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ABSTRACT

In this thesis, we use the dynamical cluster approximation to study strongly correlated
electron systems, especially from the angle of two-particle quantities, such as dynamical
susceptibilities and vertex functions.

The thesis starts with an introduction to the strongly correlated systems, including their
definitions, prominent features, applications, difficulties in explaining them theoretically
and some numerical approaches developed. The following section is an introduction to
one family of strongly correlated systems we focus on in this thesis, the high temperature
cuprates. The salient features in their general phase diagrams are described and discussed.
Then an overview of the model we used to study high Tc cuprates is provided, with its
limitations and extensions. To solve this model, the numerical method we employ for
our study is the dynamical mean-field theory, the dynamical cluster approximation and
the continuous time auxiliary field impurity solver. the last part of Chap.1 contains brief
derivations for these algorithms.

In Chap. 2, we apply dynamical cluster approximation to solve the one-band 2D Hub-
bard model. The physical quantities of interest are two-particle quantitites, such as the
dynamical susceptibility, irreducible vertex functions and full vertex functions. In this
chapter, we describe how to obtain these susceptibilities via linear response theory and
write down a detailed example for superconducting susceptibility. Finally we show how to
calculate two particle quantities within DCA and obtain phase boundary with them.

Chap. 3 is based on one of our publications. In this work, we specifically address
the problem of optimizing the superconducting transition temperature in the 2D Hubbard
model by analyzing wide regions of parameter space in density, interaction, and second-
nearest-neighbor hopping strength.We mainly focus on dx2−y2 superconductivity but show
results of other symmetries in the last section.

Chap. 4 follows another publication of ours. We study the temperature and doping
evolution of NMR response in the normal state of the 2D Hubbard model using cluster
dynamical mean-field theory. We simulate the Knight shift, the spin-echo decay rate and
the spin-lattice relaxation time, and compare them to the cuprates experimental results.

ix



The last chapter extends the calculation of the NMR response to the superconducting
state with the Nambu formalism. We show the detailed formulas and diagrams to calculate
two-particle quantities, including the Dyson-Schwinger equation of motion.

x



CHAPTER 1

Introduction

1.1 Overview

This thesis focuses on the numerical studies of strongly correlated electron systems. In this

chapter, we provide background informations about strongly correlated system, especially

the high Tc superconductors. We describe the fundamental aspects of the features, applica-

tions and theoretical challenges of strongly correlated electron systems. Then we proceed

to the numerical method employed in the following chapters, the dynamical mean-field the-

ory, dynamical cluster approximation, the continuous time auxiliary field impurity solver

and the maximum entropy method for analytical continuation.

1.2 Strongly Correlated Systems

In this section, we provide some fundamental information about strongly correlated sys-

tems, which is the topic this thesis focused on. The field of strongly correlated systems is

one of the most intensively studied fields in condensed matter physics. In these systems,

the interaction between constituent particles is comparable to or stronger than their kinetic

energy and plays an important role in determining the properties of the materials, hence the

name strongly correlated system. Examples of such systems include high temperature su-

perconductors [17], heavy fermion materials [18], manganites [19], transition metal oxides
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[17], organic superconductors [20], quantum Hall systems [21] and others. Many of these

materials have open d or f electron shells, where electrons occupy narrow orbitals. Those

orbitals make electrons spatially confined and experience strong Coulomb repulsion [22].

The comparability of energy scales of spin, charge and orbital degrees of freedom results

in interplay effects and competing orders in some regions of their phase diagrams, such as

competing magnetic stripe order and superconductivity in pnictide materials [23]. It also

makes the system very sensitive to changes in external parameters [22], such as temper-

ature, doping or magnetic field, producing feature-rich phase diagrams. Fig. 1.1 lists the

phase diagrams of some widely studied materials belong to the category of strongly cor-

related systems. What stimulates the research in these materials is not only the challenge

of understanding the fundamental mechanism of electronic interaction, but also the great

potential in technological applications based on their exotic emergent phenomena. For in-

stance, current commercial applications of high Tc superconductors include magnetic reso-

nance imaging [24], high-energy physics accelerators [25], plasma fusion reactors [26] and

power transmission lines. Colossal magnetoresistance effects can be exploited for sensitive

magnetic field sensor and the magnetocaloric effects provide a new cooling method[27].

The difficulty of constructing a complete theoretical explanation of strongly correlated

systems is rooted in the fact that they cannot be understood as ensemble of free particles or

quasi-particles. Interesting emergent properties are not a mere accumulation of individual

building blocks but are brought about by the pronounced electron-electron interaction [6].

Their complexity requires theories that are qualitively different from those that govern its

individual units [28]. Under these circumstances, traditional ab initio methods are bound to

fail. With multiple fluctuations activated within comparable energy scales, methods such as

density functional theory and band theory are incapable of incorporating interactions prop-

erly [22] due to their perturbative nature. For example, for high Tc cuprates, band theory

mistakes its Mott-insulating parent compounds for metal [29], Fermi liquid theory gives

wrong answers in the strange metal and pseudogap region [30]. In the superconducting
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Figure 1.1: Phase diagrams of representative materials of the strongly correlated electron
family. (A) An example of materials having colossal magnetoresistance effect. Structural
and magnetic phase diagram of the bilayer manganite La2−2xSr1+2xMn2O7 in the range
0.3 < x < 1.0, featuring ferromagnetic metal (FM), canted antiferromagnet (CAF), A−,
C−, G− type antiferomagnetic insulator, long range charge ordering (CO)[1]. (B) Gen-
eral phase diagram of high Tc cuprates, detailed description in the next section. (C) An
example of Mott transition system.Phase diagram of single layered ruthenates[2, 3], evolv-
ing from superconducting state to AF insulator. (D) The phase diagram of nonhydrated
NaxCoO2 ,determined by changing the Na content x using a series of chemical reactions.
Ground state goes from a paramagnetic metal to a charge-ordered insulator, then to a Curie-
Weiss metal, and finally to a weak-moment magnetically ordered state [4]. (E) Pressure-
temprature phase diagram of the κ−Cl salt [5]. (F) Generally phase diagram of heavy
fermion systems. Figure taken from Ref. [6].

state, its d-wave pairing symmetry, the very short coherent length and the high transition

temperature are far away from predictions made by BCS theory [31].

In order to get theoretical understanding of strongly correlated materials, a common
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approach is to extract a few important degrees of freedom from the original Hamiltonian

and construct a low energy effective model [22]. However, most models that still retain the

essence of physical phenomena lack exact analytical solutions, which is why, along with

the fast-paced development of high performance computers, thriving numerical methods

have emerged as an important tool in this field in the last decade. The most commonly used

numerical techniques are Quantum Monte Carlo (QMC) and Exact Diagonalization (ED).

QMC is plagued by the infamous sign problem [32] when applied to fermionic systems.

Namely, the sampling weights for different configurations become negative when the tem-

perature is lowered or when the cluster size is increased. ED is only capable of handling

small systems since the Hilbert space increases exponentially with the cluster size.

Over the years, researchers have made great strides in developing numerical algo-

rithms to study strongly correlated systems, such as auxiliary-field quantum Monte Carlo

(AFQMC) [33, 34], bare and bold-line diagrammatic Monte Carlo (DiagMC) [35, 36, 37],

the dual fermion method (DF) [38], density matrix embedding theory (DMET) [39, 40],

density matrix renormalization group theory (DMRG) [41, 42], cluster dynamical mean-

field theory (CDMFT) and the dynamical cluster approximation (DCA) [43], diffusion

Monte Carlo based on a fixed-node approximation (FN) [44, 45], unrestricted coupled clus-

ter theory including singles and doubles (UCCSD), and in certain cases, higher excitations

[46], and multireference projected Hartree-Fock (MRPHF) [47, 48]. Ref. [49], a bench-

marking project for 2D Hubbard model, shows results from all the methods mentioned

above.

1.3 High Tc Superconducting Cuprates

One of the most prominent and widely studied class of strongly correlated materials is

the class of high Tc superconductors. The pursuit of higher temperature superconduc-

tors started with the discovery of superconductivity in 1911, when Dutch physicist Heike
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Kamerlingh Onnes observed almost zero electrical resistance in mercury at 4.19 K [50]. In

the subsequent decades, superconductivity was found in multiple kinds of materials. Their

year of discovery and maximum transition temperature are shown in Fig. 1.2. The copper-

oxygen superconductors are usually called ”high Tc” superconductors, since their transition

temperatures exceed the boiling point of liquid nitrogen at ambient pressure.

Figure 1.2: The critical temperature of superdonducting materials and their year of dis-
covery. Materials in the same family are connected by lines and marked by same symbol.
Figure form wikimedia commons. [7].

Currently discovered copper-based superconductors generally fall into three categories

[8]. The lanthanum stronium copper oxide (LSCO), which was the first being discovered,

has the K2NiF4 crystal structure (a body-centered tetragoanl lattice (I4/mmm−D17
4h), as

shown in Fig.1.3. The coupling between its adjacent layers are extremely weak [8], so that

it is a very suitable material to be simulated by 2D models. By substituting Sr2+ cations for

La3+, its overall density of doped hole can be tuned continuously from antiferromagnetic

phase to superconducting dome and further into overdoped region [14]. Therefore, LSCO

is considered a good candidate for studying superconductivity regardless of its relatively

lower critical temperature.

The Yttrium Barium copper oxide (YBCO) family was discovered within one year

after LSCO and increased maximum critical temperature from 45K to 93K [7]. Within
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its perovskite crystal structure[8], shown in the left panel of Fig 1.3, two CuO planes are

separated by a single layer of Y 3+ ions. Its doping level is controlled by number of oxygen

per formula unit, with YBa2Cu3O6 being the undoped compound [14]. the superconducting

properties of YBa2Cu3O7−x are sensitive to its oxygen content.

Bi, Tl and Hg-type compounds, the STM and ARPES experimentalists’ favorite ma-

terials, have up to 3 CuO layers, even more with external pressure. In 1994, a group in

University of Houston was able to push the transition temperature of HgBa2Ca2Cu3O8+δ

to 164K under quasihydrostatic pressure 30GPa [51].

Figure 1.3: Left: The crystal structure of La2−xMxCuO4, where M is Sr, Ba, or Ca. Right:
the crystal structure of YBa2Cu3O7−y in the tetragonal phase. Figure reproduced from [8].

There are several common features among high Tc cuprate materials. Their key struc-

tural feature is the quadratic CuO2 arrays separated from each other by charge reservoir lay-

ers. In these planes, the Cu ds2−y2 orbitals are bonded to four O p orbitals [8]. The physics

of these materials are strongly two dimensional. Strong magnetic correlation between intra-

plane Cu ions makes the parent compounds antiferromagnetic at low temperature [14]. The

hopping process that might lead to conduction is suppressed by coulomb repulsion. There-

fore the so called Mott insulator is observed at half-filling. With hole doping the magnetic

order quickly disappear and conducting or superconducting phase emerges. A simplified

doping dependent phase diagram of high Tc cuprate is presented in Fig. 1.5.
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High Tc cuprates have been a fanscinating research topic ever since their discovery.

They have drastically different behavior as compared to ordinary d-band metals, both in

the normal and the superconducting states. One particularly interesting phenomenon that

exists in high Tc cuprates is the pseudogap at the hole doped side. This is a state in which

the normal state electronic density of states at fermi level exhibits a momentum dependent

depression. It is largest close to antinodal region around k = (0, π) in the Brillouin zone

and vanishes towards the nodal region direction k = (0, 0) to k = (π, π) [52].

The existence of pseudogap (PG) has been confirmed by various experimental tech-

niques. It was first discovered by the nuclear magnetic resonance experiment, in the form

of reduction of Knight shift (Ks) and spin relaxation time T1 at temperature below cer-

tain T ∗ see Fig. 1.4(C). Direct evidence is also provided by measurements of the tunneling

conductance. A gap-like feature at zero bias is seen to persist in the normal state (see

Fig. 1.4(D). Another smoking gun is the specific heat. Fig. 1.4(F) shows specific heat coef-

ficient for (a)overdoped and (b)underdoped Y0.8Ca0.2Ba2Cu3O7. In the overdoped material

a gap, signaled by a depression, opens up below Tc. In the underdoped samples a gap starts

to form in the normal state below 140 K. The PG also manifest itself in electronic Raman

scattering (Fig. 1.4(H)). There is a prominent peak in the B1g Raman spectra which repre-

sents the (0, π) direction. The magnetic neutron scattering shows a peak in the imaginary

part of spin susceptibility in the PG region (Fig. 1.4(G)). The measurement of dc resistivity

has a drop at a temperature T ∗ due to reduced scattering as the result of the formation of

the pseudogap (Fig. 1.4(E)). Fig. 1.4(B) is the result of ab-plane optical conductivity. The

scattering rate varies linearly at room temperature but develops a gap like depression in

the normal state. At the same time the effective mass of the carriers develops a resonance

peak. The most powerful technique to study PG is the angle-resolved photoemission spec-

troscopy (ARPES), which directly measure the density of states at fermi level. As shown

in Fig. 1.4(A), a gap in spectral function opens at antinode, small frequency below certain

temperature and closes at points closer to node.
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(A) (B) (C)

(D) (E)

(F)

(G)

(H)

Figure 1.4: (A) Experimental results showing the existence of pseudogap in high Tc
cuprates. (A) ARPES experiment results of temperature dependence of the gap in un-
derdoped Bi 2212 at two locations in the first Brilouin zone. (B) The frequency-dependent
scattering rate and the effective mass of YBa−2Cu4O8 (C) spin-lattice relaxation rate and
the Knight shift in optimally doped (squares) and underdoped (circles) YBCO, measured
by NMR. (D) Tunnelling conductance for underdoped Bi2212. (E) Temperature depen-
dence of the resistivity of underdoped La2xSrx CuO4(F) Specific heat coefficient γ for
(a)overdoped and(b)underdoped Y0.8Ca0.2Ba2Cu3O7. (G) Magnetic neutron scattering in
La2xSrxCuO. (H) Raman spectra of Bi 2212. B1g emphasizes processes in the (π, 0) direc-
tion whereas B2g is sensitive to the (π, π) direction. Figures selected from Ref. [9].
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The pseudogap onset temperature T ∗ is much larger in underdoped samples, decreases

with increased doping level and eventually disappear in overdoped samples. There has

been a heated debate about the interplay between pseudogap and superconductivity. It has

been variously argued that the pseudogap is a precursor of superconducting fluctuations,

of a competing nonsuperconducting phase or regime, or of physics not contained in the

Hubbard model. In later chapters, we will show simulation results of the 2D Hubbard

model that supports the idea that the physics of pseudogap is contained in the 2D Hubbard

model and competes with the superconducting state.

Figure 1.5: Simplified doping dependent phase diagram of cuprate superconductors for
both electron (n) and hole (p) doping. The phases shown are the antiferromagnetic (AF)
phase close to zero doping, the superconducting phase around optimal doping, and the
pseudogap phase. Doping ranges possible for some common compounds are also shown.
Figure from [10].
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1.4 Models and Numerical Methods

1.4.1 The Hubbard Model

Due to the non-perturbative nature of strongly correlated electron systems, theoretical stud-

ies have been very challenging. As mentioned in previous section, one approach is to

extract a simpler effective Hamiltonian from the orginal problem, for example, the Falicov-

Kimball model [53], the t− J model [54], the Emery model [55] or the Heisenberg model

[56]. This thesis focuses on the study of the Hubbard model. Initially proposed in the early

1960s, the Hubbard model offers a simple description of electrons interacting with each

other in periodic potentail. The Hamiltonian of Hubbard model is [57, 58]

H =
∑
k,σ

(εk − µ) c†kσckσ + U
∑
i

ni↑ni↓, (1.1)

where µ is the chemical potential, k momentum, i labels of sites in real-space, U the on site

Coulomb interaction, and the dispersion εk = −2t [cos(kx) + cos(ky)]−4t′ cos(kx) cos(ky),

t the hopping matrix amplitude.

The Hubbard model starts its success with understanding the Mott insulator state of sev-

eral transition metal oxides [59, 60], which would otherwise be predicted by band structure

theory as metallic. One more recent successful application is modeling the high tempera-

ture cuprates. Phillip W. Anderson stated that the essential physics of high Tc supercon-

ductor was contained in the two dimensional Hubbard model [61]. The one band Hubbard

model retains the Cu dx2−y2 orbital while other Cu orbitals and O orbitals are neglected.

This model is well acknowledged to be able to capture the important features of the phase

diagram of cuprates, including the Mott metal-insulator transition, the anti-ferromagnetic

phase, the superconducting phase, and the pseudogap.

Despite the successful application of the Hubbard model in many strongly correlated

systems, there is a growing recognition that theoretical analysis of many newly developed
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materials or newly observed phenomena require more realistic models. There are vari-

ous of extension to the Hubbard model that reinclude some more details of the high Tc

cuprates. The first type is use three bands instead of the effective one band [55]. One fo the

studies of three-band Hubbard model [62] with single-site DMFT concluded that one-band

model provides reliable picture of the spectral functions and conductivity for frequencies

less than 4eV. Ref. [63] investigates the intermediate energy properties of cuprates us-

ing LDA+DMFT method to solve three-band Hubbard model and reported that three-band

Hubbard model can be reduced to one-band Hubbard model at electron doped side and hole

doped side when charge transfer energy is much larger then copper-oxygen hybridization.

Similar comparison was also made in Ref. [64]. One thing that they could agree on is that

one band Hubbard model works well on low energy scale.

There are also DMFT studies of bilayer Hubbard model [65, 66], which is necessary

when interlayer pairing is not negligible. We will also discuss the difference between the

NMR signal of LSCO (single CuO layer mateiral) and YBCO (double CuO layer material)

in Chap. 4 and Chap. 5

Another extension is the extended Hubbard model which includes not only the onsite

but also the nearest neighbor interaction [67]. This also gives rise to new phases in the

dynamical mean-field result, such as charge density wave. It has also been found that inter-

site interaction may be essential for the Wigner-Mott metal-insulator transition [67]. New

experimental progress in cold atoms [68, 69] has also intrigued the interest of studying

the 3D Hubbard model, which is much more numerically expensive than the 2D Hubbard

model.

This thesis is focused on the study of the single orbital Hubbard model in two dimen-

sions on a square lattice with nearest and next-nearest hopping parameters. The main ap-

proximations that justify using the one-band, 2D Hubbard model for high Tc cuprates are

(1) their physics is believed to be dominated by the almost square CuO2 plane(s); (2) The

interaction between electrons is strongly screened so it almost purely local. For real high
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Tc material, interaction U ≈ 7.5t, t′ ≈ −0.15 for LSCO and t′ ≈ −0.3 for YBCO. t is the

unit energy scale, approximately 0.3 eV .

1.4.2 Dynamical Mean-field Theory

Despite the simplicity of one-band 2D Hubbard model, it can only be solved exactly in

the limit of d = 1 [70, 71] and d = ∞ (within DMFT [72, 73]). Dynamical mean-field

theory (DMFT [72, 73]) has been proved to be a powerful tool for solving the Hubbard

model. DMFT is an approximation scheme developed for solving quantum many-body

problems. The main idea of dynamical mean-field theory is to map the original lattice

problem to a Anderson impurity model subject to a noninteracting, self-consistent bath

[73]. DMFT accounts for the correlation between spatially localized degrees of freedom

explicitly, while longer range correlations are approximated in a mean-field way. In contrast

to perturbative approaches, such as the random phase approximation (RPA) [74] and third-

order perturbation method, it treats local quantum fluctuations in a nonperturbative manner.

All Feynman diagrams are taken into account, albeit only the local contribution to the

self-energy. Therefore, DMFT is suitable for strongly correlated systems in the region

where diverse and complicated phases emerge, beyond the limit of weak coupling but where

correlations are precominantly local. Additionally, it can be combined with a realistic

electronic structure theory to generate numerical calculations for real materials. Examples

are LDA+DMFT [75] or GW+DMFT [76].

There are multiple approaches to derive DMFT, including the cavity method [72], local

nature of perturbation theory in infinite dimensions [77], expansion around the atomic limit

[73], effective medium theory [73] and Potthoff self-energy functional [78]. Ref. [73]

presented a derivation for DMFT, starting with removing one lattice site and all its bonds

with the rest of the lattice. The remaining lattice is simplified to a dynamical mean-field,

i.e. the bath. It is coupled to the representative single site via hybridization. The problem

is thus converted to a Anderson impurity problem, which is numerically tractable.
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Use Hubbard model as an example, the partition function can be written as a path

integral over Grassman variables, with the action S

Z =

∫ ∏
i

Dc∗iσDciσe
−S (1.2)

S =

∫ β

0

dτ

[∑
iσ

c∗iσ(τ)(
∂

∂τ
− µ)ciσ(τ) +

∑
ijσ

tijc
∗
iσ(τ)cjσ(τ) +

∑
i

Uc∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ)

]
,

(1.3)

where c∗iσ and ciσ are Grassman variables, τ the imaginary time, µ the chemical potential,

tij the hopping parameter and U interaction. This action can be separated into the impurity

part S0, the lattice part S(0) and the hybridization part δS as S = S0 + S(0) + ∆S, where

S0 =

∫ β

0

dτ

[∑
σ

c∗0σ(τ)(
∂

∂τ
− µ)c0σ(τ) + Uc∗0↑(τ)c0↑(τ)c∗0↓(τ)c0↓(τ)

]
(1.4)

∆S =

∫ β

0

dτ
∑
iσ

[ti0c
∗
iσ(τ)c0σ(τ) + t0ic

∗
0σ(τ)ciσ(τ)] (1.5)

S(0) =

∫ β

0

dτ

[∑
i 6=0σ

c∗iσ(τ)(
∂

∂τ
− µ)ciσ(τ) +

∑
ij 6=0σ

tijc
∗iσ(τ)ciσ(τ) + U

∑
i 6=0

c∗i↑(τ)ci↑(τ)c∗i↓(τ)ci↓(τ)

]
(1.6)

The partition function in grand canonical ensemble can be separated accordingly as

Z =

∫ ∏
σ

Dc∗0σDc0σexp[−S0]×
∫ ∏

i 6=0σ

Dc∗iσDciσ exp[−S(0)] exp[−∆S]

= Z(0)

∫ ∏
σ

Dc∗0σDc0σ exp[−S0]〈exp[−∆S]〉(0) (1.7)
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where 〈X〉(0) is the ensemble average 1
Z(0)

∫ ∏
i 6=0σDc

∗
iσDciσX exp[−S(0)]. By expanding

the exponential enclosed by〈〉 with respect to ∆S, the local action can be written into the

form

Sloc = −
∫ β

0

dτ1

∫ β

0

dτ2

∑
σ

c∗σ(τ1)G−1
σ (τ1 − τ2)cσ(τ2) + U

∫ β

0

dτc∗↑(τ)c↑(τ)c∗↓(τ)c↓(τ)

where

G−1
σ (τ1 − τ2) = −(

∂

∂τ1

− µ)δτ1τ2 +
∑
ij 6=0

t∗i0t
∗
j0G

(0)
ijσ(τ1 − τ2) (1.8)

Then the Green’s function of the removed site and the Green’s function of the remaining

lattice is related by

G
(0)
ijσ = Gijσ −Gi0σG

−1
00σG0jσ (1.9)

Here I described the main steps in the derivation of DMFT. Interested readers can refer to

the review by Geroges and Kotliar [73], or the review of D.Vollhardt et al. [77] for more

details.

Fig. 1.6 depicts the iterative scheme of DMFT. Note that the degrees of the freedom of

the bath, generally denoted as bare Green’s function G0, are solved self-consistently, hence

the name “self-consistency loop”.

The selfconsistent loop starts with a guess for the bare Green’s functionG0. As has been

discovered [79] using DMFT and half-filled Hubbard model, in the ”coexistence” region of

the phase diagram, the choice of beginning G0(ω) will affect the final converged Green’s

function, either metallic or Mott-insulating. With this initial G0, one solves the impurity

problem using an “impurity solver” and obtain the the Green’s function for the impurity

Gimp(ω). The self-energy of the impurity is then calculated by the Dyson equation.
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Figure 1.6: The iterative self-consistent loop of dynamical mean-field theory.

Σimp(ω) = G−1
0 (ω)−G−1

imp(ω) (1.10)

Within DMFT approximation, the lattice self-energy is the same as the momentum-independent

impurity self-energy Σ(k, ω) = Σ(ω). Once self-energy is known, the lattice Green’s func-

tion is calculated by coarse graining

Ḡ(ω) =
1

N

∑
k

1

iωn + µ+ εk − Σ(ω)
(1.11)

Then, new impurity Green’s function is recalculated by

G0(ω)−1 = Ḡ(ω)−1 + Σ(ω)−1 (1.12)

This procedure is repeated iteratively until Green’s function converges. The convergence

rate of the Green’s function is related to the initial bare Green’s function and drastically

decrease when the system is close to a phase transition, due to critical slowing down.
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1.4.3 Dynamical Cluster Approximation

What can we do beyond DMFT? The motivation for this question is that the applicability of

DMFT is by construction limited to materials and properties where spatial correlations can

be neglected. The drawbacks are now apparent. It fails to describe independent variations

of the quasiparticle residue, the quasiparticle lifetime and the effective mass [80]. It fails

to treat more exotic orders whose order parameters involve more than one site, such as

antiferromagetism, stripe states, d-wave superconductivity, or charge density waves [81,

82]. All of these states have been observed experimentally in multiple systems (see Fig. 1.1)

Figure 1.7: An illustration of the dynamical cluster approximation.

Over the years, various extentions to DMFT have been introduced. One direction is

the cluster extention approach, which treats the non-local short range correlation explic-

itly within the cluster and the long range correlation on a mean-field level, as illustrated

in Fig. 1.7. This method uses finite clusters instead of a single site as the impurity. This

approach includes the dynamical cluster approximation (DCA)[43] and the cluster dynam-

ical mean-field theory (CDMFT)[83, 84]. They succeeded in obtaining a d-wave pairing

and antiferromagnetic solution in the Hubbard model for parameters relevant to high Tc

superconductors and the effects of on site Coulomb interaction in various transition metal

oxides but fails in describing Luttinger liquid formation or van Hove singularities [85].

Another direction of going beyond DMFT are diagrammatic extentions of DMFT. For

example, the dual fermion approach [85], the dynamical vertex approximation [86], the

multiscale many-body method [87] and self-energy functional theory [88].

In this thesis, we will use the DCA method. With DCA, the first Brillouin zone is
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Figure 1.8: An cluster size Nc = 4 example of the definition of the coordinates in real and
reciprocal space. The origin of a cluster in real space is labeled by x̃, the sites within a
cluster by X . In reciprocal space, the wave-vectors of the super-lattice is labeled by K,
momentum within a ”tile” by k̃.

partitioned into Nc patches and the electron self-energy is constant within each patch. The

result becomes exact as the size of the cluster tends to infinity. It makes use of the space

translational invariance of the lattice and substantially reduces the computational burden

by doing calculation in the momentum space. The following derivation of DCA closely

follows the review of Maier [43].

In real space, the coordinates of a site is decomposed into the coordinate of cluster and

the coordinate within the cluster. Their reciprocal space coordinates are defined in a similar

manner, namely

x = x̃ + X (1.13)

k = K + k̃ (1.14)

The kinetic term (electron hopping term) in the Hamiltonian can be transformed to disper-

sion relation εk with the following Fourier transform that preserves translational invariance

of the lattice.

[tDCA(k̃)]XiXj
=

1

Nc

∑
K

eiK(Xi−Xj)εK+k̃ (1.15)
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The hopping amplitude t, the self-energy Σ can be separated into inter- and intra-cluster

parts

[tc,DCA]XiXj
=

1

Nc

∑
K

eiK(Xi−Xj)ε̄K (1.16)

[δtDCA(k̃)]XiXj
=

1

Nc

∑
K

eiK(Xi−Xj)δt(K + k̃) (1.17)

where ε̄K = Nc
N

∑
k̃ εK+k̃ and δt(K + k̃) = εK+k̃ − ε̄K .

Both the Green’s function and self-energy are Nc ×Nc diagonal matrices

G(K + k̃, z) = g(K, z) + g(K, z)δt(K + k̃)G(K + k̃, z) =
1

g−1(K, z)− δt(K + k̃)
,

(1.18)

with

g(K, z) = [z − ε̄K + µ− Σc(K, z)]−1 (1.19)

µ is the chemical potential, z is the Matsubara frequency iωn and g(K, z) is the Green’s

function of the cluster decoupled from the remainder of the system. The lattice Green’s

function is calculated by coarse-graining

Ḡ(K, z) =
Nc

N

∑
k̃

G(K + k̃, z) (1.20)

One concern about dynamical cluster approximation is the choice of cluster size and shape.

A cluster should at least be big enough to (1) satisfy the lattice point group symmetry; (2)

describe the symmetry of intended order parameter; (3) the number of neighbors in each

near-neighbor shell of the clusters do not differ too greatly from those of the original lattice

[89, 90]. Ref. [89] calculated the antiferromagnetic susceptibility using DCA and quantum

Monte Carlo for Hubbard model with various cluster sizes. Their results show that the
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Neel transition temperature decreases slowly with increasing cluster size, but off by a large

amount when Nc = 4. This is understandable since when Nc = 4, each site in the lattice

only has two neighboring sites instead of four neighboring sites. Ref. [90] discussed the

influence of cluster size on Neel temprature, d-wave pair field susceptibility and density

of states. The pseudogap is another topic under the spotlight. Ref. [91] investigated the

pseudogap phenomenon by measuring the spectral function and self-energy at antinode

point k = (0, π) (DCA and QMC). They found pseudogap only when Nc > 1 and gap size

slightly increased as the cluster size becomes larger.

In this thesis, most results are produced with 8-site cluster, which is large enough to

be representative of thermodynamic limit and also small enough for current computing

ability to reach necessary accuracy. In chapter 2, we compare the anti-ferromagnetic phase

boundary determined by 8-site cluster and two 16-site cluster with different configurations.

In chapter 3, the correlated paring susceptibility calculated with 4-site, 8-site and 16-site

cluster are plotted side-by-side. Both analysis show a qualitative agreement between 8 site

and 16 site cluster.

1.4.4 Continuous Time Auxiliary Field Impurity Solver

The main part of the DMFT/DCA self-consistency loop is solving the cluster impurity

The continuous-time auxiliary field impurity solver is based on the stochastic sampling of

quantum and thermal averages, i.e. quantum Monte Carlo technique.

The example used in this section is a single impurity problem which can be mapped

from a one-band Hubbard model using DMFT. It can be easily extended to multiple-band

and multiple-sites cluster problem. This section closely follows the review of Ref. [92].

The Hamiltonian of the impurity problem can be separated into two parts, H = H0 + V ,
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where

H0 = −(µ− U

2
)(n↑ + n↓) +

∑
σ,k

(tσ,kc
†
σak + h.c.) +

∑
σ,k

εka
†
σ,kaσ,k (1.21)

V = U(n↑n↓ − (n↑ + n↓)/2) (1.22)

Here the chemical potential is shifted by −U/2 so that half-filling is at µ = 0. H0 is the

Gaussian term containing both the impurity and the bath degrees of freedom. To disen-

tangle the n↑n↓ in the V term, we introduce a arbitrary positive constant K and a new

varialble, the auxiliary Ising spin s [93]. The partition function can be expressed in an

interaction representation,

Z = Tre−βH = e−KTr
[
e−βH0Tτe

−
∫ β
0 dτ(V (τ)−K/β)

]
(1.23)

expand it in powers of K/β − V , get

Z =
∑
n

∫ β

0

dτ1 . . .

∫ β

τn−1

(
K

β
)nTr

[
e−(β−τn)H0 ×

(
1− βV

K

)
. . . e−(τ2−τ1)H0

(
1− βV

K

)
e−τ1H0

]
(1.24)

=
∑
n

∑
si=±116i6n

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

(
K

2β

)n
Zn({si, τi}) (1.25)

where

Zn({si, τi}) ≡ Tr
1∏
i=n

exp(−δτiH0) exp(siγ(n↑ − n↓)) (1.26)

and δτ ≡ τi+1 − τi for i < n and δτn ≡ β − τn + τ1. Equation 1.24 makes use of the
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relation

1− βV

K
=

1

2

∑
s=±1

eγs(n↑−n↓) (1.27)

cosh(γ) = 1 +
βU

2K
(1.28)

In this way, the interaction term is decoupled with the price of expanded configuration

space.
(
K
2β

)n
Zn({si, τi}) acts as the ”weight” for a specific configuration {si, τi} in the

Quantum Monte Carlo procedure. Unlike classical Monte Carlo, it can be negative, causing

the infamous sign problem. As shown in Fig. 1.9, there’s no sign problem at half-filling.

As U increases, sign problem quickly becomes severe, especially at large doping. The core

element of configuration weight, Zn({si, τi}), can be expressed as

Zn({si, τi})
Z0

=
∏
σ=↑,↓

detN−1
σ ({si, τi}), (1.29)

N−1
σ ({si, τi}) ≡ eV

{si}
σ −G{taui}0σ

(
eV
{si}
σ − 1

)
, (1.30)

eV
{si}
σ ≡ diag

(
eγ(−1)σs1 , . . . , eγ(−1)σsn

)
, (1.31)

where (−1)↑ ≡ 1,(−1)↓ ≡ −1 and (G
{τi}
0σ )i,j = g0σ(τi − τj) for i 6= j, (G

{taui}
0σ )i,i =

g0σ(0+). g0σ(τ) is the input of the impurity solver, the bare Green’s function.

The sampling of configurations needs to satisfy the detailed balance condition to yield

right probability distribution p. With the Metropolis algorithm, the transition probability

between two configurations is separated into a propose part and an acceptance part. For

example, the probability of proposing to insert a auxiliary spin at a random time with a

random direction is pprop(n → n + 1) = 1/2(dτ/β)) and to remove a random auxiliary

spin is pprop(n+ 1→ n) = 1/(n+ 1).

p(n→ n+ 1)

p(n+ 1→ n)
=

K

n+ 1

∏
σ=↑↓

det(N
(n+1)
σ )−1

det(Nn
σ )−1

(1.32)
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The change of configuration x→ y is accepted according to

Wacc(x→ y) min(1,
p(x)

p(y)
) (1.33)

In each updating step, it is not necessary to calculate the value of det(Nn
σ )−1, only the ratio

between two determinant of slightly differed matrices is needed. This can be accomplished

efficiently with the sub-matrix updates algorithm proposed by E.Gull[94].

The main observable is the one-particle Green’s function and two-particle Green’s func-

tion. The one-particle Green’s function is measured according to Eq. 1.34. Eq. 1.35 is used

to measure two-frequency Green’s function, which is a middle step to calculate two-particle

Green’s function.

G(iωn) = g0(k, iωn)− g0(iωn)2

β

∑
pq

eiωnτpMpqe
−iωnτq (1.34)

G(iωn, iωm) = δmng0(iωn)− 1

β
g0(iωn)g0(iωm)

∑
pq

eiωnτpMpqe
−iωmτq (1.35)

where matrix M is Mpq = [(eV
{si}
σ − 1)Nσ({si, τi})]pq. These equations for measurement

can also be extended to cluster impurity problem.
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Figure 1.9: Average sign at β = 15/t, t′ = 0.1 using 16-site cluster with continuous time
auxiliary field solver.

1.4.5 Analytical Continuation

The outputs of CTAUX impurity solver and many other solvers are quantities computed in

an imaginary time statistical mechanics formalism. We sometimes need to interpret imag-

inary time (Matsubara frequency) Green’s functions and correlation functions as spectral

functions and response functions on the real axis. This analytical continuation procedure is

ill-conditioned in the sense that small fluctuation in the input data lead to large fluctuation

in the output data. The standard method of solving this problem is the maximum entropy

method (MaxEnt).

Here we introduce the basic formalism MaxEnt, following Ref. [95] and Ref. [96]. The

Green’s function on the imaginary frequency axis is connected to the Green’s function on

imaginary time access through a Fourier transform

G(iωn) =

∫ β

0

eiωnτG(τ), (1.36)

where iωn is the Matsubara frequency. iωn = 2π(n + 1
2
)/β for fermionic operators and

iωn = 2πn/β for bosonic operators. In a Quantum Monte Carlo simulation, the Green’s
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function G(τ) is not known to arbitrary precision and at arbitrary τ . Rather, we estimate

each discrete point G(τn) by averaging a set of M samples. The estimated G(τn) is given

by

G(τn) =
1

M

M∑
j=1

G(τn)(j), (1.37)

where G(τn)(j) is the j-th measurement of G(τn). In the case of fermions, the real fre-

quency Green’s function are related to the imaginary time Green’s function and Matsubara

frequency Green’s function as

G(iωn) = − 1

π

∫ ∞
−∞

dωIm[G(ω)]

iωn − ω
(1.38)

G(τn) =
1

π

∫ ∞
−∞

dωIm[G(ω)]e−τnω

1 + e−βω
(1.39)

where τn is one point of G(τ), whose imaginary time range has been discretized into N

points in some manner. We can obtain the spectral function A(ω) from the imaginary part

of the Green’s function on the real frequency axis

A(ω) = − 1

π
Im[G(ω)]. (1.40)

Eq. 1.39 can be written into the form

G(τn) =

∫ ∞
−∞

dωA(ω)Kn(ω), (1.41)

where Kn(ω) = − e−τnω

1+e−ωβ
is called the ’kernel’ of the analytical continuation. Here we

present the kernel for transformation from fermionic imaginary time Green’s function to

fermionic real frequency Green’s function. Kernels for other transformation can be found
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in Ref. [96].

What we tries to find with analytical continuation is a spectral function whose estimated

imaginary axis Green’s function Ḡ(τ) is most close to the G(τn) we obtained from Monte

Carlo simulations. Therefore, we define the ”goodness of fit” χ2 as

χ2 =
M∑
n,m

(Ḡ(τn)−G(τn))∗C−1
nm(Ḡ(τm)−G(τm)) (1.42)

where Cnm is the covariance matrix, encapsulating the correlation between Green’s func-

tion measurents.

Cnm =
1

M(M − 1)

M∑
j=1

(Gn −G(j)
n )(Gm −G(j)

m ) (1.43)

The most straight-forward procedure to solve for G(ω) using Eq. 1.41 is A = K−1GK.

However, the condition number of matrix K is usually very large and this problem is ill-

conditioned. That is to say, there are many solutions of A that satisfy G = KA within the

uncertainty of G.

In the MaxEnt, additional criteria is imposed on A to help regularize the solution. The

quantity to be minimized is

Q =
1

2
χ2 − αS[A] (1.44)

The ”entropy” term S[A] describes the likeliness of A to a reference spectral function.

S[A] = −
∫
dωA(ω) ln

[
A(ω)

d(ω)

]
. (1.45)

α is a Lagrange multiplier that controls the competition between χ2 and S.
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CHAPTER 2

Two-particle vertices Response Functions

2.1 Overview

This chapter presents the numerical study of the two-particle response functions in high

Tc cuprate superconductors. Sec. 2.2 introduces the background. Sec. 2.3 and Sec. 2.5

provides the formula of calculating two-particle quantities. Sec. 2.4 presents my derivation

of superconducting susceptibility using linear response theory. In Sec. 2.6 and Sec, 2.7

show results for the magnetic channel and the superconducting.

2.2 Introduction

The static and single-particle properties of Hubbard model, such as the Green’s function,

self-energy, spectral function and double occupancy, have been intensively studied hith-

erto. Yet not much has been accomplished on two-particle properties, whose numerical

measurement is time-consuming and sometimes memory-demanding. The workload of

obtaining complete two particle frequency and momentum dependent Green’s function,

Gσσ′(kk
′q, ωω′ν) increases as N3

c β
3N3

ω, where Nc is the number of momentum, N3
ω is the

number of fermionic Matsubara frequencies and β the inverse temperature. And the re-

quirement for memory and storage space increases as N3
cN

3
ω. However, there are plenty of

reasons that we should nevertheless attempt to have an accurate, systematic calculation of

two particle correlation functions and vertex functions.
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First of all, most of the comparison between numerical results and experimental results

are performed for one-particle quantities, such as electronic spectral function and APRES

[97], while theoretical analysis of a much wider range of experimental techniques including

optical conductivity [98], Raman spectroscopy [99], muon-spin relaxation [100] and inelas-

tic neutron scattering [101] requires a vertex function calculation. For very limited situa-

tions, such as analyzing optical and thermal conductivity, it may be sufficing to use bare

susceptibility χ0 = GG so that one-particle level measurement is enough [102, 103, 104].

But for most two-particle level experiments, an actual two-particle calculation is inevitable.

In chapter 4 and 5 we show simulation results and detailed explanation of nuclear magnetic

resonance (NMR) experiment where vertex corrections are crucial.

Secondly, the calculation of momentum and frequency dependent reducible and ir-

reducible vertex functions are important in diagrammatic DMFT extensions. The dual

fermion method [105, 38], the one particle irreducible approach [106], the dynamical ver-

tex approximation [86] and the recently develped DMF2RG method [107] depend on the

measurement on two-particle level. These are DMFT extensions that take into account

longer range fluctuations.

Thirdly, the investigation of (quantum) phase transition can be performed in disordered

state by observing the divergence of static susceptibility as a function of external control

parameters.

Last but not the least, the two-particle quantities can be used for the self-energy de-

composition, the so-called fluctuation diagnostics [108]. While self-energy describes all

scattering effects of one added/removed electron, it lacks the detail of the origination of

these effects. One can use the Dyson-Schwinger equation of motion to connects self-energy

to the full vertex function and decompose it into different channels. With the knowledge

of contribution to self-energy from each channel, momentum and frequency, information

about the role of different fluctuation can be obtained. Chapter 5 provides the formula for

equation of motion within Nambu formalism.
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Attempts have been made to calculate the two-particle quantities. One can assume that

the irreducible vertex Γ(K,K ′, Q) is only weakly dependent on K and K ′ to circumvent

the numerical complexity [109]. Unfortunately, this assumption will fail at low temperature

and large interaction. Two particle correlations analysis using functional renormalization

group scheme wasfound to be limited to the one-particle irreducible vertex while higher

order vertex part are nontrivial [110].

Recent development in the numerical simulation of interacting fermionic lattice models

have made exact calculation of two particle quantities possible. Equations in this chapter

follows Ref. [11] but have been extended to cluster approximation. Some calculations

in this framework have been performed in recent years. A recently developed DCA+

method was combined with Bethe-Salpeter equation to analyze the leading eigenvalue of

Γχ0 matrix to get superconducting transition temperature of Hubbard model at weak and

intermediate coupling with different cluster sizes [111]. Analysis of the Hubbard-Holstein

model[112] has also been performed. Getting results with very large cluster size was made

possible by focusing on static spin susceptibility, but was limited to very weak interaction

[113].

In this chapter, we derive the Bethe-Salpeter equation within DCA, and the linear re-

sponse theory for filtering out the channel of susceptibility of interest. We will show aspect

of the phase diagram of 2D Hubbard model within the DCA approximation by examining

the divergence of the susceptibility, which includes the phase boundaries for AFM, d-wave

superconductivity.

2.3 Two Particle Vertex Functions

In this section the calculation of dynamical susceptibility using dynamical cluster approx-

imation is illustrated. The notation and calculation of this section closely follows the

Ref. [11] and Ref. [43]. We start by defining the one-particle and two-particle Green’s

28



functions in imaginary time τ as

Gσ(r1τ1, r2τ2) = 〈Tτ (c†r1σ1(τ1)cr2σ2(τ2)〉 (2.1)

G2,σ1σ2σ3σ4(r1τ1, ..., r4τ4) = 〈Tτ (c†r1σ1(τ1)cr2σ2(τ2)c†r3σ3(τ3)cr4σ4(τ4)〉. (2.2)

The generalized susceptibility can be written in imaginary time τ , in terms of the one- and

two-particle Green’s functions as [11]

χσ1σ2σ3σ4(r1τ1, r2τ2, r3τ3, r4τ4) = G2,σ1...σ4(r1τ1, r2τ2, r3τ3, r4τ4) (2.3)

−Gσ1σ2(r1τ1, r2τ2)Gσ3σ4(r3τ3, r4τ4).

The susceptibility can be represented in frequency space via the Fourier transform. In the

particle-particle (pp) convention, it is defined as

χωω
′ν

ppσσ′(k,k
′, q) =

∫ β

0

∫ β

0

∫ β

0

dτ1dτ2dτ3χσσσ′σ′(r1τ1, r2τ2, r3τ3,00) (2.4)

× e−iωτ1ei(ν−ω′)τ2e−i(ν−ω)τ3 × e−ikr1ei(q−k′)r2e−i(q−k)r3

In the particle-hole (ph) convention, it is defined as

χωω
′ν

phσσ′(k,k
′, q) =

∫ β

0

∫ β

0

∫ β

0

dτ1dτ2dτ3χσσσ′σ′(r1τ1, r2τ2, r3τ3,00) (2.5)

× e−iωτ1ei(ν+ω)τ2e−i(ν+ω′)τ3 × e−ikr1ei(q+k)r2e−i(q+k′)r3

where ω and ω′ are fermionic Matsubara frequencies, ν is a bosonic Matsubara frequency,

σ and σ′ are spin labels and k, k′ and q are initial, final and transfer momenta respectively.

For simplicity, we will use k = (k, ω) and q = (q, ν). The pp and ph channel are connected
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to each other as

χpp(k, k
′, q) = χph(k, k

′, q − k − k′)

χph(k, k
′, q) = χpp(k, k

′, (k + k′ + q)) (2.6)

When the system is in paramagnetic state, there are only three independent spin combina-

tion. We will simplify their notation as σσσ′σ′ → σσ′,σσσσ → σσ and σσ′σ′σ → σσ′ The

susceptibility can be separated into two parts, the “bare” susceptibility(the bubble term) and

the vertex contribution.

χphσσ′(k, k
′, q) = −βNGσ(k)Gσ(k + q)δkk′δσσ′

−Gσ(k)Gσ(k + q)Kphσσ′(k, k
′, q)Gσ′(k

′)Gσ′(k
′ + q) (2.7)

where N is the number of momenta or volume of momentum space in the continuous

case, and K is the full vertex function. Note that while most papers use F to denote the

full vertex function, we use K to avoid confusion with the anomalous Green’s function

F (τ) = 〈Tc(τ)c〉.

The full vertex function consists of all types of interaction of a four-point function. It is

the sum of all ”fully connected” two particle diagrams [11]. These diagrams are either fully

irreducible or reducible in only one channel. The two-particle reducibility of one diagram

means whether is can be divided into two parts by cutting two propogating lines. There are

three channels (pp, ph, ph), defined by how the four ”legs” of the two particle diagrams are

seperated. Fig. 2.1 shows the decomposition of full vertex function, known as the parquet

equation [114].

By defining the bare susceptibility as follows, we can write Eq. 2.7 as a compact matrix
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Figure 2.1: The decomposition of full vertex function. Figure taken from Ref. [11]

multiplication

χ0ph(k, k
′, q) = −βNGσ(k)Gσ(k + q)δσσ′δkk′ (2.8)

χ0pp(k, k
′, q) = −βNGσ(k)Gσ(q − k′)δσσ′δkk′ (2.9)

χphσσ′(k, k
′, q) = χ0(k, k′, q)δσσ′

− 1

β2N2

∑
k1k2

χ0(k, k1, q)Kphσσ′(k1, k2, q)χ0(k2, k
′, q) (2.10)

The four independent channel are defined as density(d), magnetic(m), singlet(s) and triplet(t)

channels

Kd = Kph↑↑ +Kph↑↓ Km = Kph↑↑ −Kph↑↓

Ks = Kpp↑↓ −Kpp↑↓ Kt = Kpp↑↓ +Kpp↑↓

(2.11)

We define the sum of all diagrams that are irreducible in r channel as Γr. As mentioned

before, full vertex function can be decomposed into diagrams that are irreducible in one

channel and diagrams that are reducible in this channel. K and Γr can be connected via

two Green’s function or anomalous Green’s function lines, which is the Bethe-Salpeter
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equation

K = Γr +

∫
ΓrGGK, (2.12)

where the integral-symbol denotes an integration/summation over all internal degrees of

freedom. In the ph and ph channels defined above, the Bethe-Salpeter equations are

Kph↑↑(k, k
′, q) = Γph↑↑(k, k

′, q)

+
1

βN

∑
k1σ1

Γph↑σ1(k, k1, q)G(k1)G(k1 + q)Kphσ1↑(k1, k
′, q)

Kph↑↓(k, k
′, q) = Γph↑↓(k, k

′, q)

+
1

βN

∑
k1σ1

Γph↑σ1(k, k1, q)G(k1)G(k1 + q)Kphσ1↓(k1, k
′, q)

Kpp↑↓(k, k
′, q) = Γpp↑↓(k, k

′, q)

− 1

2βN

∑
k1σ1

Γppσ1(−σ1)↑↓(k, k1, q)G(k1)G(q − k1)Kpp↑↓σ1(−σ1)(k, q − k1, q)

Kpp↑↓(k, k
′, q) = Γpp↑↓(k, k

′, q)

− 1

2βN

∑
k1σ1

Γppσ1(−σ1)↓↑(k, k1, q)G(k1)G(q − k1)Kpp↑↓σ1(−σ1)(k, q − k1, q)

(2.13)

Combining the channel definition (Eq. 2.11) and Eq. 2.13, we can get four decoupled chan-
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nels

Kd(k, k
′, q) = Γd(k, k

′, q) +
1

βN

∑
k1

Γd(k, k1, q)G(k1)G(k1 + q)Kd(k1, k
′, q) (2.14)

Km(k, k′, q) = Γm(k, k′, q) +
1

βN

∑
k1

Γm(k, k1, q)G(k1)G(k1 + q)Km(k1, k
′, q) (2.15)

Ks(k, k
′, q) = Γs(k, k

′, q) +
1

βN

∑
k1

Γs(k1, k
′, q)G(k1)G(q − k1)Ks(k, q − k1, q)

(2.16)

Kt(k, k
′, q) = Γt(k, k

′, q) +
1

βN

∑
k1

Γt(k1, k
′, q)G(k1)G(q − k1)Kt(k, q − k1, q) (2.17)

Eq. 2.14 combined with Eq. 2.7 yields the Belthe-Salpeter equation for general susceptibil-

ity in the matrix multiplication form

χd,m(k, k′, q) = χ0,ph(k, k
′, q)− 1

β2N2

∑
k1,k2

χ0,ph(k, k1, q)Γd,m(k1, k2, q)χd,m(k2, k
′, q)

χs(k, k
′, q) = −χ0,pp(k, k

′, q)− 1

2β2N2

∑
k1,k2

(χ0,pp(k, k1, q)− χs(k, k1, q))Γs(k1, k2, q)χ0,pp(k2, k
′, q)

χt(k, k
′, q) = χ0,pp(k, k

′, q)− 1

2β2N2

∑
k1,k2

(χ0,pp(k, k1, q) + χt(k, k1, q))Γt(k1, k2, q)χ0,pp(k2, k
′, q)

(2.18)

Fig. 2.2 shows the feature of full vertex functions in different channels at momentum Q =

(0, 0), Q = (π, π) and Q = (0, π).

2.4 Linear Response Theory

There are many cases in which we are interested in the change of a system, where the

system was initially in thermodynamic equilibrium, induced by a small applied external

field or force. For example, one can calculate the dynamical susceptibility, when we are

interested in the response at some other point r′ at some later time t′. We can also obtain
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Figure 2.2: full vertex functions in different channels at momentumQ = (0, 0), Q = (π, π)
and Q = (0, π).

the global response of the system to an uniform perturbation.

The linear response theory for quantum manybody system has been provided by Baym

and Kadanoff over a half century ago[115]. For the calculation of dynamical spin suscepti-

bility, one can follow their paper which uses the expectation value of density is the response

to an external field. Other types of external field and responses can follow their derivation.

In this section, we study the response of a system to small external superconducting

field with certain symmetry. Here I present my derivation of the superconducting suscep-

34



tibility by calculating the response of superconducting order parameter, i.e., anomalous

Green’s function under the external disturbance.

To study superconductivity, we employ the Nambu formalism. We define the Nambu

spinor [116] as

Ψ†(k1, τ1) = (c†k1↑(τ1), c−k1↓(τ1)) (2.19)

Ψ(k1, τ1) = (Ψ(k1, τ1)†)† =

 ck1↑(τ1)

c†−k1↓(τ1)

 (2.20)

The external field adds a source term to the Hamiltonian[43]:

H ′ =
∑
k2

Ψ†(k2, τ2)η(k2, τ2)σxΨ(k2, τ2)

=
∑
k2

(
c−k2↓(τ2)ck2↑(τ2) + c†k2↑(τ2)c†−k2↓(τ2)

)
η(k2, τ2) (2.21)

where σx is the Pauli Matrix

 0 1

1 0


For convenience, we omit τ in annihilation and creation operators for a while. c±kiσ means

c±kiσ(τi)

The Green’s function in the presence of the source term η(k2, τ2) is[117]

G(k1, τ1,k
′
1, τ
′
1; η) = 〈[Ψ(k1, τ1)Ψ†(k′1, τ

′
1]〉η =

Tr{e−βHTτ [SΨ(k1, τ1)Ψ†(k′1, τ
′
1)]}

Tr(e−βHTτS)

(2.22)

where H is the original Hamiltonian without a source field and

S = exp[−
∫ β

0

dτ2

∑
k2

(
c−k2↓ck2↑ + c†k2↑c

†
−k2↓

)
η(k2, τ2)] (2.23)

In the numerator of Eq. 2.22, Ψ(k1, τ1)Ψ†(k′1, τ
′
1) is a matrix. We operate in a formal-
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ism which allows for a non-zero anomalous Green’s function, in the superconducting state

which is defined as

F (k, τ) = −〈Tτck↑(τ)c−k↓(0)〉. (2.24)

Since we use this anomalous Green’s function as order parameter for superconductivity,

consider the matrix element ck1↑c−k′1↓ in Eq. 2.22

F (k1, τ1,k
′
1, τ
′
1; η) =

Tr[e−βHTτ (Sck1↑c−k′1↓)]

Tr(e−βHTτS)
=
N

D
(2.25)

where N means numerator and D means demoninator.

δF (k1, τ1,k
′
1, τ
′
1; η)

δη(k2, τ2)
=

δN

δη(k2, τ2)

1

D
− N

D2
× δD

δη(k2, τ2)
(2.26)

δN

δη(k2, τ2)
= Tr{e−βHTτ [

δS

δη(k2, τ2)
ck1↑c−k′1↓]}

= Tr{e−βHTτ [−S × (c−k2↓ck2↑ + c†k2↑c
†
−k2↓)ck1↑c−k′1↓]}

(2.27)

δD

δη(k2, τ2)
= Tr(e−βHTτ

δS

δη(k2, τ2)
) = Tr{e−βHTτ [−S × (c−k2↓ck2↑ + c†k2↑c

†
−k2↓)]}

(2.28)

δS

δη(k2, τ2)
= −S × (c−k2↓ck2↑ + c†k2↑c

†
−k2↓) (2.29)

When η = 0,S=1, put it all together

δF (k1, τ1,k
′
1, τ
′
1; η)

δη(k2, τ2)

∣∣∣∣
η=0

= −〈(c−k2↓ck2↑ + c†k2↑c
†
−k2↓)ck1↑c−k′1↓〉+ F (1, 1′)〈(c−k2↓ck2↑ + c†k2↑c

†
−k2↓)〉

Outside of the superconducting region, F (k1, τ1,k
′
1, τ
′
1) = 0, and 〈c−k2↓ck2↑ck1↑c−k′1↓〉 = 0
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δF (k1, τ1,k
′
1, τ
′
1)

δη(k2, τ2)

∣∣∣∣
η=0

= 〈c†k2↑c−k′1↓c
†
−k2↓ck1↑〉 (2.30)

Set k2 = k,k1 = k′1 = k′

δF (k′, τ ′1)

δη(k2, τ2)

∣∣∣∣
η=0

= 〈c†k↑(τ2)c−k′↓(τ
′
1)c†−k↓(τ2)ck′↑(τ1)〉 (2.31)

There are only one momentum and one imaginary time dependence, because with time

translational invariance, we can do the variable substitution τ2 ← τ2 − τ1, τ ′1 ← τ ′1 − τ1

According to [11]

χpp↑↓(kτ2,−k′τ ′1,−kτ2, k
′0) = G2,↑↓↓↑(kτ2,−k′τ ′1,−kτ2,k

′0)−G↑↓(kτ2,−k′τ ′1)G↓↑(−kτ2, k
′0)

= 〈c†k↑(τ2)c−k′↓(τ
′
1)c†−k↓(τ2)ck′↑(0)〉

(2.32)

where G↑↓ = G↓↑ = 0 due to spin-conservation.

Do a inverse Fourier transform for equation(7b) in [11]

χpp↑↓(kτ2,−k′τ ′1,−kτ2,k
′0)

=
1

β3N3

∑
ωω′ν

χpp↑↓(kω,−k′(ν − ω′),−k(ν − ω),k′ω′)eiωτ2ei(ν−ω
′)τ ′1ei(ν−ω)τ2 (2.33)

when τ ′1 = 0

χpp↑↓(kτ2,−k′0,−kτ2,k
′0) =

1

β3

∑
ωω′ν

χpp↑↓(kω,−k′(ν − ω′),−k(ν − ω),k′ω′)eiντ2

(2.34)

37



Integrating τ2 over (0, β), we get

∫ β

0

dτ2χpp↑↓(kτ2,−k′0,−kτ2,k
′0) =

∫ β

0

dτ2
1

β3

∑
ωω′ν

χpp↑↓(kω,−k′(ν − ω′),−k(ν − ω),k′ω′)eiντ2

=
1

β2

∑
ωω′

χpp↑↓(kω,−k′(−ω′),−k(−ω),k′ω′)

(2.35)

∫ β

0

dτ
δF (k′, 0)

δη(k, τ)

∣∣∣∣
η=0

=
1

β2

∑
ωω′

χωω
′ν=0

pp↑↓ (k,k′, q = 0) (2.36)

Using the SU(2) and crossing symmetry of the general susceptibility. χpp↑↓ is the difference

between the σσ′ ≡↑↑ and ↑↓ susceptibilities as

χpp↑↓ = χpp↑↑ − χpp↑↓. (2.37)

We can sum over fermionic matsubara frequency and momentum to get static susceptibility

with different symmetry.

1

β2N2

∑
kk′ωω′

χωω
′ν=0

pp↑↓ (k,k′, q = 0)g(k)g(k′) =
1

N2

∫ β

0

dτ ′
∑
kk′

δF (k, τ = 0; η)

δη(k′, τ ′)
g(k)g(k′)

∣∣∣∣
η=0

(2.38)

where η is the strength of an external superconducting field and F (k, τ ; η) is the anomalous

Green’s function with the existence of an external field. g(k) is any symmetry function[118]

and within DCA, the accessible s−, p−, dxy or dx2−y2 symmetries are enforced by includ-

ing symmetry factors g(K)g(K ′) while summing over all initial K and final K ′ states in
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Eq. 2.36 [119, 120, 121], with

g(K) =



1 s

sin(Kx) p

sin(Kx) sin(Ky) dxy

cos(Kx)− cos(Ky) dx2−y2

. (2.39)

Higher order symmetries require calculation with larger clusters.

This is the same quantity as the uniform pairing susceptibility defined in Ref. [122],

χα =
1

N

∫ β

0

dτ〈
∑
i

∆α
i (τ)

∑
j

∆α
j (0)〉

=
1

N

∫ β

0

dτ〈1
4

∑
mm′ij

fimfjm′
(
ci↑cm↓c

†
m′↓c

†
j↑ − ci↑cm↓c†m′↑c†j↓ − ci↓cm↑c†m′↓c†j↑ + ci↓cm↑c

†
m′↑c

†
j↓

)
〉,

(2.40)

where fij is the symmetry factor in real space, varies with spin pariring symmetry. For

example, fij = δij for s-wave; for d-wave fij 6= 0 if i and j are nearest neighbors and

j > i; if the bond is along x axis fij = 1, otherwise fij = −1.∆i(τ) is the pairing

parameter defined as

∆i(τ) =
1

2

∑
j

fαije
τH(ci↑cj↓ − ci↓cj↑)e−τH . (2.41)

2.5 Dynamical Susceptibilities with DCA

As has been discussed in Chap. 1, the cluster Green’s function and lattice Green’s function

is connected by DCA approximation Σ(k, ω) = Σ(K, ω). In this section, we show how

cluster susceptibility and lattice susceptibility are connected within DCA approximation.

Use magnetic channel χm = χph↑↑−χph↑↓ as an example. The Bethe-Salpeter equation
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is [11]

χωω
′ν

m (k,k′, q) = χωω
′ν

0ph (k,k′, q)− 1

β2N2

∑
k1k2,ω1ω2

χωω1ν
m (k,k1, q)Γω1ω2ν

m (k1,k2, q)χω2ω′ν
0ph (k2,k

′, q).

(2.42)

Within the DCA approximation, the single particle lattice self energy is coarse grained

from its cluster counterpart, Σσ(k, iω) = Σσ(K + k̃, iω) = Σσ(K, iω) and similarly the

lattice susceptibility

χωω
′ν

0ph (K,K ′,Q) = δωω′δKK′
N

Nc

∑
k̃

Gσ(K + k̃, iω)Gσ(Q + K ′ + k̃, iν − iω′).

(2.43)

Also, using Γ = δΣ
δG

(see Fotso et al. [118]), we can make the DCA substitution for vertex

Γ

Γωω
′ν

m (K,K ′,Q) = Γωω
′ν

m (K + k̃,K ′ + k̃′,Q + q̃)→ Γωω
′ν

cm (K,K ′,Q). (2.44)

where the subscript ”c” means cluster quantities. To get such cluster DCA quantities, in

Eq. 2.42, sum over lattice momenta with one patch of k-space to get coarse-grain equation

as

χωω
′ν

m (K,K ′,Q) = χωω
′ν

0ph (K,K ′,Q)

− 1

β2N2
c

χωω
′′ν

m (K,K ′′,Q)Γω
′′ω′′′ν

cm (K ′′,K ′′′,Q)χω
′′′ω′ν

0ph (K ′′′,K ′,Q).

(2.45)
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Cluster quantities also follow the Bethe-salpeter equation,

χωω
′ν

cm (K,K ′,Q) = χωω
′ν

0cph (K,K ′,Q)

− 1

β2N2
c

χωω
′′ν

cm (K,K ′′,Q)Γω
′′ω′′′ν

cm (K ′′,K ′′′,Q)χω
′′′ω′ν

c0ph (K ′′′,K ′,Q).

(2.46)

One then combines equations (2.45) and (2.46) to eliminate the cluster vertex, Γc, to obtain

lattice susceptibility, as

χ−1 = χ−1
c − χ−1

0c + χ−1
0 (2.47)

where χ, χc, χ0c and χ0 are all matrices in cluster momentum K and frequency ω.

Equation (2.45) can also be written into a compact matrix form

χm =
χ0

1 + 1
β2N2

c
Γcmχ0

(2.48)

Obtaining the lattice susceptibility within DCA in other channels follows similar steps.

To calculate the phase boundary for superconductivity and antiferromagnetism, one can

identify the parameters where χ̄m and χ̄pp↑̄↓ diverge. The divergence of χ̄m or χ̄pp↑↓ coin-

cides with the place where leading eigenvalue of matrices − 1
β2N2

c
Γcpp↑↓χ0 or − 1

β2N2
c
Γcmχ0

equals 1 respectively. The symmetry of each fluctuation is the same as the symmetry of

the corresponding eigenvector. The advantage of this method to calculate phase diagram is

that one does not need to push the system to the ordered state.

2.6 Truncation Error

In real simulations, the high frequency part of Γ and χ0 are truncated at certain fermionic

frequency. This brings about a systematic error to Γ since the matrix product and inversion
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mix up the high frequency and low frequency part. Fortunately, when calculating the gen-

eral susceptibility, Γ is not the final result and does not need to be obtained explicitly. As

studied in the PhD thesis of David Luitz [123], the truncation error of fermionic high fre-

quency tail is masked in the χ to some extent but without any correction, the susceptibility

will have wrong asymptotic behavior.

The first method of extrapolating the sum of all fermionic frequency is a logarithm

extrapolation, assuming static χ increases as some power law with ω over certain high

frequency, then

logχph(Q, ν)[nc] = log
1

β2N2
c

∑
KK′

nc<n<nc∑
iωniω′n

χωω
′ν

ph (KK ′Q) ∝ 1

nc
∝ 1

ωc
(2.49)

In Fig. 2.3, we calculate χph(Q, ν) = 1
β2N2

c

∑
KK′ωω′ χ

ωω′ν
ph (KK ′Q) with different limited

frequency. At high frequency, this curve becomes linear and we can extrapolate it to 1
ωc

= 0.

The second method make use of the fact that χ and χ0 have the same asymptotic behavior

and χ− χ0 decreases to zero fast at all momentum point, as shown in Fig. 2.4
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Figure 2.3: χph(q, ν)[Nc] as a function of inverse cut-off frequency. Data collected at
U = 6t, t′ = −0.1t, β = 5/t, 7/t, 10/t, 12/t, using 8-site cluster.

One should also be concerned about the truncation error of bosonic frequency when a
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Figure 2.4: Comparison of χ0m and χm. Data collected at U = 6t, t′ = −0.1t, β = 12/t
on an 8-site cluster.

sum of bosonic Matsubara frequency is performed, for example, in the calculation of spin

lattice decay rate and the analytical continuation of dynamical susceptibility. One method

of dealing with such problem is explained in detail in chapter 4.

2.7 Phase Boundaries

We show in Fig. 2.5 an explicit example where the point of divergence of χ coincides with

the temperature where the leading eigenvalue with dx2−y2 symmetry equals 1.

Using this method, we are able to construct temperature-density phase diagram. For

AFM phase boundary as plotted in Fig. 2.6, the phase transition temperatures are the inter-

section of leading eigenvalue with the dashed line (λd = 1). In Fig. 2.7, the AFM phase

boundary calculated with 8 site cluster and two 16 site clusters with different configuration

is plotted. When t′ 6= 0, the AFM boundary is slightly asymmetric and tilted to the electron

doped side, which is consistent with the phase diagram of real material. When the cluster

size increases, the AFM regime shrinks a little. This agrees with the discovery by Jarrel

[89] et al. that the Neel temperature decreases slowly with larger cluster size when Nc > 4.
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Figure 2.5: Inverse dx2−y2 superconducting susceptibility plotted against temperature for
the two dimensional Hubbard model with U = 8t, next nearest neighbor hopping t′

= 0 at chemical potential µ = −2, using 2 by 2 cluster. Susceptibility obtained by
measuring the response of order parameter with external d-wave field strength 0.01 (solid
line,circles black), 0.02 (solid line, squares, red) and 0.04 (solid line, diamonds, green).
Susceptibility obtained by measuring 2-particle Green’s function at normal state (solid line,
triangle, blue). Also shown (right hand axis) the leading d-wave eigenvalue (solid line, star,
black), λdx2−y2 , vs temperature. For the guide of eye, he horizontal black dashed line is
where leading eigenvalue equals one. The vertical dash indicates the temprature at which
λdx2−y2 = 1.
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CHAPTER 3

Correlated Pairing Susceptibility

3.1 Overview

This chapter closely follows Ref. [124] Chen, X., LeBlanc, J. P. F., and Gull, E., Supercon-

ducting Fluctuations in the Normal State of the Two-Dimensional Hubbard Model, Phys.

Rev. Lett., Vol. 115, Sep 2015, pp. 116402. It starts with a brief discussion about the back-

ground. In Sec. 3.2, we also introduce and the validate our method that can find the vicinity

of optimal superconducting region with high efficiency. Sec. 3.3 and Sec. 3.4 shows the

results and discoveries using this method.

3.2 Introduction

From Fig. 1.2 and Fig. 1.5, we realize that the value of Tc differs largely among materi-

als and also depends on the concentration of doping ions. Some questions arise: what are

the underlying factors that suppress or increase the critical temperature? If we describe

the system with a model, how to find the set of parameters that optimize superconducting

transition temperature? Can we use the results as a ”recipe” to synthesize better supercon-

ducting compound? These questions have been primary motivations, in the sense of both

theoretical analysis and practical application, behind computational research of strongly

correlated systems.
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Study superconductivity with two-particle quantities in the particle-particle channel is

not new idea. There are several results [125, 120, 126]of the temperature dependence

of pair-field susceptibility P and uncorrelated pair-field susceptibility of the 2D Hubbard

model in different symmetries on finite lattices. These results show enhanced response

in dx2−y2 and s∗ and suppressed response in other symmetries at zero and finite doping.

Pairing in ground state has also been intensively studied where multiple symmetries were

found at various doping and t′[127, 128, 129]

The most direct method is to allow the system to enter superconducting phase and a

steep change in order parameter indicates the critical temperature. In the last chapter, an-

other method of getting phase boundary using the Bethe-Salpeter equation was presented.

We can systematically lower the temperature with each parameter set and get the actual Tc.

Despite its advantage of detecting phase transition by simulation only in ”normal” state i.e.

paramagnetic state or non-superconducting state, it is still difficult computationally since

the workload increase as β3, accompanied by more severe sign problem at lower tempera-

tures. In this chapter, we specially address the problem of optimizing the superconducting

transition temperature in the 2D Hubbard model by analyzing wide regions of parameter

space. This is made possible by using the vertex contribution to pairing susceptibility as

an indicator of the proximity to superconducting transition temperature at much higher

temperature.

The superconducting correlation function χpp↑↓, obtained by linear response theory in

the last chapter, diverges at superconducting phase transition. The divergence of χωω′ν is

caused by the vertex correction part χωω′ν−χωω′ν0 . We impose a shorthand notation for this

quantity of interest, which we call the correlated pairing susceptibility Pg, where g refers

to the corresponding symmetry function defined in Eq. 2.39, and we take this to be the
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summation over fermionic Matsubara frequencies and momenta

Pg :=(χ− χ0)g =
1

β2

∑
ωω′KK′

g(K)g(K ′) (3.1)

×
(
χωω

′0
pp↑↓ (K,K ′, 0)− χωω′00 (K,K ′, 0)

)
/
∑
K

g(K)2.

The fact that the correlated pairing susceptibility Pg must become large on approach to

Tc grants us additional insights at T > Tc, where Pg can be used as a qualitative measure

of the proximity of the system to a transition. The left panel of Fig. 3.1 shows the critical

temperature obtained from systematically reducing T and explicitly evaluating the eigen-

values of − 1
β2 Γpp↑↓χ0 to find the divergence of the dx2−y2 susceptibility. The right panel

contrasts this with the magnitude of Pg at much higher temperatures β = 10/t, 15/t, 20/t,

and 25/t. We see Pg tracks Tc and shows the largest superconducting fluctuations approxi-

mately where Tc is highest, as also indicated by the vertical blue lines. The correspondence

of Pg to Tc improves as T decreases towards Tc. We can plot the same set of data into a con-
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Figure 3.1: Left panel: Superconducting critical temperature of the Hubbard model with
nearest neighbour hopping and no next nearest neighbour hopping for U = 6t using an
Nc = 8 dynamical cluster approximation. Right panel: Pdx2−y2 at different temperatures
with U = 6t and t′ = −0.1t using an Nc = 8 cluster.

tour plot and compare it to the phase diagram of doping and interaction obtained at β = 60.

As shown in the Fig. ??, the region that has the largest value of Pdx2−y2 (region inside the
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red line in the bottom of the left panel) coincides with the superconducting state in phase

diagram. These two evidences proved that the correlated pairing susceptibility Pdx2−y2 is

U
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Figure 3.2: Left: the contour plot of Pdx2−y2 of the Hubbard model with nearest neighbour
hopping and next nearest neighbour hopping t′ = −0.1t for U = 6t at different temper-
ature using an Nc = 8 dynamical cluster approximation. From top to bottom: β = 7/t,
β = 10/t and β = 15/t. Right: Theoretical phase diagram obtained from cluster dy-
namical mean-field calculations, showing Fermi liquid (yellow), superconducting (pink)
and pseudogapped but not superconducting region (blue); boundary of pseudogap region
shown as dashed line. Right panel adapted from Ref. [12].

a good indicator for inducibility of superconductivity and can be used to locate best pa-

rameter set for superconductivity at temperature much higher than Tc. Therefore, this will

allow as to sweep large range of parameters with less computational burden and less sign

problem. In the next few sections, we use this method to explore maximum supercon-

ducting fluctuation in parameter regions of interaction, doping level, next-nearest-neighbor

hopping and pairing symmetry.

3.3 The Optimal Parameters

In Fig. 3.3(a) we explore Pdx2−y2 as a function of particle density n (n = 1 denotes half

filling) in the intermediate interaction strengths regime U/t = 4 to 7 at β = 15/t ≈

2Tc. For the weakest interaction strength considered here, U = 4t, the superconducting
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dx2−y2 fluctuations are strongest at half filling and decrease rapidly towards larger hole and

electron doping. At 10% doping, the model has been shown to be dx2−y2 superconducting

by DCA calculations extrapolated to the thermodynamic limit [89], and 8-site fluctuations

have shown to be weaker than for the lattice model. The maximum of fluctuations at

half filling is consistent with results from weak coupling theory [130], FLEX [131], and

diagrammatic Monte Carlo in the weak coupling limit [121], and is also observed in results

from lattice quantum Monte Carlo [132] and the two-particle-self-consistent approximation

[133]. Reduction of U rapidly suppresses the strength of fluctuations. Pdx2−y2 increases

at all n as U is raised to 5t. As U is further raised to 6t, the strength of fluctuations

increases away from half filling but decreases near half filling, and the fluctuation maximum

moves to finite doping, establishing a dome. The suppression at half filling coincides with

the establishment of a pseudogap at this interaction strength [134, 135], and is also seen

in QMC [120] and TPSC [136, 133] (though it seems to be absent in four-site CDMFT

[137]). Simulations directly in the superconducting phase [138] have also shown that that

superconductivity in this region is suppressed.

Above U/t = 6.4 the half-filled system becomes Mott insulating [135] and supercon-

ducting fluctuations are further suppressed (but remain non-zero), while their maximum

strength moves to higher doping, giving the appearance of a dome structure centered at

doping, δ ∼ ±1/8 for U/t ∼ 8. As the interaction strength is further increased, fluctu-

ations are suppressed and quickly decay, in qualitative agreement with simulations of the

t− J model [139] and Hubbard NLCE calculations [122].

Fig. 3.4 expands further upon the data of Fig. 3.3, including additional data points at in-

termediate interaction values, as a false color contour plot at t′ = 0 in Fig. 3.4(a). The plot

clearly shows the intermediate interaction region most conducive to superconductivity. The

point of maximum susceptibility which occurs at Umax, nmax is marked as + and occurs at

U/t = 6, n = 0.92 for the 8-site cluster. A wide area in the vicinity of this point exhibits

fluctuation within 10% of the maximum value, showing that dx2−y2 superconducting fluc-
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tuation is a robust feature of the model. Finite size effects change the precise location and

general strength of the fluctuations (see supplemental material) but not the overall shape.

Long-range antiferromagnetism may preempt the superconducting phase near half filling,

see e.g. Ref. [140].

Next-nearest neighbor hopping, shown in Fig. 3.3 and Figs. 3.4 panels (b) and (c), has

a profound effect on dx2−y2 fluctuations. As the interaction strength is raised, a pronounced

particle hole asymmetry appears for t′/t = −0.1 (panel (b)) that increases superconducting

fluctuations on the electron doped side (n > 1) while suppressing them on the hole doped

side. Increasing t′ to −0.2t (Fig. 3.3(c)) leads to a further enhancement of fluctuations

on the electron doped side and increased suppression on the hole doped side near half

filling. This behavior seems to be unrelated to any feature in the single particle density

of states which has a van Hove maximum on the hole-doped side. Rather, we attribute

it to the establishment of a pseudogap on the hole doped side, which is absent on the

electron doped side [135], and which is know to rapidly suppress critical temperature near

half filling [138]. The magnitude of fluctuation at the electron doped side (and outside of

the pseudogap region at the hole doped side) is not significantly changed, suggesting (in

agreement with ED and DMRG simulations on t − J ladders [141, 139] and NCA results

on 2× 2 clusters) that the t′ trends observed in real materials are not captured by the single

band Hubbard model [142]. We find that further increase of t′ continues this trend and

reduces the overall susceptibility to dx2−y2 superconductivity.

Our results suggest that the low-energy effective models of high Tc compounds do not

just differ by t′, but also by their on-site interactions U . As the electron doped compounds

have a much lower critical temperature than the hole doped ones, we surmise that they are

not localized at the point in phase space that yields the highest Tc, and that an increase of

U would rapidly increase the critical temperature.

We also explore the variation in system size in Fig. 3.5 for Nc = 4, 8, and 16 at tem-

peratures βt = 10, 15 and 5 respectively, which corresponds to ≈ 2Tmax
c for Nc = 4, 8
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and ≈ 8Tmax
c for Nc = 16. We remark that larger clusters and lower temperatures are in

principle accessible for some of the points presented in this phase diagram, but that the

sign problem prevents us from showing an overview over the entire phase space for much

lower T . For Nc = 4 the maximum in Pdx2−y2 has been split into two along the line n = 1,

due to the tendency of the 2× 2 plaquette to form a Mott insulating phase at much weaker

interaction than larger clusters (note that the physics of this cluster in DCA is different from

the pseudogap physics observed on larger clusters, see, e.g., Refs. [143, 144]). We see that

Nc = 16 contains no such artifact (similarly to Nc = 8). Further the structure near n = 1

is nearly identical in shape to the case of Nc = 8 for example, comparison to Fig. ??(a)

shows the same structure.

Fig. 3.2 and 3.5 suggest that both reduction in temperature and increase in cluster size

have an equivalent effect on the location of {Umax, nmax}, but the effect appears primarily

as a shift in Umax, to a lower value, and not as a change in optimal density, nmax. Con-

vergence of these finite size effects will require larger clusters but has been done for Tc on

clusters with about twice the size considered here [89].

3.4 Different Symmetries

Finally, we establish the absence of high-temperature superconducting fluctuations in other

symmetry channels by considering g(k)g(k′) factors with alternate symmetry in the two-

particle representation of the susceptibility. We plot results for t′/t = 0, -0.1 and -0.2 in

Figs. 3.6(a→c) at U/t = 6, for dxy and p-wave symmetry and include dx2−y2 for reference

(also shown in Fig. 3.3).

In the large doping weak coupling regime, dx2−y2 superconductivity is preempted by

dxy superconductivity [145, 146]. This is also found in RPA calculations [147, 148] and

Diagrammatic QMC calculations [121]. In contrast, the vertex contribution to dxy super-

conductivity is repulsive near half filling, consistent with early QMC calculations [120].
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Fig. 3.6 shows how it changes sign for larger doping and eventually becomes the dominant

contribution.

As U is raised in the dilute (n → 0) limit, dxy order is replaced immediately by p-

wave superconductivity [131, 121]. Third order perturbative calculations [147] also find a

large range of p-wave stability (but no dxy) in the large doping regime at U = 6, and DCA

calculations similarly found dominant p-wave contributions [149]. Within our calculations,

p-wave contributions to the vertex are zero within errors in the entire range of phase space,

except near half filling, where they are repulsive. Our data is consistent with Ref. [149] on

the level of the susceptibility, but we find that the dominant contribution observed in that

work is carried by χ0, not the vertex part. Whether a DCA simulation could find dominant

p-wave contributions to the vertex at smaller U , lower T , or on larger systems is an open

question. The highest critical temperature of any non-dx2−y2 superconductivity is far below

the T examined in this work.

Over the entire phase space, s-wave superconductivity (not plotted in Fig. 3.6) is strongly

repulsive, consistent with QMC calculations [120, 150, 151]. At t′ = −0.2 and in the di-

lute limit, weak coupling and RPA results suggest a favored dxy symmetry [145, 152, 148],

consistent with our results at larger U/t and high temperatures.

We expand upon the exploration of symmetries in the main text, by examining the dop-

ing dependence of the superconducting order symmetry in the weak coupling regime. In

Figs. 3.7 we examine the case of U/t = 2, a weakly coupled case, which has been sug-

gested by recent weak coupling work to show a transition from p−wave to dxy to dx2−y2

[121]. We find from examining the leading eigenvalue at two temperatures, β = 15 and 33,

that in the n = 2 limit has a weakly dominant p-wave component, which gives way to dxy

and then dx2−y2 as number density is decreased towards half filling. However, in the case

of dxy symmetry, there is essentially no temperature dependence in the eigenvalue, sug-

gesting no clear proximity to a divergence in this eigenvalue at the temperature examined,

despite being the dominant channel. This is contrasted by the same temperature change,
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and it’s effect on λdx2−y2 which shows rather substantial temperature changes. Similarly

the p−wave eigenvalue near n = 2 changes somewhat with β (though any Tc would be far

below the temperatures accessible in this simulation).

At n = 1.75, the leading eigenvalue of the system has dxy symmetry (Fig. 3.7 left panel)

but is very far away from 1. For the same parameters, the correlated pairing susceptibility,

shown in Fig. 3.7 right panel, similarly has a dominant contribution but is far away from a

divergence. Decreasing temperature reduces the value of Pdxy rather than increasing it as

would be expected on approach to a transition to a dxy order.
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Figure 3.3: Pdx2−y2 for different interaction strengths as a function of carrier concentration
on an eight-site cluster, for t′ = 0 (panel a), t′ = −0.1t (panel b) and t′ = −0.2t (panel c)
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CHAPTER 4

Theory of NMR Response in the Cuprates

4.1 Overview

This chapter closely follows Ref. [153] Chen, X., LeBlanc, J. P. F., and Gull, E., Simulation

of the NMR response in the pseudogap regime of the cuprates, Nature Communications,

Vol. 8, Apr 2017, pp. 14986 EP –, Article. Sec. 4.2 introduces the background and motiva-

tion of simulating the NMR response. Sec. 4.3 shows the simulated results of the Knight

shift and analysis of pseudogap based on the data. Sec. 4.4 and Sec. 4.5 shows results of

spin-echo decay rate and spin-lattice relaxation rate respectively, including the comparison

to the NMR experimental results.

4.2 Introduction

The nuclear magnetic resonance (NMR) probe measures radio-frequency radiation re-emitted

from certain nuclei in the observed material [154]. The signals reveal important informa-

tion about magnetic excitation in the sample, since the nuclei are coupled to their immedi-

ate magnetic environment by hyperfine interaction. The investigation of high Tc cuprates

made by NMR has unveiled anomalous phenomena, provided constraints on theoretical

models and implied possible origins of high temperature superconductivity. Historically,

the pseudogap in the cuprates was discovered as a reduction of the Knight shift (Ks)
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and spin relaxation time T1 measured in nuclear magnetic resonance (NMR) experiments

[155, 156, 157, 158, 14].

What we accomplished in this project is developing a numerical method to simulate the

NMR signal and compare the simulated and experimental results to get insight of how the

NMR response related to the microscopic physics of the material. The complete theoretical

understanding of the two-particle signals measured in NMR requires two components. The

first one is a precise relation of the NMR signal to correlation functions [159, 160, 161]

and the low-energy spin susceptibility. There are a number of efforts towards this goal

and the theory is now rather mature. Shastry, Mila and Rice[159, 160] introduced the

Hamiltonian that describes the effective electron-nuclear interaction for various nuclei in

cuprates. Later, Zha et.al [162] included an extra term of the hyperfine coupling between

17O nuclei and their next-nearest-neighbor Cu2+ to reconcile the neutron scattering results.

The spin-lattice relaxation time (T1) is related to the dynamical spin susceptibility via the

fluctuation-dissipation theorem[163]. An d-wave interpretation of T1 and T2g based on RPA

model was proposed by Monien and Pines [164]. These efforts result in a set of equations

that connect the NMR signals and the dynamical spin susceptibility.

The second challenge to understand the NMR experiments of high Tc cuprates is the

a reliable calculation of the spin susceptibility itself, which is what hinders the progress

for decades. Some analysis of experimental data use curve fitting based on phenomeno-

logical relation [165]. This method often fails across phase transition boundary. Some

semi-analytical models was proposed [166] based on the idea that one-component system

(i.e., one spin degree of freedom per CuO2 unit) with strong antiferromagnetic correla-

tion suffices to explain the NMR data in normal state. Anaylsis was also done using ran-

dom phase approximation (RPA) at weak-coupling[167, 168] and attractive Hubbard model

[169]. However, before our work described in this chapter, there lacks calculation of NMR

signals in the pseudogap region of cuprates using a non-perturbative method.

It is worth mentioning that there are many spectorscopic techniques that probe into the
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controversial pseudogap problem. They can be categorized as one-particle probes, which

measure the spectral function and show depression in density of states at antinodal k-points

in pseudogap region, and the two-particle probes, which measure two-particle response

function or transport properties, such as optical conductivity, spin susceptibility, electronic

Raman scattering. It is interesting to compare the observation and explaination of the pseu-

dogap from different experiments. As shown in Ref. [13] (see Fig. 4.1), they conclude the

same onset temperature for pseudogap. On the theoretical side, there have been intensive

results from one-particle simulations [91, 170, 112, 171, 134, 135, 144, 137] of fermion

model systems. We also provide a comparison of calculated results of pseudogap onset

temperature and gap energy based on one-particle and two-particle quantities.

In the following sections, we will analysis the three quantities that experimentalists are

most interested in, namely, the Knight shift, the spin echo decay rate and the spin lattice

relaxation rate.

Figure 4.1: Experimental phase diagram of multiple high Tc cuprates showing the doping
dependence of psedogap energy scale and superconducting transition temprature. Data
collected from both one-particle quantity probes and two-particle quantity probes. Figure
taken from Ref. [13]
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4.3 Knight Shift

The NMR shift is a measure of resonant frequency of a nucleus in a sample relative to its

value in free space. In the cuprates, according to the Mila-Rice-Shastry model [159, 160]

for hyperfine coupling with itinerant Cu2+ holes in high Tc cuprates, the Knight shift KS

measured in nuclear magnetic resonance experiment is proportional to the uniform spin

susceptibility,

KS ∝ χm(q = (0, 0), ν = 0). (4.1)

For example, according to Ref. [161], in YBa2Cu3O7

63KS
‖ =

A‖ + 4B
63γnγe~2

χm(q = 0, ν = 0),

63KS
⊥ =

A⊥ + 4B
63γnγe~2

χm(q = 0, ν = 0),

17KS
β =

A⊥ + 4B
17γnγe~2

χm(q = 0, ν = 0),

89KS =
A⊥ + 4B
89γnγe~2

χm(q = 0, ν = 0),

(4.2)

63KS
‖ , 63KS

⊥, 17KS
β , and 89KS are all proportional to χm(q = 0, ν = 0), with different

ratios determined by the on-site coupling strength and the transferred hyperfine coupling

strength of the Cu2+ spin to the 63Cu, 17O and 89Y nuclei. Here the indices ‖ and ⊥ refer

to the direction of the static magnetic field. A‖, A⊥, B, Cβ and D are hyperfine coupling

constants.

In Fig. 4.3 we present the simulated NMR Knight shift as a function of temperature

T/t for a several doping levels x. For these parameters, the largest Tc on the hole doped

side is Tc = 0.03t at x = 0.09. At large doping x = 0.1453 (triangle, solid blue line),

the simulated Knight shift monotonically increases as T is reduced. Doped cases show a

maximum at a temperature T ∗Ks, indicated by filled symbols. As the density decreases from

x = 0.0841 to x = 0, this T ∗Ks gradually moves to higher T . At all temperatures studied,
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Figure 4.2: Spectral function A(ω,Q = (0, π)) for 8 site Hubbard model with U = 6t,
t′ = −0.1t, x = 0, 0.0362, 0.0831, 0.1453, obtained using DCA and Maxent.

the overall magnitude of the Knight shift increases as doping is increased.

Several features in the simulated results of the Knight shift described above are consis-

tent with what is observed in NMR experiment on high Tc cuprates, and we show side-by-

side comparison to those data in Fig. 4.3. Firstly, in the underdoped regime the downturn

of χ as T is lowered is widely observed in Ks at various nuclei sites, see e.g. Fig. 8 in

Ref. [158] on YBa2Cu3O6.63 and Fig. 7 in Ref. [172] on YBa2Cu4O8; and similar data for

χ(T ) is found in squid magnetometry of La2−xSrxCuO4 [165], which has historically been

interpreted as the onset of the pseudogap phase [158]. Secondly, the increasing Knight shift

with increasing doping is observed in a wide range of compounds, including La2−xSrxCuO4

[165, 173], YBa2CuO7−x and YBa2Cu4O8 [161], and Y1−xPrxBa2Cu3O7 [161].

At high temperature, there is a distinct difference between the susceptibility measured

in the bilayer material YBa2CuO6.63, which displays a broad maximum at 500K and re-

mains approximately constant up to 630K [172], and that of the single layer material
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(a) Magnetic susceptibility for the superconduct-
ing samples of La2SrxCuO4. (Fig.4 in Ref. [165])
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(b) Knight shift KS ∝ χm as a function of temperature T/t
(lower x-axis) for a series of doping levels computed at U =
6t, t′ = −0.1t obtained from 8-site DCA. Filled symbols:
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normal state pseudogap obtained by analytical continuation
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Figure 4.3: Side-by-side comparison of Knight shift.
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La2−xSrxCuO4 [174, 165], where measurements indicate a slowly decreasing Knight shift

above T ∗. This discrepancy may be caused by magnetic coupling of copper-oxygen planes

in the bilayer materials. Our calculations, which are done on a purely two-dimensional

system, are consistent with measurements performed on single layer materials.

The arrows in Fig. 4.3 indicate the onset temperature of the pseudogap in the single par-

ticle spectral function calculated by analytical continuation of the single particle Green’s

function [175] using the maximum entropy method [95, 96]. From the temperature evolu-

tion of AK=(π,0)(ω), we define T ∗ as the temperature at which a suppression of the density

of states appears near zero frequency. The spectral functions with same parameters as

Fig. 4.3 are plotted in Fig. 4.2. In agreement with Ref. [176, 177], and as observed in a

study of an attractive model [178], T ∗Ks exhibits the same dependence on temperature and

doping level as T ∗, showing crossover temperatures identified with single-particle quanti-

ties (density of states) and two-particle quantities (Knight shift) to be the same.

4.3.1 Extract Energy Scale

We can examine the gapped nature of χm by expanding further upon the data in Fig. 4.3

in an Arrhenius plot. As illustrated in Fig. 4.4, once a gap has fully opened, the result-

ing curves become straight lines within uncertainties, allowing us to interpret our data as

thermal excitations over a rigid gap and to extract an energy scale from the slopes us-

ing χm(T ) = χ0 exp(−∆pg(2p)/T ). The inset of Fig. 4.4 shows the comparison between

the pseudogap energy determined by this method (open symbols) and the corresponding

pseudogap energy extracted from the peak-to-peak distance of the single particle spectral

function at the antinode (filled symbols). The two energy gaps are proportional as a func-

tion of doping. The distinct energy scales are however expected since ∆pg(2p) averages

over the Brillouin zone while ∆pg(1p) only considers the antinodal momenta. As a result,

their actual gap values in this case differ by a factor of 75, independent of doping. Similar

comparisons for experimental data on YBa2Cu4O8 yield values of ∆pg(1p) ≈ 150meV and
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∆pg(2p) = 7.75meV, a difference of a factor of 20[13, 179, 180, 181, 14]. Potentially, a

quantitative comparison of this ratio to experiment it might allow for a more precise deter-

mination of model parameters than considering single-particle properties alone.
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Figure 4.4: Extraction of ∆pg(2p) from Knight shift data via χm(T ) = χ0 exp(−∆pg(2p)/T ).
Open symbols: data of Fig. 4.3 plotted as log(χm) vs. β. Dashed lines: linear fits to the data
in exponentially decaying regime. Inset: comparison between pseudogap energy extracted
from the slope of Arrhenius plot (open symbols, right y-axis) and from the single particle
spectral function at K = (0, π) (filled symbols, left y-axis).

4.3.2 Spin Susceptibility Scaling

Another interesting scaling behavior of the spin susceptibility of LSCO materials was found

in NMR experiment. For a large doping range, scaled spin susceptibilities of LSCO overlap

on a universal curve, following the same scaling function Fm(T/Tmax(x)). A comparison

of simulated and experimental results are made in Fig. 4.5.

4.4 Spin-echo Decay Rate

Spin-echo decay rate is a measure of indirect spin-spin coupling, which is particularly

important in high Tc material. For the 63Cu nuclear spin echo decay rate 631/T2G in param-
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agnetic state of high Tc cuprates, [182] showed that

63T−2
2G =

0.69

128~2

[ 1

N

∑
q

63Feff(q)2χ′m(q, 0)2 −
( 1

N

∑
q

63Feff(q)χ′m(q, 0)
)2
]
, (4.3)

where χ′m(q, ν = 0) denotes the real part of the real-frequency dynamical spin suscep-

tibility at momentum q and frequency ν = 0 and N is number of q points sampled in

the first Brillouin zone. The prefactor 0.69 originates from the natural abundance of 63Cu

[183], and 63Feff is defined in Ref. [161] with hyperfine coupling constants A and B as

63Feff = {A‖ + 2B[cos(qxa) + cos(qya)]}2, A‖ = −4B. For simplicity we set B ≡ 1 and

consider only proportionality.

Fig. 4.7 shows the spin echo decay time T2G, a measure of indirect spin-spin coupling,

calculated according to Eq. 4.3. Due to the divergence of lattice susceptibility near (π, π),

we use the cluster susceptibility. This quantity shows a linear rise with temperature in the

normal state and increases as doping is increased. The inset of Fig. 4.7 plots this data as

T−1
2G , the spin echo decay rate. T−1

2G becomes less temperature dependent as more charge

carriers are added. Otherwise, and consistent with experiment, T2G is rather featureless in
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Figure 4.6: Temperature dependence of 1/T2 in various material. (Fig. 8 in Ref. [15])
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the normal state and shows no marked change upon entering the pseudogap region.

The linear increase of T2G depicted in Fig. 4.7 is similar to data obtained on YBa2Cu4O8

in NMR experiments reported in Fig. 3 of [184] and Fig. 3 of [185], and NQR experiment

(Fig. 4 of [172]). The change of magnitude of a factor of 4 from 100K to 700K is compa-

rable in this calculation and experiment. The increase of T−1
2G as charge carriers are added

is similarly observed in YBa2Cu3O7−x experiment, see e.g. Fig. 8 of Ref. [15] and Fig. 11
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of Ref. [161]. We find no indication of a change of slope around ∼ 500K as discussed in

Fig. 4 of Ref. [172].

4.5 Spin-lattice Relaxation Time

The spin-lattice relaxation rate 1/T1 is related to the imaginary part of dynamical spin

susceptibility on the real frequency axis as

1

T1T
∝ lim

ν→0

∑
q

αF‖(q)
χ′′m(q, ν)

ν
, (4.4)

where αF‖(q) differs for 63Cu and 17O, as defined in Ref. [161]. For the two isotopes used

in this paper,

63F‖ = A⊥ + 2B[cos(qx) + cos(qy)]
2

17F‖ = 2C2
‖ [1 + 0.5[cos(qx) + cos(qy)]]

A⊥ = 0.84B,C‖ = 0.91B. (4.5)

Obtaining χ′′m(q, ν)/ν from Matsubara frequency data requires analytical continuation. If

temperature is low enough, we can consider the parametrization

χ′′m(q, ν) = νχm(q, 0)/Γq. (4.6)

We can then write the spin structure factor, S(q, τ) at time τ = β/2 as

S(q, τ =
β

2
) =

∫
dν
χm(q, 0)ν

Γq sinh ν
2T

=
χm(q, 0)

Γq

∫
4T 2λdλ

sinhλ
= T 2π2χm(q, 0)

Γq

(4.7)
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where S(q, τ) = 〈szq(τ)sz−q(0)〉 and Szq is the real-to-k-space Fourier transform of szi =

ni↑ − ni↓. To connect S(q, τ) with spin susceptibility,

S(q, τ) = 〈szq(τ)sz−q(0)〉 =
1

N
〈
∑
RiRj

e−iq(Ri−Rj) × [ni↑(τ)− ni↓(τ)][nj↑(0)− nj↓(0)]〉

=
1

N
〈
∑
RiRj

e−iq(Ri−Rj) × [c†i↑ci↑c
†
j↑cj↑ − c†i↓ci↓c†j↑cj↑ − c†i↑ci↑c†j↓cj↓ + c†i↓ci↓c

†
j↓cj↓]〉

(4.8)

where we have omitted τ in the equation. Note that creation/annihilation operator site i has

imaginary time τ and site j τ = 0.

1√
N

∑
q

cqe
iqRi = ci,

1√
N

∑
q

c†qe
−iqRi = c†i (4.9)

Omitting spin indices for now, the terms in equation 4.8 become

1

N3
[
∑
k1k2

(
∑
Ri

eiRi(−q+k1−k2))c†k1
ck2 ][

∑
p1p2

(
∑
Rj

eiRj(q+p1−p2))c†p1
cp2 ] (4.10)

=
1

N

∑
k2

c†k2+qck2

∑
p2

c†p2−qcp2 (4.11)

There are four terms like this, with spin ↑↑↑↑, ↓↓↑↑, ↑↑↓↓, ↓↓↓↓ separately. Given the

symmetry of 2-particle Green’s function, we find

S(q, τ) =
1

N
〈(2
∑
kk′

c†k+q↑(τ)ck↑(τ)c†k′↑(0)ck′+q↑(0)

− 2
∑
kk′

c†k+q↑(τ)ck↑(τ)c†k′↓(0)ck′+q↓(0))〉 (4.12)
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where k = k2, k′ = p2 − q. This is the magnetic channel susceptibility

S(q, τ) =
1

N

∑
kk′

χm(k + q, τ ;k, τ ;k′, 0;k′ + q, 0) =
2

N

∑
kk′

χkk
′q

m (τ, τ, 0). (4.13)

Fourier transforming it to Matsubara frequency space, we obtain

S(q, τ) =
2

Nβ3

∑
kk′,ωω′ν

χωω
′ν

m (kk′q)e−iντ (4.14)

Within DCA,

∑
Q

αF‖(Q)S(Q, τ) =
2

Nβ3
(
N

Nc

)3
∑

KK′Q

∑
ωω′ν

αF‖(Q)χωω
′ν

m (K,K ′,Q)e−iντ (4.15)

=
2

β

∑
Q,ν

αF‖(Q)χm(Q, iν)e−iντ (4.16)

And combining Eq. 4.6, Eq. 4.7 and Eq. 4.15 yields

1

T1

=

∑
Q

αF‖(q)S(Q, τ = β/2)

π2T
=

2

βπ2T

∑
Q,ν

αF‖(Q)χm(Q, iν)e−iνβ/2 (4.17)

=
2

π2

∑
Q,n

αF‖(Q)χm(Q, iνn)(−1)n. (4.18)

Fig. 4.8 shows that DCA and RPA calculations agree in the small interaction, low tem-

perature region. Their discrepancy at higher temperature is expected, as explained in Eq. 8

in the main text, as the quality of the approximation of 1
T1

becomes better as T → 0.

Fig. 4.9 shows the simulated spin lattice relaxation rate multiplied by the inverse tem-

perature, (T1T )−1, as a function of T for three dopings (see Eq. 4.17) with structure fac-

tors corresponding to copper and oxygen nuclei. All results are obtained at an interaction

strength of U = 6t using the cluster susceptibility. (T1T )−1 for 63Cu (solid line) rises

rapidly when temperature is reduced. As doping is reduced, the value of (T1T )−1 decreases,

and no clear indication of the pseudogap onset temperature is visible. In contrast, (T1T )−1
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Figure 4.8: Spin lattice decay rate of 8-site Hubbard model at U = 2t, t′ = 0. Black solid
line, open circle symbol: RPA results. Green solid line with error bar: DCA results.

for 17O (solid line) has peaks at about the same temperatures as T ∗Ks. (T1T )−1 for both

63Cu and 17O become doping independent at even higher temperature (see supplemental

material).

While reliable results for T1 from other theoretical methods are absent in the pseudogap

regime, our results can directly be compared to real-frequency RPA calculations for T1 in

the weak coupling regime [167]. These calculations are neither limited by the momentum

resolution of DCA, nor do they suffer from the limitations of analytic continuation. There-

fore they provide a stringent check on the precision with which we can obtain relaxation

rates. Our simulations show that T−1
1 smoothly decreases towards zero as temperature is re-

duced, in good agreement with RPA for U = 2t [167], hinting at limitations of the random

phase approximation in the intermediate coupling regime where deviations are apparent.

The experimentally measured spin-lattice relaxation rates are strongly material depen-

dent. One common feature found for the planar Cu site in YBCO materials in the normal

state is that (T1T )−1 increases slowly and linearly as T decreases in a large range of tem-

perature above T ∗ [158, 179]. As T is lowered below T ∗, it shows a decrease towards Tc.

In contrast, experiments in LSCO materials show that (T1T )−1 for the planar Cu site in-

creases rapidly as temperature is decreased until Tc, with a larger rate as the doping level is
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(a) Temperature dependence of 1/(T1T ) of Cu for
La2−xSrxCuO4. x = 0.075(N), 0.1(◦), 0.13(×),
0.15(•), 0.2(�), 0.24(�). Data for YBa2Cu3O7

plotted for comparison. (Fig.4 in Ref. [173])
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(b) (T1T )
−1 plotted as a function of temperature at U = 6t, t′ =

−0.1t, for x = 0 to x = 0.145, by 8-site DCA. Panel (a), solid lines:
symmetry factors corresponding to 63Cu site. Panel (b), dashed line:
17O site (See supplemental material for explanation of uncertainties).

Figure 4.9: Side-by-side comparison of (T1T )−1 for copper and oxygen sites.

decreased (see Ref. [173], Fig. 4). (T1T )−1 data for planar 17O in LSCO are proportional

to the Knight shift in the range from 100K to 200K [186]. Doping-independent (T1)−1 is

observed in NQR experiment on LSCO above 700K(Fig.2 in Ref. [187]), and NMR experi-
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ment on YBa2(Cu1−xZnx)4O8 above 150K(Fig.2 in Ref. [188]). A comparison of these two

types of materials is made in Ref. [15]. Our result is consistent with the experimental result

of LSCO and inconsistent with YBCO. We attribute this to the presence of interplanar spin

couplings in the latter materials [189], whose existence is confirmed by neutron-scattering

experiment [190], and surmise that more complicated bilayer models might be required

to yield consistent result for the YBCO spin lattice relaxation rates, also suggested from

previous theoretical work [191].

Expanding upon the previous section, we comment further on the distinct behavior of

the 63Cu and 17O signals in the calculated (T1T )−1 data of Fig. 4.9. Both calculations

originate from the same spin susceptibility, and are distinguished only by the convolution

with 63F‖ and 17F‖ structure factors, which are q-dependent functions.

In order to make these effects transparent, we present cuts in the Q = (qx, qy) plane of

the static spin susceptibility on the matsubara axis, χ(iν0, qx, qy), in Fig. 4.10(a). Plotted are

8-site DCA results, which therefore have only 4-distinct values at the M,Γ, X points and

at Q = (π/2, π/2). As the temperature decreases, we see that the X = (π, 0) point has no

temperature dependence. There does exist temperature dependence at both Q = (π/2, π/2)

and Γ. However, the predominant effect with reduced temperature is the strong temperature

dependence of the susceptibility near M = (π, π), which shows a continual increase upon

decreasing temperature. This is distinct behavior from the Γ point, which shows increasing

behavior until T/t = T ∗ = 0.083, after which it decreases (see inset of Fig. 4.10(b). The

contribution at Γ = (0, 0) is precisely the NMR Knight shift (see Fig. 4.3).

The impact of the strong anti-ferromagnetic (π, π) scattering vector is compounded by

the influence of the Form factors 63F‖ and 17F‖. These are plotted in Fig. 4.10(b). We see

than for the Cu sites, the 63F‖ picks up both contributions of temperature dependence from

M = (π, π) and near Γ = (0, 0). However, the signal is completely dominated by the

monotonic increase with decreasing temperature of the susceptibility at the M -point. For

oxygen sites, the 17F‖ suppresses the growth of the susceptibility near (π, π), emphasizing
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instead the temperature dependence in the remaining regions around the Γ point. It is for

this reason that NMR probes show site selective pseudogap behavior (observed on oxygen

NMR and not in copper NMR).
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Figure 4.10: (a) Zero frequency spin susceptibility at different momentum Q for various
temperatures. Inset: The same data, zoomed in near Q = (0, 0).(b) The structure factor for
copper (63F‖) and oxygen (17F‖) sites given by equation 4.5.
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CHAPTER 5

NMR Response Below Critical Temperature

5.1 Overview

This chapter presents my derivation of the two-particle quantities calculation within Nambu

formalism. These equations are used for calculating two-particle Green’s function, dy-

namical susceptibilities and vertex functions below superconducting critical temperature.

Sec. 5.2 introduces the background of our work. Sec. 5.3 to Sec. 5.5 are relevant equa-

tions with their diagrammatic representations. In Sec. 5.6, the Dyson-Schwinger equation

of motion provides a method of decompose the self-energy [192]. In the last section 5.7,

the preliminary result of the Knight shift is shown, which is in qualitative agreement with

NMR experiments on high Tc cuprate superconductor.

5.2 Introduction

NMR experiments play an essential role in the study of high Tc cuprates. One reason

is that NMR is the only experiment that can measure the decay of Knight shift in the

superconducting state, when the signals of other direct magnetic measurements would not

be able to survive the dominant diamagnetic response [14].

Experimental NMR results tell different stories for conventional superconductors and

high Tc cuprates. In conventional superconductors, the temperature-independent spin sus-
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ceptibility gives rise to a constant Knight shift above Tc [193] while the Knight shift van-

ishes below Tc according to Yosida function [194]. As for the relaxation rate, the Korringa

ratio (T1TK
2)−1 is temperature independent above Tc and the NMR coherence peak (the

so-called Hebel-Slichter peak) can be found in 1/T1 [195]. In high Tc superconductors, the

NMR reponse is in clear contrast to what is predicted for conventional, BCS-type behav-

ior. The Knight shift starts to decrease at temperature above Tc, signaling the pseudogap

opening. The Korringa ratio is temperature dependent and no coherence peak was found in

1/T1 below Tc [196]. The enhancement in 1/T1 just below Tc predicted by BCS theory is

also absent [197, 198]. Knight shift decreases below Tc for both parallel and perpendicular

field orientations, consistent with singlet pairing of superconducting Cooper pairs [199].

To date, the theoretical and numerical analysis of the NMR response below Tc is lim-

ited to RPA-based calculations [200] or phenomenological models [201, 198, 202]. These

methods are not sufficient for two reasons. Firstly, Monien and Pines [200] applied dif-

ferent pairing symmetries to the interpretation of NMR shift variation below Tc and found

compatibility with d-wave behavior and also concluded that strong coupling is important.

Therefore, it is necessary to have a non-perturbative approach for the calculation of NMR

response below Tc. Secondly, most phenomenologial models fail to capture the abrupt

change in Knight shift and relaxation time [201, 167] or have to use other assumptions

below Tc [198].

In the previous chapter, we obtain simulated the NMR response above Tc that are in

qualitative agreement with experimental results. In this chapter, we provide the equations to

calculate two-particle quantities within DCA and Nambu formalism. The simulated Knight

shift result is in consistent with NMR experiment above and below Tc using the same model

and algorithm. A publication presenting these results is currently in preparation.

76



5.3 Propagator within Nambu Formalism

To study NMR signals below critical temperature Tc, we need to allow the system to enter

a superconducting state. To deal with the non-zero anomalous Green’s function in a conve-

nient way, we introduce a two-component operator, the so-called Nambu spinor, proposed

by Nambu [116]

φkσ =

 ckσ

c†−k−σ

 φ†kσ =

(
c†kσ c−k−σ

)
, (5.1)

Their commutation relation is fermionic

{φk, φq} = δk,qI (5.2)

where I is a 2 × 2 unit matrix. With the aid of these Nambu spinor, the Green’s function

can be defined as a 2× 2 unit matrix.

Gk(τ) = −〈Tφkσ(τ)φ†kσ〉 = −

 〈T [ck↑(τ)c†k↑]〉 〈T [ck↑(τ)c−k↓]〉

〈T [c†−k↓(τ)c†k↑]〉 〈T [c†−k↓(τ)c−k↓]〉

 (5.3)

In this chapter, symbols with underline denote quantities constructed by normal and anoma-

lous components in 2 × 2 matrix form or 2 × 2 block matrix form. The two anomalous

Green’ s function describes the creation/annihilation of a Cooper pair and are not indepen-

dent. The upper right element in the matrix G01 is the complex conjugate of lower left

element G10. Using the commutation relation of fermions, the diagonal elements are also

connected. The full imaginary time propagator in matrix form can be written as

Gk(τ) = −

Gk↑(τ) Fk↑(τ)

F ∗k↑(τ) −G−k↓(−τ)

 (5.4)
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Fourier transforming them to Matsubara frequency space, we obtain

Gk(ω) =

∫ β

0

∫ β

0

eiωτe−iωτ
′
Gk(τ) (5.5)

=

Gk↑(ω) Fk↑(ω)

F †k↓(ω) −G−k↓(−ω)

 (5.6)

=

 〈Tck↑(ω)c†k↑(ω)〉 〈Tck↑(ω)c−k↓(−ω)〉

〈Tc†−k↓(−ω)c†k↑(ω)〉 〈Tc†−k↓(−ω)c−k↓(−ω)〉

 (5.7)

kσ

kσ −k−σ

kσ −k−σ

1
Figure 5.1: The diagram of one particle propagators. From to top to bottom: Gσ(k), F ∗σ (k),
Fσ(k).

In the diagrammatic form, the lines with arrow in Fig. 5.1 denote the Green’s function

and anomalous Green’s function in momentum and Matsubara frequency space.
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5.4 General Susceptibility

The full expression for two particle Green’s function is obtained by substituting creation/annihilation

operators with the corresponding Nambu spinor

〈ψ1 ⊗ ψ†2 ⊗ ψ3 ⊗ ψ†4〉 (5.8)

=



c†1c2c
†
3c4 0 0 c−1c2c−3c4

0 V 1 V 2 0

0 V 3 V 4 0

c†1c
†
−2c
†
3c
†
−4 0 0 c−1c

†
−2c−3c

†
−4


(5.9)

where the subscripts can be momentum, site coordinate, imaginary time, Matsubara fre-

quency, spin, etc. The most generalized two particle Green’s function has a total of 16

elements. Eight of them have odd number of creation/annihilation operators, which will be

zero with only singlet coupling. The four elements at position V1, V2, V3, V4 are merely the

complex conjugate of elements at the corner of the matrix. So two particle quantities can

be simplified to a 2× 2 matrix, with normal part and anomalous parts.

The general susceptibility can be defined as a combination of one-particle and two-

particle Green’s function with a similar form as what is defined within non superconducting

state

χ
σ1σ2σ3σ4

(r1r2r3r4, τ1τ2τ3τ4) = G4σ1σ2σ3σ4
(r1r2r3r4, τ1τ2τ3τ4) (5.10)

−

G00(r1r2, τ1τ2)G00(r3r4, τ3τ4) G10(r1r2, τ1τ2)G01(r3r4, τ3τ4)

G01(r1r2, τ1τ2)G10(r3r4, τ3τ4) G11(r1r2, τ1τ2)G11(r3r4, τ3τ4)

 δσ1σ2δσ3σ4

(5.11)

where the subscript i, j = 0, 1 of Gij means its position in the 2 × 2 matrix or the block

that it belongs to in a 2 block by 2 block matrix. With the symmetry of and periodicity of
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Green’s function and the time-translational invariance of the Hamiltonian, one can reduce

the number of time/coordinate points from 4 to 3. Furthermore, when restricted to paramag-

netic state, the 16 combinations of spin-indexes σ1, σ2, σ3, σ4 are not independent. To con-

serve spin, only 3 of the combinations remain: (1)↑↑↑↑=↓↓↓↓= σσ; (2)↑↑↓↓=↓↓↑↑= σσ′;

(3)↑↓↓↑=↓↑↑↓= σσ′. Therefore, the definition can be simplified to

χ
σσ′

(r1r2r3, τ1τ2τ3) = G4σσ′(r1r2r3, τ1τ2τ3) (5.12)

−

G00(r1r2, τ1τ2)G00(r3, τ3) G10(r1r2, τ1τ2)G01(r3, τ3)

G01(r1r2, τ1τ2)G10(r3, τ3) G11(r1r2, τ1τ2)G11(r3, τ3)

 (5.13)

χσσ′ has similar definition, but the second term is zero. To calculate quantities relevant to

NMR reponse, I will temporarily skip the calculation in the σσ′ channel.

When switching to momentum and frequency space, the same ph− and pp− chan-

nel Fourier transform in Eq. 2.5 and Eq. 2.4 can be applied to get χph(kk′q, ωω′ν) and

χpp(kk
′q, ωω′ν). From this point, we will use the notation k ≡ (k, ω) and q ≡ (q, ν) in

the equations and diagrams.

The measurement ofG4 is the core issue and the most computationally expensive part of

calculating 2-particle Green’s function and vertex functions. To obtain it, we first measure

the two-frequency Green’s function in Nambu formalism as

Gkp = 〈Tψkψ†p〉 = 〈T

 ck↑c
†
p↑ ck↑c−p↓

c†−k↓c
†
p↑ c†−k↓c−p↓

〉 (5.14)

The measurement of this quantity is performed stochastically in the CTAUX solver, with

formula similar to that of one-frequency Green’s function measurement. With DCA ap-

proximation,

GKP = δK,PG
0(K)− 1

βN
G0(K)[

∑
r,s

ei(ωτr+KXr)M r,se
−i(ω′τs+PXs)]G0(P ) (5.15)
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We employ Wick’s Theorem

G4ph↑↓(k, k
′, q) =

1

βN
〈c†k↑ck+q↑c

†
k′+q↓ck′↓〉

= −〈ck+q↑c
†
k↑〉〈c†k′+q↓ck′↓〉+ 〈c†k′+q↓c†k↑〉〈ck+q↑ck′↓〉

= −G11(−k,−k − q)×G00(k′, k′ + q) +G10(−k′ − q, k)×G01(k + q,−k′)

= −G00(k + q, k)×G11(−k′ − q,−k′) +G10(−k, k′ + q)×G01(k′,−k − q)

(5.16)

G4ph↑↑(k, k
′, q) =

1

βN
〈c†k↑ck+q↑c

†
k′+q↑ck′↑〉

= 〈ck+q↑c
†
k↑〉〈ck′↑c†k′+q↑〉 − 〈ck′↑c†k↑〉〈ck+q↑c

†
k′+q↑〉

= G00(k + q, k)×G00(k′, k′ + q)−G00(k′, k)×G00(k + q, k′ + q)

= G11(−k,−k − q)×G11(−k′ − q,−k′)−G11(−k,−k′)×G11(−k′ − q,−k − q)

(5.17)

G4pp↑↓(k, k
′, q) =

1

βN
〈c†k↑cq−k′↑c†q−k↓ck′↓〉

= −〈cq−k′↑c†k↑〉〈c†q−k↓ck′↓〉+ 〈c†q−k↓c†k↑〉〈cq−k′↑ck′↓〉

= −G00(q − k′, k)×G11(k − q,−k′) +G10(k − q, k)×G01(q − k′,−k′)

= −G11(−k, k′ − q)×G00(k′, q − k) +G10(−k, q − k)×G01k
′, k′ − q)

(5.18)
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G4pp↑↑(k, k
′, q) =

1

βN
〈c†k↑cq−k′↑c†q−k↑ck′↑〉

= 〈cq−k′↑c†k↑〉〈ck′↑c†q−k↑〉 − 〈ck′↑c†k↑〉〈cq−k′↑c†q−k↑〉

= G00(q − k′, k)×G00(k′, q − k)−G00(k′, k)×G00(q − k′, q − k)

= G11(−k, k′ − q)×G11(k − q,−k′)−G11(−k,−k′)×G11(k − q, k′ − q)

(5.19)

These formulas are similar to what we have in the non-superconducting state, except that

there are extra non-zero terms given by anomalous Green’s functions. Besides, the two-

particle anomalous Green’s function is

F4phuu(k, k
′, q) =

1

βN
〈c−σ(−k)cσ(k + q)c−σ(−k′ − q)cσ(k′)〉

= 〈ck′↑c−k′−q↓〉〈ck+q↑c−k↓〉 − 〈ck′↑c−k↓〉〈ck+q↑c−k′−q↓〉

= G01(k′, k′ + q)×G01(k + q,−k) +G01(k′, k)×G01(k + q, k′ + q)

(5.20)

F4phud(k, k
′, q) =

1

βN
〈c−σ(−k)cσ(k + q)cσ(−k′ − q)c−σ(k′)〉

= 〈c−q−k′↑ck′↓〉〈ck+q↑c−k↓〉 − 〈c−k′−q↑c−k↓〉〈ck+q′↑ck′↓〉

= G01(−q − k′,−k′)×G01(k + q, k)−G01(−k′ − q, k)×G01(k + q′,−k′)

(5.21)

The diagram of two particle quantities is shown in Fig. 5.2. As what we defined in

previous chapters, these vertices has three momentum indices k,k′, q, two fermionic fre-

quency indices ω, ω′ and a bosonic frequency index ν. In Fig. 5.2, the line with arrow from

left to right in the upper part means eletron propagating and the line with arrow from right

to left in the lower part means hole propagating. The anomalous vertices are denoted with

capital letter with a tilde on the top. Both the normal and anomalous vertices conserve
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k + qσ

kσ

k′σ′

k′ + qσ′

Xkk′q
phσσ′

k + q σ

kσ

−k′−q−σ′

−k′−σ′

X̃kk′q
phσσ′

q−k′σ

k′σ′

kσ

q−kσ′

Xkk′q
ppσσ′

q − k′ σ

k′σ′ −(q−k)−σ′

−k−σ

X̃kk′q
ppσσ′

1

Figure 5.2: Upper left: the diagram of normal vertex in particle-hole channel. Upper right:
the diagram of anomalous vertex in particle-hole channel. Lower left: the diagram of
normal vertex in particle-particle channel. Upper Lower right: the diagram of anomalous
vertex in particle-particle channel.

momentum, spin and charge.

It is worth mentioning that the ph− and pp− channel are connected by

Xkk′q
ppσσ′ = X

kk′(q−k−k′)
phσσ′ X̃kk′q

ppσσ′ = X̃
kk′(q−k−k′)
phσσ′

Xkk′q
phσσ′ = X

kk′(q+k+k′)
ppσσ′ X̃kk′q

phσσ′ = X̃
kk′(q+k+k′)
ppσσ′

(5.22)

These relations can be easily checked by substituting the momentum and frequency indices.

However, separate measurement of two-particle Green’s function in each channel is still

necessary, since in most cases, dynamic susceptibilities in low bosonic frequency range are

needed, in ph− and pp− channel.
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5.5 Full Vertex and Irreducible Vertex

5.5.1 particle-hole channel

In the case of an interacting system, the susceptibility can be decomposed into a bubble

term (the bare susceptibility) and a vertex correction.

χkk
′q

phσσ′ = χkk
′q

0ph δσσ′ −G(k)G(k + q)Kkk′q
phσσ′G(k′)G(k′ + q)

−G(k)G(k + q)K̃kk′q
phσσ′F (−k′)F †(−k′ − q)

− F †(k)F (k + q)(K̃kk′q
phσσ′)

†G(k′)G(k′ + q)

− F †(k)F (k + q)(Kkk′q
phσσ′)

†F (−k′)F †(−k′ − q)

(5.23)

χ̃kk
′q

phσσ′ = χ̃kk
′q

0ph δσσ′ −G(k)G(k + q)K̃kk′q
phσσ′G(−k′)G(−k′ − q)

−G(k)G(k + q)Kkk′q
phσσ′F

†(−k′)F (−k′ − q)

− F †(k)F (k + q)(Kkk′q
phσσ′)

†G(−k′)G(−k′ − q)

− F †(k)F (k + q)(K̃kk′q
phσσ′)

†F †(−k′)F (−k′ − q)

(5.24)

where the bubble part of χ in ph channel is

χkk
′q

0ph
= −βNcδkk′

G00(k)G00(k + q) G10(k)G01(k + q)

G01(k)G10(k + q) G11(k)G11(k + q)

 (5.25)

With kk′ as row and column index, the full χ
0

matrix can be separated evenly into four

matrix, all of which are diagonal.

Recall that we restrict ourselves to the paramagnetic state, the spin index of one-particle

Green’s function can be omitted due to symmetry.

The full vertex K in the vertex correction term in Eq. 5.23 and Eq. 5.24 includes all

possible scattering between two propogating fermions. In Ref. [11], the full vertex is rep-
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k+qσ

kσ

k′σ′

k′+qσ′

χkk
′q

phσσ′ =δσσ′δkk′

k+qσ

kσ

-

k+qσ

kσ

Kkk′q
phσσ′

k′+qσ′

k′σ′

-

k+qσ

kσ −k−q−σ

−k − σ

(Kkk′q
phσσ′)∗

−k′−σ′

−k′−q−σ′ k′σ′

k′+qσ′

-

k+qσ

kσ

K̃kk′q
phσσ′

−k′−σ′

−k′−q−σ′ k′σ′

k′+qσ′

-

k+qσ

kσ −k−q−σ

−k − σ

(K̃kk′q
phσσ′)∗

k′+qσ′

k′σ′

k+qσ

kσ

k′σ′

k′+qσ′

χ̃kk
′q

phσσ′ =δσσ′δkk′

k+qσ

kσ −k′−q−σ′

−k′−σ′

-

k+qσ

kσ −k−q−σ

−k − σ

(K̃kk′q
phσσ′)∗

k′+qσ′

k′σ′ −k′−q−σ′

−k′−σ′

-

k+qσ

kσ

K̃kk′q
phσσ′

−k′−σ′

−k′−q−σ′

-

k+qσ

kσ

Kkk′q
phσσ′

k′+qσ′

k′σ′ −k′−q−σ′

−k′−σ′

-

k+qσ

kσ −k−q−σ

−k − σ

(Kkk′q
phσσ′)∗

−k′−σ′

−k′−q−σ′

1

Figure 5.3: Upper: the diagram of Eq. 5.23. Lower: the diagram of Eq.5.24.

resented by capital letter F . Here we use K to avoid confusion with anomalous Green’s

function F . In the diagrammatic point of view, K includes all fully connected two particle

diagrams. Most of them can be separated into two parts by cutting two internal Green’s

function lines. With this concept, we can define the irreducible vertex functions repre-

sented by two particle diagrams that cannot be separated into two parts by cutting two

internal Green’s function lines. The irreducible vertex act like the ”self-energy” on the two

particle level. Their connection to the full vertex function is like a counterpart of Dyson’s
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equation.

Kkk′q
ph↑↑ = Γkk

′q
ph↑↑ +

1

βNc

∑
k1σ1

Γkk1qph↑σ1Gσ1(k1)Gσ1(k1 + q)Kk1k′q
phσ1↑

+
1

βNc

∑
k1σ1

Γkk1qph↑σ1F
∗
σ1

(k1)Fσ1(k1 + q)(K̃k1k′q
ph−σ1↑)

∗

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1F−σ1(−k1)F ∗−σ1(−k1 − q)Kk1k′q
phσ1↑

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1G−σ1(−k1)G−σ1(−k1 − q)(K̃k1k′q
ph−σ1↑)

∗

(5.26)

K̃kk′q
ph↑↑ = Γ̃kk

′q
ph↑↑ +

1

βNc

∑
k1σ1

Γkk1qph↑σ1F
∗
σ1

(k1)Fσ1(k1 + q)(Kk1k′q
ph−σ1↑)

∗

+
1

βNc

∑
k1σ1

Γkk1qph↑σ1Gσ1(k1)Gσ1(k1 + q)K̃k1k′q
phσ1↑

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1G−σ1(−k1)G−σ1(−k1 − q)(Kk1k′q
ph−σ1↑)

∗

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1F−σ1(−k1)F ∗−σ1(−k1 − q)K̃k1k′q
phσ1↑

(5.27)

Kkk′q
ph↑↓ = Γkk

′q
ph↑↓ +

1

βNc

∑
k1σ1

Γkk1qph↑σ1Gσ1(k1)Gσ1(k1 + q)Kk1k′q
phσ1↓

+
1

βNc

∑
k1σ1

Γkk1qph↑σ1F
∗
σ1

(k1)Fσ1(k1 + q)(K̃k1k′q
ph−σ1↓)

∗

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1F−σ1(−k1)F ∗−σ1(−k1 − q)Kk1k′q
phσ1↓

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1G−σ1(−k1)G−σ1(−k1 − q)(K̃k1k′q
ph−σ1↓)

∗

(5.28)
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K̃kk′q
ph↑↓ = Γ̃kk

′q
ph↑↓ +

1

βNc

∑
k1σ1

Γkk1qph↑σ1F
∗
σ1

(k1)Fσ1(k1 + q)(Kk1k′q
ph−σ1↓)

∗

+
1

βNc

∑
k1σ1

Γkk1qph↑σ1Gσ1(k1)Gσ1(k1 + q)K̃k1k′q
phσ1↓

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1G−σ1(−k1)G−σ1(−k1 − q)(Kk1k′q
ph−σ1↓)

∗

+
1

βNc

∑
k1σ1

Γ̃kk1qph↑σ1F−σ1(−k1)F ∗−σ1(−k1 − q)K̃k1k′q
phσ1↓

(5.29)

Eq. 5.26 and Eq. 5.27 can be decoupled analytically considering their sum and the

difference respectively. The two decoupled equations are the density and the magnetic

channel. And the four terms at right hand side of the equation can be rearranged into a

block matrix multiplication form. Then the normal and anomalous full vertex function can

be assembled together.

Km,d K̃m,d

K̃∗m,d K∗m,d


kk′q

=

Γm,d Γ̃m,d

Γ̃∗m,d Γ∗m,d


kk′q

+
1

βNc

∑
k1

Γm,d Γ̃m,d

Γ̃∗m,d Γ∗m,d


kk1qG(k1)G(k1 + q) F (k1)∗F (k1 + q)

F (k1)F (k1 + q)∗ G(−k1)G(−k1 − q)


Km,d K̃m,d

K̃∗m,d K∗m,d


k1k′q

(5.30)

Or simply

Km,d = Γm,d +
1

β2N2
c

Γm,dχ0ph
Km,d (5.31)

This equation can be used to solve for Γ by inversion of matrix with kk′ as row and column

index.

Γm,d =
∑
k1

Kkk1q
m,d [(I +

1

β2N2
c

χ
0ph
Km,d)

−1]k1k
′q (5.32)
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k+qσ

kσ

−k′−q−σ′

−k′−σ′

K̃kk′q
phσσ′ =

k+qσ

kσ

−k′−q−σ′

−k′−σ′

Γ̃kk
′q

phσσ′

+

k+qσ

kσ

Γkk1qphσσ1

−k′−q−σ′

−k′−σ′

(Kk1k
′q

phσ1σ′)∗

k1+qσ1

k1σ1 −k1−q−σ1

−k1−σ1

+

k+qσ

kσ

Γ̃kk
′q

phσσ′

−k′−q−σ′

−k′−σ′

K̃k1k
′q

phσ1σ′

−k1−σ1

−k1−q−σ1 k1σ1

k1+qσ1

+

k+qσ

kσ

Γkk1qphσσ1

−k′−q−σ′

−k′−σ′

K̃k1k
′q

phσ1σ′

k1+qσ1

k1σ1

+

k+qσ

kσ

Γ̃kk1qphσσ1

−k′−q−σ′

−k′−σ′

(Kk1k
′q

phσ1σ′)∗

−k1−σ1

−k1−q−σ1

k+qσ

kσ

k′σ′

k′+qσ′

Kkk′q
phσσ′ =

k+qσ

kσ

k′σ′

k′+qσ′

Γkk
′q

phσσ′

+

k+qσ

kσ

Γkk1qphσσ1

k′σ′

k′+qσ′

Kk1k
′q

phσ1σ′

k1+qσ1

k1σ1

+

k+qσ

kσ

Γ̃kk
′q

phσσ′

k′σ′

k′+qσ′

(K̃kk′q
ph−σ1σ′)∗

−k1−σ1

−k1−q−σ1

+

k+qσ

kσ

Γkk1qphσσ1

k′σ′

k′+qσ′

(K̃kk′q
ph−σ1σ′)∗

k1+qσ1

k1σ1 −k1−q−σ1

−k1−σ1

+

k+qσ

kσ

Γ̃kk1qphσσ1

k′σ′

k′+qσ′

Kk1k
′q

phσ1σ′

−k1−σ1

−k1−q−σ1 k1σ1

k1+qσ1

1
Figure 5.4: Upper: the diagram of normal full vertex in particle-hole channel. Lower: the
diagram of anomalous full vertex in particle-hole channel.

Eq. 5.23 and Eq. 5.24 can be decoupled in the same way into magnetic and density channel.
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Combine it with the definition of chi0, we get

χm,d χ̃m,d

χ̃∗m,d χ∗m,d


kk′q

=

χ0ph χ̃0ph

χ̃∗0ph χ∗0ph


kk′q

− 1

β2N2
c

∑
k1

χ0ph χ̃0ph

χ̃∗0ph χ∗0ph


kk′qKm,d K̃m,d

K̃∗m,d K∗m,d


kk′qχ0ph χ̃0ph

χ̃∗0ph χ∗0ph


kk′q

(5.33)

Or simply

χ
m,d

= χ
0ph
− 1

β2N2
c

χ
0ph
Km,dχ0ph

(5.34)

Combine the two matrix equations, we get the Bethe-Salpeter equation with Nambu for-

malism in the same format as that of non-superconducting state.

Γm,d = β2N2
c (χ−1

m,d
− χ−1

0ph
) (5.35)

5.5.2 particle-particle channel

For the three spin-combination in particle-particle channel, ↑↑,↑↓ and ↑↓, ↑↑ is obviously

independent from the two other spin-combination. To spin-diagonalize the ↑↓ and ↑↓, write

down the Bethe-Salpeter equation in these two channels, both the normal vertex part and

the anomalous vertex part.
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Kkk′q
pp↑↓ = Γkk

′q
pp↑↓ +

1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↑−σ1↓G(k1)G(q − k1)Kkk1q
pp↑−σ1↓σ1

+
1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↑−σ1↓F (k1)F (q − k1)(K̃kk1q
pp↓σ1↑−σ1)

∗

+
1

2βNc

∑
k1σ1

Γk1k
′q

pp−σ1↑σ1↓F
∗(k1)F ∗(q − k1)Kkk1q

pp↑−σ1↓σ1

+
1

2βNc

∑
k1σ1

Γ̃k1k
′q

pp−σ1↑σ1↓G(−k1)G(−q + k1)(K̃kk1q
pp↓−σ1↑σ1)

∗

(5.36)

K̃kk′q
pp↑↓ = Γ̃kk

′q
pp↑↓ +

1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↑−σ1↓F (k1)F (q − k1)(Kkk1q
pp↑−σ1↓σ1)

∗

+
1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↑−σ1↓G(k1)G(q − k1)K̃kk1q
pp↓−σ1↑σ1

+
1

2βNc

∑
k1σ1

Γ̃k1k
′q

pp−σ1↑σ1↓G(−k1)G(−q + k1)(Kkk1q
pp↑−σ1↓σ1)

∗

+
1

2βNc

∑
k1σ1

Γ̃k1k
′q

pp−σ1↑σ1↓F
∗(k1)F ∗(q − k1)K̃kk1q

pp↓−σ1↑σ1

(5.37)

Kkk′q

pp↑↓ = Γkk
′q

pp↑↓ +
1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↓−σ1↑G(k1)G(q − k1)Kkk1q
pp↑−σ1↓σ1

+
1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↓−σ1↑F (k1)F (q − k1)(K̃kk1q
pp↓σ1↑−σ1)

∗

+
1

2βNc

∑
k1σ1

Γk1k
′q

pp−σ1↓σ1↑F
∗(k1)F ∗(q − k1)Kkk1q

pp↑−σ1↓σ1

+
1

2βNc

∑
k1σ1

Γ̃k1k
′q

pp−σ1↓σ1↑G(−k1)G(−q + k1)(K̃kk1q
pp↓−σ1↑σ1)

∗

(5.38)
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K̃kk′q

pp↑↓ = Γ̃kk
′q

pp↑↓ +
1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↓−σ1↑F (k1)F (q − k1)(Kkk1q
pp↑−σ1↓σ1)

∗

+
1

2βNc

∑
k1σ1

Γk1k
′q

ppσ1↓−σ1↑G(k1)G(q − k1)K̃kk1q
pp↓−σ1↑σ1

+
1

2βNc

∑
k1σ1

Γ̃k1k
′q

pp−σ1↓σ1↑G(−k1)G(−q + k1)(Kkk1q
pp↑−σ1↓σ1)

∗

+
1

2βNc

∑
k1σ1

Γ̃k1k
′q

pp−σ1↓σ1↑F
∗(k1)F ∗(q − k1)K̃kk1q

pp↓−σ1↑σ1

(5.39)

The 1
2

factor is used to avoid double counting, since we sum over all k1σ1. pp ↑↓ and pp↑↓

are entangled in the same way as ph ↑↓ and ph ↑↑, so they can also be decoupled by the

sum and difference of equation Eq. 5.36, Eq. 5.37, Eq. 5.38 and Eq. 5.39

Kt K̃t

K̃∗t K∗t


kk′q

=

Γt Γ̃t

Γ̃∗t Γ∗t


kk′q

+
1

2βNc

∑
k1

Γt Γ̃t

Γ̃∗t Γ∗t


k1k′q G(k1)G(q − k1) F (k1)F (q − k1)

F ∗(k1)F ∗(q − k1) G(−k1)G(−(q − k1))


Kt K̃t

K̃∗t K∗t


kk1q

(5.40)

and

Ks K̃s

K̃∗s K∗s


kk′q

=

Γs Γ̃s

Γ̃∗s Γ∗s


kk′q

− 1

2βNc

∑
k1

Γs Γ̃s

Γ̃∗s Γ∗s


k1k′q G(k1)G(q − k1) F (k1)F (q − k1)

F ∗(k1)F ∗(q − k1) G(−k1)G(−(q − k1))


Ks K̃s

K̃∗s K∗s


kk1q

(5.41)
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Or simply

Kt = Γt −
1

2β2N2
c

Γtχ0pp
Kt (5.42)

and

Ks = Γs +
1

2β2N2
c

Γsχ0pp
Ks (5.43)

where the bubble in pp channel is

χkk
′q

0pp
= −βNcδkk′

G00(k)G00(q − k) G01(k)G01(q − k)

G10(k)G10(q − k) G11(k)G11(q − k)

 (5.44)

To connect χ0 andK in the pp ↑↓ and pp↑↓ channel, the diagrams are shown in Fig. 5.6.

It reads

χpp↑↓ = −βNcG(k)G(q − k)δkk′ −G(k′)G(q − k′)Kkk′q

pp↑↓G(k)G(q − k)

−G(k′)G(q − k′)K̃kk′q

pp↑↓F
∗(k)F ∗(q − k)

− F (k′)F (q − k′)(Kkk′q

pp↑↓)
∗F ∗(k)F ∗(q − k)

− F (k′)F (q − k′)(K̃kk′q

pp↑↓)
∗G(k)G(q − k)

(5.45)

χ̃pp↑↓ = −βNcF (k)F (q − k)δkk′ −G(k′)G(q − k′)K̃kk′q

pp↑↓G(−k)G(−(q − k))

−G(k′)G(q − k′)Kkk′q

pp↑↓F (k)F (q − k)

− F (k′)F (q − k′)(K̃kk′q

pp↑↓)
∗F (k)F (q − k)

− F (k′)F (q − k′)(Kkk′q

pp↑↓)
∗G(−k)G(−(q − k))

(5.46)

pp ↑↓ channel has almost the same diagram. The two differences are: (1) the bubble terms

in both normal and anomalous χ vanish; (2) the spins on the left-most part of each diagram
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flip. Therefore,

χ
t

= χ
0pp
− 1

β2N2
c

χ
0pp
Ktχ0pp

(5.47)

and

χ
s

= −χ
0pp
− 1

β2N2
c

χ
0pp
Ksχ0pp

(5.48)

Combining the two matrix equations, we get the Bethe-Salpeter equation with Nambu

formalism in the same format as that of non-superconducting state.

Γt = β2N2
c [4(χ

t
+ χ

0pp
)−1 − 2χ−1

0pp
) (5.49)

and

Γs = β2N2
c [4(χ

s
− χ

0pp
)−1 + 2χ−1

0pp
) (5.50)

As has been discussed in chapter 2, within DCA approximation, Γcluster = Γlattice. So

the lattice susceptibility and the cluster susceptibility are connected by the Bethe-Salpeter

equation as

χ−1

l
− χ−1

0l
= χ−1

c
− χ−1

0c
(5.51)

where the subscript l means lattice and c means cluster. This relation holds for every spin-

independent channel, such as d−, m−, s−, t−, pp ↑↑ − channel.
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5.6 Equation of Motion

The self-energy describes all scattering effects of electron originated from Coulomb inter-

action in the correlated systems. When the interaction is purely local, the self-energy is

connected to the full vertex by Dyson-schwinger equation of motion [108]

Σ(k) =
Un

2
− U

β2N

∑
k′q

F↑↓(k, k
′, q)G(k′)G(k′ + q)G(k + q) (5.52)

This equation can be extended to the Nambu formalism as shown in Fig. 5.7 [192]. The

mathematical expressions are

Σ(k) = ΣH(k)− U

β2N2
c

∑
k′q

Kph↑↓(k, k
′, q)G(k + q)G(k′)G(k′ + q)

− U

β2N2
c

∑
k′q

Kph↑↓(k, k
′, q)G(k + q)F ∗(k′)F (k′ + q)

− U

β2N2
c

∑
k′q

K̃ph↑↓(k, k
′, q)G(k + q)G(−k′)G(−k′ − q)

− U

β2N2
c

∑
k′q

K̃ph↑↓(k, k
′, q)G(k + q)F (k′)F ∗(k′ + q)

(5.53)

Σ̃(k) = Σ̃H(k)− U

β2N

∑
k′q

Kph↑↓(k, k
′, q)F ∗(k + q)G(k′)G(k′ + q)

− U

β2N

∑
k′q

Kph↑↓(k, k
′, q)F ∗(k′ + q)F ∗(k′)F (k′ + q)

− U

β2N

∑
k′q

K̃ph↑↓(k, k
′, q)F ∗(k + q)G(−k′)G(−k′ − q)

− U

β2N

∑
k′q

K̃ph↑↓(k, k
′, q)F ∗(k + q)F (k′)F ∗(k′ + q)

(5.54)

where ΣH and Σ̃H are the Hatree term. Recall that Km = Kph↑↑ − Kph↑↓ and Kd =

Kph↑↑ +Kph↑↓.
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In pp− channel, the Dyson-Schwinger equations are

Σ(k) = ΣH(k)− U

β2N2
c

∑
k′q

Kpp↑↓(k, k
′, q)G(k′)G(q − k′)G(k)

− U

β2N2
c

∑
k′q

Kpp↑↓(k, k
′, q)G(k′)G(q − k′)G(q − k)

− U

β2N2
c

∑
k′q

(K̃pp↑↓(k, k
′, q))∗G(−k′)F (q − k′)F (q − k)

− U

β2N2
c

∑
k′q

(K̃pp↑↓(k, k
′, q))∗F ∗(k′)F (q − k′)G(q − k)

(5.55)

Σ̃(k) = Σ̃H(k)− U

β2N2

∑
k′q

K̃pp↑↓(k, k
′, q)G(k′)G(q − k′)F ∗(q − k)

− U

β2N2
c

∑
k′q

(Kpp↑↓(k, k
′, q))∗G(−k′)F (q − k′)G(−(q − k))

− U

β2N2
c

∑
k′q

K̃pp↑↓(k, k
′, q)F ∗(k′)G(q − k′)G(−(q − k))

− U

β2N2
c

∑
k′q

(Kpp↑↓(k, k
′, q))∗F (k′)F (q − k′)F ∗(q − k)

(5.56)

Their diagrammatic forms are plotted in Fig. 5.8

5.7 Knight Shift

The first cuprates Knight shift measurement below Tc (Fig. 5.9) was carried out by M.Takigawa

et al.[16] with a standard pulsed spectrometer and fine powder YBa2Cu3O7. The observed

Knight shift is composed of two part, contributions from spin and orbital magnetization.

K = Korb + Kspin. Kspin, similar to the case in normal state, is proportional to the static

spin susceptibility. Korb is a almost a constant below and above critical temperature. For

our 2D Hubbard model, the simulated Knight shift is Kab for planar Cu(2), when the dia-

magnetic correction is very small. The Hubbard model excludes the effect of spin-orbit
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scattering, the simulated Knight shift is Ks = Kspin ∝ χm(Q = 0, ν = 0) They were

followed by S. E. Barrett [203], who used 89Y NMR resonance line to measure the field

inside the sample. The results from both groups show a steep slope around T = Tc, much

steeper than what weak-coupling s-wave Yosida function [204] would predict. That is, the

conventional BCS model is not appropriate for modeling the planar Cu nuclei arrays in

high Tc cuprates.
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Figure 5.5: Upper: the diagram of normal full vertex in particle-particle channel. Lower:
the diagram of anomalous full vertex in particle-particle channel.
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Figure 5.6: The diagram of the definition of full vertex in particle-particle channel in pp↑↓
spin-combination.
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Figure 5.7: The diagram of equation of motion in ph−channel.
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Figure 5.8: The diagram of equation of motion in pp−channel.
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Figure 5.9: The temperature dependence of the Knight shift of chain Cu(1) and planar
Cu(2) nuclei in YBa2Cu3O7 with different field orientations. The crosses and filled circles
are the results with and without diamagnetic field correction, respectively. Panel(c) inset:
magnetization at the same field. Figure reproduced from Ref. [16]
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Figure 5.10: Red solid line, square symbol: the Knight shift with temperature range ex-
tending into superconducting states. Black solid line, circle symbol: order parameter
F = 〈Tc↑c↓〉. Data obtained using U = 6t, t′ = 0, 8 site cluster, DCA calculation.
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CHAPTER 6

Conclusion

In this thesis we have studied a strongly correlated electron model, the two dimensional

Hubbard Model, which is considered to embody the essential physics of high temperature

superconducting materials (Chap. 1 Sec. 1.2, Sec. 1.3). To solve this model, we used the

extension of dynamical mean-field theory (DMFT), the dynamical cluster extension (DCA)

and continuous time auxiliary field impurity solver (CTAUX). DCA is a non-perturbative

method that treat short range correlations exactly and long range interactions in a mean-

field way. It has been proved to be a powerful tool for strongly correlated systems.

While most DMFT studies hitherto have focused on one-particle properties, valuable

information is also enclosed in two-particle quantities, like dynamical susceptibility and

vertex functions. Our main achievements is the calculation of two-particle response func-

tions in strongly correlated electron systems using non-perturbative methods. Two applica-

tions of the calculation of two-particle quantities in non-superconducting state are shown

in Chap. 3 and Chap. 4, concerning the dynamical magnetic susceptibility and supercon-

ducting pairing susceptibility .

In Chap. 3, we discovered that the correlated pairing susceptibility χ − χ0 is a good

indicator for the vicinity of parameters for optimal superconductivity transition temperature

at much higher temperature than Tc. This provide us an approach to sweep over the entirety

of the phase space with much smaller computational burden and less severe sign problem.

Using this method, we have explored the susceptibility of the Hubbard model towards
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superconducting order over large range of interaction and doping, also for different next-

nearest-neighbor hopping parameter t′ and symmetries. We find that both weak and strong

interaction regimes, as well as low doping and half filled regimes, are non- optimal for

superconducting fluctuations. For non-zero t′ we find a shift of the optimal superconducting

features to the electron doped side of the phase diagram, due to the establishment of a

competing pseudo-gap on the hole doped side. These results can give experimentalists

thoughts and guidance of synthesizing new high Tc materials.

In Chap. 4, we make use of the other channel of the general susceptibility, the magnetic

channel. We show simulated results for the doping and temperature evolution of the Knight

shift, the relaxation time, and the spin echo decay time in the pseudo-gap regime of the two-

dimensional Hubbard model and compare them to the NMR experiment of high Tc cuprates.

These calculations show trends in temperature and doping evolution that are in remarkable

agreement with experiment on single layer compounds. This consistency suggests that the

salient aspects of the physics of the cuprate pseudo-gap are contained within the simple

single-orbital Hubbard model.

In Chap. 5, we derived equations to obtain the two-particle quantities with Nambu for-

malism. The approach has been presented in great details. The goal was to extract the

dynamical susceptibilities of the lattice system from the two-particle Green’s function ob-

tained by the impurity solver. This is essential for the analysis of simulating the NMR

experiments under superconducting critical temperature and may also find its application

in the diagnostic of fluctuations.
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“Symmetry-projected variational approach for ground and excited states of the two-
dimensional Hubbard model,” Phys. Rev. B, Vol. 85, Jun 2012, pp. 245130.
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