% (Delaware, 2004) (Fig A.4 bottom). The mean percent deviation from the

mean in all states during the pre-baby boom era was 9.0%, 9.8% during the baby boom, and

8.5% in the modern era.

As shown in the main text Figure 1.2, we observed a latitudinal gradient in the seasonal

birth amplitude in each era in the U.S. However, the latitudinal gradient in birth amplitude

was not observed outside of the U.S. (Fig A.5). European seasonal amplitudes tended to be

low, with a mean of 10.3%. Non-U.S. Americas had an approx. 9.8% amplitude, Asian/Mid-

dle Eastern countries having approx. 12.6%, and Caribbean countries approx. 17.2% (Fig

A.5). However, due to the high variation in countries grouped into regions it is difficult to

draw any conclusions from this.
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Supplementary Figure A.6: The seasonal (intra-annual) amplitude vs the annual (inter-annual)
amplitude. In both the pre-baby boom and baby boom most states had a stronger seasonal com-
ponent, whereas in the present period all states have a stronger seasonal component.

Intra- vs. inter-annual variation in birth rates. We examined the seasonal (intra-

annual) variation in births and compare that to the inter-annual variation (percent change

from one year to the next) for each state in every era. We found that the seasonal (intra-

annual) variation is generally larger (Fig A.6), with the intra-annual variation in the modern

era 2-3 times larger than the inter-annual value.
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A.1.5 Simulation study

Fig A.7 shows the effect of increasing birth amplitude on measles incidence with the

birth peak occurring at various times of the year. The difference in incidence resulting from

measles models with either constant births or seasonal births increases with birth amplitude.

However, depending on the phase relationship between peak susceptible recruitment (i.e. the

birth peak) and the peak in seasonal transmission, birth seasonality can have the effect of

either enhancing or dampening the epidemic year incidence.

Fig A.8 shows the effect of birth seasonality for various values of R0. Birth seasonality in

this range of amplitude, < 28%, has a pronounced effect on incidence when epidemics are

biennial or triennial, as opposed to annual.
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Supplementary Figure A.7: Effect of increasing seasonal birth amplitude on measles incidence.
The main graph show the change in epidemic and skip year incidence as a function of birth amplitude
for 5 different phases of births seasonality. Phases were set such that the birth peak occurred in
either Jan, Jun, Aug, Oct, or Dec. The turquoise and the fuschia points in the main graph
correspond to the turquoise and fuchsia time series in the inset. Here R0 = 17 and the birth
amplitude ranged from 0-28%, all parameters are those from Table A.2.
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Supplementary Figure A.8: The effect of birth seasonality on diseases with varying basic repro-
ductive numbers (R0). This is a bifurcation diagram our SEIR model with varying R0 and varying
seasonal birth amplitude. The black lines are the incidence for the model with no birth seasonality
(i.e. birth amplitude = 0%). The solid shaded intervals indicate the regions containing the inci-
dence of the model with seasonal births, where the birth peak is in early June and the amplitude
ranges from 1.4 - 27.7%. Birth seasonality in this range of amplitude has a pronounced effect on
incidence when epidemics are biennial or triennial, as opposed to annual. Here R0 ∈ [2 : 20], and
S0 = 1/R0, otherwise all other parameters are those in Table A.2.
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A.1.5.1 Inference Study Using New York City Measles Data

Maximum likelihood parameter estimates were obtained for each of our four measles

models: seasonal births with a lag of 3 months from birth to susceptible to account for

maternal antibodies, seasonal births with a lag of 6 months, seasonal births with a lag of 9

months, and constant births throughout the year.

Parameter Model Seas-3 Model Seas-6 Model Seas-9 Model NoSeas

LogLikelihood -1080.99 ± 0.20 -1080.86 ± 0.12 -1081.14 ± 0.12 -1080.95 ± 0.14
R0 19.3 19.5 20.3 19.7
βcoef1 55.4 55.6 58.9 56.5
βcoef2 45.8 47.2 48.6 46.8
βcoef3 45.6 45.5 48.5 47.8
βcoef4 44.0 44.2 46.8 45.3
βcoef5 17.5 18.5 18.7 18.3
βcoef6 28.7 27.6 28.3 27.7
ψ 3.4× 10−4 3.8× 10−4 4.2× 10−4 4.1× 10−4

βsd 0.121 0.118 0.121 0.124
dt 1/2 1/2 1/2 1/2
δ 1/600 1/600 1/600 1/600
ρ 0.238 0.236 0.239 0.238
τ 3.8× 10−2 3.8× 10−2 3.9× 10−2 3.8× 10−2

S0 819214 947306 937014 1719583
I0 16602 22758 17265 27629
R0 6238289 6104041 6119826 5326893

Table A.4: Maximum likelihood parameter estimates for each model. Rates are given in units
of month−1. All parameters were estimated using MIF with the exception of δ and dt, which
were fixed. Note, R0 is the basic reproductive number and R0 is the initial number of recovered
individuals.
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Country Years No. Years Latitude Mean peak month Significant Group Amplitude

Albania 1981-2007 27 41.17 6.15 Yes Europe 19.37%
Algeria 1998-2002 5 33.10 8.80 No Africa 10.11%
American Samoa 1984-1988 5 -14.30 5.20 Yes Asia 14.77%
American Samoa 1996-2006 11 -14.30 4.45 Yes Asia 14.81%
Antigua and Barbuda 1979-1986 8 17.05 10.50 Yes Caribbean 16.62%
Armenia 1987-1999 13 40.29 7.31 No Europe 15.81%
Aruba 2002-2007 6 12.52 9.17 Yes Caribbean 14.60%
Australia 1973-2008 36 -32.35 6.56 No Asia 6.06%
Austria 1973-2011 38 47.77 6.50 Yes Europe 6.33%
Azerbaijan 1992-2004 13 40.18 2.31 No Asia 13.81%
Bahamas 1972-1979 8 24.32 10.50 Yes Caribbean 13.95%
Bahrain 1975-1985 11 26.03 6.09 No Asia 15.33%
Bahrain 1986-2002 17 26.03 10.35 Yes Asia 13.26%
Barbados 1969-1976 7 13.16 7.86 No Caribbean 23.73%
Barbados 1982-1991 10 13.16 11.00 Yes Caribbean 19.78%
Belarus 1987-1999 13 53.33 5.31 Yes Europe 11.52%
Belgium 1971-1995 25 50.84 6.08 Yes Europe 7.18%
Belgium 1998-2008 11 50.84 7.64 No Europe 6.54%
Belgium-Bruxelles 1998-2008 11 50.84 8.09 No Europe 7.35%
Belgium-Flamande 1998-2008 11 50.84 6.73 No Europe 6.54%
Belgium-Anvers 1998-2008 11 50.84 6.64 No Europe 7.33%
Belgium-Limbourg 1998-2008 11 50.84 6.45 No Europe 7.96%
Belgium-Flandreorientale 1998-2008 11 50.84 7.18 No Europe 6.25%
Belgium-Brabantflamand 1998-2008 11 50.84 6.91 Yes Europe 7.47%
Belgium-Flandreoccidentale 1998-2008 11 50.84 5.64 No Europe 7.17%
Belgium-Wallonne 1998-2008 11 50.84 8.55 Yes Europe 6.73%
Belgium-Germanophone 1998-2008 11 50.84 5.18 No Europe 15.34%
Belgium-Brabantwallon 1998-2008 11 50.84 6.91 Yes Europe 7.86%
Belgium-Hainaut 1998-2008 11 50.84 9.09 Yes Europe 6.20%
Belgium-Liege 1998-2008 11 50.84 8.27 No Europe 7.08%
Belgium-Luxembourg 1998-2008 11 50.84 8.55 Yes Europe 8.38%
Belgium-Namur 1998-2008 11 50.84 8.91 Yes Europe 7.27%
Bermuda 1984-1991 8 32.30 9.38 Yes Caribbean 17.48%
Bermuda 1995-2001 7 32.30 9.00 Yes Caribbean 16.45%
BVI 1980-1986 7 18.43 10.43 Yes Caribbean 23.23%
Brunei Darussalam 1972-1976 5 4.82 8.00 No Asia 12.46%
Brunei Darussalam 1980-1992 13 4.82 9.31 No Asia 10.75%
Brunei Darussalam 1996-2002 7 4.82 9.71 Yes Asia 8.26%
Bulgaria 1973-1978 6 42.75 4.83 No Europe 8.01%
Bulgaria 1980-1990 11 42.75 6.18 Yes Europe 8.87%
Canada 1973-1990 18 56.76 6.06 Yes Americas 7.49%
Canada 1992-1997 6 56.76 6.00 Yes Americas 8.82%
Canada 1999-2008 10 56.76 6.80 Yes Americas 8.03%
Cape Verde 1968-1975 8 15.11 3.63 No Africa 12.94%
Cape Verde 1980-1985 6 15.11 11.50 No Africa 17.40%
Caymen Islands 1986-1995 10 5.36 10.20 Yes Caribbean 24.20%
Chile 1967-2008 42 -35.12 9.29 Yes Americas 7.83%
China-Hong Kong 1973-1977 5 22.30 10.00 Yes Asia 14.66%
China-Hong Kong 1979-2009 31 22.30 10.00 Yes Asia 14.85%
China-Macao 1971-1975 5 22.17 9.60 Yes Asia 16.52%
China-Macao 1984-1989 6 22.17 9.83 Yes Asia 17.67%
China-Macao 1991-2010 20 22.17 9.70 Yes Asia 16.06%
Cook Islands 1983-1988 6 -21.20 6.50 No Asia 19.36%
Costa Rica 1987-1991 5 9.92 10.40 Yes Americas 9.59%
Costa Rica 2003-2010 8 9.92 9.88 Yes Americas 10.90%
Croatia 1988-2004 17 45.32 8.18 No Europe 7.36%
Cuba 1976-1988 13 22.03 10.00 Yes Caribbean 16.68%
Cuba 1990-2009 20 22.03 10.20 Yes Caribbean 19.93%
Cyprus 1973-2009 37 34.97 8.49 Yes Asia 11.88%
Czech Republic 1991-2010 14 49.82 5.36 Yes Europe 10.15%
Denmark 1972-2005 34 55.85 6.03 Yes Europe 9.57%
Egypt 1972-1982 11 28.80 7.00 Yes Africa 30.08%
Egypt 1987-1999 13 28.80 10.85 No Africa 35.30%
Egypt 2003-2009 7 28.80 9.29 No Africa 12.60%
El Salvador 1973-2007 35 13.72 10.46 Yes Americas 12.48%
Estonia 1989-1997 9 58.96 4.89 Yes Europe 12.05%
Estonia 1999-2005 6 58.96 5.67 Yes Europe 8.67%
Estonia 2007-2011 5 58.96 6.40 Yes Europe 9.82%
Faeroe Islands 1972-1987 16 62.09 7.25 No Europe 11.90%

Table A.5: Data used in national-level analyses of birth seasonality. Significance refers to the
annual period. Mean birth peak timing and amplitude were estimated from the data.
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Country Years No. Years Latitude Mean peak month Significant Group Amplitude

Finland 1972-1988 17 61.76 4.94 Yes Europe 10.55%
Finland 1994-2004 14 61.76 5.93 Yes Europe 7.86%
France 1974-1989 16 47.14 5.75 Yes Europe 10.02%
France 1991-1997 7 47.14 7.00 Yes Europe 8.69%
France 1999-2004 6 47.14 7.83 Yes Europe 8.06%
French Guiana 1977-1986 10 5.09 10.10 No Americas 13.00%
French Guiana 1997-2003 7 5.09 10.71 No Americas 12.35%
French Polynesia 1985-1992 8 -17.53 4.63 Yes Asia 9.81%
Germany 1991-1997 7 50.86 7.14 Yes Europe 7.72%
Germany 2004-2010 7 50.86 8.00 Yes Europe 9.30%
Gibraltar 1973-1988 16 36.14 7.50 No Europe 14.75%
Gibraltar 2002-2008 7 36.14 10.00 No Europe 18.51%
Greece 1974-1985 12 38.69 6.00 Yes Europe 10.53%
Greece 1990-2001 12 38.69 7.67 Yes Europe 11.05%
Greenland 1972-1987 16 67.10 7.63 No Europe 12.57%
Greenland 1992-2010 19 67.10 6.95 No Europe 11.90%
Guadeloupe 1975-1980 6 16.27 9.33 No Caribbean 10.58%
Guadeloupe 1982-1986 5 16.27 11.00 Yes Caribbean 13.27%
Guadeloupe 1997-2003 7 16.27 10.57 Yes Caribbean 16.23%
Guam 1973-1982 10 13.45 10.10 No Asia 8.43%
Guam 1988-1992 5 13.45 9.80 No Asia 9.40%
Guatemala 1972-1979 8 14.72 7.38 No Americas 7.12%
Guatemala 1981-1999 19 14.72 10.79 No Americas 9.54%
Guernsey 1973-1979 7 49.48 2.71 No Europe 12.37%
Guernsey 1992-2000 9 49.48 8.22 No Europe 11.49%
Guyana 1967-1971 5 6.35 9.60 Yes Americas 10.04%
Hungary 1973-1992 20 47.29 6.40 Yes Europe 8.74%
Hungary 1994-2004 11 47.29 7.73 No Europe 7.90%
Iceland 1972-1980 9 64.37 5.67 Yes Europe 10.39%
Iceland 1982-2004 22 64.37 6.77 Yes Europe 10.23%
Iran 1999-2004 6 33.68 2.83 No Asia 7.95%
Ireland 1972-2004 33 53.11 5.94 Yes Europe 8.33%
Isle of Man 1973-1988 16 54.19 7.38 No Europe 12.52%
Israel 1973-1981 9 31.78 9.33 Yes Asia 9.58%
Israel 1983-1988 6 31.78 9.00 Yes Asia 9.60%
Israel 1990-2009 20 31.78 9.60 Yes Asia 8.97%
Italy 1970-1985 15 42.87 3.20 Yes Europe 10.01%
Italy 1988-2009 22 42.87 8.14 Yes Europe 11.01%
Jamaica 1999-2007 9 18.13 10.78 Yes Caribbean 18.60%
Japan 1972-1992 21 35.41 7.48 Yes Asia 7.59%
Japan 1994-2010 17 35.41 8.24 Yes Asia 7.01%
Jersey 1973-1989 17 49.22 6.59 No Europe 11.64%
Kazakhstan 1987-2008 22 43.35 6.27 No Asia 10.11%
Korea Republic 1996-2009 24 36.47 4.83 No Asia 7.75%
Kuwait 1975-1987 13 29.33 10.23 No Asia 9.06%
Kuwait 1991-2008 18 29.33 9.44 No Asia 10.68%
Kyrgyzstan 1985-2004 20 41.76 4.85 No Asia 11.06%
Kyrgyzstan 2005-2009 5 41.76 7.40 Yes Asia 12.02%
Latvia 1989-2005 17 56.83 5.12 Yes Europe 11.12%
Lebanon 2003-2010 8 33.93 8.88 No Asia 11.44%
Libya 1972-1981 10 29.96 1.00 Yes Africa 12.01%
Libya 1989-1996 8 29.96 7.00 No Africa 10.04%
Liechtenstein 1978-1987 10 47.15 6.80 No Europe 13.16%
Liechtenstein 2000-2005 6 47.15 5.83 No Europe 18.31%
Lithuania 1987-2011 25 55.22 5.72 Yes Europe 13.11%
Luxembourg 1973-1989 17 49.64 6.47 No Europe 9.22%
Luxembourg 1998-2010 13 49.64 6.23 Yes Europe 10.08%
Malaysia 1994-2008 15 4.19 7.67 No Asia 8.71%
Maldives 1978-2009 32 4.17 7.31 No Europe 13.36%
Moldova Republic 1987-1992 6 47.17 5.67 No Europe 7.60%
Moldova Republic 1998-2010 13 47.17 8.62 No Europe 8.86%
Malta 1973-1988 16 35.90 9.06 Yes Europe 11.41%
Malta 1992-2004 13 35.90 9.85 No Europe 9.17%
Martinique 1975-1992 18 14.67 10.94 Yes Caribbean 15.60%
Martinique 1998-2003 6 14.67 11.00 Yes Caribbean 18.29%
Mauritius 1994-2010 17 -20.16 5.76 Yes Africa 11.34%
Mongolia 1994-2003 10 47.77 5.10 No Asia 8.24%
Netherlands 1973-1988 16 52.07 6.06 Yes Europe 7.46%
Netherlands 1990-2010 21 52.07 7.62 Yes Europe 6.63%
New Caledonia 1970-1977 8 -21.50 5.63 Yes Asia 11.36%
New Caledonia 1982-2007 26 -21.50 5.54 Yes Asia 12.12%
New Zealand 1972-2009 39 -41.44 7.46 Yes Asia 23.52%
Niue 1982-1987 6 -19.06 7.83 No Asia 45.89%
Norway 1976-1987 12 61.13 5.00 Yes Europe 11.51%
Norway 1995-2004 10 61.13 5.50 Yes Europe 9.64%
Occ. Palestinian Territory 1997-2007 11 31.88 10.64 Yes Asia 10.81%
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Country Years No. Years Latitude Mean birth month Significant Group Amplitude

Palau 1997-2003 7 7.35 7.29 No Asia 16.08%
Panama 1973-1999 27 8.75 10.78 Yes Americas 8.35%
Panama 2005-2009 5 8.75 10.00 Yes Americas 10.60%
Phillipines 1997-2007 11 11.87 10.00 Yes Asia 13.93%
Poland 1978-2005 28 51.71 5.43 Yes Europe 9.95%
Portugal 1973-1993 21 39.75 6.67 No Europe 8.42%
Portugal 1999-2009 11 39.75 8.64 Yes Europe 9.11%
Puerto Rico 1967-1985 19 18.26 10.05 Yes Caribbean 11.33%
Puerto Rico 1987-1992 6 18.26 10.00 Yes Caribbean 12.49%
Puerto Rico 1996-2000 5 18.26 10.00 Yes Caribbean 11.71%
Puerto Rico 2002-2008 7 18.26 10.00 Yes Caribbean 11.12%
Qatar 1985-1990 6 25.30 9.50 No Asia 11.93%
Qatar 1999-2009 11 25.30 10.18 No Asia 9.78%
Reunion 1977-1986 10 -21.11 6.40 Yes Africa 7.53%
Reunion 1998-2003 6 -21.11 4.33 No Africa 6.77%
Romania 1986-1992 7 45.69 6.29 Yes Europe 9.60%
Romania 1994-2010 16 45.69 6.25 Yes Europe 10.66%
Saint Helena ex dep 1981-1986 6 -15.93 6.83 No Africa 31.44%
Saint Lucia 1976-1986 11 13.90 10.82 Yes Caribbean 15.27%
Saint Lucia 1994-2002 9 13.90 11.00 Yes Caribbean 20.24%
Saint Vincent and the Grenadines 1992-2005 14 13.20 11.07 Yes Caribbean 23.24%
San Marino 1973-1978 6 43.94 7.33 No Europe 21.85%
San Marino 1984-1989 6 43.94 9.50 No Europe 29.63%
San Marino 2000-2004 5 43.94 7.60 No Europe 21.12%
Sao Tome and Princepe 1967-1971 5 0.32 4.20 No Africa 13.27%
Seychelles 1973-1993 21 -4.63 6.24 Yes Africa 14.81%
Seychelles 1995-2010 16 -4.63 5.94 Yes Africa 18.63%
Singapore 1973-2009 36 1.37 9.36 Yes Asia 12.77%
Slovakia 1988-1995 8 48.66 5.75 Yes Europe 10.10%
Slovakia 1998-2002 5 48.66 6.20 Yes Europe 10.16%
Slovenia 1988-1996 9 46.17 6.67 No Europe 7.17%
Slovenia 1998-2005 8 46.17 7.38 Yes Europe 7.97%
Spain 1970-1985 16 39.72 6.38 Yes Europe 8.40%
Spain 1991-2005 15 39.72 7.87 No Europe 6.53%
Sri Lanka 1973-1986 14 7.57 9.14 No Asia 7.64%
Sri Lanka 2005-2010 6 7.57 10.00 Yes Asia 8.98%
Suriname 1989-2009 21 5.06 11.05 Yes Americas 15.05%
Sweden 1973-1990 18 58.91 4.56 Yes Europe 15.25%
Sweden 1992-2002 11 58.91 4.91 Yes Europe 13.90%
Sweden 2004-2010 7 58.91 5.71 Yes Europe 11.19%
Switzerland 1973-1982 10 47.03 5.00 Yes Europe 10.33%
Switzerland 1984-1990 7 47.03 5.86 Yes Europe 6.26%
Switzerland 1998-2002 5 47.03 6.80 No Europe 5.78%
Tajikstan 1989-1994 6 38.70 4.00 Yes Asia 23.24%
Macedonia 1989-1993 5 41.74 8.20 No Europe 9.54%
Macedonia 1999-2010 12 41.74 7.83 Yes Europe 10.20%
Tonga 1993-2000 8 -19.70 4.25 Yes Asia 16.00%
Trinidad and Tobago 1972-1995 24 10.55 10.83 Yes Caribbean 14.04%
Tunisia 1971-1976 6 35.42 2.83 Yes Africa 16.04%
Tunisia 1978-1982 5 35.42 4.00 Yes Africa 13.83%
Tunisia 1985-1995 11 35.42 5.18 No Africa 13.40%
Tunisia 2001-2007 7 35.42 7.00 Yes Africa 16.75%
Turks and Caicos Islands 1997-2005 9 21.51 9.56 No Caribbean 25.43%
Ukraine 1980-1986 7 48.81 6.00 Yes Europe 9.52%
Ukraine 1989-1996 8 48.81 5.75 Yes Europe 9.77%
Ukraine 2003-2010 8 48.81 8.25 Yes Europe 10.28%
UK + NI 1982-1988 7 52.75 6.71 Yes Europe 6.85%
UK + NI 1990-2006 15 52.75 7.47 Yes Europe 6.61%
USA 1969-1975 7 40.42 8.86 Yes Americas 7.21%
USA 1978-2006 29 40.42 8.07 Yes Americas 7.95%
USVI 1969-1973 5 18.33 10.80 Yes Caribbean 19.68%
USVI 1980-1997 18 18.33 10.61 Yes Caribbean 16.64%
Uruguay 1980-1988 9 -33.00 8.33 No Americas 5.55%
Uzbekistan 1993-1997 5 40.68 5.80 No Asia 8.36%
Venezuela 1972-2001 30 9.39 9.40 Yes Americas 9.41%
Wallis and Futuna Islands 1973-1978 6 -13.30 4.00 No Asia 10.72%

93



APPENDIX B

Supporting Information: Digital Epidemiology Reveals

Global Childhood Disease Seasonality and the Effects

of Immunization

B.1 Digital Epidemiology Reveals Global Childhood Disease

Seasonality and the Effects of Immunization: Supporting In-

formation

B.1.1 Acquisition and Analyses of Google Trends Data

Google Trends is a publically available data service provided by Google Inc [86] that allows

internet users to view and download global information on internet search behaviour. Google

Trends represent the relative number of searches for a specific key word, or combination of

search terms. The numbers are standardized within each country such that the values range

from 0 to 100. A search volume of 0 is assigned, by Google Trends, to weeks/months with

a minimal amount of searches. Google Trends provides time-series of these abundance data,

but gives no explanation of how the relative abundances were calculated. In addition to

relative abundances, for each country, the downloaded Google Trends csv file provided a
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list of ‘Top-searches for [the language-specific search term]’. Each top-search list included

the context of the search term, each with an integer value of its relative abundance from

0− 100. The top searches are listed in descending order. Top searches were informative for

determining how to interpret Google query data. Because searches for “shingles” on Google

Trends could be referring to “the disease shingles” or “roofing shingles”, the top search list

could be used to distinguish among the search context when the single-word search term

has an ambiguous context. The top-search list is therefore invaluable for ensuring data for

specific search terms are being properly interpreted.

We used Google Trends data to evaluate childhood disease information seeking behaviour,

and obtained country-specific data from the start of Google Trends, January 2004 to July

2015. We downloaded Google Trends data from 36 countries with high volume searches for

chicken pox worldwide (Table B.3). For each country the data were subset within the range

that included consecutive weeks with > 0 search volume.

In order to relate Google Trends data to the dynamics of chicken pox (or other diseases

of interest), care must be taken to select appropriate search terms. Chicken pox is the clas-

sical manifestation of disease, and therefore, language-specific queries of “chicken pox” are a

straightforward choice for data-mining. In contrast, infections with generic symptoms, such

as fever and diarrhea, could arise from many other diseases, making it difficult to identify

appropriate queries. In either case, search terms vary subtly from country to country. For

instance, in the US “chickenpox” is typically written as a single word, whereas in the U.K.,

people refer to “chicken pox” as two words; in Spanish, chicken pox is referred to as “varicela”,

with a single “l”. We accounted for this variation among countries by careful choice of search

terms, and downloaded the data for 36 countries using 21 language-specific queries of chicken

pox. The csv file downloaded for each country included the top-searches for the country-

specific search term. As an example, 48 top-searches were provided for Argentina; the top 5

searches–and their integer value, which we refer to as relative abundance–were:
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Top searches for ‘’varicela”

• la varicela, 100

• varicela sintomas, 35

• varicela vacuna, 30

• varicela contagio, 25

• sintomas de varicela, 20

We evaluated (and translated when needed) the top-search list provided for the US,

Australia, Mexico, and Thailand, four of the countries for which we had data on reported

cases, and these countries are highly variable in their varicella vaccination policy. Although

the top-search lists had no metadata provided by Google, the clear difference between top

searches among the four countries indicated that the top searches contained valuable epi-

demiological information. We therefore decided to systematically evaluate the top-search

lists for epidemiological information. The top-search lists closely matched expectation based

on each countries vaccination policy.

The 36 countries in our study differed in their VZV vaccination history and current policy

(Table B.3). The first VZV vaccine was licensed in the US in 1995 and was incorporated

into the measles, mumps, rubella, and varicella vaccine (MMRV) in 2005 [40, 188]. These

vaccinations were only implemented by a few countries, and at different times, which led

us to expect country-specific differences in chicken pox query motivation. Therefore, for

a subset of countries, we evaluated the context of Google Trends searches by categorizing

searches based on whether they queried chicken pox as a disease, chicken pox vaccination,

or other contexts (Fig B.7, Table B.2).

The significance of information seeking seasonality was tested using Morlet wavelet anal-

yses for each country (Fig 2.1, B.5) [91, 210]. Both wavelet analyses and General Additive

Models (GAMs) are powerful methods for detecting periodicity in time series. The Google
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data for all countries other than Estonia, and the Czech Republic (which had monthly data)

were examined for annual (52 week) periodicity using colored noise. First, we measured

wavelet significance at the annual band. Second, of the 33 countries, 18 countries (Colom-

bia, the UK, the US, Argentina, Brazil, Denmark, France, Hungary, India, Ireland, Italy,

Mexico, The Netherlands, Poland, Romania, South Africa, Sweden, and Vietnam) had a sig-

nificance band within the entire cone of influence of the annual band (time periods where you

can test for significance). Seven countries (Australia, Finland, New Zealand, Philippines,

Portugal, Spain, and Thailand) had significant power at the annual period for > 50% of

their time series, with high-power periodicity (i.e., red banding) at the other non-significant

time points. China had ∼ 40% of its time series significant at the annual period, with high

power annual periodicity at all other time points. In Germany the significance was lost about

halfway through the time series, and the power of the annual period diminished. Chile and

Japan did not have significant annual periodicity, although Japan did have high power at

the annual period throughout its time series. The remaining four countries (Russia, Iran,

Austria, and Venezuela) had time series that were too short to test for annual significance

using wavelet analyses (i.e., they did not have 3+ years of data).

In order to characterize the seasonal shape of chicken pox information seeking, we used

GAMs, which is a nonparametric extension of generalized linear models (GLMs) in which the

linear predictor depends on smooth functions of predictor variables. We used the restricted

maximum likelihood (REML) method with the linear predictor being the detrended Google

data, while the predictor variables we tested included week number for seasonality and time

for the overall trend. REML and maximum likelihood methods are less prone to local minima

than the other criteria, and usually preferable. We used a GAM, rather than a generalized

linear model or other model, because GAMs are flexible when fitting smooth curves to

ecological data, and typically allow a better fit for time series than GLMs. A GAM was fit

for all countries with significant annual wavelet periodicity, except Estonia and the Czech

Republic, because their data were monthly and not weekly.
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B.1.2 Validating Information Seeking in Chicken Pox

Once we characterized the seasonal variation in Google queries for chicken pox, we tested

whether variation in information seeking behaviour paralleled variation in chicken pox in-

cidence. The Google Trends data required validation against epidemiological data because

variation in information seeking could be driven by cultural events rather than changes in

disease incidence. For example, in the US, information seeking using the query “breast can-

cer” has a sharp seasonal peak in Google Trends each year in October, reflecting October

as breast cancer awareness month, rather than a month with elevated incidence. For infec-

tious diseases, the covariation between information seeking behaviour and clinical cases can

be established using reported cases. We validated our Google Trends data, and evaluated

search term context, using records of clinical cases from countries with active chicken pox

surveillance (Fig 2.2).

We obtained data from five countries that report chicken pox: Australia, Thailand, and

Estonia – which had monthly reported cases – and Mexico and the US, which reported

cases weekly. The data from Australia were collected from the Australian National Dis-

ease Surveillance System [8], digitized on May 1st, 2015. Thailand chicken pox case data

were downloaded from the Bureau of Epidemiology, Department of Disease Control, MoPH,

Thailand [202] on April 12, 2015. The data from Mexico were digitized from the weekly dis-

ease surveillance reports of the Mexico General Directorate of Epidemiology, first published

in [219] and provided to us by the authors. The US data, both historical (Fig B.8) and

modern, were obtained from the Project TYCHO database [218]. Data from Estonia were

provided by the Estonian Health Board, Department of Communicable Disease Surveillance

and Control [74]. Clinical data from these five countries span different time periods, but

each overlapped with the Google Trends data for 4+ years. Clinical data spanned Jan 1995

– Feb 2011 in Mexico, Jan 2003–Dec 2014 in Thailand, Jan 2006–Feb 2015 in Australia, Jan

2006–Aug 2013 in the US, and Jan 1999–Dec 2014 in Estonia.
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B.1.3 Forecasting

In order to determine if Google Trends data could be used to predict the magnitude and

timing of chicken pox outbreaks, we built forecasting models. The models predicted the

force of infection, which we defined as the monthly per capita rate at which children age

0–14 years are infected. We refer to this parameter as the force of infection, which is typically

defined as the rate of infection per capita susceptible individual, because we are assuming

all susceptible individuals are contained within the the 0–14 year age class, and therefore

the number of 0–14 year olds is a surrogate for the number susceptible. The forecasting

models containing Google data use Google data from the previous time intervals, t − 1

and t − 2, to predict the number of chicken pox cases at the current time interval, t. The

models were fit to data from two countries that actively report chicken pox cases, one with

active immunization (Australia) and one lacking immunization (Thailand). To determine

whether Google Trends, T, was able to forecast the magnitude and timing of chicken pox

outbreaks, we built and fitted multiple statistical models to forecast chicken pox case data.

The correlation between chicken pox information seeking and chicken pox cases was weaker

in Australia compared to Thailand (R2 = 0.26 and 0.81, respectively). We therefore used

the case data from Australia to test the power of the forecasting models, since Australia

poses a more challenging forecasting problem.

The Google Trends data are weekly, whereas both Australia and Thailand reported

chicken pox on a monthly basis. Thus, we forecast on a monthly basis and converted the

weekly Google Trends data to monthly values. To do this, we repeated the weekly values

at daily intervals (Google Trends data are relative search values and not absolute number

of searches). We then assigned the daily values to their appropriate month of the year. For

each month, we then found the mean of the daily values, which resulted in the values used

for forecasting.

The null and four of our eight forecasting models included a cosine function to help

predict chicken pox outbreaks. We discovered that the cosine function is required because it
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imposes cyclicity on the outbreaks, acting as a proxy for cyclical changes in (1) the number

of susceptible individuals in the population and/or (2) the transmission rate. Although

the Google Trends data are cyclical, since the forecasting model predicts one-month-ahead,

without the cosine function, the Google Trends data alone would be limited in ability to

forecast directionality (i.e., to determine if cases are increasing or decreasing). Including

a cosine function with a period of 12-months allowed us to overcome this limitation. We

tested eight different forecasting models, all slight variations of each other, and compared

the model results to a null model that captured the annual seasonal patterns of chicken pox

incidence (Table B.1). It is unknown how the Google data scaled to chicken pox data. We

therefore estimated scaling parameters in the various models (i.e. α, β1, β2, and β3).

We evaluated the epidemiological information contained in Google Trends by comparing

the Google Trends models with a seasonal null model that did not incorporate Google data

(model B). The null model lacked information seeking in the force of infection λt. All models

were fitted to the case data from a VZV-vaccinated population (Australia), which exhibited

reduced seasonality. To estimate the number of symptomatic VZV infections each month,

It, we used Google Trends data from the previous two months, Tt−1 and Tt−2, where t is

time in monthly time steps. The chicken pox process model with the best fit, tracked the

force of infection, λt,

λt =

[
β1cos

(
2π

12
(t+ ω)

)
Tt−1 + β2|Tt−1 − Tt−2|+ β3

]
εt. (B.1)

The model contained environmental stochasticity, εt, which was drawn from a gamma dis-

tribution with a mean of 1 and variance θ. We estimated the following parameters for the

Google model: the mean and the phase of the seasonality (β1 and ω), a parameter scaling

the Google Trends data (β2), the baseline force of infection (β3), the process noise dispersion

parameter (θ), and the reporting dispersion parameter (τ) of a normal distribution, with

a mean of 1, from which case reports were drawn. The parameters were estimated using

maximum likelihood by iterated particle filtering (MIF) in the R-package pomp [111,112].
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In order to estimate the number of symptomatic VZV infections per month, we multiplied

the force of infection, λ, with an estimate of the population aged 0–14 years [213], C,

It = λtC. (B.2)

We modeled the observation process, which represents the number of cases reported. To

account for stochasticity in the reporting of symptomatic VZV infections, case reports were

drawn from a normal distribution with a mean report rate, ρ = 1, and dispersion parameter

(τ) which was estimated from the data.

chickenpoxt ∼ N (ρIt, τIt). (B.3)

We evaluated the epidemiological information contained in Google Trends by comparing

the Google Trends model with a seasonal null model where the force of infection did not

incorporate Google Trends data. The null model force of infection was modeled as:

λt =

[
β1cos

(
2π

12
(t+ ω)

)
+ β3

]
εt. (B.4)

To explore other model possibilities, we tested seven other models that included Google data.

All model parameters listed are in reference to the best fit Google Model (model A). Of the

additional seven Google models, the first lacked the β2 parameter;

λt =

[
β1cos

(
2π

12
(t+ ω)

)
Tt−1 + β3

]
εt. (B.5)

The second model lacked the β2 parameter, but included an additional Google Trends scaling

parameter, α;

λt =

[
β1cos

(
2π

12
(t+ ω)

)
Tα
t−1 + β3

]
εt. (B.6)
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The third model contained the α parameter,

λt =

[
β1cos

(
2π

12
(t+ ω)

)
Tα
t−1 + β2|Tt−1 − Tt−2|+ β3

]
εt. (B.7)

The fourth model lacked the cosine function and β2 parameter;

λt = [β1(Tt−1) + β3] εt. (B.8)

The fifth model lacked the cosine function and β2 parameter, but contained the α parameter;

λt =
[
β1(T

α
t−1) + β3

]
εt. (B.9)

The sixth model lacked the cosine function but included the α parameter;

λt =
[
β1(T

α
t−1) + β2|Tt−1 − Tt−2|+ β3

]
εt. (B.10)

and the seventh model lacked the cosine function;

λt = [β1(Tt−1) + β2|Tt−1 − Tt−2|+ β3] εt. (B.11)

Results from all models are listed in Table B.1. Models that included the cosine function,

including the null (i.e. model equations B.1, B.4, B.5, B.6, and B.7), fit better than those

that did not have the cosine function (i.e. model equations B.8, B.9, B.10, and B.11).

The best fit Google forecasting model estimated six parameters and had an AIC of 1120.9,

while the null model, which lacked Google Trends data, had an AIC of 1148.9. The best fit

forecasting model without the cosine function estimated 4 parameters and had an AIC of

1179.3.

To further examine the difference between the Google model and the Null model, we ran

10000 simulations using the maximum-likelihood parameter set for each the Google model

and the null model for Australia. We first examined each of the model fits (Fig B.1) to the
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chicken pox case data. Since both models were seasonally forced, they were both able to

capture the seasonal timing of outbreaks. However, the Google Trends model was able to

predict the interannual variation in outbreak size, while the null model could not because

the cosine function did not change interannually (Fig B.1).

These results demonstrate that the Google Trends model was better able to capture

the dynamics of chicken pox case data. The stochastic simulations showed more variation

(larger standard deviation), and captured the data more often than the Null model. To

visualize the relationship between the model simulations and the chicken pox case data, we

plotted the mean predicted chicken pox cases (model results) against the actual cases for the

Google Trends model and the Null model (Fig B.1). Finally, to get a better understanding

of why the Google Trends model fit the chicken pox case data better than the Null model,

we explored the distribution densities of the troughs of each model against the data for each

year (Fig B.2). The Google Trends model achieved a better fit to chicken pox data (Fig B.2).

While the Google Trends model best captured the actual troughs in 2012, 2013, and 2014,

its density distribution was always closer to the actual number of cases in the trough month

relative to the Null model. The trough in 2006 was difficult to characterize because the

model was estimating initial conditions, which could explain why neither the Google Trends

model nor the Null model were able to accurately forecast the number of cases in May, 2006.

B.1.4 Information Seeking in other Childhood Diseases

To evaluate whether our findings based on chicken pox were representative of infectious

childhood diseases in general, we examined information seeking behaviour for other childhood

diseases. We obtained country-specific Google Trends data from the US and Australia for

“hand foot and mouth”, “croup”, and “fifth disease” [86].

Google queries of croup, fifth disease, and HFMD in the US and Australia displayed

variation in search volume (1) within and between years for each disease, (2) among diseases,

and (3) across geographic locations for a given disease. HFMD displayed seasonal variation
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in the US and Australia (Fig B.3). HFMD is caused by enteroviruses, which are notorious

for their increased summer transmission in temperate regions [159]. The peak in HFMD

information seeking generally occurred between June and August in the US and Australia,

and was relatively synchronized between these countries. Seasonal variation in HFMD has

been documented in clinical case data with peaks in the US occurring from spring to fall [110],

which is in keeping with the seasonal variation observed in information seeking. In contrast,

in Australia, the concurrent seasonal peak coincided with the southern hemisphere winter.

This unexpected timing requires further investigation.

Croup information seeking also displayed seasonality, but unlike HFMD seasonal in-

formation seeking, it was asynchronous between the US and Australia. In the US, croup

information seeking seasonally peaked between October and November, at the onset of the

northern hemisphere winter; whereas in Australia, croup information seeking peaked from

May–July, at the onset of the Australian winter. Croup is caused by Human parainfluenza

viruses (HPIVs). HPIV-1 and HPIV-2, which cause croup in children, circulate in autumn,

suggesting that the seasonality of croup information seeking in the US and Australia follow

the seasonal circulation in HPIV-1 and 2.

Information seeking regarding fifth disease, which is caused by parvovirus B19, was highly

seasonal in the US (Fig B.3). The seasonal peak in fifth disease information seeking showed

a distinct trough from August–October and peaked from April–May, roughly coinciding with

the seasonal peak of clinically diagnosed fifth disease in late winter and early spring [4,161].

The search volume of fifth disease was not sufficient outside North America for geographic

comparison.

These preliminary examples further emphasize the untapped potential of analyzing in-

formation seeking behaviour of childhood infectious diseases. Digitally detecting pathogen-

specific, large-scale spatio-temporal patterns can provide clues for identifying environmental

and physiological drivers of the dynamics of these diseases.
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B.1.5 Influenza Information Seeking Behaviour

Our data strongly suggest a signature of immunization on the seasonality of VZV. For

the case of varicella, a readily apparent signature of immunization is perhaps to be expected

because, when rolled-out into a population at high coverage, the VZV vaccine is highly ef-

fective [12, 188]. Therefore, we examined whether observable signatures of immunization

can also be detected in diseases with lower vaccine efficacy. In order to determine whether

vaccine effects could also be observed in Google data for other vaccine preventable disease,

we obtained annual data on inactivated influenza vaccine efficacy and vaccine administra-

tion, weekly influenza and pneumonia mortality, and weekly information seeking regarding

influenza and flu symptoms in the US state of Wisconsin (Fig B.4). We measured effective

immunization as the percent of the population expected to be immunized based on doses

administered and vaccine efficacy, which varies substantially from year-to-year. Influenza

mortality and information seeking displayed interannual variation not readily attributable

to variation in effective immunization. We interpret this to be due to low effective im-

munization for influenza, which was < 25% in all years. Although flu and flu symptoms

information seeking did not contain a signature of immunization, influenza and pneumo-

nia mortality covaried with information seeking (R2= 0.34 and R2= 0.50 for flu and flu

symptoms, respectively). This suggests that if seasonal flu immunization accounted for the

interannual variation in influenza mortality, the effect of immunization would be reflected in

flu information seeking.

For the state of Wisconsin, weekly influenza information seeking data were obtained

from Google trends using the search terms “flu” and “flu symptoms”. Wisconsin was chosen

because published studies of inactivated influenza vaccine efficacy included patients from

Wisconsin. The adjusted vaccine effectiveness estimates for influenza seasons were obtained

from the CDC [44]. In years when the lower bound of the 95% CI of vaccine efficacy was

negative, the efficacy was set to 0. Weekly influenza and pneumonia mortality was extracted

from the Mortality Surveillance Data from the National Center for Health Statistics [43].
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Model Model Structure LogLik # Params Est. AIC ∆ AIC

B.1 Google Model -554.47 6 1120.9 0.0

B.4 Null Model −569.47 5 1148.9 28.0

B.5 -β2 −558.32 5 1128.0 7.1

B.6 -β2, +α −563.35 6 1138.7 17.8

B.7 +α −565.43 7 1144.9 24.0

B.8 - Cosine, -β2 −585.63 4 1179.3 58.4

B.9 -Cosine, -β2, +α −585.02 5 1180.0 59.1

B.10 -Cosine, +α −584.96 6 1181.9 61.0

B.11 -Cosine −586.08 5 1182.2 61.3

Table B.1: The equation letter, model structure, log–likelihood values, number of estimated
parameters, AIC, and difference from top AIC values are shown above. Equation letter matches
the equations from Appendix B (main text references to the Google model, refer to the best-fit
model, model A). The model structure refers to how the model varies from the top performing
Google model. A cosine function, α parameter, or the β2 parameter were either added (+) or
removed (-) from the best fit Google Model. LogLik are the log–likelihood values for each models
maximum likelihood parameter set. AIC refers to Akaike Information Criterion which penalizes
models that use more parameters. The lowest AIC value represents the best fit model. ∆ AIC was
the difference in AIC from the best fit model.
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Supplementary Figure B.1: (top left panel)The best–fit Google Trends model (Model A (B.1)),
was simulated 10000 times and the range of standard deviation from the mean are plotted in purple
against the actual Australian chicken pox case data (black). (top right panel) The relationship
between the Google Trends model predicted chicken pox cases and the observed chicken pox cases.
(bottom left panel) The Null model (Model B (B.4)), was simulated 10000 times and the range
of standard deviation from the mean are plotted in light blue against the actual chicken pox case
data (black). (bottom right panel) The relationship between the Null model predicted chicken pox
cases and the observed chicken pox cases.
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Supplementary Figure B.2: Density distributions of the 10000 simulations for each the Google
Model (purple) and Null model (light blue) during the trough month in chicken pox cases for each
year. The actual number of reported cases are in each panel title, and shown with a vertical black
band.
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Supplementary Figure B.3: Seasonal variation in childhood disease information seeking. Time
series of monthly information seeking for Google queries of “hand foot and mouth”, “croup”, and
“fifth disease” in the US and Australia. Hand, foot and mouth disease (HFMD) queries in the
US and Australia were relatively in phase with one another, whereas croup queries in the US and
Australia were out of phase, with both occurring in the autumn of their respective hemisphere.

109



●

●

●

●
●

●

0
5

10
15

20
25

ef
fe

ct
iv

e
im

m
un

iz
at

io
n

2010 2012 2014 2016
year

0
5

10
15

go
og

le
 tr

en
d 

in
 W

is
co

ns
in

 (
w

ee
kl

y)

30
10

0

flu
flu symptoms

2010 2012 2014 2016

40
60

80
10

0
12

0
14

0
16

0

in
flu

en
za

 a
nd

 p
ne

um
on

ia
 d

ea
th

s 
in

 W
is

co
ns

in
 (

w
ee

kl
y)

Supplementary Figure B.4: Influenza digital epidemiology and mortality in Wisconsin, USA.
Weekly influenza and pneumonia mortality (blue line). Weekly Google trends based on the search
terms ‘’influenza” (red) and ‘’influenza symptoms” (grey). Effective influenza immunization (black).
The expected value and range of effective immunization, measured as the percent of the population
immunized, was calculated by multiplying the percent of the population vaccinated by the annual
vaccine efficacy. The expected values (black line with blue range) are based on the point estimates
of vaccine efficacy, the range is based on the 95% CIs for reported efficacy.
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Supplementary Figure B.5: Wavelet analyses [210] for eight countries. Wavelets are used to
identify periodic signals in non-stationary time series data. These signals can vary in amplitude,
frequency, and phase over long temporal scales. Wavelets decompose time series data into signals
of identifiable period and amplitude, both of which can change with time. For each figure, time is
plotted on the x-axis, and the periodicity, in weeks, is plotted on the y-axis, with the colors repre-
senting the power of each frequency (blue=low, red=high). Areas circled in black have significant
periodicity for that period. In the UK for example, the data are significant at 52 weeks throughout
the entire time series (i.e. annual peaks). Meanwhile in both Australia and Germany, significant
periodicity was lost during the time period analyzed, while in Spain, significant periodicity was lost
between 2009-2012. Canada can only be tested for significance up to 96 weeks because of the short
time series available.
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Table B.2: Chicken pox search term context. Search terms have been translated from Spanish
to English for Mexico and from Thai to English for Thailand. Search terms that could not be
properly translated from Thai are indicated by “could not translate” in the category. Note, there
were unique searches in Spanish and Thai that resulted in the same English translation.

top chicken pox

search terms

relative

abundance

category country indicator

chicken pox 100 disease

(common name or virus)

US disease

chicken pox vaccine 80 vaccine or vaccination US vaccine

shingles chicken pox 75 similar disease US other

chicken pox symptoms 45 symptoms US disease

chicken pox pictures 30 disease

(images)

US disease

symptoms of chicken pox 30 symptoms US disease

what is chicken pox 25 disease

(common name or virus)

US disease

chicken pox adults 25 disease

(based on stage of life)

US disease

chicken pox virus 20 disease

(common name or virus)

US disease

pictures of chicken pox 20 disease

(images)

US disease

chicken pox in adults 20 disease

(based on stage of life)

US disease

chicken pox contagious 20 disease (other) US disease

chicken pox rash 20 symptoms US disease

chicken pox vaccine 20 vaccine or vaccination US vaccine

shingles vaccine 20 similar disease US other

varicella chicken pox 15 disease

(common name or virus)

US disease

varicella 15 disease

(common name or virus)

US disease

chicken pox and shingles 15 similar disease US other

chicken pox symptoms 15 symptoms US disease

signs of chicken pox 15 symptoms US disease

chicken pox pictures 10 disease

(images)

US disease

chicken pox in children 10 disease

(based on stage of life)

US disease

shingles from chicken pox 10 similar disease US other

never had chicken pox 10 uncategorized US other

is chicken pox contagious 10 disease (other) US disease

shingles contagious 10 similar disease US other

vaccine for chicken pox 10 vaccine or vaccination US vaccine

chicken pox treatment 10 care or treatment US disease

what is shingles 5 similar disease US other

chicken pox virus 5 disease

(common name or virus)

US disease

chicken pox images 5 disease

(images)

US disease

pregnancy and chicken pox 5 disease

(based on stage of life)

US disease

Continued on next page
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Table B.2 – Continued from previous page

top chicken pox

search terms

relative

abundance

category country indicator

are chicken pox contagious 5 disease (other) US disease

chicken pox incubation 5 disease (other) US disease

incubation period chicken pox 5 disease (other) US disease

chicken pox history 5 uncategorized US other

what causes chicken pox 5 disease (other) US disease

is shingles contagious 5 similar disease US other

incubation for chicken pox 5 disease (other) US disease

causes of chicken pox 5 disease (other) US disease

cdc chicken pox 5 disease (other) US disease

exposure to chicken pox 5 disease (other) US disease

cause of chicken pox 5 disease (other) US disease

chicken pox transmission 5 disease (other) US disease

symptoms for chicken pox 5 symptoms US disease

stages of chicken pox 5 symptoms US disease

chicken pox vaccination 5 vaccine or vaccination US vaccine

varicella vaccine 5 vaccine or vaccination US vaccine

treatment for chicken pox 5 care or treatment US disease

treatment of chicken pox 5 care or treatment US disease

chicken pox 100 disease

(common name or virus)

Thailand disease

a chicken pox 85 disease

(common name or virus)

Thailand disease

chicken pox symptoms 50 symptoms Thailand disease

chicken pox treatment 50 care or treatment Thailand disease

chicken pox vaccine 40 vaccine or vaccination Thailand vaccine

vaccine 40 vaccine or vaccination Thailand vaccine

chicken pox medicine 35 care or treatment Thailand disease

chicken pox children 20 disease

(based on stage of life)

Thailand disease

chicken pox scars 20 disease (other) Thailand disease

prevent chicken pox 15 disease (other) Thailand disease

contact chicken pox 15 disease (other) Thailand disease

chicken pox blister 15 symptoms Thailand disease

chicken pox blisters 15 symptoms Thailand disease

treatment of chicken pox 15 care or treatment Thailand disease

chicken pox solve 15 care or treatment Thailand disease

as chicken pox 10 disease

(common name or virus)

Thailand disease

chicken pox 10 disease

(common name or virus)

Thailand disease

chicken pox infection 10 disease (other) Thailand disease

chicken pox is caused by 10 disease (other) Thailand disease

chicken pox symptoms 10 symptoms Thailand disease

symptoms of chicken pox 10 symptoms Thailand disease

itchy chicken pox 10 symptoms Thailand disease

chicken pox symptoms 10 symptoms Thailand disease

symptoms of chicken pox 10 symptoms Thailand disease

price chicken pox vaccine 10 vaccine or vaccination Thailand vaccine

chicken pox vaccine 10 vaccine or vaccination Thailand vaccine

chicken pox treatment 10 care or treatment Thailand disease

treatment of chicken pox 10 care or treatment Thailand disease

treatment of chicken pox 10 care or treatment Thailand disease

Continued on next page
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Table B.2 – Continued from previous page

top chicken pox

search terms

relative

abundance

category country indicator

chicken pox scars 10 disease (other) Thailand disease

green medicine (traditional medicine) 10 care or treatment Thailand disease

chicken pox green medicine (traditional

medicine)

10 care or treatment Thailand disease

chicken pox cure 10 care or treatment Thailand disease

roy chicken pox 10 could not translate Thailand other

E-cooked 10 could not translate Thailand other

do not eat chicken pox 10 could not translate Thailand other

food chicken pox 10 could not translate Thailand other

the chicken pox 5 disease

(common name or virus)

Thailand disease

the chicken pox 5 disease

(common name or virus)

Thailand disease

chicken pox in children 5 disease

(based on stage of life)

Thailand disease

topical chicken pox 5 disease (other) Thailand disease

measels 5 similar disease Thailand other

chicken pox vaccine 5 vaccine or vaccination Thailand vaccine

chicken pox vaccine 5 vaccine or vaccination Thailand vaccine

to prevent chicken pox 5 disease (other) Thailand disease

scar treatment 5 care or treatment Thailand disease

chicken pox scar treatment 5 care or treatment Thailand disease

chicken pox scars 5 disease (other) Thailand disease

chicken pox wound healing 5 care or treatment Thailand disease

chicken pox hole 5 could not translate Thailand other

the chicken pox 100 disease

(common name or virus)

Mexico disease

chicken pox symptoms 25 symptoms Mexico disease

what is chicken pox 15 disease

(common name or virus)

Mexico disease

chicken pox infants 15 disease

(based on stage of life)

Mexico disease

chicken pox in infants 15 disease

(based on stage of life)

Mexico disease

symptoms of chicken pox 15 symptoms Mexico disease

measels 15 similar disease Mexico other

small pox 15 similar disease Mexico other

chicken pox adults 10 disease

(based on stage of life)

Mexico disease

chicken pox in adults 10 disease

(based on stage of life)

Mexico disease

pregnancy chicken pox 10 disease

(based on stage of life)

Mexico disease

treatment chicken pox 10 care or treatment Mexico disease

chicken pox vaccine 10 vaccine or vaccination Mexico vaccine

rubella 10 similar disease Mexico other

zoster chicken pox 5 disease

(common name or virus)

Mexico disease

chicken pox virus 5 disease

(common name or virus)

Mexico disease

chicken pox images 5 disease

(images)

Mexico disease

Continued on next page
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top chicken pox

search terms

relative

abundance

category country indicator

images of chicken pox 5 disease

(images)

Mexico disease

chicken pox pdf 5 disease

(images)

Mexico disease

chicken pox in pregnancy 5 disease

(based on stage of life)

Mexico disease

chicken pox babies 5 disease

(based on stage of life)

Mexico disease

chicken pox in babies 5 disease

(based on stage of life)

Mexico disease

symptoms chicken pox infants 5 disease

(based on stage of life)

Mexico disease

chicken pox spread 5 disease (other) Mexico disease

spread of chicken pox 5 disease (other) Mexico disease

hemorrhagic chicken pox 5 disease (other) Mexico disease

remedies for chicken pox 5 care or treatment Mexico disease

care chicken pox 5 care or treatment Mexico disease

aciclovir 5 care or treatment Mexico disease

treatment of chicken pox 5 care or treatment Mexico disease

chicken pox home remedies 5 care or treatment Mexico disease

scars of chicken pox 5 disease (other) Mexico disease

treatment for chicken pox 5 care or treatment Mexico disease

marks of chicken pox 5 disease (other) Mexico disease

chicken pox postulates 5 symptoms Mexico disease

chicken pox care 5 care or treatment Mexico disease

vaccine for chicken pox 5 vaccine or vaccination Mexico vaccine

vaccine against chicken pox 5 vaccine or vaccination Mexico vaccine

the small pox 5 similar disease Mexico other

small pox and chicken pox 5 similar disease Mexico other

zoster herpes 5 similar disease Mexico other

chicken pox (misspelling) 0 disease

(common name or virus)

Mexico disease

chicken pox (misspelling) 0 disease

(common name or virus)

Mexico disease

photos of chicken pox 0 disease

(images)

Mexico disease

chicken pox and pregnancy 0 disease

(based on stage of life)

Mexico disease

chicken pox twice 0 disease (other) Mexico disease

scarlet fever 0 similar disease Mexico other

measel symptoms 0 similar disease Mexico other

small pox symptoms 0 similar disease Mexico other

symptoms chicken pox 100 symptoms Australia disease

rash 60 symptoms Australia disease

chicken pox rash 60 symptoms Australia disease

chicken pox 55 disease

(common name or virus)

Australia disease

chicken pox vaccine 50 vaccine or vaccination Australia vaccine

shingles chicken pox 45 similar disease Australia other

shingles 45 similar disease Australia other

measles 45 similar disease Australia other

Continued on next page
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top chicken pox

search terms

relative

abundance

category country indicator

chicken pox pictures 35 disease

(images)

Australia disease

adults chicken pox 30 disease

(based on stage of life)

Australia disease

chicken pox pregnancy 30 disease

(based on stage of life)

Australia disease

chicken pox children 25 disease

(based on stage of life)

Australia disease

chicken pox australia 25 disease (other) Australia disease

chicken pox contagious 25 disease (other) Australia disease

chicken pox baby 20 disease

(based on stage of life)

Australia disease

chicken pox spots 20 symptoms Australia disease

chicken pox vaccination 20 vaccine or vaccination Australia vaccine

chicken pox treatment 20 care or treatment Australia disease

chicken pox virus 15 disease

(common name or virus)

Australia disease

chicken pox babies 15 disease

(based on stage of life)

Australia disease

chicken pox pregnant 15 disease

(based on stage of life)

Australia disease

chicken pox immunisation 15 vaccine or vaccination Australia vaccine

varicella 10 disease

(common name or virus)

Australia disease

varicella chicken pox 10 disease

(common name or virus)

Australia disease

chicken pox images 10 disease

(images)

Australia disease

chicken pox in adults 10 disease

(based on stage of life)

Australia disease

chicken pox twice 10 disease (other) Australia disease

chicken pox incubation 10 disease (other) Australia disease

measles rash 10 similar disease Australia other

measles symptoms 10 similar disease Australia other

mumps 10 similar disease Australia other

chicken pox signs 10 symptoms Australia disease

chicken pox scars 10 disease (other) Australia disease

chicken pox photos 5 disease

(images)

Australia disease

chicken pox picture 5 disease

(images)

Australia disease

chicken pox toddler 5 disease

(based on stage of life)

Australia disease

chicken pox stages 5 disease (other) Australia disease

chicken pox herpes 5 disease (other) Australia disease

chicken pox mild 5 disease (other) Australia disease

small pox 5 similar disease Australia other

rubella 5 similar disease Australia other

german measles 5 similar disease Australia other

symptoms of chicken pox 5 symptoms Australia disease

shingles symptoms 5 similar disease Australia other

rashes 5 symptoms Australia disease

Continued on next page
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Supplementary Figure B.6: Annual amplitude values of Google searches for the United King-
dom, Spain, and Germany. See text for additional captioning.

Table B.2 – Continued from previous page

top chicken pox

search terms

relative

abundance

category country indicator

chicken pox rash 5 symptoms Australia disease

chicken pox vaccine 5 vaccine or vaccination Australia vaccine

For Supplementary Figure B.6, amplitudes were computed by first calculating the differ-

ence between the maximum each year and the mean each year. Second, we subtracted

the minimum each year from the mean each year. Third, we found the difference be-

tween those two values and divided by two to get the final amplitude. Amplitude =

((max(yr1)−mean(yr1))− (min(yr1)−mean(yr1))/2. In Spain, municipalities differed in
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their implementation of VZV vaccination. The Madrid metro region represents ∼ 14% of

the Spanish population (6.5m/46.7m), meaning that the vaccination policy in Madrid will

have a large impact on overall chicken pox incidence and chicken pox Google Trends for the

country. Spain initially had a significant seasonal period. However, after VZV vaccination

was implemented in Madrid and additional cities, the significant seasonal periodicity was

lost. Interestingly, the seasonality became significant again when Madrid withdrew VZV

vaccination. This is similar to Germany (Figs 2.3 and B.5), where the loss of significant

wavelet periodicity followed the implementation of routine immunization after a few years.

To examine this loss of seasonality in Google Trends in closer detail, we analyzed the annual

amplitude for these two countries and the United Kingdom, which all differed in immuniza-

tion mandates. The United Kingdom, which has no requirements, Spain, which implemented

vaccination in certain municipalities for varying time periods, and Germany, which gradu-

ally increased its requirements over the course of a few years: first it required one shot, then

made the payments nationalized, and finally required a second dose. In the UK, with no im-

munization requirements, the annual amplitude of Google searches for chicken pox remains

relatively constant. In Spain, when all four municipalities were immunizing, the amplitude

decreased from ∼ 40% to ∼ 20% in two years, before Madrid stopped vaccinating, after

which the amplitude increased to over 50%. Meanwhile, in Germany pre-vaccine amplitudes

in Google searches were ∼ 60%, before dropping to ∼ 40% after the requirement of one

dose, then dropping to ∼ 20% after instituting nationalized payments, and finally dropping

to ∼ 10− 15% after requiring a second dose. This additional analysis clearly elucidates the

impact of immunization on search seasonality.
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Supplementary Figure B.7: Relative frequency of language-specific chicken pox searches. Top
searches were categorized into three broad categories: disease indicators, vaccine, or other. Disease
indicators were searches considered to indicate chicken pox in the household/community. Vaccine
indicators were searches regarding the VZV vaccine, and all other search contexts were placed in
the “other” (also see Table B.2).
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Supplementary Figure B.8: Weekly, state-level, data on chicken pox cases from [218] during the
years 1972-2015 for all US states. Each state is plotted as an individual line. Black lines represent
reported chicken pox cases during the pre-vaccine era, while red lines represent reported chicken
pox cases during the vaccine era in the US
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Table B.3: Countries included in our chicken pox information seeking dataset from Google Trends.
Countries in black lack nationwide immunization, countries in red began nationwide immunization
in 2013 (Brazil) or 2014 (Japan), and countries in green have had nationwide immunization for
multiple years. Countries with significant annual (seasonal) periodicities are in italics.

Countries

Argentina Australia Austria Brazil

Canada Chile China Colombia

Czech Republic Denmark Estonia Finland

France Germany Hungary India

Iran Ireland Italy Japan

Mexico Netherlands New Zealand Philippines

Poland Portugal Romania Russia

South Africa Spain Sweden Thailand

United Kingdom United States Venezuela Vietnam
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Supplementary Figure B.9: Canada Google Trends time series, data only available for the
period with Universal Immunization (in red). This figure displays the lack of seasonality in the
Google Trends data for Canada, a country with active immunization since 2000.
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APPENDIX C

Supporting Information: The Underpinnings of

Herpesvirus Dynamics: Transmission & Reactivation

of Varicella Zoster Virus

C.1 The Underpinnings of Herpesvirus Dynamics: Transmission

& Reactivation of Varicella Zoster Virus: Supporting Infor-

mation

C.1.1 Introduction

Chickenpox, commonly referred to as varicella zoster (VZ), is a respiratory transmitted

infectious disease that causes a characteristic red rash and pox on the skin surface [177]. It

is caused by the varicella zoster virus (VZV) which also causes shingles, or herpes zoster

(HZ). Symptoms typically arise 1-3 weeks after exposure to an infected individual, and a

newly infected individual is infectious for around a week starting 1-2 days prior to the onset

of symptoms. Symptoms last approximately two weeks, when the virus then retreats to the

nerve ganglia in the spine [222, 234]. By the age of 15, almost all children have antibodies

to VZV, either from a natural infection or the vaccine [185, 225]. In approximately 20% of

122



adults, the latent varicella virus is reactivated and manifests as shingles, typically in adults

aged over 60 [208]. The VZV vaccine, typically administered in two doses during childhood,

prevents infection with VZV in children, while a booster dose later in life suppresses VZV

reactivation in adults [185].

Chickenpox has been studied extensively and is noted by its explosive springtime out-

breaks. The mechanism driving increased spring tranmission is still a topic of debate. One

of the earliest studies identified temperature as the likely culprit [222], but later examination

of school terms identified the seasonal aggregation of children in school (term-time forcing)

as the main facilitor of outbreaks [104,127]. However, recent work has argued that term-time

forcing cannot be solely responsible for seasonality of chickenpox transmission [136]. Other

hypothesized mechanisms include immune related functions, such as seasonal gene expres-

sion [63], systemic immunosuppression caused by UV irradiation [212], or seasonal differences

in antibodies due to pathogen exposure [55,170].

Shingles is a non-notifiable disease, with epidemiological studies focused on smaller sam-

ple populations. It has been noted to lack seasonal patterns in incidence [40,97,182], includ-

ing small-scale population based studies [24, 46, 79, 156]. Seasonality has been identified in

two studies of shingles, both of which examined less than 200 total patients over multiple

years [99, 230]. Shingles reactivation is thought to be modulated by ultraviolet (UV) irra-

diation, which suppresses immunity [57, 81, 185, 238]. Other proposed mechanisms for VZV

reactivation include a new exposure to the virus [148], stress [97, 177, 182, 234], a weakened

immune system [185], or some amount of time since chickenpox infection due to a decline in

cell-mediated immunuty [234]. Regardless of the mechanism, it has been commonly accepted

that shingles displays limited to no seasonal patterns.

While the VZV vaccine has been available since the early 1996, it is included as part of

the mandated childhood immunization schedule in only a few countries, including the U.S.,

Canada, Australia, and Germany. Other countries suggest it, or require it in certain regions,

but most do not require the vaccine. Because childhood infection with VZV has minimal
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complications, low mortality, and symptoms are more mild the younger an individual is,

parents encourage their kids to contact infected individuals to expose their children to the

pathogen, stimulating the immune system and generating antibodies, early in life [225].

VZV immunization is not on the list of WHO mandated vaccines because implementation

could increase shingles incidence, which has more severe symptoms and higher mortality

[155]. Other reasons for limiting vaccination include risk to the fetus in pregnant women,

immunocomprimised individuals [225], or the knowledge of antibody boosting, where adult

exposure to children infected with chickenpox boosts VZV antibodies [26] lessening the

chance of reactivation [207], meaning that requiring the vaccine must be carefully considered

[120].

Population-level chickenpox and shingles data for Thailand were downloaded to test what

mechanisms may drive the seasonal patterns of these two diseases. Previous attempts at mod-

eling the interaction between chickenpox and shingles revealed no association between these

two diseases [82]. Since so few countries actively report country-level chickenpox infections,

and only two that we could find (Australia and Thailand) reported both chickenpox and

shingles, studies examining the dynamics of these two diseases in concert have been limited.

Since most VZV clinical case data in Australia were characterized ‘unspecified VZV’ rather

than chickenpox or shingles, this work focused on Thailand, which has an excellent history

of disease surveillance.

C.1.2 Methods

C.1.2.1 Data

Country and regional level (Figs 4.4, C.4, C.5) ultraviolet irradiation (UV) data were

obtained from the National Center for Atmospheric Research (NCAR) [1]. Two datasets

were obtained, one spanned the years 1979-2010 [173] and the other 2011-present [174]. Four,

6-hour daily averages, were extrapolated to monthly data for the time series ranging 2003-

2011. Thus a general smoothing occured with the UV data as 1/4 day averages were taken
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and then averaged over the entire month. This was done to account for the differences in sun

exposre over the course of the year, as there are more hours of sunlight during the summer,

and less during the winter. By including the averages, we are inspecting the relationship

between sun exposure, tested by UV, and shingles reactivation.

C.1.2.2 Model

To accurately model VZV dynamics, we constructed a Susceptible, Exposed, Infected

with chickenpox, Latent (recovered from chickenpox), Infected with shingles, and second

Latent (recovered from shingles) state model (Fig 4.1). Once entering the second latent

state (shingles recovered), we removed the possibility of a second reactivation due the low

natural occurance rate of 0.1% [211]. Population data for Thailand were collected from the

United Nations, and interpolated for monthly birth data [213]. All models were fit to the

reported chickenpox and shingles clinical case data. Models were fit to the first 8 years of

data (2003-2010), with the last year left for out-of-fit estimates. To account for the trend

in reported clinical cases of shingles, parameters to estimate the linear increase in reporting

were estimated. The generalized model transition probabilities follow a Poisson process,

where the fraction of those who remained in the susceptible state were modeled as;

pS = e−(FOI+δ) (C.1)

where FOI is the force of infection and δ is the death rate, which was assumed to be constant

across all model states;

FOI = β

(
(IV Z) + (ωIHZ)

N

)α
ε (C.2)

where β was the time-varying seasonal force of infection for chickenpox infections (see below

- model combinations), IV Z was the number of current individuals infected with chickenpox,

ω was a scalar for the relative infectiousness of shingles - allowing for reactivated shingles
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individuals to infect a susceptible individual, IHZ was the number of individuals with reac-

tivated shingles, N was the total population, α was a scalar for the force of infection, and

ε was a noise term which acts as environmental stochasticity. εt, was drawn from a gamma

distribution with a mean of 1 and variance (process noise dispersion parameter) θ. Both

the θ and the reporting rate dispersion parameter τ were drawn from a normal distribution,

with a mean of 1. The fraction of those who remained in the exposed state were modeled as;

pE = e−(φ+δ) (C.3)

where φ was the length of time between when an individual was exposed to chickenpox and

before they became infectious, this parameter was fixed at 2 weeks. δ was the fixed death

rate for all classes, set for an average lifespan of 60 years. The fraction of those who remained

in the infected with chickenpox state IV Z were modeled as;

pIV Z = e−(γ+δ) (C.4)

where γ was a fixed parameter in which indivduals recovered from chickenpox (7 days). The

fraction of those who remained in the first latent state, but remained susceptible to shingles

reactivation were modeled as;

pL1 = e−(ικψ+δ) (C.5)

where ι was a fixed parameter which represented the fraction of those infected with chicken-

pox that would reactivate later in life as shingles (age 50 years), κ is the seasonal reactivation

rate of shingles, and ψ is the time-varying antibody boosting from chicken pox infections (see

below for both κ and ψ model combinations). The fraction of those who remained infected

with shingles were modeled as;

pIHZ = e−(γ+δ) (C.6)
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with the same recovery rate, γ as chickenpox, while the fraction of those who remained in

the second latent state were modeled as;

pL2 = e−(δ) (C.7)

meaning that death was the only way out of the second latent state. The different states

(S-E-IVZ-L1-IHZ-L2) are displayed in Fig C.1, using the transition rates from Equations

A-G. Model state trasitions are shown Equations H-M.

Κ 

δ δ δ δ δ δ 

ϒ ϒ 

Supplementary Figure C.1: Model transitions are described in Equations C.1-C.15, with the
seasonal transmission for chickenpox represented as β, and the seasonal reactivation of shingles
represented as κ in Equations C.16-C.19, while the interaction of chickenpox incidence on shingles
reactivation described in Eq. C.20.

St+1 = µt + (St ∗ pS) (C.8)

where µt is the number of children born at time, t. Below are the transitions for states E-L2;

Et+1 = St ∗ (1− pS)

(
FOI

FOI + δ

)
+ (Et ∗ pE) (C.9)

IV Zt+1 = Et ∗ (1− pE)

(
φ

φ+ δ

)
+ (IV Zt ∗ pIV Z) (C.10)

L1t+1 = IV Zt ∗ (1− pIV Z)

(
γ

γ + δ

)
+ (L1t ∗ pL1) (C.11)

127



IHZt+1 = L1t ∗ (1− pL1)

(
ικψ

ικψ + δ

)
+ (IHZt ∗ pIHZ) (C.12)

L2t+1 = IHZt ∗ (1− pIHZ)

(
γ

γ + δ

)
+ (L2t ∗ pL2). (C.13)

New infections for chickenpox were recorded as;

IV Znew = Et ∗ (1− pE)

(
φ

φ+ δ

)
(C.14)

while new shingles infections were recorded as;

IHZnew = L1t ∗ (1− pL1)

(
ικψ

ικψ + δ

)
. (C.15)

C.1.2.3 Model Combinations

We tested four different models, each examining a unqiue biologically related hypothesis

regarding VZV dynamics. Each of these four models were also tested with and without

anitbody boosting preventing the reactivation of shingles, thus a total of eight models were

tested. Each model represents a specific combination of hypotheses related to to the seasonal

transmission of chickenpox (β) and reactivation of shignles (κ). Model 1 tested whether both

chickenpox and shingles dynamics were driven by the same seasonal forcing, likley seasonal

susceptibility/immunity. This was examined by fitting a single B-Spline function with 6

basis to both chickenpox and shingles dynamics;

β = κ = exp
6∑
i=1

qiζAit
(C.16)

where β is the seasonal forcing for chickenpox, and κ is the seasonal forcing for shingles, and

each ζA is a B-spline basis with 1 year period. Here, β and κ are equal to eachother, but the

FOI for chickenpox (Eqn. C.2) does not equal the reactivation likelihood for shingles (Eqn.

128



C.5, ικψ). Two different B-splines were used for the second model, one for each chickenpox

and shingles. Biologically, this represents the hypothesis that chickenpox is driven by school

terms (wherein students have increased contact rates), while a different seasonal forcing

(possibly some seasonal immunomodulation) drives shingles reactivation. β is the same as

in Eq. C.16, while shingles reactivation, κ was ,modeled as;

κ = exp
6∑
i=1

qiζBit
(C.17)

where each ζB is a different (from ζA) B-spline basis with 1 year period. The third model

combination again depicts a seasonal school-term forcing for chickenpox with a B-spline,

while examining the potential role of UV irradiation in shingles reactvation. β is the same

as in Eq. C.16, while κ takes the shape of a sigmoidal curve;

κ =
1

π + e(νUV+ξ)
(C.18)

where π, ν, and ξ are parameters being estimated for the shape of the sigmoidal curve, as

UV varies. The fourth model combination examines whether UV drives both chickenpox

transmission and shingles reactivation, where κ is the same as Eq. C.18, but β is;

β =
1

χ+ e(υUV+σ)
(C.19)

where χ, υ, and σ are parameters being estimated for the shape of the sigmoidal curve as

UV varies. Thus, two sigmoidal curves were estimated, one to estimate the effect of UV on

chickenpox transmission and another for shingles reactivation.

Finally all four models were fit with and without VZV antibody boosting (ψ); where

contact between an individual infected with chickenpox could boost VZV antibodies in in-

dividuls who had not developed shingles, making them less susceptible to VZV reactivation.

This biological interaction has been previously observed, where shingles reactivation was

suppressed by exposure to individuals infected with chickenpox [26]. Models fit without
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anitbody boosting, set ψ = 1. This forcing was modeled as;

ψ =
1

1 + e(ηIV Z+o)
. (C.20)

where η and o are two parameters being estimated to determine the shape of the boosting

curve, and IV Z were the number of individuals infected with chickenpox at that time step.

In total, we fit four model combinations, each with and without antibody boosting, for a

total of eight different models. All parameters were estimated using maximum likelihood by

iterated particle filtering (MIF) in the R-package pomp [111,112].

C.1.3 Results

C.1.3.1 VZV Dynamics

Additional, zonal shingles data can be seen in Fig C.2, where the two northernmost

zones (15 & 16) display the clearest seasonality. Unsuprisingly, these were the two zones

with highest shingles infection rates (Fig C.3). A further breakdown of the regional UV data

and shingles data can be seen in Fig C.4 and Fig C.5.

C.1.3.2 Modeling

Modeling results from our 8 models can be seen in Table C.1.

ID Model Description VZ HZ Eqns. Params LogLik AIC

1 1 seasonal forcing BSplineA BSplineA C.16,C.20 12 -1435.1 2894.2

2 1 seasonal forcing, AB BSplineA BSplineA C.16 14 -1436.2 2900.0

3 2 seasonal forcings BSplineA BSplineB C.16,C.17,C.20 18 -1329.8 2695.6

4 2 seasonal forcings, AB BSplineA BSplineB C.16,C.17 20 -1332.9 2705.8

5 1 seasonal forcing, UV BSplineA UV scalarHZ C.16,C.18,C.20 15 -1360.8 2751.6

6 1 seasonal forcing, UV, AB BSplineA UV scalarHZ C.16,C.18 17 -1359.6 2753.2

7 UV UV scalarVZ UV scalarHZ C.18,C.19,C.20 11 -1417.5 2857.0

8 UV, AB UV scalarVZ UV scalarHZ C.18,C.19 13 -1424.9 2875.8
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Table C.1: A description of the models used to fit VZ and HZ incidence in Thailand. ID is for
descriptive purposes in the results section, Model Description is a quick reference to the biology
of the model (AB is antibody boosting), VZ is the type of seasonality used to fit varicella zoster,
HZ is the type of seasonality used to fit herpes zoster, Eqns references which equations were used
for each model combination (Equations C.1-C.15 were used in all models), Params is the number
of parameters being estimated, LogLik is the current best log likelihood of that model, and AIC is
Akaike Information Criterion, used to compare models with a different number of parameters.

131



−
0.

6
−

0.
2

0.
2

Incidence of Shingles in Thailand (by Region)

Northern

−
0.

6
−

0.
2

0.
2

Northeastern

−
0.

6
−

0.
2

0.
2

Central

−
0.

6
−

0.
2

0.
2

Southern

−
0.

6
−

0.
2

0.
2

Incidence of Shingles in Northern Thailand (by Zone)

Zone 15

Lo
g−

D
et

re
nd

ed
 C

as
es

 (
pe

r 
10

0,
00

0)
−

0.
6

−
0.

2
0.

2

Zone16

−
0.

6
−

0.
2

0.
2

Zone 17

−
0.

6
0.

0
0.

4

2003 2005 2007 2009 2011

Zone 18

Year
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Mean Shingles Infection Rate in Thailand, by Zone
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Thailand from 2003-2011. Rates were calculated individually, using zone population figures each
year.
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Supplementary Figure C.5: UV-Shingles relationships by region. Each row is a region organized
by latitude. Top row northern, 2nd row northeastern, 3rd row central, and 4th row southern. Each
column is a different analysis. Left column are cross-correlations of UV-shingles, middle column
are boxplots of log-detrended shingles cases, and right column are the region-specific UV data.
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Supplementary Figure C.6: Age distribution of shingles in Thailand.
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APPENDIX D

On Reproducibility: Pomp Model Settings and Code

D.1 On Reproducibility: Pomp Settings and Code

D.1.1 Introduction

For reproducibility purposes, I have included all pomp code from Chapters 2, 3 & 4,

as well as a tutorial to pomp. All data used in this work is either freely available, listed

online on my website (kevinmbakker.com), or available on the publishers website if chapter

is published. While the general structure of the code follows the basic principles of an R

script calling an R pomp object which then compiles the C-code, the complexity of the code

evolved throughout my dissertation (Fig D.1).

Additionally, each chapter used a different version of pomp, with the largest noticible

difference between Chapter 2, which used mif1 and Chapters 3 & 4 which used mif2, a vastly

improved fitting process (see [111] for details). Finally, to properly search parameter space,

all of my models started with a sobol design (sequences) configuration for an initial search of

parameter space. This has been shown to be more effective at searching the parameter space

than a pseudorandom number sequence. I have included basic code for sobol parameter

creation in the first section in below, though the reader will need to create the .csv file which
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R	  script	  

R	  Pomp	  
Object	  

C	  Code	  

Supplementary Figure D.1: Basic pomp structure, with an R script being run to call the pomp
object, which then compiles the C++ code.

sets parameter limitations.

D.1.2 A pomp Tutorial

Below, one can find a pomp tutorial, including a readme file, R script, pomp object, and

C++ code. Also included are examples on how to create a Sobol Parameter design, and

simple examples of how to look at pomp results.

#In this section is a readme file on the basic structure of pomp, which aligns

with the walkthrough I created for measles fitting.

# Fitting models using Maximization by iterated particle filtering (MIF)

# What you need to run MIF:

# 1. Data
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# 2. Covaritates

# 3. Your model (preferably coded in C)

# 4. R script for running MIF

# 5. Parameter sets

# We will walk through these one by one.

# Data

# You will want to have your time series data in a csv or some other text file

you can load into R.

# For this example we will work with a short time series of measles in France.

The data is in the file "data.csv" and is listed in the column "monthly_cases

".

# Note, I define the data as whatever we are fitting the model to: cases for a

between-host model or virus load for within-host. The data is treated

differently than covariates in POMP, which is why this distinction is

important.

# Covariates

# Covariates are other sets of data or variables that change through time and

will be factored into the model. For between-host models these may include

things like population size, temperature, birth rates, vaccine uptake, etc...

For within host models these may include things like CD4+ concentrations,

cortisol levels, etc.

# In our file "data.csv" the covariates are: births, population size, and vaccine

coverage.
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# The model in C

# For this example we will be using a discrete-time SIR model. The model is in

the file "measles_biweekly.c"

# Your model has to have three components:

# 1. The process model.

# In our case this is a stochastic discrete-time SIR model. The process model is

the epidemiological model of the relationship among states.

# 2. The measurement model.

# This is a model that describes how the process relates to your data. For

example, an SIR model tracks susceptible, infected, and recovered individuals.

However, the data is cases, which is different from the total number of

infecteds. Thus, the measurement model is a formulation of how the data

relates to the underlying process. In this example, some fraction of infected

individuals become reported cases and there is some noise involved in the

measurement.

# 3. The measurement density.

# This is a model that defines the likelihood calculation. The likelihood is our

objective function which we want to maximize.

# Parameter definitions and transformations
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# The first thing you need to do is define each of your model paramters. To

search parameter space using MIF it is best to transform all of your free

parameters using either log or logit. Use log for any parameter that needs to

be > 0 and use logit for parameters that need to be between 0-1.

# In our example we have 14 parameters. Each parameter is names and is assigned a

position in a parameter vector p. Single parameters are assignmed a positions

using the syntax:

(p[parindex[i]])

# And a vector of parameters can be assigneed using the syntax:

(&p[parindex[i]])

# We will see later where the "parindex" vector comes into play.

# process model state variable definitions

# To define the state variables in the process model use the syntax:

(x[stateindex[i]])

# covariate definitions

# Use the syntax:
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(covar[covindex[0]])

# measurement model state variable definition

# Use the syntax:

(y[obsindex[i]])

# Defining the Process model

# Let’s go to line 76 of the C++ code to look at the process model.

# Notice in line 77-81 we define

# state values: double *x

# parameter values: const double *p

# etc.

# These are attributed that will be used in the process model and must be defined

.

# The next thing is to define the process model. In our example this is all the

code in the {} lines 82-127. The first thing to do is to define your parameter

values on their natural scale. For example our parameter psi is a double and

it was log transformed in in our parameter vector above so we define psi as:

double psi;

psi = exp(LOGPSI);
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# Once you have all of your parameters defined on their natural scale you can

define the relationship among the state variables which we did here on lines

123-127. One thing to keep in mind when writing your process model is that you

want it to be relatively fast to simulate because you will need to run

millions upon millions of simulations when using MIF, so if possible use a

discrete time model because the numerical integration will be much faster with

fewer time steps.

# * Notice that the process model has a noise term "epsilon", which is a draw

from a normal distribution. Particle filtering is built to deal with

stochastic models so this kind of fitting procedure is overkill if you don’t

have process noise. Common types of process noise include using the draw from

a normal or gamma distribution.

# Defining the measurement model

# The measurement model (lines 57-74) can also be thought of as a reporting model

.

# The measurement model arguments include:

# measurement model state variables: double *y

# process model state variables: double *x

# parameters: double *p

# etc.

# Similar to the process model we first define parameters on their natural scale

and then define the realtionship between the process model state varables and
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the measurement model state variables.

# In our example we assume that the number of individuals that end up observed as

a reported case in our data is a random draw from a normal distribution with

a mean of

# "report_rate * I" and a standard deviation that scales with "I".

# Defining measurement density model

# The measurement density model (lines 45-54) is essentially a single line

defining how to calculate the likelihood of the measurement model output.

Remember, the output of the measurement model is what actually gets compared

to the data. The array of likelihood values *lik is defined using the

probability desity that complements our measurement model. We drew our

reported cases "MEASLES" from rnorm() with a mean of "report_rate*I" and

standard deviation of "tau*I". Thus, to get the likelihood of drawing "MEASLES

" cases from our normal distribution we use dnorm. Note, that I added 1e-6 to

the standard deviation, this is to prevent getting a mean, standard deviation

and reported cases of 0, which will give you an Inf likelihood. Also, it’s

best to use log liklihoods so you aren’t dealing with small numbers.

*lik = dnorm(MEASLES,report_rate*I,1e-6+tau*I,give_log);

# Creating the POMP object and getting the model running in R

#Now that we have our model coded in C, we need to be able to call this model in
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R using pomp. We will create an object called a pomp object which will contain

our model, covariates, and data. Once the pomp object is set up we can run

simulations which allows us to calculte likelihoods using a vanilla particle

filter, and we can fit parameters using iterated particle filtering.

#The subsection below listed ‘Additional R Code on Simulating Results’

demonstrates the set up and test of a pomp object.

D.1.2.1 R Code for Creating Sobol Parameters

###################

# Here we will use a Sobol Design to generate parameter sets that are dispersed

across parameter space.

# The Sobol design is similar to a Latin Hypercube sampling where you try to

optimally cover a multidimensional space.

###################

# Load a csv file with the upper and lower bounds of your parameters

# These bounds need to be the upper and lower bounds for each parameter that are

biologically feasible.

# Don’t make these bounds too narrow! Make the bounds as large as you can, you

can always narrow the parameter space later.

# But you run the risk of not finding a global max Liklihood parameter set if you

make your bounds too narrow.

# The bounds need to be on the LOG or LOGIT scale for each parameter that will be

estimated.

# Remember, most parameters will be log transformed, with the exception of those

bounded between 0-1, those will be logit transformed.

bounds<- read.csv(’parameter_bounds_LOG_LOGIT_scale.csv’,header=TRUE)
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# lower bounds

lb<- bounds$lower.bound

names(lb)<- bounds$param

# upper bounds

ub<- bounds$upper.bound

names(ub)<- bounds$param

# Generate parameter sets using sobolDesign() function in POMP

# If you have more than a handful of parameters I would suggest starting with 50K

+ parameter sets

sobol.pars<- sobolDesign(lb,ub,nseq=50000)

write.csv(sobol.pars,’sobol_parameters.csv’,row.names=FALSE)

D.1.2.2 R script

rm(list=ls())

require(pomp)

setwd(’/Users/kevinbakker/Desktop/pomp_walkthrough/’)

run<- c(1) # Split up the work into multiple runs/cores

no.runs<- c(100) # This would be the number of cores you are going to use. I

usually split analysis like this among 10-80 cores.

# You will need to do speed testing to decide how many cores you want to use. I

set the number of cores to 10000 here so that this code will run only 5 param

sets and finish in a few minutes.
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# Each phase of analyses will take 4-30d depending on how many observations,

parameter sets, cores, the numer of replicates, particles per replicate, etc.

no.MC.reps <- c(1) # Number of Monte Carlo replicates per parameter set.

output.name<- c("MIF_results") # Name of your output csv file

###############

# load pomp object

###############

source(’pomp_object.R’)

###############

# load Sobol design parameter sets

###############

param.sets<- read.csv(file=’sobol_parameters.csv’,header=TRUE)

###############

#Set up storage space for results & generate seeds (seeds make your results

reproducible)

###############

total.params<- dim(param.sets)[1]*no.MC.reps

MIFed.params<-mat.or.vec(total.params,dim(param.sets)[2]+3)

MIFed.params<-as.data.frame(MIFed.params)

names(MIFed.params)<- c(names(param.sets),’LogLik’,’seLogLik’,’seed’)

seeds <- ceiling(runif(n=total.params,min=1,max=2^30))

MIFed.params[,’seed’] <- seeds

###############
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# List the parameters that you want to estimate

###############

estnames <- c("beta1","beta2","beta3","beta4",’beta5’,"beta6",’psi’,"beta.sd","

tau","rho","S.0","I.0","R0")

# Initial valued parameters we want to estimate

estICs <- grep("0",estnames,value=TRUE)

# All other parameters we want to estimate

estpars <- setdiff(estnames,estICs)

# Random-walk standard deviation. On the log and logit scale a value of 0.02 is

about a 2% variation in the parameter value.

# You don’t need to use the same rw.sds for each parameter. I have found that 2%

works well when you have used a Sobol design.

rw.sds <- rep(0.02,times=length(estnames))

names(rw.sds) <- estnames

###############

# set up run index, this is indexing the parameter set that we are using in this

run

###############

no.sets<- dim(param.sets)[1]

n<- floor(no.sets/no.runs)

start <- 1 + (run-1)*n # n is the number of param set in each run

end<- n + (run-1)*n

if(run==no.runs){end=dim(param.sets)[1]}

###############
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#MIF

###############

write.seq<-rep(c(rep(0,9),1),length.out=dim(param.sets)[1])

for (i in start:end){ # for each parameter set

current.params <- unlist(param.sets[i,1:18]) # grab parameter set

for(j in 1:no.MC.reps){ # for each replicate

results.index<- ((i-1)*no.MC.reps) + j # calculate the index in our results

data frame where we will put the results of this replicate

try({

save.rng.state <- .Random.seed

set.seed(seeds[results.index]) # set seed

# Find some decent initial conditions for this parameter set

mif.ics <- mif(

my.model, # name of pomp object

Nmif=10, # the number of MIF replicates

start=current.params, # starting parameter set

ivps=estICs, # list of initial conditions

rw.sd=rw.sds, # random walk standard deviations

Np=2000, # number of particles

var.factor=3, # variance factor. The width of the distribution of

particles at the start of the first MIF iteration will be rw.sd*

var.factor and the variance will decrease (i.e. cool) with each

successive MIF iteration.

cooling.type=’hyperbolic’, # type of cooling, see ?mif

cooling.fraction= 0.7, # When cooling.type="hyperbolic", on the n-th

MIF iteration, the relative perturbation intensity is (s+1)(s+n),
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where (s+1)/(s+50)=cooling.fraction. cooling.fraction is the

relative magnitude of the parameter perturbations after 50 MIF

iterations.

method=’mif2’

)

mif.dat <- mif(

my.model,

Nmif=45,

start=coef(mif.ics), # we will initialize using the parameter

set resulting from "mif.ics" above.

pars=estpars, # list of parameters we are eastimating

ivps=estICs, # list of initial conditions we are estimating

rw.sd=rw.sds,

Np=2000,

var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.7,

method=’mif2’

)

.Random.seed <<- save.rng.state

# If you want to plot the results uncomment the next line. The important

thing is to make sure the likelihood is climbing. If not try varying rw.

sds, increasing Nmif, increasing Np, and varying the cooling.fraction

# plot(mif.dat)

MIFed.pars<- coef(mif.dat) # MIFed parameter set
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# calculate the likelihood of the MIFed parameter set

loglik.mif<- replicate(n=10,logLik(pfilter(my.model,params=MIFed.pars,Np

=5000,max.fail=40)))

bl<- mean(loglik.mif)

loglik.mif.est<- bl+log(mean(exp(loglik.mif-bl)))

loglik.mif.se <- sd(exp(loglik.mif-bl))/sqrt(length(loglik.mif))/exp(

loglik.mif.est-bl)

# put the results in our results data frame

MIFed.params[results.index,1:18]<-MIFed.pars

MIFed.params[results.index,’LogLik’] <-loglik.mif.est

MIFed.params[results.index,’seLogLik’] <-loglik.mif.se

MIFed.params <- as.data.frame(MIFed.params)

})

}

# write to file every 10 parameter sets

if(write.seq[i]==1){write.csv(MIFed.params,file=paste(c(output.name,’_run’,run,

’.csv’),collapse=’’),row.names=FALSE)}

}

###############

# Write the final output

#

#####################################################################################################

write.csv(MIFed.params,file=paste(c(output.name,’_run’,run,’.csv’),collapse=’’),

row.names=FALSE)

152



D.1.2.3 Pomp Object

###############

# Load Covars & Data

###############

# Notice that we have one more observation of the covariates than data.

# This is because we actually start integrting at timestep==0;

# If you don’t have the extra covariate data I would suggest backcasting it by

fitting

# a spline to the covariates using predict(smooth.spline()).

dat<- read.csv(’data.csv’,header=TRUE)

dat$time <- dat$year+dat$month/12

###############

# Functions we need to transform params

###############

expit=function(x){1.0/(1.0+exp(-x))}

logit= function(p) {log(p/(1-p))};

###############

# Set up a data frame containing the covariates (don’t include the data)

###############

covar.table<- data.frame(timestep=seq.int(from=0,by=1,length=dim(dat)[1]))

covar.table$time<- dat$time

covar.table$pop <- dat$pop_size

covar.table$births<- round(dat$births*(1-(dat$vaccine_coverage*0.01)),digits=0) #

account for vaccination

# If you have a periodic function in your model such as a sine or cosine,

153



# you could instead use a periodic b spline. If you use 4+ basis functions

# then it will give you more flexibility than a sine/cosine. However, every basis

# adds an additional parameter to the model. In this case we use a spline with

# 6 basis and a period of 1, for seasonal transmission.

covar.table$seas <- periodic.bspline.basis(covar.table$time,nbasis=6,degree=2,

period=1)

###############

# Set up data frame with the data to be fit, this dataframe should start at

timestep==1

###############

monthly.cases<-data.frame(cases=dat$monthly_cases[2:37],time=covar.table$time

[2:37],timestep=covar.table$timestep[2:37])

###############

# Compile/load model from C-code

###############

if (is.loaded("measles_meas_dens")) dyn.unload("measles_biweekly.so")

system("R CMD SHLIB measles_biweekly.c")

dyn.load("measles_biweekly.so")

###############

# POMP Object

###############

my.model<- pomp(

data=monthly.cases[c("timestep","cases")], # data are cases and

associated timestep, starting w/ timestep==1

times="timestep", # name of time variable in data dataframe
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rprocess=euler.sim("measles_proc_sim",delta.t=1/2,PACKAGE="measles_

biweekly"), # measles_proc_sim is the name of our process model

in C-code; measles_biweekly is the name of our C file; see ?

plugins for integration options

rmeasure="measles_meas_sim", # name of measurement model in C-code

dmeasure="measles_meas_dens", # name of measurement density model in

C-code

PACKAGE="measles_biweekly", # name of C-file

t0=0, # time 0, this is the time we initialize the model

obsnames="cases", # name of observations in data dataframe

statenames=c("FOI","pS","S","I"), # process model state variable

names, this vector must match the order of the states in (x[

stateindex[i]]) in C-code

covarnames=c("pop","births","seas.1"), # covariate names, must match

order of (covar[covindex[i]]) in C-code

paramnames=c(’alpha’,’tau’,’beta1’,’nbeta’,’beta.sd’,’delta’,’R0’,’

psi’,’rho’), # param names, must match order of (p[parindex[0]])

in C-code, but notice the actual name doesn’t have to match for

instance here we use "alpha" in C-code we call it LOGALPHA, only

the indexing matters not the exact name

tcovar="timestep", # name of the time variable in the covariate data

frame

covar=covar.table, # name of the covariate dataframe

initializer=function(params,t0, ...){ # the initializer allows you

to specify how to set up initial conditions using your parameter

set "params"

p <- expit(params)

covars<- as.data.frame(covar.table)

with(
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as.list(p),

{

x0=c(FOI.0,pS.0,S.0,I.0)

x0[1]= 0; # we can set our force of infections and prob(

remaining susceptible) to 0 for timestep==0 bc these values

don’t get used since we don’t integrate to get the initial

conditions, we are estimating them

x0[2]= 0; # we can set our force of infections and prob(remaining

susceptible) to 0 for timestep==0 bc these values don’t get

used since we don’t integrate to get the initial conditions,

we are estimating them

IC_sum=sum(x0[3:4])+as.numeric(c(R0)) # our initial conditions are S

.0, I.0, and the parameter R0 (intitial recovered), all as

proportions estimated on logit scale

x0[3]= round((x0[3]/IC_sum)*covars[1,’pop’]) # we eatimate the

initial portion in each state, but we need the actual number

of S, I, & R to initialize the model

x0[4]= round((x0[4]/IC_sum)*covars[1,’pop’]) # we eatimate the

initial portion in each state, but we need the actual number

of S, I, & R to initialize the model

names(x0)=c("FOI","pS","S","I");

x0

})

}

)

###############

#END standard code

###############
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###############

D.1.2.4 C++ code

// dear emacs , please treat this as -*- C++ -*-

#include <R.h>

#include <Rmath.h>

#include <math.h>

/////////////////////

// define parameter sets (if param is bounded between 0-1 use

LOGIT otherwise LOG)

#define LOGALPHA (p[parindex [0]]) // I exponent

#define LOGTAU (p[parindex [1]]) // observation error

#define LOGBETA (&p[parindex [2]]) // seasonal beta vector

#define NBETA (p[parindex [3]]) // number of betas

#define LOGBETA_SD (p[parindex [4]]) // sd of process noise

#define DELTA (p[parindex [5]]) // natural death rate

#define LOGITfracR0 (p[parindex [6]]) //logit(initial fraction

recovered)

#define LOGPSI (p[parindex [7]]) // log(immigration term)

#define LOGITRHO (p[parindex [8]]) // the report rate

// define process model state variables

#define FOI (x[stateindex [0]]) // force of infection

#define pS (x[stateindex [1]]) // prob(remaining in S)

#define S (x[stateindex [2]]) // susceptible

#define I (x[stateindex [3]]) // infected
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// define covariates

#define N (covar[covindex [0]]) // population size

#define BABIES (covar[covindex [1]]) // raw births

#define SEAS (&covar[covindex [2]]) // transmission basis

vector

// observation model state variables

#define MEASLES (y[obsindex [0]]) // observed MEASLES cases

////////////////////

// // define LOGIT and EXPIT functions

// static double logit (double p) {

// return log(p/(1-p));

// }

static double expit (double x) {

return 1.0/(1.0+ exp(-x));

}

//////////////////////

// measurement density model for calculating Likelihood

void measles_meas_dens (double *lik , double *y, double *x, double

*p, int give_log ,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

double report_rate , tau;
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tau = exp(LOGTAU);

report_rate = expit(LOGITRHO);

*lik = dnorm(MEASLES ,report_rate*I,1e-6+tau*I,give_log);

if (!isfinite(*lik)) Rprintf("measles_meas_dens %lg %lg %lg %lg

%lg\n",MEASLES ,report_rate ,tau ,I,*lik);

}

///////////////////

// measurement model

void measles_meas_sim (double *y, double *x, double *p,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t)

{

double report_rate , tau;

tau = exp(LOGTAU);

report_rate = expit(LOGITRHO);

MEASLES = rnorm(report_rate*I,tau*I);

if (MEASLES >= 0) {

MEASLES == MEASLES;

} else {

MEASLES = 0;

}

}
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/////////////////////

// process model

void measles_proc_sim (double *x, const double *p,

const int *stateindex , const int *parindex ,

const int *covindex ,

int covdim , const double *covar ,

double t, double dt)

{

double beta_sd;

double epsilon;

double beta;

double alpha;

double psi;

int nbeta = (int) NBETA;

int j;

int fail;

alpha = exp(LOGALPHA);

psi=exp(LOGPSI);

beta_sd = exp(LOGBETA_SD);

for (j = 0, beta = 0; j < nbeta; j++)

beta += LOGBETA[j]*SEAS[j];

beta = exp(beta);

if (beta_sd > 0) {

epsilon = rnorm(1,beta_sd);
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} else {

epsilon = 1;

}

if(

isfinite(epsilon)== FALSE ||

isfinite(alpha)==FALSE ||

isfinite(FOI)==FALSE ||

isfinite(pS)==FALSE ||

isfinite(S)==FALSE ||

isfinite(I)==FALSE ||

isfinite(beta)==FALSE

)

{

Rprintf("non finite value in measles_proc_sim\n");

return;

}

FOI=beta*pow(I/N,alpha)*epsilon+psi*epsilon;

if(FOI < 0){FOI = 0;}

pS=exp(-dt*(FOI+DELTA));

S=dt*BABIES+S*pS;

I=S*(1-pS)*FOI/(DELTA+FOI);

}

D.1.2.5 Additional R Code on Simulating Results
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#Lets look at our model after some MIF results

rm(list=ls())

setwd("/Users/kevinbakker/Desktop/pomp_walkthrough/")

require(pomp)

#read in results from pomp run

data <- read.csv("MIF_results_run1.csv", header=TRUE)

data1 <- data[order(data$LogLik,decreasing=TRUE),];

#normally you don’t want to do this, but here we have 49,995 parameter sets with

’0’ liklihood

data2 <- subset(data1,LogLik<0 );

plot(data2$LogLik)

#grab the best fit parameter set

MLE <- subset(data2,LogLik==max(data2$LogLik))

param.set<- unlist(MLE)

# a single stochastic realization

source(’pomp_object.R’)

sim<- simulate(my.model,param=param.set)

plot(sim);

#plot the observed vs fitted case reports

plot(time(my.model),obs(my.model),type=’n’,xlab=’time’,ylab=’cases’,bty=’n’)

for(i in 1:10){
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sim<- simulate(my.model,params=param.set)

lines(time(sim),obs(sim),col=’grey’,lty=2)

}

lines(time(my.model),obs(my.model),lwd=2)

#Other options to look at in pomp

# make a data frame containing the simulated cases and state variables

sim.dat<- as.data.frame(sim)

# make a data frame containing the actual data

case.data<- as.data.frame(my.model)

# time

time(sim)

# simulated cases

obs(sim)

# case data stored in pomp object

obs(my.model)

##############

# Run a bunch of stochastic realizations and plot with the data

##############

minp<- min(obs(my.model))
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maxp<- max(obs(my.model))

plot(time(my.model),obs(my.model),type=’n’,xlab=’time’,ylab=’cases’,bty=’n’)

for(i in 1:10){

sim<- simulate(my.model,params=param.set)

lines(time(sim),obs(sim),col=’grey’,lty=2)

}

lines(time(my.model),obs(my.model),lwd=2)

D.1.3 Chapter 2 Code: Human Birth Seasonality: Latitudinal Gradient and

Interplay with Childhood Disease Dynamics

This work (Chapter 2) utilized pomp to estimate what effect birth seasonality would

have on measles dynamics. All theoretical simulations were done using a time-series SIR

(tSIR) model, not included here. Unfortunately I no longer have the R script used, the basic

format is the same seen in the above walkthrough and following two chapters of code. I have

included the pomp object and C++ code. As with all chapters, I used an R script to call the

pomp object, which then called the C++ code. Below are all sets of code, run with pomp

version 0.41-1.

#Here is the pomp object for Chapter 2

######

######

# Covars, data, C-code, and POMP Obj

######

STATE=c(’New York’) # space between words, choose New York or Maryland

######

# Define Model

######
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birth.model <- BIRTH.MODEL #birth model 1,2, 3, or 4; actual births, trend (from

stl), seasonal, or annual (step function)

alpha.est<-c(0)#logical 0/1, 1 == alpha on and is estimated in MIF

immigration.est<-c(1)#logical 0/1, 1 == immigration on and is estimated

lag<- BIRTH.LAG

model.code <- c(’Measles_biweekly_’,STATE,’_’,birth.model,alpha.est,immigration.

est,lag)

######

# Load Covars & Data; case data from 1931-1964, 33yrs of data

######

table1 <- read.csv(’births_NYC_Baltimore.csv’,header=TRUE)

if(STATE==’New York’){

ny<- read.table(’New_York_measles_cases.txt’,header=TRUE)

ny<-subset(ny,month<1962.999) #measles vaccine licensed in 1963

ny<-subset(ny,month>=1931) #we only have birth data for 1931+

ny$month.no<- 1:384

}

if(STATE==’Maryland’){

bt<- read.table(’Baltimore_measles_cases.txt’,header=TRUE)

bt<-subset(bt,month<1962.999)

bt<-subset(bt,month>=1931)

bt$month.no<- 1:384

}

######

# Functions we need to transform params

######

expit=function(x){1.0/(1.0+exp(-x))}
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logit= function(p) {log(p/(1-p))};

######

#SET UP COVARS: Pop and seasonality splines

######

demog <- subset(table1,state==STATE)

demog$month <- ordered(demog$month,levels=month.name)

demog$time <- with(demog,year+as.integer(month)/12)

demog<-subset(demog,year<1963)

if(STATE==’New York’){ny$month<-demog$time}

if(STATE==’Maryland’){bt$month<-demog$time}

census <- subset(demog,month=="January")

covar.table <- data.frame(time=c(1931,demog$time,1963.083))

covar.table$timestep <- seq.int(from=0,by=1,length=length(covar.table$time))

covar.table$pop <- predict(smooth.spline(x=census$year[-which(is.na(census$city_

pop)==TRUE)],y=census$city_pop[-which(is.na(census$city_pop)==TRUE)]),x=covar.

table$time)$y

covar.table$seas <- periodic.bspline.basis(covar.table$time,nbasis=6,degree=2,

period=1)

######

# Monthly Cases time series for Measles in NYC or Baltimore

######

if(STATE==’New York’){

monthly.cases<-data.frame(cases=ny$cases,time=ny$month,timestep=seq(from=1,to

=384,by=1))

}

if(STATE==’Maryland’){

monthly.cases<-data.frame(cases=bt$cases,time=bt$month,timestep=seq(from=1,to

=384,by=1))
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}

######

# Birth data

######

births<-round((c(demog$birth_rate_per1000[1],demog$birth_rate_per1000,demog$birth

_rate_per1000[384])/1000)*covar.table$pop)

birth.ts.pre.bboom <- ts(births[2:181],frequency=12)

birth.ts.bboom <- ts(births[182:385],frequency=12)

######

# Birth stl()

######

stl1931_45 <- stl(birth.ts.pre.bboom,s.window="periodic", robust=TRUE, inner=1,

outer=15, na.action=na.fail,l.window=13)

stl1946_64 <-stl(birth.ts.bboom,"periodic", robust=TRUE, inner=1, outer=15, na.

action=na.fail,l.window=13)

stl1931_45 <- as.data.frame(stl1931_45$time.series)

stl1946_64<- as.data.frame(stl1946_64$time.series)

stl1931_45$sum <- stl1931_45$seasonal+stl1931_45$trend+stl1931_45$remainder

stl1946_64$sum <- stl1946_64$seasonal+stl1946_64$trend+stl1946_64$remainder

stl1931_45$scaled.seasonal.births <-round(mean(stl1931_45$trend)+stl1931_45$

seasonal)

stl1946_64$scaled.seasonal.births <-round(mean(stl1946_64$trend)+stl1946_64$

seasonal)

stl1931_45$trend<- round(stl1931_45$trend)
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stl1946_64$trend<- round(stl1946_64$trend)

######

#Turns ON correct birth COVAR

######

if(birth.model==1){covar.table$births <- births}

if(birth.model==2){covar.table$births <- c(stl1931_45$trend[1],stl1931_45$trend,

stl1946_64$trend,stl1946_64$trend[204])}

if(birth.model==3){covar.table$births <- c(stl1931_45$scaled.seasonal.births[1],

stl1931_45$scaled.seasonal.births,stl1946_64$scaled.seasonal.births,stl1946_64

$scaled.seasonal.births[204])}

if(birth.model==4){

temp.births<- births[2:385]

annual.births<- rep(NA,384)

for(i in 0:31){

jan<- 1+(i*12)

dec<- 12+(i*12)

current<- temp.births[jan:dec]

total<- sum(current)

monthly<- round(total/12,digits=0)

annual.births[jan:dec]<- monthly

}

annual.births<- c(annual.births[1],annual.births,annual.births[384])

covar.table$births <- annual.births

}

######

# lag the births according to the lag model - Note, the lag is only meant for the

models with birth seasonality, i.e. models 1 & 3

######
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if(birth.model==1|birth.model==3){

if(lag>0){

length<- dim(covar.table)[1]

to.remove<-seq(from=(length-(lag-1)),to=length,by=1)

replacement<- covar.table$births[-to.remove]

nas<- rep(0,lag) # must use 0s instead of NAs

replacement<- c(nas,replacement)

covar.table$births<- replacement

}

}

######

# now put everything in C for speed - this is the revised c-code w/ beta5=beta1-

amp

######

if (is.loaded("measles_meas_dens")) dyn.unload("measles_biweekly_amp.so")

system("R CMD SHLIB measles_biweekly_amp.c")

dyn.load("measles_biweekly_amp.so")

######

#POMP Object, this is a modified POMP object, includes the new param "amp"

######

full.measles<- pomp(

data=monthly.cases[c("timestep","cases")],

times="timestep",

rprocess=euler.sim("measles_proc_sim",delta.t=1/2,PACKAGE="measles_

biweekly_amp"),

rmeasure="measles_meas_sim",

dmeasure="measles_meas_dens",

PACKAGE="measles_biweekly_amp",
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t0=0,

obsnames="cases",

statenames=c("FOI","pS","S","I"),

covarnames=c("pop","births","seas.1"),

paramnames=c(’alpha’,’tau’,’beta1’,’nbeta’,’beta.sd’,’delta’,’R0’,’

psi’,’rho’,’amp’),

tcovar="timestep",

covar=covar.table,

initializer=function(params,t0, ...){

p <- expit(params)

covars<- as.data.frame(covar.table)

with(

as.list(p),

{

x0=c(FOI.0,pS.0,S.0,I.0)

x0[1]= 0;

x0[2]= 0;

IC_sum=sum(x0[3:4])+as.numeric(c(R0))

x0[3]= round((x0[3]/IC_sum)*covars[1,’pop’])

x0[4]= round((x0[4]/IC_sum)*covars[1,’pop’])

names(x0)=c("FOI","pS","S","I");

x0

})

}

)

measles <- window(full.measles,start=205)

measles.ic<- window(full.measles,start=205,end=210)

measles.ic.extended<- window(full.measles,start=205,end=228) #extended 2yr
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section for initial conditions

measles.1949<- window(full.measles,start=217)

measles.ic.1949<- window(full.measles,start=217,end=222)

measles.ic.extended.1949<- window(full.measles,start=217,end=240) #extended 2yr

section for initial conditions

######

#END standard code

######

######

// dear emacs , please treat this as -*- C++ -*-

#include <R.h>

#include <Rmath.h>

#include <math.h>

#define LOGALPHA (p[parindex [0]]) // I exponent

#define LOGTAU (p[parindex [1]]) // observation error

#define LOGBETA (&p[parindex [2]]) // seasonal beta vector

#define NBETA (p[parindex [3]]) // number of betas

#define LOGBETA_SD (p[parindex [4]]) // sd of process noise

#define DELTA (p[parindex [5]]) // natural death rate

#define LOGITfracR0 (p[parindex [6]]) //logit(initial fraction

recovered)

#define LOGPSI (p[parindex [7]]) // log(immigration term)

#define LOGITRHO (p[parindex [8]]) // the report rate
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#define AMP (p[parindex [9]]) // amplitude of seas

transmission , LOGBETA1 -LOGBETA5

#define FOI (x[stateindex [0]]) // force of infection

#define pS (x[stateindex [1]]) // prob(remaining in S)

#define S (x[stateindex [2]]) // susceptible

#define I (x[stateindex [3]]) // infected

#define N (covar[covindex [0]]) // population size

#define BABIES (covar[covindex [1]]) // raw births

#define SEAS (&covar[covindex [2]]) // transmission basis

vector

#define MEASLES (y[obsindex [0]]) // observed MEASLES cases

static double logit (double p) {

return log(p/(1-p));

}

static double expit (double x) {

return 1.0/(1.0+ exp(-x));

}

void measles_meas_dens (double *lik , double *y, double *x, double

*p, int give_log ,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

double report_rate , tau;
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tau = exp(LOGTAU);

report_rate = expit(LOGITRHO);

*lik = dnorm(MEASLES ,report_rate*I,1e-6+tau*I,give_log);

if (!isfinite(*lik)) Rprintf("measles_meas_dens %lg %lg %lg %lg

%lg\n",MEASLES ,report_rate ,tau ,I,*lik);

}

void measles_meas_sim (double *y, double *x, double *p,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

double report_rate , tau;

tau = exp(LOGTAU);

report_rate = expit(LOGITRHO);

MEASLES = rnorm(report_rate*I,tau*I);

if (MEASLES >= 0) {

MEASLES == MEASLES;

} else {

MEASLES = 0;

}

}

// our measles model

void measles_proc_sim (double *x, const double *p,

const int *stateindex , const int *parindex ,

const int *covindex ,
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int covdim , const double *covar ,

double t, double dt)

{

double beta_sd;

double epsilon;

double beta;

double alpha;

double psi;

int nbeta = (int) NBETA;

int j;

int fail;

alpha = exp(LOGALPHA);

psi = exp(LOGPSI);

beta_sd = exp(LOGBETA_SD);

// for (j = 0, beta = 0; j < nbeta; j++)

// beta += LOGBETA[j]*SEAS[j];

// beta = exp(beta);

beta = LOGBETA [0]*SEAS [0] + LOGBETA [1]*SEAS [1] + LOGBETA [2]*SEAS

[2] + LOGBETA [3]*SEAS [3] + (LOGBETA [0]-AMP)*SEAS [4] + LOGBETA

[5]*SEAS [5];

beta = exp(beta);

if (beta_sd > 0) {

epsilon = rnorm(1,beta_sd);
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} else {

epsilon = 1;

}

if(

isfinite(epsilon)== FALSE ||

isfinite(alpha)==FALSE ||

isfinite(FOI)==FALSE ||

isfinite(pS)==FALSE ||

isfinite(S)==FALSE ||

isfinite(I)==FALSE ||

isfinite(beta)==FALSE

)

{

Rprintf("non finite value in measles_proc_sim\n");

return;

}

FOI=beta*pow(I/N,alpha)*epsilon+psi*epsilon;

if(FOI < 0){FOI = 0;}

pS=exp(-dt*(FOI+DELTA));

S=dt*BABIES+S*pS;

I=S*(1-pS)*FOI/(DELTA+FOI);

}
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D.1.4 Chapter 3 Code: Digital Epidemiology Reveals Global Childhood Disease

Seasonality and the Effects of Immunization

D.1.4.1 Introduction

This work (Chapter 3) utilized pomp to estimate statistical models, which can be seen in

Table B.1. As we can see from this table, the most complex model is B.7, and all the others

are nested within that model. To fit any of the other models, including our best fit (Model

& Equation B.1), one only needs to remove fit parameters. As with all chapters, I used an R

script to call the pomp object, which then called the C++ code. All code is also inlcuded in

an R package created for this publication, that R package is called ‘chickenpox.pack’ Below

are all three sets of code, all run with pomp version 0.65.1.

D.1.4.2 R script

#Clear R

rm(list=ls())

#If using clusters, comment out below file, if running locally, set working

directory

# setwd(’/Users/KMBakker/....’)

require(’subplex’,lib.loc=’/home2/bakkerke/pomp_develop’);

require(’nloptr’,lib.loc=’/home2/bakkerke/pomp_develop’);

require(’mvtnorm’,lib.loc=’/home2/bakkerke/pomp_develop’);

require(’deSolve’,lib.loc=’/home2/bakkerke/pomp_develop’);

require(’coda’,lib.loc=’/home2/bakkerke/pomp_develop’);

require(’pomp’,lib.loc=’/home2/bakkerke/pomp_develop’);

#below two lines are for cluster, comment out if running locally
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args<- (commandArgs(TRUE)); # command line arguments that I will enter manually

run<- as.numeric(args[1]);# Split up the work into multiple runs/cores

# no.runs<- c(10) # This would be the number of cores you are going to use. I

usually split analysis like this among 10-80 cores.

no.nodes<- c(8)

# You will need to do speed testing to decide how many cores you want to use. I

set the number of cores to 10000 here so that this code will run only 5 param

sets and finish in a few minutes.

# Each phase of analyses will take a different amount of time depending on how

many observations, parameter sets, cores, the numer of replicates, particles

per replicate, etc.

# no.MC.reps <- c(10) # Number of Monte Carlo replicates per parameter set. I

start with 1 when fitting sobol parameters, and gradually increase as my

likelihoods get better

no.reps<- 1 # mif Monte Carlo reps per param set, see above line.

output.name<- c("CPOX") # Name of your output csv file

job<- 1;

################

# load pomp object

################

source(’pomp_obj_seas_G.R’)

################

# load Sobol design parameter sets

################

param.sets<- read.csv(file=’sobol.csv’,header=TRUE)

param.sets$FOI.0<- 0
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param.sets$I.0<- 0

param.sets<- param.sets[c("alpha","tau","beta1","beta2","beta3","beta.sd","omega"

,"rho","FOI.0","I.0")]

###############

#Set up storage space for results & generate seeds (seeds make your results

reproducible)

################

total.params<- dim(param.sets)[1]*no.reps #the total number of params output will

be the number of start params multiplied by the number of mif replicates

MIFed.params<-mat.or.vec(total.params,dim(param.sets)[2]+3)

MIFed.params<-as.data.frame(MIFed.params)

names(MIFed.params)<- c(names(param.sets),’LogLik’,’seLogLik’,’seed’);

seeds <- ceiling(runif(n=total.params,min=1,max=2^30))

MIFed.params[,’seed’] <- seeds

################

# List the parameters that you want to estimate

################

# estnames <- c("alpha","tau","beta1","beta2",’beta.sd’,"rho","omega")

estnames <- c("tau","beta1","beta3","beta.sd","omega")

# Initial valued parameters we want to estimate

estICs <- grep("0",estnames,value=TRUE)

# All other parameters we want to estimate

estpars <- setdiff(estnames,estICs)
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# Random-walk standard deviation. On the log and logit scale a value of 0.02 is

about a 2% variation in the parameter value.

# You dont need to use the same rw.sds for each parameter. I have found that 2%

works well when you have used a Sobol design.

################

# set up random walk standard deviations

################

rw.sds <- rep(0.2,times=length(estnames))

names(rw.sds) <- estnames

################

# set up run index, this is indexing the parameter set that we are using in this

run

###############

n<- floor(dim(param.sets)[1]/no.nodes)

start <- 1 + (job-1)*n #formula is: 1+(job-1)*n| n is the numer of param set in

each job/run

end<- n + (job-1)*n #formula is: n + (job-1)*n | n is the number of param sets in

each job/run

if(job==no.nodes){end=dim(param.sets)[1]} # if job== the last set then end== the

last param set

################

#MIF

################

write.seq<-rep(c(rep(0,9),1),length.out=dim(param.sets)[1]) #write every 10th

parameter set
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#the two loops commented out are run initially on the clusters to create .o and .

so files from our C++ code. After these have been created (and I see how long

single mif iteration takes) I change the loops.

#Also, when starting with sobol, I only run mif once (not the 4 times seen below)

, but as I get closer, I run mif multiple times in a loop to get closer to the

MLE

# for (i in 1:3){ # for each parameter set

for (i in start:end){ # for each parameter set

current.params <- unlist(param.sets[i,1:length(param.sets[1,])]) # grab

parameter set

# for(j in 1:2){ # for each replicate #how many times you want to repeat each

parameter set

for(j in 1:no.reps){ # for each replicate

results.index<- ((i-1)*no.reps) + j # calculate the index in our results

data frame where we will put the results of this replicate

try({

save.rng.state <- .Random.seed

set.seed(seeds[results.index]) # set seed

mif.dat1 <- mif(

my.model,

Nmif=100,

start=current.params, # we will initialize using the parameter

set resulting from "mif.ics" above.

pars=estpars, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=rw.sds,

Np=2000,
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var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.7,

method=’mif2’,

max.fail=108

)

MIFed.pars1<- coef(mif.dat1) # MIFed parameter set

mif.dat2 <- mif(

my.model,

Nmif=100,

start=MIFed.pars1, # we will initialize using the parameter

set resulting from "mif.ics" above.

pars=estpars, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=(0.5*rw.sds),

Np=2000,

var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.7,

method=’mif2’,

max.fail=108

)

MIFed.pars2<- coef(mif.dat2) # MIFed parameter set

mif.dat3 <- mif(

my.model,

Nmif=100,
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start=MIFed.pars2, # we will initialize using the parameter

set resulting from "mif.ics" above.

pars=estpars, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=(0.25*rw.sds),

Np=2000,

var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.7,

method=’mif2’,

max.fail=108

)

MIFed.pars3<- coef(mif.dat3) # MIFed parameter set

mif.dat4 <- mif(

my.model,

Nmif=100,

start=MIFed.pars3, # we will initialize using the parameter

set resulting from "mif.ics" above.

pars=estpars, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=(0.25*rw.sds),

Np=2000,

var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.7,

method=’mif2’,

max.fail=108

)
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MIFed.pars4<- coef(mif.dat4) # MIFed parameter set

.Random.seed <<- save.rng.state

# calculate the likelihood of the MIFed parameter set

loglik.mif<- replicate(n=10,logLik(pfilter(my.model,params=MIFed.pars4,Np

=5000,max.fail=108)))

bl<- mean(loglik.mif)

loglik.mif.est<- bl+log(mean(exp(loglik.mif-bl)))

loglik.mif.se <- sd(exp(loglik.mif-bl))/sqrt(length(loglik.mif))/exp(

loglik.mif.est-bl)

# put the results in our results data frame

# MIFed.params[results.index,1:10]<-MIFed.pars

MIFed.params[results.index,1:length(param.sets[1,])]<-MIFed.pars4

MIFed.params[results.index,’LogLik’] <-loglik.mif.est

MIFed.params[results.index,’seLogLik’] <-loglik.mif.se

MIFed.params <- as.data.frame(MIFed.params)

})

}

# write to file every 10 parameter sets

if(write.seq[i]==1){write.csv(MIFed.params,file=paste(c(output.name,’_run’,run,

’.csv’),collapse=’’),row.names=FALSE)}

}

################

# Write the final output

###############

write.csv(MIFed.params,file=paste(c(output.name,’_run’,run,’.csv’),collapse=’’),

row.names=FALSE)
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D.1.4.3 Pomp Object

require(pomp)

setwd(’/Users/KMBakker/....’)

################

# Load Covars & Data

################

# load the chickenpox and shingles data for Australia

#Data and covariate tables are publicly available on the PNAS website, and also

included in the chickenpox.pack R package.

dat<- read.csv(’CPox_Shing_AUS06_15.csv’,header=TRUE)

dat$time<- dat$YEAR + dat$MONTH/12

names(dat)<- c(’year’,’month’,’chickenpox’,’shingles’,’time’)

dat<- subset(dat,chickenpox>=0)

# load the google chickenpox data

goog<- read.csv(’google_trends_data.csv’,header=TRUE)

goog$mo<- NA

for(i in 1:dim(goog)[1]){

month<- goog$Month[i]

if(month==’Jan’){goog$mo[i]<- 1}

if(month==’Feb’){goog$mo[i]<- 2}

if(month==’Mar’){goog$mo[i]<- 3}

if(month==’Apr’){goog$mo[i]<- 4}

if(month==’May’){goog$mo[i]<- 5}

if(month==’Jun’){goog$mo[i]<- 6}
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if(month==’Jul’){goog$mo[i]<- 7}

if(month==’Aug’){goog$mo[i]<- 8}

if(month==’Sep’){goog$mo[i]<- 9}

if(month==’Oct’){goog$mo[i]<- 10}

if(month==’Nov’){goog$mo[i]<- 11}

if(month==’Dec’){goog$mo[i]<- 12}

}

goog$time<- goog$Year + goog$mo/12

goog<- goog[order(goog$time,decreasing=FALSE),]

goog$time<- round(goog$time,digits=3)

# load the population data

pop<- read.csv(’Australia_pop.csv’,header=TRUE)

pop2010<- sum(subset(pop,year==2010)$pop) # data from Australian National

University (http://adsri.anu.edu.au/demo-stats/aust)

# vaccine

vacc<- data.frame(year=2006:2010)

vacc$vaccine[which(vacc$year==2006)]<- 0.3 # account for vaccination from Heywood

et al 2014 (http://www.scielosp.org/pdf/bwho/v92n8/0042-9686-bwho-92-08-593.

pdf)

vacc$vaccine[which(vacc$year==2007)]<- 0.82 # account for vaccination

vacc$vaccine[which(vacc$year==2008)]<- 0.88 # account for vaccination

vacc$vaccine[which(vacc$year==2009)]<- 0.90 # account for vaccination

vacc$vaccine[which(vacc$year==2010)]<- 0.91

################

# Functions we need to transform params

################

expit=function(x){1.0/(1.0+exp(-x))}
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logit= function(p) {log(p/(1-p))};

################

# Set up a data frame containing the covariates (dont include the data)

################

covar.table<- data.frame(timestep=seq.int(from=0,by=1,length=dim(dat)[1]+1))

covar.table$time<- c(2006,round(dat$time,digits=3))

covar.table$children <- pop2010

# account for vaccination, still need data form 2010--2015

covar.table$vaccine<- predict(smooth.spline(vacc$year,vacc$vaccine),covar.table$

time)$y

# plot(covar.table$time,covar.table$vaccine,type=’l’)

# points(vacc$year,vacc$vaccine)

for(i in 1:dim(covar.table)[1]){

TIME<- covar.table$time[i]

if(TIME<=2015){

covar.table$googleLAG0[i]<- goog$Chicken.Pox.Australia[which(goog$time==TIME)]

covar.table$googleLAG1[i]<- goog$Chicken.Pox.Australia[which(goog$time==TIME)

-1]

covar.table$googleLAG2[i]<- goog$Chicken.Pox.Australia[which(goog$time==TIME)

-2]

}

else{covar.table$googleLAG0[i]<- NA

covar.table$googleLAG1[i]<- NA

covar.table$googleLAG2[i]<- NA

}

}
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covar.table[,c(’googleLAG0’,’googleLAG1’,’googleLAG2’)]

covar.table<- subset(covar.table,time<= 2015)

################

# Set up data frame with the data to be fit, this dataframe should start at

timestep==1

################

monthly.cases<-data.frame(cases=subset(dat,time<=2015)$chickenpox,time=round(

subset(dat,time<=2015)$time,digits=3))

monthly.cases$timestep<- 1:108

# # the google trends and the data align well

# par(plt=c(0.1,0.9,0.6,0.9))

# plot(monthly.cases$time,monthly.cases$cases,type=’l’)

# par(plt=c(0.1,0.9,0.1,0.5),new=TRUE)

# plot(covar.table$time,covar.table$googleLAG0,type=’l’,col=’red’)

################

# Compile/load model from C-code

################

if (is.loaded("chickenpox_meas_dens")) dyn.unload("chickenpox_seas_G.so")

system("R CMD SHLIB chickenpox_seas_G.c")

dyn.load("chickenpox_seas_G.so")

################

# POMP Object

################

my.model<- pomp(
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data=monthly.cases[c("timestep","cases")], # data are cases and

associated timestep, starting w/ timestep==1

times="timestep", # name of time variable in data dataframe

rprocess=euler.sim("chickenpox_proc_sim",delta.t=1,PACKAGE="

chickenpox_seas_G"), # chickenpox_proc_sim is the name of our

process model in C-code; chickenpox.c is the name of our C file;

see ?plugins for integration options

rmeasure="chickenpox_meas_sim", # name of measurement model in C-code

dmeasure="chickenpox_meas_dens", # name of measurement density model

in C-code

PACKAGE="chickenpox_seas_G", # name of C-file

t0=0, # this is the time we initialize the model

obsnames="cases", # name of observations in data dataframe

statenames=c("FOI","I"), # process model state variable names, this

vector must match the order of the states in (x[stateindex[i]])

in C-code

covarnames=c("children","vaccine","googleLAG0","googleLAG1","

googleLAG2"), # covariate names, must match order of (covar[

covindex[i]]) in C-code

paramnames=c(’alpha’,’tau’,’beta1’,’beta2’,’beta3’,’beta.sd’,’omega’,

’rho’), # param names, must match order of (p[parindex[0]]) in C-

code, but notice the actual name doesnt have to match for

instance here we use "alpha" in C-code we call it LOGALPHA, only

the indexing matters not the exact name

tcovar="timestep", # name of the time variable in the covariate data

frame

covar=covar.table, # name of the covariate dataframe

initializer=function(params,t0, ...){ # the initializer allows you

to specify how to set up initial conditions using your parameter
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set "params"

p <- expit(params)

covars<- as.data.frame(covar.table)

with(as.list(p),{

x0=c(FOI.0,I.0)

x0[1]= 0;

x0[2]= 0;

names(x0)=c("FOI","I");

x0

})

}

)

D.1.4.4 C++ code

// dear emacs , please treat this as -*- C++ -*-

#include <R.h>

#include <Rmath.h>

#include <math.h>

/////////////////////////////////////////////////////////////////

//

// define parameter sets (if param is bounded between 0-1 use

LOGIT otherwise LOG)

#define LOGALPHA (p[parindex [0]]) // exponent for lag1

google trends
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#define LOGTAU (p[parindex [1]]) // observation variance

parameter

#define LOGBETA1 (p[parindex [2]]) // scaler for lag1 google

trends

#define LOGBETA2 (p[parindex [3]]) // scaler for lag2 google

trends

#define LOGBETA3 (p[parindex [4]]) // scaler for lag2 google

trends

#define LOGBETA_SD (p[parindex [5]]) // sd of process noise

#define LOGITRHO (p[parindex [7]]) // the mean report rate

#define LOGOMEGA (p[parindex [6]]) // the phase of the

cosine function for seasonal forcing

#define M_PI 3.14159265358979323846 /* pi */

// define process model state variables

#define FOI (x[stateindex [0]]) // force of infection

#define I (x[stateindex [1]]) // infected

// define covariates

#define CHILDREN (covar[covindex [0]]) // population size under

15 yrs of age

#define VACCINE (covar[covindex [1]]) // percent vaccinated

against VZV under 15

#define Tlag0 (covar[covindex [2]]) // percent vaccinated

against VZV under 15

#define Tlag1 (covar[covindex [3]]) // percent vaccinated

against VZV under 15

#define Tlag2 (covar[covindex [4]]) // percent vaccinated

against VZV under 15
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// observation model state variables

#define CHICKENPOX (y[obsindex [0]]) // observed CHICKENPOX

cases

/////////////////////////////////////////////////////////////////

//

// define LOGIT and EXPIT functions

// static double logit (double p) {

// return log(p/(1-p));

// }

static double expit (double x) {

return 1.0/(1.0+ exp(-x));

}

/////////////////////////////////////////////////////////////////

//

// measurement density model for calculating Likelihood

void chickenpox_meas_dens (double *lik , double *y, double *x,

double *p, int give_log ,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

double report_rate , tau;

double tol = 1.0e-18;
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tau = exp(LOGTAU);

// tau = 0;

report_rate = expit(LOGITRHO);

if(CHICKENPOX > 0.0){

*lik = pnorm(CHICKENPOX +0.5, report_rate*I,tau*I,1,0) - pnorm(

CHICKENPOX -0.5, report_rate*I,tau*I,1,0)+ tol;

} else{

*lik = pnorm(CHICKENPOX +0.5, report_rate*I,tau*I,1,0)+ tol;

}

if (give_log) *lik = log(*lik);

if (!isfinite(*lik)) Rprintf("chickenpox_meas_dens %lg %lg %lg

%lg %lg\n",CHICKENPOX ,report_rate ,tau ,I,*lik);

}

/////////////////////////////////////////////////////////////////

//

// measurement model

void chickenpox_meas_sim (double *y, double *x, double *p,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

double report_rate , tau;

tau = exp(LOGTAU);

//tau = 0;

report_rate = expit(LOGITRHO);
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CHICKENPOX = rnorm(report_rate*I,tau*I);

if (CHICKENPOX >= 0) {

CHICKENPOX = nearbyint(CHICKENPOX);

} else {CHICKENPOX = 0;}

}

/////////////////////////////////////////////////////////////////

//

// process model

void chickenpox_proc_sim (double *x, const double *p,

const int *stateindex , const int *parindex ,

const int *covindex ,

int covdim , const double *covar ,

double t, double dt)

{

double beta_sd;

double epsilon;

double beta1;

double beta2;

double beta3;

double alpha;

// int fail;

double scale;

double omega;

alpha = exp(LOGALPHA);
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beta_sd = exp(LOGBETA_SD);

beta1 = exp(LOGBETA1);

beta2 = exp(LOGBETA2);

beta3 = exp(LOGBETA3);

omega = exp(LOGOMEGA);

if (beta_sd > 0) {

scale = pow(beta_sd ,2);

epsilon = rgamma (1/scale ,scale);

} else {epsilon = 1;}

if(

isfinite(epsilon)== FALSE ||

isfinite(alpha)==FALSE ||

isfinite(FOI)==FALSE ||

isfinite(I)==FALSE ||

isfinite(beta1)==FALSE ||

isfinite(beta2)==FALSE

)

{

Rprintf("non finite value in chickenpox_proc_sim\n");

return;

}

FOI = (beta1*cos ((2*M_PI/12)*(t+omega))*Tlag1 + beta3)*epsilon;

if(FOI < 0){FOI = 0;}

I = CHILDREN*FOI;
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}

D.1.5 Chapter 4 Code: The Underpinnings of Herpesvirus Dynamics: Trans-

mission & Reactivation of Varicella Zoster Virus

D.1.5.1 Introduction

As my coding abilities increased, I changed my R scripts and C++ code to include

loops, so I didn’t have to run different code for each model test. In this work (Chapter

4), I have been using pomp version 1.7 to fit mechanistic models. Table C.1 includes all

model variations fit to-date. Different variations can be fit based on simple changes to the R

script, which can be seen in the comments below. This code specifically runs model 1, which

biologically tests whether the same seasonal mechanism (B-Spline) drives both transmission

and reactivation of VZV, without antibody-boosting. As with all chapters, I used an R script

to call the pomp object, which then called the C++ code.

D.1.5.2 R script

rm(list=ls())

# require(’subplex’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’nloptr’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’mvtnorm’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’deSolve’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’coda’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’pomp’,lib.loc=’/home2/bakkerke/pomp_develop’);

###next three lines needed for local R session

# setwd("/Users/kevinbakker/Desktop/VZV_dynamics")

require(pomp);
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# run=1

###

param.sets<- read.csv(file=’VZV1_run4.csv’,header=TRUE);

#SET THESE PRIOR TO ALL MODEL ITERATIONS!

#the modelnumber indicates which models to fit without reference to antibody

boosting (i.e. model 1 will fit both model 1 and 2 from Table C.1)

# 1 = models 1,2, 2 = models 3,4, 3 = models 5,6, 4 = models 7,8

modelnumber <- 1; # range for model 1-4

#below is whether or not boosting will be included.

#Follwing Table C.1, if 0 is set, then the above models will be 1,3,5, or 7 will

be run, depending on what model number is selected.

#However if boosting IS included (below setting =1), then models 2,3,6, or 8 will

be run, depending on what model number is selected.

boosting <- 0; # range for boost 0-1 (no/yes)

param.sets$model <- modelnumber;

param.sets$boost <- boosting;

args <- (commandArgs(TRUE)); # command line arguments that I will enter manually

run <- as.numeric(args[1]); # for FLUX#

no.runs <- c(52); # number of cores (this started around 800 when fitting sobol

parameters, now I use a core per parameter set)

no.MC.reps <- c(35); #number of times I will repeat each parameter set, this used

to be 1, and has gone as high as 200

output.name<- c("VZV_results");

# load our pomp object

source(’VZV_PO_1.R’)
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#total searches

total.params<- dim(param.sets)[1]*no.MC.reps;

MIFed.params<-mat.or.vec(total.params,dim(param.sets)[2]+3);

MIFed.params<-as.data.frame(MIFed.params);

names(MIFed.params)<- c(names(param.sets),’LogLik’,’seLogLik’,’seed’);

seeds <- ceiling(runif(n=total.params,min=1,max=2^30));

MIFed.params[,’seed’] <- seeds;

#Which parameters to estimate depending on model number

estnames <- c()

if(modelnumber ==1 && boosting == 0){

estnames <- c(’zeta1’,’zeta2’,’zeta3’,’zeta4’,’zeta5’,’zeta6’,’rhovz’,’tauvz’,’

tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’IHZ.0’,’L2.0’);

}else if(modelnumber == 1 && boosting == 1){

estnames <- c(’zeta1’,’zeta2’,’zeta3’,’zeta4’,’zeta5’,’zeta6’,’rhovz’,’tauvz’,’

tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’IHZ.0’,’L2.0’,’eta’,’omicron’

);

}else if(modelnumber == 2 && boosting == 0){

estnames <- c(’zeta1’,’zeta2’,’zeta3’,’zeta4’,’zeta5’,’zeta6’,’rhovz’,’tauvz’,’

tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’IHZ.0’,’L2.0’,’zeta1B’,’

zeta2B’,’zeta3B’,’zeta4B’,’zeta5B’,’zeta6B’);

}else if(modelnumber == 2 && boosting == 1){

estnames <- c(’zeta1’,’zeta2’,’zeta3’,’zeta4’,’zeta5’,’zeta6’,’rhovz’,’tauvz’,’

tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’IHZ.0’,’L2.0’,’zeta1B’,’

zeta2B’,’zeta3B’,’zeta4B’,’zeta5B’,’zeta6B’,’eta’,’omicron’);

}else if(modelnumber == 3 && boosting == 0){

estnames <- c(’zeta1’,’zeta2’,’zeta3’,’zeta4’,’zeta5’,’zeta6’,’rhovz’,’tauvz’,’

tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’IHZ.0’,’L2.0’,’a’,’nu’,’xi’);
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}else if(modelnumber == 3 && boosting == 1){

estnames <- c(’zeta1’,’zeta2’,’zeta3’,’zeta4’,’zeta5’,’zeta6’,’rhovz’,’tauvz’,’

tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’IHZ.0’,’L2.0’,’eta’,’omicron’

,’a’,’nu’,’xi’);

}else if(modelnumber == 4 && boosting == 0){

estnames <- c(’rhovz’,’tauvz’,’tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’

IHZ.0’,’L2.0’,’chi’,’upsilon’,’sigma’,’a’,’nu’,’xi’);

}else if(modelnumber == 4 && boosting == 1){

estnames <- c(’rhovz’,’tauvz’,’tauhz’,’m1’,’m2’,’Beta_SD’,’S.0’,’IVZ.0’,’L1.0’,’

IHZ.0’,’L2.0’,’eta’,’omicron’,’chi’,’upsilon’,’sigma’,’a’,’nu’,’xi’);

}else{ print("You are a fucking idiot Kevin")}

# Initial valued parameters we want to estimate

estICs <- grep("0",estnames,value=TRUE); #state variables to estimate (which we

will do first) - grabs all parameters with a ’0’ in them

estpars <- setdiff(estnames,estICs); # All other parameters we want to estimate

# Random-walk standard deviation. On the log and logit scale a value of 0.02 is

about a 2% variation in the parameter value.

# You dont need to use the same rw.sds for each parameter. I have found that 2%

works well when you have used a Sobol design.

#these are .2 for multiple iterations through mif (below)

# rw.sds.ics <- rep(0.2,times=length(estICs)); #ran walk SDs of the ICs for state

variables

# names(rw.sds.ics) <- estICs;

rw.sds <- rep(0.1,times=length(estnames)); #ran walk SDs of the ICs for all

parameters to estimate variables

names(rw.sds) <- estnames;
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# set up run index, this is indexing the parameter set that we are using in this

run

no.sets<- dim(param.sets)[1]

n<- floor(no.sets/no.runs)

start <- 1 + (run-1)*n # n is the number of param set in each run

end<- n + (run-1)*n

if(run==no.runs){end=dim(param.sets)[1]}

################

#MIF

write.seq<-rep(c(rep(0,9),1),length.out=dim(param.sets)[1]); #how often the file

writes

for (i in start:end){ # for each parameter set #this basically keeps them in

chunks of which of the 50k+ param sets to run (i.e. 1-5000, 5001-1000, etc...)

# for (i in 1:2){ # for each parameter set

current.params <- unlist(param.sets[i,1:length(param.sets[1,])]) # grab

parameter set

for(j in 1:no.MC.reps){ # for each replicate #how many times you want to repeat

each parameter set

# for(j in 1:1){ # for each replicate #how many times you want to repeat each

parameter set

results.index<- ((i-1)*no.MC.reps) + j # calculate the index in our results

data frame where we will put the results of this replicate

try({

save.rng.state <- .Random.seed

set.seed(seeds[results.index]) # set seed

# Find some decent initial conditions for this parameter set
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# Also note that each successive loop reduces the random walk standard

deviation.

mif.dat1 <- mif2(

my.model,

Nmif=100,

start=current.params, # we will initialize using the parameter

set resulting from "mif.ics" above.

pars=estnames, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=rw.sds,

Np=10000,

# var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.5,

# method=’mif2’,

max.fail=110

)

MIFed.pars1<- coef(mif.dat1) # MIFed parameter set

# MIFed.pars4<- coef(mif.dat1) # MIFed parameter set

mif.dat2 <- mif2(

my.model,

Nmif=100,

start=MIFed.pars1, # we will initialize using the parameter set

resulting from "mif.ics" above.

pars=estnames, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=(0.5*rw.sds),

Np=10000,
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# var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.5,

# method=’mif2’,

max.fail=110

)

MIFed.pars2<- coef(mif.dat2) # MIFed parameter set

mif.dat3 <- mif2(

my.model,

Nmif=100,

start=MIFed.pars2, # we will initialize using the parameter set

resulting from "mif.ics" above.

pars=estnames, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=(0.25*rw.sds),

Np=10000,

# var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.5,

# method=’mif2’,

max.fail=110

)

MIFed.pars3<- coef(mif.dat3) # MIFed parameter set

mif.dat4 <- mif2(

my.model,

Nmif=100,
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start=MIFed.pars3, # we will initialize using the parameter set

resulting from "mif.ics" above.

pars=estnames, # list of parameters we are estimating

# ivps=estICs, # list of initial conditions we are estimating

rw.sd=(0.25*rw.sds),

Np=10000,

# var.factor=3,

cooling.type=’hyperbolic’,

cooling.fraction= 0.5,

# method=’mif2’,

max.fail=110

)

MIFed.pars4<- coef(mif.dat4) # MIFed parameter set

.Random.seed <<- save.rng.state

# calculate the likelihood of the MIFed parameter set

loglik.mif<- replicate(n=10,logLik(pfilter(my.model,params=MIFed.pars4,Np

=5000,max.fail=110)))

bl<- mean(loglik.mif)

loglik.mif.est<- bl+log(mean(exp(loglik.mif-bl)))

loglik.mif.se <- sd(exp(loglik.mif-bl))/sqrt(length(loglik.mif))/exp(loglik.

mif.est-bl)

# put the results in our results data frame

MIFed.params[results.index,1:length(param.sets[1,])]<-MIFed.pars4

MIFed.params[results.index,’LogLik’] <-loglik.mif.est

MIFed.params[results.index,’seLogLik’] <-loglik.mif.se

MIFed.params <- as.data.frame(MIFed.params)

})
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}

# write to file every 10 parameter sets

if(write.seq[i]==1){write.csv(MIFed.params,file=paste(c(output.name,’_run’,run,

’.csv’),collapse=’’),row.names=FALSE)}

}

################

# Write the final output

###############

write.csv(MIFed.params,file=paste(c(output.name,’_run’,run,’.csv’),collapse=’’),

row.names=FALSE)

D.1.5.3 Pomp Object

require(pomp)

# On Pascual Lab flux:

# require(’subplex’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’nloptr’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’mvtnorm’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’deSolve’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’coda’,lib.loc=’/home2/bakkerke/pomp_develop’);

# require(’pomp’,lib.loc=’/home2/bakkerke/pomp_develop’);

################

# Load Covars & Data

################

covariates2 <- read.csv(’Thai_Covariates_short.csv’, header=TRUE);
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covariates1 <- covariates2[,-c(1)]

covariates <- covariates1[1:97,]

covariates$modelID <- param.sets$model[1];

covariates$boosting <- param.sets$boost[1];

covariates$seas <- periodic.bspline.basis(covariates$timevec,nbasis=6,degree=2,

period=1);

covariates$seasB <- periodic.bspline.basis(covariates$timevec,nbasis=6,degree=2,

period=1);

# covariates$modelID <- param.sets$model[1:109];

# covariates$boosting <- param.sets$boost[1:109];

################

# Functions we need to transform params

################

expit=function(x){1.0/(1.0+exp(-x))};

logit=function(p){log(p/(1-p))};

################

# Set up data frame with the data to be fit, this dataframe should start at

timestep==1

################

CASES1 <- read.csv(’Thai_CPOX_SHING_short.csv’, header=TRUE); #DO NOT PAD DATA

CASES <- CASES1[1:96,]

################

# Compile/load model from C-code

################
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if (is.loaded("zoster_meas_dens")) dyn.unload("VZV_1.so")

system("R CMD SHLIB VZV_1.c")

dyn.load("VZV_1.so")

################

# POMP Object

################

my.model<- pomp(

data=CASES[c("step","POX","SHING")], # data are cases and associated

timestep, starting w/ timestep==1

times="step", # name of time variable in data dataframe

rprocess=euler.sim("zoster_proc_sim",delta.t=1/4,PACKAGE="VZV_1"), # polio_

proc_sim is the name of our process model in C-code; measles_biweekly is

the name of our C file; see ?plugins for integration options

rmeasure="zoster_meas_sim", # name of measurement model in C-code

dmeasure="zoster_meas_dens", # name of measurement density model in C-code

PACKAGE="VZV_1", # name of C-file

t0=0, # time 0, this is the time we initialize the model

obsnames=c("POX","SHING"), # name of observations in data dataframe

statenames=c("pS","pE","pI","pL1","pL2","FOI","S","E","IVZ","L1","IHZ","L2",

’IVZNEW’,’IHZNEW’,’rep_hz’), # process model state variable names, this

vector must match the order of the states in (x[stateindex[i]]) in C-

code

covarnames=c("population","births","coc1","coc2","UV","modelID","boosting","

seas.1","seasB.1"), # covariate names, must match order of (covar[

covindex[i]]) in C-code

paramnames=c(’delta’,’Neta’,’zeta1’,’Omega’,’Alpha’,’Beta_SD’,’Phi’,’Gamma’,

’Iota’,’rhovz’,’tauvz’,’tauhz’,’m1’,’m2’,’zeta1B’,’eta’,’omicron’,’chi’,

’upsilon’,’sigma’,’a’,’nu’,’xi’), # param names, must match order of (p[
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parindex[0]]) in C-code, but notice the actual name doesnt have to match

for instance here we use "alpha" in C-code we call it LOGALPHA, only

the indexing matters not the exact name

tcovar="step", # name of the time variable in the covariate data frame

covar=covariates, # name of the covariate dataframe

initializer=function(params,t0, ...){ # the initializer allows you to

specify how to set up initial conditions using your parameter set "

params"

p <- expit(params)

covars<- as.data.frame(covariates)

with(

as.list(p),

{

x0=c(pS.0,pE.0,pI.0,pL1.0,pL2.0,FOI.0,S.0,E.0,IVZ.0,L1.0,IHZ.0,L2

.0,IVZNEW.0,IHZNEW.0,rep_hz.0) #this is the initial states

x0[1:6]= 0;

IC_sum=sum(x0[7:12]);

x0[7]= round((x0[7]/IC_sum)*covars[1,’population’]); #S

x0[8]= round((x0[8]/IC_sum)*covars[1,’population’]); #E

x0[9]= round((x0[9]/IC_sum)*covars[1,’population’]); #IVZ

x0[10]= round((x0[10]/IC_sum)*covars[1,’population’]); #L1

x0[11]= round((x0[11]/IC_sum)*covars[1,’population’]); #IHZ

x0[12]= round((x0[12]/IC_sum)*covars[1,’population’]); #L2

x0[13:14]= 0; #IVZNEW, IHZNEW

# x0[15]= x0[15]; #it stays as it is

names(x0)=c("pS","pE","pI","pL1","pL2","FOI","S","E","IVZ","L1","

IHZ","L2","IVZNEW","IHZNEW","rep_hz");

x0

}
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)

}

)

################

# end pomp object

################

D.1.5.4 C++ code

// dear emacs , please treat this as -*- C++ -*-

#include <R.h>

#include <Rmath.h>

#include <math.h>

// parameters

// process model parameters w/ log or logit transformation

#define DELTA (p[parindex [0]]) // natural death rate ,

fixed parameter

#define NETA (p[parindex [1]]) // number of etas for

the spline

#define LOGZETA (&p[parindex [2]]) // seasonal eta

vector for VZimmunomodulation

// #define LOGBETA (p[parindex [3]]) // beta value ,

chickenpox transmission rate

#define LOGITOMEGA (p[parindex [3]]) // the relative

infectiousness of herpes zoster versus varicella zoster , logit

between 0-1
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#define LOGALPHA (p[parindex [4]]) // exponent in the

force of infection

#define LOGBETA_SD (p[parindex [5]]) // standard deviation

of gamma distributed process noise

#define PHI (p[parindex [6]]) // the rate at which

an exposed person becomes infected with varicella zoster and

manifests as chickenpox , fixed parameter

#define GAMMA (p[parindex [7]]) // the recovery rate

for varicella zoster , fixed parameter

#define IOTA (p[parindex [8]]) // the average rate at

which latent infections reactivate to manifest as herpes

zoster , fixed parameter

// measurement model parameters , independent reporting for

varicella zoster and herpes zoster

#define LOGITRHOVZ (p[parindex [9]]) // the mean report

rate for varicella zoster

#define LOGTAUVZ (p[parindex [10]]) // observation model

dispersion parameter for varicella zoster

#define LOGTAUHZ (p[parindex [11]]) // observation model

dispersion parameter for herpes zoster

#define LOGM1 (p[parindex [12]]) // observation model

dispersion parameter for varicella zoster

#define LOGM2 (p[parindex [13]]) // observation model

dispersion parameter for herpes zoster

#define LOGZETAB (&p[parindex [14]]) // seasonal eta

vector for HZ immunomodulation

#define LOGETA (p[parindex [15]]) // boosting parameter

#define LOGOMICRON (p[parindex [16]]) // boosting parameter

208



#define LOGCHI (p[parindex [17]]) // scales UV to VZ

sigmoid

#define LOGUPSILON (p[parindex [18]]) // scales UV to VZ

sigmoid

#define LOGSIGMA (p[parindex [19]]) // scales UV to VZ

sigmoid

#define LOGA (p[parindex [20]]) // scales UV to HZ

sigmoid

#define LOGNU (p[parindex [21]]) // scales UV to HZ

sigmoid

#define LOGXI (p[parindex [22]]) // scales UV to HZ

sigmoid

// #define LOGSCALARVZ (p[parindex [17]]) // scales UV to VZ

// #define LOGSCALARHZ (p[parindex [18]]) // scales UV to HZ

// // initial condition parameters , logit transforms bc they are

fractions of the population

// #define LOGITfracS0 (p[parindex [15]]) // logit(initial

fraction susceptible)

// #define LOGITfracE0 (p[parindex [16]]) // logit(initial

fraction exposed), fix at zero

// #define LOGITfracIV0 (p[parindex [17]]) // logit(initial

fraction varicella zoster)

// #define LOGITfracL10 (p[parindex [18]]) // logit(initial

fraction latent1)

// #define LOGITfracIH0 (p[parindex [19]]) // logit(initial

fraction herpes zoster)
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// #define LOGITfracL20 (p[parindex [20]]) // logit(initial

fraction latent2)

// state variables

// probabilities realting to state transitions

#define pS (x[stateindex [0]]) // prob(remaining

in Susceptible class), this is time -varying

#define pE (x[stateindex [1]]) // prob(remaining

in Exposed class)

#define pI (x[stateindex [2]]) // prob(remaining

in Infected varicella zoster or herpes zoster class)

#define pL1 (x[stateindex [3]]) // prob(remaining

in the first latent class)

#define pL2 (x[stateindex [4]]) // prob(remaining

in the second latent class)

// other state variables

#define FOI (x[stateindex [5]]) // force of

infection

#define S (x[stateindex [6]]) // susceptible

#define E (x[stateindex [7]]) // exposed

#define IVZ (x[stateindex [8]]) // infected ,

varicella zoster

#define L1 (x[stateindex [9]]) // latent after

varicella zoster infecton

#define IHZ (x[stateindex [10]]) // infected/

reactive herpes zoster

#define L2 (x[stateindex [11]]) // latent after

herpes zoster infection
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#define IVZ_NEW (x[stateindex [12]]) // new infections

with varicella zoster

#define IHZ_NEW (x[stateindex [13]]) // new infections

with herpes zoster

#define report_rate_hz (x[stateindex [14]]) // time varying

reporting for herpes zoster

// covariates

#define N (covar[covindex [0]]) // population size

#define BABIES (covar[covindex [1]]) // number of births

#define C1 (covar[covindex [2]]) // covariates for the

trend in herpes zoster reporing

#define C2 (covar[covindex [3]]) // covariates for the

trend in herpes zoster reporing

#define UV (covar[covindex [4]]) // UV covariate

#define MODELNUMBER (covar[covindex [5]]) // model number

#define BOOSTING (covar[covindex [6]]) // boosting on/off

#define SEAS (&covar[covindex [7]]) // basis vector for

seasonal VZ immunomodulation

#define SEASB (&covar[covindex [8]]) // basis vector for

seasonal HZ immunomodulation

// observations

#define VARICELLA_ZOSTER (y[obsindex [0]]) // observed cases of

varicella zoster (i.e., chicken pox)

#define HERPES_ZOSTER (y[obsindex [1]]) // observed cases of

herpes zoster (i.e., shingles)

// logit function for transformations
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// static double logit (double p) {

// return log(p/(1-p));

// }

// expit function for transformations

static double expit (double x) {

return 1.0/(1.0+ exp(-x));

}

// measurement density

void zoster_meas_dens (double *lik , double *y, double *x, double

*p, int give_log ,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

//define doubles

double report_rate_vz;

double tau_vz;

double tau_hz;

double lik1;

double lik2;

double templik;

double tol = 1.0e-18;

// untransform reporting parameters

report_rate_vz = expit(LOGITRHOVZ);

tau_vz = exp(LOGTAUVZ);

tau_hz = exp(LOGTAUHZ);
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// Varicella zoster likelihood

if(VARICELLA_ZOSTER > 0.0){

lik1 = pnorm(VARICELLA_ZOSTER +0.5, report_rate_vz*IVZ_NEW ,tau_

vz*IVZ_NEW ,1,0) - pnorm(VARICELLA_ZOSTER -0.5, report_rate_

vz*IVZ_NEW ,tau_vz*IVZ_NEW ,1,0);

} else{

lik1 = pnorm(VARICELLA_ZOSTER +0.5, report_rate_vz*IVZ_NEW ,tau_

vz*IVZ_NEW ,1,0);

}

// Herpes zoster likelihood

if(HERPES_ZOSTER > 0.0){

lik2 = pnorm(HERPES_ZOSTER +0.5, report_rate_hz*IHZ_NEW ,tau_hz*

IHZ_NEW ,1,0) - pnorm(HERPES_ZOSTER -0.5, report_rate_hz*IHZ_

NEW ,tau_hz*IHZ_NEW ,1,0);

} else{

lik2 = pnorm(HERPES_ZOSTER +0.5, report_rate_hz*IHZ_NEW ,tau_hz*

IHZ_NEW ,1,0);

}

// work on log -scale bc computer can hard time with super

small numbers

// calculate the likelihood of observing the cases in both

data sets , call it templik

templik = exp(log(lik1) + log(lik2));

*lik = templik + tol;

// take the log of the likelihood
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if (give_log) *lik = log(*lik);

if (!isfinite(*lik)) Rprintf("zoster_meas_dens %lg %lg %lg\n",

VARICELLA_ZOSTER ,HERPES_ZOSTER ,*lik);

}

// measurement model

void zoster_meas_sim (double *y, double *x, double *p,

int *obsindex , int *stateindex , int *

parindex , int *covindex ,

int ncovar , double *covar , double t) {

//define doubles

double report_rate_vz;

double tau_vz;

double tau_hz;

// untransform reporting parameters

report_rate_vz = expit(LOGITRHOVZ);

tau_vz = exp(LOGTAUVZ);

tau_hz = exp(LOGTAUHZ);

VARICELLA_ZOSTER = rnorm(report_rate_vz*IVZ_NEW ,tau_vz*IVZ_NEW)

;

if (VARICELLA_ZOSTER >= 0.0) {

VARICELLA_ZOSTER = nearbyint(VARICELLA_ZOSTER);

} else {

VARICELLA_ZOSTER = 0.0;

}
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HERPES_ZOSTER = rnorm(report_rate_hz*IHZ_NEW ,tau_hz*IHZ_NEW);

if (HERPES_ZOSTER >= 0.0) {

HERPES_ZOSTER = nearbyint(HERPES_ZOSTER);

} else {

HERPES_ZOSTER = 0.0;

}

}

// process model

void zoster_proc_sim (double *x, const double *p,

const int *stateindex , const int *parindex ,

const int *covindex ,

int covdim , const double *covar ,

double t, double dt)

{

// define doubles

double zeta;

double omega;

double alpha;

double beta_sd;

double epsilon;

double scale;

double m1;

double m2;

double zetaB;

double eta;

double omicron;

double scalarvz; //still used to equal sigmoid

double scalarhz; //still used to equal sigmoid
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double BetaT;

double kappa;

double chi;

double upsilon;

double sigma;

double a;

double nu;

double xi;

double psi;

// double modelnumber;

// double boosting;

// define integers

int neta = (int) NETA;

int j;

int i;

// int fail;

// construct the B-spline

for (j = 0, zeta = 0; j < neta; j++) //j++ means go one plus in

the loop from 0->5

zeta += LOGZETA[j]*SEAS[j]; //logeta vector with 6

coefficients for BSpline , seas -> 6 covariates , this is

the BSpline basis

zeta = exp(zeta);

// construct the second B-spline

for (i = 0, zetaB = 0; i < neta; i++) //j++ means go one plus

in the loop from 0->5
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zetaB += LOGZETAB[i]*SEASB[i]; //logeta vector with 6

coefficients for BSpline , seas -> 6 covariates , this is

the BSpline basis

zetaB = exp(zetaB);

// untransform parameters for use in the model

omega = expit(LOGITOMEGA);

alpha = expit(LOGALPHA);

beta_sd = exp(LOGBETA_SD);

m1 = exp(LOGM1);

m2 = exp(LOGM2);

eta = exp(LOGETA);

omicron = exp(LOGOMICRON);

chi = exp(LOGCHI);

upsilon = exp(LOGUPSILON);

sigma = exp(LOGSIGMA);

a = exp(LOGA);

nu = exp(LOGNU);

xi = exp(LOGXI);

//estimate seasonal susceptibility or reactivation from UV

scalarvz = 1/(chi+exp(( upsilon*UV)-sigma));

scalarhz = 1/(a+exp((nu*UV)-xi));

// calculate the gamma distributed process noise epsilon

if (beta_sd > 0.0) {

// calculte the scale parameter , which here is also the

variance
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// in C, rgamma(shape ,scale), if shape ==(1/scale), then mean

==shape*scale ==1 & variance == shape*scale*scale=scale

scale = pow(beta_sd ,2);

epsilon = rgamma (1/scale ,scale);

} else {epsilon = 1.0;}

// run some checks , if non -finte values return and do not

continue

if(

isfinite(zeta)== FALSE ||

isfinite(epsilon)== FALSE ||

isfinite(omega)==FALSE ||

isfinite(alpha)==FALSE ||

isfinite(FOI)==FALSE ||

isfinite(pS)==FALSE ||

isfinite(pL1)==FALSE ||

isfinite(S)==FALSE ||

isfinite(IVZ)==FALSE ||

isfinite(IHZ)==FALSE ||

isfinite(zetaB)==FALSE ||

isfinite(eta)==FALSE ||

isfinite(omicron)==FALSE ||

isfinite(scalarvz)==FALSE ||

isfinite(scalarhz)==FALSE

)

{

Rprintf("non finite value in zoster_proc_sim\n");

return;

}
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// process model equations

if(MODELNUMBER == 1){

BetaT = zeta; kappa = zeta;

}else if(MODELNUMBER == 2){

BetaT = zeta; kappa = zetaB;

}else if(MODELNUMBER == 3){

BetaT = zeta; kappa = scalarhz;

}else // if(MODELNUMBER == 4)

{

BetaT = scalarvz; kappa = scalarhz;

// }else {Rprintf("You messed up your Model numbering\n");

}

// if then for antibody boosting on/off

if(BOOSTING == 1){

psi = 1/(1+ exp(eta*IVZ -omicron));

}else //(BOOSTING == 0)

{

psi = 1;

// }else{Rprintf("You messed up your Boosting numbering\n");

}

// KAPPA = kappa;

// PSI = psi;

// General form for FOI

FOI = BetaT*pow ((( IVZ+omega*IHZ)/N),alpha)*epsilon;
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if(FOI < 0.0){FOI = 0.0;}

// probabilites based on the per capita rates and the time step

, dt in months

// we intend to use a dt of 1/4 month , i.e., weekly time steps

pS = exp(-dt*(FOI+DELTA));

pE = exp(-dt*(PHI+DELTA));

pI = exp(-dt*(GAMMA+DELTA));

pL1 = exp(-dt*(IOTA*kappa*psi+DELTA));

pL2 = exp(-dt*(DELTA));

// epi classes

S = dt*BABIES + S*pS;

E = (S*(1-pS)*FOI/(DELTA+FOI)) + (pE*E);

IVZ = (E*(1-pE)*PHI/(DELTA+PHI)) + (pI*IVZ);

L1 = (IVZ*(1-pI)*GAMMA/(GAMMA+DELTA)) + (pL1*L1);

IHZ = (L1*(1-pL1)*(IOTA*kappa*psi)/(IOTA*kappa*psi+DELTA)) + (

pI*IHZ);

L2 = (IHZ*(1-pI)*GAMMA/(GAMMA+DELTA)) + (pL2*L2);

// new infections

IVZ_NEW = (E*(1-pE)*PHI/(DELTA+PHI));

IHZ_NEW = (L1*(1-pL1)*(IOTA*kappa*psi)/(IOTA*kappa*psi+DELTA));

// report rate for herpes zoster is time varying

report_rate_hz += m1*t*C1 - m2*t*C2;

if(report_rate_hz > 1.0){report_rate_hz = 1.0;}

if(report_rate_hz < 0.0){report_rate_hz = 0.0;}

}
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D.1.6 Summary

In the 5 years it took me to complete my Ph.D., I’d estimate than more than 95%

of my (non-teaching) time and effort went towards mathematical modeling. Mathematical

modeling consists of not just writing and running the code, but developing biologicaly based

and sensible models. It is always possible to add more parameters to a model to achieve a

better fit, but are they biologically based? This question I faced throughout my dissertation,

along with how one picks out the ‘best’ model. Chapters 3 & 4 both include 8+ models,

and both pick one that provides the ‘best’ fit. While Chapter 3 was mostly straightforward,

I am still in the process of choosing the correct model for Chapter 4. One model fits better,

but may not be as bioligcally sensible as the next best fit model, thus the quandry.

Pomp may seem inaccessible or incredibly complex, however I was able to pick it up

with minimal coding or mathematical background (though it did take a few years). There

are further tutorials available on the pomp website. Finally, all my code was based off the

initial code I looked at in 2012, and pomp has evolved into a much cleaner software package

since. Among other improvements, pomp creators have integrated C-snippets into pomp,

where one no longer needs 3 different files (e.g. Fig D.1) to execute the code. Over the next

few months, I look forward to ‘updating’ my code for all of my in-progress projects, many

of which are summarized in Chapter 5.
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