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PREFACE 
 

The term “natural” has always perplexed me. According to Merriam-Webster, “natural” 

means “existing in or caused by nature; not made or caused by humankind.”  At first glance this 

would appear to be one of those frustrating-and-not-very-useful definitions where parts of a word 

are used to define the word itself. Yet in this definition lies a subtle, but very deliberate 

delineation between what is nature and what is human.  Modern day ecology is very different 

from its early beginnings. In the past, ecologists by in large worked in “pristine” habitats 

untouched by humans, or sought to recapture the essence of “nature” in areas that were already 

sullied by human hands. This mindset was not altogether unfounded; human presence had 

thinned the eggshells of bald eagles, lit the Cuyahoga River on fire, poisoned the fish and people 

of Japan and turned the Amazon into office paper and houses. From this emerged the notion that 

nature needed conservation, and unfortunately the conclusion that conservation required the 

removal of humans.  

This was the beginning of “nature” reserves— parks that would exclude humans and 

protect “nature.” But what was the best design? Was it better to have several small parks or a 

single large? On the one hand, a single large park could support a greater diversity of organisms. 

On the other hand, dispersal between several small parks could minimize the risk that a random 

act of “nature” would cause populations across all parks to go extinct at once. A critique in 

ecology is that we are continuously rehashing old concepts. Nowadays you can find ecologists 
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everywhere: in farms, in cities, in laboratories. But simply replace parks with agriculture and the 

classic S-S-O-S-L (several small or single large) debate becomes something very close to the 

contemporary land sharing-land sparing debate. The land sparing argument is one that sources 

from a predilection for conservation—keep one large, very intensely managed industrial farm 

rather than fragmenting a landscape with many, small, less intensive agro-ecological alternatives. 

Yet what is more concerning? Threat of environmental impact by large corporations (legally 

considered humans, though evidence suggests they are psychopathic ones), or a group of small-

holder farmers trying to hold on to their traditional farming practices and the land they have 

farmed for generations?  

As ecologists, we are always seeking to bring nature to human-managed systems, yet 

what exactly do we seek to capture?  When we look across a fragmented landscape the lines we 

see are a mixture of “natural” formations and those created by humans.  What is the distinction? 

Whether quantified in terms of species, interactions, landscape features, soil texture or any 

number of variables, we tend to measure the value of nature in terms of its complexity. Human-

managed systems do tend to be simplifying: we turn diverse rainforests into monocultures of 

timber and soybean, we till soils and homogenize the layers that have taken millions of years to 

stratify, we pour concrete over the billions of microorganisms alive in the earth to create grey, 

monotone cities. But at what cost?  

Complexity has long-been both the defining feature and main struggle for ecology as a 

discipline. We seek to understand the nature of interactions between elements of diverse 

biological systems, yet interactions between elements in the simplest of systems are plagued with 

complexities. The three-body problem in physics is the perfect example: take one celestial body 

whose precise location is known, add another and they will rotate relative to each other in a 



	 viii 

predictable fashion. Take three and chaos emerges. As a rule of thumb, nothing in ecology has 

less than three elements. Though complexity may be standard for ecological systems, its effects 

on system stability are less so. The classic diversity-stability debate in ecology explored this very 

question. Elton used heuristics to contrast the stability of diverse, natural systems with the 

plagues of pests and disease common in simplified agricultural landscapes. May would challenge 

that assertion with food web models that likened diverse assemblages to a house of cards, more 

likely to fall over with the addition of every card. McCann, Huxel and Hastings would claim that 

weak interactions were the glue that held the cards in place. All of this occurred while ecologists 

were increasingly acknowledging the role of stochasticity and chaos in driving ecosystem 

dynamics, and this acknowledgement arising as those ecosystem dynamics continued to move 

towards collapse.   

People live on this planet and “pristine” nature is an increasing rarity. I have always 

struggled with the concept of “nature” precisely because humans are excluded by definition. If 

“nature” is natural then what is human? More importantly, if humans must be excluded to 

conserve nature, how is nature to survive our increasing imposition? Given the simple 

ingredients for chaos, surely, there is no reason why a human-managed system must be less 

complex than a natural one. Chaos itself is a misnomer. Though unpredictable it is also 

deterministic, with structure and bounds that are describable. Whether and in what cases those 

structures and bounds are amenable to human-managed systems is the motivating question 

behind this thesis.  
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ABSTRACT 
 

This dissertation examines biocomplexity in agroecological systems. Throughout the 

dissertation, theoretical frameworks are developed, and then validated using empirical and 

observational studies. Three major themes are explored: 1) autonomous biological control, 2) 

fragmented landscapes, and 3) the complex and irreversible consequences of human-

management for ecosystem states.  

In autonomous biological control, interactions between diverse assemblages of natural 

enemies are hypothesized to maintain pest populations consistently below economic thresholds. 

Chapters I-III test whether autonomous biological control can be achieved through strong 

negative coupling of biological control agents that are ineffective in isolation. Competing agents 

wrestle for dominance, but are unable to persist in isolation. Pests move chaotically between 

control by one or the other agent, yet remain for long timescales at densities below economic 

thresholds. Coupling biological control agents may also reduce spatial clustering in pests, 

eliminating local outbreaks.  

Chapters IV-V assess the population structures of pest-natural enemy systems across 

fragmented urban landscapes. Fragmentation can structure populations along a continuum 

between metapopulations and source-sinks. Dispersal from sources to sinks synchronizes 

population fluctuations, while isolation in metapopulations causes asynchrony. This structure 

leaves signatures on the spatio-temporal dynamics of populations. Asynchrony can reduce 
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variances in populations to levels lower than their mean sizes would predict, causing the 

exponent of a well known scaling law, Taylor’s law to move towards 1. Thus, calculations of 

Taylor’s law may help in addressing where populations in fragmented landscapes exist on the 

continuum between metapopulations and source-sinks. This approach paired with a 

microsatellite analysis of aphid population genetics suggest that urban gardens in Ann Arbor 

may represent sinks for dispersing aphids. 

Chapters VI and VII examine the potential for management decisions to irreversibly 

impact biological control and agriculture. When parameters in simple population and nutrient 

dynamic models are correlated, complicated hysteretic patterns including “unattainable” stable 

states emerge. Certain desirable ecosystem states, once lost, may never be recovered.  

In summary, biocomplexity very easily emerges from interactions between components 

of diverse agricultural systems. Spatial heterogeneity, a defining characteristic of agriculture, 

further increases this complexity. These complexities can be leveraged to promote the success of 

agroecological alternatives to harmful conventional practices. 



	 1 

 

INTRODUCTION 
 

In 1958, Charles Elton observed that agriculture was prone to insect and disease 

outbreaks (Elton 1958). The dominant form of agriculture at the time consisted of large 

monocultures, a homogeneity that stood in stark contrast to the diverse vegetation of natural 

forests. Elton posited that within forests, a diversity of organisms acted as natural enemies of 

herbivores and pathogens that were prevented from becoming the pests common of agriculture. 

He presumed that lack of vegetative and structural diversity in agriculture limited its natural 

enemy diversity and would go on to suggest, “if wilderness is in retreat, we ought to introduce 

some of its stability and richness into the landscapes from which we grow our natural resources.” 

This call remains appropriate today, as the dominant form of agriculture in the developed world 

continues to consist of monocultures that simplify landscapes and depend heavily on inputs of 

fertilizers and pesticides (Pimentel et al. 1992, 2005). Concern for its environmental, health, and 

societal impacts drives many to call for transitions from conventional agriculture to agro-

ecological alternatives (Giller et al. 1997, Vandermeer 2010). These alternatives seek to capture 

the stability and richness of nature that Elton alluded to by emulating its complexity (Lewis et al. 

1997, Vandermeer et al. 2010) . However, the consequences of complexity on system stability 

are not well understood (May 1972, Murdoch 1975, Hastings 1993, McCann 2000, May 2001, 

Allesina and Tang 2012). Though nature is inarguably complex, it may or may not be stable.  

In the early 1920s, Alfred Lotka and Vito Volterra independently derived equations to 

describe the population dynamics of predators and prey (Volterra 1927, Lotka 1978). Even when 
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considering simple systems composed of two units (predator and prey), complex patterns emerge. 

The equations predict stable coexistence but in the form of cycles; prey populations grow 

exponentially, followed by population growth for predators, a decline in prey, starvation of 

predators, and a repeat of the cycle in perpetuity. Here is an example where stability and 

complexity can coincide. Though the dynamics are complicated, neither the predator nor the prey 

ever goes extinct.  Predator-prey cycles are commonly observed in nature, the most famous 

example being the lynx and hare cycles derived from the Hudson Bay Company’s records of fur 

pelts dating back to 1845 (Elton and Nicholson 1942).  Yet when Gause combined predator 

Paramecium and their Didinium prey in well-mixed laboratory flasks, he failed to observe cycles 

(Gause 1934, Gause et al. 1936). This would become a common theme for ecology. Nature and 

theories suggested that complex systems could be stable, but empirical tests were less convincing. 

Alexander Nicholson would later argue that neither Gause’s experiments nor the Lotka-

Volterra equations were realistic approximations of nature (Nicholson 1933, 1954). Both the 

experiments and the theory lacked the complexity of natural systems, and therefore could not 

adequately represent real predator-prey dynamics. As a consequence, Nicholson and Bailey 

developed an alternative model, based on a parasitoid wasp-host system (Nicholson and Bailey 

1935) with generational effects included using a discrete time framework. At first the model 

failed to produce stable predator-prey cycles, but by adding aspects more realistic for parasitoid-

host biology, the model was eventually coerced to do— rather than assume that hosts were 

randomly distributed, the model imposed a more realistic clumped distribution.  

In 1958 Huffaker re-attempted to demonstrate predator-prey cycles in an experiment 

(Huffaker 1958). Considering Nicholson’s arguments, Huffaker introduced space to a predator-

prey system composed of mites distributed on carefully arranged arrays of oranges. Yet space 
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alone was insufficient to cause coexistence between predators and their prey. Only by adding 

greater spatial heterogeneity, where prey were aided in dispersal and predators were hindered, 

was Huffaker finally able to demonstrate cycles. In combination, Nicholson and Huffaker’s 

results revealed the importance of complexity in effecting coexistence between predators and 

prey.  

Yet real ecological systems are not two-dimensional. They are composed of a diversity of 

organisms interacting with one another and their environment at various spatial and temporal 

scales. Robert May disrupted Elton’s presumption that diversity begets stability when he showed 

in 1972 that increasing the number of species in a food web model reduced the stability of the 

overall system (May 1972). Rather than considering stability as persistence of species for long 

timescales as Gause, Nicholson and Huffaker had done before him, May analyzed individual 

equilibrium points for their Lyapunov stability characteristics, finding that food webs were 

essentially like a house of cards, every additional card or species made the whole system more 

likely to collapse (move towards an equilibrium point that had one of the species in the 

community at zero). Again ecologists were confronted with a paradox: May’s model predicted 

that diverse systems were inherently unstable, yet most real systems included a diversity of 

organisms that appeared to coexist in a stable manner (McCann 2000). After many decades, 

McCann, Hastings and Huxel provided one potential explanation. May’s model was composed of 

very strong links between species in the food web, but McCann et al. showed that if the links 

between species were much weaker, diversity could actually increase stability (McCann et al. 

1998). Most recently, researchers found that increasing the intensity of higher-order interactions 

among species could also reverse May’s diversity-stability conclusion (Bairey et al. 2016). 
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Although adding more species decreases the stability of two-way interactions, three-way 

interactions are not affected, and four-way interactions actually increase in stability. 

There is great difficulty in assessing the effect of diversity on system stability because 

once a third component, another predator or competitor for resources, is added, dynamics go 

from complicated to impossible to predict. Edward Lorenz first demonstrated this in 1963, when 

he developed a simple three-component model to describe atmospheric convection (Lorenz 

1963). At that time, computers were fairly new tools in research. Lorenz used a computer to 

project changes in the three variables of his model, but when he repeated his analysis for the 

same initial conditions, he found that the results diverged exponentially. Lorenz discovered that 

the divergence resulted from a miniscule rounding error he had made when inputting the initial 

conditions for his second run. This led him to discover that when a dynamic system is composed 

of three or more variables, projections can be sensitive to initial conditions. Any small difference 

in initial conditions causes an exponential, yet deterministic divergence in the results, a concept 

that became known as deterministic chaos. Before this discovery, variability in ecological 

datasets was assumed random, but Lorenz’s results implied that this variation could be 

deterministic—a point that would start another long-standing debate in ecology on whether 

variation in real-data is primarily stochastic or deterministic (Andrewartha 1954, Hairston et al. 

1960, Ehrlich and Birch 1967, Slobodkin et al. 1967, Andrewartha and Birch 1986, Grenfell et al. 

1998). After discovering that both stochasticity and deterministic chaos are relatively common, 

ecologists settled on the idea that it did not matter whether the ultimate source of variation was 

deterministic, but how that variation influenced system stability (Hastings et al. 1993).  

The ubiquity of multi-dimensionality and context-dependency in nature mean there are 

few, if any, generalizable concepts in ecology. To arrive at general laws, ecologists traditionally 
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take a reductionist approach; we strip complex systems down to components and assess pair-

wise interactions in isolation. This has led to many advances in ecology, not the least of which 

includes predator-prey theory. Yet complexity is arguably the most general law in ecology. 

Reductionist approaches purposefully remove or reduce complexity to improve understanding, 

however, doing so also reduces our ability to approximate real ecological systems. Thus, to 

arrive at a greater understanding of complexity in ecology, this dissertation combines 

reductionist and holistic methods; first separating components of complex systems and then 

combining them to observe their synergistic effects.  Yet it is important to note that simple 

systems can be quite complicated in their own right. Lorenz’s remarkable demonstration of 

deterministic chaos in three-dimensional systems was overshadowed by May’s demonstration in 

1976 that deterministic chaos can occur in a one-dimensional system (May 1976). May showed 

that in a simple model of logistic population growth, time lags could cause a population to over 

or under-shoot carrying capacities. Populations constantly had to readjust, increasing or 

decreasing their populations to account for under or overshooting beyond carrying capacity, 

creating chaotic dynamics in a simple one-dimensional system.   

Though the methods and conclusions for past work contributing to the diversity-stability 

debate are various, all of them begin with the presumption that components within complex 

systems are stable in isolation. For the first time, this dissertation reverses that assumption and 

asks what happens when we couple two unstable consumer-resource interactions.  Considering 

Elton’s original framework, it is perhaps not surprising that much of the early work in population 

ecology focused on biological control systems where natural enemies are applied to control pest 

problems in agriculture (Nicholson and Bailey 1935, Levins 1969, Murdoch 1975, Luck 1990). I 

follow that tradition here. In the first chapter I develop a theoretical framework for coupling 
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unstable systems, followed by experimental validations in the second chapter and extensions into 

space in the third.  

Huffaker first established the importance of space for stabilizing predator-prey 

mechanisms, sparking MacArthur and Wilson’s forays into island-biogeography theory where 

the number of species that an island could sustain was made into a function of the distance to a 

mainland and the size of the island (Huffaker 1958, MacArthur and Wilson 1967). Richard 

Levins would extend these ideas in metapopulation theory, replacing the islands with habitat 

patches in fragmented landscapes (Levins 1969). Levins noted that high-dispersal between small 

sink patches could maintain persistence of species even if there were no large source patches in 

the landscape (Levins 1969, Pulliam 1988). As a result, habitat fragmentation patterns and 

dispersal between patches would become standard ways of conceptualizing the role of space for 

species coexistence (Gotelli 1991, Hanski and Gilpin 1991, Hanski and Ovaskainen 2000). One 

debate that arose from this work was whether when designing parks with the goal of conserving 

species, it was better to include several small parks or devote funds to a single large park. The 

single-large or several-small (SLOSS) debate was a practical realization of whether populations 

were better preserved in metapopulations or source-sinks (MacArthur and Wilson 1967, 

Diamond 1975). Today most of what ecologists would classify as pristine, natural habitat exists 

in a fragmented state. Agriculture and urban sprawl are primarily responsible for fragmenting 

that habitat, and if we are to effectively conserve small remnant populations, it is important to 

understand how the populations respond to landscape fragmentation patterns (Harrison and 

Bruna 1999).  

It is tempting to classify a fragmented landscape as a source-sink or metapopulation 

simply on the size and frequency of habitat patches. Ecologists have recognized that there is 
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nuance in this description and landscapes are more likely to lie on a continuum with 

metapopulations and source-sinks acting as the extremes of a spectrum (Jackson et al. 2014). 

Whether or not populations exist as source-sinks or metapopulations, ecologists agree that 

dispersal between patches is necessary for long-term persistence. To insure proper dispersal, 

Perfecto et al. argue that the quality of the matrix connecting patches of remnant habitat must be 

improved (Perfecto et al. 2009). Often that improvement requires an increase in the complexity 

of the matrix, or in Elton’s sense, incorporating some wilderness into agriculture and urban 

systems. As of yet however, there is no means to evaluate how permeable landscapes are as a 

whole for dispersing wildlife. In chapters four and five I challenge static representations of 

landscape structure by suggesting that the permeability of the matrix between habitat patches can 

very easily influence where populations lie on the continuum between metapopulation and 

source-sink. To test this hypothesis I developed a method for measuring permeability based on a 

universal scaling law between population means and variances known as Taylor’s law. This law 

implies a power function relationship between population means and variances, which I use to 

interpret how organisms in a fragmented urban landscape perceive its structure. I first create this 

theoretical framework, and then apply it to survey data of aphids and their natural enemies in the 

city of Ann Arbor.  In chapter five I confirm my expectations on how aphids perceive landscape 

structure via a population genetics study. 

The first five chapters of this dissertation explore the biological and structural 

complexities of agriculture, but the last two chapters are reserved for agriculture’s most complex 

feature: human management. In 1990, Luck manipulated the Lotka-Volterra equations to 

represent a biological control agent-pest system (Luck 1990). From this he developed what 

Arditi and Berryman would later refer to as the biological control paradox (Arditi and Berryman 



	 8 

1991). Much like the then popular paradox of enrichment, Luck showed that increasing the 

efficiency of control agents would have the counter-intuitive effect of decreasing its control over 

the pest. He showed that overexploitation by a control agent could cause boom-bust dynamics in 

the pest. Outbreaks emerge if specialized control agents decline after overexploiting pests.  Thus, 

seemingly constructive changes in agricultural management to improve the efficiency of 

biological control agents (ie. improving habitat quality) could have unintentional effects on the 

stability of pest populations. Poor or misguided management choices like these, if reversible 

should have no large consequences for agriculture and the people whose livelihoods depend on it. 

Yet ecologists are increasingly recognizing that human-managed systems are prone to large and 

irreversible shifts in ecosystem states known as critical transitions (Scheffer 2009). The most 

famous example is the case of cod fisheries (Petrie et al. 2009). From the 1850s to the late 1980s 

cod fisheries had fairly consistent harvests of cod. Fisheries increased harvest rates at a steady 

rate over the years, until in 1992 cod populations suddenly collapsed. Despite efforts to reduce 

harvest rates to pre-collapse conditions, the cod did not rebound. The system experienced a 

critical transition from a high population to a low population equilibrium, two alternative stable 

states that exist at the same harvest rate. Which state the system was in, appeared not to depend 

on current harvest rates, but past ones. Here again is another concept of stability, the resilience of 

systems to change (McCann 2000). Ecologists have recently begun to acknowledge that 

alternative stable states are common: eutrophication of lakes, savannas to forest transitions, and 

healthy to bleached coral reefs are a few examples (Scheffer and Carpenter 2003, Scheffer 2009, 

Petrie et al. 2009, Hirota et al. 2011, Staver et al. 2011). These transitions are driven by changes 

in some “driver” variable: nutrient loads, precipitation or acidity for the examples above. In 

reality there are many potential interacting driver variables. Yet no studies have addressed how 
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interactions between driver variables may influence critical transitions. Instead ecologists tend to 

focus on detecting or preventing large transitions (Scheffer et al. 2012). The inherent 

irreversibility, or hysteresis, of these systems has received much less attention. In chapter six I 

explore how interactions between carrying capacity and growth rates of biocontrol agents can 

drive complex hysteretic patterns in equilibrium densities of pests. I discuss how management 

choices in agriculture can have large, complicated and irreversible consequences for pest control. 

In the final chapter, I extend the complex hysteretic framework I developed for biocontrol to 

soil-nutrient dynamics. Using a simple nutrient-soil feedback model, I ask how correlations 

between max nutrient recycling rates and loss rates may influence patterns of hysteresis when 

farmers transition from organic to conventional management and vice versa (Carpenter et al. 

1999). Finally, I experimentally test whether agroecological transitions can cause hysteresis in 

crop yields and nutrient dynamics, and whether empirically derived patterns of hysteresis 

conform to theoretical predictions. 

  The aforementioned goal of this dissertation is to understand the feasibility of 

transitioning between conventional and agroecological alternatives that incorporate greater 

complexities. Taken together this dissertation carefully examines various features of 

biocomplexity and how its risks and benefits may be balanced to more effectively create 

agroecological alternatives. 
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1.1 Abstract 

It has long been a goal of farm policy to manage production in such a way that expensive 

off-farm inputs and negative environmental consequences can be simultaneously minimized. 

One generalized philosophy that has gained currency in recent years is autonomous pest control, 

in which complex ecological interactions are encouraged to maintain the ecosystem in a state of 

permanence with the pest below economic thresholds. Early experience with biological control 

was hampered significantly by the inherent instability of many of the control agents, suggesting 

that pursuit of the autonomous strategy could be difficult. Here we show that combining two 

unstable two-dimensional systems (pest–predator and pest–pathogen) produces a stable three-

dimensional system (pest–predator–pathogen) that is robust to perturbations in initial conditions. 

Contrary to expectations, the inclusion of negative interactions, which are arguably a necessary 
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consequence of increased complexity, can stabilize unstable conditions and rescue 

biological control of simpler, ineffective pest management systems. 

 

1.2 Introduction 

Charles Elton1 first juxtaposed the striking stability of natural systems and the plagues of 

diseases and pests so common in agricultural systems in 1958. Since then, there have been many 

attempts to mimic such natural systems in agriculture by releasing natural enemies of pests as 

biological control agents to capture the control mechanisms that presumptively led to the 

stability of natural systems2. However, both in practice and theory, biological control was 

difficult to stabilize3,4,5,6. Generalist control agents often had non-target negative effects on other 

beneficial insects, whereas specialist control agents disappeared as their target pest resource was 

eliminated7,8. This often led to secondary resurgence of the pest once the agent was gone, 

followed by an inundation of the system with more agents as they disappeared—a very costly 

solution9. These practical issues mirrored debates in the theoretical literature. In the paradox of 

biological control, simple predator–prey theory was used to show that the most efficient control 

agents caused the most extreme pest outbreaks, since efficient agents overexploited resources 

and died quickly, allowing pests to resurge in great numbers while agent populations slowly 

recovered5. In another example, the Nicholson–Bailey model sparked controversy since its 

original form, which used difference equations to describe parasitoid–host interactions, was 

incapable of stable interactions, and only through extensive revisions incorporating complexities 

of host–parasite biology was it forced to do so4. 

One overarching theme that resulted from this work was that strong interactions tend to 

destabilize pest control. We define unstable to mean any pest population that becomes too 
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extreme or variable to be practical for a farmer. This is an assigned threshold beyond which 

damage caused by pests to crops become economically unsustainable5,10. Control agents are often 

designed to strongly inhibit pest growth, yet these kinds of strong consumer–resource 

interactions are often themselves, unstable5,11. Most recently, theoretical work utilizing food web 

modules have found that weak predator–prey interactions can help stabilize unstable systems12. 

These models show that unpredictable, chaotic dynamics can be dampened into stable equilibria 

by the imposition of a stable consumer–resource interaction12. However, since agricultural pests 

are defined by their propensity for unstable growth, and pests remain a major agricultural 

problem, it stands to reason that unstable interactions between pests and natural enemies are 

more common13. However, the question of whether two unstable interactions can be combined to 

produce stability has yet to be asked. If possible, then a diverse assemblage of separately 

unstable control agents could be combined to create a functional pest management programme, 

reminiscent of the stability that Elton first noticed in natural systems1. 

In addition, there has always been a disjunction  between the theory of competitive 

exclusion and the coexistence of multiple competing natural enemies in nature that has been 

explained, in recent literature, through mechanisms of species complementarity, where enemies 

split a shared resource into separate niches, thus preventing direct competition14. Although there 

exists strong evidence that complementarity between diverse assemblages of organisms (mostly 

grasses and so on) may lead to stability of ecosystems in the biodiversity–ecosystem function 

literature, empirical evidence for complementarity in biological control is not abundant15,16,17. 

Many positive effects of natural enemy diversity on biological control are reported, but evidence 

tends to favour sampling effects from one strong control agent, or insurance effects where many 

redundant enemies buffer systems from rapid changes in the environment16,17,18,19,20,21. In contrast, 
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competition over shared resources and predation among natural enemies (intraguild predation 

(IGP)) are very common but almost automatically suspected of impairing biological control in 

empirical work and coexistence in theoretical models16,17,22,23,24,25,26. However, proponents of 

autonomous biological control argue that these same negative interactions are a natural 

consequence of a complex network of multiple natural enemies, and may actually help suppress 

pest problems by acting as a system of checks and balances limiting overexploitation by any one 

enemy—essentially reconciling the disjunction27,28. 

To the extent studied thus far, all herbivores are attacked by both predators/parasitoids 

and pathogens26,29,30,31,32, suggesting that any system of autonomous control will automatically 

contain this duality of control factors. Thus, we investigate the controlling effects of first a 

pathogen, then a predator and finally their combination. Recently, scientists have encouraged the 

utilization of predators and pathogens in biological control, arguing that facilitation is more 

likely than competition because of differences in size, life cycles and modes of attack29. However, 

in cases where pathogens and predators are not separated by space or time, we argue that the 

potential for strong negative interactions is high, especially considering the evidence of non-

target effects by generalist pathogens on other competing natural enemies, primarily predators26,31. 

Although studies more frequently report cases of IGP between predators, the prevalence of 

coexisting disease and predator control agents suggests that predators must engage in IGP with 

pathogens whenever they happen to consume infected prey17,30,31,32. We argue that in cases where 

infection of hosts is widespread or latent for long periods of time33, prey choice becomes limited 

for predators, making IGP more likely30. One well-documented example is the predation of pests 

that harbour developing parasitoids32. The same argument can be made for developing fungal 

spores within pests, although few have attempted to test this question30,31. Currently, IGP is 
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generally considered a hindrance to biocontrol efforts, and is often used as a default explanation 

for non-significant or negative relationships between diversity of control agents and 

biocontrol16,18,19,20,22,23, while in the theoretical literature IGP is presented as a hindrance to 

competitive coexistence by seeming on the surface to lead to exclusion of the intraguild 

prey17,24,25,26. 

In consideration of the strong negative interactions that may occur among control agents used in 

tandem for biological control, we combine standard Rosenzweig/MacArthur34 and epidemic 

models35 following examples in the mathematical biology literature36,37,38,39,40,41,42 and modify them 

to determine whether combining two ineffective control agents (ineffective in the sense that pests 

remain permanently in an outbreak mode) through strong competition over a shared resource and 

IGP can rescue control. We find that stability can indeed be rescued, forcing us to reassess 

current generalizations on the effects of strong negative interspecific interactions on ecosystem 

stability. 

 

1.3 Results 

Model justification 

In agricultural systems where crops are carefully managed, resources are rarely limiting 

for pests since most pest-control strategies are enacted before crop yields drop to the point where 

pests experience density dependence10. We therefore retain density independence on the prey, 

since we are concerned with the alternate control by disease or predator, not with some form of 

bottom up or otherwise control (which would be implied by including the customary ‘carrying 

capacity’ of the prey). However, in acknowledgement of the fact that competitive exclusion 

between the control agents is inevitable without some form of nonlinearity43,44,45, we instill 
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density dependence on the predator following the example of a previous predator–prey model46. 

We choose to impose density dependence on the predator rather than the pathogen by reasoning 

that non-food resources such as space or nesting habitat are more likely limited in predators than 

pathogens due to size alone (Methods). 

Thus we begin with a model where both the disease (Methods, equations (1a) and (1b)) 

and predator (Methods, equations (2a) and (2b)) acting alone are able to control the pest, but 

where the pest can, under certain circumstances, escape control from either agent (Fig. 1b,d). We 

take control and stability to mean any pest population that ultimately coalesces to some constant 

or oscillating size consistently below pest tolerance thresholds (Fig. 1a,c)10. For our purposes, we 

set tolerance thresholds to a value of 500 susceptible pest individuals after 10,000 generations. 

Although the specific threshold is arbitrary, the long timescale allows us to see whether 

populations ultimately tend towards ∞, −∞ (unstable) or consistently remain within biologically 

realistic values (stable). 
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Figure 1.1  Taking unstable conditions to stable ones. Pest individuals (S or A) plotted against 
enemy individuals (I-pathogen or L-predator) yield phase portraits of example (a) stable and (b) 
unstable dynamics for subsystem 1: pathogen–pest and (c) stable and (d) unstable dynamics for 
subsystem 2: predator–pest. Dark black lines are zero growth isoclines, grey arrows indicate the 
vector field and red arrows are exemplary trajectories from initial conditions indicated by a grey 
dot. Corresponding time series plots for unstable subsystems 1 (e) and 2 (f), and the result of 
combining e and f to produce (g) system 3 (pathogen–predator–pest). The parameter values are: 
r=0.46, α1=0.9, α2=0.06, β1=1, β2=0.01, m1=0.47, m2=0.1, K=10 and ε=0.8, and the initial 
conditions are S0=1, I0=3 and L0=1 r is the per capita growth rate of the pest, α1 and α2 are the 
attack rates of the pathogen and the predator, respectively, β1 and β2 are the handling times of 
the pathogen and predator, respectively, m1 and m2 are the mortality rates of the pathogen and 
predator, respectively, K is the carrying capacity of the predator and ε is the conversion rate of 
infected prey consumed to predators produced. 
 
Destabilizing the control agents 

In the case of the pathogen, loss of control, instability, is characterized by boom-bust 

dynamics in the pest, where the booms and busts grow in magnitude with each passing cycle 

until reaching some large limit much beyond tolerance thresholds (Fig. 1.1b,e). In the case of the 

predator, instability is characterized by exponential growth of the pest once the predator reaches 
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its carrying capacity K, a non-renewable resource that limits predator growth due to intraspecific 

competition, that is, space or nesting habitat (Fig. 1.1d,f)46. Both kinds of dynamics are classic 

representations of instability in theoretical ecology5,44,47. Fortunately, the dynamic simplicity of 

our model creates clear boundaries for stable and unstable dynamics (instability criteria indicated 

in Methods), and allows us to dictate when control is lost (unstable) by manipulation of a few 

key parameters. We find that to destabilize the pathogen, we can reduce the rate at which 

pathogens infect susceptible pests—the attack rate (α1), increase the natural mortality rate of the 

pathogen (m1) or increase the time required for an infection to kill the host pest—the handling 

time (β1) (Methods, equation (6)). To destabilize the predator, we can increase the rate at which 

the pests grow (r), decrease the amount of nesting habitat or space for the predator—the carrying 

capacity (K), decrease the rate at which predators attack pests (α2) or increase the time required 

for an individual predator to find, kill and consume one pest—the handling time (β2) (Methods, 

equation (9)). Note that in both cases, instability (and thus pest outbreak) occurs when the 

control agent is weakened. 

We then take these two weak, unstable control agents, and further weaken them by 

coupling the two systems through exploitative competition over a shared susceptible pest 

resource and IGP (predator consumes healthy pests, infected pests and the pathogens inside the 

infected pests) (Methods, equations (3a)–(3c)). We find that there indeed exist conditions where 

coupling two unstable control agents through negative interactions leads to stable coexistence of 

the two control agents and rescue of biological control (Fig. 1.1e–g). Healthy pest populations 

are markedly reduced when the control agents are combined and can remain at these low, stable 

equilibria for long timescales (Fig. 1.1e–g). Recall that to create instability the control agents 

were first weakened. Thus, it is reasonable to expect that the combination of two weak control 



	 21 

agents could rescue control, corresponding to well-known notions of species 

complementarity14,15,16. However, what is especially interesting is that control is rescued in spite 

of strong negative interactions imposed by IGP and the inherent competition that occurs when 

multiple agents share a resource (Methods, equations (3a)–(3c)). It is important to note that 

previous theoretical work has already shown that weak, stable consumer–resource interactions 

can help dampen chaotic oscillations that result from strong consumer–resource interactions11,12. 

When formulated so that one or both control-agent–pest pairs are stable to begin with, our 

models reproduce this same result (see Supplementary Figs 1 and 2). However, here we take the 

issue one step further by showing that stability can be rescued even when each component 

system is unstable to begin with, and even when strong negative interactions are used to couple 

the unstable components (Fig. 1.1e–g). 

 

Stability hotspots 

We constrained parameter values to biologically realistic values for rates, such that 

control-agent attack rates, handling times and mortality rates were 0<α1, α2, β1, β2, m1, m2<1, 

then overlaid regions of parameter space where each of the independent subsystems were 

unstable based on the instability criteria calculated in Methods (equations (6) and (9); Fig. 1.2a–

c). We strategically sampled values within each zone, paired them and determined the stability of 

the resulting complex system (Fig. 1.2d, see Methods). We found that parameter values on the 

edges of the instability regions for each independent control agent were most likely to be tipped 

into stable control when the two agents were combined; 9 out of 10 successful parameter 

combinations included at least one edge set (P=0.021, n=10, exact binomial test) (Fig. 1.2d). 

Increased sampling specifically for edge values revealed 13 additional successful combinations 
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(Fig. 1.2d, see Methods). Rescue of stability was heavily dependent on parameter sets that 

included predators with low handling times; 13 out of 13 successful parameter combinations 

involved an edge where β2→0, (P<0.001, n=13, exact binomial test) (Fig. 1.2d). Low handling 

times allow the predator to quickly consume both healthy and infected pests, reducing pathogen 

densities through competition and IGP, respectively. In this way, the predator is able to prevent 

the pathogen from ever becoming an epidemic and overexploiting the pests, effectively damping 

the unstable oscillations of the pathogen subsystem (Fig. 1.1). 



	 23 

 

Figure 1.2  Sampling of instability regions. Regions of three-dimensional parameter space that 
satisfy instability criteria for subsystem 1: pathogen–pest (black outline) (6), and subsystem 2: 
predator–pest (red outline) (9) overlaid. Control-agent attack rates (α), handling times (β) and 
mortality rates (m) are varied on each axis under conditions of (a) low r or high K (r=0.0001, 
K=10) or (r=0.46, K=6,000), (b) medium r and K (r=0.46, K=10) and (c) high r or low K (r=0.99, 
K=4.5) or (r=0.46, K=2). r is the per capita growth rate of the pest, and K is the carrying capacity 
of the predator. Black-shaded region corresponds to parameter space where the pathogen is 
competitively dominant over the predator and the red-shaded region corresponds to parameter 
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space where the predator is dominant over the pathogen based on parameter values of α, β and m. 
(d) Strategically sampled unstable parameter sets for the pathogen (black dots) and predator 
subsystems (red dots) in the medium r and K scenario. Larger dots represent unstable pathogen 
(black) and predator (red) parameter sets that successfully rescued stability in the combined, 
complex model (ε=0.8, conversion rate of infected pests into predator abundance). 
 

Relative strengths of agents 

By further adjusting the remaining parameters, pest growth rate (r) and predator carrying 

capacity (K), we note that there are only three general scenarios: the instability region of the 

predator is always underneath the instability region of the pathogen (Fig. 1.2a), the instability 

regions of each control agent overlap the other in some portion of phase space (Fig. 1.2b) and the 

instability region of the predator always overlaps the instability region of the pathogen (Fig. 

1.2c). Considering that values on the edges of instability regions are more likely to rescue control, 

and larger instability regions extend towards higher attack rates, lower handling times and lower 

mortality rates (generally implying stronger control agents), the biological interpretation of these 

three scenarios are: the pathogen always beats the predator (Fig. 1.2a), equal competition (Fig. 

1.2b) and the pathogen always loses to the predator (Fig. 1.2c). We know that rescue of stability 

is highly dependent on values near the edge of the predator instability region where β2→0 (Fig. 

1.2d), and notice that this stability-inducing edge first appears when there is equal competition, 

and grows larger as the strength of the predator over the pathogen increases (Fig. 1.2a–c). The 

predator must effectively keep the pathogen from becoming an epidemic to rescue control, thus 

only the scenarios where there is equal competition between predator and pathogen or the 

predator always wins results in the rescue of biological control (Fig. 1.2b,c). We note that this 

can be achieved by increasing the growth rate of the pest (r) or decreasing the carrying capacity 

of the predator (K), which causes the instability region of the predator to increase in size, overlap 

the instability region of the pathogen and reveal the β2→0 edge that is so necessary in limiting 
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the pathogen and rescuing control of the pest (Fig. 1.2). Because the size of the β2→0 edge 

increases as the dominance of the predator over the pathogen increases, so too should the 

probability of successfully rescuing stability. 

 

Intraspecific versus interspecific competition 

One of the few general laws in ecology derived from the original Lotka–Volterra 

competition models suggests that intraspecific competition may need to be greater than 

interspecific competition if multiple enemies are to coexist in a biological control programme8. 

In our model, we implemented a carrying capacity in our predator to represent intraspecific 

competition over a non-renewable resource such as nesting habitat. The predator subsystem 

becomes unstable and loses control of the pest when nesting habitat is more limiting than pest 

resources, or when intraspecific competition is high. When the pathogen is introduced, strong 

competition over pests prevents the predator from reaching carrying capacity while also 

preventing the pathogen from overexploiting pests. This implies that interspecific competition 

becomes greater than intraspecific competition, yet coexistence is maintained. Although our 

model is based largely on the original Lotka–Volterra equations44, beginning with unstable 

components leads us to conclude that coexistence is maintained when interspecific competition is 

greater than intraspecific, the exact opposite of the classical outcome. 

 

Strength of IGP 

We note that our analysis here is not an exhaustive search of parameter space, but is 

intended to show the potential for stability to result spontaneously from the coupling of unstable 

components. By analysing each component system separately and keeping all parameters 
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constant when combined, we can confidently assert that each system begins as a purely unstable 

unit, and that stability arises solely from the negative interactions that couple the independent 

units together. We refrain from adjusting parameters post combination, because doing so would 

alter the initial stability of the component systems. Our analysis is therefore constrained to 

parameters that are unique to the combined system, the only one being the conversion rate of 

infected pests into predator offspring (ε) (Methods, equations (3a)–(3c)). 

The cost of IGP (consumption of infected pests) to the predator is controlled by the 

parameter ε. Since the conversion rate of healthy pests into predator abundance is set to 1, an ε 

value <1 implies that the predator produces fewer offspring when consuming infected rather than 

healthy prey (Methods, equations (3a)–(3c)). We justify this by the fact that infected prey are 

less healthy by definition and arguably less nutritious, especially if predators are themselves 

susceptible to infection7,26. Time series data for varying ε show the existence of two major 

attractors, one where the peak abundances of predator and pathogen are synchronous (Fig. 

1.3a,b,d) and one where they are asynchronous (Fig. 1.3c,e). The model is set up such that the 

predator consumes both uninfected/susceptible (S) and infected pests (I) with a constant attack 

rate (α2). At very low ε values, consumption of infected pests contributes little to predator 

recruitment, essentially acting like empty calories. Although the predator does not distinguish 

between healthy and infected pests directly, its population growth depends mainly on the number 

of healthy pests available, thus as the healthy pest population grows, so does the predator 

population. This results in synchrony between the predator and pathogen populations, since both 

depend primarily on healthy pests for recruitment. We call this the pathogen-dominant attractor, 

since the pathogen exerts a strong negative effect on the predator by reducing predator 

recruitment, and the dynamics mimic the cyclic instability of the pathogen-only subsystem (Figs 
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1.1b and 1.4a). As ε values approach 1, consumption of infected pests and healthy pests become 

equally important for predator recruitment. This causes the predator to synchronize with both 

healthy and infected pest populations, and a resulting asynchrony between predator and pathogen 

populations (Fig. 1.4a). We call this the predator-dominant attractor since there is almost no cost 

of IGP to the predator. By adjusting initial conditions and overlaying the resulting bifurcation 

plots, we can visualize the two interwoven attractors and see clear signs of hysteresis48,49, where 

position on one or the other attractor depends on the initial conditions of the system (Fig. 1.5). A 

shift from one attractor to the other could result in a sudden increase in pest numbers resembling 

a regime shift, but this would only be considered a pest outbreak if pest tolerance thresholds 

were set particularly low (~11 for Fig. 1.5)49. It is important to note that for all of these 

simulations, the susceptible pest population remains bound to a very low range of possible values 

that are much below our original threshold of 500. This implies that the rescue of control from 

the combination of unstable agents is robust to perturbations in initial conditions and epsilon (Fig. 

1.5). In other words, stability is robust. 
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Figure 1.3 Symmetric and asymmetric dynamical behaviour. Bifurcation diagram for 
conversion rate parameter ε in system 3 varied from 0.70 to 1.00 evaluated for equilibrium 
values of the susceptible pest population S, and corresponding time series graphs plotted for (a) 
ε=0.70, (b) 0.85, (c) 0.90, (d) 0.93, (e) 0.94, (f) 0.96 and (g) 1.00. Grey lines are number of 
susceptible pests S, black lines are predators L and red lines represent infected pests or pathogens 
I. In a, b and d behavior is symmetric (pathogen dominant), in c and e asymmetric (predator 
dominant) and f mixed. All other parameter values are: r=0.46, α1=0.9, α2=0.06, β1=1, β2=0.01, 
m1=0.47, m2=0.1 and K=10, and the initial conditions are S0=1, I0=3 and L0=1. r is the per 
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capita growth rate of the pest, α1 and α2 are the attack rates of the pathogen and the predator, 
respectively, β1 and β2 are the handling times of the pathogen and predator, respectively, m1 and 
m2 are the mortality rates of the pathogen and predator, respectively and K is the carrying 
capacity of the predator. 
 
 

 

Figure 1.4 Component and combined chaotic attractors. Pest abundance (S) plotted against 
pathogen (I) and predator abundance (L) yields three-dimensional phase portraits for system 3 of 
a, two main attractors overlaid; symmetric, pathogen-dominant (yellow, ε=0.85), asymmetric, 
predator-dominant (red, ε=0.90), and b, chaotic attractor (ε=0.959) where colour is a function of 
position in phase space. All plots made using data from t=5,000 to 10,000. Other parameter 
values are: r=0.46, α1=0.9, α2=0.06, β1=1, β2=0.01, m1=0.47, m2=0.1 and K=10, and the initial 
conditions are S0=1, I0=3 and L0=1. r is the per capita growth rate of the pest, α1 and α2 are the 
attack rates of the pathogen and the predator, respectively, β1 and β2 are the handling times of 
the pathogen and predator, respectively, m1 and m2 are the mortality rates of the pathogen and 
predator, respectively, K is the carrying capacity of the predator and ε is the conversion rate of 
infected prey consumed to predators produced. 
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Figure 1.5 Robust stability shown through bifurcation overlays. Conversion rate parameter ε 
in system 3 is varied from 0.70 to 1.00 and evaluated for equilibrium values of the susceptible 
pest population S. Overlay of 21 bifurcation diagrams plotted at 10% opacity, each initiated 
under different initial conditions and all other parameters kept constant. Putative predator-
dominant attractor in red, pathogen-dominant attractor in black. Initial conditions ranged from 
S0: 3 to 18, I0: 4 to 10 and L0: 11 to 13, chosen to reveal as much of each attractor as possible. 
The parameter values are: r=0.46, α1=0.9, α2=0.06, β1=1, β2=0.01, m1=0.47, m2=0.1 and and 
K=10. r is the per capita growth rate of the pest, α1 and α2 are the attack rates of the pathogen 
and the predator, respectively, β1 and β2 are the handling times of the pathogen and predator, 
respectively, m1 and m2 are the mortality rates of the pathogen and predator, respectively, K is 
the carrying capacity of the predator and ε is the conversion rate of infected prey consumed to 
predators produced. 
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At some values of ε in the predator–pathogen–pest system, trajectories may take the form 

of a complicated strange attractor, a bounded region from which all trajectories trace unique 

paths (Fig. 1.4b). Within the chaotic window, marked in the bifurcation plot as a dark band of 

infinitely many possible positions in phase space (Fig. 1.5), we observe a strange attractor that 

switches between two modes reflecting the basic behaviour of the two attractors previously 

described (Fig. 1.3f). Thus, the strange attractor has three distinct phases: predator-dominant, 

pathogen-dominant and a phase that appears to be switching between the two (Fig. 1.4). As each 

enemy appears to struggle to gain superiority over the shared resource, victory is always short-

lived since both systems are unstable on their own. The winner always loses its advantage to the 

competitor, and the cycle repeats. 

Our formulation of system 3 assumes that the predator satiates at a rate dependent on the 

number of all prey available (type II functional response, typical for describing predators50), with 

no discretion between infected or healthy prey (Methods, equations (3a)–(3c)). We note that 

altering the functional response of the predator so that it can distinguish infected and healthy 

prey simplifies the system such that the chaotic region shrinks, but the qualitative behaviour of 

rescuing stability remains the same (Supplementary Fig. 3). We formulated the pathogen with a 

type III functional response50 to be indicative of a pathogen within a spatially distributed 

population, where disease transmission is low when the host population is low and/or highly 

dispersed (since contact among individuals will be low) and transmission rapidly reaches some 

upper limit at high population densities once a critical density of hosts accumulates (Methods, 

equations (1a) and (1b)). Converting the functional response of the pathogen from type III to 

type II has similar consequences (Supplementary Figs 4 and 5). It is also important to note that 

we can eliminate IGP and still rescue stability (Supplementary Fig. 6), but the negative effects of 
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competition over the shared resource can never be removed and thus are an inherent part of 

stabilizing system 3, making these results robust. 

When considering the efficiencies of two competing enemies simultaneously, we note that when 

the efficiency of one enemy is high the other must be low. In both the predator-dominant and 

pathogen-dominant attractors, the susceptible pest population peaks become more extreme as the 

negative effect of one enemy on the other increases. The paradox of biological control5 (where 

attempts to increase efficiency of control may lead to the loss of biological control) occurs at 

both extremes, whether the predator (high ε) or the pathogen (low ε) is most efficient. The 

smallest oscillations occur at intermediate ε values in the chaotic region, when the efficiencies of 

the two competitors are more or less equal, and neither enemy has a competitive advantage over 

the other (Fig. 1.5). If as is usually the case, the goal of management is to eliminate outbreaks, 

these results imply that strong, but fairly matched competition between enemies can help by 

minimizing pest population maximums. 

 

1.4 Discussion 

 

Thus, coupling two unstable systems with negative interactions has the counter-intuitive 

result of rescuing stability, creating a stable, more diverse system. Although usually suspected of 

hindering biological control and competitive coexistence, our results show potential for IGP and 

competition over shared resources to prevent outbreak dynamics and take unstable conditions to 

stable ones. In general, we found that strong interspecific competition can act as a stabilizing 

force if we begin with unstable components. These results can be tested empirically using 

laboratory populations of pests and control agents previously determined to be ineffective 
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singularly. The overabundance of competitors and IGP in systems with effective autonomous 

biological control has always been difficult to explain, given the standard theory1,2,3,4,5,6,7,27,28. Here, 

we suggest that the prevalence of these negative interactions between diverse assemblages in 

nature may in fact contribute to the consistent and stable level of natural control found in many 

undisturbed ecosystems3,27,28,30,51. We add that evidence in favour of sampling effects from one 

strong natural enemy16,17,18,19,20 are curiously also consistent with dominance hierarchies among 

competing enemies. An understanding of the stability of component parts apart from the system 

as a whole may be a necessary prerequisite to determining the consequence of strong negative 

interactions within complex networks. 

 

1.5 Methods 

 

Model specifications 

Subsystem 1: pathogen–pest two-dimensional system based on the modified epidemic 

model35, where S is the number (not proportion) of susceptible pest individuals, I is the number 

of pest individuals infected by the pathogen and , a Holling type III functional 

response50. 

 

 

Subsystem 2: predator–pest two-dimensional system of equations based on the modified 

Rosenzweig/MacArthur model34 altered to include density dependence on the predator46, where 
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the predator is L (lady beetles), prey/pest is A (aphids), , a Holling type II 

functional response50 and K is the carrying capacity of the predator, a non-renewable resource 

such as space or nesting habitat46. 

 

 

For these models, r is the per capita growth rate of the pest, α1 and α2 are the attack rates 

of the pathogen and the predator, respectively, β1 and β2 are the times necessary for the 

pathogen and predator, respectively, to search, kill, eat and otherwise handle one pest and m1 

and m2 are the mortality rates of the pathogen and predator, respectively. 

System 3: combined pathogen–predator–pest three-dimensional system of equations, 

derived from A=S+I: 

 

 

 

The parameter ε is the conversion rate of infected pests into predator abundance. Since the 

conversion rate of healthy pests into predator abundance is effectively 1, when ε<1, there is a 

reproductive cost to engaging in IGP for the predator. 

Stability analysis 
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Subsystem 1: the pathogen (4a) and pest (4b) isoclines, where each respective population is at 

equilibrium or dI/dt=0 and dS/dt=0 are as follows: 

 

 

There exists one non-zero equilibrium point where the two isoclines overlap. The arrangement of 

the isoclines dictates whether this equilibrium point is stable or unstable, and in practical terms 

whether there is control or no control of the pest (equivalent to the classic ideas of epidemic or 

not). As the pathogen (I) isocline becomes greater than the inflection point of the pest isocline (5, 

Fig. 1b), the equilibrium point goes from exhibiting stable damped cycles to limit cycles of ever-

increasing magnitudes. 

 

Rearranging (5) gives the following instability criteria for subsystem 1 (6), which can be 

achieved by reducing either the attack rate of the pathogen or increasing its mortality rate or 

handling time. 

 

Subsystem 2: the predator (7a) and pest (7b) isoclines, where dL/dt, dA/dt=0 are: 
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There are two non-trivial equilibrium points where these isoclines overlap in positive space: one 

a stable point attractor exhibiting oscillatory behaviour and the other an unstable point repellor 

placed on a separatrix delimiting two basins of attraction (8) (Fig. 1c). 

 

A blue-sky bifurcation occurs when the slope or y-intercept of the pest isocline (7b) is increased 

such that the two equilibrium points collide (Fig. 1d), creating a half-stable point that eventually 

disappears ‘into the clear blue sky’47. By setting the two equilibrium points equal to each other 

we can determine this exact point as the instability criteria for subsystem 2: 

 

Thus, increasing the growth rate of the pest r, lowering the carrying capacity of the predator K, 

increasing the handling time of the predator β2 or decreasing the attack rate of the predator α2, 

can destabilize subsystem 2. All trajectories beyond this point are unstable as the predator 

reaches carrying capacity, and the pest continues to grow exponentially (Fig. 1d). 

 

Model testing 

Parameter sets for single control-agent components (subsystems 1 and 2) were 

strategically sampled within the instability regions calculated (equations (6) and (9)). Unstable 

parameter sets were then paired in the full model, system 3 (equations (3a)–(3c), , ), and resulting 

stability examined using time series data and bifurcation plots. All simulations where susceptible 

pest populations (S) were below a tolerance threshold of 500 individuals and neither predator, 

pathogen nor pest was eliminated after 10,000 time steps were considered stable. 
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Strategic sampling 

To efficiently sample the unstable phase space of each control agent, 10 random 

parameter sets were pulled from (1) the entire instability region, (2) the edges bordering stability 

of the instability region (approaching the limits of the instability criteria—equations (6) and (9)) 

and (3) the region of the instability region that overlapped the instability region of the other 

control agent, which we will refer to as the dominant region. Predator parameter sets were fully 

crossed with pathogen sets, producing a total of 900 parameter combinations. Each of these 

parameter combinations was simulated for 10,000 time steps, and stability assessed for each. 

From the 10 successful combinations found, probability of rescuing stability based on region 

specificity was calculated using binomial exact tests. 

To refine which edges were important for rescuing stability, we separated the instability regions 

of each control agent into the six edges that border stability. These edges correspond to 

parameters approaching extreme values: α1,2→1, β1,2→1, β1,2→0, m1,2→1, m1,2→0, and the 

surface edge between unstable and stable regions where no particular parameter is at an extreme. 

Fifty additional parameter sets were randomly selected from each of the five extreme edges, and 

100 from the surface edge for each control agent. The predator and pathogen parameter sets were 

then randomly matched, resulting in 350 total combinations. Each of these parameter sets was 

simulated, stability assessed and the probability of rescuing stability based on edge specificity 

calculated using binomial exact tests. 

 

Parameterization 

The parameter values for all plots are: r=0.46, α1=0.9, α2=0.06, β1=1, β2=0.01, 
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m1=0.47, m2=0.1, K=10 and ε=0.8, and the initial conditions are S0=1, I0=3 and L0=1, unless 

otherwise noted. r is the per capita growth rate of the pest, α1 and α2 are the attack rates of the 

pathogen and the predator, respectively, β1 and β2 are the handling times of the pathogen and 

predator, respectively, m1 and m2 are the mortality rates of the pathogen and predator, 

respectively, K is the carrying capacity of the predator and ε is the conversion rate of infected 

prey consumed to predators produced. 

 

Bifurcation plots 

To examine the effects of variables of interest (ε, f) on system dynamics, models were 

run for 10,000 time steps, and population peaks estimated where the first derivative of the 

dynamical variable of interest (in most cases, S, the susceptible pest population) was naught. To 

remove transience, the last 20% of values were plotted for all bifurcations. 

Additional information 

How to cite this article: Ong, T. W. and Vandermeer, J. H. Coupling unstable agents in 

biological control. Nat. Commun. 6:5991 doi: 10.1038/ncomms6991 (2015). 
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APPENDIX 1 
	

 
 
Figure S1.1 Taking stable conditions to unstable ones. Time series plots of pest populations (S 
and A) for a, parameters set such that subsystem 1 (pathogen-pest) and b, subsystem 2 (predator-
pest) are stable limit cycles, the same parameters applied to c, system 3 (pathogen-predator-pest) 
produces unstable oscillations of increasing amplitude. The parameter 
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values are: r=0.04, α1=0.92, α2=0.05, β1=1, β2=0.01, m1=0.459, m2=0.1, K=20, ε=0.15, and the 
initial conditions are S0=1, I0=3, L0= 1. Qualitative results are consistent after 10000 time steps 
for all possible permutations of S0, I0, L0 each varied from 1-10. Where r is the per capita growth 
rate of the pest, α1, α2 is the attack rate of the pathogen and the predator, β1, β2 are the handling 
times of the pathogen and predator, m1, m2 are the mortality rates of the pathogen and predator, K 
is the carrying capacity of the predator, and ε is the conversion rate of infected prey consumed to 
predators produced.
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Figure S1.2 Stability arising from stable components. Exemplary time series plots for 
susceptible pest populations (S and A) of stable and unstable configurations of pathogen-pest 
subsystem 1 (top row), predator-pest subsystem 2 (middle row), and the result when combined 
into pathogen-predator-pest system 3 (bottom row). Columns are a model initialized with stable 
pathogen and unstable predator components; parameter values: r=0.44, α1=0.9, α2=0.06, β1=1, 
β2=0.01, m1=0.40, m2=0.1, K=10, ε=0.94, b model initialized with unstable pathogen and stable 
predator components; parameter values: r=0.30, α1=0.9, α2=0.06, β1=1, β2=0.01, m1=0.47, 
m2=0.1, K=10, ε=0.94, and c model initialized with stable pathogen and predator components; 
parameter values: r=0.30, α1=0.9, α2=0.06, β1=1, β2=0.01, m1=0.40, m2=0.1, K=10, ε=0.94. 
Initial conditions are S0=1, I0=3, L0= 1. Qualitative results are consistent after 10000 time steps 
for all possible permutations of S0, I0, L0 each varied from 1-10 excluding n=70 exceptions in c 
that are unstable. Where r is the per capita growth rate of the pest, α1, α2 is the attack rate of the 
pathogen and the predator, β1, β2 are the handling times of the pathogen and predator, m1, m2 are 
the mortality rates of the pathogen and predator, K is the carrying capacity of the predator, and ε 
is the conversion rate of infected prey consumed to predators produced. 
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Figure S1.3 Reduced complexity when predator functional response is dependent on prey 
identity. When the functional response of the predator is altered to allow differences between 
consuming infected and healthy pests, we have the following system of equations (S1). 
Bifurcation diagram for conversion rate parameter ε, varied from 0 to 1.00 and evaluated for 
equilibrium values of the susceptible pest population S. Stability is still rescued from unstable 
component parts, but the chaotic window disappears. The parameter values are: r=0.44, α1=0.9, 
α2=0.06, β1=1, β2=0.01, m1=0.47, m2=0.1, K=10, and Initial conditions are S0=1, I0=3, L0= 1. 
Where r is the per capita growth rate of the pest, α1, α2 is the attack rate of the pathogen and the 
predator, β1, β2 are the handling times of the pathogen and predator, m1, m2 are the mortality rates 
of the pathogen and predator, K is the carrying capacity of the predator, and ε is the conversion 
rate of infected prey consumed to predators produced. 
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Figure S1.4 Moving from one predator to two. Bifurcating the functional response exponent, f, 

in  from a pathogen-like control agent (f=2, Holling type III) to a predator-like 

control agent (f=1, Holling type II) in system 3 and evaluated for equilibrium values of the 
susceptible pest population S. The parameter values are: r=0.44, α1=0.9, α2=0.06, β1=1, β2=0.01, 
m1=0.47, m2=0.1, K=16, ε=0.49, and initial conditions are S0=1, I0=3, L0= 1. Where r is the per 
capita growth rate of the pest, α1, α2 is the attack rate of the pathogen and the predator, β1, β2 are 
the handling times of the pathogen and predator, m1, m2 are the mortality rates of the pathogen 
and predator, K is the carrying capacity of the predator, and ε is the conversion rate of infected 
prey consumed to predators produced. 
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Figure S1.5 Complex behavior of double predator-pest system. Bifurcation of conversion rate, 
ε parameter evaluated for susceptible pest population (S) in system 3, altered so that there are 
two Holling type II predators. Stability is still rescued from unstable component parts, but 
behavior is more complex. The parameter values are: r=0.44, α1=0.9, α2=0.06, β1=1, β2=0.01, 
m1=0.47, m2=0.1, K=15, and initial conditions are S0=1, I0=3, L0= 1. Where r is the per capita 
growth rate of the pest, α1, α2 is the attack rate of the pathogen and the predator, β1, β2 are the 
handling times of the pathogen and predator, m1, m2 are the mortality rates of the pathogen and 
predator, K is the carrying capacity of the predator, and ε is the conversion rate of infected prey 
consumed to predators produced. 
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Figure S1.6 Stability rescued despite removal of intraguild predation. When intraguild 
predation is removed, we have the following system of equations (S2), which when set such that 
each subsystem is unstable alone (Fig. 1b, d-f), combining these two results in stability as 
pictured here in an exemplary time series plot of S, the susceptible pest population. Parameters 
set to r=0.44, α1=0.9, α2=0.06, β1=1, β2=0.01, m1=0.47, m2=0.1, K=10, and initial conditions: 
S0=1, I0=3, L0= 1. Where r is the per capita growth rate of the pest, α1, α2 is the attack rate of the 
pathogen and the predator, β1, β2 are the handling times of the pathogen and predator, m1, m2 are 
the mortality rates of the pathogen and predator, K is the carrying capacity of the predator, and ε 
is the conversion rate of infected prey consumed to predators produced. 
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CHAPTER II 

 

Coupling unstable agents rescues biological control in a greenhouse 

experiment 
 

Theresa Wei Ying Ong & John Vandermeer 

In review, American Naturalist 2017 

 

2.1 Abstract 

Elementary theory suggests that persistent systems may arise from coupling unstable 

units via strong negative interactions.  In a recent theoretical study mimicking the nature of 

complex biological control systems, two natural enemies were modeled so that they would fail to 

keep a pest from growing exponentially when alone, but when combined via strong negative 

interactions, they succeeded. While important in the practical question of pest control, this 

framework may also contribute to our understanding of diversity maintenance in natural systems. 

Here we test the theory using a predator-pathogen-pest system meant to mimic the original 

theoretical study.  Our empirical results support theoretical predictions that when control agents 

are unable to control pests alone, competition between them can 



	 50 

stabilize the system and effectively rescue biological control of a pest. Results provide empirical 

support that stability can arise from coupling unstable units.  

 

2.2 Introduction 

To eliminate the need for costly off-farm inputs such as pesticides, one proposed solution 

is to mimic the complexity of “natural” ecosystems in agriculture such that autonomous 

biological control can be achieved (Lewis et al. 1997; Vandermeer et al. 2010b). In autonomous 

biological control, the goal is not to eliminate pests completely, but to maintain permanent yet 

small populations of pests (below levels that would cause economic loss) through complex 

interactions with permanent and diverse populations of natural enemies (Lewis et al. 1997; 

Vandermeer et al. 2010b). Charles Elton was the first to juxtapose the apparent instability of 

agro-ecosystems, which were often plagued by pest outbreaks, and the comparable stability of 

more diverse, “natural” ecosystems (Elton 1958). In an attempt to mimic natural systems, 

managers began to introduce natural enemies to control pest problems in agro-ecosystems. 

However, the inherent instability of biological control, both in theory and practice was 

dissuading (Murdoch 1975). Generalist control agents sometimes had negative effects on non-

target beneficial organisms, whereas specialist control agents often failed to establish permanent 

populations thus requiring costly and continuous re-introductions (Howarth 1991; Roderick and 

Navajas 2003). Though these studies suggest that autonomous control is difficult to achieve, they 

were not specifically designed to test the potential of autonomous biological control to arise from 

complexity.  
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Using hybrid Lotka-Volterra, S-I predator-pathogen-prey models, we previously 

demonstrated that it is theoretically possible to combine two unstable two-dimensional systems 

(pest-predator and pest-pathogen) to produce a stable three-dimensional system (pest, predator, 

and pathogen) that is robust to perturbations in initial conditions (Ong and Vandermeer 2015). 

The more complex model where both enemies were combined was run under exactly the same 

parameters as the models where only one enemy was present. Where the simple models failed to 

control the pest, the complex model succeeded. In the model, a non-renewable carrying capacity 

limited the population size of the predator such that the number of pests overwhelmed the 

capacity to control them. Since the pathogen did not have this limitation, pest resources were 

overexploited, leading to boom-bust dynamics as the pathogen and pest decline and grow in 

cycles with ever-increasing magnitudes known in the literature as the paradox of biological 

control (Luck 1990).  When combined, the predator consumed both healthy and pathogen-

infected pests.  This strong negative interaction, an example of intraguild predation, kept the 

pathogen from overexploiting the pest resources (ie. an epidemic) to the point where boom-bust 

pest dynamics would otherwise occur. Given that the parameters were kept constant across single 

and double enemy simulations, these results provided hope that an autonomous strategy of 

biological control that is maintained solely from the complexity of the agro-ecosystem rather 

than the addition of expensive, external inputs exists. Yet to arrive at practical solutions to real 

problems, empirical confirmation is necessary. Here we designed a greenhouse experiment that 

combined two separately unstable (in the sense that the pest escapes control) natural enemy-pest 

pairings to see whether autonomous control can arise from the emergent complexity of the 

combined system. Pest populations were simultaneously exposed to two control agents at levels 

previously determined to be ineffective singularly, and monitored over time to test if control was 
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rescued. Our results confirm theoretical predictions that unstable units can combine to rescue 

control. We argue that competitive interactions may in some cases drive system-level stability 

and that complexity does in fact contribute to the autonomous biological control we observe in 

natural systems. 

 

2.3 Results and Discussion 

To establish unstable conditions, populations of pea aphids (Acyrthosiphon pisum) were 

grown in the presence of natural enemies and monitored over time until populations exceeded a 

critical threshold beyond which the pest was considered an economic threat (here we chose a 

critical threshold of 100 aphids) (Stern 1973). For our purposes, stability is defined as effective 

biological control where pest populations are maintained at or below threshold levels. To mimic 

the theoretical framework of Ong and Vandermeer (Ong and Vandermeer 2015), both a predator 

control agent (Hippodamia convergens, the convergent ladybeetle) and a fungal pathogen 

(Beauveria bassiana) were separately tested (Fig. 2.1). Previous studies have documented strong 

negative effects of B. bassiana on ladybird beetle predators (Roy and Pell 2000; Roy and Cottrell 

2008). Though B. bassiana is a used widely as a biological control agent of agricultural insect 

pests, many studies purport the presence of non-target effects on ladybird beetles including 

lethality, morbidity and reduced reproductive capacity either through direct exposure to the 

fungus or through the consumption of infected prey, a form of intraguild predation (Roy and Pell 

2000; Roy and Cottrell 2008). In addition, field studies show that incidence of H. convergens are 

reduced between 75-93% for plants exposed to B. bassiana despite the presence of similar 

numbers of A. pisum prey (James et al. 1995).  Evidence of these strong negative interactions, in 

addition to direct competition over shared resources, make the A. pisum—B. bassiana—H. 
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convergens system a strong empirical analogy of the Ong and Vandermeer theory (Ong and 

Vandermeer 2015).  

 

Figure 2.1 Establishing unstable conditions for each natural enemy. Red solid lines and 
points represent control curves (same curve plotted twice for clarity). Black and grey lines and 
points are beetle treatments (left plot) and fungal treatments (right plot). Treatments range from 
low (light grey) to high densities (black) of each type of control agent. Range for beetle 
treatments span from 2,4,8, and 16 individuals per enclosure. Aphids in fungal treatments were 
sprayed with a commercially available emulsion of B. bassiana known as Mycotrol-O diluted 
with dH2O at a concentration of 4,8,16, and 32%. Bold lines indicate treatments chosen to 
represent unstable conditions. Confidence intervals are 95% confidence intervals based on 
bootstrapping (bca) with N = 9999 replicates. Dashed line represents experimental threshold of 
100 aphids. When aphids crossed threshold natural enemies were introduced (day 8).  
 

We applied four different densities of each natural enemy and monitored the trajectories 

of aphid populations post inoculation (Fig. 2.1). From this first set of results we chose one 

density of predator and two densities of pathogen where pest population growth continued to 

grow beyond the critical threshold and showed the least amount of saturation (Fig. 2.1). These 

densities were then combined to see how the presence of both enemies would influence pest 

growth rates (Fig. 2.2). 
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In treatments where pest populations were inoculated with two natural enemies 

simultaneously, growth was significantly reduced from controls (Fig. 2.2). After inoculation, pest 

population growth was reduced, bringing populations down to the critical threshold of 100 

aphids for the remainder of the experiment. The result was consistent regardless of whether a low 

or high level of fungi was inoculated along with 2 ladybird beetle individuals. Coupling two 

ineffective control agents successfully maintained pest populations at threshold levels. 

Autonomous biological control asserts that pests are maintained at intermediate numbers so that 

populations are not reduced to the point of overexploitation followed by primary and secondary 

outbreaks (Luck 1990). Our results appear to mimic the structure of autonomous biological 

control since populations remained at threshold levels for a significant amount of time 

considering the rapid growth of aphids observed under control conditions.  

Tolerance for threshold levels may outweigh the risks of a scenario where one or both 

natural enemies are absent. For treatments where only one natural enemy is present, aphid 

populations reached 6-150 times the threshold level in a matter of 10 days (Fig. 2.1). When all 

natural enemies were excluded, aphids reached 200-times threshold levels for the same time 

range (Figs. 2.1 and 2.2). Sampling was limited to 10-days post inoculation because the number 

and size of pea plants used for the experiment could not sustain the growth of aphid control 

populations much beyond this time frame. This is an important consideration because the model 

in which this experiment is based does not have a resource-based carrying capacity for the pest to 

account for the reality that pests are never allowed to reach carrying capacity in well-managed 

farmlands. Larger, more established plants are necessary to reveal whether the observed 

reductions in pest populations are maintained for longer time-scales.   
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Figure 2.2 Coupling unstable agents to produce stability. Pea aphids (Acyrthosiphon pisum) 
were simultaneously exposed to ladybird beetles (Hippodamia convergens) and sprayed with a 
commercially available emulsion of Beauveria bassiana known as Mycotrol-O diluted with 
dH2O at a concentration of 8 and 16%. Red solid line is control with no natural enemies. Black 
solid line= 2 beetles + 16 % fungal emulsion, grey solid line= 2 beetles + 8% fungal emulsion. 
Confidence intervals are 95% confidence intervals based on bootstrapping (bca) with N = 9999 
replicates. Dashed red line represents experimental threshold of 100 aphids. When aphids 
crossed threshold natural enemies were introduced (day 13). 
 

Our results provide empirical proof that consistently reduced populations of pests can 

result from the coupling of control agents that are alone, incapable of providing effective control. 

One of the greatest paradoxes in ecology is the question of how a diversity of organisms manage 
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McCann 2000). Though the presence of weak negative interactions is thought to be responsible 

for the stability of complex systems, new theories suggest that this relies on the assumption that 

individual components of the system are stable in isolation (McCann et al. 1998; Ong and 

Vandermeer 2015). This study provides empirical validation of the theory that unstable units can 

combine to create stability, suggesting that the effects of component interactions (negative, 

positive or neutral) on whole-system stability are not readily interpretable. Though it is easy to 

presume that a predator-prey system that is stable when isolated may be destabilized by the 

addition of a competitor, there is no reason to expect that each component in a complex food web 

is capable of maintaining a key resource on its own. In fact, as complexity evolves, components 

in a system must continuously adapt to the arrival of new components. As this process continues, 

each component becomes dependent on its interactions with others in the network, feasibly 

continuing to the point where component units no longer function in isolation. Since complexity 

necessarily evolves from individual units, if we remove each unit from its place in the complex, 

we may find that the presence of single interactions that are unstable in isolation is a common 

phenomenon. 

 

2.4 Materials and Methods 

In the first phase of the experiment, populations of pea aphids (Acyrthosiphon pisum) 

were grown on pea seedlings and monitored over time until populations exceeded a critical 

threshold beyond which the pest was considered an economic threat (Stern 1973). Each 

enclosure included 9 one-week old Pisum sativum var. Dwarf grey seedlings and three aphids. 

We chose an arbitrary economic threshold of 100 aphids based on IPM recommendations for pea 

aphids (North Carolina State University IPM n.d.).  Aphid populations were monitored every two 
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days until the average population exceeded 100 aphids. The next day (day 11), a single type of 

control agent was introduced to the pest population at a variety of densities.  

To mimic the theoretical framework of Ong and Vandermeer (Ong and Vandermeer 

2015), both a predator control agent (Hippodamia convergens, the convergent ladybeetle) and a 

fungal pathogen (Beauveria bassiana) were separately tested. Beetle treatments included 2,4,8, 

or 16 individuals per enclosure. Aphids in fungal treatments were sprayed with a commercially 

available emulsion of B. bassiana known as Mycotrol-O diluted with dH2O at a concentration of 

4,8,16, and 32%. Both of these are commonly used, publically available control agents of aphids.   

We continued to monitor aphid populations every other day for eight days following 

enemy introduction and compared these to a control treatment where no control agents were 

introduced. Time series graphs were analyzed to determine what densities of control agents 

showed no evidence of declining aphid population growth, and these conditions selected for the 

second phase of the experiment.  

In the second phase of the experiment, aphid populations were allowed to grow past a 

100-aphid threshold then simultaneously exposed to both control agents at levels previously 

determined to be ineffective singularly. Populations were then monitored as in the first phase.  

All experiments were conducted at the Matthaei Botanical Gardens in Ann Arbor, MI. 
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CHAPTER III 

 

Huffaker revisited: spatial heterogeneity and the coupling of ineffective agents 

in biological control 
	

In revisions, Ecosphere 2017 

Theresa Wei Ying Ong, David Allen, and John Vandermeer 

 

3.1 Abstract  

Despite decades of research, much of our current understanding of predator-prey 

dynamics still draws on advances made in the early 20th century. In a classic ecological study, 

Huffaker demonstrated that spatial heterogeneity could induce stability in predator-prey 

interactions. Yet recent theories suggest that space can also act to destabilize predator-prey 

systems and that stability can arise from coupling of unstable units. Here we revisit Huffaker’s 

classic experiment with modern empirical and statistical techniques to elucidate the effect of 

space on the coexistence of two natural enemies competing over a shared pest resource in a 

laboratory experiment.  We find that while the application of two different control agents were 

ineffective at control pests in insolation, coupling them together not only improved control of the 

pest, but also reduced the occurrence of large spatially clustered pest outbreaks. These results 
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imply, more generally, that coexistence in diverse biological systems may arise through 

both the coupling of unstable interactions and the spatial heterogeneity induced by those 

interactions. 

3.2 Introduction 

In 1958, C. B. Huffaker conducted what would become a classic study on the role of 

dispersal in the coexistence of predators and prey (Huffaker 1958). At the time, the Lotka-

Volterra equations were well-known to predict regular, repeatable cycles between predators and 

prey, yet empirical studies failed to reproduce these theoretical results (Gause 1934, Gause et al. 

1936). These early empirical studies were done in well-mixed environments to mimic the 

assumptions of the Lotka-Voltera model. Predators had easy access to prey, but rather than 

decreasing in numbers before prey were completely exhausted, in most cases predators 

overexploited prey, leading to extinction of the whole system. Citing Nicholson’s (1933, 1954)  

criticism of the early empirical studies being contained in microcosms that were “too small to 

even approximate a qualitative, to say nothing of a quantitative, conformity to theory,” Huffaker 

designed experiments using a series of spatial arrays or “universes” composed of carefully 

arranged oranges (prey resources), while manipulating the dispersal abilities of predatory and 

prey mite species. He discovered that reducing the dispersal of predators by slowing them with 

petroleum jelly and encouraging dispersal in prey by providing wooden dowels for long distance 

migration introduced sufficient spatial heterogeneity to keep prey from going extinct 

immediately, allowing predator-prey cycles to be observed (Huffaker 1958). This early study 

established the importance of spatial heterogeneity in maintaining predator/prey cycles, 

providing one mechanism to explain the discordance between experimental evidence that 
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predator/prey pairs go extinct and the overwhelming evidence from nature that predators and 

their prey do indeed persist over many years.  

In his conclusions, Huffaker cautioned that the use of spatially homogenous 

monocultures in agriculture could have unintended consequences for biological control, which 

are simply predator-prey systems where control agents are released to consume pest prey 

(Huffaker 1958, Huffaker et al. 1963). In fact, many biological control programs that sought to 

eliminate pest species with a single, highly efficient control agent found it similarly difficult to 

stabilize predator-prey dynamics (Nicholson and Bailey 1935, Murdoch 1975). Strong agents 

caused cycles of three repeating phases: 1) control agent overexploits pests 2) control agent 

declines due to lack of prey, and 3) pests resurge to outbreak levels under enemy-free conditions 

(Luck 1990, Arditi and Berryman 1991). Theory based on the Lotka-Volterra equations predicted 

that the magnitude of booms and busts would increase with every successive control agent-pest 

cycle until a stochastic event pushed the control agent to extinction (Luck 1990, Arditi and 

Berryman 1991). Using a diversity of control agents was one suggested solution (Murdoch 1975). 

Yet, in light of the then-popular competitive exclusion principle, incorporating more than one 

predator on a single prey (the pest) would be unlikely to work since only a single predator would 

survive, leading back to the same problem of prey overexploitation and extinction of the desired 

predator-prey control system (Denoth et al. 2002, Louda et al. 2003, Straub et al. 2008). 

 Huffaker’s study moved in a different direction and sought to challenge the growing 

consensus that predator-prey systems are inherently unstable. Taking Nicholson’s critique of 

previous empirical work, he sought to create background conditions that more closely reflected 

some key elements of the environments faced by real predator-prey systems in nature, effectively 
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removing the “mean-field” assumption of the well-mixed system and explicitly creating a 

spatially extended framework. 

The prevalence of strong negative interactions in biological control, including intraguild 

predation where predators consume one another in addition to shared resources, dissuaded many 

from advocating multiple control agents to resolve pest problems (Rosenheim et al. 1995, 

McCann et al. 1998, Denoth et al. 2002, Straub et al. 2008). However, recent theoretical found 

that strong negative interactions between a predator control agent and a pathogen control agent 

can result in a system that is stable even when the agents are completely ineffective when alone 

(Ong and Vandermeer 2015). These strong negative interactions could be responsible for 

autonomous biological control—the observation that a diversity of natural enemies are able to 

keep levels of pests below economic thresholds, but above levels for natural enemies to persist 

without boom-bust dynamics (Lewis et al. 1997, Vandermeer et al. 2010, Ong and Vandermeer 

2014).  

Though Huffaker’s study and many theoretical studies that followed established spatial 

prey refuges as a stabilizing force for consumer-resource dynamics, contemporary theoretical 

work has shown that space can also induce unstable dynamics, including chaos (Huffaker 1958, 

Folt and Schulze 1993, Pascual 1993, Petrovskii and Malchow 2001). Though the specific size of 

a pest population may become unpredictable, chaotic systems can still be considered “stable” in 

pest control if the range of pest population sizes possible is constrained to an envelope below 

economic thresholds (Ong and Vandermeer 2015). These are important considerations for 

diverse biological systems where large, unpredictable fluctuations in population sizes are a 

common phenomenon (Berryman 1982, Dwyer et al. 2004).  
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Here, we borrow Huffaker’s classic framework to test how the coupling of competing 

pathogen and predator natural enemies improves or worsens control of pests when placed in a 

spatial context where dispersal is constrained or free. We ask if spatial heterogeneity rescued 

coexistence in Huffaker’s original study, how might it unbalance an already stable system, or 

stabilize an unstable one?  In accordance with results from both the current and classic literature, 

we expect dispersal to improve biological control through the maintenance of low, equilibrium 

pest densities when only one species of natural enemies is present. When two natural enemies are 

combined, competition may further increase spatial heterogeneity, resulting in better control. 

Alternatively, spatial heterogeneity itself may be so great as to induce outbreak conditions. 

3.3 Methods Summary 

Mimicking Huffaker’s original study, we created “universes” composed of prey resources 

(Pisum sativum var. Dwarf Grey cuttings) arranged in a 4X5 array of isolated chambers 

connected via corridors of large or small dimension in order to control dispersal rates. We 

introduced pea aphids (Acyrthosiphon pisum) as prey, and the predatory ladybird beetle 

Hippodamia convergens and the entomopathogenic fungus Beauveria bassiana as competing 

natural enemies. For both dispersal conditions, we ran control treatments with no natural enemies, 

single enemy treatments, and a double enemy treatment (see Methods). Aphid population sizes 

and locations were surveyed for 28 time units, or until extinction, whichever was first. For each 

treatment, we fit a basic model of population growth via maximum likelihood, from which we 

estimated aphid growth rate, local and long-distance migration rates, and carrying capacity (r, m1, 

m2, K) for each treatment (Methods). To observe spatio-temporal dynamics beyond the 

timeframe and dimensions of the experiment (Appendix 1), we used parameter fits to project 

aphid population time series for 200 time units assuming a 30X30 spatial grid placed on a torus. 
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We assessed total aphid population sizes and clustering via Moran’s I (Moran 1953) for each 

time step and treatment (see Methods).   

3.4 Results and Discussion 

Coexistence occurred only when aphids and natural enemies experienced high-dispersal 

conditions where they could move more easily through the array (Fig. 3.1). Fungus had 

consistent effects on migration rates for aphids regardless of the diameter of corridors between 

cells. In both high and low dispersal treatments, fungus caused aphids to reduce local migration 

rates and increase long-distance migration rates (Fig. 3.2). This may be an adaptation to avoid 

pathogen outbreaks that occur more easily with host clustering (Shah and Pell 2003). We see this 

play out in the spatial dynamics, where local clustering of aphids is significantly reduced when 

fungus is present (Fig. 3.3).  We note that aphid growth rates actually increased relative to 

controls in low dispersal treatments with fungus (Fig. 3.2). Infection by the entomopathogenic 

fungus can cause a stress-response in aphids that encourages molting (quick progression to 

adulthood), and greater fecundity rates prior to death (Kim and Roberts 2012, Ortiz-Urquiza and 

Keyhani 2013). However, in high dispersal treatments where aphids survive long-term, the 

presence of fungus reduced growth rates in aphids, as expected. The effect of beetles on 

migration rates of aphids was dependent on whether the arrays allowed low or high dispersal. In 

low dispersal treatments, beetles mirrored fungus effects by causing local aphid migration rates 

to reduce and long-distance migration rates to increase (Fig. 3.2). Since aphids are already 

clustered in low dispersal treatments, beetles very easily discover and decimate local clusters of 

aphids, which are hindered from migrating due to the small diameter of the corridors between 

cells (Appendix 2, Fig. S3). This is evidenced by short aphid survival times and low aphid 

growth rates in the beetle only low-dispersal treatments (Figs. 3.1-3.2). Beetle movement is 
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highly constrained in the low dispersal treatments. Thus, aphids that are able to migrate longer 

distances survive, causing the increase in long-distance migration rates (Appendix 2, Fig. S3). 

However, in high dispersal treatments, beetles caused the reverse effect with local aphid 

migration rates increasing and long-distance migration rates decreasing (Fig. 3.2). Under 

conditions when aphids can easily move through the spatial array, beetle predation events disrupt 

clusters of aphid populations and cause short-distance migration to neighboring cells. Beetles can 

also move more easily in high dispersal arrays, though long predator search times appear to 

allow new, local clusters of aphids to build before re-discovery by the predator. This is 

evidenced by the increased aphid clustering that occurs with high dispersal-beetle only 

treatments (Fig. 3.3). When predator search times are sufficiently long, aphids are not 

consistently exposed to predation, and there may be less need for long-distance dispersal events.  

Under low dispersal conditions, we could not estimate carrying capacities of aphids 

because of the large incidence of extinctions (Fig. 3.2, Methods). We did find that single natural 

enemy treatments increased local migration and reduced long-distance migration, but the 

combination of natural enemies eliminated effects on migration so that there were no differences 

from controls. Since aphids were a limiting resource in low dispersal treatments, competition 

between natural enemies in the combined natural enemy treatment may have reduced the effects 

of natural enemies on pest movement.  

Under high dispersal conditions, the combination of both natural enemies best controlled 

aphids by reducing aphid clustering and equilibrium pest densities through a marked reduction in 

their carrying capacity (Fig. 3.1). This is a particularly surprising result since neither natural 

enemy alone reduced the carrying capacity of the pest (Fig. 3.2). In fact, the beetle significantly 

increased the carrying capacity of aphids (Fig. 3.1). Since no new food resources were made 
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available to aphids after they occupied a cell, aphid carrying capacity should increase only if 

aphids move to new cells and discover new food resources (Methods). Increases in local 

migration rates of aphids under the presence of beetles can explain the positive effect on aphid 

carrying capacity. Though the fungus alone reduced spatial clustering of aphids, carrying 

capacity was not reduced (Figs. 3.1-3.3). Increases in long-distance migration were canceled out 

by a reduction in aphid growth rates under fungus exposure to have no effect on carrying 

capacity (Fig. 3.1 and 3.2). Thus, equilibrium densities of aphids under the presence of fungus 

alone are no different than high dispersal controls (Fig. 3.1). However, when both natural 

enemies are combined, aphid populations are doubly threatened, reducing carrying capacities and 

increasing long-distance migration to a much larger extent than either enemy alone. This 

synergistic effect may result from combining intense predation by the beetle predator and the 

reduction in spatial clustering that occurs with the pathogen (Fig. 3.3). Much like in the original 

theoretical work that inspired our experiment (Ong and Vandermeer 2015), we find that a 

combination of two ineffective control agents can effectively rescue control, not only reducing 

equilibrium pest densities, but also reducing spatial clusters and limiting the carrying capacity of 

pests.  

 It is tempting to generalize these results.  Allowing that all species on earth are faced with 

the combination of predators and pathogens acting simultaneously, we can envision the effects of 

spatial extent in a very simple dynamic. If the pathogen induces long-distance migration (as it 

here does), and if the predator is more effective at finding spatial clusters of prey (as it here is), 

then the pathogen, if its virulence is appropriately constrained, effectively causes the prey to 

“move” to “refuges.”  The refuges are the areas of recently migrated individuals that have not yet 

locally reproduced enough to form a cluster that is sufficiently attractive to the predator.  The 
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stability condition (or persistence condition) is thus a critical combination of dispersal rates of all 

three elements, plus the nonlinear trait-mediated effects of the pathogen and predator on the 

dispersal of the prey.  Generalizing to a system of two predators and a prey, the key 

nonlinearities (trait-mediated effects) of one predator increasing the migration rate of the prey, 

the other increasing the local cluster formation, creates the conditions for stabilizing the whole 

system (with appropriate parameter values). We summarize this speculative generalization in 

Figure 3.4. 

3.5 Methods 

Experimental Setup 

Spatial arrays of 3’’ pea plant cuttings (P. sativum var. Dwarf Grey) were set up under a 

12hr-dark 12hr-light cycle. Each independent array (or “universe,” as Huffaker referred to them) 

consisted of a 4X5 network of clear plastic chambers (3 ¾’’ top diameter, 2 ½’’ bottom diameter, 

4 ¾’’ height) that were sealed to prevent escape by arthropods, but not airtight. Each chamber 

included a test tube filled with dH2O and a pea plant cutting inserted through a hole in the test 

tube top. The chambers were connected laterally using plastic corridors of two diameters: 0.219’’ 

(small) and 0.47’’ (large) cut to 2’’ in length. A single universe consisted of all small or all large 

corridors to represent a low or high dispersal treatment, respectively. Chambers were connected 

using a von Neumann neighborhood design with edge effects. Both low (L) and high dispersal 

(H) universes were subjected to four treatments: 1) aphids (A. pisum) only, 2) aphids and beetles 

(H. convergens) (B), 3) aphids and fungus (B. bassiana) (F), 4) aphids, beetles, and fungus (FB). 

All units started with an initial population of 50 aphids, 25 in the (1,1) position and 25 in the 

(4,5) position of the spatial array (diagonal corners). Eight beetles were added to the (4,1) 
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position of the array for treatments including beetles. For our fungal treatments, the initial aphid 

populations were sprayed with 2 pumps of a B. bassiana emulsion made by vortexing 4 mL 

dH2O and 1.28 mL B. bassiana obtained as the commercially available product “Mycotrol-O” 

with a concentration of 2 x 103 viable spores per quart. Universes were surveyed twice a week 

using direct counting methods.  The number of healthy aphids was recorded for 28 time points or 

until extinction occurred. During census, pea cuttings were replaced as necessary so that fresh 

resources were always available in the array. Once a pea plant was colonized by one or more 

aphids, no new pea cuttings would be provided in that chamber until all aphids went locally 

extinct or moved to neighboring chambers. After every local extinction event, chambers were 

thoroughly cleansed with 70% ethanol and fresh pea cuttings provided. In total we ran 66 

universes with 10 replicates of the L treatment, 5-H, 10-BL, 7-BH, 10-FL, 6-FH, 10-FBL, and 8-

FBH.  Given the available laboratory space, we were able to run 16 universes at a time, two 

replicates from each treatment were run simultaneously. Differences in times to extinction led to 

the different number of replicates per treatment we were able to achieve given constraints on 

funding and time.  

Parameter Estimation 

We modeled population dynamics using a coupled map lattice. The lattice was 4X5, the 

same as in the experimental setup. At each time step the entire lattice first experienced 

population dynamics, then local dispersal, and then long-distance dispersal. 

At each site on the lattice population dynamics were determined by the Ricker function (Ricker 

1954) with parameters r and K. 
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 (1) 

After local population dynamics a fraction, m1, of individuals from each site migrated 

locally to neighboring sites. These migrating individuals were evenly distributed to the 2-4 sites 

in focal site’s von Neumann neighborhood. 

After local migration a fraction, m2, of individuals migrated from each site migrated long-

distance to all the sites in the lattice. These individuals were evenly distributed among the 19 

other sites.  

We ran these rules for 28 time steps from the same starting conditions as in the 

experiment. Population values were assumed to be Poisson distributed with mean given by the 

above model. For each treatment we estimated the maximum likelihood parameter values using 

simulated annealing. Model estimates converged for all parameters except for carrying capacities 

of aphids under low dispersal conditions. The large incidence of extinctions made carrying 

capacities irrelevant for these treatments because aphids had negative growth rates. Thus, 

populations never increased to the point where carrying capacities could be estimated. We 

calculated the 95% confidence intervals around parameter estimates using the likelihood ratio 

test.  

Spatio-temporal projections 

Our coupled map lattice model was then parameterized and used to project populations 

under each treatment for 200 time steps assuming both the original 4X5 experimental design 

with edge effects (Appendix 1) and a 30X30 spatial grid placed on a torus.  We constructed 

confidence bands by simulating the model 1000 times for each treatment and taking the 95% 

Nij (t) = Nij (t −1)e
r 1−

Nij (t−1)
K

⎛
⎝⎜

⎞
⎠⎟
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quantiles of the total aphid population size at each time step. For each simulation, spatial 

patterning was measured using Moran’s I, where I > 0 implies clustered, and I < 0 implies 

dispersed patterns. We constructed 95% confidence bands for Moran’s I using the same process 

as population size. Simulated and experimental results for aphid population size and spatial 

patterning are overlaid in Appendix 1. All analyses were conducted in R (Core R Team, 2016). 
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a    b 

 

Fig. 3.1 Projected population time series. Total aphid population sizes are projected for 200 
time units assuming a 30X30 spatial grid placed on a torus using parameters fit by maximum 
likelihood inference to the experimental data where aphids had (a) low dispersal and (b) high 
dispersal while alone (black) or in the presence of the following natural enemies: ladybird beetle 
only (red), entomopathogenic fungus only (blue), and fungus and beetle combined (purple). 95% 
confidence bands are plotted around mean model predictions (dotted lines) for n=1000 
simulations. In top row, all low dispersal and all high dispersal plots are overlaid to show 
differences between treatments.  
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Fig. 3.2 Parameter estimates. Maximum likelihood fits to experimental data from treatments 
where aphids had L- low dispersal and H- high dispersal while in the presence of the following 
natural enemies: B- ladybird beetle only, F- entomopathogenic fungus only, and FB- fungus and 
beetle combined. Parameters include r, growth rate of aphids, K, carrying capacity of aphids, m1, 
local migration rate, and m2, long-distance migration rate. 95% confidence intervals using 
likelihood ratio test are plotted.  
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a        b 

 

Fig. 3.3 Projected spatial clustering of aphids with high dispersal. (a) Plotted are the means 
(dotted line), and 95% quantile confidence bands of Moran’s I for n=1000 simulations of the 
coupled lattice model assuming a 30X30 spatial grid on a torus using parameters estimated from 
treatments where aphids had high dispersal and no natural enemies (black), or while in the 
presence of the following natural enemies: ladybird beetle only (red), entomopathogenic fungus 
only (blue), and fungus and beetle combined (purple).  (b) Example spatial plots show different 
levels of clustering for treatments (corresponding with rows in a) at time 40 when clustering 
peaks for beetle only treatment and equilibrium, time 200. White colors correspond to larger, and 
red to lower population sizes of aphids. 
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Fig. 3.4  Hypothesized generalization of coexistence of two competitors (the two predators) 
in a spatially extended system, where one of the predators has a trait-mediated effect in 
inducing the prey to disperse faster and the other has a trait-mediated effect in inducing the prey 
to form spatial clusters.  In the absence of predator II, the prey will tend to occur as isolates, 
inducing extinction of predator I.  In the absence of predator I, the prey will tend to occur in the 
clusters, inducing extinction of predator II.  
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APPENDIX 2 
	

Supplementary Figures 

a            b 

 

Fig. S3.1. Low dispersal model fits to data. Plots of total aphid population size and Moran’s I 
for low dispersal treatments where aphids were alone (black) or under control by fungal 
pathogen (blue), beetle predator (red), or both (purple). Mean total population size (a) and 
Moran’s I (b) across all repetitions from experiment are plotted as solid lines and overlaid on top 
of mean model predictions (dotted lines) and 95% confidence intervals constructed from 1000 
simulations of the model assuming a 4X5 spatial grid with edge effects, projected to 200 time 
steps. All treatments are overlaid in top row.   
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a            b 

 

Fig. S3.2. High dispersal model fits to data. Plots of total aphid population size and Moran’s I 
for high dispersal treatments where aphids were alone (black) or under control by fungal 
pathogen (blue), beetle predator (red), or both (purple). Mean total population size (a) and 
Moran’s I (b) across all repetitions from experiment are plotted as solid lines and overlaid on top 
of mean model predictions (dotted lines) and 95% confidence intervals constructed from 1000 
simulations of the model assuming a 4X5 spatial grid with edge effects, projected to 200 time 
steps. All treatments are overlaid in top row.  
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a            b 

 

Fig. S3.3. Projected spatial clustering of aphids with low dispersal. (a) Plotted are the means 
(dotted line), and 95% quantile confidence bands of Moran’s I for n=1000 simulations of the 
larger spatial-scale model assuming a 30x30 spatial grid on a torus using parameters estimated 
from treatments where aphids had low dispersal and no natural enemies (black), or while in the 
presence of the following natural enemies: ladybird beetle only (red), entomopathogenic fungus 
only (blue), and fungus and beetle combined (purple).  (b) Example spatial plots show different 
levels of clustering for treatments (corresponding with rows in a) at time 10 and 20. White colors 
correspond to larger, and red to lower population sizes of aphids. 
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CHAPTER IV 

Taylor made landscapes: using Taylor’s law to scale between metapopulations 

and source-sinks in urban garden space 

 

Theresa W. Ong, Kevin Li, Azucena Lucatero, Damie Pak, L’Oreal Hawkes, MaryCarol Hunter, 

John Vandermeer 

4.1 Abstract 

The structure of terrestrial landscapes is commonly viewed as a problem of statistical 

description defined by the number, size and distance between habitat patches. Yet, for organisms 

living in that landscape, structure may be perceived very differently depending on the dispersal 

capacity of the organism of concern. We assert that as dispersal across fragmented habitats 

increases, subpopulations are forced to overlap in space and synchronize in time, effectively 

shifting population structure from metapopulations to source-sinks. Taylor’s law, a universal 

scaling law denoting a power law relationship between population size and variance, is used to 

indicate the  synchrony of arthropod populations sampled across time in a fragmented urban 

landscape. Regardless of the fragmentation pattern existing in the landscape, short-ranged 

species are isolated to small, independent habitat patches (metapopulation-like) with 

subpopulations that oscillate out of sync, while long-ranged species traverse greater distances, 

synchronizing subpopulations across large, shared spaces (source sink-like). These results 



	 81 

suggest an inherent link between Taylor’s temporal law and metapopulation theory, 

providing a potential mechanism to explain species-specific slopes of Taylor’s law as arising 

from the ability of organisms to differentially experience fragmented space along the continuum 

between metapopulation and source-sink. 

4.2 Introduction 

Biological populations inevitably exist in a spatially extended context.  The traditional 

view of exploring population dynamics locally is thus inevitably compromised by dispersal, 

which is to say, population dynamics regionally. This fact has led researchers to develop 

framings that take into account dynamics in both space and time, leading to conceptual skeletons 

such as metapopulations or source-sink populations, on which the flesh of dynamic complexity 

can be visualized [1–3]. In particular, the same spatial distribution of suitable habitat “islands” 

may present itself to a population as either a metapopulation-producing background, or a source-

sink producing background, depending on the details of dispersal of the organisms comprising 

the population. Observables such as type and characteristics of the spatial distribution, including 

cross correlations among sites and the apparent noise exhibited from point to point in space [4], 

are both consequences and potential causes of the spatio-temporal population dynamics.  Here 

we use the well-known relationship between mean and variance formulated as Taylor’s law [5,6] 

to produce a cohesive theoretical framework that combines the observables of skewed frequency 

distributions, environmental versus demographic stochasticity, and population synchrony, so as 

to query the issue of whether populations are metapopulations or source/sink populations. We 

suggest that divergent dispersal ranges cause shifts in the frequency distributions of organisms 

across habitat patches, providing a biological mechanism for skewed distributions [7] that 

logically connects ideas of metapopulation and source/sink theory with population synchrony [8].  
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Furthermore, this mechanism is modified by the balance between demographic versus 

environmental forces to predictably constrain Taylor’s temporal law [9]. With this framework we 

are able to integrate elements of landscape ecology, metapopulation theory, and Taylor’s law 

under a shared notion of scale. We posit that temporal population fluctuations will be more 

synchronous across space in source-sink landscapes than in metapopulation landscapes, and, 

furthermore, we derive the potentially practical conclusion that populations closer to a source-

sink state will have slopes of Taylor’s temporal law near 2.0, and those closer to metapopulations 

near 1.0.  

 Applying this theoretical framework to a real life situation of three groups of arthropods 

in an urban garden setting, we examine how “perceptions” of landscape structure (i.e., on the 

part of the arthropods) influence the synchrony of populations and consequently the slope of 

Taylor’s temporal law. Using populations of aphids, ladybird beetles, and parasitoid wasps 

sampled regularly across an entire city landscape over three time periods, we determine if and at 

what spatial scale abundance and temporal variability are influenced by the size of urban garden 

patches. This allows us to posit where along the continuum from metapopulation to source-sink 

each member of this real community of arthropods, coexisting in the same physical space may 

deferentially perceive urban garden patches as habitat. 

4.3 Theoretical Framework 

Taylor’s law: The law has been described as one of the few unifying laws in ecology, 

with many case studies in support of its claims [5,6,10]. It arises from the seemingly ubiquitous 

power law relationship between population sizes and their variances, which has been applied 

broadly to a great diversity of disciplines ranging from physics to economics [6]. There are two 
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forms of the law, one spatial and one temporal. Taylor’s law for temporal fluctuations states that 

the variance (V) of population numbers over time will follow a power function relationship to the 

mean (M) of that population over the same time frame, i.e., V = aMb [5]. The exponent b of 

Taylor’s temporal law, the slope of the linear regression on the log-scale, indicates whether 

temporal population fluctuations are invariant to population size (slope = 2), or whether larger 

populations are less variable than expected by chance (2 > slope > 1). Particular focus has been 

directed towards providing mechanisms that explain slopes below 2 because they imply 

unusually high levels of stability (defined here as low variance) of large populations, an oft-

sought goal for conservation [10–12]. The breadth of disciplines in which Taylor’s law has been 

applied suggests that there may be some unifying mechanism to explain particular slope values. 

Yet the mechanisms proposed to explain the large incidence of intermediate values in empirical 

studies (e.g., interspecific competition, demographic stochasticity, measurement error) are either 

case specific or only apply when populations are sufficiently small [6]. 

When applied to the effect of mean population size on the variance of populations across 

space, slopes of 1 correspond to random spatial distributions, and larger slopes correspond to 

clustered distributions [5]. Although the spatial form is well studied, the connection between the 

spatial and temporal forms of Taylor’s law is vague. The few studies that have examined 

connections between the spatial and temporal form of the law find no relationship [6,13,14]. 

Although most interest in this dilemma focuses on the direct relationship between the temporal 

and spatial form of the model, there is a related but distinct question that emerges directly from 

attempts at creating a useful framework for landscape structure, namely, the influence of 

landscape structure, a fundamentally spatial factor, on the temporal form of Taylor’s law. 
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Here, we focus on the temporal form of Taylor’s law because it has been used to indicate the 

synchrony of temporal oscillations for populations sampled across space [6,8,15]. If populations 

across a landscape grow and decline in complete synchrony, variance over time becomes 

independent of population identity [6]. Theoretical and empirical studies have confirmed this by 

showing that the slope of Taylor’s temporal law switches from 1 to 2 exactly at the point of 

synchrony where trees began to exhibit masting behavior [6,8,15,16]. In fact, the synchrony of 

temporal population fluctuations across space has been associated with both forms of Taylor’s 

laws. Theoretical work examining Taylor’s spatial law in metapopulations showed that as 

temporal synchrony from patch to patch increases, the slope of Taylor’s spatial law increases. 

This indicates that populations that oscillate in sync are also spatially clustered [4]. Though 

Hanski did not explicitly test the effect of spatial clustering on the temporal form of Taylor’s law, 

an abundance of theoretical work shows that increasing dispersal rates and reducing inter-patch 

distance in metapopulations (methods to increase spatial clustering) can increase the synchrony 

of temporal population fluctuations across patches [17–22]. This would suggest a basic 

contradiction: on the one hand, dispersal is key for maintaining persistence of metapopulations, 

yet, on the other hand, isolation with attendant reduced dispersal, is expected to increase 

asynchrony in metapopulations, improving long term population persistence [23]. Indeed in at 

least one case, increased isolation increased asynchrony of populations when placed within the 

context of complex communities [24]. Here we attempt to resolve this contradiction by 

considering the effects of dispersal on population synchrony when the habitat patches of each 

population are isolated versus when the habitat space is shared. 

Yet another factor known to influence population synchrony and the slope of Taylor’s 

temporal law is the balance between demographic and environmental stochasticity. Stochasticity 
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can reduce variance in large populations, while strong environmental forcing can induce 

temporal synchrony, known as Moran effects [9,25–28]. However, it is also known that any 

random process producing a skewed distribution can also result in an apparent Taylor’s law [7].  

A model system: To test the effect of landscape structure on the synchrony of 

populations and Taylor’s law, we adapt a Ricker model (1) [29] to include two main 

components: deterministic demographic forces and stochastic migration events. We consider n 

populations, where the density x of population i at time t + 1, is given by:  

    (1) 

The first term we take to represent the demographic forces; where ki is the carrying capacity for 

population i, and r is the intrinsic rate of increase for all populations. We take advantage of the 

well-behaved nature of the Ricker model to control deterministic population dynamics via r, 

which bifurcates from point, periodic, and finally chaotic dynamics as r transitions from 0-2, 2-

2.6924, and > 2.6924 respectively [29].   

We model migration (M) in a spatially implicit form such that it follows a seasonal trend 

via a noisy sine curve. Seasonal forcing is a common and well-explored topic, yet models 

typically force birth rates or carrying capacities, not migration. Aphids for example, have two 

general peaks in migration; one in the early spring when overwintering eggs emerge from the 

soil as alates equipped with wings, and again in the fall when shortening day lengths signal the 

production of reproductives capable of flight [30].  Most organisms have peak migratory seasons 

so it stands to reason that many populations would be regulated as such. In a purely mixed 

population, we expect that such a stochastic, seasonal trend could synchronize subpopulations 

xi (t +1) = xi (t)e
r(1−xi (t ))

ki

⎛
⎝⎜

⎞
⎠⎟ +M
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across a landscape similar to the way the Moran effect is known to sync independent populations 

via shared external noise from a common environment [28]. We argue that this is particularly 

true in source-sink landscapes where unidirectional dispersal from source to sink patches should 

further strengthen the synchrony of population fluctuations across the landscape. 

Yet it seems reasonable to assume that subpopulations having common shared habitat are 

much different than subpopulations that are completely isolated in space. These isolated patches 

become metapopulations, but rather than separation by physical barriers, they are separated by 

constrained home ranges. We argue that as populations become increasingly isolated, seasonal 

migratory signals become obscured by noise. Island effects such as increased extinction risks and 

stochastic long-distance emigration and immigration events may muddle the signal. Much like 

traditional metapopulations, isolated patches experience multi-directional dispersal events that 

can add asynchrony to population dynamics. We model this in a spatially implicit form by 

relaxing the seasonal signal of migration to complete randomness as the amount of shared habitat 

decreases (Fig S1, Appendix 3).  

Specifically, the carrying capacity of each population is quantified in terms of the amount 

of habitat (ie. the number of urban gardens) within the dispersal range of an organism. We 

determine how much habitat space is shared on average in a landscape by calculating the Gini 

coefficient across k in all n populations for a single landscape simulation.  A Gini coefficient of 0 

indicates that patch size (k) is equal across all n samples, 1 indicates complete inequality (31). 

When the dispersal range is large enough, all populations should have the same k, causing 

. Thus, depends on the distribution of habitats in the landscape, the n population 

locations, and the dispersal range of the focal species. The amplitude (A) of the migratory effect 

Gk1
kn → 0 Gk1

kn
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is kept constant, but synchrony increases as dispersal range increases,  and the noise 

collapses around a strong, seasonal cycle. This is achieved by constraining migration to values 

between 0 and 2A for all values of . To do this, 

 

    (2) 

The number of migrants is determined by two main components that scale with : 1) a simple 

random variable, , and 2) a seasonal signal modeled with a Sine 

function having period = , and amplitude A. The seasonal trend is modified by its own 

stochastic term and . This is done so that when , or the landscape is 

composed of completely isolated populations, the Sine function becomes 0 and  

 

.      (2a) 

 

Since when , M remains constrained between 0 and 2A. When all 

populations overlap meaning they all have the same k, and the first stochastic term Ɛ drops out of 

the equation to give: 

 

     (2b) 

 

Gk1
kn → 0

Gk1
kn

M = A 1+δSin(αt)(1−Gk1
kn )⎡⎣ ⎤⎦ + ε

Gk1
kn

ε ~ unif (−AGk1
kn ,AGk1

kn )

2π
α

δ ~ unif (0,1) (1−Gk1
kn ) Gk1

kn = 1

M = A + ε

ε ~ unif (−A,A) Gk1
kn = 1 Gk1

kn = 0

M = A[1+δSin(αt)]
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The Sine function has its own stochastic term, δ to allow some variation around the seasonal 

signal even for landscapes with populations that completely overlap.   

 

This model allows us to test how the seasonality of stochastic migration events, determined by 

degree of habitat overlap, impacts the synchrony of populations across a landscape. Rather than 

explicitly model migration between specific habitat patches, we use this highly generalized 

spatially implicit mean-field approach. However, it is important to remember that despite this, 

the model does take into account space by including the parameter, which measures how 

much habitat space is shared on average in a landscape. The idea is to assess how a group of 

organisms experiences the landscape as a whole; is it split into many asynchronous 

metapopulations or does it function as a source-sink landscape where clear migratory pathways 

lead to synchrony? To measure synchrony in temporal population oscillations across a landscape, 

we calculate Pearson’s correlation coefficient for all unique combinations of population time 

series within a single landscape simulation, and average them to give a mean cross-correlation 

value following historical approaches [4,11,18]. For a landscape simulation composed of N 

populations, the mean-cross correlation is the mean over all Pearson’s correlation coefficients 

resulting from the lower half of the orthogonal N x N matrix of population time series crosses, 

excluding the identity line. This allows us to assess the synchrony of population oscillations 

across a landscape, which we then compare to calculations of Taylor’s temporal law, discussed 

in Full Methods (ESM 4).   

 

In reality, landscapes almost always result in populations that exist somewhere between 

metapopulations and source-sinks [31]. We note that in the classic metapopulation definition, 

Gk1
kn
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sinks have k = 0 [1]. In our model, the deterministic component disappears when all k = 0 such 

that dynamics are determined only by the stochastic migration term, indicating a pure sink patch. 

In contrast, large carrying capacities increase the effect of deterministic demographic processes 

relative to stochastic migration events.  

4.4 Methods Summary 

Full, detailed methods are available in electronic supplementary materials (Appendix 3). 

In summary, model was simulated for hypothetical landscapes parameterized to represent source-

sink or metapopulations depending on degree of habitat overlap. Taylor’s law was calculated, 

and population synchrony measured using cross-correlation coefficients. Then, at N=100 local 

and N=28 landscape sampling points taken across the city of Ann Arbor, MI, urban garden patch 

size was calculated for a range of hypothetical dispersal distances and used to parameterize the 

carrying capacities, k for each of the N sampling point populations. The model was used to 

project population changes at each sampling point, Taylor’s law was calculated, and population 

synchrony was measured. These simulated population dynamics were compared to empirical 

calculations of dispersal distance (see Full Methods, ESM 4), Taylor’s law and population 

synchrony for real population time series data of aphids, ladybird beetles, and parasitoid wasps 

taken at each of the N=128 sampling points across three sampling times.  

4.5 Results and Discussion 

Model results. Solutions of (1) are presented in Fig. 4.1 for three different Gini 

coefficients calculated over a collection of 100 habitat patches, illustrating the application of 

Taylor’s law. The model behaves such that populations existing in landscapes composed of small, 

distinct patches (metapopulation-like) exhibit asynchronous dynamics with slopes of Taylor’s 
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temporal law close to 1, in contrast to populations existing in landscapes composed of large, 

similar patches (source-sink-like), which exhibit large-magnitude, highly synchronous 

oscillations with slopes of Taylor’s temporal law near 2 (Fig. 4.1).  

Previous studies have been unable to produce realistic ranges for the slope of Taylor’s 

law for large populations, but our model reproduces this range for any set of k depending on the 

relative balance between the effects of demography, migration and seasonality (Fig. 4.2) [6]. 

Each dashed line in Figure 4.2 is a null condition where only demography, migration or 

seasonally forced migration is in effect (see Full Methods, Appendix 3). The effects of 

demography (black dashed lines, r = 2, = 0.72, A = 0), migration (red dashed lines, r = 0, 

 = 0, A = 1 to 100) and seasonally forced migration (blue dashed lines, r = 0 and  = 1, A 

= 1 to 100) alone all have slopes of Taylor’s temporal law approaching 2, but different y-

intercepts. When simulating using the full model (1), the dynamics are clearly stretched between 

the dashed reference lines (2a-4), resulting in a range of slope values falling between 1 and 2. 

The fit and slope of Taylor’s law depends on how population means and variances are pulled 

between the effects of demography, migration, and seasonality (Fig. 4.2). By increasing A, the 

effects of migration are heightened, shifting dynamics diagonally upwards along the blue and red 

migration reference lines, reducing the slope (Fig. 4.2a). This makes sense, since stochastic 

migration events necessarily increase the mean and variance of populations. Increased 

seasonality, achieved by forcing the Gini coefficient to 1 while keeping all other parameters 

constant, causes declines in population variances and steeper Taylor’s temporal law slopes (Fig. 

4.2b). In our model, migration events are constrained around a seasonal signal when habitats 

overlap and approaches 1, accounting for the decrease in population variance. Demographic 
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effects are easily controlled in our model by varying the per-capita growth rate parameter r, 

which is well-known to transition from chaotic, cyclic and stable point dynamics as r decreases 

(the Ricker map) (Fig. 4.2c). The y-intercept of the demographic reference line (black dashed 

line) shifts upward with increases in r, causing slopes for Taylor’s temporal law to increase. 

Population dynamics become chaotic as r increases, accounting for the increase in population 

variances that leads to higher Taylor’s law slopes.  In summary, stochastic migration events 

decrease Taylor’s law slopes towards 1, while seasonality ( =1) and demographic effects 

(large r) increase Taylor’s law slopes towards 2. The balance between these forces is consistent 

with the preponderance of intermediate slope values found in empirical studies [10–12]. 

Spatial distribution of urban gardens. Using urban gardens in Ann Arbor, MI as an 

example, we show that sub-sampling the same clustered habitat distribution at different spatial 

scales can result in dramatically different interpretations of landscape structure (Fig. 4.3) [32]. 

For 128 sample points positioned at regular intervals across the landscape at two spatial scales, 

we analyzed habitat patch size by summing the number of gardens falling within a certain radius 

of each sample location (Fig. 4.3b). As the radius used to measure patch size increases, samples 

transition from being composed of mostly small and a few large patches into being composed of 

mostly large and a few small patches (Fig. 4.3c and 4.4a). This is because at large radii, habitat 

regions in adjacent sample locations overlap (Fig. 4.3c). Thus, dispersal-range influences the 

skewness of the habitat size frequency distribution. To study this effect we calculate the Gini 

coefficient, over all sampled patch sizes measured for radii between 100 and 2000m. As 

expected, Gini coefficients move towards unity (total equivalence) at a rate dependent on the 

distance between samples and the overall dimensions of the sample area (Fig. 4.4b). Since our 

local scale plot (N = 100) is much more dense and smaller in area than the landscape scale plot 

Gk1
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(N = 28), samples become more similar at shorter sampling radii than the landscape plot alone or 

the landscape and local plots combined (Fig. 4.4b). Traditionally, sample independence is 

thought necessary for assessing the effect of landscape structure on populations. However, the 

correct distance to space samples for independence is difficult if not impossible to ascertain 

apriori and choice of sampling sites is often limited to practical realities [37,38]. We argue that 

eliminating potential overlap obscures important effects of the landscape, since sample 

independence is as much a result of sample design as the dispersal capacity of the focal organism. 

Increased dispersal capacity can also mitigate the effects of a fragmented landscape if long-range 

species can effectively traverse fragmented space [39]. Here we demonstrate how degree of 

sample dependence may help in understanding how a species perceives a fragmented landscape 

on a continuum from highly independent, small, isolated patches (metapopulation-like) to highly 

dependent, large, shared patches (source-sink like). 

Using garden data to parameterize the model. For simulated populations  (1) 

parameterized using actual garden data (from Fig. 4.3) as carrying capacities, the slope of 

Taylor’s temporal law increases from 1 to 2 as the sampling radius increases, which also 

corresponds to an increase in mean cross-correlation (Fig. 4.5a). This occurs due to the 

synchronizing effect of seasonal migration events, which increases as habitat patches are shared 

by populations at large sample radii ( ). At small radii, habitat patches are largely 

independent and skewed towards smaller sink patches. The population dynamics of these sinks 

are driven primarily by random migration events that increase the asynchrony of populations, 

causing the slope of Taylor’s law to decline towards 1 and mean cross-correlation to move 

towards 0. We ran the model using carrying capacities derived from garden patch size at the 

local-level only, landscape-level only, and the full dataset including all combined samples (Fig. 

Gk1
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3a). The results are strikingly similar regardless of what spatial-level patch size distribution data 

is taken, all of which effectively reproduce a realistic range of Taylor’s temporal law slopes 

between 1 and 2 as documented by many empirical studies [6]. As expected, the spatial 

sampling-level influences the rate at which synchrony (slope 2) is achieved, since the 

distribution of patch size becomes homogenous ( ) at smaller radii if the sample points 

are closer together (Fig. 4.4). Our theoretical framework may settle the dispute over whether 

dispersal increases or decreases synchrony by specifying the conditions under which dispersal 

occurs [17,18,21,23,24].  When populations share habitat space due to long dispersal ranges, the 

shared environment can induce a strong synchronizing effect on those populations. Even patches 

on the outskirts are synchronized to larger, source populations if dispersal is unidirectional from 

source to sinks. However, when populations have highly constrained ranges as in 

metapopulations, random long-distance colonization and extinction events between patches can 

induce asynchrony.  

Deduced population structure of aphids, beetles and parasitoids. Calculating the 

slope of Taylor’s temporal law and mean cross-correlation for actual populations of aphids, 

ladybird beetles and parasitoid wasps, we find that aphids had a slope approaching 2 and a large 

mean cross-correlation while ladybird beetles and parasitoid wasps had slopes closer to 1 and 

lower mean cross-correlations (Fig. 4.5b). Based on our theoretical findings, these slopes 

indicate that aphids should have long dispersal ranges and exist in source-sink habitats with 

synchronous population dynamics, while ladybird beetles and parasitoid wasps should exist as 

metapopulations with asynchronous population dynamics and short-range dispersal. To test these 

predictions we approximated dispersal range by comparing linear models predicting the 

coefficient of variation (CV) for abundance of each taxa across time as a function of patch size 

→
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for a range of radii (Full Methods, Table S1, Appendix 3). Empirical results largely confirmed 

theoretical predictions with aphids responding to gardens at much larger radii (2000m) than 

parasitoid wasps (150m) (Fig. 4.5a, Fig. S2). Our estimates of dispersal range are consistent 

across local, landscape and combined sampling areas. The best-fit models across all three 

sampling units vary a maximum of 50m for each taxa, giving us confidence in our method for 

determining dispersal range (Table S1, Appendix 3). Ladybird beetles did not respond to gardens 

at any of the radii examined; however, the low slope of Taylor’s law and mean cross-correlation 

suggests that their populations are highly asynchronous and that dispersal in the city is 

constrained. Proclivity to utilize urban spaces as nesting habitat may explain why ladybird beetle 

population dynamics are not associated with urban garden patch size. Our empirical results both 

satisfy theoretical predictions and are biologically reasonable. Aphids are known to have long-

dispersal ranges [30] and large, synchronized population booms and busts are typical of 

agricultural pests [40]. In contrast, natural enemies like ladybird beetles and parasitoid wasps are 

highly sensitive to local-factors associated with habitat quality, and may find navigating through 

highly disturbed landscapes like cities difficult [41–44].  

Concluding remarks. It is not unusual to note that different organisms may perceive the 

same fragmented landscape differently depending on their dispersal range. Here we show that 

these perceptions may be inherently linked to the slope of Taylor’s temporal law and the 

fundamental structure of populations. Not only do organisms respond to landscapes forming a 

continuum from metapopulation to source-sink population, but a single landscape may fall 

anywhere along this continuum simultaneously and differentially for each organism that exists 

within it. Though found to apply almost ubiquitously to a variety of systems, the mechanism 

behind Taylor’s temporal law, its associated slope and connection to space are still debated. By 
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combining ideas from landscape ecology, metapopulation theory, and population and community 

ecology we provide a highly generalizable explanation for slopes of Taylor’s temporal law 

between 1 and 2 that incorporates space and applies to both large and small populations. Using 

theory backed up with empirical results, we show that species-specific perceptions of landscape 

structure can cause skewed habitat-size frequency distributions that are responsible for the fit to 

Taylor’s law. When dispersal range is short, organisms exist as isolated metapopulations, which 

experience a large degree of environmental perturbations and random migration events that cause 

asynchrony and slopes of Taylor’s law closer to 1.  In contrast, when dispersal range is long, 

organisms share habitat in the landscape and experience it as a source-sink with unidirectional 

dispersal events that cause synchrony and slopes of Taylor’s law closer to 2.  The results of this 

work imply that we may no longer be able to simplify landscapes to their obvious physical 

features such as size and distance between habitat patches. In the context of trophic interactions, 

other questions arise. Is biological control best achieved when organisms experience the 

landscape similarly, or does a disjunction between perceptions keep the system in a state of 

persistence that may be impossible to maintain otherwise? Is there a way of maximizing long-

distance dispersal events in organisms of conservation concern while maintaining asynchrony of 

their populations across the landscape? The answers to such questions requires further study, but 

future studies testing the effects of fragmentation patterns on Taylor’s temporal law across 

multiple landscapes and organisms may help untangle the complex relationship between 

population and landscape structures. Practical applications including the planning of urban 

landscapes that can maximize natural enemy persistence, while reducing synchronous dynamics 

in long-range pest species is just one example.  
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Fig. 4.1 Effect of landscape structure on Taylor’s temporal law and population synchrony. 
Taylor’s temporal law calculated for sets of N =100 simulated populations (A) selected to 
include mainly sink patches (small, dissimilar carrying capacities, k) in blue with Gini coefficient 
(G) = 0.43 and slope = 0.86 (P < 0.001, R2 = 0.26), mainly source patches (large, similar k) in red 
with G = 0.15 and slope = 2.0 (P < 0.001, R2 = 0.99), and both source and sink patches in black 
with G = 0.39 and slope = 2.75 (P < 0.001, R2 = 0.97). Time series plots (B) of N =10 random 
populations pulled from blue sink simulations (top), black source-sink simulations (center) and 
red source simulations (bottom) showing the increasing degree of temporal synchrony. Each 
color represents a different population. For these plots, the intrinsic growth rate r = 2.2, the 
period for the stochastic seasonal forcing θ = 20 and the amplitude of stochastic effects A= 30.  
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Fig. 4.2 Balance between demographics, migration and seasonality produces intermediate 
Taylor’s law slopes. Reference Taylor’s temporal slope lines for the effects of demography 
(black dashed lines, r = 2, G = 0.72, A = 0), random dispersal (red dashed lines, r = 0, G = 0, A = 
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1 to 100) and seasonally forced dispersal processes (blue dashed lines, r = 0 and G = 1, A = 1 to 
100) alone (only linear regressions plotted, points for reference lines not shown). Reference lines 
are graphically compared to sets of n =100 populations simulated using full model and 
parameterized to have strong and weak migration (A), seasonality (B) and demographics (C) 
effects. All points are populations simulated using full model and k values uniformly distributed 
between e^1-8. Simulations were run for 150 time steps and the last 100 used to calculate the 
means and variances plotted. High slopes with weak migration effects (r = 2, G = 0.72, A = 10, 
dark blue points) and low slopes with strong migration effects (A = 50, light blue points) in (A). 
Corresponding regressions plotted using thick lines with slopes = 1.24, 1.00; R2 = 0.89, 0.90; P < 
0.001 both. High slopes with strong seasonality (G forced to 1, dark red points) and low slopes 
with no seasonality (G forced to 0, light red points), while keeping r = 2, A = 10 and k values 
between e^1-8 in (B). Linear regressions plotted with thick lines have slopes = 1.41, 1.10; R2 = 
0.91, 0.88; P < 0.001 both, respectively. In (C), two demographic-only reference curves are 
plotted (G = 0.72, A = 0) and r = 2 (black dashed line), r = 1.98 (grey dashed line). High slopes 
with strong demographic effects (G = 0.72, A = 10, r = 2, dark grey points) and low slopes with 
weaker demographic effects (G = 0.72, A = 10, r = 1.98, light grey points). Corresponding 
regressions with slopes = 1.24, 0.65; R2 = 0.89, 0.73; P < 0.001 both, respectively plotted with 
thick lines of corresponding color. 
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Fig. 4.3 Scaling between a metapopulation and source-sink landscape. (A) Sampling scheme 
of gardens in the area of Ann Arbor, MI (grey background). Sampling of arthropods was 
conducted regularly across the entire landscape at two spatial scales (red box: landscape-level 
and blue box: local-level) and three time points (June, July and August 2013). A total of N =28 
samples were conducted at the landscape-level (open red circles), and N =100 at the local-level 
(blue circles). Landscape-level samples are drawn in (B) at a radius of 400m on top of actual 
distribution of urban gardens (closed black circles). Patch size was equal to number of gardens 
falling within the radius of a single sampling circle, visualized in (C) by plotting only the 
gardens (black/gray points) falling within radii of 100, 150, 200, 300, 400m (top row), and 500, 
750, 1000, 1500, 2000m (bottom row) for landscape-level sampling points only. One patch is 
highlighted for each radius (open red circles) to show scale, with a red arrow connecting this 
point to its location among all landscape-level sample points plotted at the same 400m radius in 
(B). At a radius of 1000m and beyond, neighboring landscape-level samples begin to overlap; 
degree of overlap is indicated by the darkness of garden points with lightest points having the 
greatest overlap. The same patch size analysis was done for local-level samples, but not shown 
here. 
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Fig. 4.4 Scale-dependent patch size distributions. (A) Histograms of patch size at each 
sampling radius of 100, 150, 200, 300, 400, 500, 750, 1000, 1500, 2000m (from top to bottom 
rows) are plotted for local-level samples (left column), local and landscape-level samples 
combined (middle column), and landscape-level samples only (right column). (B) Gini 
coefficients calculated over all patch sizes at each sampling radius for landscape-level samples 
(red), local-level samples (blue) and all sample points combined (black). A Gini coefficient of 0 
indicates that patch size is equal across all samples, 1 indicates complete inequality.  
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Fig. 4.5 Model predictions and empirical estimates of Taylor’s law slopes and population 
synchrony of arthropods. The mean and 95% confidence intervals (resampling with 
replacement N=10000 replicates) for the slope of Taylor’s temporal law (red) and mean cross-
correlation (black) calculated across sets of 10 simulated populations, replicated 10 times, 
discarding the first 50 of 150 iterations (A). Population sets were parameterized using real 
garden patch size data as carrying capacities. Carrying capacities were randomly pulled from 
patch sizes calculated by counting the number of gardens falling within each sampling radius for 
combined, local, and landscape-level sample points (top to bottom panels). The Gini coefficient 
was calculated across carrying capacities in each set of 10 populations. In each panel, per capita 
growth rate r was varied from 1.6 (lightest) to 2.8 (darkest) in intervals of 0.2, progressing 
through stable point, periodic and chaotic population dynamics. For all simulations, A = 30 and θ 
= 20. Actual survey results of arthropods were used to calculate slopes of Taylor’s temporal law, 
mean cross-correlation and dispersal ranges, significant results were overlaid onto simulations 
for parasitoid wasps (square points) and aphids (circular points). Populations of ladybird beetles 
did not respond to gardens at any spatial scale so are not plotted.  Linear regressions of Taylor’s 
temporal law calculated for real populations (B) of aphids (top), ladybird beetles (middle), and 
parasitoid wasps (bottom) at landscape-level (red), local-level (blue) and all sample points 
combined (black). For aphids, slopes = 2.1581, 2.01165, 1.96036, R2 = 0.92, 0.89, 0.88, P < 
0.001 for all; ladybird beetles, slopes = 1.1406, 1.0173, 1.0668, R2 = 0.52, 0.39, 0.44, P < 0.001 
for all; and parasitoid wasps, slopes = 1.0081, 1.5955, 1.372548, R2 = 0.40, 0.56, 0.53, P = 0.003, 
< 0.001, < 0.001 for landscape-level, local-level and combined sample points, respectively.
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APPENDIX 3 
	

Supplementary Table for Taylor made landscapes: using Taylor’s law to scale 
between metapopulations and source-sinks in urban garden space 

	

Organism Sample Level Null 100m 150m 200m 300m 400m 500m 750m 1000m 1500m 2000m 

Aphids Local 48.72 48.85 48.75 49.20 49.99 50.65 50.70 50.69 50.63 50.64 50.62 

  Landscape 4.10 3.86 4.76 4.88 4.58 4.72 4.75 4.57 4.41 3.88 3.71 

  Combined 61.66 59.19 59.18 59.56 60.44 61.87 62.43 62.09 61.79 60.15 58.97* 

Ladybird 
beetles Local 103.79 105.40 105.11 104.79 104.63 105.45 105.30 105.57 105.72 105.20 105.77 

  Landscape 36.35 38.35 38.08 38.22 38.33 38.28 38.31 38.34 38.34 38.25 38.01 

  Combined 136.61 138.49 138.48 138.36 138.33 138.60 138.58 138.61 138.55 138.61 138.52 

Parasitoid 
wasps Local 102.93 102.07 99.36* 101.38 102.65 103.19 103.33 104.62 104.87 104.49 104.87 

  Landscape 27.96 27.81 29.01 28.81 29.16 29.14 29.09 29.02 28.96 29.00 29.47 

 

Combined 127.40 127.39 125.46 127.26 128.23 128.60 128.72 129.35 129.40 129.39 129.33 

 
 
Table S4.1. Determining dispersal-range of arthropods. Akaike Information Criterion (AIC) 
values for linear models predicting organism coefficient of variation (CV) as a function of patch 
size calculated at various radii (column headers) for samples at the local-level, landscape-level, 
and combined levels. To determine if and at what radius organism coefficient of variation was 
sensitive to garden patch size, models for each radius were compared along with a null model 
across rows, bold type indicates the best-fit model with lowest AIC. *indicates significant (P ≤ 
0.05) regressions.  
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Supplementary Figures for Taylor made landscapes: using Taylor’s law to scale 
between metapopulations and source-sinks in urban garden space 

 

 
 

 

 

Fig. S4.1. Stochasticity driven by dispersal and the shared environment. Stochastic terms 
were modeled so that they transition from dispersal driven to environment driven as the Gini 
coefficient across all carrying capacities/patch sizes, G is varied from 0 to 1. Stochasticity is 
plotted for amplitude A = 1, θ (period)= 20, and G = 1 (black), 0.5 (dark gray) and 0 (light gray).  
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Fig. S4.2. Arthropods are sensitive to urban gardens at different spatio-temporal scales. 
The size of red, open circles indicate the abundance of aphids (top row), ladybird beetles (middle 
row), and parasitoid wasps (bottom row) in June (first column), July (second column) and 
August (third column) 2013. Small blue box indicates position of local-scale sampling area, 
which covers downtown Ann Arbor, MI and adjacent neighborhoods with 100 points placed an 
average of 128m apart. Larger blue box is an enlarged view of local-scale samples. Landscape-
scale sampling covers the entire city landscape with 28 points placed an average of 1470m apart. 
Easement gardens are indicated by black and grey plus signs. 
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Full Methods for Taylor made landscapes: using Taylor’s law to scale between 

metapopulations and source-sinks in urban garden space 

 

Theory: The model was parameterized using different sets of k values, representing 

different perceptions of landscape structures both theoretical and actual. Slopes for Taylor’s 

temporal law were determined by regressing the mean and variance of each set of simulations on 

a log-scale. To remove transience, simulations were run for 150 time steps and only the last 100 

time steps used to calculate Taylor’s temporal law. After removing transience, mean cross-

correlation was calculated for each simulated landscape to measure population synchrony.  

To graphically assess how simulation results for Taylor’s law are influenced by 

demography, migration, and seasonality, we examine results of the full model (1) with respect to 

deterministic demography, stochastic migration, and stochastic seasonal migration only reference 

lines. 

By setting A = 0, only demography is in effect, reducing (1) to the classic Ricker model [29]: 

     (3) 

To look at effects of migration in isolation, we set r = 0, reducing (1) to  

     (4) 

xi (t +1) = xi (t)e
r(1−xi (t ))

ki

⎛
⎝⎜

⎞
⎠⎟

xi (t +1) = xi (t)+M
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When in (4), population dynamics arise from completely random migration events (2a). 

When in (4), population dynamics arise from random migration events with a strong 

seasonal trend (2b, Fig S1).   

To create the demography only reference line, we use (3) to simulate 100 populations 

with k values set to range uniformly between e^1-8, so that the log of simulated population sizes 

fall between 1-8, representing a range from very small to very large populations. The 

demography reference line is the linear regression of population size versus variance for these 

100 simulations. For the null conditions where only migration is in effect (4), k does not affect 

population size. Thus to create migration only reference lines, we simulated 100 populations 

with the amplitude of migration events A ranging from 0 to 100 in order to achieve a range of 

population sizes for which we can apply linear regressions of size versus variance. For stochastic 

migration , and for stochastic, seasonal migration . When the k values in a 

landscape simulation are all different, , and when they are all the same . Thus  

depends on the distribution of k values used in a landscape simulation. However, for our 

migration only reference lines we wanted to isolate the effect of the  term from k. Thus for 

these reference lines, we removed the effect of k on  by turning  into a constant of 0 and 1 

to represent the effect of stochastic migration and stochastic, seasonal migration only, while 

keeping the range of k values the same as those used in the demographic only reference line.  

Please note that this was done only for the migration reference lines. In all other simulations  

is dependent on the k distribution of the landscape simulation. 

Gk1
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Arthropod census. Glue-based, yellow sticky card traps were used to monitor aphid, 

ladybird beetle, and parasitoid wasp populations in Ann Arbor, MI during the months of June, 

July and August 2013. The sticky traps were placed at mapped grid points regularly across the 

landscape at two spatial scales. One set of map points corresponded to a grid over the total area 

of the city of Ann Arbor (landscape-scale), and the second set covered the area of downtown 

Ann Arbor and adjacent neighborhoods (local-scale). The finer, local-scale grid had 100 points 

spread an average of 128m apart. The coarser, landscape-scale grid had 28 points, spread an 

average of 1470m apart. At each point, a sticky trap was either taped to a metal street pole or 

stapled to a tree or wooden post at breast height. Every 5 weeks for 15 weeks (3-months), the 

sticky traps were collected and sampled for abundance. Each sticky trap location represents an 

individual replicate. Characteristic morphological features were used to identify each aphid, 

ladybird beetle and parasitoid wasp individual. While we did not identify individuals into 

families or assign them into morpho-species (due to degraded sticky trap samples), we did 

exclude predatory wasps, specifically those from the family Vespidae. Though Vespid wasps are 

important for controlling garden pests, we were more interested in parasitoid wasps due to their 

reliance on floral resources and potential to be natural enemies of aphids. The mean and variance 

for each group of organisms was plotted on a log-scale and regressed for local samples, 

landscape samples and both local and landscape samples combined. The slopes of these 

regressions are the slopes of Taylor’s temporal law for each organism and each set of sample 

points. We calculated mean cross-correlation for the time series data of each taxa at local, 

landscape and combined scales.  

Garden census. Garden census data was taken from [32], in which all private properties 

within the entire Ann Arbor, MI municipal region (N > 20000) were surveyed in person, 
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recording the location and presence of easement gardens (municipally owned green space that 

falls between the sidewalk and the road) [33].  In Ann Arbor, homeowners are required to care 

and manage these city-owned parcels. The universal tranverse mercator (UTM) coordinates of 

any parcel showing signs of horticulture (other than mowed lawn) was recorded as an easement 

garden. Both primarily aesthetic and food-related gardens were recorded since both are important 

for insect populations. Further details are available from the original source [32]. Although the 

use of easement gardens in this study excludes other examples of urban agriculture in Ann Arbor 

(public gardens, community gardens, backyard gardens, etc.), it is a consistent census tool that 

has been extensively ground-truthed in the study area. Results from the original mapping study 

showed that easement gardens are significantly clustered in space, which the authors argued is a 

result of a spatial-contagion effect [32]. Visual access to the nearest neighbor’s easement garden 

increased the intensity of garden clustering so that homeowners were more than twice as likely to 

have an easement garden if one existed within 30m. Due to this spatial-contagion effect, we 

expect areas with many easement gardens to contain other kinds of urban agriculture in the 

region as well. Thus in this study, we use easement gardens as a proxy for urban gardens, 

generally. Garden patch size was calculated at each sampling point where arthropod data was 

taken by summing the number of gardens falling within a radius of 100, 150, 200, 300, 400, 500, 

750, 1000, 1500, and 2000m from the sampling location. This range of radii was chosen so that 

samples go from independent to overlapping, as the sampling radius increases and . 

Determining dispersal range. In order to determine dispersal range for each sampled 

organism we compared several linear models predicting the coefficient of variation (CV) for 

abundance across time as a function of patch size at a particular sampling radius. The CV is equal 

to the standard deviation divided by the mean of the three abundances sampled in June, July and 

Gk1
kn → 0
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August 2013. The CV was chosen as the predictor variable since it is directly related to Taylor’s 

temporal law, which compares the mean and variance across several populations on a log-scale. 

In addition, CV is a statistic used to quantify population dynamics in many empirical studies. 

Because CV values indicate the degree of population variability over time, conservation 

practitioners use this statistic as a proxy for population persistence and stability [34–36]. The 

Akaike Information Criterion (AIC) for each radius was compared to a null model to determine if 

and at which radius patch size predicts organism CV. This approach tests at what distance, patch 

size best predicts the population dynamics of each organism. We define dispersal range as this 

distance at which population dynamics are most sensitive to underlying habitat features. Thus, 

the radius with the lowest AIC is the dispersal range of the organism. To test for consistency, we 

determined radius of influence for local-scale, landscape-scale and combined datasets separately. 

If the distance at which organism CV is most sensitive to garden patch size is a good definition of 

dispersal range, this range should remain fairly consistent across local-scale, landscape-scale and 

combined datasets.  

Empirical Taylor’s law and cross-correlation coefficients.  Using data from the 

arthropod census, we calculated Taylor’s temporal law for sampled populations of aphids, 

parasitoid wasps and ladybird beetles at the landscape, local, and combined spatial scales. The 

slope of Taylor’s law was calculated by regressing means and variance of populations across the 

three sampled times on a log-scale. Significance of regressions was assessed using F-tests. To 

assess population synchrony, mean cross-correlation was calculated for each arthropod type by 

taking the mean of Pearson’s correlation coefficient for all 3-pt empirical time series in the lower 

half of the orthogonal N x N matrix of all unique population crosses, excluding the identity line 

for local (N=100), landscape (N=28), and combined (N=128) spatial scale sampling points.  
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Comparing model predictions and empirical results. To assess how well the model (1) 

predicts data on how organisms respond to gardens as habitat in Ann Arbor, we simulated 

populations using garden patch size data as carrying capacities, k. Recall that patch size was 

calculated at different radii for local, landscape, and combined spatial scale sample points using 

the methods described earlier. Each radius represents a different perception of the urban gardens 

in Ann Arbor, ranging from small, isolated patches to large overlapping patches as the radius 

increases. To understand how perceptions of the landscape would influence Taylor’s law and 

population synchrony, we simulated sets of 10 populations at each sampling radius and dataset of 

interest. These sets of 10 populations were used to calculate Taylor’s temporal law and mean 

cross-correlation after discarding the first 50 of 150 time step iterations. Each set of 10 

populations is considered a landscape simulation since for each individual simulation is 

calculated across the 10 k values in a set. The 10 k values were pulled from garden patch size 

data at random, but were specific to the sampling radius and dataset of sampling points used. For 

each sampling radius and dataset of sampling points, we varied r values from 1.6 to 2.8 in 

intervals of 0.2 so that we could assess the effects of progressing through stable point, periodic 

and chaotic population dynamics. Each landscape simulation was replicated 10 times. For all 

simulations, A = 30 and θ = 20. 

For example, to predict the population synchrony of local-scale samples, we simulated 10 

populations (a single landscape simulation) for 150 time steps with their k values randomly 

pulled from the dataset of garden patch sizes for the local-scale sampling points we have in 

downtown Ann Arbor (N=100). We measured population synchrony in the simulated time series, 

excluding the first 50 time steps, by calculating mean-cross correlation. In this case there are 10 

populations in a landscape simulation, so the mean-cross correlation is the mean of Pearson’s 

Gk1
kn
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correlation coefficient for the lower half of the orthogonal 10x10 matrix of all unique population 

crosses, excluding the identity line (4900 crosses total).  

We repeated this analysis 10 times for each sampling radius (100, 150, 200, 300, 400, 

500, 750, 1000, 1500, and 2000m), each sampling dataset (local, landscape, combined), and each 

r value (1.6 to 2.8 in intervals of 0.2), then calculated 95% confidence intervals for simulations 

of Taylor’s law and mean cross-correlation using resampling with N=10000 replicates and 

replacement.  Finally, empirical values for the slope of Taylor’s law and mean cross-correlation 

for each taxa and spatial scale were overlaid onto simulation results at the sampling radius 

determined to be the dispersal range to test for consistency. If the empirical values of Taylor’s 

law and mean cross-correlation fall within the 95% confidence intervals of the simulations, the 

model significantly predicts the empirical data. 
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CHAPTER V 

Cities as sinks: population structure in pea aphids across an urban landscape 
 

Ong, T. W., J. H. Vandermeer, and T. Y. James. 

 

5.1 Abstract 

Urban gardens are increasingly recognized for their potential to preserve biodiversity in 

harsh urban environments. Yet little is known about whether the biodiversity observed in gardens 

are long-term residents or short-term visitors. The ability of populations to persist in small, 

isolated habitat patches depends on adequate dispersal across the landscape. Using microsatellite 

markers we examine how urbanity influences the dispersal and population structure of pea 

aphids found in urban gardens. We find significant population structure across space and time, 

with evidence that genetic diversity decreases with increasing urbanity. Genetic diversity appears 

to source from the least urban sites, suggesting that cities as a whole may act as population sinks. 

These results suggest that populations persisting in urban garden patches are isolated and likely 

to experience significant population drift resulting from isolating effects of the urban 

environment. Conservation of biodiversity in urban gardens may require improving the 

permeability of urban landscapes for dispersing organisms. 
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5.2 Introduction

With more than 54% of the human population residing in urban areas, urban agriculture 

is emerging as an alternative food movement that eliminates the rural-urban divide between food 

production and consumption, improves food security, builds community, and provides green 

space for people and wildlife in urban areas (Brown and Jameton 2000, McClintock 2010, 

Goddard et al. 2010, Barthel et al. 2014, Lin et al. 2015, WHO 2016). Urban agriculture has 

gained a recent foothold in ecology with many studies showing concrete evidence that gardens 

can provide substantial resources to support a diversity of organisms that contribute to ecosystem 

services like biological control. Since urban agriculture is often small-scale, plots can be very 

carefully managed to include a surprising amount of biodiversity in terms of crops, ornamentals 

and their associated wildlife (pollinators, natural enemies, birds, etc.) (Akinnifesi et al. 2009, Lin 

et al. 2015). Resurgence of interest in urban agriculture in the United States and other parts of the 

world suggest a real potential to utilize urban spaces for the triple benefit of food production, 

community building, and conservation of biodiversity.  

However, the long-term viability of biodiversity in urban areas is still in question 

(Douglas 1983, MacDougall et al. 2013, Beninde et al. 2015).  Studies have shown that 

impervious surface, heat island effects, and pollution in urban areas may present critical 

obstacles for the dispersal and maintenance of populations persisting in urban garden refuges 

(Goddard et al. 2010, Beninde et al. 2015). Many species of conservation concern survive in 

small pockets of habitat in fragmented landscapes, however lack of dispersal between isolated 

populations significantly increases extinction risks (Perfecto et al. 2009, Vandermeer et al. 2010). 

Climate change further exacerbates problems as species distributions shift northwards, but 

landscapes remain fragmented (Sæther et al. 2000). Thus, improving the matrix between habitat 
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fragments is key for increasing the resilience of threatened populations to environmental 

perturbations (McClintock 2010, Goddard et al. 2010, Gardiner et al. 2013, Lin et al. 2015).  

From a meta-population perspective, we can envision each garden as a habitat patch 

interspersed within a matrix of inhospitable urban space (Hanski and Gilpin 1991, Parris 2006, 

Johnson et al. 2013). Yet the degree to which organisms perceive urbanity as an obstacle for 

dispersal between gardens is difficult to assess in ecology, especially for small organisms where 

mark and recapture techniques are largely unreliable (Nathan 2001). Here we borrow techniques 

from molecular ecology to explore the dispersion and population structure of pea aphids sampled 

across an urban landscape in a single growing season. A variety of organisms inhabit urban 

gardens, but those of particular ease to study are also those of most concern to gardeners: 

agricultural pests. Pea aphids are specific to legumes including important agricultural crops like 

peas, greenbeans and soybean. They are long-distance dispersers and are sensitive to broad scale 

changes in percentage of non-crop habitat within agricultural landscape structure (Werling and 

Gratton 2010). Thus, aphids are an ideal study organism to address questions of how urbanity 

influences dispersal and persistence of populations.   

Pea aphids are model organisms with a large number of pre-existing microsatellite 

markers in the literature (Caillaud et al. 2004, Wilson et al. 2004).  They are parthenogenic, with 

alternating clonal and sexual reproductive phases. Sexual reproduction occurs only in the fall, 

when reproductive females mate with males to produce eggs that overwinter and hatch the 

following spring (Sack and Stern 2007). Due to this parthenogenic life cycle, all aphids sampled 

in a single growing season arise through asexual reproduction. We take advantage of this life 

cycle pattern to address questions of aphid dispersal. Since no genetic information is exchanged 

via sexual reproduction within a single growing season, any changes in genetic population 
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structure must arise through dispersal and competition. By tracking changes in population 

structure across space and time we can address how urbanity influences aphid dispersal patterns 

and overall genetic diversity. We predict that if urbanity presents a significant obstacle to aphid 

dispersal, we will find significant population structure through space and time, as well as 

decreasing genetic diversity with urbanity. 

5.3 Methods 

Aphid sampling and study sites 

Five potted pea plants (Pisum sativum var. dwarf grey) were placed in urban gardens 

across the city of Ann Arbor, MI. Once a week from April 30 - August 13, 2013, all plants were 

surveyed for pea aphids (Acrythosiphon pisum). Every adult individual was typed as apterous 

(non-winged) or alateous (winged), collected, and stored in 95% ethanol. We then searched the 

plants exhaustively and destroyed all juveniles and other species of aphids. This was done to 

prevent oversampling of genetic clones, and so that any aphids sampled in the following week 

would be new migrants. Our sampling period was split evenly into 3 seasons: spring (weeks 1-6), 

summer (weeks 7-10), and fall (weeks 11-16). In addition to collections on our sentinel plants, 

we also searched adjacent vegetation for adult pea aphids in a sweep net using 30 full sweeps at 

each site, once per week.  

In total we surveyed 11 urban gardens ranging in urbanity from 3.6 – 65% urban.  We 

measured urbanity at each site by computing the % impervious surface within a 1000ft radius 

from the center of each garden. This was the maximum radius for sample site independence. 

Data on impervious surface was taken from the Ann Arbor municipal GIS database. All except 

the most urban site (To) belonged to the community garden organization Project Grow. Project 

Grow leases public and private land in the city of Ann Arbor to community gardeners. The plots 
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are split into small adjacent parcels that are managed individually by community members. 

However, all gardens adhere to strict rules regarding organic management. No synthetic 

pesticides or fertilizers are allowed. The most urban site was a private backyard garden in 

downtown Ann Arbor. This site was also under organic management.  

DNA extraction and genotyping 

DNA from whole aphids was extracted using a 10% Chelex solution following the 

methods in (Casquet et al. 2012). Samples were then subjected to multiplex PCR using 6 

microsatellite markers split into two sets. The first set included the markers: ApH 10M, AlB07M 

and AlB08M. The second set included ApH 08M, S3.43 and A1A09M. All loci were taken from 

(Caillaud et al. 2004, Wilson et al. 2004). Markers of similar size ranges were tagged with 

different colored fluorescent dyes (HEX, TET, and FAM) in order to differentiate alleles in 

chromatograms. We conducted 8ul PCR reactions including 0.04ul exTaq DNA polymerase, 

0.8ul 10X buffer, 0.9ul MgCl2, 1.2ul dNTPs, 0.8ul BSA, and1ul ¼ dilution Chelex extracted 

DNA. Reverse and forward primers for microsatellite markers were added in the following 

amounts: ApH 10M (0.6ul), AlB07M (0.3ul), AlB08M (0.3ul), ApH 08M (0.5ul), S3.43 (0.3ul), 

A1A09M (0.3ul). Finally dH20 was added to reach a total volume of 8ul per reaction. PCR 

involved 2m at 94°, followed by 40 cycles of 94° (20s), 50° (20s), and 72° (2m). Following PCR, 

samples were genotyped at the University of Michigan’s sequencing core on a 3730XL Genetic 

Analyzer using ROX 500 as a size standard.  

Alleles were called using the program GeneMarker. After the first round of multiplex 

PCR, we ran single locus PCR reactions for all loci where data was missing. Single locus 

reactions were run using the same concentrations of reagents and final reaction volume as our 

multiplex reactions except for microsatellite primers, which were added at 0.3ul per 8ul reaction 



	 122 

for all markers. Following the second round of allele calls, all individuals with >2 missing loci 

were excluded from the analysis. This process left us with N = 129 final genotyped samples. 

Data analysis 

We measured genetic diversity across all samples by calculating mean number of alleles, 

the Simpson Index, Hexp (Nei's 1978 gene diversity), and evenness across all 6 microsatellite 

loci. We tabulated all genotypes in order to determine the number of clones.  

To assess population structure, samples were the split into 3 strata: site (11 total), season 

(3), and type (2). We used AMOVA (analysis of molecular variance) to compare genetic 

variation within and between samples and also between each strata. Significance was calculated 

using randomization tests with N = 999 repeats (Excoffier et al. 1992).We visualized population 

structure for site and season using DAPC (discriminant analysis of principal components) 

(Jombart et al. 2010).  For all DAPCs we ran cross validations to choose the appropriate number 

of PCs to retain in the analysis.  

We also conducted K-means hierarchical clustering to determine the number of unique 

genetic clusters across our entire dataset regardless of sampling site and visualized results with 

DAPC. Since pea aphids should only show signatures of clonal growth during our sampling 

period, we can track the movement of these apriori genetic clusters across site and season.  

To assess the effects of urbanity, we measured genetic diversity within sites by 

calculating mean number of alleles, the Simpson Index, Hexp (Nei's 1978 gene diversity), and 

evenness across all 6 microsatellite loci per site. We ran linear regressions of each diversity 

metric as a function of % impervious surface to test for a relationship between urbanity and 

genetic diversity.  To remove potential confounding effects of space, we first tested for isolation 

by distance by regressing Bruvo’s distance (for microsatellite data with missing data) as our 
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measure of genetic distance against the Euclidean distance between the locations of each sample 

in space (Bruvo et al. 2004). This was followed by a partial mantel test to assess Pearson’s 

correlation between genetic distance and distance in impervious surface (also Euclidian) while 

controlling for actual physical distance between samples.  

5.4 Results 

We found that pea aphids sampled across an urban area in a single clonal growing season 

had significant population structure across site (AMOVA, p = 0.003) and season (p = 0.024) but 

not type (apterous versus alateous) (p = 0.190) (Fig 5.1, Fig S1). Samples fell into seven distinct 

clusters (Fig. 5.2a), three of which were present throughout the sampling time period (Fig. 5.2b-

d). Genetic diversity measured as mean Hexp, Simpson Index, and the number of alleles across 

loci per site significantly decreased with urbanity (Fig. 5.3). Evenness may increase with 

urbanity, though this relationship was only partially significant (Fig. 5.3, p = 0.06). When 

examining the distribution of genetic clusters across the sampled sites, we note that uncommon 

clusters occurred only in the least urban sites (Fig. 5.2).  

Our samples (N = 129) had no genetic clones and high allelic diversity (Table 1). Low 

within sample (AMOVA, p = 0.001) and high between sample variation (p= 0.001) are 

consistent with the clonal reproduction of pea aphids that is expected to occur throughout the 

sampled period (Fig. S1).  Our samples also displayed a significant isolation by distance 

relationship (Fig S2, p = 0.004). When distance was taken into account, there was still a 

significant relationship between genetic distance and urbanity, such that individuals from sites 

that were similar in urbanity were also more genetically similar (partial mantel test, r = 0.078 p = 

0.05).     
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Loci Alleles 1-D Hexp Evenness 

A1A09M 8 0.75 0.76 0.79 

D 16 0.80 0.81 0.62 

S343 7 0.73 0.74 0.86 

E 11 0.78 0.79 0.71 

A 16 0.50 0.50 0.38 

B 17 0.88 0.88 0.75 

mean 12.5 0.74 0.74 0.68 

 

Table 5.1. Summary of genetic diversity metrics for 6 microsatellite loci across all samples. 
Alleles = Number of observed alleles, 1-D = Simpson index, Hexp = Nei's 1978 gene diversity.  
 

 

Fig. 5.1. Population structure across time and space. DAPCs showing segregation in alleles 
for pea aphids sampled across a) time (1= spring, 2= summer, 3= fall) and b) space. Sites are 
arranged from least to most urban (cool to warm colors).   
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Fig. 5.2. Genetic clusters of pea aphid over space and time. a) DAPC showing seven distinct 
genetic clusters. b) Fractions of sampled populations in from each genetic cluster in spring, c) 
summer, and d) fall. Size of pie graphs correspond to rank from least (smallest) to  most rural 
(largest) site. Grey polygon outlines the city limits of the study site (Ann Arbor, MI). 1km scale 
bar is included for reference. Sites are labeled with names. Labels with no pie indicate no aphids 
were found or successfully genotyped at that site and season. 
 

 

Fig. 5.3. Genetic diversity decreases with urbanity. Genetic diversity measured in mean Hexp 
(Nei's 1978 gene diversity) (adjusted R2 = 0.38, p = 0.025), Simpson’s Index (adjusted R2 = 0.53, 
p = 0.0065), evenness (adjusted R2 = 0.27, p = 0.057), and the number of alleles (adjusted R2 = 
0.47, p = 0.012) across all 6 microsatellite loci per site as a function of urbanity (% impervious 
surface) in each site. All linear regressions are significant, except for evenness. 
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5.5 Discussion 

Population structure through time 

Our results are consistent with previous studies that show evidence of high genetic 

diversity in parthenogenic aphid species despite the fact that we sampled aphids strictly within 

time periods associated with their clonal reproductive phase (Barro et al. 1995, Sunnucks et al. 

1997, Sack and Stern 2007). The genetic divergence we observed occurred in a single growing 

season, suggesting that this divergence must result from either or a combination of competition 

between dominant genetic clusters and dispersal from surrounding areas not sampled in the study 

(Fig 1a). Pea aphids are specialists on legumes, and changes in population structure could 

potentially correlate with changes in crop type and abundance in the surrounding agricultural 

area as the weather warms and the growing season progresses (S R Singh and Emden 1979, Via 

1999).  

Population structure through space 

Genetic similarity across sampled sites suggests that dispersal is indeed high for pea 

aphids across the city of Ann Arbor (Fig 1b). Aphids are known to be capable of flying long-

distances, yet little is known about their dynamics across urban space (Halbert et al. 1981, Dixon 

1998). Despite evidence of high dispersal across the study area, urbanity does appear to constrain 

movement such that aphids in more urban areas are less genetically diverse and more closely 

related to individuals from sites with similar levels of urbanity regardless of distance.  

Source-sink structure 

These results imply that though dispersal occurs across the city of Ann Arbor, urbanity 

does constrain movement. Due to the clonal nature of aphids during the sample period, increases 

in genetic diversity sampled across the growing season likely resulted from dispersal of aphids 
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from surrounding agricultural areas to the sampled urban gardens. In a metapopulation 

framework, surrounding agriculture sites may be envisioned as source populations, supplying 

urban gardens within cities with long distance migrants adding genetic diversity to isolated, low 

diversity populations. Cities as a whole may represent sinks, with the harshness of the 

surrounding habitat significantly hindering both the dispersal and survival of rare genotypes that 

are sourced from surrounding agricultural areas. This would explain the decrease in genetic 

diversity with urbanity and the fact that rare genetic clusters only occurred in the least urban sites 

(Figs. 2 and 3). Future studies could sample aphids in both urban gardens within the city and 

putative sources in surrounding farmland to confirm the hypothesized source-sink population 

structure. Regardless, our results indicate that urbanity does indeed constrain the dispersal and 

population structure of aphids, organisms that are capable of very long-distance dispersal. These 

results suggest that improving the permeability of urban landscapes may be essential to insure 

the long-term survival of the biodiversity that currently persists in small, isolated urban garden 

patches.  
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APPENDIX 4 
	

Supplementary Information: 

 

Fig. S5.1. AMOVA results showing population structure. From top to bottom: variation 
within, between samples, and between site, time (spring, summer, fall), and type (apterous and 
alateous). Histograms are the results of N = 999 random permutations compared to actual results 
marked by line with diamond marker. Separate models were run for each strata.  
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Fig. S5.2. Isolation by distance. Linear regression of physical distance and genetic distance 
(Bruvo’s) between every possible pair of samples. (adjusted R2 = 0.00087, p = 0.0042) 
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CHAPTER VI 

Multiple hysteretic patterns from elementary population models 
 

Theresa Ong and John Vandermeer 

 

6.1 Abstract 

Critical transitions whereby small changes in conditions can cause large and irreversible 

changes in ecosystem states are of cause of increasing concern in ecology. Here we focus on the 

irreversibility of these transitions, formally known as hysteresis. We explore how simple 

correlations between parameters in Lotkva-Volterra equations result in a variety of complicated 

hysteretic patterns. These patterns include “unattainable” stable states that once lost may never 

be recovered. We suspect these patterns to be common in natural systems, where interactions 

between diverse assemblages are unavoidable. Thus, understanding underlying hysteretic 

structures may be necessary for rescuing lost ecosystem states and avoiding future losses.  

6.2 Introduction 

 Tipping points, also called critical transitions, are increasingly acknowledged as 

important elements of ecological systems (Scheffer 2009, Scheffer et al. 2012). They emerge in 

popular perception as potential doomsday behemoths in the context of climate change research 
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(Lenton 2011) where multiple tipping points may form a perfect doomsday storm -- e.g., Arctic 

ice melts to a point that the previous moderating albido effect is lost, while tipping atmospheric 

heat rises suddenly above the point where methane hydrate currently sequestered in permafrost 

begins runaway melting leading to a sudden drop in the Atlantic thermohaline circulation 

(Kvenvolden 1988).  Many other examples could be cited (May 1977, Scheffer 2009) 

Vandermeer et al., 2004. An associated structure that has received less attention is hysteresis, in 

which movement of a control parameter in one direction generates a tipping point that is distinct 

from a tipping point when the control parameter is moved in the opposite direction.  Thus, 

reducing rainfall in the Amazon may very well generate, at some critical threshold of rainfall, a 

dramatic switch from forest to savannah, but having undergone that switch, increasing the 

rainfall to where it had been before, will not necessarily result in regeneration of the forest 

(Hirota et al. 2011, Staver et al. 2011). 

 The importance of hysteresis is evident in many practical situations (fisheries 

management, pest management, forestry) and we suggest that it is a form worthy of 

incorporating into our toolbox of theoretical ecology.  While we commonly acknowledge a 

variety of dynamical concepts potentially involved in community structure (e.g., stable/unstable 

points and cycles, chaos, deterministic versus stochastic forces, time lags, etc.), the possibility 

that ecological communities are also strongly affected by hysteresis is less frequently 

acknowledged and, we argue, worthy of consideration.  Pursuant to this goal, the nature of such 

dynamical behavior in the elementary mathematical forms of population interactions is an 

obvious starting point.  

 It has long been known that classical models of population interactions are capable of 

generating catastrophic transitions (May 1977, Scheffer 2009), frequently presenting hysteretic 
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patterns, as has been noted in the past.  For example, the cod fishery of the North Sea has been 

reported as an example of hysteresis (De Roos and Persson 2002, Fauchald 2010). Codfish 

(Gadus morhua) are predators on herring (Clupea harengus), although the latter is a predator on 

the larvae and eggs of the former.  It is thought that increasing the population density of herring 

causes an eventual tipping point where the predation of herring on early stages of codfish causes 

herring populations to dominate the ecosystem. Reversal of that population density need not 

result in revitalization of the cod industry because of an evident hysteretic effect.  We can see 

this structure if we simply model the codfish/herring system as one of competition (larvae of 

codfish and herring overlap considerably in their food choices), where fishing pressure is 

modeled as reducing the effective carrying capacity of the codfish.  Simple Lotka-Volterra 

competition equations produce an evident hysteretic effect (Fig. 6.1). 

  

Fig. 6.1 Construction of hysteretic zone in classic competition, using the carrying capacity 
of codfish as a tuning parameter.  (a) classic isocline analysis of competition between two 
species with an unstable (indeterminate) equilibrium. (b) resulting tipping point graph from 
changing the carrying capacity of species 2 (codfish).  

 In more general ecological applications the idea is not unusual, effectively recognized 

since the recognition of alternative stable equilibria in, for example, the Gaussian concept of 

indeterminate competition or many other classical ecological applications (May 1977).  We here 
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extend some of the insights of the past (particularly, May 1977) and examine the basic ecological 

process of consumption from the point of view of the category of tipping points that carry with 

them associated hysteresis. We demonstrate that the hysteretic patterns of a common form of the 

Lotka-Volterra predator prey equations can be diverse and complicated.   

6.3 Theoretical Approach 

 We begin with the classic equations and then add two popular nonlinearities. The key 

nonlinearities normally added are 1) density dependence on the prey (resource, host) element and 

2) a functional response (satiation) on the predatory element, either analytically or with simple 

graphical reasoning as pioneered by Rosenzweig and MacArthur (1963). Adding density 

dependence to the prey, the resultant equations are: 

      1a 

       1b 

The classic picture in phase space is illustrated in Figure 6.2. 

 

dV
dt

= rV 1−V( )− αVP
1+ βV

dP
dt

= δVP
1+ βV

−mP
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Fig. 6.2 Classic phase space representation of a predator/prey situation, from system 1,  
illustrating the two zero growth isoclines. The placement of the predator isocline stipulates which 
of the three outcomes results.   

 Relaxing the assumption that the predator is limited only by its prey (i.e., allowing for 

there to be density dependent control on the predator as well as the prey), several authors have 

analyzed the more complicated possibilities that may emerge (Noy-Meir 1975, Vandermeer and 

King 2010). For example, adding a carrying capacity to the predator transforms system 2 into: 

      2a 

      2b 

with zero growth isoclines: 

       3a
 

dV
dt

= rV 1−V( )− αVP
1+ βV

dP
dt

= δVP
1+ βV

1− P
k

⎛
⎝⎜

⎞
⎠⎟ −mP

P =
r 1−V( ) 1+ βV( )

α
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      3b
 

Here, as proposed qualitatively by Noy-Meir in 1975 and Rosenzweig and MacArthur in 1963, if 

the predator has an independent source of control, this places a cap on the predator isocline and 

creates conditions for alternative equilibrium points, including bifurcation patterns that suggest 

the system may respond in a critical transition fashion to a variety of parameter manipulations, as 

demonstrated in Figure 6.3.  Most notable is the zone of hysteresis, suggesting different meta-

behavior of the system as the parameter is varied (indicated by dashed arrows).  If the predator 

carrying capacity is high (say around 7 in Figure 6.2), the equilibrium of the prey is low.  As we 

reduce the carrying capacity of the predator, the equilibrium of the prey remains relatively low, 

until we decrease the carrying capacity to the critical point (about 4.6 in Figure 6.2a), and the 

prey equilibrium density jumps up dramatically.  Reversing the tuning of k, the prey equilibrium 

begins to decline, but reaches a critical point at a value of k that is larger than the original critical 

point, thus creating a zone of hysteresis, within which alternative stable situations coexist.  

 

P =
k δV − βmV −m( )

δV
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Fig. 6.3 Changing upper-limited predator isocline in (b), illustrating tipping point behavior 
and zone of hysteresis in (a).  Dashed arrows in a indicate distinct behavior associated with 
reducing k from high to low versus increasing k from low to high. Shaded area is zone of 
hysteresis. 

 The equilibrium points are given as the roots to the equation, 

 

or 

 

which has roots λ1, λ2, and λ3 (in order of size).  The points of critical transition are then [λ3 > λ1 

=  λ2] and [λ1 < λ2 =  λ3], as illustrated in panels 2 and 4 of Figure 3b. 

 

r 1−V( ) 1+ βV( )
α

=
k δV − βmV −m( )

δV

αkm+ rδ −αkδ +αkβm( )V + rδ β −1( )V 2 − rδβV 3 = 0
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6.4 Results  

 In reality it is unlikely that effects of an environmental change will be restricted to a 

single parameter (as in Figures 6.1 and 6.3, where the carrying capacity of the predator is the 

only change resulting from change in a postulated environmental driver).  Most frequently 

parameters are likely to change in a correlated fashion.   In particular, we focus on the 

simultaneous transformation of the predator attack rate (α) and the predator carrying capacity (k), 

a combination that generates a rich diversity of critical transition behaviors.  While other 

parameters are likely to exhibit correlated changes also, our intent in this article is simply to 

illustrate the qualitatively rich hysteretic behavior of this elementary pair of equations. 

 In Figure 6.4 we illustrate the situation in which the variation in k and α is such that they 

are positively correlated.  Qualitatively, the tipping point behavior is identical to the previous 

example (Fig. 6.3), although the details are distinct (note that both isoclines change along with 

simultaneous changes in k and α.  

   

Fig. 6.4  Expected pattern of critical transitions and hysteretic zone when predator attack 
rate (α) and carrying capacity (k) are positively correlated. a) Plot of variable α against 
variable k for the values used in the calculations.  b) Four exemplary isocline arrangements as k 
and α are varied. c) Resulting critical transition and hysteretic zone (shaded) for the system 
(qualitatively the same as Figure 2). 
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 In Figure 6.5 we illustrate four other potential correlations in the simultaneous response 

of k and α to some environmental driver. Note how the patterns of hysteresis can become quite 

complicated.  In particular, in Figure 6.5a and b we show the mirror results of an environmental 

change that changes k and α proportionally (linearly) (Fig. 6.5a is a repeat of Fig. 6.4).  In Figure 

6.5c the relationship between α and k is somewhat more complicated, but the resulting hysteretic 

zones can be easily predicted from the hysteretic patterns of Figure 6.5a and b separately.  Yet 

the pattern itself suggests the existence of a complicated relationship between the tuning variable 

and the resulting equilibrium points. Sudden loss of the prey population is eventually replaced 

with sudden gain, even as the tuning parameter is changed in the same direction.  For example, if 

the classic enrichment approach were to be applied to a predator destined to be a biological 

control agent, initially we might imagine an increase in both k and α as the enrichment program 

favored many aspects of the predator’s niche. However, it is conceivable that as the program 

moves forward, the connection between the carrying capacity and the consumption efficiency 

may break down.  So if the initial arrangement stipulates k = α, we can imagine the α decreasing 

as the consumption efficiency (β) rises, or k = (α - αβ)α, whence the hysteresis pattern of Figure 

6.5c emerges.  The prey item thus would go from very high (which, if a potential pest species, 

for example, would be negative) to virtual extinction in response to the enrichment program.  Yet 

further enrichment would surprisingly produce yet again a burgeoning prey population.  At any 

time reversing course would result in tipping points again, but at relatively unpredictable points 

in the enrichment program. 

 The example in Figure 6.5d presents a qualitatively distinct picture, in which a locus of 

stable points may be unreachable. Once the system is at the lower equilibrium point, there is no 
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way to reach the stable locus through the tuning parameter.  If the system starts within the stable 

set it will remain there, but only through a narrow range of tuning parameter values.  Once it 

reaches a tipping point, the prey population descends to almost zero and is unable to reach the 

stable situation ever again.  The conservation implications here are evident.  If the prey species is 

of conservation concern, and efforts are made to either decrease or increase the predatory 

influence on it, the result could be a critical transition to a very low population density, which 

may become stagnated at that point no matter what future manipulations may be undertaken. 

 In Figure 5e we illustrate what is effectively a combination of the situations in Figure 

6.5c and d.  Again, there is an “unattainable” locus of equilibrium points.  But here we have three 

distinct hysteretic zones, from very high prey at one end of the tuning parameter to very high at 

the other end, with two hysteretic zones in between, but also including a hysteretic zone at the 

locus of the “unattainable” points.  If, for whatever reason, the intermediate density is the desired 

one, as in the example in Figure 6.5d, it could easily be lost to the larger densities at either low or 

high tuning parameter values, never to return again because of the nature of the intermediate 

hysteretic zone. 
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Fig. 6.5 A menagerie of hysteretic patterns. Examples of (a-b) linear, parabolic (c-d) and (e) 
polynomial correlations between the tuning parameter α and k, and resulting hysteretic patterns. 
Equations for correlations between α and k are: (a) , (b) , (c) 

 , (d) , (e) 
, and critical transition points for 

hysteretic regions are: αc = (a) 4.81, 5.31, (b) 8.80, 9.58, (c) 4.80, 4.93, 6.45, 6.55, (d) 5.10, 5.92, 
and (e) 4.49, 4.51, 5.35, 5.67, 6.47, 6.48. Stable equilibrium points plotted in orange and blue, 
along with unstable green points (dotted line). Red shaded region is zone of hysteresis. 

 

k = 0.2α k = - 0.2α + 2.4

k = -(α  - 5.6)2  + 1.6 k = α − 5.6( )2 + 0.85
k = -5.3335α 4 +117.331α 3 −  962.671α 2 + 3490.77α −  4718
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6.5 Discussion   

The literature on tipping points in ecology is very large (see reviews in Schröder et al. 

2005, Scheffer 2009, Scheffer et al. 2012), but the associated issue of hysteresis is frequently 

dealt with only in passing.  Yet, from both a basic structural phenomenon and a practical 

standpoint it could be an important force. Especially in any form of environmental management 

it is perhaps disheartening to learn that facing an error in a management decision may not be 

easily reversible.  Historical examples abound.  For example, a change in fishing technology that 

increases harvesting of the top predator, cod, can switch the ecosystem to one dominated by 

herring (Fauchald 2010), but a subsequent reversal of that change will not necessarily result in 

the reversion to a healthy cod population.  A decision to eliminate shade trees from a coffee 

plantation encourages weedy growth and the inevitable competition from weeds, yet returning to 

shade is impossible since those weeds compete with newly planted tree seedlings (Perfecto and 

Vandermeer 2015). Beyond management considerations, tipping points are well known to 

contextualize larger ecosystems, at least theoretically (Vandermeer and Yodzis 1999, Schreiber 

2003, Scheffer et al. 2012). Since it is frequently the case that tipping points carry with them 

hysteresis, it would be prudent to ask what effect such behavior will have when embedded in 

larger systems (Giller et al. 1997, Merton 1998, van Nes and Scheffer 2004). 

We have shown that complex hysteretic patterns very easily emerge from simple 

correlations between parameters in classic population models. These complexities are likely the 

rule, not exception, for larger systems, where higher order interactions much exceeding the 

simple correlations explored here, abound. In basic hysteresis, changes to the state of an 

ecosystem are merely difficult to reverse; decreases in global precipitation may transform forests 

into savannahs, and if the rain were to suddenly increase, forests may still not return for many 
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years (Staver et al. 2011). But if the hysteretic patterns are such that the forest state is 

“unattainable”, reversion to forests may be impossible once a transition to savannahs has 

occurred. Yet all is not lost. Reversion to the pre-transition state is indeed impossible if 

management focuses only on the drivers of change (in our last example, precipitation or for 

management purposes, irrigation). It is however, conceivable to reach the “unattainable” state 

through an external perturbation that shifts the ecosystem state itself. In the last example, 

precipitation may drive changes in the ecosystem state, but rather than adding water to the 

system, managers could instead restore forest plants to artificially shift the ecosystem state while 

precipitation remains constant. Yet restoring the forest would in theory be unsuccessful if the 

system was not situated at the precipitation level where the “unattainable” forest state could be 

achieved by a vertical shift in the ecosystem state. In such cases, successful reversion to ideal 

states depends strongly on how well the underlying hysteretic nature of the system is understood. 

Since complex hysteretic patterns are likely commonplace in nature, we suggest that studies 

focused on characterizing patterns of hysteresis are essential for both rescuing systems that have 

transitioned to undesirable states and preventing unwanted transitions from occurring in the first 

place.  

6.6 Methods Summary 

To observe hysteretic patterns resulting from Eq. 2a-b, we analytically calculated three 

unique equilibrium points from the intersection of predator and prey isoclines. Equilibrium 

points were plotted as a function of driver variables α and k using the variety of theoretical 

correlations between the two parameters in Figure 5. Analytical solutions for critical points were 

impossible because of the higher order nature of equilibrium point equations, thus critical points 
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in Figure 5 were determined using a numerical approach, testing for equality in equilibrium 

points as a function of 0.01 intervals changes in the driver variable α.  

Acknowledgements 

We would like to thank Gyuri Barabas for help with numerical approximations of critical 

transition points. Thank you to the Ecology and Evolutionary Biology Department and the 

Rackham Graduate School at the University of Michigan for funding. 

6.7 Literature Cited 

De Roos, A. M., and L. Persson. 2002. Size-dependent life-history traits promote catastrophic 
collapses of top predators. Proceedings of the National Academy of Sciences 99:12907–12912. 

Fauchald, P. 2010. Predator–prey reversal: A possible mechanism for ecosystem hysteresis in the 
North Sea? Ecology 91:2191–2197. 

Giller, K. E., M. H. Beare, P. Lavelle, A.-M. N. Izac, and M. J. Swift. 1997. Agricultural 
intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology 6:3–16. 

Hirota, M., M. Holmgren, E. H. Van Nes, and M. Scheffer. 2011. Global resilience of tropical 
forest and savanna to critical transitions. Science 334:232–235. 

Kvenvolden, K. A. 1988. Methane hydrate—a major reservoir of carbon in the shallow 
geosphere? Chemical geology 71:41–51. 

Lenton, T. M. 2011. Early warning of climate tipping points. Nature Climate Change 1:201–209. 

May, R. M. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. 
Nature 269:471–477. 

Merton, R. 1998. Monitoring community hysteresis using spectral shift analysis and the red-edge 
vegetation stress index. Pages 12–16. 

van Nes, E. H., and M. Scheffer. 2004. Large Species Shifts Triggered by Small Forces. The 
American Naturalist 164:255–266. 

Noy-Meir, I. 1975. Stability of Grazing Systems: An Application of Predator-Prey Graphs. 
Journal of Ecology 63:459–481. 

Perfecto, I., and J. Vandermeer. 2015. Coffee Agroecology: A new approach to understanding 
agricultural biodiversity, ecosystem services and sustainable development. Routledge. 



	 147 

Rosenzweig, M. L., and R. H. MacArthur. 1963. Graphical Representation and Stability 
Conditions of Predator-Prey Interactions. The American Naturalist 97:209–223. 

Scheffer, M. 2009. Critical transitions in nature and society. Princeton University Press. 

Scheffer, M., S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. van de 
Koppel, I. A. van de Leemput, S. A. Levin, E. H. van Nes, M. Pascual, and J. Vandermeer. 2012. 
Anticipating Critical Transitions. Science 338:344–348. 

Schreiber, S. J. 2003. Allee effects, extinctions, and chaotic transients in simple population 
models. Theoretical Population Biology 64:201–209. 

Schröder, A., L. Persson, and A. M. De Roos. 2005. Direct experimental evidence for alternative 
stable states: a review. Oikos 110:3–19. 

Staver, A. C., S. Archibald, and S. A. Levin. 2011. The global extent and determinants of 
savanna and forest as alternative biome states. Science 334:230–232. 

Vandermeer, J., and A. King. 2010. Consequential classes of resources: Subtle global bifurcation 
with dramatic ecological consequences in a simple population model. Journal of Theoretical 
Biology 263:237–241. 

Vandermeer, J., and P. Yodzis. 1999. Basin Boundary Collision as a Model of Discontinuous 
Change in Ecosystems. Ecology 80:1817–1827. 



	 148 

CHAPTER VII 
  

Past management regimes constrain future returns in agriculture: an 

experimental demonstration of complex hysteretic patterns 
 

Theresa Wei Ying Ong & John Vandermeer 

7.1 Abstract 

Hysteresis is a mathematical phenomenon that occurs when transformation of a system as 

a parameter changes in one direction does not produce the same effect when the parameter 

changes in the reverse direction.  This is a common phenomenon in soils, where nutrient uptake 

has long been known to exhibit sensitivity to initial conditions 1–3. Yet despite this deep 

knowledge base, the question of how hysteresis impacts the success of agriculture practices with 

different historical land-use has not been addressed. Here we show empirical evidence that 

transitions in agricultural management can result in complex hysteretic patterns including some 

with hidden stable states that qualitatively resemble those that emerge when parameters of a 

well-known model of nutrient-soil feedbacks 4 are correlated. Soil beds were slowly transitioned 

from conventional to organic regimes by manipulating the proportion of chemical (CaNO3) to 

organic (earthworm castings) nitrogen sources while measuring effects on nitrogen flux, water 
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retention and yield quality. Build up of organic matter and nutrients caused the transition from a 

conventional to organic agriculture regime to be sharp and irreversible. This experimentally 

derived exhibition of hysteresis could explain why less intensive agriculture models are difficult 

to maintain with little financial support. 

7.2 Main Text 

Hysteresis is often discussed within the context of critical transitions, with a focus on the 

sudden and often dramatic changes between two alternative stable states: forest and savannah, 

oligotrophic and eutrophic lakes, sustainable fisheries and collapse, to name a few 5–8. Though it 

is a necessary component of critical transitions, hysteresis, where the state of the system depends 

not only on current but also past drivers of the system, receives far less attention (Ong and 

Vandermeer, in prep). Here we argue that when the system is a human-managed system, in 

particular agriculture, hysteresis may have far-reaching policy implications. Management styles 

can be thought of as emanating from particular input variables.  For example, tropical 

agroforestry systems tend to be more common when soil erosion is a recognized factor of 

production, suggesting a relationship in which tree density on a farm is a function of soil erosion 

tendency 9. Such a relationship may be secular and monotonic.  However, strong nonlinearities 

may also be involved, sometimes to the extreme of generating parameter regimes (e.g., a range 

of soil erosion tendencies) in which alternative “syndromes” (high tree densities versus low tree 

densities) emerge 10.  This region is referred to as a hysteretic zone, and its edges are normally 

associated with critical transitions 8,11.    

Agriculture is a particularly appropriate study system for this effect since soils are well 

known for their propensity to undergo hysteresis 1–3. Here we re-examine a classic model of 

sediment-nutrient feedbacks known as the Carpenter et al. model (Fig 7.1) 4. The model was 
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originally used to describe phosphorous dynamics in lakes but can be generalized for terrestrial 

systems and other nutrients 4,12,13. The flux of a nutrient (N) is the difference between source and 

sink where the source is given as: 

 

   (1)
 

 

where N is the nutrient of interest, i is the input rate, r is the maximum recycling rate of N in the 

soil, q describes the shape of the source function following a typical Mechalis-Menton form, 

where m is the half saturation constant.  The sink is taken as a simple proportionality, namely 

 

sink = sN   (2) 

 

whence the overall flux is  

 

sink  (3) 

 

In agriculture, loss processes include nutrient uptake by plants or consumers and runoff. 

Sources include microorganisms that decompose soil organic matter and fix atmospheric 

nitrogen. 

   

source = i+ rN q

mq + Nq

dN
dt

= source−
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Fig. 7.1 Carpenter et al. model of nutrient-soil hysteresis. (a) Phase diagram of nutrient flux 
(ΔN) as a function of nutrient density (N). Difference in source (black line) and sink (grey line) 
functions equal nutrient flux. Rate of nutrient inputs, i and max recycling rate of nutrients within 
soils r, defines the sigmoid shaped source function. The sink function is a linear term defined by 
the loss rate of nutrients from the system, s. (b) Changes to source and sink functions that occur 
with increases in r parameter. A single equilibrium point bifurcates into three, and collapses back 
into one. Stable (blue and orange solid points) and unstable (open green) equilbria are plotted 
where source and sink functions overlap. Forward and reverse trajectories exhibiting hysteresis 
displayed as dashed arrows. (c) Graph displaying hysteresis resulting from changes in the 
presence and values of equilibria as r increases. Pink and light grey lines connect source-sink 
curves in (b) to their corresponding positions in the bifurcation graph of (c). Large shaded region 
marks zone of hysteresis. 
 

We can envision nutrient flux (dN/dt) as a function of nutrient density by plotting source 

and sink components of (1) as separate functions of nutrient density (Fig. 7.1a). When nutrient 

sources are larger than sinks, nutrient flux increases. When sinks are larger than sources, nutrient 

flux decreases. Where sources are equal to sinks, there is no net change in nutrient flux (Fig. 

7.1a). Carpenter et al. analyzed the model for q ≥ 2 (sigmoid source function) since this 
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formulation has the potential for three equilibrium points, two stable (solid circles) where slight 

perturbations lead back to the equilibrium points, and one unstable (open circle) where 

perturbations move the system away from the equilibrium point (Fig 1a) 4. A sigmoid source 

function would imply that soils act as a delayed nutrient source, requiring a minimum density of 

nutrients absorbed before becoming a net source of nutrients with a maximum of r. This 

maximum recycling rate likely depends on the amount of soil organic matter in the system, the 

main source of nutrients. If soils have a low r, the source function crosses the sink function at 

one stable equilibrium point (blue solid circle)  (Fig 7.1b). As r increases, the source function 

crosses the sink function at two additional points—an unstable (green open circle) and a stable 

equilibrium point (orange solid circle) emerge (Fig 7.1b). If we plot equilibrium values of 

nutrient flux as a function of r, we replicate Carpenter et al.’s original conclusion that hysteresis 

with alternative stable states can emerge when the maximum rate at which soils recycle nutrients 

increases (Fig. 7.1c). Varying the rate at which nutrients are lost s while keeping r constant can 

also result in hysteresis (Fig S1), as can many other parameters in the model. 

Carpenter et al. showed that hysteresis could result from simple nutrient feedbacks in lake 

sediments, yet their model considered hysteresis from the perspective of each parameter in 

isolation. We suggest that in agriculture, parameters that drive nutrient flux (ie. nutrient loss and 

maximum recycling rates) are likely correlated with one another and also with management 

intensity. For example, transitions between conventional to organic agriculture practices usually 

involve an increase in soil organic matter. Soils rich in organic matter are expected to recycle 

nutrients at higher rates.  However, nutrient loss rates may also be affected. Loss rates may first 

decrease as soils improve, but may also increase at some point when soils reach their maximum 
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capacity for recycling nutrients. Taking into account such correlated effects, we modify the 

Carpenter et al. model as: 

 

   (4) 

 

It is evident that depending on the nature of the function f(r), a variety of hysteretic patterns are 

possible. For example, if we arbitrarily allow f to be periodic, the sort of complications illustrated 

in Figure 2 are possible. (Fig. 2).  

    

Fig 7.2 Consequences of correlations between max recycling rate r,  and loss rate, s. (a) Sine 
function relationship between r and s.  (b) Resulting hysteretic patterns that occur for stable (blue 
and orange) and unstable (green) equilibria, shown as a function of r. (c) Corresponding source-
sink functions for nutrient flux. Stable (blue and orange solid points) and unstable (open green) 

dN
dt

= i− f (r)N + rN q

mq + Nq
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equilbria are plotted where source and sink functions overlap. Pink lines connect points in (a), 
(b), and (c) with the same r values. 
 

Applying a sine function to the relationship between r and s we can represent a variety of 

correlation patterns and ranges of each parameter that may be relevant for a given system (Fig. 

7.2a). The effects of positive, negative or parabolic relationships between r and s for nutrient flux 

can be observed separately by constraining the bifurcation graph to the parameter range of 

interest (Fig. 7.2b). In contrast to the original Carpenter et al. model, since r and s are related, 

source and sink functions change simultaneously (Fig 7.2c). This results in a variety of complex 

hysteretic patterns including double hysteretic loops and hidden stable states (Fig. 7.2b).  Notice 

that when increasing r from 30 to 35, two equilibrium points (green and blue) would never be 

realized since the system initializes on one stable point and there is no smooth transition to the 

alternative stable point below (Fig. 7.2b). However, if the system were perturbed at that specific 

parameter range by artificially decreasing nutrient input rates for instance, the lower equilibrium 

state could theoretically be achieved. These patterns resemble those described by Ong and 

Vandermeer in a recent theoretical study where correlating parameters in simple population 

models revealed a plethora of similarly complex hysteretic patterns (in preparation). Thus, if loss 

and recycling rates are related, changes to soil management may lead to complicated hysteretic 

patterns for nutrient flux.  

To test for the existence of these patterns we conducted a greenhouse experiment where 

the same beds of soil were exposed to a weekly fertilizer regimen that was systematically 

transitioned from 100% organic (earthworm castings) to 100% synthetic sources (CaNO3) and 

back over the course of several weeks. Forty corn (Zea mays) seeds were sown in each bed at the 

beginning of every week and harvested before the next fertilizer regimen began. Yield in dry 
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weight, germination rates, NO2, NO3, H20 flux and disease incidence were recorded every week. 

The same process was conducted for soils beginning initially with 100% synthetic fertilizers 

(Methods summary). From now on we use the term industrialization to refer to the relative 

amount of synthetic to organic fertilizer in our experiment. Though total nitrogen input rates 

were kept constant, transitions from high to low industrialization resulted in different levels of 

nitrogen flux (NO3) than when the same beds were transitioned from low to high 

industrialization. We assumed that non-overlapping forward and reverse trajectories represent 

alternative stable states in our experiment. According to theory two stable points must be 

separated by a single unstable point. For each empirical result where hysteresis is apparent we 

can draw a theoretical unstable state (dashed line) between the stable ones  (solid colored arrows). 

The unstable state is like the top ridge of a mountaintop such that if a ball (current state of the 

system) were placed on this ridge it would stay balanced until a slight perturbation pushes the 

ball into one of the valleys below on either side of the mountain (alternative stable states) (Fig 

7.3c). We tested for the presence of unstable states by perturbing the system at intermediate 

industrialization levels to test for sudden jumps between alternative stable states. When we 

reached intermediate industrialization levels in our experiment, soils from a subset of our 

forward and reverse replicates were mixed at a 1:1, 1:2, or 2:1 ratio in order to forcefully move 

the state of the system to lie in between the two alternative states. We then perturb the system 

with a ±¼ change to industrialization and observe effects on state variables. Changes to the 

direction and magnitude of state variables allow us to map theoretical unstable state curves that 

are consistent with empirical results and dynamic rules (Fig 7.3d-f). In some cases hidden stable 

states best explain empirical results (Fig 7.3d-e). 
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Fig. 7.3. Experimentally derived hysteresis for NO3
 flux. Forward (orange) and reverse (blue) 

trajectories for NO3 flux as industrialization is experimentally driven from 100% organic to 
100% synthetic nitrogen inputs and back. (a) Experimental results plotted as means (arrowheads) 
and 95% bootstrapped confidence intervals (shaded regions). At mid-industrialization levels, 
forward and reverse soil beds were mixed at 1:2, 1:1: and 2:1 ratios (open circles) then subjected 
to a ±¼ perturbation to the normal full change to industrialization, average NO3 flux across n = 5 
replicates for each unique perturbation is plotted as solid black points and connected to their 
initial conditions (open circles) with black lines. (b) Deduced alternative stable states (black 
curves) from overlap in confidence intervals of (a) plotted over experimental results (orange and 
blue arrows) with confidence removed for clarity. (c) Alternative and hidden stable states (solid 
lines), unstable state (dashed line) deduced from vector field (arrows) and dynamic rule that a 
single unstable point must be surrounded by two stable points. (d) Results (solid points) of 
experimental perturbation at 1:2 ratio of forward and reverse transitions at mid industrialization 
levels. (e) Results of experimental perturbation at 1:1 ratio and (f) 2:1 ratio. For panels (d-f) 
black lines connect initial conditions (open circle), ±¼ perturbation in industrialization and their 
final NO3 results (solid points) overlaid on top of experimental results for forward and reverse 
transitions (blue and orange arrows and corresponding confidence intervals) and deduced 
hysteretic structure (grey curves). 
 

We found that changes to management drove hysteresis in all state variables measured: 

NO3, NO2, H2O flux, germination, disease incidence and dry weight yields (Fig 7.3-7.4). For 
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some state variables, hysteretic patterns were very complex (Fig. 7.4). Empirical results indicate 

the presence of multiple hysteretic loops (Figs. 7.2 and 7.4). In the case of water flux, 

perturbations to the system when soils from mid-industrialization forward and reverse treatments 

were mixed resulted in a jump to a high, possibly hidden stable state (Fig 7.4b). These results are 

consistent with patterns from theoretical work where driver parameters are related (Ong and 

Vandermeer, in prep).  

An old, but reoccurring question is whether the unpredictability of nature sources from 

stochastic or deterministic effects14–17. Is there such a thing as essential stochasticity or is nature 

simply an accumulation of complicated relationships we have yet to unravel? Both are likely to 

play some part, but here we show evidence that complex hysteretic loops can arise from simple 

relationships between drivers of ecosystem state change. We expect this to be relevant for all 

systems where driver variables are interrelated, which is to say all natural systems. Difficulty in 

predicting changes in ecosystem states may arise not only from stochasticity15 or chaos18 but also 

the presence of complicated hysteretic patterns. For agriculture specifically, hysteresis implies 

that transitions from hi to low-industrialization will result in worse or better conditions than 

transitions from low to high-industrialization depending on the ecosystem state of interest and 

the transition period (Figs. 7.3 and 7.4). 

In some cases, government incentives may be necessary to support transitions to less 

industrial states if past management physically constrains potential for economic success. 
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Fig. 7.4. Complicated hysteretic patterns across several experimentally measured state 
variables.  (a) Experimental results for state variables NO2 flux, H2O flux, number of seeds 
failing to germinate, disease incidence and dry weight yields (g), as a function of 
industrialization level when transitioning forwards from low to high industrialization (orange) 
and backwards from high to low industrialization (blue). 95% bootstrapped confidence intervals 
(n = 999 replicates) plotted in corresponding colors. Initial conditions for treatments taken at 
mid-industrialization levels and mixed at 1:2, 1:1, and 2:1 ratios of forward and reverse 
transitions (open circles) connected via solid black lines to results of ±¼ (from one whole single 
step) perturbations in industrialization for various state variables (solid black points).  (b) 
Deduced hysteretic structures including stable states (solid grey lines) and unstable states 
(dashed grey lines) overlaid over empirical results (blue and orange arrows and corresponding 
confidence intervals). We overlay empirical results to show how alternative stable states were 
deduced from overlap in confidence intervals from empirical results. (c) Vector field (black 
arrows), empirical points perturbed at mid-industrialization levels, initial conditions (open 
circles) and results of perturbations (solid points) showing how complete hysteretic structures 
(grey lines) including unstable states (dashed grey lines) were deduced.  
 

   a        b           c 
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7.3 Methods Summary 

Model analysis 

To graph plots of hysteresis for the original and modified Carpenter et al. models, we 

calculated equilibria from the intersection of the source (1) and sink  (2) curves. These equilibria 

were plotted as a function of r, with s held constant or allowed to vary in a correlated fashion 

with r as described in the text.   

Experimental set up and measurement of state variables 

To test for hysteresis we set up a greenhouse experiment transitioning beds of potting soil 

from organic to synthetic fertilizer regimes. To remove the confounding effects of initial 

conditions, we began the experiment with n = 20 beds fertilized with 100% organic nitrogen 

inputs using earthworm castings (1-0-0) supplied at 1488g. Another n = 20 beds of soil were 

fertilized with 100% synthetic nitrogen inputs using CaNO3 (15.5-0-0) supplied at 0.32g. Rates 

of nitrogen application were calculated so that the total amount of nitrogen supplied would be the 

same regardless of synthetic or organic nature. Every bed was sown with 40 seeds of Zea mays, 

fertilized, and left to germinate and grow for one week. After one week, the number of seeds that 

failed to germinate and the incidence of diseased seedlings were tabulated. Each bed of soil was 

then irrigated with 1L of dH20, and all leached water collected and measured. This water 

exudate was immediately used to measure NO3 and NO2 with simple strip tests. All seedlings and 

seeds were then extracted from beds of soil, dried and weighed. Soil was then returned to beds 

and planted with 40 new Zea mays seeds.  

Transition regimen 

Every week, beds of soils were transitioned to a new fertilizer regime, + 25% organic for 

beds that began 100% synthetic or -25% organic for beds that began 100% organic until 4 weeks 
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had past and beds reached 100% organic and 100% synthetic. At this point, beds were 

transitioned back to their original conditions over the course of another 4 weeks to 100% 

synthetic and 100% organic inputs.   

Testing for unstable points 

To artificially alter the ecosystem state at intermediate industrialization levels, we waited 

until soil beds reached 50% organic and 50% synthetic fertilizer inputs during the first round of 

the experiment, then mixed 9 beds that began with 100% synthetic fertilizer and 9 beds that 

began with 100% organic fertilizer and reallocated them to beds at ratios of 1:1 (n = 6), 1:2 (n = 

6), and 2:1 (n = 6). Beds were immediately sown with 40 new Zea mays seeds and then half of 

the beds subjected to a +¼ of a normal full increase, and the other half a -¼ of a normal full 

decrease in industrialization, then measured as usual one week following the perturbation. Beds 

used for testing unstable points were retired after this process. The same process was repeated for 

12 additional beds during the second phase of the experiment when beds reached 50% organic 

and synthetic on their way back towards their initial conditions.  Each unique treatment (1:1 ratio 

and -¼ perturbation, 1:2 ratio and -¼ perturbation, 2:1 ratio and -¼ perturbation, 1:1 ratio and 

+¼ perturbation, 1:2 ratio and +¼ perturbation, 2:1 ratio and +¼ perturbation) had 5 total 

replicates.  

Data analysis 

Averages of state variables were calculated across all beds with the same level of 

industrialization and moving in the same direction (forward towards more industrialization or 

backwards towards less industrialization). Data was pooled across beds that began with 100% 

synthetic and 100% organic inputs to remove the effects of initial conditions. We calculated 

bootstrap confidence intervals using n = 999 replicates for each industrialization level (1-5) and 
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transition direction (forwards or backwards). Averages of mid-industrialization level 

perturbations are plotted over regular forward and reverse trajectories.  Hysteresis is significant 

when forward and reverse confidence intervals do not overlap in their confidence intervals. We 

compared overlap in confidence intervals and mean point values of beds perturbed at mid-

industrialization levels to reconstruct putative unstable curves.  

 

Acknowledgements 

Thank you to Azucena Lucatero and Damie Pak for assistance gathering and inputting 

data. The Department of Ecology and Evolutionary Biology and the Rackham Graduate School 

of the University of Michigan provided funding. 

 

7.4 Literature Cited 

1. Li, J. et al. Asymmetric responses of soil heterotrophic respiration to rising and 
decreasing temperatures. Soil Biol. Biochem. 106, 18–27 (2017). 

2. Huang, W., Yu, H. & Weber Jr., W. J. Hysteresis in the sorption and desorption of 
hydrophobic organic contaminants by soils and sediments: 1. A comparative analysis of 
experimental protocols. J. Contam. Hydrol. 31, 129–148 (1998). 

3. Groffman, P. M. & Tiedje, J. M. Denitrification Hysteresis During Wetting and Drying 
Cycles in Soil. Soil Sci. Soc. Am. J. 52, 1626–1629 (1988). 

4. Carpenter, S. R., Ludwig, D. & Brock, W. A. Management of eutrophication for lakes 
subject to potentially irreversible change. Ecol. Appl. 9, 751–771 (1999). 

5. Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of 
savanna and forest as alternative biome states. Science 334, 230–232 (2011). 

6. Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical 
forest and savanna to critical transitions. Science 334, 232–235 (2011). 

7. Petrie, B., Frank, K. T., Shackell, N. L. & Legget, W. C. Structure and stability in 
exploited marine fish communities: quantifying critical transitions. Fish. Oceanogr. 18, 
83–101 (2009). 



	 162 

8. Scheffer, M. Critical transitions in nature and society. (Princeton University Press, 2009). 

9. Sanchez, P. A. in Agroforestry: Science, policy and practice 5–55 (Springer, 1995). 

10. Vandermeer, J. Syndromes of Production: an Emergent Property of Simple 
Agroecosystem Dynamics. J. Environ. Manage. 51, 59–72 (1997). 

11. Scheffer, M. et al. Anticipating Critical Transitions. Science 338, 344–348 (2012). 

12. van Nes, E. H. & Scheffer, M. Implications of Spatial Heterogeneity for Catastrophic 
Regime Shifts in Ecosystems. Ecology 86, 1797–1807 (2005). 

13. Scheffer, M., Brock, W. & Westley, F. Socioeconomic Mechanisms Preventing Optimum 
Use of Ecosystem Services: An Interdisciplinary Theoretical Analysis. Ecosystems 3, 
451–471 (2000). 

14. Chase, J. M. & Leibold, M. A. Ecological niches: linking classical and contemporary 
approaches. (University of Chicago Press, 2003). 

15. Hubbell, S. The unified theory of biogeography and biodiversity. (2001). 

16. Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from 
stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2351–
2363 (2011). 

17. Desharnais, R. A. et al. Experimental support of the scaling rule for demographic 
stochasticity. Ecol. Lett. 9, 537–547 (2006). 

18. Hastings, A. & Powell, T. Chaos in a Three-Species Food Chain. Ecology 72, 896–903 
(1991). 

 
 

  



	 163 

APPENDIX 5 
Supplementary Information 

 

  

Fig. S7.1. Carpenter et al. model of nutrient-soil hysteresis using s as the bifurcating 
parameter. (a) Hysteresis in nutrient flux (ΔN)  resulting from changes in the presence and 
values of stable (orange and blue) and unstable (green) equilibria as loss rate s, increases or 
decreases (dashed arrows). Large shaded region marks zone of hysteresis. 
(b) Stable (blue and orange solid points) and unstable (open green) equilbria are plotted where 
source (black) and sink (grey) functions overlap in phase diagrams of nutrient flux (ΔN) and 
nutrient density (N). Pink and light grey lines connect source-sink curves in (b) to their 
corresponding positions in the bifurcation graph of (a). 
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FINAL CONCLUSIONS 
 

Historically, ecology has focused on conserving natural systems. Yet human impositions 

in the forms of agriculture and urbanity continue to increase (Pimentel et al. 1992, 2005). In an 

attempt to create ecologically resilient farms and cities, many argue that we should incorporate 

the complexities of nature into the systems we manage (Elton 1958, Vandermeer et al. 2010). 

Though ecological systems are inherently multi-dimensional and context dependent, the 

consequences of complexity for ecosystem stability are unclear. This dissertation examines the 

role of biocomplexity in effecting stability in biological control systems and agriculture more 

generally. Here, I summarize its main conclusions and implications.  

 

Autonomous biological control  

Autonomous biological control is the notion that a diversity of natural enemies prevents 

herbivores from reaching pest densities in natural systems (Lewis et al. 1997, Vandermeer et al. 

2010). However, strong negative interspecific interactions between biological control agents are 

considered detrimental for species coexistence and effective biological control of pests (Denoth 

et al. 2002, Louda et al. 2003, Straub et al. 2008, Letourneau et al. 2009). The theoretical 

literature surrounding coexistence of species is extensive and complicated, but one common 

feature throughout is an underlying presumption that subsystems of large networks are initially 

stable (May 1972, 2001, Murdoch 1975, McCann et al. 1998, McCann 2000). Here, I re-evaluate 
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the role of strong negative interactions in effecting stability of complex networks when 

subsystems are initially unstable. This is the first time that the stability of subcomponents has 

been considered when assessing the stability of larger, complex networks. By starting with 

unstable subcomponents we find that strong interspecific competition for pest resources and 

intraguild predation between control agents can effectively rescue control, stabilizing the system. 

Specifically, we model a predator control agent that becomes ineffective once it reaches a 

carrying capacity, external to its pest resource. We also model a pathogen that cannot control 

outbreaks of pests because of the lag that is required for a critical density of pests to build before 

a pathogen epidemic can occur. With each epidemic, pest populations decline dramatically, only 

to build again to critical densities creating cyclical boom-bust dynamics. Strong competition and 

intraguild predation prevent the predator from reaching carrying capacity and prevent the 

pathogen from creating epidemics that would otherwise spiral the system out of control. Here, 

for the first time, we provide a theoretical scenario where diversity is maintained rather than 

hindered through strong negative interactions. We further confirm this in an experiment. These 

results may help explain a long-standing paradox in ecology: the coexistence of many, strongly 

negative interacting organisms in natural systems—a phenomenon that is particularly common 

for biological control systems in agriculture (Denoth et al. 2002, Straub et al. 2008). 

 

The role of space and perceptions of space 

Since Huffaker first assessed the coexistence of predator and prey mite species on spatial 

arrays of oranges, space has generally been considered a stabilizing force for ecological systems 

(Huffaker 1958, Hastings 1977, Levin 1992, Durrett and Levin 1994, Hassell et al. 1994). Spatial 

heterogeneity creates niches across landscapes and allows for a diversity of organisms, including 
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predators and prey to coexist (Hastings 1977, Liere et al. 2012). Yet, if changing initial 

conditions such that subcomponents of complex systems are unstable to begin with can reverse 

the implications of strong negative interactions for species coexistence, the effects of space may 

also change. In this dissertation, I extend Huffaker’s classic experiment to test the effects of 

space when two competing natural enemies are combined to control a pest resource. The results 

confirm that spatial heterogeneity is stabilizing, but rather than artificially imposing spatial 

heterogeneity in the landscape as Huffaker had done, we show that stabilizing spatial 

heterogeneity can arise spontaneously from interactions between organisms. Thus, endogenous 

spatial heterogeneities may be an essential component of autonomous biological control in 

natural systems. Spatial heterogeneity is generally considered a feature of the landscape, even 

when there are behavioral mechanisms associated with the landscape features. For example, 

scale insects were found to coexist with ladybird beetle predators by finding spatial refuges at the 

base of their host trees where the beetles could not reach (Caltagirone and Doutt 1989). Here we 

show that even in a completely homogenous landscape (where there is no physical refuge), prey 

can find spatial refuges by dispersing across landscapes at a different rate and direction than their 

predators and pathogens.  

In this dissertation I propose that if interactions between organisms can generate spatial 

structure where there is none, landscapes should not be organized solely on the size and 

frequency of habitat features. In the classic metapopulation framework, populations existing in 

fragmented landscapes with many small patches of habitats are thought to exist as 

metapopulations, whereas populations in landscapes with one main large patch and smaller 

peripheral patches of habitats are more likely source-sink populations (MacArthur and Wilson 

1967, Levins 1969, Pulliam 1988, Hanski and Gilpin 1991). Yet if the movement and behavior 
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of organisms is important, a single landscape may be perceived very differently from organism 

to organism, regardless of the static layout of habitat features in the landscape. This dissertation 

presents a novel theoretical framework that links the synchrony of populations sampled across a 

landscape to how fragmented landscapes are perceived by organisms on a scale between 

metapopulation and source-sink. We apply a power function scaling law between population 

means and variances known as Taylor’s law to assess perceptions of space by different 

organisms coexisting in the same landscape. Though known to apply almost universally to 

populations sampled across space or time, the power of Taylor’s law varies from 1 to 2, and 

there is no consensus yet as to what different powers signify (Taylor 1961, Eisler et al. 2008). 

We suggest that this power should depend on how synchronous sampled populations are from 

one another, and that synchrony depends on how much dispersal is happening across the entire 

landscape. Furthermore, since Taylor’s law is derived from a fundamental relationship between 

means and variances, it can help assess population synchrony for datasets that are limited in 

replications across time but not space. We applied our framework to test perceptions of space 

across the urban landscape of Ann Arbor for populations of aphids, ladybird beetles and 

parasitoid wasps. Our results suggest that aphids experience the landscape at much larger spatial 

scales than their natural enemies. Aphid populations were much more synchronous across the 

landscape with power functions closer to 2, while their natural enemy populations were 

asynchronous and had power functions closer to 1. Again spatial heterogeneity arises not from 

landscape features, but from different perception of the same landscape by different species. We 

show for the first time that a single landscape can be both metapopulation and source-sink 

depending on what organism is the focus of study. We expect that endogenous disjunctions in 
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spatial scales between prey and their predators can promote coexistence just as well as 

exogenous landscape barriers.  

  These results were further verified for aphids using genetic markers to measure dispersal 

across the city of Ann Arbor. As predicted we find evidence of a source-sink structure, since 

genetic diversity decreases with urbanity, and the most diverse populations came from the most 

rural sites on the outskirts of the city. Theory, survey data, and population genetics combined all 

point to the same general conclusion: aphids perceive the urban landscape of Ann Arbor at large 

scales corresponding to a source-sink structure. Even though this is a single case study, the 

remarkable concordance across the three distinct methods employed in this dissertation suggest 

that Taylor’s law may indeed be useful for assessing how permeable fragmented landscapes are 

for different organisms. This is particularly useful considering the widespread applicability of 

Taylor’s law, one of the few general laws recognized in ecology.  

 

Irreversible consequences of human management in agriculture 

The goal of this dissertation was to assess how biocomplexity can contribute stability to 

agricultural systems so that we may effectively transition conventional agriculture systems that 

rely heavily on inputs of pesticides and fertilizers to agroecological systems that are capable of 

autonomous biological control and nutrient regulation. Vandermeer and Perfecto have suggested 

that conventional and agroecological forms of agriculture may represent alternative stable states 

that are driven by socio-ecological forces (Vandermeer and Perfecto 1997). If this is the case, we 

should expect changes in management of agriculture to have long-term consequences that are 

irreversible, or in formal terms, hysteretic. This phenomenon is common for human-managed 

systems: fisheries, fire-managed forests/savannas, and eutrophic lakes are a few examples 
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(Carpenter et al. 1999, Scheffer 2009, Petrie et al. 2009, Staver et al. 2011). Examples of 

alternative stable states (high or low fish populations, forest or savanna, eutrophic or oligotrophic 

lakes) in the literature are always represented by changes in a single driver variable (harvest rates, 

fire, nutrient loads).  In reality there are many potential driver variables and human management 

is likely to have effects on more than one driver variable at a time.  

For example, correlations in vital rates of biocontrol agents can easily result when agents 

interact with the environment and pests in a nonlinear fashion. Changes in management to 

improve the carrying capacity of a control agent (ie. providing nesting sites) can have unintended 

consequences on growth rates (ie. increases at first followed by declines from disease outbreaks 

or intraspecific competition at high densities) (Luck 1990, Arditi and Berryman 1991). Thus, to 

expand the critical transition literature to include more realistic complexities, this dissertation 

examines the effects of correlated driver variables on patterns of hysteresis. For biological 

control systems, simple correlations between carrying capacities and growth rates result in very 

complicated hysteretic patterns that have never before been discussed in the critical transition 

literature. These hysteretic patterns include hidden stable states. The standard form of hysteresis 

implies that though transitions to alternative stable states are difficult to reverse, all systems will 

eventually revert to their original state given a large enough reversion of the driver variable. The 

presence of hidden stable states completely changes this perspective. Hidden states can only be 

achieved via an external perturbation of the system that changes the state variable irrespective of 

the driver variable. If the system is driven out of a hidden stable state, recovery of the state via 

changes in the driver variables is impossible no matter how far they are reversed.  

To examine agroecological transitions more broadly, I also applied this new hysteretic 

framework to soil-nutrient dynamics (Carpenter et al. 1999). Simple correlations between max 
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nutrient recycling rates and loss rates produce similar complexities in hysteretic patterns that 

were confirmed to exist in a carefully designed greenhouse experiment. For the first time, we 

show that changes in agricultural management from organic to synthetic inputs can result in 

hysteresis, and that hysteresis is often complicated and includes hidden stable states. We 

carefully designed the experiment to test for unstable states, and found that we could perturb 

systems at unstable points and that those perturbations resulted in predictable jumps between 

alternative stable states. To our knowledge this is the first experiment to assess the instability of 

points within a hysteretic loop. If hysteresis and correlations between driver variables is as 

common as the current ecological literature suggests, the presence of the complex hysteretic 

patterns though currently unacknowledged, is likely ubiquitous.  

 

Implications 

Though counterintuitive, we found that complexity is often a stabilizing force in 

agriculture. Strong negative interactions between control agents can stabilize pest populations. 

That stability is often complex, and sometimes chaotic. Yet regardless, pests never exceed 

economic thresholds that would threaten the livelihood of a farmer. A single landscape can 

actually be perceived very differently depending on what organism is occupying it. This 

complexity may help maintain coexistence of predator-prey populations, especially in 

homogenous landscapes like agriculture. Complexity, whether endogenous or exogenous, creates 

the necessary disjunctions between consumers and their resources that allow them to coexist. Yet 

complexity also makes approaching Elton’s vision of naturally managed systems complicated. 

Past management regimes are likely to constrain future yields or pest control services for 

agriculture, and if systems are driven out of ideal states they may never be recovered. In such a 
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scenario, rescue of ideal states depends entirely on knowledge of the underlying hysteretic 

pattern for the system. Thus, to effectively stabilize pest and nutrient dynamics in agriculture, we 

must first evaluate and only later manipulate its complexities. Successful transitions from 

conventional to agroecological systems may depend entirely on our ability to understand and 

apply complexity appropriately. 
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