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Abstract 

Epistasis describes a broad range of interactions within and between molecules. 

However, limited empirical knowledge is currently available for epistasis at large scale.  This 

dissertation focuses on quantifying intragenic and intergenic epistasis on a large scale.  For 

intragenic epistasis, by combining precise gene replacement and next-generation sequencing, I 

measured fitness for over 65,000 yeast strains each carrying a unique variant of the
A rg

C C U
tR N A  

gene.  I managed to quantify epistasis for 61% of all possible combinations of mutations.  

Almost half of all mutation pairs exhibit significant epistasis, which has a strong negative bias 

except when the mutations occur at Watson-Crick paired sites.  The strong negative bias is also 

observed for epistasis on the genetic background with one or multiple existing mutations.  To 

study how the fitness landscape and epistasis vary among environments, I measured fitness 

landscapes in four environments and found that the same mutation almost always has different 

fitness effects in different environments, indicating pervasive genotype by environment 

interactions (G×E).  Nevertheless, the observed G×E follows a simple piecewise linear 

relationship.  Given the prediction of fitness, an epistasis prediction is also calculated, and the 

predictive power is comparatively high.  Apart from intragenic epistasis, I also studied genetic 

incompatibility, a form of intergenic epistatic interactions between otherwise functional genes in 

their conspecific genetic background, which is commonly considered as the major cause of 

postzygotic isolation and speciation.  Despite repeated efforts, Bateson-Dobzhansky-Muller 

(BDM) incompatibilities between nuclear genes have never been identified between S. cerevisiae 
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and its sister species S. paradoxus.  Such negative results have led to the belief that simple 

nuclear BDM incompatibilities do not exist in yeast.  I explored an alternative explanation that 

such incompatibilities exist but were undetectable due to limited statistical power, and 

discovered that previously employed statistical methods were not ideal and that a redesigned 

method improves the statistical power.  I also determined, under various sample sizes, the 

probabilities of identifying BDM incompatibilities that cause F1 spore inviability with 

incomplete penetrance, and confirm that the previously used samples were too small to detect 

such incompatibilities, calling for an expanded experimental search for yeast BDM 

incompatibilities.  In summary, this dissertation shows that understanding epistasis at large scale 

is important and can be achieved through several powerful approaches for elucidating the 

underlying mechanisms governing evolution, such as available evolutionary trajectories and 

repeatability of evolution. 
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CHAPTER 1 

 INTRODUCTION  

 

1.1 Introduction 

1.1.1 The history of defining epistasis 

The word “epistasis” is widely used to describe a broad range of interactions within and 

between molecules, after being coined by William Bateson ~100 years ago to refer to the 

masking of the effects of one locus by another in a dihybrid cross (Bateson 1909).  Gradually, 

this term has been expanded to describe a broad range of complex interactions among genetic 

loci, including the functional relationship between genes, the genetic ordering of regulatory 

pathways and the quantitative differences of allele-specific effects (definitions reviewed in 

Phillips 2008). 

Traditionally, given the limitations of available techniques and information, researchers 

examine one gene or one mutation at a time and tend to associate a gene with a specific function 

and a mutation with a specific mutant phenotype.  However, all genes work in a genomic and 

cellular context and are almost always working together with other pathways and modules to 

perform their functions, contributing to the final phenotype. Inevitably, there are interactions 

with other components of the pathway or other gene products.  Indeed, an increasing amount of 

evidence has shown that epistasis is a prevailing phenomenon and the phenotypic effect of a 

mutation can depend on its genomic background and the potential interaction with other genes or 

sites (Moore 2003, Weinreich, Watson et al. 2005, Arias, le Poul et al. 2016). 
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Since R. A. Fisher used the term “epistacy” to statistically describe deviation from the 

addition of superimposed effects occurring between different genes in 1918 (Fisher 1918), the 

term “epistasis” is becoming more frequently used to describe the quantitative deviation of 

combined effects from the expected phenotype, apart from the original reference to qualitative 

traits.  By comparing the phenotype of a double-mutant organism with the expected phenotype 

assuming independence, we can categorize epistatic interactions as positive or negative (Mani, St 

Onge et al. 2008).  Positive epistasis refers to cases where the double mutant shows a less 

extreme phenotype than expected.  Positive epistasis can occur when a mutation in one gene 

fully impairs the function the gene or the whole pathway, or where any further mutations in the 

gene or the pathway cannot further reduce the functionality.  Negative epistasis, on the other 

hand, refers to cases where the double mutant shows a more extreme phenotype than expected.  

An enrichment for negative epistasis has been observed in several large-scale studies on 

intragenic and intergenic interactions (Khan, Dinh et al. 2011, Li, Qian et al. 2016, Puchta, Cseke 

et al. 2016) and is viewed by some as a by-product of selection on genetic robustness (Azevedo, 

Lohaus et al. 2006).  An extreme case for negative epistasis is synthetic lethality, which 

describes any combination of two separately non-lethal mutations that leads to inviability. 

The definitions of positive and negative epistasis are seemingly straightforward; 

however, there isn’t a universally applicable way to define the quantitative phenotype measure of 

the trait and an independence function that predicts the expected phenotype assuming no 

interaction between the focal sites or genes.  There are various ways to define an independence 

function.  For independence functions to characterize the relative-growth rate measure, 

researchers have used Min, Product, Log and Additive definitions, which can lead to different 

patterns of positive and negative epistasis even for the same dataset (Mani, St Onge et al. 2008).  
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Among various existing definitions of independence functions for relative fitness, the two most 

commonly used are ε = 𝑓𝐴𝐵 − 𝑓𝐴𝑓𝐵 assuming a multiplicative model for fitness, and ε =

log 𝑓𝐴𝐵 − log 𝑓𝐴 − log 𝑓𝐵 assuming additivity of growth rate, which is proportional to log-fitness 

(Jasnos and Korona 2007).  Moreover, the choice of quantitative phenotype measures can also 

impact the final result.  Take the commonly used yeast colony size as an example. Previous 

studies have used diameter (Bloom, Ehrenreich et al. 2013), area (Baryshnikova, Costanzo et al. 

2010) or 3D volume (Zackrisson, Hallin et al. 2016) of the colony as a proxy for fitness, which 

will lead to different results in quantifying epistasis.  Even relative fitness, which can be easily 

quantified by many different methods, can take different measures, such as exponential growth 

rate, number of progeny relative to that of wild-type per generation, etc.  Using different 

definitions and independence functions can sometimes lead to different conclusions for the same 

dataset, so it is of great importance to choose the definitions that are most biologically and 

statistically meaningful. 

1.1.2 Methodology for quantifying epistasis 

There are various methodologies for quantifying intragenic and intergenic epistasis.  A 

classical and straightforward method to measure intragenic epistasis for a few sites is to 

individually measure the phenotype of all combinations of mutations (Weinreich, Delaney et al. 

2006, Ortlund, Bridgham et al. 2007), which can help reveal all possible evolutionary 

trajectories, gain in-depth understanding of the biological functions and quantify high-order 

epistatic interactions.  However, given that the total number of combinations for n sites is 2n if 

we only consider the simplest case of two possible states at each site, this methodology is only 

applicable to studying a few key sites.  If the main focus is on pair-wise interactions at the wild-

type genetic background instead of evolutionary trajectories that are a few steps away from the 
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wild-type genotype, then for n sites in a haploid organism such as the yeast lab strain, there are a 

total of n (n-1)/2 possible pairwise interactions.  The advent of high-throughput sequencing 

techniques and other technologies in measuring phenotype and genotypes at a large scale has 

allowed quantification of these pair-wise interactions for a whole gene (Li, Qian et al. 2016, 

Puchta, Cseke et al. 2016, Sarkisyan, Bolotin et al. 2016) or a domain of a protein (Olson, Wu et 

al. 2014).  For instance, using Bar-seq method, fitness can be quantified for tens of thousands of 

variants simultaneously.  Measuring fitness for all single mutants, and the majority of double 

mutants allows for quantifying epistasis at a large scale.   

For interspecific epistasis, the positive and negative epistasis between millions of 

different loss-of-function mutations has been quantified in yeast (Costanzo, Baryshnikova et al. 

2010) and other model organisms (Lehner, Crombie et al. 2006, Byrne, Weirauch et al. 2007, 

Lin, Wang et al. 2010).  The yeast knockout mutant collection (Giaever, Chu et al. 2002) has 

enabled quantifying intergenic epistasis systematically. For instance, identification of synthetic-

lethality for ~6,000 genes using the yeast knockout mutant collection by the synthetic genetic 

array and synthetic-lethality analysis by microarray has revealed abundant information on the 

networks of genetically connected genes (reviewed in Ooi, Pan et al. 2006). The most conclusive 

endeavor is the construction of a genetic interaction network by testing all possible pairwise 

genetic interactions for most of the ~6,000 genes in yeast, revealing nearly a million interactions 

involving ~90% of yeast genes (Costanzo, VanderSluis et al. 2016). 

1.1.3 Underlying mechanisms for epistasis 

Common molecular mechanisms of such intergenic epistasis include interaction between 

changes in interaction interfaces, functional redundancy and interactions between pathways.  
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Changes in interaction interfaces apply to proteins that directly interact with one another. For 

instance, a mutation in one protein can be compensated by a different mutation in its interacting 

partner, such as in the nematode sex-determining genes (Haag, Wang et al. 2002) and many other 

genes involved in mating (Clark, Gasper et al. 2009), which commonly lead to coevolution of 

sequences (Feinauer, Szurmant et al. 2016).  Another mechanism, functional redundancy, can 

lead to negative epistasis between genes, and the redundancy is sometimes a by-product of gene 

duplication events (Dean, Davis et al. 2008).  Intergenic epistasis can sometimes be explained by 

the interaction between pathways or functional modules.  Two or multiple redundant or 

alternative pathways might be carrying out the same biological functions, so knocking out one of 

them has mild effects while simultaneously blocking them can cause severe defects (Wang, Lee 

et al. 2002, Kelley and Ideker 2005).  Many other possible mechanisms have been revealed 

through in-depth case studies, including genetic capacitors and physical constraints (Lehner 

2011).  However, most of the identified intergenic interactions cannot be easily explained by the 

above-mentioned mechanisms, and there are many unexpected epistatic effects revealed between 

seemingly unrelated genes (He, Qian et al. 2010). 

As for intragenic epistasis, pervasive negative epistasis is observed in multiple large-scale 

studies (Bershtein, Segal et al. 2006, Li, Qian et al. 2016, Puchta, Cseke et al. 2016), and the 

underlying mechanism is largely unexplained.  However, many common mechanisms for 

intramolecular epistasis have been revealed in previous studies, including stability thresholds, 

conformational epistasis and intramolecular pleiotropy (reviewed in Lehner 2011).  Stability 

threshold has been a common mechanism to explain negative interactions between mutations 

where the protein has redundant stability, and individual mutations are not too detrimental, as 

long as the protein has not reached the stability margin.  Such extra stability and robustness can 
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promote evolvability (Bloom, Labthavikul et al. 2006).  Another mechanism is conformational 

epistasis, which requires multiple mutations occurring simultaneously for the gene to perform 

some function.  A rigorously tested case about a vertebrate steroid receptor conducted by Ortlund 

et al. (2007) found that two changes at interacting sites are needed to transform a generalized 

ancestral protein to a more specialized receptor while mutating each site alone destroys the 

receptor function.  Another common scenario is intramolecular pleiotropy, where a functionally 

beneficial mutation can have a side-effect on stability and can only be accessible when a 

seemingly neutral mutation provides compensatory stability (Tokuriki, Stricher et al. 2008). 

1.1.4 Sign epistasis and its biological implication 

Sign epistasis occurs when the fitness effect of a mutation is opposite depending on the 

presence or absence of another mutation and is of special interest because it greatly reduces the 

fraction of open paths in adaptation (Weinreich, Delaney et al. 2006).  For two mutations, A and 

B, sign epistasis satisfies (fA-1) (fAB/fB-1) < 0 or (fB-1) (fAB/fA-1) < 0.  A more stringent form of 

sign epistasis, reciprocal sign epistasis, satisfies (fA-1) (fAB/fB-1) < 0 and (fB-1) (fAB/fA-1) < 0, and 

further restricts possible evolutionary paths.  From the above definition, we can see that sign 

epistasis can be either positive or negative epistasis.  A very classic case study of sign epistasis 

involves the lysozyme of modern game birds, with a three-amino-acid triplet being either triplet 

Thr40, Ile 55 Ser91 or triplet Ser40, Val55, and Thr91.  Testing the thermostability of all 

intermediates shows that each evolutionary pathway connecting two extant triplets includes a 

variant that is unstable (Malcolm, Wilson et al. 1990).  Understanding sign epistasis further 

emphasizes the fact that effect of a gene mutant is not a stand-alone property for the mutation 

itself and the importance of studying epistasis to characterize the genotype-phenotype mapping 

fully.  
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1.1.5 Epistasis changing with environment and genetic background 

Epistasis is not a static trait for a pair of sites; it can vary across different environments 

and genetic backgrounds.  Change of epistasis across genetic background is also commonly 

referred to as higher-order epistasis.  A study using 32 strains carrying all possible combinations 

of 4 quantitative trait nucleotides (QTN) that govern yeast sporulation efficiency showed clear 

examples of epistatic interactions being different across various the genetic and environmental 

background, rendering the phenotypic outcome of QTN unpredictable from the genotype alone 

(Gerke, Lorenz et al. 2010).  Such complex interactions of epistasis changing with environments 

(You and Yin 2002, Wang, Sharp et al. 2009) and genetic backgrounds (Weinreich, Delaney et al. 

2006, Weinreich, Lan et al. 2013) are also broadly observed in other species.  

1.1.6 Importance of studying epistasis 

Understanding epistasis has important theoretical implications.  Knowledge about 

patterns and mechanisms of epistasis helps people understand the structure and function of 

genetic pathways and how and why certain evolutionary paths are taken while others are 

blocked.  For instance, knocking out genes separately and measuring the phenotype of double 

mutant allows for ordering of genes in a regulatory hierarchy (Avery and Wasserman 1992). 

Such an endeavor at a large scale can help reveal a map of the functional network in a cell (Tong, 

Evangelista et al. 2001).  Without epistasis, evolution should be easy to predict and understand: 

once one beneficial mutation occurs, it would gradually become fixed after escaping drift, and 

there would be no preferences in the order of occurrence for multiple mutations, with all 

evolutionary paths being equally accessible.  However, due to the complex interactions, certain 

evolutionary paths are blocked (Weinreich, Delaney et al. 2006) while other seemingly 

inaccessible paths become possible (Bloom and Arnold 2009).  
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Quantifying epistasis also has crucial real-world applications, including understanding 

quantitative traits (Alvarez-Castro and Carlborg 2007), complex diseases (Moore 2003, 

Azevedo, Suriano et al. 2006, Nagalakshmi, Wang et al. 2008) and the evolution of antibiotic 

resistance (Weinreich, Delaney et al. 2006).  Moreover, it can help with developing treatments 

for diseases.  For instance, describing synthetic lethality lays the foundation for developing 

anticancer therapy by targeting a gene that is synthetic lethal to a cancer relevant mutation 

(Kaelin 2005, Herter-Sprie, Chen et al. 2011).  It is also vital to consider epistasis in the area of 

synthetic biology given that the best amino acid / module might not always be the best in all 

circumstances, and they always must be evaluated in context (Currin, Swainston et al. 2015).  

Thus, quantifying and understanding epistasis is a fundamental task in biology. 

1.1.7 Difficulties in studying epistasis 

Given the theoretical importance and wide application of understanding epistasis, it is 

surprising that current research on epistasis is still quite rudimentary.  This is likely due to the 

multiple challenges in quantifying epistasis. First, the number of possible interactions is large, 

increasing polynomially with the number of focal genes / sites when we compare interaction 

between n parties, or increasing exponentially when we consider all high-order interactions.  

Secondly, quantifying epistasis requires measurements of three phenotypes accurately, thus 

requiring a technique with both high-throughput and high precision, which is just starting to 

become more available.  Finally, similar to the fact that the functionality of a gene / site is 

dependent on its environment, the epistatic interaction between sites / genes may also vary across 

different genetic backgrounds and environments, making it difficult to draw generally applicable 

conclusions and make precise predictions across multiple genetic backgrounds and 

environments. 
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1.2 Thesis overview 

In my thesis, I address several questions in quantifying and understanding epistasis using 

mostly the budding yeast Saccharomyces cerevisiae and its close relatives as my model 

organisms.  These yeast species, especially within the Saccharomyces sensu stricto group, are 

well characterized in terms of their genome sequences (Cherry, Hong et al. 2012).  Extensive 

research has provided us with numerous functional genomic data, including protein-protein 

interactions (Yu, Braun et al. 2008), expression levels (Nagalakshmi, Wang et al. 2008), gene 

knock-out effects (Giaever, Chu et al. 2002, Costanzo, Baryshnikova et al. 2010, Ryan, Shapiro 

et al. 2012, Giaever and Nislow 2014) and population genetics (Strope, Skelly et al. 2015).  A 

well-developed toolkit for genetic analysis is available, such as sporulation, mating, competition, 

and transformation. 

I investigate epistasis at both intramolecular and intermolecular levels.  The first half of 

my thesis focuses on the epistasis within a tRNA gene.  I examine how mutations at individual 

positions of a tRNA gene and their low-order combinations affect the fitness of Saccharomyces 

cerevisiae, from which intragenic epistasis is quantified at a large scale.  The second half of my 

thesis focuses on epistasis between genes.  I explain how incompatible gene pairs involved in the 

postzygotic isolation between two yeast species may be identified effectively by a genomic 

approach.   

In Chapter 2, I measure the fitness landscape of a tRNA gene.  Fitness landscapes 

describe the genotype-fitness relationship and are a major determinant of evolutionary 

trajectories.  The vast genotype space, coupled with the difficulty of measuring fitness, has 

hindered the empirical determination of fitness landscapes.  Combining precise gene replacement 
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and next-generation sequencing, I quantify the Darwinian fitness of over 65,000 yeast strains, 

each carrying a unique variant of the single-copy tRNACCU
Arg

 gene at its native genomic location 

under a high-temperature challenge.  Analysis of single and double mutants allows for 

quantifying epistasis between 61% of all possible mutation pairs, showing that nearly half of all 

mutation pairs exhibit significant epistasis with a strong negative bias except at paired sites.  

Similar trends for an enrichment of negative epistasis are also revealed when focusing on 

mutation pairs on the genetic background with one or two existing mutations.  

 For Chapter 3, I measured fitness landscapes of the RNA gene in four different 

environments.  I find pervasive genotype by environment interactions (G×E), but they follow a 

simple piecewise linear relationship.  Both fitness and epistasis are largely predictable, lending 

empirical support in inferring fitness landscape and epistasis across multiple environments in 

future studies.  For instance, the fitness landscape and epistasis of the tRNA gene in any 

environment can be predicted as long as it has been measured in one environment and the 

relative gene importance in the two environments compared is known.  Epistasis is compared 

across environments, and the sign of epistasis remains largely unchanged across multiple 

environment pairs.  However, there is an enrichment for switching from positive epistasis to 

negative epistasis in general as gene importance increases. 

 In Chapter 4, I switch gears from intragenic epistasis to intergenic epistasis.  Genetic 

incompatibility, a form of epistatic interactions between otherwise functional genes in their 

conspecific genetic background, is commonly considered as the major cause of postzygotic 

isolation.  The Bateson-Dobzhansky-Muller (BDM) model of reproductive isolation by genetic 

incompatibility is a widely accepted model of speciation.  Despite repeated efforts, BDM 

incompatibilities between nuclear genes have never been identified between S. cerevisiae and its 
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sister species S. paradoxus.  Such negative results have led to the belief that simple nuclear BDM 

incompatibilities do not exist in yeast.  Here I explore an alternative explanation that such 

incompatibilities exist but were undetectable due to limited statistical power.  I evaluated 

previous studies and revealed the lack of statistical power due to limited sample size.  I modeled 

the procedures of identifying genetic incompatibilities using Matlab simulation.  By designing 

and comparing different identification strategies, I optimized the identification strategy based on 

various sample sizes and statistical models. 

 In summary, research in Chapter 2 and Chapter 3 highlights the quantification and 

characteristics of intragenic epistasis at a large scale, while Chapter 4 focuses on the 

identification of intergenic epistasis at the genomic level.  Through this research, I was able to 

test and confirm a series of important evolutionary hypotheses on fitness landscape and epistasis 

and offer new insights into the underlying mechanism of evolution and strategies in studying 

evolutionary questions. 
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CHAPTER 2 

DESCRIBING FITNESS LANDSCAPE ALLOWS FOR  

QUANTIFYING INTRAGENIC EPISTASIS AT A LARGE SCALE 

2.1 Abstract 

Fitness landscapes describe the genotype-fitness relationship and represent major 

determinants of evolutionary trajectories.  However, the vast genotype space, coupled with the 

difficulty of measuring fitness, has hindered the empirical determination of fitness landscapes.  

Combining precise gene replacement and next-generation sequencing, we quantify Darwinian 

fitness under a high-temperature challenge for over 65,000 yeast strains each carrying a unique 

variant of the single-copy 
A rg

C C U
tR N A  gene at its native genomic location.  Approximately 1% of 

single point mutations in the gene are beneficial, while 42% are deleterious.  Fitness is broadly 

correlated with the predicted fraction of correctly folded tRNA molecules, revealing a 

biophysical basis of the fitness landscape.  Almost half of all mutation pairs exhibit significant 

epistasis, which has a strong negative bias except when the mutations occur at Watson-Crick 

paired sites.  The strong negative bias is also observed when focusing on mutations on genetic 

background with multiple existing mutations.   
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2.2 Introduction  

Fitness landscapes can inform on the direction and magnitude of natural selection and 

elucidate evolutionary trajectories (de Visser and Krug 2014), but their empirical determination 

requires the formidable task of quantifying the fitness of an astronomically large number of 

possible genotypes.  Past studies were limited to relatively few genotypes (Weinreich, Delaney et 

al. 2006, Lind, Berg et al. 2010).  Next-generation DNA sequencing (NGS) has permitted the 

analysis of many more genotypes (Pitt and Ferre-D'Amare 2010, Hietpas, Jensen et al. 2011, 

Melamed, Young et al. 2013, Findlay, Boyle et al. 2014, Guy, Young et al. 2014, Melnikov, 

Rogov et al. 2014, Olson, Wu et al. 2014, Bank, Hietpas et al. 2015), but research has focused on 

biochemical functions (Pitt and Ferre-D'Amare 2010, Hinkley, Martins et al. 2011, Melamed, 

Young et al. 2013, Findlay, Boyle et al. 2014, Guy, Young et al. 2014, Melnikov, Rogov et al. 

2014, Olson, Wu et al. 2014) rather than fitness.  In the few fitness landscapes reported, only a 

small fraction of sites or combinations of mutations per gene were examined (Hietpas, Jensen et 

al. 2011, Findlay, Boyle et al. 2014, Melnikov, Rogov et al. 2014, Bank, Hietpas et al. 2015).   

We combine gene replacement in Saccharomyces cerevisiae with an NGS-based fitness 

assay to determine the fitness landscape of a tRNA gene.  tRNAs carry amino acids to ribosomes 

for protein synthesis, and mutations can cause diseases such as cardiomyopathy and deafness 

(Abbott, Francklyn et al. 2014).  tRNA genes are typically shorter than 90 nucleotides, allowing 

coverage by a single Illumina sequencing read.  We focus on 
A rg

C C U
tR N A , which recognizes the 

arginine codon AGG via its anticodon 5’-CCU-3’.  
A rg

C C U
tR N A  is encoded by a single-copy 

nonessential gene in S. cerevisiae (Bloom-Ackermann, Navon et al. 2014), because AGG is also 

recognizable by 
A rg

U C U
tR N A via wobble pairing.  Deleting the 

A rg

C C U
tR N A  gene (Figure S1; Table 2-
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1) reduces growth rates in both fermentable (YPD) and non-fermentable (YPG) media, a 

problem exacerbated by high temperature (Figure S2).  

2.3 Results 

We chemically synthesized the 72-nucleotide 
A rg

C C U
tR N A  gene with a mutation rate of 3% 

per site (1% per alternate nucleotide) at 69 sites; for technical reasons, we kept the remaining 

three sites invariant.  Using these variants, we constructed a pool of >105 strains, each carrying a 

A rg

C C U
tR N A  gene variant at its native genomic location (Figure S1, 2-3).  Six parallel competitions 

of this strain pool were performed in YPD at 37°C for 24 hours.  The 
A rg

C C U
tR N A  gene amplicons 

from the common starting population (T0) and those from six replicate competitions (T24) were 

sequenced with 100-nucleotide paired-end NGS (Figure 2-1; Table 2-2).  Genotype frequencies 

were highly correlated between two T0 technical repeats (Pearson’s correlation r = 0.99997; 

Figure S3A) and among six T24 biological replicates (average r = 0.9987; Figure S3B).  

Changes in genotype frequencies between T0 and T24 were used to determine the Darwinian 

fitness of each genotype relative to the wild-type.  For our fitness estimation, we considered 

65,537 genotypes with read counts ≥ 100 at T0.  In theory, a cell that does not divide has a fitness 

of 0.5 (Qian, Ma et al. 2012).  Because 
A rg

C C U
tR N A  mutations are unlikely to be fatal, we set 

genotype fitness at 0.5 when the estimated fitness is < 0.5 (due to stochasticity).  Fitness values 

from these en masse competitions agreed with those obtained from growth curve and pairwise 

competition (Figure S4), as reported previously (Qian, Ma et al. 2012).  We observed strong 

fitness correlations across diverse environments for a subset of genotypes examined (Figure S5), 

suggesting that our fitness landscape is broadly relevant.   

We estimated the fitness (f) of all 207 possible mutants that differ from the wild-type by 

one point mutation (N1 mutants), and calculated the average mutant fitness at each site (Figure 
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2-2A).  Average fitness decreased to < 0.75 by mutation at nine key sites, including all three 

anticodon positions (Table S3), three TΨC loop sites, one D stem site, and two paired TΨC stem 

sites (Figure 2-2A).  The TΨC loop and stem sites are components of the B Box region of the 

internal promoter, with C55 essential for both TFIIIC transcription factor binding and Pol III 

transcription (Hiraga, Botsios et al. 2012).  In addition, some sites such as T54 are ubiquitously 

post-transcriptionally modified (Phizicky and Hopper 2010).  By contrast, the average mutant 

fitness is ≥ 0.95 at 30 sites (Figure 2-2A).  Overall, mutations in loops are more deleterious than 

in stems (P = 0.01, Mann-Whitney U test), although this difference becomes insignificant after 

excluding the anticodon (P = 0.09).  Unsurprisingly, different mutations at a site have different 

fitness effects (Figure S6).  For example, mutation C11T in the D stem is tolerated (fC11T ± SE = 

1.006 ± 0.036), but C11A and C11G are not (fC11A = 0.676 ± 0.030 and fC11G = 0.661 ± 0.035); 

likely due to G:U paring in RNA. 

The fitness distribution of N1 mutants shows a mean of 0.89 and a peak at 1 (Figure 2-

2B).  Only 1% of mutations are significantly beneficial (nominal P < 0.05; t-test based on the six 

replicates), whereas 42% are significantly deleterious.  We estimated the fitness of 61% of all 

possible genotypes carrying two mutations (N2 mutants), and observed a left-shifted distribution 

peaking at 0.50 and 0.67 (Figure 2-2C).  We also estimated the fitness of 1.6% of genotypes 

with three mutations (N3 mutants); they exhibited a distribution with only one dominant peak at 

0.5, indicating that many triple mutations completely suppress yeast growth in the en masse 

competition (Figure 2-2D).  The fitness distribution narrows and shifts further toward 0.5 in 

strains carrying more than three mutations (Figure 2-2E).   

Fitness landscapes allow predicting evolution, because sites where mutations are on 

average more harmful should be evolutionarily more conserved.  We aligned 200 non-redundant 
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tRNACCU

Arg  gene sequences across the eukaryotic phylogeny.  The percentage of sequences having 

the same nucleotide as yeast at a given site is negatively correlated with the average fitness upon 

mutation at the site (Spearman’s  = -0.61, P = 2×10-8; Figure 2-2F).  Among N1 mutants, the 

number of times that a mutant nucleotide appears in the 200 sequences is positively correlated 

with the fitness of the mutant ( = 0.51, P = 2×10-15; Figure 2-2G).  Furthermore, mutations 

observed in other eukaryotes have smaller fitness costs in yeast than those unobserved in other 

eukaryotes (P = 9×10-6, Mann–Whitney U test).   

Two mutations may interact with each other, creating epistasis , with functional and 

evolutionary implications (Phillips 2008).  We estimated  within the tRNA gene from the fitness 

of 12,985 N2 mutants and 207 N1 mutants (Figure 2-3A).   is negatively biased, with only 34% 

positive values (P < 10-300, binomial test; Figures 2-3B, S7A, S8).  Forty-five percent of  values 

differ significantly from 0 (nominal P < 0.05, t-test based on the six replicates), among which 86% 

are negative (P < 10-300, binomial test; Figures 2-3B, S7A, S8).  Consistent with the overall 

negative , the mean fitness of N2 mutants (0.75) is lower than that predicted from N1 mutants 

assuming no epistasis (0.81) (Figure 2-2E).  Interestingly, as the first mutation becomes more 

deleterious, the mean epistasis between this mutation and the next mutation becomes less 

negative and in some cases even positive (Figures 2-3C, S9), similar to between-gene epistasis 

involving an essential gene (He, Qian et al. 2010).  Consequently, the larger the fitness cost of 

the first mutation, the smaller the mean fitness cost of the second mutation (Figures 2-3D, S10).  

Pairwise epistasis involving three or four mutations is also negatively biased (Figure S11).  

Consistently, N3 to N8 mutants all show lower average fitness than expected assuming no 

epistasis (Figure 2-2E).  
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The distribution of epistasis between mutations at paired sites is expected to differ from 

the above general pattern, because different Watson-Crick (WC) pairs may be functionally 

similar (Meer, Kondrashov et al. 2010).  We estimated the fitness of 71% of all possible N2 

mutants at WC paired sites.  Among the 41 cases that switched from one WC pair to another, 23 

(56%) have positive  (Figure 2-3E).  Among the 80 N2 mutants that destroyed WC pairing, 39 

(49%) showed positive  (Figure 2-3F).  The  values are more positive for each of these two 

groups than for N2 mutants where the two mutations do not occur at paired sites (P = 7×10-6 and 

2.6×10-3, respectively, Mann-Whitney U test).  Furthermore,  is significantly more positive in 

the 41 cases with restored WC pairing than the 80 cases with destroyed pairing (P = 0.04).  

These two trends also apply to cases with significant epistasis (corresponding P = 3×10-5, 0.01, 

and 0.01, respectively; Figures 2-3EF, S7BC).  Nevertheless, epistasis is not always positive 

between paired sites, likely because base pairing is not the sole function of the nucleotides at 

paired sites.  We observed 160 cases of significant sign epistasis , which is of special interest 

because it may block potential paths for adaptation (Weinreich, Delaney et al. 2006).  We also 

detected  with opposite signs in different genetic backgrounds, a high-order epistasis (Table S4).   

A tRNA can fold into multiple secondary structures.  We computationally predicted the 

proportion of tRNACCU

Arg  molecules that are potentially functional (i.e., correctly folded, no 

anticodon mutation) for each genotype (Pfunc).  Raising Pfunc increases fitness ( = 0.40, P < 10-

300) albeit with diminishing returns (Figure 2-4A), and this correlation holds after controlling for 

mutation number ( = 0.26, 0.37, and 0.24 for N1, N2, and N3 mutants, respectively).  Because 

computational prediction of RNA secondary structures is only moderately accurate, the 

Pfunc−fitness correlation demonstrates an important role of Pfunc in shaping the tRNA fitness 

landscape.  Nonetheless, after controlling for Pfunc, mutant fitness still correlates with mutation 
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number ( = -0.51, P < 10-300; see also LOESS regressions for N1, N2, and N3 mutants in 

Figure 2-4B), suggesting that other factors also impact fitness.  

To investigate whether Pfunc explains epistasis, we computed epistasis using the fitness of 

N1 and N2 mutants predicted from their respective Pfunc−fitness regression curves (Figure 2-

4B), and observed a significant correlation between the predicted and observed epistasis ( = 

0.04, P = 2.7×10-5).  The weakness of this correlation is at least partly due to the fact that 

epistasis is computed from three fitness measurements (or predictions) and therefore associated 

with a considerable error.  There is a similar bias in predicted epistasis toward negative values 

(Figure 2-4C), but further analyses suggest that it probably arises from factors other than tRNA 

folding.  These results regarding Pfunc and epistasis are not unexpected given that a tRNA site can 

be involved in multiple molecular functions (Phizicky and Hopper 2010, Hiraga, Botsios et al. 

2012).  

2.4 Discussion 

In summary, we described the in vivo fitness landscape of a yeast tRNA gene under a 

high-temperature challenge.  Broadly consistent with the neutral theory, beneficial mutations are 

rare (1%), relative to deleterious (42%) and (nearly) neutral mutations (57%).  We found 

widespread intragenic epistasis between mutations, consistent with studies of smaller scales (de 

Visser and Krug 2014).   

Intriguingly, 86% of significant epistasis is negative, indicating that the fitness cost of the 

second mutation is on average greater than that of the first.  A bias toward negative epistasis was 

also observed in protein genes and RNA molecules (Bershtein, Segal et al. 2006, Melamed, 

Young et al. 2013, Olson, Wu et al. 2014, Bank, Hietpas et al. 2015, Puchta, Cseke et al. 2016), 

suggesting that this may be a general trend.  Variation in fitness is partially explained by the 
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predicted fraction of correctly folded tRNA molecules, suggesting general principles underlying 

complex fitness landscapes.  Our tRNA variant library provides a resource in which various 

mechanisms contributing to its fitness landscape can be evaluated and the methodology 

developed here is applicable to the study of fitness landscapes of longer genomic segments 

including protein genes. 

 

2.5 Materials and Methods 

2.5.1 Media 

Standard YPD (1% yeast extract, 2% peptone, 2% glucose) and YPG (1% yeast extract, 2% 

peptone, 3% glycerol) media were used as indicated.  These two media differ in the carbon 

source, with YPD providing glucose as a fermentable carbon source and YPG providing glycerol 

as a non-fermentable carbon source.  Complete Supplement Media (CSM) used contained 0.017% 

yeast nitrogen base without amino acids, 0.5% ammonium sulfate, 2% glucose, with addition of 

appropriate CSM drop-out mix as outlined by the manufacturer (Clontech). 

 

2.5.2 Assessing the fitness effects of 
A rg

C C U
tR N A

 gene deletion across environments 

Two different environments are needed in this experiment.  The first is a permissive 

environment, for collection of transformants, in which growth rate differences among tRNA 

variant-carrying cells are minimized in order to maximize equal representation in the initial 

tRNA gene variant pool.  A second selective environment is then required where the fitness 

variation among cells carrying different tRNA gene variants is maximized, allowing a fitness 

landscape to be determined.   
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To identify these two environments, we first replaced the single-copy wild-type 

A rg

C C U
tR N A  gene (standard gene name HSX1) with LEU2 in the haploid strain BY4742 (MATα; 

his3Δ 1; leu2Δ 0; lys2Δ 0; ura3Δ 0; hsx1::LEU2) (Figure S1), followed by confirmation by 

Sanger sequencing.  Growth curves for the wild-type strain and the strain lacking the 
A rg

C C U
tR N A  

gene were then determined by optical density at 600 nm every 15 minutes for 24 hours using a 

Synergy H1 Microplate Reader across multiple environments, consisting of combinations of two 

media (YPD and YPG) and three temperatures (30, 35 and 37°C) (Figure S2).  The highest slope 

of the growth curve during the log phase was calculated for each growth curve following a 

previously established method (Zorgo, Gjuvsland et al. 2012).  For the reasons outlined in the 

previous paragraph, YPD at room temperature was chosen as the condition for transformation, 

while YPD at 37°C was chosen as the condition for fitness landscape determination. 

 

2.5.3 Chemical synthesis of yeast tRNA gene variants 

The yeast 
A rg

C C U
tR N A  gene was chemically synthesized by IDT 

(https://www.idtdna.com/site).  IDT cannot synthesize oligonucleotides longer than 100 

nucleotides with sequence variations that require manual mixing of nucleotides.  With this limit 

of the total length and the need for constant regions at the two ends of the oligonucleotides for 

polymerase chain reaction (PCR), 69 variable sites are allowed.  That is, the first nucleotide and 

last two nucleotides (counting from the 5’ end) of the 72-nucleotide gene were invariant and 

synthesized according to the wild-type sequence.  At each of the 69 variable sites, the probability 

of incorporating the wild-type nucleotide was set at 0.97, while the probability of incorporating 

each of the other three nucleotides was 0.01.  The DNA sequence synthesized is 

TTCAACCAAGTTGGttccgtttgcgtaatggtaacgcgtctccctcctaaggagaagactgcgggttcgagtcccgtacggaa
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CGTTGATTATTTTTTTT, where capital letters indicate the nucleotides at invariant sites while 

lower-case letters indicate the nucleotides with 97% probability at variable sites.  The underlined 

region corresponds to the tRNA gene, whereas the flanking non-underlined regions are used for 

fusion PCR and homologous recombination (Figure S1).  Using 97% wild-type nucleotides at 

each variable position maximizes the fraction of variants carrying two mutations, facilitating the 

study of pairwise epistasis.  In the pool of tRNA gene variants synthesized, the fractions of 

molecules with 0, 1, 2, 3, 4 and >4 mutations are expected to be 12%, 26%, 27%, 19%, 10%, and 

6%, respectively, while the possible numbers of variants with 0, 1, 2, 3, and 4 mutations are 1, 

207, 2.1×104, 1.4×106, and 7.0×107, respectively.  Sanger sequencing of 24 randomly picked 

variants confirmed that the synthesis was as expected and contained no indel.  The mutation rate 

was estimated to be 3.2±0.29%, not significantly different from the expected value of 3%, and 

different base changes were roughly equally frequent.  

 

2.5.4 Construction of the tRNA gene variant strain pool 

The pool of synthesized single-stranded oligonucleotides were amplified by PCR and 

then fused with the URA3 marker gene by PCR (Figure S1).  High fidelity AccuPrime™ Pfx 

DNA polymerase was used in all PCR reactions.  The tRNA gene deletion strain (MATα; his3Δ 

1; leu2Δ 0; lys2Δ 0; ura3Δ 0; hsx1::LEU2) was then transformed with the tRNA-URA3 variant 

cassette to integrate a single tRNA gene variant and to simultaneously remove LEU2 at the 

native tRNA gene locus.  Over 100,000 colonies were collected from CSM minus uracil plates 

by washing with sterile water.  The large number of colonies collected ensured the inclusion of a 

large number of tRNA gene variants.  Pooled variants were stored in 20% glycerol at -80C. 
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2.5.5 Competition  

A frozen sample of cells carrying tRNA gene variants was removed from storage at -

80C and allowed to revive at 30°C in YPD for 3 hours.  Six replicate competitions were then 

started by dilution of this common starter population into six 50 ml Falcon tubes, each containing 

25 ml of YPD at 37°C at an initial OD660 = 0.1.  Each culture was maintained at 250 RPM in a 

shaking incubator and diluted to OD660 = 0.1 through transfer to fresh 25 ml of YPD media 

every 12 hours, at which time population aliquots were also frozen in 20% glycerol at -80C.  

The competitions lasted for 24 hours. 

 

2.5.6 Library preparation, Illumina sequencing, and read mapping 

DNA was extracted from thawed population aliquots of interest.  We amplified the tRNA 

gene from cell populations using two rounds of PCR to ensure that only those tRNA gene 

variants that are inserted at the native location were amplified (Figure S1; Table S1).  Two 

technical repeats of the starting population before competition (T0) and six biological replicates 

from the populations after 24 hours in competition (T24) were subjected to 100-nucleotide paired-

end Illumina sequencing.  Paired reads for the tRNA gene sequence are required to be identical 

to be counted.  Read counts are combined across technical repeats or biological replicates in 

subsequent analyses unless otherwise noted.  To ensure relative accuracy in fitness estimation, 

65,537 genotypes with a total of at least 100 reads in the two technical repeats at T0 were 

analyzed.   
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2.5.7 PCR and sequencing errors 

The error rate for Illumina sequencing is 3×10-4 per site per read 

(http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf).  Thus, due to 

sequencing error, a genotype is expected to lose U = [1-(1-3×10-4)2×69]M0 read pairs, where M0 is 

the true number of read pairs of the genotype.  Because the fractional loss U/M0 = 0.04 is a 

constant for all genotypes including the wild-type in each sample, the loss of reads due to 

sequencing error does not affect fitness estimation.  Sequencing error also causes the genotype to 

gain on average V = (3×10-4/3)2M1 = 10-8M1 read pairs, where M1 is the total number of reads for 

all neighbors of the focal genotype (i.e., the genotypes that differ from the focal genotype by one 

nucleotide).  Thus, the fractional gain of read pairs for the genotype is expected to be V/M0 = 10-

8M1/M0, which has virtually no impact on fitness estimation in our study.  For instance, at T0, for 

the wild-type, M1/M0 is expected to be ~2; for an N1 genotype, M1/M0 is expected to be 99; for 

an N2 genotype, M1/M0 is expected to be 2×99 = 198; and so on.  Hence, the fractional gain of 

read pairs is <10-5 for genotypes with no more than 10 mutations.   

We similarly estimated the impact of PCR error.  AccuPrimeTM Pfx DNA polymerase 

used in PCR has a very low error rate of 2.9×10-6 per nucleotide incorporated 

(https://tools.thermofisher.com/content/sfs/brochures/711-

021834%20AccuPrime%20Brochu.pdf).  Each of the two PCRs used in sequencing library 

preparation had 30 cycles.  Because later cycles are inefficient, we considered effectively 50 

cycles total for the two PCRs.  Thus, due to PCR error, a genotype is expected to lose U = 

(2.9×10-6×69×50) M0 molecules, where M0 is the true number of DNA molecules of the 

genotype, 69 is the sequence length in nucleotides, and 50 is the total number of PCR cycles.  

Because the fractional loss U/M0 = 0.01 is a constant for all genotypes in each sample, the loss of 
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molecules due to PCR error does not affect fitness estimation.  Sequencing error also causes the 

genotype to gain on average V = 2.9×10-6×50/3 M1 = 4.8×10-5M1 molecules, where M1 is the 

total number of molecules for all neighbors of the focal genotype.  Thus, the fractional gain of 

molecules for the genotype is expected to be V/M0 = 4.8×10-5M1/M0, which has little impact on 

fitness estimation in our study.  As mentioned, at T0, for the wild-type, M1/M0 is expected to be 

~2; for an N1 genotype, M1/M0 is expected to be 99; for an N2 genotype, M1/M0 is expected to be 

2×99 = 198; and so on.  Hence, the fractional gain in the number of molecules is < 0.024 for 

genotypes with no more than 5 mutations.  

To independently validate the above calculations that are based on the published 

sequencing and PCR error rates, we estimated the upper bound rate of error caused by PCR and 

sequencing.  It is very unlikely for any N1 genotype at T24 to have all of its reads arising from its 

neighbors by PCR and sequencing errors.  Thus, by assuming that all these reads are from errors, 

we can estimate the upper bound error rate.  We calculated the frequency of each N1 genotype in 

each replicate in T24 and identified the smallest frequency among the total of 207×6=1242 

frequencies and the corresponding genotype.  We then divided the total number of read pairs for 

this genotype in the other five replicates by the total number of read pairs for its neighbors in 

these five replicates.  The result, 5.0×10-5, is an upper bound estimate of the probability that a 

genotype "mutates" to a specific neighbor, or V defined earlier.  Interestingly, this upper bound 

estimate of V from the sum of PCR error and the much lower sequencing error is virtually 

identical to that calculated based on the published PCR error rate.  Together, these analyses 

suggest that PCR and sequencing errors have minimal impacts on our fitness estimation. 
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2.5.8 Number of generations of competition 

During competition, cell populations were diluted every 12 hours, with OD660 recorded 

before and after dilution.  From the sequencing results, we calculated the frequency of the wild-

type at the beginning of the competition (F0) and at 24 hours in competition (F24).  The number 

of wild-type generations for the 24 hours is then G = log2(dgF24/F0) = 11.5, where d is the 

dilution factor and g is the ratio between the cell number calculated from OD660 (Zorgo, 

Gjuvsland et al. 2012) at 24 hours and that at the beginning of the competition. 

 

2.5.9 Estimating relative fitness from read frequency changes 

Using a method previously designed for the fitness estimation of gene deletion strains 

(Bar-seq) (Smith, Heisler et al. 2009), we estimated the relative fitness of each strain by using 

the 72-nucleotide tRNA sequence that it carries as the barcode to directly determine its 

abundance within the population at each time point.  The per generation Darwinian fitness of a 

variant relative to the wild-type is 

1 /

2 4 0

2 4 0

#  o f  re a d s  fo r  th e  v a r ia n t a t #  o f  re a d s  fo r  th e  v a r ia n t a t  
F itn e s s

#  o f  re a d s  fo r  th e  w ild -typ e  a t #  o f  re a d s  fo r  th e  w ild -typ e  a t 

G

T T

T T

 
  
 

, where G =11.5 is the 

number of wild-type generations in 24 hours.  By definition, the wild-type fitness is 1.  If the 

read number drops to 0 in all six replicates or if fitness drops under 0.5, fitness was assigned to 

be 0.5, representing no cell division for this variant.  There are six biological replicates, and we 

used a t-test to examine if the fitness of a variant is significantly different from 1 at a nominal P 

value of 5%.  Comparison of read frequencies obtained from populations before and after 

competition corrects for frequency differences among genotypes in the starting population and 

potential biases in variant-specific PCR amplification efficiency, sequencing library preparation 

efficiency, as well as any Illumina sequencing efficiency and accuracy differences that may exist. 
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Because the tRNA gene deletion strain can grow (Figure S2), the gene is nonessential.  

However, the deletion strain was not in the pool of genotypes that underwent Bar-seq, so we 

could not directly compare a genotype with the deletion strain to examine the potential existence 

of dominant negative effects.  For a genotype to have a computed fitness <0.5, its frequency 

relative to the wild-type (w) must decrease by at least 211.5= 2896 folds from T0 to T24.  For an 

average N2 mutant, the expected w at T0 is 10-4.  So, the expected w is <3×10-8 in T24 if its fitness 

is <0.5.  Given the bottleneck population size of ~3×107 (at dilution) and final population size of 

~1.7×109 in the competition, such a small w means that the corresponding cell number is very 

low.  Thus, the fate of the genotype depends largely on genetic drift.  In other words, the formula 

for estimating mutant fitness in the previous paragraph, which ignores genetic drift, would not 

work well.  Given the known function of tRNAs, the most likely reason for potential dominant 

negative effects would be anticodon mutations.  Yet, most mutants with anticodon mutations 

have fitness >0.5 (Table S3).  Thus, dominant negative effects probably do not exist here, but 

further studies are certainly required to confirm this point.  

 

2.5.10 Fitness estimation from growth curves 

In order to verify our en masse fitness estimates, we isolated 55 strains from the variant 

pool with distinct tRNA gene sequences based on Sanger sequencing.  The growth rates of the 55 

strains were measured using Bioscreen C OD reader at 37°C in YPD.  Cells were grown at room 

temperature overnight until saturation, and then diluted by a factor of 50 to roughly OD600 = 0.1.  

OD measurements at wide band (450-580 nm) were taken every 20 minutes for 48 hours.  

Proliferation efficiency and maximum growth rate were calculated following standard 
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procedures from measurement 10 to 72 (Warringer, Zörgö et al. 2011).  Two biological 

replications in fitness measurement were performed per genotype. 

 

2.5.11 Fitness estimation by pairwise competition 

To further confirm our en masse fitness estimates, we performed pairwise competition 

assays of the 55 strains against a fluorescent reference strain.  The reference strain, YCM2644 

(MATα; his3Δ 1; leu2Δ 0; lys2Δ 0; URA3; ho::TDH3p-VenusYFP-HygMX4), was constructed by 

replacing the HO gene in a strain that carries the native tRNA gene and URA3 with a cassette 

comprised of a yellow florescent protein (YFP) gene and a hygromycin resistance gene.  We also 

competed between the reference stain and one of the constructed variant strains that happens to 

carry the wild-type tRNA gene (referred to as the wild-type variant).  The competition procedure 

followed that in the main experiment.  Samples were collected at 0 and 24 hours, and the fitness 

of each variant strain relative to that of the wild-type variant was calculated following an 

established protocol (He, Qian et al. 2010).  Three biological replications in fitness measurement 

were performed. 

 

2.5.12 Comparing growth rates across multiple environments 

We measured the growth rates of the aforementioned 55 strains using Bioscreen C OD 

reader in four environments at 30°C: YPD, YPD with 7% EtOH, YPD with 3% DMSO, and 

YPD with 0.85M NaCl.  Cells were grown at room temperature overnight until saturation, and 

then diluted by a factor of 100 to roughly OD600 = 0.1.  OD measurements at wide band (450-

580 nm) were taken every 20 minutes for 24 hours.  Maximum growth rates were calculated as 

described above.  Three biological replications were performed.  Growth rates in these four 

environments and those in YPD at 37°C were compared for the 55 strains.  
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2.5.13 Phylogenetic data of the tRNA genes 

From GtRNAdb (http://gtrnadb.ucsc.edu), we downloaded 1098 eukaryotic tRNA genes 

with anticodon CCU.  A total of 416 distinct sequences were aligned using the cmalign program 

in the Infernal package (http://infernal.janelia.org/), which aligns tRNA sequences based on both 

the primary sequence and the secondary structure.  The region corresponding to the 72-

nucleotide segment of yeast tRNA was extracted for further analysis.  To acquire a good 

representation of the tRNA sequence variation over evolutionary time and avoid oversampling 

from certain well-studied groups of organisms, we calculated the pairwise sequence distances 

among the tRNA genes, and randomly removed one of the two sequences with the smallest 

distance until the distance between any two sequences in the dataset is at least 7 nucleotides 

(~10%).  A total of 200 sequences remained in this dataset.  We also examined a subset of 23 

sequences, each having at least 20 nucleotide differences from any other sequences in the subset, 

and obtained qualitatively similar results as those from the 200 sequences. 

  

2.5.14 Estimating epistasis from fitness values 

Epistasis is defined as  = fAB - fAfB, where fAB is the fitness of a N2 mutant and fA and fB 

are the fitness of the two corresponding N1 mutants.   is computed by fAB - 0.5 when fAfB < 0.5.  

The overall distribution of  is unaffected when we exclude 854 cases in which fAB or fAfB is ≤ 

0.5 (Figure S7A).  To examine if  differs significantly from 0, we estimated  from each of the 

six biological replicates and conducted a t-test.   

In the tRNA under study, there are 20 paired stem sites, with 1 being wobble pairing (GU) 

and the rest 19 being WC pairing.  Pairwise epistasis is more likely to be positive when two 
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mutations occur at paired sites than when they do not occur at paired sites.  It is easy to 

understand why epistasis is positive when the second mutation restores pairing after the first 

mutation breaks it.  Further, even when pairing is not restored by the second mutation, epistasis 

could be positive, likely because the second mutation does no more harm to pairing when the 

pairing has been broken by the first mutation.  Nevertheless, even at paired sites, epistasis is not 

always positive, suggesting that base pairing is not the sole function of the nucleotides at paired 

sites such that the second mutation, regardless of whether it restores pairing, could do additional 

harm.    

Sign epistasis occurs when the fitness effect of a mutation is opposite depending on the 

presence or absence of another mutation.  That is, sign epistasis satisfies (fA-1)(fAB/fB-1) < 0 or 

(fB-1)(fAB/fA-1) < 0.  Reciprocal sign epistasis satisfies (fA-1)(fAB/fB-1) < 0 and (fB-1)(fAB/fA-1) < 

0.  Statistical significance was determined as described above.  In total, 160 cases of significant 

sign epistasis were found, 6 of which were reciprocal sign epistasis.  Interestingly, 75 of the 160 

cases involved T8C and 54 involved A70C, suggesting that sign epistasis is highly concentrated 

at a few sites.  The reason why T8C and A70C are concentrated in significant sign epistasis cases 

is that they are the only significantly beneficial mutations in the wild-type background, but they 

apparently are deleterious in many N1 backgrounds.  Among the 160 sign epistasis cases, 9 

involve paired sites in stems, significantly more than the chance expectation (P < 0.05, χ2 

test).  This is not unexpected, because a mutation at a stem site could either destroy or restore a 

base pair depending on the presence or absence of the pairing before the mutation. 

We predicted the mean fitness of mutants carrying n mutations from the fitness of N1 

mutants, under the assumption of no epistasis (red circles in Figure 2-2E).  For each mutant with 

n mutations, the predicted fitness is the product of the fitness of the constituent N1 mutants or 
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0.5 if the product is < 0.5.  We then averaged the predicted fitness for all mutants with n 

mutations.   

 

2.5.15 Varying pairwise epistasis in different genetic backgrounds 

To examine whether the sign of pairwise epistasis varies depending on the genetic 

background, we compared the epistasis between mutations A and B in the wild-type and that in 

the N1 mutant carrying mutation C.  Epistasis in the wild-type is calculated by 

A B A B A B
| W T f f f   , while epistasis in the N1 mutant is calculated by 

A B A B C C A C C B C C
| C / ( / ) ( / )f f f f f f   .  The expected fitness 

A B
f f and 

A C C B C C
( / ) ( / )f f f f  are set to be 

0.5 if smaller than 0.5.  

 

2.5.16 An alternative measure of pairwise epistasis 

We also used an alternative definition of epistasis based on an additive model of the 

logarithm of fitness,
A B A B

' ln ( ) ln lnf f f    , to calculate all pairwise epistasis (Figure S8), but 

found the general pattern unchanged. 

 

2.5.17 Structural stability and fraction of correctly folded tRNA molecules 

The function/fitness relevance of mutational impacts on protein structure stability is well 

known (Jacquier, Birgy et al. 2013), and we here examine the importance of RNA structure 

stability to fitness.  The secondary structure of the wild-type tRNA follows 

http://lowelab.ucsc.edu/GtRNAdb/Sacc_cere/Sacc_cere-structs.html.  For each tRNA variant, a 

series of suboptimal secondary structures and the corresponding minimum free energy (E) were 

predicted from the “subopt” function in the Vienna RNA package (Lorenz, Bernhart et al. 2011) 
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at 37°C.  The predicted proportion of functional tRNA molecules is estimated by

fu n c
[ ( )] / ( )

i i
E E

k T k T

ii i
P J e e

 

   .  Here, i refers to the ith considered secondary structure, Ji is an 

identity function, taking the value of 0 if the structure i is not functional and 1 if it is functional, 

Ei is the minimum free energy of the ith structure, k = 0.001987 kcal/mol/K is the Boltzmann 

constant, and T = 310 K is the absolute temperature corresponding to 37C.  We considered only 

those structures whose E values are smaller than 3 kcal/mol + the E value of the most stable 

structure for the mutant concerned.  If the wild-type structure is not included within the 3 

kcal/mol range, we add it (with the constraint of the mutant sequence) to the list of predicted 

structures, with E predicted by the energy_of_struct function of the Vienna package.  A structure 

is considered functional when it satisfies two criteria.  First, no base pairing occurs at any 

position of the anticodon and no mutation occurs at any position of the anticodon.  Second, the 

distance between the structure considered and the wild-type structure does not exceed d = 2.  The 

distance was calculated by the RNAdistance function in the Vienna package.  We varied the 

parameter d between 0 and 16 and found the result qualitatively unchanged. 

 

2.5.18 LOESS regression and prediction of epistasis from Pfunc 

LOESS regression in R was used to summarize the relationship (and 95% confidence 

interval) between fitness and Pfunc for N1, N2, and N3 mutants, respectively.  The span parameter 

α was set at 1 and all other parameters were as default.  For each N2 mutant, epistasis is 

predicted in the following manner.  First, the Pfunc of the N2 mutant is computed as described 

above.  Second, the corresponding fitness is predicted using the LOESS curve for N2 mutants.  

Third, Pfunc is computed for each of the two corresponding N1 mutants.  Fourth, fitness is 
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predicted for each of the two N1 mutants from the LOESS curve for N1 mutants.  Fifth, epistasis 

is then calculated based on the three predicted fitness values as if they are observed fitness values.  

When we predicted epistasis using a single LOESS curve, the predicted epistasis is 

positively biased.  For instance, when only the N1 LOESS curve is used, the mean predicted 

epistasis is 0.07.  When only the N2 curve is used, the mean predicted epistasis is 0.16.  When a 

combined LOESS curve for N1 and N2 mutants is used, the mean predicted epistasis is 0.16.  We 

also found that epistasis in Pfunc in overall positive.   
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tRNA URA3
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at room temperature

Paired-end Illumina sequencing
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T 1% 1% 97% 1%
G 1% 1% 1% 97%
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Figure 2-1.  Determining the fitness landscape of the yeast Arg
CCUtRNA gene. Chemically 

synthesized Arg
CCUtRNA gene variants are fused with the marker gene URA3 before placed at the 

native Arg
CCUtRNA  locus. The tRNA variant-carrying cells are competed. Fitness of each Arg

CCUtRNA
genotype relative to wild-type is calculated from the relative frequency change of paired-end 
sequencing reads covering the tRNA gene variant during competition. 
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Figure 2-2.  Yeast Arg
CCUtRNA gene fitness landscape. (A) Average fitness upon a mutation at 

each site. White circles indicate invariant sites. (B-D) Fitness distributions of (B) N1, (C) N2, 
and (D) N3 mutants, respectively. (E) Mean observed fitness (black circles) decreases with 
mutation number. Red circles show mean expected fitness without epistasis (right shifted for 
viewing). Error bars show one standard deviation. (F) Fraction of the 200 eukaryotic Arg

CCUtRNA
genes with the same nucleotide as yeast at a given site decreases with the average fitness upon 
mutation at the site in yeast. Each dot represents one of the 69 examined tRNA sites. (G) 
Fraction of times that a mutant nucleotide appears in the 200 sequences increases with the fitness 
of the mutant in yeast. Each dot represents a N1 mutant. In (F) and (G), ρ, rank correlation 
coefficient; P, P-value from t-tests. 
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Fig. 2-3. Epistasis (ε) in fitness between point mutations in the Arg
CCUtRNA  gene is negatively 

biased. (A) Epistasis between point mutations. Lower-right triangle shows all pairwise epistasis 
(white = not estimated), while upper-left triangle shows statistically significant epistasis (white = 
no estimation or insignificant).  Arg

CCUtRNA  secondary structure is plotted linearly. Parentheses 
and crosses show stem and loop sites, respectively. Same color indicates sites in the same 
loop/stem. Each site has three mutations. (B) Distributions of pairwise epistasis (gray) and 
statistically significant pairwise epistasis (blue) among 12,985 mutation pairs. (C) Mean epistasis 
between first and second mutations increases with the fitness cost of the first mutation. (D) Mean 
fitness cost of the second mutation decreases with the fitness cost of the first mutation. In (C) and 
(D), Pearson’s correlation (r), associated P value, and the linear regression (red) are shown. (E-
F) Distributions of epistasis (gray) and statistically significant epistasis (blue) between pairs of 
mutations that (E) convert a Watson-Crick (WC) base pair to another WC pair or (F) break a 
WC pair in stems. In (B), (E), and (F), the vertical red line shows zero epistasis. 
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Figure 2-4. tRNA folding offers a mechanistic explanation of the fitness landscape.  (A) 
Relationship between the predicted proportion of tRNA molecules that are functional (Pfunc) for 
a genotype and its fitness. Genotypes (with Pfunc ≥ 10-4) are ranked by Pfunc and grouped into 20 
equal-size bins; mean Pfunc and mean fitness ± SE of each bin are presented. The red dot 
represents all variants with Pfunc < 10-4. (B) LOESS regression curves between Pfunc and 
fitness for N1, N2, and N3 mutants, respectively, with dashed lines indicating 95% confidence 
intervals. (C) Quantile-quantile plot between epistasis predicted from Pfunc values using N1 and 
N2 LOESS curves and observed epistasis. The ith dot from the left shows the ith smallest 
predicted epistasis value (y-axis) and ith smallest observed epistasis value (x-axis). Red diagonal 
line shows the ideal situation of y = x. Above and left of the plot are frequency distributions of 
observed and predicted epistasis, respectively. Red horizontal and vertical lines indicate zero 
epistasis. 
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CHAPTER 3 

PREDICTING FITNESS LANDSCAPE AND EPISTASIS  

ACROSS FOUR ENVIRONMENTS 

3.1 Abstract 

To study how the fitness landscape of a tRNA gene varies among environments, I measured the 

landscape in four environments with high precision using high-throughput barcode sequencing.  I 

found that the same mutation almost always has different fitness effects in different 

environments, indicating pervasive genotype by environment interactions (G×E).  Nevertheless, 

the observed G×E follows a simple piecewise linear relationship in which the fitness effect of a 

(deleterious) mutation in an environment is proportional to gene importance in the environment, 

while beneficial mutations have more similar fitness advantages across environments.  This rule 

allows predicting the fitness landscape of the tRNA gene in any environment as long as the 

fitness landscape in one environment and the relative gene importance in the two environments 

have been measured.  Our high-throughput mapping reveals relatively simple rules underlying 

the seemingly complex tRNA fitness landscapes, giving hopes for understanding and predicting 

fitness landscapes of other genes.  Given the prediction on fitness, epistasis values are predicted 

with high predictive power.  Change of epistasis sign across environments also appears at a low 

frequency, partially predicted by the proposed model.  
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3.2 Introduction 

The effect of a new mutation on a gene can be positive, negative, or neutral in a specific 

environment, and may vary in a different environment.  Organisms are constantly adapting to 

their local environment, exploring the fitness landscape by a random walk.  During the random 

work on a fitness landscape towards higher fitness, sometimes local fitness peaks are separated 

by deep fitness valleys.  Organisms need to travel across these fitness valleys to reach a higher 

peak.  If we do not consider the extreme case of small population size that forfeits selection when 

crossing fitness valleys (Weissman, Feldman et al. 2010), gradual stepwise improvements alone 

cannot bridge such fitness valleys (Lindstrom, Alatalo et al. 1999).  Epistasis, however, is one 

possibility that can make crossing fitness valleys possible when the genetic background changes 

(Bloom, Gong et al. 2010, Chang and Torbett 2011).  Moreover, many case studies have revealed 

another possibility through the change of the shape of the fitness landscape across environments 

(Arias, le Poul et al. 2016, Steinberg and Ostermeier 2016).  Having different alleles favorited by 

selection in different environments can lead to maintenance of genetic diversity or even 

reproductive isolation between subpopulations in various environments (Mitchell-Olds, Willis et 

al. 2007).  Such mechanism has been widely referred to as one of the contributing factors when 

explaining allopatric / parapatric speciation and the evolution of genetic incompatibility 

(Schluter 2001), but the there is a scarcity of evidence available for the general existence and the 

magnitude of such changes. 

Evaluating gene by environment interaction at a large scale asks for measuring fitness 

landscapes across multiple environments.  Quantifying fitness landscape in a single environment 

has been a formidable task by itself due to the huge genotype space and complex epigenetic 

interactions among sites.  However, even after obtaining the fitness landscape in one particular 
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environment, how much information we can infer from it and further impose on another 

environment is still unclear.  Many individual case studies have documented strong genotype by 

environment interactions (Arntz, Delucia et al. 2000, Hietpas, Bank et al. 2013), raising the 

possibility that genotype by environment interactions are abundant and gene-specific, therefore 

being unpredictable.  The variation of fitness landscape across environments and the relationship 

and predictive power across environments are currently unknown.  In this chapter, I will present 

a fitness landscape data set collected in four environments, where can explore the relationship of 

fitness between environment pairs, and find out the outliers that deviate from the general 

relationship. 

Similar to fitness, epistasis can also be environment dependent.  A previous study on five 

mutations revealed that the overall patterns of epistasis are negative, but sign and magnitude of 

epistasis among generally beneficial mutations vary widely even across similar external 

environments (Flynn, Cooper et al. 2013).  It is of general interests to quantify changes of 

epistasis across environments and revealing the underlying trends for such sign and magnitude 

changes. 

In this chapter, I first establish a simple piecewise linear model for predicting fitness in 

one environment from the fitness landscape in another environment.  The model performance is 

evaluated based on the bias and deviation of the model prediction across the observed fitness 

range.  This model outperforms two alternative models, especially for predicting beneficial 

mutations.  Based on the biological replicate information, less than 0.2% of fitness values are 

identified as outliers for model prediction.  Lastly, given the predicted fitness values, I further 

evaluated the predictive power for estimating epistasis across various environments.  Epistasis 

can also change sign depending on the environment, and I characterize the change of epistasis 
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sign for six environment pairs.  A few global beneficially mutations are also identified and 

confirmed with growth rate measurements. 

3.3 Results 

3.3.1 Describing the fitness landscape and epistasis in four environments 

In a pilot study, the growth rate is shown to be highly correlated for 55 mutant strains 

using Bioscreen C measurements (Figure S5).  Using the methodology described in Chapter 2 

(Li, Qian et al. 2016), I determine the Arg

CCUtRNA  gene fitness landscape in four environments, 

including 23°C  in YPD (hereafter 23°C), 30°C  in YPD (hereafter 30°C), 30°C in YPD with 3% 

DMSO added (hereafter DMSO) and 37°C  in YPD (hereafter 37°C).  Among these 

environments, 30°C is the optimal growth condition for the lab strain BY4742, with the other 

conditions having low temperature, high temperature, and oxidative stress challenges 

(Sadowska-Bartosz, Paczka et al. 2013). The four environments are chosen because there is a 

gradient of factors changing among these environments, allowing us to test different hypotheses.  

Specifically, for the temperature that affects tRNA folding, we have 37°C > 30°C = DMSO > 

23°C, while for the wild-type growth rate, we have 30°C > 37°> DMSO > 23°C. 

The distribution of fitness varies across environments, with 37°C being the most severe 

condition and 23°C being the mildest condition (Figure 3-1A).  Because Arg

CCUtRNA  mutations are 

unlikely to be fatal, we set genotype fitness at 0.5 when the estimated fitness is < 0.5 (due to 

stochasticity).  The average fitness of all N1 mutants is 0.976, 0.962, 0.957 and 0.934 for 23°C, 

30°C, DMSO and 37°C, respectively.  Average fitness values at different positions also vary 

across environments (Figure 3-1B).  Fitness in different environments, although distributed over 

various ranges, are highly correlated (Correlation for N1 mutants shown in Figure 3-2).  The 
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same trend is also observed for higher order mutants, though less significant, probably due to 

higher measurement error for these mutants.  In all four environments, epistasis was found to be 

negative in general (Figure 3-3) except when focusing on paired sites.   

3.3.2 Pervasive GxE and Epistasis by environment interactions 

To elucidate the general relationship between fitness across different environments, I use 

LOESS regression to visualize the relationship better(Figure 3-4A, B).  Fitness across different 

environment are linearly correlated, with different slopes for beneficial and deleterious 

mutations.  For environment pairs with a similar distribution of fitness, a smaller fraction of sites 

shows significant differences in fitness across environments (t-test, nominal P<0.05).  4.92% of 

mutants showed significant differences between 30°C and DMSO.  For environment pairs with 

drastically different fitness distributions, a much higher fraction of mutants shows significant 

differences in fitness, as high as 39.94% between 23°C and 37°C.  The fraction in all 

environmental pairs is summarized in the upper left triangle of Figure 3-4C.  An alternative 

method to quantify GxE interaction is to focus on its magnitude.  Without GxE interaction, the 

fitness should have the same magnitude across environments.  Given a large number of variants 

sampled, the fraction of fitness with a higher magnitude than the other environment should be 

very close to 50% (95% CI: 50.0% ±0.8%).  However, across all environment pairs, we found 

the fraction to be deviating significantly from 50%.  The most significant pair is 23°C and 37°C, 

and over 90% of variants showed a higher fitness in the former environment.  Percentages for all 

environment pairs is summarized in the lower right triangle of Figure 3-4C.  Similarly, I 

quantified epistasis by environment (GxGxE) interaction using the abovementioned method 

(Figure 3-4D).  A substantial fraction of epistasis is significantly different across environment 
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pairs except for between 30°C and DMSO.  Moreover, all environment pairs have a non-random 

distribution in terms of the magnitude change of epistasis across environments.  

3.3.3 A piecewise linear model predicts fitness across environments 

Knowing the predictability of fitness across environments are important because it allows 

for inferring fitness landscape in a new environment. As an example, I use fitness measurements 

at 30°C to predict that at 23°C.  Similar results were obtained for other environment pairs.  To 

ensure comparatively low measurement errors, I further restrict analysis to variants with read 

number at T0 higher than 500, a total of 18,902 variants, including 207 N1 mutants (100% of all 

possible variants), 5,754 N2 mutants (27.3%), 6,099 N3 mutants (0.44%) and 3,884 N4 mutants, 

etc.  I first proposed and compared two piecewise robust linear model assuming linearity for 

fitness (formula [1]) and log (fitness) (formula [2]), respectively, as shown below.  𝑓𝑌̂ represents 

the fitness to be estimated in the new environment, and fX is the observed fitness in the 

previously measured environment.  The two parameters, k1 and k2, are separately estimated for 

beneficial and deleterious mutations. 

 𝑓𝑌̂ − 1 = {
𝑘1  × (𝑓𝑋 − 1)           𝑖𝑓 𝑓𝑋 ≥ 1 
𝑘2  × (𝑓𝑋 − 1)           𝑖𝑓  𝑓𝑋 < 1

 [1] 

 
log (𝑓𝑌̂) = {

𝑘1  × log (𝑓𝑋)           𝑖𝑓 𝑓𝑋 ≥ 1 
𝑘2  × log (𝑓𝑋)           𝑖𝑓  𝑓𝑋 < 1

 
    [2] 

For lethal mutants or mutations that almost completely stop cell growth, it is biologically 

impossible to quantify the severity of these mutations, and technically difficult to measure its 

fitness accurately using Bar-seq.  In all four environments, a large fraction of high-order mutants 

has fitness equal to 0.5, corresponding to cases where no read is recovered by sequencing at the 

end of competition.  For these variants, measurement accuracy is limited, so I use a total of 5,960 
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N1 and N2 variants to train the linear model, but the model is used to predicted fitness for all 

variants.  Both linear models and all data points are shown in Figure 3-5A. 

The most commonly used yeast gene importance data are the measures of relative growth 

rates of 5,936 single-gene deletion yeast strains collections (Giaever, Chu et al. 2002) in the YPD 

media or the presence of chemical or environmental stress conditions (Hillenmeyer, Fung et al. 

2008).  Similarly here, I define gene importance as the relative fitness of a deletion strain in that 

environment, which is proportional to the slope of the linear model (k2) for deleterious 

mutations.  Compared with deleterious mutations, the slope for beneficial mutations (k1) is closer 

to 1 (Figure 3-5A).  The likely explanation is that deleterious mutations are usually loss-of-

function mutations, so its fitness effect is proportional to gene importance, while some of the 

beneficial mutations can be gain-of-function mutations, which might not be proportional to gene 

importance in each environment, but confers a universal advantage.  The model applies well to 

N1, N2, and higher order mutants1 (Figure 3-5A), without any obvious bias for any particular 

groups of variants or across certain fitness ranges. 

3.3.4 Evaluating model performance based on correlation, bias, and deviation 

The bias and deviation for the linear model (Figure 3-5A, B) across the observed fitness 

range are calculated as below.  The variable fY is the observed fitness in the new environment and 

𝑓𝑌̂ is the predicted fitness in the new environment. 

𝐵𝑖𝑎𝑠 = 𝑓𝑌̂ − 𝑓𝑌 

 

   [3] 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = |𝑓𝑌̂ − 𝑓𝑌| 

 

    [4] 
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Points with fitness equal to 0.5 in either environment are removed because of low 

predictive power and high measurement error.  There is not much systematic prediction error in 

our model except for variants with extremely low fitness values (Figure 3-6B).  This bias is 

expected because when fitness values are low, the corresponding reads at the pool after 

competition can be completely uncovered in the sequencing pool for some of the biological 

replicates, where I assign fitness as 0.5 for these biological replicates.  The deviation of fitness 

prediction is the lowest when the fitness is higher than 0.6 but becomes higher for lower fitness 

values, which is consistent with the technical measurement errors quantified by standard 

deviation across five biological replicates (dashed lines in Figure 3-6C).  The predicted and 

observed fitness values are highly correlated assuming linearity for log fitness (Spearman’s  = 

0.872, Pearson’s correlation r = 0.866).  The correlation is the highest for N1 mutants with the 

least measurement error (Spearman’s  = 0.932, Pearson’s correlation r = 0.982), and is also 

very high for N2 mutants (Spearman’s  = 0.906, Pearson’s correlation r = 0.912).   The 

performances for models assuming linearity for fitness and log fitness are similar, but the one for 

log fitness shows slightly higher correlation, lower overall bias, and deviation, as well as lower 

mean squared error across multiple environment pairs, so I used it throughout the rest of the 

chapter. 

3.3.5 Comparison with two alternative models 

I further compare the above-mentioned piecewise linear model with two alternative 

models, one simple linear model with a single slope for both beneficial and deleterious mutation, 

and a quadratic model.  Both models are also required to go through P(1, 1).  The three models 

and all data points are plotted in Figure 3-5D.  The bias and deviation of the alternative models 

were shown in Figure 3-5E, F.  Because most of the training dataset are deleterious, the model 
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performance is largely unchanged for deleterious mutations.  Both alternative models perform 

poorly in predicting fitness for beneficial mutations (Figure 3-5E, F) with large deviations and 

biases compare with the piecewise linear model.   

3.3.6 Identifying outliers of the linear model 

Using the piecewise linear model, I predicted fitness at 23°C using the fitness values of 

five biological replicates at 30°C individually.  Points with fitness all reaching 0.5 in either 

condition were removed because of their high measurement errors.  A t-test was used to compare 

the predicted and observed fitness of the five biological replicates at 23°C, and a cutoff of P = 

0.05 for FDR corrected p-value was used.  Among the 16,509 predictions, 18 outliers (0.11%) 

were detected, 9 (4.3%) of them were N1 mutants, and 2 of them were N2 mutants (0.034%).  

Using P = 0.05 for cutoff without FDR correction, a total of 1,157 (7.0%) mutants were 

identified as outliers of model prediction.  The smaller fraction of outliers further indicates the 

good performance of the model. 

3.3.7 Change of epistasis sign across multiple environments 

Epistasis is found to be highly correlated between environment pairs.  However, epistasis 

can sometimes change signs across environments.  Table 3-1 listed the number of cases that 

change the sign for epistasis that is significantly different from 0 for the two environments 

compared.  The sign of epistasis remains largely unchanged across environment pairs.  When the 

gene importance is similar in two environments (30°C and DMSO), very few switches in the 

sign of epistasis are observed, as predicted by the model.  When gene importance increases, there 

is an enrichment for switching from positive epistasis to negative epistasis in general.  For 

instance, a total of 58 pairs of mutations showing positive epistasis at 23°C become negative 
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epistasis at 37°C, with the former environment having the lowest gene importance and the latter 

having the highest gene importance.   

To see if the model predicts such switch of signs, I use environment pair 30°C and 23°C 

as an example. Epistasis at 23°C can be calculated from three individual mutant fitness values 

predicted from the model.  According to the model prediction, 0 pairs of mutation would show 

positive epistasis at 30°C and negative epistasis at 23°C, while 14 pairs of mutation would show 

positive epistasis at 23°C and negative epistasis at 30°C.  Among the 14 predicted pairs, seven 

were confirmed by the Bar-seq experiment (Bootstrap P < 10-6), with a total of 206 pairs show 

this pattern.  Among all significant epistatic pairs measured, 0 pairs of mutation showed positive 

epistasis at 30°C and negative epistasis at 23°C, while seven pairs showed positive epistasis at 

23°C and negative epistasis at 30°C, however, none of these seven pairs overlap with those 

above 14 predicted pairs.  Therefore, the switch of epistasis sign is partially predicted by the 

model. 

3.3.8 Inferring fitness landscape in a new environment from a few measurements 

All analyses mentioned above for fitness prediction focus on building and evaluating the 

model when a large number of fitness values from both environments are already available.  In 

reality, when inferring fitness landscape in a new environment from a measured environment, 

fitness measurements in the new environment will not be available.  Therefore, I further evaluate 

the power when collecting only a few data points of fitness.  The performance of the 

methodology for sampling a small number of points across different fitness range is shown in 

Figure 3-6.  Sampling even one single data point that is not too close to wild-type genotype will 

allow recovery of the relationship comparatively accurately, while sampling a few more data 

points will allow even better prediction that is close to having all the fitness information. 
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3.3.9 Beneficial mutations and its structural basis 

2.03%, 1.75%, 1.77% and 1.85% of variants confer over 5% benefits at 23°C, 30°C, 

DMSO and 37°C, respectively, while 1.22% (230) variants are over 5% more beneficial than the 

wild-type genotype across all four environments.  Among them, three were N1 mutations, all 

mutating from G to T at position 38, 39 and 68, respectively.  Interestingly, the most beneficial 

mutation, G38T, appears 72.6% in a pre-compiled eukaryotic
Arg

CCUtRNA dataset (see Chapter 2), 

compared with 14.7% for the wild-type G nucleotide in yeast.  The other two highly beneficial 

mutations, although appearing at a lower frequency compared with the wild-type nucleotide, are 

also observed multiple times in other eukaryotic species.  I then include all N1 mutations that are 

universally more beneficial than wild-type genotype in the four environments and found that 

they appear significantly more frequently in other eukaryotes compare with the rest of mutations 

(25.1% and 12.0% respectively, P = 3×10-7, Mann–Whitney U test).  Both beneficial mutations 

and deleterious mutations appear less frequently than the wild-type nucleotides on average, but 

the former group appear at a much higher frequency in other eukaryotes (12.1% and 48.0% less 

than the wild-type nucleotides on average at the corresponding positions for beneficial and 

deleterious mutations, respectively, P = 3×10-7, Mann–Whitney U test).  Moreover, these 

mutants have a significantly higher predicted fraction of functional molecules (31.9% and 2.8% 

for beneficial and deleterious N1 mutations, P = 2×10-28, Mann–Whitney U test).   

I also compared the cases where the fitness effect differs across environments.  When 

requiring over 5% fitness changes for beneficial and deleterious effects, a total of 27 cases were 

found to be switching from beneficial at 23°C to deleterious at 37°C, while none happened in the 

opposite direction.  Similarly, 8 cases were found to be switching from beneficial at 23°C to 

deleterious at 30°C with none in the opposite direction; 7 such cases was found to be switching 
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from beneficial at 30°C to deleterious at 37°C with none in the opposite direction.  This 

phenomenon can be potentially explained by the hypothesis that one mutation conferring 

beneficial functionality at a lower temperature may no longer be beneficial due to higher 

sensitivity to disruptions in the structure by mutations at higher temperatures.  Comparing any 

environment pairs involving DMSO, there is at most 2 cases in either direction.  Reducing the 

cutoff of fitness change to 2% generates similar results. 

3.3.10 Confirmation of the model in other published datasets 

While previous studies have been extensively focused on the fraction of beneficial and 

deleterious mutations, I reanalyzed some of the previous studies using a simple linear model.  

Beneficial mutations aren't separate fitted because of limited sample size and high measurement 

noise.  For instance, our model fits well with a large-scale dataset concerning the fitness of 

Hsp90 across four environments at two temperatures (30°C and 36°C) and two salinity levels (C 

for low salinity and S for high salinity level) (Figure 3-7) (Hietpas, Bank et al. 2013).  Our model 

well captures the fitness distribution across environments.  While previous studies lack a general 

null hypothesis for the distribution of fitness across environment and focus on the frequency of 

fitness at different ranges, our model provides a clear prediction and explained the majority of 

observed variance (Spearman’s  = 0.934, Pearson’s correlation r = 0.952 for predicted and 

observed fitness at 36C corresponding to the left column of Figure 3-7A, and Spearman’s  = 

0.854, Pearson’s correlation r = 0.966 for predicted and observed fitness at 36S corresponding to 

the right column of Figure 3-7B).  To show linearity of the model, I plotted the observed log 

fitness versus the predicted log fitness (Figure 3-7 C, D), and the expected log fitness versus the 

residual log fitness (Figure 3-7 E, F).  The balanced distribution of points on both side of the 
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dashed trend line indicates that the points indeed follows a simple linear relationship, with a 

higher deviation at lower fitness range because of higher measurement error. 

3.4 Discussion 

In summary, there are wide-spread gene-environment interactions, but the effect of these 

interactions turned out to be largely predictable.  Our high-throughput mapping and modeling 

reveal relatively simple rules underlying the seemingly complex tRNA fitness landscapes and 

gene-environment interactions, giving hopes for understanding and predicting fitness landscapes 

of other genes across multiple environments.  Having a simple model for prediction can also help 

us to identify candidate sites that are differentially interacting with various environments, which 

could potential help to reveal more complex gene by environment interactions. 

A substantial fraction of GxGxE interaction is also observed and largely explainable by 

our model, which provides a convenient null model to help reveal the interaction of sites that are 

different from the general trend.  The observation that most of the changes in fitness and 

epistasis across environments can be explained by gene importance is not totally surprising.  In a 

modular view of the gene network, each module contributes differently to the overall fitness 

across each environment.  Different deleterious mutations might be destroying the general 

functionality of the module by the same proportion, but the organismal fitness differs across 

environments because the importance of the whole functional module is environment-dependent.  

There are a few caveats of the study.  Firstly, this study focuses on a single tRNA gene in 

S. cerevisiae across four environments, rather than focusing on a genome-wide scale or assessing 

the complex and variable natural environments.  Whether the trends observed here are widely 

applicable to other genes, organisms and environment pairs are currently unknown, and more 
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case studies are highly desirable for confirmation.  Secondly, the model is very simplistic, more 

sophisticated models considering site information might be able to achieve even better 

prediction.  However, this information is likely to be gene specific and is not available for most 

candidate genes.  Therefore, I didn’t discuss such information except when discussing model 

outliers.  Thirdly, although the sample size for this study is comparatively large, more than half 

of the possible N2 mutations and most of the high-order mutations are not present.  However, I 

able to show that our model applies to mutants carrying different numbers of mutations and 

across different fitness ranges.  The variants were chemically synthesized and collected in a 

condition where each variant grows similarly, so the representation of deviation is roughly 

random in our dataset. Therefore, I conclude that the trend is widely applicable even for 

unobserved variants. 

 

3.5 Materials and Methods 

3.5.1 Measuring fitness in multiple environments 

The competition was conducted as in Chapter 2.  In short, cells cultured in four 

conditions were from the same founding population and subject to growth for ~13 generations.  

Cells were then harvested and lysed to extract DNA.  Two rounds of PCR amplification were 

conducted to amplify the Arg

CCUtRNA  gene incorporated at the correct genomic location and add 

adaptors to the gene to be sequenced.  Three lanes of Hi-seq sequencing were conducted, and the 

frequency change of each variance before and after the competition is used to calculate fitness 

for each variant. 
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Five biological replicates were conducted at 23°C and 30°C, and three biological 

replicates were conducted at 37°C and in the DMSO condition, respectively.  I also sequenced 

twice the Arg

CCUtRNA  gene amplicon from the common starting population (T0) of the 

competitions.  A perfect match between the fully overlapping paired-end reads was required in 

estimating genotype frequencies.  The change in relative genotype frequency between the pool 

before and after the competition assay was used to determine the fitness of each genotype 

relative to the wild-type genotype.  The fitness for each mutant is calculated as the average of 

fitness across multiple biological replicates.  To ensure relatively accurate fitness estimation, I 

focus on 23,284 genotypes with read counts ≥ 100 at T0.   

3.5.2 Quantifying GxE and GxGxE interaction 

 The fraction of sites showing GxE interaction is quantified from two perspectives.  

Firstly, I focus on each individual observation for fitness measurements across the two 

environments.  A t-test is used to compare the fitness measured from biological replicates.  The 

first methodology avoids the noise coming from measurement error by taking advantage of 

information from biological replicate.  With a higher measurement accuracy, we expect to 

observe a higher fraction of sites showing significant GxE interaction.  The second methodology 

is from a population perspective.  If there is no GxE interaction, then fitness should be equal 

across the two environments.  I focus on variants showing beneficial or deleterious effects in 

both environments, and counted the number of cases showing higher magnitude in one 

environment versus the other.   Due to measurement noise, the fitness values won’t be exactly 

equal, but the fraction of fitness to be higher in either environment should be roughly equal, 

following a binomial distribution.  Therefore, the confidence interval can be calculated as  
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 p̂ ± 1.96√𝑝(1 − 𝑝)/𝑛     [5] 

where p is 50% for random noise to contribute in either direction and n is the number of variants 

measured in both environments.  Deviation from the confidence interval indicate GxE 

interaction, and a larger deviation shows a higher proportion of GxE interactions. 

 Similarly, the above-mentioned metric can be used to quantify GxGxE interaction.  For 

the first methodology, epistasis can be quantified as 𝜀 = 𝑓𝐴𝐵 − 𝑓𝐴 × 𝑓𝐵 for each biological 

replicate, and subsequently compared using t-test across environments.  For the second 

methodology, a single epistasis value calculated from the average fitness is used to compare the 

change of magnitude. 

3.5.3 Building piece-wise robust linear model for fitness prediction 

I built the piecewise robust linear model using the rlm function of the MASS package in 

R.  The robust linear model optimizes to a majority best fit, as opposed to least-square error, 

reducing the possible extreme influences from outliers.  The model is calculated separately for 

deleterious and beneficial mutations.  The model was tested assuming linearity for fitness or 

log(fitness).  In each scenario, the model is forced to go through P(1, 1) for fitness, because the 

relative fitness is defined as 1 in every environment for wild-type fitness.   

3.5.4 Model evaluation 

The model performance is measured from two perspectives, model bias, and model 

deviation.  Bias is calculated by the median difference between the predicted fitness and 

observed fitness in one environment, while deviation is quantified by the median absolute 

difference between the predicted fitness and observed fitness in one environment.  A LOWESS 

curve fitting (local polynomial regression) is used to get the general trend of the bias and 
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deviation difference across different fitness ranges with f=0.2.  Deviation for measurements in 

each environment was calculated as the mean of deviation for all biological replicates. 

3.5.5 Two alternative models 

Two alternative models were also built for comparison assuming linearity for log fitness.  

The first alternative model is a simple robust linear model that go through P(1, 1) for fitness, 

without having a separate calculation for beneficial and deleterious mutations.  Another 

alternative model is a quadratic model that go through P(1, 1).  Both models were evaluated 

using the methodology mentioned in 3.5.3. 

3.5.6 Predicting epistasis 

Expected fitness values 𝑓A, 𝑓𝐵 and 𝑓ABwere individually predicted from observed fitness 

values fA, fB and fAB in another environment, and the predicted epistasis is calculated as 𝜀̂ =

𝑓AB − 𝑓A𝑓B .  Bias and deviation of the model is evaluated as in section 3.4.2. 
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Figure 3-1. Yeast Arg
CCUtRNA  gene fitness landscape. (A) Fitness distribution of all mutants in 
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invariant sites. 
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Figure 3-2. Fitness in different environments is highly correlated. Distribution and 
correlation of fitness for all variants carrying one mutation are plotted. Fitness values of all 207 
possible single mutant genotypes in each environment are plotted against those in the other three 
environments, with Pearson’s correlation coefficients indicated. Environments used and the 
distribution of fitness for single mutants in the environments are shown in the diagonal panels. 
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Figure 3-3. Epistasis between point mutations in the tRNA gene is negatively biased in all 
four environments. Frequency distributions of pairwise epistasis (gray) and statistically 
significant pairwise epistasis (blue) among 8,101 pairs of point mutations studied. The 
percentages show the fractions of positive epistasis in that environment. The gray and blue 
numbers show the fraction of positive epistasis in each environment for all epistasis and 
significant epistasis, respectively. 
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Figure 3-4. Pervasive GxE and GxGxE interactions. (A) The relationship between fitness at 
23 °C and 30 °C is summarized by a LOESS regression line (95% confidence interval shown by 
the dashed line). (B) The LOESS regression line is plotted between fitness at 37 °C and DMSO. 
(C) Summary of GxE interaction between environment pairs. The upper left triangle shows the 
fraction of fitness that is significantly different between the two environments (t-test, P<0.05).  
The lower right triangle shows the percentage of fitness that is higher in magnitude than the other 
environment. The 95% confidence interval for the expected percentage assuming binomial 
distribution is 50.0% ±0.8%. (D) Similar percentages are plotted for GxGxE interaction. The 
upper left triangle shows the fraction of epistasis that is significantly different between the two 
environments (t-test, P<0.05).  The lower right triangle shows the percentage of epistasis that is 
higher in magnitude than the other environment. The 95% confidence interval assuming 
binomial distribution is 50.0% ±1.5%. 
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Figure 3-4. A piece-wise linear model based on log fitness performs the best. (A) Dots with 
different colors show the corresponding fitness across two environments. The models are plotted 
as dashed lines. (B) The bias for prediction excluding fitness of 0.5 in either environments. (C) 
The deviation for both models are plotted in the solid line and the dashed lines show the 
deviation for measurement in each environment. (D) The piecewise linear model is compared 
with two alternative models. (E) The bias for the two alternative models are very high for 
predicting beneficial mutations. (F) The variance is very high for alternative models in predicting 
beneficial mutations. 
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Figure 3-5. The piece-wise linear model outperforms alternative models. (A) Dots with 
different colors show fitness values in two environments for variants carrying a different number 
of mutations. The models are plotted as dashed lines. The dotted lines show Y=X, X=1, and 
Y=1.  (B) The bias for prediction excluding fitness of 0.5 in either environment. (C) The 
deviation for both models are plotted as the solid line, and the dashed lines show the deviation of 
measurements in each environment. (D) The piecewise linear model is compared with two 
alternative models. (E) The bias of alternative models for prediction excluding fitness of 0.5 in 
either environment. (F) The deviations for both alternative models is plotted together with the 
piece-wise linear model. 
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Figure 3-6. Sampling a few data points can effectively recover the fitness pattern. (A) 
Median bias for model prediction when sampling different numbers of N1 training samples at the 
designated sampling range. The figure legends show the number of points sampled. The dotted 
line shows the median bias when the model is built based on all the training data. The error bar 
of 0.81 and 0.30 for the first two bars are not shown for scaling reason.  (B) Median deviation for 
model prediction when sampling different numbers of N1 training samples at the designated 
sampling range. The figure legends show the number of points sampled. The dotted line shows 
the median bias when the model is built based on all the training data. The error bar of 0.77 and 
0.28 for the first two bars are not shown for scaling reason.  
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Figure 3-7. Confirmation of model using HSP90 fitness datasets. (A) Log fitness at 30°C 
with and without elevated salinity follows a simple linear relationship. (C) Observed and 
predicted log fitness values are roughly symmetric around the diagonal line (shown as dotted 
line). (E) The residuals are roughly symmetrical around the horizontal line when correlated 
predicted, indicating linearity between the two conditions. (B, D, F) Similar patterns are 
observed when comparing log fitness under at 30°C and 37°C with elevated salinity. 
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Table 3-1. Change of epistasis sign across different environments.  

  
 at 23°C  

 Positive  Negative  Total 

  at 30°C 
Positive  399 0 399 

Negative  7 2517 2524 
 Total 406 2517 2923 

 

 
 at 23°C  

 Positive  Negative  Total 

  at 30°C+3%DMSO 
Positive  466 0 466 

Negative  7 2176 2183 

 Total 473 2176 2649 

 

 
 at 23°C  

 Positive  Negative  Total 

  at 37°C 
Positive  266 6 272 

Negative  58 2341 2399 

 Total 324 2347 2671 

 

 
 at 30°C  

 Positive  Negative  Total 

  at 30°C+3%DMSO 
Positive  404 1 405 

Negative  0 2149 2149 

 Total 404 2150 2554 

 

 
 at 30°C  

 Positive  Negative  Total 

  at 37°C 
Positive  249 8 257 

Negative  31 2330 2361 

 Total 280 2338 2618 

 

 
 at 30°C+3%DMSO  

 Positive  Negative  Total 

  at 37°C 
Positive  279 1 280 

Negative  70 2030 2100 

 Total 349 2031 2380 
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CHAPTER 4 

TOWARD GENOMEWIDE IDENTIFICATION OF GENETIC 

INCOMPATIBILITIES IN YEAST  
 

4.1 Abstract 

Genetic incompatibility, a form of epistatic interactions between otherwise functional 

genes in their conspecific genetic background, is commonly considered as the major cause of 

postzygotic isolation.  The Bateson-Dobzhansky-Muller (BDM) model of reproductive isolation 

by genetic incompatibility is a widely accepted model of speciation.  Because of the 

exceptionally rich biological information about the budding yeast Saccharomyces cerevisiae, the 

identification of BDM incompatibilities in yeast would greatly deepen our understanding of the 

molecular genetic basis of reproductive isolation and speciation.  However, despite repeated 

efforts, BDM incompatibilities between nuclear genes have never been identified between S. 

cerevisiae and its sister species S. paradoxus.  Such negative results have led to the belief that 

simple nuclear BDM incompatibilities do not exist in yeast.  Here we explore an alternative 

explanation that such incompatibilities exist but were undetectable due to limited statistical 

power.  We discover that previously employed statistical methods were not ideal and that a 

redesigned method improves the statistical power.  We determine, under various sample sizes, 

the probabilities of identifying BDM incompatibilities that cause F1 spore inviability with 

incomplete penetrance, and confirm that the previously used samples were too small to detect 

such incompatibilities.  Our findings call for an expanded experimental search for yeast BDM 

incompatibilities, which has become possible with the decreasing cost of genome sequencing.  
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The improved methodology developed here is in principle applicable to other organisms and can 

help detect epistasis in general. 
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4.2 Introduction 

Speciation, the “mystery of mysteries” in Darwin’s words (Darwin 1859), is one of the 

most important processes in evolution, responsible for the generation of the tremendous 

biodiversity on Earth.  Important as it is, speciation is not well understood at the genetic level.  

For example, it is unknown how many genetic changes underlie the formation of a new species 

in nature, and the relative roles of natural selection and genetic drift in causing these changes are 

still debated (Schluter 2009, Nei and Nozawa 2011).  A key step in speciation is the 

establishment of reproductive isolation, which can occur prezygotically or postzygotically 

(Coyne and Orr 2004).  While forms of prezygotic isolation can involve a variety of spatial, 

behavioral, mechanical and temporal isolation, postzygotic isolation is commonly considered to 

be majorly caused by genetic incompatibility, a form of deleterious epistatic interaction among 

multiple genes that have evolved separately for an extended period of time in two different 

genetic backgrounds.  Specifically, the simplest form of the Bateson-Dobzhansky-Muller (BDM) 

model for two loci asserts that a genetic change at locus A in one population and a genetic 

change at locus B in another population may be incompatible when residing in the same genome 

upon the hybridization between individuals of the two populations, which could result in 

postzygotic incompatibility and lead to inviability, infertility, or inferiority (Orr 1996).  Although 

this model is generally accepted, only a small number of genes in a few species pairs have been 

identified to be genetically incompatible (Wu and Ting 2004, Maheshwari and Barbash 2011, 

Nosil and Schluter 2011).  One classical example involves the melanoma formation in the 

hybrids of Xiphophorus species.  Normally, the Tu locus controls the formation of spots 

composed of black pigment cells.  In interspecific hybrids between the platyfish X. maculatus 

and swordtail X. helleri, these spots sometimes spontaneously develop into malignant 
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melanomas (Wittbrodt, Adam et al. 1989).  A two-locus BDM model can explain this 

phenomenon: overexpression of Tu, which has been identified to be Xmrk on the X chromosome, 

causes melanomas to form (Adam, Dimitrijevic et al. 1993), while an autosomal repressor gene 

mapped near cdkn2a/b negatively regulates Tu (Schartl, Walter et al. 2013).  The hybrids that 

have Tu but not the repressor will develop melanomas (Meierjohann, Schartl et al. 2004).  There 

is, however, much disagreement on the existence of such major BDM incompatibilities and their 

role in speciation in general (Liti, Barton et al. 2006, Maheshwari and Barbash 2011).  

Identifying such genes and studying their functions and evolution could help settle this debate 

and uncover the molecular genetic basis of reproductive isolation and speciation.  Because BDM 

incompatibilities are expected to accumulate with the divergence of two species, identifying such 

incompatibilities from closely related species is most relevant to understanding speciation (Nosil 

and Schluter 2011). 

For four reasons, the budding yeast Saccharomyces cerevisiae (Sc) and its sister species S. 

paradoxus (Sp) are ideal for identifying BDM incompatibilities and studying their roles in 

speciation.  First, S. cerevisiae is one of the best-studied eukaryotes, with abundant information 

on its genetics, genomics, physiology, cell biology, and molecular biology. Numerous genetic 

tools and molecular methods are readily available for further study.  Its short generation time 

allows rapid genetic analysis and its small genome (~12 million bases) makes genotyping and 

fine genetic mapping easier than in most of other species.  Second, separated ~10 million years 

ago (Kawahara and Imanishi 2007) and with ~85% genome sequence identity (Kellis, Patterson 

et al. 2003), Sc and Sp are relatively closely related.  The two species can readily mate with each 

other (Murphy, Kuehne et al. 2006); yet, their postzygotic isolation is strong, with Sc-Sp hybrids 

producing only ~1% viable spores (Hunter, Chambers et al. 1996).  Third, the genomes of the 
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two species are essentially collinear with no gross chromosomal rearrangements and no 

reciprocal translocation; only four inversions and three segmental duplications exist (Kellis, 

Patterson et al. 2003).  This fact eliminates chromosomal rearrangement as a major contributor to 

their postzygotic isolation.  Fourth, the genotypes and phenotypes of yeast haploids can be 

directly analyzed, avoiding the need to generate homozygotes from the spores produced by F1 

hybrids.  Note that F1 hybrids are not suitable for identifying genetic incompatibilities unless 

they are dominant, while a previous study has excluded the existence of dominant genetic 

incompatibilities underlying the infertility of the hybrid between Sc and Sp (Greig, Borts et al. 

2002).  One complication of the yeast system is that a large fraction of spores produced by Sc-Sp 

hybrids are killed by aneuploidy (Hunter, Chambers et al. 1996).  At least one recombination is 

usually required for correct segregation of homologous chromosomes during meiosis.  In the Sc-

Sp hybrid, the sequence differences between homologous chromosomes cause the mismatch 

repair system to suppress recombination, resulting in a high frequency of aneuploidy (Chambers, 

Hunter et al. 1996).  Deleting the mismatch repair gene MSH2 increases the recombination rate 

in the hybrid from 5.4 to 35.6 crossovers per meiosis (Kao, Schwartz et al. 2010).  Consequently, 

F1 spore viability rises to ~10% (Kao, Schwartz et al. 2010).  

Research in the last decade has focused on understanding the genetic basis of Sc-Sp F1 

hybrid infertility, which is equivalent to F1 spore inviability.  In spite of the multiple advantages 

of the study system and repeated efforts (Greig, Borts et al. 2002, Greig 2007, Kao, Schwartz et 

al. 2010, Xu and He 2011), no nuclear-nuclear genetic incompatibilities have been identified for 

Sc-Sp F1 infertility, although a mitochondrial-nuclear incompatibility has been reported for F2 

hybrid infertility (Chou, Hung et al. 2010).  Two general strategies have been used to identify 

nuclear-nuclear genetic incompatibilities between Sc and Sp.  The first approach is to replace 
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chromosomes in Sc with their Sp homologs one at a time.  If interchromosomal incompatibilities 

exist, one would observe a reduction in strain fertility, viability, or growth rate upon a 

chromosomal replacement.  The fact that such replacements were made for at least 9 of the 16 

chromosomes demonstrates the lack of BDM incompatibility for F1 spore viability in the 9 

chromosomes (Greig 2007).  This result, however, does not exclude the possibility of 

incompatibilities for F1 spore growth rate or higher-order incompatibilities for viability.  Note 

that even when an interchromosomal incompatibility is detected using this approach, further 

work is needed to localize the incompatible genes. 

The second approach is to identify genetic incompatibilities in F1 spores by linkage 

analysis.  Briefly, if the Sc allele at locus A (ASc) is incompatible with the Sp allele at locus B 

(BSp), spores of the genotype AScBSp may have reduced viability and thus may be 

underrepresented among viable F1 spores.  This decrease in frequency also applies to pairs of 

markers closely linked to ASc and BSp, respectively.  Thus, it is possible to use existing genetic 

markers such as single nucleotide differences (SNDs) between the two species to map BDM 

incompatibilities.  This approach is virtually identical to mapping genetic interaction or 

intergenic epistasis.  Because of the large number of marker pairs to be tested, the statistical 

power is expected to be low.   

 Two groups have used the second approach above to look for incompatibilities between 

Sc and Sp that kill F1 spores with 100% penetrance, but with no success (Kao, Schwartz et al. 

2010, Xu and He 2011).  The negative result has led to the suggestion that simple two-locus 

BDM incompatibilities do not exist in yeast and are unimportant to yeast speciation (Kao, 

Schwartz et al. 2010).  However, for two reasons, genetic incompatibility need not have 100% 

penetrance.  First, an incompatibility may only increase the probability of spore inviability rather 
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than killing the spore deterministically, because spore viability is likely to be a complex trait 

controlled by multiple genes.  Second, a high-order incompatibility behaves like a two-locus 

incompatibility with incomplete penetrance.  For instance, a three-locus incompatibility with 

100% penetrance behaves exactly as a two-locus incompatibility with 50% penetrance.  Given 

the possibility of incomplete penetrance, one wonders what conclusion about the genetic 

incompatibility between Sc and Sp can be drawn from the existing data of the linkage analysis.  

To answer this question, it becomes necessary to understand the properties of this linkage 

analysis.  Here we use computer simulation to inspect the statistical properties of the linkage 

analysis, under the scenario that two-locus genetic incompatibilities cause F1 spore inviability 

with incomplete penetrance, which, as aforementioned, includes the possibility of multiple-locus 

incompatibility.  We show that the previously designed statistical method is not ideal and 

propose a modified method that improves the statistical power.  We find previously used sample 

sizes too small to detect genetic incompatibilities and offer guidelines for future experimental 

searches of the BDM incompatibilities between Sc and Sp.  The methodology simulated here can 

be readily applied to determine the sample size and power for studying of BDM incompatibilities 

in other species pairs, and may also be broadly applied to guide other types of interchromosomal 

epistasis mapping. 

 

4.3 Methods 

4.3.1 General strategy of simulating the identification of BDM incompatibilities 

Based on theoretical predictions and experimental results (Welch 2004, Wu and Ting 

2004, Lee, Chou et al. 2008), we assume that genetic incompatibility is asymmetric.  That is, if 

ASc and BSp are incompatible, ASp and BSc can still be compatible (Figure 4-1A).  We define I as 
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the probability that an F1 spore dies due to an incompatible allelic pair.  We consider the use of 

msh2 mutants of both Sc and Sp in this study (Kao, Schwartz et al. 2010) such that spore deaths 

have three potential causes: random death, aneuploidy, and genetic incompatibility.  Random 

death refers to spore death caused by deleterious mutations, meiotic errors, or environmental 

factors, and is assumed to have the same rate in the parental species and their hybrid. 

 The following steps outline the procedure of simulating spore production (Figure 4-1B).  

First, to simulate the hybridization between the two yeast species, we set the in silico genome to 

contain 16 chromosomes with lengths following those of Sc.  SND density was set to be one per 

seven nucleotides based on the 85% sequence identity between the two species.  We assume N 

pairs of incompatibilities and randomly assign them to the existing SNDs.  The effects of these N 

pairs of incompatibilities on F1 spore inviability were either set to be equal or set to follow a 

certain distribution.  The number of crossovers generated during the meiosis of F1 hybrids 

followed a Poisson distribution with a mean of 35.6 per meiosis (Kao, Schwartz et al. 2010) and 

the crossovers were randomly assigned to the genome.  Meiotic gene conversion and variable 

recombination rates across the genome are not considered.  After meiosis, four spores are 

generated.  We then calculate spore viability as described in the next section and stochastically 

determine viable spores based on their viabilities.  

In the actual experiment, the viable spores may be genotyped by restriction enzyme 

digestion (Xu and He 2011), microarray-based SND typing (Kao, Schwartz et al. 2010), or 

genome sequencing.  Here we use 1207 SNDs (one per 10 kb) as markers in linkage analysis.  

Using more markers does not improve the precision or power of identifying BDM 

incompatibilities because of limited recombination in msh2 Sc-Sp hybrids: 10,000 nucleotides 
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correspond to 1.5 cM.  Use of one marker per 10 kb means that the expected mapping resolution 

is at best 2.5 kb.    

Our preliminary analysis revealed that any BDM incompatibility between two 

intrachromosomal loci is difficult to detect due to a strong linkage.  Hence, we examine the 

frequencies of spores for every pair of interchromosomal SND markers.  That is, for markers A 

and B that are located on different chromosomes, we obtain the numbers of spores with the 

genotypes of AScBSc (a), ASpBSc (b), AScBSp,(c), and ASpBSp (d), respectively.  These numbers form 

a 2  2 table (Figure 4-1C), from which three statistics are calculated: chi-squared value, G-test 

statistic, and odds ratio (OR) (see below).  Because of viability differences among the four 

genotypes, the incompatible genotype should have a reduced frequency, compared with its 

expected value.  

In theory, when the sample size is sufficiently large, we should be able to recover the 

preassigned incompatible allelic pairs.  After acquiring a statistic of genetic incompatibility for 

each pair of markers, we determine statistical significance using a familywise 5% type-I error 

rate (see below).  We then attempt to estimate the chromosomal segments encompassing the 

incompatibility genes (see below).   

 

4.3.2 Calculating spore viability  

In our simulation, random death, aneuploidy, and BDM incompatibility are the three 

causes of F1 spore inviability.  We set the random death rate to be R = 1-0.804 = 0.196, based on 

the fact that S. cerevisiae and S. paradoxus msh2 mutants have spore viabilities of 84.0% and 

80.4%, respectively (Hunter, Chambers et al. 1996).  It has been estimated that aneuploidy 

occurs at a frequency of 0.29 per viable msh2 Sc-Sp hybrid spore (Kao, Schwartz et al. 2010), 
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but it is unknown what the corresponding fraction is in dead spores.  The impact of aneuploidy 

on spore viability is complicated.  While losing a chromosome is lethal, gaining an extra 

chromosome could be beneficial if it masks the deleterious effect of genetic incompatibility.  We 

set the probability of spore inviability due to aneuploidy to be either G = 0% or 50% to obtain a 

minimal and a more realistic estimate of the required sample size for identifying BDM 

incompatibilities, respectively.  Inviability caused by aneuploidy is applied to pairs of sister 

spores because nondisjunction typically occurs in meiosis I of the hybrid (Hunter, Chambers et al. 

1996).  We assume no epistasis among incompatible gene pairs.  Let T be the fraction of viable 

spores produced by F1 hybrids, N be the number of BDM incompatibility pairs between Sc and 

Sp, and Ik be the probability of spore death caused by the kth pair of incompatibility or 

penetrance.  We have  

  
1

(1 )(1 ) [0.75 0.25(1 )]
N

k

k

T R G I


     .    [1] 

In the simple case of Ik = I for all k values, we have   

  (1 )(1 )[0.75 0.25(1 )]NT R G I     .    [2] 

 

4.3.3 Statistics characterizing genetic incompatibility 

Genetic incompatibility between ASc and BSp leads to a reduction in the frequency of 

AScBSp, compared with its expected value.  This signal can be detected in multiple ways.  Because 

of strong linkage within a chromosome, we only evaluate pairs of markers that reside on 

different chromosomes.  In a previous study (Kao, Schwartz et al. 2010), a chi-squared test was 

used to test if the frequency of a recombinant equals the product of corresponding allele 

frequencies.  For example, if the ASc and BSc frequencies among viable F1 spores are 0.3 and 0.5, 

respectively, the expected frequency of viable AScBSc spores is 0.30.5 = 0.15.  Chi-squared is 
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then calculated by summing over all genotypes the squared difference between the expected and 

observed numbers of a genotype divided by the expected number.  This test is nondirectional in 

the sense that it does not distinguish whether the recombinants are overrepresented or 

underrepresented.  Besides the chi-squared test, the G-test of independence may be used to test 

the goodness of fit of the observed genotype frequencies to their expected values.  G-test is 

designed for cases where the margins of a 2 × 2 table are not fixed by investigators whereas the 

total number in the four cells of the table is fixed (Sokal and Rohlf 1995).  We conduct the G-test 

with Williams’s correction (Sokal and Rohlf 1995).  In addition, we calculate an odds ratio by 

dividing the product of the numbers of the two parental genotypes by that of the two recombinant 

genotypes: OR = (a×d)/(b×c) (Figure 4-1C).   

Because multiple pairs of markers are tested in an experiment, we evaluate the 

significance of the above statistics by controlling the familywise type-I error rate.  We first 

randomly shuffle each of the 16 chromosomes among spores and then find the highest statistic 

among all pairs of markers.  We conduct this shuffling 100 times and rank the resulting 100 

highest statistics.  The 5th largest number among these 100 numbers is chosen as the critical 

value corresponding to a familywise type-I error rate of 5%. 

After applying the cutoff, we group statistically significant pairs of markers as follows.  

Let us use the odds ratio as an example, but the same procedure applies to the other statistics 

used.  First, we find the maximal odds ratio, and take a step of seven markers on each side of 

each focal marker to obtain the initial square of close linkage.  The number seven is chosen by 

considering the tradeoff between grouping markers showing signals of different incompatibilities 

and dividing markers showing the signal of the same incompatibility.  Second, we keep 

expanding the square with a step size of one marker until it is no longer significant or it reaches 
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an end of the chromosome.  Third, if two squares overlap with each other, we ignore the square 

with the lower maximal odds ratio.  Fourth, we repeat these steps until all significant pairs of 

markers are included in the squares.  Fifth, the marker pair of the maximal odds ratio of each 

square is recorded.  If two marker pairs in the same square tie for the maximal odds ratio, we 

record the locations of their midpoints.  

A preassigned BDM incompatible pair is considered to be correctly identified when both 

causal SNDs are within seven markers from the maximum in an aforementioned square.  

Sensitivity is calculated as the fraction of true incompatible pairs identified.  False discovery rate 

is calculated as the total number of false discoveries divided by the total number of discoveries.  

When no discovery is made in all simulations, false discovery rate is defined as 0.  Genomic 

distance is calculated as the average distance between the two identified markers and their 

respective causal SNDs.  Standard errors of sensitivity, false discovery rate, and genomic 

distance estimates are estimated using 1000 bootstrap samples. 

 

4.4 Results 

4.4.1 Odds ratio outperforms other statistics in identifying genetic incompatibility 

Following Kao and colleagues (Kao, Schwartz et al. 2010), we use msh2 mutants of Sc 

and Sp in our simulation of identifying BDM incompatibilities, unless otherwise noted.  Based 

on theoretical predictions and experimental results (Welch 2004, Wu and Ting 2004, Lee, Chou 

et al. 2008), we assume that genetic incompatibility is asymmetrical.  That is, if ASc and BSp are 

incompatible, ASp and BSc can still be compatible (Figure 4-1A).  It is difficult to detect BDM 

incompatibility between two loci that reside in the same chromosome because of limited 

recombination in the hybrid.  Hence, we only examine pairs of markers located on different 
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chromosomes.  That is, for markers A and B that are located on different chromosomes, we 

obtain the numbers of spores with the genotypes of AScBSc (a), ASpBSc (b), AScBSp (c), and ASpBSp 

(d), respectively, which form a 22 table (Figure 4-1C).  Because of viability differences among 

the four genotypes, the incompatible genotype should have a reduced frequency, compared with 

its expected value (Figure 4-1B).  In theory, when the sample size is sufficiently large, we 

should be able to detect such incompatible allelic pairs.   

We calculate three statistics using the 22 table: chi-squared, G-test statistic, and odds 

ratio OR = (ad)/(bc) (see Materials and Methods), and evaluate their relative performances in 

identifying preassigned incompatibilities by simulation.  The chi-squared statistic was previously 

used in this context (Kao, Schwartz et al. 2010), but this statistic does not differentiate between 

overrepresentation and underrepresentation of a genotype relative to its expectation and thus may 

be less specific.  Because the chi-squared test is an approximation of the G-test, they have similar 

properties, although G-test may be more precise.  By contrast, a lower-than-expected OR 

indicates overrepresentation of ASpBSc and/or AScBSp, whereas a higher-than-expected OR 

indicates depletion of these genotypes, which is predicted under genetic incompatibility.  After 

acquiring a statistic of genetic incompatibility for each interchromosomal marker pair, we 

determine statistical significance using a familywise 5% type-I error rate to control multiple 

testing.  We then identify the chromosomal segments that are likely to encompass the 

incompatibility genes (see Materials and Methods).   

Because the incompatible marker pairs are preassigned in the simulation, we can evaluate 

how well the three statistics perform in terms of the (i) sensitivity, (ii) false discovery rate, and 

(iii) mean genomic distance between the identified markers and the preassigned incompatible 

SNDs.  For each parameter set, we conduct 400 simulation replications and pool the data in our 
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analysis.  Sensitivity is the fraction of all preassigned incompatible pairs that are recovered by 

the analysis.  False discovery rate is the number of false discoveries divided by the total number 

of discoveries.  The standard errors of these estimates are estimated by bootstrapping the pooled 

data 1000 times.  There are 12.07 million nucleotides  15% = 1.8105 million SNDs between Sp 

and Sc.  We randomly assigned N pairs of single nucleotide differences to form N incompatibility 

pairs.  In mapping these incompatibilities, however, we use only 1207 markers, or one marker 

per 10,000 nucleotides, because the use of more markers does not increase mapping resolution 

due to limited recombination (see Materials and Methods).    

We start the simulation with the following parameters.  We assume no contribution of 

aneuploidy to spore inviability, and set N = 10 pairs of incompatibilities that have equal effects 

on inviability.  Given the known viability of msh2 hybrid spores, the 10 pairs each contribute I = 

0.75 to spore inviability.  That is, a spore with one pair of incompatibility is 25% as viable as a 

spore without any incompatibility.  The 10 pairs of incompatibilities (i.e., 20 causal SNDs) are 

randomly distributed in the 16 yeast chromosomes.  The number of viable spores genotyped is M 

= 200.  When OR is used, the sensitivity is 40%, significantly greater than that of chi-squared 

(28%) or G-test statistic (30%) (Figure 4-2A).  The false discovery rate under OR is 24%, not 

significantly different from that under the other two statistics (22% and 23%, respectively) 

(Figure 4-2B).  The mean genomic distance between the identified marker and the preassigned 

incompatibility loci is 18.3 kb under OR, significantly smaller than that under the other two 

statistics (19.3 and 19.1 kb, respectively) (Figure 4-2C). 

If the differences among the three methods are simply due to the fact that chi-squared and 

G-test statistic cannot distinguish whether parental or nonparental types are in excess, we could 

use the directional information from OR and consider only those chi-squared or G-test statistic 
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values when OR > 1.  While such modified chi-squared and G-test statistic outperform their 

original versions in sensitivity, they are still worse than OR (Figure 4-2A).  In terms of the false 

discovery rate, the modified versions appear worse than the original versions (Figure 4-2B).  In 

terms of the genomic distance, the modified versions are similar to the original versions (Figure 

4-2C).  We subsequently confirmed the advantage of OR over chi-squared and G-test statistic in 

multiple conditions, by varying N, M, and the influence of aneuploidy (G) (Table 4-1).  When 

the genetic incompatibility is symmetrical, however, the advantage of OR over chi-squared and 

G-test statistic disappears (Table 4-2).  

 

4.4.2 Previous studies were underpowered 

To understand why previous experimental searches of nuclear BDM incompatibilities 

between Sc and Sp were unsuccessful, we perform a simulation following the scheme of a 

previous experiment study, which genotyped 58 spores from F1 with MSH2 and 48 spores from 

F1 lacking MSH2 (Kao, Schwartz et al. 2010).  Before we started the simulation, we confirmed 

that no pair of markers in that study (Kao, Schwartz et al. 2010) showed significant OR in the 

familywise test.  The simulation parameters used for msh2 spores are the same as described 

above.  For mismatch repair proficient spores, the random death rate is set to be R = 0.05 (Greig, 

Borts et al. 2002).  Given the observed viability of 1% among these spores, the contribution of 

aneuploidy to spore inviability (G) is calculated using Eq. 2 to be 91.54% and 95.77%, for the 

corresponding numbers of 0% and 50% in msh2 spores, respectively.  To be consistent with the 

previous study (Kao, Schwartz et al. 2010), we used the density of 1 marker per 2 kb and 

subsequently combined markers showing no recombination in all 106 spores as a single marker.  

Using 1 marker per 10 kb yielded similar results. 
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Starting with different pairs of incompatibilities in the simulation, we calculate the 

corresponding probabilities of nondiscovery, which is the probability that no marker pair has an 

OR that deviates significantly from the expectation at the familywise 5% level.  We first assume 

equal effects on spore viability from all pairs of incompatibilities.  When aneuploidy does not 

reduce msh2 spore viability, at least 8 pairs of incompatibilities are required to explain the 

observed spore inviability.  We found the probability of nondiscovery to exceed 0.05 in all cases 

except when n = 8 (Figure 4-3A).  If aneuploidy reduces msh2 spore viability by 50% and 

correspondingly reduces the viability of MSH2 spores, there should be at least 5 pairs of 

incompatibilities.  Under this assumption, we found the probability of nondiscovery to exceed 

0.05 in all cases except when n = 5 (Figure 4-3B).  Thus, it is possible for the previous 

experiment to have missed all incompatibilities.  Our analysis tends to overestimate the power of 

the previous study, because segments in spores with aneuploidy were ignored in the experimental 

study (Kao, Schwartz et al. 2010) such that the actual sample size is smaller than the number of 

sampled spores.  Furthermore, we have not considered genotyping errors, which would further 

decrease the statistical power.  It might seem counter-intuitive that the more pairs of genetic 

incompatibility there are, the more difficult it is to identify any of them.  The underlying reason 

is that the total contribution of all incompatibility pairs on inviability is fixed in this simulation 

and that all pairs are assumed to contribute equally. Thus, having a larger number of 

incompatible pairs means a smaller contribution from each pair.   

Because multiple pairs of genetic incompatibility are unlikely to have equal effect sizes 

on spore viability, it would be more realistic to consider unequal effect sizes.  The difficulty, 

however, is that there is no prior knowledge on the effect size distribution.  Because BDM 

incompatibilities may be similar to loss-of-function mutations (Maheshwari and Barbash 2011), 
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we assume that the effect size distribution follows the distribution of the deleterious fitness 

effects of single-nonessential-gene deletions in yeast (Qian, Ma et al. 2012).  We randomly 

sample I from this distribution until the total incompatibility explains the observed spore 

inviability.  The mode of the number of incompatible pairs required to explain the observed 

spore inviability is 150 (Figure 4-3C) and 100 (Figure 4-3D) when the contribution of 

aneuploidy to msh2 spore inviability is 0 and 50%, respectively.  The corresponding distributions 

of I under the two scenarios used in this simulation study are presented in Figure 4-3C and 

Figure 4-3D, respectively, and the probability of nondiscovery is 79% (Figure 4-3A) and 77% 

(Figure 4-3B), respectively. 

Because Kao et al.’s (2009) study was the largest experiment for identifying BDM 

incompatibilities between Sc and Sp, our results suggest that all previous studies on the subject 

were not sufficiently powerful to detect BDM incompatibilities between the two yeasts.   

 

4.4.3 Sample sizes required for identifying BDM incompatibilities 

How many viable spores should be genotyped in order to identify BDM incompatibilities 

with a reasonable success rate?  Here we again assume the exclusive use of msh2 strains in the 

experiment.  Under the assumption of no effect from aneuploidy on viability, we examine the 

sceneries of N = 8, 10, and 15 incompatible pairs with equal effects, respectively.  We use the 

sample size of M = 100, 200, 400, and 800 spores, respectively.  In the case of N = 8, the 

probability of nondiscovery is negligible even when M = 100 (Figure 4-4A).  In the case of N = 

10 and 15, the probability of nondiscovery declines quickly as M increases from 100 to 200 and 

400 (Figure 4-4A).  As expected, the total number of discoveries increases with the sample size 

M (Figure 4-4B), so does the sensitivity (Figure 4-4C).  By contrast, the false discovery rate and 
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the mean genomic distance between the causal SNDs and the identified markers generally 

decline with M (Figure 4-4D).  We also examined the situation when the probability of msh2 

spore inviability due to aneuploidy is 50%, and obtained overall similar results (Figure 4-4F-J).  

Figure 4-5 shows randomly picked examples of our simulation results under various M when N 

is fixed at 10 and G at 0.  Because one incompatibility pair happens to reside on the same 

chromosome, the maximal number of pairs detectable is 9.  It is clear how increasing the sample 

size increases the power of detection.  

To obtain a more realistic estimate of the required sample size for detecting 

incompatibilities, we use the aforementioned unequal effect sizes depicted in Figure 4-3C and D, 

respectively.  Because, under this model, most incompatibilities have small effects, which are 

hard to detect, we focus on incompatibilities with I > 0.2 and its subset that has I > 0.4, 

respectively, when evaluating sensitivity, false discovery rate, and genomic distance.  The 

probability of nondiscovery, however, is evaluated as originally defined.  As aforementioned, 

when there is no contribution of aneuploidy to msh2 spore inviability, 150 incompatibility pairs 

are required to explain the observed spore inviability.  Among them, 10 pairs have I > 0.2, four 

of which have I > 0.4 (Figure 4-3C).  When there is a 50% contribution of aneuploidy to msh2 

spore inviability, 100 incompatibility pairs are required to explain the observed spore inviability.  

Among them, six pairs have I > 0.2, two of which have I > 0.4 (Figure 4-3D).  Our simulation 

(Figure 4-6) shows that a much larger sample is required for successful detection of BDM 

incompatibilities under unequal effect sizes than under equal effect sizes.  For example, when M 

= 1600, the probability of nondiscovery becomes negligible (Figure 4-6A, E).  With such a large 

sample, the sensitivity is ~40% for I > 0.2 and ~80% for I > 0.4 (Figure 4-6B, F) and the false 
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discovery rate is ~30% for I > 0.2 and ~50% for I > 0.4 (Figure 4-6C, G).  The genomic distance 

is between 30 and 40 kb for both I > 0.2 and I > 0.4 (Figure 4-6D, H).   

 

4.5 Discussion 

In this chapter, we demonstrate that odds ratio outperforms chi-squared and G-test 

statistic in detecting asymmetrical BDM incompatibility through linkage analysis.  Our 

simulation suggests that the existence of two-locus BDM incompatibility between Sc and Sp 

cannot be excluded and its nondiscovery in previous yeast experiments could be due to the 

limited sample size and low statistical power.  Our study provides important guidelines for 

designing experiments for identifying yeast BDM incompatibilities and for interpreting potential 

experimental outcomes.  More generally, it highlights the importance of understanding the 

statistical properties of an experimental method (e.g., sensitivity and false discovery rate) in 

order to use it efficiently and interpret the result correctly.    

We made several assumptions in our simulation that are worth discussion.  First, for 

simplicity, we assumed that recombination rates are equal throughout the genome and ignored 

recombination hot/cold spots and interferences between crossovers (Mancera, Bourgon et al. 

2008).  This assumption should not affect the overall results because of the relatively low marker 

density used (one per 10 kb).  But recombination rate variation would make the genomic 

distances between the causal SNDs and the identified markers more variable across the genome.  

Second, due to the lack of prior knowledge on the distribution of I, we assumed either equal I 

values for different incompatibility pairs or unequal I values that follow a specific distribution 

mimicking the fitness effects of gene deletions.  We believe that the result from the unequal I are 

closer to the truth than that from the equal I.  Third, we assumed that BDM incompatibility is 
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asymmetrical, which is in accordance with the theory and most of the incompatible pairs 

identified so far (Wu and Beckenbach 1983, Meierjohann, Schartl et al. 2004, Welch 2004).  

Nevertheless, our test still works even when it is symmetrical.  Fourth, it is unclear how much 

aneuploidy affects viability in msh2 spores, and we used 0% and 50%, respectively, in our study 

to have a sense of the range of possible outcomes.  Fifth, we assumed no error in genotyping the 

spores.  Although genotyping errors would reduce the statistical power, we expect the 

genotyping error rate to be low, especially when high-coverage next-generation DNA sequencing 

is used.  Moreover, due to low recombination, nearby SNDs can be used for correction of 

sequencing errors at specific positions.  Sixth, we did not explicitly study high-order 

incompatibility, but because high-order incompatibility is equivalent to two-locus 

incompatibility with incomplete penetrance, our results apply to high-order incompatibility.  For 

example, I = 0.5 in a two-locus incompatibility (Figure 4-3) is equivalent to a three-locus 

incompatibility with 100% penetrance. 

In our simulation, we used one marker per 10 kb to look for BDM incompatibility.  

Although next-generation sequencing-based genotyping will offer much more markers, the extra 

markers do not enhance the mapping resolution, because the low recombination rate in msh2 F1 

makes all markers within a 10 kb segment almost completely linked.  Due to this property, pairs 

of incompatible genes that are located on the same chromosome are difficult to detect and 

therefore are not examined in our simulation.  Intrachromosomal incompatible gene pairs are 

expected to constitute only 7.54% of all incompatible pairs if incompatibility genes are 

uniformly distributed in the genome. 

We found that, by the current method, much larger samples than previously used are 

required for identifying yeast BDM incompatibilities with incomplete penetrance.  Given the 
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rapid increase in DNA sequencing capacity and decline in sequencing cost, genotyping ~1000 

spores is no longer out of reach.  In fact, a recent study sequenced the genomes of 1000 F2 

individuals from a genetic cross between two yeast strains in order to map quantitative traits 

(Bloom, Ehrenreich et al. 2013).  Our simulation shows that by genotyping 800 to 1600 F1 

spores, the chance of identifying genetic incompatibilities with relatively high penetrance (>20%) 

is not small.   

Given the power of today’s DNA sequencing capacity, an alternative strategy of 

identifying BDM incompatibility may be used.  This strategy involves two steps.  First, because 

an incompatibility allele (e.g., ASc in Figure 4-1A) has a fitness of 1-0.25I, relative to its 

alternative (e.g., ASp), it is relatively easy to identify it by sequencing a pool of viable F1 spores 

en masse.  Second, after identifying low-fitness alleles, one can then look for their incompatible 

partners by sequencing individual spores.  Because of the reduced number of marker pairs to be 

tested, the sample size required in the second step will be much smaller.  A critical requirement 

in this design is to minimize the competition among spores in mitotic growth before sequencing 

them en masse, because allelic differences in growth rate between Sc and Sp that are unrelated to 

the incompatibility for spore viability may be common.   

Although Sc and Sp are used here to parameterize our simulation study, our methodology 

and results are useful for mapping recessive genetic incompatibilities in other species when the 

haploid stage can be assayed, including species with haplontic or haploid-diploid life cycles and 

diplontic species that can undergo homozygous diploidization.  Because BDM incompatibility is 

a type of intergenic epistasis, our methods and results also apply to other types of genomic 

detection of epistasis. 
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sensitivity, (I) false discovery rate, and (J) mean genomic distance between the preassigned and 
identified incompatibilities, when aneuploidy is assumed to cause a 50% probability of spore 
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Figure 4-6.  Genotyping more F1 spores improves the efficiency of identifying BDM 
incompatibilities with unequal effect sizes.  (A) Probability of nondiscovery, (B) sensitivity, (C) 
false discovery rate, and (D) mean genomic distance between the preassigned and identified 
incompatibilities, when aneuploidy is assumed to have no impact on spore inviability.  The effect 
sizes of the 150 incompatibility pairs are shown in Fig. 3C.  We only show results for 
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    CHAPTER 5 

CONCLUSIONS

5.1 Summary 

In the past decade, research work has been gradually shifting its focus from elucidating 

functionality of individual mutation/gene and by changing one site or knocking out a gene at a 

time to studying their interactions, i.e. intragenic and intergenic epistasis, by quantifying their 

individual and collective effects.  Intragenic epistasis is shown to restrict evolutionary paths for 

the accumulation of several consecutive beneficial mutations in multiple cases (Weinreich, 

Delaney et al. 2006, Bridgham, Ortlund et al. 2009, Salverda, Dellus et al. 2011, Toprak, Veres 

et al. 2011), while opening up seemingly impossible paths or increasing the accessibility of 

fitness peaks in other cases (Bloom and Arnold 2009, Abed, Pizzorno et al. 2011, Palmer, 

Toprak et al. 2015).  For intergenic epistasis, many cases of non-additive effects have been 

recorded between genes encoding multi-component proteins, components of a metabolic 

network, genes in the same biochemical, developmental and signaling pathway, etc.  However, 

such intergenic interactions can also occur between seemingly unrelated genes (He, Qian et al. 

2010).  Such endeavors in quantifying epistasis reflect the increasing interest in studying the 

complex interactions in the biological system, which is having a significant impact on scientists’ 

viewpoint for biological functions, from a more isolated standpoint to a more panoramic picture 

of interactions and networks.  

Although many case studies of epistasis have been reported, the general trend of epistasis 
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is still unclear.  To name a few questions, is intragenic epistasis more likely to be positive or 

negative in general?  How similar is epistasis across changing environments and how predictable 

is epistasis across environments?  What fraction of reproductive isolation is caused by genetic 

incompatibility, a type of intergenic epistasis?  Characterizing inter- and intragenic epistasis at a 

large scale to gain a more holistic understanding will surely offer in-depth and broad insights 

into the abovementioned questions and help the community to better understand evolutionary 

processes, such as speciation, and repeatability of evolution, etc.  The past few years has 

witnessed a series of studies in studying epistasis at large scale (Olson, Wu et al. 2014, Costanzo, 

VanderSluis et al. 2016, Puchta, Cseke et al. 2016, Skwark, Croucher et al. 2017). 

My research work is built on these previous research work and other relevant studies and 

aims at directly answering or facilitating future answering of the aforementioned questions.  My 

focus lies in characterizing epistasis at a large scale at both intragenic and intergenic level to 

shed light on possible evolutionary trajectories and the speciation process in the evolutionary 

history.  I study the overall distribution of intragenic epistasis (Chapter 2), its interaction with 

environments (Chapter 3), and the optimized strategy to genome-widely identify genetic 

incompatibility, a type of strong intergenic epistasis (Chapter 4). 

My research provides effective strategies for characterizing epistasis.  For example, in 

Chapter 2, I combine mass competition with high-throughput barcode sequencing to 

characterizing fitness for over 65,000 mutants simultaneously, allowing for quantifying epistasis 

for over half of all possible 21,115 mutation pairs.  In Chapter 3, I build a model for predicting 

fitness across environments and suggest a simple and accurate way to infer fitness landscape and 

epistasis in a new environment.  In Chapter 4, I come up with better test statistic and a more 

effective methodology to detect signals for incompatible gene pairs.  These strategies are 
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expected to be used by more research groups in the near future to generate more valuable 

datasets to gain an in-depth understanding of epistasis and its underlying biological mechanisms. 

Many conclusions of my dissertation work have been further confirmed by other studies.  

In Chapter 2, I reveal the overall enrichment of negative intragenic epistasis. This finding and 

many of my other main conclusions are echoed by a co-published paper on Science (Puchta, 

Cseke et al. 2016), and also confirmed by multiple other recent studies afterwards (Sarkisyan, 

Bolotin et al. 2016, Hopf, Ingraham et al. 2017).  My research also generated high-quality fitness 

measurements, providing a valuable large-scale dataset for testing a series of hypotheses and 

evolutionary theories (Hopf, Ingraham et al. 2017).  Moreover, in Chapter 4, my strategy for 

better identifying BDM incompatibility has later been successfully implemented by another 

research group (Duncan Greig, poster at 2015 SMBE conference). 

All of my studies emphasize the importance of computer simulation before conducting 

the actual large-scale survey.  In Chapter 2 and 3, careful analysis is conducted before 

experiments to ensure that the fraction of double mutants in the synthesized variants is 

maximized, enough colonies are being collected, and the optimal competition durations are 

chosen for sequencing to maximize the power of experiments to draw meaningful conclusions.  

In Chapter 4, I evaluate the power of previous studies and highlight the importance of choosing 

the adequate sample size and testing strategies using computer simulations. 

 

5.2 Implications 

My findings have multiple implications in the field of evolutionary genetics.  First, my 

results illustrate the importance of understanding epistasis to gain an in-depth understanding of 

molecular evolution by revealing a general negative trend for intragenic epistasis.  There are 
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many evolutionary theories that depend on the overall pattern of negative epistasis.  For instance, 

previous theoretical work has predicted that negative epistasis is favored if the selection is 

efficient compared to drift (Gros, Le Nagard et al. 2009).  Such negative epistasis is associated 

with a higher level of tolerance to mutations, i.e. robustness, and is therefore selected by natural 

selection.  Moreover, negative epistasis enhances the ability of natural selection to remove 

deleterious mutations in sexual populations compared asexual populations.  Our observation 

further confirms the maintenance of sexual reproduction despite its high costs (Lucchesi 1978), 

consistent with previous simulation results (Azevedo, Lohaus et al. 2006).  Also, the hypothesis 

of reduction in mutational load by truncation selection against deleterious mutations also relies 

on the overall negative epistasis (Crow and Kimura 1979). 

Second, my research emphasizes the importance of understanding the structural basis of a 

gene in order to understand its fitness landscape.  For instance, in Chapter 2, I aimed at revealing 

the link between tRNA folding and tRNA fitness.  No direct evidence at a large scale was 

previously available between folding stability and fitness for RNA genes.  Indeed, when I focus 

on N1, N2 and N3 mutants separately, the folding stability of each tRNA variant represented by 

its minimum free energy predicted by Vienna RNA package shows weak or no significant 

correlation with the fitness of the strain carrying this tRNA variant, unless we focus on all 

variants together.  In the latter scenario, the seemingly strong correlation between the structural 

stability and the fitness value might not indicate a causal relationship but instead is likely to be 

an artefact of both measures being strongly correlated with the number of mutations in the 

molecule.  That is, a higher number of mutation would in general lead to further destruction of 

structure and further reduction in fitness, but there might be no causal relationship between the 

two metrics.  Such pattern was also observed in other studies (Puchta, Cseke et al. 2016).  The 
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lack of correlation is somewhat expected because tRNAs are almost always folded stably with a 

strong secondary structure and comparatively low minimum free energy.  To better understand 

how tRNA folding affects fitness, I come up with a model to calculate the fraction of functional 

molecules based on the relative stability of tRNAs folding in multiple functional or 

nonfunctional structures, which turned out to be highly overall correlated with fitness 

(Spearman’s rho=0.51 after excluding internal promoter sites), and significant correlations for 

N1, N2 and N3 mutants respectively.  These results highlight the importance of understanding 

the structural basis of the candidate molecule to gain in-depth knowledge. 

Moreover, my research has potential implications for synthetic biology.  When designing 

a functional molecule, if the design is done in a piecewise fashion without taking epistasis into 

consideration, the final outcome is highly likely to be different from the expectation assuming no 

interdependence.  The pervasiveness of epistasis has been observed in previous case studies 

(Williams and Lovell 2009, Lunzer, Golding et al. 2010), and also confirmed at a large scale in 

Chapter 2.  In Chapter 3, a simple piecewise linear model is built to predict fitness and epistasis 

across multiple environments, which could be helpful to predict the performance of molecular 

machinery across multiple environments without extensive and laborious re-measurements. 

5.3 Future directions 

My research covers several interesting topics on intra- and inter-genic epistasis.  There 

are many more vital questions to be addressed in the near future. 

It is of great importance to reveal biological explanations of the patterns of the fitness 

landscape.  For the fitness landscape of the tRNA gene, I use the fraction of functional molecules 

to partially explain the fitness differences.  Meanwhile, other factors, such as the gene expression 

level, secondary and 3-dimentional structure and other sequence features to attach amino acids, 



110  

bind ribosome or recognize codon could be measured to build a full model for predicting fitness.  

Such efforts would also be vital for other studies measuring fitness landscapes at a large scale. 

For intragenic epistasis, although an enrichment of negative epistasis is observed by 

multiple large-scale studies for both beneficial and deleterious mutations, the underlying 

mechanism for this phenomenon is still unclear.  An increasing number of large-scale fitness 

landscape data sets are coming out, and it would be interesting and important to understand the 

phenomenon from a structural, expression-related, catalytic, population genetic or modular 

aspect.  

For intergenic epistasis, the exact casual gene conferring reproductive isolation during 

incipient speciation still need to be mapped at the genome scale even after the segments of the 

genomic region containing these genes could be identified.  Given the recent application of 

CRISPR-Cas9 in fine mapping (Sadhu, Bloom et al. 2016), the identification of such candidate 

genes is expected in the near future.  Because of the tremendous functional genomic data 

available in S. cerevisiae and its close relatives, it can serve as an excellent model eukaryote for 

studying the genetic basis of the speciation process.  

 My research focuses mainly on two-way interactions between genes and mutations. 

However, there could be high-order epistasis playing important roles (Weinreich, Lan et al. 

2013).  Some of our methodologies can also be readily applied for studying high-order epistasis. 

For instance, by adjusting the fraction of the mutant base in the synthesized gene in Chapter 2 

and increasing the throughput of sequencing, analysis can be done on a large scale for 

quantifying high order interactions.  For intergenic epistasis, because high-order incompatibility 

with complete penetrance is effectively equivalent to three pairs of two-locus incompatibility 

with incomplete penetrance, our results in Chapter 4 can be directly applied to identify high-
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order incompatibility.  More algorithms (Guo, Meng et al. 2014) and large-scale datasets would 

be beneficial in identifying such high-order epistasis. 

 Another important aspect is to study epistasis of sites in different genes.  Most of the 

previous studies on intergenic epistasis focus on deletion effects, while studies of intragenic 

epistasis focus exclusively on a single gene. Studying epistasis of interacting interfaces and other 

functionally related genes would provide valuable information on the co-evolution of these 

genes. 

Finally, it is always important to validate whether the conclusions obtained in one 

unicellular organism are directly applicable to other organisms and whether the patterns observed 

in one protein or RNA molecule are broadly true in other functional molecules.  More extensive 

case studies for fitness landscapes and incompatibility mapping is highly essential before 

drawing a general conclusion for all molecules or organisms. 
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Figure S1.  Schematics of experimental procedures.  

① The wild-type 
A rg

C C U
tR N A  gene at its native genomic position.  

② The wild-type 
A rg

C C U
tR N A  gene is replaced with LEU2.  The dotted black lines show 

the region replaced.  This is the strain referred to as the 
A rg

C C U
tR N A  gene deletion strain in 

the paper. 

③ LEU2 is replaced with a tRNA gene cassette composed of a
A rg

C C U
tR N A  gene variant 

and URA3.  

④ Genomic region amplified by the first round of PCR with the purple primer pair 

shown in ③.  The purple primer pair shown in ③ only amplifies tRNA gene cassettes 

that are located at the correct genomic position. 

⑤ tRNA gene variant amplified from ④ using the orange primer pair shown in ④.  

Adapters for Illumina sequencing are shown by green lines and are part of the primers. 

⑥ The tRNA gene variant is sequenced using 100-nucleotide paired-end Illumina 

sequencing, indicated by black dotted arrows. 
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Figure S2.  Maximum growth rates of the yeast wild-type strain (gray bars) and 
A rg

C C U
tR N A  gene deletion strain (white bars) in two media at three temperatures.  (A) 

Mitotic growth rates in the fermentable medium YPD.  (B) Mitotic growth rates in the 

non-fermentable medium YPG.  Growth rates are measured by the maximum increase in 

OD’ per hour in mid-log phase.  OD’, converted from optical density (OD) at 600 nm by 

the formula OD+0.8324×OD3, is approximately proportional to cell density. 
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Figure S3.  Numbers of read pairs across genotypes are highly correlated between 

technical repeats and between biological replicates.  (A) Comparison in read pair 

number between two technical repeats at T0 across genotypes.  Each dot represents a 

genotype and only those genotypes with a total of ≥100 read pairs are considered.  

Pearson’s correlation coefficient r = 0.99997.  (B) Comparison in read pair number 

between biological replicates 1 and 2 at T24 across genotypes.  Each dot represents a 

genotype and only those genotypes with a total of ≥100 read pairs at T0 are considered.  

Pearson’s correlation coefficient r = 0.9997.  The mean r = 0.9987 for the 15 pairs of 

biological replicates.    
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Figure S4.  Comparison of three fitness estimation methods for 55 strains carrying 

different tRNA variants.  For the sequencing method, fitness values shown are per 

generation fitness relative to the wild-type.  For the flow cytometry method, fitness is 

measured by pairwise competition followed by flow cytometry, and the values shown are 

per generation fitness relative to the wild-type.  For the growth curve method, fitness is 

measured by either the maximum growth rate in mid-log phase (OD’/hr) or proliferation 

efficiency (OD’ change in the first 48 hours of growth).  OD’, converted from optical 

density (OD) by the formula OD+0.8324 OD3, is approximately proportional to cell 

density.  (A) Fitness estimated by sequencing is correlated with that estimated by flow 

cytometry.  (B)  Fitness estimated by sequencing is correlated with that estimated by 

maximum growth rate.  (C) Fitness estimated by sequencing is correlated with that 

estimated by proliferation efficiency.  Error bars show one standard error. 
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Figure S5.  Correlations of maximum growth rates of 55 strains carrying different 

tRNA variants among five different environments.  Environments used and the 

frequency distribution of maximum growth rates in the environments are shown in the 

diagonal panels.  In lower left panels are maximum growth rates in each environment 

plotted against those in each of the other four environments, along with Pearson’s 

correlation coefficients and red linear regression lines. 
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Figure S6.  Heat map showing the fitness of all N1 mutants.  At each site, the wild-

type nucleotide is boxed.  The tRNA secondary structure is plotted linearly with 

parentheses showing sites in stems and crosses showing sites in loops; the same color is 

used for sites in the same loop or stem.  The anticodon is shown by the three red crosses.   
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Figure S7.  Distribution of epistasis between mutations after the removal of all 854 

cases with observed or expected fitness reaching the lower limit of 0.5.  (A) 

Frequency distributions of pairwise epistasis (gray) and statistically significant pairwise 

epistasis (blue) among 12,475 pairs of point mutations studied.  (B) Frequency 

distributions of epistasis (gray) and statistically significant epistasis (blue) between pairs 

of mutations that convert a Watson-Crick (WC) base pair to another WC pair.  (C) 

Frequency distributions of epistasis (gray) and statistically significant epistasis (blue) 

between pairs of mutations that break a WC pair.  The vertical red line shows  = 0.  

Median  is significantly greater in (B) and (C) than in (A) when all epistasis cases (P = 

3×10-5 and 0.01, respectively; Mann-Whitney U test) or only significant epistasis cases 

(P = 3×10-4 and 0.02, respectively) are considered.  Median  is significantly greater in 

(C) than in (B) when all epistasis cases (P = 0.049) or only significant epistasis cases (P 

= 0.043) are considered. 
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Figure S8.  Distribution of pairwise epistasis 
A B A B

' ln ( ) ln lnf f f    .  (A) Frequency 

distributions of pairwise epistasis (gray) and statistically significant pairwise epistasis 

(blue) among all 12,985 pairs of point mutations studied.  (B) Frequency distributions of 

epistasis (gray) and statistically significant epistasis (blue) between pairs of mutations 

that convert a Watson-Crick (WC) base pair to another WC pair.  (C) Frequency 

distributions of epistasis (gray) and statistically significant epistasis (blue) between pairs 

of mutations that break a WC pair.   
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Figure S9.  Correlation between the fitness cost of the first mutation and the mean 

epistasis with the second mutation, after the removal of N2 mutants whose expected or 

observed fitness is ≤ 0.5.  Red line shows the linear regression.   
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Figure S10.  Negative correlation between the fitness cost of the first mutation and 

the mean fitness cost of the second mutation is not artifactual.  (A) Correlation 

between the fitness cost of the first mutation and the mean fitness cost of the second 

mutation, after the removal of all N2 mutants whose expected or observed fitness is ≤ 0.5.  

Red line shows the linear regression.  The fitness cost of the first mutation is calculated 

by 1-fA, where fA is the fitness of a N1 mutant carrying the A mutation.  The mean fitness 

cost of the second mutation, given the first mutation A, is calculated by 1- (mean fAB)/fA, 

where the subscript AB refers to a genotype carrying the A mutation as well as another 

mutation (including the reversion of the A mutation) and fAB is the average fitness of all 

such genotypes.  (B) Correlation between the fitness cost of the first mutation and the 

mean fitness cost of the second mutation, where the x-axis and y-axis are based on fitness 

data from different biological replicates.  Because measurement errors of fA could lead to 

an artefactual negative correlation between the estimated fitness costs of the first and 

second mutations, we used three biological replicates to estimate fA for the x-axis and 

used the other three biological replicates to estimate fAB and fA for computing the y-axis 

value, thus removing such potential artifacts.  All 20 possible combinations of such 

sampling were used to calculate the correlation, which ranges from -0.51 to -0.76, with a 

mean of -0.61.  The slope ranges from -0.397 to -0.220, with a mean of -0.293.  
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Figure S11.  Frequency distributions of pairwise epistasis involving more than two 

sites.  (A) Frequency distribution of epistasis between mutations AB and mutation C, 

defined as  = fABC - fABfC, is overall negatively biased.  6,234 cases with epistasis = 0 

(both expected and observed fitness = 0.5) are not shown.  (B) Epistasis between 

mutations AB and mutations CD, defined as  = fABCD - fABfCD, is overall negatively 

biased.  9,343 cases with epistasis = 0 (both expected and observed fitness = 0.5) are not 

shown.  Here A, B, C, and D refer to four point mutations, relative to the wild-type.  The 

red vertical lines show zero epistasis. 
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Table S1. Primers used 

Purpose of the primers Forward primer (5’-3’) Reverse primer (5’-3’) 

Replacing the 

endogenous tRNACCU

Arg
 

gene with LEU2 

TCGTAATAATATTACTATGCAAC
TTAGGTACCTCATATTTCTTAGA
GTTCAACCAAGTTGAAGAGTTC
GAATCTCTTAGCAACCA 

ATATGAACCTTCAACTAGTTAT
TACCACTGTGGCACTCTTTCTG
CGGTAAGATTATCTCACTCCAT
CAAATGGTCAGGTCATTGA 

 

Amplifying the 

chemically synthesized 

tRNACCU

Arg
 gene 

variants 

 
CGAAGTTTATTCATTCAATTTGA
AGTGCTTCGTAATAATATTACTA
TGCAACTTAGGTACCTCATATTT
CTTAGAGTTCAACCAAGTTGG 

TCGCAAGGTAATATCGTCTGA
ATTTTTTCTATAAAGAAACGAA
AAAAAAAAAATAATCAACG 

Amplifying URA3 

 
TTGATTATTTTTTTTTTTTCGTTT
CTTTATAGAAAAAATTCAGACGA
TATTACCTTGCGAAGCTTTTCAA
TTCAATTCATCATTT 

 
ATATAATATGAACCTTCAACTA
GTTATTACCACTGTGGCACTCT
TTCTGCGGTAAGATTATCTCAG
GGTAATAACTGATATAATTAAA
TT 

Fusing tRNACCU

Arg
 gene 

variants with URA3  

CGAAGTTTATTCATTCAATTTGA
AG 

 
ATATAATATGAACCTTCAACTA
GTTA 

First round of PCR for 

library preparation 
GGGGTTCATTACAGCAGCTT TGTGCTCCTTCCTTCGTTCT 

Second round of PCR 

for library preparation* 

AATGATACGGCGACCACCGAG
ATCTACACTCTTTCCCTACACG
ACGCTCTTCCGATCTNNNNNNA
GTTCAACCAAGTTGG 

CAAGCAGAAGACGGCATACGA
GATCGTGATGTGACTGGAGTT
CAGACGTGTGCTCTTCCGATC
TAAAAAAAAATAATCAACG 

*The underlined sequence in the reverse primer at the second round of PCR corresponds 

to the index sequence for multiplex sequencing. 
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Table S2. Illumina read numbers from each sample  

Time (hrs) Sample 

description 

Raw read 

number 

Read pair 

number after 

filtering 

Percentage used 

0 Repeat 1 174,956,172 74,749,170 0.854 

Repeat 2 113,885,948 43,808,386 0.769 

     

24 Replicate 1 45,821,636 19,957,042 0.871 

Replicate 2 29,756,408 12,921,113 0.868 

Replicate 3  51,889,890 22,273,492 0.858 

Replicate 4 119,335,654 53,881,470 0.903 

Replicate 5 67,091,400 29,939,362 0.892 

Replicate 6 82,746,144 37,263,697 0.901 
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Table S3. Fitness of mutants carrying anticodon mutations 

Anticodon Corresponding codon (by 

Watson-Crick pairing) 

Corresponding 

amino acid 

Fitness 

CCC GGG G 0.82 

ACT AGT S 0.80 

AGT ACT T 0.76 

GCT AGC S 0.74 

CCA TGG W 0.71 

CAT ATG M 0.71 

CTT AAG K 0.71 

TCT AGA R 0.69 

CCG CGG R 0.68 

CGT ACG T 0.65 

TGT ACA T 0.65 

AAT ATT I 0.62 

CGC GCG A 0.61 

CTC GAG E 0.61 

GCC GGC G 0.60 

TCC GGA G 0.58 

TAT ATA I 0.57 

GTT AAC N 0.56 

CAC GTG V 0.52 

ATT AAT N 0.50 

GGT ACC T 0.50 

ACC GGT G 0.50 

GCA TGC C 0.50 

CTG CAG Q 0.50 

TCA TGA Stop 0.50 

CTA TAG Stop 0.50 
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Table S4. Examples of pairwise epistasis whose sign depends on the genetic 

background 

Mut C Mut A Mut B fC fA fB fAC fBC fAB fABC ε AB|WT ε AB|C 

A15T G50A C55G 0.88 1.00 0.70 0.60 0.51 0.71 0.67 -0.18  0.25 

G18C G12A C29T 0.66 1.00 0.99 0.59 0.55 0.74 0.60 -0.25  0.16 

A36C C27T G68C 0.70 1.00 0.97 0.54 0.59 0.76 0.60 -0.21  0.21 

C33G A15T G50A 0.74 0.88 1.00 0.55 0.61 0.71 0.62 -0.18  0.23 

C60G G9C G67A 0.66 0.85 0.95 0.53 0.58 0.58 0.57 -0.23  0.16 

A15C C5G C22A 0.90 0.99 1.00 0.63 0.70 0.77 0.63 -0.23  0.16 

C33G A15T C62G 0.74 0.88 0.92 0.55 0.60 0.65 0.60 -0.17  0.22 

A36C C30T A65C 0.70 1.01 1.01 0.57 0.60 0.84 0.62 -0.19  0.19 

A14C T7C G63C 0.87 1.01 0.81 0.68 0.54 0.61 0.57 -0.20  0.16 

G48C C49T C55T 0.98 1.00 0.72 0.67 0.65 0.79 0.66 -0.18  0.18 

C31A A15T C49G 0.85 0.88 0.99 0.59 0.64 0.67 0.58 -0.20  0.16 

A15T T16A C27G 0.88 0.99 0.64 0.53 0.55 0.70 0.59 -0.17  0.17 

C31G G9C C30T 0.94 0.85 1.01 0.63 0.66 0.79 0.63 -0.16  0.17 

A14C C4G G48C 0.87 1.01 0.98 0.57 0.66 0.82 0.58 -0.16  0.17 

C62G A20T G63C 0.92 0.99 0.81 0.68 0.59 0.65 0.60 -0.15  0.15 

A40T A14G G58C 0.99 0.80 0.99 0.90 0.94 0.99 0.71  0.20 -0.16 

C49T C34T A65C 1.00 0.71 1.01 0.87 0.94 0.88 0.61  0.17 -0.20 

G39A C5T C55T 0.99 0.99 0.72 0.94 0.87 0.86 0.61  0.15 -0.22 

C49G C46G C62A 0.99 0.99 0.72 0.97 0.84 0.87 0.61  0.16 -0.22 

G44A C5T C55T 0.98 0.99 0.72 1.08 0.78 0.86 0.63  0.15 -0.23 

T54C C5A G44C 0.81 1.00 0.98 0.80 0.72 0.98 0.56  0.18 -0.20 

C49G T19C G67T 0.99 0.97 0.92 1.14 0.70 1.07 0.60  0.18 -0.21 

A20C A14G C46G 1.01 0.80 0.99 0.81 1.02 0.99 0.64  0.20 -0.18 

A65T C46T C49A 0.99 0.99 0.76 0.86 0.88 0.96 0.55  0.21 -0.21 

G48C C4T G25A 0.98 0.99 0.98 0.90 0.95 1.14 0.62  0.18 -0.26 

A42G A14G C46G 0.93 0.80 0.99 0.78 0.89 0.99 0.52  0.20 -0.24 

C31A A45T A70T 0.85 0.99 1.01 0.93 0.92 1.02 0.79  0.18 -0.26 

T28A C5T G12C 0.89 0.99 0.98 0.82 0.86 1.04 0.55  0.16 -0.28 

G50A T32A A69T 1.00 0.74 1.03 0.78 1.00 0.96 0.53  0.19 -0.25 

G50A C46G C62A 1.00 0.99 0.72 1.04 0.88 0.87 0.60  0.16 -0.30 

G67A G48A G52A 0.95 0.98 0.70 0.98 0.91 0.83 0.65  0.17 -0.30 

A65G A20G G23A 1.00 1.00 0.74 0.89 0.99 0.91 0.57  0.17 -0.30 

C46G C31T G63A 0.99 0.99 0.85 0.97 0.80 1.14 0.61  0.30 -0.18 

C55T G9A C22A 0.72 0.99 1.00 0.92 0.65 0.92 0.63  0.20 -0.28 

C55T C4G C5T 0.72 1.01 0.99 0.75 0.75 0.86 0.54  0.15 -0.32 

G52A C46A G63C 0.70 1.00 0.81 0.82 0.65 1.00 0.56  0.18 -0.30 

G23A C29T C30A 0.74 0.99 1.00 0.79 0.74 0.92 0.56  0.19 -0.31 

C46G T3A A14G 0.99 1.00 0.80 0.93 0.98 0.99 0.62  0.20 -0.31 

A14G T2C C5G 0.80 1.00 0.99 0.74 0.86 1.00 0.56  0.21 -0.30 

All listed epistasis values are statistically significant (nominal P < 0.05, t-test from the six biological 

replicates). 
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