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ABSTRACT 

Describing and understanding the relationship between genotypes and 

phenotypes, or the genotype-phenotype map, is of long-lasting interest in genetics and 

evolutionary biology. My dissertation focuses on understanding the origins, properties, 

and evolutionary consequences of genotype-phenotype maps. In Chapter 2, using yeast 

morphological traits, I showed that most traits are affected by a small proportion of 

genes, many of which have small effects while a few have large effects. To explain why 

many phenotypic effects are small, in the rest of Chapter 2 as well as in Chapter 3, I 

studied yeast morphological traits, yeast gene expression traits, and E. coli reaction flux 

traits and found evidence supporting the hypothesis of adaptive genetic robustness. In 

Chapter 4, by comparing the evolutionary rates of phenotypic traits of varying 

importance, I found evidence for that yeast morphological traits have evolved generally 

by adaptation while yeast gene expression traits have evolved largely neutrally. In 

Chapter 5, using yeast morphological traits, I found that increasing mutational correlation 

generally facilitates phenotypic evolution when the correlation is low, but constrains it 

when the correlation become very high. Thus, an intermediate level of mutation 

correlation is most conducive to phenotype evolution. In Chapter 6, using E. coli gene 

expression level traits and E. coli reaction flux traits, I found that genetic changes tend to 

reverse plastic changes when a population adapts to a new environment, suggesting that 

phenotypic plasticity does not generally serve as a steppingstone to genetic adaption. To 

sum up, this dissertation highlights the importance of incorporating genotype-phenotype 
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maps into the study of evolution, identifies influential factors in phenotypic evolution, 

and thus deepens our understanding of general principles of evolution. 
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Chapter 1 

General Introduction 

 

A genotype-phenotype map refers to the mapping from a set of genotypes to a set 

of phenotypes where the word “mapping” is used as in mathematics, describing the 

unidirectional relationship from a set of inputs toward a set of outputs. In other words, it 

describes what genotypes give rise to what phenotypes. The concept of genotype-

phenotype map has been important since the field of genetics began. This concept is also 

central in the field of evolutionary biology given the importance of genetics in studying 

evolutionary biology. In order to improve our understanding of evolution, my dissertation 

focuses on several questions related to genotype-phenotype maps. Before presenting my 

research, in this chapter of general introduction, I will first discuss how the concept of 

genotype-phenotype map has evolved along with the development of biology. I will also 

discuss the importance of genotype-phenotype maps in specific subfields of biology. I 

will then describe important properties of genotype-phenotype maps. After that, the 

evolution of these properties and the effects of these properties on evolution will be 

discussed. In the end, I will introduce the methodology for constructing genotype-

phenotype maps and briefly explain how my following research chapters relate to the 

concept of genotype-phenotype maps. 
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Synthesis of the concept of genotype-phenotype map 

When Gregor Mendel studied the heredity of peas and published two fundamental 

laws of inheritance, he did not use the term genotype or phenotype (Mendel 1901). 

However, his work opened the door to the study of the relationship between genotypes 

and phenotypes. For example, noticing all of the hybridized offspring show the same 

state of a trait while the pure-line parents show different states of a trait, he proposed that 

one of the two states is dominant to the other state. This finding suggests that individuals 

with different genetic compositions can have the same appearance, so the mapping 

between genotypes and phenotypes must not be simply one-to-one. 

The terms of genotypes and phenotypes were not coined until the work published 

by Wilhelm Johannsen (1911). While breeding beans, he noticed that some F1 

individuals which come from two pure-line parents have different appearances such as 

different seed lengths. Therefore, there is a need to distinguish between genetic 

composition and organismal appearance. To address the need, he proposed the term 

“genotype” for the type of genetic composition. For example, the individuals of a pure 

line have the same genotype. He also proposed the term “phenotype” for the type of 

organismal appearances such as forms, structures, sizes, colors, or anything measurable. 

After genotypes and phenotypes had been distinctly defined, these two terms were widely 

used in genetics, and finding the links between genotypes and phenotypes became 

important in genetic studies.  

 With the progress in genetics, the challenge to Darwinian evolution was also 

brought up in the early 20th century. The tension between these two fields was later 

resolved by the works done by R.A. Fisher, J. B. S. Haldane, and Sewall Wright, known 
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as the modern synthesis (Huxley 1942). In modern synthesis, at least two important 

points about genotype-phenotype relationship were incorporated into evolutionary 

biology. First, in order to explain Darwin’s gradualism theory in the context of 

Mendelian genetics, Fisher developed the theory which explains a continuous phenotypic 

distribution can result from multiple genes which affect the same trait (Fisher 1918; 

Fisher 1930). Therefore, the accumulation of small changes can lead to a large 

phenotypic change, and mutations with large phenotypic effects are not necessarily 

required in evolution. Second, Wright proposed the concept of fitness landscape and 

described the adaptation of a population as climbing the peak with high adaptive values  

(Wright 1932). Given that the adaptive value is considered as a trait, the concept of 

fitness landscape is an early example of genotype-phenotype maps because it illustrates 

the relationship between different genetic compositions and adaptive values.  

 Consistent with the concept of fitness landscape and population genetics theory 

developed during the modern synthesis, the evolution of a population is thought as the 

change of genotypic frequencies in the population. Lewontin (1974) further formulized 

that as a series of four transformation laws, which include (1) how the distribution of 

genotypes results in the distribution of phenotypes, (2) how natural selection alters the 

phenotypic distribution, (3) how the altered phenotypic distribution leads to the altered 

genotypic distribution, and (4) how the altered genotypic distribution determines the 

genotypic distribution in the next generation. The importance of genotype-phenotype 

relationship in understanding the evolution of a population is highlighted in the first and 

third laws of this formulation.  



4 

In addition to geneticists and evolutionary biologists, developmental biologists 

also have substantial contribution to the concept of genotype-phenotype relationship by 

studying how genetic materials determine organismal appearances. For example, C. H. 

Waddington proposed that trait development is mostly canalized (Waddington 1942). 

Therefore, multiple genotypes could give rise to the same phenotype. Based on the 

concept of canalization, Pere Alberch proposed that, in a genotype-phenotype map, the 

mapping function must have non-linearity and thresholds because the genotypic 

distribution is relatively continuous but phenotypic distribution is relatively 

discontinuous (Alberch 1980; Alberch 1991). This is an early example of quantitative 

statement on the mapping function between genotypes and phenotypes. 

With the development of molecular technology, more genetic bases of complex 

traits were revealed, and their polygenic feature was supported. When considering the 

adaptive evolution of complex traits, Gunter Wagner and Lee Altenberg (1996) 

mentioned that considering their genotype-phenotype maps is fundamental. More 

importantly, they introduced the modular representation of genotype-phenotype maps. Its 

simplest version is a bipartite network which includes a set of traits, a set of genes, and 

the links between genes and traits for genic effect sizes on traits. Moreover, if some traits 

are mostly affected by the same set of genes, these genes and traits form a module in the 

map. Such bipartite representation is now widely used in this field (e.g. Wang et al. (2010) 

or Landry and Rifkin (2012)). Unless otherwise noted, the genotype-phenotype maps 

described in this dissertation are in this representation. 

With the more recent progress of technology, more genotypes and phenotypes 

have been collected in a high-throughtput manner. Rather than organismal appearances, 
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the macromolecular traits such as transcript abundances, protein abundances, protein-

protein interactions, metabolic fluxes, metabolites concentrations are more focused. 

These macromolecular traits constitute a hierarchical structure, in which each layer is a 

collection of traits in the same kind (Civelek and Lusis 2014; Ritchie et al. 2015). 

Focusing on the elements and their interaction in a hierarchical structure, the study of 

systems biology aims to synthesize holistic understanding of organisms. Such systems 

view also impact the study of evolutionary biology, stimulating the emergence of 

evolutionary systems biology. Beyond how the genotypic variations lead to phenotypic 

variations in a hierarchical structure of macromolecular traits, evolutionary systems 

biologists emphasize the accompanying fitness variations and evolutionary outcomes 

(Loewe 2009; Papp et al. 2011; Soyer and O'Malley 2013). By such approach, 

evolutionary mechanisms and principles are more comprehensively studied, evolutionary 

theories becomes more testable, and evolutionary outcomes could are more predictable.  

Importance of genotype-phenotype maps in medicine 

While the concept of genotype-phenotype map is important in genetics, 

developmental biology, and evolutionary biology, it is also of importance in other 

biological fields such as medicine. For example, if one focuses on the traits related to 

human diseases, studying such genotype-phenotype maps will help us understand the 

genetic basis and possible molecular mechanisms of the human diseases. In fact, the 

genic effects of a large number of Mendelian diseases have been mapped (Welter et al. 

2014; Bush et al. 2016).  

Moreover, if one considers the growth rate of cancer cells as a trait, studying such 

genotype-phenotype map will help us understand cancer biology and develop cancer 
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treatment (Yi et al. 2017). For example, if the mutations inhibiting the growth are found, 

the genes related to these mutations should be the targets for drug design or gene therapy. 

Moreover, a comprehensive genotype-phenotype map of cancer growth rate is desired 

because multiple target genes may be needed to avoid the evolution of drug resistance 

(Hu and Zhang 2016).  

Recently, scientists have made progress in the field of precision medicine. For this 

purpose, it is important to construct detailed genotype-phenotype maps in the scale of 

single nucleotide polymorphisms (Ashley 2016; Hall et al. 2016). For example, in order 

to provide the most suitable therapy for each patient, one should identify the different 

causal genotypes for the disease. Moreover, one should study whether individuals with 

different genotypes have different outcomes when receiving the same treatment. With 

more comprehensive genotype-phenotype maps of many diseases and treatment 

outcomes, the field of precision medicine will be largely improved. 

Parameters and properties in genotype-phenotype maps 

In the modular representation, three basic parameters are necessary and sufficient 

to describe a genotype-phenotype map: a set of genes, a set of traits, and links 

representing genic effects on traits. Nevertheless, emergent properties such as robustness, 

pleiotropy, and modularity could be also summarized from a map. In this section, for 

each basic parameter and emergent property, I will first introduce the detailed definition 

and then discuss the hypotheses related to the evolution and origination.  

 The first basic parameter of a genotype-phenotype map is a set of genes. The 

number of genes existed in a genome could evolve, and the determining factors could be 

mutation, drift, selection, gene duplication, horizontal gene transfer, or their 
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combinations (Lynch 2007). In practice, however, the number of genes in a genotype-

phenotype map is largely affected by the methodology. For example, null mutations in 

essential genes are often missing in the map because the phenotypic effects are often not 

measurable in dead individuals (with exceptions such as embryonic lethal phenotypes).  

In addition, forward genetic methods can only study the variations existed in the 

population, and the variations in a low-frequency suffer a low statistical power.  To 

increase the number of genes in a map, one needs to improve the statistical power such as 

by increasing the sample size or to use a different approach such as reverse genetics.  

The second basic parameter of a genotype-phenotype map is a set of traits. Given 

that anything measurable in an organism could be defined as a trait, it is impossible to 

exhaust the trait space. Therefore, the choice of traits included in a genotype-phenotype 

map largely depends on researchers’ interests. As a result, the conclusion drew from a 

meta-analysis of literature may be biased. For example, when studying the overall 

strength of adaptation compared with neutrality in evolution, one may conclude that 

adaptation has a stronger effect by finding more adaptive cases reported in the literature 

than neutral cases. However, this conclusion is potentially biased due to the overall 

higher interests in reporting cases with adaptive evolution rather than neutral evolution. 

Owing to the recent technical improvement of high-throughput phenotyping, such bias 

may be avoided with more subjectivity of trait choices. Moreover, as previously 

mentioned, traits are located in different layers of a hierarchical structure. Different layers 

could have different contributions in evolution. For example, the fitness by itself is a trait 

at the highest level with direct exposure to natural selection while other traits such as 

morphological traits or gene expression traits are at lower levels with possibly lower 
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importance to natural selection. Therefore, sampling the traits on a different layer could 

verify the generality of the findings based on traits on one layer.  

 After both a gene set and a trait set are determined, the left parameters of a 

genotype-phenotype map are the genic effect sizes on each trait. Effect sizes are certainly 

evolvable. For example, mutational severity is divergent between multiple closely related 

groups (Liao and Zhang 2008; Dowell et al. 2010; Kim et al. 2010; Vu et al. 2015). There 

are at least three categories of mechanisms for changes of effect sizes. The first category 

consists of environmental reasons. For example, the function performed by a gene in the 

environment of one group becomes not useful anymore in a different environment of 

another group. Therefore, the effect size of this gene becomes zero. This scenario is 

supported by the existence of environment-specific expressed genes because these genes 

probably only useful in some environments. The second category consists of functional 

changes of focal genes. For example, when a null mutation of a gene is fixed in a 

population, the effect size of this copy of gene becomes zero. Besides the changes of 

focal genes, the changes of other genes make up the third category. For example, some 

genes are assumed to be capable to buffer genic effects of other genes and called modifier 

genes. Compared with the genetic background without modifier genes, the genic effects 

in the genetic background with modifier genes are largely reduced.  

One of the evolutionary explanations for the third category above is the 

emergence of genetic robustness, which is defined as the ability of organisms to buffer 

genetic variations. This concept was first proposed by Waddington (1942) and was called 

canalization. Analogous to the water from different upstream branches which still flow 

into the same mainstream, individuals with genotypic variations could still have the same 
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phenotype after development. This argument is based on the observations that cell fates 

of embryonic development are usually tightly regulated as well as the phenotypically 

wild-type individuals are pervasive. The emergence of genetic robustness, according to 

Waddington, is due to the natural selection for buffering effects. Therefore, if a trait is 

more important to fitness, one will expect that trait is buffered more. As shown in a 

theoretical study, this trend is generally true except for traits with extremely high 

importance (Wagner et al. 1997).  This prediction is important in testing the generality of 

adaptive hypothesis of genetic robustness.  

Other than the adaptive hypothesis proposed by Waddington, there are two 

alternative hypotheses (de Visser et al. 2003). First, genetic robustness could be an 

intrinsic property of a biological system. Second, genetic robustness may arise as a 

byproduct of other selections, such as selection for robustness to environmental 

perturbations. Because environmental perturbations tend to decrease organismal fitness, 

robustness to such variations would be selectively favored. This hypothesis is commonly 

referred to as the congruence hypothesis. The congruence hypothesis and the intrinsic 

hypothesis, together with the adaptive hypothesis, need to be tested in understanding the 

evolution of genetic robustness. 

 Two kinds of molecular mechanisms for genetic robustness have been proposed: 

duplication of genetic materials and heatshock proteins.  However, the identification of 

these mechanisms does not directly support the adaptive hypothesis of genetic robustness. 

In the first case, it is apparent that the effect size of the focal gene could be reduced when 

one more copy exists in the genome. Empirical studies of gene expression also 

demonstrate the buffering effects from repeated cis-regulatory elements (Frankel et al. 
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2010; Crocker et al. 2015). However, two major problems arise when the fitness benefits 

are considered. First, if two copies of genes are exactly the same, and one copy is 

sufficient for the wild-type’s function, one of the two copies is subject to degeneration 

and thus not able to long persist in the genome. Second, increasing the copy number will 

also increase the size of mutational targets and get fitness costs. Therefore, these 

duplications may not be fixed in population purely by the benefits of buffering ability. In 

the second case, while heatshock proteins are found to be able to buffer phenotypic 

variations (Rutherford and Lindquist 1998; Fares et al. 2002), it is also possible that the 

evolution of heatshock proteins largely depends on their abilities to buffer environmental 

perturbations instead of genetic perturbations. Therefore, more studies are required for 

examining whether the genetic robustness is largely favored by natural selection. 

If we summarize the number of nonzero effect sizes per gene, this number will be 

one measurement of gene pleiotropy. Given that the effect sizes are evolvable, the 

pleiotropy must be also evolvable. For example, with the evolution of genic robustness, 

the effect size on one trait for one gene could disappear. As a result, the number of traits 

affected by that gene decreases, and the pleiotropy of that gene also decreases. 

 If there were no pleiotropy, one gene could only affect at most one trait, and 

therefore no complicated structure in a genotype-phenotype map would be expected. 

With pleiotropy, the various distributions of the effect sizes across different genes and 

across different traits make genotype-phenotype maps look different. If the effect sizes 

are clustered within modules but diminished between modules, we will say this map has 

high modularity. Several hypotheses about the evolution of high modularity have been 

proposed but not fully tested, including the neutral process of duplication-elimination, a 
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byproduct of genetic robustness removing inter-modules genic effects, a byproduct of 

periodic natural selection favoring various modules, or having direct benefits (Wagner et 

al. 2007).  

Consequences of genotype-phenotype maps in adaptive evolution 

 One of the important goals in evolutionary biology is to understand and predict 

the occurrence of adaptive evolution. To achieve this goal, it is desired to identify the 

factors which constrain or facilitate adaptive evolution. Several emergent properties of a 

genotype-phenotype map have been proposed to impact adaptive evolution. These 

impacts will be discussed below.  

 First of all, whether genetic robustness constrains or facilitates adaptive evolution 

is under debates. On the one hand, genetic robustness reduces the phenotypic effects of 

mutations, so it seems to constrain adaptive evolution. On the other hand, it has been 

argued that genetic robustness facilitates adaptation because it allows more mutations to 

accumulate within a population because the fitness costs of mutations are neutralized. 

When the environment changes, the genotype-phenotype map could change, and some of 

standing genetic variations could have beneficial effects in the new environment. 

Therefore, the phenotypic space could be explored more quickly (Wagner 2008; Masel 

and Trotter 2010). While the facilitating role of genetic robustness was shown by 

simulation (Draghi et al. 2010), the empirical support is only found in a few systems such 

as RNA secondary structures and ribozymes (Wagner 2012). 

 In addition to the effect of genetic robustness and standing genetic variations, 

phenotypic plasticity, defined as the ability of individuals to show a different phenotype 

without the change of genotype, might also impact adaptive evolution. Note that 
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phenotypic plasticity could be considered as the contrary to environmental robustness, 

defined as the ability of individuals to buffer environmental variations and show the same 

phenotype. It has been argued that environmental robustness and genetic robustness are 

congruent by sharing the same molecular mechanisms (Meiklejohn and Hartl 2002). 

Therefore, phenotypic plasticity is also related to genotype-phenotype maps.  

Several different reasons have been proposed for why phenotypic plasticity could 

facilitate adaptive evolution. First, at the initial stage of an environmental change, if there 

is no phenotypic plasticity, the founder population may not survive the harshness of new 

environment, and thus no adaptation could happen. This argument is known as Baldwin 

effect (Baldwin 1896). Second, plastic changes may serve as the steppingstones for the 

following steps of adaptation such as genetic assimilation (Waddington 1953). This 

thought has been used to argue the importance of phenotypic plasticity in adaptation by 

extended evolutionary synthesis (Laland et al. 2014; Laland et al. 2015), but the 

underlying mechanisms remain unclear. Third, even when plastic responses are 

nonadaptive, they can still increase the rate of following adaptation (Ghalambor et al. 

2007; Ghalambor et al. 2015). This is likely to be true because nonadaptive plasticity 

make the starting point in the fitness landscape lower and thus make the selection 

gradient stronger.  However, more studies are required in order to know how general 

these arguments are. 

 Pleiotropy could also affect the rate of adaptive evolution. Due to pleiotropy, 

genes with beneficial effects for some traits could have deleterious effects on some other 

traits. Therefore, the mutations with net beneficial effects may be limited, and thus the 

adaptive evolution could be largely constrained. This idea is known as “the cost of 
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complexity,” which argues that a more complex organism could be less evolvable during 

environmental changes (Fisher 1930; Orr 2000).  

 Two possible features in the genotype-phenotype maps may alleviate the cost of 

complexity. First, if pleiotropy scales up the effect sizes, mutations with high pleiotropy 

could more likely to become overall beneficial and fixable. This possibility has been 

demonstrated in the case of yeast morphological traits (Wang et al. 2010). Second, 

considering the modularity in genotype-phenotype maps, if the effect sizes of traits are 

organized as how correlated adaptation among traits frequently happen, the efficiency of 

adaptation could be indeed improved (Wagner and Zhang 2011; McGee et al. 2016). 

However, the generality of these two scenarios remains largely unknown. 

Methodology of constructing genotype-phenotype maps 

 In order to construct a genotype-phenotype map, one needs to quantify the effect 

size on a set of traits for a set of genes. Traditionally, many maps in model organisms are 

constructed by forward genetic methods such as yeast (Ehrenreich et al. 2010), fruit flies, 

mice and human (Flint and Mackay 2009). Forward genetic methods include both linkage 

mapping or association mapping (Mackay et al. 2009). Both mapping methods look for 

the statistical association between variations of genetic markers and variations of 

phenotypes across individuals, assuming that the association for farther genetic markers 

will be broken by recombination. In linkage mapping, F2 individuals from true-breeding 

parents are studied. The candidate regions are usually larger due to larger haplotype 

blocks. Instead, in association mapping, individuals with unknown mating history are 

studied. While it could end up with smaller candidate regions, the prevalence of rare 

alleles increases the demand of sampling a larger population.  
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 Reverse genetic methods, contrast to forward genetic methods, can be also used to 

construct genotype-phenotype maps. Some problems in forward genetics such as missing 

heritability (Maher 2008; Manolio et al. 2009) are less severe in reverse genetic methods. 

However, the critical step for reverse genetic methods is to acquire collections of 

systematically generated mutants, which was only done in model organisms in the past. 

Nowadays with the development of CRISPR techniques, the speed of making deletion 

collections is much faster (Sander and Joung 2014). For example, essential genes in 

various human cell lines have been detected in this manner (Blomen et al. 2015; Hart et 

al. 2015; Wang et al. 2015). 

 Besides the experimental methods, with the development of systems biology, 

more models and methods are available for predicting the genic effects of traits. The most 

successful one is perhaps the constraint-based metabolic network analysis (Lewis et al. 

2012; Bordbar et al. 2014). With the constructed metabolic network and proper choice of 

objective function, one can predict how the metabolic network behaves. For example, in 

flux balance analysis, the objective function is to maximize the biomass output, and 

therefore how the network behaves after the full adaptation could be predicted (Orth et al. 

2010). In addition, in minimization of metabolic adjustment (abbreviated by MOMA), the 

objective function is to minimize the flux adjustment from the original fluxes, and how 

the network promptly responds to perturbations could be predicted (Segre et al. 2002). A 

large number of metabolic network models in different organisms have been available in 

public (King et al. 2016). However, the prediction is not completely free of errors. 

Because evaluating the accuracy of prediction requires the comparison to empirical data, 

many models have not been verified except for those in model organisms such as E. coli.  
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In the future, after more empirical are available, and after sufficient verification of 

prediction is performed, these model prediction methods will substantially impact the 

field because of their ability in quickly generating a gigantic number of genotype-

phenotype maps.  

In my dissertation work, there is a combination of using genotype-phenotype 

maps constructed by reverse genetic methods and model prediction methods. The former 

examples include yeast morphological traits and gene expression traits, while the latter 

example is E. coli metabolic flux traits.  

Preview of research works 

In my dissertation, five chapters of researches related to genotype-phenotype 

maps and evolutionary biology are included. The questions I addressed in these chapters 

fall into three different categories: (1) summarizing the properties in genotype-phenotype 

maps, (2) studying how these properties originated, and (3) clarifying the evolutionary 

consequence of these properties. Below are more details on each of these five chapters. 

In chapter 2, because the general pattern of parameters in genotype-phenotype 

maps is largely unknown, I measured the number of genes affecting a trait as well as the 

distribution of effect sizes for each trait using yeast morphological traits and yeast gene 

expression traits. To further explore the role of natural selection in the evolution of effect 

sizes, I examined the adaptive hypothesis of the emergence of genetic robustness, which 

reduces effect sizes.  

In chapter 3, the adaptive hypothesis of the emergence of genetic robustness was 

further tested using E. coli metabolic reaction fluxes as traits. Because the details in 
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metabolic networks are given, I also identified the candidate metabolic reactions which 

may contribute to genetic robustness.  

In chapter 4, noticing the potential bias of the previous curation study, I varified 

whether the phenotypic evolution is generally adaptive using yeast morphological traits 

and yeast expression level traits. The methodology relies on the measurement of trait 

importance and effect sizes, where the information is from the genotype-phenotype maps. 

In chapter 5, I tested whether the pleiotropy-caused mutation correlation tends to 

constrain or facilitate phenotypic evolution using yeast morphological traits. The 

measurement of mutation correlation also relies on the information on the genotype-

phenotype map. 

In chapter 6, because whether phenotypic plasticity generally serves as 

steppingstones for genetic adaptations is under debates, I examined whether the genetic 

changes of adaptation tend to reverse or reinforce the initial plastic changes using 

expression level traits from various species and metabolic flux traits from E. coli. The 

theoretical explanation for the generality of observation is also provided.   
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Chapter 2 

The Genotype-Phenotype Map of Yeast Complex Traits:  

Basic Parameters and the Role of Natural Selection1 

 

2.1 ABSTRACT 

Most phenotypic traits are controlled by many genes, but a global picture of the 

genotype-phenotype map (GPM) is lacking.  For example, in no species do we know generally 

how many genes affect a trait and how large these effects are.  It is also unclear to what extent 

GPMs are shaped by natural selection.  Here we address these fundamental questions using the 

reverse genetic data of 220 morphological traits in 4718 budding yeast strains, each of which 

lacks a nonessential gene.  We show that (1) the proportion of genes affecting a trait varies from 

<1% to >30%, averaging 6%, (2) most traits are impacted by many more small-effect genes than 

large-effect genes, and (3) the mean effect of all nonessential genes on a trait decreases 

precipitously as the estimated importance of the trait to fitness increases.  An analysis of 3116 

yeast gene expression traits in 754 gene-deletion strains reveals a similar pattern.  These findings 

illustrate the power of genome-wide reverse genetics in genotype-phenotype mapping, uncover 

an enormous range of genetic complexity of phenotypic traits, and suggest that the GPM of 

cellular organisms has been shaped by natural selection for mutational robustness.  

 

																																																								
1This chapter was published as Ho and Zhang (2014) Mol. Biol. Evol. 31: 1568-1580. 
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2.2 INTRODUCTION 

Describing, understanding, and utilizing the relationship between genotypes and 

phenotypes, or the genotype-phenotype map (GPM), are major goals of genetics (Wagner and 

Zhang 2011).  Because most phenotypic traits, including those relevant to human diseases, are 

controlled by multiple genes (Falconer and Mackay 1996) and because most genes affect more 

than one trait (Wang et al. 2010), the GPM is a dense bipartite network of genes and traits, where 

an edge between a gene and a trait indicates that the gene affects the trait, with the width of the 

edge representing the effect size (Wang et al. 2010).  Traditionally, the GPM is constructed by 

forward genetics, which uses linkage or association studies to identify the genetic variants 

underlying particular phenotypic variations among individuals of the same species (Mackay et al. 

2009).  Due to the limited power and efficiency of such analyses, the GPMs of human and most 

model organisms remain highly incomplete and uninformative (Mackay et al. 2009; Manolio et 

al. 2009).  For example, a recent large-scale linkage analysis estimated the number of genes 

affecting each of 18 yeast traits (Ehrenreich et al. 2010).  However, because only two strains 

were compared in the study, only those genetic variants that cause the phenotypic differences 

between these two strains were revealed.  Consequently, neither the distribution of the number of 

genes that could affect a trait nor the distribution of the effect sizes of these genes on a trait is 

known.  Estimating these fundamental parameters of the GPM is of vital importance, because 

they impact how variable a particular trait is in a population, determine the best strategy to 

identify the underlying genetic variants of phenotypic variations, and predict how robust and 

adaptable a population is to environmental challenges.  

In contrast to forward genetics, reverse genetics identifies phenotypic differences among 

individuals of known genetic differences.  If empowered by high-throughput phenotyping of 
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systematically generated mutants, reverse genetics can be an effective approach to the GPM.  For 

example, the fraction of genes that affect each of 12 physiological and behavioral traits in the 

mouse Mus musculus has been estimated using 250 gene-knockout lines (Flint and Mackay 

2009) (Fig. 2.1a).  Similar estimates have been made for eight morphological, physiological, and 

behavioral traits in the fruit fly Drosophila melanogaster based on P-element insertion 

mutagenesis (Mackay 2010) (Fig. 2.1b).  These and a few other studies (Winzeler et al. 1999; 

Ramani et al. 2012) showed that the proportion of genes impacting a trait can reach 10-40% of 

all genes in a genome.  But how general these results are is unclear because the numbers of traits 

and species examined are small.  Regarding the size distribution of the genic effects on a trait, 

two competing hypotheses exist.  Mather’s infinitesimal model (Mather 1941; Mackay 2001) 

asserts that numerous loci have small and similar effects, while Robertson (1967) posits that the 

distribution is approximately exponential, with a few large-effect and many small-effect loci.  

The effect size distributions of P-element insertions on the abdominal and sternopleural bristle 

numbers in Drosophila support Robertson’s model (Lyman et al. 1996), but the generality of this 

conclusion is unknown.  Although forward genetic studies from several species also support 

Robertson’s model, definitive conclusions are hindered by the inherent biases and limitations of 

the method (Mackay 2001).   

A deeper question about the GPM is why it looks the way it does.  In principle, the GPM 

can evolve under mutation, drift, and selection, but the relative contributions of these forces are 

elusive.  Waddington and others proposed that the GPM has been shaped by natural selection for 

mutational robustness, resulting in genetic canalization (Waddington 1942; de Visser et al. 

2003).  Similarly, natural selection may have led to organismal robustness to environmental 

perturbations, or environmental canalization.  These two forms of canalization, if true, would 
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explain the surprising tolerance of living organisms to genetic and environmental disturbances, 

which are quite common in nature (Scharloo 1991; Flatt 2005; Wagner 2005b; Alon 2007).  

They also impact how adaptable and evolvable a population is in the face of mutations and 

environmental changes (Gibson and Wagner 2000; de Visser et al. 2003; Wagner 2005b; Draghi 

et al. 2010).  While selection for environmental robustness is commonly agreed upon (Gibson 

and Wagner 2000), direct selection for genetic robustness is controversial (Gibson and Wagner 

2000; de Visser et al. 2003) except when the deleterious mutation rate is exceedingly high and/or 

population size is huge (e.g., in viruses) (Wilke et al. 2001; Ciliberti et al. 2007; Sanjuan et al. 

2007), because for cellular organisms such selection is expected to be weak (Wagner et al. 1997; 

Gibson and Wagner 2000) and previous tests with relatively small data yielded ambiguous 

results (Stearns and Kawecki 1994; Stearns et al. 1995; Houle 1998; Gibson and Wagner 2000; 

de Visser et al. 2003; Proulx et al. 2007).  Apparently, larger and better data are needed to 

evaluate it critically.   

To address these fundamental questions on the basic parameters of the GPM and the role 

of natural selection in shaping the GPM, we use the budding yeast Saccharomyces cerevisiae, in 

which 220 morphological traits have been quantitatively measured by analyzing fluorescent 

microscopic images of triple-stained cells of the wild-type strain and 4718 mutant strains that 

each of which lacks a nonessential gene (Ohya et al. 2005).  The generality of the findings from 

the morphological traits is then verified by analyzing 3116 gene expression traits in the wild-type 

and 754 gene-deletion strains of S. cerevisiae.  

 

2.3 RESULTS 

2.3.1 Fraction of genes affecting a morphological trait  
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In the yeast phenotyping experiment, 220 morphological traits were measured in multiple 

wild-type cells from each of 123 replicate populations (Ohya et al. 2005).  In addition, for each 

of the 4718 mutant strains, multiple isogenic cells from one population were measured for the 

220 traits (Ohya et al. 2005).  To determine if deleting a gene affects a trait, we used the Mann-

Whitney U test to compare the trait values of multiple cells of the gene-deletion strain and those 

of the wild-type from an arbitrary replicate population.  A gene deletion is tentatively considered 

to affect the trait if the p-value is lower than 0.05.  The distribution of the fraction of genes 

affecting a trait (fmt) is shown in Fig. A.1.1a.  The mean and median of fmt are 0.37 and 0.38, 

respectively.  To remove the confounding factor of potential environmental differences between 

the mutant and wild-type strains in the experiment and to control for multiple testing, for each 

trait, we estimated the fraction (fwt) of the other 122 wild-type populations in which the trait 

value differs significantly from that of the arbitrary wild-type population used.  We found fwt to 

be substantial (Fig. A.1.1b).  Subtracting fwt from fmt, we obtained fgenes, the true fraction of genes 

that, when deleted, significantly impact the trait.  We found that fgenes varies greatly among traits 

(Fig. 2.1c) and that this variation significantly exceeds the random expectation under 

homogenous fgenes (p < 0.01; permutation test).  Specifically, 37.7%, 39.6%, 20.0%, and 2.7% of 

traits are each affected by <1%, 1% to 10%, 10% to 30%, and >30% of all nonessential genes in 

the yeast genome, respectively.  The mean and median of fgenes are 0.06 and 0.04, respectively 

(Fig. 2.1c).  These results remain similar regardless of the p-value cutoff used (Fig. A.1.1c-d).  

Use of another arbitrary replicate population of the wild-type strain yielded similar results.  For 

each trait, we also estimated fgenes by examining whether the mean trait value of a mutant would 

be an outlier in the distribution of the 123 means of the wild-type replicate populations, but the 

results were similar (Fig. A.1.1e).  Because some of the 220 traits are highly correlated, we 
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removed those traits whose genetic correlation coefficients exceed 0.7, resulting in a dataset with 

54 traits.  But, the mean and median values of fgenes are virtually unchanged (Fig. A.1.2). 

Whether a genic effect is detectable depends on the statistical power of the experiment, 

which is determined by the precision of the phenotypic measurement, the sample size, and the 

constancy of the environment in which different strains are phenotyped.  In the present case, the 

number of cells measured varied among traits and strains.  On average, 91 and 95 cells were 

measured in the wild-type (per replicate population) and deletion strains, respectively.  The 

effect of environmental variation is clearly seen in the 123 wild-type populations, because the 

standard deviation of the mean phenotypic value among the 123 populations is on average 2.48 

times the mean strand error calculated from individual populations (Fig. A.1.3).  This 

observation suggests that environmental fluctuation rather than sample size or measurement error 

is the dominant factor limiting the detection of genic effects in the present study.   

 

2.3.2 Mean effect size of gene deletion on a morphological trait 

We define the raw effect size (ES) of deleting a gene on a trait as the difference between 

the mean trait value of the deletion strain and the average of the mean trait values of the 123 

replicate populations of the wild-type strain, divided by the average of the mean trait values of 

the 123 populations of the wild-type.  The cumulative probability distribution of |ES|, or the 

absolute value of ES, of 4718 genes on each of the 220 traits is depicted by a curve in Fig. 2.2a.  

This distribution shows that, in most cases, a trait is affected by more genes of small effects than 

those of large effects, as proposed by Robertson (1967).  Considering only statistically 

significant genic effects does not alter this conclusion.  The mean |ES| of all nonessential genes 

on a trait varies substantially among traits, with an average value of 0.098 (Fig. 2.2b).   
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Due to inevitable environmental fluctuations among populations of cells that were 

phenotyped, we computed net |ES| by subtracting from raw |ES| a term called pseudo |ES|, which 

is the absolute effect size expected from environmental variation and sampling error arising from 

a limited sample size (see Materials and Methods).  The cumulative probability distribution of 

net |ES| of 4718 genes on each of the 220 traits is depicted by a curve in Fig. 2.2c.  Again, this 

distribution supports Robertson’s model (1967).  The mean net |ES| of all nonessential genes on a 

trait also varies substantially among traits, with an average value of 0.035 (Fig. 2.2d). 

For each trait, the phenotypic variation among isogenic cells includes variations 

originating from stochastic noise of the trait, random measurement error, and environmental 

variation.  We quantified the phenotypic variation among isogenic wild-type cells by the 

coefficient of variation (CV = standard deviation / mean), including both the variation among 

cells in a population and the variation among replicate populations (see Materials and Methods).  

The mean CV of the 220 traits examined is 0.41 (Fig. 2.2e).   

 

2.3.3 More important morphological traits are more robust to various perturbations 

After describing the basic parameters of the GPM for yeast morphologies, we explore the 

potential role of natural selection in shaping the GPM.  The hypothesis of natural selection for 

environmental robustness predicts that traits that are more important to organismal survival and 

reproduction have smaller CV, because natural selection for the environmental robustness of a 

trait intensifies with the importance of the trait.  Similarly, the hypothesis of natural selection for 

genetic robustness predicts that, under certain conditions, traits that are more important to 

organismal survival and reproduction have smaller net |ES|, because such a GPM minimizes the 

deleterious effects of random mutations (Wagner et al. 1997) (see Materials and Methods).  To 
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test these hypotheses, we define trait importance (TI) by 100 times the reduction in fitness caused 

by 1% change in the phenotypic value of the trait concerned, and estimated it using the net |ES| 

estimates and the fitness values of the gene deletion strains in the medium where the 

morphological data were collected (Qian et al. 2012) (see Materials and Methods).  When 

estimating TI, we used 2779 gene deletion strains whose fitness values relative to the wild-type 

are smaller than 1 (see Materials and Methods).  As a result, 210 traits (out of 220) have TI > 0, 

197 of which significantly exceed 0 (nominal p < 0.05).  These 210 traits were subject to further 

analysis.   

We found the CV of a trait to decrease with the rise of TI (ρ = -0.692, p < 10-300; Fig. 

2.3a).   Because the phenotypic measurements of the wild-type and mutants were used in 

estimating TI, the correlation between CV and TI could be artifactual.  To exclude this possibility, 

we estimated 1000 sets of pseudo TI values by randomly shuffling the fitness values among the 

gene deletion strains.  In each set, negative TI values are ignored because they are biologically 

meaningless.  We calculated the 1000 rank correlations between CV and the 1000 sets of positive 

pseudo TI.  Because these rank correlations are not directly comparable due to different sample 

sizes, we converted the correlations (!) to Fisher’s z scores by  ! = 0.5 ln [(1+ !)/(1− !)].  

We found the true z score (converted from ρ = -0.692) to be more negative than all 1000 pseudo 

z scores (p < 0.001; Fig. 2.3b), suggesting that the negative correlation between CV and TI is 

genuine.  Because the same phenotypic data were used in calculating the true z and the pseudo z 

scores, their disparity cannot be caused by measurement errors in phenotyping.  Rather, it reveals 

smaller stochastic noise and environmental variation for more important traits, consistent with 

the hypothesis that natural selection has increased the phenotypic robustness of organisms to 
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stochastic noise (Batada and Hurst 2007; Lehner 2008; Wang and Zhang 2011) and 

environmental perturbation (Gibson and Wagner 2000).  

We also observed a negative correlation between mean net |ES| across all deletion lines 

and TI (ρ= -0.793, p < 10-300; Fig. 2.3c), indicating that the mean effect size of all nonessential 

genes on a trait decreases as the trait becomes more important, supporting the hypothesis of 

natural selection for mutational robustness.  This result was verified by comparing the observed z 

(converted from ρ = -0.793) with 1000 pseudo z scores converted from the correlations between 

mean net |ES| and the 1000 sets of positive pseudo TI (p < 0.001; Fig. 2.3d).   

Interestingly, we found no significant correlation between the TI of a trait and the number 

of genes affecting the trait (fgenes) (simulated p = 0.07; Fig. A.1.4).  Hence, the lower mean net 

|ES| of important traits is not because there are fewer genes impacting important traits but 

because the individual impacts are smaller.  

Because genetic robustness may be a byproduct of natural selection for 

environmental/stochastic robustness or vice versa (the congruence hypothesis) (Gibson and 

Wagner 2000; de Visser et al. 2003), it is important to examine whether the two types of 

robustness have independent origins.  We found that the partial correlation between CV and TI 

after the control of mean net |ES| is ρ = -0.532 (p = 1.1×10-16), while the partial correlation 

between mean net |ES| and TI after the control of CV is ρ = -0.700 (p = 4.7×10-32).  Hence, the 

environmental/stochastic robustness and genetic robustness are not entirely attributable to each 

other and must have their separate origins.  These results were further confirmed by comparing 

with the random expectations from the 1000 sets of pseudo TI (Fig. 2.3e, f).  Due to the potential 

difference in the fitness effects of positive and negative genic effects on a trait, we also 
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reanalyzed the data using positive (or negative) effects only, but found the results to be 

qualitatively unaltered (Table A.1.1; see Materials and Methods).  

To confirm that the significant correlations among CV, mean net |ES|, and TI are not due 

to high genetic correlations among some traits, we used two approaches to generate less 

correlated traits.  First, we removed highly correlated traits as was done for Fig. A.1.2, but the 

negative correlation between CV and TI and that between mean net |ES| and TI still exist, so do 

the partial correlations (Fig. A.1.5).  Second, we performed a principal component analysis using 

the net |ES| matrix (see Materials and Methods).  Using the principal component traits, we 

confirmed the negative correlation between mean net |ES| and TI (Fig. A.1.6).  

The negative correlation between mean net |ES| and TI could mean a decrease in net |ES| 

for important traits or an increase in net |ES| for unimportant traits; only the former supports 

natural selection for genetic robustness.  To distinguish between these two possibilities, we 

analyzed the 4718 genes separately.  For each gene, we estimated the rank correlation (ρTI-|ES|) 

between the importance of a trait and the net |ES| of the gene on the trait among the 210 traits 

with estimated TI.  We found ρTI-|ES| to vary greatly among genes, although most (64.8%) genes 

have negative ρTI-|ES| values (Fig. 2.4a).  We halved the 210 traits into a group of less important 

and a group of more important traits.  We then respectively calculated the mean net |ES| of the 

20% most robust genes (i.e., with the most negative ρTI-|ES| values) and 20% least robust genes 

(i.e., with the smallest |ρTI-|ES|| values) on each group of traits.  Natural selection for mutational 

robustness should intensify at more important traits.  Thus, for the group of less important traits, 

we expect net |ES| to be similar between the least robust and most robust genes; but for the group 

of more important traits, net |ES| should be smaller for the most robust genes than for the least 

robust genes.  An opposite pattern would be inconsistent with selection for mutational robustness.  
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We found that, for the less important traits, the mean net |ES| is similar between the most robust 

and least robust genes (p = 0.21, Wilcoxon signed-rank test; Fig. 2.4b).  But, for the more 

important traits, the mean net |ES| of the most robust genes becomes significantly smaller than 

that of the least robust genes (p = 3.8 x 10-22, Wilcoxon signed-rank test; Fig. 2.4b).  These 

findings demonstrate that the negative correlation between TI and mean net |ES| is caused by the 

reduction of mean net |ES| of a large fraction of genes on important traits, supporting natural 

selection for genetic robustness. 

 

2.3.4 Fitness advantage of genetic robustness   

One primary reason why natural selection for genetic robustness is controversial for 

cellular organisms is that its selection coefficient is expected to be small (Gibson and Wagner 

2000).  Below we show that the selection coefficient in the present case is large enough for the 

effect of natural selection to surpass that of genetic drift.   

If we consider only null mutations but not other deleterious mutations, the fitness 

advantage (g) of a robustness modifier equals ∑(µiΔsi/si), where µi is the null mutation rate at 

gene i and is on average 2.15×10-6 per gene per generation in yeast (see Materials and Methods), 

si and si-Δsi are the selection coefficients against the null mutation of gene i in the absence and 

presence of the modifier, respectively, and ∑ indicates summation over all genes considered (see 

Materials and Methods).  The modifier is strongly selected for when S = 2Ne g = 2 × 107 × 

2.15×10-6 × ∑(Δsi/si) = 43∑(Δsi/si) greatly exceeds 1, where Ne is the effective population size 

and equals ~107 in yeast (Wagner 2005a).  For example, g = 2.15×10-5 and S = 430 if the 

modifier buffers the null mutations of 20 genes with a mean Δsi/si = 0.5. 
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With the above consideration, let us estimate the fitness advantage to yeast conferred by 

the observed genetic robustness.  This advantage can be partitioned into two parts: (i) a reduction 

of the averaged mean effect size of all genes on all traits and (ii) a greater reduction of mean 

effect sizes on more important traits.  Ideally, we should compare the organismal fitness resulting 

from the real GPM in the presence of mutation and the fitness resulting from the ancestral GPM 

in which the effect sizes had not been reduced by selection.  This comparison, however, is 

infeasible, because of the difficulty in inferring ancestral effect sizes.  Instead, we estimated the 

fitness resulting from a hypothetical GPM in which the effect sizes of a gene on various traits are 

randomly sampled (without replacement) from the observed net effect sizes of the gene on these 

traits.  This procedure yields a conservative estimate of the fitness advantage of genetic 

robustness, because only part (ii) is estimated.  Employing this approach, we created 1000 

hypothetical GPMs.   

We built a multivariate linear model in which the fitness values of 2779 gene deletion 

strains that are less fit than the wild-type are explained by the phenotypes of the 220 traits (see 

Materials and Methods).  This model explains 45% of fitness variance among the deletion strains 

used.  Using this model and a GPM, we can predict the fitness upon the deletion of a gene.  For 

example, the predicted expected fitness upon the deletion of one of the 2779 nonessential genes 

from the real GPM is 0.9443, which is essentially identical to the experimentally determined 

mean fitness (differs by 4×10-16) of the 2779 nonessential gene deletion strains.  For the 1000 

hypothetical GPMs, the fitness is predicted to drop to 0.8956, with a standard deviation of 

0.0091, when a randomly picked nonessential gene is deleted.  Thus, the deleterious effect of 

deleting an average nonessential gene from the real GPM has been reduced by an impressive 

fraction of Δs/s = (0.9443-0.8956)/(1-0.8956) = 46.6%, compared with the GPMs with 
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randomized effect sizes.  Consequently, the yeast fitness upon a gene deletion has risen by 

(0.9443-0.8956)/0.8956 = 5.4%.  The total fitness improvement conferred by robustness to null 

mutations is G = ∑(µiΔsi/si) = 2779 × 2.15×10-6 × 46.6% = 2.8×10-3.  Here we use G instead of g 

to denote the combined effect of multiple modifiers.  Because deleterious mutations that do not 

completely abolish the function of a gene were not considered in the above calculation, the total 

fitness gain from mutational robustness should be greater than 2.8×10-3.  Of course, as 

deleterious mutations become less severe after the canalization, their equilibrium frequencies in 

the population will increase.  Consequently, the mean fitness of the population will return to the 

previous value (Wagner et al. 1997).  

 

2.3.5 Genetic robustness of gene expression traits 

To examine if the genetic robustness observed from the morphological traits can be 

generalized to other traits, we turn to another large set of traits where the expression level of each 

of 3116 yeast genes is considered a trait.  The genetic robustness of yeast expression traits was 

previously assessed by calculating how much the expression of each gene varies among gene 

deletion lines and testing if the degree of variation is correlated with the importance of the gene, 

but the results were mixed (Proulx et al. 2007).  We expanded the analysis from considering the 

effects of 276 gene deletions (Proulx et al. 2007) to 754 by combining several microarray 

experiments performed in rich media (see Materials and Methods).  We define the raw effect size 

(ES) of deleting gene 1 on the expression level of gene 2 by the difference in the expression level 

of gene 2 between the deletion strain and the wild-type strain, divided by the expression level of 

gene 2 in the wild-type.  Because the expression levels were measured in several different 

microarray experiments, it is difficult to assess whether an effect is statistically significant.  But 
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if we use raw |ES| of 0.2, 0.3, 0.4, and 0.5 as potential cutoffs, the average proportion of gene 

deletions that affect the expression level of a gene is 20%, 10%, 5.5%, and 3.3%, respectively.  

Thus, the expression traits are of comparable complexity as the 220 morphological traits.  

In principle, we should estimate the importance of gene expression traits by the approach 

used for estimating the TI of morphological traits.  However, this would require direct 

comparison of gene expression levels across different microarray data, which is unlikely to be 

reliable.  Instead, we followed a previous study (Proulx et al. 2007) to use the fitness effect of 

deleting a gene as a proxy for the TI of the expression trait of the gene.  That is, the expression of 

a gene is more important if the fitness effect of deleting the gene is larger.  This proxy for TI is 

reasonable because the fitness effect caused by a small expression change of a gene is highly 

correlated with that caused by deleting the gene (Wang and Zhang 2011).  We found that, 

regardless of whether TI is measured by gene essentiality (i.e., categorical) or the fitness effect of 

gene deletion (i.e., continuous), there is a significant negative correlation between the importance 

of a trait (TI) and the mean absolute effect size of gene deletion on the trait (|ESG|, the subscript 

G indicates genetic perturbation) (Table 2.1).  Here, ESG is defined in the same way as ES for 

morphological traits.  We also found a negative correlation between TI and the mean absolute 

effect size of environmental changes (|ESE|, the subscript E indicates environmental perturbation; 

see Materials and Methods).  Similar to the results for the morphological traits, the correlation 

between TI and |ESG| remains significant after the control of |ESE|, and the correlation between TI 

and |ESE| remains significant after the control of |ESG| (Table 2.1), suggesting that neither the 

genetic nor environmental robustness of gene expression is entirely caused by the other.  Similar 

results were obtained when the wild-type gene expression level is controlled (Table A.1.2).  We 

also analyzed an expanded set of environmental perturbations, and the results were similar 
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(Table A.1.3).  After removing highly correlated expression traits (see Materials and Methods), 

we still observed qualitatively similar results for the 54 remaining traits (Table A.1.4). 

Because essential genes tend not to have a canonical TATA box in their promoters (Han 

et al. 2013) and because the expression levels of TATA-less genes are less noisy, less sensitive to 

environmental changes, and more conserved among species than those of TATA-containing 

genes (Newman et al. 2006; Tirosh et al. 2006), one wonders whether the above findings are 

artifacts caused by covariations of both gene essentiality and expression insensitivity with the 

absence of TATA boxes.  In other words, we may observe a negative correlation between TI and 

|ESE| and/or that between TI and |ESG| if certain genes must use TATA-less promoters for reasons 

other than environmental/genetic robustness.  To exclude this possibility, we analyzed TATA-

containing and TATA-less genes (Rhee and Pugh 2012) separately.  We found that the 

hypothesis of adaptive origin of genetic robustness is supported for both TATA-containing and 

TATA-less genes (Table A.1.5).  The evidence for an independent adaptive origin of 

environmental robustness is weakened for TATA-containing genes, but remains strong for 

TATA-less genes (Table A.1.5).  Taken together, these analyses support that the signals for 

adaptive genetic and environmental robustness of gene expression traits are genuine.  

 

2.4 DISCUSSION 

Using genome-wide reverse genetics, we estimated the fraction of nonessential genes 

affecting a trait for a large number of traits for the first time in any organism.  We discovered 

that this fraction is on average 6% for the 220 yeast morphological traits examined.  An analysis 

of 3116 yeast gene expression traits revealed a comparable degree of genetic complexity.  It is 

interesting to note that the fraction of genes affecting a trait is similar among yeast, fly, and 
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mouse (p > 0.05 in all pairwise comparisons; Mann-Whitney U test; Fig. 2.1), despite the rather 

small data from the latter two species and multiple differences in phenotyping, sample size, and 

type of traits examined.  It is tempting to suggest that our observation from yeast, a unicellular 

eukaryote, may be widely applicable to other organisms, including mammals.  More studies, 

however, are needed to verify this observation.   

While the fraction of genes affecting a yeast trait appears intermediate on average (6% or 

~300 nonessential genes), the among-trait variation of this quantity is huge.  Nearly two fifths of 

traits are relatively simple, each affected by <1% of genes (i.e., ~50 genes).  Two fifths of traits 

are of medium complexity, each affected by 1% to 10% of genes (i.e., 50-500 genes).  Over one 

fifth of traits are highly complex, each affected by >10% of genes (i.e., >500 genes), including 

those impacted by >30% of genes (i.e., >1500 genes).  A systems approach (Mackay et al. 2009) 

is not only preferred but also necessary for understanding why and how so many genes affect 

each of these highly complex traits.  Theoretical studies are needed to understand how the 

discovered distribution of genetic complexity of phenotypic traits impacts phenotypic variation 

and evolution.   

Our findings partially explain why forward genetics is inefficient in genotype-phenotype 

mapping.  Among the large number of genes that potentially affect a complex trait, typically only 

a few are variable in the mapping population of each linkage analysis.  In association studies, 

although the number of variable causal genes may be high when the mapping population is large, 

the statistical power is generally low because most causal genes are not highly polymorphic.  If 

one is interested in the actual mutations causing a particular trait variation in a population, using 

forward genetics seems necessary.  But if one is interested in the molecular genetic network 

responsible for and potentially impacting a trait, reverse genetics offers a more complete and 
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unbiased view.  Although only gene deletions are considered here, genome-wide reverse genetics 

is applicable to other types of mutants when they become available, including gain-of-function 

mutants.   

A common approach to verifying a candidate causal gene identified by forward genetics 

is to examine the phenotypic effect of deleting the gene from a wild-type strain.  But, the 

validation can only prove that the gene affects the trait but cannot vindicate that the gene causes 

the trait variation seen in the mapping population.  This is especially so for highly complex traits, 

where a randomly picked gene has a >10% chance to affect the trait.  Additional tests, such as 

allelic replacement, will be necessary to reduce the false positive rate.   

We showed that the phenotypic variation (CV) of a trait among isogenic wild-type 

individuals decreases with the rise of trait importance, consistent with the hypothesis of natural 

selection for environmental/stochastic robustness.  We also showed that the mean effect size of 

gene deletion decreases as the trait becomes more important, consistent with the hypothesis of 

natural selection for genetic robustness.  We found that the environmental/stochastic robustness 

and the genetic robustness cannot fully explain each other, rejecting the congruence hypothesis 

(de Visser et al. 2003) and suggesting separate origins of the two types of robustness.  One 

rationale of the congruence hypothesis is that some genes underlying environmental robustness 

are also used for genetic robustness (Lehner 2010).  A often cited example is the heat shock 

protein Hsp90 in Drosophila (Meiklejohn and Hartl 2002).  But more recent work found that 

Hsp90 buffering of genetic perturbation is independent of environmental/stochastic robustness 

(Milton et al. 2003).  Furthermore, mapping data from mouse, Arabidopsis, and yeast suggested 

that genetic robustness and environmental robustness are often controlled by different loci 

(Fraser and Schadt 2010).  While genetic robustness may also originate from some intrinsic 
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properties of the gene interaction networks without direct selection for robustness (Siegal and 

Bergman 2002; Hermisson and Wagner 2004), this hypothesis cannot explain why the observed 

genetic robustness is greater for more important traits.  Taken together, our results provide strong 

evidence for the action of natural selection in shaping the GPM and in improving the mutational 

robustness of relatively important traits in yeast.  

Three reasons may explain why several earlier studies did not find clear evidence of 

natural selection for genetic robustness.  First, natural selection for genetic robustness is 

expected to be weak unless the population size is large and the deleterious mutation rate is high 

(Wagner et al. 1997).  The previous ambiguous results in fly (Stearns and Kawecki 1994; Stearns 

et al. 1995; Houle 1998) may reflect weaker selection for genetic robustness in fly than in yeast 

due to their difference in effective population size.  In the light of this comparison, it is 

interesting to ask if genetic robustness potentially exists in humans, which have an effective 

population size of 104 and a null mutation rate of 1.5×10-5 per gene per generation (see Materials 

and Methods).  We calculated that S = 2Ne∑(µiΔsi/si) = 0.3∑(Δsi/si) for a modifier buffering 

deleterious mutations in humans.  Assuming an average Δsi/si of 0.5, S will exceed 1 if a 

modifier simultaneously affects > 6 genes.  Because the total number of genes in humans is 

about four times that in yeast, if fgenes in human is not lower than that in yeast, it is possible that a 

modifier affects much more than six genes.  Nonetheless, it is clear from this calculation that 

selection for genetic robustness is ~100 fold weaker in humans than in yeast.  Second, trait 

importance is quantitatively estimated in our analysis but not in many previous studies, rendering 

our analysis more powerful and objective than those earlier analyses.  But, it should be noted that 

we estimated morphological trait importance by the slope in the correlation between trait values 

and fitness values among 2779 gene deletion strains.  As such, our estimates may not accurately 
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reflect causal relationships between the variation of a trait and fitness.  However, it is virtually 

impossible to establish causal relationships between traits and fitness, because no trait is 

independent of all other traits such that one can manipulate a trait without affecting all other 

traits.  The fact that our use of the inaccurate trait importance estimates still yields significant 

evidence supporting natural selection for genetic robustness suggests that the true signal is even 

stronger.  In other words, our results are likely to be conservative.  Note that in some earlier 

studies, trait importance was named or defined differently.  For example, some researchers used 

the term “sensitivity”, defined by the percentage of fitness change associated with a 1% or 10% 

phenotypic change (Stearns and Kawecki 1994; Stearns et al. 1995; Houle 1998), while Proulx et 

al. (2007) measured the “importance” of a gene expression trait by the growth defect caused by 

deleting the gene.  Finally and probably most importantly, our data are much larger than those 

used in all previous studies, allowing detecting selection for genetic robustness and excluding the 

congruence hypothesis. 

Our analysis has three caveats.  First, the morphological variations of the wild-type yeast 

cells were measured in the same gross environment, which may underestimate CV, which in turn 

may lead to an overestimation of genetic robustness unexplainable by environmental robustness.  

But this criticism does not apply to the gene expression data analyzed here, because they include 

gross environmental variations.  Although these environments do not resemble the historical 

natural environments of yeast, they include important environmental variables that yeast faces in 

nature, such as temperature, osmotic pressure, and amino acid concentrations.  The overall 

similar findings of genetic robustness between the morphological and expression traits suggest 

that the lack of gross environmental variation has a minimal impact on the result of 

morphological traits, but this conclusion requires further confirmation.   
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Second, our measurement of effect size is limited to null mutations while in nature there 

are also abundant mutations that impact the function of a gene only slightly or moderately; their 

effect size would be smaller.  If the effects of a genic mutation on various traits are 

proportionally smaller when the mutation reduces but not abolishes the gene function, all of our 

empirical results should still hold.  Our calculation of the fitness advantage of genetic robustness 

is conservative, because considering additional deleterious (but not null) mutations will increase 

the benefit of gene robustness.  For obvious reasons, our analysis is limited to the deletions of 

~80% of yeast genes that are nonessential.  Although we do not expect essential genes to 

behavior qualitatively differently from nonessential genes, future studies are required to validate 

this expectation.   

Third, our study focused on lab strains of yeast because the deletion lines were all 

constructed in the genetic background of a lab strain.  Whether our results apply to natural strains 

of yeast requires future research.  Recent studies have revealed substantial genomic (Bergstrom 

et al. 2014) and morphological (Yvert et al. 2013) variations among yeast strains.  Our analysis 

can be applied to strains of different genetic backgrounds when gene deletion lines in these 

backgrounds as well as their morphological data become available.  

It is unknown what molecular genetic mechanisms are responsible for the observed 

reductions in the effect sizes of environmental and genetic perturbations on important traits.  

Previous yeast studies identified so-called capacitor genes, which could buffer phenotypic 

variations upon environmental perturbations.  For example, it was found that genes with larger 

fitness effects upon deletion are more likely to be expression capacitors (Bergman and Siegal 

2003) and genes with more genetic interactions are likely to be morphology capacitors (Levy and 

Siegal 2008).  However, these studies did not examine whether the buffering effects on a trait 
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varies depending on trait importance.  Consequently, the roles of these capacitors in the adaptive 

genetic and environmental robustness revealed here is unclear. 

The observed mutational robustness of the GPM is a double-edged sword.  On the one 

hand, it reduces the deleterious effects of mutations on important traits such that the severity of 

the associated defects is lessened.  On the other hand, because of the reduction in effect size, the 

defects are less harmful and hence tend to spread more widely in a population.  The full 

ramifications of a GPM that is robust to mutation await further study, so do the molecular 

mechanisms conferring the robustness. 

 

2.5 MATERIALS AND METHODS 

2.5.1 Morphological and fitness data  

      The phenotypic data of 501 morphological traits measured in the wild-type (123 replicate 

populations) and 4718 nonessential gene deletion yeast strains (each with one population) in the 

rich medium YPD (yeast extract, peptone, and dextrose) were generated by Ohya and colleagues 

(Ohya et al. 2005).  We focused on 220 of the 501 traits, because these 220 traits were measured 

in individual cells whereas the other traits were measured for populations of cells.  Using single-

cell measurements is necessary for our analysis. The YPD fitness values of the deletion strains, 

relative to the wild-type, were recently measured by Qian and colleagues (Qian et al. 2012).   

2.5.2 Fraction of genes affecting a trait  

 The mouse results (Fig. 2.1a) were from a summary of gene knockout studies (2009).  

The fruit fly results (Fig. 2.1b) were based on previously published data of P-element insertion 

lines (2010).  Because each line typically contains multiple P-element insertions, we calculated 
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the fraction of single P-element insertions that affect a trait using the mean number of insertions 

per line (Mackay et al. 1992) under the assumption of no epistasis. 

In the statistical analysis of yeast data, a gene is said to affect a trait when the gene 

deletion strain and the wild-type strain have a significant difference in the median trait value.  

We first calculated the p-value by comparing multiple cells of each deletion line and those of an 

arbitrarily selected wild-type replicate population (04his3-1) by the Mann-Whitney U test.  A p-

value of <5% was used to establish statistical significance.  We thus obtained the faction of 

mutants in which the trait is affected (fmt).  To control for false positives, we similarly performed 

the Mann-Whitney U test between 04his3-1 and each of the other 122 wild-type populations and 

calculated the fraction (fwt) of the 122 wild-type populations in which the trait deviates 

significantly from 04his3-1.  The estimate of the fraction of genes affecting a trait (fgenes) equals 

fmt - fwt if fmt  > fwt; otherwise, we set fgenes = 0. 

2.5.3 Less correlated morphological traits  

To examine if some of our results were generated by highly correlated traits, we 

attempted to remove genetically highly correlated traits.  We measured the genetic correlation 

between a pair of traits by correlating their trait values across the 4718 gene deletion strains.  We 

then removed traits one by one from those with the highest absolute correlations until no two 

traits have a Pearson correlation whose absolute value is greater than 0.7.  The final dataset has 

54 traits and the distribution of fgenes is shown in Fig. A.1.2.  Because morphological traits are 

naturally correlated to some extent, it remains to be determined whether the original 220 traits or 

the 54 less correlated traits better represent randomly sampled traits.  The 54 less correlated traits 

were also used in Fig. A.1.5. 
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2.5.4 Raw effect size and net effect size 

The raw effect size (ESij) of deleting gene i on trait j is defined as (xij - wj)/wj, where xij is 

the mean phenotypic value of trait j in the deletion strain i, and wj is the corresponding value in 

the wild-type (averaged across all replicate populations).  Conventionally, ESij is defined by (xij - 

wj)/SDj, where SDj is the standard deviation of the trait in the wild-type (Mackay et al. 2009).  

We avoided using the conventional definition because the expected value of SDj is in a large part 

determined by the precision of the trait measurement, rendering the comparison of mean |ES| 

among traits primarily a comparison of the measurement quality rather than the biology of the 

traits.  By contrast, the expected value of wj is not affected by the imprecision of the 

measurement.   

      To estimate the net |ES| of gene deletion on a trait, we generated 1000 pseudo phenotypic 

datasets.  To generate a pseudo dataset, we randomly chose one wild-type replicate population 

and pick (with replacement) from this population the same number of cells as in the actual gene-

deletion data.  We then calculated pseudo |ES| for each of these pseudo datasets and computed its 

mean value.  Because 1000 pseudo datasets were generated, effectively all 123 wild-type 

populations were used.  Net |ES| equals raw |ES| minus mean pseudo |ES| if raw |ES| > mean 

pseudo |ES|; otherwise, net |ES| = 0. 

 

2.5.5 Phenotypic variation 

The phenotypic variation in the wild-type was measured by CV.  We calculated the 

variance among cells within each replicate population and averaged it across the 123 populations 

(Vwithin).  We then calculated the variance among the mean phenotypic values of the 123 
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populations (Vbetween).  CV =   !!"#$"% + !!"#$""%/m, where m is the average of the mean 

phenotypic values of the 123 populations.   

 

2.5.6 Relative trait importance  

For trait j, we conducted a linear regression Fi = aj - bj (net |ESij|) for all i, where net |ESij| 

is the absolute value of the net effect size of deleting gene i on trait j and Fi is the YPD fitness of 

the strain lacking gene i relative to the wild-type (Qian et al. 2012).  The intercept aj is the 

expected fitness when net |ESij| = 0, whereas the slope bj > 0 is 100 times the reduction in fitness 

caused by 1% change in the phenotypic value of trait j.  Thus, bj is a measure of the relative 

importance of trait j to fitness, or trait importance (TI).  Because we focused on deleterious 

mutations in this model, we used only those genes that decrease fitness when deleted.  We also 

tried the log model logFi = aj - bj (net |ESij|) and found the results to be similar (Fig. A.1.7).   

In the above estimation of trait importance, we assumed that, to a trait, a positive effect 

and a negative effect of the same size have the same fitness effect, which may not be true to all 

traits.  Because positive and negative effects are arbitrarily defined, we also considered only 

positive (or only negative) raw effects in subsequent analysis (Table A.1.1).  

 

2.5.7 Principal component analysis of the net |ES| matrix 

To examine if the non-independence among traits affects our results, we followed a 

previous study (Wang et al. 2010) to perform a principal component analysis to transform the net 

|ES| matrix M (4718 genes × 220 traits).  The principal component analysis was done by the 

“princomp” function in MATLAB.  After this function returned a coefficient matrix C (220 × 

220), we calculated M’=MC (4718 transformed effects × 220 principal traits), which provides 
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the net effect size of each gene on each of the 220 orthogonal principal component traits.  We 

then used M’ to estimate trait importance.  

 

2.5.8 Predicting the fitness of a mutant strain given the genotype-phenotype map 

We built a multivariate linear model of yeast fitness that includes all 220 traits and 2779 

gene deletion strains that are less fit than the wild-type: !! = ! − !! net !"!"!  , where α is a 

constant.  We estimated α and βj for all 220 traits using the “glmfit” function in MATLAB.  

Based on the above formula and the estimated α and βj values, we predicted Fi upon the deletion 

of gene i when either the original or randomly shuffled net |ESij| values were used.   

 

2.5.9 Null mutation rate per gene per generation 

Based on the genome sequences of mutation accumulation yeast strains (Lynch et al. 

2008), the point mutation rate in yeast is 3.3×10-10 per site per generation; the small (1-3 bp) 

indel mutation rate is 2×10-11 per site per generation; and the gene loss mutation rate is 2.1×10-6 

per gene per generation.  Taken together, we estimated the null mutation rate per gene per 

generation to be approximately [3.3×10-10×(3/63) + 2×10-11×0.83] × 1419 + 2.1×10-6 = 2.146×10-

6.  Here, 3/63 is the average probability that a random point mutation in a coding region is 

nonsense, 0.83 is the fraction of small indels that are not multiples of 3 nucleotides (Zhang and 

Webb 2003), 1419 is the mean number of coding nucleotides per yeast protein-coding gene 

(Zhang 2000).   

 In humans, the point mutation rate is 1.25×10-9 per site per year and the indel mutation 

rate is 1×10-10 per site per year (Zhang and Webb 2003).  Based on copy number variations in 

humans, it has been estimated that the gene loss rate is ~10-5 per gene per generation (Zhang et al. 
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2009).  Thus, the total null mutation rate per gene per generation is [1.25×10-9×(3/63) + 1×10-

10×0.83] × 1341 × 25 + 1×10-5= 1.48×10-5.  Here, 1341 is the mean number of coding nucleotides 

per human protein-coding gene (Zhang 2000) and 25 is the approximate number of years per 

human generation. 

 

2.5.10 Fitness advantages of robustness modifiers  

In a diploid population, let A be the wild-type allele at gene i and a represent all null 

alleles, which are assumed to be completely recessive to A.  The fitness values of AA, Aa, and aa 

are 1, 1, and 1- si, respectively, where si > 0.  Let the mutation rate from A to a be µi and the back 

mutation rate be 0.  Under the mutation-selection balance (Hartl and Clark 1997), the equilibrium 

frequency of aa individuals is µi/si and the expected fitness of a randomly picked individual in 

the population is 1×(1-µi/si) + (1-si)×(µi/si) = 1-µi.  Let us consider a robustness modifier that 

masks the deleterious effect of a such that aa individuals now have a fitness of 1-si+Δsi (0 < Δsi 

< si).  The expected fitness of an individual with the modifier is 1×(1-µi/si) + (1-si+Δsi)×(µi/si) = 

1-µi+µiΔsi/si.  Thus, the mean fitness advantage of the robustness modifier is g = µiΔsi/si.  If gene 

i affects multiple traits, Δsi/si is determined by the fractional change in its combined fitness effect 

on these traits.  Because reducing the genic effect on a trait of large fitness contribution is 

expected to contribute more to Δsi than reducing the same amount of effect on a trait of small 

fitness contribution, modifiers that preferentially reduce the mutational effects on important traits 

are more advantageous than those that have no such preference.  As a result, natural selection is 

expected to preferentially enhance the mutational robustness of important traits.  If the modifier 

buffers the null mutations of multiple genes, its fitness advantage is ∑(µiΔsi/si), where ∑ 

indicates summation over the multiple buffered genes.  The above formula also works for 
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deleterious mutations in general when ui is the total deleterious mutation rate at gene i, as long as 

all the mutations considered are completely recessive to the wild-type allele.   

 When a is not completely recessive to A, the fitness is 1, 1-hisi, and 1-si for AA, Aa, and 

aa, respectively, where 0 < h < 1 is the dominance of a, relative to A.  Under mutation-selection 

balance (Hartl and Clark 1997), the equilibrium frequency of the a allele is µi/(sihi) and the 

expected fitness of a randomly picked individual in the population is approximately 1-2µi.  Let us 

consider a robustness modifier that masks the deleterious effect of a such that Aa individuals 

now have a fitness of 1-hisi+hiΔsi (0 < Δsi < si) and aa individuals have a fitness of 1-si+Δsi.  The 

expected fitness of an individual with the modifier will be 1-2µi+2µiΔsi/si.  Thus, the mean fitness 

advantage of the robustness modifier equals 2µiΔsi/si.  If the modifier buffers the deleterious 

mutations of multiple genes, its fitness advantage is 2∑(µiΔsi/si), where ∑ indicates summation 

over the multiple buffered genes.   

  

2.5.11 Gene expression data and analysis 

      The genome-wide gene expression data of yeast single-gene deletion lines were compiled 

from four studies (Hughes et al. 2000; Hu et al. 2007; van Wageningen et al. 2010; Lenstra et al. 

2011).  In each study, the wild-type and gene deletion strains were grown in YPD or synthetic 

complete (SC) medium.  The microarray expression level of gene j in the strain lacking gene i 

was compared with that in the wild-type under the same medium to measure the effect of 

deleting gene i on the expression level of gene j.  Strains lacking more than one gene were not 

considered.  If a deletion line was analyzed in multiple studies, we used the data from the most 

recent study.  In the end, the data contained expression changes of 4399 genes in 754 gene 

deletion lines.  We then limited our analysis to the expression levels of 3116 (out of 4399) genes 
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because these genes reduce fitness when deleted (i.e. fitness ≤ 1 regardless of statistical 

significance) (Qian et al. 2012).  

The effect size of deleting gene i on the expression level of gene j was defined by (xij - 

wj)/wj = xij/wj -1, where xij is the expression level of gene j in the strain lacking gene i and wj is 

the expression level of gene j in the wild-type.  The xij/wj value used was available from each 

dataset.  Because the expression data were obtained for populations of cells rather than 

individual cells, net |ES| cannot be estimated.  The measurement error of the expression level of a 

gene in microarray is mainly determined by the expression level of the gene.  Thus, controlling 

the expression level (Tables A.1.2 - A.1.5) largely controls the measurement error.  For these 

analyses, the expression levels from the wild-type strain in YPD (Nagalakshmi et al. 2008) were 

used.  We quantified the effect sizes of 35 highly different environmental changes on the wild-

type gene expression levels (Proulx et al. 2007) using the same formula, where xij/wj is the fold 

change in the expression of gene j induced by the ith environmental change.  These 35 

environments were previously chosen from a total of 162 environments to represent the least 

correlated environmental challenges (Proulx et al. 2007).  We performed a similar analysis using 

all 162 environmental challenges under which the wild-type gene expression changes were 

previously measured (Gasch et al. 2000) (Table A.1.3).   

      When examining the potential impact of highly correlated traits, we measured the genetic 

correlation between a pair of expression traits by correlating their expression levels across 

mutant strains.  We then removed expression traits one by one from those with the highest 

correlations until no two traits have a Pearson correlation greater than 0.7.  The final dataset 

included 2223 expression traits (Table A.1.4).  
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Table 2.1 Spearman’s rank correlation between the importance of a gene expression trait 
to fitness and the mean effect size of gene deletion (|ESG|) or environmental perturbation 
(|ESE|). 

1 Trait importance is measured by the fitness defect caused by deleting the gene. 
2 Essentiality = 0 for nonessential traits and 1 for essential traits. 

Variables correlated Variables 
controlled Spearman’s ρ  p-value 

Fitness effect1, |ESE|  -0.146 2.1e-16 

Fitness effect1, |ESG|  -0.180 3.7e-24 

Fitness effect1, |ESE| |ESG| -0.094 1.3e-07 

Fitness effect1, |ESG| |ESE| -0.141 1.9e-15 

Essentiality2, |ESE|  -0.088 8.1e-07 

Essentiality2, |ESG|  -0.125 2.2e-12 

Essentiality2, |ESE| |ESG| -0.051 4.8e-03 

Essentiality2, |ESG| |ESE| -0.103 9.6e-09 
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Figure 2.1 Fraction of genes affecting a trait, with the mean and median values indicated.  
(a) Patterns emerging from 12 traits examined in 250 lines of knockout mice.  (b) Patterns 
emerging from eight traits examined in various P-element insertion lines of fruit flies.  In (a) and 
(b), each arrow represents one trait.  (c) Frequency distribution of the fraction of genes affecting 
a trait, derived from 220 morphological traits examined in 4718 nonessential gene deletion lines 
of yeast. 
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Figure 2.2 Distributions of the absolute values of the raw and net effect sizes (|ES|) of 4718 
nonessential gene deletions on 220 morphological traits in yeast.  (a) Cumulative probability 
distributions of raw |ES| of 4718 gene deletions on 220 traits.  Each curve represents a trait and is 
colored according to trait importance.  The distributions are shown only in the range of 0 < |ES| < 
1 to better distinguish among different curves.  (b) Distribution of the mean raw |ES| among the 
220 traits.  (c) Cumulative probability distributions of net |ES| of 4718 gene deletions on 220 
traits.  (d) Distribution of the mean net |ES| among the 220 traits.  (e) Distribution of the wild-
type phenotypic variation (CV) among the 220 traits. 
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Figure 2.3 Environmental/stochastic robustness and genetic robustness of yeast 
morphological traits.  (a) The phenotypic variation (CV) of a trait among isogenic wild-type 
cells decreases with the rise of the trait importance (TI). Each dot is a trait.  (b) Distribution of 
Fisher’s z derived from the rank correlation between CV and pseudo TI.  (c) The mean net |ES| of 
gene deletion on a trait decreases with the rise of the trait importance (TI), demonstrating genetic 
robustness.  Each dot is a trait.  (d) Distribution of Fisher’s z derived from the rank correlation 
between mean net |ES| and pseudo TI.  (e) Distribution of Fisher’s z derived from the partial rank 
correlation between CV and pseudo TI, after the control of mean net |ES|.  (f) Distribution of 
Fisher’s z derived from the partial rank correlation between mean net |ES| and pseudo TI, after 
the control of CV.  In (b), (d), (e), and (f), the real z observed from the actual data is indicated by 
an arrowhead and the p-value is the probability that a randomly picked pseudo z is more negative 
than the real z.   
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Figure 2.4 Among-gene variation in contribution to genetic robustness.  (a) Frequency 
distribution of a gene’s rank correlation (ρ) between its absolute net effect size (|ES|) on a trait 
and the trait importance (TI).  Most genes show negative correlations.  (b) Effect size differences 
between the 20% most robust (having the most negative ρ values in panel a) and 20% least 
robust (having the smallest |ρ| values) genes on traits of different importance.  Traits are divided 
into two equal-size bins based on TI: less-important traits and more important traits.  In the 
boxplot (see the scale marked on the left Y-axis), the lower edge and upper edge of a box 
represent the 25% quartile (q1) and 75% quartile (q3), respectively.  The horizontal line inside a 
box indicates the median (md).  The whiskers extend to the most extreme values inside inner 
fences, md ± 1.5(q3 - q1).  The values outside the inner fences (outliers) are plotted by plus signs.  
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Chapter 3 

Adaptive Genetic Robustness of Escherichia coli Metabolic Fluxes1 

 

3.1 ABSTRACT 

Genetic robustness refers to phenotypic invariance in the face of mutation and is a 

common characteristic of life, but its evolutionary origin is highly controversial.  Genetic 

robustness could be an intrinsic property of biological systems, a result of direct natural 

selection, or a byproduct of selection for environmental robustness.  To differentiate among these 

hypotheses, we analyze the metabolic network of Escherichia coli and comparable functional 

random networks.  Treating the flux of each reaction as a trait and computationally predicting 

trait values upon mutations or environmental shifts, we discover that (1) genetic robustness is 

greater for the actual network than the random networks, (2) the genetic robustness of a trait 

increases with trait importance and this correlation is stronger in the actual network than in the 

random networks, and (3) the above result holds even after the control of environmental 

robustness.  These findings demonstrate an adaptive origin of genetic robustness, consistent with 

the theoretical prediction that, under certain conditions, direct selection is sufficiently powerful 

to promote genetic robustness in cellular organisms. 

																																																								
1This chapter was published as Ho and Zhang (2016) Mol. Biol. Evol. 33: 1164-1176	
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3.2 INTRODUCTION 

Genetic robustness, also known as genetic canalization, refers to the ability of a 

biological system to maintain phenotypic invariance upon mutation.  Genetic robustness has 

been reported in many organisms (Rutherford, Lindquist 1998; Fares et al. 2002; Ciliberti, 

Martin, Wagner 2007; Ho, Zhang 2014; Yang, Ruan, Zhang 2014) at multiple levels of 

biological organization (Wagner 2005) and is an important characteristic of life.  The 

evolutionary origin of genetic robustness, however, is controversial with three competing 

hypotheses (de Visser et al. 2003; Felix, Barkoulas 2015).  The adaptation hypothesis states that 

genetic robustness results from direct positive selection, because mechanisms reducing the 

phenotypic effects of mutations are favored due to the overall deleterious nature of mutations 

(Waddington 1942).  Although this hypothesis has been supported in digital organisms and 

viruses (Wilke et al. 2001; Sanjuan et al. 2007), its validity in cellular organisms is debated.  The 

congruence hypothesis posits that genetic robustness is a byproduct of selection for 

environmental robustness, which is the ability to maintain phenotypic invariance upon 

environmental perturbations (Meiklejohn, Hartl 2002; de Visser et al. 2003).  The intrinsic 

property hypothesis asserts that genetic robustness is an intrinsic property of biological systems 

(Siegal, Bergman 2002).  For example, it was suggested that the genetic robustness of 

transcriptional networks originates from the functional constraint without selection for genetic 

robustness (Siegal, Bergman 2002).   

When one mutation affects multiple traits of different levels of importance to fitness, 

robustness modifiers that preferentially buffer the mutational effects on relatively important traits 

have advantages over modifiers that equally buffer the mutational effects on all traits (Ho, Zhang 

2014).  Consequently, in the presence of selection for genetic robustness, genetic robustness is 
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expected to rise with trait importance.  The population genetic theory of canalization also 

predicts that when trait importance is not too high (so that there is still sufficient genetic 

variation), genetic robustness should rise with trait importance (Wagner, Booth, Bagheri-

Chaichian 1997).  Nevertheless, this trend may also exist in the absence of selection for genetic 

robustness if there is selection for environmental robustness and if mechanisms for 

environmental robustness also confer genetic robustness (i.e., the congruence hypothesis).  By 

contrast, the intrinsic property hypothesis does not predict an increase in genetic robustness with 

trait importance.  Thus, examining the correlation between genetic robustness and trait 

importance allows distinguishing the intrinsic property hypothesis from the other two 

hypotheses, which can then be differentiated by computing the partial correlation after 

controlling environmental robustness.  If the partial correlation remains significant, the 

adaptation hypothesis is supported; otherwise, the congruence hypothesis is supported.   

Several previous studies tested the adaptation hypothesis using the above strategy, but 

obtained mixed results, possibly because the number of traits examined is small, the traits are not 

randomly sampled, the traits are not comparable with one another, and/or trait importance is not 

well defined (Stearns, Kawecki 1994; Stearns, Kaiser, Kawecki 1995; Houle 1998; Proulx, 

Nuzhdin, Promislow 2007).  We recently applied the same strategy to 220 yeast morphological 

traits and found evidence for the adaptation hypothesis (Ho, Zhang 2014).  While the traits were 

plentiful, unbiased, and comparable, the measure of trait importance was based on a correlation 

between the amount of phenotypic change in a trait and the fitness change upon gene deletion, 

and is hence indirect (Ho, Zhang 2014).  Furthermore, although the intrinsic property hypothesis 

does not predict a positive correlation between genetic robustness and trait importance, it 

remains possible that some unknown intrinsic factors create this correlation in the absence of 
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selection for any robustness.  For example, although some evidence for adaptive robustness of 

gene expression levels was presented (Ho, Zhang 2014), the intrinsic property hypothesis could 

not be completely excluded.  Thus, it is desirable to test the adaptation hypothesis in a system 

where direct measures of trait importance are available and intrinsic properties can be explicitly 

scrutinized.    

To this end, we take advantage of the well-developed mathematical analysis of metabolic 

networks of the model prokaryote Escherichia coli.  We treat the flux of each reaction in a 

metabolic network as a trait and use flux balance analysis (FBA) (Orth, Thiele, Palsson 2010) to 

measure trait importance.  We then use the method of minimization of metabolic adjustment 

(MOMA) (Segre, Vitkup, Church 2002) to quantify phenotypic alteration upon mutation or 

environmental perturbation.  We compare our findings from the real network with those from 

comparable functional random networks.  Our results provide unambiguous computational 

evidence for direct selection for the genetic robustness of metabolic fluxes in E. coli.  We focus 

on reaction robustness rather than fitness robustness in this study, because the existence of 

multiple reactions allows analyzing the correlation between trait importance and genetic 

robustness, which is critical to our differentiation among the hypotheses of adaptation, 

congruence, and intrinsic property. 

 

3.3 RESULTS 

3.3.1 Traits and trait importance in metabolic networks 

FBA is a powerful mathematical tool for metabolic network analysis.  Under the steady 

state assumption, FBA maximizes the biomass production rate (i.e., cellular fitness) by 

simultaneously balancing all metabolic fluxes under a set of flux constraints and a given 
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nutritional environment, allowing the prediction of all fluxes as well as the fitness (Orth, Thiele, 

Palsson 2010).  FBA predictions for model organisms such as the bacterium E. coli have been 

extensively validated experimentally (Ibarra, Edwards, Palsson 2002; Fong, Palsson 2004; Lewis 

et al. 2010) and have thus been widely used in the study of genotype-environment-phenotype 

relationships (He et al. 2010; Costenoble et al. 2011; Barve, Rodrigues, Wagner 2012; Harcombe 

et al. 2013; Bordbar et al. 2014).   

We first applied FBA to the E. coli iAF1260 metabolic model (Feist et al. 2007) under 

the “glucose environment” where the only carbon source is glucose.  Excluding immutable 

reactions such as simple diffusions, we obtained the wild-type fitness as well as the wild-type 

fluxes of 362 reactions that have nonzero fluxes.  Unless otherwise noted, we focused on 

nonzero-flux reactions.   

We then simulated mutations that caused loss of enzyme function by setting the flux of 

the corresponding reaction to 0.  We used MOMA (Segre, Vitkup, Church 2002) to predict the 

new fluxes of all other reactions in the network and the fitness of the mutant relative to that of 

the wild-type (f).  In addition to satisfying all the constraints in FBA, MOMA predicts each flux 

and the fitness by minimizing the sum of the squared change of each flux from its wild-type 

value over all reactions, based on the premise that the metabolic network undergoes minimal flux 

redistribution upon mutation.  MOMA has been shown to outperform FBA in predicting fluxes 

and fitness upon mutation (Segre, Vitkup, Church 2002).  After individually constraining the 362 

fluxes to 0, we found that the frequency distribution of mutant fitness is U-shaped (Fig. A.2.1A), 

as was previously found (Wloch et al. 2001; Sanjuan, Moya, Elena 2004; Wang, Zhang 2009a).  

Note that some f values are extremely small (see Fig. A.2.1B where the distribution of f is plotted 

in log10 scale).  We considered f values lower than 10-4 to be effectively 0 and regarded the 
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corresponding reaction as essential.  By this definition, 257 reactions are essential, while the 

remaining 105 are nonessential.  For each nonessential reaction, we quantified its importance by 

s = 1-f.  In other words, the greater the drop in fitness upon the block of a reaction, the more 

important the reaction is.   

3.3.2 Flux alteration upon mutation correlates with fitness reduction 

The adaptation hypothesis of genetic robustness presumes that phenotypic changes from 

the wild-type are deleterious.  Although this presumption appears reasonable and has been used 

in various simulation studies (Clark 1991; Rausher 2013), its validity has not been empirically 

confirmed for the flux traits examined here.  To confirm this presumption, for each of the 105 

nonessential reactions, we imposed a series of flux constraint and used MOMA to estimate the 

resultant fitness.  That is, we reduced the maximal allowed flux of a focal reaction by a fraction 

ΔF, where ΔF = 0.05, 0.10, 0.15, …, and 1.  For example, if the flux of the focal reaction equals 

v0 in the wild-type, its new flux cannot exceed 0.95v0 when ΔF = 0.05.  Consistent with the 

expected behavior of constraint-based metabolic modeling, the fitness decreases as ΔF increases 

for each of the 105 nonessential reactions tested (blue lines in Fig. 3.1A).  The same pattern was 

observed when essential reactions were examined (red lines in Fig. 3.1A). To test the 

presumption that flux alterations from the wild-type values are deleterious, we examined if the 

negative correlation between the flux alteration of a focal reaction and fitness exists even when 

mutations occur to other reactions (i.e., when non-focal reactions are constrained).  Let γk(i) be 

the fractional flux change for a nonessential reaction k in a mutant in which the flux of reaction i 

is constrained by ΔF relative to that in the wild-type (see Materials and Methods).  For example, 

let k be the reaction PFK, which converts fructose 6-phosphate to fructose 1,6-bisphosphate in 

glycolysis.  When individually constraining all 362 reactions by ΔF = 0.5, we observed that the 
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resultant γk(i) and fitness f(i) are negatively correlated (Spearman’s ρ = -0.562; p < 10-300; Fig.  

3.1B).  That is, no matter which reaction is constrained, the more PFK changes in flux from the 

wild-type level, the lower the fitness.  This result is not unique to PFK but is found for each 

nonessential reaction k examined (Fig. 3.1C). 

Moreover, the above finding is not limited to ΔF = 0.5.  We calculated ρ between γk(i) 

and f(i) for each k at every level of ΔF < 0.6, because constraining some essential reactions by 

60% is lethal (Fig. 3.1A).  For all ΔF values considered and all k, all ρ values except three are 

negative (Fig. 3.1D).  Note that these three positive ρ values occurred under low ΔF values, 

where the flux alterations tend to be small and the correlation measures tend to be noisy.  After 

we controlled for multiple testing by the conservative Bonferroni correction, 98.9% of the 

negative ρ values are significant at the 5% level while none of the positive ρ values are 

significant.  Together, these results support the premise that flux changes from their wild-type 

levels are generally deleterious.  In other words, flux invariance upon mutation is beneficial.  For 

subsequent analyses, we used only ΔF = 0.5 to reduce the computational demand. 

3.3.3 Genetic robustness of E. coli reactions is significantly higher than those of random 

networks  

Let γG be the fractional flux change of a focal reaction from its wild-type level upon a 

mutation, where the subscript G stands for genetic perturbation.  We use !! to denote the mean 

of γG across all mutants in which a nonzero-flux reaction is constrained by ΔF = 0.5.  We then 

calculated !!, the mean !! across all nonzero-flux focal reactions.  The smaller the !!, the 

greater the average genetic robustness of metabolic fluxes.  We found !! to be 0.302 for E. coli.  

To examine if E. coli metabolic fluxes are more robust to mutation than expected by chance, we 

generated 500 random metabolic networks that have not been subject to selection for robustness 
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and compared them with the E. coli metabolic network.  These random networks were generated 

by the previously published method (Rodrigues, Wagner 2009; Barve, Wagner 2013), in which 

the reactions in the E. coli network were replaced with those randomly picked from the union of 

all known metabolic reactions of all organisms one at a time, under the condition that the 

network always has nonzero fitness under the glucose environment.  All of these random 

networks have the same number of reactions as the E. coli network.  On average, only 36.3% of 

E. coli reactions allowed for swapping appeared in a random network.  This level of reaction 

overlap presumably reflects the constraint from the shared function between the E. coli network 

and the random networks.  We calculated !! for each of the 500 random networks, after 

excluding lethal mutations under ΔF = 0.5.  We found that only three of the 500 random 

networks have a !! smaller than that of E. coli (Fig. 3.2A), indicating that the average genetic 

robustness of metabolic fluxes is significantly greater in E. coli than in comparable random 

networks (P = 0.006).   

3.3.4 Environmental robustness of E. coli reactions is only marginally higher than those of 

random networks 

We similarly studied environmental robustness.  Let γE be the fractional flux change of a 

reaction upon an environmental shift from its level under the glucose environment, where the 

subscript E stands for environmental perturbation.  We use !! to denote the mean of γE across 

many environmental changes.  We then calculated !!, the mean !! across all nonzero-flux focal 

reactions.  The smaller the !!, the greater the average environmental robustness of metabolic 

fluxes.  We simulated 1000 nutritional environments by supplying a random combination of 258 

different carbon sources (see Materials and Methods) and used MOMA to calculate the flux of 

each reaction.  We found !! to be 0.018 for E. coli.  Interestingly, we found that 6.2% of the 500 
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random networks have !! values smaller than that of E. coli (Fig. 3.2B), indicating that the 

average environmental robustness of E. coli metabolic fluxes is only marginally significantly 

greater than the chance expectation (P = 0.062).  

3.3.5 The intrinsic property hypothesis for genetic robustness is refuted 

As mentioned, selection for genetic robustness could result in higher genetic robustness 

of more important traits.  To test this prediction of the adaptation hypothesis, we correlated the 

importance of a reaction (s) with its !!.  We considered only nonessential reactions as focal 

reactions in this analysis, because essential reactions all have s = 1 despite that different essential 

reaction may be of different importance.  We found a strong, negative correlation between s and 

!! (Spearman’s ρ = -0.859; p = 1.5 × 10-31; Fig. 3.3A), as predicted by the adaptation hypothesis.   

To examine whether the above trend is truly adaptive or intrinsic, we analyzed each of 

the 500 random networks the same way we analyzed the E. coli network and computed for each 

random network Spearman’s ρ between s and !!.  Because the number of nonessential reactions 

with nonzero fluxes varies among random networks, ρ values from different networks are not 

directly comparable.  We therefore converted the ρ values of the 500 random networks and the E. 

coli network to standard z scores using Fisher’s transformation of ! = ! (! − 3)/1.06, where n 

is the number of nonessential reactions with nonzero fluxes in the network (Fieller, Hartley, 

Pearson 1957).  We found that the z score is more negative for the E. coli network than any of 

the 500 random networks (P < 0.002; Fig. 3.3B).  We further confirmed that among 394 of the 

500 random networks whose fitness under the glucose environment is higher than that of E. coli, 

none has a ρ that is more negative than that of E. coli.  Hence, the negative correlation between s 

and !! observed in E. coli is beyond what the intrinsic property hypothesis can explain; natural 

selection for genetic or environmental robustness must be invoked. 
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 3.3.6 The congruence hypothesis for genetic robustness is refuted 

The congruence hypothesis makes three predictions.  First, because the hypothesis asserts 

that environmental robustness results from direct selection, !! and s should be negatively 

correlated in E. coli and the correlation should be stronger than what is exhibited in comparable 

random networks.  Second, because the hypothesis posits that genetic robustness and 

environmental robustness are congruent, !! and !! should be positively correlated.  Finally and 

most critically, because the hypothesis claims that genetic robustness is entirely a byproduct of 

selection for environmental robustness, !! should no longer correlate with s after the control of 

!!. 

We examined whether our data are consistent with the above three predictions of the 

congruence hypothesis.  Consistent with the first prediction, !! is negatively correlated with s (ρ 

= -0.890, P = 5.5 × 10-37; Fig. 3.4A) and the correlation is significantly stronger than those 

observed in the 500 comparable random networks (P < 0.002; Fig. 3.4B).  Consistent with the 

second prediction, we found !! to be highly and positively correlated with !! (Spearman’s ρ = 

0.911, P = 2.0 × 10-41; Fig. 3.4C).  But, contrary to the third prediction, the partial correlation 

between !! and s after the control of !! remains negative (Spearman’s ρ = -0.252, p = 9.6 × 10-3) 

and is significantly stronger than the corresponding values from the 500 random networks (P = 

0.020; Fig. 3.4D).  Together, these results indicate that environmental robustness cannot fully 

explain genetic robustness.  In other words, the congruence hypothesis for the origin of genetic 

robustness is rejected.   

 

3.3.7 Results under single-carbon-source environments 
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 Environmental robustness should be measured under the relevant environments of the 

species.  Because of the paucity of such information for E. coli, in the above analyses, we 

applied 1000 random nutritional environments by using different combinations of carbon 

sources, which may have resulted in a less reliable estimate of environmental robustness.  To 

examine the robustness of our results, we also used all possible single-carbon-source 

environments to quantify environmental robustness.  Under the single-carbon-source 

environments, we found the new !! to be 0.53, much larger than the previous !! (Fig. 3.2B) and 

!! (Fig. 3.2A), suggesting that on average the single-carbon-source environments represent 

severer challenges to E. coli than the 1000 random nutritional environments or flux constraints of 

ΔF = 0.5 do.  When applying the same analysis using single-carbon-source environments, we 

found all major results to remain qualitatively unchanged (Fig. 3.5).  Because the single-carbon-

source environments are the most extreme environments in terms of carbon source availability 

and represent all carbon-source challenges, this finding suggests that our conclusions are robust 

to the nutritional environments used and that the result in Fig. 3.4D is not an artifact of much 

smaller !! than !!. 

3.3.8 Environmental robustness as a side effect of genetic robustness 

Although !! is only marginally significantly smaller in E. coli than in the random 

networks (Fig. 3.2B), s and !! are strongly correlated in E. coli (Fig. 3.4A) and this correlation 

is stronger than that in any of the 500 random networks (Fig. 3.4B).  To examine whether the 

correlation between s and !! is a byproduct of the adaptive genetic robustness, we examined the 

partial correlation between s and !! after the control of !!.  While this partial correlation is still 

significant (ρ = -0.511, P = 2.8 x 10-8), it is no longer significantly stronger in the E. coli network 

than in the random networks (P = 0.060; Fig. A.2.2A).  This is also true under the single-carbon-
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source environments (P = 0.39; Fig. A.2.2B).  These results, coupled with those in Fig. 3.4, 

suggest that the environmental robustness of E. coli metabolic fluxes is likely a byproduct of the 

adaptive genetic robustness. 

3.3.9 Capacitor reactions for genetic robustness of metabolic fluxes 

What is the genetic mechanism of the genetic robustness of metabolic fluxes?  One 

approach to this question is to identify reactions whose removal reduces the genetic robustness.  

Several previous studies used this approach to identify the so-called “capacitor” genes, which 

buffer genetic or environmental perturbations (Rutherford, Lindquist 1998; Levy, Siegal 2008; 

Takahashi 2013).  We measured Δ!!, the difference in !! caused by the removal of an 

nonessential reaction.  The more positive Δ!! is, the larger the contribution of the removed 

reaction to the genetic robustness of metabolic fluxes.  To make the comparison fair, we only 

considered 96 reactions whose removal does not alter E. coli viability for each genetic 

perturbation considered.  We found that Δ!! is positive in all 96 cases (Fig. 3.6A).  The top 10% 

of the reactions in terms of the associated Δ!! values are marked in Fig. 3.6A, and these 

reactions contribute most to the genetic robustness of E. coli metabolic fluxes. 

It is of particular interest to identify those reactions whose removal reduces the strength 

of the negative correlation between s and !! (i.e., renders ρ more positive or Δρ larger).  Fig. 

3.6B shows the frequency distribution of Δρ for the same 96 reaction removals, with those 10% 

of the reactions having the largest Δρ marked.  Six genes are overlapped between the marked 

genes in Fig. 3.6A and 6B (marked blue).  They are FUM (fumerate), SUCDi (succinate 

dehydrogenase), PSP_L (phosphoserine phosphatase), PSERT (phosphoserine transaminase), 

PGCD (phosphoglycerate dehydrogenase), and PPC (phosphoenolpyruvate carboxylase).  FUM 

and SUCDi are part of the tricarboxylic acid (TCA) cycle, while PSP_L, PSERT, and PGCD 
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appear in serine anabolism and are closely related to some metabolites of the TCA cycle (Fig. 

3.6C).  In addition, PPC is an anaplerotic reaction replenishing metabolites in the TCA cycle that 

are largely consumed by anabolism (Nelson, Cox 2008).  These observations suggest the 

biological importance of the TCA cycle for the genetic robustness of E. coli’s metabolic fluxes.    

Because of the central role of the TCA cycle in aerobic metabolism, one wonders 

whether the six “capacitor” reactions simply reflect an intrinsic property of metabolic networks.  

We found that these reactions exist in 24% (PSP_L) to 39% (FUM) of the 500 random networks 

examined.  We quantified the contributions of these reactions to the genetic robustness of the 

random networks by measuring Δ!! and Δρ, as was conducted for the E. coli network.  Under 

the same criteria used for examining the E. coli network, the number of usable random networks 

reduced to <5 for three reactions in serine metabolism (PSP_L, PSERT, and PGCD) and thus 

cannot be evaluated with any statistical meaning.  For the other three reactions (FUM, PPC, and 

SUCDi), we found that Δ!! and Δρ are smaller in random networks than in E. coli (Fig. 3.7), 

suggesting that at least these three capacitor reactions indeed contribute to genetic robustness 

beyond the random expectation. 

  

3.4 DISCUSSION 

Several previous studies revealed the genetic robustness of metabolic networks by 

treating the viability as a trait (Edwards, Palsson 2000; Samal et al. 2010), but these studies did 

not and could not resolve the evolutionary origin of the observed genetic robustness.  In this 

work, we first demonstrated that E. coli metabolic fluxes are robust to mutation.  We then 

showed that neither the intrinsic property hypothesis nor the congruence hypothesis adequately 

explains the origin of the observed genetic robustness, supporting the hypothesis that direct 
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selection underlies genetic robustness.  Our study has several caveats that are worth discussion.  

First, FBA and MOMA predictions of fitness and flux contain errors.  In particular, MOMA 

minimizes the sum of squared flux changes upon mutation or environmental perturbation and 

thus may underestimate actual flux changes.  However, because our conclusion is based on the 

comparison between real and random networks that are subject to the same analyses, these errors 

are not expected to bias our conclusion, although stochastic errors may have reduced the 

statistical power of our comparison and made our conclusion conservative.  Second, under 

MOMA’s criteria, large wild-type fluxes are expected to have bigger changes, which could bias 

our results because reaction importance and flux are positively correlated (Spearman’s ρ = 0.626; 

p = 8.7 × 10-13).  However, this bias is presumably removed by using fractional flux changes in 

calculating γG and γE.  Further, the comparison between the real and random networks should 

remove the potential impact of any remaining bias on our conclusion.  Third, we mimicked 

mutation by individually constraining metabolic fluxes by a certain fraction (ΔF).  Real 

mutations of course occur in genes rather than reactions.  Because one gene may affect multiple 

reactions and one reaction may be catalyzed by multiple isozymes or an enzyme made up of 

multiple peptides, the relationship between genes and reactions is not always one-to-one.  

Nevertheless, mutational effects on metabolism are usually manifested as different degrees of 

flux constraints.  A mutation may occasionally lead to the gain of a new reaction or rewiring of 

the metabolic network.  These possibilities are ignored in our estimate of genetic robustness 

because they are much less frequent than mutations that result in flux constraints.  Mutations 

may also lead to a loosened flux constraint, which could increase rather than decrease fitness.  

These mutations are not considered because genetic robustness is about buffering deleterious 
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mutations and because advantageous mutations are orders of magnitude less common than 

deleterious mutations.  

The intrinsic property hypothesis, positing that genetic robustness is an intrinsic property 

that arises without selection for robustness, was put forward based on observations made in 

simulations of regulatory network evolution (Siegal, Bergman 2002).  Interestingly, we found 

that the correlation between s and !! is significantly negative for 98.0% of the random metabolic 

networks (nominal P < 0.05), suggesting that intrinsic origins of a certain degree of genetic 

robustness may be quite common.  Nonetheless, the observed genetic robustness of E. coli 

metabolic fluxes is well beyond the intrinsic level (Fig. 3.3A) and hence must involve selection.  

In this sense, genetic robustness may often have both intrinsic and adaptive origins.   

Similar to genetic robustness, the correlation between s and !! is significantly negative 

for 99.6% of the random metabolic networks, suggesting that environmental robustness could 

arise as an intrinsic property.  Additional evidence (Fig. A.2.2), however, suggests that the 

environmental robustness of E. coli metabolic fluxes is likely a side effect of selection for 

genetic robustness, contrary to the congruence hypothesis that genetic robustness is a byproduct 

of selection for environmental robustness.  The congruence hypothesis was proposed because 

environmental robustness was thought to be subject to stronger selection than was genetic 

robustness (Wagner, Booth, Bagheri-Chaichian 1997; Meiklejohn, Hartl 2002), based on the 

report that phenotypic variation caused by environmental perturbation is much larger than that 

caused by mutation (Lynch 1988).  However, this observation may be a consequence of higher 

genetic robustness than environmental robustness, instead of a cause for stronger selection for 

environmental robustness than genetic robustness.  To our knowledge, no experiment has been 

conducted to differentiate between these two scenarios.  Consequently, whether environmental 
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robustness is subject to stronger or weaker selection than genetic robustness cannot be predicted 

theoretically.  

While we identified capacitor reactions that make relatively large contributions to the 

adaptive genetic robustness of E. coli’s metabolic fluxes, it is worth discussing other possible 

mechanisms.  First, chaperons such as GroEL in bacteria (Fares et al. 2002) and Hsp90 in 

Drosophila (Rutherford, Lindquist 1998) are known to provide genetic and environmental 

robustness by aiding protein folding.  But the genetic robustness revealed here is presumably due 

to some systemic properties, because our analysis does not involve structure-function relations of 

individual proteins.  Second, at the network function level, increasing the number of regulations 

was shown to enhance the genetic robustness of a simulated regulatory network (Siegal, 

Bergman 2002) and the power-law distribution of node connectivity was suggested to enhance 

the metabolic network robustness (Jeong et al. 2000).  However, these results are not directly 

applicable to our study because we focus on individual fluxes rather than the entire network 

function.  For instance, we found no significant correlation between the number of reactions that 

are directly connected to a focal reaction and !! of the focal reaction (ρ = -0.014, P = 0.79).  

Furthermore, the E. coli network and the random networks have no significant difference in the 

number of reactions that an average reaction is directly connected to, although the E. coli 

network has a lower !! and a stronger correlation between s and !! than those of the random 

networks (Fig. A.2.3).  Third, in theory, functional redundancy can improve genetic robustness.  

Although reactions with various degrees of functional redundancy are common in the metabolic 

networks of E. coli, their potential backup role is not needed to explain their evolutionary 

maintenance (Wang, Zhang 2009a).  In other words, functionally redundant reactions are 

unlikely to be the primary basis of the observed adaptive genetic robustness.  Fourth, it is known 
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that the flux of a linear metabolic pathway is intrinsically robust to concentration changes of the 

enzymes catalyzing the reactions in the pathway and that the robustness increases with the 

pathway length (Kacser, Burns 1981; Wang, Zhang 2011).  So, in principle natural selection 

could act on the length of a linear pathway to increase the genetic robustness of its constituent 

reactions.  However, this mechanism is difficult to test empirically, because pathways are not 

easily discernable in a complex network (Wang, Zhang 2011). 

The present finding of direct selection for genetic robustness of E. coli metabolic fluxes 

is consistent with our previous findings in 220 yeast morphological traits and over 3000 gene 

expression traits (Ho, Zhang 2014), suggesting that adaptive originations of genetic robustness 

may be widespread among different classes of phenotypes.  These empirical results support the 

theoretical prediction that, under certain conditions, direct selection is sufficiently powerful to 

promote genetic robustness in cellular organisms (Wagner, Booth, Bagheri-Chaichian 1997; Ho, 

Zhang 2014).  Our finding not only answers the long-stranding question on the origin of genetic 

robustness but also has other implications.  For instance, one important question in the study of 

the genotype-phenotype relationship is why different traits are affected by mutations to different 

degrees.  Our finding provides one explanation that, because of adaptive selection for genetic 

robustness, modifiers evolve to preferentially buffer the mutational effect on more important 

traits.  In other words, the adaptive evolution of genetic robustness may result in rewiring of the 

genotype-phenotype map and impact the evolutionary trajectory. 

 

3.5 MATERIALS AND METHODS 

3.5.1 Metabolic models 
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We used E.coli metabolic network model iAF1260 (Feist et al. 2007), which includes 

2381 reactions and 1039 metabolites.  Among all reactions, 2082 are metabolic reactions and 299 

are exchange reactions allowing the uptake of nutrients from the environment.  The SMBL file of 

the iAF1260 model was downloaded from BiGG (Schellenberger et al. 2010) and parsed by 

COBRA (Becker et al. 2007).  We chose iAF1260 because it outperforms other E. coli metabolic 

models in predicting gene essentiality and other properties (Feist et al. 2007).  

3.5.2 Flux balance analysis (FBA) 

Briefly, under the steady state assumption, FBA formulates a linear programming 

problem to determine the flux of each reaction to maximize the production of biomass (Orth, 

Thiele, Palsson 2010).  Mathematically, the objective is to maximize the flux of the biomass 

reaction, which describes the relative contributions of various metabolites to the cellular 

biomass, under the constraints of Sv = 0 and α ≤ v ≤ β.  Here, v is a vector of reaction fluxes, S is 

a matrix describing the stoichiometric relationships among metabolites in each reaction, α is a 

vector describing the lower bound of each flux, and β is a vector describing the upper bound of 

each flux.  

We used the default α and β in the metabolic model for all reactions to perform FBA.  

This default setting represents the parameters for wild-type cells in a minimal medium with 

limited glucose being the sole carbon source and some common inorganic compounds such as 

water, oxygen, carbon dioxide, and ammonium (Feist et al. 2007).  Note that a reaction may be 

reversible or irreversible.  For a reversible metabolic reaction i, the default αi = −∞ and βi = ∞, 

whereas for a reversible metabolic reaction i, the default αi = 0 and βi = ∞.  The optimized fluxes 

(v0) of the wild-type model under the glucose environment serve as the baseline for computing 

fractional flux changes upon mutation or environmental shift. 
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Under the glucose environment, the E. coli metabolic model has 387 nonzero-flux 

reactions.  Note that some of them are simple diffusions of metabolites between different cellular 

compartments.  Because these reactions do not have dedicated enzymes and are not “mutable”, 

we excluded these reactions from our dataset of traits and used the remaining 362 reactions.  

All linear programming problems in this study were solved by the cplexlp function of the 

IBM ILOG CPLEX Optimizer with MATLAB interface. 

3.5.3 Minimization of metabolic adjustment (MOMA) 

The objective of MOMA is to minimize (v - v0)2, where v is a vector of all reaction fluxes 

upon a genetic or environmental perturbation, whereas v0 is the corresponding vector for the 

wild-type in the glucose environment described in the previous section.  The two constraints for 

FBA are also applied in MOMA.  All quadratic programming problems in this study were solved 

by the cplexqp function of the IBM ILOG CPLEX Optimizer with MATLAB interface. 

When introducing genetic perturbation to a reaction, we altered its lower bound flux (α) 

and upper bound flux (β) according to its wild-type flux in the glucose environment (v0) and the 

fractional flux constraint (ΔF) imposed, but kept the α and β of other reactions unchanged.  For 

example, constraining a flux by 10% means that the flux of the reaction cannot exceed 90% the 

wild-type value.  Specifically, if this reaction is reversible, we use –0.9|v0| ⩽ v ⩽ 0.9|v0|; 

otherwise, we use 0 ⩽ v ⩽ 0.9v0.  

When introducing environmental changes, we followed the approach previously 

published (Wang, Zhang 2009b) to simulate random environments.  In iAF1260, there are 258 

exchange reactions for 258 carbon sources (Feist et al. 2007).  In each simulation, we randomly 

picked a number q for each carbon source following an exponential distribution with mean = 0.1.  

Here, q is the probability that the carbon source is available, and the actual availability is 
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determined stochastically based on q.  Because in the default setting, the uptake rate of glucose 

was set as 10 mmolgDW-1h-1 (Feist et al. 2007), we used the same rate for all organic chemicals 

when they are available.  In addition, in each simulated random environment used, we required 

that E. coli and all 500 random networks are viable.  In total, 1000 such environments were used.  

The first, second, and third quartiles of the number of carbon sources in a random environment 

are 24, 40, and 70.5, respectively.  The first, second, and third quartiles of the number of random 

environments where a carbon source exists are 160, 180, and 200, respectively.    

To examine the robustness of our results, we also used 257 single-carbon-source 

environments to mimic environmental changes from the glucose environment (Fig. 3.5).  In this 

case, we did not require all 501 networks to be viable in an environment because none of the 257 

single-carbon-source environments could support all 501 networks. 

3.5.4 Fractional flux change 

After calculating the flux of a reaction v from MOMA, we used the following formula to 

calculate fractional flux change (γ) from the flux of the reaction in the wild-type under the 

glucose environment (v0).  To make increasing and decreasing fluxes comparable, we normalize 

it in different ways depending on whether v is larger or smaller than v0.  A larger γ means larger 

difference.   

! = 1− !/!!, ! < !!
1− !!/!, ! ≥ !! 

3.5.5 Random networks 

We used a previously published approach to generate 500 random networks (Rodrigues, 

Wagner 2009; Barve, Wagner 2013).  We first compiled “the universe of reactions” by acquiring 

metabolic reactions listed in the REACTION section of the KEGG database (Kanehisa, Goto 

2000) except when (i) a reaction appears in the E. coli metabolic network iAF1260; (ii) a 
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reaction involves polymer subunits with uncertain number of atoms; (iii) a reaction involves 

glycans; (iv) a reaction involves metabolites without information about their structure; (v) a 

reaction is unbalanced in mass or charges.  Then we combined these reactions with the metabolic 

reactions in iAF1260 (excluding transport reactions).  In total, there are 5001 reactions in the 

universe of reactions.  When generating random networks, we performed a random walk in the 

space of networks by starting from the E. coli metabolic network iAF1260 and iteratively 

swapping between a randomly picked reaction from the current network and a randomly picked 

reaction from the universe of reactions that is different from any reaction in the current network, 

under the condition that the current network is viable in the glucose environment.  Thus, the 

random networks generated have the same number of reactions as the E. coli network, but has 

been subject to neither selection for genetic robustness nor selection for environmental 

robustness.  During the random walk, we sampled a random network after every 5000 swaps 

until we acquired 500 random networks.  It is desirable for the random walk to effectively travel 

in the whole space with no bias, which can be shown by the saturation of the proportion of 

iAF1260 reactions that are absent from our sampled random networks in the time series (Fig. 

A.2.4).  Among the random networks, the first, second, and third quartiles of network 

connectivity, defined by the number of reactions connected directly with a metabolite averaged 

across all metabolites, are 3.34, 3.36, and 3.38, respectively.  
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Figure 3.1  Changes of metabolic reaction fluxes from the wild-type levels predict fitness 
decreases.  (A) FBA-predicted fitness decreases with the rise of the extent to which the flux of a 
reaction is constrained (ΔF).  Each line represents a serial constraints imposed on the flux of one 
reaction.  (B) Fitness (f) is negatively correlated with the fractional flux change (γ) for the focal 
reaction PGI upon the constraining of another reaction at ΔF = 50%.  Each dot represents the 
result from constraining one reaction.  (C) Frequency distribution among nonessential focal 
reactions of Spearman’s correlation coefficient (ρ) between γ and f under ΔF = 50%.  (D) Box 
plot of ρ between γ and f at various ΔF.  In each box plot, the lower edge and upper edge of a 
box represent the first (q1) and third quartiles (q3), respectively.  The horizontal line inside the 
box indicates the median (md).  The whiskers extend to the most extreme values inside inner 
fences, md ± 1.5(q3 - q1).  The values outside the inner fences (outliers) are plotted by plus signs. 
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Figure 3.2  Comparison of genetic and environmental robustness between E. coli and 
random networks.  (A) Distribution of the average fractional flux change across all focal 
reactions and mutants (!!) in 500 random networks.  The arrow indicates the corresponding 
value observed in E. coli.  (B) Distribution of the average fractional flux change across all focal 
reactions and 1000 random nutritional environments (!!) in 500 random networks.  The arrow 
indicates the corresponding value observed in E. coli.  
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Figure 3.3  The intrinsic hypothesis of genetic robustness is rejected.  (A) The average 
fractional flux change for a focal reaction among all mutants (!!) decreases with the rise of 
reaction importance (s).  Each dot represents one focal reaction.  (B) Frequency distribution of 
the rank correlation (after conversion to z) between !!  and s in 500 random networks.  Arrow 
indicates the corresponding z observed in E. coli. 
  



 
	

85 

 

Figure 3.4  The congruence hypothesis of genetic robustness is rejected.  (A) The average 
fractional flux change for a focal reaction among all 1000 environments examined (!!) decreases 
with the rise of reaction importance (s).  Each dot represents a focal reaction.  (B) Frequency 
distribution of the rank correlation (after conversion to z) between !! and s in 500 random 
networks. Arrow indicates the corresponding z observed in E. coli.  (C) Average fractional flux 
change for a focal reaction upon mutation and that upon environmental change are strongly 
correlated.  Each dot represents a focal reaction.  (D) Frequency distribution of the rank 
correlation (after conversion to z) between !!  and s after the control of !! among the 500 
random networks.  Arrow indicates the corresponding z observed in E. coli.  
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Figure 3.5  Confirmation of results using single-carbon-source environments.  (A) The 
average fractional flux change for a focal reaction among all 1000 environments examined (!!) 
decreases with the rise of reaction importance (s).  Each dot represents a focal reaction.  (B) 
Frequency distribution of the rank correlation (after conversion to z) between !! and s in 500 
random networks.  Arrow indicates the corresponding z observed in E. coli.  (C) Average 
fractional flux change for a focal reaction upon mutation (!!) and that upon environmental 
change (!!) are strongly correlated.  Each dot represents a focal reaction.  (D) Frequency 
distribution of the rank correlation (after conversion to z) between !!  and s after the control of 
!! among the 500 random networks.  Arrow indicates the corresponding z observed in E. coli. 
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Figure 3.6  Removing reactions from the E. coli metabolic network affects how it behaves 
under genetic perturbations.  (A) Frequency distribution of Δ!!  caused by the removal of one 
of the 96 reactions examined.  (B) Frequency distribution of Δρ(s, !!) caused by the removal of 
one of the 96 reactions examined.  In (A) and (B), reaction names are shown for those in the top 
10% of the distributions, with the six common reactions in the top 10% sets of the two panels 
marked blue.  (C) Part of the E. coli metabolic network containing the six capacitor reactions.  
The six capacitor reactions are marked blue.  The abbreviations of reactions and metabolites 
follow (Feist et al. 2007).  
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Figure 3.7  Removing capacitor reactions does not affect the genetic robustness in random 
networks as much as in E. coli.  (A) Frequency distribution of Δ!!  in 46 analyzed random 
networks upon the removal of FUM.  (B) Frequency distribution of Δρ(s, !!) in 46 analyzed 
random networks upon the removal of FUM.  (C) Frequency distribution of Δ!!  in 15 analyzed 
random networks upon the removal of PPC.  (D) Frequency distribution of Δρ(s, !!) in 15 
analyzed random networks upon the removal of PPC.  (E) Frequency distribution of Δ!!  in 5 
analyzed random networks upon the removal of SUCDi.  (F) Frequency distribution of Δρ(s, !!) 
in 5 analyzed random networks upon the removal of SUCDi.   
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Chapter 4 

Testing the Neutral Hypothesis of Phenotypic Evolution 

 

4.1 ABSTRACT 

Although evolution by natural selection is widely regarded as the most important 

principle of biology, it is unknown whether most phenotypic variations within and between 

species are adaptive or neutral, due to the lack of relevant studies of large, unbiased samples of 

phenotypic traits.  Here we examine 210 yeast morphological traits chosen purely on the basis of 

experimental feasibility irrespective of their potential adaptive values.  After controlling for 

mutational size, we find faster evolution of more important morphological traits within and 

between species, rejecting the neutral hypothesis.  By contrast, an analysis of 3466 gene 

expression traits that are similarly chosen fails to reject neutrality.  Thus, yeast morphological 

evolution is largely adaptive, but the same may not apply to other classes of phenotypes. 
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4.2 INTRODUCTION 

A large fraction of genomic sequence variations within and between species are 

neutral or nearly so (Kimura 1983).  Whether the same is true for phenotypic variations is 

a central question in biology (Darwin 1859; Lande 1976; Lynch and Hill 1986; Mayr 

2001; Nei 2007; Futuyma 2013).  On the one hand, numerous phenotypic adaptations 

have been documented (Darwin 1859; Endler 1986; Kingsolver et al. 2001) and even 

Kimura, the champion of the neutral theory of molecular evolution, believed in 

widespread adaptive phenotypic evolution (Kimura 1983).  On the other hand, 

phenotypic studies are strongly biased toward traits that are likely adaptive (Kingsolver et 

al. 2001), contrasting genomic studies that are typically unbiased.  It is thus desirable to 

test the neutral hypothesis of phenotypic evolution using traits irrespective of their 

potential involvement in adaptation.  Here we present such a test for 210 morphological 

traits measured in multiple strains and species of budding yeast.  Our test is based on the 

premise that, under neutrality, the rate of phenotypic evolution declines as the trait 

becomes more important to fitness, analogous to the neutral paradigm that functional 

genes evolve more slowly than functionless pseudogenes (Li et al. 1981).  Neutrality is 

rejected in favor of adaptation if important traits evolve faster than less important ones, 

parallel to the demonstration of molecular adaptation when a functional gene evolves 

faster than pseudogenes.  After controlling for mutational size, we find faster evolution of 

more important morphological traits within and between species.  By contrast, an analysis 

of 3466 yeast gene expression traits fails to reject neutrality.  Thus, yeast morphological 

evolution is largely adaptive, but the same may not apply to other classes of phenotypes. 
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4.3 RESULTS 

Analogous to the neutral hypothesis of molecular evolution (Kimura 1983), the 

neutral hypothesis of phenotypic evolution allows the presence of purifying selection; 

neutrality is rejected only when positive selection is invoked.  Under the neutral 

hypothesis, compared with traits that are relatively unimportant to fitness, relatively 

important traits should be subject to stronger purifying selection and evolve more slowly 

given the same speed of mutational input (Fig. 4.1A).  However, if relatively important 

traits evolve faster than relatively unimportant traits, the neutral hypothesis would no 

longer hold and the only reasonable explanation would be stronger positive selection 

acting on relatively important traits than relatively unimportant ones (Fig. 4.1B).  This 

test of phenotypic neutrality differs from previous tests (Lande 1976; Lande 1977; 

Chakraborty and Nei 1982; Lynch and Hill 1986; Turelli et al. 1988; Lynch 1990; Spitze 

1993), which consider only one trait at a time and effectively require the intensity of 

positive selection to surpass that of purifying selection to reject neutrality.  Because this 

requirement is sufficient but not necessary for demonstrating positive selection, it is 

replaced with the criterion of a positive correlation between trait importance and 

evolutionary rate to improve the power of the test.   

 

4.3.1 Adaptive intraspecific variations of yeast morphological traits 

We first tested the neutral hypothesis of phenotypic evolution in a set of 210 

morphological traits chosen purely on the basis of the feasibility of measurement (Ohya 

et al. 2005) rather than potential roles in adaptation.  These traits were quantified by 

analyzing fluorescent microscopic images of triple-stained cells (Ohya et al. 2015) from 
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37 natural strains of S. cerevisiae (Yvert et al. 2013).  For a given trait, we defined the 

phenotypic difference between two strains by the absolute difference in their trait value, 

relative to their average trait value.  Phenotypic differences were corrected for potential 

environmental heterogeneity in the measurement and sampling error to allow among-trait 

comparison.  We then estimated, for each trait, the mean evolutionary distance (ED) 

among all 666 pairs of the 37 strains by averaging their corrected pairwise phenotypic 

differences.   

To test the neutral hypothesis, we used measures of trait importance (TI) for the 

210 traits, where TI is 100 times the fitness effect caused by 1% change in trait value, 

estimated using the fitness and phenotype data of thousands of single gene deletion 

strains of S. cerevisiae (Ho and Zhang 2014).  We found that mean ED decreases with TI 

(Fig. 4.2A), indicating that relatively important traits evolve more slowly than relatively 

unimportant ones.  However, the rate of phenotypic evolution is determined by both the 

rate of mutational input and the direction and magnitude of natural selection.  The rate of 

mutational input for a trait is the average effect size of a random mutation on the trait 

(i.e., mutational size or MS) multiplied by the mutation rate per genome per generation.  

Because the mutation rate is the same for all traits, we need only consider MS.  We 

estimated the MS for a trait by the mean phenotypic effect of 4718 individual gene 

deletions on the trait (Ho and Zhang 2014).  Although spontaneous mutations are 

expected to have smaller phenotypic effects than gene deletions, it is reasonable to 

assume that the average phenotypic effect of spontaneous mutations on a trait is 

approximately proportional to that of gene deletions on the trait.  In other words, MS can 

be used as a proxy of spontaneous mutational size when different traits are compared.  As 
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was previously discovered (Ho and Zhang 2014), MS decreases precipitously with TI 

(Fig. 4.2A).  This observation indicates that relatively important traits are affected by 

mutations to a smaller degree than are relatively unimportant traits, which has likely 

resulted from stronger selection for mutational robustness of more important traits (Ho 

and Zhang 2014).  To control the impact of mutational input on the rate of phenotypic 

evolution, we measured the evolutionary rate of a trait in the unit of its mutational size by 

dividing mean ED by MS for each trait.  We found mean ED/MS to increase significantly 

with TI (Fig. 4.2B), suggesting that relatively important traits evolve faster than relatively 

unimportant traits in the unit of mutational size.  This finding is inconsistent with the 

neutral hypothesis of phenotypic evolution (Fig. 4.1A), but supports the adaptive 

hypothesis (Fig. 4.1B).   

To exclude the possibility that the above result is an artifact of our statistical 

analysis, we used two negative controls.  First, we compared the wild-type BY strain with 

666 randomly picked gene deletion strains of the BY background, under the premise that 

their phenotypic differences should not be adaptive.  As expected, there is no significant 

correlation between mean ED/MS and TI (Fig. 4.2B), where mean ED for a trait is the 

average phenotypic difference between these deletion strains and the wild-type for the 

trait.  Second, we compared between each of 89 mutational accumulation (MA) lines and 

their common ancestor (Geiler-Samerotte et al. 2016); the MA lines were produced in 

~2000 mitotic generations with virtually no selection and therefore should not show 

adaptive signals when compared with their ancestor.  Note that only 180 morphological 

traits are available in the data from MA lines for analysis.  While mean ED/MS for the 37 

natural strains still increases significantly with TI for these 180 traits (Fig. A.3.1A), mean 
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ED/MS between the MA lines and their ancestor shows no significant correlation with TI 

(Fig. A.3.1B). 

Because the MS and TI used were estimated in haploid yeasts, while the 37 

natural strains studied are diploid, we also estimated MS and TI using recently published 

morphological data of 130 diploid gene deletion strains (Yang et al. 2014).  We confirmed 

that the significant positive correlation between ED/MS and TI holds (Fig. A.3.2). 

To examine whether the detected adaptive signal among the 37 natural strains is 

attributable to a small number of strains or is a general phenomenon of the species, we 

estimated the rank correlation (ρ) between ED/MS and TI for each of the 666 strain pairs, 

using the ED value of the strain pair.  We found ρ to be positive for the vast majority of 

the strain pairs (Fig. 4.2C), suggesting pervasive adaptive morphological evolution in S. 

cerevisiae.   

Some of the 210 morphological traits are genetically highly correlated (Wang et 

al. 2010; Ho and Zhang 2014).  To exclude the possibility that the adaptive signal is an 

artifact of the use of correlated traits, we estimated 210 principal component traits from 

the original traits (see Supplemental Experimental Procedures).  Analysis of the principal 

component traits, which are independent from one another, shows even stronger signals 

of adaptive evolution (Fig. A.3.3). 

If the prevalent positive ρ values among the 37 natural strains (Fig. 4.2C) truly 

arise from positive selection, we should expect that (i) the overall rate of morphological 

evolution is greater for strain pairs with higher ρ values and (ii) this rate disparity is 

primarily reflected in relatively important traits rather than relatively unimportant ones.  

We defined the overall rate of morphological evolution between two strains by their 
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morphological dissimilarity across all 210 traits divided by their fractional genomic 

sequence difference.  Consistent with our expectation, the rate of morphological 

evolution increases with ρ (p = 0.007, one-tailed partial Mantel test with phylogenetic 

permutation to correct for both the nonindependence among strain pairs and phylogenetic 

relationships in the data; see Supplemental Experimental Procedures).  Additionally, 

when we separated the 210 traits into two equal-sized bins based on TI, the correlation 

between the rate of morphological evolution and ρ remained significantly positive for the 

105 traits with relatively high TI (p < 0.001) but not for the 105 traits with relatively low 

TI (p = 0.805).  These observations support that, the greater the ρ value relative to 0, the 

stronger the positive selection on the morphological traits, especially relatively important 

ones.    

What factors determine the ρ value of a strain pair?  Because the 210 

morphological traits were chosen purely based on experimental feasibility, we do not 

expect the detected adaptive signals to correlate with any obvious genetic or ecological 

factor.  Indeed, using the partial Mantel test, we found no significant correlation between 

the ρ value of two strains and the strains' difference in genome sequence, ecological 

environment, population membership, or geographic location (Table A.3.1).  These 

findings are consistent with a previous analysis showing that the morphological 

similarities among the 37 natural strains cannot be explained by the strains' similarities in 

population history or ecological environment (Yvert et al. 2013).  Hence, the selective 

agents behind the detected morphological adaptations are unclear. 

 

4.3.2 Adaptive interspecific variations of yeast morphological traits 
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To test the neutral hypothesis of morphological evolution beyond the species 

level, we collected comparable morphological data from two strains of S. paradoxus, the 

sister species of S. cerevisiae, and one strain of their outgroup species S. mikatae (see 

Supplemental Experimental Procedures).  We first calculated the mean ED/MS between 

the 37 S. cerevisiae strains and S. paradoxus strain N17 for each trait.  Across the 210 

traits, we observed a significant, positive correlation between mean ED/MS and TI (Fig. 

4.3A).  A similar pattern was observed between S. cerevisiae and S. paradoxus strain 

IFO1804 (Fig. 4.3B).  Between S. cerveisiae and the more distantly related species of S. 

mikatae, however, the positive correlation is no longer significant (Fig. 4.3C), probably 

because of the lack of prevalent positive selection or a reduced statistical power as a 

result of using MS and TI values estimated from S. cerevisiae in tests involving distantly 

related species. 

 

4.3.3 Neutral evolution of yeast gene expression levels 

To investigate the generality of the above findings of adaptive phenotypic 

evolution, we turned to another class of traits that can be chosen regardless of their 

potential roles in adaptation: 3466 gene expression traits, each being the mRNA 

expression level of a yeast gene in a rich medium.  Using microarray gene expression 

data, we quantified ED between two S. cerevisiae strains for each trait.  We estimated MS 

from the microarray expression data of 1486 gene deletion strains, as in the case of 

morphological traits (Ho and Zhang 2014).  TI of the expression level of a gene was 

measured by the fitness reduction caused by the deletion of the gene see (see 

Supplemental Experimental Procedures) (Ho and Zhang 2014).  Similar to the 
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morphological data, gene expression data showed a negative correlation between ED and 

TI and a negative correlation between MS and TI (Table 4.1).  However, contrary to the 

morphological traits, expression traits exhibited a significant, negative correlation 

between ED/MS and TI (Table 4.1).  As a negative control, we estimated the standard 

deviation (SDm) in relative expression level among four MA lines (Landry et al. 2007) 

and found no significant correlation between SDm/MS and TI (Table 4.1).  While adaptive 

evolution of the expression levels of some yeast genes have been suggested (Bullard et al. 

2010; Fraser et al. 2010; Qian et al. 2012), overall we found relatively important genes to 

evolve more slowly in expression level than relatively unimportant ones upon the control 

of mutational size, consistent with the neutral hypothesis.  Here we are restricted to intra-

specific analysis, because the use of different probes in the microarrays of different 

species prohibits a reliable comparison of the rate of expression evolution among genes.  

Use of other types of expression data such as mRNA sequencing data is currently 

infeasible, because no comparable data are available for estimating MS. 

 

4.4 DISCUSSION 

In summary, our analysis of 210 yeast morphological traits with no a priori bias 

toward adaptive evolution reveals strong signals of adaptive evolution.  To the best of our 

knowledge, this is the first demonstration of widespread adaptive evolution of a large set 

of random phenotypic traits in any organism.  If these 210 traits are representative of 

yeast morphological traits, we must conclude that morphological evolution in yeast is 

frequently adaptive.  Whether the same conclusion could be drawn in other species is 

unknown, but the methodology developed here is generally applicable, especially to 
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genetic model organisms, in which mutational size estimation and trait importance 

estimation are relatively straightforward.  Although it is essential to use a random set of 

traits to evaluate the prevalence of adaptive phenotypic evolution, using such traits means 

that the selective agent would be difficult to discern if adaptation is detected, as in the 

present case.  Future work should attempt to identify the selective agents acting on these 

morphological traits, which are necessary for a complete understanding of phenotypic 

adaptation.   

It should be emphasized that, although the bar for rejecting neutrality is likely 

lowered in our test compared with that in most previous tests (Lande 1976; Chakraborty 

and Nei 1982; Lynch and Hill 1986; Turelli et al. 1988; Spitze 1993), it remains quite 

high.  This is because important traits that could be subject to strong positive selection are 

also expected to be under strong purifying selection such that an adaptive signal becomes 

detectable only when the difference in the strength of positive selection among traits 

surpasses that in the strength of purifying selection.  The high bar renders claims of 

adaptation conservative.  But, it also means that failure to reject neutrality, as in the case 

of yeast gene expression evolution, neither proves neutrality nor refutes adaptation.  

Nonetheless, based on additional experiments and tests, we recently found unambiguous 

evidence that the vast majority of gene expression level variations within and between 

yeast species are not adaptive but neutral (Yang et al. 2016).  Together, these analyses of 

yeast morphological and gene expression data raise the intriguing possibility that some 

classes of phenotypic traits evolve generally adaptively while others neutrally. 
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4.5 MATERIALS AND METHODS  

4.5.1 A comparison between existing tests of the neutral hypothesis of phenotypic 

evolution and the newly proposed test 

      A number of neutrality tests of phenotypic evolution exist in the literature.  They 

all test the neutrality of one trait and can be divided into two categories based on the 

rationale of the test.  The first category compares the observed phenotypic distance in a 

trait between populations or species with the neutral expectation.  Positive (or purifying) 

selection is inferred when the observed distance is significantly larger (or smaller) than 

the neutral expectation.  The neutral expectation has been derived by considering the 

stochastic process of phenotypic evolution (Lande 1976) or genetic models of 

quantitative traits (Chakraborty and Nei 1982; Lynch and Hill 1986).  Various test 

statistics have been proposed, including for example Lande’s Ne (Lande 1976), Lande’s F 

(Lande 1977), Chakraborty and Nei’s Bt/Vt (Chakraborty and Nei 1982), Turelli et al.’s 

MDE test (Turelli et al. 1988), and Lynch’s Δ (Lynch 1990).  These tests usually require 

the information of effective population size and divergence time.  They also require the 

information on the rate of mutational input such as narrow-sense heritability and 

mutational variance.  If these parameters are unavailable, one may use an alternative 

approach by comparing QST of a trait with FST of neutral loci, which are expected to be 

the same if the trait evolves neutrally (Spitze 1993).  Positive selection is undetectable by 

any of the above tests unless the intensity of positive selection exceeds that of purifying 

selection.  Because purifying selection is expected to be pervasive even for traits subject 

to positive selection, all tests in this category have a low power in detecting positive 

selection.  
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 The second category is the QTL sign test, which relies on the information from 

QTL mapping of a trait.  Typically, positive selection is inferred when the number of 

positive-effect QTLs differs significantly from that of negative-effect QTLs (Orr 1998).  

Although this category of test is model-free, it cannot distinguish between positive 

selection and relaxation from purifying selection without other information (Fraser et al. 

2010).  

 Our test of the neutral hypothesis of phenotypic evolution compares the 

evolutionary rates of many traits with different levels of importance to fitness.  Under the 

neutral hypothesis allowing purifying selection, relatively important traits evolve more 

slowly than relatively unimportant traits.  If relatively important traits are found to evolve 

more rapidly than relatively unimportant ones, neutrality is rejected in favor of positive 

selection.  Our test is expected to be more powerful than the above first category of tests, 

because detecting positive selection no longer requires the intensity of positive selection 

to exceed that of purifying selection.  Rather, the criterion is that the difference in 

intensity between positive and negative selection is more positive for more important 

traits.  Our test does not suffer from the problem in the above second category of tests, 

because it is extremely improbable for the relative importance of a large number of traits 

to be reversed in a second population, compared with that in the original population 

where trait importance is measured.   

 The yeast morphological data from natural strains and gene deletion strains, gene 

expression data, and the fitness data of gene deletion strains used for estimating trait 

importance were all collected under a laboratory rich medium.  While this medium does 

not equal the many natural environments of various yeast strains, this discrepancy does 
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not affect our neutrality test, because all required by our test is that the same condition is 

used in phenotyping a trait and in estimating its trait importance.  The main problem with 

mismatches between the experimental condition and the natural environments is that the 

selective agent becomes more difficult to discern. 

 

4.5.2 Yeast morphological data 

      The morphological traits analyzed here were previously defined (Ohya et al. 

2005).  Briefly, yeast cultures were grown to 1×107 cells/ml in YPD or synthetic 

complete media.  Cells were fixed with 3.7% formaldehyde and stained with fluorescein 

isothiocyanate-Con A, rhodaminephalloidin, and 4′,6-diamidino-2-phenylindole, which 

simultaneously mark cell wall, actin cytoskeleton, and nuclear DNA, respectively.  After 

digital images were acquired, cell images were collected and processed by CalMorph 

(Ohya et al. 2015).  In total, 501 morphological traits were measured.  Among these 

morphological traits, we focused on 210 traits, which are defined for individual cells 

rather than cell populations, have positive trait importance values (Ho and Zhang 2014), 

and were measured in all the strains analyzed here.  The morphological data of S. 

paradoxus strain N17, S. paradoxus strain IFO1804, and S. mikatae strain IFO1815 were 

generated with 15, 10, and five biological replicates, respectively.  On average, ~60 cells 

were measured for each trait in each replicate.  The morphological data from 37 natural 

strains of S. cerevisiae were previously collected, with five biological replicates per strain 

(Yvert et al. 2013).  The morphological data of 4718 haploid and 130 diploid single gene 

deletion strains of S. cerevisiae were previously published (Ohya et al. 2005; Yang et al. 

2014). 
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 The morphological data of the derivatives of S. cerevisiae mutational 

accumulation (MA) lines and their common ancestor were generated previously (Geiler-

Samerotte et al. 2016) and the data file “Raw_Data_Additional_Traits.Rfile” was 

downloaded for analysis.  Only those measurements without the geldanamycin treatment 

were used.  The ancestor and 89 MA derivatives with two replicates were used.  A total of 

180 traits that belong to the aforementioned 210 traits had relevant data for our analysis. 

 

4.5.3 Evolutionary distance between two strains for a morphological trait  

We estimated the mean phenotypic value for a trait in a strain by first calculating 

the mean trait value among all cells in a replicate population and then averaging this 

number across all replicate populations.  Let xi and xj be the mean phenotypic values of a 

trait in strains i and j, respectively.  We estimated the raw evolutionary distance for the 

trait between strains i and j by EDij = |xi - xj| / [(xi + xj)/2].  Different traits have different 

levels of environmental variation in phenotyping, different levels of random 

measurement error, and different levels of among-individual stochastic phenotypic 

variation.  To allow a comparison among traits, we corrected the above estimated raw ED 

values for these factors (Ho and Zhang 2014).  Let us assume that strain i has m replicate 

populations, with population sizes of a1, a2, …, am, respectively, and strain j has n 

replicate populations, with population sizes of b1, b2, …, bn, respectively.  We generated 

100 sets of bootstrap samples for both strain i (i.e., each having m populations with sizes 

of a1, a2, …am) and strain j (i.e., each having n populations with sizes of b1, b2, …, bn) 

using the data from the n populations of strain j.  Note that the hierarchical structure of 

the data is retained in bootstrapping.  We then estimated the average EDij across these 100 
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sets of bootstrapped samples, and denoted it by pseudo EDj→i.  We similarly estimated 

pseudo EDi→j using the data from the m populations of strain i.  We then averaged EDj→i 

and EDi→j and subtracted this value from raw EDij to obtain the corrected EDij.  If the 

corrected EDij is negative, we set it at 0.  All ED values presented in the main text and 

figures are corrected EDij. 

 

4.5.4 Mutational size 

The mutational size for a trait was calculated by the average of the previously 

published net effect sizes of 4718 haploid single gene deletions on the trait (Ho and 

Zhang 2014).  Briefly, we first calculated the raw effect size (ESij) of deleting gene i on 

trait j as (xij - wj)/wj, where xij is the mean phenotypic value of trait j in the deletion strain 

i, and wj is the corresponding value in the wild-type (averaged across 123 replicate 

populations).  Then we generated 1000 pseudo phenotypic datasets to estimate the net 

|ES| of gene deletion on a trait.  To generate a pseudo dataset, we randomly chose one of 

the 123 wild-type replicate populations and picked (with replacement) from this 

population the same number of cells as in the actual gene-deletion data.  We then 

calculated mean pseudo |ES| across all pseudo datasets; net |ES| equals raw |ES| minus 

mean pseudo |ES| if raw |ES| > mean pseudo |ES| or zero if raw |ES| < mean pseudo |ES|.  

      We also estimated mutational size by the same method but using the recently 

published morphological data of 130 diploid single gene deletion strains (Yang et al. 

2014) along with the five replicate populations of the corresponding wild-type (BY4743) 

(Yvert et al. 2013).  Due to the low number of wild-type replicates, 100 pseudo datasets 

were generated. 
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4.5.5 Morphological trait importance 

 The trait importance (TI) of each of the 210 morphological traits was previously 

estimated from the negative slope of the linear regression between the corrected 

phenotypic effect of a gene deletion on the trait and the fitness of the gene deletion strain 

across 2779 haploid single gene deletion strains (Ho and Zhang 2014).  The deletion 

strains with fitness larger than 1 were not used.  Briefly, for each trait j, we performed a 

linear regression Fi = aj - bj (net |ESij|), where net |ESij| is the absolute value of the net 

effect size of deleting gene i on trait j, and Fi is the fitness of the strain lacking gene i 

relative to the wild-type in YPD.  In this regression, the estimated slope bj > 0 is 100 

times the reduction in fitness caused by 1% change in the phenotypic value of trait j, 

while the estimated intercept aj is the expected fitness when net |ESij| = 0.  Thus, bj is a 

measure of the relative importance of trait j to fitness, or trait importance (TI). 

 Because TI is estimated by the correlation between phenotypic changes and 

fitness changes, it may not accurately reflect the causal relationship between the variation 

of a trait and fitness.  The fact that our use of the inaccurate TI estimates still yields 

significant evidence for adaptive morphological evolution suggests that the true signal is 

even stronger.  In other words, our results are likely to be conservative.  

      For diploid single gene deletion strains (Yang et al. 2014), we applied the same 

method to calculate TI, but in this case only 99 strains with fitness ≤ 1 could be used. 

 

4.5.6 Principal component analysis  

To examine if the non-independence among the 210 morphological traits affects 
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our results, we followed previous studies (Wang et al. 2010; Ho and Zhang 2014) to 

perform a principal component analysis to transform the net |ES| matrix M (4718 genes × 

210 traits) described previously (Ho and Zhang 2014).  Note that net |ES| is the corrected 

absolute effect size of a gene deletion on a trait.  After this function returned a coefficient 

matrix C (210 × 210), we calculated v’= v C (1 × 210 principal traits) for each corrected 

ED vector v (1 × 210 traits) between two strains.  The absolute values of v’ provided the 

corrected ED for each of the 210 orthogonal principal component traits.  We also used the 

transformed net |ES| matrix, M’=MC (4718 genes × 210 principal traits), to estimate trait 

importance for the 210 principal component traits following the method previously used 

(Ho and Zhang 2014). 

 

4.5.7 Mantel’s test 

We used Mantel's test (Mantel 1967; Sokal and Rohlf 1995) to evaluate the 

significance of the correlation between a biological distance (e.g., morphological 

dissimilarity between two strains) and the correlation (ρ) between ED/MS and TI across 

666 pairs of the 37 natural strains of S. cerevisiae.  In general, Mantel's test evaluates 

whether the correlation between two distance matrices is significant by comparing the 

test statistic (z) calculated by the observed matrices and the null distribution of z 

calculated by randomly shuffling one of the matrices.  The test statistic could be an 

element-by-element product or a Pearson correlation coefficient between all elements.  

During each shuffling, two columns are randomly picked and swapped, and the 

corresponding rows are also swapped.  In this study, we used the correlation coefficient 

between all elements of two matrices as the test statistic and generated the null 
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distribution of the test statistic by randomly shuffling one of the matrices 1000 times.  

When the dataset has underlying phylogenetic relationships such as the present 

dataset in which all strains are connected by a phylogeny, the significance level may be 

inflated because of the shared evolutionary history among lineages (Felsenstein 1985).  

To control for the phylogenetic non-independence, we performed a partial Mantel test, in 

which the phylogenetic distance matrix is controlled for (Smouse et al. 1986).  Among 

four different ways to implement the partial Mantel test, we used the so-called method 2, 

in which the residual matrix instead of the original matrix is shuffled, as suggested 

(Legendre 2000).  In addition, we used phylogenetic permutation (PP) in partial Mantel 

test to obtain non-inflated type-I errors (Harmon and Glor 2010).  Specifically, applying 

PP means that the chance to pick a strain pair to swap is proportional to their 

phylogenetic distance (Lapointe and Garland 2001).  The phylogenetic tree of the 37 

natural strains of S. cerevisiae was reconstructed using the single nucleotide 

polymorphism (SNP) data from Maclean et al. (Maclean et al. 2016) by the neighboring-

joining method (Saitou and Nei 1987) with p-distance (Nei and Kumar 2000) 

implemented in MEGA 5.2.2 (Tamura et al. 2011), and the matrix of pairwise 

phylogenetic distances was obtained by APE in R (Paradis et al. 2004).  

We used Spearman's correlation coefficient (ρ) between ED/MS and TI for a pair 

of strains as a measure of adaptation.  By partial Mantel's test, we examined whether ρ is 

correlated with the following five parameters for the strain pair: morphological 

evolutionary rate, dissimilarity in genome sequence, dissimilarity in ecological 

environment, dissimilarity in population membership, and dissimilarity in geographic 

location.  The morphological evolutionary rate between two strains was estimated as 
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follows.  First, for each trait, we ranked the 37 strains by their mean phenotypic values 

for the trait.  Second, we calculated Spearman's correlation between the 210 ranks of one 

strain with those of the other strain.  The rate of morphological evolution was calculated 

by the negative of this Spearman's correlation divided by genomic sequence dissimilarity 

(see below).  Genomic sequence dissimilarity was calculated by the SNP density between 

two strains (Maclean et al. 2016).  Ecological environment dissimilarity was set as 0 if 

two strains were sampled from the same ecological environment and 1 if sampled from 

different environments (Maclean et al. 2016).  Population membership dissimilarity was 

set as 0 if two strains belong to the same population based on the fastSTRUCTURE 

analysis of the SNP data of 190 yeast strains (Maclean et al. 2016); otherwise, it was set 

as 1.  Strains designated as "mosaics" (Maclean et al. 2016) were excluded from this 

analysis because mosaics do not represent a population.  Geographic location 

dissimilarity was set to 0 if two strains were sampled from the same continent; otherwise, 

it was set to 1.  Note that CLIB382 was removed from this analysis because of the lack of 

SNP data in Maclean et al. (Maclean et al. 2016).  Furthermore, any strain lacking 

information for any parameter was removed from the analysis for that particular 

parameter. 

 

4.5.8 Gene expression data and analysis 

The rich medium microarray gene expression ratio (r) between two S. cerevisiae 

strains, RM and BY, were previously measured for thousands of genes (Brem and 

Kruglyak 2005).  We defined the intra-specific evolutionary distance (ED) of the 

expression level for a gene by |xRM-xBY|/xBY, which equals |r-1|, because r = xRM/xBY, 
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where xRM and xBY are expression levels of the gene in RM and BY, respectively.  

We estimated mutational size for each expression trait by the mean effect size of 

gene deletion on the expression trait across 1486 deletion lines, following a previously 

published method (Ho and Zhang 2014) but using a recently published large dataset 

(Kemmeren et al. 2014).  The trait importance (TI) of a gene expression trait was defined 

by the fitness decrease caused by deleting the gene (Qian et al. 2012), and only those 

genes that cause a zero or positive fitness reduction were considered.  After removing 

genes that miss any kind of data above, we obtained our final dataset with 3466 

expression traits. 

As a negative control in the neutraliy test for expression traits, we used the square 

root of variance in the expression level of an evolved line relative to that of the ancestral 

line (SDm) among four mutation accumulation lines (Landry et al. 2007), and correlated 

between SDm/MS and TI.   
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Table 4.1 Testing the neutral hypothesis of yeast gene expression evolution 

  

Variables correlated Spearman’s ρ     p-value 

ED, TI -0.147     3.7×10-18 

MS, TI -0.142     3.9×10-17 

ED/MS, TI -0.087      3.2×10-7 

SDm/MS, TI -0.030 0.13 
ED, evolutionary distance in gene expression level between S. cerevisiae strains. 
TI, gene expression trait importance. 
MS, mutational size measured by gene deletion. 
SDm, standard deviation in relative gene expression level among mutation accumulation lines. 
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Figure 4.1  Schematic illustrating the test of the neutral hypothesis of phenotypic 
evolution by comparing evolutionary rates among traits of different levels of 
importance.  (A) Under the neutral hypothesis, relatively important traits evolve more 
slowly than relatively unimportant traits.  (B) Higher evolutionary rates of more 
important traits reject the neutral hypothesis and support the adaptive hypothesis.  Each 
circle represents a trait. 
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Figure 4.2  Prevalent adaptive evolution of morphological traits in the yeast 
Saccharomyces cerevisiae.  (A) Mean evolution distance (ED) of 666 pairs of natural 
strains for a trait and the mutational size (MS) of the trait both decrease with trait 
importance (TI).  Each dot represents a trait.  ρ, Spearman's rank correlation coefficient.  
(B) Mean ED among 666 natural strain pairs for a trait relative to its MS increases 
significantly with TI, while the mean ED between 666 gene deletion strains and the wild-
type relative to MS does not increase significantly with TI.  (C) Nominal p-values for the 
Spearman's correlation between ED/MS and TI for all 666 pairs of natural strains.  The 
horizontal colored bars above the strain names show the ecological environments of the 
strains.  Be, beer; Ba, bakery.  
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Figure 4.3  Adaptive morphological evolution between Saccharomyces species.  (A) 
The mean ED/MS between 37 natural S. cerevisiae strains and S. paradoxus strain N17 
for a trait increases significantly with trait importance (TI).  (B) The mean ED/MS 
between 37 natural S. cerevisiae strains and the S. paradoxus strain IFO1804 increases 
significantly with TI.  (C) The mean ED/MS between 37 natural S. cerevisiae strains and 
S. mikatae increases (but not significantly) with TI.  Each dot represents a morphological 
trait. 
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Chapter 5 

Does Mutational Correlation Constrain or Facilitate Phenotypic Evolution? 

 

5.1 ABSTRACT 

Phenotypic evolution of a trait is usually not independent from that of another trait. One 

source of the interdependence is mutational correlation due to pleiotropy. Whether mutational 

correlation constrains or facilitates phenotypic evolution is unresolved, and both scenarios are 

theoretically possible. Here we address this controversy using 210 yeast morphological traits 

measured in thousands of gene-deletion lines and dozens of divergent yeast strains. We found 

that, if two traits show a higher mutational correlation, their evolutionary rates also tend to be 

highly correlated. However, when focusing on individual traits, we did not observe a simple 

relationship between the average mutational correlation of the focal trait with all other traits and 

the evolutionary rate of the focal trait. Instead, a negative quadratic relationship was observed, 

suggesting that increasing mutation correlation speeds up evolution when the correlation is very 

low, but constrains evolution when it is very high. We discuss possible evolutionary scenarios 

consistent with these findings. 
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5.2 INTRODUCTION 

Many traits do not evolve independently. One reason for the independence of phenotypic 

evolution is the genetic correlation caused by mutational effects, or mutational correlation. 

Because many mutations could simultaneously affect multiple traits due to gene pleiotropy, 

changes of one trait by mutations may inevitably change another trait (Wagner and Zhang 2011). 

If mutational effects on different traits are antagonistic, such mutational correlation could 

constrain phenotypic evolution with different severity levels. If the direct beneficial effect on one 

trait surpasses the indirect deleterious effects on other traits, the optimal value for that trait will 

remain reachable, but the path will be longer. However, if the indirect deleterious effects on 

other traits outcompete the direct beneficial effect, the optimal value for that trait will be 

unreachable because of the lack of mutations with net beneficial effects (Fig. 5.1A). In the 

contrary to antagonism, if mutational effects on different traits are accordant, such mutational 

correlation could facilitate phenotypic evolution, no matter if the direct benefit is larger or 

smaller than indirect benefits (Fig. 5.1B). Given these different possibilities, one interesting 

question is whether mutational correlation tends to constrain or facilitate phenotypic evolution. 

For example, if accordant effects are largely preserved, and antagonistic effects are largely 

eliminated by variational modularity, phenotypic evolution will be generally facilitated (Wagner 

and Altenberg 1996; Wagner et al. 2007; Melo et al. 2016). On the contrary, phenotypic 

evolution will be generally constrained if antagonistic effects are pervasive, and accordant 

effects are rare. Which one is more general remains largely unknown. 

In the previous studies of correlated phenotypic evolution, the contribution of mutational 

correlation has not been exclusively studied. Most studies follow the quantitative genetic 

approach featuring the G-matrix, which summarizes additive genetic variances and covariances 
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among multiple traits (Lande 1979). Other than mutational inputs, the G-matrix could be also 

affected by genetic drift, selection or migration (Lande 1980; Turelli 1988; Steppan et al. 2002). 

In simulation studies of the G-matrix, it is easy to study these factors separately. For example, 

both mutational correlation and correlated selection could constrain the direction of phenotypic 

evolution in long-term evolution (Jones et al. 2003). In empirical studies of the G-matrix, 

however, it is difficult to tear apart these factors due to the lack of mutational data. For example, 

several mixed findings have been made such as the gradual decrease of constraining effect with 

evolutionary time (Schluter 1996), no general tendency of either constraining or facilitating the 

rate of fitness increase (Agrawal and Stinchcombe 2009), cases of strong constraining effect 

(Mitchell-Olds 1996; Hansen et al. 2003), or rapid evolution under strong genetic correlations 

(Conner et al. 2011). Nevertheless, it is unclear whether mutational correlation is sufficient to 

explain these results. In fact, mutation correlation was claimed to have smaller impacts in the G-

matrix (Arnold et al. 2008), but this claim has not been fully tested.  

Furthermore, the empirical studies of the G-matrix tend to focus on the traits with a clear 

pattern of directional selection in a relatively short-term evolution. Many are even less than ten 

generations (Conner 2012). Not only does the interest of researchers cause the biased focus, but 

the requirement of measured selection gradients in the G-matrix framework also does. Therefore, 

a good survey about the general role of mutational correlation on phenotypic evolution should 

avoid these biases. Using a large number of traits in a longer-term evolution is desired.  

With the helps of systems genetics and high-throughput phenotyping, it is easier to 

estimate more mutational effects on more traits (Civelek and Lusis 2014). Therefore, mutational 

correlations for many trait pairs could be quantified. In this study, we will focus on 210 yeast 

morphological traits with phenotyping data in thousands of mutation lines and decades of 
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different strains and species. By testing the association between mutational correlations and 

evolutionary outcomes for a large amount of traits, a general understanding of the role of 

mutational correlation on phenotypic evolution will be reached.  

 

5.3 RESULTS 

5.3.1 Calculation of mutational correlations 

We started the analysis from quantifying the mutational correlations among 210 yeast 

morphological traits. We took advantage of the net ES matrix (for simplicity “net” will be 

omitted below) previously measured in 4716 single-gene deletion lines for these yeast 

morphological traits (Ho and Zhang 2014). These traits were measured by triple-florescent 

staining of actin patches, cell walls, and nuclei in yeast cells and image analysis (Ohya et al. 

2005), widely been used in many evolutionary studies (Ohya et al. 2015). Three steps are needed 

for calculating an ES for a gene deletion on a trait: (1) calculating the absolute difference 

between mean phenotypic values in the wild-type and mean phenotypic values in that gene, (2) 

normalizing the absolute difference by mean phenotypic values measured in the wild-type, and 

(3) subtracting the simulated pseudo effect size from the normalized raw effect size.  

In the ES matrix, each trait has a vector of ES across all gene deletions. Using two such 

vectors from two traits, we defined their mutational correlation (CORM) as the Pearson 

correlation coefficient between the two vectors. This measurement is suiTable 5.for the 

evolutionary scenario where traits are largely canalized with mean phenotypic value equal to the 

fittest value, and the adaptation is considered as shifts of fittest phenotypic values (Fig. 5.1). 

Such shifts, for example, may happen during the change of environmental factors at a location or 

the migration of organisms to a new location. This “shifting optimal means” scenario is more 
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consistent with the long term morphological data than other evolution scenarios are (Estes and 

Arnold 2007). In this scenario, a larger CORM between two traits means that, when one trait 

moves away form its current mean, another trait is also more likely to move away from its 

current mean. Therefore, such mutational correlation has a fitness consequence because the 

second trait moves away from its fittest phenotypic value.  

5.3.2 Prediction of evolutionary correlations by mutational correlations in trait pairs  

After quantifying CORM, we first tested whether CORM was involved in phenotypic 

evolution. If two traits have high CORM, one will expect their evolutionary outcomes should be 

also more correlated. To verify this, we took advantage of evolutionary distance (ED) previously 

quantified for the same set of 210 morphological traits (Yvert et al. 2013; Ho et al. 2016). 

Analogues to ES, three steps are needed to calculate ED between two taxa: (1) calculating the 

absolute difference between mean phenotypic values in two different taxa, (2) normalizing the 

absolute difference by mid-mean phenotypic values, and (3) subtracting the simulated pseudo 

evolutionary distance from the normalized raw evolutionary distance. In this way, potential 

measurement errors for ED could be corrected, and they are corrected by the same way for ES.  

We first examined the prediction using inter-specific ED. Because we have 37 S. 

cerevisiae strains, in total we have 666 pairs of stains. Therefore, there is a vector of 666 ED for 

each trait. We then quantified the evolutionary correlation (CORE) between two traits as the 

Pearson correlation coefficient between the two vectors of 666 ED. By plotting CORE against 

CORM for all trait pairs, we found a positive correlation (Spearman’s ρ = 0.37, p-value < 10-300; 

Fig. 5.2A). To account for autocorrelation, we randomly shuffled the ES matrix in two ways. In 

the first way, the vector of ES across different gene deletion lines for each trait gets permuted 

(randG). In the second way, the vector of ES across different traits for each gene deletion line 
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gets permuted (randP). The Spearman’s ρ between CORE and CORM using each permuted ES 

matrix was also quantified by similar method. Comparing with the distribution of ρ of either set 

of permuted results, we found that the observed ρ between CORE and CORM is still significant 

higher (Fig. A.4.1A & B). These results show that the observed ρ between CORE and CORM is 

not purely a statistical artifact, suggesting the correlation in the level of mutations influence the 

correlation in the level of evolutionary differences.  

Given the positive association between CORM and CORE, one interesting question is 

whether CORM also predicts the Pearson’s correlation coefficient between two vectors of 

phenotypic values across 37 S. cerevisiae strains, which is defined as phenotypic correlation 

(CORP). After plotting CORP against CORM, we found that they also show a significantly 

positive correlation (Spearman’s ρ = 0.40, p-value < 10-300; Fig. 5.2B). In addition, this observed 

positive correlation is significantly larger than both randG and randP distribution of correlation 

coefficients (Fig. A.4.1C & D). Therefore, the correlation between phenotypic values across 

strains is substantially affected by the correlation existed in the level of mutations. 

After finding the positive correlation between CORM and CORE within S. cerevisiae, we 

examined whether CORM could be used in predicting inter-specific CORE between S. cerevisiae 

and its sister species S. paradoxus. Note that because the ES matrix may evolve after the 

speciation event, the CORM quantified by the ES matrix in S. cerevisiae may not have a good 

prediction power for inter-specific CORE. With this concern, however, we are still able to 

demonstrate the prediction power for inter-specific CORE in the following analysis. Using 

previous quantified ED between each of 37 S. cerevisiae strains and S. paradoxus strain N17 as 

well as ED between each of 37 S. cerevisiae strains and another S. paradoxus strain IFO1804, for 

each trait there is a vector of 74 ED. We then calculated CORE for every trait pair by the 
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Pearson’s correlation coefficient between two vectors of 74 ED. We found such CORE and 

CORM are also positively correlated (Spearman’s ρ = 0.21, p-value < 10-300; Fig. 5.2C), and this 

observed ρ is also significantly larger than both randG and randP distribution of ρ (Fig. A.4.1E 

& F). Therefore, mutational correlation also affects the correlation of evolutionary distances 

across different species.   

5.3.3 No linear relationship between mutational correlations and evolutionary distances  

In order to test whether mutational correlation tends to constrain or facilitate evolutionary 

distance for all traits, we quantified mean CORM and mean ED for each trait. The mean CORM 

was calculated by the mean across 209 CORM between the focal trait and each of other traits, 

representing how much the focal trait is averagely correlated with other traits by mutations. We 

started the analysis using intra-specific ED, and the mean ED was calculated by the mean across 

666 paired ED of 37 S. cerevisiae strains. After plotting mean ED against mean CORM across all 

210 traits, we did not find a significant Spearman correlation (Spearman’s ρ = -0.069, p-value = 

0.32; Fig. 5.3A). We also performed the analysis using inter-specific phenotypic distances. 

Similar to the intra-specific case, we quantified intra-specific mean ED for between 37 S. 

cerevisiae strains and either one of S. paradoxus strain N17 or another S. paradoxus strain 

IFO1804. When considering such mean ED, we again did not find a significant Spearman 

correlation between mean ED and mean CORM (Spearman’s ρ = -0.011, p-value = 0.87; Fig. 

5.3B).  

To make sure our methodology does not cause any biased contribution of ρ, we again 

performed similar analysis using randG and randP ES matrixes. We did not find any case 

showing the observed ρ significantly different from the simulated distributions of ρ (Fig. A.4.2). 

Therefore, the previous results of statistic tests are likely to be true. 
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5.3.4 Quadratic relationship between mutational correlations and evolutionary distances 

By further examining the plots of mean ED against mean CORM, we noticed that the 

traits showing high mean CORM and low mean CORM tend to have stronger reduced effects on 

mean ED. Therefore, it is suspected that mean CORM and mean ED have a quadratic 

relationship. To validate this suspicion, we performed the quadratic regression for both intra-

specific and inter-specific cases. For inter-specific case, compared with the linear model, the 

adjusted R2 in the quadratic model is improved from 0.0099 to 0.071 (Table 5.1). In addition, the 

estimate of the quadratic coefficient in the quadratic model is -0.68, which is significantly 

different from zero (p-value = 1.8 x 10-4, t-test). Therefore, a negative quadratic relationship 

between mean CORM and intra-specific mean ED is evident. 

In the inter-specific case, while we still found the same trend as shown in the intra-

specific case, but the statistical support is much weaker. In the quadratic model, the adjusted R2 

is only 0.0095 (Table 5.1). While this value is small, it is already a big improvement from the 

adjusted R2 in the linear model. Moreover, we still found a negative quadratic coefficient in the 

quadratic model (b = -0.59), but its difference from zero is only marginally significant (p-value = 

0.057, t-test). Therefore, a negative quadratic relationship between mean CORM and inter-

specific mean ED is not strongly supported by this simple quadratic model. 

5.3.5 Negative quadratic relationship between mutational correlations and mutational 

correlations in multivariate models  

We noted that ED is a measurement affected by correlated factors such as the mutation 

input size or the selection strength for each trait. To make sure our results is not merely a 

byproduct of ignoring such factors, and potentially improve the inter-specific quadratic models, 

it is desired to perform a regression analysis with such factors controlled. Therefore, we 
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quantified two different potential correlated factors to incorporate into the quadratic model, 

mutational size (MS) and direct importance (DI). Theoretically, a trait with larger MS should tend 

to have larger ED, which may bias the true correlation between CORM and ED if CORM also 

correlates with MS. In practice, we calculated the mean ES across all gene deletions for each trait 

as a proxy for MS measurements.  

In addition, ED may also be affected by how much each trait directly involved in natural 

selection, which may bias the true correlation between CORM and ED if CORM also correlates 

with the strength of natural selection. While the long-term evolution the history of natural 

selection is largely unknown, the importance of each trait contributed to fitness can be used as 

proxy because a more important trait is expected to create stronger selection gradient in natural 

selection. Previously the trait importance (TI) of each trait was quantified by the negative slope 

of the univariate regression model using ES of gene deletions to predict the fitness measurement 

of gene deletion lines (Ho and Zhang 2014). According to this definition, however, such TI not 

only directly caused by the focal trait but also indirectly caused by other traits correlated with it 

(Lande and Arnold 1983). To partition the direct effect from indirect effect of TI, we performed a 

multivariate regression model using matrix of ES to predict fitness of 2779 single-gene deletion 

lines with fitness smaller than the wild-type, and the absolute coefficient of each trait is defined 

as direct importance (DI). Note that the overall pattern presented below does not change in the 

analysis using traits only with either positive DI or negative DI (Table A.4.1). In addition, this 

multivariate regression model is able to explain ~50% of fitness variation across single deletion 

lines, which suggests the biological relevance of this model.  

With both MS and DI available, we first calculated partial Spearman’s ρ between 

different mean ED and mean CORM with MS and DI controlled in both intra-specific and inter-
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specific cases. As a result, we still found no significant correlations. The partial Spearman’s ρ in 

the intra-specific case is -0.052 (p-value = 0.94) while the partial Spearman’s ρ in the inter-

specific case is 0.086 (p-value = 0.22). Therefore, our previous finding of no linear relationship 

is not a product of ignoring confounding factors such as MS and DI.  

In addition, we attempted to build a multivariate quadratic model using mean CORM, MS, 

and DI as explanatory variables and mean ED as the explaining variable in both intra-specific 

and inter-specific cases. We started from including all linear terms, quadratic terms and 

interaction terms in the regression model and found that only the linear and quadratic term of 

mean CORM and MS have coefficients significantly different from zero (nominal p-value < 0.05 

by t-test). Eliminating other terms, we performed the regression analysis with those four terms 

again (Table 5.2). As a result, we found both intra-specific and inter-specific cases show high 

adjusted R2 values (0.51 and 0.28, respectively), suggesting MS has an important role in 

explaining mean ED. More importantly, the negative quadratic coefficients of mean CORM in 

both cases are significantly different from zero. The coefficient is equal to -0.79 in the intra-

specific cases (p-value = 7.2 x 10-9, t-test) while the coefficient is equal to -0.73 in the intra-

specific cases (p-value = 5.8 x 10-3, t-test). Therefore, a negative quadratic relationship between 

mean CORM and mean ED is evident for both intra-specific an inter-specific cases. 

 

5.4 DISCUSSION 

 In this study, we present data showing the positive correlation between CORM and CORE 

across different pairs of traits. In addition, the association trend between CORM and ED is not 

linear but negatively quadratic. Therefore, in general, CORM facilitates ED for traits with low 

CORM but constrains ED for traits with high CORM. These two observations are not only found 
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in the inter-specific case but also in the intra-specific case. All of these results suggest a general 

pattern of multivariate phenotypic evolution below. Because we found the mixed evidence for 

constraining and facilitating, the frequency of scenarios of synergistic and antagonistic selection 

section is probably also mixed (Fig. 5.1). Therefore a certain level of synergistic selection exists, 

suggesting there is a certain level of modularity in the genotype-phenotype map. In the context of 

antagonistic selection, while the direction of phenotypic evolution is constrained by what kind of 

mutation is available, the indirect effects also rarely overpower the direct effects except for traits 

with strong indirect effects (bottom left panel in Fig. 5.1A). When direct effects can overcome 

the indirect effects, the mutations with net beneficial effects are still available, which makes new 

optimal values generally reachable (bottom right panel in Fig. 5.1A).  Note that this is consistent 

with the finding that, in the multivariate regression model for fitness, roughly half of traits harbor 

negative coefficients while another half of traits have positive coefficients. Therefore, their 

combined effects for fitness could cancel out each other and ends up with a relatively small 

indirect effect.  

We noted that CORM and DI were inferred only using mutational data in S. cerevisiae, 

and we could not exclude the possibility that CORM has been largely evolved between different 

Saccharomyces species. Such discrepancy may weaken the observed correlations if true 

correlations are existed. However, our correlation is not completely powerless given that we still 

found a significant correlation in the inter-specific case. In the future, when more mutational data 

in different species are available, it would be intriguing to perform these tests again and study 

whether the architecture of complex traits evolves differently and thus may have consequences 

on long-term phenotypic evolution.  
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 It is noted that there is also a negative quadratic relationship between MS and ED (Table 

5.2). In general, high MS predicts high ED. However, our results suggest when MS is too high, 

ED may be decreased. A possible explanation could be the extremely high MS increases the 

probability of overshooting the new optimal value and thus less likely to be not beneficial. This 

is consistent with the theoretical prediction that, in Fisher’s geometric model, when the mutation 

size is too high, the rate of fitness increase could be reduced instead of increased (Orr 2000). 

However, whether this phenomenon is general in empirical data requires more studies. 

In the context of correlated phenotypic evolution, pleiotropy is just one source of genetic 

correlation. There are at least two other kinds of sources which could lead to genetic correlations. 

First, genetic linkage makes the linked loci tend to be inherited together and thus increase genetic 

correlation (Futuyma 2013). The effects of genetic linkage, however, should be negligible in the 

long term because recombination could break linked loci with time being. Even in the short term, 

it has been shown that it is negligible when recombination rate is high and selection is weak 

(Lande 1980). Secondly, epistasis may increase genetic correlation between two traits if some 

combinations of mutations in two loci affecting two traits show non-addictive effects (Cheverud 

et al. 2004; Wolf et al. 2005). To assay the effect of epistasis, however, require the datasets of 

phenotypes measured in double mutations. Given the existence of epistasis in the architecture of 

complex traits (Wagner and Zhang 2011), it would be interesting to study its effects in the future 

when such dataset is available. 

In this study, we demonstrated using a genotype-phenotype map helps the inference of 

the long-term history of selection. While it is often not easy to directly assay the long-term 

history of selection, it could be inferred by comparing the mutational inputs and evolutionary 

outcomes. Our analysis presented in this paper is generally applicable to datasets with both 
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mutational phenotypes and phenotypic differences measured. With more and more data of 

system genetics and high-throughput phenotyping coming out, one can study more on how a 

complex genetic architecture affects phenotypic evolution and infer a more long-term history of 

evolution.  

 

5.5 MATERIALS AND METHODS 

Effect size (ES) of a gene deletion for a trait was calculated following previous method 

(Ho and Zhang 2014). Briefly, raw ES was calculated by the absolute difference of mean 

phenotypic values in the wild-type versus in that gene deletion line and then normalized by mean 

phenotypic values measured in the wild-type. The pseudo ES was simulated by random samples 

of wild-type phenotypic measurements with the sample sizes unchanged. In the end, net ES was 

calculated by raw ES minus pseudo ES with a lower bound equal to zero. In the article, ES is for 

net ES unless otherwise notified. 

Evolutionary distance (ED) for a trait between any two group of Saccharomyces yeasts 

was calculated following previous method (Ho et al. 2016). Briefly, raw ED was calculated by 

the absolute difference of mean phenotypic values between two groups and then normalized by 

mean phenotypic values between two groups. The pseudo ES was simulated by random samples 

of phenotypic measurements in each group separately with the sample sizes unchanged and 

averaged. In the end, net ED was calculated by raw ED minus pseudo ED with a lower bound 

equal to zero. In the article, ED is for net ED unless otherwise notified. 

Direct importance (DI) for each trait was measured by building a multivariate linear 

regression model of yeast fitness. In this model, the fitness of 2,779 gene deletion strains that are 

less fit than the wild type were used as response variables, which was previously measured (Qian 
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et al. 2012). ES matrix of 210 traits for these 2779 gene deletion lines were used as explanatory 

variables. The coefficient in this multivariate linear regression model for each trait was 

calculated by using the “glmfit” function in MATLAB.  

All of the regression analysis is also performed by the “glmfit” function in MATLAB. 
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Table 5.1 Statistics for linear and quadratic regression models using mean mutational 
correlations (CORM) explaining intra-specific or inter-specific mean evolutionary 
differences (ED) 

  Source of mean ED 

   intra-species   inter-species  

Linear 
model 

 adjusted R2    0.0099    -0.0032  

 b1   -0.033    -0.019  

 p-value for b1    0.081     0.56  

Quadratic 
model 

 adjusted R2    0.071     0.0095  

 b1    0.34     0.31  

 p-value for b1    7.5 x 10-4     0.078  

 b11   -0.68    -0.59  

 p-value for b11    1.8 x 10-4     0.057  
Note- the linear model is y = b0 + b1x while the quadratic model is y = b0 + b1x + b11x2 where y is 
mean ED and x is mean CORM; each p-value is calculated by the t-tests against the null 
hypothesis where the coefficient equals zero. 
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Table 5.2 Statistics for multivariate quadratic regression models using mean mutational 
correlations (CORM) and mutational sizes (MS) explaining intra-specific or inter-specific 
mean evolutionary differences (ED) 

 Source of mean ED 
  intra-species   inter-species  

 adjusted R2      0.51       0.28  
 b1      0.42       0.40  
 p-value for b1      4.4 x 10-8       6.7 x 10-3  
 b2      2.6       3.5  
 p-value for b2      1.2 x 10-21       1.2 x 10-11  
 b11     -0.79      -0.73  
 p-value for b11      7.2 x 10-9       5.8 x 10-3  
 b22   -15    -21  
 p-value for b22     5.6 x 10-12      1.4 x 10-6  

Note- the multivariate quadratic model is y = b0 + b1x1 + b2x2 + b11x1
2 + b22x2

2 where y is mean 
ED, x1 is mean CORM, and x2 is MS; each p-value is calculated by the t-tests against the null 
hypothesis where the coefficient equals zero. 
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Figure 5.1 Mutational correlation constrains phenotypic evolution when indirect effects 
overpower direct effects under antagonistic selection. The hypothetical evolutionary scenario 
considers the phenotypic evolution of two traits with original optimal value at O and new 
optimal value at *. One trait is on x-axis while the other trait is on y-axis. Each panel represents a 
combination of three factors: with or without mutational correlation, with antagonistic selection 
(trait 1 shifted but trait 2 stabilized) or accordant selection (trait 1 and trait 2 both shifted), and 
direct effects (focusing on trait 1) stronger or weaker than indirect effects (due to trait 2). Within 
each panel, the open circle or ellipse represents the area accessible by mutations for the initial 
population before the shift of optimal values. With strong mutational correlation, only mutations 
around the diagonal are allowed, making an ellipse area. With no mutational correlation, every 
direction is accessible, making a circle area. The closed circle or ellipse represents the 
evolutionary outcome in the shift of optimal values. The arrow shows the moving direction form 
the origin to the outcome. The lines inside each panel represent isoclines for fitness. Compared 
with the original location, dotted lines represent the isoclines with reduced fitness (-), dashed 
lines represent the isoclines with no change of fitness (0), and solid lines represent the isoclines 
with increased fitness (+). Under mutational correlation, antagonistic selection, and direct effects 
weaker than indirect effects, no beneficial mutation is accessible in the beginning, shown by the 
ellipse not crossing the isocline 0, and therefore the phenotypic evolution is constrained. 
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Figure 5.2 Mutational correlations (CORM) predict evolutionary correlations (CORE) or 
phenotypic correlations (CORP). Each dot is a pair of traits. (A) CORE calculated using 
evolutionary difference (ED) of 666 pairs of every two of 37 Saccharomyces cerevisiae strains. 
(B) CORP calculated using mean phenotypic value in 37 S. cerevisiae strains. (C) CORE 
calculated using ED between 37 S. cerevisiae strains and S. paradoxus. 
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Figure 5.3 Negative quadratic relationship between mean evolutionary differences (ED) 
and mean mutational correlations (CORM) across yeast morphological traits. (A) ED among 
37 Saccharomyces cerevisiae strains. (B) ED between S. cerevisiae strains and S. paradoxus 
strains. Each dot is a trait. The linear brown line represents the fitting of a linear model while the 
curved orange line represents the fitting line of a quadratic model, where the fitting statistics are 
listed in Table 5.1. 
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Chapter 6 

Evolutionary Adaptations to New Environments Generally 

Reverse Plastic Phenotypic Changes 

 
 
6.1 ABSTRACT 

Organismal adaptation to a new environment typically starts with plastic phenotypic 

changes followed by genetic changes, but whether the plastic changes are steppingstones to 

genetic adaptations is debated.  Here we address this question by investigating gene expression 

and metabolic flux changes in the two-phase adaptation process using transcriptomic data from 

multiple experimental evolution studies and computational metabolic network analysis, 

respectively.  We discover that genetic changes more frequently reverse than reinforce plastic 

phenotypic changes in virtually every adaptation.  Metabolic network analysis reveals that, even 

in the presence of plasticity, organismal fitness drops precipitously after environmental shifts, 

but largely recovers through subsequent evolution.  Such fitness trajectories during adaptation 

explain why plastic phenotypic changes are genetically compensated rather than strengthened.  

While phenotypic plasticity may serve as an emergent response to new environments that is 

necessary for organismal survival, we conclude that it does not generally facilitate genetic 

adaptation. 
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6.2 INTRODUCTION 

Phenotypic adaptation to a new environment consists of two phases (Fig. 6.1a).  In the 

first phase, the environmental shift induces phenotypic changes without genetic mutation; such 

changes are referred to as plastic changes irrespective of their fitness effects.  In the second 

phase, phenotypes are altered by mutations that accumulate during the adaptive evolution.  While 

most past evolutionary studies focused on the second phase, recent years have seen a growth in 

the argument for the importance of the first phase in adaptation (Price et al. 2003; West-Eberhard 

2003; Pigliucci et al. 2006; Lande 2009; Pfennig et al. 2010; Moczek et al. 2011; Laland et al. 

2014; Laland et al. 2015; Levis and Pfennig 2016).  Specifically, it is suggested that plastic 

phenotypic changes are often necessary for organismal survival in a new environment (Baldwin 

1896; Robinson and Dukas 1999), which is essential because no adaptive evolution is possible if 

the environmental shift kills all individuals.  Furthermore, it is argued that plasticity moves the 

phenotypic value of an organism closer to the adapted state in the new environment and hence is 

a steppingstone to adaptation (Waddington 1953; Price et al. 2003; West-Eberhard 2003) (Fig. 

6.1b).  While some case studies appear to support this latter assertion (Suzuki and Nijhout 2006; 

Ledon-Rettig et al. 2008; Levis and Pfennig 2016), its general validity remains unclear 

(Ghalambor et al. 2007).  Answering this question is of special significance, because the school 

of extended evolutionary synthesis believes that plasticity is critical to adaptation and hence is 

requesting a major revision of the modern synthesis of evolutionary biology, where the role of 

plasticity in adaptation is thought to be largely neglected (Laland et al. 2014; Laland et al. 2015).  

For a trait, its plastic phenotypic change induced by an environmental shift and the 

subsequent genetic change during the adaption to the new environment could be in the same 

direction toward the optimal phenotypic value in the new environment.  In this case, the plastic 
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change is reinforced by the adaptive genetic change and hence is considered adaptive 

(Ghalambor et al. 2007; Ghalambor et al. 2015) (Fig. 6.1b).  The plastic change and the 

subsequent genetic change could also be in opposite directions.  In this case, the plastic change is 

reversed by the adaptive genetic change and is thus commonly considered non-adaptive 

(Ghalambor et al. 2007; Ghalambor et al. 2015) (Fig. 6.1c).  The hypothesis that plasticity 

facilitates adaptation is supported if reinforcement is more prevalent than reversion in a large 

sample of traits during a large number of adaptations; otherwise, the hypothesis is refuted.  Thus, 

a test of the hypothesis can be performed by respectively phenotyping and comparing adapted 

organisms in the original and new environments as well as the organisms right after the 

environmental shift (i.e., after plastic changes but before genetic changes).  Early tests used 

morphological, physiological, or behavioral traits, but the number of traits examined was small 

and the results varied among studies (Ghalambor et al. 2007).  Recent tests with transcriptome 

data suggested that gene expression level reversion is more prevalent than reinforcement during 

experimental evolution (Fong et al. 2005; Sandberg et al. 2014; Ghalambor et al. 2015; 

Rodriguez-Verdugo et al. 2016).  Although the number of traits is large in these recent studies, 

their analyses vary, rendering the interpretation and among-study comparison difficult.  We thus 

reanalyze using a uniform method the transcriptome data from these studies as well as those 

from another study that did not address the role of plasticity in adaptation (Tamari et al. 2016).   

More importantly, five considerations prompt us to expand the analysis from gene 

expression levels to metabolic fluxes.  First, it is desirable to test the hypothesis across diverse 

environmental shifts, but experimental evolution studies with transcriptome data are currently 

limited in this aspect.  By contrast, fluxes in well-annotated metabolic networks can be 

computationally predicted with reasonably high accuracy under a wide range of environments 
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(Segre et al. 2002; Orth et al. 2010).  Second, it is necessary to examine if the finding from gene 

expression traits applies to other phenotypic traits.  Third, organisms acquired at the end of 

experimental evolution are usually partially rather than fully adapted to the new environment, 

making the distinction between reinforcement and reversion less certain.  Fourth, in experimental 

evolution, it is unknown whether an observed gene expression change is beneficial, neutral, or 

even deleterious.  For example, an expression change accompanying adaptation could be 

responsible for, a result from, or even unrelated to the fitness gain.  Some authors assume that 

expression changes observed in replicate experiments are beneficial (Ghalambor et al. 2015), but 

it is also possible that they are consequences of adaptation and have positive, zero, or negative 

fitness effects.  Thus, not all expression changes observed in experimental evolution are relevant 

to the hypothesis that plasticity is a steppingstone to genetic adaptation.  By contrast, in the 

metabolic network analysis, all flux changes observed in the maximization of fitness are required 

and therefore are by definition beneficial.  It has been shown, for instance, that upon the 

maximization of fitness, alteration of any non-zero flux would be deleterious (Ho and Zhang 

2016).  Last and most importantly, because the regulatory and evolutionary mechanisms of gene 

expression changes are not well understood, it would be difficult to discern the mechanistic basis 

of expression level reinforcement or reversion.  By contrast, patterns of computationally 

predicted flux changes can be understood mechanistically by the metabolic model used in the 

prediction.  We thus test whether plasticity facilitates adaptation by computational metabolic flux 

analysis of the model bacterium Escherichia coli.  Our analyses of transcriptome and fluxome 

changes in numerous adaptations consistently show that phenotypic reinforcement is not only no 

more but actually less prevalent than reversion, indicating that plasticity is not a steppingstone to 
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genetic adaptation.  More importantly, we uncover the underlying cause of the preponderance of 

phenotypic reversion. 

 

6.3 RESULTS 

6.3.1 Preponderance of gene expression level reversion in experimental evolution 

We identified five studies that conducted six different adaptation experiments and 

collected transcriptome data that suit our study.  These six experiments included 10 replicates of 

E. coli adapting to a high-temperature environment (Sandberg et al. 2014), six replicates of 

another strain of E. coli adapting to a high-temperature environment (Rodriguez-Verdugo et al. 

2016), seven replicates of E. coli adapting to a glycerol medium (Fong et al. 2005), seven 

replicates of E. coli adapting to a lactate medium (Fong et al. 2005), one replicate each of 12 

different yeast (Saccharomyces cerevisiae) strains adapting to an xylulose medium (Tamari et al. 

2016), and two replicates of guppies (Poecilia reticulata) adapting to a low-predation 

environment(Ghalambor et al. 2015).  In total, we analyzed 44 cases of adaptation.   

In each case, transcriptome data were respectively collected for the organisms in the 

original environment (o for the original stage), shortly after their exposure to the new 

environment (p for the plastic stage), and at the conclusion of the experimental evolution in the 

new environment (a for the adapted stage) (Fig. 6.1a).  Let the expression levels of a gene at the 

o, p, and a stages be Lo, Lp, and La, respectively.  In each experiment, we first identified genes 

with appreciable plastic changes (PC) in expression level by requiring PC = |Lp - Lo| to be greater 

than a preset cutoff.  We also identified genes with appreciable genetic changes (GC) in 

expression level by requiring GC = |La - Lp| to be greater than the same preset cutoff.  For those 

genes showing both appreciable plastic and appreciable genetic changes, we ask whether the two 
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changes are in the same direction (i.e., reinforcement) or opposite directions (i.e., reversion) (Fig. 

6.1b-c).  We used 20% of the original gene expression level (i.e., 0.2Lo) as the cutoff in the 

above analysis.  The fraction of genes exhibiting expression level reinforcement (CRI) is smaller 

than the fraction of genes exhibiting reversion (CRV) in 42 of the 44 adaptations, and the 

difference between CRI and CRV is significant in 40 of these 42 cases (nominal P < 0.05; two-

tailed binomial test) (Fig. 6.1d).  For the remaining two adaptations, CRI > CRV, but their 

difference is significant in only one of the two cases (Fig. 6.1d).  The general preponderance of 

expression level reversion (i.e., 42 of 44 cases) in adaptation is statistically significant (P = 

1.1×10-10, two-tailed binomial test).  The same trend is evident when the cutoff is altered to 

0.05Lo (Fig. A.5.1a) or 0.5Lo (Fig. A.5.2a), suggesting that the above finding is robust to the 

cutoff choice.  Clearly, the transcriptomic data do not support the hypothesis that plasticity 

facilitates genetic adaptation. 

 

6.3.2 Predominance of metabolic flux reversion in environmental adaptations 

To study the generality of the above finding and understand its underlying cause, we 

expanded the comparison between phenotypic reinforcement and reversion to metabolic fluxes.  

Specifically, we computationally predicted plastic and genetic flux changes during 

environmental adaptations using iAF1260, the reconstructed E. coli metabolic network (Feist et 

al. 2007).  We used flux balance analysis (FBA) to predict the optimized fluxes of adapted 

organisms in the original and new environments, respectively, under the assumption that the 

biomass production rate, a proxy for fitness, is maximized by natural selection (Orth et al. 2010).  

FBA predictions match experimental measures reasonably well for organisms adapted to their 

environments (Edwards et al. 2001; Ibarra et al. 2002; Fong and Palsson 2004; Papp et al. 2004; 
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Wang and Zhang 2009a; Lewis et al. 2010) and are commonly used in the study of genotype-

environment-phenotype relationships (Papp et al. 2004; Segre et al. 2005; Pal et al. 2006; Wang 

and Zhang 2009a; He et al. 2010; Costenoble et al. 2011; Wang and Zhang 2011; Barve et al. 

2012; Harcombe et al. 2013; Bordbar et al. 2014; Ho and Zhang 2016).  We employed 

minimization of metabolic adjustment (MOMA) to predict plastic flux changes upon 

environmental shifts, because MOMA can recapitulate the immediate flux response to 

environmental or genetic perturbations (Segre et al. 2002).  We treated the flux of each reaction 

in the metabolic network as a trait, and modeled environmental shifts by altering the carbon 

source available to the network.  There are 258 distinct exchange reactions in iAF1260, each 

transporting a different carbon source.  We therefore examined 258 different single-carbon 

source environments.  

We started the analysis by using glucose as the carbon source in the original environment, 

because this environment was the benchmark in iAF1260 construction (Feist et al. 2007).  We 

then considered the adaptations of E. coli to the 257 new environments each with a different 

single-carbon source.  We found that these new environments are naturally separated into two 

groups in the MOMA-predicted biomass production rate, a proxy for the fitness at stage p (fp) 

(Fig. A.5.3).  One group shows fp < 10-4, suggesting that E. coli is unlikely to sustain in these 

new environments.  We therefore focused on the remaining 50 new environments with fp > 10-4, 

to which E. coli can presumably adapt. 

Defining flux reinforcement and reversion and using the cutoff of 0.2Lo as in the 

transcriptome analysis, we found CRV to be significantly greater than CRI (nominal P < 10-10, 

two-tailed binomial test) in each adaptation.  The chance probability that all 50 adaptations show 

CRV > CRI is 1.8×10-15 (two-tailed binomial test; Fig. 6.2a), suggesting a general predominance of 
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flux reversion.  The mean and median CRV are 30.2% and 30.5%, respectively, while those for 

CRI are only 1.0% and 0.8%, respectively.  The above trend holds when we alter the cutoff to 

0.05Lo (Fig. A.5.1b) or 0.5Lo (Fig. A.5.2b).  Because an FBA or MOMA problem may have 

multiple solutions, the order of the reactions in the stoichiometric matrix could affect the specific 

solution provided by the solver.  Nevertheless, when we randomly shuffled the reaction order in 

iAF1260, the general pattern of CRV > CRI is unaltered (Fig. A.5.4).  Because quadratic 

programming required by MOMA is harder to solve than linear programming used in FBA, CRV 

could have been overestimated compared with CRI.  To rectify this potential problem, we 

designed a quadratic programming-based MOMA named "MOMA-b" and used it instead of FBA 

to predict fluxes at the stage a (see Methods), but found that CRV still exceeds CRI (Fig. A.5.5).  

Thus, this trend is not a technical artifact of the solver difference between MOMA and FBA. 

 

6.3.3 Flux reversion largely restores the fluxes in the original environment 

To examine whether the flux reversion during genetic adaptation restores the fluxes at 

stage o, we compared the total change TC = |La - Lo| with 0.2Lo for each reaction with flux 

reversion, in each adaptation.  If TC < 0.2Lo, the flux is considered restored (Fig. 6.2b).  

Otherwise, we further compare PC with GC.  If GC > PC, the flux is over-restored; otherwise, it 

is under-restored (Fig. 6.2b).  Across the 50 adaptations, the mean fractions of reactions showing 

"restored", "over-restored", and "under-restored" flux reversion are 26.4%, 3.1%, and 0.7%, 

respectively, and the medians are 30.2%, 0.3%, and 0.1%, respectively (Fig. 6.2c).  Clearly, flux 

reversion largely restores the fluxes at the o stage.  

 

6.3.4 Predominance of flux reversion irrespective of the original environment  
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To investigate the generality of our finding of the predominance of flux reversion, we 

also examined adaptations with a non-glucose original environment.  For many original 

environments, however, only a few new environments are adaptable by the E. coli metabolic 

network.  We thus focused on 41 original environments (including the previously used glucose 

environment) that each has more than 20 adaptable (i.e., fp > 10-4) new environments.  For each 

of these original environments, we calculated the CRI/CRV ratio for each adaptable new 

environment, and found it to be typically lower than 0.1 (Fig. 6.2d).  We then computed the 

median CRI/CRV across all adaptable new environments from each original environment.  Across 

the 41 original environments, the largest median CRI/CRV is 0.11 and the median of median 

CRI/CRV is only 0.02.  Hence, regardless of the original environment, flux reversion is much 

more prevalent than reinforcement during genetic adaptations to new environments. 

 

6.3.5 Why phenotypic reversion is more frequent than reinforcement 

Our finding that phenotypic reinforcement is not only no more but actually much less 

frequent than reversion is unexpected and hence demands an explanation.  The observation of 

this trend in both transcriptomic and fluxomic analyses suggests a general underlying mechanism.  

Geometrically, it is obvious that when PC > TC, the genetic change must reverse the plastic 

change (left box in Fig. 6.3a).  By contrast, when PC < TC, reversion and reinforcement are 

equally likely if no other bias exists (right box in Fig. 6.3a).  Let the probability of PC > TC be 

q > 0.  CRI/CRV is expected to be[0.5(1 )] / [0.5(1 ) ] (1 ) / (1 ) 1q q q q q− − + = − + < .  In other words, 

as long as PC > TC for a few traits, reversion is expected to be more frequent than reinforcement 

(under no other bias). 
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To seek empirical evidence for the above explanation, for each of the 44 cases of 

experimental evolution, we calculated the fraction of genes whose expression changes satisfy 

PC > TC (Fig. 6.3b).  The mean and median fractions are 0.51 and 0.48, respectively.  

Furthermore, after we remove all genes for which PC > TC, there is no longer a preponderance 

of reversion (Fig. A.5.6a), indicating the sufficiency of our explanation.  Similarly, we computed 

the fraction of metabolic reactions showing PC > TC in the adaptation of the E. coli metabolic 

network from the glucose environment to each of the 50 new environments (Fig. 6.3c).  The 

mean and median fractions are 0.85 and 0.93, respectively.  Similarly, after the removal of 

reactions showing PC > TC, there is no general trend of more reversion than reinforcement 

across the 50 adaptations (Fig. A.5.6b).  These findings from transcriptome and fluxome 

analyses support that the abundance of reversion relative to reinforcement is explainable by the 

occurrence of greater PC than TC for non-negligible fractions of traits.   

Why does PC exceed TC for many traits?  A likely reason is that plastic changes allow 

organisms to survive upon a sudden environmental shift but the fitness is much reduced 

compared with that in the original environment as well as that after the adaptation to the new 

environment.  Thus, the overall physiological state of the organisms may be quite similar 

between the adapted stages in the original and new environments, but is much different in the 

low-fitness plastic stage right after the environmental shift.  This may explain why PC exceeds 

TC for many traits, regardless of whether the trait values are causes or consequences of the 

organismal fitness and physiology.  

We found strong evidence for the above model by metabolic network analysis.  First, 

using the predicted biomass production rate as a proxy for fitness, we compared the E. coli 

fitness at the plastic stage (fp) and that after adaptation to a new environment (fa), relative to that 
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in the original glucose environment, for each of the adaptations to the 50 new environments.  In 

all cases, fp < 1 (Fig. 6.3d), confirming that environmental shifts cause fitness drops before 

genetic adaptation.  We found that fa is typically close to 1, although in a few new environments 

it is much greater than 1 (Fig. 6.3d).  In a log10 scale, fp is more different from 1 than is fa in 43 

of the 50 adaptations (P = 1.0×10-7; one-tailed binomial test).  Second, our model assumes an 

association between flux changes and fitness changes (Ho and Zhang 2016).  Across the 50 

adaptions from the glucose environment, there is a strong negative correlation between fp and 

mean PC (Spearman's ρ = -0.98, P < 10-300; Fig. 6.3e).  An opposite correlation exists between fa 

and mean TC (ρ = 0.57, P = 1.1×10-5; Fig. 6.3f).  Together, our analyses demonstrate that the 

primary reason for a higher frequency of phenotypic reversion than reinforcement during 

adaptation is that, in terms of fitness and associated phenotypes, organisms at stage p are more 

different than those at stage a, when compared with those at stage o. 

 

6.3.6 Predominance of phenotypic reversion in random metabolic networks 

The plastic and genetic changes in gene expression level and metabolic flux during 

adaptations depend respectively on the regulatory network and metabolic network of the species 

concerned.  Because these networks result from billions of years of evolution, one wonders 

whether the predominance of phenotypic reversion is attributable to the evolutionary history of 

the species studied, especially the environments in which the species and its ancestors have been 

selected in the past, or an intrinsic property of any functional system.  To address this question, 

we applied the same analysis to 500 functional random metabolic networks previously generated 

(Ho and Zhang 2016).  These networks were constructed from iAF1260 by swapping its 

reactions with randomly picked reactions from the universe of all metabolic reactions in KEGG 
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(Kanehisa et al. 2016) as long as the network has a non-zero FBA-predicted fitness in the 

glucose environment upon each reaction swap (Barve and Wagner 2013).  

Only 20 new environments that iAF1260 can adapt to (from the glucose environment) are 

adaptable by at least 20 of the 500 random networks.  We thus analyzed the adaptations of 

random networks to each of these 20 new environments, with the glucose environment being the 

original environment.  For each new environment, the median CRV of all random networks that 

can adapt to this environment is generally around 0.1 (boxplots in Fig. 6.4a), with the median of 

median CRV being 0.11.  By contrast, median CRI across random networks for a new environment 

is generally below 0.01 (boxplots in Fig. 6.4b), with the median of median CRI being 0.0033.  

Median CRI/CRV ratio across random networks for a new environment is generally below 0.05 

(boxplot in Fig. 6.4c), with the median of the median CRI/CRV being 0.0033.  Clearly, the 

predominance of flux reversion is also evident in functional random networks, suggesting that 

this property is intrinsic to any functional metabolic network rather than a product of particular 

evolutionary histories.  Indeed, the mechanistic explanation for this property in actual organisms 

(Fig. 6.3) holds in the random metabolic networks.  Specifically, the fraction of reactions 

exhibiting PC > TC is substantial (Fig. 6.4d) and fp is mostly lower than 1 (Fig. 6.4e).  

Furthermore, fp is generally more different from 1 than is fa in a log10 scale, because |log10 fp| - 

|log10 fa| is largely positive (Fig. 6.4f).  

Intriguingly, however, for 19 of the 20 new environments, CRV in the E. coli metabolic 

network exceeds the median CRV in the random networks (Fig. 6.4a).  A similar but less obvious 

trend holds for CRI (Fig. 6.4b).  For 16 of the 20 new environments, CRI/CRV from E. coli is 

smaller than the median CRI/CRV of the random networks (P = 0.012, two-tailed binomial test; 

Fig. 6.4c).  Hence, although both the E. coli metabolic network and random networks show a 
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predominance of flux reversion, this phenomenon is more pronounced in the former than the 

latter.  Mechanistically, this disparity is explainable at least qualitatively by our model in the 

previous section.  Specifically, for 15 of the 20 new environments, the fraction of E. coli 

reactions with PC > TC exceeds the corresponding median fraction in random networks (P = 

0.021, one-tailed binomial test; Fig. 6.4d).  For all 20 new environments, fp of E. coli is lower 

than the median fp of random networks (P = 9.5×10-7, one-tailed binomial test; Fig. 6.4e).  For 19 

of the 20 new environments, |log10 fp| - |log10 fa| for E. coli is larger than the corresponding 

median value for the random networks (P = 2.0×10-5, one-tailed binomial test; Fig. 6.4f).  But, 

why is fp of E. coli lower than that of random networks?  One potential explanation is that the 

composition and structure of the E. coli metabolic network have been evolutionarily optimized 

for growth in the glucose environment and/or related environments, while the same is not true for 

the random networks, which were only required to be viable in the glucose environment.  As a 

result, when glucose is replaced with a new carbon source in a new environment, the fitness of E. 

coli drops substantially, but those of random networks may only drop mildly.  Although the 

absolute fitness in the plastic stage may well be higher for E. coli than the random networks, the 

relative fitness, which fp is, is expected to be lower for E. coli than the random networks.  Thus, 

the higher prevalence of flux reversion relative to reinforcement in E. coli than random networks 

is likely a byproduct of stronger selection of E. coli compared with random networks in the 

original environment used in our adaptation analysis.  

 

6.4 DISCUSSION 

Using the transcriptome data collected in a total of 44 cases of six different experimental 

evolutionary adaptations of three species (E. coli, yeast, and guppy) and the computationally 
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predicted fluxomes of E. coli in hundreds of different environmental adaptations, we showed that 

genetic adaptations to new environments overwhelmingly reverse, rather than reinforce plastic 

phenotypic changes.  Our fluxome analyses have several caveats worth discussion.  First, 

because MOMA minimizes the total squared flux difference from the original flux, plastic 

changes could have been underestimated, but this bias would only make our conclusion more 

conservative.  Second, a bias could exist owing to potentially different accuracies of MOMA and 

FBA that are respectively used to predict plastic and genetic flux changes.  To tackle this 

problem, we designed a MOMA-based algorithm to infer both plastic and genetic changes, but 

found the results to be qualitatively unchanged (Fig. A.5.5).  Third, we considered only single-

carbon source environments in our analyses while the natural environments of E. coli can be 

much more complex.  We thus simulated adaptations from the glucose environment to 

environments with mixed carbon sources (see Methods), but found our conclusion unaltered (Fig. 

A.5.7).  Fourth, computational flux predictions by FBA and MOMA inevitably contain errors.  

But, the fact that our fluxome-based conclusion qualitatively match the transcriptome-based 

conclusion suggests that our fluxome analysis is reliable.  Furthermore, some of our flux 

analyses are largely immune to flux prediction errors.  For example, because the E. coli 

metabolic network and random metabolic networks were analyzed using the same method, their 

difference discovered is unlikely explainable by flux prediction errors.  As mentioned, our 

transcriptome analysis also has a caveat.  Because the organisms were not fully adapted to the 

new environments at the end of experimental evolution, it is possible that a trait currently not 

considered to show reversion or reinforcement due to insufficient genetic change would show 

one of these two patterns if allowed to adapt further.  However, because our results are robust to 
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different cutoffs used (0.05Lo to 0.5Lo) in the definition of genetic changes (Figs. S2-S3), our 

finding of the preponderance of expression level reversion is minimally impacted by this caveat. 

In our analyses, we compared the directions of plastic and genetic changes for all traits 

with plastic and genetic changes greater than a preset cutoff.  One may argue that evolutionary 

biologists are interested only in those traits whose optimal values in two different environments 

are different.  We thus focused on traits whose TC > 0.2Lo.  Of the 44 cases of experimental 

evolution, 33 showed more expression level reversion than reinforcement (P = 0.0013, two-tailed 

binomial test; Fig. A.5.8a).  Of the 50 environmental adaptations of the E. coli metabolic 

network, three cases had equal numbers of flux reversion and reinforcement.  Of the remaining 

47 cases, 22 showed more reversion than reinforcement, while 25 showed the opposite (P = 0.77, 

two-tailed binomial test; Fig. A.5.8b).  Hence, even among traits with TC > 0.2Lo, there is no 

evidence for significantly more reinforcement than reversion either. 

In all analyses, we regarded phenotypic reinforcement as evidence for the steppingstone 

role of plasticity in adaptation, and regarded phenotypic reversion as evidence against this 

hypothesis (Ghalambor et al. 2015).  One could argue that although reinforcement supports the 

hypothesis, reversion is not necessarily against the hypothesis.  Specifically, if a plastic change 

moves the organismal phenotype closer to the optimum in the new environment but overshoots, 

the genetic change required to bring the phenotype to the optimum may be smaller than that in 

the absence of plasticity.  To investigate this scenario, we considered all traits with PC and GC 

both larger than a preset cutoff as was done in the definition of reinforcement and reversion.  We 

then regarded the plastic change of a trait as constructive if GC < TC, or destructive if GC > TC.  

We computed the fraction of traits showing constructive changes (CCON) and that showing 

destructive changes (CDES) in each adaptation.  In 32 of the 44 cases of experimental evolution, 
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CDES exceeds CCON, demonstrating an overall preponderance of destructive plasticity (P = 

3.7×10-3, two-tailed binomial test; Fig. A.5.9a).  Furthermore, CDES/CCON is likely 

underestimated in the above analysis, because the fact that adaptions to new environments had 

not ceased by the end of experimental evolution means that cases currently classified as 

constructive can become destructive.  This is because GC will probably increase in further 

adaptations while TC will either increase by the same amount as GC−resulting in no change in 

GC relative to TC−or decrease, causing an increase in GC relative to TC.  For the adaptations of 

the E. coli metabolic network from the glucose environment to the 50 new environments, the 

above underestimation does not exist, and CDES is found to exceed CCON in every adaptation (P = 

1.8×10-15, two-tailed binomial test; Fig. A.5.9b).  Thus, the comparison between constructive 

and destructive plasticity also refutes the hypothesis that plasticity is a steppingstone to 

adaptation. 

We provided evidence that the cause for the preponderance of phenotypic reversion is 

that, even with plasticity, organismal fitness drops precipitously after environmental shifts, but 

more or less recovers through subsequent evolution; such fitness trajectories dictate that many 

fitness-associated traits are drastically altered at the plastic stage but are then restored via 

adaptive evolution.  Our model is supported by the observation that stress response is frequently 

associated with growth cessation as well as reductions in the expression levels of growth-related 

genes and concentrations of central metabolites (Gasch et al. 2000; Lopez-Maury et al. 2008; 

Jozefczuk et al. 2010).  It is also consistent with the notion that genetic adaptation tends to 

rebalance the energy allocation in growth that is broken in stress response and that the 

physiological state of organisms after the rebalance in the new environment is similar to that in 

the original environment (Fong et al. 2005; Grether 2005; Lopez-Maury et al. 2008; Carroll and 
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Marx 2013; Rodriguez-Verdugo et al. 2016).  Together, these considerations suggest that plastic 

phenotypic changes in new environments represent emergent responses that may be important 

for organismal survival, but are otherwise not steppingstones for genetic adaptations to the new 

environments.  The similar observation in functional random metabolic networks suggests that 

our conclusion is likely to be general to most functional systems regardless of the specific 

evolutionary histories of the systems.  

It is important to stress that our study focuses exclusively on adaptations to new 

environments that the organisms have not experienced at least in the recent past.  For those 

environments that have been experienced by the organisms in the recent past, it is possible that 

mutations conferring plastic phenotypic changes that are beneficial in these environments have 

been fixed and there is no controversy that adaptive plasticity can evolve under this scenario.  

 

6.5 MATERIALS AND METHODS 

6.5.1 Gene expression analysis 

Transcriptome datasets from six experimental adaptations were acquired from five 

studies.  For each replicate of each adaptation, the data included gene expression levels of 

ancestral organisms in the original environment (stage o), ancestral organisms in the new 

environment (stage p), and evolved organisms in the new environment (stage a).  For each 

dataset, we removed genes with any missing expression levels and then normalized gene 

expression levels such that the mean expression level of all genes is the same across all datasets.   

The first dataset came from the experimental evolution of E. coli K-12 MG1655 in a 

42°C medium with ten replicates (Sandberg et al. 2014).  The authors performed RNA 

sequencing (RNA-seq) using (i) the ancestral line at 37°C, (ii) ancestral line at 42°C, and (iii) ten 
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parallelly evolved lines at 42°C, and these data were respectively used to estimate the Lo, Lp, and 

La of 4341 genes.  All expression levels measured in FPKM were available in their Dataset S3. 

The second dataset came from the experimental evolution of E. coli B REL1206 in a 

42°C medium (Rodriguez-Verdugo et al. 2016).  The authors performed RNA-seq using (i) the 

ancestral line at 37°C, (ii) ancestral line at 42°C, and (iii) two evolved lines at 42°C, and (iv) four 

lines each carrying a distinct adaptive mutation at 42°C.  We respectively used (i) to estimate Lo, 

(ii) to estimate Lp, and both (iii) and (iv) to estimate La of 4202 genes.  All expression levels 

measured by DESeq were provided by the authors.  

The third and fourth datasets came from the experimental evolution of E. coli K-12 

MG1655 in glycerol and lactate medium, respectively (Fong et al. 2005).  The authors used 

Affymetrix E. coli Antisense Genome Arrays to profile the transcriptome of (i) the ancestral line 

in glucose, (ii) ancestral line in glycerol, (iii) ancestral line in lactate, (iv) seven parallelly 

evolved lines in glycerol on day 21, (v) seven parallelly evolved lines in glycerol on day 44, (vi) 

seven parallelly evolved lines in lactate on day 20, and (vii) seven parallelly evolved lines in 

lactate on day 60. Each line has three replicates, except that the profile (iii) has six replicates.  

We averaged gene expression levels across replicates for each line.  For the adaptation to the 

glycerol medium, we respectively used (i) to estimate Lo, (ii) to estimate Lp, and (v) to estimate 

La.  For the adaptation to the lactate medium, we respectively used (i) to estimate Lo, (iii) to 

estimate Lp, and (vii) to estimate La.  Transcriptomes of (ii)-(vii) were downloaded from GEO 

with the accession number GSE33147, whereas that of (i) was provided by the authors.  In total, 

3745 genes were considered. 

The fifth dataset came from the experimental evolution of 12 different strains of yeast 

(Saccharomyces cerevisiae) in an xylulose medium (Tamari et al. 2016).  The authors performed 
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RNA-seq using (i) 12 ancestral lines in a glucose medium, (ii) 12 ancestral lines in the xylulose 

medium, and (iii) 12 evolved lines in the xylulose medium.  Each line has two replicates, and the 

averaged expression levels of the two replicates were used.  We respectively used (i) to estimate 

Lo, (ii) to estimate Lp, and (iii) to estimate La of 2235 genes.  All expression levels in terms of 

UMI scoring normalized counts were downloaded from GEO with the accession number 

GSE76077. 

The sixth dataset came from the experimental evolution of Trinidadian guppies (Poecilia 

reticulata) originating from streams with high numbers of cichlid predators (HP environment) in 

cichlid-free streams (LP environment) (Ghalambor et al. 2015).  The authors performed RNA-

seq of brain tissues from (i) guppies caught in HP, (ii) guppies caught in HP but reared in LP, 

and (iii) two populations of guppies in LP after experimental evolution.  We respectively used (i) 

to estimate Lo, (ii) to estimate Lp, and (iii) to estimate La of 37,493 genes.  All expression levels 

in terms of TMM-normalized counts measured by edgeR were provided by the authors.  

 

6.5.2 Metabolic network analysis 

The SMBL file of the E. coli metabolic network model iAF1260 (Feist et al. 2007) was 

downloaded from BiGG(Schellenberger et al. 2010) and parsed by COBRA(Schellenberger et al. 

2011).  All linear and quadratic programming problems in this study were solved by the barrier 

method using Gurobi optimizer with MATLAB (method = 2).  Numerical differences smaller 

than 10-4 were ignored in the analysis.  The codes are available upon request.  

We used FBA to estimate the fluxes of the E. coli network when it is fully adapted to an 

environment.  FBA assumes a metabolic steady state and maximizes the rate of biomass 
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production (Orth et al. 2010).  Mathematically, FBA is a linear programming question in the 

following form 

maximize cTv, subject to Sv = 0 and α ≤ v ≤ β, 

where v is a vector of reaction fluxes that need to be optimized, cT is a transposed vector 

describing the relative contributions of various metabolites to the cellular biomass, S is a matrix 

describing the stoichiometric relationships among metabolites in each reaction, α is a vector 

describing the lower bound of each flux, and β is a vector describing the upper bound of each 

flux.  

The model iAF1260 includes 258 exchange reactions each of which allows the uptake of 

one carbon source.  In the estimation of the fully adapted flux distribution in one environment, 

the uptake rate of the focal carbon source was set at 10 mmolgDW-1h-1, which follows the setting 

in a previous study for a glucose-limited medium (Feist et al. 2007), while the uptake rates of 

other carbon sources were set at zero.  The uptake rates of non-carbon sources such as water, 

oxygen, carbon dioxide, and ammonium were set as in the previous study (Feist et al. 2007).  

Note that some reactions are simple diffusions between different cellular compartments.  

Because these reactions do not have dedicated enzymes and are not “mutable”, we excluded 

them from the list of phenotypic traits considered.  In total, 1811 reactions were considered. 

We used minimization of metabolic adjustment (MOMA) to simulate plastic flux changes 

when E. coli is shifted from one environment to another (Segre et al. 2002).  The mathematical 

form of MOMA is  

minimize (v - v0)2, subject to Sv = 0 and α ≤ v ≤ β, 
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where v is the vector of all reaction fluxes upon the environmental shift and is the variable to 

optimize, v0 is the vector of all reaction fluxes in the original environment and are predetermined 

using FBA.  S, α, and β are the same as described for FBA. 

To ensure that our results are not artifacts of different optimization accuracies of FBA 

and MOMA, we designed MOMA-b and used it to predict the fluxes in organisms adapted to 

new environments.  In addition to having the same objective function and constraints as in 

MOMA, MOMA-b has a biomass constraint.  Specifically, we set the biomass production rate in 

MOMA-b to be the same as what FBA predicts for organisms adapted to the new environment. 

The mathematical form of this new optimization question is 

minimize (v - v0)2, subject to Sv = 0, α ≤ v ≤ β, and cTv  = b, 

where the variables v and parameters v0, S, α, and β are the same as described for MOMA, and b 

is the FBA-predicted biomass production rate in the new environment.  This optimization 

problem is still a quadratic programming problem and its solution can differ from that of FBA.  

In addition to using single-carbon source environments, we followed a previous study 

(Wang and Zhang 2009b) to generate 100 environments with multiple carbon sources.  In each 

environment, we generated a random number g from an exponential distribution with a mean of 

0.1 for each of the 258 carbon sources.  Here, g is the probability that the carbon source is 

available.  The actual presence or absence of the carbon source is then determined stochastically 

using g.  These random environments have a mean of 28 and a median of 21 carbon sources per 

environment.  
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Figure 6.1 Genetic adaptations in experimental evolution more frequently reverse than 
reinforce plastic gene expression changes.  (a) Phenotypic adaptation is studied by comparing 
the phenotypic values of a trait at three stages: ancestral organisms adapted to the original 
environment measured in the original environment (stage o), ancestral organisms measured in 
the new environment (stage p), and evolved organisms adapted to the new environment 
measured in the new environment (stage a).  Plastic changes refer to changes from stage o to p, 
while genetic changes refer to changes from stage p to a.  (b) A pair of plastic and genetic 
phenotypic changes of a trait are said to be reinforcing if both are larger than a preset cutoff and 
are in the same direction.  (c) A pair of plastic and genetic phenotypic changes of a trait are said 
to be reversing if both are larger than a preset cutoff but are in opposite directions.  (d) Fractions 
of genes with reinforcing and reversing expression changes, respectively, in experimental 
evolution.  Organisms as well as the new environments to which the organisms were adapting to 
are indicated.  Each bar represents an adaptation.  The equality in the fraction of reinforcing and 
reversing genes in each adaptation is tested by a two-tailed chi-squared test, with P-values 
indicated as follows: *, P < 0.05; **, P < 10-10; ***, P < 10-100.  
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Figure 6.2 Predominance of flux reversion in the environmental adaptations of E. coli.  (a) 
Fractions of reactions with reinforcing and reversing flux changes, respectively, in the adaptation 
from the glucose environment to each of 50 new environments.  Each bar represents the 
adaptation to a new environment.  The equality in the fraction of reinforcing and reversing 
reactions is tested by a two-tailed chi-squared test, with P-values indicated as follows: *, P < 
0.05; **, P < 10-10; ***, P < 10-100.  (b) Classification of reversion to three categories based on 
whether the phenotypic value in the original environment is under-restored, restored, or over-
restored.  (c) Fractions of the three categories of reversion in each of the 50 adaptations.  (d) 
Fraction of reinforcing reactions relative to fracion of reversing reactions (CRI/CRV) in E. coli 
adaptations to at least 20 new environments from each of 41 original environments examined.  
The CRI/CRV ratios for all adaptations from each original environment are presented in a box plot, 
where the lower and upper edges of a box represent the first (qu1) and third quartiles (qu3), 
respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to 
the most extreme values inside inner fences, md±1.5(qu3-qu1), and the circles represent values 
outside the inner fences (outliers).  
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Figure 6.3 Cause of the preponderance of phenotypic reversion in adaptation.  (a) Diagram 
illustrating the model.  The left box shows that if the plastic change (PC) is bigger than the total 
change (TC), the genetic change must reverse the plastic change.  One reason for PC > TC is that 
the fitness difference between organisms at stages o and p is larger than that between stages o 
and a.  The right box shows that if PC < TC, the genetic change may reinforce or reverse the 
plastic change.  This may occur if the fitness difference between organisms at stages o and p is 
smaller than that between o and a or if the phenotype is unassociated with fitness.  (b) Fraction 
of genes showing expression PC > TC during each of 44 experimental evolutionary adaptations.  
(c) Fraction of reactions showing flux PC > TC during each of the E. coli metabolic adaptations 
from the glucose environment to the 50 new environments.  (d) Fitness at stage p and that at 
stage a, relative to that at stage o, predicted by metabolic network analysis, for each of the 50 
adaptations in panel c.  The dotted line shows the fitness at stage o.  (e) Mean PC across all 
fluxes negatively correlates with the relative fitness at stage p (fp) among the 50 adaptations in 
panel c.  (f) Mean TC across all fluxes positively correlates with the relative fitness at stage a (fa) 
among the 50 adaptations in panel c.   
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Figure 6.4 Predominance of flux reversion in random metabolic networks.  Fractions of 
reactions showing flux reversion (CRV) (a), fractions of reactions showing flux reinforcement 
(CRI) (b), CRI/CRV ratios (c), fraction of reactions showing PC > TC (d), relative fitness at stage p 
(fp) (e), and |log10fp| - |log10fa| (f) in the adaptations of random networks from the glucose 
environment to each of the 20 new environments examined.  For each new environment, values 
estimated from different random networks are shown by a box plot, with symbols explained in 
the legend to Figure 6.2.  The corresponding values for the E. coli iAF1260 network are shown 
by red diamonds. 
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Chapter 7 

Conclusions 

 

Before discussing the limitations and future directions, I will first summarize the 

findings presented in each chapter of the dissertation.  

In chapter 2, I gave a statistical summary of parameters in genotype-phenotype 

maps. Specifically, I found the averaged proportion of genes affecting a trait is 6% - 9% 

with a range from <1% to >30%. In addition, consistent with Robertson’s model, I found 

that most traits are affected by many small-effect genes as well as few large-effect genes.  

In the following part of chapter 2 and the entire chapter 3, using yeast 

morphological traits, yeast gene expression traits, and E. coli metabolic flux traits, I 

found the evidence supporting the adaptive hypothesis of genetic robustness as well as 

refuting intrinsic hypothesis and congruent hypothesis. The main evidence is the 

observation that more important traits tend to be genetically more buffered, and this trend 

remains even after the control of the ability to buffer environmental variations. Therefore, 

genotype-phenotype maps evolve as the effect sizes are reduced by adaptive genetic 

robustness.  

In chapter 4, in yeast morphological traits, I found that more important traits tend 

to evolve faster relative to their mutational sizes. Therefore, the phenotypic evolution of 

these traits is generally adaptive. However, I did not find such trend when using in yeast 

expression level traits, suggesting they are generally under neutral evolution. 
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In chapter 5, I found that pleiotropy-caused mutational correlations predict the 

correlation of evolutionary distances using yeast morphological traits. Moreover, high 

mutational correlation constrains the phenotypic distances while small amount of 

mutational correlation facilitates it.  

Finally, in chapter 6, I found that the plastic responses tend to be on the contrary 

direction compared with the next step of genetic change in adaptation using expression 

level traits from multiple species and metabolic flux traits from E. coli. Therefore 

phenotypic plasticity does not generally serve as a steppingstone for adaptation.  

Below I will point out some limitations and suggest some future directions which 

potentially deal with these limitations.  

Traits choices in genotype-phenotype maps 

Because different kinds of traits have different properties such as their importance 

to fitness, my findings may not be generally applicable to other kinds of traits. However, 

some of my findings are consistent across different classes of traits such as the adaptive 

hypothesis of genetic robustness and the role of phenotypic plasticity on adaptation. At 

the same time, not all of my findings are the same when different kinds of traits are 

focused. For example, when testing the adaptive hypothesis of phenotypic evolution, 

yeast morphological and yeast gene expression traits show opposite results. Given that 

the applicability is not general, it is of interests to explain when and why some results are 

applicable. For example, the discrepant results of testing phenotypic evolution are 

consistent with the view that different classes of traits have different important levels to 

fitness. In particular, morphological traits should be more important to fitness than 

expression level traits should be. Many kinds of trait have not been tested in my works 
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such as protein abundances, various ways of expression regulation, metabolite 

concentrations, and so on. Potentially, these classes of traits should show the importance 

level somewhere between transcript abundances and morphology. With the help of 

related omics data, the generality of my findings could be further tested. More 

importantly, when different classes of traits show different results, it will be interesting to 

examine the association between the results and their importance to fitness.  

Focused organisms in genotype-phenotype maps 

In my dissertation, due to data availability and quality, the microorganisms such 

as E. coli and yeast are tended to be studied. Because they have larger effective 

population size, their evolution is expected to be more affected by natural selection. In 

the future, it will be interesting to examine whether my findings are still true in other 

species. In particular, when nature selection is involved as an evolutionary force of the 

finding, it is expected to see the signal strength of that finding decreases in the species 

with a smaller effective population size. On the contrary, when natural selection is not 

involved, it is expected to see no association between the signal strength and the effect 

population size. Such approach will not only further test the generality of my findings but 

also synthesize a more universal theory in explaining and predicting evolution 

consequences.  

Epistasis in genotype-phenotype maps 

In the gene-trait bipartite expression of genotype-phenotype maps, epistasis, 

defined as the nonadditivity between mutational effects, has been ignored. Accordantly, 

epistasis is not considered in my presented works here. However, in other expressions of 

genotype-phenotype maps such as fitness landscapes, epistasis has been the central issue 
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because it could largely limit the number of possible adaptive trajectories and make the 

evolution more predictable (Phillips 2008; de Visser and Krug 2014). Several attempts 

have been made in systematically quantify epistasis, including forward genetic methods 

(Mackay 2014), reverse genetic methods (Tong et al. 2001; Li et al. 2016; Puchta et al. 

2016), and model prediction methods (He et al. 2010). It will be interesting to study the 

maps of epistasis effects, their evolution and their impacts on evolution. The potential 

questions include whether epistasis is more likely to be positive or negative, whether 

epistasis is buffered by genetic robustness, whether epistasis evolves adaptively, and 

whether epistasis-caused genetic correlation impacts the rate of phenotypic evolution. 

Using genotype-phenotype maps as a paradigm in studying evolution  

Evolutionary outcomes result from both mutations and selections. Therefore, 

comparing evolutionary outcomes with mutational inputs could infer the historical action 

of selection. Such approach is widely used in molecular evolution. For example, in order 

to test positive or negative selection after speciation, one could compare nonsynonymous 

and synonymous sequence substitutions controlled by the mutation inputs form 

population data, which is known as McDonald–Kreitman test (Mcdonald and Kreitman 

1991). In phenotypic evolution, however, such approach is rare due to the lacking of 

known mutational inputs. With the availability of genotype-phenotype maps, it is 

expected to see more incorporation of such approach in studying phenotypic evolution 

( e.g. Metzger et al. 2015).  

In addition, while genotype-phenotype maps are claimed to be useful in predicting 

evolutionary outcomes, the verification of the prediction power is generally lack. Such 

verification can be done in the context of experimental evolution. For example, given 
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organisms with a certain genetic background, one can construct its genotype-phenotype 

map in a certain environment. After performing experimental evolution in that new 

environment, by comparing the spectrum of mutational inputs and evolutionary outcome, 

one can study how much mutational inputs predict evolutionary outcomes. For example, 

one can ask whether any kind of mutational property, such as effect size or pleiotropy, 

determines the chance of mutation to reach fixation in evolution. Note that, in most 

published studies of experimental evolution, the repeatability is studied by parallelism 

(Lenski and Travisano 1995; Cooper et al. 2003; Kryazhimskiy et al. 2014; Venkataram 

et al. 2016). However, without knowing the mutational inputs, it is unclear that the 

repeatability comes from selection or biased mutational inputs. In addition, it is 

interesting to ask whether any emergent property, such as robustness or modularity, 

determines the evolutionary repeatability. By understanding the variability of 

repeatability, the predictability in evolutionary biology will be largely improved.  

Finally, given that the properties of genotype-phenotype maps could have 

consequences in evolution, it will be also interesting to improve the prediction of 

evolution of those properties. However, due to the demand of mapping highly complex 

traits or higher-order interactions, this topic is expected to be more difficult to study. In 

the future, if the methodological improvement makes constructing genotype-phenotype 

maps much easier, answering these difficult high-dimensional questions on genotype-

phenotype maps should shed more lights in finding general principles of evolution. 
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A.1 Supplementary tables and figures for chapter 2 
 
 
 
Table A.1.1 Rank correlation between trait importance (TI) and mean net effect size 
(|ES|) or phenotypic variation (CV) of the wild-type when only positive effects or 
negative effects are considered. 

 
 
 
  

Effects 
considered 

Variables  
correlated 

Variables 
controlled Spearman’s ρ  p-value 

positive TI, CV   -0.712 <1e-300 

positive TI, mean net |ES|  -0.604 <1e-300 

positive TI,  CV  mean net |ES| -0.610 7.1e-22 

positive TI,  mean net |ES| CV  -0.434 1.2e-10 

negative TI, CV   -0.569 <1e-300 

negative TI, mean net |ES|  -0.485 <1e-300 

negative TI,  CV  mean net |ES| -0.392 7.9e-09 

negative TI,  mean net |ES| CV  -0.209 2.9e-03 
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Table A.1.2  Spearman’s rank correlation between the importance of a gene 
expression trait to fitness and the mean effect size of gene deletion (|ESG|) or 
environmental perturbation (|ESE|) after expression levels are controlled. 

1. Fitness defect caused by deleting the gene. 
2. Essentiality = 0 for nonessential traits and 1 for essential traits. 
3. Expression level of the gene in the wild-type. 
 
 
  

Variables correlated Variables controlled Spearman’s ρ  p-value 

Fitness effect1, |ESE| Expression level3 -0.196 2.2e-16 

Fitness effect1, |ESG| Expression level3 -0.185 2.6e-25 

Fitness effect1, |ESE| Expression level3 and |ESG| -0.145 3.5e-16 

Fitness effect1, |ESG| Expression level3 and |ESE| -0.129 4.5e-13 

Essentiality2, |ESE| Expression level3 -0.117 5.7e-11 

Essentiality2, |ESG| Expression level3 -0.127 1.3e-12 

Essentiality2, |ESE| Expression level3 and |ESG| -0.080 7.7e-06 

Essentiality2, |ESG| Expression level3 and |ESE| -0.094 1.6e-07 
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Table A.1.3 Spearman’s rank correlation between the importance of a gene 
expression trait to fitness and the mean effect size of gene deletion (|ESG|) or 
environmental perturbation (|ESE|) when |ESE| were measured in all environmental 
changes. 

1. Fitness defect caused by deleting the gene. 
2. Essentiality = 0 for nonessential traits and 1 for essential traits. 
3. Expression level of the gene in the wild-type. 
  

Variables correlated Variables controlled Spearman’s ρ  p-value 

Fitness effect1, |ESE|  -0.191 6.6e-27 

Fitness effect1, |ESG|  -0.180 3.7e-24 

Fitness effect1, |ESE| |ESG| -0.138 9.4e-15 

Fitness effect1, |ESG| |ESE| -0.123 5.5e-12 

Essentiality2, |ESE|  -0.117 6.4e-11 

Essentiality2, |ESG|  -0.125 2.2e-12 

Essentiality2, |ESE| |ESG| -0.078 1.3e-05 

Essentiality2, |ESG| |ESE| -0.091 4.1e-07 

Fitness effect1, |ESE| Expression level3 -0.234 5.8e-40 

Fitness effect1, |ESG| Expression level3 -0.185 2.6e-25 

Fitness effect1, |ESE| Expression level3 and |ESG| -0.183 7.8e-25 

Fitness effect1, |ESG| Expression level3 and |ESE| -0.111 4.5e-10 

Essentiality2, |ESE| Expression level3 -0.141 2.4e-15 

Essentiality2, |ESG| Expression level3 -0.127 1.3e-12 

Essentiality2, |ESE| Expression level3 and |ESG| -0.104 6.9e-09 

Essentiality2, |ESG| Expression level3 and |ESE| -0.083 4.0e-06 



	 176 

Table A.1.4 Spearman’s rank correlation between the importance of a gene 
expression trait to fitness and the mean effect size of gene deletion (|ESG|) or 
environmental perturbation (|ESE|) after the removal of highly correlated 
expressional traits. 

1. Fitness defect caused by deleting the gene. 
2. Essentiality = 0 for nonessential traits and 1 for essential traits. 
3. Expression level of the gene in the wild-type. 
  

Variables correlated Variables controlled Spearman’s ρ  p-value 

Fitness effect1, |ESE|  -0.156 6.2e-10 

Fitness effect1, |ESG|  -0.181 5.1e-13 

Fitness effect1, |ESE| |ESG| -0.099 8.9e-05 

Fitness effect1, |ESG| |ESE| -0.136 6.3e-08 

Essentiality2, |ESE|  -0.104 4.0e-05 

Essentiality2, |ESG|  -0.131 2.1e-07 

Essentiality2, |ESE| |ESG| -0.062 1.5e-02 

Essentiality2, |ESG| |ESE| -0.101 6.5e-05 

Fitness effect1, |ESE| Expression level3 -0.196 4.7e-15 

Fitness effect1, |ESG| Expression level3 -0.185 1.7e-13 

Fitness effect1, |ESE| Expression level3 and |ESG| -0.141 2.1e-08 

Fitness effect1, |ESG| Expression level3 and |ESE| -0.124 8.2e-07 

Essentiality2, |ESE| Expression level3 -0.126 5.3e-07 

Essentiality2, |ESG| Expression level3 -0.132 1.7e-07 

Essentiality2, |ESE| Expression level3 and |ESG| -0.085 7.7e-04 

Essentiality2, |ESG| Expression level3 and |ESE| -0.093 2.3e-04 
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Table A.1.5 Spearman’s rank correlation between the importance of a gene 
expression trait to fitness and the mean effect size of gene deletion (|ESG|) or 
environmental perturbation (|ESE|) for genes with or without canonical TATA 
boxes, respectively. 

1. Fitness defect caused by deleting the gene. 
2. Essentiality = 0 for nonessential traits and 1 for essential traits. 
3. Expression level of the gene in the wild-type. 
4. bold numbers: p>0.05. 
  

Variables 
correlated Variables controlled 

TATA (n=563) Non-TATA (n=2726) 

 Spearman’s ρ  p-value   Spearman’s ρ  p-value  

Fitness effect1, |ESE|   -0.185 2.4E-04   -0.178 6.7E-21  

Fitness effect1, |ESG|   -0.267 8.5E-08   -0.155 4.0E-16  

Fitness effect1, |ESE| |ESG|  -0.062 2.2E-01   -0.139 3.4E-13  

Fitness effect1, |ESG| |ESE|  -0.206 4.4E-05   -0.107 2.3E-08  

Essentiality2, |ESE|   -0.168 8.4E-04   -0.105 3.7E-08  

Essentiality2, |ESG|   -0.201 6.2E-05   -0.109 1.3E-08  

Essentiality2, |ESE| |ESG|  -0.081 1.1E-01   -0.076 7.4E-05  

Essentiality2, |ESG| |ESE|  -0.138 6.6E-03   -0.080 2.6E-05  

Fitness effect1, |ESE| Expression level3  -0.232 3.6E-06   -0.214 1.2E-29  

Fitness effect1, |ESG| Expression level3  -0.294 3.4E-09   -0.147 1.5E-14  

Fitness effect1, |ESE| Expression level3 and |ESG|  -0.112 2.8E-02   -0.179 5.6E-21  

Fitness effect1, |ESG| Expression level3 and |ESE|  -0.215 1.9E-05   -0.085 9.3E-06  

Essentiality2, |ESE| Expression level3  -0.205 4.6E-05   -0.124 7.9E-11  

Essentiality2, |ESG| Expression level3  -0.221 1.1E-05   -0.102 9.0E-08  

Essentiality2, |ESE| Expression level3 and |ESG|  -0.118 2.0E-02   -0.097 3.8E-07  

Essentiality2, |ESG| Expression level3 and |ESE|  -0.144 4.5E-03   -0.067 4.9E-04  



	 178 

 
Figure A.1.1  Fraction of genes affecting a trait under different cutoffs, with or 
without corrections for environmental variation and multiple testing.  (a) Fraction of 
genes (fmt) affecting a trait under p < 0.05, without corrections.  (b) Fraction (fwt) of wild-
type replicate populations that show significant deviations from an arbitrarily selected 
wild-type population.  The corrected fraction of genes affecting a trait (fgenes) is shown in 
Fig. 2.1c.  (c) Corrected fraction of genes (fgenes) affecting a trait under p < 0.01.  (d) 
Corrected fraction of genes (fgenes) affecting a trait under p < 0.1.  (e) Corrected fraction 
of genes (fgenes) affecting a trait estimated by examining whether the mean trait value of a 
mutant would be an outlier in the distribution of the 123 means of the wild-type replicate 
populations.  A deletion is annotated to affect a trait if the mean trait value of the mutant 
is in either the left or right 2.5% tail of the distribution of the 123 mean trait values of the 
123 wild-type replicate populations.  However, given that 4718 deletions are tested per 
trait, there are 236 expected deletions located in these two tails simply by chance.  
Therefore, the total number of genes affecting a trait is either corrected by subtracting 
236 or set as zero if the original number is less than 236.  
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Figure A.1.2  Fraction of genes (fgenes) affecting a trait after the removal of highly 
correlated traits. 
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Figure A.1.3  Sources of phenotypic variations of wild-type cells.  Standard deviation 
among population means generally exceeds the average standard error of individual 
replicate populations, indicating the existence of environmental variation among replicate 
populations.  The dotted line shows the expectation when there is no environmental 
difference among replicate populations. 
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Figure A.1.4  No significant correlation between the corrected fraction of genes 
affecting a trait (fgenes) and trait importance (TI).  (a) Weak positive correlation 
between the corrected fraction of genes affecting a trait (fgenes) and trait importance (TI).  
Each dot is a trait.  (b) Distribution of Fisher’s z derived from the rank correlation 
between the corrected fraction of genes affecting a trait (fgenes) and trait importance (TI).  
The real z observed from the actual data is indicated by an arrowhead and the p-value is 
the probability that a randomly picked pseudo z is more positive than the real z.  
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Figure A.1.5  Environmental/stochastic robustness and genetic robustness of yeast 
morphological traits using less correlated traits.  (a) The phenotypic variation (CV) of 
a trait among isogenic wild-type cells decreases with the rise of trait importance (TI), 
demonstrating environmental/stochastic robustness.  Each dot is a trait.  (b) Distribution 
of Fisher’s z derived from the rank correlation between CV and pseudo TI.  (c) The mean 
net |ES| of gene deletion on a trait decreases with the rise of trait importance (TI), 
demonstrating genetic robustness.  Each dot is a trait.  (d) Distribution of Fisher’s z 
derived from the rank correlation between mean net |ES| and pseudo TI.  (e) Distribution 
of Fisher’s z derived from the partial rank correlation between CV and pseudo TI, after 
the control of mean net |ES|.  (f) Distribution of Fisher’s z derived from the partial rank 
correlation between mean net |ES| and pseudo TI, after the control of CV.  In (b), (d), (e), 
and (f), the real z observed from the actual data is indicated by an arrowhead and the p-
value is the probability that a randomly picked pseudo z is more negative than the real z.   
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Figure A.1.6  Negative correlation between transformed mean net effect size (|ES|) 
and the importance of principal component traits.  Each dot is a principal component 
trait. 
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Figure A.1.7  Environmental/stochastic robustness and genetic robustness of yeast 
morphological traits when trait importance is estimated using a log model (see 
Materials and Methods).  (a) The phenotypic variation (CV) of a trait among isogenic 
wild-type cells decreases with the rise of trait importance (TI), demonstrating 
environmental/stochastic robustness.  Each dot is a trait.  (b) Distribution of Fisher’s z 
derived from the rank correlation between CV and pseudo TI.  (c) The mean net |ES| of 
gene deletion on a trait decreases with the rise of trait importance (TI), demonstrating 
genetic robustness.  Each dot is a trait.  (d) Distribution of Fisher’s z derived from the 
rank correlation between mean net |ES| and pseudo TI.  (e) Distribution of Fisher’s z 
derived from the partial rank correlation between CV and pseudo TI, after the control of 
mean net |ES|.  (f) Distribution of Fisher’s z derived from the partial rank correlation 
between mean net |ES| and pseudo TI, after the control of CV.  In (b), (d), (e), and (f), the 
real z observed from the actual data is indicated by an arrowhead and the p-value is the 
probability that a randomly picked pseudo z is more negative than the real z.  
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A.2 Supplementary tables and figures for chapter 3 
 
 

 

 
Figure A.2.1  Frequency distribution of FBA-predicted mutant fitness relative to the 
wild-type upon the removal of a reaction in E. coli.  (A) The distribution shown with a 
linear scale on the X-axis.  (B) The distribution shown with a log scale on the X-axis. 
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Figure A.2.2  Frequency distribution of the partial rank correlation (after 
conversion to z) between s and !! upon the control of !! among the 500 random 
networks.  Arrow indicates the corresponding z observed in E. coli using 1000 random 
environments (A) or single-carbon-source environments (B). 
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Figure A.2.3  Similar mean reaction connectivities between the E. coli network and 
the 500 random networks.  The mean reaction connectivity of a network is the number 
of reactions directly connected to reaction averaged across all reactions in a network.  (A) 
While the average fractional flux change across all focal reactions and mutants (!! , same 
as shown in Figure 3.2A) is lower in the E. coli network (red triangle) than in the random 
networks (black dots), the mean reaction connectivities are similar.  (B) While the rank 
correlation (after conversion to z, same as shown in Figure 3.3B) between !!  and s is 
more negative for the E. coli network (red triangle) than for the random networks (black 
dots), the mean reaction connectivities are similar. 
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Figure A.2.4  Proportion of E. coli reactions that are absent from the 500 sampled 
random networks in the order of sampling.  
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A.3 Supplementary tables and figures for chapter 4 
 
 
 
Table A.3.1 P-values of using partial mantel test for the predictors of morphological 
adaptation among wild strains in Saccharomyces cerevisiae  

 
  

 Original traits PCA traits 

Genomic dissimilarity 0.067 0.743 
Ecological environment dissimilarity 0.161 0.456 
Population membership dissimilarity 0.395 0.725 
Geographic difference 0.320 0.610 
Note- All tests are one-tail test to the positive correlation. 
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Figure A.3.1  Adaptive evolution of morphological traits among natural strains but 
not mutation accumulation (MA) lines of S. cerevisiae.  (A) Mean evolution distance 
(ED) among 666 natural strain pairs for a trait relative to its mutation size (MS) increases 
significantly with trait importance (TI).  The 180 traits for which data are available for 
both the natural strains and MA lines are used.  Each dot represents a morphological trait.  
ρ, Spearman's rank correlation coefficient.  (B) Mean ED between 89 MA lines and their 
common ancestor for a trait relative to MS is not significantly correlated with TI.   
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Figure A.3.2  Mean ED among 666 natural strain pairs of S. cerevisiae for a trait 
relative to its MS increases significantly with TI, when MS and TI are both estimated 
using diploid deletion strains.   
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Figure A.3.3  Prevalent adaptive evolution of morphological principal component 
traits in the yeast S. cerevisiae.  (A) Mean evolution distance (ED) of 666 pairs of 
natural strains for a trait and the mutational size (MS) of the trait both decrease with trait 
importance (TI).  Each dot represents a morphological principal component trait.  ρ, 
Spearman's rank correlation coefficient.  (B) Mean ED among 666 natural strain pairs 
relative to MS increases significantly with TI, while the mean ED between 666 gene 
deletion strains and the wild-type relative to MS does not increase significantly with TI.  
(C) Nominal p-values for Spearman's correlation between ED/MS and TI for all 666 pairs 
of natural strains. 
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A.4 Supplementary tables and figures for chapter 5 
 
 

 
Table A.4.1 Spearman’s correlation coefficients (ρ) between mean mutational 
correlation (MC) and various mean evolutionary differences (ED) after the control 
of mutational size (MS) and direct importance (DI) in yeast morphological traits 
with negative coefficients in multivariate regression (n = 110) or positive coefficients 
in multivariate regression (n = 100) 

 
  

Source of mean ED Sign of coefficients Spearman’s ρ p-value 

intra-species 
 negative   0.11  0.28 

 positive  -0.12  0.25 

inter-species 
 negative   0.075  0.44 

 positive   0.12  0.23 
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Figure A.4.1 Distributions of Spearman’s ρ between mutational correlations (MC) 
and evolutionary correlations (EC) using shuffled matrix of effect sizes (ES). (A)-(B) 
Spearman’s ρ between mutational correlations (MC) and evolutionary correlations (EC) 
using 37 Saccharomyces cerevisiae strains. (C)-(D) Spearman’s ρ between MC and 
phenotypic correlations using 37 S. cerevisiae strains. (E)-(F) Spearman’s ρ between MC  
and EC between S. cerevisiae strains and S. paradoxus In (A), (C) and (E), for each time 
of shuffling, the ES across different gene deletion lines per each trait was shuffled 
(randG). In (B), (D), and (F), for each time of shuffling, the ES across different traits per 
each gene deletion line was shuffled (randP). Each distribution represents a result of 1000 
times of shuffling. 
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Figure A.4.2 Distributions of Spearman’s ρ between mean mutational correlations 
(MC) and mean evolutionary differences (ED) using shuffled matrix of effect sizes 
(ES). (A)-(B) mean ED was calculated using 37 Saccharomyces cerevisiae strains. (C)-
(D) mean ED was calculated between S. cerevisiae strains and S. paradoxus In (A) and 
(C), for each time of shuffling, the ES across different gene deletion lines per each trait 
was shuffled (randG). In (B) and (D), for each time of shuffling, the ES across different 
traits per each gene deletion line was shuffled (randP).  Each distribution represents a 
result of 1000 times of shuffling. 
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A.5 Supplementary tables and figures for chapter 6 
 
 
 

 
 
Figure A.5.1 Genetic adaptations more frequently reverse than reinforce plastic 
phenotypic changes. The cutoff of 0.05 Lo is used in defining plastic and genetic 
changes. (a) Fractions of genes with reinforcing and reversing expression changes, 
respectively, in experimental evolution. Organisms as well as the new environments to 
which the organisms were adapting to are indicated. Each bar represents an adaptation. 
(b) Fractions of reactions with predicted reinforcing and reversing flux changes, 
respectively, in E. coli's adaptations to 50 new environments from the glucose 
environment.  
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Figure A.5.2 Genetic adaptations more frequently reverse than reinforce plastic 
phenotypic changes. The cutoff of 0.5 Lo is used in defining plastic and genetic 
changes. (a) Fractions of genes with reinforcing and reversing expression changes, 
respectively, in experimental evolution. Organisms as well as the new environments to 
which the organisms were adapting to are indicated. Each bar represents an adaptation. 
(b) Fractions of reactions with predicted reinforcing and reversing flux changes, 
respectively, in E. coli's adaptations to 50 new environments from the glucose 
environment.  
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Figure A.5.3 Frequency distribution of the fitness of E. coli iAF1260 at the plastic 
stage in 257 new environments relative to that in the original glucose environment.  
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Figure A.5.4 Predominance of flux reversion in the adaptations of E. coli iAF1260 to 
50 new environments from the glucose environments. The figure.differs slightly from 
Fig. 6.2a because of the use of a randomized order of reactions in the stoichiometric 
matrix.  
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Figure A.5.5 Predominance of flux reversion in the adaptations of E. coli iAF1260 to 
50 new environments from the glucose environments. The Figure differs slightly from 
Fig. 6.2a because of the use of MOMA-b to predict fluxes at stage a. 
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Figure A.5.6 The preponderance of phenotypic reversion disappears after the 
removal of traits for which the size of the plastic change exceeds that of the total 
change (PC> TC). (a) Fractions of genes with reinforcing and reversing expression 
changes, respectively, in experimental evolution. Organisms as well as the new 
environments to which the organisms were adapting to are indicated. Each bar represents 
an adaptation. (b) Fractions of reactions with predicted reinforcing and reversing flux 
changes, respectively, in E. coli's adaptations to 50 new environments from the glucose 
environment.  
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Figure A.5.7 Predominance of flux reversion in the adaptations of E. coli iAF1260 to 
100 new complex environments from the glucose environment. Each complex 
environment contains multiple carbon sources.  
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Figure A.5.8 Frequencies of traits showing reinforcing and reversing phenotypic 
changes in adaptations. Traits satisfying |La - Lo|> 0.2Lo, |Lp - Lo| > 0.2Lo, and |La - 
Lp| > 0.2Lo are classified into reinforcing and reversing traits based on whether the 
genetic and plastic changes are of the same direction or opposite directions. (a) Fractions 
of genes with reinforcing and reversing expression changes, respectively, in experimental 
evolution. Organisms as well as the new environments to which the organisms were 
adapting to are indicated. Each bar represents an adaptation. (b) Fractions of reactions 
with predicted reinforcing and reversing flux changes, respectively, in E. coli's 
adaptations to 50 new environments from the glucose environment.  
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Figure A.5.9 Constructive plasticity is generally less prevalent than destructive 
plasticity in adaptations. See main text for definitions of constructive and destructive 
plasticity. (a) Fractions of genes showing constructive and destructive expression 
plasticity, respectively, in each of the 44 cases of experimental evolution. (b) Fractions of 
reactions showing constructive and destructive flux plasticity, respectively, in each of the 
50 environmental adaptations of the E. coli metabolic network from the glucose medium.  


