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ABSTRACT

As computing power has increased in recent years, there has been a strong interest in using
direct whole-core transport calculations for reactor analysis to improve on the traditional
nodal methods used by industry. Because 3D transport is still prohibitively expensive for
practical calculations, a new class of planar synthesis methods has been developed. These
methods decompose the reactor into a stack of 2D planes, performing high fidelity transport
on each 2D plane before using a lower order method to couple the planes. These methods
are faster than 3D transport and more accurate than nodal methods. Despite the more
palatable runtimes compared with 3D transport, these methods are still much slower than
nodal methods. Thus, reducing computational expense is still important to make these
methods useful.

One means of accomplishing this is to reduce the number of 2D planes used in the
transport calculations, since these are the most expensive parts of the calculations. Doing
this improves the efficiency of the calculation, but also increases the likelihood of subgrid
heterogeneity within a 2D plane, introducing error into the solution. To eliminate this
error while maintaining the efficiency improvements from the coarse axial mesh, a subgrid
method must be employed to resolve the subgrid information.

In this work, three new subgrid methods are presented in the context of the 2D/1D
method. The polynomial method uses pregenerated sixth-order polynomials to correct the
homogenization of the subgrid heterogeneity. The subplane collision probabilities (CP)
method uses 1D CP calculations to capture the radial effects of the subgrid heterogeneity,
then uses subplane coarse mesh finite difference (CMFD) and 1D spherical harmonics (PN)
to capture the axial effects of the heterogeneity. The axial flux profiles produced by these
calculations are then used to generate improved homogenized cross sections for the 2D
MOC calculations. Finally, the subray method of characteristics (MOC) performs a mod-
ified transport sweep of each of the 2D planes to directly resolve the subgrid flux shape
during the transport calculations while making use of the subplane scheme to improve the
CMFD and PN calculations.

Each of these methods was applied to the rod cusping problem, the most severe type
of axial heterogeneity in planar synthesis methods. The polynomial methods reduced the
errors in 3D power distribution from greater than 25% to around 10% for most problems.
The subplane CP method performed much better, reducing the errors in power distribution
to less than 5% for most problems. Finally, subray MOC reduced the errors to less than 2%
for all problems it was tested on.

xi



CHAPTER 1

Introduction

Predicting the neutron flux distribution is of primary importance in reactor analysis. The
power distribution in the reactor is directly related to the neutron flux and directly impacts
the economics and safety of the reactor. Economically, accurate prediction of the power
distribution enables core designers to determine the optimal schemes for fuel loading and
shuffling to make efficient use of the fuel and minimize the likelihood of fuel failures.
The power distribution is also important to both steady-state and transient operation of
the reactor, especially during severe accident scenarios. Because of these requirements,
the codes used in reactor analysis must be capable of providing highly accurate, detailed
information concerning the neutron flux distribution.

Figure 1.1: Illustration of reactor geometry and mesh

Figure 1.1 shows the geometry of a reactor. The full core is shown on the left as an array
of fuel assemblies; a fuel assembly is shown in the center as an array of fuel pins; a meshed

1



fuel pin is shown on the right. Reactor analysis has historically used a two-step approach
to model reactors. The first step consists of lattice calculations. These calculations are
typically 2D transport calculations done on a single fuel assembly using explicitly meshed
pins to obtain a local shape for the flux distribution in that assembly. This local distribution
is used to homogenize cross sections in larger nodes, usually a quarter assembly. This
coarser mesh is then used in a nodal diffusion calculation to generate the global neutron
flux distribution for the entire reactor. The global diffusion solution and the local transport
solutions are then combined to reconstruct a global fine mesh solution that can be used for
the necessary analysis.

While these methods have been sufficient for reactor design and operation to this point,
the homogenization and reconstruction steps inherently introduce some uncertainty in the
accuracy of the solution and are known to be inaccurate for some situations. This un-
certainty forces analysts to be conservative to ensure an acceptable power distribution. A
desire to reduce this conservatism combined with a rapid increase in computing power in
recent years has driven a push toward direct whole-core transport calculations. These so-
lutions require more computing resources to obtain, but are able to correctly model all the
physics in the reactor in a single calculation and provide greater confidence in the solutions.

There are two categories of methods that can be used for transport calculations: Monte
Carlo and deterministic. Monte Carlo calculations use random sampling of continuous
cross section data to determine the average behavior of neutrons throughout the reactor
core [1, 2]. Given enough samples, a Monte Carlo calculation will give the exact solu-
tion. However, the number of particles required to obtain a full core power distribution
with acceptably low statistical uncertainty is prohibitive even with today’s computing re-
sources. Deterministic calculations do not have to deal with statistical uncertainty and can
provide solutions much more quickly than Monte Carlo calculations because they solve
the equation directly instead of using random sampling. However, deterministic methods
are limited by certain approximations and discretizations that adversely affect the accuracy
of the solution. Making improvements to these approximations is crucial to improving
deterministic transport calculations and making them viable for practical reactor analysis.

1.1 Motivation

One category of whole-core deterministic transport methods that has gained popularity is
planar synthesis methods. Two types of planar synthesis methods under active research
today are 2D/1D [3,4] and 2D/3D [5]. In both of these methods, the reactor is modeled as a
stack of 2D planes, which are then coupled through a second calculation. Each 2D plane is
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solved using a high-fidelity transport method such as the method of characteristics (MOC)
[6]. In 2D/3D, these calculations are used to generate homogenized cross sections for a
3D discrete ordinates (SN) [7] calculation. Because the MOC calculations are performed
across the entire 2D plane, the homogenized cross sections are more accurate than any that
can be produced by the traditional 2-step method. If 2D/1D is used, the stack of 2D MOC
solutions is coupled axially through a lower order diffusion or transport calculation in the
axial direction. This takes advantage of the fact that in many reactors, most heterogeneity is
in the radial direction. The solution changes shape much more slowly in the axial direction,
so the same resolution is not needed as in the radial direction.

These planar synthesis methods are orders of magnitude faster than a full core Monte
Carlo calculation, but they are still much slower than traditional nodal methods used by
industry. To rectify this, it is important to improve the efficiency of these calculations to
make them more useful for practical calculations. Some of these efficiency gains can be
realized by modifications to the methods and algorithms used in the codes. However, a
simpler way to reduce the runtime of these calculations is to simply use a coarser mesh.
Because the most expensive part of the calculation is the 2D planar transport sweep, reduc-
ing the number of 2D planes can significantly reduce the computing resources required for
the 2D/1D or 2D/3D calculations.

When reducing the number of 2D planes, care must be taken to ensure that no significant
approximations are made. These methods implicitly assume that there is no axial change
in materials for a given 2D plane. If this assumption is violated, these materials will be
homogenized and introduce error in the solution. For some models, explicitly meshing
all axial components results in a relatively fine mesh, preventing any runtime reduction
by coarsening the mesh. To circumvent this issue, subgrid methods must be developed
which are able to account for axial heterogeneity within a plane and preserve the accuracy
of transport calculations without requiring a fine axial mesh. The work presented here
focuses on the development of such methods.

1.2 Previous Work in 2D/1D

Many different axial heterogeneities can be thought of, but by far the most troublesome
in most reactors is control rods. Control rods move axially throughout reactor operation
to control the power shape in the core, and they can move rapidly at times to maintain
safe conditions during a transient scenario. Furthermore, they tend to be strong neutron
absorbers with relatively large cross sections. Attempting to explicitly mesh every control
rod position can result in an unusably fine axial mesh, but homogenizing the control rods
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axially within a plane results in unacceptably large errors in the flux distribution called rod
cusping. The application of subgrid methods developed in this work will be focused on the
problem of rod cusping since it is the most severe axial heterogeneity for planar synthesis
methods.

Rod cusping was first identified in [8] in 1977 in the context of nodal methods. In
generating homogenized cross sections for the nodal calculation, it was discovered that
simply having a rodded and unrodded version of the node cross section and interpolating
them was insufficient and produced cusping errors. Since then, a myriad of researchers
have endeavored to resolve this issue [9–30]. The rise of whole-core transport methods,
including planar synthesis methods, addresses many shortcomings of the traditional reactor
analysis methods, but not rod cusping.

Methods to deal with control rod cusping up to this point have generally fallen into
one of two categories: fast or accurate. The fastest methods usually have pregenerated
data from a separate set of calculations which can be used to quickly adjust cross sections
for partially rodded nodes and improve the answers. The most accurate methods reduce
the rod cusping errors to acceptable levels through changes in the global iteration scheme,
but enough additional calculation is required to achieve this accuracy that the methods are
not much more beneficial than simply refining the axial mesh to eliminate the cusping al-
together. While some methods have bridged this gap between speed and accuracy better
than others, none have succeeded at eliminating cusping altogether. This work seeks to
fundamentally resolve the control rods in the transport calculations in such a way that rod
cusping errors are greatly reduced or eliminated without a significant increase in computa-
tional burden.

1.3 Dissertation Overview

This dissertation is organized into 5 main parts:

1. Approximations and numerical methods used to solve the Boltzmann transport equa-
tion,

2. An in-depth description of the 2D/1D implementation used for this work,

3. A detailed look at rod cusping and the history of decusping methods research,

4. Descriptions of methods developed for this work, and

5. Results and analysis of the newly developed methods.

4



The first part will introduce the Boltzmann transport equation in its most general form.
The equation depends on space, energy, angle and time, so discretizations in 7 independent
variables are required to solve the equation deterministically. After discussing some of the
common discretization schemes, some important numerical methods relevant to this work
are discussed. These include MOC, coarse mesh finite difference (CMFD), the spherical
harmonics (PN) approximation, the Nodal Expansion Method (NEM), and the collision
probabilities (CP) method. Detailed derivations are presented for those methods which
will be modified as part of the new subgrid methods; other derivations are deferred to the
appendices or external references.

After presenting the basic numerical methods, the following chapter will provide an in-
depth look at the 2D/1D implementation in the MPACT code used for this research. Some
history of the method will be described first, followed by a derivation of the radial and
axial equations used as a basis for the 2D/1D method. The numerical methods and iteration
scheme used by MPACT to solve these equations will then be described in detail.

With the foundation of 2D/1D laid, the third part will provide a more thorough discus-
sion of rod cusping. First, the cause and effects of cusping errors will be described for both
nodal and 2D/1D codes. Second, a history of decusping methods will be discussed. These
methods will be grouped based on whether they were developed for nodal codes or 2D/1D
codes. This discussion will be used to more thoroughly motivate the need for advanced
multigrid methods to address this problem.

Chapter 5 will describe the three new methods that have come out of this work. These
methods are described in increasing accuracy, complexity, and generality. The first is poly-
nomial decusping. This method relies on pregenerated data to correct the cross sections in a
partially rodded node prior to the beginning of the 2D/1D calculations. This was developed
primarily out of immediate need to address the rod cusping issue in MPACT. The second
method is called subplane collision probabilities. This method modifies the axial part of
the 2D/1D calculation to use a refined grid, then uses the CP method for the rodded and
unrodded regions to generate improved flux shapes and cross sections. This method is more
general in its ability to handle multiple control rod types and other simple heterogeneities.
The final method presented is a new version of MOC called subray MOC. This method
seeks to address axial heterogeneity during the 2D MOC sweeps, which should improve
the solution at the most fundamental level instead of attempting to improve homogenized
cross sections.

The final section will present results and analysis of the methods. First, two problems
will be presented to test the polynomial and subplane collision probabilities methods. Both
accuracy and runtime will be compared to reference cases with no rod cusping errors. Sec-

5



ond, results and analysis of subray MOC will be presented using another set of problems.
Accuracy, convergence, and runtime will be analyzed compared to reference cases. Com-
parisons of subray MOC with the polynomial and subplane collision probabilities methods
will also be made to show improvements in accuracy achieved by subray MOC.

The dissertation will close with a summary and brief discussion of future research topics
related to the methods presented here.
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CHAPTER 2

Neutron Transport Methodology

This chapter is dedicated to introducing the neutron transport equation and numerical meth-
ods commonly used to solve it. First, the transport equation will be introduced and all its
terms defined. Some common approximations that are needed to make the transport equa-
tion more practically solvable will also be introduced. Second, numerical methods will be
discussed and, when appropriate, derived from the transport equation. The theory is cov-
ered in detail in a variety of textbooks [31], and other texts discuss numerical methods to
solve the transport equation [32]. This chapter will not attempt to reiterate all that can be
found in these references, but rather to highlight the theory and methods which are relevant
to this work.

2.1 Boltzmann Equation

The time-dependent Boltzmann equation for neutron transport is shown below:

(2.1a)

1
v
∂ϕ

∂t
+Ω · ∇ϕ + Σt (x,E, t)ϕ (x,E,Ω, t)

=
1

4π

∞∫
0

∫
4π

Σs
(
x,E′ → E,Ω′ → Ω

)
ϕ
(
x,E′,Ω′

)
dΩ′dE′

+
χp (x,E)

4π

∞∫
0

∫
4π

(
1 − β

(
x,E′

))
νΣ f

(
x,E′, t

)
ϕ
(
x,E′,Ω′, t

)
dΩ′dE′

+

Nd∑
j=1

χd, j (x,E)
4π

λ jC j (x, t) + Q (x,E,Ω, t) ,

ϕ (xb,E,Ω, t) = ϕb (xb,E,Ω, t) , Ω · nb < 0 . (2.1b)

Before addressing the methods used to solve Equation 2.1, we will briefly define each
of the terms in the Equation 2.2. The first term is the time derivative term, shown in , which
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accounts for the change in the angular flux over time in dV about x, dE about E, and dΩ

about Ω.

1
v
∂ϕ

∂t
. (2.2)

The second term (Equation 2.3 is the streaming term. This describes neutrons with
energy E traveling out of the volume dV in the direction Ω.

Ω ·∇ϕ . (2.3)

The third term is the total reaction rate (Equation 2.4). This describes the total number
of collisions experienced in dV by neutrons with energy E and direction Ω. Equations
2.2-2.4 together make up the total loss of neutrons.

Σt (x,E)ϕ (x,E,Ω) . (2.4)

Equation 2.5 shows the scattering source written in a simplified form. This is the total
number of neutrons scattering into energy E and direction Ω from all other energies and
directions E′ and Ω′ in dV. Because scattering is symmetric around the incident angle, the
scattering cross section depends only on the dot product Ω′ ·Ω rather than each of the two
angles independently.

∞∫
0

∫
4π

Σs
(
x,E′→ E,Ω′ ·Ω

)
ϕ
(
x,E′,Ω′

)
dΩ′dE′ . (2.5)

Equation 2.6 shows the prompt fission source, neutrons entering dV with energy and
direction E and Ω directly from a fission event. Fission is an isotropic process, so the to-
tal fission source is calculated then distributed evenly across 4π. Furthermore, the energy
distribution of fission is practically independent of incident neutron energy, so the fission
neutron distribution χp (E) can be outside the integral over energy. A small fraction of fis-
sion neutrons are considered “delayed,” meaning they are emitted by the radioactive decay
of a fission product. The prompt fission source must be adjusted by the factor (1−β (x,E′))
to account for this. Typically β is less than 1% and different for each fissionable isotope.

χp (x,E)
4π

∞∫
0

∫
4π

(
1−β

(
x,E′

))
νΣ f

(
x,E′, t

)
ϕ
(
x,E′,Ω′, t

)
dΩ′dE′ . (2.6)

Equation 2.7 shows the fission source due to delayed neutrons. The precursors, fission
products which emit delayed neutrons, are divided into Nd groups based on the magni-
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tude of their decay constant λ j. Like the prompt neutrons, delayed neutrons are isotropic
and distributed in energy with some distribution χd, j (x,E) based on which precursors are
produced.

Nd∑
j=1

χd, j (x,E)
4π

λ jC j (x, t) . (2.7)

Equation 2.8 shows external source term. This term accounts for all neutrons entering
dV with energy and direction E andΩ from sources other than scatter and fission. Equation
2.8 shows the source term as a function of angle, but it is often considered to be isotropic
like the fission source.

Q (x,E,Ω) . (2.8)

Finally, Equation 2.1b shows the boundary condition for the transport equation. The
dot product Ω · nb is between the direction of flight and the outward normal vector on the
boundary of the problem. The angular flux boundary condition defines the angular flux
entering the problem domain. for the entire surface xb, all energies, and all times.

Many problems of interest are steady-state, allowing Equation 2.1 to be simplified sig-
nificantly. The time derivative becomes 0, eliminating the term in 2.2, and the precursor
concentrations are unchanging in time, allowing the fission source terms in 2.6 and 2.7 to
be lumped into a single term. To ensure balance between the loss and source terms without
a time derivative, the equation is reformulated as an eigenvalue equation. The fission source
is multiplied by the eigenvalue λ = 1

ke f f
, allowing the equation to be balanced. The cross

sections can then be adjusted until λ = 1 is achieved, providing a physically meaningful
steady-state solution to the equation. The steady-state form of the Boltzmann equation is
shown below:

Ω · ∇ϕ + Σt (x,E)ϕ (x,E,Ω) =
1

4π

∞∫
0

∫
4π

Σs
(
x,E′ → E,Ω′ → Ω

)
ϕ
(
x,E′,Ω′

)
dΩ′dE′

+
1

ke f f

χ (E)
4π

∞∫
0

∫
4π

νΣ f
(
x,E′

)
ϕ
(
x,E′,Ω′

)
dΩ′dE′ ,

(2.9a)

ϕ (xb,E,Ω) = ϕb (xb,E,Ω) , Ω · nb < 0 . (2.9b)
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2.1.1 Multigroup Approximation

One important approximation that is commonly made to the transport equation is the multi-
group approximation. To make this approximation, an appropriate energy range for the
problem of interest is selected. As illustrated in Figure 2.1, this energy range is divided up
into G energy groups, with each group going from Eg up to Eg−1. For light-water reactor
problems, it is common to select 0 eV for EN and 20 MeV for E0.

Figure 2.1: Illustration of the multigroup discretization scheme

We first define the multi-group flux, cross sections, and chi distribution in Equations
2.10. These definitions ensure that the total reaction rates are preserved in each energy
interval g.

ϕg (x,Ω) =

En−1∫
En

ϕ (x,E,Ω)dE , (2.10a)

(2.10b)

Σx,g (x,Ω)ϕg (x,Ω) =

En−1∫
En

ϕ (x,E,Ω)Σx (x,E,Ω)dE

⇒ Σx,g (x,Ω) =

∫ En−1

En
ϕ (x,E,Ω)Σx (x,E,Ω)dE∫ En−1

En
ϕ (x,E,Ω)dE

.

Using the definitions above, Equation 2.9 can be operated on by
∫ En−1

En
(·)dE to obtain the

multi-group transport Equation 2.11.

(2.11a)

Ω · ∇ϕg + Σt,g (x)ϕg (x,Ω) =
1

4π

G∑
g′=1

∫
4π

Σs,g′→g
(
x,Ω′ → Ω

)
ϕg′

(
x,Ω′

)
dΩ′

+
1

ke f f

χg

4π

G∑
g′ =1

∫
4π

νΣ f ,g′ (x)ϕg′
(
x,Ω′

)
dΩ′ ,

ϕg (xb,Ω) =

En−1∫
En

ϕb (xb,E,Ω)dE , Ω · nb < 0 . (2.11b)
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2.1.2 Discrete Ordinates Approximation

In addition to energy discretization, it is also useful to discretize the transport equation in
angle. The angular variable Ω is made up of a polar angle (µ) and an azimuthal angle (α),
where the polar angle is defined with respect to the z-axis and the azimuthal angle is defined
with respect to the x-axis in the x-y plane. Both angles can be discretized as follows:

Ω = cos(α)
√

1−µ2i + sin(α)
√

1−µ2 j +µk (2.12a)

⇒Ωn = cos(αn)
√

1−µ2
ni + sin(αn)

√
1−µ2

n j +µn k . (2.12b)

For eachΩn, there is an associated weight wn. These weights and angles together make
up an angular quadrature set which simplifies the integrals in Equations 2.13.

∫
dΩ =

N∑
n=1

wn = 4π , (2.13a)

∫
ΩdΩ =

N∑
n=1

Ωnwn = 0 , (2.13b)

∫
4π

f (Ω)dΩ ≈

N∑
n=1

fnwn . (2.13c)

Applying this discretization to the multi-group transport Equation 2.11, we obtain the fol-
lowing discrete ordinates (SN) equations:

(2.14a)

Ωn · ∇ϕg,n + Σt,g (x)ϕg,n (x) =
1

4π

G∑
g′=1

N∑
n′=1

Σg′→g,n′→n (x)ϕg′,n′ (x)wn′

+
1

ke f f

χg

4π

G∑
g′=1

N∑
n′=1

νΣ f ,g′ (x)ϕg′,n′ (x)wn′ ,

ϕg,n (xb) = ϕb
g (xb,Ωn) , Ωn · nb < 0 . (2.14b)

2.1.3 Scattering Approximations

One of the biggest challenges to solving the transport equation is angle dependence of the
scattering cross sections and angular flux. To simplify the scattering cross sections, there
are two different types of approximations that can be made in MPACT.
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2.1.3.1 PN Scattering

The first scattering approximation that can be made is PN scattering. To make this ap-
proximation, the Ω′ ·Ω is rewritten as a single angular variable µs, the cosine between the
incoming and outgoing scattering angles. The scattering cross section can then be expanded
in terms of Legendre polynomials, defined by Equations 2.15.

Pn+1 (µs) =
(2n + 1)µsPn (µs)−nPn−1 (µs)

n + 1
, (2.15a)

P0 (µs) = 1 , (2.15b)

P1 (µs) = µs , (2.15c)

1∫
−1

Pn (µs) Pm (µs)dµs =
2

2n + 1
δn,m . (2.15d)

Equations 2.16 show the expansion of the scattering cross section using Legendre poly-
nomials. Using more terms in the expansion improves the accuracy. For most reactor
problems, N ≤ 3 is sufficient. Problems such as shielding and others may require many
more terms to be kept to obtain sufficient accuracy.

Σs (x,µs) =

N∑
n=0

2n + 1
4π

Pn (µs)Σsn (x) , (2.16a)

Σs,n (x) = 2π

1∫
−1

Σs (x,µs) Pn (µs)dµs . (2.16b)

2.1.3.2 Transport Correction

A second simplification of the scattering source that can be used is transport-corrected
isotropic (TCP0) scattering. When using this approximation, the equation is solved using
only the zeroth order term in 2.16. The cross section data used to develop the multi-group
scattering cross sections is modified beforehand to still preserve some of the higher order
scattering physics.

Currently, the MPACT code [33] uses a combination of three transport-correction meth-
ods for its TCP0 scattering treatments [34, 35]. The Neutron Leakage Conservation (NLC)
method [36] is used for H-1; the nTRACER in-scatter method [37] is used for B-11, C-
12, and O-16; and the out-scatter method [38] is used for all remaining isotopes. The
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out-scatter approximation is defined as

Σs0,g→g = Σs0,g→g−

G∑
g′=1

Σs1,g→g′ . (2.17)

The in-scatter approximation is defined as

Σs0,g→g = Σs0,g→g−
1
φ1,g

G∑
g′=1

Σs1,g′→gφ1,g′ , (2.18)

where φ1,g is the first moment of the angular flux. Finally, the NLC correction is defined as
follows:

Σs0,g→g = Σs0,g→g +
1

3Dg
−Σt,g , (2.19)

where Dg is a diffusion coefficient determined from leakage calculations in a 1D fixed-
source transport calculation. For each of these corrections, the same modification made to
the self-scatter cross sections in the above equations is also made to the total cross section
Σt,g to obtain the transport cross section Σtr,g.

2.1.4 Diffusion Approximation

Another approximation that can be made to the angular dependence of the transport equa-
tion is the diffusion approximation. To derive this approximation, we again begin with
the multi-group transport equation from Equation 2.11. First, we obtain the P1 form of the
equation by operating on it by

∫
(·)dΩ and

∫
(·)ΩidΩ. To simplify these integrals, we make

use of the following identities for integrating over Ω:∫
4π

dΩ = 4π , (2.20a)

∫
4π

ΩidΩ = 0 , (2.20b)

∫
4π

ΩiΩ jdΩ =
4π
3
δi, j , (2.20c)

∫
4π

ΩiΩ jΩkdΩ = 0 . (2.20d)
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We must also assume that the angular flux is linearly anisotropic. This leads to the follow-
ing expression of the angular flux as a function of the scalar flux φ and current J:

ϕg (x,Ω) ≈
1

4π

(
φg (x) + 3Ω · Jg (x)

)
, (2.21a)

φg (x) =

∫
4π

ϕg (x,Ω)dΩ , (2.21b)

Jg (x) =

∫
4π

ϕg (x,Ω)ΩdΩ . (2.21c)

Applying this assumption and integrating, we obtain a coupled set of four equations for the
scalar flux and the three components of the current vector.

dJx,g

dx
+

dJy,g

dy
+

dJz,g

dz
+Σt,g (x)φg (x) =

G∑
g′=1

Σs0,g′→g (x)φg′ (x)+
1

ke f f

χg

4π

G∑
g′=1

νΣ f ,g′ (x)φg′ (x) ,

(2.22a)

(2.22b)
dφg

dx
+ Σt,g (x) Jx,g (x) =

G∑
g′=1

Σs1,g′→g (x) Jx,g′ (x) ,

(2.22c)
dφg

dy
+ Σt,g (y) Jy,g (x) =

G∑
g′=1

Σs1,g′→g (x) Jy,g′ (x) ,

(2.22d)
dφg

dz
+ Σt,g (x) Jz,g (x) =

G∑
g′=1

Σs1,g′→g (x) Jz,g′ (x) .

Solving Equations 2.22b-2.22d for the components of the current, we obtain a relation-
ship between the current and scalar flux, shown in Equation 2.23. Equation 2.22 naturally
leads to the out-scatter approximation for the transport cross section, but either of the other
methods from Section 2.1.3.2 can be used instead.

Jg (x) = −Dg (x)∇φg (x) , (2.23a)

Dg (x) =
1
3

(
Σtr,g

)−1
. (2.23b)
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Substituting 2.23a into 2.22a gives us the diffusion form of the transport equation, which
has only the scalar flux φ and eigenvalue 1

ke f f
as unknowns:

−∇ · Dg (x)∇φg (x) + Σt,g (x)φg (x) =

G∑
g′=1

Σs0,g′→g (x)φg′ (x) +
1

ke f f

χg

4π

G∑
g′=1

νΣ f ,g′ (x)φg′ (x) .

(2.24)

To derive boundary conditions, Equation 2.11b is used, making the same linear
anisotropy assumption as in the derivation of the diffusion equation itself:∫

Ω·nb<0

∣∣∣∣Ω · nb

∣∣∣∣ϕg (xb,Ω)dΩ =

∫
Ω·nb<0

∣∣∣∣Ω · nb

∣∣∣∣ϕb
g (xb,Ω)dΩ

∫
Ω·nb<0

∣∣∣∣Ω · nb

∣∣∣∣ 1
4π

[
φg (xb) + 3Ω · Jg (xb)

]
dΩ = J− (xb)

−
1

4π

∫
Ω·nb<0

Ω · nb
[
φg (xb) + 3Ω · Jg (xb)

]
dΩ = J− (xb)

1
4
φg (xb)−

1
2

nb · J (xb) = J− (xb) . (2.25)

This is the Marshak boundary condition, which preserves the total incident flux at every
point on the boundary of the system while assuming linear anisotropy. This boundary con-
dition can be further simplified so that the only unknown is the scalar flux φg by substituting
Equation 2.23a:

1
4
φg (xb) +

Dg (x)
2
·∇φg (xb) = J− (xb) . (2.26)

2.2 Numerical Methods

This section will present some of basic numerical methods used to solve the transport equa-
tion. There are many different numerical methods that can be used, but only those which
are important to this work will be described here. For the most extensively used ones,
detailed descriptions or derivations will be included. Others will simply be described at a
high level with details left to the appendices and references

2.2.1 Method of Characteristics

One method that is commonly used to solve the transport equation is the Method of Char-
acteristics (MOC) [6, 39]. This method allows the transport equation to be solved along a
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characteristic direction with limited approximations, making it useful for complicated ge-
ometries such as those found in nuclear reactors. Doing this along many lines for a variety
of angles and integrating allows an accurate calculation of the scalar flux for large, geomet-
rically complex problems, making MOC useful for many reactor calculations. This section
focuses on a detailed derivation of MOC.

To derive MOC, we make use of both the multi-group and discrete ordinates approxi-
mations by beginning with Equation 2.14. First, the right-hand side is lumped into a single
source term for a given energy group g and direction n:

Ωn ·∇ϕg,n +Σt,g (x)ϕg,n (x) = qg,n (x) , (2.27a)

qg,n (x) =
1

4π

G∑
g′=1

N∑
n′=1

Σs,g′→g,n′→n (x)ϕg′,n′ (x)wn′ +
1

ke f f

χg

4π

G∑
g′=1

N∑
n′=1

νΣ f ,g′ (x)ϕg′,n′ (x)wn′ .

(2.27b)

Now we introduce a characteristic direction r in the direction Ωn

r (s) = r0 + sΩn⇒


x (s) = x0 + sΩn,x

y (s) = y0 + sΩn,y

z (s) = z0 + sΩn,z

. (2.28)

Substituting this variable into Equation 2.27 gives the characteristic form of this equation:

∂ϕg,n

∂s
+Σt,g (r0 + sΩn)ϕg,n (r0 + sΩn) = qg,n (r0 + sΩn) , (2.29a)

(2.29b)

qg,n (r0 + sΩn) =
1

4π

G∑
g′=1

N∑
n′=1

Σs,g′→g,n′→n (r0 + sΩn)ϕg′,n′ (r0 + sΩn)wn′

+
1

ke f f

χg

4π

G∑
g′ =1

N∑
n′ =1

νΣ f ,g′ (r0 + sΩn)ϕg′,n′ (r0 + sΩn)wn′ .

This equation is easily solved with the integrating factor

exp

−
s∫

0

Σt,g
(
r0 + s′Ωn

)
ds′

 (2.30)

giving the following solution:
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(2.31)

ϕg,n (r0 + sΩn) = ϕg,n (r0)exp

−
s∫

0

Σt,g
(
r0 + s′Ωn

)
ds′


+

s∫
0

qg,n
(
r0 + s′Ωn

)
exp

−
s′∫

0

Σt,g
(
r0 + s′′Ωn

)
ds′′

ds′ .

Now if r0 is on the boundary of the region of interest, the incoming flux ϕ (r0,E,Ω) is equal
to the specified boundary condition ϕin. This allows the angular flux to be calculated at any
point s to be calculated along the characteristic direction r.

Up to this point, no approximations have been made in deriving the method of char-
acteristics. One approximation that is necessary to use MOC for practical problems is
to assume some spatial shape for the source term q and cross section Σt,g. The simplest
source approximation is to assume a flat source. In this approximation, q is assumed to be
flat along r. The cross section will also be assumed to be constant along each segment of
the ray. This simplifies Equation 2.31 to the following:

ϕg,n (r0 + sΩn) = ϕg,n (r0)e−
∫ s

0 Σt,gds′ +

s∫
0

qg,ne−
∫ s′

0 Σt,gds′′ds′

= ϕine−Σt,gs +

s∫
0

qg,ne−Σt,gs′ds′

= ϕine−Σt,gs +
qg,n

Σt,g

(
1− e−Σt,gs

)
. (2.32)

For a segment of length A beginning on the boundary of region i, traveling in direction
n along track j, Equation 2.32 allows us to solve for the outgoing angular flux at the end of
track j (2.33a), as well as the average angular flux along the characteristic direction for a
specific track j (2.33b).

ϕout
g,i,n, j = ϕg

(
r0 + A jΩn

)
= ϕin

g,i,n, je
−Σt,g,iA j +

qg,i,n

Σt,g,i

(
1− e−Σt,g,iA j

)
, (2.33a)
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ϕg,i,n, j =

∫ A j

0 ϕg (r0 + sΩn)ds∫ A j

0 ds

=
1
A j

A j∫
0

ϕin
g,i,n, je

−Σt,g,is +
qg,n,i

Σt,g,i

(
1− e−Σt,g,is

)
ds

=
1
A j

A j∫
0

qg,n,i

Σt,g,i
+

(
ϕin

g,i,n, j−
qg,n,i

Σt,g,i

)
e−Σt,g,isds

=
qg,n,i

Σt,g,i
+

1
A jΣt,g,i

(
ϕin

g,i,n, j−
qg,n,i

Σt,g,i

) (
1− e−Σt,g,iA j

)
. (2.33b)

If the transport cross section is constant along s for the region of interest, then the only
approximation that has been made in this derivation is that the source is constant. It is
possible to assume higher order shapes for the source (linear, quadratic, etc.) to improve
the accuracy of MOC [40], but these will not be discussed here.

Typically multiple tracks are laid down across a region in each direction and integrated,
with some spacing δx between them. To calculate the region average angular flux for region
i, the average angular flux from Equation 2.33b for each track must be area-averaged, as
shown below:

ϕg,i,n =

∑
jϕg,i,n, jδxA j∑

j δxA j
. (2.34)

Using this, a quadrature can be used to integrate the average region angular flux for each
angle to obtain a region-averaged angular flux.

Using the outgoing flux in Equation 2.33a along the edge of a region boundary as
the incoming angular flux along a neighboring region allows MOC to be used to solve
across entire domains regardless of geometry. Doing this in many directions and applying
Equations 2.33b and 2.34 gives average angular flux for every direction and region in the
domain. These values can then be integrated to obtain scalar flux or currents as needed.

2.2.2 Coarse Mesh Finite Difference

Because transport calculations can take many iterations to solve, it is important to accelerate
the convergence of the iteration scheme when possible. The most common way of doing
this is the Coarse-Mesh Finite Difference (CMFD) method [41, 42]. This method involves
solving a diffusion problem on a coarse grid to get the average magnitude of the flux in
each coarse cell. This is then used to scale the flux solution on the fine grid. In order to
ensure consistency between the transport solution and the lower order diffusion solution,
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coupling coefficients are calculated on the boundaries of the coarse mesh cells to correct
the leakage between the cells.

To describe the CMFD method, the scalar flux, current, and cross sections on the coarse
grid must be related to the same quantities on the fine grid. We assume the fine mesh
has already been spatially discretized and solved so that quantities such as volume, cell-
averaged flux, cell-averaged cross sections, and cell-averaged source terms are known for
each fine cell. With this assumption, we can define the needed coarse mesh values for each
coarse cell i in terms of the fine cells it owns. N f is the total number of fine cells owned
by a coarse cell, (xi,yi,zi) are the coordinates for the center of coarse cell i, and xi+ 1

2
, xi− 1

2
,

yi+ 1
2
, yi− 1

2
, zi+ 1

2
, and zi− 1

2
define the edges of the coarse cell in each direction.

Ax,i =

(
yi+ 1

2
− yi− 1

2

) (
zi+ 1

2
− zi− 1

2

)
, (2.35a)

Ay,i =

(
xi+ 1

2
− xi− 1

2

) (
zi+ 1

2
− zi− 1

2

)
, (2.35b)

Az,i =

(
xi+ 1

2
− xi− 1

2

) (
yi+ 1

2
− yi− 1

2

)
, (2.35c)

Vi =

N f∑
j=1

V j , (2.35d)

φg,i =
1
Vi

N f∑
j=1

φg, jV j , (2.35e)

Σt,g,i =
1

φg,iVi

N f∑
j=1

Σtr,g, jφg, jV j , (2.35f)

Σs0,g′→g,i =
1

φg′,iVi

N f∑
j=1

Σs0,g′→g, jφg′, jV j , (2.35g)

νΣ f ,g,i =
1

φg,iVi

N f∑
j=1

νΣ f ,g, jφg, jV j , (2.35h)

χg,i =

∑N f
j=1χg, j

∑G
g′=1 νΣ f ,g′, jφg′, jV j∑N f

j=1
∑G

g′=1 νΣ f ,g′, jφg′, jV j

, (2.35i)

Qg,i =
1
Vi

N f∑
j=1

Qg, jV j . (2.35j)

Furthermore, currents must be tallied on the coarse mesh cell boundaries by the fine
mesh transport calculations. Using these definitions, we now operate on the multi-group
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diffusion equation (2.22a) by Equation 2.36a to obtain Equation 2.36b.

x
i+ 1

2∫
x

i− 1
2

y
i+ 1

2∫
y

i− 1
2

z
i+ 1

2∫
z
i− 1

2

(·)dxdydz , (2.36a)

(2.36b)

Ax,i

(
Jx,g

(
xi+ 1

2

)
− Jx,g

(
xi− 1

2

))
+ Ay,i

(
Jy,g

(
yi+ 1

2

)
− Jy,g

(
yi− 1

2

))
+ Az,i

(
Jz,g

(
zi+ 1

2

)
− Jz,g

(
zi− 1

2

))
+ Σtr,g,iφg,iVi =

G∑
g′=1

Σs0,g′→g,iφg′,iVi

+
1

ke f f

χg,i

4π

G∑
g′=1

νΣ f ,g′,iφg′,iVi .

Using Equations 2.23, we can define the interface currents in terms of the diffusion
constants on the positive (p) and negative (n) sides of the interface (Equation 2.37a. The
interface diffusion coefficients are defined in 2.37b-2.37d.

Jg = −Dg
(
φg,p−φg,n

)
, (2.37a)

Dg =
1
3

((
∆xpΣtr,g,i+1 +∆xnΣtr,g,i

))−1
, (2.37b)

Dg, 12
= α

(
1 + 3∆xpαΣtr,g,1

)−1
, (2.37c)

Dg,N+ 1
2

= α
(
3∆xnαΣtr,g,N + 1

)−1
, (2.37d)

α =

0 , reflecting

0.5 , vacuum
. (2.37e)

Defining the interface currents as in Equation 2.37a will cause inconsistency between
the high-order transport solver and the diffusion-based CMFD solver. To account for this,
a correction factor can be defined in terms of the transport solution and added to the CMFD
currents to enforce consistency between the two solutions:

JCMFD,g = −Dg
(
φg,p−φg,n

)
+ D̂g

(
φg,p +φg,n

)
, (2.38a)

D̂g =
Jtrans,g + Dg

(
φg,p−φg,n

)(
φg,p +φg,n

) , (2.38b)

20



where JCMFD and Jtrans are the diffusion and transport definitions of the net current, re-
spectively.

Using this definition of the current, all terms in Equation 2.36b are defined. This gives
a system of N ×G equations, where N is the number of coarse nodes and G is the number
of energy groups in the problem, which can be written in matrix form and solved as an
eigenvalue problem:

Mφ =
1
k

Fφ . (2.39)

Using the homogenized transport solution as an initial guess on the right-hand side of Equa-
tion 2.39, this equation can be easily solved using a standard eigenvalue solver. MPACT
generally uses either the inverse power method or generalized Davidson methods to solve
this problem, but these methods will not be discussed in detail here [43].

After obtaining a solution Equation 2.39, the solution must be used to update the fine
mesh solution for the next transport calculation. To do this, a simple scaling is applied to
the previous transport solution as shown in Equation 2.40. This scaling is applied to all fine
mesh cells j in each coarse mesh cell i and ensures preservation of reaction rates between
the CMFD and transport solutions prior to the next transport sweep.

φk
trans,g, j =

φk
CMFD,g,i

φk−1
CMFD,g,i

φk−1
trans,g, j . (2.40)

Performing the next transport calculation and continuing to iterate between the fine mesh
transport calculations and CMFD will provide a converged solution far more quickly than
performing iterations consisting only of fine mesh transport calculations.

2.2.3 Nodal Methods

2.2.3.1 Simplified Spherical Harmonics

One method that can be used to solve the transport equation is the Spherical Harmonics
(Pn) method [44]. This method is able to resolve the angle dependence of the angular flux
by expanding the flux using spherical harmonic functions. These functions are defined
in Equation 2.41a, with the Associated Legendre Functions and Legendre Polynomials
defined in Equations 2.41b and 2.15, respectively.

Ym
n (Ω) =

[
2n + 1

4π
(n− |m|) !
(n + |m|) !

] 1
2

P|m|n (µ)eimγ, 0 ≤ |m| ≤ n <∞ , (2.41a)
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Pm
n (µ) =

(
1−µ2

)m
2 d

dµ

m
Pn (µ) , 0 ≤ m ≤ n <∞ . (2.41b)

The angular flux can then be expanded in terms of the spherical harmonic functions, as
shown in Equation 2.42. When using the Pn approximation, some integer N is specified.
The first summation in Equation 2.42 is then truncated at N. This gives (N + 1)2 G ex-
pansion coefficients that must be determined. To solve for these coefficients, the transport
equation must be multiplied by Y−m

n (Ω) and integrated over Ω for each combination of m,
n, and g.

ϕg (x,Ω) =

∞∑
n=0

n∑
m=−n

ϕn,m,g (x)Ym
n (Ω) . (2.42)

While the Pn method can be used to solve the transport equation, this is rarely done in
practice due to the increasing complexity of the equations and the quadratic growth in the
number of unknowns as N increases. Instead, the more common method used in practice
is the Simplified Spherical Harmonics (SPn) method. In 1D planar geometry, the angular
variable γ vanishes, leaving only µ. In this case, only the spherical harmonic functions for
m = 0 are needed, since these are the functions independent of γ. Thus, the flux expansion
reduces to a Legendre polynomial expansion:

ϕg (x,µ) =

∞∑
m=0

2m + 1
2

ϕm,g (x) Pm (µ) , (2.43a)

ϕm,g (x) =

1∫
−1

Pm
(
µ′

)
ϕg

(
x,µ′

)
dµ′ . (2.43b)

To solve, we apply the expansion in Equation 2.43 to the transport equation, multiply by
Legendre polynomials Pn (µ) for 0 ≤ n ≤ N, and integrate over µ. Following this procedure
results in the 1D planar geometry P1 equations, shown in Equation 2.44:

dϕ1,g

dx
+Σt,g (x)ϕ0,g (x) =

G∑
g′=1

σs0,g′→g (x)ϕ0,g′ (x) +
1

ke f f

χg

4π

G∑
g′=1

νΣ f ,g′ (x)ϕ0,g′ (x) , (2.44a)

dϕ0,g

dx
+Σt,g (x)ϕ1,g (x) =

G∑
g′=1

Σs1,g′→g (x)ϕ1,g′ (x) . (2.44b)

It is clear that if d
dx in Equation 2.44 is replaced by ∇, then the 3D P1 equations are

obtained exactly as shown in Equation 2.22. For any odd N > 1, following this same
process and making the same observation about the derivative terms will result in the 3D
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SPn equations. For N = 1, these equations are exactly equal to the Pn equations. However,
for N > 1, this results in a simplified system of equations which still preserve much of the
transport physics that are not preserved by the P1 or diffusion approximations. Appendix
A contains a detailed derivation of the SP3 equations, but the final 3D SP3 equations are
shown in Equation 2.45.

(2.45a)
−∇ · D0,g (x)∇Φ0,g (x) +

[
Σtr,g (x) − Σs0,g (x)

]
Φ0,g (x)

= Qg (x) + 2
[
Σtr,g (x) − Σs0,g (x)

]
Φ2,g (x) ,

(2.45b)
−∇ · D2,g (x)∇Φ2,g (x) +

[
Σtr,g (x) − Σs2,g (x)

]
Φ2,g (x)

=
2
5

{[
Σtr,g (x) − Σs0,g (x)

] [
Φ0,g (x) − 2Φ2,g (x)

]
− Qg (x)

}
.

Each of these equations is similar in form to the P1 equation and can be solved by iterating
between the the 0th moment equation (2.45a) and the 2nd moment equation (2.45b). This
results in an accurate 3D flux distribution without the expense and complexity of perform-
ing a 3D PN calculation.

In this work, the SPN equations are used only for 1D calculations. In 1D, SPN is exactly
equivalent to PN for all values of N. Because of this, this method is generally referred to as
PN in later chapters of this dissertation and other recent publications related to the MPACT
code.

2.2.3.2 Nodal Expansion Method

While SPN can be used to capture angular moments of the flux, the Nodal Expansion
Method (NEM) [8] is used to capture intra-nodal flux shapes to calculate accurate cur-
rents at the interface between two nodes. This is done by expanding the source and flux
using quadratic and quartic polynomials, respectively:

Q (ξ) =

2∑
i=0

qiPi (ξ) , (2.46a)

φ (ξ) =

4∑
i=0

φiPi (ξ) , (2.46b)

where the variable ξ is simply the spatial variable normalized so the problem is being solved
on the interval [−1,1]. To solve for these moments, five equations are required. The first
three are the moment balance equations, obtained by multiplying the diffusion equation
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by Pn (ξ) for moments 0-2 and integrating (Equation 2.47a). The other two equations are
found by enforcing flux and current continuity at the interfaces between nodes (Equations
2.47b-2.47c).

1∫
−1

Pn (ξ)
(
−

D
h2

d2

dξ2φ (ξ) +Σrφ (ξ)−Q (ξ)
)
dξ = 0, n = 0,1,2 , (2.47a)

φL (1) = φR (−1) , (2.47b)

JL (1) = JR (−1) . (2.47c)

The source moments qi are constructed using the flux moments from the previous itera-
tion. Using this method, an intra-nodal flux shape can be calculated within each node, and
interface currents can be calculated at the boundaries of each node.

2.2.4 Collision Probabilities Method

One method that can be used to calculate flux spectra inside a pin cell is the method of
Collision Probabilities (CP) [45]. This method is used in MPACT as part of the control
rod decusping methods described in Chapter 4. The details of the derivation will be left to
Appendix A, but a brief overview of the method will be presented here that focuses on a
1D radial calculation for a single pin cell.

To begin, the multi-group transport Equation 2.11 can be rewritten so that the entire
right-hand side is a single source term:

Ω ·∇ϕg +Σtr,g (x)ϕg (x,Ω) = qg (x,Ω) , (2.48a)

(2.48b)

qg (x,Ω) =
1

4π

G∑
g′=1

∫
4π

Σs,g′→g
(
x,Ω′ → Ω

)
ϕg′

(
x,Ω′

)
dΩ′

+
1

ke f f

χg

4π

G∑
g′=1

∫
4π

νΣ f ,g′ (x)ϕg′
(
x,Ω′

)
dΩ′ .

This form of the equation assumes no source of neutrons except scatter and fission. Fur-
thermore, because an isotropic scattering transport kernel is used in the derivation, the
CP method can only handle isotropic scattering. This gives way to a simplified isotropic
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source, shown in Equation 2.49:

qg (x,Ω) ≈ qg (x) =
1

4π

G∑
g′=1

Σs,g′→g (x)φg′ (x) +
1

ke f f

χg

4π

G∑
g′=1

νΣ f ,g′ (x)φg′ (x) , (2.49)

where φg is the scalar flux in group g. At this point, we assume the problem is discretized
into R regions and that the cross sections and fluxes are flat in each region, which leads to
a flat source as well for each region r:

qg,r =
1

4π

G∑
g′=1

Σs,g′→g,rφg′,r +
1

ke f f

χg,r

4π

G∑
g′=1

νΣ f ,g′,rφg′ . (2.50)

Now the total source of neutrons in each region r can be calculated by multiplying by
the region volume Vr. If the probability Tg,r′→r of a neutron born uniformly and isotropi-
cally in region r′ reaching region r is known for all regions r′, then the scalar flux can be
calculated as follows:

φg,r =

R∑
r′=1

Tg,r′→rqg,r′Vr′ . (2.51)

Equation 2.51 gives the general solution to any problem using the CP method. The only
remaining work that must be done is to calculate the transport matrix Tg for each group,

which is done in detail for a pin cell in Appendix A.
Several important details about this method should be noted. First, it is common to use a

buffer region in the calculation [45]. When applying the CP method to a fuel pin, the buffer
region is not necessary because the fuel pin has its own fission source to drive the problem.
However, when using this method on a different pin cell such as a control rod, it is useful to
place a homogenized mixture of fuel and moderator around the outside of the control cell.
This provides a source to drive the problem. Second, because the calculation is a 1D radial
calculation, the moderator region in the rectangular pin cell must be cylindricized. This
is done by transforming the moderator region into a ring with the same inner radius and
volume as the rectangular moderator region. Finally, the boundary conditions assumed on
the edge of the problem are “white” boundary conditions. A reflecting boundary condition
assumes that all neutron exiting the problem return at the same energy and traveling in a
reflected direction. However, because the boundary of this problem is a circle, it is possible
for a neutron to be born at such an angle that it continuously reflects off the boundary
without ever traveling toward the fuel. The white boundary condition takes all exiting
neutrons and returns them isotropically to prevent this error.
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CHAPTER 3

2D/1D Framework

3.1 Background

The Boltzmann transport equation can be solved directly in 3D to obtain 3D flux and power
distributions. One method to do this is the 3D Method of characteristics, which is imple-
mented in MPACT [46]. However, performing these 3D transport calculations becomes too
computationally burdensome to be of practical use, even with today’s improved computing
resources. Because LWRs have most of their material heterogeneity in the radial direction
with very little change in the axial direction, it was recognized that approximations could
be made in the axial direction to increase the efficiency of the calculations while still per-
forming high-fidelity transport calculations in the radial direction. Two different groups
of researchers pursued this concept and developed two different methods of solving the
transport equation for LWR problems.

The first of these methods was the “2D/1D Fusion” technique, developed by researchers
at Korea Advanced Institute of Science and Technology (KAIST) and implemented in
codes such as CRX [3, 28, 47]. In this method, the 3D problem is decomposed into a stack
of 2D planes. These planes are solved using 2D MOC, with incoming angular fluxes on the
top and bottom boundaries of the plane as source terms. To couple the planes, the problem
domain is integrated in the x- and y-directions for each pin cell. The angular fluxes at the
radial edges are obtained from the 2D MOC calculations and used as source terms. The
angular fluxes are then solved in the axial direction using the Diamond Difference method.
These results, in turn, are fed back into the radial calculations. Iterating between the radial
and axial calculations then produces a full 3D solutions.

The second group of researchers was at Korea Atomic Energy Research Institute
(KAERI). They developed what is known more simply as the “2D/1D” scheme, first im-
plemented in the DeCART code [4, 48, 49]. This employs very similar technique to the
2D/1D Fusion method described above. However, rather than using angular fluxes from
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Figure 3.1: The 2D/1D Method illustrated with the subplane scheme for the axial and
CMFD calculations

each solver as a source term, currents are tallied on each of the six faces of each pin cell.
The currents can then be used to compute axial and radial “transverse leakage” sources for
the radial and axial solvers, respectively. This change allows for the storage of group-wise
currents at each interface instead of storing the group-wise angular fluxes for each angle,
significantly reducing the memory burden of the calculation.

After some development, the DeCART code was forked into several different versions
for different institutions, one of them being the University of Michigan (UM). After some
development, it was determined that there would be no further development of the De-
CART code at UM and a new 2D/1D implementation would be put in MPACT [43, 50].
In MPACT’s implementation of 2D/1D (shown in Figure 3.1), 2D MOC is used for each
of the radial planes, as with earlier 2D/1D codes. The axial calculation done on a pin-
homogenized mesh usually with P3 wrapper in an NEM kernel. A variety of other solvers
are available, such as SENM, P1, P3, and SN , but these will not be used in this work [51,52].
Finally, MPACT also uses 3D CMFD on the same pin-homogenized mesh to provide con-
vergence acceleration to the calculations. The remainder of this chapter will look at the
derivation of the 2D/1D equations, the details of how they are implemented in MPACT,
and some of the approximations and sources of errors related to this method.

27



3.2 Derivation

3.2.1 Radial Equations

To derive the radial equations, we begin with the multigroup approximation in Equation
2.11 and integrate in the z-direction over some range ∆zi = zk+ 1

2
− zk− 1

2
. To do this, we as-

sume the cross sections are all constant in the interval z ∈
[
zk− 1

2
,zk+ 1

2

]
. With this assumption,

we obtain the following equation:

(3.1a)

Ωx
∂ϕZ

g

∂x
+ Ωy

∂ϕZ
g

∂y
+

Ωz

∆zk

(
ϕg,z

k+ 1
2
− ϕg,z

k− 1
2

)
+ Σt,g (x,y)ϕZ

g (x,y,Ω)

=
1

4π

G∑
g′=1

∫
4π

ΣZ
s,g′→g

(
x,y,Ω′ ·Ω

)
ϕZ

g′
(
x,y,Ω′

)
dΩ′

+
1

ke f f

χZ
g

4π

G∑
g′=1

∫
4π

νΣZ
f ,g′ (x,y)ϕZ

g′
(
x,y,Ω′

)
dΩ′ ,

ϕZ
g (x,y,Ω) =

1
∆zk

z
k+ 1

2∫
z

k− 1
2

ϕZ
g (x,y,z,Ω)dz , (3.1b)

where a superscript Z indicates the average of a quantity over a given plane. The z-
component of the streaming can now be moved to the right-hand side of the equation and
treated as a source term, giving a 2D transport problem which could be solved with a variety
of methods:

(3.2a)Ωx
∂ϕZ

g

∂x
+ Ωy

∂ϕZ
g

∂y
+ Σt,g (x,y)ϕZ

g (x,y,Ω) = qZ
g (x,y) + LZ

g (x,y,Ωz) ,

(3.2b)

qZ
g (x,y) =

1
4π

G∑
g′=1

∫
4π

ΣZ
s,g′→g

(
x,y,Ω′ ·Ω

)
ϕZ

g′
(
x,y,Ω′

)
dΩ′

+
1

ke f f

χZ
g

4π

G∑
g′=1

∫
4π

νΣZ
f ,g′ (x,y)ϕZ

g′
(
x,y,Ω′

)
dΩ′ ,

LZ
g (x,y,Ωz) =

Ωz

∆zk

(
ϕg,z

k− 1
2
−ϕg,z

k+ 1
2

)
, (3.2c)

where LZ
g (x,y,Ωz) is the axial transverse leakage source term for plane z. To simplify the

source term, the axial transverse leakage term is often handled isotropically. This is done
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by averaging over angle:

LZ
g (x,y,Ω) ≈ LZ

g (x,y) =
1

4π

∫
LZ

g (x,y,Ωz)dΩ =

Jg,z
k− 1

2
− Jg,z

k+ 1
2

4π∆zk
, (3.3)

where Jz
i± 1

2
is the current at the top (+) or bottom (−) of the plane. This eliminates the need

for storing all the angluar fluxes on the top and bottom of every plane. Other methods exist
that allow the axial transverse leakage source to maintain its angular dependence without
storing the angular fluxes [53], but these methods are not discussed here since they were
not used by this work.

3.2.2 Axial Equations

The axial equations can be derived in a manner similar to the radial equations. Again, we
begin with the multi-group approximation shown in Equation 2.11. This time, we integrate
in both the x- and y-directions over intervals x ∈

[
xi− 1

2
, xi+ 1

2

]
and y ∈

[
y j− 1

2
,y j+ 1

2

]
, giving the

following equations in the axial direction, which are analogous to the radial equations in
the previous section:
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(3.4b)
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(3.4c)
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2

x
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2∫
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2

ϕg (x,y,z,Ω)dxdy , (3.4d)

where a superscript XY now corresponds to a particular x- and y-region which extends the
full height of the problem in the z-direction. Again, it is assumed that the cross sections
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are constant in the x- and y-directions inside the region of integration. How this is accom-
plished will be discussed in more detail when discussing MPACT’s implementation of P3

and CMFD.
As with the radial equations, we can treat the transverse leakage source isotropically by

averaging over angle:

(3.5)
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As an additional approximation we assume that the currents are tallied across an entire
transverse surface, meaning that the current terms in the integrals above are constant over
the direction of integration. With this simplification, the final form of the radial TL is

LXY
g (z) =

Jg,x
i− 1

2
,y j (z)− Jg,x

i+ 1
2
,y j (z)

4π∆xi
+

Jg,xi,y j− 1
2

(z)− Jg,xi,y j+ 1
2

(z)

4π∆y j
. (3.6)

Again, methods have been developed to handle the angle-dependence of the radial trans-
verse leakage source [52], but this work used only isotropic radial leakage.

3.3 Implementation

Now that the general 2D/1D scheme has been described, some attention should be given to
the details of its implementation in MPACT. Figure 3.2 shows the calculation flow used by
MPACT. The first step is to perform a global 3D CMFD calculation to obtain pin-averaged
flux and interface currents between each cell. Next, the axial solver uses the radial currents
calculated by CMFD as a radial transverse leakage source to obtain an axial transverse
leakage source for the radial solver. Finally, 2D MOC is used as the radial solver to obtain
a solution with sub-pin resolution in each plane.
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Figure 3.2: Calculation flow for 2D/1D scheme

3.3.1 3D Subplane CMFD

The CMFD method was originally implemented in MPACT just as described in Section
2.2.2. To do this, each pin cell is homogenized using the quantities defined in Equation
2.35 in every plane in the model. The radial coupling coefficients defined in Equation 2.38
are obtained by calculating the current at the interface between each pair of pin cells using
the 2D MOC sweeper, while the axial coupling coefficients are obtained from the axial
currents calculated by the axial solve during the previous iteration. The matrix for the 3D
multi-group system can then be set up and solved, typically using the generalized Davidson
eigenvalue solver.

As part of this work, the traditional CMFD capability was extended to use the subplane
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scheme, first developed by Cho et al. for the DeCART code [54] and later used in the
nTRACER code [55]. Thin MOC planes are capable of causing instability in the 2D/1D
scheme, but are sometimes required to maintain accuracy. The subplane scheme allows
users to increase the thickness of the 2D planes while still maintaining the accuracy of a fine
axial mesh. While DeCART used the subplane scheme primarily to allow for thicker MOC
planes, nTRACER also uses the subplane scheme as part of its rod decusping methods [29].
This section will focus only on the subplane scheme as a means of using fewer MOC planes,
while Chapter 4 will discuss how the subplane scheme has been modified to be used in
decusping methods.

Start
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and Flux;
Calculate D̃

First Iteration?

Set D̂ = 0 Calculate D̂

Set up CMFD
Matrix

3D CMFD
Calculation

Scale MOC flux
with CMFD flux

Stop

yes no

Figure 3.3: Calculation flow for 3D subplane CMFD
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3.3.1.1 Homogenization

For the traditional CMFD calculations, each pin cell in an MOC plane is homogenized into
a single CMFD cell. When using the subplane scheme, the homogenized pin cell is divided
axially into a stack of cells. This causes the CMFD system to have multiple planes per
MOC plane, allowing CMFD to capture subplane axial flux shapes that would otherwise be
ignored. To do this, a subplane scaling factor is introduced which will be used to provide
an axial shape within a 2D plane:

ck
g,i =

φk−1
g,i

φ
k−1
g,i

=
φk−1

g,i
∑Nsp

i′=1 Vi′∑Nsp
i′=1φ

k−1
g,i′ Vi′

, (3.7)

where superscripts indicate which iteration the values are taken from and Nsp is the number
of subplanes for the pin cell of interest. Now when the homogenized values are calculated
from the 2D transport solution using Equation 2.35, the fine mesh flux is multiplied by this
subplane scaling factor everywhere it appears. Because the 2D/1D scheme assumes a con-
stant material axially in each plane, this subplane factor has no impact on the homogenized
cross sections. However, the homogenized flux φg,i and fission source distribution χg,i will
be changed, providing an axial shape for the source term in the eigenvalue calculation.

3.3.1.2 Coupling Coefficients

In addition to the homogenized cell terms, the coupling coefficients described by Equa-
tions 2.37 and 2.38 must be calculated for each subplane. To maintain consistency, the
area-averaged current calculated by the radial sweeper must be preserved across the sub-
surfaces used by the subplane scheme. Thus, the current calculated by the radial sweeper
at an interface is used at the corresponding interfaces for all subplanes in that plane. Ad-
ditionally, to maintain consistency, this requires that the cell-homogenized flux used in the
calculation of the diffusion coefficients be defined for the entire MOC plane as in Equation
2.35e rather than using the subplane scaling factor for each subplane.

The axial coupling coefficient can be treated in a more straightforward manner. Because
the 1D axial solvers use the same pin-homogenized mesh as the CMFD solver, axial cur-
rents are naturally calculated at the top and bottom of each of the subplanes. Thus, these
currents can be used together with the subplanes fluxes to calculate subplane-dependent
axial coupling coefficients.
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3.3.1.3 Projection

The projection of the CMFD flux back to the 2D planes must also account for the presence
of the subplanes. To do this, the solution is volume-averaged over all subplanes for each
pin cell, resulting in an equation similar to 2.40:

φk
trans,g, j =

∑Nsp
i′=1φ

k
CMFD,g,i′Vi∑Nsp

i′=1φ
k−1
CMFD,g,i′Vi

φk−1
trans,g, j . (3.8)

The calculation flow for 3D CMFD is shown in Figure 3.3.

3.3.2 1D NEM-P3

In MPACT, the 1D axial solvers operate on the same mesh as the 3D CMFD calculations,
meaning that cell-homogenized quantities and radial currents have already been obtained
from the CMFD calculation. All the 1D axial solver must do is construct a source term
from the radial currents for each cell, then perform a calculation to obtain currents on the
axial interfaces at the top and bottom of each node.

Start

Calculate radial
transverse

leakage source

Solve 0th
moment equation

Solve 2nd
moment equation

Converged? Stopyesno

Figure 3.4: Calculation flow for 1D axial calculations in MPACT
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MPACT has a variety of 1D nodal methods that are capable of performing these calcu-
lations, including diffusion-based such as NEM and SENM and higher-order solvers such
as PN and SN . For most calculations, MPACT uses P3 wrapped in NEM kernels. The P3

portion handles the angular dependence of the solution by calculating angular moments.
The NEM kernels then handle the spatial dependence through the fourth-order polynomial
expansion. Because the P3 equations can be written as two sets of P1 equations, they natu-
rally lend themselves to being solved this way.

The P3 equations consist of equations for angular flux moments 0 through 3. These
equations can be combined into two equations for just the 0th and 2nd moments, as shown
in Equations 2.45. Formulating P3 this way makes it straightforward to use the NEM
kernels for each of the two moment equations. The iteration scheme for this procedure is
shown in Figure 3.4.

3.3.3 2D MOC

For the radial calculations, 2D MOC is used. This allows MPACT to easily calculate scalar
fluxes and currents in each plane regardless of the geometric complexity. This section
is devoted to discussing some of the details of the MOC implementation and sweeping
algorithm in MPACT.

3.3.3.1 Ray Tracing

One of the key features of MPACT’s MOC implementation is that of modular ray tracing,
illustrated in Figure 3.5. Ray tracing is performed once at the beginning of a calculation
and stored for the remainder of the calculation. Doing this reduces the runtime of the MOC
sweeps since the length of each ray segment and the region it is crossing are already known
ahead of time. Furthermore, MPACT takes advantage of the repeatable nature of a reactor’s
geometry. Because reactor geometry is repetitive, small portions of the geometry which
repeat frequently can be ray-traced separately instead of tracing the entire core. These
smaller units of geometry, depicted in Figure 3.6, are known as ray tracing modules; in
MPACT they are usually a quarter fuel assembly. After the unique modules are identified,
each of them is ray-traced in such a way that the endpoints of a ray in each module will
line up with the beginning of a ray in the neighboring module. This significantly reduces
the storage requirements for the ray data since a small number of ray tracing modules can
represent a full core problem. During each sweep, the long rays which traverse the entire
model are reconstructed from the modular rays then swept. This causes a small runtime
penalty in exchange for significant memory savings.
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Figure 3.5: Modular ray tracing depiction [33]

Figure 3.6: Fine mesh ray tracing

As a result of the modular ray tracing, several corrections are required. First, to suc-
cessfully perform the ray tracing the angles of the rays had to be adjusted slightly to line up.
However, because a quadrature is used to integrate the angular flux, this angle modification
requires a correction to the quadrature weights as well to maintain accuracy. Second, the
spacing between the rays must also be adjusted slightly to ensure that all rays align. Along
with these corrections, there are other MOC concepts such as volume corrections, cyclic
rays, and others which are important to be aware of but will be deferred to the MPACT
theory manual for details [33].

3.3.3.2 Sweeping Algorithm

To perform the MOC sweeps, MPACT uses a multi-group sweeping method. To do this,
multi-group sources and cross sections are prepared for each of the fine mesh regions in
each plane. There are then four total loops for the sweeping algorithm. From outermost
to innermost, these loops are over azimuthal angle, ray (across the entire domain), polar
angle, and energy group. Each ray is divided into many segments that the MOC steps its
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Figure 3.7: Calculation flow for 2D MOC calculation in MPACT

way along as described in Section 2.2.1. As these sweeps are performed, scalar flux is
tallied in each fine mesh region, and, assuming CMFD is being used, currents are tallied at
the interfaces between each pin cell. Normally only one inner MOC iteration is required
per 2D/1D iteration. This algorithm is shown in Figure 3.7, with the sweep of a single
MOC plane expanded in Figure 3.8.

MPACT also has the capability of performing the MOC sweeps with the energy loop as
the outermost. This has two advantages. First, the previous group is used to construct the
scattering source for the current group. This means that the iteration scheme is a Gauss-
Seidel iteration instead of a Jacobi iteration, which can speed up the convergence of the
problem. Secondly, the cross sections and sources only need to be stored for one group
at a time, minimizing the storage requirements for the calculations. However, when using
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Figure 3.8: Calculation flow for 2D MOC sweep of a single plane

transport-corrected cross sections, some instabilities have been observed in this iteration
scheme when using only a single inner iteration. Furthermore, having the energy loop on
the inside results in some improved cache efficiency when it comes to traversing the rays,
reducing the runtime for a single MOC sweep [56]. For these two reasons, MPACT defaults
to the Jacobi-style iteration scheme described first.

3.4 Parallel Decomposition

While the 2D/1D scheme greatly reduces runtime from a direct 3D transport calculation, it
is still computationally expensive when compared to nodal methods traditionally used by
industry. To minimize the walltime required for 2D/1D calculations in MPACT, several dif-
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ferent methods of decomposing the problem for parallel execution have been implemented.
These methods allow MPACT to easily scale to hundreds or thousands of CPUs. Each of
these methods will be briefly described in this section.

1. Spatial Decomposition

When using this decomposition, each parallel process only has a portion of the model.
Each portion is solved locally by one process, then boundary data is communicated to
all processes which own neighboring portions of the model. The updated boundary
data is then used in the following iteration. When using spatial decomposition, planar
decomposition is performed first. This means that if the total number of parallel pro-
cesses being used is less than or equal to the number of 2D MOC planes, then one or
more entire planes is simulated by each process. If more processes are used than there
are planes in the model, then radial decomposition is performed. This decomposes ev-
ery plane radially into smaller pieces. Every plane must be radially decomposed in the
same way, and the smallest unit allowed in radial decomposition is a single ray-tracing
module. Because spatial decomposition does not duplicate much memory and does not
decrease the computational efficiency significantly, it is usually the preferred choice of
decomposition methods.

2. Angle Decomposition

For angle decomposition, each process has the entire spatial domain. When the MOC
sweeps are performed, each process only sweeps a subset of the angles in the selected
quadrature. After the sweep, a reduction is performed to get the actual scalar flux
and currents on all processes. For the CMFD calculation, the angle processes are re-
purposed as spatial processes. Each angle process owns the full domain, but only solves
a portion of it as if it were spatially decomposed.

It is possible to use both spatial and angle decomposition together. When this is done,
spatial decomposition is performed first, then angle decomposition is done within each
spatial domain. In general, the efficiency of angle decomposition calculations is less
than that of spatial decompositions. Furthermore, it also requires that each angle process
models all of the spatial domain, increasing the total memory required for the calculation
compared with finer spatial decomposition. However, angle decomposition is still useful
for reducing the runtime of cases where further spatial decomposition is not possible.

3. Ray Decomposition

A third type of decomposition that can be done is to decompose the rays in the MOC
calculation. Unlike the previous methods, the ray decomposition makes use of shared-
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memory threading instead of distributed memory message passing. While performing
the MOC sweeps, several threads are used to solve all the rays in each angle. For the
CMFD calculation, MPACT has internal RBSOR solvers which are capable of using
threading. However, when third-party libraries are used for the CMFD calculations,
the threading will be used only during the CMFD calculation. Threading can also be
combined with both spatial and angle decomposition to further increase the parallelism
of MPACT.

4. Energy Decomposition

At this time, energy decomposition is not available in MPACT. However, when it is
added, it will be similar to the angle decomposition. For the MOC calculation, each
process will solve a subset of the energy groups on the spatial domain, and for the
CMFD calculation, the energy processes will be re-purposed as space processes.

3.5 Sources of Error

The 2D/1D approximation has several sources of error. Some of these are addressed by
mesh, ray spacing, or quadrature refinements, but others are due to approximations made
in the method itself. The sources of error which are due to fundamental approximations in
the 2D/1D method will be discussed first, followed by a brief (not comprehensive) list of
some other common sources of error.

3.5.1 Axial Homogenization

When deriving the radial equations in Section 3.2.1, it was assumed that the cross sections
were constant in the axial direction for each of the planes. While this is often the case if an
appropriate axial mesh is selected, sometimes it is impractical to mesh the problem finely
enough to ensure this. When an axial material heterogeneity is present in a plane, 2D MOC
requires that these materials be homogenized. In some cases, a simple volume-averaging is
sufficient, but if a material with a large cross section is being homogenized with a material
that has a significantly different cross section, significant errors can result. To prevent this
without refining the axial mesh, some modification to the 2D/1D scheme is required to
improve the homogenization. This will be addressed in Chapter 4.
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3.5.2 Axial Transverse Leakage Source

Another approximation relates to the assumptions made while deriving the axial equations
in Section 3.2.2. The P3 calculations are performed on a pin-homogenized mesh. Because
of this, the axial currents used in the axial TL source are assumed to be flat across the entire
pin cell. However, the currents will obviously be quite different in the fuel and moderator
regions. Furthermore, the axial TL is treated isotropically. While this simplifies the axial
calculations and MOC storage requirements, it does not perfectly reflect reality. Both these
spatial and angular assumptions introduce some error into the axial TL source used by
MOC.

3.5.3 Radial Currents

The radial TL source used by the axial P3 solver has the same two approximations as
the axial TL source did. Radial currents are used to generate the source, which assumes
isotropy. Additionally, the spatial shape is flat across each pin cell. This is corrected to
some extent since the axial solver produces a quadratic source shape using the neighboring
nodes, but this is not a perfect solution.

Additionally, when using the subplane method, the D̂ correction terms used by CMFD
are assumed to be axially flat within each MOC plane. While this assumption improves
the stability of the calculations, it forces CMFD to capture any axial shape the current has
within an MOC plane. For most problems, this error is probably negligible, but for cases
such as a partially inserted rod or other strong absorber, it would be beneficial to be able to
have subplane-dependent D̂ terms to more accurately calculate the radial currents. Doing
this would improve the radial TL source in the P3 solver, and the overall 2D/1D results.

3.5.4 Other Sources of Error

Several other sources of error in the 2D/1D method will be briefly mentioned here, but not
discussed in detail.

1. Ray Spacing

The spacing between the rays in the MOC calculation is important to the accuracy of
the calculation. At minimum, one ray needs to pass through each of the fine mesh
regions, but multiple rays will improve the accuracy. A typical ray spacing is 0.05 cm,
but sometimes finer spacing may be required.

2. Radial Meshing
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The radial and azimuthal meshing of each of the pin cells must be fine enough to give a
good solution. In MPACT, fuel pins usually have 3 radial rings, with an extra ring in the
moderator region to resolve the change in the flux near the edge of the fuel pin. Each
ring is typically divided into 8 azimuthal regions.

3. Axial Meshing

The axial mesh must be refined enough to capture the axial shape of the solution. Usu-
ally MOC planes of about 8 cm thick are used for a typical PWR calculation, which
some thinner planes to resolve spacer grids, burnable poison inserts, or other compo-
nents. Using thicker planes could decrease accuracy and worsen the convergence of the
CMFD calculations. This effect can be minimized for thick MOC planes by using the
subplane method.

4. Scattering Treatment

Scattering in a reactor, especially off the hydrogen atoms in the moderator, is
anisotropic. To resolve this, a sufficiently high-order scattering treatment must be used
in the MOC calculations. For PWRs, P1 to P3 is a typical range. MPACT is capable of
going up to P5 scattering treatment for libraries which have the required data.

An alternative is to use transport-corrected P0 scattering. This can capture the anisotropy
without increasing the runtime of the calculations. However, there are several methods
of calculating the transport cross sections, and none of them are perfect. Thus, using the
TCP0 option in MPACT also has some non-trivial error associated with it.

5. Cross-Section Library

To perform any calculations using the 2D/1D method, a multi-group cross section library
must be available. While this is not technically a source of error in the 2D/1D method
itself, the cross section library can be difficult to generate correctly. Any error in any
isotope in the library will cause error in the 2D/1D calculations if the isotope is used
in the model. Thus, the 2D/1D method is useless if a bad cross section library is being
used.

6. Self-Shielding

Another potential source of error is related to spatial and energy self-shielding. To
correctly deal with resonance absorption in the fuel while also accounting for the spatial
self-shielding in the fuel, MPACT uses the subgroup method [57, 58]. Without using
this method, the ke f f calculated by MPACT is off by several percent, along with an
inaccurate flux distribution.
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7. Quadrature

One final source of error that can arise is in the selection of a quadrature. It is important
to select both an appropriate number of azimuthal and polar angles as well as an ap-
propriate type of quadrature. Typically around 16 azimuthal angles and 3 polar angles
is sufficient. There are several different types of quadratures implemented in MPACT,
but generally a Tabuchi-Yamamoto quadrature is used for the polar angles [59] with a
Chebyshev quadrature for the azimuthal angles [60].
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CHAPTER 4

Rod Cusping

This chapter will focus specifically on control rod cusping effects, which are the focus of
this work. First, a more thorough definition of the problem and motivation for solving it
will be presented. The next section will then present some of the solutions that have been
used to minimize the cusping effects in the past, including a simplified decusping model
implemented in MPACT itself. The third section will then discuss some newer methods
based on the sublpane CMFD scheme that have recently been implemented in MPACT.
Finally, a new “subray” MOC method will be proposed to deal with the cause of the cusping
effects on a more fundamental level.

4.1 Background

Figure 4.1: Illustration of Rod
Cusping [29]

In Section 3.5, some potential sources of errors for
the 2D/1D scheme were introduced. One of these
was the error introduced by axial homogenization
within a 2D MOC plane. In some cases, this can
be done without introducing significant errors. For
example, MPACT often homogenizes components
outside the active fuel region, such as the end plugs
and gaps at the end of the fuel rods. However, when
strong neutron absorbers, such as control rods, are
homogenized axially in active fuel region, this has
the effect of introducing absorption in regions where
there should be none. This effect is known as “cus-
ping,” [8] and is illustrated in Figure 4.1.

In some cases, this is easily handled by setting up
an appropriate axial mesh which prevents the need
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Figure 4.2: Control Rod Cusping Effects in MPACT for 3x3 Assembly

for the homogenization, but this is not always a practical solution. Throughout the course
of an entire cycle of operation (usually about 18 months), several different control banks in
the reactor may move to a variety of positions to maintain criticality in the core. Control
rods in a PWR typically have step sizes of approximately 1.5 cm, but a typical MOC plane
in MPACT is about 8 cm thick in the active fuel region. In order to prevent cusping effects
for an entire cycle, the user may have to create a very detailed axial mesh to ensure that all
the control rod positions used throughout the cycle align with the edge of an MOC plane.
Not only is this tedious for the user, but it also greatly increases the computational burden
due to the increased number of MOC planes. Figure 4.2 shows the calculated ke f f as a
function of control rod position. The cusping effects in this figure are further complicated
by a heterogeneous rod with silver-indium cadmium alloy (AIC) and B4C poison regions
and a stainless steal tip. Thus, cusping effects occur not just at the control rod tip, but also
at material interfaces throughout the rod.

4.2 Decusping Methods History

Before discussing the recent and proposed methods to address the rod cusping problem, it
is useful to provide an overview of past methods. These will then be used as a comparison
for recent work and justification for the proposed work. First, we will look at some of the
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ways rod cusping was addressed in older nodal codes. Then we will look at the effects in
2D/1D codes and recent work to address them.

4.2.1 Nodal Codes

Control rod decusping methods have been developed for nodal codes for over thirty years
now. Many different methods have been developed over that time frame, making a compre-
hensive discussion impractical. However, several different methods will be discussed here
to provide some context for how the rod cusping problem was handled in nodal codes.

4.2.1.1 Tabulation Methods

One of the most basic methods of handling the cusping problem was through pre-tabulation
of cross section for the partially rodded node (PRN) [16]. For the nodal calculations, node-
averaged cross sections were generated using some higher fidelity method on small portions
of the domain. For the PRN, this calculation could simply be repeated many times for
each of the possible rod positions. However, because of the many positions the control
rod could have in a reactor, this required many different cross sections to be calculated.
Furthermore, these calculations needed to be done on more than a single assembly to obtain
acceptable accuracy due to inter-assembly effects [61]. Others tried using multi-assembly
calculations [9] and color sets [10] to improve the accuracy of this method. However, the
number of rod possible positions and the size of the problems required to generate accurate
homogenized cross sections made this method impractical at the time, motivating further
research into rod decusping methods.

One variation of this method which improved on the runtime used response matrices
and node surface currents [11,12]. For this method, response matrices were tabulated ahead
of time based on the surface current boundary conditions. An iterative process could then
be carried out between the global nodal calculation and a local fixed sources calculation.
During each iteration, the surface currents from the global calculation were used to update
the homogenized cross sections in the PRN using the response matrices. At convergence,
the cross sections in the PRN were calculated from the actual solution boundary conditions,
greatly increasing the accuracy of the global solution compared with the simpler cross
section tabulation method. However, this method still required up-front calculation of the
response matrices, which could be expensive for some problems. Consistency was also not
perfectly maintained between the local and global problems, which sometimes resulted in
convergence difficulties.
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4.2.1.2 Polynomial Flux Expansions

Another early method which sought to improve on the brute-force tabulation method used
polynomial expansions of the intra-nodal flux shape in the axial direction [13,14]. Methods
such as NEM which are commonly used in nodal codes typically assume some shape to the
source and flux inside each node. For this method, a quadratic shape was assumed and used
to flux-volume weight the rodded and unrodded cross sections to generate homogenized
cross sections for the PRN. This resulted in a reduction of the cusping errors by about
50% [62], which was not sufficient for many applications. Higher order polynomials were
also attempted [15], but the axial shapes these generated were non-physical and sometimes
led to oscillations and other numerical problems.

4.2.1.3 Collector-Predictor Method

Joo [16] focused on developing a method which would address rod decusping using only
material compositions and node dimensions, rather than relying on boundary conditions as
well. To do this, he developed an asymptotic method in which the PRN was modeled as
two semi-infinite slabs, with one slab being composed of rodded material and the other slab
being unrodded material. A 1D multi-group calculation was then carried out to determine
the flux shape around the interface between the two materials. This flux shape was then
used in the homogenization process for the PRN.

This method was found to be inaccurate because the infinite system is not actually a
good representation of the flux shape in a reactor. To improve on this method, Joo devel-
oped what is known as the Collector-Predictor Method. There are two variations to this
method. The first, simpler variation assumes that the first calculation has the tip of the
control rod aligned with the boundary between two nodes. The collector step occurs at the
end of the global calculation, collecting the radial transverse leakages and axial boundary
currents for the rodded and unrodded nodes which neighbor each other. Then, rather than
performing calculations using semi-infinite slabs as in the previous paragraph, a 1D calcu-
lation is instead performed using the information from the collector step. This predictor
step generates a more accurate flux profile around the interface between the rodded and
unrodded materials. Then, when the rod is moved throughout the calculation, it is assumed
that this axial flux profile in the vicinity of the rod tip does not change significantly, so the
profile can just be shifted with the rod and used in all subsequent cross section homogeniza-
tions. This method then improved to allow the first calculation to also have a PRN. Overall,
this method significantly improved on previous ones by reducing decusping methods dy-
namically that converged consistently and did not rely on tabulated values. Furthermore,
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because the extra calculations were 1D on a small subdomain of the problem, the additional
computational expense was small.

4.2.1.4 Bi-Linear Weighting Method

Many decusping methods which followed the Collector-Predictor Method focused on im-
provements to the 1D calculation or boundary condition information to improve accu-
racy [17–20]. However, one significant variation that was developed by Kim and Cho [21]
is the Bi-Linear Weighting Method. This method uses the same concept as the Collector-
Predictor method, but solves for both the forward and adjoint axial flux shapes. Both of
these shapes are then used in the cross section homogenization, as shown in Equation 4.1.
The use of the adjoint flux φ∗ in the homogenization process resulted in significant im-
provements in the accuracy of the nodal calculations.

Σ =

∫
φ (z)φ∗ (z)Σ (z)dz∫
φ (z)φ∗ (z)dz

. (4.1)

4.2.1.5 Nodal Expansion Method Modification

Another method which calculates axial flux profiles to improve homogenization is a modi-
fied form of NEM [22, 23]. To improve the accuracy of nodal calculations, NEM assumes
a quartic polynomial for the intra-nodal flux shape to calculate interface currents. For the
PRN, this quartic shape can can also be used to calculate improved cross sections. This
is convenient because this axial profile must already be calculated when using NEM, so
the only additional calculation is to integrate the shape over the rodded and unrodded re-
gion and use the result to homogenize the cross sections. Because Legendre polynomials
are used for the flux expansion, these integrals can be calculated analytically, resulting in
negligible increase in computational cost.

4.2.1.6 Equivalent-Node Method

The Equivalent-Node Method [24] attempts to calculate the PRN cross sections as if the
PRN were modeled as two separate nodes: one fully rodded and one fully unrodded. This
method sets up two different diffusion problems for the PRN: one with a single region
and one with two regions. This is done in combination with NEM for each of the spatial
moments being calculated. The cross sections in the case of the single region (homogenized
cross sections) are formulated in terms weighting factors multiplied by the heterogeneous
cross sections. It is then enforced that the integral of the reaction rates for the one- and
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two-region problems are equal. This preserves the reaction rates of the two-node problem
in the homogenized problem and provides correction factors for the higher-order spatial
moments. Solving these equations produces accurate, smoothly varying homogenized cross
sections.

4.2.1.7 Inverse Spectral Index Method

With increased computing power, interest grew in performing full core calculations with
finer spatial discretizations by perform nodal calculations using homogenized pins instead
of homogenized assemblies or quarter assemblies. However, with the smaller spatial re-
gions, the radial leakages become more important than before, causing many of the older
rod decusping methods to become inaccurate. In 2004, Yamamoto developed the Inverse
Spectral Index (ISI) method to address rod cusping for a pin-by-pin nodal calculation [25].

To develop this method, it must be noted that if the axial leakage is small compared to
the radial leakage, the flux spectrum in a cell will be similar for an assembly calculation or
a full core calculation. When performing assembly calculations to generate homogenized
cross sections, one quantity which can be tabulated is the spectral index, defined as the
ratio of the fast flux to the thermal flux in a pin. Because the fast flux is smoothly varying
across the core compared to the thermal flux, it can be accurately approximated using the
PRN’s neighbor nodes. The spectral index from the assembly calculations, which explicitly
modeled the rodded and unrodded regions, can then be used with the fast flux to calculate
the thermal flux. A flux-volume weighting is then used to average the rodded and unrodded
cross sections for the following iteration. Because the fast flux is affected by the PRN cross
sections, iterations are performed to converge the flux and cross sections together

4.2.1.8 CIAMA Nodal Method

Recently, a new nodal method known as Channel-wise Intrinsic Axial Mesh Adaptation
(CIAMA) has been developed [26, 27]. This method eliminates all rod cusping effects im-
plicitly by eliminating the traditional constraint of other nodal methods: all nodes must be
homogeneous. With this requirement removed, partially inserted control rods can be han-
dled implicitly by the method, without need for any auxiliary calculations or corrections.

To do this, a subplane-like scheme is employed in the NEM formulation. As with
a traditional NEM formulation, the nodes are coupled through transverse leakage terms.
However, within each node, a refined heterogeneous axial mesh is used. The transverse
leakage terms are still calculated on the coarse mesh with a quadratic polynomial fit. For
each node, this polynomial can simply be integrated over the height of the subnodes to

49



determine the subnode leakage source. Because the inter-node coupling is done on the
coarse mesh, the axial submesh can be unique for each node. This allows the method to
implicitly handle axial heterogeneities with minimal increases in runtime.

4.2.2 2D/1D Codes

Unfortunately, moving away from nodal methods to higher fidelity transport codes does not
eliminate the rod cusping problem, as shown in Figure 4.2. There have not been as many
2D/1D codes as there have been nodal codes, but each of them still had to contend with
this problem. This section will discuss some of the different 2D/1D codes that have been
developed and how the rod cusping problem was dealt with in each of them.

4.2.2.1 Neighbor Spectral Index Method

The code CRX-2K [28] uses the 2D/1D fusion method to perform LWR simulations. To
address the rod cusping problem in this code, a modified version of the ISI method is
applied, called the Neighbor Spectral Index (NSI) method. The NSI method uses the same
methodology as the ISI with one modification. Because the 2D/1D fusion method does not
require standalone calculations to generate homogenized cross sections, the spectral index
must be calculated on-the-fly during the 2D/1D iteration. To do this, the neighboring node
above the PRN is used to obtain a rodded spectral index, and the neighboring node below
the PRN is used to obtain an unrodded spectral index. These two indexes are then used with
the rodded and unrodded cross sections and volume fractions to obtain homogenized cross
sections for the PRN. This method causes significant improvements over other decusping
methods and requires negligible additional computation since the fluxes are stored for every
region already.

4.2.2.2 Subplane Decusping

Another 2D/1D code is nTRACER, which is under active development by Seoul National
University [55]. To address rod cusping effects in nTRACER, Jung and Joo developed a
more general method than the polynomial correction method used by MPACT [29]. This
method pregenerates correction factors at the start of a simulation, rather than relying on
hard-coded corrections. To do this, the assembly that will have a partially inserted control
rod is identified, and a single-plane 3x3 assembly problem is set up using the partially rod-
ded assembly and its neighbors. The radial and axial cusping effects are then determined
separately. First, the radial cusping effects are determined by performing 2D MOC calcula-
tions on the 3x3 subdomain with the rod fully inserted and fully withdrawn. This provides
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radial flux profiles in the rodded assembly for both rodded and unrodded regions, as well as
current coupling coefficients for CMFD for the rodded and unrodded CMFD nodes. Once
this is done, the rod is simulated at positions of 25%, 50%, and 75% withdrawn from the
plane. To reduce runtime, these calculations are done using only 3D subplane CMFD, using
the heterogeneous rodded and unrodded cross section for the appropriate subplanes. This
generates axial flux profiles for the full MOC plane for each of the possible rod positions.
During the full core 2D/1D calculation, these axial flux profiles are then used to generate
improved homogenized cross sections for the MOC calculation using equation.

Σi =
φR

rad,iφ
R
ax,iΣ

R
i hR +φU
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R
ax,ih

R +φU
rad,iφ

U
ax,ih

U
. (4.2)

4.2.2.3 Approximate Flux Weighting Method

Because nTRACER’s subplane decusping method required up-front calculations for use,
the total runtime of the 2D/1D calculations increased significantly. Because of this, the
Approximate Flux Weighting Method was implemented [30]. This method was originally
developed for nodal methods [17], but also proved effective for 2D/1D as well. In this
method, it is assumed that the flux in the rodded and unrodded parts of the partially rodded
node are close to the fluxes in the rodded node above and unrodded node below, respec-
tively. This assumption is not far from reality, and it provides approximate values for the
flux that can be used to homogenize the cross sections in the partially rodded node. This
method is popular in nodal codes because it is relatively accurate and quite simple to im-
plement, only requiring the fluxes from 2 neighboring nodes and the rodded and unrodded
cross sections.

4.3 Summary

The rod cusping problem has been shown to occur in both nodal codes and direct whole-
core transport codes. Many methods have been developed over the years to address cusping.
Many of these methods are deal with tabulating cross sections for nodal codes, and are
therefore irrelevant for more modern planar synthesis methods. Others have either failed
in fully eliminating the effects of the partially inserted rod or require enough additional
calculation that they were abandoned in favor of faster methods, as seen with the nTRACER
code in Section 4.2.2.3. Because of this, research into advanced, novel subgrid methods to
deal with this problem is still required. The following chapter will present three methods
which attempt to deal with rod cusping in varying degrees of complexity.
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CHAPTER 5

Subgrid Decusping Methods

This chapter will describe three control rod decusping methods developed as part of this
work. The first method is polynomial decusping, a simple correction based on pregenerated
data. The second method is subplane collision probabilities. This method extends the
subplane scheme by introducing a 1D collision probabilities calculation to capture subgrid
information around partially inserted rods. The final method presented here is the subray
method of characteristics. This modified form of MOC directly accounts for the partially
inserted rod in the 2D MOC calculations instead of applying corrections to cross sections
afterwards.

5.1 Polynomial Decusping

The polynomial decusping technique was developed to provide a fast, simple correction
to the cusping problem in the MPACT code. This technique assumes that the reactivity
and power around the partially inserted rod have a predictable shape as functions of the
rod position within the MOC plane. Based on this assumption, correction factors were
developed to reduce the volume fraction of control rod material and reduce the magnitude
of the cusping effects.

5.1.1 Correction Data Generation

To generate this data, two different sets of calculations were required. Both sets were
done using a 3×3 assembly case with a control rod in the center assembly. The first set
of calculations began with the control rod aligned with MOC plane boundaries. The rod
was then withdrawn upward through the MOC plane and simulated at different positions.
A total of 9 simulations were conducted: one with the rod aligned with the bottom of the
plane, one with the rod aligned with the top of the plane, and 7 with the rod partially inserted
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to various depths in the plane. The first and last calculations had no cusping effects because
the rod was aligned with plane boundaries, but the remaining cases exhibited severe cusping
effects.

The second set of calculations used the same problem and rod positions as the first set.
However, for the 7 partially inserted calculations, an extra MOC plane boundary was added
that aligned with the control rod tip. This eliminated rod cusping effects for the second set
of calculations. These two sets can then be compared to determine the magnitude of the
cusping effects for each rod position by plotting ke f f against rod position.

Figure 5.1: Polynomial decusping example data generation

Since these data need to be used to correct rod cusping for different MOC planes and
reactors, the data is best plotted as a percent change in ke f f versus a percent rod withdrawal.
An example of this is shown in Figure 5.1. The data from these calculations was then used
to generate a sixth-order polynomial that approximates the shape of the rod cusping effects.
Generating this polynomial in terms of percents allows the polynomial to approximate the
response for any MOC plane in any reactor. However, the response varies significantly for
different rod materials, so this process should be repeated for each unique type of control
rod. For the work presented here, polynomials were generated for three different materials:
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silver-indium-cadmium alloy (AIC), B4C, and tungsten. The polynomials developed for
each material are shown below:

PAIC (Vu) = 38.348V6
u −95.832V5

u + 90.477V4
u −39.326V3

u + 7.8043V2
u −0.4708Vu ,

(5.1)

PB4C (Vu) = 46.843V6
u −117.14V5

u + 109.78V4
u −47.104V3

u + 9.1734V2
u −0.5527Vu ,

(5.2)

PTUN (Vu) = 4.7734V6
u −14.751V5

u + 19.512V4
u −12.762V3

u + 4.0769V2
u −0.1505Vu ,

(5.3)

where Vu is the unrodded volume fraction and Px (Vu) is the corresponding percent change
in ke f f for a given rod type, with x being AIC, B4C, or TUN.

5.1.2 Correction Application

Following the procedure in the previous section gives polynomials to approximate the shape
of the cusping effects for different rod materials. To apply these polynomials to 2D/1D
calculations, the volume fractions used in the homogenization prior to 2D/1D calculations
can be modified. This homogenization is done using a simple volume weighting in the
partially rodded regions:

Σx = VuΣU
x + VrΣ

r
x , (5.4)

where Σx is the cross section being homogenized, V is the volume fraction, u and r sub-
scripts and superscripts denote rodded and unrodded quatities, respectively, and Vu +Vr = 1.
It is evident from Equation 5.1 that cusping always lowers the value of ke f f , so if Vu is in-
creased and Vr is decreased, the rod cusping errors should be reduced.

At the beginning of the calculation, the volume fraction of the control rod is determined.
For example, if an AIC rod is 50% inserted into a plane, the data from Figure 5.1 can be
used to determine the expected percent change in ke f f . In MPACT, the approximation is
made that the reference solution in Figure 5.1 is a straight line, resulting in a 50% change
in ke f f from a 50% inserted rod. Next, the point along the polynomial which corresponds
to 50% change in ke f f is identified. Finally, the volume fraction which produces that value
of the polynomial is used in the homogenization. For this example, values of Vu = 0.5 and
Vr = 0.5 would be used for a 50-50 mixture of moderator and AIC control rod without any
decusping method. To improve this solution, the model actually used would use values of
approximately Vu = 0.93 and Vr = 0.07 to minimize the error in ke f f .

To find the volume fraction required for improved homogenization, a root-finding
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method must be applied. For the example in the previous paragraph, MPACT does this by
setting PAIC (Vu) = 0.5 in Equation 5.1 and moving it to the right-hand side of the equation.
Because these polynomials are smooth, monotonically increasing on the interval [0,1], and
have analytic derivatives that can be easily programmed in MPACT, Newton’s method [63]
can be easily applied to obtain the root, though other methods could be used as well. The
search is performed until the value is within 0.001 of the actual root; usually this requires
only 4-5 iterations, meaning that these calculations are trivially fast compared to 2D/1D.

5.2 Subplane Collision Probabilities

The subplane scheme as it was originally conceived was used primarily to address stability
issues caused by thin MOC planes in early 2D/1D codes. While other improvements to
the 2D/1D method have largely eliminated these problems, the idea of capturing subplane
information using the subplane scheme can be useful for addressing partially inserted rods
without substantially increasing the computational cost. To do this, three changes were
made to the basic subplane scheme: an axial correction performed during CMFD homog-
enization, an optional radial correction to generate improved flux profiles, and an MOC
cross section correction. A flow chart of this process is shown in Figure 5.2

5.2.1 Axial Correction

Traditionally, the subplane scheme uses axially constant cross sections for all subplanes in
each MOC plane. When a control rod is partially inserted in the plane, a flux-volume ho-
mogenized cross section is calculated and used for each subplane. This is done by applying
Equations 2.35 usnig the axially homogenized cross sections from the MOC calculations.
This allows the subplane scheme to be used, but does little to account for the partially
inserted rod.

To resolve this issue, the subplanes with the control rod use the rod cross section, and
the subplane without the rod use the moderator cross section. These cross sections are still
homogenized using flux-volume weighting with fluxes from the homogenized MOC plane,
but without homogenizing the cross sections axially. Thus, Equations 2.35 are used as
before, but with the unhomogenized control rod or moderator cross sections instead of the
homogenized MOC cross sections. Doing this allows both the CMFD and P3 calculations
to capture some of axial effects of the partially inserted rod, reducing the magnitude of the
cusping errors around the rod.
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Figure 5.2: Calculation flow for 2D/1D with subplane collision probabilities

5.2.2 Radial Correction

Using axially heterogeneous cross sections within an MOC plane corrects some of the cus-
ping effects, but it does not accurately capture the radial effects of the partially inserted
rod. In reality, the radial flux shape in the rodded subplanes is completely different from
the shape in the unrodded subplanes. The MOC calculations are done on the thicker MOC
planes using axially homogenized cross sections in the partially rodded regions. This pro-
duces a radial flux shape that is not representative of either the rodded or unrodded re-
gion. Thus, using this radial flux shape to calculate the pin-homogenized cross sections for
CMFD P3 introduces some error in the cross sections.

To correct the radial effects, 1D collision probabilities calculations can be used as illus-
trated in Figure 5.3. As described in Section 2.2.4, the CP method is used to generate flux
profiles for pin cell calculations. The MOC calculations are done using axially homog-
enized cross sections which produce incorrect radial flux profiles. Thus, after the MOC
calculations and before the CMFD homogenization step, standalone CP calculations can
be set up to generate new radial flux profiles. For a partially inserted rod, two calculations
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Figure 5.3: Illustration of subplane collision probabilities used on a partially inserted
rod

will be set up: one for the rodded portion and one for the unrodded portion. Each calcu-
lation will use heterogeneous cross sections to generate a radial flux profile for the rodded
or unrodded axial region. These flux profiles are then used in place of the MOC flux when
performing the homogenization described in the previous section.

To set up the problem, the pin cell is cylindricized to preserve area. The control rod and
guide tube rings remain the same, but the outermost moderator region must be transformed
from a rectangle to a ring. This is done using the following equation:

RN =

√
R2

N−1 +
L2

π
, (5.5)

where RN is the radius of the cylindricized rectangular moderator region, RN−1 is the radius
of the outermost ring prior to cylindricizing, and L is the length of one side of the pin
cell (assuming a square pin cell). Each ring then uses the heterogeneous cross sections
corresponding to the axial level being set up. For the partially rodded regions, either rodded
or unrodded cross sections will be used; for the remaining regions, the cross section will
be the same for each axial level. Finally, in order to drive the CP problem to a physical
solution, a buffer region must be set up. This is done by taking the 8 neighboring pin
cells and homogenizing their sources and cross sections into an additional ring outside the
final moderator ring. This done by applying Equation 2.35 to all 8 neighboring pin cells
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to generate homogenized cross sections for a single region. A variation of Equation 5.5 is
then applied to the buffer region:

RN+1 =

√
8L2

π
+ R2

N , (5.6)

where RN+1 is the radius of the cylindricized buffer region and the 8 neighboring pin cells
used for the buffer regions have the same dimensions L as the partially rodded pin cell.

The matrix for each of these calculations is a dense Nr × Nr matrix as described in
Appendix A, where Nr is around 10 or less. It is dense because it describes the probability
of neutrons born in any cell havnig a collision in every cell including itself, resulting in a
completely dense matrix. This matrix must be set up for each axial level of interest (in most
cases 2), each energy group, and each partially inserted rodlet (24 per rodded assembly for
the results presented in Chapter 5). Each matrix must be inverted and multiplied by a
source vector. Because the matrices are so small, these calculates are negligible compared
to the cost of the full 2D/1D calculation. Thus, the data used during homogenization can
be greatly improved without incurring a significante runtime penalty.

5.2.3 MOC Correction

The final step in this decusping technique is to use the subplane information from the
CMFD/P3 calculations to improve the MOC calculations. To do this, the volume-
homogenized cross sections are updated each iteration using a flux-volume weighting that
involves the axial flux shape from the CMFD/P3 system and the radial flux shape from
the CP calculations. These are combined the same way as the nTRACER method using
Equation 4.2, repeated here:
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where Σi is a cross section for radial ring i, φrad,i is the radial flux shape for ring i obtained
from the 1D CP calculations, φax,i is the axial flux shape for the pin cell, and superscript R

and U indicates a value take from either the rodded or unrodded region. This equation can
be applied to any number of subplanes for a given MOC plane, but is shown here for the
simplest and most common instance of one rodded subplane and one unrodded subplane.

It is also possible to use only the axial correction and not the radial correction. In this
case, φR

rad,i = φU
rad,i for each radial ring because the MOC flux must be used in place of the

pair of 1D CP flux shapes. This introduces some axial correction into the homogenized
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MOC cross sections, but no radial correction. Chapter 5 will show results for “Subplane”
(axial only) and “Subplane + CP” (axial and radial) to show the importance of each of these
effects for different rod types.

5.3 Subray Method of Characteristics

The previous two methods are each effective in reducing the effects of rod cusping, as
will be shown in Chapter 5. Despite these improvements, each method has significant
drawbacks:

• Polynomial Decusping

– Corrections are limited to certain control rod materials (AIC, B4C, Tungsten).

– Limited accuracy, especially for problems significantly different from those used to
generate data.

• Subplane Collision Probabilities

– CP is limited to TCP0 scattering.

– CP implementation for non-cylindrical geometries can be complicated (e.g., BWR
control blades).

– Instability can be introduced in the CP calculations by large transport corrections.

– MOC calculations are still performed using homogenized cross sections.

The most important inaccuracy in the subplane CP method is the final point. To fully
address the partially inserted rod, it is desirable to account for the rod in the 2D MOC
calculations themselves using heterogeneous cross sections. Doing so will greatly improve
the overall accuracy of the 2D/1D calculation by improving the accuracy of the transport
itself.

5.3.1 1D MOC Code and Problem Description

To develop this new method, a 1D MOC code was developed to investigate the behavior
of angular and scalar flux near a partially inserted control rod. This code was written in
Matlab [64] (full source and examples scripts and inputs are included in Appendix C) and
is set up to take in a description of pins and materials to be used for the calculations. For
the geometry, a pin pitch is specified which is used for all pins. Each pin consists of a
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list of radii. Assuming a square pin cell, these pins are then transformed from cylindrical
geometry to slab geometry while preserving the volume fraction of each material:

w =
π
(
R2

N −R2
N−1

)
2L

. (5.7)

The pin pitch is the same in slab geometry as in cylindrical geometry. Each ring is then
transformed into two slabs using Equation 5.7, where w is the width of each slab. In
Equation 5.7, RN and RN−1 are the outer and inner radii of each ring, with R0 = 0 for the
center region in the pin cell, and L is the pin pitch. Thus, the thickness of the slabs is
slightly less than the radius of each region because the volume fraction is preserved for
each pin.

Each region in the problem is divided into subregions to ensure the solution is mesh-
converged. Each region is then assigned a material from a cross section library file. This
file uses the “user library” format supported by MPACT, which allows the user to input
macroscopic cross sections for absorption, nu-fission, kappa-fission, chi, and scattering
moments. For all these calculations, the C5G7 benchmark cross sections [65, 66] were
used. These cross sections are included in Appendix B.

For the MOC sweeps, a Gaussian quadrature [60] is used with 2, 4, 8, 16, or 32 polar
angles, with half of the angles being used in each direction. The MOC sweeps are done
similarly to how they are done in MPACT, with the loop over energy groups being the
innermost loop. The code can be run as either a fixed source solver or an eigenvalue solver.
For the eigenvalue mode, power iteration is used after each MOC calculation to determine
and updated ke f f . The fixed source mode can be used to run either a specified number
of iterations or to run until the scattering source is converged below some tolerance. This
allows some flexibility on exactly what kinds of results can be obtained.

The problem used for these calculations was a 1D variation of VERA Problem 4, illus-
trated in Figure 5.4. The center row of pins across all three assemblies was pulled out and
used for the 1D model, resulting in a row of 51 pins (17 pins across, 3 assemblies) with
a pin pitch of 1.26 cm (the inter-assembly gap was neglected for this model). The center
assembly had 4 guide tubes in it which contained a mixture of moderator and control rod
to represent a partially inserted control rod. These partially rodded locations were the only
part of the problem that had any material changes. This allowed the effects of the cross
section homogenization to be isolated for each calculations.
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Figure 5.4: Illustration of 1D MOC 3×17 geometry, where the top part represents
the left and right assemblies and the bottom part represents the center
assembly, with materials fuel (grey), control rod/moderator mixture (red),
and moderator (blue).

5.3.2 1D MOC Investigation

5.3.2.1 Specified Total Source

The first set of calculations performed were done using a specified total source. To do
this, the guide tubes were filled with 50% control rod and 50% moderator volume fraction
mixture, and a full eigenvalue calculation was performed. The total source distribution
(fission and scattering) from this calculation were then passed to the the fixed source solver.
A single iteration was run using this source on three different variations of the problem: the
50-50 mixture, fully rodded, and fully unrodded. Because the multi-group source is set up
before performing any MOC sweeps, this resulted in all three of those calculations having
an identical source for the MOC sweep. The only difference between them was the cross
sections used in the guide tubes.

Figure 5.5 shows the scalar flux resulting from these three calculations. The most im-
portant thing to note in this data is that the effects of the rod are very local in the MOC
calculation. Moving through the rodded pin cell, the rodded, unrodded, and mixed cases
have converged back to the same shape by the time the edge of the partially rodded pin cell
is reached. Because of the exponential nature of the MOC solution in Equation 2.33b, if
the sources are the same the two different solutions converge to each other quickly as you
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move away from the rod.

Figure 5.5: Group 7 scalar flux comparisons for a fixed fission and scattering source
calculation

Figure 5.6 shows the right-going angular flux in groups 1 (fast) and group 7 (thermal)
for the center assembly using the flattest polar angle µ = 0.997263861849482, where µ
is the cosine of the polar angle. This angle is shown because it has the most significant
differences between the different cases; the steeper angles require fewer regions to converge
to each other since the effective length of the MOC track is longer. The group 7 angular
flux behaves similarly to the group 7 scalar flux in that the effects are localized around
each rod. The three different angular flux shapes are still somewhat different at the edge
of the neighboring pin cell, but these differences are nearly indiscernible upon reaching the
clad and fuel in the next pin cell. The reason for this is that the mean free path of thermal
neutrons is small. The total group 7 cross section in the moderator is about 2.65 cm−1,
which corresponds to a mean free path of about 0.38 cm, which is less than one third of
the pin pitch for a typical PWR. This combined with the exponential behavior of the MOC
solution washes out the differences between the solutions quickly upon moving away from
the rodded region.
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(a) Group 1 (b) Group 7

Figure 5.6: Angular flux comparisons for a fixed fission and scattering source calcu-
lation

The same cannot be said for the fast flux. The mean free path of the fast flux is about
6.3 cm, which is the width of five pin cells. Thus, it can be seen that each of the control rods
after the first builds on the effects of the previous control rod. Thus, the largest differences
between the solutions is seen near the exit of the assembly after passing through all 4 rodded
regions. However, the differences are still small since control rods are generally thermal
absorbers and have only a small impact on the flux in fast energy groups.

5.3.2.2 Fixed Fission Source

The second set of calculations that was performed used a fixed fission source, but allowed
the scattering source to fully converge for each calculation. As in the previous section, an
eigenvalue calculation was completed using partially rodded cross sections. This was done
for 25%, 50%, and 75% rodded cases. For each case, a fixed fission source calculation was
done with the fully rodded and fully unrodded cross sections. This time, multiple iterations
were allowed for each material to converge the scattering source. This allows us to see the
effects of the rod on the scattering source distribution without worrying about changes in
the eigenvalue and fission source distribution.

Figure 5.7 shows the right-going group 7 angular flux comparisons for each of the three
mixtures, again for the flattest value of µ. We immediately see that for each of them,
the angular flux for the mixture is skewed toward the rodded result instead of being a
volume-fraction–weighted average of the rodded and unrodded solutions. For example,
comparing Figures 5.7(b) and 5.6(b) shows that the angular flux is much closer to the

63



(a) 25% Mixture (b) 50% Mixture

(c) 75% Mixture

Figure 5.7: Group 7 angular flux comparisons for 25% and 75% mixtures

rodded solution than when the scattering source was fixed, despite the small mean free path
of thermal neutrons. Figure 5.8 shows the same comparison for the fast flux and provides
some insight into the differences in the thermal flux solutions. The difference between the
rodded, unrodded, and mixed fast fluxes are small for this calculation, similarly to the fixed
total source calculations in the previous section. However, these small differences have
the effect of spreading the scattering source across the problem due to the long mean free
path. Thus, the small differences in the fast flux cause large differences in the thermal flux
scattering source, which in turns effects the fission source throughout the problem.
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(a) 25% Mixture (b) 50% Mixture

(c) 75% Mixture

Figure 5.8: Group 1 angular flux comparisons for 25% and 75% mixtures

5.3.2.3 Summary

These calculations provide several insights into what a new decusping method must be able
to accomplish. First, it must be able to account for the heterogeneous rodded and unrodded
cross sections. This is critical to obtaining an accurate shape for the thermal flux. Second,
sources must be calculated around the partially inserted rod using different scalar fluxes. If
the same scalar flux is used for both the rodded and unrodded calculations, the results are
non-sensical. Finally, the angular flux exiting the partially rodded region must accurately
represent the partially inserted rod, especially for the fast flux. If this outgoing flux is
skewed incorrectly toward the rodded or unrodded fast flux solution, even small errors can
have a significant impact on the scattering and fission source distributions throughout the
rest of the problem.
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5.3.3 Subray MOC Description

Using the results of the 1D MOC investigation described above, a new method has been
developed called the subray methods of characteristics, illustrated in Figure 5.9. For the
majority of a domain, this method will behave the same as traditional MOC. However, when
approaching a region with a partially inserted rod, the ray along which the angular flux is
being solved can be split into two (or more) separate rays. One ray will use the control rod
cross section while the other will use the cross section for the material below the control
rod. The ray can be split into as many subrays as necessary to handle complicated rods or
other heterogeneities, but the most common use case will split into just two subrays. In
each region where subray MOC is used, the scalar flux can be tallied using a modified form
of Equation 2.33b:

ϕg,i,n, j =

Z∑
z=1

Vz

(
qg,n,i,z

Σt,g,i,z
+

1
A jΣt,g,i,z

(
ϕin

g,i,n, j,z−
qg,n,i,z

Σt,g,i,z

) (
1− e−Σt,g,i,zA j

))
, (5.8)

where Z is the number of subrays used in region i and Vz is the volume fraction associated
with subray level z. Other subscripts in this equation are g for energy group, i for region
index, n for angle index, and j for MOC ray index. If the previous region also used sub-
ray, ϕin

g,i,n, j,z is unique for each subray; otherwise, it is the same. This equation averages
the angular flux for each subray segment to obtain an axially-averaged, segment-averaged
angular flux, which is then used to calculate the scalar flux. Furthermore, the subray an-
gular fluxes can also be used to calculate the scalar flux for these subregions to generate
subregion source terms for the subsequent iteration.

After passing completely through the partially rodded regions, the subray angular fluxes
can be recombined into a single ray using the volume fractions associated with each subray:

ϕout
g,i,n, j =

Z∑
z=1

Vz

(
ϕin

g,i,n, j,ze
−Σt,g,i,zA j +

qg,i,n,z

Σt,g,i,z

(
1− e−Σt,g,i,zA j

))
, (5.9)

where ϕout
g,i,n, j is the axially averaged outgoing angular flux at the end of track j for direction

n, region i, and energy group g. The errors introduced from this are minimal due to the
exponential nature of the MOC ray calculations. After the rod, both subrays have the same
cross section again and the axial shape of the sources begins to flatten out. Because of this,
the rays then exponentially converge toward each other. Thus, as long as an appropriate
amount of distance is left between the end of the partially rodded region and the recom-
bination point, minimal errors are introduced. This is discussed in more detail in Section
5.3.4.2.
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Figure 5.9: Illustration of subray method of characteristics for partially inserted rod

This method should accurately capture the cross section and source effects around the
partially inserted rod by using subrays. Furthermore, recombining the outgoing fluxes
after the rod should provide a more accurate outgoing flux than that calculated from a
homogenized cross section. This method addresses all the insights gathered from the 1D
MOC investigation. Furthermore, it addresses all the limitations of the polynomial and
subplane collision probabilities decusping techniques discussed earlier in this chapter.

5.3.4 MPACT Implementation

Implementation of subray MOC in the 1D MOC code is straightforward since the code is
small and uses only power iteration. Implementing the method in the 2D/1D code MPACT
is significantly more complicated. First, even for single-plane 2D cases, MOC calculations
can be expensive. Because of this, the MOC sweep kernels need to be modified to use
subray in such a way that the kernels will still be well optimized for the subray calculations.
When moving from 2D to 2D/1D other complexities are introduced from the 3D CMFD and
1D P3 calculations that have to be correctly incorporated in the subray MOC calculations.
The following sections discuss some of the details of how this is done.

5.3.4.1 MOC Sweeper Modifications

Implementing a subray MOC sweeper in MPACT presents some difficulties since MPACT
was not designed with these types of subgrid methods in mind. The MOC sweepers have
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been optimized to ensure that the rays are swept in the most efficient way possible. The
long rays are set up once up front, then they are swept in a separate loop with no branching
statements to ensure the hardware is performing the calculations as quickly as possible.
Subray MOC naturally introduces branching statements that would destroy this efficiency.

Calculate sources, set n = 0

Loop over
long rays;

n = n + 1; z = 0

Loop over long
rays; z = z + 1

Construct long
ray n, store
q and Σt for

each segment

Calculate
exponential for
each segment,
polar angle,

energy group

Loop over polar
angles, segments,

energy groups

For each polar,
segment, and

group: calculate
average/outgoing

angular flux,
tally scalar

flux and
surface currents

z ?
= Nsubrays (n)n ?

= Nrays

For partially
rodded re-

gions, apply
Equation 5.11

End planar sweep

no

yes

no

yes

Figure 5.10: Calculation flow for 2D MOC sweep of a single plane with subray

To get around this, an extra loop was added just inside the loop over long rays. This
is illustrated in Figure 5.10, which is a modified form of Figure 3.8. This loop goes from
one to the number of subrays for that long ray. For most long rays, this number will just be
one, meaning that long ray gets swept exactly one time. The results of the sweep for those
long rays is exactly the same as if subray MOC were not being used. For the long rays that
intersect with a partially rodded region, the ray is constructed and swept multiple times
(usually just twice unless the partially inserted rod has multiple axial regions). During the
sweep, volume fractions are used to tally the surface currents for CMFD and the region-
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wise scalar fluxes outside the partially rodded region as shown in Equation 5.10:

φg,i = φg,i +ϕg,i,n, j,zwnVz , (5.10a)

Jg,s = Jg,s +ϕout
g,i,n, j,zµnwnVz , (5.10b)

where φg,i and Jg,s are the region i scalar flux and surface s net current, Vz is the volume
fraction associated with subray z, ϕg,i,n, j,z and ϕout

g,i,n, j,z are the average angular flux along
track j and the outgoing angular flux at the end of track j, and µn and wn are the quadrature
azimuthal angle cosines and weights, respectively. Inside the partially rodded region, the
scalar fluxes are tallied into two separate regions (one rodded, one unrodded) as described
in Section 3.3.3.2. This allows these subregion scalar fluxes to construct the scattering
source for the next iteration. After the sweep of the full plane is complete, the subregion
scalar fluxes are combined using volume fractions as a post-processing step:

φg,i =

Z∑
z=1

Vzφg,i,z , (5.11)

where φg,i is the scalar flux for group g and region i for the full-height MOC plane, Vz is the
subregion volume fraction for axial level z, and φg,i,z is the subregion scalar flux for group
g, region i, and axial level z.

This approach has the drawback of duplicating several of the long rays. For problems
discussed in Chapter 5, we can reasonably expect around 20-30% of the long rays to in-
tersect a partially rodded region. However, this approach allows the MOC sweeper kernels
to maintain a high degree of efficiency during the calculations. Furthermore, based on du-
plicating 30% of the long rays, we could expect a 30-40% speedup compared with simply
having 2 separate MOC planes to resolve the partially inserted rod. Thus, taking this ap-
proach allows subray MOC to be implemented and tested without rewriting MPACT while
still attaining significant speedup.

5.3.4.2 Subregion and Recombination Selection

Before performing the subray MOC sweeps, it must be determined which long rays will
be duplicated. This is done by examining the mesh for partially rodded regions. Due to
the source effects described previously, whenever a partially rodded region is identified,
all other regions in that pin cell are also flagged as partially rodded. This allows the axial
shape of the source in the surrounding moderator region to also be resolved.

After identifying these regions, neighboring pins can also be flagged. As more rings
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Figure 5.11: Pin cells in 17×17 assembly using subray MOC for recombination flags
of 0 (red), 1 (blue), 2 (green), and 3 (white).

of neighboring pins are added, the solution should grow closer to that of 2 separate MOC
planes. In MPACT, this was implemented via a user-defined recombination flag. A value
of 0 will only mark partially rodded regions; a value greater than 0 will add that number
of rings around the partially rodded pin cell. Once all these regions are identified, any
long ray that passes through any of these regions will be swept multiple times using subray
MOC. Some of these rays will not actually intersect the control rod at all, but will serve to
resolve the source effects surrounding the rods. The rays will “split” upon entering any of
the flagged regions and will recombine only upon entering a non-flagged region. In Figure
5.11, a recombination value of 0 will use subray only for the red pins, which actually have
partially inserted control rods; a value of 1 will use subray for red and blue pins; a value of
2 will use subray for red, blue, and green pins; and a value of 3 will use subray for the entire
assembly. Regardless of the value, regions in neighboring assemblies will not be flagged
unless those assemblies also have partially inserted control rods.
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Because the current implementation in MPACT duplicates the whole long ray, the rays
are not actually recombined until the problem boundary. However, the logic to only store
axially varying sources for certain regions causes this implementation to produce identical
answers compared with a more advanced implementation which actually splits and recom-
bines each long ray while sweeping it. The results obtained using this implementation are
therefore exactly what is expected from subray MOC, though the efficiency is worse.

5.3.4.3 Subplane CMFD and P3

Another consideration that must be made concerns the interactions between the subplane
CMFD/P3 calculations and subray MOC. In theory, one could use subray MOC in 2D/1D
without using the subplane scheme. However, the fluxes used to calculate the sources for
the MOC calculations would be the same for each subregion in an MOC region, limiting
the accuracy of the subray MOC calculations. Instead, it is better to modify the projection
procedure described in Section 3.3.1.3 to provide an axial shape in the MOC regions. For
each MOC subregion, an axial scaling factor is generated using Equation 3.7. The full-
height MOC fluxes are multiplied by this scaling factor in each subregion. These values are
then used to calculate the scattering and fission sources for the subray MOC calculations.
Following this procedure produces more accurate sources and ensures that the volume-
averaged flux in each CMFD cell is preserved by both the full-height MOC regions and
their subregions.

Furthermore, the axial P3 calculations are also done on the subplane mesh. The regular
MOC regions will use currents at the top and bottom of the MOC plane to calculate the axial
TL source. If the subplanes are aligned with the control rod, then currents are also available
at the top and bottom of each of the subregions used by subray MOC using Equation 3.3.
This allows a more accurate axial shape for the axial TL source, which changes especially
quickly in the vicinity of a control rod tip. Thus, using the subplane scheme will improve
the accuracy of all three sources used by MOC in the 2D/1D method: scattering, fission,
and axial TL.

It should also be noted that as when using subplane CMFD, the radial D̂ coupling
coefficients should be calculated on the full-height MOC mesh using Equations 2.38. Since
much of the MOC calculations are done on this mesh, it is more stable to calculate all radial
D̂ terms on this mesh. In theory, the radial D̂ terms could be calculated separately for each
subplane since the subregion fluxes were calculated during the subray MOC sweep, but this
subgrid information is only available in the vicinity of the partially inserted rod, making it
more stable to use teh full-height fluxes. The axial D̂ terms are calculated on the subplanes
using the results of the axial P3 calculations as described in Chapter 3 with no modifications
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to account for subray MOC.

5.4 Summary

This chapter presented 3 new rod decusping techniques for the 2D/1D method. These
techniques vary in complexity and expected accuracy, but each of them captures some of
the effects of the partially inserted control rod. The following chapter will present the
results of calculations using each of these methods and provide futher discussion on the
strengths and limitations of each method.
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CHAPTER 6

Results

This chapter will present the results of calculations using each of the decusping methods
described in the previous chapter. First, results for the polynomial and subplane collision
probabilities methods will be presented. The subplane collision probabilities results are
presented as two sets of data: one with just subplane (axial correction only) and one with
both subplane and CP (axial and radial), allowing the difference in magnitude between
the axial and radial effects of the rod to be determined. These methods were tested using
the VERA Progression Problems [67], a series of benchmark problems based on the Watts
Bar Unit 1 pressurized water reactor (PWR) that provide realistic test cases for the 2D/1D
methods. The control rods in these models were moved to various locations that stress
the mesh typically used by MPACT to solve these problems, allowing the benefit of the
decusping techniques to be clearly seen. For some of these problems, detailed 3D power
distributions were generated using the Monte Carlo code KENO-VI [68], which is part of
the SCALE package [69], allowing for comparisons of the decusping methods with both
refined MPACT meshes and Monte Carlo reference solutions.

In the second half of the chapter, results for the subray method of characteristics will
be presented. The first set of results come from the 1D prototype code discussed in Section
5.3.1. This code provided a quick implementation to show that it was worth pursuing the
method in a full-scale transport code. After this, results from MPACT’s implementation
of subray MOC will be presented for both 2D and 3D problems. These results will be
compared to refined mesh solutions in MPACT as well as the polynomial and subplane col-
lision probabilities solutions to determine the relative accuracy of each of these methods.
All subray MOC results will use the C5G7 benchmark problems [65, 66]. Because these
problems have specified macroscopic cross sections, some of the complexities of cross sec-
tion processing and shielding calculations for subray MOC can be deferred to later research
while still examining the accuracy and performance of subray MOC compared with other
solutions to the rod cusping problem.
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6.1 VERA Problem 4

VERA Progression Problem 4 is composed of a 3x3 set of Westinghouse 17×17 fuel as-
semblies with an active fuel height of 365.76 cm and a control bank in the center assembly.
The radial layout of the problem is shown in Figure 6.1(a), and the axial layout of each
assembly is shown in Figure 6.1(b). The control rods were placed at an axial elevation of
257.9 cm above the core plate, about one third inserted into the core. The rod in the original
problem specification is made of AIC with a B4C follower and a stainless steel tip. First,
results will be presented which use several difference uniform rods to simplify the analysis,
then results will be presented with the heterogeneous rod. Lastly, a differential rod worth
developed with the heterogeneous rod is shown with comparisons to KENO-VI reference
solutions at regular intervals along the curve.

Figure 6.1: VERA Problem 4 radial (left) and axial (right) layouts
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6.1.1 Homogeneous Control Rods

For the reference solution, 58 MOC planes were used with 49 of them in the active fuel
region. It was also ensured that the end of the control rods were exactly aligned with one
of the MOC plane boundaries. The cases with decusping methods used the same mesh,
but with the 2 MOC planes around the tip of the control rod merged into a single plane to
introduce cusping effects. The accuracy and convergence data for these cases are shown in
Table 6.1.

Table 6.1: Comparison of Rod Decusping Methods in MPACT for VERA Progression
Problem 4 for Homogeneous Control Rods

Rod
Case

ke f f Pin Power Differences
2D/1D Iterations

Runtime
Material Difference (pcm) RMS Max (Core-Hours)

AIC

Reference – – – 15 19.6
No treatment −29.5 1.53% 11.84% 12 14.7
Polynomial −0.3 0.44% 4.08% 12 14.3
Subplane −11.5 0.73% 8.21% 12 14.2
Subplane + CP −5.6 0.37% 4.25% 12 15.3

B4C

Reference – – – 15 16.9
No treatment 112.0 6.98% 69.37% 12 12.7
Polynomial 112.6 6.89% 66.73% 12 12.1
Subplane −17.9 1.14% 11.36% 13 15.2
Subplane + CP −11.0 0.69% 6.37% 12 13.4

Tungsten

Reference – – – 15 23.5
No treatment −8.4 0.37% 3.37% 12 15.5
Polynomial −4.4 0.24% 2.72% 12 14.5
Subplane 1.6 0.07% 0.60% 12 13.9
Subplane + CP −0.9 0.06% 0.94% 12 15.6

The “No Treatment” cases show the magnitude of the cusping effects for each of the
rod types. The largest cusping errors occur for the B4C rod, which is a strong thermal
absorber. For this rod, the polynomial treatment has very little effect, leaving large errors
in the solution. The subplane method reduces the error in ke f f to an almost negligible -18
pcm, but still leaves significant power distribution errors of 1.14% RMS and 11.36% Max.
Introduing the 1D CP calculations brings the maximum error below 7%. These results
indicate that the polynomial method is not capable of accurately resolving the B4C rod.
Because it is a strong thermal absorber, smearing the rod material throughout the plane
at all introduces large errors that cannot be correct just by reducing the volume fraction.
The subplane-based methods are both able to resolve the rod more accurately since they
actually modify the cross sections used in the CMFD and P3 calculations.

For the AIC rod, the polynomial correction performs much better than for the B4C
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rod, reducing the maximum error from 12% to 4%. The subplane treatment only reduces
the error to 8.21%, while adding the CP calculations reduces the errors to about the same
point as the polynomial treatment. The AIC rod has resonance absorption and is not as
strongly absorbing in the thermal energy ranges as the B4C rod, causing some differences in
behavior of these methods. The polynomial method does a better job with the AIC rod since
the complex effects are accounted for in the polynomial generation. However, the subplane
treatment does not perform well since it does nothing to account for the radial effects of the
AIC rod. For both rod types, the subplane treatment with radial CP calculations performs
well since it is able to capture both radial and axial effects of the rod.

For the tungsten rod, the errors are not nearly as high as for the AIC or B4C rods. How-
ever, the subplane-based treatments still perform significantly better than the polynomial
treatment, bringing the ke f f error to negligible levels and reducing the maximum power
errors under 1%.

For all 3 rod types, Table 6.1 also shows the convergence and runtime data for each
calculation. The decusping treatments consistently converge in fewer iterations than the
reference. This is due to the fact that the reference has an additional thin MOC plane
that the other cases do not have. This thin plane requires underrelaxation for 2D/1D to
converge, causing a small increase in the number of 2D/1D iterations required. Because of
the difference in iterations, all decusping methods also require less runtime by about 25%
on average. The subplane-based methods are generally a bit slower than the polynomial
method, despite requiring the same number of 2D/1D iterations. The reason for this is that
the subplane-based methods modify the CMFD system, which results in more CMFD inner
iterations to converge during each outer 2D/1D iteration. This increases the total runtime
of the problem even though 2D/1D itself converges the same. However, in most cases the
trade-off between runtime and accuracy would favor the use of the subplane-based

6.1.2 Heterogeneous Control Rod

Next, the same set of results can be shown again, but with the heterogeneous rod. The
same 58-plane reference mesh was used for these results. However, the decusping cases
have only 55 planes instead of 57. Three additional planes are eneded in the reference case
to account for all three material interfaces in the heterogeneous rod: B4C/AIC, AIC/SS,
and SS/moderator. The decusping methods are applied at all three of these locations simul-
taneously, with the exception of the SS/moderator interface for the polynomial decusping
since there is no SS polynomial data. The results are shown in Table 6.2.

With no treatment, the maximum error is over 20%. The polynomial method performs
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Table 6.2: Comparison of Rod Decusping Methods in MPACT for VERA Progression
Problem 4 for Heterogeneous Control Rod

Case
ke f f Pin Power Differences

2D/1D Iterations
Runtime

Difference (pcm) RMS Max (Core-Hours)

Reference – – – 15 16.6
No treatment −45.9 2.43% 20.45 % 12 13.8
Polynomial −2.5 0.46% 5.07 % 12 13.0
Subplane −17.3 1.10% 11.77 % 13 14.9
Subplane + CP −5.5 0.42% 3.87 % 12 14.7

wells, reducing the error to about 5%, with an RMS power error under 0.5% and ke f f error
of -2.5 pcm. This behavior is consistent with what is expected based on the homogeneous
results. The primary location of rod cusping effects is at the AIC/SS interface, and the
errors obtained from the polynomial decusping method are comparable to those observed
in the homogeneous AIC rod calculations. Following this trend, the subplane treatment
without radial CP does not perform as well as the polynomial treatment, reducing the max-
imum error to just under 12%. Finally, the subplane treatment with radial CP generates
the most accurate results, with a maximum power error under 4%. This method makes
no assumptions about which materials are next to each other, can handle all three control
rod materials, and accounts for both radial and axial effects of the rod, making it the most
consistent and accurate of the methods across a variety of cases.

The trends in the convergence and runtime data are similar to those observed with the
homogeneous rods. The decusping treatment calculations take fewer 2D/1D iterations be-
cause fewer thin planes are used in the model, requiring less underrelaxation than the ref-
erence case. Furthermore, some increase in runtime is seen in the subplane-based methods
over the polynomial method due to changes in the convergence of the CMFD system dur-
ing each 2D/1D iteration. The CP calculations themselves are negligible since they consist
only of inverting an 8×8 matrix for each energy group, which can be done very quickly.
Again, the trade-off between runtime and accuracy for this problem favors using the sub-
plane treatment with radial CP if the fine mesh solution’s accuracy is not required.

6.1.3 Differential Rod Worth Curve

To show the effectiveness of each decusping technique as the rod moves upward through
the reactor, a differential rod worth curve was developed for each method. This curve is
shown in Figure 6.2. With no decusping method, the errors in the rodworth approach 50%
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Figure 6.2: Differential rod worth curves for MPACT decusping techniques.

at some positions. The polynomial treatment greatly reduces these errors, but does not fully
smooth the curve. Especially near the peak of the curve, some oscillation about the true
solution can be seen when using the polynomial treatment. The subplane treatment behaves
similarly to the polynomial treatment, but with slightly larger errors in most places. Finally,
adding the radial CP calculations generates a smooth curve at almost every rod position.

The exception to the good behavior of the subplane + CP method occurs when the rod
is almost fully inserted. At such positions, all methods fail to produce a smooth rod worth
curve due to the severe power shape. The polynomial method is always limited in its ability
to resolve the partially inserted rod if the local power shape differs significantly from the
one with which the polynomial data was generated. The subplane-based treatments struggle
with the fully inserted rod because each subplane in an MOC plane uses the same MOC
solution data for the CMFD and P3 solutions. In the cases where MOC planes are near both
the control rod tip and the boundary of the problem, the radial solution is changing more
quickly than normal and cannot be resolved as well by the subplane scheme.
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6.1.4 KENO-VI Comparisons

For the rod worth curves in the previous section, KENO-VI calculations were done in
10% intervals along the curve, giving a total of 11 KENO-VI data sets that can be used as a
reference for MPACT. Each KENO-VI calculation was run for 500 inactive generations and
1000 active generations, with 5×106 particles per generation, for a total of 5×109 particles
contributing to the final solution and statistics. The uncertainty in the KENO-VI results was
about 1 pcm for the eigenvalue and less than 0.3% for the power distribution. While the
uncertainty in the power distribution is a bit higher than would normally be used, it is more
than sufficiently converged to discuss the relative accuracy of rod cusping treatments. For
the first ten sets of KENO-VI data along the curve, each decusping method was compared.
Table 6.3 shows the average results for all 10 of these points, along with results for the
worst of the 10, which occurs at 20% (46 steps withdrawn) where the differential rod worth
curve is steepest. The table also shows a comparison for the 100% withdrawn data set. This
final data set occurs for the tip of the control rod above the top of the active fuel, so there
are no cusping effects. This serves to give an idea of how accurate MPACT is compared to
Monte Carlo when there are no control rod cusping effects.

Table 6.3: Average Differences between MPACT and KENO-VI for VERA Problem 4

Cases Decusping Method ke f f Difference
Pin Power Difference
RMS Max

Average

None −24.9 5.380% 25.902%
Polynomial 34.8 1.502% 8.957%
Subplane 34.6 0.984% 4.597%
Subplane + CP 41.4 0.763% 3.386%

Worst – 20%
None −176.0 14.709% 63.929%
Polynomial 13.9 3.344% 25.373%
Subplane 9.6 1.921% 9.900%
Subplane + CP 45.9 1.324% 4.921%

Fully Withdrawn – 40.5 0.34 % 1.493%

The fully withdrawn case shows that when no cusping effects are present, MPACT
can be expected to have less than 0.5% RMS power difference and approximately 1.5%
maximum power difference compared with a Monte Carlo solution. When cusping is in-
troduced, these errors jump to around 25% on average, with a maximum error over 60%.
For both the average and maximum cases, the polynomial treatment compares worst with
KENO-VI and the subplane treatment with 1D CP performs best, reducing the maximum
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power errors to about 5% in the worst case scenario. While these errors are still larger
than desired for 2D/1D, they are much closer to acceptable levels than some of the 20-30%
errors observed in many calculations. However, these KENO-VI comparisons do indicate
that use of the polynomial decusping treatment should be restricted to specific cases in
which it is known to perform well. Using it for everything could easily and unknowingly
result in unacceptably large errors in the 2D/1D solution.

6.2 VERA Problem 5

To demonstrate the behavior of the decusping methods on a full core problem, VERA
Problem 5 was also run. Problem 5 is the a beginning-of-cycle simulation of the Watts Bar
Unit 1 PWR. The model of this reactor uses the same axial layout shown in Figure 6.1(b)
with the radial layout shown in Figure 6.3. For these calculations, Bank D was set to a
position of 257.9 cm above the core plate while all other banks were fully withdrawn to
383.3125 cm, about 6 cm above the top of the active fuel.

Like Problem 4, the reference case was run with 58 planes while the decusping cases
were run with 57 planes. Radial decomposition was used with 16 cores per MOC plane.
This resulted in a slightly different number of cores for the reference case compared with
the others, as seen in the Problem 4 calculations. The accuracy and convergence results for
the partially rodded plane are shown in Table 6.4.

Figure 6.3: VERA Problem 5 radial geometry (left) and rod bank positions (right)

As seen in most variations of Problem 4, we see that the CP results are the best, with
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Table 6.4: VERA Problem 5 decusping results for the partially rodded plane

Case
ke f f Pin Power Differences Iterations Runtime

Difference (pcm) RMS Max 2D/1D CMFD (Core-Hours)

Reference – – – 13 481 361.7
No Treatment -22 6.90% 30.55% 13 523 410.7
Polynomial -5 1.15% 4.85% 13 463 373.7
Subplane -5 2.09% 10.20% 13 499 399.0

Subplane + CP -1 0.50% 2.74% 13 529 425.6

less than 3% maximum error in the roded plane. The maximum errors occur in the partially
rodded assembly, as expected. The sublpane decusping without the CP treatment is worse
than in Problem 4, showing the importance of correctly treating the radial effects. The run-
time increase is also between 15% and 20% for the sublpane and CP decusping methods.
This is due primarily to two effects. The first is that the convergence of the CMFD system
can require more iterations using the subplane-based treatments, as discussed in the Prob-
lem 4 results. The second effect is that there is an imbalance in the parallel partitioning of
the CMFD system. The parallel partitioning in MPACT is tied to MOC planes, so MOC
planes with a larger number of subplanes will take longer to be solved than others, leaving
some compute cores waiting on others to finish their calculations. This effect would have
also occurred some Problem 4, but is more significant in Problem 5 due to its larger size. A
more clever strategy for parallel decomposition would help to alleviate this imbalance and
reduce the runtime of the subplane-based methods without any impact on their accuracy.

6.3 C5G7 Results

This section will focus on the results for the C5G7 benchmark problems for the subray
method of characteristics. First, 1D results generated by a simple prototype code will be
presented, followed by 2D and 3D results from the 2D/1D code MPACT. While the focus
of this section is on subray MOC, the 2D and 3D results will also include the polynomial
and subplane collision probabilities decusping techniques to show the accuracy of subray
MOC compared with the other methods discussed already.

6.3.1 1D Subray

The 1D subray MOC results were generated using the code described in Section 5.3.1. To
show the effectiveness of subray MOC a small 10 pin problem, illustrated in Figure 6.4, was
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Figure 6.4: Illustration of 1D MOC 10 pin test geometry with materials fuel (grey),
control rod/moderator mixture (red), and moderator (blue).

used. This smaller problem was used because the rods are closer together, making it more
difficult to accurately resolve the rods, and to minimize runtime. A series of eigenvalue cal-
culations was performed with the control rod volume fraction varying from 100% to 0% to
simulate a rod withdrawal. This was done using traditional MOC and subray MOC to show
the correction achieved by using subray MOC. The reference solution for each of these
calculations was generated from the fully rodded and fully unrodded solutions. At each
point, those two solutions were mixed using the rodded/unrodded volume fractions. For
example, when the rod was 40% inserted, the reference solution was 0.4φR (x) + 0.6φU (x),
where φR is the fully rodded scalar flux and phiU is the fully unrodded scalar flux. Doing
this removes the effects of the cross section homogenization from the solution and provides
a reference for subray MOC. The results of these calculations are shown in Figure 6.5.

Figure 6.5: Eigenvalue comparisons for 1D rod withdrawal

In Figure 6.5, the red line is subray without recombination, meaning that two com-
pletely separate solves were done each iteration and the resulting scalar fluxes were mixed
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(a) Group 1

(b) Group 7

Figure 6.6: Scalar flux distributions for 1D subray MOC calculations
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using volume fractions. The rodded and unrodded solves have separate angular flux bound-
ary conditions which are saved for each subsequent iteration. This provides the reference
solution. The volume homogenization solution is a traditional MOC calculation without
treating the partially inserted rod. As is evident, the errors from this method are large,
nearing 15% around 50-60% withdrawal. Using subray MOC in only the partially rodded
pin cells, indicated in the figure by “Subray w/ Recomb. - 0”, corrects a significant amount
of the error and brings the maximum difference closer to 5%. Using a recombination flag
of 1 means that subray is now used in all the pin cells between the control rods, correctly
resolving the interference effects of the rods and eliminating almost all of the remaining
error. Finally, a recombination flag of 2 extends the subrays all the way to the problem
boundary, effectively performing the same calculation as the reference solution.

In addition to the eigenvalue calculations, the scalar flux differences are shown for
groups 1 and 7 at 50% rod withdrawal in Figure 6.6. For both groups, it is evident that
subray MOC effectively reduces the error caused by the partially inserted rod. Only per-
forming subray MOC in the rodded pin cells eliminates the majority of the error, but for
both the eigenvalue and scalar flux distributions, it is necessary to delay recombination of
the angular fluxes for at least one neighboring pin cell to capture the effects of the rod
on the source in neighboring pin cells. This effect is exaggerated by the 1D geometry
since the solve is being performed exlusively in the direction that minimizes the distance
between pins. Furthermore, most PWR geometries have at least 2 pins between control
rodlets, which further diminishes the effects of rod interference. While these 1D results
do not definitively indicate that recombination should be extended beyond the edge of the
partially rodded pin cell, it is important to keep this in mind in the 2D and 3D calculations.

6.3.2 2D C5G7

To test the mechanics of subray MOC in MPACT, 2D variations of the C5G7 benchmark
problems were used. These problems consist of 17×17 UO2 and MOX assemblies with
control rods and a radial reflector region. Figure 6.7 shows an illustration of the core
layout, and Figure 6.8 shows the assembly layout. This section will present results for
subray MOC using 3 different 2D problems derived from these descriptions.

All calculations in this section used 0.03 cm ray spacing with 16 azmiuthal angles and 3
polar angles per octant. A 1D P3 solver was used for the subplane axial calculations unless
otherwise noted. The calculations were converged until the change in both the eigenvalue
and fission source were less than 10−6. All pin meshes in the fuel assemblies used 5 radial
rings in the fuel and control rods, 2 rings in the moderator, and 8 azimuthal divisions in
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Figure 6.7: Description of C5G7 Core [66]

every radial region for a total of 64 flat source regions in each pin cell. This mesh was also
used for the rodded pin cells in the axial reflector region. The remaining axial reflector pin
cells and all radial reflector pin cells used a Cartesian grid with 5 x- and y- divisions, for a
total of 25 equal-volume flat source regions.

These problems will not truly be 2D calculations since there will still be some coupling
between the rodded and unrodded portions of the problem. However, they will each consist
of a single MOC plane (with the exception of the reference calculations). Furthermore, the
case with no decusping method truly is a 2D calculation with rod cusping results caused by
volume homogenizing the rod with the moderator. For simplicity, these cases will simply
be called 2D C5G7 to distinguish them from the multi-plane 3D C5G7 problems presented
in a later section.
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Figure 6.8: Description of C5G7 Assembly [66]

6.3.2.1 UO2 Assembly

The first 2D problem is a single UO2 assembly with control rods added to it. A similar
procedure was followed as with the 1D calculations with the problem being simulated
at 10% increments during the rod withdrawal. The reference for these calculations was
generated by dividing the MOC plane into two separate planes with their boundary aligned
with the control rod. Comparisons could then be made between the decusping methods and
the reference solution for ke f f and the radial power distribution.

Table 6.5 shows the results for the 2D assembly case for recombination flag values of
0, 1, 2, and 3. The results for both ke f f and power distribution are best for the Subray-0
option, with average ke f f differences less than 200 pcm and maximum power differences
averaging 0.22%. The remaining subray options each perform almost exactly the same,
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Table 6.5: 2D C5G7 UO2 assembly eigenvalue and power distribution differences for
subray recombination parameter sensitivity. A * indicates that finite dif-
ference was used axially instead of P3

Rod Reference Subray-0 Subray-1 Subray-2 Subray-3
Position ke f f ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers

RMS Max RMS Max RMS Max RMS Max

1* 1.02535 -23 0.05% 0.09% -59 0.06% 0.11% -58 0.06% 0.11% -58 0.06% 0.11%
2 1.06065 -117 0.11% 0.21% -121 0.11% 0.22% -120 0.11% 0.22% -120 0.11% 0.22%
3 1.09578 -165 0.14% 0.27% -175 0.15% 0.28% -175 0.15% 0.28% -174 0.15% 0.28%
4 1.13011 -200 0.15% 0.29% -219 0.16% 0.30% -218 0.16% 0.30% -217 0.16% 0.30%
5 1.16334 -223 0.15% 0.29% -249 0.17% 0.31% -248 0.17% 0.30% -247 0.17% 0.30%
6 1.19557 -235 0.14% 0.27% -265 0.16% 0.29% -264 0.16% 0.29% -264 0.16% 0.29%
7 1.22711 -237 0.13% 0.24% -269 0.15% 0.26% -269 0.14% 0.26% -269 0.14% 0.26%
8 1.25858 -231 0.11% 0.20% -263 0.13% 0.22% -262 0.12% 0.22% -262 0.12% 0.22%
9* 1.29131 -216 0.09% 0.16% -236 0.10% 0.18% -235 0.10% 0.18% -235 0.10% 0.18%

Average – 183 0.12% 0.22% 206 0.13% 0.24% 205 0.13% 0.23% 205 0.13% 0.23%

Table 6.6: 2D C5G7 UO2 assembly eigenvalue and power distribution differences for
each decusping method. A * indicates that finite difference was used axially
instead of P3

Rod Reference Subray-0 None Subplane Subplane + CP
Position ke f f ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers

RMS Max RMS Max RMS Max RMS Max

1* 1.02535 -23 0.05% 0.09% -1210 0.70% 1.46% -361 0.20% 0.42% -696 0.34% 0.78%
2 1.06065 -117 0.11% 0.21% -3123 1.71% 3.55% -724 0.38% 0.78% -626 0.30% 0.65%
3 1.09578 -165 0.14% 0.27% -4777 2.49% 5.11% -937 0.46% 0.94% -574 0.26% 0.56%
4 1.13011 -200 0.15% 0.29% -6053 2.98% 6.09% -1033 0.47% 0.96% -522 0.23% 0.48%
5 1.16334 -223 0.15% 0.29% -6848 3.19% 6.47% -1046 0.44% 0.90% -465 0.20% 0.40%
6 1.19557 -235 0.14% 0.27% -7067 3.11% 6.26% -996 0.40% 0.81% -400 0.16% 0.33%
7 1.22711 -237 0.13% 0.24% -6588 2.73% 5.45% -897 0.34% 0.68% -327 0.13% 0.25%
8 1.25858 -231 0.11% 0.20% -5245 2.04% 4.03% -754 0.27% 0.54% -242 0.09% 0.18%
9* 1.29131 -216 0.09% 0.16% -2803 1.01% 1.98% -561 0.19% 0.38% -146 0.05% 0.10%

Average – 183 0.12% 0.22% 4857 2.22% 4.49% 812 0.35% 0.71% 444 0.20% 0.41%

and only slightly worse than the Subray-0 variation. The reason that the other options do
not perform as well as Subray-0 is that during the CMFD projection, the same radial shape
is used for each axial level. This impacts all subray MOC calculations, but Subray-0 uses
subrays only in the rodded pins, not fuel pins. Because this approximation is applied to
some fuel pins for the other subray variations, it introduces some small changes in the
solution. However, the most important conclusion from these results is that the differences
in subray MOC variations are so small that it is likely not worth it to ever use subray MOC
in the neighboring pins.

Table 6.6 compares the results of subray MOC with the sublpane-based decusping
methods described earlier. The polynomial method is not compared because the data re-
quired to use them fo C5G7 has not been generated. The subplane decusping method per-
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forms better with CP than without, as expected. Overall, its performance is good, reducing
the maximum power error to around 0.5% on average and reducing the ke f f error from an
average of almost 5% to under 500 pcm. Subray MOC performs the best, with ke f f dif-
ferences around 200 pm and maximum power distribution errors less than 0.3% for every
case. This is to be expected since subray MOC is doing something similar to the Subplane
+ CP method, but improving on it by using 2D MOC instead of 1D CP and allowing the
improved solution to influence neighboring pins during the MOC sweep through the im-
prove outgoing angular fluxes. Thus, it is to be expected that subray MOC would perform
best.

This relationship between Subplane + CP and Subray-0 is expected. Both of them are
improving the solution in individual rodded pin cells by solving the rodded and unrodded
levels separately. However, Subplane + CP does this after the MOC calculation, only im-
proving the CMFD and 1D P3 cross sections. The Subray-0 calculation uses 2D MOC,
which should provide a solution superior to 1D CP. It also calculates improved radial cur-
rents, and improves the solution in pins neighboring the control rodlets by improving the
angular flux exiting the rodded pin cells. Thus, it is expected that Subray-0 would consis-
tently provide a better solution than the Subplane + CP decusing method.

It should be noted at this point that certain calculations whose results are shown in
these and following tables failed to converge using the axial P3 solver. This occurred for
all calculations that had multiple planes or used the subplane scheme. This is a known
issue with the axial solvers caused by the interpolation of the radial TL source. Whenever
a thin plane is next to a thick plane and a very large change in the radial TL occurs from the
thin plane to the thick plane, the quadratic interpolation of the radial TL can cause shapes
that make the P3 solver unstable. This can be shown to be the source of the instability by
limiting the magnitude of the linear and quadratic components of the shape.

One of the other MPACT developers is currently implementing a new solver that em-
ploys a different technique to solve the P3 equations, and is expected to resolve this insta-
bility. Since that solver is not yet ready for use and limiting the linear and/or quadratic
moments of the radial TL interpolation can have significant effects on accuracy, the cases
which did not converge for either the reference or decusping method calculations simply
used diffusion-based NEM solver instead of the P3 solver. The diffusion-based solver uses
a two-node iteration scheme as opposed to the one-node approach used by the P3 solver,
making it more stable in some cases. The diffusion solver is not as accurate as P3, but using
it in cases with and without cusping allows for a fair assessment of methods being tested
here without abandoning the axial solve altogether. The results that used diffusion instead
of P3 will be denoted with an asterisk (*) in all tables in this section.
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Table 6.7: Long Ray Data for 2D C5G7 UO2 Rodded Assembly

Method Long Rays per Plane Increase

Reference 29480 –
Subray-0 48440 64%
Subray-1 52832 79%
Subray-2 56304 91%
Subray-3 58960 100%

Table 6.8: Average Performance and Convergence Data for C5G7 Rodded UO2 As-
sembly

Method Iterations Runtime (s) Speedup

Reference 16.4 119 –
None 14.6 56 2.14
Subplane 14.9 57 2.10
Subplane + CP 15.2 63 1.91
Subray-0 14.9 94 1.27
Subray-1 15.3 104 1.15
Subray-2 15.4 109 1.09
Subray-3 15.3 107 1.11

While the subray MOC method is more accurate than the previous decusping methods,
it is also more expensive. Table 6.7 shows the long ray data for the reference case and each
variation of the subray MOC calculations. The first column is the total number of long rays
including those duplicated for subray MOC. The second column shows the percent increase
in the number of long rays. This value can be used to approximate the savings obtained by
using subray MOC to resolve partially inserted rods instead of 2 separate MOC planes. For
the single assembly case, it is expected that Subray-3 and the reference case would take
about the same amount of time for each MOC sweep since every long ray was duplicated
for Subray-3.

Table 6.8 shows the convergence and runtime data for each decusping method averaged
over all 9 rod positions. Each of these calculations was conducted on a development cluster
with 4 AMD Opteron™ 6376 processors clocked at 2.3 GHz. The speedup of each case is
defined as the reference runtime divided by the comparison runtime. Using Table 6.7, we
can approximate an expected speedup for each case by taking the number of long rays in
the reference (2 MOC planes) and dividing by the number in the comparison case (1 MOC
plane). Doing this, we get expected speedups of 1.22, 1.12, 1.05, and 1.0 for Subray-0,
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Subray-1, Subray-2, and Subray-3, respectively. The observed speedups are similar to, but
consistently a little better than predicted. On average, subray MOC takes between 1 and
1.5 iterations fewer than the reference case, which can account for some of the difference.
The other methods all see a speedup around 2.0, which is expected since the amount of
time spent in MOC is exactly half that of the reference. The differences in the CMFD solve
and number of iterations introduce some variation in the speedup, which is to be expected.

6.3.2.2 2D Core – Rodded Center Assembly

The second problem uses the full radial core layout from Figures 6.7 and 6.8. A control rod
was added to the northwest UO2 assembly, and the same procedure was followed as for the
2D assembly. Table 6.9 shows the results for subray MOC as a function of recombination
value. Overall similar trends occur for this problem, with Subray-0 resulting in the best
results by a small margin and the other variations producing nearly identical results. The
ke f f errors are smaller because larger problems are less sensitive to local reactivity effects.
However, the power distribution is more challening to resolve with the reflector regions
and multiple fuel types in the model. This increases the errors in the power distribution,
but as shown in Table 6.10, subray MOC still reduces the errors much more than any other
method. The Subplane + CP method has maximum power errors that are almost a factor
of 2 worse that Subray-0. Without CP, these errors are greater than 5% for about half the
cases.

Table 6.9: 2D C5G7 center assembly rod withdrawal eigenvalue and pin power dif-
ferences for subray recombination parameter sensitivity. A * indicates that
finite difference was used axially instead of P3

Rod Reference Subray-0 Subray-1 Subray-2 Subray-3
Position ke f f ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers

RMS Max RMS Max RMS Max RMS Max

1* 1.06839 -15 0.10% 0.29% -15 0.10% 0.29% -15 0.10% 0.29% -15 0.10% 0.29%
2 1.07746 -33 0.22% 0.67% -34 0.22% 0.68% -34 0.22% 0.67% -34 0.22% 0.67%
3 1.08777 -53 0.32% 1.03% -56 0.34% 1.07% -55 0.34% 1.06% -55 0.34% 1.06%
4 1.09919 -72 0.41% 1.34% -78 0.45% 1.45% -78 0.45% 1.44% -78 0.45% 1.44%
5 1.11160 -89 0.46% 1.53% -99 0.51% 1.69% -98 0.50% 1.66% -98 0.50% 1.66%
6 1.12495 -102 0.49% 1.66% -115 0.55% 1.83% -115 0.54% 1.82% -115 0.54% 1.81%
7 1.13925 -112 0.49% 1.70% -127 0.55% 1.88% -126 0.55% 1.87% -126 0.55% 1.86%
8 1.15469 -117 0.47% 1.65% -133 0.53% 1.83% -132 0.53% 1.81% -132 0.52% 1.81%
9* 1.17190 -117 0.43% 1.50% -127 0.46% 1.61% -126 0.46% 1.60% -126 0.46% 1.60%

Average – 79 0.38% 1.26% 87 0.41% 1.37% 87 0.41% 1.36% 87 0.41% 1.36%
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Table 6.10: 2D C5G7 center assembly rod withdrawal eigenvalue and pin power dif-
ferences for each decusping method. A * indicates that finite difference
was used axially instead of P3

Rod Reference Subray-0 None Subplane Subplane + CP
Position ke f f ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers

RMS Max RMS Max RMS Max RMS Max

1* 1.06839 -15 0.10% 0.29% -286 1.73% 4.47% -87 0.52% 1.35% -169 0.99% 2.46%
2 1.07746 -33 0.22% 0.67% -811 4.75% 12.70% -198 1.13% 3.06% -174 0.97% 2.57%
3 1.08777 -53 0.32% 1.03% -1369 7.71% 21.30% -290 1.56% 4.42% -181 0.97% 2.70%
4 1.09919 -72 0.41% 1.34% -1918 10.33% 29.42% -360 1.83% 5.35% -185 0.94% 2.75%
5 1.11160 -89 0.46% 1.53% -2400 12.25% 36.00% -405 1.93% 5.84% -184 0.88% 2.68%
6 1.12495 -102 0.49% 1.66% -2738 13.12% 39.83% -424 1.89% 5.89% -174 0.78% 2.47%
7 1.13925 -112 0.49% 1.70% -2820 12.55% 39.38% -416 1.72% 5.52% -155 0.65% 2.11%
8 1.15469 -117 0.47% 1.65% -2478 10.08% 32.80% -377 1.44% 4.76% -124 0.48% 1.62%
9* 1.17190 -117 0.43% 1.50% -1461 5.31% 18.00% -300 1.06% 3.60% -80 0.29% 1.00%

Average – 79 0.38% 1.26% 1809 8.65% 25.99% 317 1.45% 4.42% 158 0.77% 2.26%

Table 6.11: Long Ray Data for C5G7 Core

Method Long Rays per Plane Increase

Reference 88440 –
Subray-0 107400 21%
Subray-1 111792 26%
Subray-2 115264 30%
Subray-3 117920 33%

Table 6.12: Average Performance and Convergence Data for 2D C5G7 Core with Rod-
ded NW Assembly

Method Iterations Runtime (s) Speedup

Reference 25.7 1107 –
None 25.8 739 1.50
Subplane 26.7 725 1.53
Subplane + CP 26.9 695 1.61
Subray-0 26.4 861 1.29
Subray-1 25.9 881 1.26
Subray-2 26.1 920 1.21
Subray-3 26.1 938 1.18

As with the single assembly, the long ray data can again be used to make some pre-
dictions about performance. Because this problem has multiple assemblies and only one is
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partially rodded, the speedup observed for subray MOC is expected to be larger than that
of the single assembly case. Using the same procedure as for the assembly, we can predict
approximate speedups of 1.65, 1.59, 1.54, and 1.50 for Subray-0, Subray-1, Subray-2, and
Subray-3, respectively. In this case the observed speedups are significantly worse than pre-
dicted, for several reasons. First, subray MOC takes more iterations on average than the
reference. Second, the subplane CMFD and P3 systems are the same size for all decusping
methods as for the reference. This was not important for the single assembly, but the 2D
core is large enough that these other parts of the 2D/1D iteration scheme can no longer be
ignored in predicting the runtime. However, in spite of these issues, a speedup of 20-30%
is still achieved with each of the subray MOC methods.

6.3.2.3 2D Core – Rodded Corner Assembly

The final 2D problem is the same as the previous one, except that the southeast corner UO2

assembly is rodded instead of the northwest assembly. Tables 6.13 and 6.14 show similar
results to the previous two problems. For all methods, the errors are lower for this problem
than for the first multi-assembly problem due to the difference in control rod position. The
rods in this problem are in a lower power region, so the absolute differences in power in the
region with the largest errors will automatically be smaller. This is seen in subray MOC
and each of the other methods. With this taken into account, each of the methods performs
similarly to the previous problem. Subray-0 is the best but nearly the same as Subray-1,
Subray-2, and Subray-3. The Subplane + CP method performs worse, but still significantly
reduces the cusping errors from almost 6.5% average maximum differences to less than
1%.

Table 6.13: 2D C5G7 corner assembly rod withdrawal eigenvalue and pin power dif-
ferences for subray recombination parameter sensitivity. A * indicates
that finite difference was used axially instead of P3

Rod Reference Subray-0 Subray-1 Subray-2 Subray-3
Position ke f f ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers

RMS Max RMS Max RMS Max RMS Max

1* 1.18889 -2 0.03% 0.11% -2 0.03% 0.11% -1 0.03% 0.11% -1 0.03% 0.11%
2 1.18966 -4 0.06% 0.23% -4 0.06% 0.23% -3 0.06% 0.23% -3 0.06% 0.23%
3 1.19048 -6 0.09% 0.33% -5 0.09% 0.34% -5 0.09% 0.33% -5 0.09% 0.33%
4 1.19135 -8 0.11% 0.40% -7 0.12% 0.42% -7 0.12% 0.41% -7 0.12% 0.41%
5 1.19227 -9 0.13% 0.45% -9 0.14% 0.47% -8 0.14% 0.47% -8 0.14% 0.47%
6 1.19324 -10 0.14% 0.47% -10 0.16% 0.50% -9 0.15% 0.50% -9 0.15% 0.50%
7 1.19427 -10 0.15% 0.47% -11 0.17% 0.51% -10 0.16% 0.51% -10 0.16% 0.51%
8 1.19538 -10 0.15% 0.46% -11 0.17% 0.50% -11 0.17% 0.50% -11 0.17% 0.50%
9* 1.19666 -10 0.15% 0.42% -10 0.16% 0.44% -10 0.16% 0.44% -10 0.16% 0.44%

Average – 8 0.11% 0.37% 7 0.12% 0.39% 7 0.12% 0.39% 7 0.12% 0.39%

92



Table 6.14: 2D C5G7 corner assembly rod withdrawal eigenvalue and pin power dif-
ferences for each decusping method. A * indicates that finite difference
was used axially instead of P3

Rod Reference Subray-0 None Subplane Subplane + CP
Position ke f f ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers ke f f Pin Powers

RMS Max RMS Max RMS Max RMS Max

1* 1.18889 -2 0.03% 0.11% -26 0.43% 1.35% -9 0.13% 0.42% -16 0.24% 0.73%
2 1.18966 -4 0.06% 0.23% -71 1.16% 3.57% -18 0.28% 0.88% -16 0.24% 0.74%
3 1.19048 -6 0.09% 0.33% -114 1.86% 5.67% -25 0.39% 1.19% -16 0.24% 0.74%
4 1.19135 -8 0.11% 0.40% -153 2.50% 7.48% -30 0.46% 1.38% -17 0.24% 0.73%
5 1.19227 -9 0.13% 0.45% -185 3.01% 8.84% -33 0.50% 1.47% -16 0.23% 0.70%
6 1.19324 -10 0.14% 0.47% -205 3.32% 9.58% -34 0.51% 1.47% -15 0.22% 0.64%
7 1.19427 -10 0.15% 0.47% -207 3.33% 9.43% -33 0.49% 1.39% -13 0.19% 0.55%
8 1.19538 -10 0.15% 0.46% -182 2.89% 7.98% -30 0.45% 1.22% -11 0.15% 0.43%
9* 1.19666 -10 0.15% 0.42% -110 1.71% 4.61% -24 0.36% 0.96% -7 0.10% 0.27%

Average – 8 0.11% 0.37% 139 2.25% 6.50% 26 0.40% 1.15% 14 0.21% 0.61%

Table 6.15: Average Performance and Convergence Data for 2D C5G7 Core with Rod-
ded SE Assembly

Method Iterations Runtime (s) Speedup

Reference 24.4 1006 –
None 24.0 657 1.54
Subplane 25.3 636 1.59
Subplane + CP 25.3 629 1.60
Subray-0 25.3 798 1.26
Subray-1 25.0 833 1.21
Subray-2 25.0 855 1.18
Subray-3 25.0 878 1.15

The primary reason to show this problem is that because the rods are in the center of
the model, the long rays duplicated for the subray MOC calculation are longer for some
angles, especially those between the northeast and southwest corners of the model. Thus,
while the total number of rays duplicated is the same as for the previous problem (Table
6.11), the amount of work done for the duplicated rays is different. This will show what, if
any, impact the position of the control rods in the core could have on the efficiency of the
subray MOC calculations.

Table 6.15 shows the convergence and runtime data for this problem. Compared with
the previous 2D core problem, the speedups are similar, but lower by 3-5% for each subray
MOC calculation. The convergence behavior of this problem is similar to the previous one,
so this small decrease in speedup is likely due to duplicating longer core rays. Consid-
erable fluctuation can occur from one calculation to the next when using a development
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machine shared by other users, but the consistency in these calculations indicates that there
will not be any major performance penalties based on the position of the rods in the core.
Performance will be based primarily on the number of pins requiring subray treatment.

6.3.3 3D C5G7

In addition to the single-plane problems in the previous section, 3D problems were also
set up to test the subray MOC calculations. A 3D variation of each of the single-plane
problems will be presented in this section. The 3D problems have a 42.84 cm active fuel
height, divided into 3 MOC planes for the decusping methods and 4 MOC planes for the
reference calculation. Additionally, a single 21.42 cm axial reflector plane is positioned
above the active fuel neight. Following a similar procedure to the previous problems, the
control rod is withdrawn through the entire active fuel region in 30 steps of 1.428 cm.
Eigenvalue and power distribution comparisons can then be made between the refined mesh
reference solution and each of the multigrid methods.

6.3.3.1 3D C5G7 UO2 Assembly

The first problem is a 3D assembly. This problem uses the UO2 assembly from the C5G7
core and adds control rods to it. Table 6.16 shows the average errors for each method for
this problem for 27 different rod positions; positions 0, 10, 20, and 30 are exlucded from
the averages because they align with the MOC planes and have no cusping effects. With
the introduction of multiple MOC planes, each subray MOC variation performs nearly
identically to the others. With multiple MOC planes, more axial effects are introduced,
slighlty reducing the relative importance of some of the approximations made during the
radial calculations. As with the 2D calculations, subray MOC performs better than the
other methods. The ke f f errors are better by a factor of 2, while the power distribution
errors are also much improved. The maximum power distribution errors for subray MOC
tend to be comparable with the RMS power errors for Subplane + CP, which is a significant
improvement in the solution. The maximum power errors as functions of rod positions are
shown in Figure 6.9
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Figure 6.9: Maximum C5G7 pin power errors versus rod position for 3D C5G7 UO2
assembly

Table 6.16: 3D C5G7 UO2 assembly rod withdrawal eigenvalue and pin power differ-
ence summary

Case Method
ke f f Pin Powers
Diff. RMS Max

Average

None 2193 6.05% 10.95%
Subplane 222 0.88% 1.64%
Subplane+CP 114 0.45% 0.84%
Subray-0 52 0.25% 0.54%
Subray-1 56 0.25% 0.55%
Subray-2 56 0.25% 0.54%
Subray-3 56 0.25% 0.54%

Position 8

None -91 2.88% 4.19%
Subplane -319 1.51% 2.66%
Subplane + CP -106 0.52% 0.89%
Subray-0 -104 0.53% 0.94%
Subray-1 -104 0.52% 0.94%
Subray-2 -105 0.53% 0.98%
Subray-3 -105 0.53% 0.98%
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Table 6.16 also shows the results for each method at control position 8, which is where
subray MOC gives the worst power distribution results. In this case, Subplane + CP nar-
rowly beats out subray MOC in the power comparisons. However, the differences between
the methods is negligible, so even in the worst case, subray MOC is about as good as Sub-
plane + CP and still much better than Subplane without CP. The results with no decusping
method also indicate that this is a region where the cusping effects are not as large com-
pared to the average of all the rod positions. Thus, the simpler approximation is helped by
the less severe cusping effects. The worst case power error for Subray-0 is 0.94%, which
compares favorably with the average maximum difference of 0.84% for Subplane + CP.

Table 6.17: Average Performance and Convergence Data for 3D C5G7 Rodded UO2
Assembly

Method Iterations Runtime (s) Speedup

Reference 27.5 490 –
None 27.8 361 1.36
Subplane 27.5 374 1.32
Subplane + CP 27.2 353 1.39
Subray-0 27.6 444 1.11
Subray-1 28.7 464 1.07
Subray-2 28.8 475 1.04
Subray-3 28.8 478 1.03

The 3D assembly has the same long ray parameters as those shown in Table 6.7 for the
2D assembly. For the plane with the rod, the number of long rays matches with the subray
entries of the table, while for the remaining planes the number of long rays matches the
reference entry. Because of this, the subray MOC calculation runtimes should be closer to
the subplane calculation times than to the reference calculation, since 3 of the 4 planes are
the same as the reference case. Table 6.17 shows the convergence and runtime results for
each of the methods. The Subplane and Subplane + CP methods show speedups between
1.3 and 1.4. Using 4 planes instead of 5 should produce a speedup of approximately 1.25.
This is lower than observed due to other differences in initialization, machine load during
these calculations, and other minor factors. The subray MOC calculations each show worse
speedup than the other methods due to the duplication of long rays in the partially rodded
plane. There is also a small increase in the average number of iterations that contributes
somewhat to the increased runtime. However, each subray MOC variation still results in a
speedup greater than 1.0, incidicating that there is still some savings associated with it.
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6.3.3.2 3D Core – Rodded Center Assembly

The second 3D problem is the 3D C5G7 core with the northwest UO2 assembly rodded.
The results for these calculations are shown in Table 6.18. The power distribution errors
are quite large with no decusping method, with the maximum power being around 30% on
average for all rod positions. The Subplane and Subplane + CP methods reduce that value
to 3.47% and 1.69%, respectively. Finally, subray MOC reduces the maximum errors to
just over 1%. The worst case scenario for this problem occurs at rod position 15. Unlike
the 3D assembly, this position is one of the worst for all the methods, not just subray
MOC. Because of this, subray MOC performs best in every aspect, with the greatest power
error for any rod position being 2.01% and the greatest ke f f error being -54 pcm, both for
Subray-1. The maximum power errors as functions of rod positions are shown in Figure
6.10

Table 6.18: 3D C5G7 core with rodded center assembly rod withdrawal eigenvalue
and pin power difference summary

Case Method
ke f f Pin Powers
Diff. RMS Max

Average

None 21 6.62% 29.30%
Subplane 21 0.69% 3.47%
Subplane+CP 21 0.34% 1.69%
Subray-0 21 0.20% 1.06%
Subray-1 25 0.20% 1.14%
Subray-2 25 0.20% 1.11%
Subray-3 21 0.20% 1.11%

Position 16

None -1730 12.62% 55.69%
Subplane -183 1.08% 5.61%
Subplane + CP -76 0.45% 2.38%
Subray-0 -46 0.30% 1.76%
Subray-1 -54 0.35% 2.01%
Subray-2 -53 0.34% 1.97%
Subray-3 -53 0.34% 1.96%

With multiple assemblies in this 3D problem, a small trend begins to appear for the
recombination flag. Subray-2 makes small improvements on Subray-1, and Subray-3 im-
proves on Subray-2. While all 3 of these variations are worse than Subray-0, it does indicate
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that there is potential benefit to delaying recombination of the subrays. However, for that
benefit to be fully realized, some improvements need to be made to the approximations in
the coupling between the CMFD/P3 system and the radial MOC sweeps.

Figure 6.10: Maximum C5G7 pin power errors versus rod position for 3D C5G7 core
with rodded center assembly

Table 6.19: Average Performance and Convergence Data for 3D C5G7 Core with Rod-
ded Center Assembly

Method Iterations Runtime (s) Speedup

Reference 27.8 3256 –
None 28.2 2581 1.25
Subplane 29.1 2454 1.32
Subplane + CP 28.9 2454 1.32
Subray-0 28.8 2851 1.13
Subray-1 28.9 2920 1.11
Subray-2 29.1 2963 1.09
Subray-3 29.2 3009 1.08

For the 3D core, speedup is also seen for each of the decusping methods in Table 6.19.
The Subplane methods show a speedup of around 30%, while each variation of subray
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MOC shows a speedup of approximately 10%. The subray MOC performance improves
slightly on the single assembly cases due to the fact that a smaller fraction of long rays are
being duplicated in the partially rodded plane. Each method shows a consistent increase
in the number of 2D/1D iterations required to converge. The more complicated coupling
between 2D MOC and the other solvers results in a slightly slower rate of convergence.
However, eliminating an entire MOC plane outweighs the runtime penalty incurred from
the small increase in 2D/1D iterations.

6.3.3.3 3D Core – Rodded Corner Assembly

The final problem is the 3D core with the rods in the southeast fuel assembly. The results
for this problem are shown in Table 6.20. The ke f f difference are trivial for each method,
but minor improvements are observed with increasing method complexity. As with all other
problems before, the average behavior of subray MOC is significantly better than the other
methods, in this case brining the average maximum power difference under 0.4% and the
average RMS difference to about 0.5%. The worst performance for subray MOC occurs at
rod position 16. As with the previous problem, subray MOC outperforms the other methods
at this position, though by a smaller margin. This position is one of the worst without any
cusping method, and also has some of the largest errors for each method. However, the
errors in this problem are smaller in general, so all methods perform well in reducing the
cusping effects.

Finally, the performance and convergence data for this problem are shown in Table 6.21.
The overall behavior is similar to the previous 3D core. The speedups for subray MOC are
somewhat worse than before. However, the Subplane methods also show worse speedup,
meaning that any differences between this problem and the previous one are attributable to
changes in the state of the machine during the calculations.
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Table 6.20: 3D C5G7 core with rodded corner assembly rod withdrawal eigenvalue
and pin power difference summary

Case Method
ke f f Pin Powers
Diff. RMS Max

Average

None 72 1.53% 7.01%
Subplane 8 0.18% 1.08%
Subplane+CP 4 0.09% 0.56%
Subray-0 2 0.05% 0.35%
Subray-1 2 0.06% 0.37%
Subray-2 2 0.06% 0.37%
Subray-3 2 0.06% 0.37%

Position 16

None -108 2.49% 12.25%
Subplane -15 0.29% 1.62%
Subplane + CP -6 0.12% 0.73%
Subray-0 -4 0.08% 0.56%
Subray-1 -4 0.10% 0.62%
Subray-2 -4 0.10% 0.62%
Subray-3 -4 0.10% 0.62%

Table 6.21: Average Performance and Convergence Data for 3D C5G7 Core with Rod-
ded Corner Assembly

Method Iterations Runtime (s) Speedup

Reference 27.2 3346 –
None 27.0 2751 1.22
Subplane 28.2 2716 1.18
Subplane + CP 28.2 2751 1.17
Subray-0 27.9 3115 1.08
Subray-1 28.1 3099 1.08
Subray-2 28.1 3132 1.07
Subray-3 28.2 3155 1.06
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CHAPTER 7

Conclusions

7.1 Summary

To motivate the need to improve planar synthesis solutions to the transport method using
subgrid methods, an overview of relevant discretizations, approximations, and numerical
methods used to solve the Boltzmann transport equation was presented. Using this foun-
dation in transport methods, an in depth description of the 2D/1D method was provided.
This discussion provided a context to show the cause of the control rod cusping problem,
which is the most severe axial heterogeneity observed in planar synthesis methods. While
rod decusping methods have an extensive history, none of them have fully addressed the
problem, necessitating the research presented here.

With the groundwork laid for 2D/1D and rod cusping, three new methods developed
during this research were presented. The first, polynomial decusping, is reminiscent of
those used in nodal codes. Pregenerated data is functionalized and used to adjust the
weighting of rodded and unrodded cross sections during the 2D/1D calculation. This is
similar to cross section tabulation methods used by nodal codes and is specific to certain
control rod types. It was shown that compared to no decusping method, this polynomial
decusping caused significant improvement for most cases. However, the results were still
worse than desired for a direct transport calculation such as 2D/1D, while a few results
were unacceptably bad. Furthermore, additional data collection would be required to ex-
tend this method, making it cumbersome as a long-term, general solution to the rod cusping
problem. This was shown in the fact that the polynomial decusping could not resolve the
stainless steel tip in the VERA Progression Problems and could not be used at all for the
C5G7 benchmark problems.

The second method was the subplane collision probabilities method. This method uses
an auxiliary solver to generate improved flux profiles which are then used in the subplane
CMFD and P3 calculations to solve the problem on a refined axial mesh. This method
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significantly improved on the results of the polynomial decusping. Furthermore, because
the axial and radial effects are handled directly during the 2D/1D iteration, this method
was less susceptible to changes in rod type. The results for every problem showed that it
performed consistently, significantly reducing the errors in power distribution caused by
the control rods.

The final method is the subray method of characteristics. This method sought to address
the fundamental quantity for which MOC is solving: the angular flux. By accounting for
the rod during the MOC sweep and obtaining a more correct angular flux, the scalar flux
and other derived quantities are more accurate as well. This method was then tested using
the C5G7 Benchmark in 1D, 2D, and 3D. In 1D, subray MOC fully resolved the effects
of the partially rodded cells. For the 2D and 3D C5G7 cases, subray MOC consistently
performed better than the next best method, often by close to a factor of 2. The speedups
obtained using subray MOC were less than those of other methods, but were about as good
as expected.

Several conclusions can be reached about the methods presented in this research:

• The polynomial decusping method is limited in its ability to resolve partially inserted
control rods. The rod materials in the model must have polynomials generated for
them and implemented in the code for the method to work. Furthermore, it was
shown that even with the appropriate materials, the the polynomial method was lim-
ited in its accuracy. It typically did well in predicting ke f f since the curves were
generated based on reactivity, but the power distribution predictions suffered. How-
ever, its simplicity makes it an option to address rod cusping effects in the near term.

• The subplane collision probabilities proved to be able to handle a variety of rod types
and provide good results for both ke f f and power distributions. The method was less
susceptible to rod position in the core than the polynomial method as well, shown by
the more consistent behavior of its differential rod worth curve.

• Subplane-based methods introduce some changes in the convergence and runtime
behavior of the 2D/1D calculations. Subplane collision probabilities consistently
saw an increase in the number of CMFD iterations required for each 2D/1D iteration.
The issue of load balance in parallel can also be important when using the subplane
scheme with large radial partitions.

• Rod cusping effects can be mostly eliminated by using a method like subray MOC.
Because the angular flux calculations are improved, the results of the most challeng-
ing problems tested here were still good.
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• The current set of approximations required to use subray MOC in the 2D/1D method
make the recombination flag useless for values greater than 0. Furthermore, even if
those approximations are improved, the 1D MOC results indicate that the accuracy
improvements will be small and not worth the increased computational expense.

Based on these conclusions, recommendations can be made regarding the pursuit of
subgrid methods. The polynomial method is not recommended except to deal with urgent
rod cusping errors. It is not useful in dealing with other axial heterogeneities, and its accu-
racy is no reliable enough to be a long-term solution. The subplane collision probabilities
method is recommended as a good solution to subgrid heterogeneity. This method can be
applied to a wide variety of axial heterogeneity and performs relatively consistently from
one problem to the next. It is also relatively straightforward to implement this method since
it is a separate calculation conducted between the MOC and CMFD calculations. There are
also some areas in which it could be modified to further improve accuracy. Finally, subray
MOC is recommended as the best of these three methods. It consistently provided the best
answers for every calculation and has the best theoretical foundation. However, because
it is embedded directly into the MOC calculations and affects the iteration between the
MOC and CMFd/P3 calculations, it is significantly more complicated and expensive than
the other two methods. If this method is used, better optimization should be pursued as
well.

7.2 Future Work

7.2.1 Subgrid Method Applications

There are several types of applications that could be made with these subgrid methods that
have not been investigated in this dissertation. First, these methods were developed and an-
alyzed in the framework of 2D/1D. However, the 2D/3D method also uses 2D MOC planes
to inform its 3D sweep. Because of this, 2D/3D can also realize performance improve-
ments by reducing the number of MOC planes used in the calculation. Applying any of
these subgrid methods to the MOC planes in 2D/3D should have results in benefits similar
to those observed with the 2D/1D method.

Another topic of interest is applying these methods to other axial heterogeneities. Geo-
metric components such as fuel end caps or spacer grids could be treated differently using
subray MOC or subplane collision probabilities. Reactors with non-uniform fuel heights
would also be a good opportunity to use some of these methods without introduce thin
MOC planes. Enabling thermal-hydraulic feedback would also present the opportunity
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to use these methods to capture subgrid temperature and density distributions. Any het-
erogeneity that exists in many locations in the core would be a good application for the
subplane collision probabilities method, while severe heterogeneities that tend to be only
in specific regions of the core are good applications for subray MOC.

Finally, exercising these methods on a greater diversity of problems would further quan-
tify their effectiveness in capture subgrid heterogeneity. Modeling rod ejection transient
problems is a common application for rod decusping methods that could be addressed.
Depletion calculations are important for reactor analysis and provide opportunities to test
these methods as control rods move throughout a reactor’s cycle.

7.2.2 Polynomial Decusping Improvements

The polynomial decusping method could be extended primarily by adding more control
rod types. This would allow it to become more flexible and applied to a wider variety of
problems. One example would be adding a curve for stainless steel, allowing the method to
resolve the stainless steel tip used in many PWRs. Other control rods have followers that
cannot currently be account for, some of which are even fuel. Generating more data for the
polynomial decusping method would make it more flexible and provide an easy, efficient
means of handling cusping effects for a variety of problems.

7.2.3 Subplane Collision Probabilities

Several improvements could be made to the subplane collision probabilities method. First,
other solvers could be used to generate the pin cell flux profiles. The current 1D CP solver
could be replaced by a 2D CP kernel that solves in the radial and axial directions to account
for the local 3D effects of the rod; a 2D MOC pin cell solver could be used in each level
to account for corner effects in the pin cell and incorporate higher order scattering; a fast
3D CP or MOC solver could even be used to obtain a 3D flux shape around the tip of the
control rod. Any of these solvers would likely improve the solutions.

Second, the current CP implementation in MPACT solves only in cylindrical coordi-
nates. This works well for most geometric components in PWRs, but there are situations
where other geometries would be necessary. Expanding the CP kernel to be able to handle
some other common geometries would also make it useful in more situations.
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7.2.4 Subray MOC

Finally, there are a number of improvements that can be made to subray MOC. The first few
improvements are features which have been implemented in 2D/1D codes already for regu-
lar 2D MOC. The current implementation in MPACT does not use any parallelism. Subray
MOC could be decomposed by angle, space, or energy using distributed memory, or by ray
using threading. Doing this would present some interesting challenges concerning parallel
load balance for both subray MOC and subplane CMFD/P3. Higher order scattering could
also be introduced instead of assuming P0/TCP0 scattering. Cross section shielding calcu-
lations will also be required if subray MOC is to be used for more realistic problems. When
subray MOC is used for the main solve, it should also be used for the shielding calculations
to obtain shielding data for the subregions used by the subrays. This would allow subray
MOC to be used on realistic problems such as the VERA Progression Problems instead of
being limited to macroscopic cross sections such as those used in the C5G7 problems.

Another area in which subray MOC could be improved is the sweep algorithm and data
structures. Because MPACT was intended for a more traditional 2D/1D approach, imple-
menting subray MOC required duplication of the long rays. This introduces a significant
amount of unnecessary calculation. Redesigning the ray tracing data to account for sub-
rays would then allow the implementation of more efficient algorithms for the subray MOC
sweep that do not duplicate calculations unnecessarily.

There are also improvements that could be made to the axial and radial transverse leak-
age sources. For the radial TL source, the D̂ coupling coefficients are calculated on the
full-height MOC plane when subplane CMFD is used to ensure stability. With subray
MOC, the currents could conceivably be tallied on the subplane surfaces instead, provid-
ing a more accurate shape for these coefficients and improving the radial TL source for the
axial solver. Doing this would also necessitate some improvements in the flux homogeniza-
tion and projection. The implementation presented here neglects the subregion flux after
the MOC calculation is finished, relying only on the subplane CMFD solutions to generate
axial shapes for subsequent MOC calculations. Instead, changes should be made to incor-
porate the subregion fluxes, which would improve both the MOC source calculations and
the radial D̂ calculations.

The axial TL source could also be improved through the use of better approximations.
The current approximation is a flat TL source, meaning that the source is the same for all
flat source regions belonging to a pin cell. It is clear that the actual TL source would be very
different in the fuel regions than in the moderator regions. Devising a strategy to account
for this would improve all 2D/1D calculations (including those using the subgrid methods
developed in this work), especially in the vicinity of a strongly absorbing control rod.
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APPENDIX A

Supplemental Derivations

A.1 Simplified Spherical Harmonics

This section will provide a detailed derivation of the SP3 equations. The SP1 equations are
easily obtained by neglecting higher order moments of the flux, and SPN approximations
of order greater than 3 are easily obtained by following the same procedure. These higher
order approximations are not of interest because they were not used in this work and only
marginally improve on the accuracy of SP3.

To begin, we start with the mono-energetic planar geometry transport equation with
anisotropic scattering:

µ
∂ψ

∂x
+Σt (x)ψ (x,µ) =

1∫
−1

Σs
(
x,µ,µ′

)
ψ
(
x,µ′

)
dµ′+

Q (x)
2

. (A.1)

Now we assume that the angular flux and scattering cross sections are both expanded in
terms of Legendre polynomials, with these expansions truncated at the Nth term as follows:

ψ (x,µ) ≈
N∑

n=0

2n + 1
2

ψn (x) Pn (µ) , (A.2a)

Σs
(
x,µ,µ′

)
≈

N∑
n=0

2n + 1
2

Pn (µ) Pn
(
µ′

)
Σs,n (x) . (A.2b)

Substituting these expansions into the transport equation, multiplying by Pn (µ), and inte-
grating, we obtain the following:

d
dx

[
n + 1

2n + 1
ψn+1 (x) +

n
2n + 1

ψn−1 (x)
]
+Σt (x)ψn (x) = Σs,n (x)ψn (x) + Q (x)δ0,n . (A.3)
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To obtain the SP3 equations, we solve Equation A.3 for moments 0-3:

n=0:
dψ1

dx
+Σt (x)ψ0 (x) = Σs,0 (x)ψ0 (x) + Q (x)

dψ1

dx
= Q− (Σt (x)−Σs0 (x))ψ0 (x) , (A.4a)

n=1:
d
dx

[
2
3
ψ2 (x) +

1
3
ψ0 (x)

]
+Σt (x)ψ1 (x) = Σs,1 (x)ψ1 (x)

ψ1 (x) = −D0
d
dx

[
2ψ2 (x) +ψ0 (x)

]
, (A.4b)

n=2:
d
dx

[
3
5
ψ3 (x) +

2
5
ψ1 (x)

]
+Σt (x)ψ2 (x) = Σs,2 (x)ψ2 (x)

dψ3

dx
= −

5
3

(Σt (x)−Σs2 (x))ψ2 (x)−
2
3
[
Q (x)− (Σt (x)−Σs0 (x))ψ0 (x)

]
, (A.4c)

n=3:
3
7

dψ2

dx
+Σt (x)ψ3 (x) = Σs,3 (x)ψ3 (x)

ψ3 (x) = −
5
3

D2 (x)
dψ2

dx
, (A.4d)

D0 (x) =
1

3(Σt (x)−Σs1 (x))
, (A.4e)

D2 (x) =
9

35(Σt (x)−Σs3 (x))
, (A.4f)

where Equation A.4c was obtained by substituting Equation A.4a into it.
Now we make the following definitions:

Φ0 (x) = ψ0 (x)−2ψ2 (x) , (A.5a)

Φ2 (x) = ψ2 (x) . (A.5b)

Solving these equations for the 0th and 2nd moments gives the following:

ψ0 (x) = Φ0 (x)−2Φ2 (x) , (A.6a)

ψ2 (x) = Φ2 (x) . (A.6b)

Substituting these expressions into each of the moment equations gives the final form
of the SP3 equations. These forms of the 0th and 2nd moment equations were obtained by
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substituting the 1st and 3rd moment equations into the 0th and 2nd moment equations.

n=0: −D0 (x)
d2Φ2

dx2 + (Σt (x)−Σs0 (x))Φ0 (x) = Q (x) + 2(Σt (x)−Σs0 (x))Φ2 (x) , (A.7a)

n=1: ψ1 (x) = −D0 (x)
dΦ0

dx
, (A.7b)

n=2: −D2 (x)
d2Φ2

dx2 +

(
9
5

Σt (x)−Σs2 (x)−
4
5

Σs0 (x)
)
Φ2 (x) =

−
2
5

[Q (x)− (Σt (x)−Σs0 (x))Φ0 (x)] , (A.7c)

n=3: ψ3 (x) = −
5
3

D2 (x)
dΦ2

dx
. (A.7d)

Because the odd moments have been completely eliminated from the even moment equa-
tions, Equations A.7a and A.7c can be solved by iterating between the two equations with-
out solving explicitly for the odd moments.

A.2 Method of Collision Probabilities

A more thorough derivation of the Collision Probabilities (CP) method is conducted in
this section. The derivation begins by considering the probability of a neutron reaching a
vertical line in space form its point of emission or scatter. From here, the derivation follows
closely with [45] to eventually arrive at a linear system for the flux.

A.2.1 Derivation

To derive the transport matrix for a cylindrical pin cell, we begin by considering the fraction
of neutrons from a point source which will reach a line whose closest distance to the point
source is τ mean free paths. We will consider the point source to be an isotropic unit point
source. The polar angle is θ and the azimuthal angle is α. The fraction of neutrons emitted
into a specific direction dΩ about Ω from the point source to the line in question is given
by

dΩ

4π
=

sin (θ)dθdα
4π

. (A.8)

Integrating this expression over the polar angle gives the probability that neutrons will
be emitted from the source in dα about α and reach the line a distance of τ away:

π∫
0

e−
τ

sinθ
sinθdθdα

4π
. (A.9)
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We are only concerned with the fraction of neutrons in dα which are also in dΩ. The
fraction of neutrons emitted into dα is given by dα

2π , so if we divide the previous expression
by this fraction, we obtain the probability that a neutron emitted form the source in direction
dα about α will reach the line:

p (τ) =
1
2

π∫
0

e−
τ

sinθ sinθdθ

=

π
2∫

0

e−
τ

sinθ sinθdθ

= Ki2 (τ) , (A.10)

where Ki2 (x) is the second-order Bickley-Naylor function. The Bickley-Naylor function
can be defined as follows:

Kin (x) =

π
2∫

0

cosn−1 θe−
x

cosθdθ , (A.11a)

dKin (x)
dx

= −Kin−1 (x) , (A.11b)

b∫
a

Kin (y)dy = Kin+1 (a)−Kin+1 (b) . (A.11c)

Using Equations A.10 and A.11, we can now determine the probability of a neutron
which escapes from region i having its next collision in region j. This probability is given
by the probability of the escaped neutron reaching the first edge of region j minus the
probability of reaching the second edge of j:

pi j (τ,α,y) = Ki2
(
τi j +τ j +τ

)
−Ki2

(
τi j +τ

)
, (A.12)

where τi j is the number of mean free paths between i and j, τ j is the number of mean free
paths across j, and τ is the number of mean free paths from the neutron’s point of emission
to the edge of region i. The variable y is defined along an axis in the plane of the problem
perpendicular to the direction of streaming. The combination of τ and y specify a specific
point in region i for each angle α.

Next, we define a strip in i of length ti = τ
Σi

along the streaming direction with width dy.
To obtain the fraction of neutrons born in this strip that collide in j, we integrate the strip
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and divide by its length:

pi j (α,y) =
1
ti

ti∫
0

pi j (τ,α,y)dt

=
1
ti

ti∫
0

Ki2
(
τi j +τ

)
−Ki2

(
τi j +τ j +τ

)
dt

=
1
ti

ti∫
0

Ki2
(
τi j +τi−Σit

)
−Ki2

(
τi j +τ j +τi−Σit

)
dt . (A.13)

Now we apply a change of variables x = τi j +τi−Σit. Doing this, we obtain

pi j (α,y) = −
1

Σiti

τi j∫
τi j+τi

Ki2 (x)−Ki2
(
x +τ j

)
dx

=
1

Σiti

[(
Ki3

(
τi j

)
−Ki3

(
τi j +τi

))
−

(
Ki3

(
τi j +τi

)
−Ki3

(
τi j +τi +τ j

))]
. (A.14)

This expression can now be multiplied by the fraction of neutrons in each strip and in-
tegrated over y to obtain the total fraction of neutrons born anywhere in i that stream in
direction α and collide in j:

pi j (α) =

ymax(α)∫
ymin(α)

pi j (α,y)
ti
Vi

dy

=
1

ΣiVi

ymax(α)∫
ymin(α)

[(
Ki3

(
τi j

)
+ Ki3

(
τi j +τi +τ j

))
−

(
Ki3

(
τi j +τi

)
+

(
Ki3

(
τi j +τ j

)))]
dy .

(A.15)

Finally, we obtain element i j of the transport matrix by multiplying by the volume and
cross section. When multiplied by φi, this gives the total contribution to φ j from region i:

Pi j (α) = ΣiVi pi j (α)

=

ymax(α)∫
ymin(α)

[(
Ki3

(
τi j

)
+ Ki3

(
τi j +τi +τ j

))
−

(
Ki3

(
τi j +τi

)
+

(
Ki3

(
τi j +τ j

)))]
dy .

(A.16)
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Now that this probability has been derived, it can be integrated over all α to obtain the
transport matrix elements for a specific geometry.

We must also handle the self-transport case, where i = j. Again we follow the same
procedure and define the probability pii (t,α,y) as the probability the neutron reaches region
i minus the probability it escapes region i. Since the neutron was born in region i, the first
probability is 1. This gives the following expressions:

pii (t,α,y) = 1−Ki2 (τ) , (A.17a)

pii (α,y) =
1
ti

ti∫
0

pii (t,α,y)dt

= 1−
1

Σiti
[Ki3 (0)−Ki3 (τi)] = 1−

1
Σiti

[
π

4
−Ki3 (τi)

]
, (A.17b)

pii (α) =

ymax(α)∫
ymin(α)

pii (α,y)
tidy
Vi

= 1−
1

ΣiVi

ymax(α)∫
ymin(α)

[
π

4
−Ki3 (τi)

]
dy , (A.17c)

Pii (α) = ΣiVi pii (α)

= ΣiVi−

ymax(α)∫
ymin(α)

[
π

4
−Ki3 (τi)

]
dy . (A.17d)

Now this self-transport kernel can be used with the kernel in A.16 to set up the full transport
matrix for a problem. This matrix is dependent on the geometry of the problem, so it must
be done for each unique problem being solved. The following section discusses the details
of this process for a cylindrical pin cell.

A.2.2 CP in Cylindrical Coordinates

To obtain the transport matrix for a cylindrical pin cell, the pin cell must first be cylindri-
cized. To do this, the moderator region around the outside of the fuel pin is changed to an
annular ring which preserves the total volume of the cylinder. This allows the calculation
to be 1D spatially. Secondly, to ensure that there is a sufficient source driving the problem,
a fuel and moderator mixture can be placed in a ring beyond the moderator ring. This is
especially important for using the CP method for decusping since the control rod pin cell
has no fission source of its own to drive the problem.
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Figure A.1: Cylindrical Geometry Collision Probabilities

Now that the geometry is set up, we can take advantage of the symmetry of the problem
and only model on quarter of the volume to simplify the calculation. The kernels from
Equations A.16 and A.17 can be used, but some modification is required. The reason for
these modifications is that from a ring i, a ring j which is outside ring i can be intersected
from two different directions. Two “sub-kernels” are defined for teh positive and negative
directions. Each covers only one of two directions, so they should be multiplied by 1

2 .
However, each only accounts for 1

4 the total volume, so the final expression Pi j (y) should
be multiplied by 2 to account for each of these. The sub-kernels are each multiplied by 1

ΣiVi

to account for the unit source density in the volume Vi as well as a 1
Σi

term that comes from
the change of variables during the integration over ti. The positive and negative τ terms are
shown in the geometry in A.1.

P−i j (y) =
1

ΣiVi

(
Ki3

(
τ−i j−1

)
+ Ki3

(
τ−i−1 j

)
−Ki3

(
τ−i j

)
−Ki3

(
τ−i−1 j−1

))
(A.18a)

P+
i j (y) =

1
ΣiVi

(
Ki3

(
τ+

i−1 j−1

)
+ Ki3

(
τ+

i j

)
−Ki3

(
τ+

i−1 j

)
−Ki3

(
τ+

i j−1

))
(A.18b)

Pi j (y) = 2
(
P−i j (y) + P+

i j (y)
)
. (A.18c)
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Now we introduce notation to simplify this expression:

S i j =

Ri∫
0

(
Ki3

(
τ+

i j

)
−Ki3

(
τ−i j

))
dy (A.19a)

⇒ Pi j = ΣiVi

Ri∫
0

Pi j (y)dy

= 2
(
S i j + S i−1 j−1−S i j−1−S i−1 j

)
. (A.19b)

Figure A.2: Cylindrical Geometry Collision Probabilities Self-Transport

It is useful to note at this point that the principle of reciprocity exists for these kernels.
What is meant by this is that Pi j = P ji. This is because the S i j terms are functions only of
τ+

i j and τ−i j. These variables are defined as the distance between radii i and j, to τ+
i j = τ+

ji

and τ−i j = τ−ji. Because of this, only half of the possible combinations of i and j must be
calculated. Likewise, when the final transport matrix is set up, it will be symmetric, so only
one of the upper and lower triangles must be explicitly calculated. This saves some time in
the computation of the matrix elements.

A similar process is followed for the self-transport kernel. Again, positive and negative
directions are set up. Additionally, the possibility of a neutron being born in i, escaping,
then re-entering the other side of i must be accounted for as well. This is illustrated in
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Figure A.2. This leads to the kernel in Equation A.20:

P−ii (y) =
ti (y)
Vi

+
1

ΣiVi

(
Ki3

(
τ−ii−1

)
+ Ki3

(
τ−i−1i

)
−Ki3

(
τ−ii

)
−Ki3

(
τ−i−1i−1

))
(A.20a)

P+
ii (y) =

ti (y)
Vi

+
1

ΣiVi

(
Ki3

(
τ+

ii

)
+ Ki3

(
τ+

i−1i−1

)
−Ki3

(
τ+

ii−1

)
−Ki3

(
τ+

i−1i

))
(A.20b)

Pii (y) = 2
(
P−ii (y) + P+

ii (y)
)

(A.20c)

Pii = ΣiVi

Ri∫
0

Pii (y)dy

= ΣiVi + 2(S ii + S i−1i−1−S ii−1−S i−1i) . (A.20d)

Pi j is the probability that a neutron born in cell i has its first collision in cell j. Likewise,
Pii is the probability that a neutron born in cell i has its first collision in the same cell. To
obtain the transport matrix elements Ti j and Tii, we must consider the actual linear system
we wish to solve. The goal is to find the reaction rates in each cell, from which we can
easily find the flux in the cell φi. There are two main contributions to the reaction rates in
cell i. The first contribution is from neutrons born in another cell j which have their first
collision in cell i. This source is given by Q j

Σt, j
, which gives the contribution to the reaction

rates in i when multiplied by P ji. The second part of the source comes from neutrons
which streamed into j and collided, scattered, then streamed into i before having their next
collision. This source is given by P jiφ jc j, where c j is the scattering ration in cell j, defined
as Σs, j

Σt, j
. The linear sysmem which needs to be solved is then shown in Equation A.21:

Σt,iφiVi = sumNR
j=1P ji

(
c jφ j +

Q j

Σt, j

)
. (A.21)

The linear system, with the matrix and source elements, can now be explicitly defined
in Equation A.22:

Tφ = B , (A.22a)

Ti j = −P jic j = −2c j
(
S ii + S i−1 j−1−S i j−1−S i−1 j

)
(A.22b)

Tii = Σt,iVi−Piici = Σt,iVi−Σs,iVi−2c j
(
S ii + S i−1 j−1−S i j−1−S i−1 j

)
, (A.22c)

Bi =

NR∑
j=1

P ji
Q j

Σt, j
. (A.22d)

The only remaining unknowns required to construct this linear system are the S i j terms that
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involve integrals over the third-order Bickley-Naylor functions. This will be discussed in
the next section.

A.2.3 Bickely-Naylor Function Integration

In the previous sections, we defined the following functions which contain integrals over
third-order Bickley-Naylor functions:

S i j =

R∫
0

(
Ki3

(
τ+

i j (y)
)
−Ki3

(
τ−i j (y)

))
dy . (A.23)

To numerically integrate these functions, we first break them up into regions:

S i j =

i∑
k=1

S k
i j (A.24a)

S k
i j =

Rk∫
Rk−1

(
Ki3

(
τ+

i j (y)
)
−Ki3

(
τ−i j (y)

))
dy . (A.24b)

Next, we perform a coordinate transformation to change the bounds of integration to be
on the interval [−1,1]. This allows us to apply a Gaussian quadrature to evaluate the inte-
gral numerically. The results of the transformation are shown in A.25, where f (p) is the
transformed S k

i j and pi and ωi are some points and weights associated with the quadrature.

p = 2
y−Rk−1

Rk −Rk−1
−1 = 2

y−Rk−1

∆k
−1 , (A.25a)

dp =
2
∆k

dy , (A.25b)

⇒ S k
i j =

∆k

2

1∫
−1

f (p)dp =
∆k

2

∑
i

ωi f (pi) . (A.25c)

This can now be integrated using a standard Gaussian quadrature [60]. Because this quadra-
ture is being applied to sections of each integral rather than the whole integral, MPACT uses
a 4-point Gaussian quadrature (shown in Table A.1), which is sufficient to give accurate so-
lutions over the entire bounds of the integral.
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Table A.1: Four-Point Gaussian Quadrature

Point Weight

±

√
3
7 −

2
7

√
6
5

18+
√

30
36

±

√
3
7 + 2

7

√
6
5

18−
√

30
36
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APPENDIX B

C5G7 Cross-Sections

1 C5G7 macroscopic cross section data

2 7 5

3 2.0E+07 1.0E+06 5.0E+05 1.0E+03 1.0E+02 10. 0.0635

4 !

5 !Comments can appear after the first 3 lines and between macro/micro blocks

6 !

7 !In the second line , the first number is number of groups and the other is

8 !number of cross section sets.

9 !

10 !In the third line the energy group bounds are made up.

11 !

12 !Data here is derived from NEA/NSC/DOC (2003) 16 or ISBN 92 -64 -02139 -6

13 !Table 1 of Appendix A.

14 !

15 !The control rod cross sections come from NEA/NSC/DOC (2005) 16 or

16 !ISBN 92 -64 -01069 -6 Table 1 of Appendix A.

17 !

18 !For each cross -section set:

19 ! XSMACRO <name > <scattering_order >

20 ! <absorption_xs > <nu -fission_xs > <kappa -fission_xs > <chi > ! Repeats for each group

21 ! <scattering_matrix > !<ngroup >x<ngroup > matrix , repeated <scattering_order >+1 times

22 !

23

24 !Moderator

25 XSMACRO Moderator 0

26 6.0105E-04 0.000000E+00 0.00000E+00 0.0000E+00

27 1.5793E-05 0.000000E+00 0.00000E+00 0.0000E+00

28 3.3716E-04 0.000000E+00 0.00000E+00 0.0000E+00

29 1.9406E-03 0.000000E+00 0.00000E+00 0.0000E+00

30 5.7416E-03 0.000000E+00 0.00000E+00 0.0000E+00

31 1.5001E-02 0.000000E+00 0.00000E+00 0.0000E+00

32 3.7239E-02 0.000000E+00 0.00000E+00 0.0000E+00

33 4.44777E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

34 1.13400E-01 2.82334E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

35 7.23470E-04 1.29940E-01 3.45256E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

36 3.74990E-06 6.23400E-04 2.24570E-01 9.10284E-02 7.14370E-05 0.00000E+00 0.00000E+00

37 5.31840E-08 4.80020E-05 1.69990E-02 4.15510E-01 1.39138E-01 2.21570E-03 0.00000E+00

38 0.00000E+00 7.44860E-06 2.64430E-03 6.37320E-02 5.11820E-01 6.99913E-01 1.32440E-01

39 0.00000E+00 1.04550E-06 5.03440E-04 1.21390E-02 6.12290E-02 5.37320E-01 2.48070E+00

40

117



41

42 !Guide tube

43 XSMACRO GuideTube 0

44 5.1132E-04 0.000000E+00 0.00000E+00 0.0000E+00

45 7.5801E-05 0.000000E+00 0.00000E+00 0.0000E+00

46 3.1572E-04 0.000000E+00 0.00000E+00 0.0000E+00

47 1.1582E-03 0.000000E+00 0.00000E+00 0.0000E+00

48 3.3975E-03 0.000000E+00 0.00000E+00 0.0000E+00

49 9.1878E-03 0.000000E+00 0.00000E+00 0.0000E+00

50 2.3242E-02 0.000000E+00 0.00000E+00 0.0000E+00

51 6.61659E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

52 5.90700E-02 2.40377E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

53 2.83340E-04 5.24350E-02 1.83297E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

54 1.46220E-06 2.49900E-04 9.23970E-02 7.88511E-02 3.73330E-05 0.00000E+00 0.00000E+00

55 2.06420E-08 1.92390E-05 6.94460E-03 1.70140E-01 9.97372E-02 9.17260E-04 0.00000E+00

56 0.00000E+00 2.98750E-06 1.08030E-03 2.58810E-02 2.06790E-01 3.16765E-01 4.97920E-02

57 0.00000E+00 4.21400E-07 2.05670E-04 4.92970E-03 2.44780E-02 2.38770E-01 1.09912E+00

58

59

60 !Gap -- Actually just guide tube

61 XSMACRO Gap 0

62 5.1132E-04 0.000000E+00 0.00000E+00 0.0000E+00

63 7.5801E-05 0.000000E+00 0.00000E+00 0.0000E+00

64 3.1572E-04 0.000000E+00 0.00000E+00 0.0000E+00

65 1.1582E-03 0.000000E+00 0.00000E+00 0.0000E+00

66 3.3975E-03 0.000000E+00 0.00000E+00 0.0000E+00

67 9.1878E-03 0.000000E+00 0.00000E+00 0.0000E+00

68 2.3242E-02 0.000000E+00 0.00000E+00 0.0000E+00

69 6.61659E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

70 5.90700E-02 2.40377E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

71 2.83340E-04 5.24350E-02 1.83297E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

72 1.46220E-06 2.49900E-04 9.23970E-02 7.88511E-02 3.73330E-05 0.00000E+00 0.00000E+00

73 2.06420E-08 1.92390E-05 6.94460E-03 1.70140E-01 9.97372E-02 9.17260E-04 0.00000E+00

74 0.00000E+00 2.98750E-06 1.08030E-03 2.58810E-02 2.06790E-01 3.16765E-01 4.97920E-02

75 0.00000E+00 4.21400E-07 2.05670E-04 4.92970E-03 2.44780E-02 2.38770E-01 1.09912E+00

76

77 !UO2 fuel -clad

78 XSMACRO UO2 -3.3 0

79 8.0248E-03 2.005998E-02 7.21206E-03 5.8791E-01

80 3.7174E-03 2.027303E-03 8.19301E-04 4.1176E-01

81 2.6769E-02 1.570599E-02 6.45320E-03 3.2990E-04

82 9.6236E-02 4.518301E-02 1.85648E-02 1.0000E-07

83 3.0020E-02 4.334208E-02 1.78084E-02 0.0000E+00

84 1.1126E-01 2.020901E-01 8.30348E-02 0.0000E+00

85 2.8278E-01 5.257105E-01 2.16004E-01 0.0000E+00

86 1.27537E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

87 4.23780E-02 3.24456E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

88 9.43740E-06 1.63140E-03 4.50940E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

89 5.51630E-09 3.14270E-09 2.67920E-03 4.52565E-01 1.25250E-04 0.00000E+00 0.00000E+00

90 0.00000E+00 0.00000E+00 0.00000E+00 5.56640E-03 2.71401E-01 1.29680E-03 0.00000E+00

91 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.02550E-02 2.65802E-01 8.54580E-03

92 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00210E-08 1.68090E-02 2.73080E-01

93

94 !Control Rod

95 XSMACRO CRod 0
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96 1.70490E-03 0.000000E+00 0.00000E+00 0.0000E+00

97 8.36224E-03 0.000000E+00 0.00000E+00 0.0000E+00

98 8.37901E-02 0.000000E+00 0.00000E+00 0.0000E+00

99 3.97797E-01 0.000000E+00 0.00000E+00 0.0000E+00

100 6.98763E-01 0.000000E+00 0.00000E+00 0.0000E+00

101 9.29508E-01 0.000000E+00 0.00000E+00 0.0000E+00

102 1.17836E+00 0.000000E+00 0.00000E+00 0.0000E+00

103 1.70563E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

104 4.44012E-02 4.71050E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

105 9.83670E-05 6.85480E-04 8.01859E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

106 1.27786E-07 3.91395E-10 7.20132E-04 5.70752E-01 6.55562E-05 0.00000E+00 0.00000E+00

107 0.00000E+00 0.00000E+00 0.00000E+00 1.46015E-03 2.07838E-01 1.02427E-03 0.00000E+00

108 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 3.81486E-03 2.02465E-01 3.53043E-03

109 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 3.69760E-09 4.75290E-03 6.58597E-01
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APPENDIX C

1D MOC Code

This appendix will show the full source code for the prototype 1D subray MOC code used
to investigate the subray MOC method. Example scripts and inputs will then be given
to show how the code can be used to generate subray MOC comparison data. The code
was written using Matlab 2016 [64] and can be downloaded from https://github.com/

aarograh/dissertation

C.1 Source Code

This section will provide the full source code used for all 1D MOC calculations presented
in this dissertation. Each subsection will be titled with the name of the source file and
include the text of the source.

C.1.1 inputClass.m

1 classdef inputClass < handle

2 %INPUTCLASS Container class to hold input data

3 % Contains all data for pin geometry and materials ,

4 % XS Library filename , and ray tracing and meshing

5 % parameters

6

7 properties

8 % The pin pitch in the cylindrical model

9 pitch

10 % The map of pin IDs for the model

11 pinmap

12 % The list of materials for each pin

13 % The number of rows should be equal to the highest pin ID used in pinmap

14 % The number of columns should be equal to the largest number of radial

regions in any pin

15 pinmats

16 % The list of radii for each pin

17 % The number of rows should be the same as pinmats

18 % The number of columns should be one less than pinmats
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19 radii

20 % The number of radial subdivisions for each material region

21 % The shape should be the same as pinmats

22 pinmesh

23 % Number of polar angles to use in the Gaussian quadrature

24 npol

25 % Name of cross section library file

26 xsfilename

27 % Boundary condition. Must be a vector of strings with length 2. Acceptable

options are 'vaccum ' and

28 % 'refelcting '. The first entry is for the left boundary , while the second

is for the right.

29 BCond

30 % Maximum number of outer iterations to solve

31 nouters

32 % Convergence criteria. Must be vector of doubles with length 2

33 % First element is for change in k-eff

34 % Second element is for maximum change in fission source

35 conv_crit =[0, 0]

36 % Option to toggle the amount of output produced by the code

37 verbose=false

38 % The number of mixtures to be produced by the code. These mixtures are

volume homogenizations of

39 % materials specified in the cross section library file

40 nmixtures =0

41 % The material IDs to be mixed

42 % The number of rows is equal to nmixtures

43 % Each row is a list of material IDs to be mixed. The number of columns is

equal to the maximum

44 % number of materials being mixed. All 0s ending a row will be truncated.

45 mixtures

46 % The volume fractions used to mix the materials

47 % The shape is the same as the shape of mixtures. Each element of mixvols

gives the volume fraction

48 % for the material in the same position in mixtures.

49 mixvols

50 % Toggles subray MOC on or off

51 % 0: No subray MOC. Just performs a single 2D MOC sweep using homogenized

cross sections where

52 % necessary.

53 % 1: Performs separate sweeps during each iteration , then combines the

solutions afterwards using

54 % volume fractions. This is the same as using subray MOC everywhere.

55 % 2: Performs subray MOC in the regions determined by npinSubTrack.

56 subray =0

57 % Determines how many neighboring pins will use subray MOC if subray is set

to 2. A value of 0 will

58 % use subray MOC only in the pin cells that have homogenized cross sections

. Larger values add pin

59 % cells to each side to resolve more effects near the partially inserted

rod. Defaults to a very

60 % large value to use subray MOC everywhere (which corresponds to subray =1).

61 npinSubTrack =10000000

62 % The following 4 options are unused , but left for future work and legacy

input support
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63 diag % Not supported

64 cmfd % CMFD not supported

65 voleql=false % Ignored

66 scattype % Only isotropic scattering is currently supported

67 end

68

69 methods

70 function obj = inputClass( )

71 %INPUTCLASS Creates an empty inputClass

72 % No attributes are initialized. This

73 % simply creates the class and leaves

74 % filling the attributes to the user.

75

76 end

77 end

78

79 end

C.1.2 eigensolverClass.m

1 classdef eigensolverClass < handle

2 %EIGENSOLVERCLASS Solves an eigenvalue problem

3 % This class contains the mesh , cross -section library ,

4 % and quadrature required to solve a 1D MOC problem.

5 % It also contains methods to setup , solve , and checkConv

6 % the solution , as well as check for convergence.

7

8 properties

9 xsLib

10 mesh

11 quad

12 solution

13 fss

14 accel

15 cmfd

16 conv_crit =[1.0e-8, 1.0e-7];

17 input

18 nouters =1000

19 converged

20 verbose=true

21 end

22

23 methods

24 function obj = eigensolverClass( input )

25 %EIGENSOLVERCLASS Sets up the eigensolver

26 % input - The inputClass container from which to initialize

27

28 obj.xsLib = xsLibraryClass(input);

29 obj.mesh = meshClass(input);

30 obj.quad = quadratureClass(input);

31 obj.fss = FixedSourceSolverClass(obj.xsLib , obj.quad , input);

32 obj.solution = obj.fss.solution;
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33 if ~isempty(input.cmfd)

34 if input.cmfd

35 obj.cmfd = cmfdClass(input , obj.mesh , obj.xsLib , obj.solution);

36 obj.accel = true;

37 else

38 obj.accel = false;

39 end

40 else

41 obj.accel = false;

42 end

43 if input.conv_crit (1) > 0

44 obj.conv_crit (1) = input.conv_crit (1);

45 end

46 if input.conv_crit (2) > 0

47 obj.conv_crit (2) = input.conv_crit (2);

48 end

49 obj.nouters = input.nouters;

50 obj.converged = false;

51 if ~isempty(input.verbose)

52 obj.verbose = input.verbose;

53 end

54

55 end

56

57 function obj = solve(obj)

58 %SOLVE Solves the eigenvalue problem

59 % obj - The eigensolver object to solve

60

61 for iouter =1:obj.nouters

62 if obj.verbose

63 display(sprintf('Eigenvalue iteration %i',iouter));

64 end

65 if obj.accel

66 obj.cmfd.solve( );

67 end

68 obj.step();

69 obj.checkConv ();

70 if obj.converged

71 if obj.verbose

72 display(sprintf('Converged after %i iterations ...',iouter));

73 end

74 break

75 elseif iouter == obj.nouters

76 if obj.verbose

77 display(sprintf('Reached maximum number of iterations ...'));

78 end

79 else

80 if obj.accel

81 obj.solution.keff (2) = obj.solution.keff (1);

82 end

83 end

84 end

85

86 end

87
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88 function obj = step(obj)

89 %STEP Performs a single iteration of the eigenvalue solve

90 % obj - The eigensolver object to solve

91

92 if ~obj.accel

93 obj.solution.updateEig( );

94 end

95 obj.solution.calcFissSrc(obj.mesh , obj.xsLib);

96 if obj.accel

97 obj.fss.solve(1, 1);

98 else

99 obj.fss.solve(0, 1);

100 end

101 obj.solution.calcFissSrc(obj.mesh , obj.xsLib);

102

103 end

104

105 function obj = checkConv(obj)

106 %CHECKCONV Updates eigenvalue object after each iteration

107 % obj - The eigensolver object whose convergence should be checked

108

109 [conv_flux , conv_keff] = obj.solution.calcResidual( );

110 if obj.verbose

111 display(sprintf('Flux norm : %0.7f',conv_flux));

112 display(sprintf('k-eff norm: %0.7f',conv_keff));

113 display(sprintf('k-eff : %0.7f\n',obj.solution.keff (1)));

114 end

115 if abs(conv_flux) < obj.conv_crit (2) && abs(conv_keff) < obj.conv_crit (1)

116 obj.converged = true;

117 end

118

119 end

120 end

121

122 end

C.1.3 FixedSourceSolverClass.m

1 classdef FixedSourceSolverClass < handle

2 %FIXEDSOURCESOLVERCLASS Performs a fixed source calculation

3 % Uses a fixed fission source to perform a calculation for

4 % the scalar flux.

5

6 properties

7 xsLib

8 mesh

9 quad

10 solution

11 converged

12 verbose=false

13 relax =0.25

14 subray=false
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15 submesh_vol

16 nsubmesh =0

17 npinSubTrack

18 accel=false

19 fipin

20 bipin

21 end

22

23 methods

24 function obj = FixedSourceSolverClass( varargin )

25 %FIXEDSOURCESOLVERCLASS Initializes a fixedSourceSolverClass object

26 % varargin - Input arguments. These can be "xsLib , quad , input" or

27 % "input , eig". Anything else results in an error.

28 % xsLib - XSLibraryClass object

29 % quad - QuadratureClass object

30 % input - inputClass object to initialize from

31 % eig - eigensolverClass object to initialize from (optional; other

arguments

32 % ignored if this one is present)

33

34 if nargin == 2

35 obj.mesh = meshClass(varargin {1});

36 obj.xsLib = varargin {2}. xsLib;

37 obj.quad = varargin {2}. quad;

38 obj.solution = solutionClass(obj.mesh , obj.xsLib , varargin {1});

39 obj.initFromEigenSolver( varargin {2});

40 obj.verbose = varargin {1}. verbose;

41 obj.subray = varargin {1}. subray;

42 obj.npinSubTrack = varargin {1}. npinSubTrack;

43 elseif nargin == 3

44 obj.xsLib = varargin {1};

45 obj.quad = varargin {2};

46 obj.mesh = meshClass(varargin {3});

47 obj.solution = solutionClass(obj.mesh , obj.xsLib , varargin {3});

48 obj.verbose = varargin {3}. verbose;

49 obj.subray = varargin {3}. subray;

50 obj.npinSubTrack = varargin {3}. npinSubTrack;

51 end

52 if obj.subray > 0

53 % Get number of submeshes. Assume the same number or 0 everywhere

54 for i=1:obj.mesh.nfsrcells

55 if obj.xsLib.xsSets(obj.mesh.materials(i)).nsubxs > 0

56 break

57 end

58 end

59 % Set submesh volume fractions

60 obj.nsubmesh = length(obj.xsLib.xsSets(obj.mesh.materials(i)).

subfracs);

61 obj.submesh_vol = obj.xsLib.xsSets(obj.mesh.materials(i)).subfracs;

62 % Split mesh into multiple meshes

63 for i=1:obj.mesh.nfsrcells

64 matID = obj.mesh.materials(i);

65 nsubmesh = obj.xsLib.xsSets(matID).nsubxs;

66 if nsubmesh > 0

67 for j=1: nsubmesh
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68 obj.mesh.materials(i,j) = obj.xsLib.xsSets(matID).subxs(j

).ID;

69 end

70 obj.mesh.ipin(i) = -obj.mesh.ipin(i);

71 else

72 obj.mesh.materials(i,1:obj.nsubmesh) = matID;

73 end

74 end

75 % Set pin index flag to turn subray on and off

76 if obj.nsubmesh > 1

77 pinids = zeros(max(obj.mesh.ipin) ,1);

78 for i=1:obj.mesh.nfsrcells

79 if obj.mesh.ipin(i) < 0

80 pinids(abs(obj.mesh.ipin(i))) = 1;

81 end

82 end

83 for i=1:obj.mesh.nfsrcells

84 if pinids(abs(obj.mesh.ipin(i)))

85 obj.mesh.ipin(i) = -abs(obj.mesh.ipin(i));

86 end

87 end

88 obj.fipin (1:obj.mesh.nfsrcells) = obj.mesh.ipin (:);

89 obj.bipin (1:obj.mesh.nfsrcells) = obj.mesh.ipin (:);

90 k = obj.mesh.nfsrcells +1;

91 fthispin = 0;

92 bthispin = max(abs(obj.bipin))+1;

93 fpinspast = obj.npinSubTrack +1;

94 bpinspast = obj.npinSubTrack +1;

95 for i=1:obj.mesh.nfsrcells

96 k = k-1;

97 flastpin = fthispin;

98 blastpin = bthispin;

99 fthispin = obj.mesh.ipin(i);

100 bthispin = obj.mesh.ipin(k);

101 if fthispin < 0

102 fpinspast = 0;

103 elseif fthispin ~= flastpin

104 fpinspast = fpinspast + 1;

105 end

106 if fpinspast <= obj.npinSubTrack

107 obj.fipin(i) = -abs(obj.fipin(i));

108 end

109 if bthispin < 0

110 bpinspast = 0;

111 elseif bthispin ~= blastpin

112 bpinspast = bpinspast + 1;

113 end

114 if bpinspast <= obj.npinSubTrack

115 obj.bipin(k) = -abs(obj.bipin(k));

116 end

117 end

118 end

119 % Initialize submesh flux to the scalar flux

120 for j=1: obj.nsubmesh
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121 obj.solution.submesh_scalflux (:,:,j) = obj.solution.scalflux

(:,:,1);

122 end

123 obj.mesh.xstr(:,:,1:obj.nsubmesh) = 0.0;

124 obj.mesh.source (:,:,1:obj.nsubmesh) = 0.0;

125 % Initialize xstr since the mesh doesn 't know how many groups there are

126 else

127 obj.nsubmesh = 1;

128 obj.submesh_vol = 1.0;

129 for j=1: obj.nsubmesh

130 obj.solution.submesh_scalflux (:,:,j) = obj.solution.scalflux

(:,:,1);

131 end

132 obj.mesh.xstr (1:obj.xsLib.ngroups ,1: obj.mesh.nfsrcells ,1) = 0.0;

133 obj.mesh.source (1: obj.xsLib.ngroups ,1:obj.mesh.nfsrcells ,1) = 0.0;

134 obj.fipin (1:obj.mesh.nfsrcells) = 0;

135 obj.bipin (1:obj.mesh.nfsrcells) = 0;

136 end

137 end

138

139 function obj = initFromEigenSolver( obj , eig )

140 %INITFROMEIGENSOLVER Initializes a fixedSourceSolverClass object from

141 %an eigensolverClass object

142 % obj - fixedSourceSolverClass object to initialize

143 % eig - EigensolverClass object to use for initialization

144

145 obj.solution.keff (:) = eig.fss.solution.keff (:);

146 obj.solution.scalflux (:) = eig.fss.solution.scalflux (:);

147 if (length(obj.solution.angflux (1,1,1,1,:)) == 1)

148 obj.solution.angflux (:,:,:,:,1)=eig.fss.solution.angflux (:,:,:,:,1);

149 elseif (length(eig.fss.solution.angflux (1,1,1,1,:)) == 1)

150 for i=1: length(obj.solution.angflux (1,1,1,1,:))

151 obj.solution.angflux (:,:,:,:,i) = eig.fss.solution.angflux

(:,:,:,:,1);

152 end

153 else

154 obj.solution.angflux (:) = eig.fss.solution.angflux (:);

155 end

156 obj.solution.fisssrc (:) = eig.fss.solution.fisssrc (:);

157

158 end

159

160 function obj = solve( obj , wCur , ninners , convcrit )

161 %SOLVE Solves a fixed source problem

162 % obj - The FixedSourceSolverClass object to solve

163 % wCur - Logical to tally currents (1) or not (0)

164 % ninners - The number of inner iterations to perform

165 % convcrit - Convergence criteria for scattering source calculation

166

167 obj.solution.updateBC ();

168 obj.converged = false;

169 inner =0;

170 if ~exist('convcrit ','var')

171 convcrit =1.0e-4;

172 end
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173

174 while ~obj.converged

175 inner = inner + 1;

176 if wCur && ninners == inner

177 obj.accel = true;

178 else

179 obj.accel = false;

180 end

181 obj.solution.scalflux (:,:,2) = obj.solution.scalflux (:,:,1);

182 if obj.accel

183 obj.solution.current (:,:,2) = obj.solution.current (:,:,1);

184 end

185 if obj.subray

186 for i=1: obj.nsubmesh

187 obj.setup( i );

188 end

189 if obj.subray == 1

190 for i=1:obj.nsubmesh

191 obj.sweep( i );

192 obj.postprocess( i );

193 end

194 obj.postprocess( 0 );

195 elseif obj.subray == 2

196 obj.sweep_subray( );

197 end

198 else

199 obj.setup( );

200 obj.sweep( );

201 obj.postprocess( );

202 obj.postprocess( 0 );

203 end

204 if obj.accel

205 obj.solution.scalflux (:,:,1) = obj.relax*obj.solution.scalflux

(:,:,1) + ...

206 (1.0-obj.relax)*obj.solution.scalflux (:,:,2);

207 obj.solution.current (:,:,:,1) = obj.relax*obj.solution.current

(:,:,:,1) + ...

208 (1.0-obj.relax)*obj.solution.current (:,:,:,2);

209 end

210 scatconv = obj.checkConv( );

211 if obj.verbose

212 display(sprintf('Fixed Source Iteration %i - %g',inner ,scatconv))

;

213 end

214 if inner == ninners || scatconv < convcrit

215 obj.converged = true;

216 if obj.verbose

217 display('Fixed Source Solve Converged.')

218 end

219 end

220 end

221

222 end

223

224 function obj = setup( obj , isubmesh )

128



225 %SETUP_SUBRAY Sets up source and XS mesh for fixed source sub -ray MOC

problem

226 % obj - The FixedSourceSolverClass object to set up

227 % isubmesh - The submesh level being set up

228

229 if ~exist('isubmesh ','var')

230 isubmesh = 1;

231 end

232 obj.mesh.source(:,:, isubmesh) = 0.0;

233 for i=1: obj.mesh.nfsrcells

234 matID = obj.mesh.materials(i,isubmesh);

235 for j=1: obj.xsLib.ngroups

236 if obj.fipin(i) < 0 || obj.bipin(i) < 0

237 obj.mesh.source(j,i,isubmesh) = (obj.solution.fisssrc(i,1)*

obj.xsLib.xsSets(matID).chi(j)/obj.solution.keff (1) + ...

238 obj.xsLib.xsSets(matID).scatter(j,:)*obj.solution.

submesh_scalflux (:,i,isubmesh))*0.5;

239 else

240 obj.mesh.source(j,i,isubmesh) = (obj.solution.fisssrc(i,1)*

obj.xsLib.xsSets(matID).chi(j)/obj.solution.keff (1) + ...

241 obj.xsLib.xsSets(matID).scatter(j,:)*obj.solution.

scalflux(:,i,2))*0.5;

242 end

243 obj.mesh.xstr(j,i,isubmesh) = obj.xsLib.xsSets(matID).transport(j

);

244 end

245 end

246

247 end

248

249 function obj = postprocess( obj , isubmesh )

250 %POSTPROCESS_SUBRAY Post -processes the sweep result for sub -ray MOC

251 % obj - The fixedsourcesolver object to post -process

252

253 if ~exist('isubmesh ','var')

254 isubmesh = 1;

255 end

256

257 if isubmesh == 0

258 obj.solution.scalflux (:,:,1) = 0.0;

259 for i=1: obj.nsubmesh

260 obj.solution.scalflux (:,:,1) = obj.solution.scalflux (:,:,1) + ...

261 obj.submesh_vol(i)*obj.solution.submesh_scalflux (:,:,i);

262 end

263 else

264 obj.solution.submesh_scalflux (:,:, isubmesh) = 0.0;

265 for j=1: obj.mesh.nfsrcells

266 for k=1: obj.quad.npol

267 for g=1:obj.xsLib.ngroups

268 psibar = sum(sum(obj.solution.angflux (1:2,g,k,j:j+1,

isubmesh) ,4) ,1)*0.5;

269 obj.solution.submesh_scalflux(g,j,isubmesh) = obj.

solution.submesh_scalflux(g,j,isubmesh) + ...

270 psibar*obj.quad.weights(k);

271 end
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272 end

273 end

274 if obj.accel

275 obj.solution.current (:,:,:,1) = 0.0;

276 for j=1: obj.mesh.nfsrcells +1;

277 for k=1:obj.quad.npol

278 for g=1:obj.xsLib.ngroups

279 psibar = (obj.solution.angflux(1,g,k,j,isubmesh)- ...

280 obj.solution.angflux(2,g,k,j,isubmesh))*0.5;

281 obj.solution.current(g,j,isubmesh ,1) = obj.solution.

current(g,j,isubmesh ,1) + ...

282 psibar*obj.quad.cosines(k)*obj.quad.weights(k);

283 end

284 end

285 end

286 end

287 end

288

289 end

290

291 function obj = sweep( obj , isubmesh )

292 %SWEEP Performs 1D MOC sweep for a single ray with multiple polars

293 % obj - The fixedsourcesolver object to sweep

294 % isubmesh - The submesh level to sweep

295

296 if ~exist('isubmesh ','var')

297 isubmesh = 1;

298 end

299 for i=1: obj.mesh.nfsrcells

300 k = obj.mesh.nfsrcells -i+1;

301 for j=1: obj.quad.npol

302 dx1 = (obj.mesh.fsredges(i+1) - obj.mesh.fsredges(i))/obj.quad.

cosines(j);

303 dx2 = (obj.mesh.fsredges(k+1) - obj.mesh.fsredges(k))/obj.quad.

cosines(j);

304 for igroup =1:obj.xsLib.ngroups

305 % Forward Sweep

306 exparg = exp(-obj.mesh.xstr(igroup ,i,isubmesh)*dx1);

307 obj.solution.angflux(1,igroup ,j,i+1,isubmesh) = ...

308 obj.solution.angflux(1,igroup ,j,i,isubmesh)*exparg + ...

309 obj.mesh.source(igroup ,i,isubmesh)/obj.mesh.xstr(igroup ,i

,isubmesh)*(1 - exparg);

310

311 % Backward Sweep

312 exparg = exp(-obj.mesh.xstr(igroup ,k,isubmesh)*dx2);

313 obj.solution.angflux(2,igroup ,j,k,isubmesh) = ...

314 obj.solution.angflux(2,igroup ,j,k+1,isubmesh)*exparg +

...

315 obj.mesh.source(igroup ,k,isubmesh)/obj.mesh.xstr(igroup ,k

,isubmesh)*(1 - exparg);

316 end

317 end

318 end

319 end

320
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321 function obj = sweep_subray( obj )

322 %SWEEP_SUBRAY Performs 1D MOC sweep using subray

323 % obj - The fixedsourcesolver object to sweep

324

325 % Some initialization

326 obj.solution.scalflux (:,:,1) = 0.0;

327 obj.solution.submesh_scalflux (:) = 0.0;

328 psi_in (1: obj.nsubmesh ,1:2 ,1: obj.xsLib.ngroups ,1:obj.quad.npol) = 0.0;

329 source (1: obj.nsubmesh ,1:2 ,1: obj.xsLib.ngroups) = 0.0;

330

331 % Loop over all regions

332 for i=1: obj.mesh.nfsrcells

333 k = obj.mesh.nfsrcells -i+1;

334 % If fipin is negative , we do subray in the forward direction

335 if obj.fipin(i) < 0 || obj.bipin(i) < 0

336 lforwardSub = true;

337 else

338 lforwardSub = false;

339 end

340 % If bipin is negative , we do subray in the backward direction

341 if obj.bipin(k) < 0 || obj.fipin(k) < 0

342 lbackwardSub = true;

343 else

344 lbackwardSub = false;

345 end

346 % Set boundary conditions and source

347 for j=1: obj.quad.npol

348 for igroup =1:obj.xsLib.ngroups

349 for isubmesh =1:obj.nsubmesh

350 psi_in(isubmesh ,1,igroup ,j) = obj.solution.angflux(1,

igroup ,j,i,isubmesh);

351 psi_in(isubmesh ,2,igroup ,j) = obj.solution.angflux(2,

igroup ,j,k+1,isubmesh);

352 end

353 end

354 end

355 for igroup =1:obj.xsLib.ngroups

356 for isubmesh =1:obj.nsubmesh

357 source(isubmesh ,1,igroup) = obj.mesh.source(igroup ,i,isubmesh

);

358 source(isubmesh ,2,igroup) = obj.mesh.source(igroup ,k,isubmesh

);

359 end

360 end

361 % Modify source and boundary condition if subray shouldn 't be used

362 if ~lforwardSub

363 for j=1: obj.quad.npol

364 for igroup =1:obj.xsLib.ngroups

365 psi_in(:,1,igroup ,j) = obj.submesh_vol*psi_in(:,1,igroup ,

j);

366 end

367 end

368 for igroup =1:obj.xsLib.ngroups

369 source(:,1,igroup) = obj.submesh_vol*source(:,1,igroup);

370 end
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371 end

372 if ~lbackwardSub

373 for j=1: obj.quad.npol

374 for igroup =1:obj.xsLib.ngroups

375 psi_in(:,2,igroup ,j) = obj.submesh_vol*psi_in(:,2,igroup ,

j);

376 end

377 end

378 for igroup =1:obj.xsLib.ngroups

379 source(:,2,igroup) = obj.submesh_vol*source(:,2,igroup);

380 end

381 end

382 for j=1: obj.quad.npol

383 dx1 = (obj.mesh.fsredges(i+1) - obj.mesh.fsredges(i))/obj.quad.

cosines(j);

384 dx2 = (obj.mesh.fsredges(k+1) - obj.mesh.fsredges(k))/obj.quad.

cosines(j);

385 for igroup =1:obj.xsLib.ngroups

386 % Forward sweep with submeshes

387 for isubmesh =1:obj.nsubmesh

388 % Forward Sweep

389 exparg = exp(-obj.mesh.xstr(igroup ,i,isubmesh)*dx1);

390 obj.solution.angflux(1,igroup ,j,i+1,isubmesh) = ...

391 psi_in(isubmesh ,1,igroup ,j)*exparg + ...

392 source(isubmesh ,1,igroup)/obj.mesh.xstr(igroup ,i,

isubmesh)*(1.0- exparg);

393

394 psibar = sum(obj.solution.angflux(1,igroup ,j,i:i+1,

isubmesh) ,4)*0.5;

395 contribution = psibar*obj.quad.weights(j);

396 obj.solution.submesh_scalflux(igroup ,i,isubmesh) = ...

397 obj.solution.submesh_scalflux(igroup ,i,isubmesh) +

contribution;

398 obj.solution.scalflux(igroup ,i,1) = obj.solution.scalflux

(igroup ,i,1) + ...

399 contribution*obj.submesh_vol(isubmesh);

400

401 % Backward Sweep

402 exparg = exp(-obj.mesh.xstr(igroup ,k,isubmesh)*dx2);

403 obj.solution.angflux(2,igroup ,j,k,isubmesh) = ...

404 psi_in(isubmesh ,2,igroup ,j)*exparg + ...

405 source(isubmesh ,2,igroup)/obj.mesh.xstr(igroup ,k,

isubmesh)*(1.0 - exparg);

406

407 psibar = sum(obj.solution.angflux(2,igroup ,j,k:k+1,

isubmesh) ,4)*0.5;

408 contribution = psibar*obj.quad.weights(j);

409 obj.solution.submesh_scalflux(igroup ,k,isubmesh) = ...

410 obj.solution.submesh_scalflux(igroup ,k,isubmesh) +

contribution;

411 obj.solution.scalflux(igroup ,k,1) = obj.solution.scalflux

(igroup ,k,1) + ...

412 contribution*obj.submesh_vol(isubmesh);

413 end

414 end
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415 end

416 end

417

418 end

419

420 function maxdiff = checkConv( obj )

421 %CHECKCONV Checks for convergence of the scattering source

422 % obj - FixedSourceSolverClass object whose convergence is being

checked

423

424 maxdiff = 0.0;

425 for igroup =1: obj.xsLib.ngroups

426 oldsource = zeros(obj.mesh.nfsrcells ,1);

427 newsource = zeros(obj.mesh.nfsrcells ,1);

428 for i=1: obj.mesh.nfsrcells

429 matID = obj.mesh.materials(i);

430 oldsource(i) = obj.xsLib.xsSets(matID).scatter(igroup ,:)*obj.

solution.scalflux(:,i,2);

431 newsource(i) = obj.xsLib.xsSets(matID).scatter(igroup ,:)*obj.

solution.scalflux(:,i,1);

432 end

433 % [oldsource ,newsource]

434 maxdiff = max(max(abs(( oldsource - newsource)./ oldsource)),maxdiff);

435 end

436

437 end

438 end

439

440 end

C.1.4 meshClass.m

1 classdef meshClass < handle

2 %MESHCLASS Object to store FSR and XS meshes and materials

3 % This object store three different types of meshes.

4 % The first is matmesh. This contains the materials

5 % for each region. Currently these materials are

6 % stored on the FSR mesh , but this will be switched

7 % and a method added to determine the material on

8 % the XS mesh.

9 %

10 % The FSR mesh stores the position of cell edges for

11 % the mesh that will be ray traced. The XS mesh

12 % stores cell edges for unique material regions , and

13 % is a subset of the XS mesh.

14

15 properties

16 nxscells

17 nfsrcells

18 materials

19 ipin

20 xsedges
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21 fsredges

22 xstr

23 source

24 end

25

26 methods

27 function obj = meshClass( input )

28 %MESHCLASS Generates mesh object given geometry information

29 % input - The inputClass container from which to initialize

30

31 % Initialize information

32 npins = size(input.pinmap ,2);

33 nmats = size(input.pinmats ,2);

34 nfinecells = 0;

35 ncoarsecells = 0;

36 obj.fsredges(nfinecells +1) = 0.0;

37 obj.xsedges(ncoarsecells +1) = 0.0;

38 hpitch = input.pitch /2.0;

39 if input.diag

40 hpitch = sqrt (2)*hpitch;

41 end

42

43 % Loop over pins

44 for i=1: npins

45 % Get index of last material for this cell

46 for j=nmats :-1:1

47 if input.pinmats(input.pinmap(i),j) ~=0

48 nreg = j;

49 break

50 end

51 end

52

53 % Loop out -> in over cell descriptions

54 for j=nreg :-1:1

55 ncoarsecells = ncoarsecells +1;

56 % Outermost region needs to use pin hpitch

57 if isempty(input.radii)

58 width = hpitch;

59 elseif j == nreg

60 width = (1.0 - pi*input.radii(input.pinmap(i),j-1) ^2.0/( input

.pitch ^2.0))*hpitch;

61 elseif j == 1

62 width = input.radii(input.pinmap(i),j);

63 width = pi*width ^2.0/(2.0* input.pitch);

64 else

65 width = pi*(input.radii(input.pinmap(i),j)^2 - input.radii(

input.pinmap(i),j-1)^2);

66 width = width /(2.0* input.pitch);

67 end

68 % Set coarse mesh

69 obj.xsedges(ncoarsecells +1,1) = obj.xsedges(ncoarsecells) + width

;

70 % Set material

71 oldnfinecells = nfinecells;

72 nfinecells = nfinecells + input.pinmesh(input.pinmap(i),j);
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73 obj.materials(oldnfinecells +1: nfinecells ,1) = input.pinmats(input

.pinmap(i),j);

74 % Set fine mesh

75 obj.fsredges(oldnfinecells +1: nfinecells +1,1) = obj.xsedges(

ncoarsecells):width /...

76 input.pinmesh(input.pinmap(i),j):obj.xsedges(ncoarsecells +1);

77 obj.ipin(oldnfinecells +1: nfinecells) = i;

78 end

79 % Loop in -> out over cell descriptions

80 for j=1: nreg

81 ncoarsecells = ncoarsecells +1;

82 % Outermost region needs to use pin hpitch

83 if isempty(input.radii)

84 width = hpitch;

85 elseif j == nreg

86 width = (1.0 - pi*input.radii(input.pinmap(i),j-1) ^2.0/( input

.pitch ^2.0))*hpitch;

87 elseif j == 1

88 width = input.radii(input.pinmap(i),j);

89 width = pi*width ^2.0/(2.0* input.pitch);

90 else

91 width = pi*(input.radii(input.pinmap(i),j)^2 - input.radii(

input.pinmap(i),j-1)^2);

92 width = width /(2.0* input.pitch);

93 end

94 % Set coarse mesh

95 obj.xsedges(ncoarsecells +1,1) = obj.xsedges(ncoarsecells) + width

;

96 % Set material

97 oldnfinecells = nfinecells;

98 nfinecells = nfinecells + input.pinmesh(input.pinmap(i),j);

99 obj.materials(oldnfinecells +1: nfinecells ,1) = input.pinmats(input

.pinmap(i),j);

100 % Set fine mesh

101 obj.fsredges(oldnfinecells +1: nfinecells +1,1) = obj.xsedges(

ncoarsecells):width /...

102 input.pinmesh(input.pinmap(i),j):obj.xsedges(ncoarsecells +1);

103 obj.ipin(oldnfinecells +1: nfinecells) = i;

104 end

105 end

106 obj.nxscells = ncoarsecells;

107 obj.nfsrcells = nfinecells;

108

109 end

110 end

111

112 end

C.1.5 quadratureClass.m

1 classdef quadratureClass < handle

2 %QUADRATURECLASS Contains quadrature information
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3 % Contains the angles , their cosines , and weights

4 % for a polar quadrature for 1D MOC

5

6 properties

7 npol

8 angles

9 cosines

10 weights

11 end

12

13 methods

14 function obj = quadratureClass(input)

15 %QUADRATURECLASS Sets up a quadrature class

16 % input - The inputClass container from which to intiialize

17

18 obj.npol = input.npol /2;

19 [obj.cosines , obj.weights] = createQuadrature(input.npol);

20 obj.angles = acos(obj.cosines);

21 end

22 end

23

24 end

25

26 function [mu, w] = createQuadrature(N)

27 %N is ordinate set: 2, 4, 8, ...

28 %Return symmetric gauss -legendre quadrature set

29 % syntax: [mu w] = createQuadrature( 4 )

30 if (N == 2)

31 mu = [.577350269189626]; %#ok<NBRAK >

32 w = [1.0]; %#ok <NBRAK >

33 elseif (N == 4)

34 mu = [.339981043584856 .861136311594053];

35 w = [.652145154862546 .347854845137454];

36 elseif (N == 8)

37 mu = [.183434642495650 .525532409916329 .796666477413627 .960289856497536];

38 w = [.362683783378363 .313706645877887 .222381034453374 .101228536290376];

39 elseif (N == 16)

40 mu = [0.989400934991650 ,0.944575023073233 ,0.865631202387832 ,...

41 0.755404408355003 ,0.617876244402644 ,0.458016777657227 ,...

42 0.281603550779259 ,0.0950125098376370;];

43 w = [0.0271524594117540 ,0.0622535239386480 ,0.0951585116824930 ,...

44 0.124628971255534 ,0.149595988816577 ,0.169156519395003 ,...

45 0.182603415044924 ,0.189450610455067;];

46 elseif (N == 32)

47 mu = [0.0483076656877380 ,0.144471961582796 ,0.239287362252137 ,...

48 0.331868602282128 ,0.421351276130635 ,0.506899908932229 ,...

49 0.587715757240762 ,0.663044266930215 ,0.732182118740290 ,...

50 0.794483795967942 ,0.849367613732570 ,0.896321155766052 ,...

51 0.934906075937740 ,0.964762255587506 ,0.985611511545268 ,...

52 0.997263861849482];

53 w = [0.0965400885147260 ,...

54 0.0956387200792750 ,0.0938443990808050 ,0.0911738786957640 ,...

55 0.0876520930044040 ,0.0833119242269470 ,0.0781938957870700 ,...

56 0.0723457941088490 ,0.0658222227763620 ,0.0586840934785360 ,...

57 0.0509980592623760 ,0.0428358980222270 ,0.0342738629130210 ,...
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58 0.0253920653092620 ,0.0162743947309060 ,0.007018610009470];

59 else

60 error('Sorry , invalid N for quadrature ')

61 end

62

63 assert(length(mu) == length(w));

64 assert(abs(sum(w) - 1.0) < 2*eps);

65 assert(all(mu > 0.0) && all(mu < 1.0));

66 assert(all(w > 0));

67 end

C.1.6 solutionClass.m

1 classdef solutionClass < handle

2 %SOLUTIONCLASS Stores angular and scalar flux solution variables

3 % This is mainly to make it easier to pass information around.

4 % It will also be used to check convergence for eigenvalue

5 % problems.

6

7 properties

8 BCond

9 keff % First index is current , second is previous iteration

10 angflux

11 current

12 scalflux % First index is current , second is previous iteration

13 fisssrc

14 submesh_scalflux

15 end

16

17 methods

18 function obj = solutionClass( mesh ,xsLib ,input )

19 %SOLUTIONCLASS Constructor for solutionClass

20 % mesh - The mesh

21 % xsLib - The XS library

22 % input - The iput Class container from which to initialize

23

24 if nargin == 3

25 nsubmesh = 1;

26 if input.subray

27 for i=1: mesh.nfsrcells

28 if xsLib.xsSets(mesh.materials(i)).nsubxs > 0

29 nsubmesh = xsLib.xsSets(mesh.materials(i)).nsubxs;

30 break

31 end

32 end

33 end

34 obj.keff (1:2) = 1.0;

35 obj.angflux (1:2 ,1: xsLib.ngroups ,1: input.npol /2,1: mesh.nfsrcells +1,1:

nsubmesh) = 1.0;

36 obj.current (1: xsLib.ngroups ,1: mesh.nfsrcells+1,nsubmesh ,1:2) = 0.0;

37 obj.scalflux (1: xsLib.ngroups ,1: mesh.nfsrcells ,1:2) = 1.0;

38 obj.BCond = input.BCond;
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39 obj.fisssrc (1: mesh.nfsrcells ,1:2) = 1.0;

40 if nsubmesh > 1

41 obj.submesh_scalflux (1: xsLib.ngroups ,1: mesh.nfsrcells ,nsubmesh) =

0.0;

42 end

43 end

44 end

45

46 function obj = updateBC( obj )

47 %UPDATEBC Updates the solution to prepare for the next iteration

48 % obj - The solutionClass object to update

49

50 % Set angular flux BC

51 if ischar(obj.BCond (1))

52 if strcmp(strtrim(obj.BCond (1,:)),'vacuum ')

53 obj.angflux (1,:,:,1,:) = 0.0;

54 elseif strcmp(strtrim(obj.BCond (1,:)),'reflecting ')

55 obj.angflux (1,:,:,1,:) = obj.angflux (2,:,:,1,:);

56 end

57 end

58 if ischar(obj.BCond (2))

59 if strcmp(strtrim(obj.BCond (2,:)),'vacuum ')

60 obj.angflux (2,:,:,end ,:) = 0.0;

61 elseif strcmp(strtrim(obj.BCond (2,:)),'reflecting ')

62 obj.angflux (2,:,:,end ,:) = obj.angflux (1,:,:,end ,:);

63 end

64 end

65 obj.angflux (1,:,:,2:end ,:) = 0.0;

66 obj.angflux (2,:,:,1:end -1,:) = 0.0;

67

68 end

69

70 function obj = updateEig( obj )

71 %UPDATEEIG Calculates the new k-eff eigenvalue

72 % obj - The solutionClass object to update

73

74 obj.keff (2) = obj.keff (1);

75 obj.keff (1) = obj.keff (2)*sum(obj.fisssrc (:,1))/sum(obj.fisssrc (:,2));

76

77 end

78

79 function [conv_flux , conv_keff] = calcResidual( obj )

80 %CALCRESIDUAL Calculates the scalar flux and k-eff residuals

81 % obj - The solutionClass object to check

82

83 conv_flux = 0.0;

84 for i=1: length(obj.fisssrc (:,1))

85 conv_flux = max(conv_flux ,abs((obj.fisssrc(i,1) - obj.fisssrc(i,2))))

;

86 end

87 conv_keff = obj.keff (1) - obj.keff (2);

88

89 end

90

91 function [ obj ] = calcFissSrc( obj , mesh , xsLib )
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92 %CALCFISSSRC Calculates the fission source in each cell

93 % obj - The solution object to use for the FS calculation

94 % mesh - The mesh to calculate the FS on

95 % xsLib - The XS Library to use for the calculation

96

97 obj.fisssrc (:,2) = obj.fisssrc (:,1);

98 obj.fisssrc (:,1) = 0.0;

99 for i=1: mesh.nfsrcells

100 matID = mesh.materials(i);

101 obj.fisssrc(i,1) = xsLib.xsSets(matID).nufission*obj.scalflux(:,i,1);

102 end

103 end

104 end

105

106 end

C.1.7 xsLibraryClass.m

1 classdef xsLibraryClass < handle

2 %XSLIBRARYCLASS Stores cross -section data and reads XS library file

3 % Cross -section libraries must be in the same format as the

4 % MPACT user libraries. One cross -section set will be stored for

5 % each material type.

6

7 properties

8 fileid

9 name

10 ngroups

11 nsets

12 groupBounds

13 xsSets

14 end

15

16 methods

17 function obj = xsLibraryClass( input )

18 %XSLIBRARYCLASS Constructor for xsLibraryClass

19 % input - The inputClass container from which to initialize

20

21 obj.openfile(input.xsfilename);

22

23 % Get library name

24 nextline = obj.getLine ();

25 obj.name = strrep(nextline ,sprintf('\n'),'');

26

27 % Get number of energy groups and materials

28 nextline = obj.getLine ();

29 [obj.ngroups , obj.nsets] = strread(nextline);

30

31 % Get energy group boundaries

32 nextline = obj.getLine ();

33 obj.groupBounds = strread(nextline);

34
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35 for i=1: obj.nsets

36 % Loop until we actually hit the XS set

37 nextline = obj.getLine ();

38 k = strfind(nextline ,'XSMACRO ');

39 while isempty(k) || nextline (1) == '!'

40 nextline = obj.getLine ();

41 k = strfind(nextline ,'XSMACRO ');

42 end

43

44 % Read name and number of scattering moments

45 tmpstr = strsplit(nextline);

46 % Split the stupid cell array object into string and integer

47 setname = strtrim(cell2mat(tmpstr (2)));

48 setorder = strread(strtrim(cell2mat(tmpstr (3))));

49 % This branching is needed to prevent matlab from assuming xsSets is

a double array

50 if i == 1

51 obj.xsSets = xsClass(i, setname , setorder);

52 else

53 obj.xsSets(i) = xsClass(i, setname , setorder);

54 end

55

56 % Read in absorption , nufission , fission , and chi

57 for k=1:obj.ngroups

58 nextline = obj.getLine ();

59 [obj.xsSets(i).absorption(k), obj.xsSets(i).nufission(k), ...

60 obj.xsSets(i).fission(k), obj.xsSets(i).chi(k)] = strread(

nextline);

61 end

62 % Loop over scattering orders

63 for j=1: setorder +1

64 % Read in scattering matrix for order j-1

65 for k=1:obj.ngroups

66 nextline = obj.getLine ();

67 obj.xsSets(i).scatter(k,1: obj.ngroups ,j) = strread(nextline);

68 end

69 end

70 % Calculate total cross -section and transport cross -section

71 obj.xsSets(i).calcTXS( input.scattype );

72 end

73

74 obj.closefile( );

75

76 for j=1: input.nmixtures

77 id = input.mixtures(j,1);

78 name = sprintf('Mixture ');

79 for k=2: length(input.mixtures(j,:))

80 if input.mixtures(j,k) == 0

81 break

82 else

83 if k > 2

84 name = sprintf('%s;',name);

85 end

86 name = sprintf('%s %0.3f%% %s',name ,input.mixvols(j,k-1) ,...

87 obj.xsSets(input.mixtures(j,k)).name);
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88 end

89 end

90 obj.xsSets(id) = xsClass(id , name);

91 obj.xsSets(id).nsubxs = 0;

92 obj.xsSets(id).subxs = xsClass ();

93 for k=2: length(input.mixtures(j,:))

94 if input.mixtures(j,k) == 0

95 break

96 else

97 obj.xsSets(id).nsubxs = obj.xsSets(id).nsubxs + 1;

98 obj.xsSets(id).subxs(k-1) = obj.xsSets(input.mixtures(j,k));

99 end

100 end

101 obj.xsSets(id).subfracs = input.mixvols(j,:);

102 obj.mix( id );

103 end

104 end

105

106 function obj = mix( obj , imix )

107 %MIX Mixes sub -cross -sections

108 % obj - the xsLibraryClass object

109 % imix - the index of the mixture being set up

110

111 % Initialize cross -sections and get scattering order

112 obj.xsSets(imix).scatOrder = max(obj.xsSets(imix).subxs.scatOrder);

113 obj.xsSets(imix).total (1:obj.ngroups) = 0;

114 obj.xsSets(imix).transport (1:obj.ngroups) = 0;

115 obj.xsSets(imix).absorption (1:obj.ngroups) = 0;

116 obj.xsSets(imix).nufission (1:obj.ngroups) = 0;

117 obj.xsSets(imix).fission (1:obj.ngroups) = 0;

118 obj.xsSets(imix).chi(1: obj.ngroups) = 0;

119 obj.xsSets(imix).scatter (1:obj.ngroups ,1: obj.ngroups , ...

120 obj.xsSets(imix).scatOrder +1) = 0;

121 for i=1: obj.xsSets(imix).nsubxs

122

123 obj.xsSets(imix).total = obj.xsSets(imix).total + ...

124 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).total;

125 obj.xsSets(imix).transport = obj.xsSets(imix).transport + ...

126 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).transport;

127 obj.xsSets(imix).absorption = obj.xsSets(imix).absorption + ...

128 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).absorption

;

129 obj.xsSets(imix).nufission = obj.xsSets(imix).nufission + ...

130 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).nufission;

131 obj.xsSets(imix).fission = obj.xsSets(imix).fission + ...

132 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).fission;

133 obj.xsSets(imix).chi = obj.xsSets(imix).chi + ...

134 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).chi;

135 obj.xsSets(imix).scatter = obj.xsSets(imix).scatter + ...

136 obj.xsSets(imix).subfracs(i)*obj.xsSets(imix).subxs(i).scatter;

137 end

138 end

139

140 function obj = openfile( obj , filename )

141 %OPENFILE Opens the XS Library file
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142 % obj - The xsLibraryClass object

143 % filename - The XS Library filename

144

145 obj.fileid = fopen(filename);

146

147 end

148

149 function obj = closefile( obj )

150 %CLOSEFILE Closes the XS Library file

151 % obj - The xsLibraryClass object

152

153 fclose(obj.fileid);

154 obj.fileid = 0;

155

156 end

157

158 function [ nextline , EOF ] = getLine( obj )

159 %GETLINE Gets the next line from the XS Library file

160 % obj - The xsLibraryClass object

161

162 nextline = fgets(obj.fileid);

163 if ischar(nextline)

164 nextline = strrep(nextline ,sprintf('\n'),'');

165 EOF = 0;

166 else

167 EOF = 1;

168 end

169

170 end

171 end

172

173 end

C.1.8 xsClass.m

1 classdef xsClass < handle

2 %XSCLASS Class which hold cross -section data

3 % This class holds the multi -group XS data for

4 % a single type of material.

5

6 properties

7 ID

8 name

9 scatOrder

10 total

11 transport

12 absorption

13 nufission

14 fission

15 chi

16 scatter % Scatter from column into row

17 nsubxs =0
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18 subxs

19 subfracs

20 end

21

22 methods

23 function obj = xsClass( ID, name , order )

24 %XSCLASS Consructor for xsClass

25 % ID - ID for this XSSet

26 % name - name of the XS set

27 % order - Scattering order for the xsSet

28

29 if exist('ID')

30 obj.ID = ID;

31 end

32 if exist('name')

33 obj.name = name;

34 end

35 if exist('order ')

36 obj.scatOrder = order;

37 end

38

39 end

40

41 function obj = calcTXS( obj , transOpt )

42 %CALCTXS Calculates transport and total cross -sections

43 % obj - the XS set object

44 % transOpt - Transport correction option. Currently only values

45 % of P0 are allowed.

46

47 obj.total = obj.absorption + sum(obj.scatter ,1);

48 switch(transOpt)

49 case('P0')

50 obj.transport = obj.total;

51 end

52

53 end

54 end

55

56 end

C.2 Scripts

This section will provide a collection of scripts and an example input that will generate rod
withdrawal comparisons for subray MOC. The withdrawal.m script is the top-level script
and calls the other ones.

C.2.1 withdrawal.m

1 % TenPin7group_mix_rodded_unrodded
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2 % ThreePin7group_mix_rodded_unrodded

3 p4a_centerAssem

4 percent = 10;

5 ncase = 0;

6 for i=percent:percent :100- percent

7 ncase = ncase + 1;

8 if ncase == 1

9 getref = true;

10 else

11 getref = false;

12 end

13 input.mixvols = [i/100, (100-i)/100];

14 input.subray = false;

15 compare_subrayES;

16 for j=1: length(fssSolver)

17 solutions(j,ncase) = fssSolver(j).solution;

18 end

19 close all;

20 end

21

22 postprocess_withdrawal

C.2.2 p4a centerAssem.m

1 close all; clear variables; clc;

2

3 %% General Input Data

4 % 1: Fuel Pin

5 % 2: Control Pin

6 % 3: Guide Tube Pin

7 input = inputClass ();

8 input.pitch = 1.26;

9 input.diag = 0; % flat to indicate whether pin moves through narrow (0) or wide (1)

water

10 % Mixtures

11 input.nmixtures = 1;

12 input.mixtures = [6, 1, 5];

13 input.mixvols = [0.5, 0.5];

14 % Pin information

15 input.pinmats = [6, 2, 1; % Mixture

16 5, 2, 1; % Control Rod

17 1, 2, 1; % Guide Tube

18 4, 2, 1]; % Fuel

19

20 input.radii = [ 0.4, 0.475;

21 0.4, 0.475;

22 0.4, 0.475;

23 0.4096 , 0.475];

24 input.pinmesh = [ 3 1 2;

25 3 1 2;

26 3 1 2;

27 3 1 2];
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28 % Quadrature

29 input.npol = 16;

30 % XS Library Info

31 input.xsfilename = 'c5g7.xsl';

32 input.scattype = 'P0';

33 % Boundary Conditions

34 input.BCond = ['reflecting ';'reflecting '];

35 % Convergence

36 input.nouters = 2000;

37 input.conv_crit = [1.0e-5 1.0e-5];

38 input.verbose = true;

39

40 %% Case 1 - 50-50 Mixutre Eigenvalue Case

41 input.pinmap = [4, 4, 1, 4, 4, 1, 4, 4, 3, 4, 4, 1, 4, 4, 1, 4, 4];

42

43 %% set IDs

44 swappinids = [1,2,3];

C.2.3 compare subrayES.m

1 % This script assumes that the inputClass input has been defined

2 % externally. It also assumes that an array of pin IDs swappinids

3 % has been set up. The first index is the mixed pin , the second

4 % the absorber pin , and the third the replacement pin

5 % Also assums that a getref variable has been set to true or false.

6 % True will cause the fully rodded/unrodded cases to run , while false

7 % will skip them. This is used when this script is called repeatedly

8 % by another script.

9

10 %% Setup

11 oldmap = input.pinmap;

12

13 %% Volume -homogenized solve

14 eSolver (1) = eigensolverClass(input);

15 eSolver (1).solve();

16

17 if getref

18 %% Fully rodded solve

19 for i=1: length(input.pinmap)

20 if oldmap(i) == 1

21 input.pinmap(i) = swappinids (2);

22 end

23 end

24 eSolver (2) = eigensolverClass(input);

25 eSolver (2).solve();

26

27 %% Fully unrodded solve

28 for i=1: length(input.pinmap)

29 if oldmap(i) == 1

30 input.pinmap(i) = swappinids (3);

31 end

32 end
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33 eSolver (3) = eigensolverClass(input);

34 eSolver (3).solve();

35 end

36

37 %% Sub -ray fixed source solve

38 for i=1: length(input.pinmap)

39 if oldmap(i) == 1

40 input.pinmap(i) = swappinids (1);

41 end

42 end

43 input.subray = 1;

44 eSolver (4) = eigensolverClass(input);

45 eSolver (4).solve();

46

47 input.subray = 2;

48 input.npinSubTrack = 0;

49 eSolver (5) = eigensolverClass(input);

50 eSolver (5).solve();

51 input.npinSubTrack = 1;

52 eSolver (6) = eigensolverClass(input);

53 eSolver (6).solve();

54 input.npinSubTrack = 2;

55 eSolver (7) = eigensolverClass(input);

56 eSolver (7).solve();

57

58 % Post -process

59 for i=1: length(eSolver)

60 fssSolver(i) = eSolver(i).fss;

61 end

C.2.4 postprocess withdrawal.m

1 close all;

2 ncases = length(solutions (1,:));

3

4 for i=1: ncases +2

5 keffs(2,i) = solutions (2,1).keff (1);

6 keffs(3,i) = solutions (3,1).keff (1);

7 if i == 1

8 vfrac(i) = 0.0;

9 keffs(1,i) = solutions (2,1).keff (1);

10 keffs (4:7,i) = keffs(1,i);

11 elseif i == ncases +2

12 vfrac(i) = 100.0;

13 keffs(1,i) = solutions(3,i-2).keff (1);

14 keffs (4:7,i) = keffs(1,i);

15 else

16 vfrac(i) = (i-1)/( ncases +1) *100;

17 keffs(1,i) = solutions(1,i-1).keff (1);

18 keffs(4,i) = solutions(4,i-1).keff (1);

19 keffs(5,i) = solutions(5,i-1).keff (1);

20 keffs(6,i) = solutions(6,i-1).keff (1);
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21 keffs(7,i) = solutions(7,i-1).keff (1);

22 end

23 end

24

25

26

27 isol = 5;

28 xgrid = 0.5*( fssSolver (1).mesh.fsredges (2:end)+fssSolver (1).mesh.fsredges (1:end -1));

29 for igroup =1:7

30 figure(igroup)

31 plot(xgrid ,solutions(1,isol).scalflux(igroup ,:,1),'k',xgrid ,solutions(4,isol).

scalflux(igroup ,:,1),'r-s' ,...

32 xgrid ,solutions(5,isol).scalflux(igroup ,:,1),'b:*',xgrid ,solutions(6,isol).

scalflux(igroup ,:,1),'g-.+' ,...

33 xgrid ,solutions(7,isol).scalflux(igroup ,:,1),'k--o','linewidth ' ,2)

34 title(sprintf('Scalar Flux at 50%% Rod Withdrawal , Group %i',igroup))

35 legend('Volume Homog.','Subray w/o Recomb.','Subray w/ Recomb. - 0','Subray w/

Recomb. - 1' ,...

36 'Subray w/ Recomb. - 2')

37 ax = gca;

38 ax.XAxis.TickValues = min(fssSolver (1).mesh.xsedges):input.pitch:max(fssSolver (1)

.mesh.xsedges);

39 ax.XAxis.MinorTickValues = fssSolver (1).mesh.xsedges;

40 ax.XTickLabelRotation = 45;

41 ax.FontSize = 28;

42 xlabel('Position (cm)');

43 xlim ([0 ,21.42]);

44 ylabel('Scalar Flux');

45 grid on;

46 end

47 figure (8)

48 plot(vfrac ,keffs (1,:),'k',vfrac ,keffs (4,:),'r-s',vfrac ,keffs (5,:),'b:*' ,...

49 vfrac ,keffs (6,:),'g-.+',vfrac ,keffs (7,:),'k--o','linewidth ' ,2)

50 legend('Volume Homog.','Subray w/o Recomb.','Subray w/ Recomb. - 0','Subray w/

Recomb. - 1' ,...

51 'Subray w/ Recomb. - 2')

52 title('K-eff vs. Control Rod Withdrawal ');

53 ax = gca;

54 ax.FontSize = 28;

55 xlabel('Control Rod Percent Withdrawn ');

56 ylabel('k-eff');
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