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ABSTRACT

Soft robots exhibit complex behaviors that emerge from deliberate compliance in

the actuators and structure. This compliance allows soft robots to passively conform

to the constraints of their environment and to the objects they are manipulating.

Many soft robots are actuated by the flexible expansion of hermetically sealed vol-

umes. Systems based on these principles are lightweight, flexible and have low re-

flected inertia. This makes them inherently safe in physical human robot interaction.

Moreover, the sealed actuators and flexible joints are well-suited to work in harsh en-

vironments where external contaminates could breach the dynamic seals of rotating

or sliding shafts.

Accurate motion control remains a highly challenging task for soft robotic systems.

Precise models of the actuation dynamics and environmental interactions are often

unavailable. This renders open-loop control impossible, while closed-loop control

suffers from a lack of suitable feedback. Conventional motion sensors, such as linear

or rotary encoders, are difficult to adapt to robots that lack discrete mechanical

joints. The rigid nature of these sensors runs contrary to the aspirational benefits of

soft systems. Other proposed soft sensor solutions are still in their infancy and have

only recently been used for motion-control of soft robots.

This dissertation explores the design and use of inductance-based sensors for the

estimation and control of soft robotic systems. These sensors are low-cost, lightweight,

easy-to-fabricate and well-suited for the conditions that soft systems can best exploit.

The inquiry of this dissertation is conducted both theoretically and experimentally for

Fiber-Reinforced Elastomeric Enclosures (including McKibben muscles) and bellows

xi



actuators. The sensing of each actuator type is explored through models, design anal-

yses and experimental evaluations. The results demonstrate that inductance-based

sensing is a promising technology for these otherwise difficult-to-measure actuators.

By combining sensing and actuation into a single component, the ideas presented in

this work provide a simple, compact and lightweight way to create and control motion

in soft robotic systems. This will enable soft systems that can interactively engage

with their environment and their human counterparts.

xii



CHAPTER I

Introduction

1.1 Motivation

Despite the animal-like intelligence of robots today, most robots are anything but

animal-like. As a society, we have created machines to perform tasks that would be

impossible, difficult or tedious for humans. Traveling at great speeds or handling

immense materials requires machines that are distinctly different than us. We need

machines to generate and withstand high forces. We need tireless factory machines

that move rapidly and precisely. These machines are the foundation of traditional

robotics. Robots like these can be controlled to create accurate and repeatable mo-

tion. This predictability is valuable when the environment is equally predictable.

A robot welding car frames, for example, depends on precise information about the

location of the frame. This same robot, however, could cause serious damage if its

surroundings did not match its internal maps.

In a sense, the environment of the robot must mirror the same “rigidity” that

the robot possesses–a well-defined, consistent and measurable shape. These hard and

unyielding machines stand in stark contrast to the “soft” nature of biological systems.

Biological systems thrive in diverse and varied environments, but traditional robots

depend on uniform and predictable surroundings. For robots to thrive in biological

environments, we need a new paradigm for robot design and control.

1



Just as rigid robots thrive in “rigid” environments, soft robots excel in “soft”

environments. Compared to traditional robots, the structure of soft robots is much

closer to that of biology. Soft robots are designed with deliberate compliance that

allows them to passively conform to external constraints. This allows soft robots to

mimic some of the “embodied intelligence” exhibited by animals and bypass much of

the complex reasoning required in traditional robots.

The passive compliance of soft robots can be contrasted to the intense sensing

and central planning in traditional robotics. Rather than planning immutable actions

with a purportedly perfect map of the world, soft robots allow the world to shape

their behavior. For example, to pick up a tomato, a traditional robot end-effector

would anticipate the exact shape and size of the tomato, whereas a soft end-effector

could conform to the tomato as it grasped [9]. To provide movement assistance to

the human body, a traditional robot might use rigid links where a soft robot would

use a flexible, garment-like structure [10], [11]. In some sense, the body of the soft

robot has the desired behavior “encoded” in its structural properties. This “morpho-

logical computation” allows soft robots to perform tasks in unknown environments

without the intensity of sensing and processing required of a traditional robot [12].

The compliant nature of soft robots makes them a valuable tool for exploration and

manipulation in natural environments as well as human-robot interaction.

Compared to traditional robots, soft robots represent a fundamentally different

kind of machine. Soft robots can be built from lightweight and flexible materials.

This makes soft robots much more resilient to the shock of physical impacts than

heavy, traditional robots. This resilience comes in part from the distributed stress

and increased contact time that a soft body provides [13]. When a collision occurs,

soft robots can passively deform and absorb collision energy [14]. Moreover, soft

systems can have significantly lower reflected inertia, making them safe for operation

alongside humans [15].
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On their own, soft robots can perform tasks that traditional robots would find all

but impossible. For instance, soft robotic end-effectors can handle delicate materials

and difficult-to-grasp materials that that have typically been reserved for humans.

Robotics Business Review designated an emerging, soft robot gripper as a “game-

changer” for the industry [16]. Outside of the factory, these grippers could be used,

for example, to harvest delicate produce [9] or sea life [17] that would be damaged by

traditional end-effectors.

Soft robotic mechanisms can operate without rigid frames or sliding surfaces. This

makes them useful in harsh environments where external contaminates could breach

the dynamic seals of rotating or sliding shafts. For example, in desert environments

where sand would clog and wear traditional bearings, soft mechanisms can move

without concern. These soft mechanisms could also be used on survey robots or solar

positioners [18].

The fundamental differences between soft and rigid robots pose both opportunities

and challenges. On the one hand, soft robots can perform tasks that would be all-but-

impossible for the best rigid robots of today. On the other hand, nearly all the science

of robotics has focused on robots with kinematic chains of rigid links [19]. The field of

soft robotics has recently seen a great deal of growth across the globe. The European

Commission has funded the OCTOPUS [20], RoboSoft [21] and Soft Manipulation

(SoMa) [22] projects. The Wyss Institute of Harvard University has created the

“Soft Robotics Toolkit” to collect and distribute expertise [23]. Companies like Soft

Robotics Inc. [9] and Otherlab [24] are working to exploit commercial applications

for this developing technology. Despite this growth and interest, major challenges

remain. The actuators, sensors, modeling and control techniques of soft robotics all

lag significantly behind traditional robotics.

One of the most difficult challenges in soft robotics is the inability to either predict

or sense the motion of soft robots. This constraint imposes limits on the applications

3



of these systems. Without the ability to sense their own motion, soft robots are often

limited to open-loop control sequences [25]–[27] or manual teleoperation [28]. This is

apparent in the rules of the 2016 “Soft Robotics Grand Challenge.” All of the tasks

in the challenge permited robot operators to directly observe and remotely control

their robots [29].

One would hope that, with sufficiently sophisticated models, soft robots could

be controlled in an open-loop fashion. Unfortunately, the models for predicting soft

robot motion are often quite complex and may only be accurate for a small portion

of the working envelope [19], [30]. Even if the models were improved, they rely on

knowledge of external forces and constraints. Without information about these exter-

nal effects, the models cannot predict the robot motion. For example, a continuum

manipulator can only move predictably when the forces on it are known and constant

(e.g. gravity). Once the manipulator grasps an object of unknown weight, the state of

the manipulator cannot be accurately modeled. Given the unknown, environmental

constraints that can be imposed on soft robotic systems, closed-loop controllers are

required to drive their motion [14].

For closed-loop control to be a viable option, the motion of the robot must be

measured. Unfortunately, the nature of soft robots makes their motion difficult to

measure with traditional sensors [14]. Like traditional robot actuators, traditional

sensors are designed to work with discrete mechanical joints. This makes traditional

sensors poorly suited to work with the deformable structures found in soft robotics.

An ideal soft robotic sensing system would be flexible, lightweight and would not

constrain the robot motion in undesired ways.

1.2 State of the Art

Traditional robots rely on discrete mechanical joints. These joints are typically

attached to rigid members and driven by stiff, non-back-drivable actuators. This rigid

4



structure allows the kinematics of the robot to be easily modeled, sensed and con-

trolled. Unfortunately, the rigidity also makes the robots cumbersome and vulnerable

to impacts.

One of the first ways that robots were “softened” was by lowering the mechanical

impedance of the actuated joints. One technique for softening stiff actuators such as

hydraulic cylinders and geared electric motors is the use of series elastic elements. By

placing a spring between the actuator and the world, these Series Elastic Actuators

more easily conform to constraints imposed by the world [31]. It is no coincidence

that the researchers who invented this technique, Gill Pratt and Matt Williamson,

were working on legged robots [32]. They needed a system that could generate stable

forces and withstand the impacts imposed by rapid locomotion.

While Series Elastic Actuators provide a popular way to soften traditional robots

(the original paper [31] has over 1400 citations), the overall robot structure is still

rigid. Robots using this technology rely on machined, metal components and precision

encoders. The motion of these robots is limited by the constraints of the mechanical

joints. The forces created by the joints can conform to external constraints, but the

motion of the robot is still rigidly defined by its joints. Soft robots conform to the

environment by removing discrete joints entirely.

The versatility of a traditional robot is often quantified by the number of its

degrees of freedom. In general, this number can be increased by increasing the number

of joints on the robot [30]. Additional joints, however, add cost and complexity to

robots. Soft robots, made from elastomeric structures, can exhibit infinite degrees of

freedom. The flexibility of these robots allows their kinematics to conform to their

environment without the mechanical complexity of numerous discrete joints.

The flexible structures of soft robots may open up degrees of freedom, but they

require nontraditional actuation strategies. Traditional actuators are designed to work

with discrete mechanical joints. Soft robots often use tendons, electroactive polymers,
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shape-memory alloys or fluids to actuate [30]. Even as other technologies develop,

fluids have remained a popular choice [33]. Fluids are easy to embed within elastomers

and flow naturally when exposed to external constraints. Soft fluidic actuators include

bellows [34], [35], fiber-reinforced structures [36]–[38], balloon-like actuators [39], and

actuators reinforced by constant-surface-area (fabric-like) structures [15], [40].

Given the value that self-sensing soft actuators would create, a great deal of effort

has been focused on developing technologies that could be used to this end. The

following material reviews strategies proposed for sensing the displacement of soft,

fluidic actuators and systems. These include external localization strategies, inertial

measurement, rigid internal sensors and soft sensing technologies. A brief overview

of inductance sensing and published proposals to use inductance sensing in soft, fluid

systems is also given.

1.2.1 External Localization

External localization systems include visual localization, electromagnetic tracking,

and radio frequency indoor positioning systems. Camera-based 3D motion capture

has been used to provide feedback for continuum manipulators [41], [42] and an in-

flatable humanoid [43]. Many orthosis and exoskeletons driven by soft fluid actuators

rely on camera-based motion capture technology for position tracking [44]–[47]. These

systems track the positions of retro-reflective markers with sets of cameras in known

locations surrounding the robot or device. Popular implementations of this technology

are available from companies such as Vicon (Oxford, UK) and Optitrack (Corvallis,

OR, USA). The marker identification relies on special lighting conditions. The cam-

eras typically provide timed light pulses emanating from around the lens area. The

markers reflect this light back towards the sources. Because the cameras typically

assume that any reflection of the timed light signal is a marker, other reflective ob-

jects have to be removed from the workspace or covered. Each marker needs to be
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identified by at least two calibrated cameras for the marker position in 3D space to

be estimated. To estimate the position and orientation of a rigid body, three markers

(each seen by at least two cameras) are needed. This method is popular because

many markers can be tracked simultaneously by the same set of cameras.

Laser beacons can also be used [48], [49]. These beacons create a structured field

of light that allows photo-receivers on a rigid body to calculate their position relative

to the beacons. A popular implementation of this technology tracks the headset

and hand controllers in the virtual reality platform HTC Vive (HTC, Taoyuan City,

Taiwan). Like 3D motion capture systems, laser beacon systems require a line-of-

sight in order to operate. Accordingly, they have limited utility in a visually occluded

workspace.

Electromagnetic tracking systems avoid the occlusion problems of the vision-based

systems. These sensors work by placing electromagnetic (EM) sensors placed in an

externally created field. The sensors consist of small sets of coils that are magnetically

coupled to the external beacon coil. By connecting the individual sensors to a pro-

cessing box, the location and orientation of each sensor can be estimated. These EM

trackers have been used in feedback control [50], [51] of soft robotic devices. Popular

implementations of this technology are found in the Aurora and trakSTAR systems

(Ascension Technology Corp, Shelburne, VT, USA).

Another proposed technology is Radio Frequency Indoor Positioning. These sys-

tems can have vast workspaces but limited accuracy [52]. Systems have been proposed

using Radio-Frequency Identification Tags, wireless networking signals, and Bluetooth

[53].

External localization technologies all rely on fixed networks of reference points

that predefine the workspace. In closed, laboratory-like environments, systems such

as these may be useful. On the other hand, for mobile robots and human-assistive

devices, a finite, predefined workspace is a serious limitation.
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1.2.2 Inertial Measurement

Inertial Measurement Units (IMUs) provide another option for tracking robot mo-

tion [54], [55]. IMUs rely on the fusion of measurements from gyroscopes, accelerom-

eters and a magnetometer to estimate the orientation of the sensor. By comparing

values from multiple IMUs distributed along the robot, the relative orientations can

be estimated. Orientation estimates from IMUs, however, are not always accurate.

The accelerometers are very sensitive to vibration and acceleration. The heading

of an IMU can change without changing the measured gravity vector. Without a

change in the measured gravity vector, the heading can only be estimated from drift-

prone angular velocity estimates or from measurements of the earth’s magnetic field.

The local magnetic field, however, is often locally distorted by large metal objects

and electric motors [56], [57]. Without reliable magnetic field information, IMUs are

susceptible to drift in their heading estimates.

1.2.3 Rigid Internal Sensors

1.2.3.1 Coupling to Rigid Linkages

There are numerous ways to utilize rigid sensors to track the movement of soft

actuators. The most common method is to constrain the motion of the soft actuator to

a rigid kinematic linkage [58]–[62]. In this way, the joints of the linkage can be tracked

with traditional rotary or sliding sensors. Doing so, however, fails to take advantage of

soft actuators’ principle strengths–they can be used without rigid linkages and precise

alignments. Moreover, when devices interact with the human body, rigid linkages and

bulky sensors are often undesirable.

8



1.2.3.2 Measuring Distance Between Actuator Ends

Some have proposed systems that measure the displacement between the end-

pieces of the soft actuator. For instance, a microwave transducer could be placed

at one of the actuator ends [63]. By measuring the phase of the reflected signal,

the actuator length could be determined. Alternatively, an optical or ultrasound

transmitter could be placed on one side of the actuator and a reflector or receiver

could be placed on the other side [64]. The length of the actuator could then be

determined by the signal attenuation or time of flight. Similarly, the diameter of

a McKibben muscle can be measured through changes in photo-reflectance [65]. It

appears, however, that these methods would be most effective when the actuator ends

are aligned. Such alignment is not always guaranteed in soft robotic applications.

1.2.3.3 Measuring the Recoil of Strings

In tentacle-like continuum manipulators, the actuators often change their length to

bend the tentacle [30]. In these cases, researchers have often relied on measuring the

length of strings running alongside the actuators [66], [67]. These strings, however,

introduce several problems. First, they are vulnerable to lateral pressure. If the

strings bump against an external object, they may be deflected. This deflection

changes the length of the string but does not necessarily change the length of the

actuator. This can introduce a bias into the measurement of the actuator length.

Second, the physical routing of the strings is problematic. The strings are often

routed through small eyelets spaced along the length of the system. If particles enter

these small holes, they can impinge on the motion of the string. These eyelets leave

the string exposed to the outside world where they can wear away or be cut. Finally,

and most importantly, measuring the length of the strings requires rigid, spring-loaded

sensors. These sensors add weight and complexity to the system. The physical bulk

of the sensors limits the number of strings that can be used. For example, in the
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OctArm continuum manipulator, the string recoil systems completely surround the

base of the manipulator [66]. By all appearances, it would be difficult to adapt the

system to include more strings.

1.2.3.4 Measuring Flow Into and Out of Actuator

Another method to measure the motion of a soft, fluid-powered actuator is to

measure its volume. This could be done, for example, with a flow-meter measuring

the flow into and out of the actuator. Alternatively, the flow into and out of a volume

that contains the actuator could be used [68]. These methods would likely be more

accurate when used with incompressible fluids such as water. It is possible that

this method could result in a drift in the position estimate. This is because flow is

essentially a measure of the change in actuator volume. This change in volume would

need to be integrated to produce an estimate of the current volume.

1.2.4 Curvature Sensors

The motion of some soft robots corresponds to the bending of inextensible portions

such as a flexible “spine.” In such systems, curvature sensors could be used. These

sensors exist in many varieties [69]. For example, optical fibers with Fiber Bragg

Gratings, for example, can register curvature via changes in the fiber strain [70]. The

strain changes the spacing of the gratings and the corresponding reflected wavelength.

These sensors have been used for feedback control of a continuum manipulator [71].

The optical fibers provide curvature sensing in a very small package. Other systems

rely on changes in transmitted light [72], [73], the proximity of an external magnet [74]

or piezo-electric effects [75] to measure changes in curvature. Commercially-available

curvature sensors have been integrated into the “fingers” of soft end-effectors [76]. A

helical-tape of LED/phototransistor pairs can be used to create a “cable-like shape-

sensor” that can estimate the shape of a long snake-like sensing-cable [77]. This
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commercially available sensor was used in the Festo ”BionicMotionRobot”, a soft

trunk-like manipulator driven by bellows [78]. For this robot, Festo reports a motion

repetition accuracy of ±10 mm (with a 850 mm trunk-length).

1.2.5 Soft Deformation Sensors

Many different technologies have been proposed to create inherently soft sensors.

These soft sensors are typically rely on elastomers that change properties under strain.

It is conceivable that these elastomeric sensors could be embedded into the structure

of a soft fluidic actuator. The elastomeric sensors could be used, for example, in a

rubber bladder surrounding the pressurized fluid [79], [80]. They could be used in a

sheath that surrounds the actuator [81] or a ring that measures the diameter of the

actuator at a certain point [82], [83]. A stretchable elastomeric sensor could also be

used inside the actuator to sense the distance between the end-pieces [84].

1.2.5.1 Optical

The attenuation of transmitted light in optical conduits can be used to measure

the deformation of soft devices. For instance, optical fibers can be pre-bent into a

structure that couples structure length to the radius of the fiber bends. By measuring

the bend-induced attenuation in the fibers, the length can be estimated [73]. Other

optical techniques rely on stretchable elastomeric light conduits. These conduits

cause a greater portion of the light to be lost when they are strained [85]. Stretchable

conduits such as these have been used in a soft, hand-like end-effector [86].

One disadvantage of these sensors is that the measurement signal is sensitive to

multiple modes of deformation [86]: bending, elongation and lateral pressure. Thus,

with only one sensor measurement, assumptions must be made about which effect (or

combination of effects) is causing the change in the signal.
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1.2.5.2 Resistance-Based

One way to create an elastomeric transducer is to use strain to create changes

in the resistance of an embedded conductive structure. These structures can be

formed by adding carbon to an elastomer [87]–[89]. The pattern of the conductive

elastomer can be optimized to align the sensitivity of the sensor with the direction

of the strain of interest [90], [91]. Such sensors, however, have non-linear behaviors

that limit their usefulness. Wang and Ding, for example, report that resistance of

their elastomer required nearly 100 seconds to achieve steady-state after strain [92].

This time sensitive response is due to stress relaxation in the elastomer and can cause

other effects. For example, the resistance may spike at the onset of a step change in

strain and show hysteresis under cyclic strain [91], [93], [94]. For the sensor to be used

during the time of transience, the time response needs to be taken into account [88].

Conductive elastomers have been used in diameter sensors [83] and length sensors [80]

for McKibben muscle actuators. Conductive yarns have also been used in McKibben

muscles [95]. Coiled conductive nylon thread has been used to create sensors [96].

Carbon-nanotube-based sensors have been used to measure bending in bellows [97].

To avoid some of the issues of created by a chemical bond between the elastomer

and the conductive element, conductive pastes [98] or liquid can be used. Microchan-

nels of conductive fluid in elastomers can detect very small strains within the elas-

tomer [99]. Similar ideas have been explored since as early as 1953 [100]. As the

elastomer is strained, the geometry of the microchannels changes. For instance, a

microchannel may become longer with a narrower cross section. This results in an

increase in electrical resistance. A common liquid choice is Eutectic Gallium Indium,

though ionic liquids may be used to boost the resistivity [101]. Park and Wood

demonstrated that these sensors could be embedded in an elastomeric sheath over

a soft fluid actuator [81]. Their sensor exhibited a large and approximately linear

response to strain induced in the actuator over the course of its contraction. Others
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have used similar sensors in soft, fluid-driven bending actuators [102], [103].

Some weaknesses of this method include: hysteresis, a limited operating tempera-

ture, and a sensitivity to strains induced by lateral pressures (unrelated to actuation).

Recent work has proposed the use of “wavy channels” for the ionic liquid to elimi-

nate problems of hysteresis and strain relaxation [104]. Temperature changes can be

problematic. Park and Wood’s actuator relied on the low-melting-point alloy Eutectic

Gallium Indium [81] which solidifies at about 15 ◦C [105]. Though ionic (non-metallic)

liquid sensors can flow over a wider range of temperatures, many ionic liquids exhibit

large changes in conductivity with temperature. For instance, the conductivity of

an ionic liquid may change 50-400 times from -15 ◦C to 120 ◦C [106]. The micro-

channel sensing technology has been used to create highly-sensitive tactile sensors

[99]. The high sensitivity of these channels to small lateral pressures, however, can

bias measurements of channel length. Recent work has proposed designs for which

the sensitivity to lateral pressure is minimized [107].

1.2.5.3 Capacitance-Based

Another soft sensing technology is found in dielectric elastomers. These capacitor-

like elastomeric structures use a thin sheet of elastomer to separate two compliant

electrodes. Alternative techniques may rely on concentric tubes of conductive liquid

[108] or a comb-like structure [109]. As the strain in the elastomer sheet changes its

thickness, the capacitance between the electrodes changes correspondingly. Dielectric

elastomer sensors have been used to sense the pressure and motion of soft actuators

[79], [110]. It should be noted that, aside from sensing, dielectric elastomers can be

used to both generate electricity [111], [112] and create active strain [113], [114]. As

a sensor, however, dielectric elastomers are very sensitive to changes in temperature.

Jean-Mistral et al. tested the dielectric constant of the most popular elastomer at

a variety of temperatures [115]. At high excitation frequencies, they found that the
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dielectric constant increased about 30 % over a temperature range of -40 ◦C to 100 ◦C.

This 30 % change in the dielectric constant could bias the estimate of the capacitance

by 30 %. For comparison, the strain-induced change in capacitance of a commercially

available sensor is less than 60 % [116].

1.2.6 Inductance Overview

In this dissertation, the term “inductance” is used interchangeably with the more

cumbersome “self-inductance.” Self-inductance is a measure of magnetic flux imposed

on a circuit by itself (per unit current). Self-inductance depends on the geometry of

the circuit and on the proximity of nearby conductors and/or ferromagnetic materials.

The inductance of a circuit resists changes in current. Dynamically, it has been

compared to the inertia of mechanical systems.

The voltage across each element in an inductive circuit can be considered as an

element of a vector v. The relationship of the voltage vector v to the vector i of

currents in each circuit element is given by

v =
dL

dt
i + L

di

dt
+ Ri (1.1)

where R is a diagonal matrix with elements corresponding to the resistances of the

individual circuit elements and L is the inductance matrix.

The inductance matrix L is a symmetric matrix made up of the self-inductance

of the individual elements L′ and the mutual inductance between circuit elements M

(with m total circuit elements)

L =



L′1,1 M1,2 . . . M1,m

M2,1 L′2,2 . . . M2,m

...
. . .

...

Mm,1 . . . L′m,m


. (1.2)
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The two subscripts of L′ or M describe the circuit elements under consideration.

Note in Eq. (1.1) that rapid changes in inductance can effect the voltage of the ter-

minals. In theory, sufficiently fast changes in inductance could overcome the resistive

losses and generate electrical power. As a sensor, however, the primary concerns are

the inductance L and resistance R measured at the terminals. In this dissertation, it

is assumed that the circuit is excited by sufficiently high frequency currents to neglect

the product of the current and the time-rate-of-change in inductance

for
dL

dt
i ≈ 0, v ≈ L

di

dt
+ Ri. (1.3)

For the air-core circuits presented in this work, the inductance is typically on the

order of micro-Henries and the resistance is on the order of Ohms. The resistance

is many orders of magnitude higher than that of the inductance. Accordingly, high-

frequencies of current are needed to create reactance from the inductance. The higher

the frequency, the larger the relative amplitude of di
dt

to i becomes.

1.2.7 Inductance-based sensors

Inductance sensors come in many varieties. Inductance sensors can measure prox-

imity, displacement and rotation. By exciting eddy currents, they can also iden-

tify the presence of flaws in nearby metal “targets.” The changing permeability of

magnetic cores under strain can be used to create force or torque sensors. One ad-

vantage of inductance sensors is that they can often be made to operate “contact

free” in harsh environments [117]. On the other hand, the precision winding, cores

and shielding of many inductance-based sensors can make them bulky and expensive.

Additionally, the measurement of inductance often relies on analog circuitry that can

be intimidating to system designers. Recent developments, however, have facilitated

the measurement of inductance with digital interfaces.
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Inductance-based sensors can measure displacement through the motion of a fer-

romagnetic core [117]. For example, the motion can be used to increase the “air gap”

of a single winding inductor resulting in a decrease in inductance. A similar principle

has been applied to measure the piston position in rigid fluid-powered actuators [118].

The Linear Variable Displacement Transformer (LVDT) relies on balanced primary

and secondary windings. A common configuration is to have the primary coil between

two secondary coils that are connected in series with opposite polarity. When the core

is centered, there is no induced current in the secondary circuit. Moving the core to

either side linearly increases the amplitude of the current in the secondary circuit.

Similar techniques can be used to create rotational sensors.

Inductance sensors may also rely on induced eddy currents in a nearby metal

target [117], [119]. Exposing conductive metal to the alternating field of a coil will

induce currents in the metal which oppose the field of the coil. This can be used to

create proximity switches as well as distance sensors. The inductance sensors can also

be used at a fixed distance to detect flaws within a metallic structure [119], [120].

Changing levels of inductance have also been used for force and torque transducers.

The “Villari effect” changes the magnetic susceptibility of metals under stress and

is pronounced in certain nickel alloys [121]. This effect describes the change in an

alloy’s magnetic susceptibility in the presence of mechanical stress. By measuring the

inductance of a coil with an alloy core, the stress can be deduced. Another strategy is

to use inductance sensors to measure the deformation of a compliant structure with

known stiffness [117], [122].

The analog circuitry necessary to excite and measure inductive coils has been a

barrier to the widespread application of inductance-based sensing. Recently, microchip-

based, low-power and precise inductance-sensing technology has become available

[123]. For example, chips developed by Texas Instruments can quickly and precisely

resolve the inductance of a parallel inductor-capacitor tank circuit with a fixed capac-
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itor. This is accomplished by exciting and measuring the resonant frequency of the

circuit [124]. This technology permits low-cost digital sensors that can measure pre-

cise changes in inductance. Other advances have allowed the development of inductive

sensors that can be interrogated with a remote wireless coil [125].

1.2.8 Inductance Sensing in Soft, Fluid-Driven Structures

Sensors for soft fluid structures that rely on changes in inductance have been pro-

posed in various forms. Since the commencement and partial publication of elements

of this work, others have begun to replicate the results and explore similar ideas [126].

Stretchable belts with integrated wires have long been used to measure the expan-

sion of the human abdomen and thorax via respiratory inductance plethysmography.

By using wires in a “zig-zag” pattern on the belt, a stretchable, single turn coil is

created. The inductance of this coil can be used to estimate its cross-sectional area.

A similar technique has been used recently to measure the expansion of a balloon

catheter. The zig-zag pattern, in this case, is created with a standard sewing ma-

chine [127].

There are also many patents and patent applications for inductance sensors for

soft, fluid-driven actuators. The automation company Festo has a patent for a system

with a solenoid-like coil wrapped around an iron-filled elastomer inside of a soft fluid

actuator [84]. There are several systems proposed in patents or patent applications for

measuring the height of air suspension systems with inductance or magnetic coupling.

According to the nature of patents, the description of the technology is often quite

vague. One patent describes conical metal springs inside of rolling-sleeve air springs

[128]. The shortening of the air spring changes the length and inductance of the

metal springs. Other patents propose incorporating conductive elements into the

walls of a flexible air spring [129]–[131]. The changing geometry of helical elements,

for example, could lead to a change in inductance with height [130]. The changing

17



overlap of the conductors could lead to a variable capacitance with height [129]. In

addition to measuring the actuator length, the conductive elements could be used

to heat the rubber in extreme cold [131]. Another proposal is to use the magnetic

coupling of short wire coils at the ends of an air spring [132]. A prototype of this

system has been tested [133].

1.3 Need for Further Research

In certain settings, it is possible to adapt traditional, rigid-sensing techniques to

soft actuators. Soft sensing technologies are the subject of ongoing research and often

require complex fabrication techniques. Many rely on the deformation of elastomers

or the bending of fragile optical fibers. There has been virtually no scientific effort

to understand how inductance-based sensors could be used to sense and control the

motion of soft robotic systems. Inductance-based sensors have the potential to be

used in the same harsh environments for which soft robots are so promising.

1.4 Research Goal

This dissertation provides the fundamental knowledge necessary for the design,

analysis, fabrication and use of inductance-based sensors for soft fluidic devices. My

contributions include models for the inductance and resistance of sensors making up

the helical fibers of Fiber Reinforced Elastomeric Enclosures (FREEs). Such sensors

are referred to as “Smart Braids.” The models developed here inform the design

choices of Smart Braid sensors. The models are experimentally validated for the

case of a McKibben muscle actuator. The sensors are experimentally evaluated as

feedback for the motion control of two application-like robotic test-beds.

This work also includes an investigation of inductance-based sensors for bellows-

driven devices. Models for the inductance are developed and the implications for
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design are explored. The sensors are also fabricated and evaluated in a robotic test-

bed.

The goal of this research is to study inductance-based sensors that can create

state estimation for feedback in fluid-powered soft robotic applications. This research

investigates the feasibility of the proposed sensing method through models, experi-

mentation and application. The models developed here will enable rigorous design

methodologies. The proposed sensing circuits have been fabricated and tested on soft

robotic actuators and systems. These actuators and systems have served as test-beds

to validate the models, to reveal additional design considerations, and to characterize

the performance of the proposed sensors.

1.5 Contributions

This dissertation represents the first serious scientific exploration into the use

of inductance-based sensors for the estimation and control of soft robotic systems.

The sensing systems proposed in this work rely on measurements of inductance from

conforming electrical circuits. By designing the current paths appropriately, one can

create inductance changes that provide a reliable measure of actuation. By using

flexible off-the-shelf wires, this solution is low-cost, lightweight and preserves the

unique advantages of soft robotic systems.

The specific contributions are:

1. Chapter II: Developed a novel, closed-form kinematic model for Fiber-

Reinforced Elastomeric Enclosures (FREEs).

2. Chapters III-V: Investigated the design and experimentally tested the

use of conductive reinforcing fibers (“Smart Braids”) to sense and

control the motion of FREE actuators and systems.
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(a) Derived models for the inductance and resistance of Smart Braid circuits

on FREE actuators (Chapter III).

(b) Explored the design space of Smart Braid sensors. Studied the influence of

the design parameters on the electrical properties of the circuit (Chapter

III).

(c) Experimentally validated the inductance models in a McKibben muscle

FREE (Chapter IV).

(d) Experimentally evaluated the performance of the Smart Braid sensors as

state-estimators for feedback in two application-like systems (Chapter V).

3. Chapter VI: Investigated the design and experimentally tested the use

of inductance-based sensors for bellows-driven continuum joints.

(a) Derived models of inductance-based sensors on bellows actuators.

(b) Explored the effect of design parameters on the performance of inductance-

sensors on bellows.

(c) Modeled and experimentally evaluated inductance-based sensors on a two-

degree-of-freedom continuum joint driven by bellows.

In order to explore the design of Smart Braid sensors on FREEs, it was necessary

for me to derive a new descriptive framework for FREE actuators. The framework

I developed describes the behavior of each FREE by a single unitless quantity η.

This quantity parameterizes a functional relationship between the fiber angles of

the actuator. The resultant kinematic model allows the behavior of FREEs to be

analyzed independent of actuator-specific geometry. It is the first kinematic model

of FREE fibers that can be used to calculate large deformations without the need to

iteratively compose small deformations from local “instantaneous” strain. The closed-

form nature of this model has enabled new design analyses for FREE actuators.
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With this new model, I derived models for the inductance and resistance of FREE

actuators. These models enabled me to analyze the effect of design parameters on

Smart Braid performance. I identified regions of the FREE design space for which

Smart Braid sensors provide useful measures of actuator motion (and regions for

which they do not). I fabricated a Smart Braid in a McKibben muscle pattern

and compared the experimentally-measured inductance values to those predicted by

the models. This Smart Braid was then tested as the reinforcement of an actual

actuator. As predicted by the model, the inductance-response to contraction was

linear. It showed virtually no hysteresis and resulted in actuator length estimates

with approximately 1 mm of error (for a 29 cm braid). Smart Braid McKibben muscles

were then integrated into two soft robotic systems to test the ability of the sensors

to provide estimation suitable for feedback control. Closed-loop motion control was

demonstrated in both a revolute joint and a bending continuum manipulator.

This dissertation also explores the use of inductance-based sensors to estimate

and control bellows-driven devices. The inductance sensors were modeled and the

effect of the design choices was analyzed. The sensors were experimentally evaluated

in a commercial, 2-DOF bellows-driven continuum joint. This is an example of a

system that would be difficult to measure with traditional sensors. The inductance-

based sensors were able to measure the orientation of the joint with an RMS error of

approximately 1.1 ◦ and control it with steady-state RMS error of less than 3 ◦.

21



CHAPTER II

A Closed-Form Kinematic Model for

Fiber Reinforced Elastomeric Enclosures

Adapted from Wyatt Felt and C. David Remy. “A Closed-Form Kinematic Model

for Fiber Reinforced Elastomeric Enclosures.” ASME Journal of Mechanisms and

Robotics (Under Review).

2.1 Introduction

Soft, fluid-driven actuators use structured compliance to create motion from the

expansion of flexible volumes. Actuators based on these principles may, for example,

contract along a central axis like biological muscles [38]. The McKibben muscle is

a popular variety of such “pneumatic artificial muscles.” Each McKibben muscle

consists of an elastomeric tube surrounded by a sleeve of braided helical fibers. The

braid is made up of equal numbers of right-handed and left-handed helices of the same

pitch. They were developed in the 1950s by their namesake, Joseph Laws McKibben

[134]. Since that time, they have been used in numerous applications such as legged

robots and human assistive devices [135].

Joshua Bishop-Moser [136] extended the functional principle of McKibben muscles

to a generalized class of cylindrical soft actuators known as Fiber-Reinforced Elas-
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Figure 2.1:
A Fiber-Reinforced Elastomeric Enclosure (FREE) is a cylindrical soft
pneumatic actuator. A FREE consists of an elastomeric tube surrounded
by sets (or “families”) of identical helical fibers. The fibers in each family
have the same angle with respect to the long axis (e.g. α) and the same
“unwound” length (e.g. bα). Shown here are examples of two-fiber-family
FREEs. The families are respectively described by the angles α and
β. The “unwound” length of the helical fibers in each family, bα and
bβ, remains constant, whereas the axial length l and diameter D change
during actuation.

tomeric Enclosures (FREEs). Like McKibben muscles, FREE actuators are formed

from two sets of identical helical fibers. A “set” or “family” of fibers is a group of

fibers characterized by the same angle with respect to the cylinder axis (e.g. α or β).

In the McKibben muscle, the two sets maintain equal and opposite angles (α = −β).

In a FREE, the fibers are wound with fiber angles selected by a designer to result in

a desired behavior (Fig. 2.1). This choice of configuration permits complex actuated

behaviors such as twisting while extending or contracting.

The kinematics of FREEs were initially developed only for small deformations.

Krishnan et al. [137] described the motion of FREEs with instantaneous strain equa-

tions. These equations described the transformation of the FREE as a small change

relative to its current configuration. To calculate the evolution of a FREE actuator

over large deformations, the instantaneous strains were successively composed. This

fiber-only kinematic model allowed the designer to consider the kinematics of the
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FREE fibers under tension without considering the elastomer.

Combined fiber-elastomer methods model the motion of specific FREE actuators

with specified geometries and defined elastomeric properties. For instance, finite-

element solvers can be used to model FREEs [138]. Recent work has begun to explore

the use of constitutive models to predict the motion of unloaded contracting, twist-

ing or bending fiber-reinforced actuators [139] and torsionally loaded fiber-reinforced

actuators [140]. These constitutive methods rely on models of strain energy in the

elastomers and fibers to relate internal pressures to predicted deformations for spe-

cific actuator geometries. The governing equations of [137] can also be adapted to

consider the elastomer [141].

The model presented in this chapter allows the designer to consider the kinematics

of FREE fibers independent of specific geometry and material choices. For instance,

in an FEA model, one would need to define the inner and outer diameter of the

elastomer, the elastic material, a model for the elastic behavior, the length of the

actuator, the two pitches of the fiber families, the fiber material, the number of

reinforcing fibers in each family, the pressure ranges, etc. Once these choices have been

made, a computationally intensive process must be conducted to evaluate the behavior

of the specified FREE. After conducting a number of these numerical experiments, it

is perhaps possible to extract some design heuristics from the observed behavior, but

it is difficult to generalize the results.

In the model presented in this chapter, the behavior of the FREE actuators is

described in terms of a single variable. This variable, η, is the ratio the lengths

of the fibers in the two sets and is independent of the specific actuator geometry

and materials. η is a design choice that is conserved over the course of actuation.

The introduction of η allows this chapter to extend models developed for McKibben

muscles [142] into the broader class of FREE actuators. The mathematical model

presented in this chapter describes large-deformation kinematics of FREEs in closed-
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form and without the need to compose a succession of instantaneous strains.

The kinematic model presented here describes the length, diameter, rotation and

volume of FREE actuators as functions of the fiber angle β. The structure of this

model provides a common language to describe every cylindrical, two-helical-fiber-set

FREE by parameters that define the behavior (η) and state (β) of the actuator. The

size and geometry of the actuator is given by the length bβ of the β fibers and the

diameter D0 (when β = −π/2).

The simple, analytic nature of this model facilitates the understanding and design

of FREE actuators. The application of this model is demonstrated in an actuator

design case study. In another example application, the model is used to understand

how the reinforcing fibers limit the range of motion of FREE actuators.

2.2 Kinematic Modeling

2.2.1 Assumptions and Definitions

The model presented in this chapter assumes that the fiber-reinforced actuators

are made from two sets of helical, inextensible fibers with respective angles α and

β (Fig. 2.1). The fibers surround an elastomeric bladder containing the pressurized

fluid. It is assumed that sufficient fibers are used to prevent the bladder from bulging

between the gaps in the fibers. The elastomer is assumed to be infinitely extensible

with negligible stiffness. The fibers are assumed to be always under tension from the

internal pressure in the bladder. Because the individual fibers within the families are

identical, the kinematics of only one fiber in each family need to be considered.

It is also also assumed that the profile of the FREE actuator remains cylindrical.

This approximates an unbent actuator away from its ends. At the actuator ends,

the diameter tapers to match the fixed-diameter of the end [143]. The cylindrical

assumption allows the adaptation of simple helical formulas that have long been used
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to describe McKibben muscles [142]. The length of this cylinder is l and its diameter

is D. All fibers wrap around it in a helical fashion. The individual fibers in their

respective families behave identically. They all have the same axial length l and

diameter D as the cylinder. Under these assumptions, the length of the cylinder l

is related to the “unwound” length b of the fibers in a family via the cosine of their

angle

l = bα cos(α) = bβ cos(β) . (2.1)

Similarly, the diameter of the cylinder D is a function of the fiber angles and fiber

lengths

D =
bα sin(α)

nαπ
=
bβ sin(β)

nβπ
. (2.2)

The diameter is additionally a function of the number n of times that the fiber circles

the axis. For example, nα = 0.75 signifies that, at the current diameter, the fibers

of the α family circle the axis three-quarters of one time. The sign of n indicates

the handedness of the helix (positive for right-handed) and matches the sign of the

corresponding fiber angle.

sign(nα) = sign(α)

sign(nβ) = sign(β) .

(2.3)

The cylinder diameter and length will change as the actuator volume expands.

These changes will correspond to changes in the fiber angles α and β. The number

n of fiber turns may also change as the actuator ends rotate relative to one another

about the cylinder axis. The “unwound” length b of the fibers, however, remains

constant.

Krishnan et al. [137] analyzed the instantaneous kinematics of FREEs with values

of α and β between -90 ◦ and 90 ◦. As they noted, however, the symmetry of FREEs

makes this formulation redundant. This model eliminates the redundancy, without

loss of generality, by deliberately specifying which fiber family is labeled by α and
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which is labeled by β. In this model, the angle α is used to describe the family with

the greater or equal “unwound” fiber length b (i.e. bα ≥ bβ, and thus |α| ≥ |β|).

Furthermore, the analysis is restricted to helices formed by the α fibers that are

right-handed and thus maintain a positive value of α. Because α is always positive,

and α is strictly greater than β (β is negative when |α| = |β|), both angles cannot be

equal to zero simultaneously.

0 < α ≤ π

2

−α ≤ β < α

(2.4)

2.2.2 Behavior Described by η, State by β

The behavior of a FREE actuator is defined by the ratio η of the “unwound”

lengths b of the fibers from the two sets

η =
bβ
bα

0 < η ≤ 1.

(2.5)

Under the assumptions of this model, the angle α follows uniquely from the angle

β. With η, a simple analytic relationship between the fiber angles can be developed

from Eq. (2.5) and Eq. (2.1)

α = cos−1(η cos(β)) . (2.6)

Equation (2.6) provides a clear functional relationship between the angles of each

FREE (Fig. 2.2) parameterized by η.

The relationship between the fiber angles described by Eq. (2.6) has been observed

previously but never defined in such an explicit form. Krishnan et al. [137] noted

that each two-fiber-family FREE belongs to “a one-dimensional family of fiber angle

configurations.” With the model presented here, it is now clear that the ratio η
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The ratio 0 < η =

bβ
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≤ 1 of the lengths of fibers in the two families

determines the feasible angle combinations for a FREE actuator. The
angle β can be used to specify the state of the actuator along the func-
tional relationship of possible combinations. The locked manifold (dashed
black line) is the set of angle combinations that maximize the volume of
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not specifically defined by this model. β is constrained to remain strictly
less than α. Thus, when η = 1 (α = −β), β is constrained to be less than
zero. This is indicated by the circle at the origin. The feasible region
includes the line α = −β but the line α = β is excluded. The values of η
shown in this figure (and the others) are: 1, 15

16
, 7

8
, 13

16
, 3

4
, 11

16
, 5

8
, 9

16
, 1

2
, 7

16
,

3
8
, 5

16
, 1

4
, 3

16
, 1

8
, and 1

16
.

28



2 nπ 0,α

-2 nπ 0,β

D0

bα

bβ

Figure 2.3:
When the helices are planar circular arcs, the diameter is D0. Shown
here are the paths of an α fiber (red) and a β fiber (blue) for η = 0.5,
n0,α = 0.5 and n0,β = −0.25.

and Eq. (2.6) can be used to define this one-dimensional “family” of fiber angle

configurations.

2.2.3 Size Described by bβ and D0

The length, diameter and volume of a FREE actuator can be described as functions

of η and β and variables that describe the dimensions of the particular actuator, bβ

and D0. The first of these, bβ, is the “unwound” length of the individual fibers in the

β family (Figs. 2.1 and 2.3). The diameter D0 is a standardizing measurement used

for McKibben muscle actuators [142]. This quantity can also be defined for FREE

actuators (Fig. 2.3). D0 is calculated from Eq. (2.2). It is the diameter of the helices

if β = −π/2 (and thus α = π/2)

D0 =
bα

n0,απ
= − bβ

n0,βπ
(2.7)

where n0 is the number of fiber turns at that diameter.

Thus each FREE actuator can be defined by the actuator-specific quantities η, bβ

and D0. The state of the actuator is given by β. Examples of FREEs with the same

values of bβ and D0 (but different values of η and β) are shown in Figure 2.4.
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Figure 2.4:
Examples of FREEs with the same bβ and D0 but different η levels at
various values of β. For the actuators shown here, D0 is half of bβ. Each
row corresponds to a value of η and each column a value of β.
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Figure 2.5:
The length and diameter of FREE actuators for various values of η across
β. The length of the actuator is the cosine function scaled by bβ and is
always greatest at β = 0 (l = bβ). The diameter scales linearly with D0

and always increases with decreasing values of β. The maximum diameter
is D0.

2.2.4 Calculating Rotation ∆n, Diameter D, Length l, Volume V and

Surface Area Asurf

The model presented in this chapter allows the length, rotation, diameter and

volume of a FREE actuator to be described as functions of the actuator state β.

The expression for the axial length l(β) (Fig. 2.5) is straightforward and is given by

Eq. (2.1)

l(β) = bβ cos(β) . (2.8)

Note that the length of the actuator scales linearly with the length bβ and that the

maximum length achievable by the actuator is bβ.
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The axial rotation of the actuator is designated by ∆n and is conserved in the

fiber turns nα and nβ at D.

nα = n0,α + ∆n

nβ = n0,β + ∆n

(2.9)

where ∆n is zero when D = D0. Eq. (2.2) leads to an expression for ∆n

∆n = −n0,β
sin(β) + sin(α)

sin(α)− η sin(β)
. (2.10)

Note that there is no rotation when η = 1 (McKibben muscle)

η = 1→ β = −α→

sin(β) + sin(α) = sin(−α) + sin(α) = 0→

∆n = 0.

(2.11)

Substituting Eq. (2.6) into Eq. (2.10) gives the axial rotation ∆n(β) in radians

∆n(β) = −n0,β

√
1− η2 cos2(β) + sin(β)√

1− η2 cos2(β)− η sin(β)
. (2.12)

The rotation ∆n scales linearly with n0,β =
−bβ
πD0

(Fig. 2.6).

The diameter D(β) is found by substituting Eq. (2.6), Eq. (2.7), Eq. (2.9) and

Eq. (2.12) into Eq. (2.2) (Fig. 2.5)

D(β) = D0

√
1− η2 cos2 (β)− η sin (β)

1 + η
. (2.13)

The diameter scales linearly with D0.

Assuming that the thickness of the elastomer inside the fibers is negligible, the

internal volume of the actuator is given by the volume V (β) of the cylinder contained
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The axial rotation of FREE actuators for various values of η across β.
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n0,β. Note that n0,β =

−bβ
πD0

.

33



V
/(

D
0

2
b

)
β

β (°)

-80 -60 -40 -20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Volume

η = 1

η = 1/16

Locked Manifold

Figure 2.7:
The volume of FREE actuators for various values of η across β. The
volume values shown here are normalized by D2

0bβ. Each value of η cor-
responds to a unique angle βLM that maximizes the cylinder volume.

within the fiber helices (Fig. 2.7)

V (β) =
π

4
D(β)2 l(β) . (2.14)

Substituting Eq. (2.8) and Eq. (2.13) into Eq. (2.14) yields

V (β) =
π

4
D2

0bβ
cos(β)

(√
1− η2 cos2(β)− η sin(β)

)2

(1 + η)2 . (2.15)

From Fig. 2.7 it is clear that the volume of each FREE type has a unique maximal

point. For example, for the McKibben muscle case when η = 1 and α = −β, the

volume is maximized when β ≈ −54.7◦. This has long been known [142]. Here,

the value of β that maximizes the volume is designated βLM . Smaller values of η

correspond to less negative values of βLM . Because internal pressures drive the volume

to expand, an actuator fabricated with a β value greater than βLM will decrease in β
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under actuation. Similarly, actuators with β less than βLM will increase in β under

actuation. The derivative of the volume with respect to β is given by

dV

dβ
= −π

4
D2

0bβ
(γ − η sin(β))2 (sin(β) γ + 2η cos2(β))

(1 + η)2 γ

γ =
√

1− η2 cos2(β).

(2.16)

The maximum volume occurs when dV
dβ

is zero. Equation (2.16) yields the following

invertible expression relating η to the angle βLM that maximizes the volume

dV

dβ
= 0→

η =
1

cos(βLM)
√

4 cot2(βLM) + 1

−2 tan−1

(√
2−
√

3

)
≤ βLM < 0.

(2.17)

The α and β combinations that maximize FREE volume were described by Kr-

ishnan et al. [137] as a “locked manifold” (Fig. 2.2)

1 + 2 cot(αLM) cot(βLM) = 0 (2.18)

where the corresponding angles are designated with the subscript LM . “Locked”

refers to the fact that internal pressure can no longer drive the actuator to deform

because the volume is already maximized. Substituting Eq. (2.6) into Eq. (2.18)

yields Eq. (2.17).

The surface area of the actuator is the product of the circumference and the length

Asurf(β) = πD(β) l(β)

= πD0bβ cos (β)

√
1− η2 cos2 (β)− η sin (β)

1 + η
.

(2.19)

The surface area scales linearly with D0 and bβ (Fig. 2.8).
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Figure 2.8:
The surface area of FREE actuators for various values of η across β. The
surface area is related to the actuator range of motion. The surface area
values shown here are normalized by πD0bβ. This normalized surface area
corresponds to the maximum levels of G (for a given value of η) for which
β is achievable (Eqns. (2.27) and (2.29)). G is a value that relates the
thickness and number of fibers in each family to the size of the actuator.

2.3 Examples of Model Applications

The model presented in this chapter enables simple, closed-form design analyses

for FREE actuators. This section explores two example applications of the model.

First, specifications of FREE motion are used with the model to design in an actuator

design case study. Second, is an exploration of how the motion range of a FREE

actuator may be limited by the physical interference of the fibers.

2.3.1 Actuator Design Case Study

The model presented in this chapter can be used in FREE design. Consider, for

example, a FREE that is specified to contract from an unpressurized length l1 = 5 cm

to l2 = 4 cm while rotating a quarter-of-a-turn about its axis. The diameter of the

actuator at the contracted state is to be D2 = 2.5 cm. To ensure that the contracted

configuration will be achievable through pressurization, the angle β2 of the fibers in
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the contracted state is specified to be 10 ◦ greater than the angle βLM that maximizes

the volume.

By inspection, for an axially contracting actuator, the following must be true

− 54.7◦ < βLM < β2 < β1 < 0. (2.20)

The initial unpressurized angle β1 can be selected numerically such that the quarter-

turn rotation constraint is satisfied

n1,β − n2,β =
bβ sin(β1)

D1π
− bβ sin(β2)

D2π
= 0.25 (2.21)

where the rotation comes from the difference in the number of fiber turns given by

inverting Eq. (2.2). The unknown values in Eq.(2.21) are functions of the specified

kinematics and β1. bβ comes from inverting the length expression in Eq. (2.1)

bβ =
l1

cos(β1)
. (2.22)

The angle β2 of the fibers in the contracted state is given by inverting Eq. (2.1) and

considering that β2 must be negative due to Eq. (2.20)

β2 = − cos−1

(
l2
bβ

)
. (2.23)

The angle βLM is given by the constraint that β2 be 10 ◦ greater than βLM

βLM = β2 − 10
π

180
(2.24)

which, by Eq. (2.17), can be used to calculate η. The value of D0 is found by inverting
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Figure 2.9:
The model can be used to design FREEs that meet specified kinematics.
For instance, the FREE shown in this figure was designed to rotate a
quarter turn while contracting 20 %.

Eq. (2.13) with the values of D2, β2 and η

D0 = D2
1 + η√

1− η2 cos2 (β2)− η sin (β2)
(2.25)

which allows D1 to be calculated with Eq. (2.13), η and β1.

The design specifications are achieved by fabricating an actuator with an unpres-

surized initial angle β1 of -8.2 ◦ (Fig. 2.9, η = 0.714 , bβ = 5.05 cm, D0 = 3.4 cm).

2.3.2 Fiber Interference and Range of Actuation

A FREEs range of motion may be limited by the physical interference of the fibers.

The analysis allows one to compute the region of β for which there is physical space

on the actuator for the specified fiber sets. It is an extension of a similar analysis

by Davis and Caldwell for McKibben muscles [144]. This analysis assumes that the

reinforcing fibers are layered on the actuator (instead of braided or interwoven). It is

also assumed that the diameter of the actuator is much larger than the diameter of

the fibers such that the two sets of helices can be considered to have the same axial
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Figure 2.10:
The multiples m of the fibers with diameter Dfiber must fit within the
circumference πD of the actuator. This is true for the α (shown here)
and β fiber families.

diameter.

Consider a FREE fabricated from multiple fibers in each fiber family. The numbers

of helices in the α and β families is represented by mα and mβ, respectively (e.g.

mα = 5 means there are five fibers with angle α spaced around the axis of the

actuator). The fibers are considered to have the same thickness characterized by a

diameter Dfiber. The thickness of the fibers imposes a limit on the achievable angles.

This constraint can be considered in terms of the actuator circumference (Fig. 2.10)

Dπ >
mαDfiber

cos(α)
=
mαDfiber

η cos(β)

Dπ >
mβDfiber

cos(β)
.

(2.26)

It is apparent that the mβ constraint is active in defining the boundary when

mα ≤ ηmβ. That is, when the number of α fibers is less than η times the number

of β fibers, then the β fibers constrain the actuator motion. When the number of α

fibers exceeds η times the number of β fibers, then α fibers constrain the actuator

motion. Thus, for example, a FREE actuator where η = 0.1 can have up to ten times

the number of β fibers as α fibers without the β fibers limiting the actuator motion.
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These constraints can be written in terms of a variable G

cos(β)
D(β)

D0

> Gα =
1

η

mαDfiber

πD0

cos(β)
D(β)

D0

> Gβ =
mβDfiber

πD0

.

(2.27)

Gβ is the ratio of the width of the β fibers, if they were laid side-by-side, over the

circumference of the actuator at D0. The value Gα is the same ratio for the α fibers

but divided by η. The values of Gα and Gβ will remain less than the cosine of β times

the normalized diameter D(β) /D0 given by

D(β)

D0

=

√
1− η2 cos2 (β)− η sin (β)

1 + η
. (2.28)

The inequalities in Eq. (2.29) are equivalent to the constraint that both values of

G remain less than the normalized surface area

Gα <
Asurf(β)

πD0bβ

Gβ <
Asurf(β)

πD0bβ
.

(2.29)

Equations (2.27) and (2.29) define the boundary of the feasible configurations.

For an actuator fabricated with certain values of Gα and Gβ, the feasible region of

β is given by the portion of the line in Fig. 2.8 above the larger G-value (e.g. Gα or

Gβ).

Examples of using the constraints in Eqns. (2.27) and (2.29) to evaluate the feasible

range of β are listed in Table 2.1.

2.4 Discussion

The model presented in this chapter provides a closed-form framework for kine-

matic analysis and design of FREE actuators. The introduction of η and the an-
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η mα mβ Gα Gβ βmin βmax

1 32 32 0.102* 0.102* -84.1 -5.88
1 64 32 0.204* 0.102 -78 -12
1 32 64 0.102 0.204* -78 -12

0.5 32 64 0.204* 0.204* -78 56
0.25 32 64 0.407* 0.204 -65 50
0.125 32 64 0.815* 0.204 -30 17

Table 2.1:
Feasible ranges of β (◦) without fiber interference for D0 = 10 cm and
Dfiber = 1 mm (“*” indicates that a G constraint is active). The elements
of the design that change from row to row are indicated with bold text.

alytic relationship between the fiber angles given in Eq. (2.6) is one of the major

contributions of this chapter. Previously published fiber-only models have relied on

“instantaneous” kinematics [137] to incrementally update fiber angles. To solve for

large deformations with instantaneous kinematics, the nonlinear equations had to be

iteratively solved and composed. The model presented here provides analytic func-

tions describing the actuator rotation, length, diameter and volume. These functions

are parameterized by the kinematic state of the actuator given by the angle β.

The simplicity of the present model simplifies the design and understanding of

FREEs. This chapter, for example, shows how the model can be used to design a

FREE that achieves desired kinematic behavior. As another example, the chapter

shows how the model can be used to derive closed-form inequalities which approxi-

mate the feasible range of motion permitted in FREE actuators with fibers of finite

thickness.

In addition to the closed-form kinematics, the present model has several improve-

ments to previous FREE fiber-only models. The deliberate designation of the longer

set of fibers with α allows the present model to describe FREEs with just a diago-

nal quadrant of the α-β coordinate frame. The ratio η leads to a simple parametric

functional relationship between α and β (the first of its kind). This allows the state

of a FREE with a particular η value to be parameterized by a single angle β (rather
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than describing the state with potentially infeasible combinations of α and β). Pre-

vious work discovered that “every FREE belongs to a one-dimensional family of fiber

angle configurations” [137]. This work provides the first analytic description of these

configurations.

The model presented here shares the assumptions of previously published models

fiber models [136], [137]. The reformulation presented here is a simplification of

the kinematic description in the previous models. Accordingly, the experimental

verification of the previous models can be considered verification of the present work.

Like the models that have preceded it, the present model has limitations. External

loading, for example, could buckle one or both of the fiber families. This would violate

the assumption that the fibers are under tension. The model presented in this chapter

is limited to rotation and/or length changes. Additional fiber families on FREEs can

create planar [139] or helical [136], [145] bends. The angles of the fibers in this model

are constrained to be non-zero. So-called “straight-fiber” actuators are not governed

by the equations presented here [146]. The governing equations of [137] have been

adapted to include elastomer effects and non-cylindrical deformation [141].

The model presented in this chapter does not take into account non-cylindrical de-

formations or strain in the elastomers. This unmodeled elastomer strain will limit the

motion of a FREE actuator to a small section of the possible fiber-angle-combinations

defined by η. To account for the effects of the elastomer, a designer could take the

insights from this fiber-only model and further explore them with fiber-elastomer

models (e.g. via FEA [138] or constitutive models [139], [140]).

The models presented in this chapter will facilitate the growing understanding

of FREEs. The identification of the descriptor η allows the behavior of FREEs to

be described independent of actuator-specific geometry. The linearly scaling models

makes this behavior simple to predict and understand. As the understanding of

FREEs grows, engineers will find new opportunities for these unique actuators to
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expand the functional ability of soft, fluid-driven systems.

Understanding the geometry of Smart Braid fibers is key to understanding the

inductance of circuits made from the fibers. The normalization of the FREE geometry

into terms that depend only on η and β is key to the development of the inductance

model in the subsequent chapter.
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CHAPTER III

Modeling and Design of

“Smart Braid” Inductance Sensors for

Fiber-Reinforced Elastomeric Enclosures

Adapted from Wyatt Felt and C. David Remy. “Modeling and Design of “Smart

Braid” Inductance Sensors for Fiber-Reinforced Elastomeric Enclosures.” (In prepa-

ration)

3.1 Introduction

Soft, fluid-powered actuators can provide lightweight and compliant actuation for

robots and assistive devices. These actuators generate motion through the expansion

of flexible fluid-filled chambers. By integrating structured reinforcements in the flexi-

ble chamber, the volumetric expansion can be shaped into useful work. For instance,

cylindrical braids of fibers can be used to shape the volumetric expansion of an elas-

tomeric tube into a forceful contraction. This combined fiber-elastomer structure is

known as a McKibben muscle [142] and has been used in research for many decades

[135]. Recently, researchers have begun to explore the use of different fiber configu-

rations to create other motions besides contraction [136]. For instance, actuators can

be fabricated with fiber configurations that cause the actuator to twist as it extends
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or contracts along its axis. The desired motion can be “mechanically programmed”

into the actuator through the fiber configuration. This broader class of soft actuators

is known as Fiber-Reinforced Elastomeric Enclosures (FREEs). These actuators can

create appropriate motion profiles for many applications that would otherwise require

complex mechanical systems. For instance, they have been proposed for use in pipe

inspection and soft manipulation [145], [147]. Their soft nature makes them ideal for

many tasks that involve handling delicate structures or interaction with the human

body. For example, FREE-like actuators have been used to handle undersea coral

[28] and to assist the human hand [27].

In these applications, the use of soft actuators has so far been limited to purely

open-loop motions. Closed-loop motion control could enable more widespread use

in robotic devices, but would require sensors to measure the actuator motion. To

overcome this shortcoming, a number of soft sensing technologies have been proposed

for actuators such as FREEs. A thorough review of the challenges and proposed

solutions is given in the introduction of this dissertation.

This chapter provides a solid theoretical background for the sensing of FREE

actuators with Smart Braids. To this end, this chapter derives a normalized model

for the inductance and resistance of Smart Braid FREEs and analyzes the effect of

a number of design choices onto the behavior of the resulting sensor. These effects

include: the number of fibers, fiber size, resistivity and circuit configuration (series

or parallel). The remainder of the chapter is structured as follows: the kinematics of

FREEs are presented in Section 6.3.1; section 3.3 introduces the series and parallel

wiring configurations; section 3.4 presents a normalized model for the inductance of

Smart Braid FREEs that is validated numerically and compared to existing experi-

mental data; this is followed by a resistance model (Section 3.5) and a discussion on

Smart Braid FREE design (Sec. 3.6); conclusions about the design of Smart Braid

FREEs conclude the chapter (Sec. 3.7).
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Sign of change
depends on

motion direction

Equal changes
from opposite

motion directions

Figure 3.1:
Because of the symmetry of a FREE, only relative rotations or transla-
tions between the cylinder ends along the axis result in distinguishable-
sign changes in the geometry of the fibers.

3.2 Kinematics and Symmetries

As the volume a FREE expands from internal pressure, the geometry of the FREE

fibers progresses, changing both the inductance and the relative positions of the ac-

tuator ends. By understanding the kinematics of a Smart Braid FREE, the changes

in inductance can be understood in the context of the motion that is created by

the actuator. This chapter considers Fiber-Reinforced Elastomeric Enclosures that

are surrounded by two families of helical fibers with different pitch angles α and β.

The geometry of the fibers is modeled with the assumptions and process outlined in

Chapter II.

The cylindrical shape of the actuator and the periodic pattern of the fibers results

in important symmetries. The geometry of the actuator fibers is invariant to rotations

of 2π
m

about the cylinder axis (Fig. 3.1). The geometric invariance of the actuator

to rotations of 2π
m

leads to the assumption that the self-inductance of each fiber is

identical to that of the other fibers in its family. This symmetry also suggests that

the sum of the mutual inductance pairs for a given fiber will be the same, regardless

of which fiber in the family is considered.

Additionally, the linearized geometry response to many motions is zero. Consider

a cylindrical FREE actuator undergoing small deformations away from a nominal

straight configuration. If there are three or more fibers, the gradient of geometric

changes is zero for deflections along or rotations about axes orthogonal to the cylinder
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axis. In the linearized form, only relative deflections along or rotations about the

cylinder axis have distinguishable geometry changes.

3.3 Serial vs Parallel Wiring Configurations

The fibers in a Smart Braid circuit may be wired in series or parallel. In the

serial configuration, each end of the fibers in the α family is connected to the end of

an adjacent fiber in the β family. Accordingly, a circuit is formed where the current

from the first electrical terminal flows through each fiber in series before reaching the

second electrical terminal (alternating between the α and β families).

In the parallel configuration, a parallel-group of the α fibers is connected in series

with a parallel-group of the β fibers. From the first electrical terminal, the current

first splits between all m of the α fibers before rejoining at the other end of the

actuator. The current then splits between the β fibers before rejoining at the second

electrical terminal. The current in each fiber is assumed to be an m-th fraction of

the total current.

3.4 Inductance Model

A Smart Braid measures the motion of a FREE actuator through changes in the

inductance of the conductive-fiber-circuit. Thus it is important to understand the

relationship between the actuator motion and the inductance of the Smart Braid

circuit. In this section, the inductance of Smart Braid FREEs is calculated across

a range of η and β values to show the regions of the FREE design space in which

Smart Braid sensing is useful. The resulting inductance values are then normalized

by known scaling parameters to develop a general inductance model for Smart Braid

FREEs. The model allows one to understand the trends in inductance independent

of the geometries of a specific actuator. This model also analytically describes the
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effect of certain design parameters on the FREE inductance. The model is validated

numerically across the range of possible η and β values. The inductance predictions

are also validated against experimental data for η = 1 (McKibben muscle).

The inductance of the Smart Braid circuit depends on the magnetic flux through

the circuit. This flux is a function of the geometry of the circuit and the conductivity

and magnetic permeability of the surrounding materials. The sensitivity of the induc-

tance to the geometry of the circuit makes it possible to extract information about

the actuator configuration from changes in the measured inductance. In this work, it

is assumed that the circuit is sufficiently far from other conductors and ferromagnetic

materials to neglect their effects.

3.4.1 Numerically Calculating Inductance

The complex geometry of Smart Braid FREE circuits makes a closed-form ex-

pression of the inductance intractable. With an analytic solution unavailable, it is

necessary to rely on numerical methods to calculate the inductance values. To this

end, a commercial tool, FastHenry2 [148], was used to calculate the inductance of

a representative set of Smart Braid FREEs. The geometry of the circuits consid-

ered was selected to be similar to current experimental methods, to facilitate the

normalization process described in Section 3.4.2, and to be computationally feasible.

For the calculation, the diameter D0 was assumed to be 10 cm and the number n0,α

of turns at that diameter was ten. The geometry of eight fibers was modeled for each

fiber family (i.e. m = 8). The conductivity of the wires was that of annealed copper

5.8×107 Ohm−1m−1 (with a magnetic permeability of µcond =4π×10−7 H/m). Because

FastHenry2 only supports conductors with rectangular cross-sections, square cross-

sections were used with a cross-sectional area equal to that of a round conductor with

a radius a of 1 mm. The excitation frequency (30 Hz, skin depth δ = 1.2 cm >> a)

was chosen to approximate a uniform current-density in the wires. The diameter Dα
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of the α-family fibers was equal to that of the β fibers Dβ (which was the actuator

diameter D defined by Eq. (2.2)).

The inductance was calculated for values of η ranging from 1
16

to 16
16

. The values of

β incremented from -87 ◦ to 87 ◦ in 3 ◦ increments. The inductance was only calculated

at angles that were feasible according to Eq. (2.27) with a fiber diameter Dfiber 1.5

times larger than the conductor diameter. The paths of the fibers in each family were

assumed to originate at the same point at the base of the actuator (with m origin

points shared by an α and a β fiber spaced evenly around the circumference of the

base). The curved fibers segments were created with 50 nodes per turn. If a fiber

made less than a tenth of one turn, five nodes were used.

3.4.2 Normalized Inductance Model

The values of inductance calculated in Section 3.4.1 correspond to the specific

circuit configuration and geometry of the specified example. To generalize this result

and understand the effect of design choices on the inductance, it is desirable to develop

an inductance expression that depends explicitly on the design parameters. To this

end, we developed a normalized inductance model that transforms the calculated

inductance values from Section 3.4.1 into a general model of Smart Braid FREE

inductance.

To accomplish this normalization, several assumptions must be made (in addition

to the geometric assumptions made in the kinematic model). The first assumption

is that the ratio of wire radius to actuator size is fixed. To understand the effect of

this ratio, consider the inductance of a long, straight, round, non-magnetic wire [149].

The self-inductance L′ is approximated by

L′ =
µb

2π

[
ln

(
2b

a

)
− 1 +

Y

2

]
(3.1)
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where b is the length of the wire, a is the wire radius, Y is related to the current

distribution and µ is the magnetic permeability of vacuum. With uniform current

(Y = 0.5), decreasing the wire radius from a = b × 10−3 to a = b × 10−4 results in

a calculated self-inductance that is approximately 34 % higher. Geometric similarity

must thus include the wire diameter.

The normalized model further assumes that the current is uniformly distributed

in the conductor. This assumption neglects current distribution effects such as the

skin effect and the proximity effect. When the skin effect dominates (at high frequen-

cies), Y approaches zero. For a conductor radius a = b × 10−3, the high-frequency

inductance (Y = 0) is only 4 % smaller than the inductance with uniform current

(Y = 0.5).

It is also assumed that the magnetic field is approximately uniform around the

circular perimeter, along the length of the cylinder, and through the thickness of the

braided or layered conductors. These are common assumptions for long solenoid-

like circuits. These assumptions are increasingly accurate for increased numbers of

fibers m (uniformity around perimeter), increased sensor length relative to the sensor

diameter (uniformity along length), and small radial spacing between the conductors

(uniformity through thickness).

With these assumptions, a normalized inductance model for Smart Braid FREEs

can be constructed. Assuming that the wire radius scales linearly with the sensor size

allows the model to scale proportionally to D0. By assuming equal flux in the circular

cross-section, the inductance of the series configuration circuit is approximated to

scale with the square m2 of the number of fibers. The assumption of a uniform field

along the length allows the inductance to be normalized by the number of turns n0,α.

The assumption of a uniform field in the thickness allows us to ignore the braiding

or layering of the conductors.

With these assumptions, the inductance of a Smart Braid FREE in a series con-
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figuration Ls is approximated with the following expression

Ls ≈ µm2D0n0,αχ(η, β) =
µm2bα
π

χ(η, β) (3.2)

where µ is the magnetic permeability of the surrounding medium. χ is described

in the subsequent paragraph. The parallel inductance Lp is related to the series

inductance through the assumptions of symmetry and an m-th fraction of the current

in the fibers. These assumptions lead to a parallel inductance value that is 1/m2

times smaller than the serial inductance value

Lp ≈
µbα
π
χ(η, β) . (3.3)

The expressions in Eqs. (3.2) and (3.3) are linearly scaled by a unitless function

χ(η, β) which is solely a function of the type η and state β of the Smart Braid FREE.

The inductance values calculated in Section 3.4.1 were normalized to approximate

the value of the unitless function (Fig. 3.2). The calculated values of χ and the

scripts used to generate the FastHenry2 input files are archived on the MATLAB file

exchange [150]. Based on the assumptions of the model, using χ in Eqs. (3.2) and

(3.3) will be most accurate when: the fibers are densely spaced around the perimeter,

the wire radius is approximately D0 × 10−2 and the sensor is “long” relative to its

diameter. These expectations are validated in Section 3.4.3. The predictions of the

numerical model are compared to experimental results in Section 3.4.4. The design

discussion in Section 3.6 inspects the approximated values of χ to draw conclusions

about the viability and design of Smart Braid FREEs.

3.4.3 Numerical Validation of Normalized Inductance Model

The χ-function provides valuable insight into the behavior of Smart Braid FREEs.

Ideally, it only needs to be calculated once and can describe the behavior of a wide-
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Figure 3.2:
The inductance of a Smart Braid FREE scales linearly with the unitless
function χ(η, β) that depends only on the type and state of the actuator
(expressed by η and β). Smaller values of η result in higher values of χ for
the same angle β. The “locked manifold” is the point of maximal volume
for a given FREE type. When pressurized, the angle β of the actuator
progresses towards the value of β at the locked manifold.
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variety of Smart Braid FREEs independent of the other parameters. In practice, the

inductance of Smart Braid FREEs will differ from the values predicted by Eqs. (3.2)

and (3.3). The purpose of this section is to show the validity of the normalized model

and provide rough quantitative bounds for the error between the normalized model

and more accurate but computationally expensive direct simulations of the sensor

geometry.

To this end, predictions from the normalized model were compared to inductance

values simulated directly for different geometries and configurations. The directly

simulated inductance values rely on the same procedure used to approximate χ (de-

scribed in Section 3.4.1) but with select changes in parameter values. The error of the

normalized model is quantified as the algebraic difference between the prediction of

the normalized model and the result of the direct simulation. This error is normalized

by the predicted inductance range of the normalized model. For example, a difference

of 1µH, with parameter values that lead to a predicted inductance range of 10µH,

corresponds to an error of 10 %. The results of this numerical validation are listed in

Table 3.1.

Parameter Values used for the Normalized Model
Serial Configuration, D0 = 10 cm, a = 1 mm, Dfiber = 1.5a, m = 8, n0,α = 10, fexcite = 30 Hz, Dα = Dβ = D

Parameter Change Avg. Error Max. Abs. Error (% of range)
Description Quantity (% of range) Quantity at β (◦) at η

Parallel configuration -1.1e-08 -7.6e-07 0 5/16
Increasing D0 and wire radius proportionally D0 = 1 m, a = 1 cm -6.5e-08 2.1e-05 0 7/8

Increasing D0 only D0 = 1 m -2.7 -4.1 -84 1
High frequency (skin depth δ << a) fexcite = 30 Hz → δ = 0.038 mm 7.8e-16 -3.5e-11 -81 1

Fewer (sparse) fibers m = 4 -2.4 -4.1 -45 1
More (dense) fibers m = 12 0.64 1.1 -45 1

Longer length n0,α = 15 -0.33 -5.5 -84 3/4
Shorter length n0,α = 5 0.88 14 -84 3/4

Very short length n0,α = 0.5 7.1 72 -84 3/4
Layered fibers Dα = D +Dfiber, Dβ = D −Dfiber -0.88 -3.8 45 13/16

Table 3.1:
Numerical Model Validation (Error shown is % of inductance range pre-
dicted by the normalized model)

The numerical results validate the assumptions of the model and provide bounds

for the expected error as the sensor considered deviates from the parameter values

used to approximate χ. The relationship between serial and parallel wiring con-
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figurations is supported by the simulations. Additionally, scaling both the length

and conductor radius together preserves the accuracy. Increasing only D0 (without

increasing the wire radius) leads to an under-prediction of the inductance by the

normalized model. A high excitation frequency has virtually no effect. Using fewer

fibers results in an under-prediction of the inductance by the normalized model. This

difference is greatest then the fibers are furthest apart (e.g. η = 1, β = −45◦). The

relative magnitude of the error in the model is smaller when considering more fibers

(compared to the consideration of fewer fibers). Similarly, increasing the length of

the sensor results in less relative error than decreasing the length of the sensor. Eval-

uating shorter-length sensors with the normalized model tends to over-predict the

inductance (due to the greater role of end-effects in the overall inductance). These

effects are most pronounced at the most negative values of β. Layering the fibers re-

sults in inductance predictions that are at times larger and at times smaller than the

inductance predicted by direct simulation. When the fibers are layered, the average

difference is -0.88 % of the inductance range and the average absolute difference is

1.03 %

These results show that the scaling terms of the normalized model capture the

trends of the inductance change across changes in parameter values. The largest

errors observed for this validation were when the sensor length was small compared

to the diameter. As β approaches -90 ◦, the length of a FREE approaches zero while

its diameter approaches D0. Thus, in this region, the assumption of a “long” circuit

breaks down. When evaluating different sensor lengths with the same value of D0,

the largest divergences between the model and the numerical simulations occurred at

the lowest values of β. This limits the usefulness of the model in predicting accurate

inductance values as β approaches -90 ◦.

This validation has other limits. While the error in inductance prediction often

deviates by only a few percentage points of the inductance range, at a given point it
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is often many times larger or smaller than the inductance values predicted by direct

simulation. Thus, the model provides a valuable way to predict the effects of the

parameters but is not the most accurate way to predict specific inductance values.

Moreover, the error quantified in this validation does not capture error from other

assumptions of the model. It does not quantify the effect of non-cylindrical motions

such as bending and diametrical tapering at the ends of an actuator. Nor does it

capture the effect of braided wires, electrical junctions between the helices or nearby

metal.

3.4.4 Experimental Validation of Normalized Inductance Model

The numerical validation of Section 3.4.3 supports the use of the normalized model

in early design in lieu of computationally expensive direct numerical simulation. Sec-

tion 3.4.3, however, does not provide direct evidence for the agreement between the

predictions of the normalized model and experimental results. This section compares

the model to inductance measurements from a physical prototype.

The sensor consisted of eight fibers in each family connected in series with η = 1,

bα = bβ = 34 cm and number of turns nα = nβ = 3.375 (D0 = 3.2 cm). The radius

of the conductor was a = 0.42 mm. The braid was created by weaving wire over a

3D-printed template. The template was printed with “ABSplus” from a Stratasys

Dimension Elite printer. The template was designed to affix to a dowel during the

braiding process. After the braid was completed, the dowel was removed and the

template was collapsed and removed from within the braid. The wire used had soft

copper stranding and PVC insulation with a conductor area of 0.33 mm2 (22 AWG,

DABURN, #2671, Outer diameter 1.346 mm). A single strand of wire was woven to

form the entire braid.

For the model validation experiments, the Smart Braid sensor was only a wire

braid, with no inner, elastomeric bladder. This allowed the sensor to maintain the
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Figure 3.3:
The model was compared to measurements from a Smart Braid stretched
over dowels of different diameter.

cylindrical shape assumed by the long solenoid equation. The length was changed by

stretching the braid over a series of cores with different diameters (Fig. 3.3). Wooden

dowels were used because they are non-magnetic with a magnetic permeability that

is practically identical to that of vacuum. Seven dowels were used with the following

nominal diameters: 6.35 mm, 9.53 mm, 12.70 mm, 15.88 mm, 19.05 mm, 22.23 mm,

25.40 mm. The braid was stretched over each dowel three times. The 21 trials were

conducted in random order. In each trial, the length of the braid was measured

once and 100 inductance measurements were taken. The inductance of the braid was

measured with an LCR meter (NI PXI-4072) with an effective excitation frequency

of 30 kHz and a maximum sampling rate of 40 Hz [151]. The LCR meter works

by comparing the magnitude of the sensor impedance at low and high frequencies

[152]. Test stand sensor measurements and control signals were processed with a

data acquisition unit (NI PXIe-6341). The LCR meter and data acquisition unit

used a PXI express chassis (NI PXIe-1073) to communicate with custom scripts in

LabVIEW.

The radial thickness of the sensor was approximated as two wire outer diameters

(2 × 1.346 mm). Thus the diameter used to identify the β for Eq. (3.2) was the

inner diameter plus two wire outer diameters. The scaled predictions of Eq. (3.2)

were compared against the experimentally recorded inductance values. The experi-

mental validation (Fig. 3.4) resulted in an average absolute error of only 7.8 %. The

model also predicted the sensitivity to length change with an error of only 10 %. The

sensitivity comes from a linear regression against the data.
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Figure 3.4:
The normalized inductance model for Smart Braid FREEs (χ, red line)
predicted the inductance of the experimental sensor (blue dots) with an
average absolute error of only 7.8 %. The model also predicted the sensi-
tivity to length change with an error of only 10 %.

The accuracy of the experimental results comes from similarity to the assumptions

of the model and the parameters values used to approximate χ. The wires of the

experimental sensor were relatively densely distributed around the circumference and

their number, eight, was the same as the sensor modeled for χ. The experimental

sensor also had a relatively long length compared to its diameter. Though the size of

the experimental sensor differed from the size of the sensor used to approximate χ,

the ratio of D0 to the conductor radius was roughly the same (a = 1.3D0 × 10−2 in

the experiments and a = 1D0 × 10−2 for the χ approximation). The sensor was also

tested in strictly cylindrical conditions (as is assumed by the kinematic model). One

important difference between the prototype and the model is the braided conductors

used on the experimental sensor.

3.5 Resistance

The ability to measure the inductance of a circuit can be limited by high levels

of electrical resistance. To understand how well the changes in inductance can be

measured, this section presents a model of the resistance of Smart Braid circuits and

the effect of the design parameters on the resistance.
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The series resistance Rs is

Rs =
mρ

Acond

(bα + bβ) =
mρbβ
Acond

(
1

η
+ 1

)
(3.4)

where Acond and ρ are the cross-sectional area and resistivity, respectively, of the

conductive material in each fiber. The resistance Rp of the parallel circuit is

Rp =
ρ

mAcond

(bα + bβ) =
ρbβ

mAcond

(
1

η
+ 1

)
. (3.5)

Thus the series resistance is larger than the parallel resistance by a factor of m2.

At high excitation frequencies, the skin effect can increase the real portion the

circuit’s AC impedance. When the skin depth δ is much smaller than the conductor

radius a, the high-frequency resistance RHF increases inversely proportional to the

skin depth

δ =

√
2ρ

2πfexiteµcond

, for δ << a RHF =
a

2δ
R (3.6)

where fexite is the excitation frequency (Hz), ρ is the resistivity of the conductor and

µcond is the magnetic permeability of the conductor.

3.6 Design Discussion

The models of inductance and resistance can be used to explore design choices for

Smart Braid FREEs. In particular, the inductance model provides insight into which

combinations of η and β values yield useful sensing and actuation properties. The

effect of the design parameters on sensitivity, quality, range-of-motion, manufactura-

bility and fiber stress is also explored. For emphasis, some of the resulting design

principles are highlighted in italics.

Since the inductance of a Smart Braid FREE is directly proportional to the func-

tion χ(η, β), inspection of this function can provide insight into Smart Braid FREE
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design (Fig. 3.2). The following list highlights combinations η and β and discusses

their usefulness for sensing and actuation. Recall that when η = 1 there is no rotation

and β is always less than zero. When η < 1, the actuation includes rotation.

• β < βLM , Extending, η ≈ 1, (Brighter red lines over yellow, Fig. 3.2):

The opposite chirality (handedness) and high turn-density of the fibers results in

large overall inductance values, a monotonic inductance-to-length relationship

and a high sensitivity to changes in actuator length. Inductance measurements

from Smart Braid actuators in this region are very good proxies for the actuator

length.

• 0 > β > βLM , Contracting, η ≈ 1, (Brighter red lines over blue-green,

Fig. 3.2): Compared to the previously considered β < 0 extension region, these

actuators exhibit greater force-per-unit-pressure (for the same diameter and η-

value) [136]. Though the overall inductance and sensitivity is smaller than the

β < 0 extension region, the inductance-to-length relationship is still monotonic.

Accordingly, the length of these Smart Braid FREEs is easy to measure through

the inductance.

• 0 > β, Extending or Contracting, η ≈ 0, (Darkest red line over blue-

green and yellow, Fig. 3.2): The inductance is dominated by the contribu-

tions of the high-turn-density α fiber family. The sensitivity to changes in β

becomes very small as β approaches zero. For these low values of η, Smart Braid

sensing is better-suited for measuring pressurized extension than contraction.

• β = 0, Purely Rotating, (Dashed vertical line, Fig. 3.2): The torque-

per-unit-pressure is highest from actuators for which η is close to 1 [136]. The

greatest relative inductance sensitivity to rotation (normalized by the current

inductance value) also occurs when η is close to 1. These high values of η,
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however, are characterized by low overall inductance which lowers the sensor

“quality.” Accordingly, it may only be possible to coarsely measure pure rotation.

• β > 0, Extending, (Lavender, Fig. 3.2): The inductance-to-length relation-

ship in this region is non-monotonic. The highest sensitivities are seen for small

values of η at large values of β. For much of this region, Smart Braids do not

provide useful measures of the actuator state.

In addition to the geometric response, the sensitivity of inductance to actuation

depends on the wiring configuration. In the serial configuration, the sensitivity in-

creases with the square of the number of fibers (i.e. m2). In the parallel configuration,

the sensitivity is smaller and independent of the number of fibers. Thus to maximize

the absolute inductance sensitivity, a serial configuration should be used with as many

fibers as possible. This may be desirable, for instance, when the inductance of the

lead wires is unknown or subject to change.

When measuring inductance through the frequency of a resonant circuit, the ab-

solute change in frequency is related to the relative change in the inductance. The

relative change in inductance does not depend on whether the fibers are wired in series

or parallel. Instead, it scales with the value of χ(η, β) and its derivative dχ
dβ

.

The “quality factor” Q of a Smart Braid circuit is the ratio of the inductive

reactance to the electrical resistance

Q =
1

2ζ
= 2πfexite

L

R
. (3.7)

Neglecting the skin and proximity effects, the quality factor for the series circuit Qs

is found by substituting Eq. (3.4), Eq. (2.5) and Eq. (3.2) into Eq. (3.7). The quality

factor for the parallel circuit Qp is derived similarly using Eq. (3.5) and Eq. (3.3).
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The quality factor of the two wiring configurations is the same:

Qs = Qp =
2fexiteµmχ(η, β)Acond

ρ
(

1 + 1
η

) . (3.8)

To maximize Q, the excitation frequency should be as high as possible. The upper

limit of the excitation frequency is often imposed by the electronics characterizing

the inductance or the parasitic capacitance [153]. For a fixed excitation frequency, it

is desirable to maximize the ratio of the inductance to the resistance. The quality

factor increases with lower material resistivity ρ, but this is bounded by the available

materials. Introducing a ferromagnetic core can increase µ but can also introduce

hysteresis and eddy current losses that reduce the overall quality factor. Thus, to

maximize the quality factor, the cross-sectional area of the conductor in each fiber

Acond and the number of fibers in each family m should be increased.

There are limits, however, to increasing the conductor radius and the number of

fibers. Increasing the conductor radius has diminishing returns as the size of the

radius approaches and exceeds the skin depth (see Eq. (3.6)). Increasing the number

of fibers can also increase the parasitic capacitance of the circuit (and thus limit the

excitation frequency) [153].

Increasing the conductor radius and the number of fibers can also limit the range

of motion of the actuator. To maintain a desired range of motion, the product of

the fiber outer diameter and the number of fibers must be kept below certain levels.

Because the conductor area scales with the square of the fiber diameter, increasing

the fiber diameter preferentially over the number of fibers can help increase the quality

factor without restricting the actuator range of motion.

FREEs and McKibben muscles are typically wound or braided from many discon-

nected fibers. To form a circuit, the helices must be connected together. To create a

serial configuration, each α fiber end must be connected to a β fiber end such that a
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single circuit is formed that includes all the fibers in series. The number of required

electrical nodes for the series circuit scales with the number of fibers. The relative

positions of the fibers that need to be connected will change with the length of the

FREE. This makes forming a series circuit in an automated process difficult. In the

parallel configuration, however, only three electrical nodes are needed–one connected

to the proximal ends of all the α fibers, one connecting the distal ends of all the α and

β fibers, and one for the proximal ends of the β fibers. Thus, from a manufacturing

perspective, the parallel configuration is much simpler than the series.

The fibers of a FREE must also bear the stress of actuation. Using more fibers

and/or larger cross sections of stress-bearing material reduces the material stress.

Fibers could be made from high-tensile-strength conductors such as aluminum or

from a combination of conductive and high-tensile-strength material. Models of fiber

stress in two-fiber-family FREEs are the subject of current investigation. Care needs

to be taken to prevent stress-induced fatigue and failure.

3.7 Conclusions

This chapter demonstrates that inductance-based “Smart Braid” sensors can be

used to sense the motion of soft cylindrical actuators known as Fiber Reinforced

Elastomeric Enclosures (FREEs). The changing geometry of fibers allows one to

measure actuated motion via changes in the Smart Braid inductance. This chapter

develops a normalized inductance model and a resistance model for two-fiber-family

Smart Braid FREEs. The inductance model was validated numerically and against

existing experimental data.

The purpose of the inductance and resistance models is to provide insight into the

effects of design choices and to reveal which types of Smart Braid FREEs are useful

for sensing and actuation. The inductance model relies on a numerically identified

dimensionless function χ(η, β). This function depends only on the ratio η of the fiber
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lengths and the angle β of one of the fiber families. One of the main contributions of

this chapter is the approximation, presentation and analysis of this function. Inspec-

tion of the function reveals important conclusions about Smart Braid sensing. For

example, FREEs exhibit the greatest inductance sensitivity to length change when

β < βLM and η ≈ 1. Overall, the greatest inductance sensitivities are achieved when

the fiber families have different chirality (i.e. handedness). When the chirality is the

same, the inductance response may exhibit low sensitivity and have a non-monotonic

relationship to the actuator stroke progression. When measuring pure rotation, there

is a trade-off between inductance magnitude and sensitivity. The highest inductance

values are achieved for low values of η, but the greatest relative sensitivities are

achieved with η values that approach 1. This suggests it may be difficult to precisely

measure the state of purely rotating FREEs with Smart Braid sensors.

The quality factor of Smart Braid sensors increases with the number of fibers and

the cross-sectional area of the conductors. It is unaffected, however, by whether the

conductors are connected in series or parallel. One advantage of a parallel configura-

tion is that it can be manufactured more easily with an automated process.

The inductance model presented in this chapter is currently limited to approxi-

mating purely cylindrical sensors. It is expected to be most accurate for long sensors

with a D0-to-conductor-radius ratio on the order of 102 and relatively dense fiber

spacing. It neglects the effects of tapering diameters and bending that can occur in

physical actuators. The model accurately predicted the inductance of a similar ex-

perimental prototype with an average absolute error of only 7.8 %. The experimental

validation was limited to the case of η = 1 (McKibben muscle).

The results of this chapter suggest that Smart Braids should be able to accurately

measure the motion of many kinds of FREEs. The type of FREE with the most

widespread use is the contracting McKibben muscle actuator. The results of the

inductance model suggest that Smart Braid sensing should be well-suited for this
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style of actuator. The following chapter experimentally tests the ability of Smart

Braids to measure the length of these actuators.
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CHAPTER IV

Experimental Evaluation of a

“Smart Braid” McKibben Muscle

©2016 IEEE. Adapted from Wyatt Felt, Khai Yi Chin and C. David Remy, “Con-

traction Sensing with Smart Braid McKibben Muscles,” Mechatronics, IEEE/ASME

Transactions on, June, 2016.

4.1 Introduction

The most common Fiber-Reinforced Elastomeric Elastomeric Enclosure is the

Mckibben muscle (also known as a Pneumatic Artificial Muscles or PAM). These

actuators contract along their length like biological muscles [154] without rotation.

PAMs, like other fiber-reinforced actuators are compliant and force-dense. They

can create ten times the pulling force of a traditional pneumatic cylinder of the same

diameter [155] without the friction of sliding seals. The compliant and sealed structure

of PAMs allows them to be used without the precise alignment or protection from the

elements that servomotors require. These properties of PAMs have led to a variety of

applications. Their force density makes them useful in bio-mimetic robots that jump

and run [58], [156]. Their compliance makes them attractive for use in robots with

soft joints or in continuum robots without any discrete joints at all [30]. OctArm, for
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Actuator Extended (Low Inductance)

Actuator Contracted (High Inductance)

Figure 4.1:
By using wire in place of the typically-non-conductive fibers of a pneu-
matic artificial muscle, one can create a “Smart Braid” that senses the
contraction of the actuator. This is accomplished by measuring the in-
ductance of the circuit formed by the wires in the braid. As the actuator
contracts, the increasing alignment of the wires leads to a higher induc-
tance. ©2016 IEEE

example, is a trunk-like manipulator that uses triplets of extending PAMs to create

bending in sections of its length [66]. The ability of PAMs to function without rigid

linkages or precise alignments has led to widespread application in powered orthoses

and exoskeleton devices [44]–[46].

In robotic applications, it is necessary to pair the PAM actuators with sensors to

allow for closed-loop control of the generated motions. Traditional encoders, how-

ever, have limited usefulness in many PAM-actuated robots. Traditional encoders

need to be kept clean and dry. They need to be coupled to rigid mechanical joints.

These conditions are not always available in robots that rely on PAM actuators. For

instance, it would be beneficial if PAM-actuated running and walking robots could

operate in muddy and wet environments. Though the PAMs themselves have no

need to remain clean and dry, attempts to shield the encoded joints can add weight,

complexity, and cost. Similarly, traditional encoders are designed to be connected to

single-degree-of-freedom, rigid mechanical joints. Soft robots often do not offer such

convenient coupling points.
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Clearly, actuators that could sense their own contraction or extension state would

be very valuable. Such actuators could provide position feedback with compliant

joints and in continuum robotic devices. An extensive review of technologies that

could accomplish this is provided in Section 1.2 of the introduction to this dissertation.

In this chapter, a McKibben muscle actuator is fabricated with a Smart Braid

forming its reinforcing fibers. The wires of the Smart Braid form a circuit in such a

way that the current circles the axis of the actuator as if it was a solenoid (Fig. 4.1).

When the actuator contracts, the current vectors in the wires become more aligned

and the inductance of the circuit increases.

The simplest way to consider the change in inductance is to approximate the

circuit as a long solenoid. Its inductance can then be approximated by

L = µ
N2A

l
, (4.1)

where µ is the magnetic permeability of the core and N is the number of turns. A and

l are the cross-sectional area and the length, respectively. When a McKibben muscle

is pressurized, its volume increases. The reinforcing fibers cause the length of the

actuator to decrease as its cross-sectional area expands. Because the ends of actuator

have no relative rotation during actuation, the number of turns remains constant.

The shortening and widening of the actuator lead to an increase in inductance. This

makes the inductance of the circuit sensitive to the contraction of the actuator–with

the inductance more than doubling over the course of a full contraction.

This chapter demonstrates how a simple, linear calibration of inductance can

be used to measure contraction of a McKibben muscle in quasistatic, loaded, and

dynamic conditions. The results show that the actuator contraction (57 mm stroke)

can be measured with a linear function of the inductance (R2 = .9996). A large load

applied to the actuator (5 kg), resulted in only a millimeter of sensor bias. The sensor
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performance did not degrade at actuation frequencies up to 4 Hz.

4.2 Actuator Testing Methods

4.2.1 Fabrication and Instrumentation

A complete McKibben muscle actuator was fabricated by affixing a Smart Braid

sensor over a flexible silicone tube. The sensor was fabricated according to the process

described in Chapter III. In addition to sensing contraction, the fibers of the Smart

Braid reinforce the elastomeric bladder and cause the actuator to contract as the

pressurized air pushes the volume of the bladder to expand. The sensor performance

was tested under loaded and dynamic actuator contractions. The Smart Braid was

stretched over a silicone tube with a 9.53 mm outer diameter (6.35 mm inner diameter)

and connected to the test stand. The hose clamps required to attach the Smart Braid

actuator to the test stand reduced the length of active, fully-extended portion of the

actuator to 29 cm.

The actuator was evaluated in a custom-made test apparatus in which different

pressures and loads were applied while both inductance and the ground truth actuator

contraction were measured. Pressure control was achieved with a custom feedback

loop driven by a proportional valve (Enfield LS-V05s) and a pressure transducer

(WIKA A-10). Contraction of the actuator was measured from the motion of a sliding

carriage affixed to the actuator end. A string potentiometer was used to measure the

position of the carriage (UniMeasure LX-PA, 10” range). Figure 4.2 shows the test-

stand assembled with the actuator. The inductance was measured with the same

LCR meter described in Chapter III.
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Figure 4.2:
A custom-made test stand was used to characterize the inductance-length
relationship of the Smart-Braid actuator. The actuator is contracted by
filling the inner bladder with pressurized air. The top side of the actuator
is fixed and the bottom is attached to a sliding carriage. Weights can be
attached to the carriage to load the actuator. The inductance of the Smart
Braid was measured with an LCR meter. A ground truth measurement
of contraction is obtained from a string potentiometer attached to the
carriage. ©2016 IEEE
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Figure 4.3:
The experimental calibration data was fit with a linear function (R2 =
0.9996). ©2016 IEEE

4.2.2 Sensor Calibration

To calibrate the sensor, inductance measurements were collected while the gauge

pressure in the actuator was increased gradually to 0.34 MPa (49 psi) and then de-

creased to atmospheric levels over the course of 200 seconds. The shortest recorded

actuator length was 232.5 mm which corresponds to a contraction of approximately

20 %. To calibrate the sensor, the inductance measurements taken during the con-

traction and extension cycle were fit with a linear regression to the actuator length

measured with the string potentiometer attached to the sliding carriage. Figure 4.3

shows the inductance and position measurements taken during the calibration and

their linear regression. The calibration resulted in a strong linear fit (R2 = 0.9996).

The linear function predicting the actuator length l (in millimeters) from the induc-

tance measurements L (in henries) is given by

l = −14.68× 106L+ 333.628. (4.2)

This corresponds to a sensitivity of -6.81×10−8 H/mm.
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Figure 4.4:
Adding an end-load to the actuator decreases the actuator contraction
that can be achieved with the same pressure. This behavior is similar to
other actuators of this kind [155]. ©2016 IEEE

4.2.3 Sensor Performance Verification

4.2.3.1 Loaded Conditions

To evaluate how an end-load would affect the correlation between the lengths

predicted by the Smart Braid and the length measured at the sliding carriage, the

actuator was tested with a series of weights (0 to 5 kg in 1 kg increments) attached

to the sliding carriage. The contraction of the actuator was driven by the same

pressure sequence used in the calibration. The load caused the degree of contraction

to decrease under the same pressure conditions. The pressure contraction relationship

is illustrated in Fig. 4.4 for the no load and 5 kg tests. After the 5 kg test, the

actuator was again tested without any weight. Thus a total of seven weight trials

were conducted. In each weight condition, the mean and standard deviation of the

error is calculated. The error is the difference between the length calculated by the

inductance of the Smart Braid and the length measured at the sliding carriage.
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4.2.3.2 Dynamic Conditions

To evaluate the usefulness of the Smart Braid under dynamic actuation condi-

tions, the performance of the sensor was evaluated at a series of actuator contrac-

tion frequencies. The contractions were driven by sinusoidal pressure profiles. The

gauge pressure was first varied between approximately 0.013 MPa and 0.33 MPa at

a frequency of 0.25 Hz for 20 seconds. The frequency was then increased in 0.25 Hz

increments up to 4 Hz. At each frequency setting, data was collected for 20 seconds.

Because inductance measurements were not available more frequently than 40 Hz, the

actuator frequency was not increased beyond 4 Hz. Valve flow limitations caused the

magnitude of the pressure change to decrease gradually as the frequency increased.

The gauge pressure at the highest frequency varied between approximately 0.14 MPa

and 0.2 MPa. The frequency response of the Smart Braid inductance measurements

to the actuator length (as measured at the sliding carriage) was characterized at the

test frequencies using spectral analysis in MATLAB’s System Identification Toolbox.

Only one dynamic sequence was performed.

4.3 Actuator Testing Results

Over the course of the actuator contraction, the inductance of the Smart Braid

increased from 2.96µH to 6.88µH. Repeating the calibration conditions (Fig. 4.5,

0 kg) resulted in a measurement error with a standard deviation of 0.83 mm. The fit of

the linear regression to the calibration data is excellent (R2 = 0.9996). The residual of

the calibration is defined as the difference between the calibration measurements and

the calibration fit. The standard deviation of the residual was 0.48 mm. Moreover,

the sensitivity of this calibration is only 8 % smaller than the sensitivity predicted by

the inductance model proposed in Chapter III.

When loads were added to the carriage, a slight difference was observed between
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Figure 4.5:
Increasing the load on the sliding carriage to 5 kg caused the inductance-
based measurements to diverge slightly from the string-potentiometer
readings. This is potentially due to compliance in the connections between
the actuator (where the inductance of the Smart Braid is measured) and
the sliding carriage (where the string potentiometer is attached). Shown
are means of the error plus/minus a single standard deviation. When the
load was removed, some bias remained. ©2016 IEEE

the length calculated by the Smart Braid inductance measurements and the length

measured at the sliding carriage. This difference increased with the load. At the

highest load (5 kg) the mean error between the sensors was -1.05 mm. When the no

load condition was repeated after the 5 kg test, the mean error between the sensors

was -0.41 mm. Figure 4.5 illustrates this sensor bias. Figure 4.6 shows the deviation

between the sensor measurements in the 5 kg condition.

The dynamic tests showed virtually no phase lag or change in magnitude response

for frequencies up to 4 Hz. A bode plot of the spectral analysis of the Smart Braid

sensor response is shown in Fig. 4.7. The uncertainty of the magnitude response

increased as the samples per cycle became sparser. A representative snippet of the
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Figure 4.6:
Shown are a series of measurements during the contraction-extension cycle
with a 5 kg load. The Smart Braid reliably reports position with an
average error of 1 mm. ©2016 IEEE

sensor measurements at 4 Hz is shown in Fig. 4.8. A video with portions of the

dynamic test is included in the supplementary materials.

4.4 Discussion and Conclusions

One goal of this chapter is to experimentally demonstrate the use of a Smart Braid

to sense the contraction of a McKibben muscle actuator. The Smart Braid tested was

able to measure the actuator contraction to within about a millimeter in dynamic and

loaded conditions. This was accomplished without any additional mechanical compo-

nents. The electrically conductive circuit formed by the fibers is the only difference

from a standard McKibben muscle. Despite this simplicity, the contraction can be

accurately measured with only a linear calibration of the inductance measurements.

The Smart Braid can provide measures of length at contraction frequencies beyond

the typical bandwidth of PAM actuators [157]–[159].
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Figure 4.7:
The Smart Braid sensor provides accurate measurements over a broad
dynamic range. For frequencies up to 4 Hz there is neither substantial
attenuation nor phase lag. The dots show results of a spectral analysis
at 16 different frequencies. The lightly shaded bands show the bounds
corresponding to three standard deviations. ©2016 IEEE
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Figure 4.8:
Even at rapid actuator contractions, the Smart Braid sensor provides a
reliable length measurement. No phase lag or attenuation can be observed
even at the 4 Hz excitation frequency shown here. ©2016 IEEE

With a 5 kg load, a bias of approximately 1 mm was observed between the actuator-

level measures of the Smart Braid and joint-level measurements. This may be caused

by compliance in the actuator connections. Not all of this stretching was recoverable;

after the mass was removed, the sensor still exhibited a half-millimeter bias. Stretch-

ing in the connections is a weakness of any actuator-level sensing method. There

are several possible ways to resolve this. The first is to make the connections as

stiff as possible. Another way is to use redundant sensor measurements. PAMs are

commonly used in antagonized configurations. An antagonized pair would provide a

degree of sensor redundancy to help correct for the small biases. Finally, one could

compensate for the bias by measuring the magnitude of the end-load. This can be

achieved, for example via a pressure sensor. Alternatively, the resistance-strain rela-

tionship of the Smart Braid wires could measure the actuator force output directly

[3], [160].
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The inductance models of the previous chapter do not model the effect of the

hose clamps on the Smart Braid or the resulting tapering at the ends of the actuator.

Despite this, the sensitivity of the actuator was only 8 % smaller than the sensitivity

predicted by the inductance model of Chapter III. The diameter constraints of the

hose clamps and the tapering of the diameter did not greatly affect the predictive

ability of the proposed models because only about 16 % of the actuator had a tapered

or constrained diameter (3.77 cm tapered and 1 cm constrained of the 30 cm braid).

For these effects to be considered in the future, the geometry could be specified and

directly simulated to predict the inductance.

The results of this chapter suggest that Smart Braid actuators will be useful for

robotic devices. One of the issues that became clear through the experiments of this

chapter is the biasing effect that elasticity in the actuator connections can have. In the

subsequent chapter, Smart Braid actuators are further evaluated as feedback for soft

robotic systems. The effect of the connector elasticity is modeled and compensated

for. Another issue with the actuators tested in this chapter is the direct exposure of

the wires to the stress of actuation. The ordinary flexible used are not ideal for cyclic

exposure to high tensile stresses. The manual fabrication process for the Smart Braid

was also extremely slow (on the order of 8 hours). The conclusion of the dissertation

discusses these issues and possible solutions.
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CHAPTER V

Using “Smart Braid” McKibben Muscles for the

Feedback Control of Soft Robotic Systems

Adapted from Wyatt Felt, Khai Yi Chin, and C. David Remy. “Smart Braid

Feedback for the Closed-loop Control of Soft Robotic Systems”. Soft Robotics. 2017.

Adapted with permission from SOFT ROBOTICS, published by Mary Ann Liebert,

Inc., New Rochelle, NY

5.1 Introduction

The motion of many soft systems is often controlled in a purely open-loop fashion

[25]–[27] or through manual teleoperation [28]. In some systems, the primary objective

may be to exert forces on the environment with little concern for the robot pose. In

other systems, such as manipulators, measuring and controlling the robot pose is

essential. Open-loop control can be very effective if the system is well-known, no

external disturbances are present, and positional accuracy is not imperative. The

approach fails, however, if the system is subject to unknown forces or constraints

from the environment, or if one cannot obtain a precise system model or is unable

to invert this model due to hysteresis or other nonlinear effects [161]. To perform

motion control under such circumstances, closed-loop feedback becomes imperative.
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Figure 5.1:
Shown are two examples of soft robotic systems: a) a soft orthosis that
assists in creating torques about a human knee and b) a one degree of
freedom continuum manipulator. In each case, the systems are not readily
sensed by traditional, rigid sensors. The present work proposes the use of
soft, flexible sensors to provide feedback control for systems like these. In
particular, pneumatic McKibben muscles are used with inductance-based
“Smart Braid” sensors on their exterior to measure actuator lengths.
Closed-loop feedback was enabled and experimentally evaluated in the
control of two bench-top systems analogous to those depicted here.

As the field of soft robotics matures, there is consequently an increasing interest in

transforming soft mechanisms into soft robots that can measure and control their own

motion [41]–[43], [50], [51], [71].

Despite recent advances, practical closed-loop motion control of soft robotic sys-

tems remains a challenge [14], [19], [30]. The pose of many soft systems is difficult

to measure with sensors common to rigid robots such as rotary and linear encoders.

Soft robotic systems rarely provide convenient coupling points for such sensors. For

example, the control of a soft, assistive device (Fig. 5.1a) might require sensing of
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human joint motion where the joint cannot be accessed directly. For a continuum ma-

nipulator, the problem is even more challenging, as motion is distributed throughout

the entire system and no discrete joint axis exists (Fig. 5.1b).

In this chapter, flexible sensors built into the structure of soft actuators are used

to provide feedback for the motion control of two soft robotic systems. The first

system was a revolute joint (Fig. 5.2). This allowed the rigorously comparison of the

efficacy of feedback from the proposed sensors to that from a rotary encoder. This

system is also an example of applications with a well-defined joint axis, yet in which

the joint angle is difficult to measure; for example, in an assistive robotic device for

an elbow or knee joint (Fig. 5.1a). The second system tested was a planar, one degree

of freedom continuum manipulator (Fig. 5.1b). This system highlights the ability of

flexible sensors to enable the motion feedback control of systems without rigid joints.

The soft robotic systems evaluated here were driven by McKibben muscles. McK-

ibben muscles consist of an elastomeric bladder surrounded by a braided sheath [142],

[162]. The braided sheaths shape the expansion of the elastic bladder into a forceful

contraction. McKibben muscles’ soft nature and high force density has led to their

widespread application in human-assistive devices [44], [46], [47], [61], [135]. They

have also been successfully employed in a range of continuum manipulators [66], [163],

[164].

In this chapter, the length of each McKibben muscle was measured with Smart

Braid sensors. The Smart Braid sensors used in the present work were fabricated

according to the process outlined in Chapter IV. To improve the fatigue life of the

sensors, the wires of the Smart Braid were isolated from the stress of actuation. This

was accomplished by using an inner, PET braid that reinforced the bladder against

the internal pressure. The sensor braid was added over the top of this plastic braid.

Both braids had similar fiber angles to create a similar contraction behavior.

This chapter presents the first demonstration of Smart Braid inductance sensors
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in the feedback control of robotic devices. Section 5.2 includes the model, methods,

and results of the revolute joint system. Here, a method is proposed to compensate

for compliance between length-sensing actuators (Smart Braid or otherwise) and the

motion output. Section 5.3 consists of a similar series of experiments on the continuum

manipulator. Section 5.3 also includes a model for Smart Braid sensors on continuum

segments. Section 5.4 contains general discussion and conclusions.

5.2 Revolute Joint

The first example studied was a one degree of freedom revolute joint driven by

antagonized McKibben muscles (Fig. 5.2). Smart Braid measurements of actuator

length were used as feedback to control the joint angle. The controller actively com-

pensated for the compliance in the actuator connections. The performance of this

Smart Braid feedback controller was then compared to the performance of a sim-

ilar controller that used feedback from a rotary encoder. This allowed a rigorous

evaluation and comparison of the proposed Smart Braid feedback.

In the test fixture of the revolute joint, two Smart Braid McKibben muscles (Fig.

5.2) rotated a load via steel cables and a pulley with radius r =25.4 mm (Fig. 5.4).

The torque τ exerted on the load by the actuators was proportional to the difference

between the two antagonized actuator forces, F1 and F2 (corresponding to actuators

1 and 2). The rotational inertia I of the load was approximately 2×10−3 kgm2. Joint

friction was modeled as viscous damping with a damping coefficient b of approximately

1.2× 10−3 Nms. The inertia of the load primarily originated from two masses placed

at the ends of a long rod. With the masses on separate ends of the rod (Fig. 5.3a),

the center of mass of the load coincided with the axis of rotation with no resulting

net torque from gravity. Shifting both masses to the same side (Figs. 5.3b,c) created

a positive or negative load torque with a maximum magnitude of τload = 0.65 Nm. In

these configurations, the inertia of the system was approximately preserved.
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Figure 5.2:
A one degree of freedom revolute joint allowed the comparison of two
types of feedback control: one based on measurements from a rotary
encoder and another based on measurements from Smart Braid sensors.
The Smart Braid sensors used in the present work were placed on top of an
inner, non-conductive reinforcing braid (enlarged detail, black wires are
conductive, blue fibers are PET). A force transducer in series with the
connection to the left actuator measured the tension in the connection
cable.
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Figure 5.3:
The revolute joint consisted of a pulley connected to two masses at the
ends of a thin rod. The controller was tested in each of three conditions:
a) with no load torque from gravity, b) with a negative load torque, and
c) with a positive load torque.

5.2.1 Estimation of Revolute Joint Angle with Smart Braids

The actuator neutral lengths lneutral were defined as the lengths of the actuators

when the joint angle was 0 ◦ and the connections to the joint were without slack but

unstretched. The actuator contractions x were the deviations of the actuator lengths

l away from lneutral

x1 = l1,neutral − l1

x2 = l2 − l2,neutral.
(5.1)

For each actuator, a linear function of the inductance L was used to estimate the

actuator contraction x(L) [3]

x1(L1) = ar1L1 + br1

x2(L2) = ar2L2 + br2.

(5.2)

If the connections between the actuator and joint were perfectly stiff, the length

of the actuators could be used to directly determine the joint angle. Chapter IV, sug-
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Figure 5.4:
When pressurized (with pressure values P1 and P2), the actuators in the
revolute joint test fixture exerted forces F1 and F2. The difference in
the two forces created a net torque on the rotating load which induced
contractions in the actuators x1 and x2 and a rotation of the load (ex-
pressed by the angle α). The actuators connections were compliant and
thus modelled as springs with linear stiffness k1 and k2.
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gests that measurements of joint-motion can be skewed by compliance in mechanical

couplings between joint and actuator. This compliance was thus compensated for

by modeling the force output of the actuator and the compliance of the connection

points. This compliance compensation used measurements of the actuator pressure to

estimate the actuator force output. With the assumption that the connections were

under tension, the displacement of the actuators was written in terms of the joint

angle α and the output force F . This relationship took into account the stretching

of the actuator connections (with stiffness k)

x1 = rα +
F1

k1

x2 = rα− F2

k2

.

(5.3)

The estimates of α that result from inverting these relationships will be most accurate

when the forces F are small and the stiffnesses k of the connections are high.

5.2.2 Calibration of the Revolute Joint

To characterize the force, pressure and contraction relationship of the actuators,

an empirical function was used. It was based on the contraction ratio εi [165] which

is the normalized difference between the fully extended actuator length le and the

current actuator length li

εi =
le − li
le

. (5.4)

The estimated actuator force output F̂i was modeled as a polynomial that is linear

with respect to actuator pressure Pi and quadratic with respect to the contraction

ratio εi:

F̂i = p00 + p10Pi + p01εi + p11Piεi + p02ε
2
i . (5.5)

To collect the necessary data for the calibration, the actuators were tested under

a range of cable tensions and actuator pressure values. The tensions ranged between
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5 N and 30 N (with 5 N increments). At each tension level, the pressure of actuator

1 was set to each of a series of pressure values between 0.1 MPa and .31 MPa for 30

seconds (in .035 MPa increments). During each 30 second period, the pressure in

actuator 2 was adjusted automatically to create the desired tension. This adjustment

process was driven by measurements of cable tension from the force transducer in

line with actuator 2 (Fig. 5.2). In this way, data was collected at each combination

of the tension levels and actuator 1 pressures. After each combination of pressure

and tension was tested on actuator 1, the process was repeated with actuator 2 at

the fixed pressure values. In this case, the pressure in actuator 1 was adjusted to

maintain the desired cable tension. The steady-state data from the last 15 seconds

of each pressure-tension combination were used in the calibration.

The data from these experiments were used to identify the coefficients of Eq. (5.2)

and the estimated connection stiffness k̂ in Eq. (5.3) (Table 5.1). The data were also

used to identify the coefficients of Eq. (5.5) (Table 5.2). Note that connections to

actuator 2 were less stiff than those to actuator 1. This was caused by the additional,

compliant cable-ends used to include the force transducer in the cable (Fig. 5.2).

The low values of the coefficient of determination R2 in Table 5.2 result, in part, from

hysteresis effects which are not modeled [165] and the noisy measurements from the

force transducer.

Table 5.1: Identified Coefficients for Eq. (5.2) and (5.3)

ar br 1/k̂ R2

(mm/µH) (mm) (mm/N)

Actuator 1 13.47 -89.417 0.0547 0.99942
Actuator 2 -13.881 86.979 0.110 0.99910
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Table 5.2: Identified Coefficients for Eq. (5.5)
p00 p10 p01 p11 p02 R2

(N) (N/MPa) (N) (N/MPa) (N)

Actuator 1 -24.312 518.76 -33.769 -1429.5 -285.66 0.66
Actuator 2 -37.934 788.98 -200.03 -2503.7 494.79 0.87

5.2.3 Compliance Compensation and Feedback Control of the Revolute

Joint

The goal of the feedback controller was to regulate the joint angle α to a desired

angle αdes. Based on this desired angle, the relationships in Eq. (5.3) defined the

desired length xdes of each actuator as a function of estimated actuator force outputs

F̂i and estimated connection stiffnesses k̂i:

x1,des = rαdes +
F̂1

k̂1

x2,des = rαdes +
F̂2

k̂2

.

(5.6)

The force estimates F̂i in the compensation terms were found by evaluating Eq. (5.5)

with measurements of current pressure and actuator length. Length measurements

were obtained from inductance values via Eq. (5.2).

The difference between the desired and measured contraction of each individual

actuator constituted the control error ei:

ei =
xi,des − xi (Li)

r
. (5.7)

This error was normalized by the pulley radius r to yield values in units of joint angle.

The complete compensation process is illustrated in Figure 5.5.

A separate PID controller for each actuator regulated the position errors ei by

commanding desired actuator forces Fi,des (Fig. 5.6). To maintain tension in both

actuators, an equal “preload” force Fpre was added to each desired force value. Differ-
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Figure 5.5:
The desired actuator contractions xi,des included a compensation term to
account for stretching in the actuator connections. This compensation
term was based on estimates of the force output F̂i and the stiffness of
the connections k̂i of each actuator. The control error between the desired
and measured contraction was scaled by the radius r of the pulley to yield
a joint angle error e in units of radians.

ent levels of preload were evaluated experimentally. Because the actuators are unable

to create negative forces, both Fi,des were saturated to be positive:

F1,des = max

(
kpe1 + kdė1 + ki

∫
e1 + Fpre, 0

)
F2,des = max

(
−kpe2 − kdė2 − ki

∫
e2 + Fpre, 0

)
.

(5.8)

By inverting Eq. (5.5), the desired forces Fi,des were converted into desired pressure

values for each actuator Pi,des, and sent to pressure-control valves.

The performance of the Smart Braid feedback was compared to feedback from

a rotary encoder on the joint. When using the encoder for feedback, the actuator-

specific error value was simply the difference between the desired angle αdes and the

measured angle αmeasured

e1 = e2 = αdes − αmeasured. (5.9)

This error was used in both PID controllers of Eq. (5.8). No compliance compensation

had to be performed.

88



Figure 5.6:
For the revolute joint, two separate PID controllers commanded a desired
force Fi,des for each actuator in reaction to estimated joint angle error
terms ei. When the Smart Braids were used for feedback, ei were deter-
mined individually from the measured inductance and pressure. When
the encoder was used for feedback, ei were equal. To generate the desired
forces, the controller computed desired pressure values from a model of
the actuator force-pressure-length relationship and sent these values to
two pressure control valves.

5.2.4 Experimental Implementation, Revolute Joint

A Texas Instruments “inductance-to-digital converter” (TI LDC1612/4, [166])

provided rapid measurements of the sensor inductance. This chip operates by ex-

citing the natural frequency of a resonant tank circuit formed by an inductor and

a capacitor in parallel. The Smart Braid sensors were connected in parallel with

390 pF capacitors. The series resistance of the Smart Braid sensors was approxi-

mately 0.3 ohms. The inductance values from the sensors had a target sampling rate

of 1 kHz. An analysis of the inductance measurements from the Smart Braids in

relaxed conditions showed an RMS noise level of 0.24 nH.

In the revolute joint test fixture, a digital incremental encoder (Koyo Electronics

Industries, TRDA-2E2500VD) provided joint angle measurements with a quadrature

resolution of 0.036 ◦. The pulley radius r where the cables were connected to the

revolute joint was 25.4 mm. A force transducer (Omega LC201-100) was attached se-

rially to the steel cable of actuator 2. This was used to characterize the force-pressure

relationship of the actuators, characterize the stiffness of the actuator connections,
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and measure preload tracking performance. The systems were controlled with custom

scripts in LabVIEW. The measurements from the test apparatus were collected and

processed with a data acquisition unit (NI PXIe-6341), which used a PXI express

chassis (NI PXIe-1073) to communicate with LabVIEW. Inductance measurements

were collected via an I2C bus (NI USB-8451). The mass flow rate into the actua-

tor lines was controlled with proportional pneumatic valves (Enfield LS-V05s). The

pressure in each actuator line was measured with pressure transducers (WIKA A-10)

with a 0.41 MPa range and controlled with a custom controller with compensation

for the non-linear aperture flow across the valves [167]. A 250 Hz LabVIEW loop

acquired data from the pressure-sensors and sent commands to the valves. The sys-

tem pressure was limited to 0.31 MPa. Estimates of ė were filtered with a five-point

moving average. In the control loop, the measurements of inductance were filtered

with a 3rd-order low-pass Butterworth filter with a cutoff frequency of 10 Hz. To pre-

vent excessive integrator wind-up, the product of the error integral and the integral

gain was not permitted to exceed a magnitude of 50 N. The two types of feedback

were tested in random sequence at each of seven preload levels Fpre: 5 N, 7.5 N, 10 N,

12.5 N, 15 N, 17.5 N and 20 N. Gains for each feedback type were selected by the

“some-overshoot” Ziegler-Nichols method [168]. First a set of tuning trials were con-

ducted in which gains were identified individually at each preload level. From the

identified gains, the most conservative ones were subsequently used in the controller

evaluation, where they were kept identical for all commanded preload levels (Table

5.3). This was done to ensure control stability in the event that the preload level did

not match the commanded level.

Table 5.3: Gains for revolute joint feedback controller
Feedback Type kp kd ki

(N/rad) (N/ (rad/s)) (N/ (rad s))

Encoder 19.80 3.4 74.05
Smart Braids 18.15 4.16 52.27
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Each controller configuration was tested on a fixed sequence of step changes for

the desired joint angle αdes. The sequence was a random series of 21 angles between

-30 ◦ and 30 ◦, that were held for ten seconds each. The data from the first five

seconds of each step were considered “transient” and the data from the last five

seconds were considered “steady-state.” The performance was quantified by the root-

mean-square (RMS) of the absolute error between the reference angle (αdes) and the

angle measured by the encoder. During these tests, no load torque was applied (Fig.

5.3a). Each feedback type was tested at a given preload level three times. Statistical

significance between the feedback types was determined by paired t-tests across each

of the commanded angles in the combined three tests. The values of the measured

preload were averaged over the last five seconds of each step in the sequence.

In order to evaluate the effectiveness of the compliance compensation in Eq. (5.6),

the controller tests were repeated with the two load configurations that generated a

non-zero net-torque (Figs. 5.3b,c). The unmodeled load torque renders open-loop

control infeasible and stretches the actuator connections asymmetrically.

5.2.5 Results, Revolute Joint

Feedback control based entirely on soft, Smart Braid sensing is feasible. The

Smart Braid feedback controller was able to track step changes in the commanded

angle (Fig. 5.7). With no load torque, Smart Braid feedback led to an average RMS

in the joint angle error of 1.73 ◦ (standard deviation 0.69 ◦) during the last five seconds

of each commanded angle (considered steady-state, Fig. 5.8). The average RMS of

the tracking error in the first five seconds of the commanded angles was 7.85 ◦ (SD

5.21 ◦). Even with load torques of 0.65 Nm, the average steady-state error remained

less than 2 ◦ (SD < 1 ◦, Fig. 5.9).

The positional accuracy of the inductance feedback controller was comparable to

the performance of a controller with feedback from the rotary encoder. During the
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Figure 5.7:
Comparison of the effect of feedback type on the reference tracking of
the revolute joint controller. On average, the encoder feedback (red lines)
resulted in better joint angle tracking than the Smart Braid feedback (blue
lines). During the first five seconds after the commanded step change, the
average RMS of the error was 16 % smaller in the encoder feedback case.
In the last five seconds, the RMS of the encoder feedback error was, on
average, 51 % smaller than the Smart Braid error. In the case shown here,
the desired preload was 10 N and no load torque was applied. Reported
values were measured with the rotary encoder.
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Figure 5.8:
Comparison of the steady-state error of the two feedback types used on the
revolute joint under different preload conditions. Shown are the average
RMS values across the three trials with no load torque. The vertical axis
corresponds to the RMS of the reference error during the last five seconds
of a commanded angle. The feedback from the encoder resulted in smaller
errors in the steady-state tracking.
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Comparison of the steady-state error of the two feedback types used on
the revolute joint under different load torque conditions. The height of the
bars represents the averages of the RMS error across all the commanded
preload levels during the last five seconds of each of each commanded
angle. The average error with encoder feedback was always less than with
inductance feedback. This difference was statistically significant (p < .05)
in all cases except when τload =0.65 Nm and the desired preload was 15 N
or higher.
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Figure 5.10:
Shown are the preloads on the revolute joint averaged over during the
last five seconds of each commanded angle in the controlled trials. The
two types of feedback resulted in different preloads. The effectual single
integrator of the encoder feedback resulted in better preload tracking
than the two integrators of the inductance feedback. For the conditions
shown here, no load torque was applied.

93



first five seconds after a step change in the reference angle the average RMS of the

tracking error with encoder feedback was 6.60 ◦ (16 % lower than with Smart Braid

feedback, SD 4.56 ◦, Fig. 5.7). Encoder feedback resulted in steady-state (during the

last five seconds) errors with average RMS values between 0.8-1.3 ◦ depending on the

load torque (SD < 0.8 ◦, Fig. 5.9). This was smaller than the 1.5-1.8 ◦ average RMS

errors exhibited with Smart Braid feedback.

Figure 5.10 shows the measured preloads averaged over the last five seconds of each

reference angle in the controlled trials (no load torque). With Smart Braid feedback,

preloads of nearly 70 N were observed in the 12 N and 20 N conditions. The large

preloads resulted from integral windup in the physically antagonized yet independent

PID controllers.

5.3 Continuum Manipulator

As a second example, the experimental work of this chapter includes the use

of Smart Braid feedback in a simple, planar, one degree of freedom manipulator

driven by Smart Braid McKibben muscles (Fig. 5.11). The manipulator consisted

of two contracting McKibben muscles connected along their length to a bendable

“spine.” Differences in actuator pressure values caused different levels of contraction

in the actuators, creating bending motions in the structure. By measuring the lengths

of the actuators via Smart Braid inductance measurements, the degree of bending

was estimated. This estimate was used as feedback to control the tip angle of the

manipulator. This Smart Braid feedback control was compared to open-loop control

based solely on actuator pressure.

5.3.1 Estimation of Continuum Manipulator Tip Angle with Smart Braids

The continuum manipulator was modeled as having a constant curvature enclosing

an angle α. The length of the center of the manipulator was constant, constrained
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Figure 5.11:
The continuum manipulator is formed from two Smart Braid actuators
attached to a thin, flat, flexible beam. Contracting the actuators caused
the beam to bend. a) The bend angle α was related to the lengths of
the two actuators l1 and l2 and the fixed length s of the flexible spine.
b) The prototype device bending.

by a thin beam of length s. The braids of the two actuators on the sides were tied to

the thin beam. The length of the actuators along their center-lines li was related to

the bending angle α by

α = 2
s− l1
D1

= 2
l2 − s
D2

(5.10)

where Di is the diameter of the actuator cross section. It was assumed that the

actuator radius was approximately the distance to the actuator center-line from the

center-line of the thin beam.

The inductance L of the two Smart Braids is related to the tip angle α with an

empirical equation which is linear with respect to the two inductance values [5]

αest = ac1L1 + ac2L2 + bc. (5.11)
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5.3.2 Calibration, Continuum Manipulator

The control variable for the continuum manipulator was the pressure difference

∆P between the two actuators. From this difference, the desired pressure in each

actuator was computed such that there always remained a minimal baseline pressure

of Pbase:

P1,des =


Pbase + ∆P, ∆P > 0

Pbase, ∆P ≤ 0

P2,des =


Pbase, ∆P ≥ 0

Pbase −∆P, ∆P < 0.

(5.12)

The value of baseline pressure Pbase=0.05 MPa was selected to roughly correspond to

the onset of actuator motion under no-load conditions.

To calibrate the continuum manipulator, ∆P was increased and decreased lin-

early between approximately -0.1 MPa and 0.1 MPa five times over the course of ten

minutes. Because of the slowly-changing pressure values, the dynamics of the actua-

tor motion were neglected. The calibration pressures were assumed to correspond to

steady-state measured angles. These data were processed to identify a relationship

between ∆P and α. The data were regressed to a linear approximation of the form

α = acp∆P + bcp. (5.13)

The identified coefficients of Eq. (5.13) are listed in Table 5.4. The nonzero value of

bcp is indicative of the asymmetry in the system. The angle to pressure relationship

Table 5.4: Identified Coefficients for Eq. (5.13)
acp bcp R2

(deg/MPa) (deg)

597 3.45 0.826
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Figure 5.12:
Shown are the estimated values of the tip angle (αest = ac1L1 + ac2L2 +
bc = 31.93L1 − 45.11L2 + 77.08) from the inductance values used in the
calibration. These values are compared against the tip angle recorded
by the camera.

exhibited hysteresis and non-linearity (Fig. 5.15). Different pressure values often

resulted in the same tip-angle. This is apparent in the large degree of variation in

the angle that is not captured by the linear model (R2 = 0.826).

The calibration data were also used to identify a relationship between the contin-

uum angle and the measured inductance of the Smart Braid actuators. A two-variable

linear regression was used to identify the coefficients of Eq. (5.11). They are listed

in Table 5.5. The RMS of the residual error was 1.17◦ (Fig. 5.12).

Table 5.5: Identified Coefficients for Eq. (5.11)
ac1 ac2 bc R2

(deg/µH) (deg/µH) (deg)

31.93 -45.11 77.08 0.999

5.3.3 Feedback Control of Continuum Manipulator

The Smart Braid feedback controller used inductance values and Eq. (5.11) to

estimate the manipulator tip angle αest (Fig. 5.13a). This estimate was compared

against the reference angle αdes to calculate the feedback error e

e = αdes − αest. (5.14)
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Figure 5.13:
The performance of two controllers were compared on the continuum
manipulator: a) the Smart Braid feedback controller which used tip
angle estimates from the inductance-based, Smart Braid sensors and b)
a feedforward controller for the actuator pressures.

This error e was scaled by the gain kc to calculate a desired angular rate α̇des

α̇des = kce. (5.15)

The desired angular rate was again scaled by the inverse of acp to calculate a desired

rate of pressure difference change ∆Ṗdes according to the time derivative of Eq. (5.13)

∆Ṗdes =
α̇des
acp

. (5.16)

The desired rate of pressure difference change ∆̇P des was then integrated numerically

in the controller to calculate the desired pressure difference ∆P des. The correspond-

ing actuator pressure values were calculated with Eq. (5.12) and sent to pressure-

controlled valves.

For comparison, an open-loop, feedforward controller was implemented that used

the inverse of Eq. (5.13) to generate pressure commands for the actuators (Fig.

5.13b).
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5.3.4 Experimental Implementation, Continuum Manipulator

The continuum manipulator used the same data acquisition and pneumatic control

hardware as the revolute joint. The manipulator was fabricated by fastening the

outer, conductive braids of the actuators to a flexible spine. The spine consisted of

two (0.83 mm thick) strips of Delrin plastic. To establish a ground truth, the angle

α of the actuator tip was additionally measured by visually tracking the motion of

two points at the actuator tip. The angle of these points was computed relative

to two-fixed points on the ground plane. The point positions were recorded with a

high-frame-rate camera (120 fps) placed above the manipulator (with the camera’s

visual field parallel to the plane of actuation). The system pressure was limited to

approximately 0.20 MPa. As with the revolute joint, the Smart Braids were connected

in parallel to 390 pF capacitors. For this system, the target inductance sampling rate

was 250 Hz.

The value of the gain kc used in the inductance feedback loop was 5 s−1. The

performance of controllers was evaluated with the same pseudo-random step input

used with the revolute joint. Each controller was evaluated three times. The steady-

state tracking was evaluated over the latter half of each step. That is, the last five

seconds of a step lasting ten seconds.

5.3.5 Results, Continuum Manipulator

The inductance feedback controller was able to track the reference signal with a

smaller steady-state error than the pressure feedforward controller. Visually-tracked

tip-angle trajectories from typical controller trials are shown in Fig. 5.14. The steady-

state RMS error of the inductance feedback controller had an average value of 1.25◦

and a standard deviation of 0.63◦. On the other hand, the pressure feedforward

controller had larger and less consistent steady-state errors (mean of 14.98◦, SD of

9.58◦). Figure 5.15 shows the pressure differences and tip angles recorded during the
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Figure 5.14:
Shown are the tip angles of the continuum manipulator as recorded by
the camera during two trials. The inductance feedback controller allowed
the continuum manipulator to track the reference input with an RMS of
1.25◦ in the steady-state error (evaluated in the last five seconds of the
step). The supplementary video includes a recording of the inductance
feedback trial.

controller trials alongside the calibration data.

5.4 Discussion and Conclusions

This chapter shows how Smart Braid sensors can be used as feedback for the

motion control of soft robotic systems. Smart Braids can provide rapid and precise

measurements of actuator length. Motion control was demonstrated in both a revolute

system and a bending continuum manipulator. For the revolute joint, techniques were

developed to compensate for compliance between actuators and points of motion

output. These techniques extend to other actuator length-sensing technologies.

The revolute joint was designed to rigorously compare the Smart Braid feedback to

feedback from a rotary encoder. The high-inertia, lightly-damped (I ≈ 2×10−3 kgm2,

b ≈ 1.2×10−3 Nms) rotating load pushed the limits of the controller by creating highly

dynamic loads. The results show that, even in this setting, inductance measurements
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Figure 5.15:
Shown are tip angles and pressure values observed during the calibration
and controlled trials. They exhibited hysteresis and non-linearity. The
black dots are the calibration data. The hysteresis is the main obstacle
when inverting the calibration curve for open-loop feedforward control.
In this chapter, the inversion was performed on a linear fit to the en-
tire data set (dashed black line shown above). The colored dots are the
data from the angle-control trials. In the controlled trials, the ambigu-
ous relationship between the differential pressure and the tip angle is
apparent.

from Smart Braid sensors can be used in real-time feedback control.

When load torques were applied to the revolute joint, the compliance compensa-

tion allowed the Smart Braid feedback controller to remain accurate. The addition

of an external torque had only a small effect on the performance of the inductance-

feedback controller. Without the compliance compensation (and given the connection

stiffnesses characterized in Table 5.1), a negative load torque would have led to ap-

proximately 3 ◦ of steady-state error. The less-stiff tendon of actuator 2 would have

resulted in a 6 ◦ error with the positive load torque. With the compliance compensa-

tion, the average RMS of the steady-state error in each case was less than 2 ◦.

Controlling the actuators individually with the proposed compliance compensation

technique sometimes created large tensions in the system. The large preloads could

be precluded by controlling the two actuators together with a single controller (as

was effectually the case with the encoder feedback).

Smart Braid feedback was also demonstrated on the angle-control of a bending
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continuum manipulator. The feedback used in this chapter permitted the manipulator

to reach desired joint angles using only the inductance measurements from the Smart

Braids. The closed-loop control of the manipulator resulted in more accurate reference

angle tracking than the simple, open-loop control of pressure. The comparatively poor

performance of the open-loop control was due, in part, to hysteresis and unavoidable

friction in the system (Fig. 5.15).

The bend sensing of the continuum manipulator relied on only two sensors. It

was limited to approximating the shape of the manipulator as a single segment with

constant curvature. This approximation is not necessarily accurate in the presence of

external forces and constraints. The constant curvature assumption is most accurate

when applied to short segments of the curve [169]. Using Smart Braid sensors on

multiple, shorter segments of the actuators could allow more accurate estimation of

the end-tip position and orientation. Similarly, the principles in this chapter could

be extended to 3D manipulators.

The Smart Braid actuators in the present work are slightly different than those

used in the previous chapter. In Chapter IV, the wires of the Smart Braid sensor

served the role of both sensor and reinforcing fiber. In the pilot work for this study,

it was found that the wires bearing the stress of the internal pressure would often

yield under high and repeated strain. For this reason, it was decided to use Smart

Braid sensors on top of a plastic braid that would bear the stress. After 40 hours

of testing, the sensors showed no signs of wear. The addition of the Smart Braid

sensor on top of the inner braid results in disparate length/diameter relationships in

the wire braid and the plastic braid. In the revolute joint, this caused the Smart

Braid sensor to have a larger diameter than the inner braid in contracted conditions

(Fig. 5.2). In some applications, this would allow relative motion between the two

braids, possibly biasing the estimates of the actuator length. A more sophisticated

fabrication method could use a single layer of high-strength fibers with long-flex-life
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conductors.

Though the fabrication method of the actuators was different, the sensors were

fabricated in the same manner as Chapter IV. As such, they exhibited a similar

sensitivity to the actuator contraction compared to sensors in the previous chap-

ter. The actuator in Chapter IV showed a contraction sensitivities of 6.8×10−8 H/mm.

In the present work, the sensitivities of actuators 1 and 2 were 7.4×10−8 H/mm and

7.2×10−8 H/mm respectively.

The results demonstrate that Smart Braids can control the motion of soft robotic

systems. The Smart Braid sensors in this chapter enabled the closed-loop angle-

control of a revolute joint and a continuum manipulator using local, flexible sensors.

The contracting actuators used in this work are very similar to actuators used in

industry [155] and extensively in robotics research [135]. The experimental results

and methods of this chapter open a new avenue of design for soft robotic systems

that rely on these actuators. Furthermore, they bring sensing to systems that would,

perhaps, have been limited to open-loop control.
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CHAPTER VI

Inductance-based Sensing for

Bellows-driven Robots

Adapted from Wyatt Felt, Maria Telleria, Thomas F. Allen, Gabriel Hein, Jonathan

B. Pompa, Kevin Albert, and C David Remy. “An Inductance-Based Sensing System

for Bellows-Driven Continuum Joints in Soft Robots”. Under Review.

6.1 Introduction

The dissertation up this point has focused on fiber-reinforced actuators. These

actuators see a great deal of use in research and industry. Another common actuator

in soft robotics is the bellows. The purpose of this chapter is to apply the inductance-

based sensing strategy developed in the previous chapters to bellows. This chapter

studies the viability of inductance-based sensors for circular bellows actuators from

both a theoretical and experimental perspective.

This chapter focuses on sensing and controlling the motion of a particular type of

soft robotic joint: the bellows-driven continuum joint. The sensing system relies on

coils of insulated conductive wire wrapped around the minor diameters of the bellows.

These coils form circuits with inductance values that change with the length of the

bellows. The measured inductance values can be calibrated to measure the motion of
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Figure 6.1:
Bellows-driven continuum joints are used to create robots without finite
degrees of freedom. Sensing the motion of such robots is a challenge. The
inductance-based sensors presented in this work will bring estimation and
control to robots like the one pictured here (created by Pneubotics).

the joint. This chapter demonstrates experimentally how sensors such as these can

measure and control the motion of bellows-driven continuum joints.

The experimentation in this chapter utilizes a joint made from four pneumatically

driven bellows that are positioned around a central steel cable (Fig. 6.1). This joint

has been developed by Pneubotics. The bellows create bending torques about two

axes while keeping the joint stiff in torsion. By pressurizing pairs of antagonized

bellows simultaneously, the passive bending stiffness of the joint is also controllable.

Joints with similar features have been developed for applications in industry and

academia. These have relied on bellows [67], [170]–[172] and other soft, fluid-powered

actuators [66], [173], [174].

The primary contribution of this chapter is the introduction of inductance sensors

that measure the motion of bellows-driven continuum joints. This chapter develops

the theory, models and design principles for these sensors. The experimental sensing

system measures the motion of the joint independently in two halves along the joint

length. This allows one to measure lateral displacement even when there is no change

in orientation between the ends. The performance of the sensing system is tested in

both quasi-static conditions and as feedback for the control of a bellows-driven joint.

The hardware of the experimental system is described in Section 6.2. Section
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Figure 6.2:
The minor diameters of the plastic bellows were wrapped with insulated
conductive wire (red and blue). The inductance of the circuit provides a
measure of the bellows length.

6.3 discusses theory, including the kinematics of the joint (6.3.1), models for the

inductance sensor (6.3.2) and design principles relating to the same (6.3.3). Section

6.3.4 investigates the use of “split-joint” sensing to measure lateral displacement.

The experimental methods and results are described in Section 6.4. This includes the

calibration and verification of the sensing system (6.4.1), the estimation of the joint

position under lateral loads (6.4.2) and the feedback control of the joint orientation

(6.4.3). This is followed by a general discussion in Section 6.5.

6.2 Hardware

The inductance-based sensing system was implemented on a commercial, bellows-

driven continuum joint. To create a self-sensing joint based on inductance, the minor

diameters of the bellows were wrapped with flexible wire (Fig. 6.2). This created cir-

cuits of circular coils spaced along the length of the bellows. As a bellows expanded

in length, the circular coils moved farther apart, reducing the inductance of the cor-

responding circuit. The joint was instrumented and controlled to calibrate and test

the inductance-based sensing system.

The joint was provided by Pneubotics (an Otherlab company, San Fransico, CA,

USA, Fig. 6.1). The joint consists of two plates connected to four bellows spaced

around a central steel cable. The centers of the bellows are kept at a fixed distance,
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designated b, of 4.9 cm from the central cable. The steel cable has a length h of 19.7 cm

between the plates of the joint. It provides a “fulcrum” to convert the extension forces

of the bellows into bending moments. The bellows have 26 major diameters between

the plates of the joint. The major and minor diameters of the bellows are 6.7 cm and

4.9 cm, respectively. The joint is actuated by pressurizing the bellows with compressed

air. The antagonized configuration of the four bellows creates a 2-DOF bending joint

with independently controllable joint torque and passive stiffness. The unmodified

joint has a range of motion of ±90 ◦ in each axis. In this work, the pressure in the

bellows was maintained below 0.41 MPa.

The joint was outfitted with four distinct inductance circuits (Fig. 6.3). Pairs

of adjacent circuits measured the bending in each half of the joint. The circuits

were formed from “tinsel” wire with a high flex-fatigue life (TN3637, 1.14 mm outer

diameter, resistance 538 ohms/km, MN wire, St. Paul, MN, USA). The flexible wire was

wrapped around 12 minor diameters of the bellows in the corresponding half. Each

minor diameter had two turns of current (except at the ends of the circuits where

there was only one turn). The inductance was measured with an LDC1614 chip

(Texas Instruments, Dallas, TX, USA). This chip measures the resonant frequency

of four inductor-capacitor oscillating circuits in rapid succession. To this end, each

inductive circuit was connected in parallel with a high-precision (1 %, NP0) 100 pF

ceramic capacitor.

To provide a ground truth reference for the proposed sensor, the joint was mounted

upside-down on a level mount such that the relative orientation of the ends could be

measured with an IMU (3-Space Micro USB, magnetometer disabled, Yost Labs,

Portsmouth, OH, USA). A 38 cm arm was attached to the end of the joint for cal-

ibration and testing. Weights were added to the end of the arm to create different

loading conditions. The pressure in the bellows was controlled with electronic pres-

sure regulators (TR, Enfield Technologies, Shelton, CT, USA). The data acquisition
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Figure 6.3:
The deformation of the entire joint was approximated as the composition
of two constant-curvature sections. Pairs of adjacent inductive sensor
circuits (orange and blue circles) measured the bending of the each half
independently. This “split-joint” configuration allows one to estimate the
joint motion in non-uniform-curvature conditions.

and control was facilitated by LabVIEW.

6.3 Theory

6.3.1 Kinematic Model

The joint was modeled as the composition of two constant curvature sections (Fig.

6.3). This was designed to allow the deformation to be approximated even when the

curvature across the length of the joint is not uniform.

For each constant-curvature section of the joint, the coordinate axes in the base

frame originate at the center of the central cable and intersect with the bellows’

centers (Fig. 6.4). The x-axis points towards bellows 1, the y-axis towards bellows

2, and the z-axis along the central cable (when straight). The bellows’ centers are

separated from the central cable by the constant distance b.

Here, the kinematics of each constant curvature section are described using a

parametrization presented by Allen, et al. [175]. This parametrization has several

desirable properties. It remains invertible in the straight configuration and has affine

relationships between the rotation parameters and the lengths of the bellows. This
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parametrization is based on the two components, u and v, of a rotation vector ω =

[u, v, 0]T . The z-component is always zero. This rotation vector ω describes the

orientation of the top of the plate relative to the base and is equivalent to rotating

the top plate by an angle θ =
√
u2 + v2 around the unit vector ω/‖ω‖. The rotation

vector ω can also be described by the angles φ and θ

ω = [u, v, 0]T = [−θ sinφ, θ cosφ, 0]T . (6.1)

The homogeneous transformation from the base frame to a frame with distance

h along the cable (assuming constant curvature across that distance) is given by the

matrix g (u, v, h)

g (u, v, h) =



γv2 + 1 −γuv ζv −γhv

−γuv γu2 + 1 −ζu γhu

−ζv ζu cos (θ) ζh

0 0 0 1


. (6.2)

The functions ζ (θ) = sin (θ) /θ and γ (θ) = (cos (θ)− 1) /θ2 are defined when θ is

zero. This is apparent from the Maclaurin series of sine and cosine.

The lengths l = f (u, v) of the half-bellows sections along their center-lines are

expressed as follows:

[l1, l2, l3, l4]T =
h

2
+ b [−v, u, v, −u]T . (6.3)

Because h is fixed, the length l of each bellows section is a function of either only v

or only u.

The bending in the distal half of the joint was defined by ωa = [ua, va, 0]T and

measured by the inductance values on the distal halves of bellows 1 and 2 (Fig. 6.3,

blue). The proximal joint half was defined by ωb = [ub, vb, 0]T and measured with
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Figure 6.4:
(a) Photo of a 2-DOF bellows-driven continuum joint. The orange fibers
constrain the bellows around the central cable. (b) The kinematic model
of the joint. Each half of the joint undergoes a bend angle θ with an
orientation φ. The center of the joint is reinforced by a cable of length h
(thick black line). The bellows are indexed from one to four. The center-
lines of the half bellows (thin blue and orange lines) have lengths of l1,
l2, l3 and l4. The centers of the bellows are spaced from the central cable
by a distance b.

inductance sensors on bellows 3 and 4 (Fig. 6.3, orange).

6.3.2 Inductance Model

The inductive circuits are modeled as n circular coils of current connected electri-

cally in series. Each circular coil is made up of N turns of wire. The total inductance

L of the circuit is the sum of the self-inductance L′i,i and mutual inductance Mi,j of

the coils in the circuit. The total inductance L =
∑n

i=1

∑n
j=1 L [i, j] is the sum of the

elements in the inductance matrix L

L =



L′1,1 M1,2 M1,3 . . . M1,n

M2,1 L′2,2 M2,3 . . . M2,n

M3,1 M3,2 L′3,3 . . . M3,n

...
...

...
. . .

...

Mn,1 Mn,2 Mn,3 . . . L′n,n


. (6.4)

The self-inductance of the individual coils L′i,i does not change during actuation.
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A circular wire coil with N turns of current, a coil radius r and a wire radius a has

a self-inductance that is approximated by

L′i,i ≈ µN2r

(
ln

(
8r

a

)
− 2

)
. (6.5)

This approximation assumes that the current distribution is concentrated on the

surface of the conductors. µ is the magnetic permeability of the surrounding medium

(approximately 4π × 10−7 H/m for nonmagnetic materials such as plastic and air).

The sensitivity of the inductance to joint motion comes from the change in mutual

inductance between coils on different minor diameters. For these current paths, the

mutual inductance is calculated numerically by integrating the Neumann formula

[176]. For two paths in 3D space

C1 (s1) = [x1 (s1) , y1 (s1) , z1 (s1)]T

C2 (s2) = [x2 (s2) , y2 (s2) , z2 (s2)]T
(6.6)

parameterized by s1 = [0, 1], s2 = [0, 1], the mutual inductance is given the double

integral

M1,2 =
µ

4π

1∫
0

1∫
0

(
dC1

ds1
|s1
)(

dC2

ds2
|s2
)T

√
(C1 −C2) (C1 −C2)T

ds1ds2. (6.7)

The mutual inductance between two N -turn coils on separate convolutions was

approximated as N2 times the mutual inductance between single-turn coils. This

approximation is accurate when the distance between the turns in each coil is small

relative to the distance between the two coils.

The inductance values of the circuits on the bellows change with the deformation of

their corresponding joint section (e.g. L1a = f (ua, va)). In order to measure the mo-

tion of the joint, one must to invert this relationship (e.g. ua = f (L1a, L2a, L3a, L4a)).

Here the kinematic and inductance models are used to investigate which combina-
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tions of inductance sensors are suitable for use in this inversion. To this end, Eq. (6.7)

was used to calculate the inductance of the circuits at different joint orientations. A

circular loop of current was first defined as a geometric path. This path was then

transformed by Eq. (6.2) to the appropriate positions around the joint as it underwent

constant-curvature bending. For each pair of circular loops in a circuit, Eq. (6.7) was

integrated with the MATLAB integral2 function. To examine the effect of sensor

placement, the sensors were modeled to be on the same section of the joint (i.e. with

geometries dependent on ua and va). In this configuration, the length change of the

sensor modeled on bellows 1 was equal and opposite of that on bellows 3. The same

relationship holds for bellows 2 and 4.

The geometry and corresponding inductance values were calculated at each com-

bination of a series of 22 values of φ and 12 values of θ. The values of φ were equally

spaced between 0 ◦ and 343.64 ◦ and the values of θ where equally spaced between 0 ◦

and 90 ◦. The inductance values were calculated only once when θ = 0 (where φ does

not change the geometry).

The modeled inductance values were used to evaluate four different sensor com-

binations. The first was a single-variable fourth-order polynomial regression of the

length-changing rotation component against the modeled inductance of the sensor

on bellows 1 (va = f (L1a)). The second regression was against the difference of

the modeled inductance of the sensors on the antagonized pair, bellows 1 and 3

(va = f (L1a − L3a)). The third combination was a two-variable polynomial regres-

sion against the adjacent sensors on bellows 1 and 2 (va = f (L1a, L2a)). The final

combination was a two-variable regression on the differences of each antagonized pair

(va = f (L1a − L3a, L2a − L4a)). The residual error of these regression types is listed

in Table 6.1.

The single-variable regression (va = f (L1a)) explained 99.97 % of the variation in

the corresponding rotation component (Fig. 6.5). The bulk of the remaining error
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Table 6.1: Model Estimates of va with Combinations of Sensors
Polynomial Type (4th Order) RMSE (◦) R2

va = f (L1a) 0.323 0.9997286
va = f (L1a − L3a) 0.149 0.9999421
va = f (L1a, L2a) 0.029 0.9999979
va = f (L1a − L3a, L2a − L4a) 0.020 0.9999990

Figure 6.5:
The results of the inductance model for the joint. Much of the variation in
the rotational components (e.g. va) is explained by a simple polynomial
regression against the inductance of a coil on the length-changing bellows
(e.g. L1a).

comes from the variance introduced by the orthogonal rotation component (e.g. ua).

The second combination looked at the difference between the inductance values L1a

and L3a. If ua were to effect L1a and L3a identically, the effect of ua would be can-

celed in the difference. Though the effect of ua on the two sensors is not identical,

the regression against L1a − L3a did lower the RMSE by 54 % (va = f (L1a − L3a)).

Including measurements from a sensor that primarily measures ua (va = f (L1a, L2a))

reduced the RMSE by an order of magnitude (compared to the single variable re-

gression). A regression against the differences of both antagonized pairs only reduced

the RMSE by an additional 30 %. The strategy of using two adjacent sensors on the

same joint section (e.g. va = f (L1a, L2a)) is adopted experimentally in this work.
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Figure 6.6:
Shown is the mutual inductance sensitivity to separation of two coaxial
circles of equal diameter (1 m) separated by a distance h′. The change
in mutual inductance per distance traveled declines rapidly as the coils
move farther apart.

6.3.3 Design Principles for Inductance Sensors on Bellows

Bellows-based inductance sensors exhibit the greatest sensitivity to motion when

the minor diameters of the bellows are close together relative to the size of the di-

ameters. Consider two coaxial circular wire coils of a single turn separated by a

distance h′ along their mutual axis. If the coils are moved closer together, the mutual

inductance between them increases.

The change in mutual inductance per distance traveled is also affected by the

distance between the coils. The sensitivity of the mutual inductance to a change

in distance is dM
dh′

. Its magnitude is greatest when the coils are close together and

declines rapidly as they move farther apart. For example, from an axial distance of

h′ = .05 diameters to h′ = 1 diameter, the sensitivity decreases by approximately two

orders of magnitude (Fig. 6.6).

Thus inductance sensors are best-suited to work on bellows with minor diameters

that are spaced much more closely than the size of the diameters themselves. The

bellows used in this work, for example, have h′ values of approximately 0.014 diameters

when the joint is straight.

Another consideration is how many turns of wire to use in each coil. This con-

sideration has trade-offs in sensor quality and actuation range. One measure of the
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quality of an inductance sensor is the “Quality Factor” Q

Q = 2πfexcite
L

R
(6.8)

where R is the resistance, L the inductance, and fexcite the excitation frequency. The

maximum excitation frequency is often limited by the sensing circuitry or parasitic

capacitance [153]. Thus, for a given frequency, it is desirable to maximize the ratio

of inductance to resistance. The inductance scales with the radius r of the coils and

with the square of the number of turns N2 in each coil

L ∝ rN2. (6.9)

The resistance is proportional to the number of turns N and the radius r of the

circular coils and inversely proportional to the cross-sectional area of the conductor

Awire

R ∝ Nr

Awire

. (6.10)

Accordingly, the inductance to resistance ratio scales linearly with the number of

turns N and the cross-sectional area of the conductors Awire

L

R
∝ NAwire. (6.11)

Thus, increasing the number of turns in each coil or increasing the cross-sectional

area of the conductors increases the sensor quality. However, there are trade-offs to

increasing these quantities. Increasing the number of turns can increase the parasitic

capacitance which, if it becomes too high, can lower the feasible excitation frequency

[153]. Furthermore, the wires take up physical space on the minor diameters. The
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Figure 6.7:
The geometry of the joint was simulated with a level displacement d.
The models predict that using two circuits along the length of the joint
improves the estimation of deformations like these.

cross-sectional area Acoil of the circular coils scales in the same way as L
R

Acoil ∝ NAwire. (6.12)

This bulk of material in the convolutions could limit contraction of the bellows. In

this work, the number of turns of wire in each of the circular coils was kept at a

minimum.

6.3.4 Measuring Non-uniform Curvature

When actuated against external loads, the joint may be subject to non-uniform

internal bending moments. These may lead to non-uniform curvature along the length

of the joint. Measuring the curvature of the joint in multiple sections can improve the

ability of the joint to sense certain non-uniform-curvature deformations. To demon-

strate how multiple sensing sections can improve the estimation of the joint motion,

the lateral displacement of the joint end was simulated with no change in orienta-

tion of the plates (Fig. 6.7). The chosen displacement was selected to highlight the

opportunity of using multiple sensors along the joint length.

For this simulation, the profile of the central cable was approximated with the
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simple planar equations of a thin cantilever. The cantilever considered here has a

fixed end and is free but guided at the other end. A force and moment at the free

end deflect it a distance d without rotation at the tip. The profile of the cantilever

with this deflection is given by the following expression [177]

x (z) =
dz2

l3
(3l − 2z) (6.13)

where z is measured from the support along the length of the unloaded beam. l is

the distance in z between the free and fixed ends. l is selected to conserve the length

of the central cable.

The geometry of the central cable and coils was calculated for a a lateral displace-

ment of d = 2 cm in the xz-plane along the x-axis towards bellows 1. The profile of the

central cable was defined by Eq. (6.13). The geometric paths describing the circular

loops of current were transformed via Eq. (6.13) to their positions in the displaced

configuration (Fig. 6.7). The mutual inductance between the loops on bellows 1 was

then calculated with Eq. (6.7) and the MATLAB integral2 function. Three different

circuit configurations were modeled: one circuit spanning the entire bellows length

(25 coils), two circuits (12 coils each) on each half of the bellows, and three circuits (8-

9-8) each spanning approximately one third of the joint. The bending in each section

was estimated by using the inductance values predicted for the lateral displacement

in equations calibrated to constant-curvature bending. A single-variable, 4th-order

polynomial (e.g. va = f (L1a)) was used for each circuit. The deformation of the total

joint was then estimated by composing the curvatures predicted by the calibration

equations in each section.

For this type of lateral displacement, using two circuits per length of the joint

(compared to one) was predicted to lead to smaller error in the estimates of d, l and

θ (Table 6.2). Using three circuits was predicted to further reduce the errors in d and
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l.

Table 6.2:
Model-Predicted Error in Inductance-Based Estimates for a Lateral Dis-
placement of 2 cm

Number of Circuits
Variable 1 2 3

d (mm) -21.01 -4.88 -2.16
l (mm) 1.22 0.46 0.22
θ (◦) 0.59 -0.31 -0.42

6.4 Experimental Evaluation

6.4.1 Calibration and Verification

The pressure P in each bellows is given by a base pressure Pbase and a relative

difference in pressure ∆P to its antagonized counterpart. The pressure differences

∆P3 and ∆P2 are used because they actuate v and u respectively with a positive sign.

[P1, P2, P3, P4]T = Pbase + [−∆P3, ∆P2, ∆P3, −∆P2]T (6.14)

The actuators were calibrated using a continuous 11 minute sequence of ∆P combina-

tions. This resulted in well-distributed combinations of ∆P values (Fig. 6.8b). Pbase

was .2 MPa.

The calibration data were concatenated from data collected with each of the fol-

lowing masses attached to the end of the arm (Fig. 6.8a): 0 kg, 2.3 kg, 4.5 kg, 6.8 kg,

9 kg. The purpose of the added mass was to create a variety of bending conditions

for the calibration.

The IMU mounted on the distal plate of the joint provided ground truth mea-

surements of the joint orientation. The IMU measurements were interpreted to find

the components of a rotation vector ω̂ = [û, v̂, 0]T by assuming the joint deformation

to have constant curvature across its entire length. The inductance values from each
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Figure 6.8:
a) The joint was mounted upside-down on an elevated fixture. Mass was
selectively added to the end of the arm for calibration and testing. Shown
is a 9 kg of mass on the end of the arm. b) The combinations of ∆P used
to calibrate the joint.

joint half were regressed with two-variable, 4th order polynomials on ua = ub = û/2

and ua = ub = v̂/2.

The calibration was verified against data taken in identical conditions that were

not used in the calibration (Fig. 6.9). The inductance-predicted orientation of the

joint was written as a unit vector in 3-space and compared to the orientation measured

by the IMU. An inner product was used to determine the error (measured as a single

angle) in the estimated orientation (Table 6.3). As predicted by the inductance mod-

els, including the data from the adjacent sensors improved the orientation estimates.

This is the calibration used in the subsequent experiments (i.e. va = f (L1a, L2a),

ua = f (L2a, L1a), vb = f (L3b, L4b), ub = f (L4b, L3b)).

Table 6.3: Experimental Verification of Joint Orientation Calibration
Polynomial Type (4th Order) RMSE (◦)

e.g. va = f (L1a) vb = f (L3b) 1.76
e.g. va = f (L1a, L2a) vb = f (L3b, L4b) 1.11

6.4.2 Estimation of Lateral Displacement

The purpose of this experiment was to test the ability of the inductance sensors

to estimate the end-position of the joint under pure lateral displacement. This type
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Figure 6.9:
The rotation components from the verification data set of the joint cali-
bration. The inductance sensors in each half of the joint were calibrated
to predict the bending of the joint in that half. Combining the two halves
resulted in an overall orientation estimate (blue). This closely matches
the orientation measured by the IMU (red).
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Figure 6.10:
The photo shows the level joint with a forced, 14 mm displacement in
the direction of bellows 1 (x). In this condition, the bending in one
half of the joint is counteracted by bending in the other half. Also
shown are the estimates of the lateral displacement x and the orientation
v from the three lateral displacement tests. The lateral displacement
predicted by the IMU (red) assumes the joint has a constant curvature
across its entire length. As the angle of the joint approaches zero, the
IMU displacement estimates (red) also approach zero. The inductance-
predicted displacement (blue) remains close to the position recorded by
the motion capture system (black). The inductance-predicted estimate
of the orientation v also remains close to that measured by the IMU
(most accurate).

of deformation is unobservable by the IMU. The ground truth in position for this test

came from optical markers tracked with an Optitrack V120 Trio camera system (Nat-

uralPoint, Corvalis, OR, USA). The ground truth in orientation came from the IMU.

A string tied to the end of the joint was used to deflect the end of the joint towards

bellows 1. The end of the joint was leveled by adjusting the bellows pressures until

the IMU reported an approximately level configuration (Fig. 6.10). The resulting

displacement between the ends of the joint was approximately 14 mm. Estimates of

the joint displacement x and orientation v were calculated from the measured induc-

tance values and the calibration identified in Section 6.4.1. The test was repeated

three times.

From the onset of motion until the final level condition, the inductance provided
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accurate measures of the joint displacement and orientation (Table 6.4, Fig. 6.10).

In the final condition, with the joint level and a displacement of 14 mm, the induc-

tance estimate of v had an average error of 0.41 ◦. The inductance estimate of the

displacement in x had an average error of -1.27 mm. The IMU estimate of x had an

average error of -14.1 mm.

Table 6.4:
Average RMS of Estimation Error of Joint Deformation in the Lateral
Displacement Tests

Feedback Type
Estimate of Period IMU Inductance

x (mm) Entire Test 12.10 (SD 0.38) 1.05 (SD 0.19)
Final Condition 14.1 (SD 0.25) 1.27 (SD 0.15)

v (◦) Entire Test Ground Truth 0.31 (SD 0.03)
Final Condition Ground Truth 0.41 (SD 0.07)

6.4.3 Feedback Control

The inductance sensors were tested in an orientation controller for the components

of the rotation vector, u and v. The corresponding inputs for these components

were ∆P2 and ∆P3, respectively (Eq. (6.14), Pbase = .2 MPa). The pressure of the

actuators was then controlled with electronic pressure regulators (Fig. 6.11). The

controller gains were scaled by ap = 0.084 MPa/rad. ap is the slope of a line regressed

on the calibration data (0 kg data only) relating the outputs to the inputs (e.g. u to

∆P2). The error e in each rotation component comes from the difference between the

reference input (des) and the estimated values (est)

eu = udes − uest , ev = vdes − vest. (6.15)
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Figure 6.11:
The feedback controller for the joint relied on the inductance-based es-
timates of the rotation components u and v. The performance of this
controller was compared to one driven with feedback from the IMU.

The rate-of-change of the commanded pressure differences ∆Ṗ depends on this error

e and its time derivative ė

∆Ṗ2 = ap (kpeu + kdėu) , ∆Ṗ3 = ap (kpev + kdėv) . (6.16)

The feedback was tested under two weight conditions 0 kg (kp = 2 sec−1, kd = 0 )

and 9 kg (kp = 2 sec−1, kd = 0.1 ). The estimates of ė relied on a linear regression over

the last 10 data points in time. The loop period of the LabVIEW-based controller was

15 ms. The reference input was a fixed, pseudo-random sequence of ten step changes

in combinations of u and v. The levels of the steps were chosen to be feasible for the

given weight condition (60 ◦, 30 ◦ and 0 ◦ for 0 kg; 25 ◦, 12.5 ◦ and 0 ◦ for 9 kg). The

steps lasted for ten seconds each. The sequence of steps was repeated three times for

each condition. The orientation recorded by the IMU was considered ground truth.

For comparison, the controller was also tested with feedback from the IMU (instead

of the inductance sensors). The same feedback gains and protocol were used in the

IMU-controlled tests. The performance of the two feedback types was compared with

a paired t-test (paired in each step).

The inductance feedback allowed the joint to track the reference trajectory with
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Figure 6.12:
The data from the early period of the feedback control experiments.
The dashed black line is the reference trajectory for the tests in the
0 kg weight condition. The solid black line corresponds to the 9 kg tests.
The blue lines are the three inductance-feedback tests conducted in each
weight condition. The tracking performance of the inductance feedback
is comparable to that from the IMU (red lines).

Figure 6.13:
The data from the full length of the feedback control experiments. The
dashed black line is the reference trajectory for the tests in the 0 kg
weight condition. The solid black line corresponds to the 9 kg tests.
The blue lines are the three inductance-feedback tests conducted in each
weight condition. The tracking performance of the inductance feedback
is comparable to that from the IMU (red lines).
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similar performance to IMU feedback (Figs. 6.12 and 6.13, Table 6.5).

Table 6.5:
Average RMS of Tracking Error (◦) in Joint Orientation for Each Reference
Step of Feedback Control Trials

Feedback Type t-test
Weight Period IMU Inductance p

0 kg First 5 seconds 13.53 (SD 5.99) 13.79 (SD 6.02) < 0.05
Last 5 seconds 2.48 (SD 1.55) 2.98 (SD 1.46) < 0.05

9 kg First 5 seconds 8.18 (SD 3.70) 8.10 (SD 3.55) = 0.27
Last 5 seconds 1.02 (SD 0.61) 1.30 (SD 0.55) < 0.05

6.5 Discussion

This chapter describes the development of a unique, inductance-based sensing

system to measure and control the motion of bellows-driven continuum joints. This

system is based on changes in mutual inductance between circular coils on the bellows.

Verifying the calibration of the experimental sensing system on a separate data set

resulted in an orientation error RMS of only 1.11 ◦ (Fig. 6.9). In contrast to an IMU,

the inductance sensors presented in this work can measure joint motion that does not

change the relative orientation between the ends of a joint. A lateral displacement of

14 mm was measured by the proposed sensing system with only 1.3 mm of error. The

rapid and accurate inductance measurements enabled a feedback controller to orient

a 9 kg weight on a manipulator arm with a steady-state error of only 1.3 ◦ (3 ◦ with

no weight). The performance of the inductance-based feedback controller was similar

to an IMU-based controller. The steady-state tracking error of the IMU feedback

(which also served as ground truth) was only 0.5 ◦ smaller in the 0 kg condition and

0.3 ◦ smaller in the 9 kg condition.

Future work could explore the use of inductance measurements from redundant

sensors. The inductance modeling suggests that two sensors on orthogonally located

bellows can provide accurate measurements of the two rotation components (u and v).
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Accordingly, the experimental sensing system relied on only two orthogonally located

sensors in each half of the joint. Measuring the inductance from circuits on all the

bellows in a section, however, could improve the signal-to-noise-ratio. Changes in the

rotation component va, for example, create equal and opposite length changes in the

corresponding sections of bellows 1 and 3. Accordingly, the sensitivity of a va sensor

should approximately double when using the difference of L1a and L3a. Collecting

data from redundant sensors on opposite sides of the joint could also allow the system

to be accurate even if one side of the joint were in contact with a metal object (which

can bias inductance measurements [6]). If multiple inductance-sensing circuits were

used in close proximity (e.g. on separate halves of the same bellows), active strategies

could be necessary to prevent cross-talk [178].

The inductance-based sensors developed in this chapter bring sensing and control

to otherwise difficult-to-sense continuum joints. Unlike discrete joints, continuum

joints have no fixed center of rotation on which to affix an encoder. Alternative

sensors that have been proposed for continuum joints are often fragile or otherwise

poorly-suited for harsh, real-world applications.

Because the continuum joint used in this work has a central cable that does not

change length, a two-dimensional curvature sensor could also be used to measure

the joint. One well-developed version of a suitable sensor was recently used on the

FESTO “BionicMotionRobot” [sic] [78]. The sensor measures the shape of the central

cable through a series of LED-phototransistor pairs [77]. Based on the datasheet

[179], a sensor of this kind sized for the Pneubotics joint would have an standard

deviation of the end-position error of about 0.2 mm. This characterization comes

from small deviations from the nominal straight configuration. Compared to the

large-deformation calibration of the inductance sensor presented in this work, the

LED-based sensor appears to be about an order of magnitude more precise. No

large-magnitude deformation data was available for the LED-based curvature sensor.
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Additionally, the LED-based sensor has a minimum bend-radius of 10 cm and an outer

diameter of about 1 cm [179]. Accordingly, it has limited usefulness for smaller-scale

applications.

Self-sensing, bellows-driven continuum joints will enable robots that can create

and control compliant yet forceful motions in harsh environments. These unique

structures will provide inherently compliant actuation without backlash or stiction.

Both the sensors and actuators will be made from lightweight and low-cost compo-

nents. The flexible structure of the continuum joint will allow the robots to conform

to external constraints. The absence of discrete mechanical joints in sensors or actu-

ators will allow them to work in harsh environments where sliding surfaces would be

vulnerable. The sensing technology developed in this chapter provides a critical step

towards the full implementation of such robotic systems.
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CHAPTER VII

Conclusions

This dissertation explores the design and use of inductance-based sensors for the

estimation and control of soft robotic systems. This unique sensing strategy is advan-

tageous because it allows designers of soft robotic systems to easily fabricate robust

sensors from off-the-shelf materials that are low-cost, lightweight and well-suited for

the conditions that soft systems can best exploit. Though the scope of this disser-

tation is broad–ranging from FREE actuators, McKibben muscles and bellows–in

each case a solid contribution to the science has been made. In each application,

this work provides design analyses, models, and experimental evaluations to provide

understanding to future engineers and scientists who will use inductance sensing in

soft robots. As this work demonstrates, inductance-based sensing is a promising tech-

nology for these otherwise difficult-to-measure actuators. By combining sensing and

actuation into a single component, the ideas presented in this work provide a simple,

compact and lightweight way to create and control motion in soft robotic systems.

This will enable systems that can interactively engage with their environment and

their human counterparts.
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7.1 Overview and Contributions

The analyses of inductance-based sensors in Fiber Reinforced Elastomeric Enclo-

sures (FREEs) is enabled by the closed-form kinematic model presented in Chapter

II. These unique actuators can provide mechanically-programmable motion to soft

systems. The new model presented in this work is one of the significant contributions

of this dissertation. The introduction of η and the analytical relationship between

the fiber angles given in Eq. (2.6) allows for a closed-form framework for kinematic

analysis and design of FREE actuators. Previously published fiber-only models have

relied on “instantaneous” kinematics [137] to incrementally update fiber angles. To

solve for large deformations with instantaneous kinematics, the nonlinear equations

had to be iteratively solved and composed. The model presented in this work provides

analytic functions describing the actuator rotation, length, diameter and volume. All

of these functions are parameterized by the kinematic state of the actuator given by

the angle β. The simplicity of the presented model opens the door for new types

of design analyses for FREE actuators (including those conducted in this work). As

the understanding of FREEs grows, engineers will find new opportunities for these

unique actuators to expand the functional ability of soft, fluid-driven systems.

Chapter III lays the theoretical groundwork for understanding the design and use

of Smart Braid sensors in FREEs. The analyses of Chapter III show that Smart Braid

sensors can be used to sense the motion of FREE actuators. This chapter develops

a general inductance model for two-fiber-family Smart Braid FREEs. This simplified

model captures the trends in the inductance change and the effect of design choices

such as the number of wires, the electrical configuration (serial vs parallel), and

the size of the actuator. The model was validated numerically and experimentally.

These design factors are used to scale a numerically identified function χ(η, β). This

dimensionless function depends only on the ratio η of the fiber lengths and the angle

β of one of the fiber families. The inductance model provides insight into the design
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choices for Smart Braid sensors. Smart Braid FREEs for which β is close to zero

are not well suited to measure actuator motion. Nor are Smart Braid well suited for

FREEs in which the fibers have the same chirality (β > 0) unless one fiber is much

longer than the other (η close to zero). The quality factor of the circuit is increased

with higher numbers of fibers and larger cross-sectional areas in the conductors. This

must be done judiciously, however, because many large fibers can limit the range

of motion of the actuator. The absolute sensitivity of the inductance to motion is

greater when the wires are in a series configuration. Series or parallel wiring, on the

other hand, has no effect on the relative inductance sensitivity (normalized by the

inductance) nor the quality factor or the absolute change in the resonant frequency.

A parallel configuration, however, is simpler for an automated manufacturing process.

The Smart Braid sensor was evaluated as a length sensor for a McKibben mus-

cle actuator in Chapter IV. The model for Smart Braid inductance were able to

characterize the sensitivity of the actuator to within 8 %. The Smart Braid pro-

vided measurements of the actuator contraction that were accurate to within about

a millimeter in dynamic and loaded conditions. This was accomplished without any

additional mechanical components. The electrically conductive circuit formed by the

fibers was the only difference from a standard McKibben muscle. Despite this sim-

plicity, the contraction can be accurately measured with only a linear calibration of

the inductance measurements.

Chapter V shows how Smart Braid sensors can be used as feedback for motion

control in soft robotic systems. Motion control was demonstrated in both a revolute

system and a bending continuum manipulator. For the revolute joint, techniques

were developed to compensate for compliance between actuators and points of motion

output. These techniques extend to other actuator length-sensing technologies. The

results demonstrate that Smart Braids can control the motion of soft robotic systems.

In the revolute joint, the Smart Braid feedback resulted in stable angle control with a
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steady-state RMS error of 1.5 ◦. In the continuum manipulator, Smart Braid feedback

enabled tracking of the desired tip angle with a steady-state RMS error of 1.25 ◦.

Chapter VI describes the development of a unique, inductance-based sensing sys-

tem to measure and control the motion of bellows-driven continuum joints. This

system is based on changes in mutual inductance between circular coils on the bel-

lows. The inductance modeling suggests that these sensors work best when the minor

diameters of the bellows are separated by an axial distance that is much smaller than

the diameter. Additionally, the modeling and experimentation suggests that two sen-

sors on orthogonally located bellows can provide accurate measurements of the two

rotation components. Verifying the calibration of the experimental sensing system on

a separate data set resulted in an orientation error RMS of only 1.11 ◦. The induc-

tance sensors were able to measure joint motion that would be unobservable to an

IMU. A lateral displacement of 14 mm was measured with only 1.3 mm of error. The

rapid and accurate inductance measurements enabled a feedback controller to orient

a 9 kg weight on a manipulator arm with a steady-state error of only 1.3 ◦.

7.2 Limitations, Perspective and Future Opportunities

The work in this dissertation has limited scope. Future work is needed to provide

solutions to known weaknesses in the proposed sensing method, to apply the ideas

more broadly and to discover unknown weaknesses. The primary known weakness of

the method include fabrication methods, fiber fatigue, connection compliance, cross-

talk and interference from metal. Understanding these weaknesses can help designers

know when inductance-based sensing is appropriate for their application and know

how to design the sensing systems accordingly.

The fabrication of the Smart Braid sensors is quite complex. The current Smart

Braid fabrication process relies on a 3D-printed template and requires several hours

of manual labor. The fabrication of Smart Braids has thus far been limited to only
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McKibben muscles. The symmetric structure of these actuators makes it easy to braid

their fibers with an automated process. The automated process could be adapted

to include conductive fibers [160]. FREEs, on the other hand, are typically made

from layered families of thread-like fibers [136]. The fibrous fibers bond well with

the elastomer that holds them in place. It is possible that the 3D-printed template

method could be adapted to create braided Smart Braid FREEs. If a layered process

were used, care would need to be taken to create good bonding between the wire

insulation and the elastomer. When the Smart Braids are fabricated manually with

a single fiber, there is no need to create electrical junctions between the helix ends.

However, in an automated braiding or layered process, electrical junctions need to be

formed.

The bellows-sensor fabrication process is simple and straightforward and could

readily be integrated into the actuator fabrication process. The wire is simply wrapped

around the minor diameters. The minor diameter serves as a “groove” that aligns

and groups multiple turns of wire. A winding guide molded into the surface of the ac-

tuator would be helpful if the wires were to be wrapped uniformly around the bellows

(not just in the minor diameters).

The stress and repeated flexing of the wires can lead to failure. This is particularly

true when the fibers are used to transmit forces from the internal pressure. To avoid

this, the Smart Braid feedback tests of Chapter V used an internal braid of plastic

fibers to transmit the forces. The tinsel wire used in the bellows work (Chapter VI)

is designed to have a high flex-life but is not necessarily well-suited to undergo high

tensile stress. One promising wire option that has not been tested is highly flexible

silver-coated stainless steel wire [180]. This wire is designed for use in jewelry (where

repeated flexing and tensile stresses are common). The silver plating could provide

the necessary conductivity and the stainless steel the necessary tensile strength.

The stress in McKibben muscle fibers has been modeled and can be used to in-
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form the design of Smart Braid circuits. Currently, however, there are no models for

the fiber stress in two-fiber-family FREEs. Initial work done by myself and others

has indicated that the stress-induced resistance changes in the conductive fibers sur-

rounding a McKibben muscle can be used to measure the internal pressure [3], [160].

More research is necessary to understand how this could be used in conjunction with

inductance sensing or adapted for use in FREEs.

The experimental inductance-sensors tested in this work were primarily sensitive

to the actuator length. Sensing the length of the actuators directly is powerful be-

cause it creates a “servomotor”-like actuator that is the source of both the actuation

forces and the feedback. Care must be taken, however, when relating actuator length

measurements to estimates of the system motion. Compliance between the sensor lo-

cation and the point of motion output can bias estimates. External forces can induce

strain inbetween these points that is not captured by the sensor. When the sensors

are combined with the actuators, for instance, the load transmitted by the actuator

to the output can introduce such strains and lead to errors in the estimate of the

output position.

The inductance measurements can be affected by external electromagnetic signals.

For instance, the signal from one sensor can excite a signal in another. When multiple

sensors are used in close proximity, active strategies may be necessary to prevent

cross-talk [178]. For instance, the sensors can be made with high quality factors that

amplify the resonant frequency of the tank circuit compared to other frequencies.

with the “narrow-band” response, the nearby sensors can be paired with different

capacitors to create distinct resonant frequencies. Create a narrow-band response

can also help reject noise from other nearby emitters. There is no biasing effect from

DC magnetic fields that may be near the sensors [181].

The immediate proximity of metal to the sensors can pose challenges. The primary

challenge of nearby metal is the bias it can introduce to variable-geometry inductance
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sensing. Ferromagnetic materials such as iron, steel or ferrite can raise the sensor

inductance. Highly conductive materials such as aluminum and copper can lower the

inductance through the magnetic fields of the induced eddy currents. If the position

of the metal is fixed relative to the sensor, there is no problem with bias. Though

the metal may reduce the sensor quality factor, the effect of the metal can simply

be calibrated away. The difficulty arises when the sensor is moving relative to the

metal. The metal will cause a change in the sensor inductance without a change in

geometry. This will fool the sensing system into believing motion has occurred when

it has not.

One possible way to mitigate this effect is to monitor the drive currents of redun-

dant sensors. Both the continuum manipulator and the bellows-driven joint could

easily have redundant sensor measurements on the opposite sides of the device. If the

nearby metal is conductive enough to have significant eddy-currents, then additional

power is necessary to drive the sensor. The inductance-sensing chips used in the feed-

back control allow the system to monitor the driving current of the sensors [124]. By

detecting unusual changes in current, the system could know when to discount the

readings from a biased sensor. In the continuum structures, the redundant sensors

are on opposite sides of the system. The proposed strategy could be effective because

an incidental contact with biasing metal would, in most cases, have a much larger

effect on the close sensor than the distant one. Other potential strategies include the

use of fixed-geometry inductance sensors to monitor for nearby metal or the use of

electromagnetic shielding.

Metal could also be used to enhance the inductance response of the sensors.

Adding low-conductivity ferrous material to the core of the sensors could boost the

overall inductance (and thus the magnitude of the inductance change). For example,

it may be possible to add iron particles to the elastomer or ferrite cores to the bel-

lows. Care would need to be taken not lower the quality of the sensor through the
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inevitable “core losses” of the resonant energy.

It may also be possible to adapt the strategies proposed in this work for other

applications. For example, the inductance model of Chapter III revealed that the

highest sensitivity to length change comes from Smart Braids with very negative

values of β. When used to reinforce an elastomeric tube as an actuator, such fibers

lead to an extension motion. Suppose, however, that one wished to take advantage

of the high sensitivity of a highly-negative-β Smart Braid and the strong contractile

force of a contracting McKibben muscle. The high-sensitivity Smart Braid could be

used over-top of different fibers that created the contractile motion (similar to the

strategy used in Chapter V). This would create a sensor-actuator combination with

a higher sensitivity to length change than those tested in this work. It could also be

interesting to integrate inductive sensing into other soft structures such as elastomers

or clothes to measure motion created from an external source (e.g. the human body).

The sensing system for bellows was explored for bellows with circular cross-sections.

In other work, I have also characterized the inductance response of inductance sensing

for bending bellows [6].

It is difficult to make a direct comparison between the inductance-based sensing

strategies proposed in this work and other soft sensing strategies under development.

Most of the soft sensing technologies discussed in the introduction to this work are

based on measuring strain through additives and modifications to elastomers. The

advantage of these elastomer-based techniques is that the sensing systems can be

integrated directly into the robot body without appreciably changing the system

stiffness. The circuitry for the inductive sensing proposed in this work is designed to

be incorporated into soft actuators so that the wires reinforce the system in desirable

ways.

The inductance sensing strategy used in this work was used to measure large

deformations of the actuators. There is also a great deal of interest in measuring
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small tactile deformations in soft robot bodies. For tactile applications, I suspect

that elastomer-based resistive, capacitive or optical methods would be better suited.

7.3 Closing

The sensing technology explored in this work will enable the creation of a new

class of soft, self-sensing actuators based on inductance. This will enable robots that

can create and control compliant yet forceful motions in harsh environments. These

unique structures will provide inherently compliant actuation without backlash or

stiction. Both the sensors and actuators will be made from lightweight and low-cost

components. The flexible structures will allow the robots to conform to external

constraints. The absence of discrete mechanical joints in sensors or actuators will

allow them to work in harsh environments where sliding surfaces would be vulnerable.

This work paves the way for soft robots where both the sensors and the actuators are

made from compliant, lightweight and low-cost components. The sensing technology

developed in this work provides a critical step towards the full implementation of such

robotic systems.

It is only through sensing that soft systems can become true autonomous agents–

sensing and reacting to their own, changing environment. Soft robotic systems show

great promise in fields as diverse as materials handling, health care, human assistance,

agriculture, energy and exploration. These machines will be fundamentally different

than their rigid counterparts. This difference will make them uniquely suited to take

on the important tasks that have eluded traditional robots. In the soft, natural envi-

ronments where traditional robots fail, soft robots will excel. Because the flexibility

of soft robotics emulates that of animals, soft robots are better suited to work with

humans. Lightweight soft robotic manipulators could operate safely alongside human

workers. In health care, soft robotic systems could be used to inspect internal organs

[182]. Soft robotic orthoses could also provide assistance to the mobility impaired
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[183].

Giving soft robots the ability to sense and react to their environment will further

accelerate the pace of this growing field. This dissertation has laid the groundwork

for inductance-based sensing. As the technology continues to develop, it will expand

the applications and capabilities of soft robotic devices.
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