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ABSTRACT 

The intrinsic properties and fabric anisotropy of sands significantly affect their 

macroscopic engineering behavior including packing densities, compressibility and 

strength. However, due to difficulties in reliably and rapidly determining them, intrinsic 

properties such as gradation, particle roundness and sphericity as well as the related fabric 

anisotropy of soils have not received their deserved attention and usage in practice. This 

dissertation introduces research that has facilitated rapid and precise quantification of soil 

properties and fabric anisotropy using various newly developed image analysis techniques. 

Extensive laboratory tests were performed on sands of various gradations, roundnesses, 

sphericities and geologic origins to develop relationships between their intrinsic properties 

and macroscopic mechanical behavior. A gradation-shape-fabric based Distinct Element 

Modeling technique was developed to simulate the properties and fabric anisotropy of soils. 

Besides geotechnical engineering, the technique can be used by engineers and scientists in 

various disciplines including material science, geology, mining, powder sciences, 

pavement engineering and agriculture to simulate more realistic material particle 

geometries and microstructures. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

The engineering behavior of sands depends on both its intrinsic and state properties. 

Intrinsic properties include particle size distribution, particle shape and mineralogy. State 

properties include void ratio (particle packing), effective confining stress and fabric. Every 

sand has a fixed set of intrinsic properties but could be at various states. The intrinsic 

properties can be thought of as bracketing the range of soil behaviors while state properties 

control where in this range the soil is found. 

Among the intrinsic and state properties, the particle shape and fabric have been found to 

significantly affect macro mechanical behavior of granular materials such as index void 

ratios, compressibility, strength, shear wave velocity, liquefaction susceptibility and 

erosion susceptibility. Previous studies on particle shapes include: Eisma (1965), Holubec 

and D’Appolonia (1973), Youd (1973), Zelasko et al. (1975), Edil et al. (1975), Sukumaran 

and Ashmawy (2001, 2003), Yasin and Safiullah (2003), Santamarina and Cho (2004), Cho 

et al. (2006), Rouse et al. (2008), Bareither et al. (2008), Cavarretta et al. (2010), Cabalar 

et al. (2013), Shin and Santamarina (2013), Zheng and Hryciw (2016a) and many others. 

The studies on fabric include: Oda (1972), Arthur et al. (1977), Tatsuoka et al. (1986), Guo 

(2008), Rodriguez and Lade (2013), Yang et al. (2015), Zeng et al. (2010), Li et al. (2010), 

Yan and Byrne (1990), Sully and Campanella (1995), Bellotti et al. (1996) and many others. 

Despite ample evidence of the importance of particle shape and fabric, those two properties 

are usually not considered by practicing geotechnical engineers. The main reason is that 

they are very difficult to determine. For example, one of the particle shape descriptor, 

roundness, was defined as the ratio of the average radius of curvature of the corners of a 
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particle to the radius of the maximum inscribed circle (Wadell, 1932). Significant manual 

effort is needed to find those circles. To facilitate visual estimation of roundness, charts 

consisting of reference particles were developed by Krumbein (1941), Krumbein and Sloss 

(1951) and Powers (1953). The chart methods for roundness estimation have been 

extensively used in many disciplines. However, the subjective nature of chart methods 

limits its accuracy.   

The first objective of this research was to develop image processing techniques to automate 

the particle shape and fabric determination so that the tedious manual measurements and 

subjective chart estimations could be eliminated. The image-based methods can accurately 

and rapidly quantify particle shape and fabric parameters.   

The next issue is how to incorporate the shape parameters in geotechnical practice. This 

was the second objective of the research. Extensive laboratory tests including relative 

density (packing) and one-dimensional consolidation tests were performed on many soils 

with various gradations, roundnesses, sphericities and geologic origins to explore the 

relationship between the intrinsic properties and the macro mechanical behavior of soils 

including packing and compressibility. Rigorous mathematical formulas were developed 

based on the laboratory observations. The formulas can be used by geotechnical engineers 

to more accurately predict soil behavior, decrease uncertainties in geotechnical engineering 

analyses, make more reasonable designs, save construction costs and promote 

sustainability.  

The intrinsic properties and fabric can also be used in Distinct Element Method (DEM) 

modeling to simulate more realistic soils. This research developed algorithms to generate 

realistic particle shapes based on user specified particle size and shape distribution curves 

and fabric anisotropy. Those distribution curves are either computed from real soil images 

or created by users. The ability of DEM simulations in parametrical studies will be greatly 

enhanced through this work. Beside geotechnical engineering, this technique can be used 

in various disciplines including material science, geology, mining, powder sciences, 

pavement engineering and agriculture to simulate more realistic material particle 

geometries and microstructures 
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1.2 Tasks and organization 

This dissertation consists of the following chapters: 

Chapter 1 provides a brief introduction of the motivation and objectives for this research.  

Chapter 2 is a literature review of the existing efforts on particle shape and soil fabric 

studies and the DEM simulation.   

Chapter 3 develops a computation method to automate particle shape determination.   

Chapter 4 explores the effects of particle shapes and gradation on packing and 

compressibility of granular soils.  

Chapter 5 develops a rotational Haar Wavelet Transform technique by simulating the 

human cognition process to automate soil fabric determination.  

Chapter 6 develops a corner preserving technique to generate realistic DEM particles 

(clumps). 

Chapter 7 develops a clump library technique to generate realistic soil specimens based on 

user-defined gradation, shape and fabric parameters.  

Chapter 8 summarizes current research efforts and outlines future research needs.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Particle shape quantification 

Soil particle shape is defined by International Standards (ISO, 2008) as “the envelope 

formed by all the points on the surface of the particle”. Using two-dimensional projections, 

it may be characterized at three observation levels as shown in Figure 2.1. From largest to 

smallest scale, particles are described by their: form, roundness and surface texture (ISO, 

2008; Barrett, 1980; Mitchell and Soga, 2005). For soil particles, “sphericity” is commonly 

used for describing form while “roughness” is often used for surface texture. Therefore, in 

this research, the author will use the common geotechnical terms: sphericity, roundness 

and roughness. The three are considered to be independent descriptors of particle shape 

because each can vary with no change in the other two (Wadell, 1932; Barrett, 1980; Cho 

et al., 2006).  

 

 

Figure 2.1 Particle shape characterization at different scales (after ISO, 2008; Barrett, 
1980; Mitchell and Soga, 2005). 
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2.1.1 Sphericity 

The first description of sphericity for “objects of sedimentological importance” is generally 

attributed to Wadell (1933). He defined “degree of true sphericity” as “the ratio of the 

surface area of a sphere of the same volume as the particle to the actual surface area of the 

particle". Recognizing the difficulty of measuring three-dimensional surface areas of soil 

particles, Wadell also offered a practical definition based on the projected area of a particle; 

he defined “degree of sphericity” as the diameter of a circle having an area equal to the 

largest projected area to the diameter of the smallest circle that will circumscribe the grain 

projection. Over the years, other definitions of sphericity have been proposed based on two 

dimensional maximum projections of particles. The five most commonly used definitions 

as reviewed by Mitchell and Soga (2005) and Rodriguez et al. (2012) are:  

Area Sphericity:    s
A

cir

A  S
A

=    Equation 2.1 

Diameter Sphericity:     c
D

cir

DS
D

=    Equation 2.2 

Circle Ratio Sphericity:    ins
C

cir

DS
D

=    Equation 2.3 

Perimeter Sphericity:     c
P

s

P  S
P

=    Equation 2.4 

Width to Length Ratio Sphericity:  2
WL

1

d  S
d

=    Equation 2.5 

where:  

As = projected area of a soil particle,  

Acir = area of the minimum circumscribing circle, 

Dc = diameter of a circle having the same projected area as the particle,  
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Dcir = diameter of the minimum circumscribing circle,  

Dins = diameter of the largest inscribing circle,  

Pc = perimeter of circle having the same projected area as the particle,  

Ps = perimeter of the particle,  

d1 and d2 = length and width of a particle.  

Volume based sphericity definitions, such as proposed by Wadell (1933) also exist but they 

are not used in this section since the soil particles are being characterized strictly from two-

dimensional projections. 

Area sphericity was first proposed by Tickell (1931). Diameter sphericity is Wadell’s (1933) 

original “degree of true sphericity”. The area sphericity is the square of diameter sphericity. 

Riley (1941) defined $%&' $(%) as sphericity which later evolved into Sc by Equation 2.3 

in papers by Santamarina and Cho (2004), and Cho et al. (2006). Similarly, Cox (1927) 

defined sphericity by *( *' + which evolved into SP by Equation 2.4 in the works of Kuo 

and Freeman (2000) and Altuhafi et al. (2013). The SP is identical to “circularity” in ISO 

(2008). For historical accuracy, neither Tickell (1931) or Cox (1927) actually used the term 

“sphericity”; in the pre-Wadell era, they used the term “roundness” for today’s “sphericity”.  

Krumbein and Sloss (1951) hinted that “sphericity could be related to the proportion 

between length and breadth of the particles”. The author believes that Krumbein and Sloss 

must have had Equation 2.5 in mind. The reciprocal of SWL is commonly referred to as 

“elongation ratio”.  

2.1.2 Roundness  

Roundness quantifies the sharpness of particle corners. It was first distinguished from 

sphericity by Wadell (1932, 1933,1935). Using two-dimensional projections of particles, 

Wadell defined roundness as the ratio of the average radius of curvature of the corners of 

a particle to the radius of the maximum inscribed circle:  
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where ri is the radius of the i-th corner circle; rins is the radius of the maximum inscribed 

circle; and Nc is the number of the corners around particle perimeter. 

This definition of roundness is still widely used today (Santamarina and Cho, 2004; 

Mitchell and Soga, 2005; Cho et al., 2006; Bareither et al., 2008; Chapuis, 2012; Shin and 

Santamarina, 2013; Cabalar et al., 2013). The original procedure for determination of 

Wadell’s roundness requires considerable manual effort. Each corner on a particle’s outline 

is compared to a series of transparent templates to find the maximum sized circle that will 

fit inside the corner. Despite being cumbersome and subjective, the procedure is still used 

today (Moroto and Ishii, 1990; Rouse et al., 2008; Oh et al., 2014).  

2.1.3 Chart Methods for Roundness and Sphericity  

In the 1950’s, charts consisting of a set of reference particle silhouettes were prepared to 

facilitate rapid estimation of Wadell’s particle roundness through visual comparisons to 

particles viewed under a microscope. Three such charts were developed by Krumbein 

(1941), Krumbein and Sloss (1951), and Powers (1953) as shown in Figures 2.2, 2.3 and 

2.4.  
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Figure 2.2 Chart for estimating particle roundness (after Krumbein, 1941) 

 

 

Figure 2.3 Chart for estimating particle roundness and sphericity (after Krumbein and 
Sloss, 1951) 
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Figure 2.4 Chart for estimating particle roundness (after Powers, 1953) 

 

The Krumbein (1941) chart, shown in Figure 2.2, contains 81 particles redrawn from 

pebbles for which R had been determined by Wadell’s method. Krumbein placed the 

particles in 9 bins with R ranging from 0.1 to 0.9 in increments of 0.1. Several broken 

particles are also shown in the figure to indicate the effects of breakage on R. Compared 

with the other two charts, Krumbein’s provides more reference particles and thus more 

opportunities for visual comparisons.  

The Krumbein–Sloss (1951) chart, shown in Figure 2.3, provides 20 reference particles 

having S from 0.3 to 0.9 and R from 0.1 to 0.9, both in increments of 0.2. The Krumbein–

Sloss chart pointed out that R and S are independent parameters because one could vary 

without change in the other. The Krumbein–Sloss chart may be the most widely used chart 

because it provides an opportunity to simultaneously estimate both R and S.  

The Powers (1953) chart separates soil particles having Wadell roundness values from 0.12 

to 1.00 into six classes, as shown in Figure 2.4. The ratio of the upper limit to the lower 

limit of R in each class is approximately 1.4. Each R range is exemplified by two particles: 

one with high S and one with low S. The Powers chart may have inspired the word 

descriptions of R in the current ASTM D2488 (ASTM 2009). 
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Obviously, the charts are even more subjective than Wadell’s original template method. 

Nevertheless, they are used in many disciplines including geotechnical engineering, soil 

science, agriculture, powder engineering, pavement engineering and geology. Studies have 

compared the effects of soil particle shape and roundness as obtained from the charts on 

the macroscale properties and mechanical behavior of soil (Youd, 1973; Edil et al., 1975; 

Frossard, 1979; Sladen et al., 1985; Santamarina and Cho, 2004; Bareither et al., 2008; 

Chapuis, 2012; Shin and Santamarina, 2013; Cabalar et al., 2013; Kandasami and Murthy, 

2014). In geomorphology, Eisma (1965) studied the influence of roundness of beach and 

dune sands on eolian sorting. Sagga (1993) assessed the roundness of sand grains in 

longitudinal dunes in Saudi Arabia. Mehring and McBride (2007) used the charts in studies 

on the origin of beach sands. Vepraskas and Cassel (1987) studied the influence of 

sphericity and roundness of coastal plain sands on soils' resistance to cone penetration, to 

bulk density, and on the angle of repose of dense sands. In all of the above mentioned 

research, roundness was determined using the charts. The charts have also been used for 

comparison to other roundness descriptors such as proposed by Masad et al. (2007) and 

Sukumaran and Ashmawy (2001). 

2.1.4 Optical method for roundness and sphericity 

Advances in optical image gathering have led to rapid digitization of soil particle 

projections and created a potential to automate Wadell’s procedure. It has nevertheless 

been a mathematically challenging problem and thus, researchers have proposed alternative 

definitions of roundness which could be more easily computerized. Such alternate 

definitions have included: Fourier analysis (Bowman et al., 2001; Wettimuny and 

Penumadu, 2004; Wang et al., 2005), angularity index (Sukumaran and Ashmawy, 2001; 

Tutumluer and Pan, 2008), and a fractal technique (Arasan et al., 2011). A comprehensive 

review of these newer methods was provided by Masad et al. (2007). However, the 

alternative definitions of roundness have not yet prevailed over Wadell’s due to the latter’s 

longer history and numerous useful correlations to mechanical properties based on it. In 

light of its continuing popularity and wide usage, the first objective of this research is to 

develop an algorithm, based on computational geometry and statistics, to automate a 

rigorous and non-subjective determination of roundness according to Wadell’s definition.  
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2.1.5 Surface Roughness 

At the smallest observation scale, we have surface roughness. Surface roughness is a scale 

depend problem. All surfaces are rough even down to the atomic scale. In general, 

instruments with different resolutions and scan lengths will yield different roughness 

values for the same surface (Majumdar and Bhushan, 1990). Given measurements at a 

specific scale, the deviations of a surface from its mean plane are commonly used to 

characterize the roughness at the given scale. Such deviations are usually quantified by a 

root mean squared roughness (Otsubo et al., 2015; Alshibli and Alsaleh, 2004):  

( )2
1

1 N

i
i

Roughness Z
N =

= å    Equation 2.7 

where N is the total number of data points; Zi is the elevation of data point i relative to the 

reference surface.  

2.2 Effects of Intrinsic properties on mechanical behavior of granular soils 

It has been well-observed that the particle shape significantly affecting macro mechanical 

behavior of granular materials such as index void ratios, compressibility, strength, shear 

wave velocity, liquefaction susceptibility and erosion susceptibility. Some typical studies 

include: Eisma (1965); Holubec and d’Appolonia (1973); Youd (1973); Zelasko et al. 

(1975); Edil et al. (1975); Vepraskas and Cassel (1987); Sukumaran and Ashmawy (2001, 

2003); Yasin and Safiullah (2003); Santamarina and Cho (2004); Cho et al. (2006); Guo 

and Su (2007); Rouse et al. (2008); Bareither et al. (2008); Cavarretta et al. (2010); Cabalar 

et al. (2013); Shin and Santamarina (2013); Zheng and Hryciw (2016) and many others.  

2.3 Soil fabric 

Soil particles that have been deposited through water generally align their largest projected 

surface area normal to the depositional direction. As such, cross anisotropic fabric 
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commonly develops in alluvial, coastal and lacustrine deposits. Accordingly, such 

geomaterials exhibit cross anisotropic mechanical and hydrologic behavior.  

Anisotropic strength and dilation of sands have been studied in the laboratory by Oda 

(1972), Arthur et al. (1977), Tatsuoka et al. (1986), Guo (2008), Rodriguez and Lade (2013) 

and Yang et al. (2015). These studies showed that the friction angle of sands will typically 

vary by 4° to 16° depending on the angle between the loading direction and direction of 

deposition. Additionally, Oda et al. (1978) and more recently Azami et al. (2009) observed 

that bearing capacity was 25-34 % higher when the loading was in the deposition direction 

(normal to the fabric plane). Zeng et al. (2010) and Li et al. (2010) found that the fabric 

anisotropy strongly affects the deformation of retaining walls and settlement of its backfill. 

Yu et al. (2013) simulated seismic loading in centrifuge tests on sands with different 

deposition angles and found that specimens prepared at larger deposition angles were more 

vulnerable to liquefaction.  Yan and Byrne (1990) and Sully and Campanella (1995) 

observed that fabric anisotropy significantly affects shear wave velocity. Bellotti et al. 

(1996) found that shear modulus, constrained modulus and elastic modulus are 20-30% 

higher for loading in the deposition plane than in the deposition direction.   

In soil constitutive modeling, fabric is quantified by a fabric tensor. A popular tensor was 

developed for anisotropic fabric by Oda and Nakayama (1989). Oda and Nakayama’s 

fabric tensor has been extensively used for formulation of anisotropic failure criteria and 

for investigation of anisotropic macro behavior of granular soils by Li and Dafalias (2002, 

2004), Dafalias et al. (2004), Yang et al. (2008), Gao et al. (2010), Gao and Zhao (2012) 

and others. The Oda and Nakayama tensor was also used to describe the anisotropic 

behavior of pavement materials in the works of Masad et al. (2002, 2005), Tashman et al. 

(2005), Saadeh et al. (2007), Zhang et al. (2011) and others. The Oda and Nakayama fabric 

tensor will also be utilized in this research. 

The Oda and Nakayama fabric tensor can be computed from the distribution of branch 

vectors, from contact normals, from void orientations or from particle long axes (Oda and 

Nakayama 1989; Fonseca et al. 2013). The distribution of particle long axes is most 

commonly used because they are relatively easy to determine visually. For example, Oda 
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and Nakayama (1989) injected glue into the pores of soil specimens which were then cut 

into thin sections. They manually recorded the particles’ long axis orientations to determine 

the fabric tensor. Kuo et al. (1998), Yang et al. (2008) and Fonseca (2013) also used resin 

and cut specimens into thin sections but used an image thresholding technique to 

distinguish the particles from the resin. Such image thresholding greatly facilitates the 

fabric characterization but the resin must be chosen to create a high-contrast background. 

Therefore, this method can only be used on soils having coloration different from the 

matrix resin and under well-controlled laboratory conditions that allow the resin to be 

injected and solidified.  

2.4 Realistic DEM particle generation 

The Discrete Element Method (DEM) has become the preeminent numerical tool for study 

of granular material behavior. Typical DEM models use circular or spherical particles 

mainly due to the simplicity of contact detection and force calculations. However, such 

oversimplified particulate models cannot provide adequately accurate insight to the 

mechanical behavior of granular assemblies. Methods to better simulate irregular particle 

shapes for use in DEMs have therefore been sought. The use of ellipsoids (Lin and Ng, 

1997; Mustoe and Miyata, 2001; Ouadfel and Rothenburg, 2001; Ng 2009; Fu and Dafalias, 

2010), spherical cylinders (Pournin et al., 2005), pentagons (Azéma et al., 2007), rounded-

cap elongated rectangles (Azéma et al., 2010), polyhedrons (Azéma et al., 2009; Galindo-

Torres and Pedroso, 2010), and Non-Uniform Rational Basis Splines (NURBS) (Andrade 

et al., 2012) have led to some progress but these are all still idealized particle shapes. 

Another approach has used bonded non-overlapping spheres (or circles) or clumps of 

overlapping spheres (or circles) to create various particle shapes. Such approaches simulate 

real particle shapes while maintaining the ease of contact detection and force calculation.  

Bonded non-overlapping spheres were originally used in the simulation of rocks (Potyondy, 

2012). Wang et al. (2007) used this concept to render real particle shapes. As shown in 

Figure 2.5, an irregular particle is filled with small spheres, then adjacent small spheres are 

replaced by larger spheres to reduce the overall number of spheres. However, it is difficult 
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to determine the size of the small spheres to be used in the initial arrangement. Especially 

for angular particles, the spheres must be small enough to model sharp corners. This 

method will result in rough or “bumpy” surfaces which are relatively crude approximations 

of the real surface. Therefore, this non-overlapping method is rarely used today for 

simulation of soil particles. 

 

 

Figure 2.5 Bonded non-overlapping circles on a two-dimensional irregular shape 

 

Clumps of overlapping spheres are currently the most widely used method to model real 

soil particles. The contacts between overlapped spheres are ignored and the clumps behave 

as rigid bodies. Since DEM computational load increases markedly with increasing 

numbers of spheres, the challenge is to generate clumps using a minimum number of 

spheres that will still effectively reproduce particle shapes. Many techniques have been 

developed to generate clumps such as by Matsushima et al. (2009), Ferellec and McDowell 

(2010), and Taghavi (2011). The Ferellec-McDowell and Taghavi methods are the most 

recently proposed and have become most popular. Therefore, they are described in the 

following section.  

Ferellec and McDowell (2010) presented a conceptually simple method to generate clumps. 

From a randomly chosen point on the outline of the particle as shown in Figure 2.6, a circle 

is expanded internally along a normal to the outline. The circle is expanded to the maximum 
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extent possible within the particle boundary. The procedure is repeated for other points 

along the particle outline. For a particle surface with a dense point spacing, this method 

will generate thousands of circles. The majority of the circles are redundant. Therefore, 

Ferellec and McDowell introduced three parameters to limit the number of generated 

circles: the minimum distance between a surface point and the circle surface, dmin, a 

minimum radius for any circle, rmin, and the percentage of points used to generate the 

circles, pmax. This method involves considerable computational effort due to redundant 

circle generation and iterative expansion of circles within the soil particle perimeter.  

 

 

Figure 2.6 Clump generation by Ferellec and McDowell (2010) 

 

Another limitation of Ferellec and McDowell’s algorithm is that the three parameters dmin, 

rmin, and pmax will vary with particle size, particle shape, and image magnification. Thus, 

these parameters cannot be universally applied to all of the particles in a specimen. Both 

dmin and rmin are in distance units. Therefore, the two parameters will vary with the particle 

size: both dmin and rmin should be large for large particles and small for small particles. The 

dmin and rmin should also be based on particle angularities. For angular particles, both dmin 

and rmin must be small enough to capture small and sharp corners. For rounded particles, 

rmin should be set larger to limit the number of redundant small circles generated.  The pmax 
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will be affected by image magnification. For the same particle, if it is captured under high 

magnification, its perimeter will contain more points (or pixels) and vise verse. Therefore, 

pmax should be set larger for high magnification particle images.  

Taghavi (2011) proposed a “Bubble Packing” algorithm, which has been integrated into 

the widely used DEM software Particle Flow Code (PFC) program by Itasca (2015). 

Therefore, this bubble packing algorithm has gained great popularity in recent years. Given 

an irregular particle shape such as shown in Figure 2.7(a), a Delaunay tetrahedralization is 

firstly built in Figure 2.7(b). For each tetrahedron, its circumscribed sphere is computed as 

shown in Figure 2.7(c). This will generate a large number of spheres. Two parameters are 

defined to reduce the number of spheres: the circle to circle intersection angle φ as shown 

in Figure 2.7 and the radius ratio of smallest to the largest sphere ρ. Both φ and ρ are 

unitless and therefore independent of particle size and image magnification. However, ρ 

will be significantly affected by particle angularity. For angular particles with small and 

sharp corners, ρ must be set small enough to capture the corners. For rounded particles, ρ 

should be large to reduce the number of circles in the clumps. The angle φ essentially 

controls the clump smoothness. If φ is too small, the generated clump will have a bumpy 

surface. If φ is too large, an excessive number of unnecessary circles will be generated.  

 

 

Figure 2.7 Tetrahedralization of a particle (after Taghavi, 2011) 
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Figure 2.8 Definition of circle to circle intersection angle φ (after Taghavi, 2011) 

 

The two just described methods are similar in that a large number of potential circles are 

first generated through considerable computational effort. Then, multiple parameters must 

be defined to restrict the number of circles used to generate the clumps. However, these 

parameters will vary from particle to particle depending on particle size, angularity and 

magnification. Therefore, for a soil with a wide range of particle sizes and angularities, 

user interaction is needed to tune the parameters until optimal values are found for each 

specific clump. Considerable effort is needed to create many clumps. Therefore, a method 

is sought that would automatically create many clumps at the same time for a specimen 

containing a range of particle sizes and angularities without the need to tune the parameters 

for each clump.  

Another limitation of existing methods is the lack of a comparison mechanism to evaluate 

how accurately the generated clumps simulate or reflect the original soil particles. Figure 

2.9(a) displays an example particle. By tuning φ and ρ, a series of clumps were generated, 

as shown in Figures 2.9(b) to 2.9(h), using the bubble packing algorithm. The displayed 

value N is the number of circles in each clump. The surface of the clumps is gradually 

simplified as the number of circles decreases although some of the simplifications are not 

distinguishable by eye. Nevertheless, users must choose a clump model that they feel 

represents the original particle with sufficient accuracy. It is a subjective process. Therefore, 

a criterion to automatically quantify clump accuracy would be desirable and should be 

integrated into the clump generation algorithm.  
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Figure 2.9 Clumps generated by varying φ and ρ in the bubble packing algorithm 
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CHAPTER 3  

PARTICLE SHAPES BY COMPUTATIONAL GEOMETRY 

3.1 Introduction 

Definitions of soil particle sphericity, roundness and roughness have existed since at least 

the 1930s. In the 1950s, charts of typical sphericity and roundness values (Krumbein, 1941; 

Krumbein and Sloss, 1951; and Powers, 1953) were developed to alleviate tedious manual 

determination. They allowed users to classify particles by visual comparison to typical 

particles possessing ranges of sphericity and roundness. The original definitions and 

somewhat subjective chart methods are still widely used today. This chapter describes 

robust numerical methods based on computational geometry to determine precisely the 

traditional particle shape definitions from two-dimensional images of particles. The 

computational geometry method eliminates the need to use Wadell’s manual method and 

approximations based on the chart method. 

3.2 Sphericity by Computational Geometry 

A computational geometry technique is developed to automate the computation of five 

commonly used sphericity definitions (Equations 2.1 to 2.5). The area and perimeter of a 

soil particle can be easily determined in Matlab, the image processing package from 

MathWorks (2016). However, the minimum circumscribing circle; the maximum 

inscribing circle; the particle length and width must be determined through additional 

“computational geometry” as follows. 

The outline of a soil particle can be discretized as shown in Figure 3.1(a). The process of 

finding the minimum circumscribing circle is shown in Figures 3.1(b), 3.1(c) and 3.1(d). 
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First, the minimum number of outer points which when connected will bound all of the 

others is found. This is shown by the eight points in Figure 3.1(b). The two points which 

are farthest from each other such (#1 and #5) define the diameter of a trial circle as shown 

in Figure 3.1(c). If all of the other points are within this circle, then this is the minimum 

circumscribing circle. If not, the point which lies furthest outside of the circle (#7) is added 

to the first two points and a new circle is fitted to the three points (#1, #5 and #7). If all the 

other points are within this circle, this is a minimum circumscribing circle. If not, the point 

which lies furthest outside of the circle is added and a new circle is found using any two or 

three of the four points. The procedure is repeated until no points lie outside the circle. This 

yields the minimum circumscribing circle for the original set of points as shown in Figure 

3.1(d).  

The measurements of length and width of soil particles in this chapter mimics the procedure 

of ASTM D4791-10 and ASTM D2488-09a. Conceptually, the soil particle is 

circumscribed by a rectangular bounding box. Trial boxes with orientations ranging over 

180 degrees are fitted to circumscribe the eight outer points as shown in Figures 3.1(e) 

through 3.1(h).  The box that displays the largest single dimension (Figure 3.1(f)) defines 

both the length and width of the particle. 
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Figure 3.1 Finding the minimum circumscribing circle, length and width of a particle. 

 

The maximum inscribed circle may be determined using a Euclidean Distance Map. For 

each pixel inside the soil particle in Figure 3.2(a), the distance to the nearest boundary pixel 

is computed resulting in the Euclidean distance map is shown in Figure 3.2(b). The largest 

distance value and its location identify the radius, Ri, and the center of the maximum 

inscribed circle, Ci, as shown in Figure 3.2(b). The results (in pixel units) are summarized 

in Figure 3.2(c). 
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Figure 3.2 Finding the maximum inscribed circle of a soil particle: (a) particle outline; (b) 
Euclidean distance map; (c) result in pixel units. 

 

3.3 Surface Roughness by Computational Geometry 

To quantify surface roughness using Equation 2.7, the mean surface must be determined in 

prior. However, because of highly irregular soil particle surfaces, there is generally no 

functional form to describe the mean surface. This problem can be addressed by 

nonparametric fitting techniques. Such techniques fit a smooth curve to the measured 

points without any prior specification of a functional relationship between the points. One 

of the most popular nonparametric smoothers is "locally weighted scatter plot smoothing” 

(LOESS) which was proposed by Cleveland and Devlin (1988). An example of the LOESS 

procedure in shown in Figure 3.3. In Figure 3.3(a), a mean surface was assumed to be 

defined by the arbitrary function: , = 2 − cos 0.66 − sin 0.66 − cos 1.26 −

sin	(1.26). Over the X-range shown in Figure 3.3(a), the function could be representing a 

corner of a subangular soil particle. The authors added Gaussian noise around the mean 

surface to generate a “rough” surface. The “roughness” could be actual particle roughness 

or digital rounding to pixels or simply electrical noise in the measurement system (e.g. 

camera, scanner or profilometer). In any case, the open circles in Figure 3.3(a) represent 

an instrument’s measurements of this surface. The measurement could be optical or 
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physical and they could be at any scale depending on the instrument used. The 

measurement interval depends on the resolution of the instrument at this scale. The actual 

mean surface is now presumed to be unknown. The goal of LOESS is to predict the mean 

surface from the rough measurements.  
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Figure 3.3 The LOESS procedure and results by various α values. 
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LOESS replaces each data point with the smoothed value determined by a locally weighted 

regression. Figure 3.3(b) shows how a smoothed value is found for a point xi located 

between X=2.5 and X=3.0. The point xi and its nearest neighboring points over a span 

distance α are used in the process. The span α is the ratio of the number of data points used 

for fitting to the total number of data points. Therefore, α is a value between 0 and 1.0. In 

this example, there are a total of 200 measurement points in a range between X = 2.0 and 

X = 6.0. If α=0.045 then 9 points would be used for each smoothing. For each point in the 

span, a weight is applied based on its distance to the center point xi. For example, the weight 

for the k-th point in Figure 3.3(b) could be:  
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The function is plotted in Figure 3.3(b). It shows that points closer to xi have larger weights 

and therefore more influence on the fitting. 

After applying weights to the data points in the span, a second-degree polynomial is fitted 

to the points using least-square regression. The smoothed value at point xi will be given by 

the weighted regression as shown in Figure 3.3(b). This smoothing process progresses from 

data point to data point to obtain the smoothed value of each point. Clearly, the computed 

smoothed values will be affected by the specified α. Figure 3.3(c) shows three LOESS 

curves that were fitted to the same measured data with α having been varied from 0.02 to 

0.90. It is evident that small α values could not filter out the roughness while large α values 

yield curves that fail to follow the local curvilinearity. The selection of an appropriate α 

must compromise between the “over-fitting” and “under-fitting” to produce a LOESS 

curve which is as close as possible to the mean surface. A strategy for finding the proper α 

follows.   

The optimal α value can be determined by cross-validation techniques (Efron and 

Tibshirani, 1993). Cross-validation is essentially a trial and error approach. A total of say 

N different α values are tested one by one. The α producing the minimum fitting error is 

the optimum. A popular cross-validation technique is called K-fold cross-validation. The 

procedure is diagramed in Figure 3.4. All of the measured data points defining a particle’s 
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outline are randomly partitioned into K roughly equal-sized sets. As shown by the rows in 

Figure 3.4, each of the sets will, in turn, be used as a validation set while the remaining sets 

are training sets. For example, in the k-th row, the k-th set is the validation set while the 

others are training sets. The data from all of the training sets is fitted with a LOESS curve 

which is defined by the a-value being tested. The validation set is then used to calculate a 

residual error for this LOESS curve. For the i-th = value and the k-th row it is >?(=%). This 

process is repeated K times for k = 1, 2, …K. The error for each tested span αi is then 

calculated as the Average Residual Error (ARE) of >?(=%): 
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= å    Equation 3.2 

The = with the minimum > is the optimal span value. A series of K values was tried in this 

study. The results showed that K = 10 is adequate for soil particle roughness analysis. 

 

 

Figure 3.4 Procedure for K-fold cross-validation. 

 

Back to the example given in Figure 3.3, in order to find the optimal α, a series of values 

from 0.01 to 0.99 with increments of 0.0098 (a total of 100 α values) were evaluated using 

10-fold cross-validation. A total of 200 data points were randomly divided into 10 sets. 
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Each set contained 20 points. For every tested span αi (i = 1, 2,…, 100), a training set 

containing 180 data points was fitted by a LOESS curve as shown in Figure 3.5(a). The 

validation set, consisting of the remaining 20 points was then used to compute the residual 

error. This process was repeated 10 times for each αi to obtain its average residual error 

> =% . The optimal α was found to be 0.3367 based on the minimum ARE. Using α = 0.3367, 

the LOESS curve is fitted using all of the measurements. The result is shown in Figure 

3.5(b). The LOESS curve overlaps the true mean surface almost perfectly. The largest 

discrepancy between the two curves is 0.001. In summary, provided the roughness 

measurements, LOESS combined with K-fold cross-validation effectively predicts the 

mean surface. 
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Figure 3.5 A 10-fold cross-validation result. 

 

Having established the smoothed surface, the commonly used root mean squared 

roughness in Equation 2.7 can be rewritten as:   
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where yi is i-th measurement; yi-loess is the smoothed i-th measurement on the LOESS curve 

and N is the total number of measurements. It should be noted that roughness values 

computed from Equation 3.3 would vary with different scales. Therefore, Equation 3.3 

must be used at the scale relevant to the problem being addressed. 

To assess the roughness of a soil particle such as the one shown in Figure 3.6(a), the points 

on the particle outline are traced out using polar coordinates as shown in Figure 3.6(b). 

This particle image has a resolution of 40 pixel/mm. The (#, A) coordinates of a total of 

1980 points are plotted in Figure 3.6(b) and 3.6(c). Using LOESS and 10 fold cross 

validation, the optimal = was found to be 0.015. The predicted mean surface of this soil 
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particle is shown as the dash line in Figure 3.6(c). The computed roughness using Equation 

3.3 is 0.1 mm. 

 

 

Figure 3.6 Particle perimeter profile and roughness assessment: (a) original particle 
image; (b) particle outline; (c) roughness smoothing by LOESS. 

 

3.4 Roundness by Computational Geometry 

Until now, the computation of roundness has been difficult to automate as it required 

human judgment. First, the corners on the soil particle had to be identified. Large variations 

in the number of corners per particle; their curvilinearity and the size of the particles made 

it difficult to establish a rigorous and repeatable procedure. There are no universal 

guidelines for identifying corners and for fitting appropriate circles to them. As a result, 

different human evaluators could find considerably different values for roundness. 

Secondly, particle roughness is superimposed over the particle corners. The roughness can 

be intuitively filtered out by humans when fitting circles to the corners. By contrast, 

computers have to be taught or programmed to distinguish roughness from small sharp 

corners. This section will attempt to solve these various challenges. 
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3.4.1 Removing roughness from particle corners 

Previous researchers sought to remove the effects of roughness by discretizing the outline 

of a particle into an N-sided equal-angled polygon. The selected N value would therefore 

serve as the cutoff between angularity and roughness. Sukumaran and Ashmawy (2001) 

suggested that N = 40 would be an appropriate value while Tutumluer and Pan (2008) 

believed N = 24 to be satisfactory. In reality, a single N value cannot be applicable to all 

soil particles; N should vary from particle to particle depending on the particles’ individual 

angularities and roughnesses. Another limitation of this N-approach is that small sharp 

corners can easily be missed. As such, it is ineffective for very angular particles. This will 

be demonstrated by example later in the chapter. 

The previous section of this chapter showed that LOESS and K-fold cross validation 

effectively estimate the mean surface. This technique can be used to remove particle 

roughness. An example soil particle surface was represented using polar coordinates as 

shown in Figure 3.6. After finding the mean surface, (#, A) could be plotted to show the 

new “smoothed” soil particle outline as in Figure 3.7. Having the smoothed particle outline, 

the next step towards computing Wadell’s roundness is to fit an appropriate circle to each 

corner. 
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Figure 3.7 Removing roughness from the particle outline. 

 

3.4.2 Corner identification 

Determination of Wadell’s roundness requires identification of each particle corner and 

assessment of its sharpness. In manual methods, judgment and intuition are used to identify 

the corners as done, for example, by the authors in Figure 3.8. By contrast, newer 

definitions of roundness using Fourier analysis, angularity index, and the fractal technique 

measure curvatures over the entire particle outline instead of just corners. As shown in 

Figure 3.8, the full outline of a particle contains both corner (convex) portions and non-

corner (concave and flat portions). An algorithm is now presented to extract only the corner 

portions. 
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Figure 3.8 Corner and non-corner portions of a particle outline. 

 

The smoothed outline of a particle can be discretized by “key points” connected by line 

segments. An example is given in Figure 3.9 where the curve EF represents the full 

perimeter of the particle in which the amplitudes are radial distances from the particle 

centroid as in Figure 3.6(b). A line EF	is first drawn connecting the first and last point of 

the curve EF (Figure 3.9(a)). Point E is the first point on the discretized curve and F is the 

last one. The distance from the maximum divergent point G on EF to EF is defined by D. 

If D is larger than a predefined threshold DE, point G becomes the new end point of the line 

and line EF is shorted to EG as shown in Figure 3.9(b). The maximum divergence, D, 

between EG and EG is now computed. The iteration continues until a point such as H in 

Figure 3.9(c), is found for which D is smaller than DE . The curved segment EH is then 

permanently replaced by the line segment EH	. Point H now becomes the beginning point 

of the next straight-line segment to be found and HF	  becomes the new starting line 

segment as shown in Figure 3.9(d). The previously described procedure continues as shown 

in Figure 3.9(e). In the end, the entire originally curved perimeter EF will have been 

discretized into small piecewise linear segments connecting the key points as shown in 

Figure 3.9(f).  
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Figure 3.9 Discretizing the particle boundary. 

 

The smoothed outline of the soil particle shown in Figure 3.8 was discretized using the 

above described procedure and the result is shown in Figure 3.10. The diamond points on 

the outline are the starting or ending points of the line segments (i.e. the key points). 

Naturally, the sharper corners having larger curvature require more line segments while 

flatter portions need fewer key points and line segments. Obviously, the threshold DE is the 

critical parameter controlling corner identification; its selection will be addressed in detail 

later.  

The next step is to identify the key points as belonging to either corner or non-corner 

segments. The centroid of the soil particle, O, is selected as the reference point. We use 

point C and its closest neighboring points on both sides, A and B to explain the next step. 

Straight line segments OC and AB are constructed as shown. If necessary, the line OC is 

extended to its intersection with AB at point D. The distances OD and OC are compared. 

If OC ≤ OD, then point C is a non-corner point. Conversely, if OC > OD then it is a corner 

point. This procedure is repeated for every key point on the particle outline. The final result 

is shown in Figure 3.10(b) where corner points are distinguished from non-corner points. 

Every stretch of consecutive corner points can now be fitted with a circle. 
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Figure 3.10 Identification of particle corners. 

 

Gander et al. (1994) introduced a method for fitting a circle to a series of data points. The 

best fit circle is found by minimizing the sum of the squares of the distances between the 

points and the circle. Using this approach, the appropriate circle for each corner of a particle 

can be found. An example is shown in Figure 3.11. All of the corner points from 1 to 36 

are initially used to compute a best fit circle as shown in Figure 3.11(a). The center of this 

circle is C and the radius is R. The minimum distance from C to the particle boundary is 

computed as T. If T is smaller than R, the fitted circle is not tangent to the particle boundary 

at T but secant to it. As such, it is not an acceptable circle. If this happens, the end point 36 

is eliminated and point 35 becomes the new last point. The points from 1 to 35 are now 

used to fit a new circle. The recomputed T and R values are compared. If T is still smaller 

than R, point 35 is eliminated and 34 becomes the new last point. The process continues 

until a circle is found satisfying H ≈ J or if point 3 becomes the last point. Figures 3.11(b) 

and 3.11(c) show that the last point moved from point 20 to point 19, then 18, 17… and all 

the way to point 3 without finding an acceptable circle. If this happens, the loop ends 

without an acceptable circle having been found. In the next loop, point 2 becomes the first 

point as shown in Figure 3.11(d). This time, points 2 to 36 are used to fit a circle and if 

once again T<R the last point is reassigned to sequentially lower number points in search 

of a satisfactory circle. Figure 3.11(e) shows point 20 as that last point. A proper circle C1 
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for which T = R is finally found when point 5 became the last point as shown in Figure 

3.11(f). The circle C1 is the best fitting circle found using points 2 to 5 for corner 1. The 

first point now moves to point 6 and point 36 once again becomes the last point in Figure 

3.11(g). The next satisfactory circle is C2 fitting points 8 to 10 as shown in Figure 3.11(h) 

which describes the roundness of corner 2. The procedure continues with point 34 finally 

becoming the first point and point 36 the last. 

 

 

Figure 3.11 The circle-to-corner fitting process. 

 

A special situation must be considered. The first several points (such as points 1 to 3) and 

the last several points (such as points 34 to 36) may be on the same corner and therefore 

could be fitted to a same circle in some cases. Therefore, after the last loop, the algorithm 

needs to check if this may have occurred. 

Based on visual observation, the soil particle shown in Figure 3.10 appears to have seven 

corners. For comparison, the results of the “looping computation” are shown in Figure 3.12. 
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Seven circles have been fitted to the corners. The maximum inscribed circle (red circle 

with center Ci) is shown in Figure 3.12. After determining all the corner circles, the 

roundness was computed to be 0.49.  

 

 

Figure 3.12 The final corner fitting of the particle from Figures 3.10 and 3.11. 

 

In the above procedure, the tangent circle is found by finding the condition where T 

approximately equals R. However, it is very rare that T is exactly the same as R due to 

computational roundoff.  In fact, the numerous calculations performed for this chapter 

indicate that 0.98 ≤ H/J	 ≤ 1 is accurate enough for determining roundness.  

3.4.3 Analysis of !" and Image Resolution 

Discretizing the soil particle outline by a sufficient number of key points connected by line 

segments is essential to identifying the particle corners. A threshold DE must be selected 

for the discretization. This DE is the maximum allowed divergence of the curve from the 

straight line segment approximating it between key points. The chosen value of DE 
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essentially sets the threshold between corners and non-corners. For example, the curve in 

Figure 3.13 will be either identified as a straight line or a corner depending on the chosen 

value of DE. Naturally, DE should be set as small as possible to capture all the corners. 

However, this would generate more corner points and thus significantly increase the 

computational effort because the algorithm requires approximately NN (where N is the 

number of corner points) operations to find all the corner circles.  

 

 

Figure 3.13 The definition and significance of δ0. 

 

Numerous computations were performed to investigate the influence of DE on the final 

results. They showed that the more angular a soil particle is, the more sensitive the 

roundness results are to δ0.  A very angular soil particle shown in Figure 3.14(a) appeared 

in Powers (1953) and was reported to have a roundness of only 0.12. It has a very complex 

outline containing many small-sharp corners (e.g. corners 1, 10, and 12) as well as low-

curvature corners (e.g. corners 13 and 15). Thus, it is a particularly challenging particle for 

the algorithm to compute roundness numerically. As such, it is used here to illustrate the 

significance of δ0. A series of δ0 values were tried and the results are shown in Figure 3.14. 

The original outline of this soil particle contained 3147 points. The δ0 was first set at 0.01 

in Figure 3.14(b). A total of 1455 key points including 782 corner points and 673 non-

corner points were found. The corner points are plotted on the outline and were fitted by 

circles. As shown in Figure 3.14(b), all 17 corner circles were successfully identified. The 
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computed roundness was 0.12 which agrees perfectly with the value reported by Powers 

(1953). The δ0 was then gradually increased from 0.01 to 0.50. Although progressively 

fewer key points approximated the outline, the computed roundness was exactly the same. 

However the computation time was shortened from 2 min for DE=0.01 to less than 1 sec for 

DE = 0.50. When δ0 was further increased to 1.00 (Figure 3.14(e)), corners 1, 10, 13, and 

15 were not identified and the computed roundness jumped up accordingly. Corners 1 and 

10 are very small and sharp while corners 13 and 15 have low curvature. These two types 

of corners are easily missed when using a large δ0.  

 

 

Figure 3.14 The effect of different δ0 values on computed values of roundness. 

 

It is evident from Figure 3.14 that the computed roundness is not very sensitive to δ0 for 

values below a specific threshold, δ0max. When δ0 < δ0max all of the meaningful particle 

corners are successfully identified. As such using values smaller than δ0max serves no 

purpose as it merely decreases computational efficiency. However, the threshold δ0max will 

vary with image resolution (camera magnification). Image resolution is a key factor in the 

computation of particle roughness, sphericity and roundness. As previously discussed, 

roughness is a scale-dependent value. For the same surface, different instrument resolutions 

(e.g. cameras versus microscopes) will yield different roughness values. While there is an 

obvious dependence of the computed roughness on image resolution, the stability of the 
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computed values of particle sphericity and roundness to different image resolutions is more 

difficult to assess. To quantify the effect of particle image resolution, the concept of Pixels 

per Circumscribed Circle Diameter (PCD) is introduced. Obviously, the same soil particle 

will have different PCDs when captured under different camera resolutions.  

Compared to rounded particles, the computation of roundness for angular particles is more 

sensitive to PCD because small sharp corners may be lost at low PCD. The particle shown 

in Figure 3.14 is again used to demonstrate the influence of PCD on sphericity and 

roundness. The soil particle was digitally downscaled and upscaled to generate different 

PCDs as shown in Figure 3.15. Sphericity was computed using all five definitions given 

by Equations 2.1 to 2.5. Interestingly, the five sphericity values were virtually unaffected 

when PCD was varied from 100 to almost 12,000. This shows that the sphericity is not 

sensitive to image resolutions of soil particles for PCD>100. Roundness values were also 

computed using the different PCDs and they too are reported in Figure 3.15. Several 

conclusions could be drawn from the results: 

   1) When PCD is smaller than 200 pixels significant aliasing was observed along the 

particle outline. Even when using an extremely small δ0, the small corners could not be 

clearly delineated and non-corner parts may have been identified as corners. Therefore, to 

accurately compute roundness, the particle must be captured with a PCD of at least 200 

pixels. Once PCD is larger than 200 pixels, the image resolution is sufficient to delineate 

even a fairly complex outline.   

   2) It was earlier shown that as long as δ0 ≤ δ0max, the computed roundness will not be 

affected. However, the δ0max depends on the image resolution as shown in Figure 3.15. The 

PCD of the soil particle will change under different resolutions. The authors found that 

δ0max should be no larger than 0.03% of PCD.  
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Figure 3.15 The influence of PCD on computed values of roundness and sphericity. 

 

3.5 Comparison to Previously Reported Sphericity and Roundness Values  

The roundness of the two quartz particles shown in Figures 3.16(a) and 3.16(c) were 

computed manually by Wadell (1935). For comparison, the corner circles were determined 

using the computational geometry method presented in this chapter. The results are shown 

in Figure 3.16(b) and 3.16(d). The positions and sizes of the circles fitted to the corners, as 

well as the computed roundness values are very close to those reported by Wadell. 

Diameter sphericity (Equation 2.2) which was used by Wadell is also determined by 

computational geometry. The results again agree with the previously reported values.  
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Figure 3.16 Comparison to the results of Wadell (1935): (a) and (c) are from Wadell 
(1935) units are millimeters; (b) and (d) are computational geometry results in pixel units 

(sphericity is the diameter sphericity by Equation 2.2). 

 

Krumbein and Sloss (1951) were first to combine particle sphericity and particle roundness 

into one chart as shown in Figure 3.17. They evaluated roundness using Wadell’s (1935) 

method although they did not provide the hand-drawn circles in their published work. The 

same 20 particles were evaluated for roundness (R) in this chapter. The computed 

maximum inscribed circles and corner circles are shown in Figure 3.17. The R values agree 
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well with the values reported by Krumbein and Sloss.  Since the proposed computational 

geometry method appears to yield the same roundness values as by Wadell’s manual means 

or through Krumbein-Sloss chart estimates, the required time, tedium and imprecision of 

the older methods can now be eliminated. 

 

 

Figure 3.17 Comparison of computational geometry results to Krumbein and Sloss 
(1951). 

 

The method used for computing sphericity by Krumbein and Sloss (1951) is somewhat 

unclear. They suggested that the sphericity values were SWL, which are shown in Figure 

3.17. However, Santamarina and Cho (2004) and Cho et al (2006) believed the sphericity 

values in the Krumbein-Sloss charts were SC. The authors computed sphericity for each 

soil particle using Equations 2.1 to 2.5 and compared them with the Krumbein-Sloss chart 
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values in Figure 3.18. By observation, it appears clear that Krumbein and Sloss (1951) used 

SWL in their well-known and often used sphericity chart. 

 

 

Figure 3.18 Comparison of sphericity by various definitions to Krumbein and Sloss 
(1951) chart values.  

 

In addition to Figure 3.17’s widespread historical usage, there are additional reasons that 

support the use of the SWL for defining sphericity. First, SWL is conceptually simple, intuitive 

and easily determined from images. Secondly, SWL appears to be completely independent 

of roundness. Thirdly, of all five definitions, it utilizes the largest range of values between 

0 and 1.0 thereby making it the most practical and attractive measure of particle form. 

The Krumbein chart, proposed by Krumbein (1941), contains 81 reference particles 

redrawn from pebbles and manually assessed by Wadell’s method. As shown in Figure 
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3.19, the 81 reference particles were binned by Krumbein into 9 groups having R 

increments of 0.1. The authors determined the R values of all 81 particles using 

computational geometry. The spatial resolution was set to have a PCD of approximately 

1200 pixels for all of the particles and δ0 was set to 0.3 for all computations. The resulting 

corner circles and maximum inscribed circles are plotted in Figure 3.19. The computed R 

values are shown with two significant figures over each of the particles in Figure 3.19. 

They are in excellent agreement with the one significant figure values provided by 

Krumbein (1941) at the bottom of each of the nine groups. When the computational results 

are rounded to one significant figure, perfect agreement is found for 79 of the 81 particles. 

The only exceptions are two very well rounded particles that had R = 0.97 which rounds to 

1.0.   
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Figure 3.19 Comparison to results reported by Krumbein (1941) 
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It is clear that the computational method furnishes a precise computation of R while the 

chart methods provide only estimates of it. Indeed, the successful development of the 

former eliminates the need for the latter.  

Another widely used chart for estimating particle sphericity and roundness was provided 

by Powers (1953). He separated particles having Wadell R values from 0.12 to 1.00 into 

six roundness classes as shown in Figure 3.20. The ratio of the upper limit to the lower 

limit of R in every class is 0.7. Each roundness range is illustrated with two particles: one 

having high S and one with low S. The R values of the 12 soil particles were determined 

using the computational methods described in this chapter with δ0 set to 0.3. The results 

are shown in Figure 3.20. The computed R values of the two particles in each class are very 

close to the upper and lower limit in each class. The particles having high S displayed the 

upper R value while the particle having low S displayed the lower R value in each range. 

The computed values agree remarkably well with the values reported by Powers (1953). 

As such, we again conclude that the computational geometry method proposed herein can 

replace the imprecise and subjective chart method.  
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Figure 3.20 Comparison of computational method to estimates of angularity by Powers 
(1953) 
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3.6 Application of the algorithm to particle assemblies 

Provided binary particle images, the computational algorithm can directly extract a 

particle’s outline and compute the Wadell roundness. Therefore, it could be readily 

integrated into existing optical soil characterization systems capturing binary soil images. 

Some of the systems include: the University of Illinois Aggregate Image Analyzer (UIAIA) 

(Rao and Tutumluer, 2000; Tutumluer and Pan, 2008); the Aggregate Imaging System 

(AIMS) (Fletcher et al., 2003; Chandan et al., 2004; Mahmoud and Masad, 2007; 

Mahmoud et al., 2010); the Qicpic system (Altuhafi et al., 2013); and the Translucent 

Segregation Table (TST) system (Ohm and Hryciw, 2013). In all of these systems the 

particles are prepared to lie detached from one another thereby facilitating image collection 

for simple analysis.  

By contrast to the systems listed above, in other image-based soil characterization systems 

the soil particles are not or cannot be detached. For example, in the Sedimaging system 

(Ohm and Hryciw, 2014) a 213 cm (7 ft.) tall sedimentation column is used to rapidly sort 

soil particles by size prior to image capture. In these images, the sedimented soil particles 

are in three-dimensional contacting assemblies. The Vision Cone Penetrometer (VisCPT) 

developed by Raschke and Hryciw (1997) captures images in-situ without taking soil 

specimens from the ground. Obviously, the soil particles in VisCPT images are also in 

three-dimensional assemblies. Finally, some particles such as fine sands are so small that 

it is unrealistic to separate them prior to image capture, even in a laboratory. Therefore, a 

procedure was sought that could computationally extract particles from images of three-

dimensional assemblies so that the new computational algorithm for Wadell roundness 

could be used on them.  

In 3D assemblies, particles are not only in contact with each other, they also block and are 

blocked from view by other particles. Some soil particles may have a full projection of 

their area in view while others will be occluded by foreground particles. Secondly, the 

voids between soil particles are hard to distinguish from actual particles. Naturally, only 

particles exhibiting full projections are useful for characterization of form and roundness.  
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Therefore, the challenge is to distinguish particles with full projections from voids and 

occluded particles. Ideally, a computer algorithm would make these distinctions. However, 

this is a daunting task as soils have various colors, size distributions, internal textures, 

particle forms and roundnesses. The authors’ future research efforts will aim to teach 

computers to pick out the particles with full projections through machine learning and 

pattern recognition techniques. However, to date, only human judgment is capable of 

making the selections. Therefore, a semi-automated approach is utilized in this chapter; it 

combines human judgment with a computer’s rapid computational abilities.  In this hybrid 

approach, operators first pick out the particles with full projections. Then, binary particle 

images are automatically generated. Finally, roundness and other descriptors of particle 

geometry are determined using the computational methods described in this chapter.  

Figure 3.21(a) shows a natural soil aggregate image called Brown Fused Alumina Oxide 

sand (BFAO). The particles are brown and have a complex texture. The particles whose 

projections are fully visible can be manually picked out using the image processing 

software “Photoshop”. To begin, the operator can trace the particle boundaries using the 

Photoshop tools: polygonal lasso or magnetic lasso. When using the polygonal lasso, users 

must manually specify the perimeter points and Photoshop will connect the points to 

generate particle boundaries. The magnetic lasso automatically detects the particle 

boundaries. Although it is a very powerful tool that does not require much human 

interaction, the magnetic lasso is ineffective for particles that exhibit complex textures due 

to roughness or mineral variability.  

As such, the polygonal lasso was used for the BFAO. A total of 89 fully projected particles 

were identified. After delineating the boundaries, the regions within them are filled with a 

distinct color as shown in Figure 3.21(b). Figure 3.21(b) is the input into the computational 

geometry program previously described. The program easily extracts the newly colored 

particles and computes the PCD of each one. Each particle is then upscaled or downscaled 

so that PCD equals 1000 pixels and δ0 is set to 0.3. The results have been superimposed on 

the original image in Figure 3.21(c). The dashed circle is the maximum inscribed circle 

and the solid circles are the corner circles.  
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Figure 3.21 Circle fitting results for BFAO sand: (a) image of the three-dimensional 
assembly of BFAO; (b) delineated particles using Photoshop; (c and d) fitted corner 

circles (solid) and maximum inscribed circles (dashed). 
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Images of two other soils were collected using different optical systems. Figure 3.22 shows 

standard Ottawa #20 - #30 sand captured using the VisCPT. The particles are light brown, 

rounded and spherical. The soil in Figure 3.23 is called “2NS” by the Michigan Department 

of Transportation; an image of its 1.4 mm to 2.0 mm size increment was captured in the 

Sedimaging device. The detailed Sedimaging test procedures are provided by Ohm and 

Hryciw (2014). The 2NS particles have a variety of colors, shapes and roundnesses.  In the 

Ottawa sand image, 129 particles showed full projections while 203 particles were found 

in the 2NS image. The computational results for the two soils are superimposed on the 

original images. Once again, the maximum inscribed circles are in dashed lines while the 

corner circles are solid lines. They again appear to nicely fit the particles and their corners.   
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Figure 3.22 Circle fitting results for Ottawa #20–#30: (a) image of the three-dimensional 
assembly of Ottawa #20–#30 by VisCPT; (b) fitted corner circles (solid) and maximum 

inscribed circles (dashed). 
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Figure 3.22 Circle fitting results for 2NS sand: (a) image of a three-dimensional assembly 
of 2NS sand by sedimaging; (b and c) fitted corner circles (solid) and maximum inscribed 

circles (dashed). 

 

After identifying the maximum inscribed circle and corner circles, the Wadell roundness 

of each particle is easily computed. Other geometric descriptors such as length (d1), width 

(d2), sphericity, aspect ratio, orientation can also be readily obtained. Assuming the soil 

particles are ellipses, a “relative volume” of each particle can be computed as d1×d2×d2. 

The distribution of Wadell R by volume for the three soils was computed and is shown in 

Figure 3.23. The use of volume-based distributions for civil engineering (geomechanics) 

applications is more logical and appropriate than simple distributions based on particle 

counts. Nevertheless, it’s recognized that for relatively uniform sized soil particles the 

distributions will be similar.  

Powers’ classification of R (according to Figure 3.20) is also shown in Figure 3.23. As 

shown, the Ottawa sand is 75% by volume well-rounded with about 25% rounded; 2NS 

contained about 45% rounded and 35% subrounded with smaller volumes of well-rounded 
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(10%) and subangular (10%); the BFAO was 50% subangular, 20% angular and 30% 

subrounded by volume.  

 

 

Figure 3.23 Wadell roundness cumulative distributions 

 

By convention, roundness should be evaluated in the view showing the largest projected 

area of a particle (Sneed and Folk, 1958). Therefore, approximately 200 random particles 

from each of the three sands were laid out on a flat surface exposing their largest area. 

Images were captured and analyzed using the computational method. The results, shown 

by dashed lines in Figure 3.24 are in very good agreement with those obtained from the 

images of three-dimensional assemblies. As summarized in Table 3.1, the difference 

between the average R determined from images of assemblies and the average R from 

images of detached particles was +/- 0.01 for all three soils. 
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Having identified particles with full projections, particle sphericities can also be computed 

following Equations 2.1 to 2.5 and their distributions can also be developed. Figures 

3.24(a), 3.24(b), and 3.24(c) are the sphericity distributions for BFAO, Ottawa #20-#30 

and 2NS, respectively. The results confirm that SWL indeed gives a widest numerical range 

for sphericity. The dashed lines in the three figures are the sphericity distributions obtained 

using the largest projected areas of the same particles as were used for computing 

roundness. Table 3.1 tabulates the average values for all three soils by all five definitions 

of sphericity. As observed, the differences in average values were at most +/- 0.02.  

 

Table 3.1 Mean R and S from Images of Assemblies and Images of Maximum Area 
Projections 

Soil 
R  SA  SD  SC  SP  SWL 

IA MP  IA MP  IA MP  IA MP  IA MP  IA MP 
BFAO 0.31 0.32  0.62 0.62  0.78 0.78  0.62 0.62  0.88 0.89  0.69 0.70 
Ottawa 0.75 0.76  0.75 0.77  0.87 0.88  0.74 0.76  0.96 0.96  0.79 0.80 
2NS 0.53 0.52  0.62 0.64  0.78 0.79  0.62 0.63  0.91 0.92  0.67 0.67 

Note: IA = from images of assemblies; MP = from images of maximum area projections. 
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Figure 3.24 Sphericity distributions for (a) BFAO; (b) Ottawa #20-#30; (c) 2NS 
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3.7 Required sample size for determining particle roundness of a soil  

In most earlier studies, only a mean R value for a soil was determined. The ability to rapidly 

determine R for numerous particles in a specimen raises the question of how many are 

needed to obtain statistically valid value. To obtain an average R for a soil specimen, Youd 

(1972) reported that at least 50 particles are needed. Edil et al. (1975) estimated R for sand 

particles by Krumbein’s chart and reported that viewing at least 25 particles were needed 

to yield a reliable mean. Cho et al. (2006) visually compared 30 particles to obtain the 

mean. Rouse et al. (2008) concluded that at least 30 particles are needed to compute the 

mean R based on the probability theorem ‘law of large numbers’. Bareither et al. (2008) 

used 50 particles. Yang and Wei (2012) reported using 40 particles. Others who computed 

and reported average R values include Eisma (1965); Frossard (1979); Sladen et al. (1985); 

Vepraskas and Casselkan (1987); Sagga (1993); Frossard (1979); Mehring and McBride 

(2007); Bareither, et al. (2008); Chapuis (2012) and Cabalar et al. (2013). In summary, the 

typical sample size used to compute an average R value has been in the range of 30 to 50 

particles.  

From statistics, for normal distributions the minimum sample size, nmin necessary for 

reliably estimating the mean value of a population is computed by:  

2
/2

min
zn
E
a sé ù= ê úë û

   Equation 3.4 

where E is the allowed error between the estimated population mean and the actual 

population mean; σ is the population standard deviation and Zα/2 is a value related to the 

confidence level of 100(1 – a)%  which is obtained from a Z-table.   

If we establish a maximum E of 0.05 for the mean roundness and wish to know it with a 

confidence level of 98%, then a = 0.02 and Zα/2 = Z0.01 = 2.33 from the Z-table.  From study 

of over 20 different sands, the authors have observed standard deviations of no more than 

0.17 for roundness, with most values below 0.15.  Using the worst case σ = 0.17 with E = 

0.05 and a 98% desired confidence (a = 0.02), the computed nmin is 63. Since this chapter 

presents a more rapid and precise method for computing Roundness than by chart methods, 
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it is also logical that more particles could and should be used than the previously used 30 

to 50.   

Eight natural and two crushed sands from various locations in Michigan, Texas, Missouri 

New Mexico and California having various particle shapes were evaluated using the 

computational geometry methods for roundness and sphericity. In each case, the average 

value of 64 particles was computed. The mean R values with their standard deviations and 

the mean SWL with their standard deviations are shown in Figure 3.25. As expected, the two 

crushed sands, 30A (R=0.15) and a crushed Gabbro rock (R=0.23) were the most angular, 

as expected. Fort Davis, TX (R=0.41) is very recent colluvium. Scotts Valley, CA (R=0.40) 

is a residual sand from a mildly cemented sandstone. Rincon, NM (R=0.55) is a dessert 

sand, probably windblown. Capitola, CA (R=0.48) is an alluvial river bed sand. The most 

rounded soils, are a Mississippi River alluvium from New Madrid, MO (R=0.57), a 

glaciofluvial sand from Oakland County, MI (R=0.65) and a Lake Michigan Dune sand 

(R=0.62).  

Visual observation of the images appears to confirm the reasonableness of the roundness 

values and classifications. Just as importantly, the inscribed circles and circles fitted to 

corners are correctly constructed. The largest observed standard deviation was 0.17 

confirming the reasonableness of using σ = 0.17 in Equation 3.4 to compute nmin.  
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Figure 3.25 Mean R and S values and their standard deviations for sands of various 
geologic origins: (a) Michigan 30A; (b) Crushed Gabbro; (c) ScottsValley,California; (d) 

FortDavis,Texas; (e) Capitola,California; (f) UpperPeninsula,Michigan; (g) 
Rincon,NewMexico; (h)NewMadrid, Missouri; (i) Lake Michigan Dunes; (j) Oakland 

County, Michigan 

 

3.8 Conclusion 

This chapter presented methods for determination of soil particle sphericity, roundness and 

surface roughness using their traditional definitions but obtained numerically through 
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computational geometry. Values for sphericity computed by five existing definitions, all 

based on 2D particle projections, were compared. The analysis showed that the simple ratio 

of particle width to length, SWL provides the best distribution of sphericity values between 

0 and 1.0 and is also independent of particle roundness.  

A surface roughness assessment was proposed based on statistical methods: locally 

weighted regression (LOESS) and K-fold cross validation. A mean surface is determined 

from which a root mean squared roughness is computed. Determination of the mean surface 

is also a prerequisite to determining particle roundness. 

The digitization of Wadell’s roundness computation is complex for two reasons. First, the 

roughness needs to be removed. Secondly, the particle’s corners need to be identified and 

fitted with appropriate circles. These two challenges were overcome by the computational 

geometry methods proposed in this section. The accuracy of the computational algorithm 

was verified by excellent agreement with Wadell’s (1935) original hand computations of 

roundness. The computational results were also compared to three widely utilized charts 

of Krumbein (1941), Krumbein and Sloss (1951), Powers (1953) to show that the chart’s 

particle silhouettes approximated Wadell’s roundness reasonably well. The computational 

geometry method essentially eliminates the need to use Wadell’s manual method and 

approximations based on the chart method. 

Parametric evaluation of computational geometry results revealed two rules of thumb for 

obtaining reliable values of sphericity and roundness.  First, the resolution of images should 

be at least 200 pixels per circumscribing circle diameter (PCD) and secondly, the 

maximum departure of linear segments approximating the particle perimeter (δ0max) should 

be no more than 0.03% of PCD. 

The computational geometry methods were extended to particles in three-dimensional 

assemblies that exhibited full and unobscured projections. For particles exhibiting uniform 

internal textures, Photoshop’s magnetic lasso tool was used to define the perimeter while 

for particles with complex internal textures, Photoshop’s polygonal lasso was used. 

Cumulative volume-based distribution of particle roundness and sphericity were developed 

for uniformly textured Ottawa sand and Michigan 2NS as well as for a highly textured 
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Brown Fused Oxide Sand (BFAO). As expected, the Ottawa sand proved to be mostly well-

rounded (75%) with about 25% by volume rounded particle; 2NS ranged from 35% 

subrounded to 45% rounded with smaller volumes of well-rounded (10%) and subangular 

particles (10%); the BFAO was 50% subangular, 20% angular and 30% subrounded.   

Sphericity distributions for these three soils confirmed that the ratio of particle width to 

length (as sphericity was defined by Krumbein and Sloss, 1951) provides a broader range 

of values than four other occasionally used definitions of sphericity. Average values of 

roundness and sphericty obtained from the images of three-dimensional assemblies were 

also compared to average values obtained from images of detached particles of the same 

sands laid out to expose their largest projected areas. The differences in computed 

roundness and sphericity were insignificant.  

Finally, mean roundness was computed for 10 different sands of various geologic origins. 

Their values ranged from 0.22 and 0.25 for crushed sands to 0.56 to 0.59 for alluvial and 

glacio-fluvial sands. It was shown that 64 particles were adequate to compute a mean 

roundness with +/- 0.05 accuracy and 98% confidence. 
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CHAPTER 4  

LABORATORY MECHANICAL BEHAVIOR 

4.1 Index void ratios 

4.1.1 Introduction 

Particle packing is a primary state parameter controlling a soil’s mechanical response to a 

change in applied loads (effective confining stress is the other major state parameter). 

Contraction in loose packing states and dilation in dense states during shearing inspired the 

development of critical state soil mechanics and stress-dilatancy theories. One way to 

quantify packing for geomechanics purposes is through a soil’s relative density, Dr. It 

expresses the degree of compactness of a sand with respect to experimentally determined 

“very loose” and “very dense” index states.  It is defined as (emax – e)/(emax – emin) where e 

is the void ratio. The two index void ratios, emax and emin, establish very loose and very 

dense index packing states which a sand achieves under specific laboratory testing 

conditions prescribed by ASTM D4253 and ASTM D4254 respectively.  

Angular, non-spherical and uniform-sized sands tend to have larger values of emax and emin 

than rounded, spherical and well-graded sands (Santamarina and Cho, 2004; Youd, 1972; 

Cubrinovski and Ishihara, 2002; Cho et al., 2006; Bareither et al., 2008; Rouse et al., 2008; 

Koerner, 1969 and Shin and Santamarina, 2013). However, only Koerner (1969) and Youd 

(1972) considered the coupled effects of several intrinsic properties. Others generally 

studied the effects of only one intrinsic property at a time. Most commonly, the effect of 

particle roundness of relatively uniform-sized soil particles on emax and emin was evaluated. 

In this section, 25 particulate materials having various shapes, sizes and gradations were 

investigated. High quality emax and emin tests were performed on them. The primary intrinsic 

properties affecting emax and emin including particle size distribution, particle roundness (R) 
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and sphericity (S) were obtained by image-based computational geometry algorithm of 

chapter 3. As a compliment to the newly obtained lab data, previously published emax and 

emin values for 142 other sands were added to the dataset. Using the combined data, this 

chapter quantifies the influence of particle size distribution, R and S on the index void ratios 

and a new model is presented for predicting emax and emin using all three intrinsic properties.  

4.1.2 Materials and test procedures 

Twenty one sands of various shapes, sizes and gradations were collected. In addition, two 

different sized glass bead specimens and two kinds of rice were included to increase the 

range of particle shapes. The average R and S values of the 100 particles was computed for 

each soil. Sieving was employed to obtain the 50% size (D50) and the coefficient of 

uniformity (Cu). Table 4.1 summarizes these values as well as emax and emin for each 

material.  

Table 4.2 lists information that was available for the additional 142 sands found in the 

geotechnical engineering literature. The particle size distributions, R and S were extracted 

whenever such information was available. In some of the previous works, only images of 

the sand grains were available instead of actual R and S values. In such cases, the 

computational geometry algorithm was used to determine R and S from the images.  
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Table 4.1 Test results for 25 sands by this study. 

Soil 
Gradation Shape Packing 

D50 Cu R S emax emin 
Chesterton, IN Dunes 0.26 1.3 0.64 0.76 0.87 0.57 
Ottawa 20-30  0.71 1.4 0.75 0.82 0.74 0.49 
Michigan 2NS 0.50 2.3 0.53 0.67 0.82 0.54 
New Madrid, MO 0.32 2.2 0.57 0.73 0.81 0.52 
Michigan Dunes 0.30 1.5 0.62 0.72 0.85 0.56 
Oakland Co., MI 0.31 1.6 0.65 0.72 0.86 0.53 
Michigan 30A 0.58 7.0 0.15 0.69 0.92 0.55 
Fused AI Oxide 1.80 1.6 0.30 0.69 0.92 0.63 
Scotts Valley, CA 0.33 1.5 0.40 0.73 0.94 0.60 
Upper Peninsula, MI 0.60 2.8 0.51 0.69 0.85 0.54 
Fort Davis, TX 0.44 8.6 0.41 0.68 0.85 0.51 
Rincon, NM 0.36 3.0 0.55 0.82 0.80 0.51 
Crushed Gabbro 0.80 5.5 0.23 0.56 0.96 0.60 
Capitola, CA 0.35 1.6 0.48 0.72 0.89 0.57 
Small Glass Beads 0.70 1.1 1.00 1.00 0.75 0.50 
Large Glass Beads 0.97 1.1 1.00 1.00 0.74 0.50 
Brady, TX 0.61 1.4 0.68 0.76 0.84 0.57 
Class IIA, MI 0.21 1.9 0.62 0.69 0.86 0.56 
Griffin, IN 0.74 4.3 0.60 0.69 0.79 0.51 
Chesterton, IN Beach 0.64 2.9 0.64 0.66 0.85 0.54 
Muskegon, MI 0.40 1.6 0.55 0.74 0.84 0.56 
Nevada Sand 0.16 1.3 0.61 0.72 0.88 0.58 
Treasure Island, CA 0.25 1.8 0.56 0.72 0.85 0.57 
Long-grain rice  1.51 1.1 0.62 0.40 1.08 0.85 
Short-grain rice  1.91 1.1 0.54 0.55 0.97 0.65 

Note: D50 = 50% size (mm), Cu = coefficient of uniformity, R = roundness, S = sphericity, emax 
and emin = index maximum and minimum void ratios. 
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Table 4.2 The results of 142 sands from literatures. 

Source Soil 
Gradation Shape Index 

Packing 
D50 Cu R S emax emin 

Sladan et al. 
(1985)b 

Nerlerk 0.28 2.0 0.43 0.75 0.94 0.62 
Leighton Buzzard 0.86 1.2 0.50 0.82 0.82 0.54 

Cho et al. (2006)b Nevada sand 0.15 1.8 0.60 0.85 0.85 0.57 
Ticino sand 0.58 1.5 0.40 0.80 0.99 0.57 
Margaret River sand 0.49 1.9 0.70 0.70 0.87 - 
ASTM 20/30 sand 0.60 1.4 0.80 0.90 0.69 - 
Ponte Vedra sand 0.18 1.8 0.30 0.85 1.07 - 
8M8 crushed sand 0.38 3.3 0.20 0.70 0.97 - 
9C1 crushed sand 0.52 2.3 0.25 0.70 0.91 - 
Jekyll Island sand 0.17 1.7 0.30 0.85 1.04 - 
ASTM graded sand 0.35 1.7 0.80 0.90 0.82 0.50 
Blasting sand 0.71 1.9 0.30 0.55 1.03 0.70 
Glass beads 0.32 1.4 1.00 1.00 0.72 0.54 
Granite powder 0.09 6.2 0.40 0.24 1.30 - 
Ottawa #20/30 sand 0.72 1.2 0.90 0.90 0.74 0.50 
Ottawa F-110 sand 0.12 1.7 0.70 0.70 0.85 0.54 
7U7 curshed sand 0.30 3.2 0.20 0.80 0.79 - 
1K9 crushed sand 0.30 3.4 0.20 0.40 1.16 - 
2Z8 crushed sand 0.48 5.0 0.10 0.60 0.86 - 
5Z9 crushed sand 0.40 3.6 0.30 0.90 0.89 - 
6H1 crushed sand 0.33 3.8 0.20 0.80 0.97 - 
9F1 crushed sand 0.33 3.5 0.20 0.80 0.90 - 
3P3 crushed sand 0.27 2.2 0.20 0.70 0.95 - 
6A2 crushed sand 0.33 5.5 0.20 0.75 0.93 - 
5U1 crushed sand 0.32 3.5 0.15 0.70 0.84 - 
Sandboil sand 0.36 2.4 0.55 0.70 0.79 0.51 
1O2 crushed sand 0.25 2.9 0.25 0.80 0.83 - 
1O6 crushed sand 0.21 2.8 0.30 0.70 0.77 - 
6F5 crushed sand 0.25 3.3 0.25 0.80 0.91 - 
8B8 crushed sand 0.32 3.7 0.25 0.80 0.85 - 
3C7 crushed sand 0.26 3.2 0.25 0.80 0.85 - 
2L6 crushed sand 0.28 3.5 0.25 0.80 0.84 - 

Sukumaran and 
Ashmawy (2001)b 

Daytona Beach sand 0.23 1.4 0.30 0.70 1.00 0.64 
Fraser River sand 0.30 1.9 0.43 0.50 1.13 0.78 
Ottawa #20/70 sand 0.53 2.4 0.32 0.81 0.78 0.47 
Ottawa #45 sand 0.57 2.1 0.24 0.68 1.11 0.75 
Ottawa #60/80 sand 0.21 2.4 0.65 0.78 0.85 0.55 
Ottawa #90 sand 0.27 2.2 0.16 0.60 1.10 0.73 
Syncrude tailings 0.18 2.5 0.20 0.62 1.14 0.59 
Ottawa 20 - 30 0.74 1.1 0.78 0.90 0.74 0.51 
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DeJong and 
Christoph (2009)a Q-Rok 0.75 1.5 0.20 0.50 1.14 0.70 

Guo and Su 
(2007)a 

Sand O 0.38 1.8 0.41 0.93 0.81 0.50 
Sand L 1.64 2.0 0.14 0.57 1.20 0.62 

Bolton (1987)c Toyoura sand 0.16 1.5 0.35 0.65 0.97 0.61 
Ezaoui and  
Benedetto (2009)c Hoston sand 0.47 1.4 0.30 0.62 1.04 0.64 

Lings and Dietz 
(2004)c 

Abraded Leighton 
Buzzard 0.76 1.3 0.75 0.80 0.80 0.51 

Cabalar et al. 
(2013)c 

Narli 1.00 3.7 0.75 0.65 0.83 0.52 
Crushed Stone Sand 1.40 2.5 0.45 0.61 0.93 0.62 
Birecik 0.86 3.3 0.65 0.72 0.80 0.55 
Trakya 0.72 6.3 0.35 0.65 0.70 0.49 

Barden et al. 
(1969)c 

Bronze Ballotini - 1.6 0.80 0.80 0.74 0.54 
River Welland sand - 1.7 0.40 0.60 0.94 0.62 
Crushed feldspar - 6.4 0.25 0.65 0.90 0.56 

Tsomokos and 
Georgiannou 
(2010)c 

Ham River sand  0.30 1.3 0.55 0.75 0.87 0.53 
Fontainebleau sand 0.21 1.2 0.65 0.71 0.87 0.54 
M31 sand 0.30 1.3 0.75 0.70 0.87 0.53 
Longstone sand 0.15 1.3 0.30 0.65 1.00 0.61 

Coop and Lee 
(1993)c Ham River 0.28 1.6 0.45 0.65 0.92 0.59 

Roberts (1964)c Hawaiian sand 0.60 1.5 0.60 0.75 0.86 0.52 
DeBeer (1963)c Mol sand 0.19 1.5 0.65 0.65 0.89 0.56 
Rouse et al. 
(2008)c Badger sand - 1.3 0.81 0.90 0.69 0.49 

Zelasko et al 
(1975)b 

Ottawa 20-30 0.72 1.2 0.65 0.87 0.78 0.46 
Ottawa 35-45 0.42 1.2 0.60 0.90 0.82 0.48 
Ottawa 50-70 0.25 1.2 0.52 0.90 0.89 0.53 
Ottawa 70-100 0.18 1.2 0.50 0.90 0.92 0.54 
Ottawa 100-140 0.12 1.2 0.50 0.90 0.92 0.54 
Evanston Beach 20-30 0.72 1.2 0.44 0.71 0.92 0.55 
Evanston Beach 35-45 0.42 1.2 0.43 0.73 0.90 0.52 
Evanston Beach 50-70 0.25 1.2 0.41 0.73 0.92 0.54 
Evanston Beach 70-
100 0.18 1.2 0.42 0.72 0.93 0.53 

Franklin Falls 20-30 0.72 1.2 0.36 0.52 1.08 0.62 
Franklin Falls 35-45 0.42 1.2 0.35 0.52 1.04 0.63 
Franklin Falls 50-70 0.25 1.2 0.34 0.52 1.10 0.64 

Thomann (1990)c Ottawa 20-30 0.75 1.2 0.75 0.90 0.72 0.51 
Ottawa 50-70 0.22 1.1 0.70 0.80 0.84 0.57 
Ottawa 100-200 0.13 1.9 0.60 0.60 0.90 0.59 
Douglas Lake Sand 0.23 2.4 0.45 0.75 0.83 0.54 
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Lake Ackerman Sand 0.34 2.5 0.60 0.80 0.72 0.48 
Agsco 50 - 80 0.25 1.3 0.20 0.50 1.24 0.79 
Daedalus Sand 0.60 4.7 0.75 0.90 0.61 0.36 

Yasin and 
Safiullah (2003)b 

Teesta sand 0.50 2.5 0.40 0.65 0.92 0.57 
Meghna sand 0.23 1.9 0.20 0.74 0.97 0.66 
Jamuna sand 0.13 1.9 0.10 0.68 1.14 0.72 

Moroto and Ishii 
(1990)a 

Gabbro - 1.6 0.27 0.74 0.90 0.65 
Greywacke - 1.6 0.31 0.65 0.97 0.72 
Onahama  - 1.6 0.32 0.72 0.99 0.71 
Dolelite - 1.6 0.39 0.76 0.96 0.69 
River gravel - 1.6 0.43 0.71 0.84 0.55 
Beach gravel - 1.6 0.58 0.74 0.74 0.53 

Shahanazari and 
Rezvani (2013)c 

Bushehr Port 0.78 4.5 0.35 0.60 0.91 0.63 
Hormuz Island 0.43 3.2 0.20 0.50 1.05 0.72 

Georgiannou and 
Konstadinou 
(2013)c 

M31 sand 0.30 1.6 0.62 0.70 0.87 0.53 

Ottawa sand 0.72 1.4 0.80 0.90 0.74 0.50 

Baxter and 
Mitchell (2004)c 

Evanston Beach sand 0.30 1.8 0.75 0.80 0.79 0.50 
Density sand 0.50 1.9 0.80 0.90 0.72 0.48 

Yang et al. 
(2010)c Fontainebleau sand 0.21 1.5 0.45 0.75 0.90 0.51 

Kumar and 
Madhusudhan 
(2012)c 

Clean sand 0.75 3.8 0.40 0.68 0.90 0.48 

Bareither et al. 
(2008)b 

P1-S2 0.38 2.2 0.61 - 0.67 0.42 
P1-S4 0.30 2.7 0.59 - 0.70 0.40 
P1-S5 0.44 2.6 0.62 - 0.76 0.43 
P1-S6 0.34 2.4 0.62 - 0.69 0.43 
P1-S1 0.31 1.9 0.50 - 0.76 0.48 
P1-S3 0.31 2.3 0.40 - 0.83 0.50 
P1-S7 0.29 2.0 0.42 - 0.81 0.52 
P2-S3 0.16 2.3 0.24 - 0.96 0.58 
P3-S3 0.54 2.5 0.59 - 0.64 0.37 
P3-S5 0.48 3.0 0.56 - 0.62 0.38 
P3-S6 0.29 2.1 0.36 - 0.77 0.50 
P3-S7 0.22 1.8 0.46 - 0.80 0.51 
P2-S1 0.30 1.9 0.31 - 0.80 0.51 
P2-S2 0.20 2.1 0.29 - 0.83 0.56 
P2-S4 0.32 5.3 0.40 - 0.68 0.39 
P2-S9 0.50 4.2 0.43 - 0.56 0.33 
P2-S10 0.20 2.3 0.31 - 0.75 0.46 
P2-S11 3.50 3.4 0.52 - 0.43 0.26 
P3-S1 0.63 3.2 0.50 - 0.58 0.35 
P3-S2 0.48 4.8 0.48 - 0.70 0.39 
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P4-S1 0.58 2.0 0.42 - 0.84 0.56 
P5-S1 0.69 5.3 0.38 - 0.55 0.31 
P2-S5 0.64 2.8 0.33 - 0.69 0.44 
P2-S6 0.27 3.8 0.25 - 0.76 0.46 
P2-S7 0.15 3.2 0.22 - 0.86 0.52 
P2-S8 0.50 3.1 0.37 - 0.64 0.40 
P2-S12 0.42 3.1 0.42 - 0.64 0.39 
P3-S4 0.70 2.9 0.52 - 0.60 0.37 
P4-S2 0.48 2.9 0.31 - 0.72 0.44 
P4-S3 0.77 6.5 0.35 - 0.62 0.33 

Youd (1973)a Mixed sand 1 0.74 1.4 0.34 - 0.80 0.46 
Mixed sand 2 0.74 2.5 0.35 - 0.69 0.37 
Mixed sand 3 0.74 4.3 0.37 - 0.58 0.30 
Mixed sand 4 0.74 8.0 0.37 - 0.49 0.27 
Mixed sand 5 0.74 4.3 0.37 - 0.64 0.36 
Mixed sand 6 0.74 1.4 0.19 - 1.26 0.71 
Mixed sand 7 0.74 2.5 0.19 - 1.10 0.59 
Mixed sand 8 0.74 4.3 0.19 - 0.93 0.48 
Mixed sand 9 0.74 8.0 0.19 - 0.80 0.43 

Herle and 
Gudehus (1999)c 

Hochstetten sand 0.2 1.6 0.30 - 0.95 0.55 
Hostun RF sand 0.35 1.7 0.30 - 0.98 0.61 
Karlsruhe sand 0.4 1.9 0.45 - 0.84 0.53 
Lausitz sand 0.25 3.1 0.51 - 0.85 0.44 
Toyoura sand 0.16 1.5 0.30 - 0.98 0.61 
Zbraslav sand 0.5 2.6 0.30 - 0.82 0.52 

Notes: 
D50 = 50% particle size (mm), Cu = coefficient of uniformity, R = roundness, S = sphericity, emax 
and emin = index void ratios. 
aRoundness and sphericity computed by Wadell’s manual procedure.  
bRoundness and sphericity estimated by visual comparison with standard charts developed by 
Krumbein and Sloss (1951) or Krumbein (1941).  
cRoundness and sphericity estimated based on written descriptions or particle images given in the 
reference.  
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Figure 4.1(a) shows the R and S pairs for all of the soils.  It should be noted that the S values 

for most of the sands are between 0.6 and 0.8. This is expected. Slender elongated particles 

are rarely found in nature because they are vulnerable to breakage. The R values range from 

0.1 to 1. Extremely angular particles with R less than 0.1 are also rare in nature. Figure 

4.1(b) shows the materials are fine to coarse sands with Cu values as high as 9. Thus, the 

sands range from highly uniform to well-graded.  
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Figure 4.1 Intrinsic properties of the collected soils. 

 

4.1.3 Relationship between Packing and Intrinsic Properties 

The influence of roundness (R), sphericity (S), coefficient of uniformity (Cu) and 50% size 

(D50) on emax and emin was analyzed using the soils in Tables 4.1 and 4.2. First, to focus 

only on the effects of R and S, only uniform soils with Cu < 2.5 were considered. Figures 

4.2 and 4.3 were developed using only such relatively uniform sands.  They show that both 

emax and emin decrease nonlinearly with increasing R and S. When initially poured through 

a funnel to create the emax condition, angular (low R) particles do not pack easily as they 

do not roll and slide as well as more rounded particles. Elongated (low S) particles could 

bridge over each other generating high local porosities (Santamarina and Cho 2004). While 

the general trends of decreasing index void ratios with R and S are unmistakable, there is 

large scatter in the data and functional relationships based on the data in Figures 4.2 and 

4.3 yielded very low correlation coefficients.  
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Figure 4.2 Influence of roundness (R) on index void ratios. 
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Figure 4.3 Influence of sphericity (S) on index void ratios. 

 

Particle gradation is certainly known to affect packing. For well-graded soils, the voids 

within a skeleton of larger particles will be filled by smaller particles. This will reduce both 

emax and emin as shown by the trends in Figure 4.4. In this figure, the effects of particle 

roundness are illustrated through use of different symbols for three R ranges: 0.15 to 0.25; 

0.26 to 0.49 and 0.50 to 1.00. These three ranges correspond to the “angular”, “subangular 

to subrounded” and “rounded to well-rounded” qualitative descriptions proposed by 

Powers (1953). While correlations based on Figure 4.4 were slightly better than those based 

on Figures 4.2 and 4.3, they were still low.  
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Figure 4.4 Influence of coefficient of uniformity on index void ratios. 

 

Cubrinovski and Ishihara (2006) and Bareither et al. (2008) suggested that emax and emin 

decrease slightly with increasing D50. The data from Tables 4.1 and 4.2 when plotted in 

Figure 4.5(a) appears to show this slight trend. However, the previous researchers did not 

isolate and account for the effects of R, S, and Cu. To minimize these effects, the authors 

selected the sands in Tables 4.1 and 4.2 having R, S, and Cu in the following narrow ranges:  

0.40<R<0.70; 0.71<S<0.93 and 1.1<Cu<2.5. When this reduced data set is plotted in Figure 
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4.5(b), it shows that D50 does not affect emax and emin. This confirms the findings by Dickin 

(1973). Therefore, the trends observed in Figure 4.5(a) are attributable to the combined 

effects of R, S, and Cu but not to D50. As such, only R, S, and Cu will be used to develop a 

comprehensive model to predict emax and emin in the following section.  
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Figure 4.5 Influence of particle size on index void ratios. 

 

4.1.4 Predictive model for emax and emin based on intrinsic soil properties.  

To develop the predictive model, the maximum and minimum void ratios of spherical 

uniform glass beads having R = S = Cu = 1.0 were used as reference index void ratios PQRS°  

and PQ%&° .  The emax and emin of other soils can be related to PQRS° , and PQ%&°  using influence 

factors RI , SI , and CI  that reflect the effects of R, S, and Cu respectively: 

max max max max max
R S Ce I I I e=    Equation 4.1 

min min min min min
R S Ce I I I e=    Equation 4.2 

From ASTM tests for index void ratios, PQRS°  = 0.75 and PQ%&°  = 0.50.    

Using a best fit to the data in Tables 4.1 and 4.2, the influence factors were found and 

Equations 4.1 and 4.2 became: 
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0.20 0.25 0.10
max maxue R S C e- - -=   Equation 4.3 

0.15 0.25 0.15
min minue R S C e- - -=   Equation 4.4 

Equations 4.3 and 4.4 are visualized in Figure 4.6. Each shaded band is for a fixed value 

of R with two fixed S values establishing the upper and lower boundaries for each band. 

The upper boundary is for S=0.6 and the lower boundary is for S=0.8. Figure 4.6 reveals 

that while R has the largest impact on emax and emin, the effect of Cu is also significant. The 

effect of S is somewhat smaller when considering its typical natural range of 0.6 to 0.8.   
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Figure 4.6 Graphical visualization of Equations 4.3 and 4.4. 
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Interestingly, Equations 4.3 and 4.4 imply that the ratio emax/emin is a function of Cu/R:  

0.05
max max

min min

ue C e
e R e

æ ö= ç ÷
è ø

   Equation 4.5 

While uniform spheres (R = Cu = 1.0) exhibit emax/emin = 1.5, sub-rounded borderline 

SP/SW (Cu=6) sands would have emax/emin = 1.75 and very angular well-graded sands 

would show emax/emin approaching 2.0. 

Equations 4.3 and 4.4 were used to predict emax and emin based on R, S, Cu for all of the 

soils in Tables 4.1 and 4.2. The results are shown in Figures 4.7(a) and 4.7(b) respectively.  

Most of the predicted values are within ±0.05 (shown by dashed lines in Figure 4.7) of the 

measurements. The prediction accuracy is quantified by the Mean Absolute Difference 

(MAD) between predictions and measurements. The MAD for emax and emin are 0.047 and 

0.035 respectively. 
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Figure 4.7 Comparisons between observed values and model predictions for index void 
ratios by Equations. 4.3 and 4.4. 

 

Youd (1973) also developed a generalized set of curves to estimate emax and emin based on 

Cu and R. His model was therefore used to predict emax and emin for the sands in Tables 4.1 

and 4.2. The comparisons between predictions and measurements are shown in Figures 

4.8(a) and 4.8(b). Youd’s model typically underestimated emax and emin with MAD values 

of 0.180 for emax and 0.186 for emin. The low agreements may be attributed to two factors. 

First, artificial mixes were used instead of a large range of natural sands. Secondly, 

sphericity was not considered to be a factor. This study shows that S does have some effect 

on emax and emin. 
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Figure 4.8 Comparisons between observed values and model predictions for index void 
ratios by Youd (1973). 

 

An earlier model for index packing densities was also developed by Koerner (1969). The 

comparisons between predictions and measurements are shown in Figures 4.9(a) and 4.9(b).  

Overall, Koerner tended to overpredict emax at low values of emax and underpredict it at high 

values of emax with a MAD of 0.150.  Koerner’s predictions for emin were much better with 

a MAD of only 0.064.  
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Figure 4.9 Comparisons between observed values and model predictions for index void 
ratios by Koerner (1969). 
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4.1.5 Discussion  

As observed in Figures 4.7(a) and 4.8(b), the emax and emin for some soils were still not 

accurately predicted. There may be several reasons for this. First, in the database collected 

from the literature some values of R and S may not be accurate, particularly if they were 

estimated from the Krumbein and Sloss (1951) chart which provides particle silhouettes 

for only five values of R and four values of S (0.2 units apart in each case). It is also well 

known that experimentally determined emax and emin values for the same soil can vary 

considerably when tests are performed in different laboratories (Cubrinovski and Ishihara, 

2002). In light of these sources of error, the authors also compared the model predictions 

to only the soils tested for index void ratios in their laboratory. More importantly, the new 

data set in Table 4.1 reports R and S values obtained by the precise image-based method 

using large numbers of particles. The results are plotted in Figure 4.10. They show 

considerably reduced deviations between predicted and measured values with MAD = 

0.022 for emax and 0.021 for emin.  

 

 

Figure 4.10 Comparisons between observed values and model predictions for index void 
ratios by Equations 4.3 and 4.4 when using only image-based computational geometry 

methods for R and S. 
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There are still other properties including fabric (uniform or random orientation of non-

spherical particles) and mineralogy (crushability and surface roughness) that were not 

considered in this study. For example, Figure 4.10(b) suggests that the model does not 

handle very elongated particles such as long-grain rice (S= 0.40) which may develop a 

strong fabric during deposition. The rice is also more crushable than most earth materials. 

Therefore, further investigation is needed to assess the roles of these other properties on 

index void ratios. Finally, the models developed in this study should not be used for gap-

graded soils. Additional research is needed on such soils. 

4.1.6 Conclusions  

A comprehensive study using sands of various shapes and gradations was conducted to 

develop models for the index void ratios, emax and emin, as a function of particle roundness 

(R), sphericity (S) and coefficient of uniformity (Cu). The models utilize the index void 

ratios of perfectly uniform glass beads (R = S = Cu = 1.0) as baseline values to which factors 

are applied to account for the effects of R, S and Cu in real sands. 

The models achieve better predictions for emax and emin compared to previous attempts for 

three reasons: 1) all of the major intrinsic properties affecting emax and emin were considered; 

2) a large database of sands having different R, S and Cu was employed; and 3) image-

analysis and computational geometry allowed for precise determination of R and S of for a 

large and therefore statistically reliable number of particles. The study also yielded a simple 

expression for the ratio emax/emin as a function of Cu/R. 

4.2 Compressibility of sands 

4.2.1 Introduction 

The linearity between soil void ratio, e, and the logarithm of effective vertical stress, sv’, 

has been known since early in the last century. It led to standardized oedometer testing for 

estimation of soil compression and settlement of ground surfaces due to structural loading, 

groundwater lowering or other causes of increase in effective stress. While the relationship 
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is commonly associated with consolidation of clayey soils, the linear trend is also observed 

in coarse-grained soils as long as particle crushing does not occur. 

Idealized 1D compression behavior of a sand is illustrated in e - log sv’ space in Figure 

4.11 from Vesić and Clough (1968). It shows relatively small compressibility during the 

pre-crushing stage. Subsequently, even if a soil is compressed from different initial void 

ratios, at high pressures the e-logsv’ lines converge to a unique Limiting Compression 

Curve (LCC).  

 

Figure 4.11 Conceptual interpretation of one-dimensional compression for cohesionless 
soils (After Vesić and Clough, 1968). 

 

The compression index, Cc = Δe/Δlogsv’ during the pre-crushing stage is approximately 

constant and in the range between 0.001 and 0.10 (Nakata et al., 2001a; 2001b; Cho et al., 

2006; Mesri and Vardhanabhuti, 2009). At elevated stress levels, compression increases 
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significantly with Cc jumping to between 0.10 and 1.0. Such values are more typical of 

normally consolidated clays (Pestana and Whittle, 1995; Miura et al., 1984).   

The stress level marking the onset of crushing was referred to as a yield stress sY’ by Mesri 

and Vardhanabhuti (2009). However, it should not be mistaken for the preconsolidation 

(maximum historic) effective stress which marks the onset of irreversible compression.  

The pre-crushing stage is not elastic and the recompression index, Cr = Δe/Δlog sv’ during 

unloading & reloading is typically 0.3 to 0.7 of Cc as will be confirmed in this chapter. The 

sY’ threshold depends mainly on soil mineralogy. Mesri and Vardhanabhuti (2009) 

concluded that sY’ may range from 0.3 MPa for biogenic carbonate sands to 30 MPa for 

quartz sands.  

Both laboratory tests (Roberts and de Souza, 1958; Hendron, 1963; Hardin, 1985; Nakata 

et al., 2001a; 2001b; Chuhan et al., 2002; 2003; Mesri and Vardhanabhuti, 2009; Altuhafi 

and Coop 2011) and Discrete Element Method (DEM) studies (Bolton et al., 2008) show 

progressive particle damage during compression of cohesionless soils. Prior to crushing, 

compression is achieved by abrasion of particle surface asperities and breakage of sharp 

particle corners. These have been defined as Level I and Level II damage respectively 

(Nakata et al., 2001b; Mesri and Vardhanabhuti, 2009). At elevated stress levels, 

compression is induced by splitting of the more heavily loaded particles into two or more 

pieces. Most researchers refer to this as particle crushing. This crushing of the load-bearing 

structure under very high pressures is defined as Level III damage (Nakata et al., 2001b; 

Mesri and Vardhanabhuti, 2009). 

The compression index of coarse-grained soils depends on both intrinsic and state 

properties. The intrinsic properties could include particle size distribution, particle shape 

and mineralogy. Particle size distribution may be quantified by the 50% size by weight, 

D50 and the coefficient of uniformity, Cu. Particle shape includes sphericity S, roundness R, 

and surface roughness. State properties include void ratio e, relative density Dr, effective 

confining stress and fabric. A given soil has a fixed set of intrinsic properties but can be at 

various states that could change with time or stress history.   
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The geologic transport mode and the distance travelled strongly affect the shape of soil 

particles. For example, glacial soils tend to be more angular than fluvial deposits due to 

their lower time in transport (Bareither et al. 2008). Parker (2008) observes that even within 

the same water system, fluvial soils downstream (i.e. a longer travel distance) had on 

average more rounded particle shapes than their upstream counterparts. Margolis and 

Krinsley (1974) note that eolian soil particles have an overwhelmingly high roundness, 

while weathered regolith have largely angular particles. It is also worth noting that particles 

with extremely angular shape are rarely found in nature and are more commonly formed 

by manually crushing coarser materials in laboratories or industrial settings. Examples of 

these highly angular materials include the W30A crushed concrete and the brown fused 

aluminum oxide abrasive used in this study.  

At pre-crushing stress levels, the amount of Level I and Level II damage is controlled 

predominantly by particle shape, relative density and particle size distribution.  Non-

spherical, angular and rough soils sustain more Level I and Level II damage and thus 

exhibit a higher Cc. Naturally, Dr plays a role as it reflects the average numbers of 

intergranular contact points per grain and thus affects the contact stress levels. It also 

reflects the availability of void space for particles to pack into. The previous section 

showed that size distributions and particle shapes establish the limit index void ratios, emax 

and emin needed to compute Dr.  Level III damage (crushing) is mainly controlled by particle 

mineralogy and stress levels.  

This section investigates and quantifies the influence of intrinsic soil properties including 

R, S, D50, Cu and Dr on Cc and Cr of sands at pre-crushing stress levels. Twenty four sands 

exhibiting a wide range of particle shapes, gradations, and geologic origins were collected 

for the study. Particle size distributions were determined by sieve analysis according to 

ASTM C 136 (2014). The particle shapes were determined using a computational geometry 

algorithm developed in chapter 3 which allows characterization of a statistically large 

number of particles in each specimen. One dimensional oedometer tests were performed 

on the soils. The new data was augmented with previously published results where 

compressibilities, size distributions and shapes were reported or could be deduced.  
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Through statistical analyses, functional relationships are developed for Cc and Cr. The 

accuracy of the model is assessed by comparison of predicted and observed values.  

4.2.2 Materials and test procedures 

The twenty four newly collected soils are listed in Table 4.3. The soils are grouped in the 

table according to geologic origin in order of decreasing R. Within each group by geologic 

origin, the soils are also arranged according to decreasing R. In the case of the old marine 

seabed, glacial, and alluvial soils, the specimens are arranged according to their presumed 

travel distance. For example, among the alluvial soils, the New Madrid sand was carried 

much further by the Mississippi River than was the Capitola sand within the Soquel Creek, 

and as such the New Madrid sand is listed above the Capitola sand in Table 4.3. This 

relationship with travel distance can in part explain why the New Madrid sand has a 

significantly larger R than the Capitola sand. Two different sized glass beads were also 

included in Table 4.3 to increase the range of R and S values. The intrinsic properties 

investigated to develop the models for Cc and Cr included R, S and particle size distribution 

as defined by D50 and Cu. Table 4.3 summarizes these parameters for all of the soils in the 

study. It is noted that the well graded 30A (W30A) soil was sieved to also yield a uniform 

version of 30A (P30A).   
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Table 4.3 Test results for 24 specimens in this study. 

Geologic Origin Soil Type Description Shape Gradation Packing Compressibility 
R S D50 CU emax emin Dr Cc Cr 

Manufactured to be 
Round 

Small Glass 
Beads 

Synthetic silica 
spheres 

1.00 1.00 0.70 1.1 0.75 0.50 0.92 0.0020 0.0017 
0.52 0.0120 0.0064 
0.12 0.0220 0.0100 

Large Glass 
Beads 

Synthetic silica 
spheres 

1.00 1.00 0.97 1.1 0.74 0.50 0.92 0.0020 0.0016 
0.50 0.0100 0.0060 
0.08 0.0200 0.0090 

Old Marine Seabeds 
(Former Beach) 

Ottawa 20-30 Silica mined from St. 
Peter's Sandstone 

0.75 0.8 0.71 1.4 0.7 0.49 0.92 0.0035 0.0021 
0.84 0.0060 0.0026 
0.64 0.0150 0.0040 
0.40 0.0200 0.0100 
0.28 0.0220 0.0130 
0.08 0.0300 0.0140 

Brady, TX Silica sand mined from  
Riley Formation's 
sandstone  

0.68 0.8 0.61 1.4 0.8 0.57 0.89 0.0040 0.0027 
0.52 0.0200 0.0100 
0.19 0.0260 0.0130 

Scotts Valley, 
CA 

Zayante soil mined 
from  Santa Margarita 
Formation's sandstone  

0.40 0.7 0.33 1.5 0.9 0.60 0.97 0.0070 0.0038 
0.56 0.0280 0.0095 
0.18 0.0320 0.0120 

Current Beach 

Chesterton, IN 
Dunes 

Beach sand 0.64 0.87 0.26 1.3 0.87 0.57 0.90 0.0047 0.0023 
0.50 0.0230 0.0090 
0.13 0.0300 0.0130 

Chesterton 
Beach, IN 

Beach sand 0.64 0.7 0.64 2.9 0.9 0.54 0.87 0.0060 0.0040 
0.55 0.0160 0.0078 
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0.13 0.0360 0.0130 
Michigan Dunes Beach sand 0.62 0.72 0.30 1.5 0.85 0.56 0.97 0.0048 0.0023 

0.52 0.0240 0.0110 
0.17 0.0360 0.0150 

Muskegon, MI Beach sand 0.55 0.7 0.40 1.6 0.8 0.56 1.00 0.0046 0.0035 
0.43 0.0180 0.0090 
0.00 0.0300 0.0130 

Eolian 

Nevada Sand Fine eolian silica dune 
sand 

0.61 0.72 0.16 1.3 0.88 0.58 0.87 0.0060 0.0040 
0.43 0.0200 0.0079 
0.13 0.0340 0.0150 

Rincon, NM Recent eolian deposit 0.55 0.70 0.36 3.0 0.80 0.51 0.90 0.0073 0.0050 
0.62 0.0220 0.0090 
0.17 0.0360 0.0140 

Glacial 

Oakland Co., MI Glacio-fluvial 0.65 0.72 0.31 1.6 0.86 0.53 0.94 0.0042 0.0026 
0.33 0.0210 0.0090 
0.03 0.0340 0.0130 

Class IIA, MI Glacio-fluvial 0.62 0.69 0.21 1.9 0.86 0.56 0.90 0.0042 0.0029 
0.57 0.0250 0.0090 
0.10 0.0320 0.0130 

Griffin, IN Glacio-fluvial 0.60 0.69 0.74 4.3 0.81 0.51 0.93 0.0061 0.0028 
0.43 0.0260 0.0090 
0.00 0.0380 0.0130 

Michigan 2NS Glacio-fluvial 0.53 0.7 0.5 2.3 0.8 0.54 1.00 0.0041 0.0021 
0.46 0.0190 0.0120 
0.14 0.0320 0.0140 

Upper Peninsula, 
MI (UP) 

Glacial 0.51 0.69 0.60 2.8 0.85 0.54 0.94 0.0065 0.0048 
0.48 0.0220 0.0100 
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0.10 0.0380 0.0150 

Alluvial 

New Madrid, 
MO 

Old Mississippi river 
alluvium 

0.57 0.73 0.32 2.2 0.81 0.52 1.00 0.0032 0.0025 
0.41 0.0250 0.0100 
0.00 0.0300 0.0120 

Treasure Island, 
CA 

Dredged San 
Franscisco Bay 
alluvium  

0.56 0.7 0.25 1.8 0.9 0.57 0.93 0.0046 0.0034 
0.46 0.0260 0.0100 
0.00 0.0350 0.0150 

Capitola, CA Soquel Creek alluvium 0.48 0.72 0.35 1.6 0.89 0.57 0.94 0.0069 0.0036 
0.50 0.0220 0.0100 
0.13 0.0300 0.0120 

Colluvial 
Fort Davis, TX Weathered volcanic 

colluvium  
0.41 0.68 0.44 8.6 0.85 0.51 0.91 0.0080 0.0052 

0.50 0.0300 0.0150 
0.12 0.0450 0.0160 

Manufactured to be 
Angular 

Brown Fused 
Aluminum 
Oxide (BFAO) 

Coarse commercial 
abrasive 

0.30 0.69 1.80 1.6 0.92 0.63 0.93 0.0110 0.0066 
0.48 0.0280 0.0120 
0.07 0.0450 0.0170 

Crushed Gabbro Crushed igneous rock 0.23 0.6 0.8 5.5 1 0.60 0.94 0.0180 0.0090 
0.58 0.0320 0.0140 
0.14 0.0480 0.0180 

P30A Poorly-graded crushed 
concrete 

0.15 0.7 0.72 1.2 1.20 0.87 0.94 0.0220 0.0150 
0.52 0.0420 0.0180 
0.12 0.0600 0.0210 

W30A, MI Well-graded crushed 
concrete  

0.15 0.69 0.58 7.0 0.97 0.57 0.93 0.0170 0.0110 
0.50 0.0380 0.0170 
0.10 0.0580 0.0200 

Note: D50 = 50% by weight size (mm), Cu = coefficient of uniformity, R = roundness, S = sphericity, emax and emin = limit index void ratios, Dr = 
relative density, Cc and Cr = primary compression index and recompression index. 
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The compression and recompression indices Cc and Cr were determined by oedometer 

testing at dry conditions following ASTM D2435. A 6.35 cm (2.5 in) diameter ring was 

used and the specimens were prepared in loose, medium dense, and dense conditions. The 

specimens were loaded in approximately doubling increments up to 300 kPa then unloaded 

to 50 kPa. The maximum vertical stress of 300 kPa corresponds to stress magnitudes 

commensurate with Level I and Level II damage where the effects of mineralogy are not 

yet felt (Mesri and Vardhanabhuti 2009; Cho et al. 2006). The results for W30A and P30A, 

which are typical, are shown in Figure 4.12. The observed Cc and Cr values for all of the 

soils are provided in Table 4.3.  

 

Figure 4.12 Typical oedometer test results on: a) W30A and b) P30A. 

 

As a supplement to the new data in Table 4.3, the authors also compiled results from 52 

other sands found in previously published works in which D50 and Cu were provided. This 

supplemental data is included in Table 4.4. The study by Cho et al. (2006) reported R and 

S values for each sand. However, other works did not provide R values. They gave only 

qualitative descriptions of particle roundness. In such cases, the R values were estimated 

by the authors. In other cases, images of the sands were shown which allowed for the 
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deployment of computational geometry method for R and S. The Cc and Cr values reported 

in Table 4.4 were all obtained in the stress range between 10 kPa and 300 kPa which is 

comparable to the test range used in this study.  

 

Table 4.4 Data on fifty two sands from previously published papers 

Source Soil type 
Gradation Shape Packing Compressibility 
D50 Cu R S emax emin Dr Cc Cr 

Pestana 
and 
Whittle 
(1995)c 

Quiou 0.60 1.5 0.35 - 1.20 0.78 0.40 0.0260 - 
      0.71 0.0160 - 
      0.88 0.0100 - 

Feldspar 0.70 4.5 0.35 - 1.10 0.89 0.05 0.0400 - 
      1.29 0.0080 - 

Nakata et 
al. (2001)b 

Glass beads 0.93 1.2 1.00 1.00 0.70 0.60 1.00 0.0004 - 
Toyoura sand 0.20 1.3 0.35 0.65 0.98 0.61 0.45 0.0220 - 

      0.80 0.0150 - 
      0.98 0.0060 - 

Nakata et 
al. 
(2001b)c 

Silica 0.75 2.1 0.35 - 0.86 0.43 0.42 0.0300 - 
       0.96 0.0070 - 
Aio 1.14 1.2 0.30 - 0.97 0.70 1.00 0.0100 - 

Rahim 
(1989)c 

Ganger 0.17 2.5 0.15 - - - 0.40 0.0400 - 

Hendron 
(1963)c 

Wabash River 
sand 

0.56 3.0 0.65 - - - 0.05 0.0340 - 
      0.71 0.0160 - 

Pennsylvania 
sand 

1.35 1.5 0.50 - 0.88 0.60 0.63 0.0170 - 
      0.74 0.0120 - 

Debeer 
(1963)b 

Mol sand 0.19 1.5 0.65 0.65 0.89 0.56 0.68 0.0150 - 

Lee and 
Seed 
(1967)b 

Sacramento River 0.21 1.5 0.45 0.70 1.03 0.61 0.38 0.0240 - 
      0.60 0.0150 - 
      0.76 0.0100 - 
      1.00 0.0050 - 

Robert 
(1964)b 

Hawaiian 0.60 1.5 0.45 0.75 0.86 0.72 0.14 0.0350 - 
       1.00 0.0040 - 

Coop and 
Lee 
(1993)b 

Ham River 0.20 2.4 0.65 0.75 0.92 0.59 0.39 0.0200 - 

Thomann 
(1990)b 

Ottawa 100-200  0.13 1.9 0.60 0.60 0.90 0.59 1.00 0.0060 0.0030 
      0.03 0.0400 0.0160 

Douglas Lake 
sand 

0.23 2.4 0.45 0.75 0.83 0.54 0.00 0.0400 0.0160 
      1.00 0.0100 0.0050 
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Agsco 50-80 
Sand 

1.30 1.2 0.20 0.50 1.24 0.79 0.00 0.0380 0.0170 
      1.00 0.0065 0.0034 

Ottawa 20-30 
Sand 

0.75 1.2 0.75 0.80 0.72 0.51 0.00 0.0300 0.0130 
      1.00 0.0025 0.0018 

Daedalus sand  0.60 4.7 0.75 0.80 0.61 0.36 0.00 0.0400 - 
      0.20 0.0360 - 
      0.52 0.0280 - 
      0.72 0.0180 - 
      0.76 0.0180 - 

Cho et al. 
(2006)a 

Nevada sand 0.15 1.8 0.60 0.85 - - - 0.0059 0.0034 
Ticino sand 0.58 1.5 0.40 0.80 - - - 0.0050 0.0042 
Margaret river 
sand 0.49 1.9 0.70 0.70 - - - 0.0046 

0.0034 

ASTM 20/30 
sand 0.60 1.4 0.80 0.90 - - - 0.0038 

0.0029 

Ponte Vedra sand 0.18 1.8 0.30 0.85 - - - 0.0052 0.0036 
8M8 crushed 
sand 0.38 3.3 0.20 0.70 - - - 0.0220 

0.0042 

9C1 crushed sand 0.52 2.3 0.25 0.70 - - - 0.0050 0.0038 
1K9 crushed sand 0.30 3.4 0.20 0.40 - - - 0.0160 0.0059 
5Z9 crushed sand 0.40 3.6 0.30 0.90 - - - 0.0067 0.0042 
6H1 crushed sand 0.33 3.8 0.20 0.80 - - - 0.0170 0.0088 
9F1 crushed sand 0.33 3.5 0.20 0.80 - - - 0.0080 0.0042 
3P3 crushed sand 0.27 2.2 0.20 0.70 - - - 0.0180 0.0046 
6A2 crushed sand 0.33 5.5 0.20 0.75 - - - 0.0100 0.0042 
2Z8 crushed sand 0.48 5.0 0.10 0.60 - - - 0.0088 0.0034 

Note: D50 = 50% by weight size (mm), Cu = coefficient of uniformity, R = roundness, S = 
sphericity, emax and emin = limit index void ratios, Dr = relative density, Cc and Cr = primary 
compression index and recompression index.  
aThe R and S were estimated by visual comparison with standard charts developed by Krumbein 
and Sloss (1951).  
bThe R and S were estimated by authors based on particle images  
cThe R and S were estimated by authors based on descriptions given in the paper 
 

The intrinsic properties of all the collected soils from Tables 4.3 and 4.4 are plotted in 

Figure 4.13. The S values of most sands fall in the range of 0.6 to 0.8 as shown in Figure 

4.13(a). This relatively narrow range is fully expected since very elongated particles are 

rarely found in nature as they are vulnerable to breakage. The R values range from 0.1 to 

1.0. Extremely angular particles with R less than 0.1 are also rare in nature, as noted 

previously. Figure 4.13(b) shows the studied material range from fine to coarse sand and 

the Cu values show the sands ranging from uniform to well-graded.  
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Figure 4.13 The intrinsic properties of the collected soils: (a) roundness and sphericity; 
(b) mean particle size and gradation. 
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4.2.3 Compression index  

The effects of R, S, Cu, and D50 on Cc are now evaluated. As shown in Figure 4.14, Cc 

decreases with increasing R and with increasing S. In Figure 4.14(b), the Cc values of both 

W30A and P30A do not follow the trend lines of the other sands. This is because 30A is 

an extremely angular material (R = 0.15) which dominates the sand’s behavior. Angular 

particles have more surface protrusions, sharp corners and initial high void ratios. 

Therefore, during compression, larger particle movements will occur due to more abrasions 

and breakages of the protrusions and sharp corners. More particle breakage induces large 

vertical movements and thus larger Cc.  
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Figure 4.14 The influence of: a) roundness and b) sphericity on compression index. 

 

In order to examine the effect of Cu on Cc, W30A with Cu = 7.0 was compared to P30A 

with Cu = 1.2. These two specimens have similar R, S, and D50 values and therefore their 

effects are discounted. The oedometer results for these two soils is shown in Figure 4.12. 

The Cc values for W30A and P30A are compared in Figure 4.15(a). As expected, the Cc 

decreases only slightly when Cu increases from 1.2 to 7.0. Naturally, this is because the 

P30A has more voids (emax=1.20; emin=0.87) compared to the W30A (emax=0.97; emin=0.57). 

Particle size appears to have no direct influence on Cc as revealed by Figure 4.15(b).  
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Figure 4.15 The influence of: (a) coefficient of uniformity; (b) 50% size by weight on 
compression index. 

Having observed that S, Cu and D50 appear to have limited direct effect on Cc it is worth 

pointing out that Zheng and Hryciw (2016a) showed that emax and emin depend on the three 
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intrinsic properties R, S, and Cu by Equations 4.3 and 4.4. Therefore, particle sphericity 

and size distribution indirectly affect Cc and Cr through Dr which in turn will affect Cc as 

follows.  

This research found that (1 – Dr/2), rather than simply Dr, has the strongest correlation with 

Cc. Therefore, a relationship between Cc and (1 – Dr/2) was sought.  Ottawa sand was tested 

at Dr = 0.08, 0.28, 0.40, 0.64, 0.84, and 0.92. The six resulting Cc values are plotted in 

Figure 4.16. The Cc increases linearly with (1 – Dr/2). The results of four other materials 

having different R and Cu, each tested at three different Dr’s, are also shown in Figure 8 and 

fitted by the solid lines. The slopes of the lines, k depend primarily on R, although, there 

may be secondary effects of other intrinsic properties. The k value certainly increases with 

increasing particle angularity (decreasing R).  

 

 

Figure 4.16 The influence of relative density and roundness on compression index. 
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4.2.4 Cc Model development  

A functional model for Cc at pre-crushing stress levels could be developed by combining 

the previously described effects of intrinsic (R, S, Cu and D50) and state (Dr) properties. 

However, the authors found that using only R and Dr yields very acceptable predictions for 

Cc. This may be attributed to two factors: first, the S values for the majority of soils fall in 

a fairly narrow range between 0.6 and 0.8. While occasional individual particles of sand 

(more typically aggregate) could have S values lower than 0.6, it is rare that natural soils 

possess average S values below 0.6. In Figures 4.15(a), Cu ranges from 1.2 to 8.5. Yet, Cu 

has only a limited effect on Cc. Figure 4.16 discloses a linear relationship between Cc and 

(1 – Dr/2) in which the slope k is related to R. It was hoped that k and R would be linearly 

related and indeed, k is approximately equal to (2-R)/20.  However, the fit was not as good 

as by a power law.  Therefore, the following model form is proposed:  

1
2

m r
c

DC A R Bæ ö= × - -ç ÷
è ø

   Equation 4.6 

where A, B, and m are empirical coefficients. The precision offered by using three 

coefficients will be revealed shortly. 

A Robust Multiple Linear Regression (RMLR) analysis was used to find A, B, and m. The 

RMLR minimizes the effects of outliers to the overall fitting model. This is achieved by 

assigning weights to each data point and tuning them iteratively using a process called 

“iteratively reweighted least squares” (Holland and Welsch 1977). In the first iteration, 

each point is assigned an equal weight. Then the weighted least square method is used to 

estimate the coefficients for fitting a model to the data points. In the second iteration, the 

weights of all the points are recomputed based on their divergence from the model’s first 

iteration prediction such that the points further from the predictions are given lower weights.  

The weighted least square process is again used to fit a new model to the reweighted data 

points in the second iteration. The process is repeated in subsequent iterations so that the 

weights of outliers will become progressively lower resulting in their influence being 

minimized in the fitting. The iterations terminate when the values of the coefficient 

converge to a specified tolerance. In this study, the tolerance was set to 0.001.  
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There are 113 sets of data in Tables 4.3 and 4.4 having all of the requisite parameters (R, 

Dr, and Cc) for model development. Of these, 56 tests were randomly selected for training 

data and the remaining 57 tests were test data that will be used for evaluation. The training 

data was used by the RMLR to search for the optimal coefficients A, B, and m for Equation 

4.6. The model with these determined values is then evaluated by the test data. The Mean 

Average Difference (MAD) between the predicted Cc and measured values from the test 

data is computed as MAD1. A different set of 56 sands is then randomly selected as the 

training data and the second model is developed. The computed MAD for the second Cc 

model is MAD2. The process is repeated 1000 times and the model having the smallest 

MAD (=0.0029) was found to be: 

0 20 06 1 0 03
2

. r
c

DC . R .- æ ö= - -ç ÷
è ø

 Equation 4.7 

Equation 4.7 was plotted using dashed lines for the five soils shown in Figure 4.16. In 

Figure 4.17, lines of equal Cc are shown in R-Dr space according to Equation 4.7 with the 

75 test results from Table 4.3 superimposed for comparison.  
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Figure 4.17 Visulization of the proposed model for compression index. 

 

The predictions of Cc by Equation 4.7 are also plotted versus the measured values in Figure 

4.18(a). The Cc values are larger than 0.01 for sands in the medium and loose states while 

being less than 0.01 in dense states. The dense state region is enlarged in Figure 4.18(b). 

For the medium and loose states, most predicted Cc values are within ±0.005 of the actual 

measured values as shown by the dashed lines in Figure 4.18(a). The MAD for all of the 

sands is 0.0029. Most of the predictions in the dense state were within ±0.002 of the 

measurements as shown by the dashed lines in Figure 4.18(b).  In this region, the MAD 

was only 0.0015. Overall, Equation 4.7 does a very good job of predicting Cc. It is worth 
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noting that the model predicts essentially Cc=0 for very dense (Dr=1.0) perfectly round 

(R=1.0) spheres. At the other extreme, for very loose (Dr=0) crushed material (say R=0.1) 

Cc approaches 0.07. 
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Figure 4.18 Comparisons of predicted and measured compression index: a) 0 to 0.07 
range; b) expansion of the 0 to 0.001 range. 

 

Cho et al. (2006) performed a series of oedometer tests on uniform sands at dense 

conditions. Their tests results are included in Table 4.4. They introduced regularity, r, as 

the average of roundness and sphericity and proposed: 1.50.0032cC r -= for dense 

conditions.  The equation was therefore used to predict Cc for 36 sands in this study that 

had Dr between 0.76 and 1.00 and for which both R and S were available.  The results are 

shown in Figure 4.19. Most of the predictions are within ±0.002 of the measurements and 

the MAD is 0.0038.  As such, for dense sands Cho et al.’s equation is virtually as good as 

the model developed in the present study. However, whereas it is only for high Dr, Equation 

4.7 is usable for the full range of Dr.  
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Figure 4.19 Comparison between measurement and prediction of compression index by 
Cho et al. (2006). 

 

4.2.5 Recompression Index 

The recompression index Cr is often related to Cc through the ratio Cr/Cc. The ratio reflects 

the reversibility or elasticity of a soil with Cr/Cc = 1.0 indicating completely reversible 

elastic deformation. For clays, Cr/Cc is typically between 0.10 and 0.20. For sands, Cr/Cc 

should logically be larger for looser while smaller for denser sands.  The authors therefore 

selected soils from Table 4.3 having Dr at three distinct levels around 0.13, 0.50, and 0.90. 

The observed Cr/Cc ratios of these three Dr groups are plotted versus R in Figure 4.20. As 

expected, Cr/Cc increases with Dr.  At each relative density, the Cr/Cc also increases linearly 

with R. That is also quite rational. Rounded sands tend to behave more elastically since 

there are no protrusions on the particles to suffer damage. By contrast, in angular sands 

irreversible deformations occur due to Level I and Level II particle damage at small and 

sharp corners. Of course, this is not yet Level III particle crushing.  
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Figure 4.20 The influences of roundness and relative density on the ratio of compression 
index to recompression index. 

 

Fortuitously, the slopes of all three lines in Figure 4.20 are nearly identical thus yielding a 

simple linear approximation for Cr/Cc:  

( )20.15 2.5 2r
r

c

C R D
C

= + +    Equation 4.8 

Since R of sands ranges from 0.1 to 1.0 and Dr ranges from 0 to 1.0, the Cr/Cc predicted by 

Equation 4.7 will range between 0.3 for very loose very angular sands to over 0.8 for very 

dense rounded sands. By comparison, Cr/Cc is typically 0.1 to 0.2 for clays. Equations 4.7 

and 4.8 were used to predict Cr for the soils in Tables 4.3 and 4.4. The comparisons between 

predictions and measurements are shown in Figure 4.21(a).  
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Figure 4.21 Comparisons between measurements and prediction of recompression index:  
(a) 0 to 0.025 range; (b) expansion of the 0 to 0.005 range. 
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The Cr values are typically larger than 0.005 for sands in the medium and loose states while 

being less than 0.005 for dense states.  The dense state region is enlarged in Figure 4.21(b). 

Although it reveals that Equation 4.8 slightly overpredicts Cr/Cc for very dense sands, the 

actual Cr values are so small that the underpredictions are of no practical significance for 

settlement estimates. For the medium and loose states, the predicted Cr values are within 

±0.001 of the measured values which are shown by dashed lines in Figure 4.21(a). Most of 

the predictions in the dense state are also within ±0.001 of the measurements as shown by 

dashed lines in Figure 4.21(b). The MAD is 0.0008 over the full range of Cr values but only 

0.0004 for the dense range. Overall, Equations 4.7 and 4.8 provide very good practical 

predictions of Cr for sands.  

As they did for Cc, Cho et al. (2006) also used regularity, r to predict Cr of dense sands by 

the equation: 0.60.0028rC r -= . Twenty nine tests from Table 4.3 and Thomann (1990) having 

Dr from 0.76 to 1.00 were used to evaluate the equation.  The results are shown in Figure 

4.22 and the computed MAD is 0.0013.  Cho et al.’s equation for Cr is also applicable only 

for dense sands. 

 

Figure 4.22 Comparisons between measurements and prediction of recompression index 
by Cho et al. (2006) 
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4.2.6 Conclusions 

Based on tests performed on 24 materials spanning a wide range of shapes, size 

distributions, and geologic origins, and 52 other sands described previously in the 

geotechnical engineering literature, a simple model was developed for the 1-D compression 

index, Cc, of sands at pre-crushing stress levels.  The model shows Cc being linearly related 

to (1 – Dr/2) and inversely related to R0.2. The model is an excellent fit to experimental data 

with the mean average difference (MAD) between observation and prediction being only 

0.0029.  For Cc values below 0.01 the MAD was only 0.0015. As expected, Cc values 

approaching zero were observed when R and Dr simultaneously approached 1.0. The 

highest Cc values of about 0.07 were observed when R and Dr approached values of 0.1 

and 0 respectively. A second simple model for the ratio of recompression index to 

compression index, Cr/Cc as a function of R and Dr was also developed.  The ratio ranged 

between 0.3 for very loose highly angular sands to over 0.8 for very dense well rounded 

sands.  This model also showed excellent agreement with observed values. 
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CHAPTER 5  

SAND FABRIC CHARACTERIZATION 

5.1 Introduction 

A Rotational Harr Wavelet Transform (RHWT) method that mimics human cognition to 

automate soil fabric characterization is presented in this chapter. An image of a soil is 

divided into numerous subareas for which pattern directions are obtained then used to 

develop a fabric rose diagram and the parameters for a cross-anisotropic fabric tensor.  

Based on images of eleven sands and three rice specimens at loose and dense conditions, a 

strong functional relationship for the fabric vector magnitude based on particle sphericity 

and relative density was shown. Furthermore, a very simple and practical relationship was 

presented for the fabric vector magnitude based only on relative density and the void ratio 

at 50% relative density. 

5.2 The fabric tensor 

The fabric anisotropy of granular material is usually quantified by a fabric tensor. We 

define the orientation of the long axis of a single particle by its unit vector n having 

orthogonal components (n1, n2, n3). A fabric tensor for discrete granular materials using the 

n for many particles was proposed by Satake (1982): 
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   Equation 5.1 

where N is the number of particles used. A detailed explanation of Equation 5.1 is provided 

by Oda and Nakayama (1989). The n could also be obtained from branch vectors or contact 

normals, but in this study, the particle long axis vectors are used. For a three-dimensional 

soil specimen, the computed φ is a third–rank symmetric tensor which can be represented 

by three principal values φ1, φ2, and φ3 and principal directions α1, α2, and α3.  

Directly computing the fabric tensor φij is difficult because it requires identifying the 

orientations of many particle long axes in three-dimensional space. However, this problem 

can be simplified by recognizing that most soils display cross-anisotropic fabric as shown 

in Figure 5.1. 

 

 

Figure 5.1 The cross–anisotropic fabric structure. 
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The particles develop an isotropic fabric in the depositional plane and therefore φ2 is equal 

to φ3. As such, only the angle α1 is required to describe the fabric direction ! as shown in 

Figure 5.1. The absolute difference between ! and α1 is ninety degrees. We only need to 

analyze particle orientations in the x1 - x3 plane, say from a two-dimensional image, to 

determine	!, φ1, and φ3 as shown in Figure 5.1(b).  

In the x1 - x3 plane, Equation 5.1 simplifies to a second-rank tenor: # = [#$$, #$%; #%$, 

#%%] (the bar indicates it is a two-dimensional fabric tensor). Oda and Nakayama (1989) 

and Curray (1956) demonstrated that the two principal values #$ and #% and the fabric 

orientation ! can be determined as:  

( ) ( )
( )

2 2
11 33 11 33 131

3

4 1 1
2 2

j j j j jj
j

+ ± - +ì ü
= = ±Dí ý

î þ
 Equation 5.2 
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   Equation 5.3 

where  

2 2
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1
cos 2 sin 2

N N
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D = +ê úç ÷ ç ÷

è ø è øê úë û
å å   Equation 5.4 

The ωk is the orientation of k-th particle in the x1 - x3 plane as shown in Figure 5.1(b). The 

Δ quantifies the degree of fabric anisotropy and is referred to as the vector magnitude 

(Curray, 1956), it. It will vary from zero when material is isotropic to unity when the long 

axes of particles lie strictly within the depositional plane (ω = ! for all particles). Assuming 

that the principal values #1 and #3 in a two-dimensional image are proportional to the 

principal values φ1 and φ3 in three-dimensional space (Oda and Nakayama 1989) and 

knowing that φ2 = φ3 (for cross-anisotropy) and φ1 + φ2 + φ3 = 1, the three principal values 

of the fabric tensor φ1, φ2 and φ3 can be obtained. The fabric tensor of Equation 5.1 is thus 

rewritten as:  
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 Equation 5.5 

Equation 5.5 is the fabric tensor proposed by Oda and Nakayama (1989) which has been 

extensively used to characterize fabric anisotropy in granular material. It will also be used 

in this study.  

To determine Δ and	!,	the	ω	values	of	many	particles	must	be	determined	in	the	x1-x3 

plane. An image of a long-grain rice assembly shown in Figure 5.2(a) was used as a soil 

surrogate to illustrate the process. The authors manually picked out 1357 full projection 

particles using a polygonal lasso tool of Adobe Photoshop described in chapter 3. The ω 

values of those labelled particles were determined and are plotted as arrows in Figure 5.2(b).  
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Figure 5.2 (a) Image of long-grain rice used for illustrating fabric characterization; (b) 
directions of long axes of rice grains. 
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The rose diagram of ω values in 10° increments is shown in Figure 5.3. The Δ value 

computed by Equation 5.4 is 0.41. The computed principal values using Equation 5.5 are 

φ1, φ2 and φ3 are 0.18, 0.41, and 0.41 respectively. The fabric direction ! is 148° by 

Equation 5.3. 

 

Figure 5.3 The fabric of long-grain rice using the traditional manual counting method. 

 

5.3 Fabric characterization by simulating cognitive process 

Ideally, a computer could be taught to automate detection of full projection particles. 

However, this is still a difficult problem due to great variations in the appearances of soil 

particles. It would therefore be desirable to characterize fabric without having to identify 

individual soil particles. By looking at the long-grain rice in Figure 5.2(a), an observer can 

quickly estimate the principal fabric direction and the degree of fabric anisotropy. For 

example, the authors felt that the principal fabric direction is about 145° which agrees 

reasonably well with the computed value of 148° in Figure 5.3. In our cognitive process, 

we essentially search for and detect repeating patterns rather than perform formal statistical 
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counts of individual particles. Our cognitive process divides the image into subareas 

containing micropatterns such as shown in Figure 5.4. For each subarea, our eyes 

distinguish the particle internal texture and particle edges by comparing the intensity of 

grayscale changes: the particle edges are associated with strong grayscale changes. We 

eliminate internal particle texture from our attention and focus only on the particle edges. 

We discriminate the long and short edges of particles and follow the long edges to estimate 

pattern orientation. Our eyes then scan the entire image to search for similar patterns. We 

then perceptually evaluate the fabric direction and the degree of fabric anisotropy. In this 

chapter, we aim to develop a computer algorithm that mathematically simulates this human 

cognitive process to automate fabric characterization. 

 

 

Figure 5.4 Conceptualization of the cognitive process algorithm for quantifying fabric. 
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It should be noted that the term “pattern orientation” is used in the rest part of chapter to 

represent the principal direction of particles’ long axes in the small subareas while the 

“fabric direction” will be used to represent the principal direction of particle axes in the 

entire image. 

5.3.1 Haar Wavelet Transform 

In mathematics and computer vision, grayscale changes may be quantified by the Haar 

Wavelet Transform (HWT) originally proposed by Haar (1910). The detailed theoretical 

derivation of the Haar Wavelet Transform can be found in many textbooks on wavelet 

mathematics. Therefore, this chapter will not repeat it. However, the authors will explain 

why the HWT can be used to quantify grayscale changes in images using a simple example.  

An 8 pixel × 8 pixel grayscale image A0 is shown in Figure 5.5. The grayscale values are 

superimposed on the image. Larger values correspond to brighter areas in the image. In A0, 

the grayscale values change only horizontally while remaining constant in the vertical 

direction. Thus, Ao has a vertical fabric. 
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Figure 5.5 The Haar Wavelet Transform (HWT). 

 



 

 119  
 

The HWT firstly divides the image into 2 x 2 blocks. There are a total of 16 such 2 x 2 

blocks in the 8 × 8 image Ao as shown in Figure 5.5. For each block (i, j), the HWT 

computes the mathematical difference of grayscales between adjacent pixels in three 

directions which yields the four values A1 (i, j), H1(i, j), V1(i, j), and D1(i, j). A1(i, j) is twice 

the average of the four numbers. H1(i, j) is the average difference of numbers between two 

columns. V1(i, j) is the average difference of numbers between two rows. D1(i, j) is the 

average difference of numbers between two diagonals. For example, the computed results 

for the first block A0(1, 1) are A1(1, 1) = 350, H1(1, 1) = 50, V1(1, 1) = 0, and D1(1, 1) = 0.  

These computations are repeated for each block in Ao yielding four new 4 × 4 matrices: A1, 

H1, V1, and D1 as shown in Figure 5.5. The A1, H1, and V1 all have physical meaning. The 

matrix A1 (can be regarded as a 4 × 4 image) is effectively a downscaling of the original 

image A0 by a factor of 2. The matrix H1 quantifies the difference of grayscale in the 

horizontal direction while V1 quantifies the difference of grayscale in the vertical direction. 

In our example, the grayscale only changes in the horizontal direction, therefore, V1 will 

be a zero matrix.  

In computer vision, the sum of the squares of the values in a matrix is called its energy (E). 

The computed energies EA1, EH1, EV1, and ED1 are shown in Figure 5.5. The EH1 and EV1 

quantify the grayscale changes in the horizontal and vertical directions in A0.  

The Haar Wavelet Transform can now be applied to A1 in a second decomposition as shown 

in Figure 5.5. It results in another four sub-matrices A2, H2, V2 and D2 whose corresponding 

energy values are also shown. Finally, A2 can be further decomposed into A3, H3, V3 and 

D3 as shown.   

The original size of A0 was 8 pixels × 8 pixels. Therefore, three HWT decompositions could 

be performed on the image. It is easy to see that a 2L pixel × 2L pixel image can be 

decomposed L times. At the i-th decomposition level, the computed energies EHi and EVi 

quantify the magnitudes of grayscale changes in the horizontal and vertical directions in 

image Ai-1. In our example, the images A0 and A1 display a strict vertical fabric with 

grayscales changing only in the horizontal direction. Therefore, the computed EV1 and EV2 

are both zero.  
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5.3.2 Rotational Haar Wavelet Transform 

The HWT computes only horizontal, vertical and diagonal energies. However, the diagonal 

energy is of limited value. As such, for practical purposes, the HWT quantifies only 

horizontal and vertical grayscale changes. To assess grayscale changes and compute 

energies in other directions, a Rotational Haar Wavelet Transform (RHWT) is introduced 

in this study. The entire image in Figure 5.4 was divided into 280 subareas each 364 pixels 

× 364 pixels in size. The subarea that is highlighted in Figure 5.4 is enlarged in Figure 

5.6(a). It is labelled image Z and will be used to demonstrate the RHWT.  
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Figure 5.6 Haar Wavelet Transform at rotation of '. 

 

First, image Z is rotated by ' clockwise. In Figure 5.6(b), ' = 30° is used for illustration. 

After rotation, a HWT is performed on the central 256 pixel × 256 pixel area. This area 

will be referred to as A0. A total of 8 decompositions can be performed on A0. A series of 

new images A1, A2, … A8 are generated the first six of which are shown in Figure 5.6(c). 
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At the i-th decomposition level, the horizontal energy and vertical energy are computed as 

EHi and EVi respectively.  

The computed EHi and EVi values for image Z are plotted in Figure 5.7. Higher EHi or EVi 

values correspond to larger grayscale changes in the horizontal or vertical directions in 

image Ai-1. Both EHi and EVi (i = 1, 2,…,8) display bell-shaped curves and reach maximum 

values at i = 5 in this example. The explanation for the bell-shaped curve is that the 

grayscale changes occur not only at edges but also inside the particles due to internal 

texture. The grayscale changes due to internal texture are much weaker than the grayscale 

changes at particle edges. Therefore, as the original image is consecutively approximated 

by smaller resolution images, the internal grayscale changes are gradually filtered out while 

the grayscale changes at edges become dominant as shown from A0 to A4 in Figure 5.6(c). 

Correspondingly, both EHi and EVi increase and reach peaks at A4 meaning the majority of 

internal texture is eliminated and the grayscale changes occur only at edges at this 

decomposition level. Beyond the peak, the grayscale changes at the edges will also be 

filtered out and the entire image becomes increasing blurred as shown in A5. This reduces 

both the EHi and EVi values. The maximum (peak) EHi and Evi values essentially quantify 

the grayscale change in the horizontal and vertical direction only due to edges. Therefore, 

the maximum EHi and Evi will be used to define the horizontal and vertical energies EH and 

EV in the original image A0 in Figure 5.6(b) at rotation ': 

( )
1...
maxH Hii L

E E
=

=    Equation 5.6 

( )
1...
maxV Vii L

E E
=

=    Equation 5.7 

Where L is the total number of decomposition levels. In the example, EH = EH5 = 6.56×105 

while EV = EV5 = 2.28×105. 
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Figure 5.7 The horizontal and vertical energy at each decomposition  
level for image Z at '=30°. 

 

The rotated image Z in Figure 5.6(b) is rotated back to its original position in Figure 5.8. 

The E(') and E('+90°) are EH and EV from the previously rotated view. Therefore E(') 

and E('+90°) quantify grayscale changes in directions ' and '+90°. If ' is varied from 0° 

to 89° in 1° increments, a total of 90 rotations will take place. The energies E(0°), E(1°) all 

the way to E(179°) are computed this way. Due to rotational symmetry, E('+180˚) = E('). 

Therefore, the E values for the full range of 0˚ ≤ ' ≤ 360˚ are obtained.  
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Figure 5.8 Determining energy in directions ' and '+90° for image Z. 

 

If we observe the image Z in Figure 5.6(a), the long edges in the fabric direction occur 

more frequently than the short edges perpendicular to the fabric direction. A higher edge 

frequency means more grayscale changes and thus a larger energy in this direction. We 

aim to follow the long edges parallel to the long axis of particles to determine the pattern 

orientation. Therefore, we should search for the direction '  having minimum energy 

(minimum E(' )) and the direction ('+90°) having the maximum energy (maximum 

E('+90°)). To accomplish this, we define an Energy Ratio, ER by:   
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   Equation 5.8 

The computed ER values will be in the range of 0 to 1. The ' corresponding to the ERmax 

is the long edge direction and thus the pattern orientation. The computed ER plot for image 

Z is shown in Figure 5.9.  
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It is a zig-zagged curve due to the random orientations of some particles and to image noise. 

The out-of-trend particles and image noise may bias the computed ER plot. To address this 

issue, a second-order Fourier series is used to fit the original ER plot with a smooth curve: 

( ) ( ) ( )2 20.50 cos 2 sin 2ER a bq q q= + +   Equation 5.9 

The coefficients a2 and b2 can be determined by fitting Equation 5.9 to the original ER plot 

as shown in Figure 5.9. The parameters are found to be a2 = -0.0057, and b2 = -0.3669 for 

our example. The ERmax and ERmin can be computed as:  

max 2 2
2 2
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0.50
ER

a b
ER
é ù

= ± +ê ú
ë û

   Equation 5.10 

which are 0.87 and 0.13 for the plot in Figure 5.9. It is evident that the sum of ERmax and 

ERmin will be unity and their directions will always be perpendicular to each other. The 

computed pattern orientation (direction of ERmax) is 135° for the highlighted subarea in 

Figure 5.4. It is superimposed on Figure 5.6(a) and clearly agrees very well with the 

observed long axes of the particles.  
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Figure 5.9 The ER plot and its Fourier smoothing for Image Z. 

 

For an ideal isotropic fabric, E will be a constant in all directions. Therefore, the ER plot 

will be a circle of radius = 0.5 (ERmax = ERmin = 0.5) which is shown as a dashed line in 

Figure 5.9. For stronger anisotropic fabric, the ER plot will diverge from the isotropic circle. 

The ERmax will trend to 1.0 while ERmin will approach 0.0.  

For practical reasons, a cut-off ERmax,0 value should logically be used to define an isotropic, 

or nearly isotropic fabric. This value of ERmax,0 was chosen to be 0.55 for reasons shown 

later in the chapter.   

The above process was repeated for all of the subareas in Figure 5.4. The pattern 

orientations are plotted as arrows while the ERmax values are shown beneath the arrows. 

Four of the patterns were identified by circles because their ERmax were smaller than ERmax,0 

= 0.55 meaning that the particles in those subareas showed no preferred orientation.  
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5.3.3 The effect of subarea size 

Back to the long-grain rice example in Figures 5.2 and 5.4, the pattern orientations in each 

subarea can be regarded as the ω values in Equation 5.4. With these values, the Δ and	! 

can be determined by Equations 5.2, 5.3 and 5.4. In our example, a total of 276 ω values 

were computed (the 4 isotropic squares were discounted). The ω values are plotted as a 

rose diagram in Figure 5.10(a). The computed Δ and !  are ΔH = 0.65 and !H = 140° 

respectively where the subscript “H” means the RHWT method was used. The rose 

diagram from traditional methods and the corresponding Δ value (ΔT) and fabric direction 

(!T) such as in Figure 5.3 are also shown in Figure 5.10 where the subscript “T” means the 

traditional method.  
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Figure 5.10 The effects of window size on RHWT results. 

 

In our example, the subarea sizes were 364 × 364 pixels of which the central 256 × 256 

pixel areas were analyzed. Generally, if the size of the analyzed subarea is M pixels × M 

pixels (where M must be 2L to perform a HWT), the corresponding subarea size to allow 

for the rotations must be 2M × 2M pixels. 

To investigate the effect of subarea sizes on the computed fabric results, three other M 

values were tried: M = 128, 64, and 32 pixels. The corresponding subarea sizes to allow 

for rotations were therefore set to 182 × 182 pixels, 91 × 91 pixels, and 45.5 × 45.2 pixels 
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respectively which produced 1120, 4480, and 17920 subareas for the image shown in 

Figure 5.2(a). The resulting rose diagrams and the corresponding Δ and	!  using the 

different M‘s are shown in Figures 5.10(b), 5.10(c), and 5.10(d).  

Figure 5.10 reveals that the fabric characterization results will indeed be affected by the 

size of the subareas. A large M tends to overpredict the degree of fabric anisotropy as 

shown in Figures 5.10(a) and (b) while a small M tends to underpredict it as shown in 

Figure 5.10(d). Using M = 64 pixels results in a near-perfect match with the manual method 

as shown in Figure 5.10(c). Clearly, there is an optimum number of particles per subarea 

that: (a) is not so large that the subarea pattern directions all approach the fabric orientation 

of the full image but (b) not so small that only a few grains dictate the pattern direction of 

a subarea. The authors found that this dual criterion is best met by using an M related to 

the number of “pixels per smaller particle dimension” (PPS): 

( )( )2int log2 PPSM =    Equation 5.11 

In our example, the PPS was approximately 80 pixels. Therefore, the optimum M was 64 

pixels. The correctness of this value is confirmed by the results shown in Figure 5.10.   

5.3.4 The effect of image magnification 

Image magnification will also affect fabric characterization. The previously defined PPS 

can be used to quantify the required image magnification.  At very low PPS (low 

magnifications) the edges will be blurred. This results in an underestimation of fabric 

anisotropy. Therefore, a minimum PPS must be established that would ensure reliable and 

accurate fabric characterization.  

The long-grain rice in Figure 5.2 continues to be used to find this minimum PPS because 

this very elongated material can develop a strong fabric. If we could determine the 

minimum PPS that would correctly characterize such a strong fabric anisotropy we would 

be able to use this minimum PPS as the criterion for other less elongated materials 

including sands. The long-grain rice image was upscaled and downscaled to generate four 

other images having different PPS values. The four images were 910 × 637, 1820 × 1274, 

3640 × 2548, and 14560 × 10192 pixels. The corresponding PPS values are 10, 20, 40, and 
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160 pixels respectively. The M values are computed by Equation 5.11 to be 8, 16, 32, and 

128 pixels respectively. The number of subareas is 4480 for those four images.  

The resulting rose diagrams for these four cases are shown in Figure 5.11 where they are 

also compared to the manual method results. As expected, low PPS values underestimated 

the degree of fabric anisotropy. Once PPS was 40 or more the results were exactly the same. 

Therefore, a minimum PPS of 40 pixels is established to produce consistently good results. 

 

Figure 5.11 Effect of image magnification on RHWT results. 
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5.4 Fabric tensor of natural sands  

Eleven sands (and three different kinds of rice) exhibiting a range of particle sizes, 

gradations, roundnesses, shapes, and particle colors were evaluated for fabric anisotropy. 

They are listed in Table 5.1. The particle shapes are quantified by sphericity, S, the ratio of 

particle width to particle length (Krumbein and Sloss, 1951). For each soil, the S was 

averaged from 200 maximum particle projections using computational geometry technique 

in chapter 2. The index void ratios emax and emin were determined following the ASTM 

D4253-14 (2014a) and ASTM D4254-14 (2014b). 

The laboratory apparatus was a square glass tube with 5 cm × 5 cm (2 in × 2 in) inside 

opening and 30 cm height. The soils were funneled into the tube from a zero height of drop 

to create specimens at the loosest state.  Following image capture at emax the glass tube was 

mounted on a shaking table and a 2.5 kg surcharge was placed on top of the soil. The 

specimens were vibrated until they reached their known emin states. A Nikon D800 camera 

with a magnification lens was used to capture 2912 × 5824 pixel images through the side 

of the glass tube. The images of six typical sands and rice at their loose states are shown in 

Figures 5.12(a) to 5.20(a) and at their dense states in Figures 5.12(d) to 5.20(d).  

The average PPS values in the captured images ranged from 95 to 160 pixels. Based on 

Equation 5.11, the size of the analysis area M was set to 128 pixels and consequently, the 

subarea size was 182 × 182 pixels. There were 512 subareas created from each image. As 

before, the ERmax,0 was set to 0.55. The computed ω values at the loose and dense 

conditions are plotted as rose diagrams in Figures 5.12(c) to 5.20(c) and Figures 5.12(e) to 

5.20(e) respectively. The Δ values at the loose and dense conditions (ΔL,H and ΔD,H) and 

corresponding fabric directions (!L,H and !D,H) are also shown.  

The soil particles displaying full projections in Figures 5.12(a) to 5.20(a) were also 

manually picked out and their ω values were computed and plotted as arrows in Figures 

5.12(b) to 5.20(b). This manual process took approximately 1 hour for 150 particles. The 

rose diagram of ω values, ΔL,T and !D,T values are shown in Figures 5.12(c) to 5.20(c). The 

results of the RHWT and the results by the traditional method agree with each other very 
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well demonstrating the accuracy of the proposed RHWT method. The results also confirm 

that it is rational to set ERmax,0 to 0.55. The complete results for all soils and rice specimens 

are provided in Table 5.1.  

As expected, the computed principal fabric direction (! values) are close to the horizontal 

direction as shown in Figures 5.12 to 5.20 and in Table 5.1. The relative density will affect 

the degrees of fabric anisotropy Δ. In the densified state, the particles display an even 

stronger preferred horizontal orientation and therefore larger Δ.  

 



 

 133  
 

 

 

 

Figure 5.12 The computational results for Ottawa sand. 
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Figure 5.13 Results for Class IIA sand. 
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Figure 5.14 Results for Indiana Beach sand. 
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Figure 5.15 Results for 2NS sand. 
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Figure 5.16 Results for Griffin sand. 
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Figure 5.17 Results for Crushed Gabbro sand. 
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Figure 5.18 Results for short-grain rice. 
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Figure 5.19 Results for medium-grain rice. 
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Figure 5.20 Results for long-grain rice. 
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Table 5.1 The computational results of natural soils 

Note: Cu = coefficient of uniformity; D50 = 50% size (mm); emax and emin = maximum and minimum index void ratios; NS = natural sand; S = 
Sphericity.  
 

 

Soils 
Gradation Packing Shape Loose Dense 

D50 Cu emax emin S ΔL,H !L,H ΔL,T !L,T ΔD,H !D,H 
Ottawa 20 - 30 0.71 1.4 0.74 0.49 0.82 0.08 108° 0.06 111° 0.17 1° 
Michigan Dunes 0.3 1.5 0.85 0.56 0.76 0.15 5° - - 0.2 2° 
Muskegon 0.4 1.6 0.84 0.56 0.74 0.10 173° - - 0.28 5° 
Oakland County, Michigan 0.31 1.6 0.86 0.53 0.72 0.18 17° - - 0.32 3° 
Class IIA, Michigan 0.21 1.9 0.86 0.56 0.69 0.22 2° 0.22 3° 0.29 173° 
Capitola, California 0.33 1.5 0.89 0.57 0.72 0.18 10° - - 0.26 10° 
New Madrid, Missouri 0.32 2.2 0.81 0.52 0.73 0.17 0° - - 0.27 175° 
Chesterton, Indiana beach 0.64 1.9 0.85 0.54 0.71 0.20 175° 0.2 173° 0.28 177° 
Michigan 2NS 0.5 2.3 0.82 0.54 0.67 0.21 173° 0.21 160° 0.3 177° 
Griffin, Indiana 0.74 3.3 0.79 0.51 0.65 0.22 144° 0.18 156° 0.32 175° 
Crushed Gabbro 0.8 1.5 0.96 0.60 0.56 0.28 1° 0.27 2° 0.42 178° 
Short - grain rice 1.91 1.1 0.97 0.65 0.54 0.28 172° 0.29 166° 0.44 178° 
Medium - grian rice 1.62 1.1 1.01 0.72 0.47 0.33 1° 0.33 1° 0.59 178° 
Long -grain rice 1.51 1.1 1.08 0.85 0.33 0.39 7° 0.37 8° 0.73 176° 



 

 143  
 

5.5  Relationship between Δ and soil properties  

There is abundant evidence that the potential degree of fabric anisotropy Δ depends on 

particle shape. Elongated and flat particles will develop stronger fabric anisotropy 

compared to spherical particles (Guo 2008, Oda 1981, Lade 2008, and Tong et al. 2014). 

Therefore, Δ should be related to the particle flatness ratio which is the ratio of particle 

thickness to length. However, it is difficult to determine the particle flatness ratio. Unless 

specialized devices are developed (Kuo 1996; Rao and Tutumluer 2000), operators must 

rotate each particle to measure the length and thickness to determine flatness ratio. Major 

effort would be required to measure many particles this way. Furthermore, such manual 

measurements cannot be used to determine the flatness ratios of small particles such as 

Michigan Dunes and Muskegon in Table 5.1. By contrast, it is easy to determine particle 

sphericity, S.  If soil particles are spread on a flat surface they will naturally rest with their 

maximum projections facing upward. An image captured from above will provide the 

information to compute S. If particles are very small, a close-up lens or microscope can be 

used. For example, in this study, for soils with D50 < 1.0 mm in Table 1, a magnifying lens 

was used to capture the images. For the reasons explained above, sphericity was used to 

quantify particle shape in this study.   

The Δ and S values for the materials in this study are plotted in Figure 2.21. Both ΔD (dense 

state) and ΔL (loose state) decrease linearly with increasing S. The relationships between 

ΔD and S, and ΔL and S can be nicely approximated by:  

1D SD = -     Equation 5.12 

( )0.6 1L SD = -    Equation 5.13 

Equations 5.12 and 5.13 indicate that for perfect spheres (S=1.0) both ΔD and ΔL are 0, as 

they should be. The difference between Equations 5.12 and 5.13 is 0.4(1-S) indicating that 

elongated particles tend to exhibit a wider range of Δ. The Δ value at any relative density 

Dr = (emax – e)/(emax – emin) could be estimated by linear interpolation between Equations 

5.12 and 5.13: 
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( ) ( )( )0.4 0.6 1r D L L rD D SD = D -D +D = + -   Equation 5.14 

 

 

Figure 5.21 The relationship between degree of fabric anisotropy and particle shape. 

 

The index void ratios emax and emin are intrinsic properties of soils. Equations 4.3 and 4.4 

showed that emax and emin increase with decreasing particle roundness, R, decreasing 

sphericity, S, and increasing coefficient of uniformity, Cu. Therefore, the packing of soil 

particles is a reflection of the particle shape. To quantify packing, the void ratio 

corresponding to 50% relative density, e50 could be used. Figure 5.22 plots the Δ of soils 

at dense and loose conditions versus e50.  As expected, both ΔD and ΔL increase with 

increasing e50. The data points are more scattered for sands with e50 = 0.8 ~ 0.9 because the 

e50 in this range is also affected by R, and Cu. The trends observed in Figure 5.22 can be 

approximated by:  
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501.55 1D eD = -     Equation 5.15 

500.8 0.5L eD = -    Equation 5.16 

As before, the Δ value at any relative density Dr can be estimated by linear interpolation 

between Equations 5.15 and 5.16: 

( ) ( )50 500.75 0.5 0.8 0.5r D L L rD e D eD = D -D +D = - + -  Equation 5.17 

Equations 5.14 and 5.17 provide insight into the relationships between soil fabric, particle 

shapes and packing. Although users can always determine Δ values through the RHWT 

presented in this study, Equations 5.14 and 5.17 provide an alternative way to estimate Δ 

if Dr and either the particle sphericity or e50 are known. Having the Δ values, the fabric 

tensor of cross – anisotropic soil can be computed using Equation 5.5.  

 

 

Figure 5.22 The relationship between degree of fabric anisotropy and packing. 
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5.6 Conclusions 

Soil fabric is known to play an important role in soil mechanics. By virtue of depositional 

processes, alluvial, coastal and lacustrine sands develop cross-anisotropic fabric. The 

traditional manual method of characterizing fabric particle-by-particle is cumbersome. As 

such, a Rotational Harr Wavelet Transform (RHWT) method has been developed that 

mimics human cognition to automate fabric characterization. It requires dividing an image 

of a soil into many subareas for each of which a “pattern direction” is determined. The 

pattern directions from the subareas are used to create a traditional fabric rose diagram 

based on RHWT “Energies”. The raw rose diagram can be smoothed using a second order 

Fourier series. 

The RHWT method also yields the fabric direction !  and a vector magnitude Δ that 

quantifies the degree of fabric anisotropy. To achieve results that replicate those by the 

traditional manual method the image magnification must provide at least 40 pixels per the 

shorter particle dimension (PPS). The size of the analysis subareas become a simple 

function of the PPS.  

Eleven sands and three rice types were evaluated for their fabric anisotropy. Specimens 

were prepared in a square glass tube at a relative density, Dr = 0% then densified to Dr = 

100%. Images were taken and analyzed at both states and RHWT analyses were performed. 

The results showed the expected horizontal fabric with Δ increasing with densification.   

Excellent correlations were observed between Δ and particle sphericity, S for both the loose 

and dense states. With linear interpolation, a simple functional relationship for Δ = f(Dr, S) 

was presented. Because both emax and emin decrease with S, an even simpler relationship of 

the form Δ = f(Dr, e50) was developed in which e50 is the void ratio corresponding to Dr = 

50%.  
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CHAPTER 6  

A CORNER PRESERVING ALGORITHM TO GENERATE REALISTIC DEM 

PARTICLES  

6.1 Introduction 

An efficient particle clump generation algorithm for use in Discrete Element Methods 

(DEMs) was developed to simulate actual particles in a granular specimen. Here, the clump 

means bounding circles or spheres together to approximate soil particle surface. In clump 

generation, there will be a tradeoff between the number of circles and the fidelity of 

generated clumps compared to the original particle. This therefore raises questions 

regarding which geometrical features on a particle surface are more significant to macro 

mechanical behavior and therefore should be preserved in the clumps. 

All properties determining a soil’s mechanical behavior are either “state” or “intrinsic” 

(material) properties. All of the state and intrinsic properties should be preserved in a DEM 

model to simulate realistic soil behavior. While some state properties are expressed through 

the packing of clumps, intrinsic properties must be preserved at the clump level. Ideally, 

soil particles should be duplicated exactly by clumps. However, each of the clumps may 

contain thousands of circles. Therefore, some features of soil particles must be simplified 

in clumps to reduce the overall number of circles. However, the simplifications should not 

alter the overall intrinsic properties including particle size, sphericity, and roundness.  

Since size and sphericity depend only on the particle length and width as observed in two–

dimensional projections, the two properties are easily reproduced in DEM clumps. The 

Width and Length Ratio Sphericity (Equation 2.5) proposed by Krumbein and Sloss (1951) 

is used in this section.  
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By contrast, to preserve Wadell roundness (Equation 2.6), all of the corners on the particle 

perimeter including their sharpness and locations must be exactly duplicated. It is 

admittedly challenging but necessary to do so since mechanical behavior is known to be 

very sensitive to changes in particle roundness. For example, when Wadell roundness 

changes by only 0.1, the critical state angle of internal friction will change by 1.7° (Cho et 

al., 2006) and the peak friction angle will change by 2.4° (Bareither et al., 2008). Enormous 

trial and error would be required if the user wanted to faithfully reproduce actual Wadell 

particle roundnesses using the Ferellec and McDowell’s (2010) and Taghavi’s (2011) 

methods which merely place constraints on the smallest radius circles used in clump 

generation.  

A corner preserving algorithm described in this section will solve the problem of accurately 

simulating particle roundness. The algorithm will identify corners in images of real soil 

particles and fit circles to them. The sharpness of corners will therefore be preserved. Then, 

the non-corner parts of soil particle outlines will be approximated by consecutive arcs. The 

reproduction accuracy will be controlled by an “Area Ratio” (AR) which is the ratio of the 

area of a clump to the area of the original particle. The AR will not be affected by particle 

size, angularity or image magnification. Intervention by users will not be needed to tune 

the AR for each clump. Therefore, the input to the proposed method will not be constrained 

to a limited number of single particle projections but will contain many soil particles having 

various sizes and shapes. The algorithm will automatically and quickly generate many 

clumps. The intrinsic properties of the generated clumps can also be determined by the 

algorithm. These properties in turn could be used to calibrate the DEM model.  

6.2 Identification of corner circles 

Human perception is able to quickly recognize the corners of a single particle. For example, 

the seven corners of the particle in Figure 6.1(a) are easily identified by eye. However, 

when numerous particles must be characterized, identification of corners and computation 

of roundness become impossibly laborious and time consuming efforts. Computerization 

of the process has been difficult since great differences exist among corners of the same 
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particle and certainly among corners of many particles. A second problem for computers 

has been elimination of the surface roughness which superimposes the smooth particle 

outline shown in Figure 6.1(b). Humans intuitively distinguish roughness from small sharp 

corners while computers must be programed to make such discriminations. These two 

computer challenges were overcome by chapter 3.  

 

 

Figure 6.1 The corners and surface roughness of a particle. 

 

The surface roughness can be removed from particle perimeters using two statistical 

techniques: “Locally weighted scatter plot smoothing” (LOESS) and “K-fold Cross 

Validation” as described in section 3.3. The particle perimeter is discretized by polar 

coordinates (", #) in Figure 6.2(a) and plotted as the solid line in Figure 6.2(b). The LOESS 

and K-fold cross validation are used to filter out the roughness resulting in a smoothed 

mean surface shown by the dashed line in Figure 6.2(b). Then, the mean surface is replotted 

to generate the new “smoothed” soil particle outline in Figure 6.2(c).  
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Figure 6.2 Removal of surface roughness. 

 

Having determined the smoothed mean surface, a commonly used root mean squared 

roughness (Equation 3.3) quantifies the amplitude of the original particle surface relative 

to the mean surface. The computed roughness is 0.37 pixels for the particle shown in 

Figures 6.1 and 6.2. The image magnification was known to be 11.5×10-3 mm/pixel. 

Therefore, the roughness is 0.0043 mm.  

After eliminating surface roughness from the particle perimeter, the computational 

geometry algorithm developed at chapter 3 is used to identify the particle corners. The 

results are shown in Figure 6.3. The particle length (d1), width (d2), and radius (ri) of the 

maximum inscribed circle (Ci) can also be computed using computational geometry as 

shown in Figure 6.3. Finally, the intrinsic properties including sphericity and roundness 

can be computed using their classic definitions by Equations 2.5 and 2.6. 
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Figure 6.3 The corner circles and computed intrinsic properties. 

 

6.3 Identification of non-corner circles 

Soil particle perimeters consist of corner and the non-corner parts as shown in Figure 6.4. 

The non-corner parts can be further grouped into flat and concave parts. The corner parts 

are identified and represented by corner circles. The non-corner parts (either flat or concave) 

are also needed to complete the particle outlines. They will be represented by arcs of circles.  

For example, part %& can be represented by an arc %& from circle C8 as shown in Figure 

6.4. The C8 should be as large as possible, without extending beyond the particle perimeter, 

to reduce the total number of circles in a clump. The allowable divergence of arc %& from 

%& is λ0 in distance units. 
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Figure 6.4 The structure of a soil. 

 

The physical meaning of λ0 is illustrated in Figure 6.5. Shown are three surfaces: the real 

particle surface, the mean surface, and the DEM clump model surface. As discussed before, 

the divergence of the real particle surface from the mean surface is quantified by the 

roughness. The DEM clump surface will actually be a series of consecutively connecting 

arcs as shown in Figure 6.5. The maximum departure of the DEM clump surface from the 

mean surface will be established by λ0. As such, λ0	will control the clump roughness.  

 

 

Figure 6.5 The physical meaning of λ0. 
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The non-corner circles can be found through use of a Euclidean Distance Map (EDM). For 

a pixel within a particle’s outline, such as pixel E in Figure 6.6(a), the nearest boundary 

pixel F is found and the distance EF is computed as L. The process is repeated for each 

point inside the soil particle resulting in the Euclidean distance map shown in Figure 6.6(b). 

It is evident that the line EF is perpendicular to the particle outline at F. Therefore, if a 

circle with a radius of L is centered at point E, that circle will be tangent to the particle 

outline at point F. Recall that the number of circles used to create a DEM clump should be 

as small as possible. Therefore, non-corner circles should be as large as possible yet not 

extend beyond the particle outline. To achieve this goal, the interior normal to the particle 

outline at point F is drawn extending through point E to the other side of the particle as 

shown in Figure 6.6(c). The maximum EDM value along this line is found and labelled as 

point G. It is noted that the distance FG is also the EDM value at point G and will be called 

Lmax. Naturally, a circle centered at G having radius Lmax will be tangent to the particle 

perimeter at F. This will also be the maximum tangent circle for point F. The maximum 

tangent circle for each point along the particle outline is found using this procedure.  

 

 

Figure 6.6 The Euclidean distance map for finding non-corner circles. 
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The next issue is how many tangent circles are needed to represent the non-corner parts of 

a soil particle outline. The previously defined departure parameter λ0 is used for this 

purpose. The original soil particle perimeter with its fitted corner circles is shown in Figure 

6.7(a). The perimeter contains 1266 points. For illustration, the maximum divergence is 

chosen to be l0 = 40 × surface roughness = 0.172 mm. A total of 868 perimeter points 

were approximated by the seven corner circles shown in Figure 6.7(a). The point range 

represented by each corner circle is also shown in Figure 6.7 (a). For example, points 1089 

to 1189 are approximated by circle C7.  
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Figure 6.7 Non-corner circle. 

 

The remaining 398 points (1266 – 868) must be represented by non-corner circles. The 

non-corner circle search process is as follows. The first point not yet represented by C7 is 
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1190 as shown in Figure 6.7(a). Based on the Euclidean distance map shown in Figure 

6.7(b), a trial circle tangent to the particle outline at point 1190 is found and called Try1190. 

The previous point 1189 is set as a control point. The distance from 1189 to Try1190 is 

computed as l. If l is smaller than l0, Try1190 will not be a satisfactory circle. The next 

trial circle is computed using point 1191. The circle will be Try1191. The distance l from 

control point 1189 to Try1191 is compared with l0. If l is still smaller than l0 , Try1191 will 

also not be satisfactory. The next trial circle will be Try1192. The process continues until a 

trial circle with l » l0 is found. Figure 6.7(c) shows that Try1232 was found to be 

satisfactory. The non-corner circle associated with Try1232 is C8. Next, the distances from 

all of the remaining 398 points to C8 are computed, of which 83 were found to have 

distances smaller than or equal to l0. Those 83 points are 1190 to 1266, and points 1 to 6 

as shown in Figure 6.7(d). Therefore, the section of the particle outline containing points 

1190 to 1266 and 1 to 6 is represented in the clump by circle C8 as shown in Figure 6.7(d). 

The number of points which have still not been represented becomes 398 – 83 = 315. 

In the next step, point 6 is set as the control point. Based on the Euclidean distance map 

shown in Figure 6.7(e) the next satisfactory non-corner circle with l » l0 was found to be 

Try34 which identified circle C9. The distances from the remaining 315 points to C9 are 

computed. Having computed distances smaller than l0, points 7 to 44 and points 298 to 

354 can be represented by C9 as shown in Figure 6.7(f). This leaves 220 points having not 

been represented. The process continues until all the points on the soil perimeter are 

represented as shown in Figure 6.7(g). Figure 6.7(h) shows the final circle clump 

representing the original soil particle. In the end, a total of 14 circles including 7 corner 

circles and 7 non-corner circles were used to create the clump. 

 

4. Accuracy control 

As mentioned in the section 2.4, the accuracy of clumps in simulating a real particle cannot 

be assessed in current clump generation methods; it is done subjectively by the user. By 

contrast, in the proposed corner preserving algorithm, accuracy assessment is integrated 
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with clump generation through the Area Ratio (AR) previously defined as the ratio of the 

area of the clump to the area of the original soil particle. In Figures 6.8(b) to 6.8(e), four 

clumps were generated with different AR values by tuning l0 in the corner preserving 

algorithm. The l0 values and the corresponding number of circles constituting the clump 

(denoted by N) are summarized in the figure. As shown, the changing of AR does not affect 

the sharpness and location of corner circles. However, the non-corner parts are affected. 

As AR decreases (l0 increases correspondingly), the non-corner parts become 

progressively bumpier as in Figure 6.8(d) or even become relatively large arcs as in Figure 

6.8(e). This alters the surface structures of the soil particle and consequently may change 

the macroscopic mechanical behavior in simulations.  

 

 

Figure 6.8 Accuracy control in clump generation. 

 

Figures 6.9(a) and (b) illustrates the trends between AR and N depending on R and S values 

respectively. A total of 17 particle images shown in the figure inserts were used. The four 

numbers superimposed over the particle images are sequentially: the particle number, R 

value, S value and the roughness value. In Figure 6.9(a), the eleven particles have R values 

ranging from 0.08 to 0.90 while the S values are in a narrow range from 0.62 to 0.81. 

Expectedly, the N values increase with increasing AR for all particles. Meanwhile, to 

achieve the same AR, angular (low R) particles require more circles due to their complex 
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surface structures. Especially for particles having R values smaller than 0.2, the N values 

will greatly increase as R decreases. Figure 6.9(b) shows six particles having S values from 

0.21 to 0.88 while R values are around 0.5. Naturally, elongated particles require more 

circles to achieve the same AR values. Especially for particles having S values smaller than 

0.5, the N values will significantly increase as S decreases.   
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Figure 6.9 The relationship between AR and N: (a) as a function of R;  
(b) as a function of S. 

 

For a specific AR, the N depends not only on R and S but also on the number of corners, on 

the structure of the non-corner parts of a particle perimeter and on surface roughness. 

Therefore, a model between AR and N based on Figures 6.9(a) and (b) would be difficult 

to develop and would not be meaningful. Nevertheless, Figure 6.9 does provide general 

trends that could be used for initial estimation of AR. Based on the R and S values of a 

particular soil of interest, the available computational resources and the desired accuracy 
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of a simulation (desired N values), users can obtain a first estimate of AR values by Figure 

6.9. Users can then further tune the AR value to satisfy the simulation needs.   

Another important observation from Figure 6.9 is that once AR is larger than 99.8%, further 

increases in AR will dramatically increase the number of circles in clumps. As such, AR is 

maintained at 99.8% in the rest of this chapter.  

Figure 6.10 summarize the frame work for the corner preserving algorithm within the 

broader context of determining several intrinsic soil properties from an image or images of 

a soil. The soil particle images are first converted into binary images. At this point, the size 

of each particle can be obtained and therefore the particle size distribution can be plotted. 

After perimeter smoothing, during which particle roughness was determined, the corner 

parts of soil particle outlines are identified and represented by corner circles using 

computational geometry method. The sphericity and roundness can now be computed. In 

the next step, the Euclidean Distance Maps are created and the non-corner parts are 

approximated by consecutive arcs.  
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Figure 6.10 The framework of the corner preserving algorithm. 

 

The accuracy of the clump approximation is prescribed at the outset through the user-

selected value of AR. Based on the AR, the program will automatically search for the 

optimum l0. The search process starts with the computed roughness and gradually tunes it 

to find the l0 that yields the prescribed AR.  

Compared to techniques by Ferellec and McDowell (2010), and Taghavi (2011) that 

involve multiple accuracy control parameters which are difficult to select, the proposed 

corner preserving algorithm requires only one parameter, AR. The AR is an intuitive and 

dimensionless parameter that can be applied universally to all of the particles in a DEM 

cluster simulation. It is not affected by particle size, angularity, surface roughness or image 

magnification.  
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The final clump well preserves the size, sphericity, and roundness of the original soil 

particle while the surface roughness is simplified by AR to reduce the total number of 

circles. This reduction in roughness would obviously affect the mechanical behavior of the 

particle assembly. However, this is remedied by explicitly defining the contact friction 

coefficient in the DEM code. With additional research the contact friction coefficient could 

be related to the particle roughness as defined by Equation 3.3. 

6.3.1 Comparison with the bubble packing algorithm 

As mentioned before, the current most popular clump generation algorithm is the bubble 

packing algorithm integrated in PFC. Therefore, it is useful to compare the proposed corner 

preserving algorithm to the bubble packing algorithm. As mentioned earlier, a soil particle 

outline consists of flat, concave and corner parts. 

Both algorithms use a series of arcs to approximate a flat part shown in Figure 6.11(a). The 

approximation accuracy is controlled by λ0 in the corner preserving algorithm and by φ in 

the bubble packing algorithm. Both methods could generate the same representations if 

appropriate λ0 and φ values are used as shown in Figures 6.11(d) and 6.11(e). 
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Figure 6.11 Representation of flat parts of a clump. 

 

For a concave part shown in Figure 6.12(a), the corner preserving algorithm will generate 

a sharp tip at the intersection of two circles as shown in Figures 6.12(b) and 6.12(d). By 

contrast, the bubble packing algorithm requires extra circles near the tip of the concavity 

to maintain a constant φ as shown in Figures 6.12(c) and 6.12(e).  
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Figure 6.12 Representation of concave parts of a clump. 

 

For corner parts, the corner preserving algorithm will automatically fit an appropriate circle 

to the corners as shown in Figures 6.13(a), 6.13(b) and 6.13(d). By comparison, the bubble 

packing algorithm requires multiple circles at circle-to-circle angle φ to approximate a 

corner. Therefore, the bubble packing algorithm uses more circles to represent corners and 

creates an artificial bumpy surface compared to the proposed corner preserving algorithm. 
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Figure 6.13 Representation of corner parts of a clump. 

 

In summary, both algorithms give similar approximations for flat parts. However, the 

corner preserving algorithm uses fewer circles to represent concave and corner parts than 

the bubble packing algorithm does. For angular particles containing many sharp corners 

and concavities, the corner preserving algorithm will significantly reduce the number of 

circles needed to represent particles. For particles with simple outlines (typically rounded 

particles), both algorithms yield similar accuracy with similar numbers of circles.   

A series of particles with different R and S values were represented by both algorithms and 

the results are compared in Figure 6.14. For the corner preserving algorithm, the input 

accuracy control parameter AR was set to 99.8%. The algorithm automatically finds the 

optimum l0. The clumps generated by the corner preserving algorithm are shown in the 

second column in Figure 6.14. When using the bubble packing algorithm, the two 

parameters φ and ρ were carefully tuned to achieve the same AR of 99.8% while ensuring 

that the minimum number of circles was used.  Since both algorithms preserved 99.8% of 

the original particles their efficiencies could be compared on an equal basis. As expected, 

the corner preserving algorithm used far fewer circles than the bubble packing algorithm, 

especially for angular particles. It is noted that in Figure 6.14 the d1, d2, S, R and roughness 
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values were computed from the corner-preserving algorithm at the same time that the 

clump is generated.  
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Figure 6.14 Comparison of corner preserving and bubble packing algorithms. 
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6.3.2 Integrating the corner preserving algorithm into various image-capturing 

systems 

Optical soil particle characterization has witnessed great advances since the 2000’s. 

Various devices have been developed to capture particle images. Some of the systems 

include: the University of Illinois Aggregate Imaging System (UIAIA) (Rao and Tutumluer, 

2000; Pan et al., 2006; Tutumluer and Pan, 2008), the Aggregate Imaging System (AIMS) 

(Mahmoud and Masad, 2007; Fletcher et al., 2003; Chandan et al., 2004), the Translucent 

Segregation Table system (TST) (Ohm and Hryciw, 2013), the QICPIC system (Altuhafi 

et al., 2013), the Vision cone penetrometer (VisCPT) (Raschke and Hryciw, 1997) and 

Sedimaging (Ohm and Hryciw, 2014).  

In the UIAIA, AIMS, and QICPIC systems, the soil particles are separated prior to image 

captured either manually (UIAIA and AIMS) or through a specialized mechanism (e.g. 

falling particles in front of a camera in the QICPIC). These systems capture 2D non-

contacting binary particle images. In the TST system, the soil particles do not need to be 

physically separated. An improved watershed algorithm introduced by Zheng and Hryciw 

(2016) digitally detaches the touching particles in the images. This system simplifies the 

test process and can efficiently analyze large and therefore statistically significant numbers 

of particle. The method presented in this chapter can readily be integrated into the systems 

that yield binary particle images. Figure 6.15 shows a small area cropped from a TST image 

in which the contacting particles have been digitally separated by the improved watershed 

algorithm of Zheng and Hryciw (2016). A total of 264 particles are identified.  
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Figure 6.15 A typical image from the binary image capturing devices. 

 

Figure 6.15 was inputted into the proposed corner preserving algorithm. The control 

parameter AR was set to 99.8%. The program automatically identified each particle and fit 

it with corner and non-corner circles. Clumps were generated for all 264 particles as shown 

in Figure 6.16. Volume-based intrinsic property distributions of the clumps were obtained 

and are shown in Figure 6.17. The volume of each clump was computed as d1× d2× d2.  
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Figure 6.16 The clumps generated from Figure 6.15. 

 

 

Figure 6.17 Intrinsic property distributions from clumps in Figures. 6.15 and 6.16. 
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By contrast with the above, the VisCPT and Sedimaging systems capture images of 2D 

particle assemblies in-situ and in the laboratory respectively. A typical captured soil 

assembly is presented in Figure 6.18(a). As shown, the particles are not only in contact 

with each other, many also block or are blocked from view by other particles. Some soil 

particles may have a full projection of their area in view while others will be occluded by 

foreground particles. Naturally, only particles exhibiting full projections are useful for 

clump generation. However, distinguishing particles with full projections from voids and 

occluded particles is a difficult task since soils have various colors, size distributions, 

internal textures, particle forms and roundnesses. The semi-automated approach developed 

in chapter 3 is used to pick out the particles with full projections as shown in Figure 6.18(b). 

For each identified particle, the corner preserving algorithm was used to generate its 

corresponding clump. The results are shown in Figure 6.18(c). As before, volume based 

intrinsic properties of the generated clumps were computed and are shown in Figures 6.19.  
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Figure 6.18 Clump generation from an image of a particle assembly. 
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Figure 6.19 Intrinsic property distributions from clumps in Figure 6.18. 

 

As mentioned earlier, the number of circles in a clump is determined mainly by particle 

roundness with some contribution from sphericity. The roundness reflects the outline 

complexity. As has been established in this chapter, angular particles have complex 

outlines and therefore require more circles to approximate them. This observation is further 

verified in Figure 6.20. Figure 6.20(a) summarizes the generated clumps from Figures 6.9, 

6.14, 6.16, and 6.18. All the clumps have AR = 99.8%. As shown before, the corner 

preserving algorithm uses fewer circles for generating clumps compared to the bubble 

packing algorithm. This difference increases as R decreases and becomes very large when 

R drops below about 0.5. For approximating angular to very angular particles (Wadell 

roundness below 0.5) with a AR = 99.8%, the number of circles required for bubble packing 

is roughly four times the number of circles required by the corner preserving algorithm.  

Figure 6.20(b) expands the results of only the corner preserving algorithm. Four abnormal 

points fall well outside of the observed trend line. Those points correspond to very 

elongated particles shown in the insert in Figure 6.20(b). Clearly, very elongated (less 

spherical) particles will require more circles to approximate them.  
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Figure 6.20 The required number of circles in clumps versus particle roundness: 
comparison of the corner preserving algorithm and the bubble packing algorithm. 
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6.4 Conclusions 

In summary, the corner preserving algorithm for particle clump generation proposed in this 

chapter possesses the following features:  

1) The corner parts of soil particles are first identified and fitted by corner circles. As such, 

the location, size and shape of the corners is completely preserved. This also reduces the 

number of circles needed in the clump compared to the bubble packing algorithm which 

requires multiple circles to represent each corner. The non-corner parts of particles are 

approximated by consecutive arcs from circles. The accuracy of such approximation is 

controlled by AR (or l0). The tuning of AR (or l0) does not affect the corner representation. 

The algorithm is therefore termed as the “corner preserving” algorithm.  

2) During clump generation, the particle size, sphericity, roundness and surface roughness 

of each soil particle in a specimen are computed. In the generated clumps, the particle size, 

sphericity, and roundness are preserved. The particle size distribution, sphericity, and 

roundness have been proven to be very important to various macro-mechanical behaviors 

of soils. Since the relationships between these intrinsic properties and macro-behavior of 

soils are known through empirical models such as developed by Cho et al. (2006), 

Baraeither et al. (2008) and Zheng and Hryciw (2016), they can essentially be used to 

calibrate DEM models. The surface roughness is simplified in the generated clump to 

reduce the number of circles. However, such simplification is remedied by explicitly 

defining contact friction coefficients in DEM models. Future research could yield 

correlations between the surface roughness defined in this chapter and the contact friction 

coefficient.   

3) The surface roughness computed in the first step in the algorithm is used as a reference 

value to find the optimum l0. After a user specifies AR, the program tunes the surface 

roughness to find a l0 satisfying the AR. This significantly shortens computation time.  

4) The proposed algorithm only requires one input parameter, AR. The AR is independent 

of particle size, angularity and image magnification. It is a very intuitive parameter. Unlike 
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in existing clump generation methods, users do not need to adjust the control parameters 

for each clump.  

5) The inputs to the proposed algorithm are either binary images or images of soil 

assemblies that could contain many particles. Unlike existing algorithms in which clumps 

must be generated individually, the proposed algorithm can automatically generate clumps 

for many soil particles.  The large number of clumps accurately representing real soil 

particles will be a statistically valid representation of the original soil in DEM simulations.   

6) Compared to the bubble packing algorithm, the proposed corner preserving algorithm 

significantly reduces the number of circles required for each clump. The differences in 

required numbers of particles become progressively larger as particle roundness decreases.  

For a particle having a Wadell roundness lower than 0.5, the proposed corner preserving 

algorithm required only a quarter of the number of circles that would be needed by the 

bubble packing algorithm to achieve the same AR of 99.8%. 
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CHAPTER 7  

GRADATION, SHAPE AND FABRIC IN DEM 

7.1 Introduction 

The Discrete Element Method (DEM) is commonly used to simulate particulate materials 

to investigate micro scale behavior that may not be easily observed or measured in physical 

tests. Hypothetically, if a virtual soil specimen is created that has the same intrinsic and 

state properties as a real soil specimen, its behavior in a DEM simulation should faithfully 

mimic the actual physical test. The question then becomes how to reproduce the intrinsic 

and state properties in the DEM model. 

To reproduce an actual soil specimen perfectly, the corner-preserving algorithm developed 

in the chapter 6 could conceivably be used to generate as many clumps as there are particles 

in the soil specimen. To do so would require an image of every soil particle. It is certainly 

worth considering if such a large number of particle images must necessarily be collected 

each time a new soil is to be simulated. Instead, could virtual soil specimens be constructed 

from a permanent library of clumps based only on desired distributions of particle shapes 

and sizes? The desired distributions could be to model an actual soil specimen for which 

the size distribution would be determined either by conventional sieving or image analysis 

and for which the shape distribution would be determined by image analysis on a 

statistically representative number of particles. Alternatively, the library could be used for 

parametric studies without an actual soil to be modeled.  

Some intrinsic properties including surface roughness and hardness are accounted for 

through defined mechanical model parameters such as the contact friction coefficient and 

particle stiffness. The remaining parameters including the distributions of particle size, 

particle sphericity and roundness have limitless possibilities and must be preserved by the 
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clump geometries. The question narrows down to how to create appropriate clump 

geometries to satisfy the desired distributions. As mentioned earlier, exhaustively 

reproducing all of a specific sand specimen’s particles by clumps is not an efficient 

approach. Creation of the clump library would eliminate the need for reproducing tens of 

thousands of particles for each simulation. 

This chapter describes the development of a large permanent clump library for use in 

Discrete Element Methods (DEMs). It shows how the library was constructed from 

numerous previously collected images of individual sand particles and how it may be used. 

At the present time, the library consists of only 2D particles developed from images of 2D 

particle projections. While soils must naturally be simulated by 3D clumps in DEMs, there 

are compelling reasons and distinct advantages to first developing a 2D particle library. 

First, the classic definitions of R and S are based on 2D particle projections and there is a 

long history of their usage. The corner-preserving algorithm is also presently only 

developed for 2D. It is easier to demonstrate the construction and usage of a 2D library. 

Results of 2D simulations are easier to visualize and interpret. Finally, the computational 

power required to create and test the library is far less demanding. Indeed, a 3D DEM 

simulation using a statistically valid number of clumps to faithfully simulate a real soil 

problem is still somewhat unrealistic.  

7.2 Clump library construction 

To date, a total of 98,489 images of real soil particles have been collected and modeled by 

clumps using the 2D corner-preserving algorithm. The “clump library” includes a wide 

range of particle sizes, angularities, and sphericities. The library can be expanded by adding 

more clumps. Ten select clumps from the library are shown in Figure 7.1. The listed R and 

S values have been rounded and saved in the library with two decimals. The number of 

circles used to construct each clump (nc) is also shown. Having complex surface structures, 

the angular particles clearly require more circles to approximate them. Very elongated (low 

S) particles also naturally need more circles. Each clump is archived in the library by an 

index “RL_SL_id” consisting of three integers as shown in Figure 7.1. The RL and SL are 
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hundred-folds of the computed R and S values respectively. Since many clumps may have 

the same RL and SL values, the third parameter “id” is used to discriminate them. The 

combination of these three digits is able to catalog an unlimited number of clumps in the 

library. The information stored in the library for each clump also includes basic and 

structural information. The basic information includes the clump volume v and size d. The 

structural information includes the total number of circles nc, as well as the radius and 

center location of each circle.  

 

 

Figure 7.1 Ten selected clumps from the library. 

 

A convenient map of the clump library is shown in Figure 7.2. The locations of clumps in 

the library are determined by their RL and SL values. As just mentioned, many particles 

may possess the same R and S combination. Thus, multiple clumps may exist at one map 

location. For example, there are 34 clumps at the spot (RL, SL) = (55, 63) in Figure 7.2. The 

34 clump are distinguished by the id numbers from 55_63_1, 55_63_2, … up to 50_63_34.  
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Figure 7.2 Map of the clump library. 

 

In Figure 7.2, the library has 100 × 100 locations but not all locations contain clumps. 

Locations at SL < 20 and RL < 15 barely have any occupants. This is somewhat expected. 

Extremely elongated and angular particles are rare in nature since such particles are 

vulnerable to breakage (Hryciw et al., 2016). Histograms of the clumps for RL and SL are 

shown in Figure 7.3(a) and 7.3(b) respectively. Angular particles have more complex 

outlines than rounded particles and the variability of particle shapes increases with 

increasing angularity (decreasing roundness). Therefore, more angular particles in the 

range 20 < RL < 50 were deliberately collected for the library as shown in Figure 7.3(a). 

The SL histogram in Figure 7.3(b) reflects the prevalence of shapes in the range 60 < SL < 

80 found in nature.  
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Figure 7.3 The number of clumps in the library versus RL and SL. 

 

7.3 Steps in virtual soil specimen creation 

The DEM virtual soil specimen creation process includes four steps as shown in Figure 7.4.  
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Figure 7.4 Overview of the virtual specimen preparation technique. 

 

Step 1: Given a specific soil, users must characterize it to obtain particle d, S, and R 

distributions. The d can be determined by traditional sieve analysis or by optical techniques. 

The particle shape distributions including R and S distributions can be computed using 

computational geometry methods from either two-dimensional binary projections or from 

images of three-dimensional particle assemblies using computational geometry techniques 

in chapter 3. This study found that 200 particles were sufficient to provide satisfactory 

characterization of a real soil. However, users can create their own particle size and shape 

distributions to construct a customized virtual soil specimen.  

Step 2: Users must input the testing vessel dimensions, a traditional weight-based particle 

size distribution (real or assumed) and a target packing porosity np.  For normal (not gap-
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graded) soils, weight (or volume) based particle size distributions may be fitted with the 

Rosin-Rammler function (1933): 

( ) 1 exp
dV d
D

lé ùæ ö= - -ê úç ÷
è øê úë û

   Equation 7.1 

in which D and λ are the fitting parameters related to the 50% particle size by weight, D50 

and the coefficient of uniformity, Cu respectively. The total number of particles (N) 

required to fill the virtual testing vessel at porosity np and their distribution by size (d) are 

then computed.  

Step 3: The distributions of R and S are unwieldy in discrete form. As such, they may be 

modeled by a two-dimensional Gaussian probability density functions (PDF): 
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where x is a matrix of R and S values of k evaluated particles: 

1 2 3

1 2 3

, , ,....,
, , ,....,

k

k

R R R R
x

S S S S
é ù

= ê ú
ë û

;  

η is the mean vector of R and S values: 

 R

S

h
h

h
é ù

= ê ú
ë û

,  

and Σ is the covariance matrix: RR RS
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The program retrieves the N clumps from the library based on a soil specimen’s R 

& S PDF.   

Step 4: The N clumps are input to the DEM code to assemble the virtual soil specimen. 

Several DEM codes are compatible with clump simulation including the commercial code 

Particle Flow Code (PFC) by Itasca (2015) and open source codes including the Large-
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scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) by Plimpton (1995) and 

its improved version General Granular and Granular Heat Transfer Simulations 

(LIGGGHTS) by Kloss et al. (2012). The PFC by Itasca was used in this study.  

7.4 Example of virtual soil specimen creation 

The process used to prepare virtual specimens for DEM simulation of direct shear testing 

is demonstrated using an Indiana Beach sand at dense and loose conditions.   

In Step 1 traditional sieve analysis was used to determine the particle size distribution of 

an Indiana Beach sand. The result is shown in Figure 7.5(a) as a traditional weight-based 

cumulative distribution. A total of 200 particles were then randomly selected from the 

physical specimen. The particles were spread on a flat surface and binary images were 

captured. The computational geometry method was used to compute R and S values for 

every particle. The cumulative distributions of R and S values by number of particles are 

shown in Figures 7.5(b) and 7.5(c).  
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Figure 7.5 Characterization of Indiana Beach sand. 
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In Step 2, the particle size distribution shown in Figure 7.5(a) is fitted using Equation 7.1. 

The values D = 1.2 and λ = 2.3 were found to match the Indiana Beach Sand sieving results 

very well. The curve is discretized into 200 equal fractions as shown in Figure 7.6. Each 

fraction represents a volume increment of ΔV = 0.5%. The particle size di representing the 

i-th volume fraction can be back-calculated based on Equation 7.1. Knowing di, the volume 

vi of each particle in the i-th volume fraction can be computed as shown in Figure 7.6.  

 

 

Figure 7.6 Discretization of particle size distribution curve. 

 

To determine the number of particles in the i-th fraction, the volume of solids in this 

fraction must be computed as Vt(1-np)ΔV where Vt is the testing vessel volume and np is 

the porosity, both specified by the user. Finally, the number of particles required for the i-

th volume fraction can be expressed as: 

( )1t p
i

i

V n V
num

v
´ - ´D

=    Equation 7.3 

For example, the volume of a 2D shear box Vt used in this study was 100 × 48 × 1 = 4800 

mm3 and the target porosity np was set to 0.2. The particle size of i-th volume fraction was 



 

 187  
 

0.94 mm. Based on Equation 7.3, numi = 27 particles were required to model this fraction. 

This computation is repeated for each volume fraction. The total number of required 

particles N to fill the direct shear box will be the sum of numi. In this case, N was 12,518.  

In Step 3, N clumps are retrieved from the library according to their R and S distributions 

as follows. The R and S distributions in Figures 7.5 (b) and (c) are fitted to the two-

dimensional Gaussian probability density function, Equation 7.2. In this example, η and Σ 

were computed as: 
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. 

These were inserted into, Eqution 7.2 to determine the probability density function f which 

is plotted in Figure 7.7. This f(R, S) map in Figure 7.7 dictates the sampling probability for 

each location in the clump library shown in Figure 7.2. The program will sample the library 

N times as was determined in Step 2. It should be noted that one location can be sampled 

multiple times. The number of stored clumps at each location in Figure 7.2 will generally 

not be the same as the needed number from that location. Statistically speaking, if the total 

number of particles needed from a single location in the library is m and the number of 

clumps at that location is k, then each clump from that library location will be used, on 

average, m/k times.  
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Figure 7.7 The normalized probability density map 

 

Using the above procedure, N = 12,518 clumps were retrieved from the library for the 

Indiana Beach sand. Figure 7.8 shows the number of clumps sampled from each location 

in the library.  
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Figure 7.8 Number of clumps retrieved from each location in the library for the example. 

 

The d values obtained in Step 1 and 2 are now randomly assigned to the N generated clumps. 

This is done by enlarging or reducing each clump to meet its assigned d value. The d, R 

and S distributions of clumps in the DEM model are compared to the distributions of the 

original soil in Figure 7.9. The DEM model successfully reproduced the target distributions 

of the original soil.  
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Figure 7.9 Sand size and shape distributions generated from the clump library compared 
to their target distributions. 
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In Step 4, the N generated clumps were input into PFC and rained into a direct shear box 

to simulate soil specimen preparation process. In this case, the fabric direction is horizontal. 

In PFC, users can change fabric direction by setting the particle orientations. The top cap 

was added and the specimen was consolidated under a normal stress of 100 kPa. A linear 

contact model was used in this simulation. The model parameters were set as follows: the 

clump density ρ was 2,650 kg/m3; the effective modulus of the clumps Ec
* was 5 × 108 

N/m2; the effective modulus of the wall Ew
* was 5 × 109 N/m2; the normal-to-shear stiffness 

ratio k* was 1.5; both normal and shear critical damping ratio (bn and bs) of the clumps 

were 0.5. To achieve a dense packing state, the friction coefficients for both the clump - 

clump and clump – wall interfaces were set to zero. The specimen is shown after 

consolidation in Figure 7.10(a). Two small square areas are enlarged and shown in Figures 

7.10(b) and 7.10(c). As observed, each clump possesses a unique size and shape.  
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Figure 7.10 The generated DEM model at a dense condition. 
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After consolidation, the final porosity n was 0.13. It should be noted that the n value after 

consolidation is not necessarily equal to the initially specified np.  The np is a presumed 

value for initially computing the number of clumps required to be retrieved from the library. 

The n after consolidation may be different than np. Correspondingly, the final vessel height 

may also be different from the previously specified value to accommodate the change in 

porosity due to consolidation. In this example, the height of the specimen was 44 mm after 

consolidation instead of previously specified 48 mm dimension. It was found in this study 

that such small changes in shear box height did not affect the final simulation results. 

Naturally, the np should be as close to n as possible. Therefore, steps 1-4 could be repeated 

using the resulting n value as the new np.  Readers are encouraged to do so if they feel it is 

necessary. However, in this study, np was fixed at 0.2 and was not adjusted.  

To achieve a loose packing condition, the friction coefficient for both the clump - clump 

and clump – wall interfaces were set to 0.3 for the consolidation stage. The final porosity 

n was 0.2 which is the same as the presumed value np. All other steps in setting up the loose 

condition were the same as for the dense state.   

7.5 DEM simulation of direct shear tests 

The normal stress was kept as 100 kPa during specimen shearing.  The clump - clump and 

clump – wall contact friction coefficients were set to 0.50 and 0.95 respectively. The upper 

half of the box was fixed and the lower half was displaced at a constant velocity of 0.004 

mm/s. The top wall was continuously adjusted via a serve-control mechanism (Itasca, 2015) 

to maintain the constant vertical normal stress during shearing. The horizontal 

displacement, vertical displacement, and shear force results are shown in Figure 7.11.  
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Figure 7.11 DEM simulations of Indiana Beach sand at dense and loose conditions. 

 

The peak friction angle and dilation angle can be computed from the test curves as  

a tan p
p

T
P

æ ö
= ç ÷

è ø
f     Equation 7.4 
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a tan y
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Dæ ö

= ç ÷Dè ø
    Equation 7.5 

 Where P is the normal force and Tp is the shear force at the peak; Δux and Δuy are the 

horizontal and vertical displacement rates at the peak strength state. The resulting ϕp and 

ψp are listed in Figure 7.11(b).  

7.6 Clump library usage in parametric studies 

Direct shear tests on five additional 2D versions of soils including 30A, Crushed Gabbro 

(CG), Leighton Buzzard (LB), Class IIA (IIA), and Glass Beads (GB) were also simulated 

to demonstrate the versatility of the clump library. The 30A and Crushed Gabbro are very 

angular and crushed angular soils respectively. The Leighton Buzzard is a subangular soil 

frequently used in research as reported by Lings and Dietz (2004) and Jewell (1989). The 

Class IIA and Glass Beads are subrounded and rounded materials respectively. The particle 

size distribution of Leighton Buzzard (LB) shown in Figure 7.12(b) was extracted from 

Lings and Dietz (2004). The particle size distributions of the remaining four sands shown 

in Figures 7.12(a) and (b) were determined through sieving analysis. The dashed lines are 

the Rosin – Rammler curves fitted to the sieving data. The fitting parameters D and λ are 

summarized in Table 7.1. The volume of the shear box Vt was set to 100 × 48 × 1 = 4800 

mm3 and the target porosity np was set to 0.2 for all of the test simulations. The resulting 

numbers of particles (N) required to fill the direct shear box for the five soils are reported 

in Table 1.  
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Figure 7.12 Intrinsic property distributions of the simulated soils. 

 

For each soil except the Glass Beads, 200 particles were characterized to determine their R 

and S distributions. The results are shown as solid lines in Figures 7.12(c) and (d). The 

mean R and S values (Rm and Sm) are listed in Table 7.1. These solid lines were used to fit 

two – dimensional Gaussian distributions of R and S using Equation 7.2 for retrieval of 

clumps from the library. The resulting R and S distributions of the picked clumps are plotted 

as dashed lines in Figures 7.12(c) and (d).  They agree well with the target distributions. 

For the Glass Beads, both R and S are equal to 1.0 therefore perfect disks were used in the 

simulation. The model parameters including ρ, Ec
*, Ew

*, k*, bn, and bs were the same as 

used in the earlier simulation of Indiana Beach sand. Only dense conditions were simulated. 

Therefore, the friction coefficient µ was set to zero for the consolidation stage and to 0.5 
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for the shearing stage. The normal stresses were set to 100 kPa. The porosities n of the five 

sands after consolidation are listed in Table 7.1.  

Table 7.1 The parameters of virtual soils in DEM simulations 

Soil Gradation Shape DEM 
D50 

(mm) Cu D λ N Rm Sm n 

30A 0.58 1.5 0.67 5 15681 0.15 0.69 0.21 
CG 0.80 1.5 0.87 5 9196 0.23 0.56 0.19 
LB 0.78 1.3 0.80 9 8802 0.41 0.76 0.15 
IIA 0.80 1.9 0.90 3 13549 0.62 0.72 0.13 
GB 1.00 1.1 1.10 10 4570 1.00 1.00 0.14 
IIA_0.52† 0.80 1.9 0.90 3 13549 0.62 0.52 0.15 
IIA_0.32† 0.80 1.9 0.90 3 13549 0.62 0.32 0.19 
WGLB† 0.97 8.7 1.40 1 38696 0.41 0.76 0.11 

Note: D50 is the 50% size by weight; σn is normal stress; µ is clump – clump friction coefficient 
during the shearing stage; n is porosity after consolidation, N is number of generated clumps; Rm 
and Sm are the mean values; superscript † means those virtual soils are created by author – 
defined intrinsic properties.  
 

The simulation results are shown in Figure 7.13 while the ϕp and ψp values are plotted in 

Figure 7.14. As shown both ϕp and ψp increase with decreasing R (increasing angularity) 

which agrees with the experimental observations of Santamarina and Cho (2004), Cho et 

al. (2006), Bareither et al. (2008) and countless others.  
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Figure 7.13 DEM simulations of five sands with different roundnesses. 
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Figure 7.14 The effects of roundness by DEM simulations. 

 

Although average S values of natural soils fall in a narrow range of 0.6 to 0.8 (Hryciw et 

al. 2016), it would be interesting to observe the behavior of soils having low S. This is 

easily facilitated using the clump library. Two virtual soils were created using the Class 

IIA soil but defining two additional new S distributions as shown in Figure 7.15: Sm = 0.52 

and Sm= 0.32. The size and R distributions as well as other parameters were maintained the 

same as in the original Class IIA. After consolidation, the porosity values were expectedly 

different: the elongated soils had larger n. The simulation results from these newly created 

virtual soils are shown in Figure 7.16. The computed ϕp and ψp for each test are shown in 

Figure 7.17. Both ϕp and ψp increase as S decreases suggesting elongated particles increase 

strength and dilation. The same laboratory observation was also made by Santamarina and 

Cho (2004) and Cho et al. (2006).  
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Figure 7.15 Sphericity distributions of actual and three virtual Class IIA specimens. 
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Figure 7.16 Simulations of Class IIA at three sphericities 
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Figure 7.17 The effects of sphericity by DEM simulations. 

 

To investigate the importance of particle gradation, the parameters D and λ for the Leighton 

Buzzard sand were changed to create a virtual Well-Graded Leighton Buzzard sand 

(WGLB) having a Cu of 8.7. The particle size distribution curve for WGLB was added to 

Figure 7.12(b). The fine portion smaller than D10 (0.15 mm) was ignored because it would 

dramatically increase the total number of clumps, thereby exceeding current computational 

ability. The R and S distributions and the remaining parameters were maintained the same 

as they were for the original Leighton Buzzard sand as listed in Table 1. 

The DEM simulation results show that strength was enhanced slightly by increasing Cu 

from 1.3 (LB) to 8.7 (WGLB) as shown in Figure 7.18. Kokusho et al. (2004) performed a 

series of laboratory tests on sands with different Cu values and found that shear strength 

could either increase or decrease with increasing Cu depending on particle crushability. If 

particles are not crushable, the shear strength will increase with increasing Cu while the 

opposite trend was observed for crushable particles. The crushing of particle will suppress 

the relative movement and overriding of particles resulting in smaller strength and 

dilatancy. In this study, both ϕp and ψp increase with Cu because the clumps were not 

allowed to crush. This agrees with Kokusho et al.’s (2004) observation.  
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Figure 7.18 The effects of gradation in DEM simulations. 
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7.7 Discussion 

1) The current 2D clump library consists of 98,489 geometries. In the real world, every 

particle, particularly if it is angular, has a unique geometry. Furthermore, even for the same 

particle, different scanning direction will yield different projected 2D geometries. 

Therefore, the 2D library obviously cannot include all possible particle geometries. 

However, as discussed earlier, many studies have shown that different soils with similar 

intrinsic properties will exhibit similar macro – mechanical behavior under the same state 

conditions. The 2D library does not aim to exhaustively contain all possible particle 

geometries encountered in nature. Rather, it contains sufficient geometries for reproducing 

all possible intrinsic parameter distributions.   

2) To simplify image acquisition, the clumps in the library were generated from images of 

particles spread out on a flat surface. As such, the particles are more likely to have been 

displaying their maximum area projections. While it would appear that such images are 

most reflective of particles lying in a depositional plane, the library does not ascribe any 

specific orientation to the clumps. As such, the clumps in the library may be used for 

simulating other orientations having appropriate user-specified R and S distributions.  

3) The shortcomings of two-dimensional DEMs are well known: 2D particles have only 

three degrees for freedom compared to six in real soils.  A repercussion of these 

shortcomings was evidenced, for example, by the high dilation angles observed earlier in 

the chapter. Nevertheless, as discussed in the Introduction, 2D DEMs hold several 

attractive benefits including computational efficiency, simplicity of model preparation and 

easier visualization of particle motions. Furthermore, the direct linkage between Wadell’s 

classic 2D definition of particle roundness, through the corner-preserving algorithm, 

preserves the exact shape of particles and facilitates more efficient clump generation. In 

the future, Wadell’s definition of roundness could and should be extended to 3D thus 

providing a basis for 3D clump generation. Such clumps would require hundreds of spheres 

making them still computationally unrealistic at the present time.  Nevertheless, even in 

2D, the value of clump libraries towards parametric study of particle micromechanics is 

significant.  
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7.8 Conclusions 

A library consisting of almost 100,000 two-dimensional clumps was developed for use 

with Discrete Element Methods. Each clump was created from a binary image of a sand 

particle.  The particles in the clump library are indexed by their values of roundness (R) 

and sphericity (S).  The R follows the classical definition of roundness developed by Wadell 

(1932) while S follows a simple definition proposed by Krumbein and Sloss (1951).  A 

previously developed computational geometry technique fits circles to a particle’s corners 

thereby facilitating the computation of R. A previously developed “corner-preserving” 

algorithm fits many additional interior circles to the particle perimeter. The particles in the 

clump library are based on sands taken from many sources and thus they possess a wide 

range of R and S values.  

The clump library may be used to simulate an actual soil whose particle size distribution is 

determined by either sieving or by image analysis and whose distributions of R and S are 

determined by computational geometry on 200 randomly selected particles. The particle 

size distribution is fitted to the Rosin-Rammler function while the R and S distributions are 

smoothed by a two-dimensional Gaussian probability density function. The clump library 

may also be used in parametric studies in which the particle size, R and S distributions are 

designed by the user.  In either case, the clumps are picked from the library to create a 

virtual soil specimen according to their Gaussian distributions of R and S.  The clump sizes 

are then adjusted to match the desired particle size distribution.  Example problems showed 

very good matches between the actual distributions of particle size, R and S and the 

distributions of these intrinsic properties in a virtual specimen composed of clumps from 

the library.   

DEM simulations of direct shear tests on five vastly different sands were performed using 

the clump library. The simulation results qualitatively match well known trends 

documented in the literature. Both ϕp and ψp were observed to increase with decreasing R 

(increasing angularity), decreasing S, and increasing Cu (for non-crushable soils). Those 

simulations illustrate the usefulness and versatility of the clump library in creating virtual 

specimens possessing various shapes and particle gradations. 
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CHAPTER 8  

SUMMARY AND FUTURE RECOMMENDATIONS 

8.1 Summary 

This research developed a computational geometry algorithm to automate the computation 

of particle shape descriptors including sphericity, roundness and surface roughness. The 

proposed computational geometry algorithm was validated by traditional sphericity and 

roundness charts (Krumbein, 1941; Krumbein and Sloss, 1951; and Powers, 1953). Results 

were in excellent agreement with values published in traditional charts thus confirming that 

the computational method can replace the much slower and less objective chart methods. 

The computational geometry algorithm can be directly incorporated into current soil 

characterization system capturing binary images. A semi-automated method was 

developed to incorporate the computational geometry algorithm to systems capturing 

images of three-dimensional particle assemblies.   

Extensive laboratory tests were performed on various sands to develop statistical models 

between their intrinsic properties and macroscopic mechanical behavior including packing 

and compressibility. Those models show high accuracy because: (a) the computational 

geometry algorithm can accurately determine R and S values for a very large and 

statistically valid number of particles in a specimen; (b) a large database including many 

soils with different intrinsic properties were used to developed the models. 

A Rotational Harr Wavelet Transform (RHWT) method that mimics human cognition was 

developed to automate soil fabric characterization. Based on images of eleven sands and 

three rice specimens at loose and dense conditions, strong functional relationships were 

observed between the degree of fabric anisotropy and particle sphericity under dense and 

loose conditions. Furthermore, a very simple and practical relationship was presented for 
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the degree of fabric anisotropy based only on relative density and the void ratio at 50% 

relative density. 

A corner preserving algorithm was developed to generate realistic particle geometries. The 

algorithm required many fewer circles than existing methods, particularly for angular 

particles. The procedure is a logical extension of a computational method for determining 

the classic Wadell particle roundness in which circles are fitted to the corners of particles. 

Hence, the new method perfectly preserves the location, size and shape of particle corners 

and is appropriately termed as the corner preserving algorithm. The method can easily be 

incorporated in existing soil particle characterization systems in which binary images or 

even images of particle assemblies are produced.  

To integrate gradation, shape and fabric in DEM modeling, a clump library was built by 

storing 100,000 clumps generated by the corner preserving algorithm. The clumps are 

based on 2D images of real soil particles and they are indexed in the library by their R and 

S values. A real soil can be simulated by choosing particles from the library to match the 

soil's actual distributions of R and S. The clumps are also enlarged or reduced to match a 

desired particle size distribution. The fabric of soils can be simulated by specifying clump 

long axis directions. The utility of the clump library in parametric studies was demonstrated 

by direct shear tests on five very different virtual materials created from clumps. 

8.2 Recommendations for Future Research 

The particle shape definitions were proposed in the period of 1920 to 1950. At that time, 

there were no techniques to obtain 3D particle surface models. Therefore, 3D particles had 

to be approximated by 2D projections for shape analysis. The 2D framework was used in 

this research to develop various algorithms. Admittedly, although the 2D shape descriptors 

can provide useful insight to 3D particle shapes, they are significantly affected by the 

projecting directions. For example, the 3D particle shown in Figure 8.1(a) can be viewed 

in three different orientations as shown in Figures 8.1 (b), (c) and (d). Those three 

projections result in very different R and S values. To minimize the variance in 2D shape 
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analysis, a very large and statistically valid number of particles should be analyzed to 

compute average R and S values. This approach was used in the current research.  

 

Figure 8.1 2D R and S values of three projecting directions of the same particle.  

 

However, as 3D imaging matures, a variety of techniques will become available to easily 

acquire 3D models of particles such as by using stereophotography, photogrammetry, 

profilometry, X-ray tomography, neutron imaging, laser scanning, white light scanning, 

and interferometry. Therefore, direct quantification of particle shapes from 3D particles 

will become feasible. How to extend the current 2D particle shape characterization methods 

and 2D DEM clump library to 3D will be future research.  
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For sphericity, it is easy to extend 2D definition to 3D. In previous research, the particle 

length and width were measured to compute 2D sphericity. In the future, the particle length, 

width, and thickness can be computed from 3D particle models to define 3D sphericity.  

For roundness, extension from 2D to 3D definitions will be challenging. As shown in 

Figure 8.2(a), the 2D surface structure includes concave, flat and corner parts. Corner parts 

are identified and approximated by corner circles to compute 2D roundness. However, the 

3D particle in Figure 8.2(b) includes not only concave, flat, and corner parts but also a new 

feature: ridges. The corners and ridges create interparticle locking that controls the strength 

and deformation of granular soils. Therefore, the corners and ridges should be used to 

define 3D roundness. How to identify the corners and ridges on particle surfaces and how 

to fit appropriate spheres to them will be challenging. Additionally, the 3D surface contains 

many more points than a simple 2D perimeter. This will significantly increase the 

computational loads. Therefore, how to improve computationally efficiency is another 

challenge when developing 3D algorithm. 

 

 

Figure 8.2 2D and 3D particle surface structures. 
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If the 3D roundness algorithm can be successfully developed, development of 3D corner 

preserving algorithms may become feasible. To compute 3D roundness, the corners and 

ridges have been represented by corresponding spheres. The 3D corner preserving 

algorithm can be developed by adding spheres to approximate the flat and concave parts 

on soil particle surfaces to generate 3D clumps. Based on a 3D corner preserving algorithm, 

a 3D clump library can be built to simulate a 3D soil specimen.  
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