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CHAPTER I 

Introduction 

Background 

Historically, pathogenic bacteria have been a major human health problem. The rise of 

antimicrobial resistance has become an increasingly major concern. Multiple Gram-negative 

bacteria have become resistant to several classes of antibiotics and the rise of resistant bacteria 

has compromised the ability of healthcare providers to effectively treat infections (1,2). The CDC 

estimates that more than 2 million people in the United States are affected by antibiotic-resistant 

infections each year resulting in over 23,000 deaths (3). Many of the bacterial threats classified 

as urgent and serious by the CDC are Gram-negative. These threats call for the development of 

antibiotics with novel mechanisms of action. While many traditional antibiotics target the 

synthesis of cell wall peptidoglycan, the biosynthetic pathway of 2-keto-3-deoxy-D-manno-

octulosonate (Kdo) has not been fully explored as a target for antibiotic development. 
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Kdo is an essential component of lipopolysaccharide (LPS), which is located on the cell 

surface of the outer membrane of Gram-negative bacteria (Fig. 1.1). The outer membrane 

provides for a higher level of intrinsic resistance to intracellular penetration of antimicrobials, 

Fig. 1.1: Representative schematic of the Gram-negative membrane. Adapted from (1)  

Fig. 1.2: Constituents of LPS. Blue: lipid A. Red: core oligosaccharide. Green: O-antigen. Adapted 
from (2). 
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which reduces the number of effective options for treatment when compared to Gram-positive 

bacteria (4). The outer membrane is an asymmetric lipid bilayer comprised of a variety of 

phospholipids in the inner leaflet and LPS on the outer leaflet. LPS, which accounts for 30% of the 

outer membrane gross weight (5), is composed of three constituents: lipid A, the core 

oligosaccharide, and the O-antigen (Fig. 1.2). The highly-conserved lipid A domain anchors LPS 

into the outer leaflet of the outer membrane. The core oligosaccharide, which usually contains 

at least one Kdo residue, is a conserved region which connects lipid A and the O-antigen. The 

core oligosaccharide in E. coli minimally requires the addition of Kdo to lipid IVA (6). The O-antigen 

is the outermost region of LPS and is highly variable.  

The presence of LPS (aka endotoxin), on the surface of the bacterium, allows for the host’s 

immune system to recognize an infection through pathogen-associated molecular patterns (7). 

When an abnormal, imbalanced, response to an infection by the immune system occurs, several 

conditions can arise including fever, tachycardia, hypotension, multiple organ failure, and in 

some cases, death (8). 

 

D-Arabinose-5-Phosphate Isomerase 

 The first step of the Kdo biosynthetic pathway (Fig. 1.3) is the reversible keto/aldol 

isomerization of the pentose phosphate pathway intermediate D-ribulose-5-phosphate (Ru5P) to 

D-arabinose-5-phosphate (A5P) catalyzed by arabinose-5-phosphate isomerase (API). A5P is 

condensed with phosphoenol pyruvate by Kdo8P synthase (KdsA) to form Kdo8P (9). 

Dephosphorylation of Kdo8P to Kdo occurs via Kdo8P phosphatase (KdsC) and is subsequently 
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activated with CTP to yield CMP-Kdo by cytidine-5’-monophosphatase KDO synthetase (KdsB) 

(10).  

 APIs were originally identified by Volk while studying the metabolism of L-arabinose by 

Propionibacterium pentosaceum in the late 1950s (11). After initially naming the enzyme 

phosphoarabinoisomerase, he went on to partially purify the API from P. pentosaceum and show 

that is was specific for the interconversion of A5P and Ru5P (12). 

 While several organisms encode a single API, the genome of E. coli CFT073 contains four 

genes which encode APIs. Each of these APIs corresponds with a unique function. The first three 

of APIs KdsD, GutQ, and KpsF, are the traditional API, which contain both a sugar isomerase (SIS) 

domain and a tandem cystathionine β-synthase (CBS) domain (Fig. 1.4).  KdsD is responsible for 

A5P necessary for LPS biosynthesis, GutQ is responsible for operon regulation, and KpsF is 

involved in capsule biogenesis (2). 

 

 

 

 

 

Fig. 1.3: The Kdo biosynthetic pathway. [1] D-arabinose-5-phosphate isomerase, [2] Kdo-8-
phosphate synthase, [3] Kdo8P phosphatase, [4] cytidine-5’-monophosphate-Kdo synthetase. 
Adapted from (1,2). 
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Fig. 1.4: The SIS and CBS domains of APIs. A) c3406 SIS domain. B) CBS domain of Klebsiella 

pneumoniae PDB ID: 3K2V (12). 

 

KdsD 

 E. coli KdsD, the most studied API, was assayed and found to be a phosphosugar aldo-keto 

isomerase specific for the interconversion of Ru5P and A5P (13) and can serve as the sole A5P 

source of the cell (14). Upon further characterization of KdsD it was found to be a tetramer under 

native conditions (13), which has proven to be the norm for APIs.  Full kinetic parameters for 

KdsD can be found in Table 1.1.  
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Table 1.1: Kinetic constants for catalysis by the APIs of E. coli. 

 

 

Various attempts have been made to obtain the crystal structure of E. coli KdsD, which 

consist of an N-terminal SIS domain (residues 1-200) followed by two CBS domains (residues 213-

325), however, to date, all attempts have failed to obtain a full-length structure of the enzyme. 

However, the SIS domain of a catalytically inactive mutant K59A of E. coli KdsD (PDB ID: 2XHZ) 

(17) and the CBS domains of KdsD (PDB ID: 3FNA) (18) have been separately crystallized. 

 

KpsF 

 The kps locus, which is necessary for the biosynthesis of polysialic acid capsule virulence 

factor in E. coli K1, contains at least two convergently transcribed operons.  kpsF is the first gene 

of region 1 and is transcriptionally silent at lower temperatures (20°C).  However, maximal 

transcription of kpsF can be seen at host body temperature (37°) (19). It has been shown that 

Group II K antigens exhibit temperature dependent regulation, with capsule expressions at 37°C 

but not 18°C and are under the transcriptional control of the same promotor as kpsF (19,20). The 

kpsF gene also encodes an intragenic Rho-dependent transcriptional terminator (RfaH) that 

Protein kcat 

(A5P to 

Ru5P, s-1) 

Km 

(A5P, mM) 

kcat / Km 

(A5P, M-1 s-1) 

kcat 

(Ru5P to 

A5P, s-1) 

Km 

(Ru5P, mM) 

kcat/ Km 

(Ru5P,  

M-1 s-1) 

Keq Optimum 

pH 

Subunit 

mass (Da) 

KdsD(13) 157±4 0.61±0.06 2.6x105 255±16 0.35±0.08 7.3x105 0.50±0.06 8.4 35,084 

GutQ(14) 218±4 1.2±0.1 1.8x105 242±11 0.64±0.08 3.8x105 0.47 8.25 33,909 

KpsF(15) 15±1 0.57±0.04 2.6x104 19±2 0.30±0.03 6.3x104 0.48±0.02 7.75 35,447 

c3406(16) 1.92±0.05 8.8x103 16.8±0.2 10.5±0.08 0.70±0.12 1.5x104 0.52 6.6 20,880 
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permits transcription regulation of region 1 in response to physiological stress (15,20). Maximal 

transcription of region 1 is regulated by the tyrosine-phosphorylated GTPase BipA, the global 

regulator heat-stable nucleoid-structuring protein (H-NS), integration host factor (IHF1), and 

promoters at 37°C (21). H-NS has been implicated in the thermoregulation of many genes, 

repressing transcription at low temperatures and activating gene expression at 37°C. The kpsF 

gene encodes an IHF1 site near the 5’ end of the gene which suggests that IHF1 may play an 

indirect role in the activation of region 1 transcription (21). All of these regulators located within 

and around kpsF result in a coordinated repression of capsule synthesis at temperatures below 

20°C and induction of capsule synthesis at 37°C (15). 

KpsF was characterized from the group 2 capsule strain E. coli CFT073 in order to begin to 

better understand the role of Kdo in capsule biogenesis as E. coli K1 and K92 strains do not have 

Kdo substituted in the reducing end of their polysaccharides. KpsF was found to be tetrameric in 

its quaternary structure, and inhibited by Zn2+, Cd2+, and Hg2+. The addition of EDTA increased 

activity by approximately 2 fold showing that there is not, however, a metal requirement for KpsF 

(15). It has been speculated that metal ion inhibition may be a post-transcriptional control 

mechanism in vivo (22), but it is unclear if this would be biologically relevant in the case of KpsF 

as the concentration of cytoplasmic unsequestered zinc is very low (15). Full kinetic parameters 

of KpsF can found in Table 1.1. 

 

GutQ 

 The first G-API to be characterized, GutQ, was identified downstream from gutR of the 

glucitol operon in E. coli (23). The other seven genes in the glucitol operon encode for the EIIGut 
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complex (formed by GutA, GutE, and GutB), a NADH-dependent dehydrogenase (GutD), a 

transcriptional repressor (GutR), and a transcriptional activator (GutM).   

After the discovery of the function of KpsF and KdsD, it was determined that GutQ was 

indeed an arabinose 5-phosphate isomerase (Table 1.1). The role of GutQ in the gut operon 

remains unclear as a gutQ deletion in E. coli does not interfere with gut operon induction. 

Upregulation of gutQ occurs with the addition of D-glucitol. Further, the addition of varying 

concentrations of A5P appears to affect gut operon induction. This suggests that GutQ may 

function to synthesize A5P which then participates in the induction of the operon to modulate 

expression levels through an unknown mechanism (14). 

 

SIS-domain APIs 

The last type of API is the SIS-domain API. These API only contain an SIS domain and lack 

the CBS domains contained in traditional API. One of the most studied APIs in this category is 

c3406 API from E. coli CFT073, a very well-studied uropathogenic strain which upregulates a 

significant number of genes during UTI (16,24-26). Deletion of a cluster of genes, c3405 to c3410, 

results in a significant attenuation of CFT073’s ability to independently colonize mouse kidneys 

(27). Analysis of this cluster showed that one of the genes, c3406, encodes for a protein that has 

significant homology to the SIS domain of APIs. Other genes in the cluster encode for a putative 

2-hydroxyacid dehydrogenase (c3405), a beta-cystathionase (c3407), a maltose and glucose-

specific IIABC component (c3408), and an antiterminator (c3409) (16). E. coli CFT073 expresses 

group 2 K antigens and therefore already encodes for KdsD, GutQ, and KpsF. While these three 

enzymes contain two CBS domains, c3406 only consists of an SIS domain.  The c3406 protein 
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shares 52%, 45%, and 40% identity with the SIS domains of KdsD, KpsF, and GutQ, respectively, 

from E. coli CFT073.  

Analysis of the quaternary structure of the c3406 protein showed it likely exists as a 

tetramer. The enzymatic activity of c3406 was shown to be specific for the interconversion of 

Ru5P and A5P. Furthermore, it was shown that Zn2+, Cd2+, and Hg2+ all inhibit c3406’s enzymatic 

activity, similar to KdsD. Perhaps the most striking differences between c3406 and the CBS-

containing APIs is lower efficiency of c3406 as an API and the extreme pH-rate optimum, which 

is more than an entire pH unit lower than any characterized API (Table 1.1). Studies of an E. coli 

CFT073 Δc3406 strain showed that there was no significant difference in its ability to colonize rat 

bladder and kidneys compared to wild type (16). It is unclear what the biological function of the 

c3405-to-c3410 operon is, but it appears as though c3406 API is not solely responsible for the 

phenotype that is observed when the entire operon is deleted (16). 

 

Dissertation Research Rationale 

 

APIs are the sole source of intracellular A5P utilized in the Kdo biosynthetic pathway. It is 

known that deletion of APIs leads to depletion of A5P pools and thus disrupts Kdo biosynthesis.  

It has long been thought that Kdo production was specific to Gram-negative bacteria. However, 

Kdo has been found in higher order plants. This means that A5P may be utilized for more than 

LPS biosynthesis.  

To explore the hypothesis that A5P can be utilized for a variety of functions, an approach 

involving molecular biology, enzymology, and microbiology was applied. The first step was to 
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identify and characterize unique APIs from a variety of sources. In chapters II, III, IV, and V genes 

encoding potential APIs from Gram-positive bacteria, Gram-negative bacteria, and a plant were 

cloned, overexpressed, purified, and characterized. Utilizing the information gained form these 

studies, including the finding of a potential feedback inhibition pathway, a better understanding 

of the mechanism of APIs was sought in chapter VI, which could aid in the design of inhibitors of 

APIs.  

 

  



11 
 

References 

1. Raetz, C. R. H., and Whitfield, C. (2002) Lipopolysaccharide Endotoxins. Annual Review of 
Biochemistry 71, 635-700 

 
2. Meredith, T. C. (2006) D-Arabinose-5-Phosphate Isomerase from Escherichia coli. PhD, 

University of Michigan 
 
3. (2013) Antibiotic Resistance Threats in the United States. Centers for Disease Control 

and Prevention 
 
4. Nikaido, H. (1989) Outer membrane barrier as a mechanism of antimicrobial resistance. 

Antimicrob Agents Chemother 33, 1831-1836 
 
5. Nikaido, H. (1996) Outer Membrane. in Escherichia coli and Salmonella typhimurium : 

cellular and molecular biology (Neidhardt, F. C. ed.), American Society for Microbiology, 
Washington, D.C. pp 29-47 

 
6. Meredith, T. C., Aggarwal, P., Mamal, U., Lindner, B., and Woodard, R. W. (2006) 

Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS chemical 
biology 1, 33-42 

 
7. Silhavy, T. J., Kahne, D., and Walker, S. (2010) The bacterial cell envelope. Cold Spring 

Harb Perspect Biol 2, a000414 
 
8. Cohen, J. (2002) The immunopathogenesis of sepsis. Nature 420, 885-891 
 
9. Duewel, H. S., Sheflyan, G. Y., and Woodard, R. W. (1999) Functional and biochemical 

characterization of a recombinant 3-Deoxy-D-manno-octulosonic acid 8-phosphate 
synthase from the hyperthermophilic bacterium Aquifex aeolicus. Biochemical and 
biophysical research communications 263, 346-351 

 
10. Yi, L., Velasquez, M. S., Holler, T. P., and Woodard, R. W. (2011) A simple assay for 3-

deoxy-d-manno-octulosonate cytidylyltransferase and its use as a pathway screen. Anal. 
Biochem. 416, 152-158 

 
11. Volk, W. A. (1959) The Enzymatic Formation of D-Arabinose 5-Phosphate from l-

Arabinose and Adenosine Triphosphate by Propionibacterium pentosaceum. J. Biol. 
Chem. 234, 1931-1936 

 
12. Volk, W. A. (1960) Purification and Properties of Phosphoarabinoisomerase from 

Propionibacterium pentosaceum. J. Biol. Chem. 235, 1550-1553 
 



12 
 

13. Meredith, T. C., and Woodard, R. W. (2003) Escherichia coli YrbH Is a D-Arabinose 5-
Phosphate Isomerase. J. Biol. Chem. 278, 32771-32777 

 
14. Meredith, T. C., and Woodard, R. W. (2005) Identification of GutQ from Escherichia coli 

as a D-Arabinose 5-Phosphate Isomerase. J. Bacteriol. 187, 6936-6942 
 
15. Meredith, Timothy C., and Woodard, Ronald W. (2006) Characterization of Escherichia 

coli D-arabinose 5-phosphate isomerase encoded by kpsF: implications for group 2 
capsule biosynthesis. Biochemical Journal 395, 427-432 

 
16. Mosberg, J., Yep, A., Meredith, T., Smith, S., Wang, P.-F., Holler, T., Mobley, H., and 

Woodard, R. (2011) A unique arabinose 5-phosphate isomerase found within a genomic 
island associated with the uropathogenicity of Escherichia coli CFT073. J. Bacteriol. 193, 
2981-2988 

 
17. Gourlay, L. J., Sommaruga, S., Nardini, M., Sperandeo, P., Dehò, G., Polissi, A., and 

Bolognesi, M. (2010) Probing the active site of the sugar isomerase domain from E. coli 
arabinose-5-phosphate isomerase via X-ray crystallography. Protein Science 19, 2430-
2439 

 
18. Cuff, M., Bigelow, L., Buck, K., and Joachimiak, A. The CBS Pair of possible D-arabinose 5-

phosphate isomerase yrbH from Escherichia coli CFT073. PDB ID: 3FNA  
 
19. Cieslewicz, M., and Vimr, E. (1996) Thermoregulation of kpsF, the first region 1 gene in 

the kps locus for polysialic acid biosynthesis in Escherichia coli K1. J Bacteriol. 178, 3212-
3220 

 
20. Simpson, D. A., Hammarton, T. C., and Roberts, I. S. (1996) Transcriptional organization 

and regulation of expression of region 1 of the Escherichia coli K5 capsule gene cluster. J. 
Bacteriol. 178, 6466-6474 

 
21. Rowe, S., Hodson, N., Griffiths, G., and Roberts, I. S. (2000) Regulation of the Escherichia 

coli K5 Capsule Gene Cluster: Evidence for the Roles of H-NS, BipA, and Integration Host 
Factor in Regulation of Group 2 Capsule Gene Clusters in Pathogenic E. coli. J. Bacteriol. 
182, 2741-2745 

 
22. Maret, W., Jacob, C., Vallee, B. L., and Fischer, E. H. (1999) Inhibitory sites in enzymes: 

zinc removal and reactivation by thionein. Proceedings of the National Academy of 
Sciences of the United States of America 96, 1936-1940 

 
23. Yamada, M., and Saier, M. H., Jr. (1987) Glucitol-specific enzymes of the 

phosphotransferase system in Escherichia coli. Nucleotide sequence of the gut operon. J 
Biol Chem 262, 5455-5463 

 



13 
 

24. Subashchandrabose, S., and Mobley, H. L. (2015) Virulence and Fitness Determinants of 
Uropathogenic Escherichia coli. Microbiol Spectr 3 

 
25. Garcia, E. C., Brumbaugh, A. R., and Mobley, H. L. (2011) Redundancy and specificity of 

Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79, 
1225-1235 

 
26. Snyder, J. A., Haugen, B. J., Buckles, E. L., Lockatell, C. V., Johnson, D. E., Donnenberg, M. 

S., Welch, R. A., and Mobley, H. L. (2004) Transcriptome of uropathogenic Escherichia 
coli during urinary tract infection. Infect Immun 72, 6373-6381 

 
27. Lloyd, A. L., Henderson, T. A., Vigil, P. D., and Mobley, H. L. T. (2009) Genomic Islands of 

Uropathogenic Escherichia coli Contribute to Virulence. J. Bacteriol. 191, 3469-3481 
 



14 
 

CHAPTER II 

A Novel Glucose-6-phosphate Isomerase from Listeria monocytogenes 

The work described in this chapter has been published [Cech, D.L., Wang, P.F., Holt, M.C., 
Assimon, V.A., Schaub, J.M., Holler, T.P., Woodard, R.W., A novel glucose 6-phosphate isomerase 
from Listeria monocytogenes. Protein J, 2014. 33(5): p. 447-56.] 

 
Summary 

D-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose-5-

phosphate and D-arabinose-5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-

deoxy-D-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, which is 

found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive 

pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain 

API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli 

CFT073 that lacks a CBS domain. However, L. monocytogenes lacks genes encoding any of the 

other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-

positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we 

prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, 

but instead is a novel GPI (D-glucose 6-phosphate isomerase). However, the GPI activity of 

Q723E8 is weak compared with previously described GPIS. L. monocytogenes contains an 

ortholog of the well-studied two-domain bacterial GPI. Based on this evidence, glucose utilization 

is likely not the primary physiological role of Q723E8. 
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Introduction 

The Gram-positive bacterium Listeria monocytogenes, originally isolated from infected 

rabbits [1], is ubiquitous in the environment and causes disease in a variety of species, including 

Homo sapiens [2]. It is perhaps best known for causing food-borne illnesses, a trait enhanced by 

its ability to survive and grow under a wide range of environmental conditions and the long 

incubation time between exposure and the onset of illness [3]. L. monocytogenes is one of 8 

species in the genus Listeria and the only human pathogen among them. Another species in the 

genus, L. ivanovii, is an animal pathogen [4]. L. monocytogenes is a facultative anaerobe that can 

grow in environments with temperatures ranging from 0 to 45 °C and pH from 4.1 to 9.6 [5]. It 

can survive on various food products for a very long time.  Once ingested, L. monocytogenes is 

an intracellular pathogen capable of growth within cells of the gastrointestinal tract or in 

macrophages. Given the diversity of its habitat, one might expect Listeria to utilize a vast array 

of carbon substrates.  However, under laboratory conditions, glucosamine, N-acetylglucosamine 

and glucose are the primary substrates for growth of L. monocytogenes [6]. 

We were intrigued by the appearance of the crystal structure of a 200 amino-acid protein 

(PDB ID: 3FXA) from L. monocytogenes strain 4b F2365, which was annotated as an API. This 

structure had substantial homology to c3406, one of the four arabinose-5-phosphate isomerases 

present in the Gram-negative pathogen Escherichia coli CFT073 [7]. Because the catalytic 

properties of most of the small proteins that consist of a single sugar isomerase domain [8] are 

underexplored, we cloned, purified and characterized this protein, which will be referred to by 

its UniProt ID: Q723E8. Contrary to the initial prediction of an API, this protein is capable of 

catalyzing the interconversion of glucose-6-phosphate (G6P) and fructose 6-phosphate (F6P). 
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Given its small size and lack of a metal cofactor, Q723E8 may represent the first member of a 

novel class of glucose-6-phosphate isomerases (GPIs). 

Materials and Methods 

Materials 

Genomic DNA from Listeria monocytogenes type 4b strain F2365 was purchased from the 

American Type Culture Collection (catalogue # BAA-679D-5). PCR was performed using primers 

synthesized by Integrated DNA Technologies (Coralville, Iowa, USA) or Invitrogen (Carlsbad, CA, 

USA), the FailsafeTM PCR PreMix Selection Kit from Epicentre Biotechnologies (Madison, WI, USA), 

and an MJ Research PTC-200 Peltier Thermal Cycler. TA TOPO cloning was performed with the 

TOPO TA cloning kit from Invitrogen. Enzymes required for subcloning and site-directed 

mutagenesis were purchased from New England Biolabs (Ipswich, WI, USA) and Stratagene (La 

Jolla, CA, USA), respectively. Plasmid DNA purification was performed with the Promega Wizard 

Miniprep kit (Madison, WI, USA). DNA sequencing was performed by the University of Michigan 

Biomedical Resources Core Facility. Metal salts used for assays were purchased as high-purity 

solids from Alfa-Aesar and used without further purification. 
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Table 2.1 Strains, Plasmids, and Primers used in this study 

Item Description Source 

E. coli      

TOP10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) F80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG 
Invitrogen 

TCM15 BW30270(ΔkdsDΔgutQ) Ref. 3 

Rosetta 2 (DE3) pLysS F- ompT hsdSB(rB
-mB

-) gal dcm (DE3) pLysSRARE2 (CamR) EMD Millipore 

Plasmids    

pCR2.1-TOPO Library plasmid  Invitrogen 

pT7-7 Expression vector Ref. 10 

pT7-7c3406 E.coli CFT073 c3406 inserted into NdeI/BamHI of pT7-7, AmpR Ref. 8 

pT7-7LMOf2365_0531 
L. monocytogensis 4b F22365 LMOf2365_0531 in NdeI/ BamHI of pT7-

7, AmpR 
This study  

Primers   

LMOF2365_0531.F 
GGCATATGGATAAACAAGCTATTTTAGATAATATTCACCAAACA

GGa 
Invitrogen 

LMOF2365_0531.R 
CCGGATCCTTATTTATTTAATAATTTGTTTCCAACGGCACCACCA

GGb 
Invitrogen 

LMOF2365_0531.S.SDM 
GGTGCCGTTGGAAACAAATTATTGAACAAGTGACAGCACACTGG

CGGCCG 
Invitrogen 

LMOF2365_0531.A.SDM 
CGGCCGCCAGTGTGCTGTCACTTGTTCAATAATTTGTTTCCAACG

GCACC 
Invitrogen 

 

 

Bacterial strains, plasmids, primers and growth media  
 

The bacterial strains, plasmids, and primers used in this study are described in Table 2.1. 

E. coli TCM15 is a derivative of BW30270, E. coli K-12 MG1655; rph+fnr+, in which the kdsD and 

gutQ genes were disrupted using a phage λ Red recombinase system [10]. Strains were grown in 

LB medium [11]. TCM15 cultures were additionally supplemented with D-arabinose 5-phsophate 

(A5P; 15 µM) and G6P (10 µM). 

 

Cloning, expression and purification of L. monocytogenes Q723E8 

 

The lmof2365_0531 gene, which encodes Q723E8, was amplified from the genomic DNA 

of L. monocytogenes 4b strain F2365 using the primers LMOF2365_0531.F and 

LMOF2365_0531.R (Table 2.1). Agarose gel-purified PCR products were inserted into vector 



18 
 

pCR2.1-TOPO using the TA TOPO cloning kit. The gene was then subcloned by digestion of an 

insert-containing plasmid with NdeI and BamHI, gel-purification of the insert, and then ligation 

into the similarly restricted expression vector pT7-7 [12]. Site-directed mutagenesis was 

performed using primers LMOF2365_0531.S.SDM and LMOF2365_0531.A.SDM (Table 2.1), PCR 

2X premix buffer E, and the DNA polymerase Herculase II. The PCR mixture was digested with 

endonuclease DpnI at 37 °C for 1 h to remove the template plasmid, and then used to transform 

chemically competent E. coli TOP 10 cells to ampicillin resistance. DNA sequencing of the 

resulting plasmid, pT7-lmof2365_0531, confirmed that the sequence of the lmof2365_0531 gene 

conformed to the sequence published in the Kyoto Encyclopedia of Genes and Genomes 

(www.genome.jp/dbget-bin/www_bget?lmf:LMOf2365_0531). The lmof2365_0531 gene was 

then transferred to the protein expression plasmid pET17b using the restriction endonucleases 

NdeI and BamHI. The resulting expression plasmid was transformed into chemically competent 

E. coli Rosetta 2 (DE3) pLysS cells. A fresh transformant was grown in LB medium supplemented 

with 100 mg/L ampicillin and 30 mg/L chloramphenicol at 37 °C with shaking at 250 rpm until the 

OD600 nm reached 0.8. The culture was cooled to 19 °C, and protein expression was induced by 

addition of isopropyl β-D-1-thiogalactopyranoside (0.4 mM). After 12 h of incubation at 19 °C, 

cells were harvested by centrifugation (6000 x g, 10 min, 4 °C). The cell pellet was resuspended 

in 20 mM Tris HCl buffer, pH 7.5, containing 0.1 M NaCl, and then sonicated on ice (3 cycles of 20 

s, 2 min pauses between pulses) and clarified by centrifugation at 20,000 x g for 30 min. 

Ammonium sulfate was added slowly to the supernatant until 60% saturation at 4 oC. Precipitated 

proteins were removed by centrifugation (20,000 x g for 30 min) and the supernatant was 

dialyzed against 20 mM Tris HCl buffer, pH 7.5, overnight at 4 °C. After dialysis the protein was 
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loaded onto a Q-Sepharose anion exchange column equilibrated in 40 mM Tris HCl, pH 7.5, and 

eluted with a linear gradient of 0-600 mM NaCl over 15 column volumes at a flow rate of 0.5 

mL/min. The fractions containing Q723E8 were concentrated using an Amicon ultra centrifugal 

filter (10,000 MWCO); exchanged into 20 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic 

acid (HEPES) buffer, pH 7.5, 100 mM NaCl, and 25% glycerol, divided into aliquots and stored at 

-80 °C.  

 

Molecular weight determination 

 

The subunit mass of Q723E8 was determined utilizing electrospray ionization mass 

spectrometry on an LCT electrospray/time-of-flight spectrometer. The native MW (molecular 

weight) of Q723E8 was estimated by native gel electrophoresis using a Pharmacia PhastSystem. 

Samples of Q723E8 were run on gradient acrylamide gels using an 8-25% total acrylamide 

gradient (GE Healthcare PhastGel Gradient 8-25) under native conditions (GE Healthcare Phastgel 

Native Buffer Strips). Standards, run in triplicate, included BSA dimer (132.4 kDa), BSA monomer 

(66.2 kDa), and chicken egg white ovalbumin monomer (44.3 kDa). A relative mobility (RF) value 

was determined for each protein standard, averaging the three replicates. A plot of RF versus 

log(MW) was fit by linear regression using GraphPad Prism 5. The MW of Q723E8 was determined 

by experimentally measuring its RF value, in duplicate, and calculating its log(MW) from the 

standard curve. Two experimental values of the MW of Q723E8 were calculated and these values 

were averaged to yield the MW. 
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Complementation experiments in the TCM-15 E. coli derivative 

 

Electrocompetent cells were prepared using a previously described TCM15 variant [7] 

that carries a kanamycin resistance cassette. These electrocompetent TCM15 cells were 

transformed separately with pT7-lmof2365_0531, pT7-c3406, and the empty pT7-7 vector. Cells 

were grown on LB/agar plates supplemented with 100 mg/L ampicillin, 50 mg/L kanamycin, 15 

µM A5P and 10 µM G6P. Single colonies were used to inoculate liquid LB media supplemented 

with the same concentrations of antibiotics, A5P, and G6P. After overnight growth at 37 °C, cells 

were washed twice with liquid LB medium to remove the A5P and G6P in the overnight culture. 

The washed cells were streaked on LB/agar plates with and without A5P/G6P, and incubated 

overnight at 37 °C.  

 

D-Glucose 6-phosphate isomerase assays 

 

The discontinuous cysteine-carbazole colorimetric assay, adapted to a 96-well microplate 

format [9], was used to measure the isomerization of G6P to F6P. Briefly, 25 µL aliquots of 

Q723E8 in 100 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer, pH 7.0, containing 1 

mM EDTA, were added to the wells of a 96-well assay microplate. The assay plate, which also 

contained aliquots of G6P in the same buffer in separate wells, was then incubated at 37 °C for 3 

min using a PTC-200 Peltier Thermal Cycler (MJ Research). Reactions were initiated by adding of 

25 µL G6P solution to the aliquots of Q723E8, and then incubating the plate at 37 °C for the 

specified time, typically 3 min. Reaction mixtures were quenched with 50 μL of 25 N H2SO4. Next, 

a 90 μL portion of each quenched reaction mixture was transferred to the appropriate well of a 

fresh 96-well flat bottom assay plate containing 10 µL of 0.12% ethanolic carbazole, 10 µL of 1.5% 
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aqueous cysteine-HCl, and 230 µL of 25 N H2SO4 per well. This microplate was incubated at room 

temperature (~21 oC) for 3 h before recording the absorbance of each well at 540 nm. All plates 

contained controls consisting of identical reactions that lacked either Q723E8 or G6P, and 

internal F6P standards in triplicate.  

 

Substrate specificity  

 

Recombinant Q723E8 was tested for its ability to convert aldoses to ketoses using the 

discontinuous cysteine-carbazole assay. For each potential substrate, a solution containing 250 

nM enzyme, 100 mM Tris-HCl pH 7.5, and 0.8 mM substrate was incubated for 10 min at 37 °C, 

quenched with 25 N H2SO4, transferred to a separate microplate containing the cysteine-

carbazole assay mixture, and incubated at room temperature (~21 oC) for 3 h. The absorbance at 

540 nm was compared to that of an otherwise identical control reaction lacking enzyme. 

Determinations were performed in triplicate, and the test aldoses that produced an absorbance 

significantly greater than the control were considered potential substrates. The aldoses tested 

include A5P, G6P, D-ribose 5-phosphate, D-arabinose, D-mannose 6-phosphate, D-glucosamine 6-

phosphate, and D-ribose.  

 

Determining the pH-rate profile of Q723E8  

 

To determine the optimal pH of the enzyme, we tested Q723E8’s catalytic activity in a 

series of buffered solutions of varying pH using the cysteine-carbazole assay. Buffer solutions 

(200 mM buffer, 2 mM EDTA) were prepared at pHs from 5.25 to 9.5 in 0.25 unit increments at 

37 oC. The buffer 2-(N-morpholino)ethanesulfonic acid (MES) was used from pH 5.25 to 6.5; 

MOPS buffer was used from pH 6.75 to 7.75; and 2,2'-(Propane-1,3-diyldiimino)bis[2-
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(hydroxymethyl)propane-1,3-diol] (Bis-tris propane) buffer was used from pH 8.0 to 9.5. Final 

concentrations were 100 nM Q723E8, 5 mM G6P, 1 mM EDTA, and 100 mM buffer. Reactions 

were allowed to proceed for 0, 5, and 10 min before quenching with equal volumes of 25 N H2SO4. 

Quenched reactions were kept at room temperature (~21 oC) to develop for 3 h before recording 

the absorbance at 540 nm. The activity at each pH was determined in triplicate. Reaction rates 

were determined by fitting the 0, 5 and 10 min time points using linear regression.  

 

Effect of divalent metal ions on the GPI activity of Q723E8 

 

Samples of Q723E8 were diluted into buffer containing 200 mM MOPS pH 7.0, and either 

20 µM EDTA or 20 M divalent metal salt and incubated for 1 h at 4 °C. The remaining isomerase 

activity was assayed using the discontinuous cysteine-carbazole assay. Final concentrations in 

each assay were: 100 mM MOPS pH 7.0, 500 nM enzyme, 2 mM G6P, and 10 µM metal salt or 

EDTA. Reactions were incubated for 3 min at 37 °C and the color was allowed to develop for 3 h 

at room temperature. Metal salts included BaCl2
.2H2O, MnCl2.4H2O, ZnCl2, NiCl2.6H2O, 

CoSO4
.7H2O, CuSO4, FeSO4

.7H2O, CdCl2, MgCl2, CaCl2.2H2O, and HgCl2. 

 

Enzyme kinetics 

 

Kinetic parameters for the isomerization of G6P to F6P or A5P to D-ribulose 5-phsohpate 

(Ru5P) catalyzed by Q723E8 were determined using the discontinuous cysteine carbazole assay. 

Individual conditions were assayed in triplicate, with 500 nM Q723E8, 100 mM MOPS pH 7.0, 1 

mM EDTA, and substrate concentrations ranging from 0.125 mM to 8 mM G6P or 0.156 mM to 

10 mM A5P. Individual assays, pre-heated for 3 min at 37 oC, and appropriate controls (F6P 

standards, a reaction lacking enzyme, and a reaction lacking substrate), were allowed to react for 
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3 min at 37 °C, before being quenched with equal volumes of 25 N H2SO4. The reaction was 

incubated at room temperature (~21 oC) for 3 h to develop color. Control reactions demonstrated 

that less than 10% of the substrate was converted to product under all the conditions tested. 

Kinetic parameters were obtained by fitting the data to the Michaelis-Menten equation using 

nonlinear least-squares regression with GraphPad Prism 5 software. 

Kinetic parameters for the isomerization of F6P to G6P were determined in triplicate using 

a coupled assay in which the G6P produced was oxidized to 6-phosphoglucono-δ-lactone by 

glucose 6-phosphate dehydrogenase and its cofactor, NADP+. The progress of the reaction was 

monitored by following the absorbance, at 340 nm, of the NADPH produced [13]. Individual 

assays were performed in a quartz cuvette as follows: the coupling enzyme (E. coli D-glucose 6-

phosphate dehydrogenase, gene name zwf) was diluted into 2x reaction buffer (200 mM MOPS, 

pH 7.0, containing 2 mM EDTA) to a final assay concentration of 1 μM of the coupling enzyme. A 

solution containing F6P (final concentration ranging from 0.01 mM to 3 mM) and NADP+ (final 

concentration of 0.16 mM) was then added to the cuvette, which was subsequently allowed to 

incubate for 1 min at room temperature. The reaction was initiated by the addition of Q723E8 

(final concentration 100 nM) and then the absorbance at 340 nm was measured continuously for 

5 min, at 10 s intervals, on a Hewlett-Packard 8453 diode array spectrophotometer. Progress 

curves were analyzed by linear regression to determine initial reaction rates (nM/s). Kinetic 

parameters were obtained by fitting the rate versus substrate concentration data to the 

Michaelis-Menten equation using the nonlinear least-squares regression function of GraphPad 

Prism 5 software. 
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Equilibrium constant (Keq) determination 

 

Solutions containing 500 nM Q723E8, 100 mM MOPS pH 7.0, 1 mM EDTA, 10% D2O, and 

5 mM either F6P or G6P were allowed to reach equilibrium at room temperature (~21 oC). The 

solutions were then analyzed by 31P NMR using a Varian 400 multinuclear NMR spectrometer 

with a 0.05 N phosphoric acid standard (sealed within a capillary tube) set to a shift of 0 ppm. 

Spectra were acquired using 64 scans with a ten-second delay between scans. Preliminary studies 

using longer relaxation times showed no change in the peak integrals, supporting the assumption 

that this delay time is greater than three times the T1 relaxation parameter for both G6P and 

F6P.  

Results 

Q723E8 orthologs are found in L. monocytogenes, L innocua, L ivanovii, and L. seeligeri  

A basic local alignment search tool (BLAST) search of the Listeria sequences in GenBank 

using the amino acid sequence of Q723E8 as the query returned 293 entries from L. 

monocytogenes strains, 8 from L. innocua strains, 3 from L. ivanovii strains and 1 from a L. 

seeligeri strain, each sharing ≥ 92% identity with the query sequence. The remainder of the hits 

were full-length (~320 amino acids) arabinose 5-phosphate isomerases from a wide variety of 

bacterial species. The 293 L. monocytogenes strains included L. monocytogenes 4a L99, a strain 

representative of lineage I, and L. monocytogenes 4b CLIP80459, a strain representative of 

lineage III. 
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Fig. 2.1: Sequence alignment of Q723E8 and genomic context of lmof2365_0531. a Clustal Omega 
alignment of the protein sequences of Q723E8, E. coli CFT073 c3406, and the SIS domains of E. 
coli KdsD, GutQ and KpsF. Alignment performed using the program Clustal Omega on the EMBL-
EBI server (www.ebi.ac.uk/tools/msa/clustalo). Bolded residues are conserved in all five 
structures. Residues in rectangular boxes are conserved in E. coli sequences, but different in 
Q723E8. b Genomic context of L. monocytogenes lmof2365_0531. Information obtained from 
KEGG (www.genome.jp/kegg-bin/show_genomemap?ORG=lmf&ACCESSION=LMOf2365_0531). 

 
 
Q723E8 shares significant sequence identity with APIs and GPIs 

A BLAST search of the RCSB Protein Data Bank using the amino acid sequence of c3406 as 

the query returned L. monocytogenes lmof2365_0531 [14] as the second-closest hit (with 33% 

identity), after the structure of the SIS domain from E. coli KdsD (51% identical) [15]. Assuming 

this gene could encode an API, we performed a Clustal Omega alignment of the protein given 
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sequence tag L. monocytogenes lmof2365_0531, to which we will refer using its UniProt ID, 

Q723E8, with c3406 and the SIS domains of E. coli KdsD, GutQ, and KpsF [CBS-domain containing 

APIs] (Fig. 2.1A) [16]. The alignment revealed that Q723E8 shares 31 conserved residues (Fig. 

2.1A, bolded residues) including the putative catalytic residue His 193 (KdsD numbering) [15]. 

The sequence identity between Q723E8 and the SIS-domain of these four known D-arabinose 5-

phosphate isomerases ranges between 30.8 and 33.3%. The genomic context of lmof2365_0531 

is also very similar to that of E. coli gutQ.  

The genomic context of lmof2365_0531 (Fig. 2.1B) [18] contains three open reading 

frames (0532, 0536 and 0537) that are annotated as a galactitol-specific 

phosphoenolpyruvate:sugar phosphotransferase system permease. Among these three 

phosphoenolpyruvate:sugar phosphotransferase system genes, there is an open reading frame 

(0535) that is annotated as an L-iditol dehydrogenase, and an open reading frame (rpe-1) 

encoding a D-ribulose 5-phosphate 3-epimerase, which interconverts D-ribulose 5-phosphate and 

D-xylulose 5-phosphate [18]. This is similar to the gut operon [17], which encodes a three-

component sorbitol-specific permease (gutA, gutE, and gutB), which is part of a 

phosphoenolpyruvate:sugar phosphotransferase system that simultaneously imports D-sorbitol 

across the cell membranes and phosphorylates it [17]. The operon also contains a gene (gutD), 

which encodes an oxidoreductase that converts the D-sorbitol 6-phosphate into D-fructose 6-

phosphate. The gutQ gene, which encodes a full-length API, is the last gene in the operon. 

However, it should be noted that Q723E8 also has 24 residues that are different than residues 

that are conserved among the SIS domains of c3406, KpsF, GutQ and KdsD (Fig 2.1A, boxes). This 

information led us to hypothesize that Q723E8 could possess GPI activity.  
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An alignment of Q723E8 with various SIS-domain GPIs within the PDB (Fig. 2.2) reveals 

that Q723E8 is a much smaller protein consisting of only 200 amino acids whereas the other four 

GPIs presented (rabbit GPI, PDB ID: 1G98; mouse GPI, PDB ID: 1U0F; Staphyloccus aureus GPI, 

PDB ID: 3FF1; Vibrio cholerae GPI, PDB ID: 3HJB) all contain over 500 amino acids and a typical 

SIS-domain containing GPI ranges between 450 and 600 amino acids.  The alignment shows that 

these four GPIs and Q723E8 share only 5 completely conserved residues across all five proteins. 

When structurally comparing Q723E8 and mouse GPI (PDB ID: 1G98) the catalytic histidine H388 

of 1G98 structure aligns to that of H83 in Q723E8. However, the catalytic E357 in the four known 

Fig. 2.2: Clustal Omega alignment of the protein sequences of Q723E8 and the C-terminal end of 
various PGI. PGI include rabbit PGI, PDB ID: 1G98; mouse PGI, PDB ID: 1U0F; S. aureus PGI, PDB 
ID: 3FF1; V. cholerae PGI, PDB ID: 3HJB. Alignment performed using the program Clustal Omega 
on the EMBL- EBI server (www.ebi.ac.uk/tools/msa/clustalo). Bolded residues are conserved in 
all five structures. Residues in rectangular boxes are conserved in E. coli sequences, but different 
in Q723E8 
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GPIs aligns with T28 in Q723E8 in the alignment shown in Fig. 2.2, but structurally the nearest 

residue is C68. 

Q723E8 possesses GPI activity 

To determine if Q723E8 can catalyze the isomerization of sugars or phosphosugars other 

than A5P, we tested its ability to catalyze the isomerization of a series of aldoses, including D-

ribose, D-ribose 5-phosphate, D-arabinose, D-glucose 6-phosphate, D-glucose 1-phosphate, D-

glucosamine 6-phosphate, and D-mannose 6-phosphate, to ketoses. The only potential substrate 

that produced an assay signal that was significantly above the background was G6P (data not 

shown). 

 

Fig. 2.3: pH-rate profile for the conversion of G6P to F6P by Q723E8. Open circle data points taken 
using MES buffer, filled diamond data points taken using MOPS buffer, open square data points 
taken using BTP buffer. Data are expressed as rate relative to the rate at pH 7.0, which was set 
at 100 
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The pH-rate profile measured using G6P as substrate (Fig. 2.3) revealed a broad pH 

optimum from approximately pH 7.0 to pH 9.0.  

Table 2.2. Kinetic constants for catalysis by Q723E8. 
 

 

A detailed kinetic analysis of the GPI activity of Q723E8 at pH 7 was performed in the 

presence of EDTA. The results (Table 2.2) indicate that Q723E8 is a relatively poor GPI, when 

compared to the GPIs (EC 5.3.1.9) contained in the BRENDA database (data not shown) [19]. 

 

Fig. 2.4 Effect of metal ions upon the glucose 6-phosphate isomerase activity of Q723E8. The 
enzyme was pre-incubated with no additive (as isolated), EDTA, or a divalent metal ion, then 
assayed for glucose6-phosphate isomerase activity. The activity of the EDTA-containing sample 
was assigned a value of 100 % 

F6P     G6P  G6P      F6P 

kcat (s-1) Km (µM) kcat/Km(M-1s-1)  kcat (s-1) Km (µM) kcat/Km(M-1s-1) Keq 

0.22 ± 0.014 69 ± 12 3.2 x 103  1.78 ± 0.07 0.95 ± 0.08 1.86 x 103 0.29 
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Since APIs, such as KdsD, are known to co-purify with inhibitory divalent metal ions, and 

the cupin-type GPIs require metal ions for activity [22], we chose to assay the recombinant 

Q723E8 for the presence of co-purified metal ions, and test its activity in the presence of added 

divalent metal ions. High-resolution inductively coupled plasma mass spectroscopy of 

recombinant Q723E8, as isolated, revealed that the enzyme contained only traces of divalent 

metal ions. Addition of divalent metal ions to the assay mixture did not lead to significant 

enhancement or inhibition of catalysis, except in the case of divalent mercury ions (Fig. 2.4), 

which inhibited catalytic activity. 

Q723E8 lacks API activity 

To prepare protein samples for analysis, lmof2365_0531 was cloned from the genomic 

DNA of L. monocytogenes strain 4b f2365 using PCR. The PCR product was incorporated into 

plasmid pCR2.1 TOPO and then transferred to plasmid pT7-7. DNA sequencing of the resulting 

plasmid revealed undesired mutations at the 3-prime end of the lmof2365-0531 gene. After 

removing the undesired mutations via site directed mutagenesis the resulting protein expression 

Fig. 2.5: The purification of Q723E8. Lane 1: crude lysate, lane 2: supernatant from 60 % 
ammonium sulfate precipitation, lane 3: final product from mono Q column, lane 4: low range 
SDS-PAGE standards 
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was observed to be low. The lmof2365_0531 gene was subsequently transferred to plasmid 

pET17b for recombinant expression in E. coli BL21(DE3). Selective ammonium sulfate 

precipitation of contaminating E. coli proteins, at 60% saturation, yielded significant purification. 

Further purification, post dialysis, using anion exchange chromatography yielded protein that 

was >95% pure by SDS-PAGE analysis (Fig. 2.5). LC-MS (liquid chromatography – mass 

spectrometry) analysis of the homogeneous protein showed a molecular weight of 21 315.9 Da, 

(calculated value 21 315.7 Da). Confident the desired protein had been expressed and purified; 

its quaternary structure was investigated using non-denaturing PAGE. Native Q723E8 migrated 

as a species with molecular weight 45 040 Da (2.1 times the monomer weight) suggesting that 

Fig. 2.6: Native molecular weight determination for Q723E8. Open symbols represent the protein 
standards. The closed triangle is located at the average relative mobility and molecular weight 
determined from two independent observations. Error bars represent the standard error of each 
measurement. Standard error was calculated from these two experimental MW values to yield 
the error associated with the measurement. 
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Q723E8 exists as a dimer in solution (Fig. 2.6). To determine the potential API activity of 

recombinant Q723E8, the protein was assayed with concentrations of A5P up to 10 mM using 

the cysteine-carbazole method to detect the formation of Ru5P. No evidence of Ru5P production 

was observed, suggesting that Q723E8 has no API activity in vitro. 

To test the possibility of an in vivo cytosolic cofactor, we tested the ability of Q723E8 to 

complement an API defect in E. coli. The deletion of both kdsD and gutQ produces a conditional 

△API construct, E. coli TCM15 [10]. This strain cannot survive without API activity unless the 

medium is supplemented with a combination of A5P, which is required for lipopolysaccharide 

production, and G6P, which is required to induce the transporter that allows A5P to enter the cell 

[10,20]. A5P is a high affinity, but non-inducing, substrate of the G6P-inducible hexose phosphate 

transport system (the Uhp system) [21]. This defect can be complemented by supplying an API 

gene in trans using the plasmid pT7-7, as shown previously with c3406 [7]. Attempts to 

complement the API defect in E. coli strain TCM15 using the gene encoding Q723E8, sub-cloned 

Fig. 2.7: Complementation of an A5P auxotroph on agar plates. A Agar plate containing LB 
medium supplemented with 15 lM A5P, 10 lM G6P, 0.1 mg/mL ampicillin, and 0.05 mg/mL 
kanamycin. B Agar plate containing LB supplemented with 0.1 mg/mL ampicillin and 0.05 mg/mL 
kanamycin. In both panels, the wedges were streaked with: TCM15 harboring pT7-7 (vector 
control, wedge 1), TCM15 harboring pT7-7 c3406 (c3406 control, wedge 2) and TCM15 harboring 
pT7-7Q723E8 (Q723E8, wedge 3) 
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into pT7-7, failed to form colonies. This inability of E. coli TCM15 containing pT7-7Q723E8 to form 

colonies on agar media lacking A5P is identical to the phenotype displayed by the empty vector 

(Fig. 2.7), and distinctly different than the phenotype displayed by c3406. This suggests that 

Q723E8 lacks significant API activity in a bacterial cell. Therefore, we conclude that Q723E8 is not 

a functional API either in vivo or in vitro, despite its sequence similarity to E. coli c3406 and 

contextual similarity to gutQ. 

Discussion 

What began as a quest to find the first API in a Gram-positive organism, in an effort to 

further understand the physiological function of APIs not associated with LPS biosynthesis, has 

resulted in the discovery of a potentially new GPI. The quaternary structure of Q723E8, in 

solution, is also more similar to that of GPIs than that of APIs. We found Q723E8 to be a dimer in 

solution. The X-ray crystal structure of Q723E8 [14] suggests that the putative active site includes 

residues from two of the monomers within asymmetric unit. These results are similar to that of 

known GPIs, including both the typical bacterial GPI and cupin-type GPI [22,23]. 

The GPI activity of Q723E8 is extremely weak with a kcat two orders of magnitude slower 

than the GPI of Bacillus stearothermophilus [25]. and has a very broad pH-rate profile, causing us 

to question its physiological significance. The genome of L. monocytogenes strain 4b F2365 

contains a gene (lmof2365-2338) that encodes a typical bacterial GPI [23] that shares >90% 

similarity with the GPI of the prototypical Gram-positive organism Bacillus subtilis. This GPI alone 

should be sufficient to support the aerobic and anaerobic fermentation of glucose that has been 

reported for Listeria species [24]. The GPI activity of Q723E8 seems, therefore, superfluous. 

Therefore, we speculate that the GPI activity of Q723E8 may not be this enzyme’s main 
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physiological role within the cell. However, its physiologically relevant role may involve the 

isomerization of substrates that were not available for testing, but any additional role can only 

be speculated. 
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CHAPTER III 

The Arabinose-5-phosphate Isomerase of Bacteroides fragilis: Insight Into Regulation of 
Single-domain Arabinose Phosphate Isomerases 

 
The work described in this chapter has been published [Cech, D., Wang, P.F., Holler, T.P., 
Woodard, R.W., Analysis of the arabinose-5-phosphate isomerase of Bacteroides fragilis 
provides insight into regulation of single-domain arabinose phosphate isomerases. J 
Bacteriol, 2014. 196(15): p. 2861-8.] 

 
Summary 

Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose-5-

phosphate and D-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-D-manno-

octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative 

bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a 

tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about 

structure-function relationships in these APIs. We recently reported an API containing only a 

sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological 

function. In this study, we investigated a putative single-domain API from the anaerobic Gram-

negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein 

encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is 

responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by 

preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), 

characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 
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(GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We 

demonstrated that Q5LIW1 is inhibited by cytidine 5′-monophospho-3-deoxy- D-manno-2-

octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 μM. These 

results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide 

biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase 

domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API 

activity and was further characterized. These results suggest that Q5LIW1 may be a suitable 

system to study API structure-function relationships
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Introduction 

Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose-5-

phosphate (Ru5P), the product of the oxidative phase of the pentose phosphate pathway (1), and 

D-arabinose-5-phosphate (A5P), the first intermediate in the biosynthesis of 3-deoxy-D-manno-

octulosonic acid (Kdo). Kdo is an essential component of the cell envelope of Gram-negative 

bacteria (2), and is also found in certain algae and plants (3). Kdo biosynthesis and activation 

represents an attractive pathway for drug targeting because Kdo is not synthesized by humans 

(1). 

The Woodard laboratory has identified four distinct API genes from various strains of the 

model Gram-negative organism Escherichia coli. The genome of E. coli K-12 encodes two distinct 

APIs, KdsD and GutQ. The kdsD gene, formerly known as yrbH, is located in the yrb gene cluster. 

Its product, KdsD, catalyzes the formation of A5P used in the biosynthesis of Kdo ((2)). The gutQ 

gene is found in the glucitol (sorbitol) operon, which encodes proteins involved in the utilization 

of glucitol as a sole carbon source. The physiological role of GutQ, which has KdsD-like levels of 

API activity and can produce sufficient A5P to support Kdo biosynthesis in the absence of KdsD 

((3)), is somewhat of an enigma because A5P has not been directly implicated in the import or 

utilization of sorbitol. E. coli strains that produce Group II K-antigens (e.g. E. coli CFT073) contain 

a third API, KpsF. Since Group II K-antigens contain Kdo, KpsF is considered responsible for the 

biosynthesis of the Kdo required by the Group II K-antigen biosynthetic machinery (7). In support 

of this hypothesis, the kpsF gene is found in the kps cluster, which also encodes a homolog of the 

kdsB gene (kpsU). The kdsB gene encodes cytidine 5’-monophospho-3-deoxy-D-manno-2-

octulosonic acid (CMP-Kdo) synthetase, another enzyme in the Kdo biosynthetic pathway. Finally, 
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E. coli CFT073 has a fourth API encoded by the gene given sequence tag c3406. This gene, though 

found on a genomic island implicated in virulence, is non-essential for the virulent phenotype 

((4)). Like gutQ, c3406 is situated near a gene implicated in carbohydrate utilization.  

Three of these APIs, KdsD, GutQ, and KpsF, consist of two domains – a sugar isomerase 

(SIS) domain and a tandem cystathionine beta synthase (CBS) domain. The purpose of the CBS 

domains in these proteins has not been established, but in other contexts CBS domains have 

been implicated in the modulation of enzyme activity ((5)). It is also not clear if and how single-

domain APIs are regulated. The X-ray crystal structure of a full-length, CBS domain-containing API 

has remained elusive despite many attempts, including the crystallization of mutants ((6)). The 

lack of a full length API crystal structure along with very little knowledge about how APIs are 

regulated has impeded structure-function studies with this enzyme. 

The API encoded by c3406, in contrast, consists of a single SIS domain and is therefore 

much smaller than KdsD, GutQ, and KpsF. A search for similar proteins in the RCSB Protein Data 

Bank revealed the structure (PDB ID: 3ETN) of an SIS-domain protein, YP_209877.1 (UniProt ID: 

Q5LIW1) from Bacteroides fragilis NCTC 9343, in complex with CMP-Kdo, the end-product of the 

Kdo biosynthesis pathway. B. fragilis is a Gram-negative anaerobic bacterium that incorporates 

a Kdo-containing lipopolysaccharide (LPS) in its cell envelope ((7)). A search of the B. fragilis NCTC 

9343 genome found that it contains an open reading frame orthologous to all 4 enzymes in the 

well-established Kdo biosynthetic pathway of E. coli K-12 (kdsA-kdsD). The protein Q5LIW1, 

which shares 34% identity with c3406, is the only protein found in B. fragilis with substantial 

identity to any API. This information led us to hypothesize that Q5LIW1, like KdsD in E. coli , is the 

API that supports LPS biosynthesis in B. fragilis, and furthermore that its enzymatic activity may 
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be feedback regulated by CMP-Kdo. To test these hypotheses, Q5LIW1 was cloned, expressed 

and purified. Its activity as an API was subsequently characterized both in vitro and in vivo (E. coli 

TCM15 cells). Finally, the ability of CMP-Kdo to inhibit the API activity of Q5LIW1 was probed. 

Previous reports from our lab have shown that c3406, which is the only API from E. coli 

that naturally lacks CBS domains, can complement an API defect in E. coli TCM15 (8). This 

information, along with the results of the studies of Q5LIW1 reported here, led us to question if 

a truncated E. coli KdsD containing only the SIS domain would retain sufficient API activity to 

complement the API deficiency in TCM15. The results of these experiments are also reported 

below. 

Materials and Methods 

Materials 

Genomic DNA from Bacteroides fragilis NCTC 9343 was purchased from the American 

Type Culture Collection (catalogue # 25285D-5). Primers for PCR were synthesized by Integrated 

DNA Technologies (Coralville, Iowa, USA). FailsafeTM PCR PreMix Selection kit was purchased from 

Epicentre Biotechnologies (Madison, WI, USA). PCR was performed in a MJ Research PTC-200 

Peltier Thermal Cycler. TA TOPO cloning was performed via the TA TOPO cloning kit purchased 

from Invitrogen (Grand Island, NY, USA). Enzymes for subcloning were purchased from New 

England Biolabs (Ipswich, WI, USA). The Promega Wizard Miniprep kit (Madison, WI, USA) was 

used for plasmid DNA purification. DNA sequencing was performed by the University of Michigan 

Biomedical Resources Core Facility. Metal salts used for assays were purchased as high-purity 

solids from Alfa-Aesar (Ward Hill, MA, USA) and used without further purification. 
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Bacterial strains, plasmids, primers, and growth media 

The bacterial strains, primers, and plasmids used in this study are described in Table 3.1. 

E. coli TCM15 is a derivative of BW30270, E. coli K-12 MG1655 rph+fnr+, in which the gutQ and 

kdsD genes were disrupted via the phage λ Red recombinase system (6,12). All strains were 

grown in LB medium (13). TCM15 cultures were supplemented with A5P (15 µM) and D-glucose-

6-phosphate (G6P; 10 µM). A5P is necessary to complement the API defect and G6P induces the 

transporter necessary for the uptake of A5P (8). 

Table 3.1 Strains, Plasmids, and Primers used in this study. 

Item Description Source 
E. coli     

TOP10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) F80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-

leu)7697 galU galK rpsL (StrR) endA1 nupG 
Invitrogen 

TCM15 BW30270(ΔkdsDΔgutQ) Ref. 6 

Rosetta 2 (DE3) pLysS F- ompT hsdSB(rB
-mB

-) gal dcm (DE3) pLysSRARE2 (CamR) EMD Millipore 

Plasmids    

pCR2.1-TOPO Library plasmid  Invitrogen 

pT7-7 Expression vector Ref. 13 

pT7-7-c3406 E.coli CFT073 c3406 inserted into NdeI/BamHI of pT7-7, AmpR Ref. 8 

pT7-7-YP_209877.1 B. fragilis YCH46 BF0137 inserted into NdeI/BamHI of pT7-7, AmpR This study  

    pT7-7-yrbH 

    pT7-7-EcKdsDΔ2CBS 

Primers 

E. coli KdsD inserted into NdeI/BamHI of pT7-7, AmpR 

Truncation of pT7-7-yrbH to the first 213 amino acids. 

 

Ref. 5 

This study 

 

BF0137.F CAATTAAGATCATATGATTGAATCTATTCAAGAACTCa IDT 

BF0137.R 

EcKdsDΔ2CBS.F 

EcKdsDΔ2CBS.R 

CGAGTATAGTCTCTCCGGATCCGATTACTTTACGCb 

CGATATTATGCATACGGGCTAAGAGATCCCGCATGTTAAGAAAACGG 

CCGTTTTCTTAACATGCGGGATCTCTTAGCCCGTATGCATAATATCG 

IDT 

IDT 

IDT 

   

 

Cloning, expression, and purification of B. fragilis Q5LIW1 

The YP_209877.1 gene, encoding Q5LIW1, was amplified from the genomic DNA of 

Bacteroides fragilis NCTC 9343 using the primers BF0137START and BF0137STOP (Table 3.1), 

which were designed to incorporate NdeI and BamHI sites. PCR products were purified via 

extraction from a 1% (w/v) agarose gel using a Qiagen QIAquick Gel Extraction Kit, inserted into 

vector pCR2.1-TOPO using the TA TOPO cloning kit, and subcloned, after digestion of the insert 
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containing vector with NdeI and BamHI, into similarly restricted, expression vector pT7-7 (14). 

The resulting plasmid, pT7-7-YP_209877.1, was transformed into E. coli TOP10 chemically 

competent cells. DNA sequencing of the resulting plasmid, pT7-7-YP_209877.1, confirmed that 

the YP_209877.1 gene was identical to the sequence published in the NCBI entry. This plasmid 

was subsequently transformed into E. coli Rosetta 2 (DE3) pLysS chemically competent cells. A 

fresh transformant was grown in LB medium supplemented with 100mg/l ampicillin and 30 mg/l 

chloramphenicol at 37°C while shaking at 250 rpm until the optical density at 600 nm (OD600) 

reached 0.6. The culture was cooled to 19°C, and expression of protein was induced with the 

addition of isopropyl β-D-1-thiogalactopyranoside to 0.42 mM. After 16 h of incubation at 19°C, 

cells were harvested by centrifugation (6000 x g, 10 min, 4°C). The pellet was suspended in 25 ml 

buffer B (40 mM Tris-HCl, pH 7.5), sonicated on ice (3 cycles of 20 s bursts, 2 min pauses between 

pulses), and clarified by centrifugation at 18,000 x g for 30 min. Solid ammonium sulfate was 

slowly added, while stirring, to the clarified lysate to reach 50% saturation at 4°C and allowed to 

stir for an additional 10 min. Precipitated proteins were removed by centrifugation at 15,000 x g 

for 25 min and solid ammonium sulfate was slowly added to the supernatant to reach 60% 

saturation (at 4°C) while stirring. The solution was allowed to stir for an additional 10 min after 

the final addition of ammonium sulfate. Q5LIW1 was pelleted, along with some contaminating 

proteins, by centrifugation at 15,000 x g for 25 min and resuspended in buffer A (40 mM Tris-HCl, 

pH 7.5, 1.4 M ammonium sulfate) prior to being passed through a Millipore PVDF 0.22 µm filter. 

The solubilized protein was loaded onto a Phenyl Superose column, which had been equilibrated 

with buffer A. Protein was eluted with an inverse linear gradient of 40-100% (v/v) buffer B in 

buffer A over 15 column volumes at 0.5 ml/min. Fractions containing, as determined by SDS-
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PAGE gel, Q5LIW1 were pooled and concentrated using an Amicon ultra centrifugal filter (10,000 

MWCO) and buffer exchanged into 40 mM Tris-HCl, pH 7.5 and 25% (v/v) glycerol and stored at 

-80°C. 

Site-directed mutagenesis, expression, and purification of E. coil KdsDΔ2CBS 

Plasmid template DNA (pT7-7-yrbH, approximately 0.5 pmole) was added to a PCR 

cocktail containing 1X PfuTurbo buffer, 200 µM each dNTP, 3 µM EcKdsDΔ2CBS.F and 

EcKdsDΔ2CBS.R, and 2.5 U PfuTubro DNA polymerase. The reaction was incubated in a MJ 

research PTC-200 thermal cycler with standard site-directed mutagenesis parameters. The 

reaction mixture was digested with DpnI for 1 h at 37°C and purified via extraction from an 

agarose gel. The resulting plasmid pT7-7-EcKdsDΔ2CBS was transformed into E. coli TOP10 

chemically competent cells. DNA sequencing of the plasmid pT7-7-EcKdsDΔ2CBS confirmed that 

the KdsD gene had been truncated to include a stop codon between the SIS domain and first CBS 

domain (resulting in a gene encoding for a 213 amino acid protein).  The plasmid was 

subsequently transformed into E. coli BL21 (DE3) chemically competent cells. A fresh 

transformant was grown and cells were harvested as above. EcKdsDΔ2CBS was purified via a Hi-

LoadTM (16/10) Q-Sepharose fast flow column, followed by ammonium sulfate precipitation as 

previously described (5). 

Molecular mass determination 

The subunit mass of Q5LIW1 was determined via electrospray ionization mass 

spectrometry utilizing an LCT electrospray/time-of-flight spectrometer. The native molecular 

mass (MW) of Q5LIW1 was estimated by gel filtration chromatography on a HiPrep (26/60) 
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Sephacryl S-100 column. Standards, run in triplicate, included BSA dimer (132.4 kDa), BSA 

monomer (66.2 kDa), chicken egg white ovalbumin monomer (44.3 kDa), and cytochrome c (12.4 

kDa). A Log (MW) vs. elution volume/void volume (Ve/Vo) plot was fit by linear regression, using 

Microsoft Excel. The MW of Q5LIW1 was determined experimentally by measuring its elution 

volume and calculating the Log (MW) from the standard curve.  

Metal content analysis 

Enzyme samples were prepared for metal content analysis by 24 h of dialysis at 4°C 

against 2 liters of metal-free 40 mM Tris-HCl pH 8.5 buffer and stored in metal-free glass vials. 

The divalent metal content, of each sample and the buffer used in dialysis as a control, was 

determined using high resolution inductively coupled plasma mass spectrometry on a Finnigan 

MAT Element instrument at the University of Michigan Department of Geology. 

Substrate specificity 

To determine recombinant Q5LIW1’s ability to convert aldoses to ketoses, the enzyme 

was assayed with various aldoses including A5P, G6P, D-glucose-1-phosphate, D-ribose-5-

phosphate, D-arabinose, D-mannose-6-phosphate, D-glucosamine-6-phosphate, and D-ribose 

using the discontinuous cysteine-carbazole assay (5). For each potential substrate, in triplicate, a 

50 µl solution of 100 nM enzyme, 100 mM 2-Bis(2-hydroxyethyl)amino-2-(hydroxymethyl)-1,3-

propanediol (Bis-tris propane), pH 8.5, and 10 mM substrate, was incubated for 10 min at 37°C 

before being quenched with an equal volume of 25 N H2SO4. A 90 µl aliquot was transferred to a 

separate microplate containing a freshly prepared cysteine-carbazole assay mixture (10 µl of a 

0.12% ethanolic carbazole solution, 10 µl of 1.5% aqueous cysteine-HCl, and 230 µl of 25 N 
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H2SO4), and incubated at room temperature (~21°C) for 3 h to develop color. Enzyme substrates 

were identified by comparing the color of the reaction to the color of a no-enzyme control. 

Complementation of a kdsD/gutQ defect in E. coli  

Electrocompetent cells were prepared, from the E. coli TCM15 variant that carries a 

kanamycin resistance cassette, by growing the cells in LB medium until early log phase (OD600, 

~0.5). The cells were then harvested via centrifugation and washed three times in ice-cold 10% 

glycerol (8). Empty pT7-7 vector, pT7-yrbH, pT7-7-EcKdsDΔ2CBS, pT7-7-c3406, and pT7-7-

YP_209877.1 were separately transformed into electrocompetent E. coli TCM15 cells. 

Transformed cells were grown on LB/agar plates supplemented with 100mg/l ampicillin, 50mg/l 

kanamycin, 15 µM A5P, and 10 µM G6P. Liquid LB media supplemented with the same 

concentrations of antibiotics, A5P, and G6P, were inoculated with single colonies and grown 

overnight at 37°C. Cells were washed twice, by centrifugation at 6000 rpm and resuspension in 

liquid LB medium, to remove A5P and G6P in the overnight culture, streaked on LB/agar plates 

with and without A5P/G6P, and incubated overnight at 37°C. Genes that complemented the API 

defect allowed the transformed cells to grow both with and without added A5P/G6P. 

Determining the pH-rate profile of Q5LIW1 

The optimal pH for Q5LIW1 was determined by assaying Q5LIW1’s enzymatic activity, 

using the discontinuous cysteine-carbazole assay, in a series of buffer solutions, of varying pH. 

Buffer solutions (200 mM buffer, 2 mM EDTA) were prepared in 0.25 pH increments from 5.0 to 

9.5 at 37 oC. 2-(N-morpholino)ethanesulfonic acid (MES) buffer was used from pH 5.0 to 6.0 and 

Bis-tris propane buffer from pH 6.25 to 9.5. Final reaction concentrations were 100 mM buffer, 
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1 mM EDTA, 10 mM A5P, and 400 nM enzyme. Reactions were incubated at 37°C for 3 min before 

being quenched with equal volumes of 25 N H2SO4. Quenched reactions were developed, as 

above, and incubated at room temperature (~21°C) for 3 h before measuring the absorbance at 

540 nm. The enzymatic activity at each pH was determined in triplicate and reaction rates were 

determined by fitting time points using linear regression. 

Enzyme kinetics 

Kinetic parameters for the isomerization of A5P to Ru5P or G6P to D-fructose-6-phosphate 

(F6P) catalyzed by Q5LIW1 and EcKdsDΔ2CBS were determined, in triplicate, using the 

discontinuous cysteine-carbazole assay with 100 nM Q5LIW1 or EcKdsDΔ2CBS, 100 mM Bis-tris 

propane, pH 8.5, 1 mM EDTA, and substrate concentrations ranging from 0.156 mM to 20 mM 

A5P or 0.195 mM to 25 mM G6P. Individual assays, which were pre-heated at 37°C for 3 min 

before the addition of enzyme to initiate the reaction, and appropriate controls, were allowed to 

react for 3 min at 37°C before being quenched with equal volumes of 25 N H2SO4. The quenched 

reactions were developed as described above. Control reactions, with Ru5P/F6P, showed that 

less than 10% of substrate was converted to product in all conditions tested. Kinetic parameters 

were obtained by fitting the data to the Michaelis-Menten equation using nonlinear least-

squares regression with GraphPad Prism 5 software. 

Assay of A5P isomerase activity 

Kinetic parameters for the isomerization of Ru5P to A5P were determined, in triplicate, 

using a modified coupled Aminoff assay utilizing the 3-deoxy-D-manno-octulosonate 8-phosphate 

synthase (Kdo8PS) from Arabidopsis thaliana (15,16). Reaction mixtures containing final 
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concentrations of phosphoenolpyruvate (PEP, 10 mM), Kdo8PS (0.15 mg/ml), Bis-tris propane pH 

8.5 (100 mM), EDTA (1 mM), and Ru5P final concentrations ranging from 0 to 10 mM were 

heated, separately from mixtures of Q5LIW1 or EcKdsDΔ2CBS (100 nM final concentration) to 

37°C for 3 min. The reaction was then initiated by the addition of Q5LIW1 or EcKdsDΔ2CBS and 

incubated for 2 min at 37°C. Reactions were quenched with an equal volume of 10% (w/v) 

trichloroacetic acid. To develop the color, 50 µl of each reaction mixture was transferred to a 

separate glass tube; after which 100 µl of a solution containing NaIO4 (25 mM) and H2SO4 (0.125 

N) was added followed by incubation for 10 min at room temperature (~21°C). The addition of 

200 µl of a solution containing NaAsO2 (2% w/v) and HCl (0.5 N) neutralized the excess NaIO4. 

After the disappearance of the color, a solution containing 500 µl of 0.36% thiobarbituric acid, 

pH 9.0, was added and the reaction was incubated at 95°C for 10 min. These mixtures were 

transferred to a 96 well flat bottom plate and the absorbances were read at 549 nm. Data were 

fit using the nonlinear least-squares regression function of GraphPad Prism 5 software. 

D-Glucose-6-phosphate isomerase assays 

To determine the kinetic parameters for the isomerization of F6P to G6P catalyzed by 

Q5LIW1, a coupled assay was used, in which the G6P produced by Q5LIW1 was oxidized to 6-

phosphoglucono-δ-lactone by glucose-6-phosphate dehydrogenase and the cofactor NADP+. The 

formation of NADPH was measured at 340 nm, which allowed for reaction progress to be 

monitored (17). Individual reactions were performed in a quartz cuvette, in triplicate. The 

coupling enzyme (E. coli D-glucose-6-phosphate dehydrogenase, gene name zwf) was diluted into 

2x reaction buffer (200 mM Bis-tris propane, pH 8.5, 2 mM EDTA), to a final coupling enzyme 

concentration of 1 µM. NADP+ (0.16 mM final concentration) and F6P (0.01-3 mM final 
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concentration) were subsequently added to the reaction mixture, which was allowed to incubate 

for 1 min at room temperature (~21°C). The reaction was initiated by the addition of Q5LIW1 

(final concentration 100 nM) and the absorbance, at 340 nm, was monitored, at 10 s intervals for 

5 min, using a Hewlett-Packard 8453 diode array spectrophotometer. Initial reaction rates (nM/s) 

were determined by analysis of progress curves via linear regression. Kinetic parameters were 

obtained by fitting of the rate versus substrate concentration data, from assays performed in 

triplicate, to the Michaelis-Menten equation using nonlinear least-squares regression in 

GraphPad Prism 5. 

Generation of CMP-Kdo 

CMP-Kdo was generated using E. coli CMP-Kdo synthetase (KdsB) (18). In a typical reaction 

CTP (0.55 mM) and Kdo (1.1 mM), were added to 4x reaction buffer (400 mM Bis-tris propane pH 

8.5, 5 mM MgCl2), and the reaction was initiated by addition of KdsB to a final concentration of 

13.2 µg/ml. The reaction was allowed to incubate for 10 min at room temperature before being 

quenched with EDTA (45 mM final concentration). 

The Eikonogen assay (19,20), which allows for the direct correlation of the concentration 

of CMP-Kdo with the amount of inorganic pyrophosphate produced, was used to determine the 

concentration of inorganic pyrophosphate produced. In this assay, the CMP-Kdo solution (50 µl) 

treated with 2.5% ammonium molybdate (50 µl), of 0.5 M β-mercaptoethanol (50µl) and 

Eikonogen reagent (20 µl, 0.125 g sodium sulfite, 7.325 g sodium metabisulfite, and 0.125 g 1-

amino-2-naphthol-4-sulfonic acid in 50 ml hot deionized water. The mixture was incubated at 

room temperature (~21°C) for 30 min and the absorbance was read at 540 nm. A malachite green 

assay, as previously described, was used to correct for inorganic phosphate concentrations (20). 
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Absorbances were compared to a standard curve prepared using a serial dilution of a standard 

aqueous solution of Na2P2O7. Data was analyzed by linear regression in Microsoft Excel. 

Inhibition kinetics with CMP-Kdo 

To test if recombinant Q5LIW1 was inhibited by CMP-Kdo, a coupled assay in which the 

Ru5P produced by Q5LIW1-catalyzed isomerization of A5P was reduced to ribitol using an excess 

of NADPH and the enzyme Bcs1 (CDP-ribitol synthase) was performed. Reactions containing A5P 

(0.25 mM or 0.50 mM), Bis-tris propane buffer (100 mM), pH 8.5, EDTA (1 mM), NADPH (0.16 

mM), and Bcs1 (96 µg/ml) (21) were incubated separately from mixtures containing Q5LIW1 (100 

nM) and CMP-Kdo (final assay concentrations ranging from 0-68.51 µM) for 3 min at 37°C. The 

enzyme/inhibitor mixture was added to the reaction, mixed for 20 s, and incubated at 37°C for 

10 min while monitoring the absorbance at 340 nm every 24 s using a SpectraMax M5 microplate 

reader (Molecular Devices). Absorbance values were plotted versus time in Microsoft Excel, and 

fit using linear regression. The slopes were converted to reaction rates in nM/s. Rates were 

plotted as a function of inhibitor concentration in GraphPad Prism 5 and fit using the nonlinear 

least squares technique, to a model of competitive inhibition based upon the Michaelis-Menten 

equation. Rates were converted to percent response of maximum and the Log(response/(1-

response) was plotted vs. Log[CMP-Kdo] in Microsoft Excel to generate a Hill Plot (Fig. 3.7B). 

Equilibrium constant (Keq) determination 

Solutions containing 100 mM Bis-tris propane buffer, pH 8.5, 1 mM EDTA, 10% D2O, 500 

nM Q5LIW1 or EcKdsDΔ2CBS, and a 5 mM concentration of F6P, G6P, A5P, or Ru5P were 

incubated at room temperature (~21°C) for 72 h, sufficient to reach equilibrium. These solutions 
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were analyzed by 31P NMR using a Varian 400 multinuclear NMR spectrometer. A solution of 0.05 

N phosphoric acid standard was sealed within a capillary tube and set to a value of 0 ppm. Spectra 

were acquired using 64 scans with a 10 s relaxation delay between scans. Preliminary studies 

with longer relaxation times did not show a change in peak integrations, which supports the 

assumption that the chosen delay time was greater than three times the T1 relaxation parameter 

for G6P, F6P, A5P, and Ru5P. 

Effect of divalent metal ions on the API activity of Q5LIW1 

To determine the effect of divalent metal ions on the API activity of Q5LIW1, samples of 

Q5LIW1 were diluted in buffer containing 108.2 mM Bis-tris propane, pH 8.5, and 10.82 µM EDTA 

or divalent metal salt, and incubated on ice for 30 min. The API activity was assayed using the 

Aminoff assay (15). Final concentrations in each reaction were: 100 nM Q5LIW1, 100 mM Bis-tris 

propane, pH 8.5, 0.15 mg/ml KdsA, 10 mM PEP, and 5 mM Ru5P. Reactions were incubated for 3 

min at 37°C before being quenched with an equal volume of 10% (w/v) trichloroacetic acid, and 

the color developed as described above in the A5P isomerization assay. Metal salts tested 

included BaCl2.2H2O, MnCl2.4H2O, ZnCl2, NiCl2.6H2O, CoSO4
.7H2O, CuSO4, FeSO4

.7H2O, CdCl2, 

MgCl2, CaCl2.2H2O, and HgCl2. 

Results 

Expression and characterization of Q5LIW1 and EcKdsDΔ2CBS.  

(i) Q5LIW1 is one of a small group of single SIS-domain proteins.  

A BLASTP search using YP_209877.1 as the query sequence revealed putative SIS-domain 

proteins in Gram-negative bacteria of the genera Bacteroides, Parabacteroides, Dysgonomonas, 

and Porphyromonas. In each case, the YP_209877.1 homolog was the only putative API 
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discovered within the genome; no CBS domain-containing APIs were identified. The B. fragilis 

NCTC 9343 genome contains orthologs of all the other enzymes in the E. coli K-12 Kdo 

biosynthesis pathway, including KdsA (locus YP_210629; E value, 7e−75), KdsB (locus YP_211897; 

E value, 2e−38), KdsC (locus YP_212734; E value, 4e−31), and WaaA (locus YP_213607; E value, 

1e−42). Taken together, these observations suggest that Q5LIW1 and its homologs constitute a 

unique group of SIS-domain APIs responsible for supporting Kdo biosynthesis in these Gram-

negative organisms. 

(ii) Recombinant Q5LIW1 is a tetramer.  

Locus YP_209877.1 was cloned by PCR from B. fragilis NCTC 9343 genomic DNA obtained 

from the ATCC and inserted into the plasmid pT7-7 (9). Overexpression in E. coli Rosetta (DE3) 

pLysS cells produced sufficient quantities of protein that were purified using ammonium sulfate 

fractionation and chromatography on a phenyl-Sepharose column. The purified protein migrated 

at approximately 21 kDa on an SDS-PAGE gel; its subunit molecular mass was determined to be 

21,809.99 Da (calculated, 21,810.2) by electrospray mass spectroscopy.  The quaternary 
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Fig. 3.1: Gel filtration analysis of Q5LIW1. Q5LIW1 shown as grey box. Standard curve from native 
molecular mass determination by gel filtration chromatography (Ve is the elution volume and Vo 
is the void volume). 
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structure of the protein was probed using gel filtration chromatography (Fig. 3.1). Native Q5LIW1 

eluted with an apparent molecular mass of 85,871.3 Da, approximately 3.94 times the subunit 

mass. This result is almost identical to the results obtained with the APIs of E. coli, which behave 

as tetramers in solution (5, 6, 8). Metal content analysis showed that the purified protein, as 

isolated, did not contain any metals. Inhibition tests with added divalent metals showed that only 

Cu2+ had an inhibitory effect on the isomerization of A5P to Ru5P, amounting to a roughly 4-fold 

decrease in activity (Fig. 3.2).  

Based on a sequence comparison, E. coli kdsD, in the expression vector pT7-7, was 

truncated to produce a single SIS domain by site-directed mutagenesis to insert a stop codon 

after 213 amino acids (Asp214*). The resulting pT7-7-EcKdsDΔ2CBS was moved to E. coli 

BL21(DE3), expressed, and purified. 

Enzymatic properties of Q5LIW1 and EcKdsD2CBS.  

(i) Recombinant Q5LIW1 is an API.  

Fig. 3.2: Effect of divalent metal ions on the activity of Q5LIW1. 
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The substrate specificity of Q5LIW1 was investigated by testing its ability to catalyze the 

isomerization of a series of aldose phosphates. These experiments were performed at pH 6.5 

based on the pH optimum observed for the c3406 protein (8). Q5LIW1 converted two of the 

substrates, A5P and G6P, to the corresponding ketoses. The pH-rate profile was investigated 

using A5P as the substrate (Fig. 3.3). It was determined that Q5LIW1 has a very broad pH profile 

with an optimum ranging from 7.75 to 9.0.  

Table 3.2 Kinetic constants for catalysis by various APIs. 

 

Protein 

Km 

(A5P, mM) 

kcat / Km 

(A5P, M-

1 s-1) 

kcat 

(A5P to 

Ru5P, s-

1) 

kcat 

 (Ru5P to 

A5P, s-1) 

Km 

(Ru5P, 

mM) 

kcat / Km  

(Ru5P, M-1 s-1) 

Keq Optimum 

pH 

Subunit 

mass 

(Da) 

KdsDRef.5 0.61±0.06 2.6x105 157±4 255±16 0.35±0.08 7.3x105 0.50±0.06   8.4 35,084 

GutQRef.6 1.2±0.1 1.8x105 218±4 242±11 0.64±0.08 3.8x105 0.47   8.25 33,909 

KpsFRef.7 0.57±0.04 2.6x104 15±1 19±2 0.30±0.03 6.3x104 0.48±0.02   7.75 35,447 

C3406Ref.8 1.92±0.05 8.8x103 16.8±0.2 10.5±0.08 0.70±0.12 1.5x104 0.52   6.6 20,880 

Q5LIW1 

KdsD 

Δ2CBS 

34.54±12.4 

0.62±0.20 

7.3 x103 

4.7x104 

253±150 

29±1 

18.5±1.7 

6.29±0.76 

0.485±0.18 

0.52±0.30 

3.8x104 

1.2x104 

0.48 

0.49 

  7.75-9 

  ND 

21,810 

22,585 

 

Fig. 3.3: pH rate profile of Q5LIW1. 
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(ii) Enzyme kinetics.  

Kinetic parameters were determined for the interconversion of A5P and Ru5P at pH 8.5. 

A comparison of the kinetic constants obtained for Q5LIW1 and EcKdsDΔ2CBS with those 

previously obtained for the APIs of E. coli is shown in Table 3.2. 

Kinetic constants for the conversion of F6P to G6P (phosphoglucose isomerase catalysis) 

were also determined for Q5LIW1: Km of G6P, 0.92 ± 0.378 mM; kcat/Km of G6P, 8.14 × 103 M-1 s-

1 ; kcat of G6P to F6P, 7.486 ± 0.79 s-1 ; kcat of F6P to G6P, 0.753 ±0.0386 s-1; Km of F6P, 0.192 ± 

0.0395 mM; kcat/Km of F6P, 3.9 × 103 M-1 s-1; Keq, 0.28; optimum pH, 7.75 to 9; subunit mass, 

21,810 Da. 

 

  

Fig. 3.4: Complementation of an A5P auxotroph on agar plates. (A) Agar plate containing MOPS 
medium supplemented with 15 µM A5P, 10 µM G6P, 0.1 mg/ml ampicillin, and 0.05 mg/ml 
kanamycin. (B) Agar plate containing MOPS medium supplemented with 0.1 mg/ml ampicillin, 
and 0.05 mg/ml kanamycin. In both panels, the wedges were streaked with: E. coli TCM15 
harboring pT7-7 (vector control, wedge 1), E. coli TCM15 harboring pT7-7-c3406 (c3406 control, 
wedge 2), and E. coli TCM15 harboring pT7-7-Q5LIW1 (Q5LIW1, wedge 3). 
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Q5LIW1 and EcKdsDΔ2CBS are able to complement E. coli strain TCM15.  

(i)Q5LIW1 complements the API defect in E. coli strain TCM15.  

E. coli TCM15 (6) is a derivative of BW30270 in which both kdsD and gutQ have been 

deleted. To support the growth of TCM15, minimal medium must be supplemented with A5P (to 

support LPS biosynthesis) and G6P (to induce a transport system, uhp, that internalizes A5P) (22). 

This A5P/G6P auxotrophy can be circumvented by expression of an active API from a plasmid 

within the cell. As a test of the ability of Q5LIW1 to complement an API deficiency within bacterial 

cells, E. coli TCM15 was transformed with the plasmid pT7-7-YP_209877.1, pT7-7- c3406 (positive 

control), or pT7-7 (vector control). In this system, the plasmid inserts are expressed from a leaky 

T7 promoter. Equal numbers of cells were plated on morpholinepropanesulfonic acid (MOPS) 

minimal medium containing glycerol and either containing or lacking A5P/G6P (Fig. 3.4). Q5LIW1 

Fig. 3.5: Complementation of an A5P auxotroph on LB/agar plates. (A) Agar plate containing LB 
medium supplemented with 15 µM A5P, 10 µM G6P, 0.1 mg/ml ampicillin, and 0.05 mg/ml 
kanamycin. (B) Agar plate containing LB medium supplemented with 0.1 mg/ml ampicillin, and 
0.05 mg/ml kanamycin. In both panels, the wedges were streaked with: E. coli TCM15 harboring 
pT7-7 (vector control, wedge 1), E. coli TCM15 harboring pT7-7-KdsD (KdsD wild type control, 
wedge 2), and E. coli TCM15 harboring pT7-7-KdsDΔ2CBS (KdsD truncated to contain only the SIS 
domain, wedge 3). 
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is able to complement the lack of A5P/G6P in the medium and is therefore an active API in E. coli 

TCM15.  

 

Fig. 3.6: Effect of CMP-Kdo on Q5LIW1 API activity. (A) Nonlinear regression fit of the effect of 
CMP-Kdo on Q5LIW1 API activity. Rates in nM/s were measured at CMP-Kdo concentrations 
ranging from 0 to 68.51 µM and various A5P concentrations (0.25mM and 0.5 mM). (B) Hill plot 
of CMP-Kdo binding to Q5LIW1, showing a 1:1 binding. 
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(ii) EcKdsDΔ2CBS complements the API defect in E. coli strain TCM15.  

As a test of the ability of EcKdsDΔ2CBS to complement an API deficiency within bacterial 

cells, E. coli TCM15 was transformed with pT7-7 (vector control), pT7-yrbH (positive control, wild-

type kdsD), or pT7-7-EcKdsDΔ2CBS. Equal numbers of cells were plated on LB medium either 

containing or lacking A5P/G6P (Fig. 3.5). EcKdsDΔ2CBS is able to complement the lack of A5P/G6P 

in the medium and therefore displays API activity in E. coli TCM15. CMP-Kdo inhibits the API 

activity of Q5LIW1. CMP-Kdo, the final product of the Kdo biosynthetic pathway, is used by the 

enzyme Kdo transferase (WaaA) to transfer Kdo to lipid IVA. We tested the hypothesis that CMP-

Kdo is a feedback inhibitor of Q5LIW1. CMP-Kdo, which is not commercially available and must 

be made in the lab, autohydrolyzes in aqueous solution (25°C, pH 7.5) with a half-life of 

approximately 34 min (23). This limitation was circumvented by performing API assays using 

CMP-Kdo that was generated in situ using CTP, Kdo, and CMP-Kdo synthetase (KdsB) from E. coli. 

This process generated high micromolar concentrations of CMP-Kdo, as determined using the 

Eikonogen assay (20). The addition of CMP-Kdo-containing mixtures to Q5LIW1 enzymatic assays 

caused a substantial decrease in the activity of Q5LIW1 (Ki of 1.91 ± 0.48 µM) (Fig. 3.6A). Addition 

of mixtures that lacked KdsB and were, therefore, devoid of CMP-Kdo did not inhibit the API 

activity of Q5LIW1. A Hill plot of these data shows a 1:1 binding ratio of Q5LIW1 to CMP-Kdo, 

suggesting that CMP-Kdo binds noncooperatively; however, we cannot rule out the possibility of 

negatively cooperative binding (Fig. 3.6B). 

Discussion 

The data presented in this report strongly support the hypothesis that Q5LIW1 is a 

physiologically relevant API that is responsible for the generation of A5P necessary to support 
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LPS biosynthesis in B. fragilis. A BLASTP search of the genomes of other Gram-negative obligate 

anaerobes, using Q5LIW1 as the query sequence, yielded several hits of species which contain 

putative SIS-domain proteins but do not contain a putative API with CBS domains. This suggests 

that single SIS-domain APIs may be utilized as the sole API in several Gram-negative obligate 

anaerobes. The slow growth of these obligate anaerobes should diminish the rate of Kdo 

biosynthesis required to sustain viability, compared with facultative anaerobes like E. coli , and 

thus diminish the rate at which A5P must be produced. Therefore, it is reasonable to conclude 

that an API such as Q5LIW1, which has a somewhat lower kcat/Km than that of E. coli KdsD, would 

be able to support cell viability. Experiments with E. coli TCM15 showed that Q5LIW1 could 

complement an API-deficient strain. This demonstrates that Q5LIW1 can serve as the sole source 

of A5P to support LPS biosynthesis in E. coli TCM15. The substrate specificity of Q5LIW1 was 

probed utilizing a series of aldose phosphates. Unlike previously characterized APIs, which are 

specific to the isomerization of Ru5P and A5P, Q5LIW1 was able to catalyze the isomerization of 

A5P to Ru5P as well as that of G6P to F6P. However, the phosphoglucose isomerase activity of 

Q5LIW1 is very weak and likely not physiologically relevant. The pH optimum for the 

isomerization of A5P to Ru5P by Q5LIW1 was found to include a broad range from 7.75 to 9.0. 

This pH optimum is similar to that of the two-domain APIs of E. coli (KdsD, GutQ, and KpsF) (5, 6, 

7). Conversely, c3406, a SIS-domain API, has a sharp pH rate profile with an optimum pH of 6.6 

(8). The kinetic parameters, for the isomerization of A5P as well as G6P to the corresponding 

ketoses, were determined. The kinetic profile of Q5LIW1 is very similar to that of c3406 (Table 

3.2) for the isomerization of A5P, further suggesting that SIS-domain APIs may be able to serve 

as the sole A5P source to support LPS biosynthesis. These results led to the hypothesis that a 
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truncation of the two CBS domains of E. coli KdsD would result in a protein that would maintain 

API activity and potentially complement E. coli TCM15. EcKdsDΔ2CBS (a 213- amino-acid protein 

including only the SIS domain of E. coli KdsD) was cloned, overexpressed, and purified. 

Complementation studies with EcKdsDΔ2CBS showed that the truncated gene could complement 

the API defect in E. coli TCM15. The kinetic parameters of the truncated enzyme were also 

determined; EcKdsDΔ2CBS demonstrated a 5-fold decrease in catalytic efficiency in the A5P-to-

Ru5P direction compared to wild-type KdsD (Table 3.2). In the Ru5P-to-A5P direction, the 

catalytic efficiency of EcKdsDΔ2CBS resembles the single-domain APIs of Q5LIW1 and c3406 more 

than it does the CBS domain-containing APIs of E. coli. The finding that single-domain APIs may 

serve as the sole API in several bacterial species led us to question how this unique group of APIs 

might be regulated. Because APIs catalyze the first step in Kdo biosynthesis, it is logical that the 

final product of the Kdo biosynthetic pathway, CMP-Kdo, may serve as a feedback inhibitor to 

regulate the pathway. In this paper, we demonstrated that CMP-Kdo inhibits Q5LIW1 with a Ki of 

1.91 µM. Our inhibition experiments confirm the biological significance of CMP-Kdo within the 

active site of Q5LIW1 in the PDB (PDB ID 3ETN). These results give insight into a potential 

regulation mechanism of single-domain APIs. However, it is unclear if this regulation mechanism 

also applies in vivo. Based on the fact that Q5LIW1 may be regulated by CMP-Kdo feedback 

inhibition, we speculate that other single SIS-domain APIs, such as c3406, can also be regulated 

by CMP-Kdo. We further speculate that two-domain (CBS domain-containing) APIs may be 

regulated by CMP-Kdo, but it is unclear what role the CBS domain would play in this process. The 

discovery of this potential regulation mechanism of the single-domain API, Q5LIW1, has provided 
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a first glimpse of insight into understanding the regulation of APIs in the biosynthesis of Kdo and 

could serve as a model of structure-function studies of APIs. 
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Chapter IV 

Identification of a D-Arabinose-5-Phosphate Isomerase 

 in the Gram-positive Clostridium tetani 

 

Summary 

D-Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose-5-

phosphate and D-arabinose-5-phosphate. Various Gram-negative bacteria, such as the 

uropathogenic E. coli strain CFT073, contain multiple API paralogs (KdsD, GutQ, KpsF and c3406) 

that have been assigned various cellular functions.  The D-arabinose-5-phosphate formed by 

these enzymes seems to play important roles in the biosynthesis of lipopolysaccharide and group 

2 K-antigen capsules, as well as in the regulation of the cellular D-glucitol uptake and 

uropathogenic infectivity/virulence. The genome of a Gram-positive pathogenic bacterium, 

Clostridium tetani, contains a gene encoding a putative API, CtAPI, even though C. tetani lacks 

both LPS and capsid biosynthetic genes. To better understand the physiological role of A5P in this 

Gram-positive organism, recombinant CtAPI was purified and characterized. CtAPI displays 

biochemical characteristics similar to those of APIs from Gram-negative organisms and 

complements the API-deficiency of E. coli API knockout strain. Thus, CtAPI represents the first D-

arabinose-5-phosphate isomerases to be identified and characterized from a Gram-positive 

bacterium. 
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Introduction 

In Gram-negative microorganisms, D-arabinose-5-phosphate isomerase (API) catalyzes 

the interconversion of D-ribulose-5-phosphate (Ru5P), a product of the pentose phosphate 

pathway, and D-arabinose-5-phosphate. All APIs contain a catalytic sugar isomerase (SIS) domain; 

most also contain a C-terminal tandem cystathionine β-synthetase (CBS) domain, which is 

thought to play a regulatory role.  

The cellular functions of the API paralogues have been assigned based upon their activity 

and the genomic context of the genes encoding them. The two-domain APIs of E. coli have been 

classified as L-API (involved in lipopolysaccharide [LPS] biosynthesis), G-API (part of the glucitol 

phosphotransferase operon), and K-API (involved in K-antigen biosynthesis). L-APIs, such as KdsD 

from E. coli, are the first enzyme in the pathway responsible for the biosynthesis of 3-deoxy-D-

manno-octulosonic acid (Kdo), an essential component of both the lipopolysaccharide (LPS) of 

Gram-negative bacteria and the rhamnogalacturonan-II of certain plants (1-3). While still not fully 

understood, G-APIs, such as GutQ, appear to function in the biosynthesis of A5P to modulate 

expression levels of the gut operon (4). The gene encoding GutQ (gutQ) is the last open reading 

frame of the glucitol (sorbitol) operon, which encodes the proteins that transport D-glucitol 

across the inner bacterial membrane as D-glucitol-6-phosphate. This material is eventually 

metabolized to D-fructose-6-phosphate. Finally, the K-APIs, such as KpsF from E. coli CFT073, are 

considered responsible for the biosynthesis of the Kdo required for capsule biogenesis. This type 

of API is found in bacteria with K-antigens, in which a single Kdo molecule serves as a link between 

the K-antigen polysaccharide and its lipid α-glycerophosphate membrane anchor or multiple Kdo 

molecules serve as a repeating component of the capsular polysaccharide (5). Single-domain APIs 
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have been identified and characterized from pathogenic bacteria such as Bacteroides fragilis and 

E. coli CFT073, a uropathogenic strain of E. coli. Because the single-domain API Q5LIW1 is 

apparently the only API encoded by the B. fragilis genome, it is thought to produce the Kdo 

required for LPS biosynthesis. The gene encoding the single-domain API present in E. coli CFT073, 

c3406, is located on a genomic island that has been shown to be important for virulence in mice. 

However, the cellular role of c3406 remains unclear. 

In this study, we identified and characterized a putative API from the Gram-positive 

organism, Clostridium tetani, the etiologic agent of tetanus. 

Materials and Methods 

Materials 

An E. coli codon-optimized synthetic gene encoding the API from C. tetani, CTC00908, was 

purchased from GenScript (Piscataway, NJ, USA). Enzymes for subcloning were purchased from 

New England Biolabs (Ipswich, WI, USA). Plasmid DNA was purified using the Promega Wizard 

Miniprep kit (Madison, WI, USA). DNA sequencing was performed by the University of Michigan 

Biomedical Resources Core Facility. 
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Table 4.1 Strains, plasmids and primers used in this study. 

Item Description Source 
E. coli     

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) F80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 
galU galK rpsL (StrR) endA1 nupG 

Invitrogen 

TCM15 MG1655 rph+ (ΔkdsDΔgutQ) Ref. (4) 

BL21 (DE3) 
 

F– ompT gal dcm lon hsdSB(rB
–mB

–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) 

[malB+]K-12(λS) 

Novagen 

Plasmids    

pCR2.1-TOPO Library plasmid  Invitrogen 

pT7-7 Expression vector Ref. (6) 

pT7-7-c3406 E. coli CFT073 c3406 inserted into NdeI/BamHI of pT7-7, AmpR Ref. (7) 

pT7-7-CtAPI Codon optimized C. tetani WP_023437760.1 inserted into NdeI/BamHI of pT7-7, 
AmpR 

This study 
  

    pT7-7-yrbH E. coli kdsD inserted into NdeI/BamHI of pT7-7, AmpR Ref. (8) 

pET19b T7 expression vector for N-terminal His-tag fusions, AmpR Novagen 

pET19b-CtAPI Codon optimized C. tetani CTC00908 inserted into NdeI/BamHI of pET19b, AmpR This Study 

 

Bacterial strains, plasmids, primers, and growth media 

The bacterial strains and plasmids used in this study are listed in Table 4.1. All strains were 

grown in LB medium (9). TCM15 is a derivative of BW30270 (E. coli K-12 MG1655 rph+), in which 

the kdsD and gutQ genes have been disrupted using the phage λ Red recombinase system (4,10). 

TCM15 cultures were supplemented with G6P (10 µM) and A5P (15 µM). G6P is required for 

induction of the uhp transporter, which allows the uptake of A5P required for growth (11). 

Cloning, expression, and purification of C. tetani API 

The synthetic, E. coli codon-optimized C. tetani API gene was received with N-terminal 

NdeI and C-terminal BamHI restriction sites in pUC57. The NdeI to BamHI fragment containing 

the C. tetani API gene was sub-cloned into pET19b (to produce pET19b-CtetAPI for protein 

production) and pT7-7 (to produce pT7-ctetAPI for use in complementation experiments). The 

plasmid pET19b-CtetAPI was inserted into chemically competent E. coli BL21(DE3) cells. A fresh 
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transformant was grown at 37°C in LB medium supplemented with 100 mg/L ampicillin and 30 

mg/L chloramphenicol while shaking at 250 rpm until the optical density at 600 nm reached 0.6. 

Recombinant protein expression was induced at 19°C with the addition of isopropyl-β-D-1-

thiogalactopyranoside to a final concentration of 0.5 mM.  After 16 h of incubation at 19°C and 

250 rpm, the cells were harvested by centrifugation at 6,000 x g and 4°C for 10 min. The resulting 

cell pellet was resuspended in 50 mL of buffer A (20 mM Tris, pH 8.0, 300 mM NaCl) and lysed by 

sonication on ice using multiple 20 s bursts with 2 min pauses between bursts. The lysate was 

clarified by centrifugation (20,000 x g, 4°C, 45 min) and the supernatant was filtered through a 

Millipore 0.22 µm PVDF filter. The filtered solution was loaded onto a 5 mL GE HisTrapTM HP nickel 

column pre-equilibrated with buffer A, which was then washed with 20 column volumes of buffer 

A supplemented with 100 mM imidazole. The protein was eluted with buffer A supplemented 

with 500 mM imidazole. The eluted protein solution was buffer-exchanged into 20 mM Tris pH 

8.0, 100 mM NaCl prior to concentration in an Amicon ultracentrifugal filter (10,000 molecular-

weight cut off) and stored at 4°C. 

Native oligomeric state determination 

The native molecular mass of CtAPI was estimated by gel filtration chromatography on a 

HiPrep (26/60) Sephacryl S-100 column. Standards included Bovine serum albumin (BSA) dimer 

(132.4 kDa), BSA monomer (66.2 kDa), chicken egg white ovalbumin (44.3 kDa), and trypsin 

inhibitor (28 kDa). A plot of log (molecular mass) versus elution volume/void volume (Ve/Vo) was 

fitted by linear regression in Microsoft Excel. The molecular mass of CtAPI was determined 

experimentally by measuring its elution volume on the same column, in triplicate, and calculating 

the log(molecular mass) from the standard curve. 
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Substrate specificity 

To assess the substrate specificity of CtAPI, a panel of naturally abundant carbohydrates 

was tested using the colorimetric cysteine-carbazole assay. The following potential substrates 

were tested: D-arabinose-5-phosphate, D-arabinose, D-glucose-6-phosphate, D-mannose-6-

phosphate, D-glucoseamine-6-phosphate, D-glucose-1-phosphate, and D-ribose-5-phosphate. 

Final reaction conditions included 100 mM 2,2’-(Propane-1,3-diyldiimino)bis[2-

(hydroxymethyl)propane-1,3-diol] (Bis-tris propane) pH 8.0, 1 mM EDTA, 100 mM CtAPI, and 1 

mM potential substrate. After 10 min at 37°C, reaction mixtures (each substrate was assayed in 

triplicate) were quenched with an equal volume of 25 N H2SO4. Aliquots (90 µL) of the quenched 

reaction mixtures were mixed with a freshly prepared cysteine-carbazole assay mixture (10 µL of 

0.12% ethanolic carbazole solution, 10 µL of 1.5% aqueous cysteine-HCl, and 230 µL of 25 N 

H2SO4) and incubated at 21°C for 3 h to develop the color (8,12). Enzyme substrates were 

identified by comparing the absorbance of reactions to the absorbance of enzyme-omitted 

controls at 540 nm. 

Complementation of a kdsD/gutQ defect in E. coli TCM15 

Electrocompetent TCM15 cells were prepared as previously described (3) and separately 

transformed with pT7-ctetAPI, pT7-c3406 (7), and empty pT7-7 vector. Cells were grown on 

LB/agar plates supplemented with 100 µg/mL ampicillin, 15 µM A5P, and 10 µM G6P. Aliquots of 

liquid LB medium supplemented with the same concentrations of A5P, G6P, and ampicillin were 

inoculated with single colonies of the three transformants and grown overnight at 37°C. Cells 

were washed twice with unsupplemented LB medium (to remove the A5P and G6P) and then an 
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equal number of cells were streaked onto LB/agar/ampicillin plates supplemented with or lacking 

A5P and G6P before incubation overnight at 37°C. 

Determining the pH-rate profile of CtAPI 

To determine the optimal pH of its enzymatic activity, CtAPI’s ability to isomerize A5P to 

Ru5P was tested in a series of buffered solutions of varying pH using the cysteine-carbazole assay. 

Buffered solutions (200 mM buffer, 2 mM EDTA) were prepared at pHs ranging from 5.00 to 8.00 

in 0.25 unit increments at 37°C. The buffer 2-(N-morpholino)ethanesulfonic acid (MES) was used 

from pH 5.00 to 6.00, while bis-tris propane buffer was used from pH 6.25 to 8.00. Final reaction 

concentrations were 100 nM CtAPI, 5 mM A5P, 1 mM EDTA, and 100 mM buffer. Reactions, 

tested in triplicate, were incubated at 37°C for 3 min before being quenching with equal volumes 

of 25 N H2SO4. Quenched reactions were processed using the cysteine-carbazole assay mixture 

as described above, and then the absorbance at 540 nm was recorded after 3 h of color 

development. Relative reaction rates were determined using linear regression. 

Enzyme kinetics 

Kinetic parameters for the isomerization of Ru5P to A5P were determined, in triplicate, 

using a modified coupled Aminoff assay in which the A5P was converted to Kdo-8-phosphate 

using phosphoenolpyruvate (PEP) and the 3-deoxy-D-manno-octulosonate-8-phosphate synthase 

(Kdo8PS) from Arabidopsis thaliana (13,14). Reactions were initiated by adding the Ru5P 

substrate to mixtures containing (final concentrations) 100 mM CtAPI, 100 mM bis-Tris propane 

(pH 6.75), 10 mM PEP, 0.10 mg/mL Kdo8PS, and 1 mM EDTA. Samples of Ru5P ranging from 0 to 

10 mM (final concentration) were incubated separately from the reaction mixtures at 37°C for 3 
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min before being used to initiate the reactions. The initiated reactions were incubated for 3 min 

at 37°C and then quenched with an equal volume of 10% (wt/vol) trichloroacetic acid. Color was 

developed as previously described (3,13). Absorbance was read at 549 nm and the data was fit 

using the nonlinear least-squares regression function of GraphPad Prism 5 software. 

Kinetic parameters for the CtAPI-catalyzed isomerization of A5P to Ru5P were also 

determined, in triplicate, using the discontinuous cysteine-carbazole assay described above. Final 

reaction mixtures contained 100 mM CtAPI, 100 mM Bis-Tris propane (pH 6.75), 1 mM EDTA, and 

A5P concentrations ranging from 0 to 8 mM. 

Equilibrium constant (Keq) determination 

Mixtures containing 100 mM Bis-Tris propane buffer, pH 6.75, 1 mM EDTA, 10% D2O, 500 

nM CtAPI, and either 5 mM A5P or 5 mM Ru5P were incubated at room temperature (21°C) for 

48 h, which was sufficient time to reach equilibrium. The equilibrium constant was determined 

using 31P nuclear magnetic resonance (NMR) as previously described (3,8). NMR experiments 

were performed using a Varian 400 multinuclear NMR spectrometer. 

Results 

Expression and characterization of C. tetani API 

The primary sequence and genomic context of CtAPI  

A BLASTP search of the non-redundant protein database was conducted using the 

sequence of E. coli CFT037 c3406 protein as the query. The search returned several putative SIS-

domain proteins in Gram-positive bacteria of the genera Clostridium, Lactobacillus, and others. 

One of these results was the sequence WP_023437760.1 (referred to as ctAPI), which encodes a 

putative API within the genome of C. tetani, which we have designated CtAPI. A subsequent 
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BLASTP search using the sequence of CtAPI as the query revealed putative SIS-domain proteins 

in Gram-positive bacteria of several genera, including Bacillus, Staphylococcus and Lactobacillus. 

These results suggest the presence of APIs in multiple Gram-positive organisms. A multiple 

sequence alignment of the SIS domain sequences of CtAPI and the known APIs of E. coli (KdsD, 

GutQ, KpsF and c3406) is shown in Fig 4.1. 

 

 

 

 

 

 

 

 

 

To obtain evidence regarding the role played by CtAPI and its homologs in Gram-positive 

bacteria, the genome of C. tetani was searched for evidence of Kdo or K-antigen biosynthesis 

pathways. BLASTP searches were conducted using the sequences of other enzymes within the E. 

Fig. 4.1: Alignment of sequences of E. coli APIs and CtAPI. Sequences were aligned using Clustal 
W. * denotes residues is absolutely conserved, : denotes conservative, and . denotes semi-
conservative. 
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coli Kdo biosynthetic pathway (KdsC, KdsA, KdsB and WaaA), as well as BLAST searches using the 

genes kdsA, kdsC, kdsB, waaA. These searches failed to provide evidence for a Kdo biosynthetic 

pathway in C. tetani. Similar searches were conducted using the sequences of the other enzymes 

in the K-antigen biosynthetic pathway (KpsFEDUCS) and the genes that encode them 

(kpsFEDUCS).  These searches failed to provide evidence for the presence of a K-antigen 

biosynthetic pathway in C. tetani. Finally, the genomic context of ctAPI was investigated. The 

gene encoding CtAPI is positioned within an operon harboring several genes encoding proteins 

involved in carbohydrate metabolism and transport, (Fig. 4.2 B). This operon (CTC00903-

CTC00911) includes genes assigned or annotated as a rbsD/fucU mutarotase, a LacI family 

transcriptional regulator, a D-ribose transporter ATP-binding protein, a ribose ABC transporter 

permease, a ribose ABC transporter substrate-binding protein, CtAPI, a ribokinase, a D-glucose:D-

fructose oxidoreductase, and a hypothetical protein, respectively.  

 

Fig. 4.2: Genomic context of gutQ and ctAPI. A. Genomic context of gutQ in E. coli K-12 MG1655. 
Genes involved in sorbitol metabolism and transport are shaded in dark gray. B. Genomic context 
of ctAPI in C. tetani. Genes involved in ribose transport and metabolism are shaded in gray. 

Recombinant CtAPI is a tetramer. 

Recombinant CtAPI protein carrying an N-terminal His-tag was overexpressed in E. coli 

BL21(DE3) from a synthetic, E. coli codon-optimized gene. After purification with a GE HisTrapTM 

HP column, the recombinant CtAPI was determined to be essentially homogenous (>95% pure) 
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using SDS-PAGE. The purified, His-tagged CtAPI migrated at approximately 26 kDa on an SDS-

PAGE gel, consistent with the calculated subunit molecular mass of 25,740.1 Da. The oligomeric 

state of native CtAPI was determined using gel-filtration chromatography. Native CtAPI eluted 

with an apparently molecular mass of 109.2 kDa, which is 4.26 times the calculated subunit mass 

(Fig. 4.3). 

 

 

Fig. 4.3: Standard curve from native molecular mass determination. Standard curve from native 
molecular mass determination by gel filtration chromatography (Ve: elution volume, Vo: void 
volume, Red square: CtAPI, Blue diamond: Protein Standards). 
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Enzymatic properties of CtAPI 

Recombinant CtAPI is an API. 

To determine the substrate specificity of CtAPI, its ability to catalyze the isomerization of 

a series of aldoses and aldose phosphates, including D-arabinose, D-arabinose-5-phosphate, D-

glucose-6-phosphate, D-mannose-6-phosphate, D-glucosamine-6-phosphate, D-glucose-1-

phosphate, and D-ribose-5-phosphate, was tested. Of the various substrates tested, CtAPI only 

converted A5P to the corresponding ketose, Ru5P. A pH-rate profile for the isomerization of A5P 

to Ru5P was determined; optimal isomerase activity occurred at pH 6.5 (Fig. 4.4). 
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Fig. 4.4: pH rate profile of CtAPI. The rate of isomerization from A5P to Ru5P was measured at 
37ºC in a series of pH environments ranging from 5.0 to 8.0. 
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Enzyme kinetics. 

Kinetic parameters for the interconversion of Ru5P and A5P were determined at pH 6.5. 

In the conversion of Ru5P to A5P, CtAPI was found to have a kcat/Km of 1.3 X 104 M-1·s-1. In the 

conversion of A5P to Ru5P, the kcat/Km was determined to be 5.4 X 104 M-1·s-1. These data, along 

with a comparison of the kinetic constants determined with those previously obtained for E. coli 

APIs are presented in Table 4.2. 

 

Table 4.2 Kinetic constants for the APIs of E. coli and CtAPI. 

Protein kcat 
(A5P to 

Ru5P, s-1) 

Km 

(A5P, 
mM) 

kcat / Km 
(A5P,  

M-1 s-1) 

kcat 

 (Ru5P to 
A5P, s-1) 

Km 

(Ru5P, 
mM) 

kcat/ Km  
(Ru5P,  
M-1 s-1) 

Keq Optimum 
pH 

Subunit 
mass 
(Da) 

KdsDRef(8) 157 
±4 

0.61 
±0.06 

2.6x105 255±16 0.35±0.08 7.3x105 0.50±0
.06 

8.4 35,084 

GutQRef(4) 218 
±4 

1.2 
±0.1 

1.8x105 242±11 0.64±0.08 3.8x105 0.47 8.25 33,909 

KpsFRef(5) 15 
±1 

0.57 
±0.04 

2.6x104 19±2 0.30±0.03 6.3x104 0.48±0
.02 

7.75 35,447 

C3406Ref(7) 16.8 
±0.2 

1.92 
±0.05 

8.8x103 10.5±0.08 0.70±0.12 1.5x104 0.52 6.6 20,880 

CtAPI 102 
±5 

1.89 
±0.24 

 5.4x104 86.7±3.79 6.65±0.15 1.3x104 0.45 
 

6.5 21,764 

 

CtAPI is able to complement the API deficiency of E. coli strain TCM15 

TCM15 is an E. coli strain prepared by deleting the only two API genes (kdsD and gutQ) present 

in the genome of BW32070. Thus, TCM15 is unable to synthesize A5P and is inviable in the 

absence of a source of A5P because it is unable to synthesize LPS without A5P. In order to support 

the growth of TCM15, the culture medium must be supplemented with A5P, to support LPS 

biosynthesis, and G6P, to induce the uhp transport system that internalizes A5P (11). Expression 

of an active API from a plasmid within the cell will circumvent this A5P/G6P auxotrophy. As a test 
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of the ability of CtAPI to complement the API deficiency of TCM15, the plasmids pT7-7-CtAPI, 

pT7-7-c3406 (API positive control), and pT7-7 (vector control) were transformed into TCM15 

cells. The API-encoding inserts in these plasmids are expressed from a leaky T7 promotor (15). 

Equal numbers of cells were plated on LB medium either containing or lacking A5P/G6P (Fig. 4.5). 

TCM15 cells harboring either pT7-7-CtAPI or c3406 grew on both of the experimental media, 

while cells harboring the vector control grew only on the medium containing A5P/G6P. These 

results indicate that CtAPI, like c3406, is an active API in vivo. 
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Fig. 4.5: Complementation of an A5P auxotroph on an LB agar plate. (Left) Agar plate containing 

LB medium supplemented with 15 µM A5P, 10 µM G6P, and 0.1 mg/mL ampicillin. (Right) Agar 

plate containing LB medium supplemented with 0.1 mg/mL ampicillin. In both halves, the wedges 

were streaked with: E. coli TCM15 harboring pT7-7-c3406 (positive control, wedge 1), E. coli 

TCM15 harboring pT7-7 (vector control, wedge 2), E. coli TCM15 harboring pT7-7-CtAPI (CtAPI, 

wedge 3). 
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Discussion 

A BLASTP search using the protein sequence of c3406 led to the discovery of a putative 

API, which we have designated CtAPI, in the Gram-positive bacterium C. tetani. Both CtaPI and 

c3406 have a predicted SIS-domain and lack the tandem CBS domain found in the full-length APIs 

KdsD, GutQ and KpsF. Like all APIs characterized to date, CtAPI was found to be a tetramer in 

solution. A multiple sequence alignment of CtAPI with c3406, GutQ, KpsF, and KdsD (Fig 4.1) 

shows that the SIS domain of these proteins is fairly conserved. CtAPI shares primary sequence 

identities of 55%, 45%, and 52%, with KdsD, GutQ, and c3405, respectively. The five residues 

previously suggested to be important for catalysis (16,17), namely K52, E78, H81, E104, and H186 

(CtAPI numbering) are conserved among all APIs known to date. These results demonstrate that 

CtAPI possesses the primary and quaternary structural characteristics typical of APIs, suggesting 

that CtAPI possesses API activity. 

To test this hypothesis, the enzymatic activity of CtAPI was investigated. CtAPI was found 

to specifically interconvert D-ribulose-5-phosphate and D-arabinose-5-phosphate, confirming 

that CtAPI has API activity in vitro. The optimal pH for the isomerization was determined to be 

6.5, which is essentially identical to the pH optimum (6.6) of c3406. The kinetic parameters of 

CtAPI are also comparable, particularly in terms of kcat/Km, to those of c3406 and E. coli KpsF 

(Table 4.2). This enzymatic activity was sufficient to complement the API-deficiency of bacterial 

strain E. coli TCM15 (Fig. 4.5), indicating that CtAPI can serve as a functional API in vivo. This 

evidence provides strong support for the assertion that CtAPI is the first API characterized from 

a Gram-positive bacterium. 
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Upon finding that CtAPI is indeed an API, we questioned what role an API would play in a 

Gram-positive bacterium. BLASTP searches of the proteome of C. tetani using the sequences of 

the other enzymes in the Kdo biosynthesis pathway failed to find proteins with sufficient 

sequence similarity to indicate similar function. This indicates that the A5P produced by CtAPI is 

unlikely to be used for Kdo biosynthesis and should not be considered a K-API. Similar searches 

conducted using the enzymes of the K-antigen biosynthesis pathway failed to find evidence of a 

K-antigen biosynthesis pathway in C. tetani, indicating that the A5P produced by CtAPI is also 

unlikely to be used for the synthesis of K antigen and that CtAPI should not be considered a K-

API. 

We did, however, find evidence suggesting a G-API-like role. The genomic context of the 

gene encoding CtAPI is remarkably similar to that of gutQ in E. coli. The gutQ operon (Fig. 4.2 A) 

contains seven genes: gut(srl)AEBDMRQ (4,18-21). GutA, GutE, and GutB form the complex that 

transports D-glucitol-6-phosphate across the inner membrane. GutR and GutM are a 

transcriptional repressor and a transcriptional activator, respectively (4,18-21). Thus, both CtAPI 

and GutQ are situated within an island associated with transport and metabolism of a sugar, 

sorbitol in the case of GutQ and perhaps ribose in the case of CtAPI. GutQ is thought to modulate 

the expression level of the gut operon through the synthesis of A5P. However, it has been 

challenging to study the effect of A5P synthesis on the gut operon due to the requirement for 

A5P in LPS biosynthesis within Gram-negative bacteria.  

Synthesis of the data accumulated during this study leads us to speculate that CtAPI is 

serving a role in C. tetani that is similar to the role played by GutQ in E. coli. In this model, A5P is 

used as a regulatory molecule to induce/repress, through an unknown mechanism, the operon 
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containing the gene encoding the API. However, we cannot exclude the possibility that A5P 

functions in the regulation of additional operons likely involving ribose metabolism. We also 

cannot exclude the possibility that C. tetani is using CtAPI for the modulation of other 

carbohydrate transport and metabolism pathways. The identification of CtAPI within the Gram-

positive C. tetani, which does not require the biosynthesis of LPS, provides a unique system with 

which to study the regulation of operons via A5P synthesis. 
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Chapter V 

New Insights Into the Kdo Biosynthetic Pathway and Incorporation Into Lipid A-Like 
Molecules in Arabidopsis thaliana 

 

Summary 

The sugar 3-deoxy-D-manno-octulosonic acid (Kdo) is found in the rhamnogalacturonan II of 

higher plants and the lipopolysaccharide of Gram-negative bacteria. The Kdo biosynthetic 

pathway, which is conserved among plants and Gram-negative bacteria, begins with the 

isomerization of D-ribulose-5-phosphate to D-arabinose-5-phosphate (A5P) catalyzed by D-

arabinose-5-phosphate isomerase (API). In Gram-negative bacteria, Kdo incorporation into 

lipopolysaccharide is catalyzed by Kdo transferase. Although many bacterial APIs and Kdo 

transferases have been characterized, knowledge of their orthologs in plants is limited. Herein, 

we report the characterization of a putative API (AtAPI) and a putative Kdo transferase (AtWaaA) 

from the plant Arabidopsis thaliana. Our results demonstrate that AtAPI, the only protein 

encoded by the A. thaliana genome that shares significant sequence identity with any known API, 

has enzymatic properties similar to those of bacterial APIs. AtAPI can also complement an API-

deficient Escherichia coli strain, supporting the hypothesis that this enzyme initiates the Kdo 

biosynthetic pathway in A. thaliana. Our results also demonstrate that AtWaaA, which was 

previously proposed to catalyze the incorporation of Kdo into rhamnogalacturonan II, can 

transfer Kdo to lipid A in a Kdo transferase-deficient E. coli strain. These results suggest that Kdo  
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may be incorporated into lipid A-like molecules in A. thaliana, a role not yet described in plants, 

in addition to its role in rhamnogalacturonan II synthesis.
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Introduction 

 The eight-carbon acidic sugar 3-deoxy-D-manno-octulosonic acid (Kdo), normally found 

in the lipopolysaccharide (LPS) of Gram-negative bacteria, has also been shown to be present in 

some green algae and higher plants (1,2). The biosynthesis and enzymatic activation of Kdo (Fig. 

5.1) generally involves four sequential enzymes: D-arabinose-5-phosphate (A5P) isomerase 

(KdsD), Kdo-8-phosphate synthase (KdsA), Kdo-8-phosphate phosphatase (KdsC), and cytidine-

5’-monophosphate-Kdo synthetase (KdsB) (3).  These enzymes catalyze the synthesis of Kdo 

through the isomerization of the pentose pathway intermediate D-ribulose-5-phosphate (Ru5P) 

to A5P, condensation of A5P with phosphoenol pyruvate to yield Kdo-8-phosphate and inorganic 

Fig.  5.1: Kdo biosynthesis and incorporation in E. coli. The enzymes (in red) involved are D-
arabinose-5-phosphate isomerase, Kdo8P synthase, Kdo8P phosphatase, and CMP-Kdo 
synthetase. Two CMP-activated Kdo molecules are transferred to lipid IVA via Kdo transferase 
before the addition of secondary acyl chains by LpxL and LpxM. 
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phosphate, dephosphorylation of Kdo-8-phosphate to Kdo and inorganic phosphate, and the 

activation of Kdo with CTP to yield CMP-Kdo and pyrophosphate, respectively. CMP-Kdo is 

transferred to lipid IVA by the Kdo transferase WaaA, previously referred to as KdtA by Raetz (3,4). 

LPS, also known as endotoxin, is an essential part of the outer membrane of Gram-

negative bacteria and is associated with endotoxic shock, septicemia, and other immunological 

responses (5). Bacteria with compromised LPS are generally more susceptible to antibiotics and 

less pathogenic (6,7). LPS contains three main components: lipid A, which is embedded in the 

outer membrane; an oligosaccharyl core; and O-antigen (5). In LPS, Kdo residues are attached to 

lipid IVA and link the extracellular carbohydrate domain of LPS to the membrane-embedded lipid 

IVA (8). 

 

Fig.  5.2: A model of RG-II structure with side chains labeled. Abbreviations are AceA: Aceric acid, 
Api: Apiose, Ara: Arabinose, Dha: 3-Deoxy-lyxo-heptulosaric acid, Fuc: Fucose, Gal: Galactose, 
GalA: Galacturonic Acid, Glc: Glucose, Kdo: 3-Deoxy-D-manno-octulosonic acid, Me Fuc: 2-O-
methyl-L-fucose, Me Xyl: 2-O-methyl-D-xylose, Rha: Rhamnose 
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In vascular plants, Kdo is part of the Rha-α(1-5)Kdo side chain C of the highly conserved 

cell wall component rhamnogalacturonan II (RG-II; Fig. 5.2) (9,10). RG-II is found mainly as a dimer 

crosslinked by a borate diester bond between the residues of side chain A. This dimer is important 

for cell wall integrity (11). Studies have shown that a normal RG-II structure is necessary for the 

crosslinking of RG-II by borate and plant growth (10). Kdo-deficient mutants of Arabidopsis 

thaliana are impaired in pollen tube elongation, which is important in carrying sperm cells to the 

ovule (9,12-14). 

The biosynthesis and enzymatic activation of Kdo in A. thaliana is analogous to that in 

Gram-negative bacteria. Homologs of the bacterial kdsD, kdsA, and kdsB genes have been 

annotated in the A. thaliana genome (15). In A. thaliana, At3g54690 encodes a putative A5P 

isomerase (AtAPI), At1g79500 and At1g16340 encode two potentially functional Kdo-8-

phosphate synthases, At1g53000 encodes a functional CMP-Kdo synthetase, and At5g03770 

encodes a putative Kdo transferase (AtWaaA) (12,16,17). There are no significant homologs of 

bacterial Kdo-8-phosphate phosphatases in A. thaliana, but knockouts of this gene in Gram-

negative bacteria are not lethal (16). All of these A. thaliana enzymes have been characterized 

except AtAPI and AtWaaA, which have received little attention other than the disruptional 

mutation of the two genes (12,16-18). 

All the APIs studied to date have come from Gram-negative bacteria. Full-length APIs, 

such as E. coli KdsD, KpsF, and GutQ, contain a sugar isomerase (SIS) domain and a tandem 

cystathionine beta-synthase (CBS) domain, which is thought to be regulatory. The SIS-domain 

APIs, such as c3406 from E. coli CFT073 and Q5LIW1 of Bacteroides fragilis, are another form of 

API that lacks the tandem CBS domain of the full-length APIs (19-23). 
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Null mutants of the Kdo biosynthetic genes in A. thaliana appear to be nonviable, likely 

due to the gametophyte-lethality of these mutations (9,12,18). However, null mutants of AtWaaA 

are phenotypically indistinguishable from the wild-type. In these null mutants, the sugar 

composition of RG-II remains identical to that of wild-type A. thaliana, including the presence of 

wild-type amounts of the Rha-α(1-5)Kdo side chain (15,17). This has led to the speculation that 

AtWaaA does not incorporate Kdo into RG-II, as a deficiency in RG-II would impair proper pollen 

tube elongation (11). Furthermore, AtWaaA-GFP fusions have been shown to localize to ring-like 

structures surrounding the mitochondria (17). This is also inconsistent with the suggestion that 

AtWaaA is involved in the synthesis of RG-II, because RG-II synthesis is thought to occur in the 

Golgi apparatus. Rather, it is consistent with the hypothesis that AtWaaA is involved in the 

transfer of Kdo to an unidentified acceptor molecule in the mitochondrion. 

A. thaliana contains homologs of all the genes necessary to produce the lipid A precursor 

lipid IVA (Fig. 5.1) except lpxH, which is also absent in some Gram-negative bacteria (24,25). Most 

of the lpx genes, which are involved in the biosynthesis of lipid IVA, have either been shown or 

predicted to be targeted to the A. thaliana mitochondrion (16,17,25). It has been reported that 

A. thaliana produces the lipid IVA precursor known as lipid X (25). Lipid X levels were highest in 

the mitochondria and elevated in chloroplasts, compared with whole-cell homogenates. Null 

mutants of AtlpxA, AtlpxD2, AtlpxB, AtlpxK, and AtwaaA, along with AtlpxC-RNAi knock-down 

plants, were phenotypically indistinguishable from wild-type plants (25). Various lipid A 

precursors were detected in A. thaliana null mutants and knock-downs. However, lipid IVA was 

detected only in atkdta-1, an At3g54690 mutant strain, and Kdo-lipid IVA, Kdo2-lipid IVA, and the 

putative penta- or hexa-acylated derivatives were not detected (25). 
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In this study, designed to broaden knowledge of the Kdo biosynthetic pathway in A. 

thaliana, we characterized AtAPI and explored the possibility that Kdo is added to a lipid A-like 

molecule by AtWaaA. 

Materials and Methods 

Materials 

The synthetic, E. coli codon-optimized A. thaliana API gene (Locus Name: At3g54690) was 

purchased from Genewiz (South Plainfield, NJ, USA). The synthetic, E. coli codon-optimized A. 

thaliana waaA (NP_195997.2) gene was purchased from GenScript (Piscataway, NJ, USA). 

Enzymes for subcloning were purchased from New England Biolabs (Ipswich, WI, USA). Plasmid 

DNA was purified using the Promega Wizard Miniprep kit (Madison, WI, USA). DNA sequencing 

was performed by the University of Michigan Biomedical Resources Core Facility. 
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Table 5.1: Stains, plasmids, and primers used in this study. 

Item Description Source 

E. coli     

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) F80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-

leu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen 

TCM15 BW30270(ΔkdsDΔgutQ) Ref. (21) 

BL21 (DE3) 

F– ompT gal dcm lon hsdSB(rB
–mB

–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) 

[malB+]K-12(λ
S) NEB 

KPM22 TCM15 yhjD400 Ref. (5) 

KPM50 KPM22 kdsD+ Ref. (26) 

KPM53 KPM50 ΔwaaC Ref. (26) 

KPM54 KPM50 ΔwaaA This Study 

KPM56 KPM53 ΔwaaA Ref. (26) 

Plasmids     

pT7-7 T7 Expression vector, AmpR Ref. (27) 

pET-16b T7 expression vector for N-terminal His-tag fusions, AmpR Novagen 

pET-19b T7 expression vector for N-terminal His-tag fusions, AmpR Novagen 

pT7-7-c3406 E. coli CFT073 c3406 inserted into NdeI/BamHI of pT7-7, AmpR Ref. (22) 

pET-19b-AtAPI E. coli codon optimized A.thaliana At3g54690 inserted into NdeI/BamHI of pET-

19b, AmpR This study 

pET-16b-AtWaaA A. thaliana At5g03770 (from U17171) inserted into NdeI/BamHI of pET-16b, 

AmpR This study 

pET-16b-EcWaaA E. coli waaA inserted into NdeI/BamHI of pET-16b, AmpR Ref. (26) 

pUM212 pET-16b carrying the waaA gene of E. coli K-12, AmpR Ref. (26) 

pUC57-Kan-AtAPI PUC57-Kan carrying the E. coli codon optimized A. thaliana API gene, KanR Genewiz 

U17171 pENTR/SD/D-TOPO_AT5G03770.1 ABRC/Ref. (28)  

Primers   

AtWaaA.F TGTCCATATGAAGCTCGGAGTGTTTGTATAC IDT 

AtWaaA.R CACTGGATCCTCACTCGAGTTTGCATTCAATGTGATTTCTTG IDT 

ECOwaaAH1 

ACAGCTAAATACATAGAATCCCCAGCACATCCATAAGTCAGCTATTTA

CTGTGTAGGCTGGAGCTGCTTC MWG 

ECOwaaAH2 

TAATGGGATCGAAAGTACCCGGATAAATCGCCCGTTTTTGCATAACAA

CCCATATGAATATCCTCCTTAG MWG 



94 
 

Bacterial strains, plasmids, primers, and growth media 

The bacterial strains, plasmids, and primers used in this study are listed in Table 5.1. All 

strains were grown in LB medium. The auxotrophic strain TCM15, dependent on exogenous A5P 

for growth, is a derivative of BW30270 in which the kdsD and gutQ genes have been disrupted 

using the phage λ Red recombinase system (21,29). TCM15 cultures were supplemented with 10 

µM G6P and 15 µM A5P. G6P is necessary for induction of the uhp transporter, which allows for 

the uptake of A5P (30). 

Cloning, expression, and purification of A. thaliana API 

The E. coli codon-optimized synthetic gene encoding AtAPI was cloned into the NdeI and 

BamHI sites of the plasmid pUC57-kan (31). The insert was then subcloned into pET-19b and 

inserted into chemically competent E. coli TOP10 cells. After verification of the resulting plasmid 

using DNA sequencing, the pET-19b-AtAPI plasmid was inserted into chemically competent E. coli 

BL21 (DE3) cells for protein expression. A fresh transformant was grown, with shaking (250 rpm), 

at 37 °C in LB medium supplemented with 100 µg/mL ampicillin until the culture reached an 

optical density at 600 nm of 0.6. After cooling the culture to 19 °C, expression of protein was 

induced by the addition of isopropyl-β-D-1-thiogalactopyranoside to 0.42 mM. The culture was 

incubated for 16 h at 19 °C before cells were harvested by centrifugation (6,000 x g, 10 min, 4 

°C). Cell pellets were suspended in 50 mL of buffer A (20 mM Tris-HCl, pH 8.0, 300 mM NaCl) prior 

to being sonicated on ice (5 cycles of 20-s bursts, 2-min pauses between bursts). Lysed cells were 

clarified by centrifugation at 20,000 x g for 45 min at 4 °C. The resulting supernatant was filtered 

through a 0.45 µm Millipore polyvinylidene difluoride (PVDF) filter and loaded onto a HisTrap HP 

5 mL column (GE Healthcare) that had been pre-equilibrated, with 10 mL buffer A. The column 
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was washed with 100 mL of buffer A supplemented with 100 mM imidazole, and protein was 

eluted with 20 mL buffer A supplemented with 500 mM imidazole. Fractions containing AtAPI, as 

determined using SDS-PAGE, were pooled. The pooled fractions were dialyzed against buffer 

containing 20 mM Tris-HCl, pH 8.0, and 100 mM NaCl, and then concentrated using an Amicon 

ultracentrifugal filter (10,000 molecular weight cutoff). Purified protein was stored at 4 °C prior 

to use. 

Synthesis of Na2Ru5P  

The synthesis of Na2Ru5P followed the procedure of Pontremoli and Mangiarotti (32), 

with modifications. A mixture containing 1.54 mmol of D-gluconate-6-phosphate, 0.015 mmol of 

NADP+, and 2.92 mmol of sodium pyruvate was dissolved in 50 mL of glycylglycine buffer (37.5 

μM, pH 7.6) at room temperature. Next, 6-phosphogluconate dehydrogenase and lactate 

dehydrogenase were added to final concentrations of 500 nM and 588 nM, respectively, and the 

solution was incubated at 37 °C for 5 h. Similar to Pontremoli and Mangiarotti (31), reaction 

progress was monitored using the disappearance of D-gluconate-6-phosphate via the carbazole-

cysteine assay (33). When D-gluconate-6-phosphate was no longer detected, the reaction mixture 

was chilled to 0 °C and 650 mg of activated charcoal was stirred into the reaction to remove 

nucleotides. This mixture was filtered and the filtrate was loaded onto a DEAE Sepharose column 

that had been pre-equilibrated with water. The column was washed with water and then eluted 

with a gradient of 0 to 120 mM NaCl. The fractions containing Ru5P, identified using the 

carbazole-cysteine assay, were concentrated to a semi-solid by rotary evaporation under 

vacuum. The residue was dissolved in 20 mL methanol, and then concentrated via rotary 

evaporation under vacuum to dryness. To remove insoluble by-products, the product was 
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dissolved in 10 mL methanol and centrifuged at 9,000 x g for 10 min. The pellet was discarded 

and the supernatant was concentrated by rotary evaporation under vacuum to dryness. Finally, 

the product was heated under vacuum to remove any residual methanol and water. The final 

yield of Na2Ru5P was 53%. 

Native oligomeric state 

The native molecular mass of AtAPI was approximated using gel filtration 

chromatography on a HiPrep (26/60) Sephacryl S-100 column. Bovine serum albumin (BSA) 

dimer, (132.4 kDa), BSA monomer (66.2 kDa), chicken egg white ovalbumin monomer (44.3 kDa), 

and cytochrome c (12.4 kDa) were used as standards. Samples were run in triplicate using 20 mM 

Tris-HCl, pH 8.0, 50 mM NaCl as the eluent. A plot of log molecular mass vs. elution volume/void 

volume was fit using linear regression with Microsoft Excel. The oligomeric state of AtAPI was 

determined using the elution volume of the native protein and the standard curve. 

Substrate specificity 

To determine the substrate specificity of AtAPI, reaction mixtures containing 200 nM 

AtAPI, 100 mM Bis-Tris Propane, pH 8.0, and 1 mM EDTA were incubated for 3 min at 37 °C prior 

to the addition of 10 mM of D-arabinose, D-ribose-5-phosphate, G6P, D-glucose-1-phosphate, D-

glucosamine-6-phosphate, D-mannose-6-phosphate, or D-arabinose-5-phosphate, also held at 37 

°C, to initiate the reaction. After incubation for 3 min at 37 °C, reactions were quenched with an 

equal volume of 12.5 M H2SO4. Formation of the corresponding ketoses was visualized using the 

cysteine-carbazole assay (23,33). All plates contained no-enzyme controls and no-substrate 

controls in separate reactions. The assays were performed in triplicate. 

Complementation of E. coli TCM15 
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TCM15 cells were grown at 37 °C to the mid-exponential growth phase (OD600 ~0.5) in LB 

medium supplemented with 15 µM A5P and 10 µM G6P. These cells were pelleted by 

centrifugation at 3300 x g and 4 °C for 10 min, washed by resuspension in ice cold water, re-

pelleted, and then washed again. The washed cell pellet was resuspended in 50 µL of water for 

electroporation. Empty pT7-7 vector, pET-19b-AtAPI, and pT7-7-c3406 were separately inserted 

into the electrocompetent TCM15 cells. Transformed cells were grown on LB agar plates 

supplemented with 100 µg/mL ampicillin, 15 µM A5P, and 10 µM G6P. Single colonies taken from 

each plate were grown overnight in liquid LB medium supplemented as above. The resulting cells 

were washed twice with LB medium (by suspending the cells in LB medium, then pelleting them 

at 3300 x g and 4 °C) to remove the A5P and G6P present in the overnight cultures. Cells were 

then suspended in LB medium and streaked onto sectors of an LB agar plate with or without A5P 

and G6P supplementation (as above). Plates were incubated at 37 °C for 16 h before obtaining 

the photograph shown in Fig. 5.3. 

pH-rate profile of AtAPI 

The optimal pH for AtAPI activity was determined by performing the discontinuous 

cysteine-carbazole assay (see below) with a series of buffer solutions at varying pHs. Buffers 

ranged in pH from 5.25 to 8.75 in increments of 0.25 pH units at 37 °C. Buffers with pH values 

from pH 5.25 to 6.00 contained final concentrations of 100 mM MES, 1 mM EDTA, while buffers 

ranging from pH 6.25 to 8.75 contained 100 mM bis-tris propane (BTP), and 1 mM EDTA. Buffer 

solutions containing final concentrations of 400 nM enzyme were incubated separately from 

solutions of 10 mM A5P at 37 °C for 3 min. Equal volumes of A5P were added to the reaction 

mixtures and allowed to react for 3 min before being quenched with an equal volume of 12.5 M 
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H2SO4. Color was developed using the cysteine-carbazole solution described above. Plates 

contained controls in which enzyme was omitted and all reactions were carried out in triplicate. 

Enzyme kinetics 

Aminoff assay 

Kinetic parameters for the isomerization of Ru5P to A5P were determined, in triplicate, 

using a coupled assay employing the Kdo-8-phosphate synthase from A. thaliana (16). Reaction 

mixtures containing final concentrations of 100 mM BTP, pH 7.75, 1 mM EDTA, 10 mM 

phosphoenolpyruvate, 3.2 µM Kdo-8-phosphate synthase, and 100 nM AtAPI were incubated 

separately from mixtures of Ru5P at 37 °C for 3 min. Reactions were initiated with the addition 

of Ru5P, and then allowed to react for 3 min at 37 °C before quenching with an equal volume of 

10% (w/v) trichloroacetic acid. Kdo-8-phosphate formed in this reaction was quantitated using 

the Aminoff assay formatted for a 96-well plate (23). Kdo concentrations were determined from 

a standard curve of Kdo on the same plate. Data was fitted using the nonlinear least-squares 

regression function of GraphPad Prism 5 software. 

Discontinuous cysteine-carbazole assay 

Kinetic parameters for the isomerization of A5P to Ru5P were determined, in triplicate, 

using the discontinuous cysteine-carbazole assay (23). Reaction mixtures, which contained final 

concentrations of 100 nM AtAPI, 1 mM EDTA, 100 mM BTP pH 7.75, and A5P substrate solutions 

were preheated separately at 37 °C. Reactions were initiated by mixing the substrate and reaction 

mixtures to obtain final A5P concentrations ranging from 0.156 to 10 mM. Reaction mixtures and 

controls omitting enzyme were incubated for 3 min at 37 °C before quenching with equal volumes 

of 12.5 M H2SO4. Ru5P concentrations were determined using a standard curve that was present 
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on the same plate. The data were fit using the nonlinear least-squares regression function of 

GraphPad Prism 5 software. 

Equilibrium constant (Keq)  

Solutions containing 10% D2O, 100 mM BTP pH 7.75, 1 mM EDTA, 500 nM AtAPI, and 5 

mM of either A5P or Ru5P were incubated at room temperature (~21 °C) for 48 hours to allow 

the enzymatic reaction to reach equilibrium. Equilibrium constant was determined by 31P NMR 

as previously described (23). 

Kdo2-lipid IVA production by AtWaaA vs EcWaaA 

The AT5G03770.1 gene, which is located within the AT5G03770 locus, was amplified from 

the plasmid U17171 (Arabidopsis Biological Resource Center) using the primers AtWaaA.F and 

AtWaaA.R (Table 5.1). The primers were designed to incorporate NdeI and BamHI sites. PCR 

products were purified via electrophoresis through a 1% (w/v) agarose gel, excising the 

appropriately sized band and isolating the DNA using a Qiagen QIAquick gel extraction kit. After 

digestion with NdeI and BamHI, the restricted fragments were purified via agarose gel as 

described above. Purified, digested PCR products were inserted into similarly digested and 

purified pET-16b vector (34). The resulting plasmid, pET-16b-AtWaaA, was inserted into 

chemically competent E. coli TOP10 cells. 

Separate aliquots of electrocompetent KPM56 cells were transformed with pET-16b 

vector, pET-16b-AtWaaA, and pET-16b-EcWaaA (26). Transformed cells were grown on LB agar 

plates supplemented with 100 mg/L ampicillin. Single transformant colonies were used to 

inoculate 2 -mL aliquots of liquid LB medium supplemented with ampicillin, and then grown 

overnight at 37 °C. The overnight culture was diluted 1:100 in fresh LB medium and incubated at 
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37 °C at 200 rpm overnight. Cells were pelleted by centrifugation at 4388 x g and 4 °C for 30 min 

(Eppendorf Centrifuge 5804R). The cell pellet was resuspended in 30 mL of phosphate buffered 

saline and centrifuged again. Next, the cells were resuspended in 20 mL of ethanol and stirred at 

4 °C overnight. Cells were centrifuged before being resuspended in 20 mL of acetone. The 

suspension was stirred at 4 °C for 2 h before centrifugation. The cell pellet was suspended in 20 

mL of acetone and stirred at 4 °C for 2 h before a final centrifugation. Biomass was recovered by 

suspending the cells in a small volume of diethyl ether and filtration via indirect vacuum. The 

biomass was dried overnight and then pulverized to fine particulates. 

LPS purification and analysis  

LPS samples were purified by a modified version of the phenol-chloroform-petroleum 

ether procedure (35). A 3-mL aliquot of PCPI solution composed of 2 parts 90% phenol: 5 parts 

chloroform: 8 parts petroleum ether was added to each 300-mg sample of dried biomass. The 

suspension was allowed to stir at room temperature for 60 min. These samples were centrifuged 

for 10 min at 4000 x g in glass centrifuge tubes, then the supernatant was added to a round-

bottomed flask. This procedure was repeated a second time with the supernatants being 

combined. Petroleum ether was removed from these samples via rotary evaporation under 

vacuum. The remainder of the LPS samples was dialyzed against 10 L of water with stirring. This 

dialysis was repeated twice with fresh solution. The LPS-containing solution, now in water, was 

ultrasonicated in a water bath for 10 min to homogenize the sample and then centrifuged for 10 

min at 6000 x g at room temperature to remove debris. The supernatant containing LPS was 

frozen and lyophilized overnight leaving LPS as a white solid. Samples were resuspended in LPS-

free water (Braun water) to a concentration of 1 mg/mL for mass spectrometric analysis. 
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LPS samples (1 mg/mL) were diluted 15-fold in a solution containing 50% 2-propanol 

supplemented with 4 mM triethylamine and 0.35 mM acetic acid. The resulting suspension had 

a pH of approximately 8.5. All samples were analyzed in the negative ion mode using a Q Exactive 

Plus instrument (Thermo, Bremen, Germany) with electrospray ionization. Samples were 

delivered with a syringe pump at a flow rate of 5 µL/min using a sheath gas flow of 5 L/min, a 

transfer capillary temperature of 250 °C, and an S-lens level of 100. Spectra were recorded at 

highest resolution (280,000 FWHM defined at m/z 200) with either no further collisional 

activation, or all-ion fragmentation activated with NCE set to 25 V. 

Generation of E. coli KPM54 

The E. coli ∆waaA strain KPM54 was constructed from KPM50, a KPM22 kdsD+ derivative 

of BW30270 carrying the yhjD400 suppressor allele that enables the strain to tolerate null 

mutations in essential Kdo pathway genes (26). To construct the chromosomal waaA deletion, 

the phage λ Red recombinase procedure was used essentially as described (29). The insert 

cassette targeting the waaA gene was constructed using plasmid pKD4 as the template and the 

primer pair ECOwaaAH1/ECOwaaAH2. Transformation of KPM50/pKD46 with the waaA::kan 

targeting cassette allowed the deletion to occur. Finally, the kanamycin resistance marker was 

excised in the presence of plasmid pCP20 to yield KPM54. The helper plasmid pKD46 was cured 

at 42 °C as recommended (29), whereas pCP20 was removed from KPM54/pCP20 at 37 °C to 

accommodate the temperature-sensitive phenotype of lipid IVA-expressing strains (5). 

Rescue of E. coli KPM54 

Aliquots of electrocompetent KPM54 cells, prepared as described above, were separately 

transformed with pET-19b, pET-19b-AtWaaA, and pET-19b-EcWaaA. After initial growth on 
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LB/Amp plates, cells were grown with shaking (200 rpm) in liquid LB medium at 37 °C, streaked 

onto MacConkey agar, and incubated overnight at 37 °C (36). 

A. thaliana seedlings and growth conditions 

A. thaliana wild-type Col-0 (CS70000) and the atkdta-1 (SALK_035981) mutation were 

obtained from the Arabidopsis Biological Resource Center (37). Seeds were surface sterilized by 

treatment with 50% bleach and 0.2% Triton X-100 for 10 min then washed six times with sterile 

distilled water. To break dormancy seeds were suspended in sterile water, and kept in the dark 

for 3 days at 4 °C. Seedlings were grown under sterile conditions in Murashige-Skoog medium 

supplemented with 0.1% Plant Preservative Mixture in long day cycles (16 h light/8 h dark) for 10 

days (25). 

Lipid extraction from A. thaliana seedlings 

Seedlings were collected by sterile filtering and ground in a mortar and pestle with 4 mL 

of ice cold buffer (0.3 M sorbitol, 5 mM EGTA, 5 mM EDTA, 20 mM Hepes pH 8.0, 8 mM cysteine, 

10 mM Tricine) per g fresh plant material. The homogenate was passed through 2 layers of 

Miracloth®, protein concentration was determined via Bradford assay, and samples were 

aliquoted to contain 1 mg of protein. Lipids were extracted, using the Bligh-Dyer method (38), 

from aliquots containing equal amounts of protein by diluting to 1.6 mL in phosphate-buffered 

saline (39). Each 1.6 mL sample was extracted for 1 h at room temperature in a single phase Bligh-

Dyer system containing a mixture of chloroform/methanol/water (1:2:0.8, vol/vol). The addition 

of chloroform and aqueous HCl, resulted in a biphasic system consisting of 

chloroform/methanol/0.1 M HCl (2:2:1.8), in which the lower phases were collected and the 

solvent was removed by rotary evaporation under vacuum. Lipids were stored at -80 °C. 
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Limulus Amebocyte Lysate test 

Solid lipid samples were resuspended to 50 mg/mL in endotoxin free water. Samples were 

tested for endotoxin utilizing the microplate method for QCL-1000 quantitative chromogenic LAL 

test kit (BioWhittaker, Inc.). Briefly, 50 µL of sample/standard were dispensed into a pyrogen free 

microplate pre-equilibrated to 37 °C. Next, 50 µL of LAL was added and the plate was incubated 

at 37 °C for 10 min before the addition of 100 µL of substrate solution, prewarmed to 37 °C, to 

each reaction well. After an additional 6 min of incubation, 50 µL of 10% sodium dodecyl sulfate 

was added to stop the reaction. Absorbance was measured at 405 nm and data was fit using 

linear regression in Microsoft excel.  

Results 

Expression and quaternary structure of AtAPI 

BLASTP searches of the A. thaliana (taxid: 3702) proteome were conducted using E. coli 

KdsD and E. coli CFT073 c3406 as query sequences. Both searches returned the same homologous 

sequence annotated as At3g54690 or NCBI accession number NP_191029.1. The protein 

sequence, which we will refer to as AtAPI, shares 31% and 35% amino acid identity with KdsD and 

c3406, respectively. A protein expression vector, pET-19b-AtAPI, was generated and used to 

overexpress AtAPI in E. coli BL21 (DE3). The recombinant, His-tagged enzyme was purified with a 

HisTrap HP column and determined to be homogenous using SDS-PAGE. 

Purified, His-tagged AtAPI migrated at approximately 42 kDa on an SDS-PAGE gel. The 

subunit molecular mass of the protein was calculated to be 41,724.9 Da. The quaternary structure 

of the native protein was determined using this calculated mass and gel filtration 
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chromatography. Native AtAPI eluted with an apparent molecular mass of 165.2 kDa, which is 

3.96 times the calculated subunit mass, indicating that AtAPI is a tetramer. 

Enzymatic properties of AtAPI in vitro 

The substrate specificity of AtAPI was determined by probing its ability to catalyze the 

isomerization of a series of aldoses and aldose phosphates, including D-arabinose, D-ribose-5-

phosphate, D-glucose-6-phosphate (G6P), D-glucose-1-phosphate, D-glucosamine-6-phosphate, 

D-mannose-6-phosphate, and D-arabinose-5-phosphate. These experiments were performed at 

pH 8.0 based on the pH optima of the E. coli APIs. Of the substrates tested, AtAPI converted only 

A5P to the corresponding ketose. A pH-rate profile for the isomerization of A5P to Ru5P 

demonstrated that AtAPI has optimal isomerase activity at pH 7.75. 

Kinetic parameters were determined for the interconversion of Ru5P and A5P at pH 7.75. 

AtAPI, in the conversion of Ru5P to A5P, had a kcat/Km of 1.2 X 103 M-1·s-1. In the A5P to Ru5P 

direction, the kcat/Km was found to be 2.2 X 103 M-1·s-1. A comparison of the kinetic constants 

determined for AtAPI with those previously obtained for the two-domain APIs of E. coli is 

presented in Table 5.2. 
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Table 5.2 Kinetic constants for catalysis by various APIs. 

Protein kcat 
(A5P to 

Ru5P, s-1) 

Km 
(A5P, 

mM) 

kcat / Km 

(A5P, M-1 

s-1) 

kcat 
 (Ru5P to 

A5P, s-1) 

Km 
(Ru5P, 

mM) 

kcat/ Km 
(Ru5P, M-1 

s-1) 

Keq Optimum 

pH 
Subunit 

mass 

(Da) 

KdsD(19) 157 
±4 

0.61 
±0.06 

2.6x105 255±16 0.35±0.08 7.3x105 0.50±0.06 8.4 35,084 

GutQ(21) 218 
±4 

1.2 
±0.1 

1.8x105 242±11 0.64±0.08 3.8x105 0.47 8.25 33,909 

KpsF(20) 15 
±1 

0.57 
±0.04 

2.6x104 19±2 0.30±0.03 6.3x104 0.48±0.02 7.75 35,447 

 AtAPI 4.69 
±0.50 

2.15 
±0.63 

2.2x103 1.28±0.30 1.07±0.09 1.2x103 0.43 7.75 37,749 

 

AtAPI complements the API defect in E. coli strain TCM15 

E. coli TCM15 is a derivative of BW30270 in which both kdsD and gutQ have been deleted 

(21). To support the growth of TCM15, the medium must be supplemented with both A5P (to 

support LPS biosynthesis) and G6P (to induce the transport system, uhp, which internalizes A5P). 

Alternatively, the kdsD/gutQ deficiency can be complemented by in vivo expression of an active 

Fig. 5.3: Complementation of an A5P auxotroph on LB agar plates. (Right half) Agar plate 
containing LB medium supplemented with 15 µM A5P, 10 µM G6P, 0.1 mg/mL ampicillin. Wedges 
were streaked with: TCM15 harboring (A) pT7-7, (B) pET19b-AtAPI, and (C) pT7-7-c3406. (Left 
half) Agar plate containing LB medium supplemented with 0.1 mg/mL ampicillin. Wedges were 
streaked with: TCM15 harboring: (D) pT7-7-c3406 (API positive control), (E) pET19b-AtAPI, and 
(F) pT7-7. 
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API from a plasmid (21,30). To test the ability of AtAPI to complement an API deficiency in E. coli, 

the plasmids pET-19b-AtAPI, pT7-7 (vector control), and pT7-7-c3406 (positive control) were 

inserted into TCM15 cells. These plasmid vectors express their encoded proteins from a leaky T7 

promoter. Equal numbers of cells were plated on LB medium containing or lacking A5P/G6P (Fig. 

5.3). The presence of AtAPI complemented the API deficiency of TCM15, indicating it is an active 

API in these cells. 



107 
 

 

Fig. 5.4: Negative ion mode electrospray ionization FT-MS analysis of lipids. (A) from KPM56 
harboring pET-16b-EcWaaA. (B) Corresponding analysis of lipids from KPM56 harboring pET-16b-
AtWaaA. Scale changes between (A) and (B) for more clear visualization. 
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AtWaaA transfer of Kdo to lipid IVA 

Electrospray ionization FT-MS analysis of LPS samples obtained from KPM56 cells 

expressing AtWaaA or E. coli WaaA (EcWaaA) showed that both samples produce species with a 

defined mass of 2238.34 u, which corresponds to Kdo2-Lipid A (calculated mass 2238.34 u). The 

most common component in both LPS samples was lipid IVA (exact and calculated mass 1404.85 

u). Both samples also contained a deacylated species, lipid ATETRA (40), with a mass of 1800.94 u 

(calculated mass of 1800.94 u). For the EcWaaA sample, lipid ATETRA and Kdo2-lipid A are present 

with abundances of ~32% and ~25% respectively compared to lipid IVA at 100%, while the 

AtWaaA sample contains <1% abundance of each species (Fig. 5.4, 5.5). 

Fig.5.5: LPS structures of observed masses of related peaks shown in Fig. 5.4 
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 To test if AtWaaA can complement a Kdo transferase deficiency in E. coli, the plasmids 

pET-16b-AtWaaAopt, pET-16b-EcWaaA, and pET-16b were inserted separately into KPM54, 

which lacks a Kdo transferase; grown in LB medium; and plated on MacConkey agar. Although it 

is known that E. coli strains with LPS core defects are hypersensitive to bile salts, to our 

knowledge the minimal LPS structure required for growth on MacConkey agar is unknown. 

Studies (not shown) in our laboratory have determined that E. coli K12 cells must minimally be 

able to produce Hep-(Kdo)2-lipid A in order to grow on MacConkey agar. AtWaaA was not able to 

complement the Kdo transferase deficiency. 

 

  

Fig. 5.6: Limulus amebocyte lysate assay with total lipid extracts from 10-day old A. thaliana 
seedlings of wild type (col-0) and the atkdta-1 (SALK_035981) mutant. 
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Limulus Amebocyte Lysate (LAL) test of total lipids from Col-0 and atkdta-1 

To determine the number of endotoxin units present in lipid samples extracted from Col-

0 and atkdta-1 an LAL assay was used. It is important to note that samples of standards of 

synthetic Lipid IVA, Kdo2-Lipid A (Avanti lipids), and E. coli 0111:B4 endotoxin give positive results 

in the LAL assay. Tests of total lipid extractions from Col-0 and atkdta-1 (Fig. 5.6) showed lipids 

extracted from Col-0 to have 0.009 EU/mL, while atkdta-1 had a calculated value of 3.661 EU/mL.  

Discussion 

Kdo is an integral component of both the LPS of Gram-negative bacteria and the RG-II of 

plant cell walls. E. coli strains lacking Kdo become susceptible to various antibiotics and 

detergents, while A. thaliana mutants deficient in Kdo are impaired in pollen tube elongation 

(5,11). In the first step of Kdo biosynthesis, Ru5P is converted to A5P in a reaction catalyzed by 

API. 

APIs from Gram-negative bacteria have been extensively investigated (19-23); however, 

little is known about APIs outside Gram-negative bacteria. API null mutants in A. thaliana are 

nonviable, as RG-II appears to play an important role in primary cell wall formation and Kdo is 

required for proper RG-II formation (17,18). In this study, we showed that the putative API of A. 

thaliana, encoded by At3g54690, is a physiologically relevant API. BLASTP searches of the A. 

thaliana proteome with the sequences of c3406, a SIS-domain API, and E. coli KdsD, a full-length 

API, identified AtAPI as a probable API. Like most APIs characterized to date, AtAPI appears to be 

specific for the interconversion of Ru5P and A5P. Its pH optimum for this isomerization, 7.75, is 

similar to that of the bacterial APIs. Like the APIs KdsD, KpsF, and GutQ of E. coli, AtAPI contains 

a sugar isomerase domain and a tandem CBS domain and is a tetramer in solution. The kinetic 
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profile of AtAPI shows that it has a lower kcat/Km than that of the E. coli APIs. However, the 

lower enzymatic efficiency of AtAPI is still sufficient to complement the API-deficient bacterial 

strain E. coli TCM15 (Fig. 5.3). These findings suggest that AtAPI can serve as an API, and therefore 

as a source of A5P, in A. thaliana. 

The putative Kdo transferase from Arabidopsis thaliana, AtWaaA, is predicted to have the 

same GT-B type fold as that found in the WaaAs of Gram-negative bacteria. The sequence of 

AtWaaA shares sequence identities of 36% and 27% (E value 1x10-63 and 6x10-29) with the Kdo 

transferases from E. coli and Aquifex aeolicus, respectively. In addition to a high degree of 

sequence identity, AtWaaA retains the highly conserved CMP-binding residues V277, P278, R279, 

H280 (V210, P211, R212, H213 in A. aeolicus) and the highly conserved putative Kdo-binding 

residues G345, H346, N347, and E350 (G271, H272, N273, E276 in A. aeolicus (26)) found in the 

C-terminal domain, which is known to bind the CMP-Kdo activated sugar nucleotide. 

Previous reports have suggested that AtWaaA is unlikely to be involved in the transfer of 

Kdo to RG-II (11,17). In this study, we explored the possibility that AtWaaA may transfer activated 

Kdo to a lipid A-like molecule. Samples of KPM56 expressing AtWaaA were shown to contain 

Kdo2-lipid A, lipid ATETRA, and lipid IVA (Fig. 5.4, 5.5). However, KPM56 expressing AtWaaA showed 

a relative abundance of less than 1% Kdo2-lipid A, compared with 100% lipid IVA, while KPM56 

expressing EcWaaA showed a relative abundance of ~25% Kdo2-lipid A compared with 100% lipid 

IVA. We cannot, however, rule out the possibility that the low relative abundance of Kdo-

glycosylated lipid IVA stems from factors like a low membrane localization of AtWaaA in E. coli, 

which could be due to differences in the N-terminal membrane spanning region of AtWaaA 

compared with that of EcWaaA. 
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Having determined that AtWaaA, like E. coli WaaA. can transfer two Kdo residues to lipid 

IVA in KPM56, we sought evidence that AtWaaA could rescue the Kdo transferase deficiency in 

KPM54. KPM54 differs from KPM56 in that KPM54 contains the heptosyl transferase (WaaC) 

necessary to elaborate LPS beyond Kdo2-lipid A (26). However, when KPM54 containing pET-16b, 

pET-16b-AtWaaAopt, or pET-16b-EcWaaA, was plated on MacConkey agar, only the cells 

harboring the pET-16b-EcWaaA vector were able to survive. Therefore, it appears that AtWaaA 

does not have sufficient Kdo transferase activity to support growth on MacConkey agar and 

complement the Kdo transferase deficiency of KPM54. 

The results presented here demonstrate that AtAPI is capable of serving as a 

physiologically relevant API for the production of Kdo in A. thaliana. The observation that 

AtWaaA can add two Kdo residues to lipid IVA when grown in a Kdo transferase-deficient E. coli 

strain demonstrates that the enzyme exhibits bifunctional transferase activity. This result led us 

to speculate that the Kdo produced within A. thaliana is incorporated into both RG-II, as 

previously known, and a yet to be identified lipid A-like molecule. 
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Chapter VI 

Structure of E. coli c3406 in Complex With A5P and Insight Into the Mechanism of D-
Arabinose-5-Phosphate Isomerase. 

 
Summary 

The lipopolysaccharide biosynthetic pathway is an underutilized target for novel 

antimicrobials to combat multidrug resistant Gram-negative bacteria. A key enzyme in this 

pathway is D-arabinose-5-phosphate isomerase (API), which catalyzes the isomerization of D-

ribulose-5-phosphate and D-arabinose-5-phosphate. To better understand APIs, the sugar 

isomerase domain protein c3406 API was crystallized at 1.80 Å and in complex with A5P at 1.62 

Å resolution. Crystals of c3406 API were soaked with D-arabinose-5-phosphate, which appears 

bound in the active site interacting with active site residues K53, H82, and H187. Mutation of 

these residues in both c3406 API and a traditional two domain API, E. coli KdsD, resulted in 

mutants comparable in active site functionality between the two enzymes, indicating that results 

from SIS domain APIs are relevant to traditional APIs. Additionally, a mechanism for isomerization 

performed by c3406 API via a cis-enediol is proposed.  
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Introduction 

Lipopolysaccharide (LPS) is important to the integrity and permeability of the outer 

membrane of Gram-negative bacteria making its presence essential to bacterial viability during 

infection (1). One conserved component of the LPS is the unique sugar 3-deoxy-D-manno-

octulosonate (Kdo), which connects the core oligosaccharide to lipid A. Kdo is currently only 

known to exist in Gram-negative bacteria and in some higher order plants (1-3). Although loss of 

the Kdo biosynthesis machinery can be overcome in the laboratory by suppressor mutations or 

unique growth conditions, it is essential when bacteria colonize a host and therefore Kdo 

biosynthesis remains a target for the design of novel antibacterials (1,4).  

The biosynthesis of activated Kdo, CMP-Kdo, is accomplished in four steps starting with 

D-ribulose-5-phosphate (Ru5P), an end-product of the pentose phosphate pathway (5). The first 

step is the isomerization of Ru5P to D-arabinose-5-phosphate (A5P) catalyzed by arabinose-5-

phosphate isomerase (API, E.C. 5.3.1.13). The loss of API genes is lethal and must be 

circumvented by addition of A5P in the media or a yhjD suppressor mutation which results in a 

hypersensitivity to antibiotics (1,6). A better understanding of the architecture of the API active 

site, including the identity and location of key catalytic residues, would accelerate attempts to 

design novel inhibitors of this enzyme. 

Several APIs have been identified which fall into one of two categories, traditional APIs 

and SIS-domain APIs (6-10). Traditional APIs contain two domains: one sugar isomerase (SIS) 

domain and a tandem cystathionine beta-synthase (CBS) domain. Despite prolonged interest in 

APIs as targets for antibacterial therapy, attempts to acquire a structure of full-length E. coli APIs 

(KdsD, GutQ, or KpsF) have been unsuccessful. However, there have been crystal structures of 
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API fragments reported. Crystal structures of the CBS domains of KdsD from E. coli CFT073 (PDB 

ID: 3FNA) and from Klebsiella pneumoniae (PDB ID: 3K2V) are available. Two X-ray crystal 

structures of SIS domain API exist; a K59A inactive mutant of E. coli KdsD (PDB ID: 2XHZ) (11) and 

an API SIS-domain homolog from Bacteroides fragilis (BfAPI, PDB ID: 3ETN) (12). The structure of 

BfAPI contains the inhibitor CMP-Kdo, the end product of the Kdo biosynthetic pathway, bound 

in the active site (12). However, BfAPI has relaxed substrate specificity compared to all currently 

characterized APIs and may not be the best model for active site studies (7). 

To probe the active site of APIs and identify catalytic active site residues, it would be 

helpful to have a structure of an API with substrate bound in the active site. We report herein X-

ray crystal structures of the SIS-domain API c3406 with and without ligand. The ligand complexed 

stucture contains A5P bound in the active site. The uncomplexed structure of c3406 API and was 

determined at 1.80 Å resolution. These structures provide insight into active site residues, key 

active site interactions, and will provide valuable information for the design of inhibitors of APIs. 

Materials and Methods 

Crystallization of recombinant c3406 API 

Recombinant c3406 API was overexpressed and purified as previously described (10). 

Crystals were grown by hanging drop vapor diffusion method at 21 °C. The hanging drops 

contained a mixture of equal parts protein solution (12 mg/mL c3406, 20 mM Tris-HCl pH 8.0, 1 

mM DTT), and reservoir solution (0.1 M sodium citrate tribasic pH 5.6, 0.5 M NaCl, 2% v/v 

ethylene imine polymer). The hanging drops were allowed to equilibrate with 0.5 mL of reservoir 

solution. The crystals grew as colorless rods. 
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The crystals to be bound with ligand were soaked overnight in fresh hanging drop solution 

containing 0.1 M sodium citrate tribasic pH 5.6, 0.5 M NaCl, 2% v/v ethylene imine polymer, 5 

mM A5P over 0.5 mL of reservoir solution. Crystals (soaked and unsoaked) were flash frozen at -

180 °C. 

Data collection and structure determination 

A diffraction data set from a single crystal of c3406 API (approximately 0.1 x 0.2 x 0.5 mm 

in size) complexed with and without A5P were collected at the APS beamline 21 ID-D (LS-CAT) at 

Argonne National Laboratory. The crystals belong to space group I222 (Table 6.1). The data sets 

were processed with HKL2000 (13). 

The structures of c3406 API were determined by molecular replacement using the 

previously reported structure of an SIS-domain sugar-phosphate isomerase (PBD ID: 3FXA), which 

shares 33% identity with c3406, as a search model. The structures were first refined in BUSTER 

before being iteratively refined and rebuilt utilizing REFMAC and COOT, respectively (14,15). The 

omit map of A5P was created by deletion of the ligand from the complexed structure followed 

by refinement in REFMAC (14). The omit map was calculated with the coefficients Fo-Fc and 

contoured at 4 σ to model the complexed A5P molecule. The crystal structure coordinates and 

structure factors were deposited in the Protein Data Bank with the PDB accession number 5UQI 

and 5VHU. 
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Table 6.1: Data collection and refinement statistics. 

 c3406 

(5UQI) 

c3406 

(5VHU) 

Data collection   

Space group I222 I222 

Cell dimensions   

    a, b, c (Å) 70.89, 71.83, 76.85 71.83, 71.49, 77.23 

α, β, γ ()  90.00, 90.00, 90.00 90.00, 90.00, 90.00 

Resolution (Å) 17.96-1.62 (1.66-1.63) 52.60-1.80 (1.85-1.80) 

Rsym 0.042 (0.184) 0.072 (0.191) 

Completeness (%) 99.3 (96.6) 99.85 

Redundancy 6.7 (6.5) 14.7 (14.6) 

I/σ(I) 6.58 (at 1.63Å) 10.7 (at 1.80Å) 

   

Refinement   

Resolution (Å) 17.96-1.62 52.60-1.80 

No. reflections 24950 17785 

Rwork / Rfree 0.179 / 0.201 0.175 / 0.208 

No. atoms   

    Protein 1440 1405 

    Ligand (A5P/SO4) 14 5 

    Water 106 85 

Wilson B factor 19.5 13.9 

Average B, all atoms 23.0 14.96 

Average B, ligand (A5P/SO4) 33.01 28.48 

RMS deviations   

    Bond lengths (Å) 0.018 0.019 

    Bond angles () 1.997 1.827 

 

Site directed mutagenesis, expression, and purification of c3406 mutants 

Mutation primers were designed utilizing the central overlapping primer method (16). 

Plasmid DNA template (pT7-7-c3406) was added to a PCR cocktail containing 1 × PfuTurbo buffer, 

200 µM of each deoxynucleoside triphosphate (dNTP), 3 µM of both forward and reverse 

mutation primers (Table 6.2), and 2.5 U PfuTurbo DNA polymerase. The reaction mixtures were 

incubated with standard site-directed mutagenesis parameters. Following digestion with DpnI 

for 1 h at 37°C each reaction mixture was purified via extraction from an agarose gel. The 

resulting plasmids (Table 6.2) were transformed into E. coli TOP10 chemically competent cells. 

DNA sequencing of the resulting plasmids confirmed that each mutation had occurred. 

Subsequent site-directed mutagenesis to obtain additional mutants (double and triple) was 

carried out with the resulting plasmids in a similar manner. The resulting plasmids were 
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transformed into competent E. coli BL21 (DE3) cells. Protein was expressed and purified as 

described above. 

Table 6.2: Stains, plasmids, and primers used in this study. 

Item Description Source 

E. coli     

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) F80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-

leu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen 

BL21 (DE3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS NEB 

Plasmids     

pT7-7 T7 Expression vector, AmpR Ref. (17) 

pT7-7-c3406 E. coli CFT073 c3406 inserted into NdeI/BamHI of pT7-7, AmpR Ref. (10) 

pT7-7-c3406-K53A E. coli CFT073 c3406 K53A inserted into NdeI/BamHI of pT7-7, AmpR This study 

pT7-7-c3406-H82A E. coli CFT073 c3406 H82A inserted into NdeI/BamHI of pT7-7, AmpR This study 

pT7-7-c3406-H187A E. coli CFT073 c3406 H187A inserted into NdeI/BamHI of pT7-7, AmpR This study 

pT7-7-c3406-K53A-H82A E. coli CFT073 c3406 K53A H82A inserted into NdeI/BamHI of pT7-7, AmpR This study 

pT7-7-c3406-K53A-H187A E. coli CFT073 c3406 K53A H187A inserted into NdeI/BamHI of pT7-7, AmpR This study 

pT7-7-c3406-H82A-H187A E. coli CFT073 c3406 H82A H187A inserted into NdeI/BamHI of pT7-7, AmpR This study 

pT7-7-c3406-K53A-H82A-

H187A E. coli CFT073 c3406 K53A H82A H187A inserted into NdeI/BamHI of pT7-7, AmpR This study 

Primers   

c3406-K53A.F GAAAAGTTGTTTTTATTGGTGTTGGTGCGTCCGGTATTATTGCCAGAAAACTC IDT 

c3406-K53A.R CAATAATACCGGACGCACCAACACCA IDT 

c3406-H82A.F GTTCACGGTACGGAAGCGGTAGCCGGCGACCTTGGAATGGTGGC IDT 

c3406-H82A.R CAAGGTCGCCGGCTACCGCTTCC IDT 

c3406-H187A.F CTCGTGCTGATTTCGGCTTATATGCTCCAGGAGGTGCACTCGGC IDT 

c3406-H187A.R CACCTCCTGGAGCATATAAGCCGA IDT 
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Equilibrium constant (Keq) determinations 

Mixtures containing 100 mM Bis-Tris propane buffer pH 6.5, 1 mM EDTA, 10% D2O, 500 

nM protein, and 10 mM A5P were incubated at 37°C for 48 hours which is sufficient for the 

enzymatic reaction to reach equilibrium (7). Reaction mixtures at equilibrium were analyzed by 

31P nuclear magnetic resonance (NMR) using a Varian 500 multinuclear NMR spectrometer. A 

sealed capillary tube with a solution of 16.67 mM phosphoric acid standard was set to a value of 

0 ppm as an internal standard. Spectra were acquired using 32 scans with a 10 s relaxation time, 

as previously described to be greater than three times the T1 relaxation parameter for A5P and 

Ru5P (7).  

Results and Discussion 

The crystal structures of c3406 API with and without bound A5P, were solved at 1.80 Å 

and 1.62 Å, respectively. The asymmetric unit contains one monomer, which is part of a 

homotetramer. The protomer consists of residues 1-188 and adopts an α/β flavodoxin-like fold.  
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A omit maps calculated with the coefficients Fo-Fc and contoured at 4 σ contains electron 

density for a bound A5P molecule and sulfate ion in the active site of the protein (Fig 6.1).  

 

The structure of c3406 API structure is very similar to that of the E. coli KdsD (PDB ID: 

2XHZ) (18) with a root-mean-square deviation (RMSD) of 0.902 Å when c3406 API and E. coli KdsD 

are aligned by all atoms. Both structures contain two crevices with internal twofold symmetry, 

resulting in two adjacent active sites in each. Each active site contains residues from three 

protomers (Fig. 6.2) including K53, H82, and H187 (c3406 numbering). These three predicted 

catalytic residues, originating from separate protomers, indicate that tetramerization of the 

protein is essential for catalysis. Other predicted active site residues also included E105 and E146 

based on the crystal structure of the a mutant E. coli KdsD (18) but these residues do not appear 

to directly interact with A5P.  

Fig.  6.1: Omit map of c3406 API. A) c3406 API with a sulfate ion bound. B) c3406 API with A5P 
complexed. Fobs-Fcalc density is contoured at 4 σ. 
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The unbound and complexed A5P c3406 API structures align with an RMSD of 0.125 Å 

when aligning all atoms (Fig. 6.3). The major difference between the two structures is the 

movement of H187 further away from where ligands bind in the A5P complexed structure. The 

Fig. 6.2: c3406 API active site. The active site of c3406, interacting with A5P, containing residues 
(K53, H82, H187) which come from three protomers (shown in green, yellow, and purple). 

Fig.  6.3: Alignment of the c3406 API unbound structure (sulfate shown in yellow) and c3406 API 
in complex with A5P. c3406 API in complex shown in green, c3406 API unbound shown in purple.. 



127 
 

shift of H187 could be to accommodate the binding and catalysis of the A5P ligand and confirms 

the expectation of flexibility in the active site. Additionally, the APO c3406 API structure contains 

a sulfate ion in the active site, which was likely carried over from protein purification. The 

presence of the sulfate ion in the APO c3406 API structure could indicate that a negative charge 

is preferred for protein oligomerization. However, the structure of mutant E. coli KdsD contains 

no such charge in the reported structure. 

It was previously proposed that the serine/threonine phosphate binding pocket in KdsD 

was comprised of S54, T64, N99, S103, T155, S157, T158, and T161 (c3406 numbering). An 

alignment (Fig 6.4) of KdsD (2XHZ) (18) with c3406 API (in complex with A5P) shows that S54, S98, 

S100, S109, and the backbone amide of N99 appear to be involved in binding the phosphate of 

the A5P. In contrast to the catalytic residues, these phosphate binding residues reside within a 

single protomer of the protein.  

Fig.  6.4: Phosphate binding pocket alignment. Alignment of KdsD (cyan) and c3406 API (green) 
showing residues involved in the binding of the phosphate of A5P. 
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The similarity between KdsD and c3406 API structures indicates that active site mutants 

between c3406 and KdsD should be comparable. Mutants of KdsD (Table 6.3) show that indeed 

K53, H82, and H187 (c3406 numbering) are important to the catalytic activity.  These data were 

corroborated by analogous K53A, H82A, and H193A mutants in c3406, which show comparable 

Keq by 31P NMR to E. coli KdsD.  In addition, the pH rate profile of c3406 shows a sharp peak at an 

optimal pH of approximately 6.6 which suggests two histidine residues may participate in the 

catalytic mechanism (10). 
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Table 6.3: KdsD mutant characterization. 

 
A5P → Ru5P Ru5P → A5P K

eq
 
[Ru5P]/[A5P]

 

k
cat

 (s
-1

) K
M

 (mM) k
cat

 (s
-1

) K
M

 (mM) Haldane 
Eq. 

31
P 

NMR 

A5P → Ru5P
 

31
P 

NMR 

Ru5P →A5P
 

WT* 
(KdsD 

Numbering) 

146 ± 8 0.6 ± 0.1 256 ± 16 0.4 ± 0.08 0.38 0.34 0.34 

E85A ND
a
 ND

a
 6.0 ± 1.1 1.3 ± 0.5 __ 0.29 0.37 

E85C 29 ± 1 0.9 ± 0.1 13 ± 0.9 0.6 ± 0.1 __ 0.29 0.24 

E85D 17 ± 1 0.6 ± 0.1 7.3 ± 0.3 0.24 ± 0.04 1.49 0.26 0.30 

E85Q ND
a
 ND

a
 13.9 ± 0.9 0.6 ± 0.1 0.93 0.29 0.30 

E111A 57 ± 2 0.7 ± 0.1 72 ± 3 0.6 ± 0.1 0.68 0.29 0.36 

E152A 3.4 ± 0.2 0.1 ± 0.05 ND
a
 ND

a
 __ 0.54 0.40 

E152C 5.7 ± 0.2 0.7 ± 0.1 ND
a
 ND

a
 __ 0.35 0.39 

E152D 25 ± 1 0.5 ± 0.1 58 ± 3 0.7 ± 0.2 0.60 0.42 0.67 

E152Q 40 ± 1 1.1 ± 0.1 63 ± 3 0.5 ± 0.1 0.28 0.24 0.38 

K59A 1.1 ± 0.1 5.3 ± 0.9 54 ± 14 12 ± 4 0.046 0.23 0.35 

K66A ND
a
 ND

a
 8.7 ± 0.9 2.1 ± 0.4 __ 0.09 0.65 

H62A 141 ± 4 2.1 ± 0.5 181 ± 12 1.6 ± 0.3 0.59 0.33 0.33 

H82A 103 ± 6 1.7 ± 0.7 NDa NDa __ 0.24 0.36 

H88A 13.4 ± 0.8 0.9 ± 0.2 140 ± 10 2.5 ± 0.3 0.26 0.24 0.57 

H193A NDa NDa NDa NDa __ SPc 0.58 

H193K 160 ± 1 1.3 ± 0.1 43 ± 8 0.8 ± 0.2 2.53 0.26 0.28 

H193Q NDa NDa 5.6 ± 1.2 2.7 ± 0.8 __ SPc 0.76 

H193N NDa NDa NDa NDa __ SPc 0.53 

n≥3, aNot Detectable *KdsD numbering 
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The reversible interconversion of Ru5P and A5P requires a proton to move between the 

first and second carbons of the carbohydrate. There are at least two potential mechanisms by 

which this isomerization step is thought to occur. Enzymes like xylose isomerase transfer this 

hydrogen via a hydride shift, which requires the presence of a metal co-factor (19,20). Studies of 

the APIs from E. coli show that they can be inhibited by divalent metals and do not require a 

metal co-factor for catalysis (6,8-10). The lack of a metal co-factor leads to speculation that the 

isomerization proceeds by the second potential mechanism; base-catalyzed movement of a 

proton between C-2 and C-1, with a cis-enediol intermediate (21).  

This cis-enediol based mechanism, in ribose-5-phosphate isomerase (Rpi), involves 

deprotonation of C2 by the carboxylate of glutamic acid which forms the cis-enediolate 

intermediate (22). The negatively charged O1 is stabilized in an oxyanion hole formed by a 

chloride anion interaction with five backbone amide nitrogens (22), which is not present in the 

structure of c3406. A lysine residue has been speculated to be important for orienting the 

glutamic acid which is speculated to act in the proton transfer from C2 to C1. The active site lysine 

is speculated to play a role in polarizing the C2 hydroxyl group of R5P for proton transfer via a 

hydrogen bond between O2 and the positively charged side chain of lysine (22). Due to both Rpi 

and API sharing a common intermediate (Fig 6.5), we hypothesized that API would utilize a similar 

mechanism.   
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Fig. 6.5: Isomerization of select phosphosugars. F6P, Ru5P, G6P, A5P, and R5P share common 
stereochemistry (shown in red). F6P, G6P, A5P, and R5P are shown in linear form for clarity (these 
linear forms exist only as a small percentage in solution).  

The most likely mechanism for the isomerization of Ru5P to A5P by c3406 based on the 

crystal structures and active site mutations is through a cis-enediol intermediate involving 

residues K53, H82, and H187. In this putative mechanism (Fig. 6.6) deprotonation of the pro-(S) 

C1 hydrogen of Ru5P occurs via H187, followed by the protonation of the C2 carbonyl oxygen by 

Lys53 to form the enediol intermediate. In order for the reaction to proceed in the forward 

direction, Lys53 must deprotonate the hydroxy group of C1, followed by the protonation of pro-

Fig. 6.6: Proposed mechanism of c3406 API.  
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(R) C2 by His82 to form A5P. The active site is likely regenerated by bulk solvent due to its solvent 

exposure.   

This predicted mechanism is similar to the suggested mechanism of phosphoglucose 

isomerase (PGI), contrary to our hypothesis of Rpi similarity. An alignment of c3406 API in 

complex with A5P with the rabbit PGI (PDB ID: 1HOX) results in an RMSD of 3.533. The active site 

of rabbit PGI (Fig 6.7A) is structurally similar to that of c3406 API in complex with A5P (Fig 6.7B). 

It is also interesting to note that G6P, although 1 carbon longer than A5P, shares the same 

stereochemical configuration as A5P. This is in contrast to R5P, which differs in configuration with 

A5P at the C2 position (Fig. 6.5). It is conceivable that this stereochemical difference plays an 

important role in the catalytic mechanism. 

 

Fig.  6.7: Active site comparison of rabbit PGI and c3406 API. A) Rabbit PGI (PDB ID: 1HOX) in 
complex with fructose-6-phosphate. B) c3406 API in complex with A5P. 

The isomerization of fructose-6-phosphate and glucose-6-phosphate in rabbit PGI 

involves the opening/closing of the cyclic form of F6P and G6P utilizing T214, E216, H388, K518, 

and a coordinated water (23). The isomerization step occurs as E357 deprotonates C1 and a 
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proton is donated by R272 to the C2 hydroxyl group, forming the cis-enediol intermediate. The 

reaction proceeds by transfer of the proton from E357 to C2 before the molecule undergoes ring 

closure (23).  

In conclusion, the structure of c3406 API with A5P bound presented here is the first 

structure of an API SIS-domain with substrate or product bound to the enzyme. The A5P is bound 

in its linear form and is oriented so that its phosphate group interacts with S54, S98, S100, S109, 

and the backbone amide of N99. The c3406 API structures have confirmed key active site 

residues, namely K53, H82, and H187, and the c3406 A5P complex, along with analysis of active 

site mutants in E. coli KdsD, lead us to propose a cis-enediol mechanism for the isomerization of 

Ru5P and A5P. These studies have significantly improved our understanding of the API active site, 

and give valuable insight for the future development of inhibitors of the Kdo biosynthetic 

pathway. 
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Chapter VII 

Summary, Conclusions, and Future Directions 

This dissertation focused on studying D-arabinose-5-phosphate (A5P) sources and 

potential uses, by the cell, for the resulting A5P. The D-arabinose-5-phosphate isomerases (APIs) 

studied herein came from a variety of sources including Gram-negative bacteria, Gram-positive 

bacteria, and plants. Insight into the role of APIs, their mechanism, and the role of A5P they 

produce has been gained through kinetic characterization, inhibition studies, mutagenesis 

studies, and the X-ray crystal structure of an API.  

 In chapter II, a putative API from the Gram-positive organism, Listeria monocytogenes, 

was characterized. The putative API, Q723E8, showed no API activity but possessed D-glucose-6-

phosphate isomerase (GPI) activity. Q723E8 is a unique GPI as it is an SIS domain protein with 

roughly 200 amino acids while typical PGIs, such as those in Staphyloccus aureus and Vibrio 

cholerae, contain over 500 amino acids. Q723E8 could therefore represent a novel class of GPIs 

with an architecture similar to APIs.  

In chapter III, the API from Bacteroides fragilis was characterized. The crystal structure of 

BfAPI, an SIS domain protein, in complex with CMP-Kdo was previously deposited in the PDB (PDB 

ID: 3ETN). CMP-Kdo is the end product of the Kdo biosynthetic pathway and was bound in the 

active site of the enzyme. Inhibition studies of the BfAPI showed that CMP-Kdo can inhibit the 

enzyme with a Ki of 1.91 µM in vitro and we speculated that CMP-Kdo could also serve as a 

feedback inhibitor in vivo. BfAPI, being the sole API in B. fragilis, represents the only SIS domain 
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API characterized to date that is responsible for being the sole source of A5P used in 

lipopolysaccharide production. Furthermore, BfAPI possesses an additional function, in the form 

of GPI activity. All other APIs characterized to date are specific to the isomerization of A5P and 

Ru5P. 

 In chapter IV, a putative API from Clostridium tetani was characterized. CtAPI is the first 

API characterized from a Gram-positive organism. The genomic context of the CtAPI gene appears 

to be similar to that of gutQ in E. coli K-12. Both genes are situated within an operon associated 

with the transport and metabolism of a sugar other than A5P. This raises the possibility of A5P 

being utilized to regulate the ribose metabolism operon, in which the gene encoding CtAPI is 

located in a similar manner to sorbitol and gutQ in E. coli. The finding of an API in a Gram-positive 

organism should allow for the confirmation and further study of the A5P regulation of the operon 

in an environment devoid of interfering A5P utilizing pathways such as LPS biosynthesis. 

 In chapter V, the API of Arabidopsis thaliana was characterized. This is the first API 

characterized in a plant and supports the biosynthesis of Kdo for use in rhamnogalacturonan-II 

(RG-II). Additionally, the possibility of Kdo being transferred to a lipid IVA-like molecule was 

explored as it had previously been shown that A. thaliana produces lipid IVA and Kdo. Our results 

showed that AtWaaA exhibits bifunctional Kdo transferase activity in an E. coli KPM56 system by 

transferring two Kdo molecules to lipid IVA of E. coli. These results led us to speculate on the 

possibility that Kdo is not only being used in A. thaliana for RG-II biosynthesis, but also in an 

unidentified lipid A-like molecule. 

 In chapter VI, the sugar isomerase domain API, c3406, was probed through X-ray 

crystallography and mutagenesis to better understand the mechanism of APIs. The first crystal 
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structure of an active API with a substrate bound was presented. The active site of c3406 contains 

three residues (K53, H82, and H187) which are within proximity to interact with C1 and C2 of A5P. 

Mutagenesis studies of these residues show select mutants to be inactive, while others exhibit a 

10 to 100 fold loss of activity in both c3406 and E. coli KdsD. A mechanism is proposed based on 

the crystal structure, mutagenesis studies, and pH rate profiles in which these three residues are 

utilized for the isomerization of Ru5P and A5P. This proposed mechanism is similar to that of GPIs 

and could be indicative of why BfAPI, in chapter III, showed relaxed substrate specificity. 

In conclusion, the identification and characterization of APIs from a variety of sources 

including a Gram-positive bacterium, Gram-negative bacteria, and a plant indicate that APIs and 

the A5P they produce are not unique to Gram-negative bacteria, but are in fact much more 

widespread than previously thought. In studying these APIs, I have explored the enzymes that 

produce A5P for both lipopolysaccharide biosynthesis and RG-II biosynthesis. Additionally, I have 

speculated upon the possibility of A5P as a regulatory molecule and its use in the biosynthesis of 

Kdo for addition to a lipid A-like molecule in A. thaliana. However, the role of A5P in Gram-

positive organisms and the potential biosynthesis of a lipid A-like molecule in A. thaliana are both 

poorly understood and warrant further investigation. 

The determination of the X-ray crystal structure, identification of CMP-Kdo as a potential 

feedback API inhibitor in vivo, mutagenesis studies, and a proposed mechanism pave the way for 

a more thorough understanding of the active site of API and the development of new 

antimicrobials targeting the Kdo biosynthetic pathway. The validation of the proposed 

mechanism will aid in the design of inhibitors of APIs. The exploration of these SIS domain and 

full-length APIs in this thesis has been crucial in expanding our understanding of APIs and the role 
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of the SIS domain in this protein. This information could be complemented by further research 

on the interaction of CBS domains (see appendix) in full length APIs, the role they play, and the 

possibility of feedback inhibition by CMP-Kdo in vivo. 
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APPENDIX 

Cystathionine β-Synthase Domain 

Cystathionine β-synthase (CBS) domains have been found in proteins throughout all 

kingdoms of life (1). CBS domains are generally about 60 residues in length and usually occur in 

pairs. CBS domains fold into an α/β structure with internal symmetry (2). The pair of domains 

contains an interdomain cavity that represents a ligand-binding site (1). Many CBS domains 

function as regulatory units within their respective protein providing an allosteric binding site, as 

is speculated to be the case in APIs. The most common regulatory ligand for CBS domains are 

adenine nucleotides (1). The binding of these regulatory ligands can lead to either activation or 

inhibition of the enzyme (3,4). 
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Studies have been conducted in our laboratory on the CBS domains of APIs which warrant 

further investigation. Preliminary thermal shift assays in our laboratory have shown that CMP 

binds both protein constructs containing only the CBS domain of APIs and full-length APIs 

separately (Figure A.1). This information, along with the in vitro inhibition studies of CMP-Kdo 

with BfAPI, lead us to speculate that CMP-Kdo could interact with both domains of full length 

APIs. Additional studies with longer lived CMP-Kdo analogs could help test this hypothesis. 

  

Fig. A.1: Klebsiella pneumoniae KpsF thermal melts. Thermal shift assay of KpKpsF comparing full-
length protein and the CBS domains. Values shown are average melting temperature shifts with 
n=3. 
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