
 
 

Profound Endothelial Dysfunction and Inflammation in Fabry Disease: 
Responses to Exercise Training 

 

 
by 

Jung Euy Kang 

 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Kinesiology) 

in the University of Michigan 
2017 

 

 

 

 

 

Doctoral Committee: 

 

Clinical Assistant Professor Peter F. Bodary, Co-Chair 
Professor Jeffrey F. Horowitz, Co-Chair 
Professor Gregory D. Cartee 
Professor James A. Shayman 

 

 

 

 



 
 

 

 

 

 

 

 

Justin Jung-Euy Kang 

justinjk@umich.edu 

ORCID iD: 0000-0002-2907-6872 

 

© Justin Jung-Euy Kang 2017 

 

mailto:justinjk@umich.edu


ii 
 

Acknowledgment 

 

There are a number of people I need to thank for helping me to reach this point since I started my 

Ph.D. journey in the summer of 2011. It would only be appropriate to begin by expressing my 

sincere gratitude for the tremendous efforts of my mentor, Dr. Peter F. Bodary.  

 

Dr. Bodary, I honestly cannot thank you enough for providing an amazing environment for me to 

grow as a scientist. The first word that comes to my mind whenever I think about you is 

approachable. No matter how busy you were, your door was always open to me. Whenever I came 

to you to discuss any data or even a harebrained idea, you never told me “no” or “wrong.” You 

always treated me as a colleague, not a student. I believe there is a thin line between a boss and a 

leader. A boss only commends and stays on the sideline. However, a leader says “we”, not “I”, 

always stays at the front of the pack, and leads by examples, generating enthusiasm, not fear. You 

are my leader and the leader of the Vascular Biology Laboratory. You have made a lasting impact 

on my life and have been the best possible mentor that one can be. One day, I want to become such 

a pattern to someone else, just like you are such a pattern to me. The time and dedication you put 

into me is second to none, and I can confidently say that I got your full attention during my Ph.D. 

I appreciate your tremendous efforts and mentorship, Dr. Bodary! 

 



iii 
 

Dr. Shayman, thank you for your generous support throughout my Ph.D. and your guidance on my 

research. You taught me how to see a big picture and keep things in perspective. I still remember 

that one day you told me that “you are only limited by your time and your effort.” I am grateful 

for providing me an amazing research environment and giving me academic freedom. 

 

Dr. Horowitz, thank you for your advice on my research and helpful comments and discussions. 

During the time of the weekly journal club in your lab, I enjoyed getting inputs from your people 

who have different perspectives on research. I am also thankful for your prompt responses and 

helps during the past couple months even though you were on sabbatical outside of the U.S.  

 

Dr. Cartee, thank you for giving me an opportunity to have my lab rotation in your lab. I did not 

have much research background at that time. While being in one of the worldly renowned muscle 

biology laboratories, I was fortunate to learn a significant amount of research techniques including, 

but not limited to, western blot and murine muscle dissection skills, which have greatly assisted 

my dissertation studies.  

 

And of course, special thanks to the small army of undergrad and grad students, and research 

fellows known as the Shayman lab. I thank everyone for bearing with me during the days of 

“darkness” whenever I ran the biotin switch assay, which needs to be performed in the dark. Dr. 



iv 
 

Robert Kelly, thank you for your help in everything but especially for teaching me general research 

techniques and ordering research supplies for me. I know Shayman lab would not function without 

your efforts! Dr. Hinkovska-Galcheva (my lab mother), not only did you provide your invaluable 

advice on my experiments, but you have always put students before you. You have your own way 

of enlightening the mood, and I like your “enjoy your life” lessons. Nayiri, thank you for being 

my go-to colleague in the lab for methodology and data discussion, and I sincerely grateful for 

sharing your “sexy” CRISPR cell lines. Another special thanks to Taylour Treadwell for collecting 

voluntary wheel data. I know a lot of efforts went into it, and I would not have been able to finish 

the exercise study without your help. 

 

To the past members of the Vascular Biology Laboratory, I want to thank you for your assistance, 

support, and patience. Xiaoya, I was able to pass through my coursework and the comprehensive 

exam during the first couple years of my Ph.D. with you learning together. And to the awesome 

crews of VBL, the big “sac parties” were never boring because of all of you.  

 

I need to also thank the neighboring labs in the basement of the CCRB for helping me on a regular 

basis. Dr. Edward Arias, thank you for teaching me muscle dissection skills and letting me 

monopolize the glass homogenizer. Carlos, thank you for being so approachable and helping me 

with a number of lab, grant, and career-related questions. I cannot wait to play golf with you in 

Dallas! Doug and Alison, the basement of the CCRB has been a surprisingly entertaining place to 



v 
 

work because of you guys. It has been always a pleasure to have you guys around to chat about 

science- and non-science-related topics any times.  

 

Dr. James Park, I am thankful for your invaluable research advice on the studies of vascular 

function and teaching me the “fancy” myograph technique. Charlene, thank you for your support 

and help for each step of my doctoral process. Whenever I had questions related to any 

requirements or important processes during my Ph.D., you were the first one to ask, and you always 

had the answers. Dr. Justin Jeon, I am grateful for your support, and I believe that I have absorbed 

some of your “Why not? Let’s do it.”-spirit.  

 

Seung-young, Kyung-hwan, Jung-woon, Bum-hyun, and “eagles”, you guys are like brothers to 

me. I know I can always count on you guys. When I need to talk to someone, you guys are there. 

Whenever I need someone to unwind together, you guys are there. Wherever I go, it makes me 

easier to move forward knowing that you guys were and continue to have my back.  

 

To my friends in church in Ann Arbor. To list the contributions of all of you guys would surely 

require a separate volume. Here I especially thank Ching-shih and Edwina, Daniel and Edith, Floyd 

and Caroline, Bong-chae, Anthony and Priscilla, and EJ. I was able to get through some difficult 

times because of your tremendous support, love, and prayers. You guys are like my family, and 



vi 
 

thank you for taking care of Jenny and me and keeping us always in your prayer. We will always 

have a room for you to visit us in Dallas. 

 

Last, but by no means least, to my family. Jenny, you are an amazing woman and wife. You have 

made numerous sacrifices to help me get to where I am, and I appreciate every one of them. I was 

able to stay focused on my work, not worrying about anything else because of you. You are the 

best cook I know, and I am thankful for your incredible heart and invaluable support. I love you 

so much, and I am excited to see what our future holds. Mom and Dad, I appreciate everything 

you have done for me. You are all extraordinary people and I would not have been able to do this 

without your sacrifices that you have made to provide me as many opportunities as possible. I will 

continue to strive to be the best possible person that I can be to ensure that your sacrifices were 

worthwhile. I love you and miss you so much. To my in-laws, Charles and Amber, I really feel 

that I am lucky to be a part of your family. You all have been extremely supportive of me ever 

since we met. Jiyoung and Sanglim, thank you for your prayers and being there for me. You have 

always had confidence in me and have always put my best interests before yours. I love you all. 

 

 

 

 



vii 
 

 

Table of Contents 

Acknowledgment ........................................................................................................................... ii 

List of Figures ............................................................................................................................... ix 

List of Appendices ....................................................................................................................... xii 

Abstract ....................................................................................................................................... xiii 

Chapter 

1. Statement of the Problem ..................................................................................................... 1 
2. Review of Literature ............................................................................................................. 5 

Endothelial nitric oxide synthase in normal physiologic condition ........................................ 5 

Protein regulation by S-nitrosylation and vesicle trafficking ............................................... 10 

Endothelial nitric oxide synthase in pathological condition ................................................. 11 

Lipid accumulation in the endothelium and cardiovascular disease .................................... 16 

α-Galactosidase A deficiency (Fabry disease) ...................................................................... 16 

Prevalence rate and treatments for Fabry disease ................................................................ 17 

Basic research models of Fabry disease ............................................................................... 18 

Dysregulation of endothelial nitric oxide synthase in Fabry disease ................................... 20 

Mechanisms by which exercise improves endothelial dysfunction ........................................ 23 

Summary of review of literature ............................................................................................ 25 

3. Endothelial nitric oxide synthase uncoupling and microvascular dysfunction in the 
mesentery of mice deficient in a α-Galactosidase A ......................................................... 44 
Abstract ................................................................................................................................ 44 

Introduction ......................................................................................................................... 45 



viii 
 

Methods ................................................................................................................................ 46 

Results ................................................................................................................................... 50 

Discussion ............................................................................................................................. 53 

Figures .................................................................................................................................. 58 

4. GLA deficiency promotes endothelial nitric oxide synthase dysregulation and robust 
VWF secretion from endothelial cells ............................................................................... 69 
Abstract ................................................................................................................................ 69 

Introduction ......................................................................................................................... 70 

Methods ................................................................................................................................ 71 

Results ................................................................................................................................... 81 

Discussion ............................................................................................................................. 88 

Figures .................................................................................................................................. 93 

5. Voluntary wheel exercise training improves Akt/AMPK/eNOS signaling cascades, but 
not endothelial dysfunction in aged mice deficient in α-galactosidase A ..................... 110 
Abstract .............................................................................................................................. 110 

Introduction ....................................................................................................................... 111 

Methods .............................................................................................................................. 112 

Results ................................................................................................................................. 116 

Discussion ........................................................................................................................... 120 

Figures ................................................................................................................................ 125 

6. OVERALL DISCUSSION ................................................................................................ 138 
APPENDICES ....................................................................................................................... 150 

  



ix 
 

List of Figures 

 

Figure 2 - 1. Catalysis of endothelial nitric oxide synthase ....................................................... 8 

Figure 2 - 2. Biological roles of endothelial nitric oxide ............................................................ 9 

Figure 2 - 3. Coupled eNOS and uncoupled eNOS .................................................................. 15 

Figure 2 - 4. Gb3 deposition in the endothelium leads to endothelial dysfunction ............... 22 

Figure 3 - 1. Age-dependent accumulation of Gb3 in the mesenteric arteries of WT and Gla 
knockout mice ........................................................................................................ 58 

Figure 3 - 2. Acetylcholine (Ach)-mediated endothelium-dependent vasodilatation in the 
mesenteric arteries from WT and Gla knockout mice ....................................... 59 

Figure 3 - 3. Sodium nitroprusside (SNP)-mediated, endothelium-independent 
vasodilatation in the mesenteric arteries from WT and Gla knockout mice ... 60 

Figure 3 - 4. Acetylcholine (Ach)- and sodium nitroprusside (SNP)-mediated vasodilatation 
in endothelium-denuded mesenteric arteries from WT and Gla knockout mice
 ................................................................................................................................. 61 

Figure 3 - 5. eNOS levels in the mesenteric arteries of 8 month old WT and Gla null mice 62 

Figure 3 - 6. eNOS Ser-1179 phosphorylation in mesenteric arteries of 8 month old mice . 63 

Figure 3 - 7. eNOS Thr-495 phosphorylation in the mesenteric arteries of WT and Gla 
knockout mice ........................................................................................................ 64 

Figure 3 - 8. Expression of protein-bound 3-nitrotyrosine in the mesenteric arteries of WT 
and Gla null mice ................................................................................................... 65 

Figure 4 - 1. Age-dependent endothelial activation in mice with Fabry disease ................... 93 

Figure 4 - 2. VWF gene expression in the lung and the liver in WT and Gla deficient mice94 

Figure 4 - 3. Elevated VWF secretion in EA.hy926 cells following GLA knockdown .......... 95 



x 
 

Figure 4 - 4. Decreased NO production and suppression of VWF secretion by an exogenous 
NO donor, DETA-NONOate ................................................................................ 96 

Figure 4 - 5. Time course basal VWF secretion from CRISPR WT and GLA deficient cells
 ................................................................................................................................. 97 

Figure 4 - 6. VWF mRNA and IL-8 levels in CRISPR cells .................................................... 98 

Figure 4 - 7. eNOS dysregulation and sepiapterin treatment in CRISPR WT and GLA cells
 ................................................................................................................................. 99 

Figure 4 - 8. Effects of ODQ on VWF secretion in CR-WT and CR-GLA cells treated with 
DETA-NONOate and sepiapterin ...................................................................... 100 

Figure 4 - 9. Increased NSF S-nitrosylation and decreased TRX-1 in GLA deficient cells 101 

Figure 4 - 10. Decrease in VWF secretion with antioxidant treatments .............................. 102 

Figure 4 - 11. Treatment of CR-WT and CR-GLA cells with recombinant human α-
Galactosidase A and eliglustat ......................................................................... 103 

Figure 5 - 1. Daily running distance and changes in food intake and body weight in SED 
and EX mice during 12-week voluntary wheel intervention ........................... 125 

Figure 5 - 2. Increased citrate synthase activity in gastrocnemius muscle from EX mice . 127 

Figure 5 - 3. Increased p-AMPK, p-Akt, and p-eNOS in the aorta of EX mice .................. 128 

Figure 5 - 4. Levels of ROS/RNS and NO bioavailability in the aortic tissue ..................... 129 

Figure 5 - 5. Levels of SOD and phox67 subunit of NADPH oxidase in the aorta of SED and 
EX mice ................................................................................................................ 130 

Figure 5 - 6. Endothelium-dependent and -independent aortic vascular relaxation in SED 
and EX mice with Fabry disease ........................................................................ 131 

Figure 6 - 1. GLA deficiency promotes eNOS uncoupling .................................................... 146 

Figure A - I 4 - 1. Elevated sICAM-1 level in WT and Gla deficient mice .......................... 152 

Figure A - I 4 - 2. Correlation between VWF and the number of cells ................................ 153 

Figure A - I 4 - 3. Histamine-evoked VWF release from EA.hy926 cells with different days 
of confluency ................................................................................................ 154 



xi 
 

Figure A - I 4 - 4. Histamine-evoked VWF release in CRISPR cells.................................... 155 

Figure A - I 4 - 5. The effect of DDAVP on VWF secretion in WT and Gla deficient mice156 

Figure A - II 5 - 1. VWF levels in EX and SED mice at the completion of 12 weeks of 
voluntary wheel exercise training ........................................................... 158 

  



xii 
 

List of Appendices 

 

Appendix I: Study 2…………………………………………………………………………….151 

Appendix II: Study 3……………………………………………………………………………157  



xiii 
 

ABSTRACT 

 

 

Cardiovascular disease is the leading cause of death in the United States and globally. 

Atherosclerosis is an important basis for coronary heart disease and stroke, the two major types of 

cardiovascular disorders. Fabry disease promotes accelerated atherogenesis and thrombogenesis 

by loss of activity of the lysosomal hydrolase, α-Galactosidase A (GLA), resulting in the 

accumulation of globotriaosylceramide (Gb3) in vascular endothelial cells. Although endothelial 

dysfunction, characterized by decreased nitric oxide bioavailability, is believed to be the basis for 

the vasculopathy in Fabry disease, the pathophysiological mechanisms underlying GLA deficiency 

remain elusive. Using Fabry disease as a model to study accelerated vascular disease, the overall 

purpose of my dissertation was to further characterize endothelial dysfunction and inflammation 

using murine and in vitro endothelial cell models of Fabry disease, and to examine the effects of 

12 weeks of voluntary exercise on endothelial function in the setting of eNOS dysregulation. The 

major findings of my dissertation studies include that: 1) GLA deficiency in mice resulted in early, 

profound endothelial dysfunction in the mesenteric artery, which was associated with eNOS 

uncoupling and changes in eNOS activating and inhibitory phosphorylation sites; 2) the in vitro 

disruption of GLA in endothelial cells with siRNA or CRISPR/Cas9 directly promoted a decrease 

in eNOS activity and robustly elevated the secretion of von Willebrand factor (VWF), which plays 

an important role in thrombi formation; 3) pharmacological approaches that improve exogenous 

or endogenous NO availability or reduce reactive oxygen species (ROS) completely normalized 
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the elevated VWF secretion in the setting of GLA deficiency; and 4) 12 weeks of voluntary wheel 

exercise did not significantly improve endothelium-mediated vasodilation or the oxidative stress 

profile despite increased p-Akt (Ser473), AMPK (Thr172), and eNOS (Ser1177) signaling 

cascades in the aorta of 12-14 month old GLA deficient mice. Overall, the findings from these 

dissertation projects suggest that in Fabry disease: 1) decreased NO availability due to eNOS 

uncoupling and elevated ROS may exacerbate endothelial dysfunction and inflammation; 2) VWF  

release from the endothelium appears to be mediated by the profound endothelial dysfunction 

present in GLA deficiency; 3) strategies that increase NO bioavailability and/or decrease ROS, 

such as sepiapterin, tempol, and ebselen lead to an attenuation in VWF secretion; and 4) exercise 

mediated activation of Akt/AMPK/eNOS signaling cascades without significant improvement in 

aortic endothelial function in 12-14 month old GLA deficient mice. In summary, this dissertation 

compliments the prior hypothesis that GLA deficiency-mediated eNOS dysregulation is an 

important basis for endothelial inflammation and questions whether current treatment strategies 

for Fabry disease are optimal for improving the underlying vasculopathy. 

  



1 
 

 

 

CHAPTER 1 

Statement of the Problem 

 

Heart disease is the leading cause of death in the United States, and cardiovascular disease accounts 

for nearly 30% of all deaths annually (7). However, many heart disease and stroke deaths could be 

delayed through treatment of risk factors and improvements in lifestyle behaviors.  

Fabry disease is an X-linked inborn error of glycosphingolipid metabolism caused by a defect in 

the gene encoding the lysosomal enzyme α-Galactosidase A (GLA), resulting in a toxic 

accumulation of globotriaosylceramide (Gb3) in various organ systems (1, 6). This accumulation 

of Gb3, especially in the vascular endothelium, is coupled with impaired endothelial function in 

patients with Fabry disease, ultimately leading to premature death from cardiac disease and strokes 

(4). The current standard of care for Fabry patients is enzyme replacement therapy (ERT) using 

recombinant human GLA. Although this treatment is effective in reducing Gb3 accumulation in 

multiple cell types, the average cost per patient of the ERT is tremendous (over $215,000 / year), 

which makes therapy difficult to obtain for these patients (4). In addition, emerging evidence 

suggests that ERT does not prevent the natural course of cardiac disease, cerebrovascular disease, 

or nephropathy in all patients once the damage from this disease is far advanced (8, 10). In contrast, 

Gaucher disease, the most common of the lysosomal storage disorders, is effectively treated with 

replacement of its defective enzyme, beta-glucocerebrosidase (2). This indicates that the vascular 

complications in Fabry disease do not entirely depend on Gb3 accumulation. It is, therefore, 
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important to investigate the cellular mechanism(s) underlying the Fabry vasculopathy and to 

identify better treatment strategies. A recent study that screened more than 1,400 patients with 

common forms of heart disease, such as coronary artery disease and cardiomyopathy, has reported 

that elevated urinary Gb3 is positively associated with and predicts near-term mortality in heart 

disease patients who do not have Fabry disease (9). This suggests that heart disease in common 

clinical settings is associated with glycolipid metabolism abnormalities. Therefore, although Fabry 

disease is a very rare genetic condition, a greater appreciation of the role of this glycosphingolipid 

storage disease on endothelial dysfunction may have broad implications for our understanding of 

cardiovascular disease pathophysiology. 

 

The outline of my dissertation is as follows: 

A. Endothelial dysfunction and inflammation in the setting of GLA deficiency. 

• PROJECT 1: Determination of endothelium-dependent dilation and signaling 

alterations of the endothelial nitric oxide synthase in the mesenteric artery in younger 

and older mice deficient in GLA compared to age-matched wild type mice.  

• PROJECT 2: Examination of endothelial inflammation and possible mechanisms of 

alterations in von Willebrand factor secretion in cellular models of Fabry disease. 

B. Effects of exercise on endothelial dysfunction and inflammation in the setting of GLA 

deficiency. 

• PROJECT 3: Investigation of the effects of 12 weeks of voluntary wheel running on 

endothelial nitric oxide synthase uncoupling and endothelial inflammation in the mouse 

model of Fabry disease. 
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The overall objective of my dissertation projects is to advance understanding of endothelial 

dysfunction and inflammation in murine and cellular models of Fabry disease and to examine 

possible roles of voluntary wheel exercise on endothelial nitric oxide synthase dysregulation in the 

setting of GLA deficiency. History has revealed that the study of rare lipid disorders can lead to 

the discovery of specific mechanisms and/or therapeutic interventions for cardiovascular disease. 

For example, previous studies on rare familial hypercholesterolemia characterized by LDL 

receptor deficiency led to the discovery of the regulation of cholesterol metabolism (5) and the 

current class of medications (i.e. statins) that have proven useful for reducing cardiovascular 

disease mortality in high risk patients (3). Therefore, the findings of these dissertation projects 

have important implications for identifying new strategies for preventive and therapeutic 

interventions for vasculopathy in Fabry disease, in addition to fundamentally advancing the fields 

of cardiovascular disease and vascular complications. 
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CHAPTER 2 

Review of Literature 

 

Despite the success in reducing the mortality from acute cardiovascular events, cardiovascular 

disease (CVD) and its complications still produce immense health and economic burdens as the 

main cause of death in the United States and globally (115).  Compelling scientific evidence 

suggests that the endothelium plays a pivotal role in the regulation of vascular tone, growth, 

thrombogenicity, atherogenicity, and inflammation (90). Moreover, it is evident that the presence 

of endothelial dysfunction is associated with cardiovascular events (66). Therefore, it is important 

to understand how the endothelium regulates vascular homeostasis in physiological and 

pathophysiological conditions. Strategies designed to prevent endothelial dysfunction may 

therefore reduce cardiovascular complications. 

 

Endothelial nitric oxide synthase in normal physiologic condition 

Human vasculature is composed of three layers: the endothelium (intima), smooth muscle cells 

(media), and surrounding elastic and connective tissues (adventitia). The innermost monolayer of 

the endothelial cells sense hemodynamic forces and respond to physiologic and pathologic stimuli 

(51, 52, 66, 85). Also, the endothelium, as the primary interface between the blood and body tissues, 

governs several important aspects of vascular responses through the generation of nitric oxide 

(NO), a gas produced by nitric oxide synthase (NOS) enzymes (43, 50-52, 133). There are three 
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major isoforms of NOS: neuronal NOS (nNOS), or type 1 NOS; inducible NOS (iNOS), or type 2 

NOS; and endothelial NOS (eNOS), or type 3 NOS (66). eNOS is the predominant NOS isoform 

in the vasculature and is responsible for most of the NO produced in this tissue (42). As a multi-

domain enzyme, eNOS consists of an N-terminal oxygenase domain and a reductase domain 

(Figure 2 - 1). The oxygenase domain contains binding sites for heme, L-arginine, and 

tetrahydrobiopterin (BH4), and the reductase domain contains binding sites for flavin 

mononucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide 

phosphate (NADPH) and calmodulin (CaM) (22, 142). eNOS oxidizes its substrate L-arginine and 

produces L-citrulline and NO, the most prominent vasodilatory agent (3, 33). The functional eNOS 

requires dimerization of the enzyme, the presence of the substrate L-arginine, and the essential 

cofactor BH4 (43). eNOS is classified as a constitutive enzyme that produces NO in a Ca2+ / CaM 

dependent manner (17).  The CaM-binding domain of eNOS has been reported to directly bind 

phospholipids, and functional eNOS was found to be primarily localized in caveolae of the plasma 

membrane (61, 98, 144, 163). Caveolae are small invaginations of the plasma membrane, which 

sequester diverse receptors and function to organize various signaling transduction pathways 

including eNOS (93). The major structural proteins of caveolae are cholesterol, glycosphingolipids, 

sphingomyelin, and caveolin-1 (cav-1) (143). Cav-1 is abundant in endothelial cells and inhibits 

eNOS activity in the basal state by impeding the signaling of caveolae-targeted receptors that 

transduce eNOS-stimulatory signals as well as by antagonizing calmodulin binding to eNOS (47, 

76). Heat shock protein 90 (Hsp90) is a chaperone that is involved in protein trafficking and folding 

and agonist-dependent eNOS activation (108). Hsp90 is known to reduce the inhibitory effects of 

cav-1 on eNOS (41, 55). Upon an increase in cytoplasmic calcium, CaM is thought to aid the 
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recruitment of Hsp90 to eNOS and facilitate the effects of Hsp90 on the dissociation of eNOS 

from caveolin-1. 

eNOS is known to be activated by various physiological stimuli, including mechanical shear stress 

(23, 52, 60, 111, 169), insulin (129), acetylcholine (68), and other receptor-dependent agonists (7) 

(Figure 2 - 2). eNOS is regulated by post-translational phosphorylation at several serine (S) and 

threonine (T) residues including T495, S615, S633, and S1177 (13, 33). Among those potential 

phosphorylation sites, phosphorylation of eNOS at S1177 residue in the reductase domain and 

phosphorylation at T495 within the CaM-binding domain have been most studied. T495 is 

constitutively phosphorylated and associated with a decrease in enzyme activity (40, 59, 109). 

S1177 phosphorylation results in more active eNOS and NO production, even at resting levels of 

intracellular calcium (103). eNOS-derived NO serves several important functions. First, it 

regulates vascular tone and regional blood flow (68). Second, it modulates the expression of 

surface cell adhesion molecules that governs interactions with circulating cells including 

leukocytes, monocytes, and platelets, therefore affecting propensity or resistance to atherosclerotic 

plaque formation and thrombosis (21, 44, 82, 89). Finally, NO also inhibits the proliferation and 

injury responses of vascular smooth muscle cells, which could contribute to neointima formation 

during the development of atherosclerosis (114, 134, 155). Based on the combination of those 

effects, endothelial NO represents an important anti-atherogenic defense principle in the 

vasculature (42). 
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Figure 2 - 1. Catalysis of endothelial nitric oxide synthase 

This figure depicts eNOS that functions as homodimers. Each monomer consists of an N-
terminal oxygenase domain and a reductase domain. The oxygenase domain contains binding 
sites for heme, L-arginine, and tetrahydrobiopterin (BH4). The reductase domain contains 
binding sites for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), 
nicotinamide adenine dinucleotide phosphate (NADPH) and calmodulin (CaM). eNOS oxidizes 
its substrate L-arginine and produces L-citrulline and NO, the most prominent vasodilatory 
agent. The functional eNOS requires dimerization of the enzyme, the presence of the substrate 
L-arginine, and the essential cofactor BH4. Abbreviations: L-Arg: L-arginine; BH4: 
tetrahydrobiopterin; CaM: calmodulin; FMN: flavin mononucleotide; FAD: flavin adenine 
dinucleotide; NADPH: nicotinamide adenine dinucleotide phosphate. Adapted from (9). 
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Figure 2 - 2. Biological roles of endothelial nitric oxide 

This figure depicts biological roles of endothelial NO. eNOS is activated by physiological and 
metabolic stimuli including shear stress and receptor-dependent agonists. Phosphorylation of 
eNOS at S1177 increases its activity. NO generated from eNOS inhibits platelets aggregation, 
modulates leukocyte-endothelial cell interactions, inhibits smooth muscle cell proliferation, and 
regulates vascular tone. eNOS catalytic activity depends on the intracellular localization to 
caveolae and the protein-protein interactions with caveolins and hsp-90. NO diffuses to vascular 
smooth muscle cells and induces smooth muscle cell relaxation through cGMP-PKG pathway, 
which increases luminal diameter and blood flow. Abbreviations: P: phosphorylation; S1177: 
serine 1177; HSP-90: heat shock protein-90; PKG: serine-threonine-specific protein kinase G. 
Adapted from (6). 
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Protein regulation by S-nitrosylation and vesicle trafficking 

As mentioned above, NO has a variety of effects on vascular cells including smooth muscle 

relaxation, inhibition of smooth muscle cell migration and proliferation, platelet adherence and 

aggregation, and vascular inflammation. Among these effects, NO may regulate vascular 

inflammation and thrombosis, in part, by controlling endothelial vesicle trafficking (94). Vesicle 

trafficking involves several discrete stages: cargo loading, budding, translocation, priming, 

membrane fusion, and recycling (73, 75, 107, 156). Weibel-Palade bodies (WPBs) are released 

from endothelial cells following this cycle of vesicle trafficking upon endothelial inflammation 

and injury (94). WPBs are cigar-shaped granules that contain both pro-thrombotic and pro-

inflammatory factors, mainly von Willebrand Factor (VWF) and P-selectin (164, 167). The release 

of VWF into the blood stream promotes platelet adhesion and aggregation (135). WPB exocytosis 

also leads to the translocation of P-selectin to the endothelial cell plasma membrane, which 

regulates leukocyte rolling and extravasation (102, 104). After WPB exocytosis, the empty granule 

recycles back to the Golgi (94). Distinct sets of proteins regulate the cycle of WPB trafficking, 

including Rab family members, N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment 

receptor proteins (SNAREs), and the Sec/Munc family (73, 75, 107, 156). Rab proteins are small 

GTPases that regulate vesicle tethering to target membranes (179). The SNAREs are a group of 

transmembrane proteins that specify fusion partners and assemble into stable ternary complexes 

(74). For example, one v-SNARE (VAMP-3) localized on the endothelial granule can interact with 

two t-SNAREs (syntaxin-4 and SNAP-23) localized to the plasma membrane, making a stable 

SNARE complex (99). The assembly of the SNARE complex is accelerated by Sec/Munc proteins 

(145). In contrast, NSF disassembles the three part SNARE complex by converting the chemical 

energy of ATP hydrolysis into mechanical energy (101).  
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NO has been reported to react with free thiol groups on cysteine residues of target proteins in a 

process called S-nitrosylation (153). Protein S-nitrosylation is a posttranslational modification 

where the binding of NO to cysteine residues can induce covalent changes in protein function 

(127). Out of the many proteins that regulate vesicle trafficking, NSF is a critical part of the 

exocytic machinery and a target of S-nitrosylation (10, 97, 99). Several experiments supported this 

notion by showing exogenous NO-mediated nitrosylation of 3 of the 9 cysteine residues in 

recombinant NSF as well as endogenous NO-mediated nitrosylation of NSF in wild type mice 

through blockage of NO production with NOS inhibitor or in eNOS null mice (99). Therefore, NO 

may inhibit WBP exocytosis by NSF nitrosylation at a cysteine 264 residue because nitrosylation 

or a mutation of this site blocked NSF separation of the SNARE complex (99, 100).  

It is also reported that S-nitrosylation is reversible (99). Thioredoxin is a reductase that maintains 

redox balance within cells, and is involved in many processes (16). Thioredoxin 1 (TRX1) is 

expressed in the cytosol, and reduces oxidized cysteine residues on target proteins. In endothelial 

cells TRX1 has a pro-inflammatory role because it is recruited to nitrosylated NSF, removes NO 

moieties, and restores exocytosis of WPBs (72). Therefore, the relative availability of NO and the 

activity of TRX1 regulate NSF function, subsequently influencing WPB exocytosis. 

 

Endothelial nitric oxide synthase in pathological condition 

Endothelial dysfunction is a broadly defined term used to describe a failure of the endothelium to 

serve its normal physiologic and protective effects (29, 171). A common feature associated with 

many cardiovascular risk factors (including hypertension, diabetes, insulin resistance, obesity and 

hyperlipidemia) is endothelial dysfunction (66). Because the endothelium normally protects 

against the processes involved in atherosclerosis, smooth muscle cell proliferation, inflammation 
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and thrombosis using NO, endothelial dysfunction is central to the pathogenesis of atherosclerotic 

lesion development. A mechanism of endothelial dysfunction is insufficient endothelial NO 

availability (67). A decline in NO bioavailability could be caused by many different factors. These 

include reduced eNOS gene expression, a lack of its substrate L-arginine, inhibition of eNOS by 

asymmetric dimethylarginine, uncoupling of eNOS and BH4 deficiency, metabolic intoxication by 

free fatty acids and inflammatory cytokines IL-6 and TNFα, alterations of intracellular signaling 

pathways of eNOS, and rapid scavenging of NO by superoxide anion (12, 26, 27, 66, 80, 123, 172). 

Two important causes of endothelial dysfunction seem to be accelerated NO degradation by 

reactive oxygen species (ROS) and eNOS uncoupling. There are many potential enzymatic sources 

of ROS in mammalian cells. These include the mitochondrial respiration, arachidonic acid 

pathway enzymes lipoxygenase and cyclooxygenase, cytochrome p450s, xanthine oxidase, 

NADPH oxidases, eNOS, peroxidases, and other hemoproteins (18). Although many of these 

sources could potentially produce ROS that inactivate NO, xanthine oxidase, NADPH oxidase, 

and eNOS have been studied rather extensively in the cardiovascular system.  

Xanthine oxidase is a form of xanthine oxidoreductase, which reduces molecular oxygen to 

produce O2
- and H2O2 (18). Studies suggested that O2

- derived from xanthine oxidase can decrease 

NO bioavailability because blood pressure in spontaneously hypertensive rats was dramatically 

lowered by a recombinant form of superoxide dismutase or the xanthine oxidase inhibitor 

oxypurinol (118). Also, oxypurinol reduced O2
- production and improved impaired acetylcholine-

mediated vascular relaxation in the aorta of hyperlipidemic rabbits (120). These suggest that 

xanthine oxidase contributes to endothelial dysfunction by altering NO bioavailability. 

NADPH oxidase (NOX) is a membrane-bound enzyme complex and catalyzes one electron 

transfer of oxygen from NADPH to generate O2
- and H2O2 (91). The oxidases are multi-subunit 
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enzymes that are expressed in vascular smooth muscle cells (NOX1 and NOX4) and in endothelial 

cells (NOX2 and NOX4) (2, 37, 53, 84). Cardiovascular risk factors, such as hypertension, diabetes, 

and hypercholesterolemia, increase the expression and/or activity of NOX in the vascular wall, 

enhancing the production of ROS (63, 77, 91, 128, 166). Both basal and NADPH-stimulated O2
- 

formation was significantly increased in the rat aorta with heart failure (8). Subsequent treatment 

with superoxide dismutase (SOD) improved the impaired endothelium-dependent vasorelaxation. 

This evidence suggests that activation of this source of O2
- can lead to a decrease in NO 

bioavailability and endothelial dysfunction.  

eNOS has received substantial attention as another source of vascular ROS production (18, 43, 66). 

There has been evidence that eNOS becomes uncoupled in various pathophysiological conditions 

(63, 83, 110, 112, 160). This phenomenon is named  “eNOS uncoupling” because O2
- generation 

mainly occurs when eNOS is not coupled with its cofactor or substrate (95). BH4 is an essential 

cofactor necessary for optimal eNOS activity (4). For full enzymatic activity, eNOS requires 

proper dimerization (66). When BH4 levels are inadequate, eNOS becomes unstable and produces 

less NO and more O2
- (Figure 2 - 3). Under conditions of eNOS uncoupling and/or high oxidant 

stress, O2
- reacts with NO to form peroxynitrite anion (ONOO-) in a very rapid reaction (123). 

Importantly, ONOO- has multiple effects, including selective nitration of tyrosine residues in 

proteins (56), increased expression of inducible NOS (25), oxidation of the zinc-thiolate complex 

in eNOS (180), and oxidation of BH4 to BH2 (88). Interestingly, BH2 also can promote eNOS 

uncoupling because it can competitively replace eNOS-bound BH4 (28). 

Although multiple mechanisms can lead to O2
- generation and eNOS uncoupling simultaneously, 

the common feature is a reduction in the amount of NO bioavailability, which protects the 
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vasculature, under normal healthy physiological condition, from the molecular events that lead to 

endothelial dysfunction and inflammation. 

  



15 
 

 

 

Figure 2 - 3. Coupled eNOS and uncoupled eNOS 

This figure depicts the role of eNOS uncoupling in the pathogenesis of endothelial dysfunction. 
eNOS is inactive when it is bound to cav-1 localized to the plasma membrane. When it becomes 
active, eNOS disassociates from cav-1 and binds with calmodulin (CaM) and heat shock protein 
90 (Hsp90) with phosphorylation at Serine1177. When availability of L-arginine or BH4 levels 
are insufficient, eNOS becomes unstable, resulting in less NO production and more superoxide 
generation. Moreover, peroxynitrite, a potent oxidant product from NO and superoxide, further 
oxidizes BH4, leading to eNOS uncoupling as a vicious cycle with subsequent endothelial 
dysfunction. Abbreviations: cav-1: caveolin-1; BH4: tetrahydrobiopterin; CaM: calmodulin; 
Hsp90: heat shock protein 90; P: phosphorylation; ONOO-: peroxynitrite. Adapted from (79). 
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Lipid accumulation in the endothelium and cardiovascular disease 

Accumulation of lipids within the arterial wall is the principal cause and progression of 

atherosclerotic lesion (133). The deposition of the fatty streak precedes the influx of 

macrophages and T lymphocytes (154). This inflammatory response stimulates migration and 

proliferation of smooth-muscle cells and becomes intermixed with the area of inflammation to 

form an intermediate lesion. Lipid-rich advanced atherosclerotic plaques are pro-inflammatory 

and more prone to rupture and thrombosis than lipid-poor plaques (117). Therefore, the 

composition of lipid fractions within the atherosclerotic plaque may play a crucial role in the 

progression of atherosclerosis and in the complications of atherosclerotic vascular disease 

including myocardial infarction and stroke. 

 

α-Galactosidase A deficiency (Fabry disease) 

Fabry disease is caused by deficiency or absence of activity of the lysosomal enzyme α-

galactosidase A (GLA) (15, 81). It was first recognized in two affected brothers as a disease 

characterized by abnormal vacuoles in blood vessels throughout their bodies, suggesting a storage 

disorder (125). Reduced GLA activity may result from multiple different GLA gene mutations, 

which lead to reduced or complete deficiency of enzyme activity, or dysfunctional enzyme with 

low activity (24, 139). Since GLA hydrolyses the substrates possessing terminal α-galactosidic 

residues, the glycolipid conversion of globotriaosylceramide (Gb3) to lactosylceramide is impeded 

in Fabry disease (113). As a result, the progressive lysosomal accumulation of neutral 

glycosphingolipids with terminal α-galactosyl moieties is observed. The predominant site of 

glycosphingolipid accumulation is the endothelium and smooth muscle cells of the vasculature, 

although accumulation can occur in various other organ systems such as skeletal muscle cells, 
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histiocytes, reticulocytes, corneal epithelial cells, glomerulus and tubules of the kidney, ganglions 

of autonomous nervous system, epithelial cells, and others (36, 38, 157).  

Early signs and symptoms of Fabry disease include episodic acute pain (Fabry crisis) characterized 

by agonizing burning pain in the extremities and gastrointestinal involvement with abdominal pain, 

diarrhea, nausea, and vomiting (19, 64, 147). Other clinical manifestations of Fabry disease include 

renal failure, painful neuropathies, stroke, cardiac disease, and skin lesions (49). However, 

premature life-threatening complications result from cardiovascular diseases including myocardial 

infarction, stroke, hypertrophic cardiomyopathy, and renal failure with frequent detection in more 

than 60 % of affected males and heterozygous females (92, 105). Before renal dialysis and renal 

transplants became widely available, the average age at death among untreated males was reported 

as approximately 40 years (175). Although the increased availability of renal replacement therapy 

extended the lifespan of Fabry patients, it is still several decades shorter than the United States 

general population (96, 140, 165). 

 

Prevalence rate and treatments for Fabry disease 

The prevalence rate of Fabry disease was conventionally estimated to be 1 case in 40,000-117,000 

male births (106). However, more recent studies of newborn screenings now suggest the incidence 

of Fabry disease to be between 1 in 3,100 and 1 in 1,250 with later-onset phenotypes including 

hemodialysis, hypertrophic cardiomyopathy and stroke, raising the clinical importance of the 

condition in the future (69, 152). Although inheritance of GLA is X-linked, many heterozygotes 

will develop early symptoms and, later on, vital organ involvement (96, 170, 174).  
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Several potential therapies for Fabry disease, including bone marrow transplantation, substrate 

deprivation, recombinant GLA enzyme replacement, and gene therapy, have shown promise in 

pre-clinical trials in mice (1, 71, 78, 122). Whereas enzyme replacement therapy (ERT) with 

recombinant GLA is the only approved therapy for Fabry disease, there is no clear evidence that 

ERT alters the natural course of cardiac and cerebrovascular diseases (35, 130, 161).  

 

Basic research models of Fabry disease 

Because it is a rare disease, animal and cellular models of Fabry disease have been invaluable 

models for exploring the vascular pathophysiology of human genetic disease as well as for the 

development of effective therapeutic strategies. The combined homologous recombination and 

embryonic stem cell technology has allowed generation of knock-out mice for Fabry disease (121). 

This animal model has played an important role in studies of vascular pathogenesis. Although the 

GLA null mouse does not display a spontaneous vascular phenotype, recent studies reported 

several inducible models of vasculopathy. First, mice deficient in GLA showed a significant 

reduction in the time to occlusive thrombus formation with age compared to wild type C57BL6/J 

mice when exposed to photochemical reactive oxygen species (34). Accumulation of Gb3 on the 

carotid artery with age was associated with the enhanced thrombotic response to photochemical 

injury in GLA deficient mice. No changes in the vascular phenotype with bone marrow 

transplantation between GLA deficient and wild type mice suggested that the pro-thrombotic 

phenotype was not due to an abnormality of circulating blood elements, but most likely to changes 

localized to the vessel wall (34). Second, because glycosphingolipids have been shown to 

accumulate in atherosclerotic plaques of the human aorta (116), it is also possible that Gb3 

deposition in the vascular wall may promote atherogenesis. To address the potential role of GLA 
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deficiency in atherosclerosis, the GLA null mice were bred with apolipoprotein E deficient mice. 

At 45 weeks of age, Gb3 accumulation due to GLA deficiency was associated with a significant 

increase in total atherosclerotic burden (11). In a third model, acetylcholine mediated vascular 

relaxation was measured in the aortic rings from wild type and GLA-null mice pre-contracted with 

phenylephrine (124). The impaired vascular reactivity to acetylcholine in the GLA deficient rings 

was normalized with calcium ionophore-mediated NO production, suggesting a plasma 

membrane-based defect. Primary aortic endothelial cells from GLA deficient mice demonstrated 

that the increased plasma membrane Gb3 was the basis for the abnormality (148, 149). The Gb3 

accumulation was associated with decreased eNOS expression, activity, and levels of high 

molecular weight caveolin-1 oligomers (150). These results suggest that Gb3 alters the assembly 

of signaling molecules with caveolin-1, including eNOS. 

To study the molecular mechanisms, a cellular model of Fabry disease was also established. When 

the primary aortic endothelial cells from wild type and GLA null mice in various ages were 

compared, an age-dependent elevation in Gb3 was observed only in the GLA null cells (148). The 

glucosylceramide synthase inhibitor, ethylenedioxyphenyl-P4, significantly decreased Gb3 level 

by 96 hours of treatment. Recombinant GLA completely eliminated Gb3 accumulation by 48 hours 

of incubation. In addition, a single and low dose for a shorter period of incubation with a 

combination of ethylenedioxyphenyl-P4 and recombinant GLA had a synergistic effect. In a more 

recent study, GLA was transiently silenced using a RNA interference technique in an immortalized 

human umbilical cell line, EA.hy926 (151). An interesting finding of this study is that there was a 

decrease in eNOS activity consistent with the impaired formation of NO. In addition, a 50-fold 

increase in 3-nitrotyrosine was observed only in the GLA null cells, but not in the cells with β–

glucocerebrosidase knockdown, an enzyme responsible for the most common lysosomal storage 
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disease Gaucher disease. This significant elevation of 3-nitrotyrosine, but not of other tyrosine 

adducts, was also measured in GLA null mouse plasma and aorta as well as in the plasma of 

classical Fabry patients, suggesting that eNOS uncoupling with reactive nitrogen species formation 

was specific to Fabry disease (151). 

 

Dysregulation of endothelial nitric oxide synthase in Fabry disease 

Two primary hypotheses have been proposed to explain the pathogenesis of the vasculopathy of 

Fabry disease. One hypothesis suggests that circulating lyso-Gb3 deposition in the medial layer of 

the arterial vasculature is the initiating step of the vasculopathy. This promotes smooth muscle cell 

proliferation in the subendothelial layer and formation of neointimal fibrotic structures. A resultant 

hyperdynamic circulation in a less compliant vascular wall leads to upregulation of the local renin-

angiotensin system, and subsequent production of reactive oxygen species with a decrease in NO 

synthesis (132).  

An alternative hypothesis suggests that Gb3 accumulation in the endothelium alone is sufficient to 

account for the dysregulation of eNOS, which leads to low NO production and eNOS uncoupling 

with aberrant formation of reactive oxygen species (151) (Figure 2 - 4). The potential role for 

eNOS dysregulation with Gb3 accumulation in the endothelium is well supported by the cellular 

model of Fabry disease (151). In this study GLA knockdown induced a time dependent Gb3 

accumulation in human endothelial cells. This toxic deposition was associated with decreased NO 

activity. Uncoupling of eNOS was also confirmed by a highly robust elevation in 3-nitrotyrosine, 

the ONOO- nitration product, in this cell line, GLA null mouse plasma and aorta, as well as in the 

plasma of classical Fabry patients. Also, Gb3 loading in skin microvascular endothelial cells 

resulted in an increase in reactive oxygen species and the transcription of intercellular adhesion 
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molecule-1, vascular cellular adhesion molecule-1, and E-selectin (146). In addition, Gb3 content 

was markedly increased in the total plasma membrane as well as the caveolar fraction of primary 

mouse aortic endothelial cells from GLA null mice (148, 149). These observations were consistent 

with decreased eNOS expression, hormone-stimulated eNOS activity, and high molecular weight 

caveolin-1 oligomers, indicating increased plasma membrane Gb3 is the basis for the endothelial 

dysfunction (150). This hypothesis was further supported by an observation that impaired Ach-

mediated vascular relaxation of GLA null mouse aorta was eliminated with calcium ionophore-

stimulated dilation (124). In addition, the GLA knockout mice display increased thrombogenesis 

and atherogenesis when exposed to reactive oxygen species and bred on an apolipoprotein E1-

deficient background, respectively (11, 34). Together, although many different factors could play 

a role in the vascular abnormality present in Fabry disease, common factors are an alteration of 

nitric oxide bioavailability and the presence of eNOS uncoupling. 
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Figure 2 - 4. Gb3 deposition in the endothelium leads to endothelial dysfunction 

This figure depicts the role of Gb3 accumulation in the vascular endothelial cells. Deficient or 
absent activity of GLA results in Gb3 accumulation in the endothelium. This leads to decreased 
NO bioavailability and eNOS uncoupling with the formation of reactive oxidants. These 
promotes thrombosis, atherosclerosis, and impaired vasodilation in the aorta. Also, NO from 
eNOS binds to O2

- to generate ONOO-, a highly reactive nitrogen species, resulting in protein 
nitration (3-NT). ONOO- can oxidize BH4 to BH2. BH2 can efficiently replace eNOS-bound 
BH4, resulting in further eNOS uncoupling.  Abbreviations: GLA: α-galactosidase A; Gb3: 
globotriaosylceramide; eNOS: endothelial nitric oxide synthase; NO: nitric oxide; O2

-: 
superoxide; ONOO-: peroxinitrite; 3-NT: 3-nitrotyrosine; BH4: tetrahydrobiopterin; BH2: 
dihydrobiopterin. 
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Mechanisms by which exercise improves endothelial dysfunction 

Many studies have demonstrated exercise to be one of the most effective non-pharmacological 

interventions for improving endothelial dysfunction. During the last two decades, the beneficial 

effects of exercise on attenuated endothelial function have been extensively studied in various 

aspects including aging, heart disease, hypercholesterolemia, hypertension, and type II diabetes 

mellitus.  

Impaired endothelium-dependent dilation (EDD) with aging is thought to be mediated by reduced 

NO bioavailability associated with increased oxidative stress (18, 32, 159). Three months of 

habitual aerobic exercise improved impaired EDD in middle-aged and older adults (31, 141, 158, 

159). This was thought to be mediated in part by an enhanced NO bioavailability because a greater 

degree of forearm vasoconstriction with intra-brachial artery infusion of an eNOS inhibitor was 

observed after exercise intervention (158). Also, acute administration of supraphysiological 

concentrations of vitamin C improved EDD only in sedentary men, but not in endurance exercise-

trained men, indicating that the improvement in EDD may be secondary to reduced oxidative stress. 

These observations suggest that this influence is mediated by an increase in NO bioavailability 

and reduced oxidative stress.  

A number of studies have reported that reduced EDD in hypercholesterolemia is reversed or 

prevented by exercise training in mice and rabbits (119, 126, 178). In a genetic mouse model of 

hypercholesterolemia, aortic EDD was decreased compared to wild type mice, but four weeks of 

treadmill training restored normal EDD (119). Six weeks of treadmill training reduced carotid 

artery neointima formation with an increase in eNOS expression in apo E null mice compared to 

sedentary apo E null mice (126). Studies using aorta, carotid, and mesenteric arteries in 

spontaneously hypertensive rats have consistently shown that impaired Ach mediated EDD and 
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NO production were improved by exercise training (6 – 22 weeks) (5, 20, 54). Additionally, 

reduced aortic EDD in OLETF type 2 diabetic rats was restored by 9 weeks of voluntary wheel 

exercise (138). In this study, urinary NO2, a stable degradation product of NO in biological 

solutions, was significantly increased by exercise compared to non-diabetic OLETF and sedentary 

control OLETF rats, suggesting exercise-mediated improvement in NO production. Together, one 

of the most important molecular consequences of exercise is the absolute increase in NO 

bioavailability.  

Exercise may exert its beneficial effect, in part, by shear stress. Shear stress induced by blood flow 

is one of the most important exercise-mediated physiological regulators of vascular tone (85). 

Numerous investigations have documented that exercise or increased shear stress up-regulates 

eNOS activity in cell culture, animal, and human studies (14, 57, 176). The beneficial effects of 

exercise on endothelial function are the result of changes in endothelial cell phenotype that involve 

increased eNOS expression and activity (57, 86, 87). Other markers of endothelial cell phenotype 

changes induced by exercise/shear stress include increased expression and activity of SOD and 

decreased oxidative stress (45, 136, 137). Because NO can be rapidly inactivated by reaction with 

O2
- and lead to the production of the strong oxidant ONOO-, SOD may regulate NO-mediated 

signaling by inhibiting oxidative inactivation of NO (46, 123). Shear stress may exert its beneficial 

effects by not only increasing NO production, but also up-regulating SOD expression. Indeed, an 

NO donor (DETA-NO) increased the expression of vascular extracellular SOD in a time- and dose-

dependent manner in human aortic smooth muscle cells (45). This effect was prevented by a 

guanylate cyclase inhibitor and by a protein kinase G inhibitor, indicating NO may stimulate SOD 

expression and thereby prevent degradation of NO. Therefore, the beneficial effect of exercise on 

EDD observed in several studies may not only be due to an increase in eNOS expression (58, 62, 
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65), but also due to an increase in SOD expression, which decreases O2
- reaction with NO. 

Importantly, unidirectional laminar shear stress significantly increased mRNA, protein content, 

and activity of cytosolic Cu/Zn SOD in human aortic endothelial cells, which would further 

enhance NO bioavailability in response to exercise/shear stress (70). 

 

Summary of review of literature 

The overall goal of my dissertation projects is to understand Gb3 accumulation on endothelial 

dysfunction and inflammation and to identify strategies for attenuating this progression in the 

setting of GLA deficiency. Although the vasculopathy is the basis for the life-threatening 

complications of Fabry disease, one of the early symptoms appearing in childhood is 

gastrointestinal involvement, which may be related to the deposition of Gb3 in the autonomic 

ganglia of the bowel and mesenteric blood vessels (39). However, the vascular phenotype in the 

mesenteric artery is unknown. Therefore, the objective of my first study is to characterize 

endothelial function of the mesenteric artery and to determine signaling alterations of eNOS in 

GLA deficient mice. Additionally, although ERT has been the standard care for Fabry disease, 

cerebral vascular events continue to occur in Fabry patients with advanced disease treated with 

long-term ERT (131, 168, 173). Endothelium-derived VWF plays a pivotal role in platelet 

adhesion and subsequent thrombus formation, supporting normal hemostasis and thrombosis (177). 

Previously, prothrombotic and proinflammatory profiles have been documented in Fabry disease 

(30, 48, 146, 162). However, less attention has been paid to the direct effect of GLA deficiency on 

the endothelium-derived coagulation factor, VWF. The second study of my dissertation projects, 

therefore, examines the effects of GLA disruption on VWF secretion and its association with eNOS 

dysregulation in in vitro models of Fabry disease. Finally, although exercise is known to improve 
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endothelial dysfunction in many conditions including diabetes, hypertension, and sedentary aging, 

the effects of exercise on endothelial dysfunction and inflammation in Fabry disease remain 

unclear. Thus, the third project uses a mouse model of Fabry disease to examine whether exercise 

improves endothelial dysfunction in the setting of eNOS uncoupling.  

The rationale for the proposed studies is that once it is known how GLA deficiency leads to 

vasculopathy, factors that affect endothelial dysfunction and inflammation can be manipulated 

either up or down pharmacologically and/or non-pharmacologically (exercise). Therefore, findings 

of the proposed research have important implications for the prevention and treatment of Fabry 

disease in addition to expanding our understanding in the fields of cardiovascular disease and 

vascular complications. 
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CHAPTER 3 

 

Endothelial nitric oxide synthase uncoupling and microvascular dysfunction in the 

mesentery of mice deficient in a α-Galactosidase A 

 

Abstract 

A defect in the gene for the lysosomal enzyme α-galactosidase A (GLA) results in 

globotriaosylceramide (Gb3) accumulation in Fabry disease and leads to premature death from  

cardiac and cerebrovascular events. However, gastrointestinal symptoms are often first observed 

during childhood in these patients and are not well understood. In this study, we demonstrate an 

age-dependent microvasculopathy of the mesenteric artery (MA) in a murine model of Fabry 

disease (Gla-knockout mice) resulting from dysregulation of the vascular homeostatic enzyme 

endothelial nitric oxide synthase (eNOS). The progressive accumulation of Gb3 in the MA was 

confirmed by thin-layer chromatographic analysis. A total absence of endothelium-dependent 

dilation was observed in MAs from mice at 8 mo of age, while suppression of ACh-mediated 

vasodilation was evident from 2 mo of age. Endothelium-independent dilation with sodium 

nitroprusside was normal compared with age-matched wild-type mice. The microvascular defect 

in MAs from Fabry mice was endothelium-dependent and associated with suppression of the active 

homodimer of eNOS. Phosphorylation of eNOS at the major activation site (Ser1179) was 

significantly downregulated, while phosphorylation at the major inhibitory site (Thr495) was 
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remarkably enhanced in MAs from aged Fabry mice. These profound alterations in eNOS 

bioavailability at 8 mo of age were observed in parallel with high levels of 3-nitrotyrosine, 

suggesting increased reactive oxygen species along with eNOS uncoupling in this vascular bed. 

Overall, the mesenteric microvessels in the setting of Fabry disease were observed to have an early 

and profound endothelial dysfunction associated with elevated reactive nitrogen species and 

decreased nitric oxide bioavailability. 

 

Introduction 

Fabry disease is an X-linked glycosphingolipid disorder caused by deficient or absent activity in 

the lysosomal enzyme, α-galactosidase A (Gla) (3, 13). The loss of Gla leads to the progressive 

accumulation of neutral glycosphingolipids with terminal Gal-α1-4Gal linkages, including 

globotriaosylceramide (Gb3), galabiosylceramide, and globotriaosylsphingosine. A primary site 

of glycosphingolipid accumulation is the vascular endothelium, although accumulation occurs in 

various other organ systems throughout the body (6, 24). Premature life-threatening complications 

arise from involvement of the brain, heart, and kidneys and include cerebrovascular accidents, 

myocardial infarction, and progressive renal insufficiency (7). Affected hemizygous males and 

female carriers suffer from Fabry-related complications (15, 26). 

The vascular complications of Gla deficiency have been the primary focus of clinical and 

mechanistic studies of this rare disease. However, the earliest and most common symptoms of 

Fabry disease are gastrointestinal and include abdominal pain, constipation, diarrhea, and nausea 

(7, 21). Because these symptoms are common, the diagnosis of Fabry disease is often delayed (21).  

Both clinical and experimental studies have focused on the hypothesis that endothelial dysfunction 

may underlie both the macrovascular and microvascular complications associated with Fabry 



46 
 

disease. The Gla knockout mouse can be used to characterize and study inducible models of 

vasculopathy. Robust vascular phenotypes in these mice have been reported, including accelerated 

atherogenesis and thrombus formation following photochemical injury (2, 5). In isolated aortic 

rings, Gb3 accumulation in endothelium is linked to a defect in endothelial nitric oxide (NO) 

mediated vasodilation (18). These and other findings are consistent with a Gb3 dependent loss of 

NO bioavailability as a common mechanism linking atherogenesis, thrombosis, and impaired 

vasorelaxation.  

The purpose of this study was to determine whether the vascular phenotype in the Gla knockout 

mouse extends beyond the aorta and carotid vasculature. Specifically, an age-dependent 

mesenteric artery phenotype was characterized in Gla null mice. Gla deficient mice were observed 

to have age-dependent Gb3 accumulation in their mesenteric arteries in conjunction with a 

profound loss of microvascular reactivity and increased endothelium nitric oxide synthase (eNOS) 

uncoupling.  

 

Methods 

Mice 

A breeding colony of Gla null mice was established from mice provided by Ashok Kulkarni at the 

NIH. The knockout mice (129/SvJXC57BL/6) were originally generated by replacement of α-

galactosidase A (Gla) gene with a neomycin resistance (neo) sequence within a portion of exon 3 

and intron 4 region (17). These mice were back-crossed a minimum of six generations to the 

C57BL6/J strain. The Gla null and wild-type (WT) C57BL/6 mice were maintained in University 

of Michigan animal facility under standard conditions. All animal experiments were performed 
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according to the protocol of the University of Michigan Committee on the Use and Care of 

Laboratory Animals. 

 

Vascular reactivity experiments 

Two to nine month old mice were euthanized with intraperitoneal pentobarbital (66.5 mg/kg). A 

segment of small intestine was removed and placed in a dissection Petri dish filled with cold 

physiological salt solution (mmol/L: NaCl 130, KCl 4.7, KHPO4 1.18, MgSO4 1.17, CaCl2 1.6, 

NaHCO3 14.9, dextrose 5.5, CaNa2 EDTA 0.03). The second order mesenteric arteries (2-3 mm in 

length) were carefully dissected and connective tissue surrounding the arteries was removed. The 

individual vessel segment was mounted on glass cannulas in a pressure myograph system (110P, 

Danish Myo Technology A/S, Aarhus, Denmark). The vessel diameter was monitored and 

analyzed digitally in real time (DMT Vessel Acqusition Suite 6.2, Danish Myo Technology A/S, 

Aarhus, Denmark). In studies to determine acetylcholine (Ach)-mediated relaxation without 

endothelium, the endothelium was denuded during the mounting procedure by exposing 

endothelial cells to an air bubble for 30 seconds. Mounted mesenteric arteries were bathed with 

warmed (37˚C) and aerated (95% O2 and 5% CO2) physiological salt solution. Mesenteric arteries 

were pressurized at 20 mmHg, and the pressure was increased 10 mmHg every 5 minutes until 

reaching 60 mmHg. The vessels were then equilibrated for 60 minutes. Prior to Ach- and sodium 

nitroprusside (SNP)-mediated vascular reactivity studies, the vessels were subjected to osmotically 

balanced high potassium-containing physiological salt solution (mmol/L: NaCl 14.7, KCl 100, 

KHPO4 1.18, MgSO4 1.17, CaCl2 1.6, NaHCO3 14.9, dextrose 5.5, CaNa2 EDTA 0.03) and various 

concentrations of norepinephrine (NE, 10-9 to 10-4 mol/L) with washes in between each contraction. 

Pre-constriction of the vessel was performed with NE (10-5 mol/L). Subsequently, Ach (10-9 to 10-



48 
 

4 mol/L) or SNP (10-8 to 10-3 mol/L) was added cumulatively to the bath to examine endothelium-

dependent (Ach) or endothelium-independent (SNP) relaxation. All chemicals used in the vascular 

reactivity study were purchased from Sigma Chemical Company (St. Louis, MO). 

 

Reagents  

Globotriaosylceramide (Gb3), was purchased from Matreya (Pleasant Gap, PA). Three 

phosphatase/protease inhibitors; P2714, P0044 and P5726, were obtained from Sigma-Aldrich (St. 

Louis, MO). Mouse anti-human eNOS monoclonal and mouse anti-human 3-nitrotyrosine 

monoclonal antibodies were purchased from Abcam (Cambridge, MA). Rabbit anti-human 

phospho-eNOS Thr495 polyclonal antibody was acquired from Cell Signaling Technology 

(Danvers, MA). Rabbit anti-bovine phospho-eNOS Ser1179 polyclonal antibody was from Life 

Technologies (Grand Island, NY). The ECL-plus system was from PerkinElmer Life Sciences 

(Waltham, MA).  

 

Tissue Lipid Extraction and Gb3 Analysis 

Frozen mesenteric artery (MA) tissues, dissected from WT and Gla null mice at ages between 1 

and 12 months, were thawed in 0.8 ml/sample of ice-cold sucrose buffer (250 mM sucrose, pH 7.4, 

10 mM Hepes and 1 mM EDTA) and homogenized with a Tri-R homogenizer at 10% output. Total 

and neutral lipid extraction, separation by high performance thin layer chromatography, and 

quantification were performed as previously described (24).  

 

Western blotting 
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For immunoblot analysis, frozen MA tissues were thawed in ice-cold lysate buffer formulated with 

25 mM Tris-HCl (pH 7.4), 137 mM NaCl, 2 mM EDTA, 2 mM Na3VO4, 20 mM NaF, 1% Triton 

X-100, 10% glycerol and 1X mixture of phosphatase/protease inhibitors composed of P2714, 

P0044, and P5726. Unfrozen samples were homogenized with a Tri-R homogenizer for 20 seconds 

at 5% output at 4°C, and then sonicated with a probe sonicator for 1 second 5 times at 50% output 

at 4°C. The cell debris was removed by centrifugation at 10,000 × g for 10 minutes at 4°C. 

Quantification of total protein in each MA sample was performed by using bicinchoninic acid 

assay with bovine serum albumin as a standard. To determine total eNOS expression in MA of 

wild type and Gla null mice, 40 µg of MA lysate protein, either denatured with 1% 2-

mercaptoethanol or non-denatured, were separated by SDS-PAGE using a 6-12% gradient. 

Monomeric and homodimeric eNOS in WT and Gla null mouse MA were detected with a mouse 

anti-human eNOS monoclonal antibody at a concentration of 0.5 µg/ml. MA samples for 

determination of protein-bound 3-nitrotyrosine levels were dissected from WT and Fabry mouse 

in antioxidant buffer containing 100 μM diethylene tetraamino pentaacetic acid, 50 μM butylated 

hydroxytoluene, 10 μL/mL protease inhibitor (Pierce, Rockford, IL). Expression of 3-nitrotyrosine 

in MA samples were evaluated using a mouse anti-human 3-nitrotyrosine antibody (0.4 µg/ml) 

diluted in blotting buffer (TBS) consisting of 20 mM Tris-HCl (pH, 7.6), 150 mM NaCl and 2.5% 

fat-free dry milk. Primary antibodies against human p-eNOS Thr495 (0.5 µg/ml) and bovine p-

eNOS Ser1179 (1.0 µg/ml) residues were selected to measure phosphorylation of eNOS in wild 

type and Gla null mouse MA. Both antibodies were diluted in 1% milk-TBS. Based on amino acid 

sequence homology, all of the eNOS specific antibodies cross-react with indicated proteins in 

mouse MA. The immunoreactive bands were stained with the ECL-plus system and quantified by 

densitometric scanning using ImageJ software. 
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Statistical analysis 

GraphPad Prism software was used for statistical analysis. The data are presented as mean ± 

standard error of the mean. Results were analyzed using unpaired t-test for comparison of two 

groups. For multiple comparisons, data were analyzed using two-way ANOVA, followed by 

Bonferroni post-hoc analysis. Statistical significance was set at p<0.05. 

 

Results 

Age-dependent Gb3 accumulation in the mesenteric arteries of Gla null mice. 

MAs from 2 and 9 month old wild type mice on a C57BL/6 background had no detectable Gb3. 

However, in Gla-deficient mouse MA, Gb3 levels were readily detected at 2 months of age and 

were markedly elevated in the 9 month old MA (Figure 3 - 1A). The Gb3 levels from 9 month old 

Gla null mouse MAs were 5 fold higher than that observed in 2 month old knockout MA (Figure 

3 - 1B) and continued to increase through 12 months of age (Figure 3 - 1C). These data indicate 

that the Gb3 accumulation in the Gla null mouse MAs is progressive as a function of age.  

 

Acetylcholine (Ach) mediated relaxation in endothelium-intact mesenteric arteries 

The endothelium-dependent relaxation to Ach was examined in isolated MAs from wild type and 

Gla null mice that were pre-contracted with norepinephrine (NE) (10-5 mol/L). The MAs from 2 

month-old Gla knockout mice dilated significantly less (15.9 ± 5.8%, p<0.001) when compared to 

vessels from age matched wild type mice (53.4 ± 9.2%) in response to the highest dose of Ach (10-

4 mol/L) (Figure 3 - 2A). The MAs from 8 month-old wild type mice relaxed in a concentration-
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dependent manner following exposure to Ach. In the wild type MAs the relaxation to the highest 

concentration of Ach (59.2 ± 5.6%) was comparable to that observed in the 2 month old mice. By 

contrast, the vessels from age-matched Gla null mice were nearly devoid of Ach-mediated 

dilatation (1.5 ± 5.8%, p<0.001) (Figure 3 - 2B). 

 

Sodium nitroprusside (SNP) -mediated relaxation in endothelium intact mesenteric arteries. 

The difference in Ach dependent relaxation could be secondary to a functional defect in either the 

endothelium or smooth muscle cells. To determine whether the responsiveness of the smooth 

muscle layer to nitric oxide is different between the wild type and Gla null vessels, sodium 

nitroprusside (SNP), a nitric oxide donor, was added at increasing concentrations. SNP induced an 

endothelium-independent vasodilatation in both wild type and knockout MAs. In 2 month old 

arteries, the maximum relaxation to SNP in wild type mouse MA (78.2 ± 2.2%) was not 

statistically different from Gla null mouse MA (84.2 ± 5.4%) (Figure 3 - 3A). The maximum 

relaxation observed in 8 month old MA was also no different between wild type (80.5 ± 5.0%) and 

Gla null (69.6 ± 4.3%) mice. However, the observed SNP responsiveness in vessels from the 8 

month old mice revealed a greater sensitivity at lower concentrations of SNP (10-7 to 10-6 mol/L) 

in wild type compared to null background  (Figure 3 - 3B).  

 

Acetylcholine- and sodium nitroprusside- mediated dilation in endothelium-denuded mesenteric 

arteries. 

It was next determined whether the attenuation in Ach-mediated relaxation observed in the Gla 

null mice was endothelium-dependent. The endothelium of the MA vessels was removed before 
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determining the Ach and SNP dose responses. As expected, denuding the MA endothelium 

inhibited any measurable vasodilatation in response to Ach in vessels from either wild type or Gla 

null mice (Figure 3 - 4A). SNP induced a concentration-dependent vasodilatation in both groups, 

and the maximum relaxation did not differ between wild type (75.9 ± 3.2%) and null (74.4 ± 5.7%) 

mice (Figure 3 - 4B). 

 

Decreased eNOS homodimers and monomers in the mesenteric arteries from Gla null mice.  

The basis for the decrease in NO bioavailability was next evaluated. The dimerization of eNOS is 

required for catalytic activity and NO production (28). Two forms of eNOS, monomers and 

homodimers, can be measured by polyacrylamide gel electrophoresis under reducing or non-

reducing conditions. A decrease in both eNOS dimers and monomers was observed in the null 

MAs compared to the wild type MAs from 8 month old mice (Figure 3 - 5A). This difference was 

confirmed with repeated measurements (Figure 3 - 5B). The observed 53% decrease in homodimer 

expression from the knockout mouse MA compared to wild type MA (eNOS to actin ratios of 1.39 

± 0.08 versus 0.66 ± 0.12 in wild type versus Gla knockout) was statistically significant. 

 

Serine1179 and threonine495 phosphorylation in the mesenteric arteries 

eNOS phosphorylation at Ser-1179 in MA was evaluated with an anti-bovine Ser-1179 antibody 

reacting crossly with mouse eNOS phospho-Ser-1179. Phosphorylation of eNOS-Ser-1179 was 

not observed in wild type or null MA extracts from 2 month old mice. However, phospho-Ser-

1179 was readily observed in 8 month old wild type and Gla knockout mouse MA (Figure 3 - 6A). 

A modest decrement in phospho-Ser-1179 was observed in the Gla null compared to the wild type 
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MAs (-21 ± 0.67%, p=0.0343) consistent with the down-regulation of eNOS activity (Figure 3 - 

6B). In contrast to this modest difference, the phosphorylation of eNOS at Thr-495 was markedly 

enhanced in aged Gla null MA (Figure 3 - 7A). A 16 fold increase in eNOS phosho-Thr-495 was 

observed in 8 month old Gla null MA compared to wild type MA. The marked increase in Thr-

495 phosphorylation is consistent with a suppression of eNOS activity (Figure 3 - 7B).  

 

Increased reactive nitrogen species in the mesenteric artery from Gla null mice 

Protein modification by nitration of tyrosine to 3-nitrotyrosine has been correlated with elevated 

oxidative stress and is specifically formed in the setting of eNOS uncoupling. The levels of protein-

bound 3-nitrotyrosine in both wild type and Gla null mouse MAs were measured using a specific 

antibody for protein-bound 3-nitrotyrosine. 3-Nitrotyrosine levels increased in both mouse lines 

as a function of age (Figure 3 - 8A). However, protein-bound 3-nitrotyrosine content was 

significantly higher (~4 fold) in Gla null MAs compared to wild type MAs at each age studied 

(Figure 3 - 8B). These findings suggest that the Gla null phenotype not only results in lower NO 

formation but also induces eNOS uncoupling and increased reactive nitrogen species formation in 

MAs. 

 

Discussion 

Consistent with previous findings in other vascular beds (5, 23), we observed an age-dependent 

accumulation of Gb3 in the mesenteric arteries of Gla null but not wild type mice. We also 

measured a significant reduction in the vasodilatory capacity of MA in Gla deficient mice. These 

data suggest that the endothelial dysfunction associated with Gb3 accumulation is widespread 
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within the vasculature and includes the gastrointestinal microvessels. Similar to the previous 

findings in aortic rings (18), an age- and endothelial cell-dependent dysfunction in the MA of Gla 

null mice was observed as manifest by a loss of acetylcholine stimulated vasodilation. The ability 

of sodium nitroprusside to restore the vasodilation was consistent with a primary defect in nitric 

oxide bioavailability. However, despite the profound nature of this defect, no spontaneous GI 

phenotype was observed in Gla null mice of any age. Surprisingly, the age of onset of the MA 

abnormality was earlier, and the magnitude of the endothelial dysfunction appeared greater 

compared to previously studied macrovessels that included the aorta and carotid arteries. 

eNOS dysfunction may result from either a decrease in nitric oxide bioavailability or uncoupling 

resulting in the formation of reactive nitrogen species. The active and functional form of eNOS is 

a dimer (20). We therefore measured the dimerization and expression of eNOS in the MA in Gla 

deficient and WT mice. In the older mice, both total eNOS expression and eNOS dimerization 

were decreased significantly, suggesting that uncoupling of eNOS in the mesenteric artery may, in 

part, contribute to the endothelial dysfunction. However, the measurement of eNOS monomers 

was also lower in Gla deficient mice and no difference in the eNOS monomer to homodimer ratio 

was evident between WT and Gla deficient mice at 2 or 8 months of age. In previous studies 

examining the effect of age on endothelial function in C57BL/6J mice, a significant increase in the 

eNOS monomer to dimer ratio in 24 months versus 3 months old mesenteric arteries was observed 

with no significant difference in total eNOS protein levels (27).  Therefore, the observed reduction 

in eNOS protein and monomers in Gla deficient mice does not appear to represent a simple 

acceleration of normal age-related changes.  Rather, the observed changes likely represent a 

specific consequence of Gla-deficiency such as the accumulation of endothelial cell globo series 

glycosphingolipids. 
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Nitric oxide production can lead to the formation of peroxynitrite (ONOO-) in the setting of 

increased superoxide generation (9). Peroxynitrite is both an oxidant and nitrative agent that has 

been shown to induce cellular dysfunction and apoptosis (20). Possibly, the increased levels of this 

oxidant during sustained periods of oxidative stress or resulting from eNOS uncoupling caused a 

decrease in the expression of functional eNOS. To explore the possibility that some of the observed 

abnormalities were peroxynitrite mediated, the levels of 3-nitrotyrosine, an NO-dependent 

nitrosative stress marker in the MA was measured. 3-Nitrotyrosine was significantly elevated in 

the mesenteric artery from Gla knockout mice at 2 months of age, and the levels of 3-nitrotyrosine 

were further elevated in the older Gla null mice, consistent with the early onset and a progressive 

increase in eNOS uncoupling in the Fabry mesenteric arteries.  

To further characterize the altered eNOS regulation in Gla-deficient mice, post-transcriptional 

modifications to the eNOS protein were also evaluated.  The phosphorylation of eNOS at the Ser-

1179 and Thr-495 residues was studied. In general, phosphorylated Ser-1179 activates eNOS, and 

phosphorylated Thr-495 inhibits eNOS catalytic activity (1, 25), and at least four protein kinases, 

Akt, PKA, PKC, and AMPK, are known to target eNOS (16). Phosphorylation or 

dephosphorylation of Ser-1179 and Thr-495 potentially could be regulated reciprocally or 

independently by those kinases. PKC signaling is reported to result in the simultaneous 

phosphorylation and dephosphorylation of eNOS Ser-1179 and Thr-495 respectively (16). In 

addition, the phosphorylation state of Thr-495 is inversely associated with eNOS activation and 

NO production (8, 11, 16). Previous studies examining the function of mutant Thr-495 and Ser-

1179 cells have suggested that the ratio of phosphorylated to dephosphorylated Thr-495 may act 

as an intrinsic switch for determining whether eNOS generates nitric oxide or superoxide anion 
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(14). Therefore, we measured phosphorylation of eNOS at Thr-495 in the mesenteric artery to 

evaluate whether this site may be specifically altered in Gla null mice.  

Compared to age-matched WT mice, eNOS phosphorylation of Thr-495 was highly increased in 

Gla deficient mice in the older group, suggesting that phosphorylated Thr-495 may promote eNOS 

dysregulation in older Gla null mice. Although we did not observe elevated phosphorylation of 

Thr-495 at 2 months of age, we did observe evidence of elevated 3-nitrotyrosine at this younger 

age. These data are consistent with the interpretation that the modest early onset phenotype of 

endothelial dysfunction is linked to nitric oxide uncoupling through a mechanism that is 

independent of Thr-495 phosphorylation.  It is possible, therefore, that the more profound 

endothelial dysfunction present at 8 months is the result of the additional activation of the 

inhibitory eNOS Thr-495 site. 

In addition to alterations in nitric oxide, EDHF is also an Ach-mediated and endothelium produced 

factor, and we cannot rule out the possibility of an EDHF defect in the setting of Gla deficiency. 

A recent study reported that Gb3 incubation of mouse aortae partially inhibited Ach-mediated 

dilatation (19). In this paper, a significant decrease in KCa
2+ channel current, mRNA and protein 

expression was observed in both mouse aortic endothelial cells from Gla knockout mice and WT 

mouse aortic endothelial cells treated with Gb3.  This study provided evidence that Gb3 

accumulation may contribute to vasculopathy through direct effects on intermediate-conductance 

KCa
2+ channel activity (19).   

A growing body of evidence also suggests that the contribution of EDHF is at least as important 

as NO in terms of endothelium-dependent vascular relaxation in the microvasculature (4, 22). One 

could propose that a decrease in EDHF through KCa
2+ channel blockade may contribute to the 

earlier onset and profound endothelial dysfunction observed in the MA in the present study. In 
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addition, pharmacologic blockade of the small and intermediate KCa
2+ channels has been 

demonstrated to increase superoxide formation and enhance phospho-eNOS at Thr-495 without 

changes in the total eNOS protein levels (10). Thus, Gb3 accumulation may lead to an endothelial 

plasma membrane defect, which results in impaired or altered signaling of multiple endothelium-

dependent relaxing factors including NO and EDHF. Further studies designed to identify the 

underlying molecular mechanisms responsible for the microvascular phenotype in this mouse 

model of Fabry disease will be necessary. 
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Figures 

A 

 
B 

 
C 

 
 

Figure 3 - 1. Age-dependent accumulation of Gb3 in the mesenteric arteries of WT and 
Gla knockout mice 

Neutral glycosphingolipids were extracted and purified from MAs of 2 and 9 month old WT and 
Gla null mice. The neutral lipids, normalized to 50 nmol of total lipid phosphate, were spotted 
on high performance thin layer chromatography plates, and the bands were visualized by 
charring with 8 % cupric acetate in 8 % phosphoric acid solution. A. Representative separation 
of MA extracts from three separate mice per group. B. The combined densitometric analyses of 
the Gb3 levels from all mice. The data are pooled from three individual experiments with three 
mice per group (n=9 per group). C. Deposition of Gb3 in Fabry mouse MAs progressively 
accumulated from 1 to 12 months of age. Following lipid extraction, each sample containing 40 
nmol of total phospholipid phosphate was spotted onto a high performance thin layer 
chromatography plate. Each data point represents age (months) and average of triplicate samples 
(n=3). Abbreviations include: Gb3, globotriaosylceramide; SM, sphingomyelin; and Std, 
internal standard. P < 0.0001. 

 



59 
 

A 

 
B 

 
 

Figure 3 - 2. Acetylcholine (Ach)-mediated endothelium-dependent vasodilatation in the 
mesenteric arteries from WT and Gla knockout mice 

All vessels (n=4 per group) were pre-contracted with 10-5 M of NE. A. Percent relaxation in 
endothelium-intact mesenteric artery from 2 month old mice. B. Percent relaxation in 
endothelium-intact mesenteric artery from 8 month old mice. The data are expressed as the 
percentage of changes in lumen diameter relative to baseline. ** = p<0.01, and *** = p<0.001 
compared to WT mice by two-way ANOVA followed by Bonferroni post-hoc analysis. 

  



60 
 

A 

 
B 

 
 

Figure 3 - 3. Sodium nitroprusside (SNP)-mediated, endothelium-independent 
vasodilatation in the mesenteric arteries from WT and Gla knockout mice 

All vessels (n=4 per group) were pre-contracted with 10-5 M of NE. A. Percent relaxation to 
SNP in endothelium-intact mesenteric arteries from 2 month old mice. B. Percent relaxation to 
SNP in endothelium-intact mesenteric arteries from 8 month old mice.  The data are expressed 
as the percent change in lumen diameter relative to baseline. * = p<0.05, and *** = p<0.001 
compared to WT artery by two-way ANOVA followed by Bonferroni post-hoc analysis. 
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Figure 3 - 4. Acetylcholine (Ach)- and sodium nitroprusside (SNP)-mediated vasodilatation 
in endothelium-denuded mesenteric arteries from WT and Gla knockout mice 

All vessels (n=4 per group) were pre-contracted with 10-5 M of NE. A. Relaxation response as 
a function of Ach concentration in endothelium-denuded mesenteric arteries from 8 month old 
mice. B. Relaxation response as a function of SNP concentration in endothelium-denuded 
mesenteric arteries from 8 month old mice.  The data are expressed as the percentage change in 
lumen diameter relative to baseline. ** = p<0.01 compared to WT by two-way ANOVA 
followed by Bonferroni post-hoc analysis. 
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Figure 3 - 5. eNOS levels in the mesenteric arteries of 8 month old WT and Gla null mice 

Mouse MA lysates equivalent to 50 µg of total lysate protein were analyzed by Western blot 
using a mouse anti-human eNOS antibody as an immuno-probe. A. A representative 
immunoblot for comparison of eNOS expression in the MAs of wild type (WT) and Gla 
knockout (KO) mice at 8 months of age (upper panel). The eNOS homodimer was only detected 
under non-reducing condition (lanes 1 and 2). Monomeric eNOS was probed under denaturing 
conditions using 1% 2-mercaptoethanol (lanes 3 and 4). β-actin was also probed an internal 
loading control (lower panel). B. Quantification of the MA monomeric and dimeric eNOS from 
8 month old WT and Gla null mice (n = 3 per group). The densitometric values represent the 
mean ± SE. P < 0.05. 
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Figure 3 - 6. eNOS Ser-1179 phosphorylation in mesenteric arteries of 8 month old mice 

Total MA lysates equal to 80 µg of total lysate protein were subjected to a gradient SDS-PAGE 
(6-12%) separation and immunoblotting. The phosphorylation of eNOS Ser-1179 in WT and 
Gla null mouse MA was determined with a rabbit anti-bovine eNOS-S1179 antibody under non-
reducing conditions. A. Western blots from two sets of MAs dissected from WT and Gla null 
mice at the indicated ages (upper panel). β-actin was served as a loading control (lower panel). 
B. The combined densitometric data from four groups with 3 mice per group. The data were 
expressed as the mean ± SE. P < 0.05. 
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Figure 3 - 7. eNOS Thr-495 phosphorylation in the mesenteric arteries of WT and Gla 
knockout mice 

A total of 60 μg lysate protein from each sample was used for immunoblotting of eNOS Thr-495 
phosphorylation was measured under non-reducing conditions. A. A representative Western blot 
of phospho- Thr-495 (upper panel). β-actin was immunoblotted as an internal loading control 
(lower panel). B. Quantification of the immuno-signals of eNOS Thr-495 was performed by 
using ImageJ software. In the plotted graphic, each point represents the average value of three 
independent experiments. Data were shown as mean ± S.E. p < 0.0001. 
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Figure 3 - 8. Expression of protein-bound 3-nitrotyrosine in the mesenteric arteries of WT 
and Gla null mice 

A. Fifty µg of Triton X-100 soluble MA lysate protein was immunoblotted using a protein-
bound nitrotyrosine specific monoclonal antibody. Reducing conditions with 1% 2-
mercaptoethanol were employed. B. Densitometric comparison of WT and Gla null protein-
bound 3-nitrotyrosine levels in the MAs in 2 and 8 month old mice. In the plotted graphic, each 
point represents the average value of three independent experiments. The data represent the 
mean ± SE. p < 0.001. 
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CHAPTER 4 

 

GLA deficiency promotes endothelial nitric oxide synthase dysregulation and robust VWF 

secretion from endothelial cells 

 

Abstract 

Fabry disease is caused by loss of activity of the lysosomal enzyme α-galactosidase A (GLA), 

leading to the accumulation of globo-series glycosphingolipids in vascular endothelial cells. 

However, the mechanism of the vasculopathy remains unclear. In this study the relationship 

between GLA deficiency and endothelial cell von Willebrand factor (VWF) secretion was 

explored. Plasma VWF was significantly higher at two months and further elevated with age in 

Gla-null compared to wild-type mice. The disruption of GLA by siRNA and CRISPR/Cas9 

resulted in a three and five fold increase in VWF secretion, respectively, in EA.hy926 human 

endothelial cells. Decreased endothelial nitric oxide synthase (eNOS) activity was associated with 

the elevated VWF levels in both in vitro models of Fabry disease. Pharmacological approaches 

that increase NO bioavailability or decreasing reactive oxygen species completely normalized the 

elevated VWF secretion in GLA deficient cells. However, the abnormality was not readily reversed 

by recombinant human GLA or by the inhibition of glycosphingolipid synthesis with eliglustat. 

This study suggests that GLA deficiency may promote robust VWF secretion through eNOS 

dysregulation.   
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Introduction 

Fabry disease is a rare and often devastating lysosomal disorder caused by mutations in the α-

galactosidase A (GLA) gene resulting in a partial or complete absence of GLA activity (9). Fabry 

disease is X-linked, but heterozygous females may also develop clinically significant 

cardiovascular disease (28, 58). The deficiency in GLA causes a progressive deposition of one of 

its substrates, globotriaosylceramide (Gb3), primarily in vascular endothelial and smooth muscle 

cells (14, 44). Increased plasma levels of deacylated Gb3 (lyso-Gb3) are also present (1). The 

manifestations of Fabry disease occurring in childhood tend to be less severe and include 

angiokeratomas, neuropathic pain, hypohidrosis, and gastrointestinal symptoms (43). However, 

adult Fabry patients may develop life-threatening complications including stroke and renal failure 

(18).  

Thrombotic events have been reported in Fabry patients (50, 52). In addition, accelerated clot 

formation is observed in studies of experimentally induced models of thrombosis in Gla knockout 

mice (13, 45). Although enzyme replacement therapy (ERT) has been shown to reduce stored Gb3, 

evidence from clinical studies suggest that cerebral vascular events continue to occur in Fabry 

patients with advanced disease treated with long-term ERT (2, 40, 57, 59). Endothelial cells are 

among the most affected cell type in Fabry disease (12), in part secondary to decreased nitric oxide 

(NO) bioavailability and endothelial nitric oxide synthase (eNOS) uncoupling as noted in Study 1. 

Thus, factors regulating interactions of platelets and leukocytes at the endothelial level may be 

affected in the setting of GLA deficiency. von Willebrand factor (VWF), stored in Weibel-Palade 

bodies (WPB) of endothelial cells, is a large adhesive glycoprotein that plays a pivotal role in 

platelet adhesion and subsequent thrombus formation, supporting normal hemostasis and 



71 
 

thrombosis (61). High levels of VWF are predictive of an increased risk of thrombotic 

cardiovascular diseases, including stroke and coronary heart disease (33, 53, 55). Although a 

prothrombotic profile and increased production of reactive oxygen species (ROS) have been 

documented in Fabry disease (10, 17, 44, 54), less attention has been paid to the direct effect of 

GLA deficiency on the endothelium-derived coagulation factor, VWF.  

The purpose of this study was to examine the effects of GLA disruption on VWF secretion and its 

mechanistic link with NO bioavailability in endothelial cells. In addition, the in vitro endothelial 

cell model of GLA deficiency was exploited to evaluate the influence of treatment modalities to 

suppress the enhanced VWF secretion present in endothelial cells with GLA deficiency.   

 

Methods 

Mice 

C57BL6/J mice were obtained from the Jackson Laboratory (Bar Harbor, ME). Gla null mice 

(129/SvJXC57BL/6) used in this study were bred from mice originally developed and provided by 

Drs. Ashok Kulkarni and Roscoe Brady (National Institutes of Health, Bethesda, MD) by 

replacement of α-galactosidase A (Gla) gene with a neomycin resistance sequence within a portion 

of the exon 3 and intron 4 region (37). These mice were back-crossed a minimum of six generations 

to the C57BL6/J strain. All mice were maintained in University of Michigan animal facility under 

standard specific pathogen-free conditions. All animal experiments were conducted according to 

the protocol of the Institutional Animal Care and Use Committee of the University of Michigan. 

 

Small Interfering RNA (siRNA) Silencing 
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The EA.hy926 human endothelial cell line (#CRL-2922) was purchased from ATCC (Manassas, 

VA). The cells were maintained in complete growth medium consisting of Dulbecco’s Modified 

Eagle Medium/F12, GlutaMAX (#ILT10565018, Life Technologies, Grand Island, NY), 10% fetal 

bovine serum, 100U/ml penicillin, and 100 µg/ml streptomycin. Anti-human siRNA 

oligonucleotides were purchased from AMS biotechnology (GLA: #SR301812; SCR: #SR30004, 

Cambridge, MA). Stock concentrations of the siRNAs were made at 20 µM in RNase-free 

reconstitution buffer consisting of 100mM potassium acetate and 30 mM HEPES (pH 7.5). 

Reconstituted siRNAs were heated at 94 ˚C for 2 min, and then cooled down to room temperature 

before storage at -20 ̊ C. Transfection was performed as described before with minor modifications 

(49). Briefly, approximately 9 x 105 cells were seeded in 100 mm petri dishes one day before the 

transfection. The transfection mixture was prepared immediately before addition. Forty microliter 

of Lipofectamine RNAiMAX (#13778, Life Technologies) was diluted into 1 mL of Opti-MEM-

I. The siRNA duplex, prepared in 1 mL of Opti-MEM-I, was added to diluted RNAiMAX reagent 

at 1:1 ratio and incubated at room temperature for 20 min to form the siRNA/transfection reagent 

complex. The culture medium was washed with 6 mL of Opti-MEM-I and replaced with 6 mL of 

Opti-MEM-I without serum and antibiotics. Two milliliter of the siRNA/transfection reagent 

complex with the siRNA duplex at a final concentration of 10 nM was then gently added into the 

cell culture dish. After 8 hours, the media was replaced with 10 mL of DMEM/F-12, GlutaMAX 

media containing 2% FBS without antibiotics. Two days after the first transfection, the cells were 

transfected again as described above. Transfected cells were harvested for the biotin switch assay 

and immunoblotting analyses 3 days after the second transfection. Cell culture supernatants were 

collected and spun down at 365 x g for 5 min to remove any cell debris. The samples were frozen 
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in liquid nitrogen and stored in -80 ˚C until analyzed. All the experiments were performed in cells 

at passage 3 or 4.   

 

CRISPR/Cas9 plasmid generation and delivery 

Single-stranded guide RNA was designed to target Exon 1 of GLA. Forward and reverse single-

stranded oligonucleotides were annealed to generate a double-stranded oligonucleotide. The 

oligonucleotide was cloned into the GeneArt CRISPR nuclease vector (Thermo Fisher Scientific, 

Waltham, MA), which expresses the orange florescence protein (OFP) reporter. The vector was 

transformed into One Shot TOP10 E. coli cells (Thermo Fisher Scientific, Waltham, MA). Bacteria 

were grown on LB agar plates with ampicillin and incubated at 37 °C overnight. Clones were 

selected and grown in LB broth overnight. Plasmids were purified and sequenced with the U6 

forward primer to verify the presence and proper orientation of double-stranded oligonucleotide. 

EA.hy926 cells were plated at 600,000 cells per well on 6 well dishes. The following day, the cells 

were transfected with 2 µg of CRISPR plasmid DNA using Lipofectamine 3000 (Thermo Fisher 

Scientific, Waltham, MA). Cells were grown in DMEM-F12 GlutaMAX supplemented with 10% 

FBS and FACS sorted 24 hours after transfection. OFP positive cells were collected and plated 

onto 150 mm dishes at low density in normal growth conditions. Cells were allowed to grow for 

several days, and then cloning cylinders were used to isolate individual colonies. Colonies were 

expanded and DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen, Germantown, 

MD). To detect mutations, the region around the CRISPR-targeted region was PCR amplified and 

the surveyor nuclease assay (Integrated DNA Technologies, Coralville, IA) was performed 

according to the manufacturer’s instructions. From 19 colonies isolated, 14 had a mutation in the 

CRISPR-targeted region. Western blot confirmed the absence of GLA expression in 4 of these 
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colonies. One of the GLA-negative cell lines was used for assays in this study. One wild type 

colony that was negative for a mutation in the surveyor assay was used as a wild type control in 

all assays.  

The primers used were: CRISPR guide RNA primers: forward 5’-GCT AGC TGG CGA ATC 

CCA TG (GTTTT)-3’, reverse 5’-CAT GGG ATT CGC CAG CTA GC (CGGTG)-3’; PCR 

primers: forward 5’-GCC CCT GAG GTT AAT CTT AAA AGC C-3’, reverse: 5’-AGC TCT 

CCC TCG GGC TCA ACT GTT C-3’. Parentheses denote the sequence complementary to the 3’ 

overhang sequence in the CRISPR nuclease vector. 

 

VWF antigen measurement  

Mouse plasma was withdrawn from wild type and GLA null mice at various ages via the retro-

orbital sinus using heparinized capillary tubes (#22362566, Fisher Scientific, Pittsburgh, PA). 

Blood was centrifuged at 2,000 x g for 10 min at room temperature to obtain platelet-poor plasma. 

The plasma was recovered, immediately frozen in liquid nitrogen, and stored at -80 °C for VWF 

analysis. CRISPR cells or EA.hy926 cells transfected with control (siSCR) or GLA (siGLA) were 

incubated in DMEM/F-12, GlutaMAX media containing 2% FBS for 3 days. Cell culture 

supernatants were collected and centrifuged at 365 x g for 5 min at room temperature to remove 

cell debris. These supernatants were concentrated using Amicon ultrafiltration units (#UFC903096, 

Sigma, St. Louis, MO) with 30 kDa molecular weight cutoff membranes at 3,000 x g for 15 

minutes. The samples were recovered, immediately frozen in liquid nitrogen, and stored at -80 °C 

for analysis of VWF. VWF antigen levels in the plasma and cell culture supernatants were 

determined using either a custom AlphaLISA (Perkin-Elmer) assay or enzyme-linked 

immunosorbent assay (ELISA) as described previously (11, 63). Briefly, polyclonal anti-human 



75 
 

VWF antibody (#A0082, DAKO, Glostrup, Denmark) was biotinylated using an NHS activated 

biotynylating reagent (Solulink, San Diego, CA). In addition, another set of antibody was 

conjugated to Alphalisa acceptor beads with sodium cyanoborohydride (Sigma, St Louis, MO). 

Plasma from WT and GLA null mice were thawed in 37°C water bath and diluted 1:160 in 

phosphate buffered saline pH 7.4. Twenty µL of each sample was plated in wells with 16 µL assay 

buffer containing biotinylated VWF antibody (0.5 nM) and VWF antibody-conjugated Alphalisa 

acceptor beads (10 µg/mL). After incubating for 60 minutes at room temperature, 24 µL of 

streptavidin coated donor beads (40 µg/mL) in assay buffer was added and incubated for an 

additional 30 minutes. The alpha signals were generated and detected on an EnSpire 2300 

Multilabel Plate Reader (Perkin Elmer). VWF levels in the plasma were calculated using a dilution 

series of pooled platelet-poor plasma from 10 C57BL/6J mice as a reference (100%). For ELISA, 

U-shaped bottom Maxisorp 96-well plates (#449824, Nunc) were coated with 50 µL/well of rabbit-

anti VWF (A0082, DAKO) in 50mM bicarbonate/carbonate buffer (1:500 at pH 9.8) at 4°C 

overnight. Next, the plates were washed 3 times with Tris-buffered saline containing 0.05% tween-

20 (TBST) and blocked with 300µL/well of 5% BSA in TBST at room temperature. After washing, 

50 µL of the analytes were added into the coated/blocked plates and incubated overnight at 4°C. 

After washing with TBST, the analytes were probed with horse radish peroxidase-conjugated 

VWF antibodies (1:4000 in 5% BSA in TBST) for 2 hours, followed by washes with TBST. Wells 

were developed (50 µL/well) with 3,3’,5,5’-Tetramethylbenzidine Stabilized Chromogen solution 

(#SB02, ThermoFisher, Waltham, MA) to detect HRP activity. The reaction was stopped by 

adding 2M sulfuric acid (50µL/well). The absorbance of each well was measured at 450nm. VWF 

levels in the cell culture supernatants were calculated using a dilution series of pooled normal 

plasma with known VWF antigen levels (FACT, George King Bioscience) as standards. Results, 
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which were normalized for the number of cells in each sample, were expressed as fold changes 

with respect to siSCR or CR-WT control condition. 

 

GLA Enzyme Activity Assay 

The enzyme activity was measured as described previously with minor modification (3). CRISPR 

cells were trypsinized, and cell pellet was obtained by centrifugation at 365 x g for 5 min. Pelleted 

cells were washed twice with cold PBS and homogenized in lysis buffer consisting 3 mg/mL of 

sodium taurocholate, 28 mM citric acid, and 44 mM Na2HPO4. The homogenates were sonicated 

for 3 min on ice (9 periods of 10 sec each with intervals of 10 sec in between), and centrifuged at 

20,000 x g for 30 min at 4°C to remove cell debris. Total protein level in each sample was 

quantified using bicinchoninic acid assay with bovine serum albumin as a standard. Three µg of 

protein in 20 µL of lysis buffer was added to 80 µL of assay buffer (5 mM p-Nitrophenyl α-D-

galactopyranoside (PNPαGal), 28 mM citric acid, 44 mM Na2HPO4, and 5 mg/mL BSA with 117 

mM N-acetyl-D-galactosamine) in a 96-well plate. N-acetyl-D-galactosamine was used as an 

inhibitor for α-N-acetylgalactosaminidase, another lysosomal enzyme that hydrolyses the 

PNPαGal substrate (32). GLA activity in the cell lysates were calculated using a dilution series of 

α-galactosidase (#G8507, Sigma) as a reference, which hydrolyzes 1.0 µmol of PNPαGal to p-

nitrophenol and D-galactose per minute. The assay plate was incubated at 37°C for 1 hr. Stop 

solution (100 µL of 200 mM Na2CO3) was then added and fluorescence was read on a plate reader 

(SpectraMax 250, Molecular devices, Sunnyvale, CA, USA) at 400 nm. 

 

eNOS activity measurements 
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Activity of endothelial nitric oxide synthase (eNOS) in EA.hy926 cell lysates was analyzed by 

using a NOS activity assay kit (#781001, Cayman Chemical, Ann Arbor, MI) according to the 

manufacturer’s instructions. This assay measures the biochemical conversion of L-arginine to L-

citrulline by NOS. Cells were harvested with 0.05% trypsin-EDTA and washed twice with PBS. 

Cell pellets were lysed in the provided homogenization buffer (final concentration 1 mM EDTA 

and 1 mM EGTA in 25 mM Tris-HCl (pH 7.4) buffer). After brief sonication, the samples were 

centrifuged at 21,130 x g for 5 minutes, and the supernatants transferred to new tubes. Cell lysates 

(5 µL) were incubated at room temperature for 3 hours with 1 µCi 3[H]arginine (PerkinElmer), 

100 nM calmodulin, and the provided reaction buffer (final concentration 1 mM NADPH, 600 µM 

CaCl2, 25 mM Tris-HCl (pH 7.4), 3 µM tetrahydrobiopterin, 1 µM flavin adenine dinucleotide, 

and 1 µM flavin adenine mononucleotide in 50 µL). The reaction was stopped by adding 400 µL 

of 5 mM EDTA in 50 mM HEPES (pH 5.5) buffer.  The provided kit resin was added to each 

sample to remove 3[H]arginine. Radioactivity due to 3[H]Citrulline radioactivity was measured as 

counts per minute (cpm) using a scintillation counter. NOS activity of each sample was calculated 

by subtracting background cpm from the cpm for each sample, and then normalizing to total 

protein in each 5 µL sample, determined by the bicinchoninic acid protein assay. 

 

Cell treatments 

One day before the second transfection, siRNA-transfected cells were incubated with vehicle (10 

mM HEPES) or DETA-NONOate (50µM, #82120 Cayman, Ann Arbor, MI). The following day, 

the cells were treated with either vehicle or the NO donor in 2% FBS DMEM/F12, GlutaMAX 

media for 3 days after the second siRNA transfection to investigate the effects of exogenous NO 

on VWF secretion. CRISPR cells were treated as described above with vehicle (10 mM HEPES) 
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or DETA-NONOate (100 µM). Because the half-life of DETA-NONOate is 20 hours at 37°C (24), 

DETA-NONOate was re-added every 20 hours during the treatment for 3 days. For studies on the 

effects of endogenous NO on VWF secretion, vehicle (0.3% DMSO) or sepiapterin (300 µM) were 

added to confluent CRISPR cells over 3 days. In separate sets of experiments, 1H-

[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 µM) was added 1 hr before the addition of 

DETA-NONOate or sepiapterin to inhibit the activation of sGC by NO. For studies on human α-

galactosidase A (α-Gal A), cells were seeded, and incubated with either vehicle (25 mM Tris and 

150 mM NaCl, pH 7.5) or α-Gal A (10 ug/mL) from the following day for two days. After cell 

confluency was attained, the media was replaced with 2% serum containing media with one of the 

treatments or vehicle for additional three days. Either DMEM media as vehicle or eliglustat 

(200nM) was used and incubated as described above to study the effects of eliglustat on VWF 

secretion.  

  

S-nitrosylation measurements 

Levels of NSF S-nitrosylation were determined using a biotin switch assay as previously described 

(21).  Briefly, EA.hy926 cells were washed with cold Dulbecco’s Phosphate-Buffered Saline and 

lysed with HENS buffer (100 mM HEPES, 1 mM EDTA, 0.1 mM Neocuproine, 1% SDS, pH 8.0; 

Thermo Fisher, Waltham, MA). The lysates were sonicated using a probe sonicator (Branson 

sonifier 450) on ice for 30 seconds at output 2. Cell debris was removed by centrifugation at 10,000 

x g for 10 min. Positive control samples were incubated with 200 µM of S-nitrosoglutathion 

(GSNO) for 30 min in dark. Excess GSNO was removed by 7K MWCO Zeba spin desalting 

column (#89890, Thermo Fisher, Waltham, MA) according to the manufacturer’s instructions. 

Three hundred micrograms of proteins were subjected to the biotin switch assay. Free thiol 
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residues were first blocked with 20 mM of sulfhydryl-reactive compound S-methyl 

methanethiosulfonate (#64306, MMTS, Sigma-Aldrich, St. Louis, MO) for 20 min at 50 °C with 

vortexing every 5 min. Excess MMTS was removed by incubation in 5 mL of pre-chilled acetone 

at -20 °C for 20 min. The samples were pelleted by centrifugation at 3,000 x g for 10 min at 4 °C, 

and washed once with pre-chilled 70% acetone. The samples were resuspended in 240 µL of HENS 

buffer. S-nitrosylated cysteines were then selectively reduced by 1 mM of sodium ascorbate 

(#11140, Sigma-Aldrich, St. Louis, MO) and labeled with 30 µL of biotin (2.5 mg/mL in DMSO) 

N-[6-(biotinamido)hexyl]-3´-(2´-pyridyldithio) propionamide (#21341, biotin-HPDP, 

ThermoFisher, Waltham, MA) in the presence of 1 µM of CuCl (#AC208390250, Fisher Scientific) 

for two hours in the dark. Excess sodium ascorbate and unlabeled biotin were removed by acetone 

precipitation at -20 °C for 20 min. The samples were centrifuged at 5,000 x g for 10 min at 4°C, 

and washed once with pre-chilled 70% acetone. The samples were resuspended in 250 µL of 

HENS/10 buffer (HENS diluted 10-fold into H2O containing 1% SDS), and 750 µL of 

neutralization buffer (25 mM HEPES, 100 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, pH 7.5) 

was added. Twenty five microliters from each sample was saved for analysis of total protein 

“input”. The residual was transferred to a tube containing 70 µL of pre-washed streptavidin 

immobilized on agarose beads and incubated overnight at 4°C with gentle rotation. The beads were 

centrifuged at 200 x g for 5 seconds, washed, and eluted in 30 µL HEN/10 containing 1% β-

mercaptoethanol for 20 min for immunoblotting analyses.  

 

Western blotting 

The cell lysates were prepared as described above. Quantification of total protein in each sample 

was performed by a bicinchoninic acid assay with bovine serum albumin as a standard. Thirty µg 
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of each sample lysate was separated by SDS-PAGE using a 4-12% gradient gel. Proteins were 

transferred onto nitrocellulose membranes, and blocked in 5% nonfat dry milk in TBST for at least 

1 hr. The membranes then were incubated overnight at 4°C with primary antibodies used at 1:1,000 

dilution; NSF (#2145, cell signaling, Danvers, MA), GLA (#LS-B8027, LS Bio, Seattle, WA), 

GAPDH (#MAB374, EMD Millipore, Billerica, MA), eNOS (#ab76198, Abcam, Cambridge, 

MA), and TRX-1 (#2429, Cell Signaling, Danvers, MA). After washing with TBST, the membrane 

was incubated with appropriate secondary antibody in 5% milk in TBST. The immunoreactive 

bands were detected with ECL western blotting substrate (#32106, Thermo Fisher, Waltham, MA), 

and quantified by densitometric scanning using ImageJ software. 

 

Quantitative RT-PCR 

WT and GLA null mice were perfused with 3 mL of cold PBS using a 25-gauge needle, inserted 

into the left ventricle, at a rate of 1 mL/min. Total RNA was extracted from lung and liver tissues 

with RNeasy Protect Mini Kit (#74124, Qiagen). Total cellular RNA was isolated using RNeasy 

Plus Mini Kit (#74134, Qiagen). Reverse transcription was performed using High Capacity cDNA 

Reverse Transcription Kit (#4368814, Applied Biosystems). Power SYBR Green PCR Master Mix 

(#4367659, Applied Biosystems) and cDNA were transferred to a 48-well plate, and real-time PCR 

was performed with a StepOne Real-Time PCR System instrument. Data were normalized to 

GAPDH or TATA binding protein, and the results were expressed relative to the WT mice or CR-

WT. The primers used were: mouse VWF primers: forward 5’-GGG TGA CCA AAG CAT CTC 

CA-3’, reverse 5’-CAT CGA TTC TGG CCG CAA AG-3’; mouse GAPDH primers: forward 5’-

GAC CAC AGT CCA TGC CAT CA-3’, reverse: 5’-ACT TGG CAG GTT TCT CCA GG-3’; 

human VWF primers: forward 5’-TTG ACG GGG AGG TGA ATG TG-3’, reverse 5’-ATG TCT 
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GCT TCA GGA CCA CG-3’; human GAPDH: forward 5’-TTG TTG CCA TCA ATG ACC CCT-

3’, reverse 5’-GAT CTC GCT CCT GGA AGA TGG-3’; human TBP: forward 5’-GCC GCC GGC 

TGT TTA ACT-3’, reverse 5’-ACG CCA AGA AAC AGT GAT GCT-3’. 

 

Statistical analysis 

GraphPad Prism software (Graphpad Software Inc., La Jolla, CA) was used for statistical analysis. 

The data were presented as mean ± SEM. Results were analyzed using the unpaired t-test for 

comparison of two groups. Statistical significance was set at p<0.05. 

 

 

Results 

Endothelial activation in Gla null mice 

In previous studies Gla deficiency was demonstrated to accelerate vascular complications in mice 

including models of atherosclerosis on apoE null background and oxidant-induced arterial 

thrombosis (8, 13). Soluble vascular cell adhesion molecule-1 (sVCAM-1) and von Willebrand 

factor (VWF) were measured in plasma to assess whether endothelial inflammation was evident 

in young Fabry mice without experimental injury or other alteration. The serum levels of sVCAM-

1 were not different between WT and Gla null mice at 2 months (Figure 4 - 1A). However, 

sVCAM-1 was significantly elevated in Gla deficient mice at 12 months compared to the younger 

age of the same genotype and their age-matched WT mice. Intriguingly, plasma VWF level was 

significantly higher in 2 month old Gla null mice compared to WT mice (Figure 4 - 1B). Plasma 

VWF levels from Gla null mice at 5 and 17 months of age, but not WT mice, were significantly 

elevated in comparison with the same genotype at 2 months. It was previously observed that 
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microvascular dysfunction and eNOS uncoupling were evident at 2 months and exacerbated with 

age in these mice (23). These data indicated that Gla deficiency resulted in an age-dependent 

endothelial dysfunction and elevated VWF secretion into the circulation. Further experiments were 

next performed to probe the mechanism for the enhanced secretion of VWF in the setting of GLA 

deficiency.  

 

VWF gene expression 

VWF mRNA levels were next measured. In mouse, the lung expresses the highest level of VWF 

mRNA, and therefore, is the primary organ responsible for the circulating VWF antigen level (62). 

Lung homogenates from WT and Gla null mice were analyzed for VWF gene expression. No 

difference in VWF mRNA levels was observed between the Gla deficient mice and the WT mice 

by qRT-PCR analyses (Figure 4 - 2A, WT vs GLA null; 1.02 ± 0.12 vs 0.97 ± 0.15 arbitrary unit). 

In addition, VWF mRNA levels did not differ in the liver homogenates between WT and GLA 

null mice (Figure 4 - 2B, WT vs GLA null; 1.00 ± 0.24 vs 1.08 ± 0.17 arbitrary unit). Thus, these 

results suggested that the elevated VWF level in Gla deficient mice was not due to increased VWF 

production from these sites. 

 

Elevated VWF secretion in cells with GLA knockdown 

An established in vitro model of Fabry disease was employed to explore whether GLA deficiency 

directly promotes VWF secretion from the endothelial cells (49). We first determined the 

expression of VWF in the EA.hy926 human endothelial cell line. A positive linear relationship 

was confirmed between VWF level and the number of cells (r2 = 0.9242). The effect of GLA 
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disruption on WPB exocytosis was next characterized by RNA interference in these cells. After 

GLA siRNA treatment, GLA expression was decreased to a level not detected by western blotting 

while GAPDH expression was unaffected (Figure 4 - 3A). Cells were then incubated in 2% serum 

media under control siRNA (siSCR) or GLA siRNA (siGLA) conditions for three days to measure 

the amount of VWF released into the media. An almost 3-fold increase in the VWF level was 

observed by ELISA in the supernatants from siGLA compared with that of siSCR (Figure 4 - 3B). 

These data demonstrate that the loss of GLA directly results in the release of VWF from endothelial 

cells consistent with the increased plasma VWF levels observed in knockout mice. 

 

Decreased eNOS activity and inhibition of VWF secretion with NO provision in GLA knockdown 

cells 

Because GLA deficiency results in less NO production from this endothelial cell line due to lower 

eNOS activity (49), studies were performed to assess whether the elevated VWF secretion was 

associated with decreased NO bioavailability. Consistent with previous reports (47, 49), eNOS 

activity was significantly lower in siGLA than siSCR (Figure 4 - 4A). Because NO inhibits VWF 

secretion (27), siRNA-treated cells were incubated in the presence or absence of an exogenous NO 

donor, DETA-NONOate. In contrast to control conditions, the supplemental provision of NO (50 

µM) resulted in a 35% reduction in VWF secretion in siGLA cells (Figure 4 - 4B).  

 

Elevated VWF secretion in a permanent GLA deficient cell line by CRISPR/Cas9 

A previous study reported that VWF secretion is dependent on cell density as well as the duration 

of cell culture (26). Because siRNA treatments do not persist for more than three days, and the 
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efficiency of the transfection is dependent on cell seeding density (data not shown), a permanent 

GLA deficient cell line was generated to avoid confounding factors such as confluency and a 

transient effect of the siRNA interference. GLA activity level was first measured in this cell line. 

As expected, the enzyme activity was not detectable in CRISPR GLA cells (CR-GLA) as 

compared to that from CRISPR WT cells (CR-WT) (Figure 4 - 5A). Next, these cells were grown 

until confluent, and replaced with 2% serum media. VWF levels were measured in the media of 

CR-WT and CR-GLA over a more extended period of 96 hrs. VWF levels, measured by ELISA, 

were higher at the 12 hr time point and significantly elevated at the 24 hr time point (Figure 4 - 

5B). In additional sets of experiments, an approximately 4.7-fold increase in the level of VWF was 

observed in the media from CR-GLA compared to CR-WT cells at 48 hr and 72 hr time points 

(Figure 4 - 5C). It was next tested whether exogenous NO inhibits VWF secretion in CRISPR cells. 

Compared to the siRNA treated cells, CRISPR cells were viable at higher concentrations of 

exogenous NO (data not shown). Provision of 100 µM of NO donor for 3 days significantly 

decreased VWF secretion from both CR-WT and CR-GLA cells (Figure 4 - 5D). Surprisingly, 

VWF level from CR-GLA was completely normalized to the level seen in CR-WT vehicle treated 

cells with 100 µM of NO.  

VWF mRNA level was slightly, but significantly increased in CR-GLA in comparison with CR-

WT by qRT-PCR analysis (Figure 4 - 6A, CR-WT vs CR-GLA; 1.00 ± 0.02 vs 1.23 ± 0.14 arbitrary 

unit, p<0.01). The levels of IL-8, another component of WPBs, were also measured to confirm that 

elevated VWF secretion in GLA deficiency was due to enhanced WPB exocytosis. The IL-8 

concentration was significantly higher in the media of CR-GLA when compared with that of CR-

WT (Figure 4 - 6B, CR-WT vs CR-GLA; 544.8 ± 15.2 vs 1086.7 ± 23.5 pg/mL) consistent with 

increased WPB exocytosis. Together, these data reinforced the prior observations that GLA 
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deficiency promotes VWF secretion and exogenous NO inhibits the release. Since CRISPR cells 

were more stable for pharmacologic studies in comparison with the siRNA-treated cells, this cell 

line was used in subsequent studies. 

 

Sepiapterin treatment in CR-GLA 

eNOS protein expression in CR-GLA and CR-WT cells was next analyzed. Consistent with the 

previous finding in cultured primary aortic endothelial cells from Gla null mice (47), a greater than 

50% reduction in the eNOS expression of CR-GLA was observed compared with that of CR-WT 

(Figure 4 - 7A). Previously, a robust elevation of 3-nitrotyrosine was observed in GLA deficient 

cells, a marker of reactive nitrogen species produced in the presence of eNOS uncoupling (49). An 

attempt was made to “recouple” eNOS activity with sepiapterin treatment in CR-GLA cells. The 

activity of eNOS from CR-WT and CR-GLA was increased with sepiapterin in a dose-dependent 

manner (Figure 4 - 7B). However, eNOS activity of CR-GLA was approximately 50% lower than 

that of CR-WT at any given doses of sepiapterin. Nevertheless, eNOS activity of CR-GLA was 

2.5-fold higher with 300 µM sepiapterin than that of CR-WT vehicle condition (Figure 4 - 7B). 

Because exogenous NO treatment inhibited VWF secretion (Figure 4 - 5D), it was next examined 

whether increased endogenous NO production resulting from activating eNOS with sepiapterin 

decreases VWF exocytosis. Three days of sepiapterin (300 µM) treatment reduced VWF secretion 

from CR-GLA to the level of CR-WT control conditions (Figure 4 - 7C), similar to the effect of 

the exogenous NO donor. Nevertheless, the level of VWF with sepiapterin treatment in CR-GLA 

remained significantly higher than that of CR-WT, presumably due to the lower level of eNOS 

activity compared to CR-WT with 300 µM sepiapterin (Figure 4 - 7D). Endothelial-derived NO 

regulates vascular function, in part, through a soluble guanylate cyclase (sGC) and cyclic 
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guanosine monophosphate (cGMP) signaling pathway (39). However, the inhibition of sGC by a 

specific irreversible inhibitor, ODQ, did not modify the effects of the NO donor and sepiapterin 

on VWF release in CR-WT and CR-GLA cells (Figure 4 - 8). Together, these data indicate that 

both exogenous and endogenous NO repletion inhibit increased VWF release via a sGC/cGMP-

independent signaling pathway in the setting of GLA deficiency.  

 

Changes in SNO-NSF level in siGLA and CR-GLA cells 

A previous study from Matsushita and colleagues reported that NO inhibits WPB exocytosis 

through NSF S-nitrosylation (SNO-NSF) (30). In addition to NO, thioredoxin-1 is known to 

regulate VWF secretion by denitrosylating SNO-NSF in endothelial cells (19). Having 

characterized that GLA deficiency resulted in decreased NO production and increased VWF 

secretion (Figures 4 - 4, 5, and 7), it was next determined whether elevated VWF secretion is 

associated with decreased level of SNO-NSF in the setting of GLA deficiency. The siRNA-treated 

and the CRISPR cells were subjected to a biotin switch assay. Immunoblotting analyses of isolated 

biotin-labeled proteins showed approximately 75% higher level of SNO-NSF in siGLA compared 

to siSCR cells (Figure 4 - 9A). In addition, a 12% lower level of TRX-1 was associated with 

increased SNO-NSF in the siGLA compared to siSCR cells (Figure 4 -9B). Consistent with the 

findings in siRNA-treated cells, CR-GLA had approximately 50% higher and 24% lower levels of 

SNO-NSF and TRX-1, respectively, than those in CR-WT cells (Figure 4 - 9C and 9D). Together, 

these data showed that GLA deficiency resulted in increased SNO-NSF level and decreased TRX-

1 level in the endothelial cells. 
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Antioxidant treatments in CR-GLA cells 

Decreased eNOS expression, reduced enzymatic activity, and deactivation of NO by reactive 

oxygen species can decrease NO bioavailability. Based on the previous finding that GLA 

deficiency elevated reactive oxygen species (44), it was evaluated whether decreasing ROS could 

lower VWF levels. CR-WT and CR-GLA cells were grown to confluence in the presence of 

ebselen (10 µM) or TEMPOL (1mM), glutathione peroxidase-1 and superoxide dismutase 

mimetics, respectively. After cell confluency was attained, the media was replaced with 2% serum 

containing media with one of the treatments or vehicle. The ebselen treatment for 3 days 

significantly reduced VWF secretion in both CR-WT and CR-GLA cells compared to their vehicle 

conditions (Figure 4 - 10A). In addition, the treatment in CR-GLA decreased VWF level below 

the level of CR-WT vehicle condition. Three days of TEMPOL incubation resulted in decreased 

VWF level in CR-GLA to a similar level of CR-WT vehicle condition (Figure 4 - 10B). However, 

the level of VWF in CR-GLA after the treatment remained significantly higher in comparison with 

CR-WT with TEMPOL incubation. These data are consistent with the interpretation that GLA 

deficiency elevates VWF secretion, in part, through increased production of ROS.  

 

Recombinant human GLA and eliglustat treatment 

Previously it was shown that 2 days of recombinant human GLA (α-Gal A) treatment lowered Gb3 

in Gla null mouse aortic endothelial cells (46). When eNOS activity was examined in a subsequent 

study, the reduction of Gb3 by the potent glucosylceramide synthase inhibitor, eliglustat, failed to 

restore the decreased eNOS activity significantly in these cells (47). The effects of recombinant α-

Gal A and eliglustat were evaluated to examine whether GLA deficiency per se or elevated globo-
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series glycosphingolipids was the primary cause for the elevated secretion of VWF. The CRISPR 

cells were pre-treated with α-Gal A (10 µg/mL) or eliglustat (200 nM) for 2 days prior to becoming 

confluent. After the pre-treatment, fresh low serum media with α-Gal A or eliglustat was used and 

VWF accumulation in the media measured over 3 days. VWF levels were no different with or 

without the enzyme treatment in CR-WT cells (Figure 4 - 11A). In CR-GLA, exogenous α-Gal A 

reduced VWF secretion by 18% on average in CR-GLA compared to vehicle controls, but this did 

not reach statistical significance (p=0.13). On the other hand, eliglustat treatment slightly, but 

significantly increased VWF secretion from both CR-WT and CR-GLA cells (Figure 4 - 11B). 

 

Discussion 

In this study, we report that GLA deficiency decreases eNOS activity and promotes VWF secretion 

in a mouse model and two in vitro models, identifying a potential mechanism for the vascular 

involvement in Fabry disease. Furthermore, pharmacological approaches that increase NO 

bioavailability or decrease ROS completely normalize VWF levels in an in vitro model of GLA 

deficiency. However, recombinant human GLA only partially decreases VWF secretion, while the 

inhibition of glycosphingolipid synthesis results in an increase in VWF secretion in vitro. Together, 

these results suggest that GLA deficiency may promote VWF secretion through decreased NO 

bioavailability and elevated ROS, but this abnormality is not readily reversed by normalization of 

glycosphingolipid levels.  

Clinical observations have revealed a high incidence of thrombosis and stroke in Fabry patients 

(50, 52) and a highly robust sensitivity to inducible thrombogenesis in murine models of Fabry 

disease (13, 45). VWF may contribute to the pathogenesis of thrombosis and atherosclerosis in 

Fabry disease due to its role in the formation of platelet thrombi (41). For example, studies using 
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mouse models of atherosclerosis have demonstrated that platelet adhesion to plaque-prone sites is 

inhibited by inactivation of VWF or platelet glycoprotein Ib, a receptor for VWF (29, 51). VWF 

is selectively expressed in WPBs in endothelial cells and α-granules in platelets (20, 34). However, 

recent studies employing chimeric mice whose VWF was restricted to either endothelial cells or 

platelets demonstrated that endothelial-derived VWF is a major determinant for thrombus 

formation (22, 35).  

Numerous studies have documented abnormal procoagulant and proinflammatory profiles in Fabry 

patients (6, 7, 10, 54). Only three studies have reported measurements of VWF levels in this group. 

In two reports, VWF levels were not different or only slightly elevated in Fabry patients when 

compared to their control groups (10, 54). In a third study, a significant elevation of VWF in both 

hemizygous males and heterozygous female carriers (36). The failure to report consistent 

elevations of VWF in the Fabry population may reflect the small numbers of patients studied, the 

inclusion of treated and untreated patients in the patients studied, or differences in the analytical 

methods employed for VWF measurements. More recently, in an initiative to identify biomarkers 

in large cohorts of untreated pediatric and adult male Fabry patients, VWF was observed to be 

significantly elevated in both groups (Kevin Mills, UCL Institute of Child Health, unpublished 

data). 

Early studies addressed the observation that Gla null mice lacked a spontaneous vascular 

phenotype. Three inducible models of vascular disease were identified including arterial 

thrombosis following intravascular oxidant release from rose Bengal, accelerated atherosclerosis 

in Gla null mice bred on an apoE null background, and impaired vasorelaxation in pre-contracted 

aortic and mesenteric rings exposed to acetylcholine (8, 13, 23, 38). Subsequent studies in primary 

cultures of aortic endothelial cells from Gla null mice demonstrated the accumulation of Gb3 in 
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caveolar fractions in association with impaired oligomerization of caveolin-1 (48). These structural 

changes were associated with decreased eNOS expression and activity (47). Based on these prior 

studies, we hypothesize eNOS dysregulation may be the basis for relationship between GLA 

deficiency and increased VWF secretion in the current studies. 

Generally speaking, eNOS dysregulation refers to one of three distinct changes. These include 

decreased NO bioavailability, eNOS uncoupling resulting in elevated reactive nitrogen species, 

and alterations in NO-mediated post-translational protein modification, such as S-nitrosylation. 

Each of these mechanisms was considered. 

Matsushita et al. proposed a mechanism whereby NO inhibits WPB exocytosis by inactivation of 

a vesicle-membrane fusion protein, NSF (30). NO has been shown to nitrosylate cysteine residues 

of NSF, which blocks NSF disassembly activity of SNARE complex (30). In the current study, 

however, the inhibitory role of SNO-NSF was not associated with elevated VWF secretion in our 

in vitro models. Rather, we observed that the elevated SNO-NSF was associated with decreased 

TRX-1 levels, a reductase in the endothelial cells (19). Therefore, the observed SNO-NSF level 

may not determine NO availability in the setting of Fabry disease.  

Several studies have reported an inverse association between flow-mediated vasodilation and 

plasma VWF levels (16, 25). We have observed that eNOS activity was reduced in endothelial 

cells following GLA disruption consistent with our previous study (49). NO bioavailability was 

increased with DETA-NONOate and sepiapterin treatments. Increasing NO by either exogenous 

or endogenous means  was sufficient to normalize the elevated VWF release in GLA-deficient 

cells, suggesting the increased VWF secretion was secondary to decreased NO level in this setting.  



91 
 

The uncoupling of eNOS has been associated with elevated reactive oxygen and nitrogen species 

in experimental models and clinical samples from Fabry patients (6, 44, 49). ROS, inflammatory 

cytokines, and mediators of inflammation induce VWF secretion in endothelial cells (4, 5, 31, 56, 

60). In agreement with these observations, we observed that antioxidant treatment with tempol and 

ebselen negated the effect of GLA deficiency on enhanced VWF release.  

Disruption of GLA or Gb3 loading has been shown to promote decreased eNOS activity and ROS 

production (44, 49). eNOS is then uncoupled and becomes a source of superoxide and peroxynitrite 

(15). Under this condition, removing Gb3 by ERT or substrate reduction may not be sufficient to 

“recouple” eNOS. This hypothesis is substantiated by a previous observation that reduction of Gb3 

in primary aortic endothelial cells of Gla null mice did not significantly restore eNOS activity (47). 

In the current study, providing human recombinant GLA back to GLA-null cells only partially 

decreased VWF secretion, suggesting that the GLA deficient-endothelial cells remained activated. 

Surprisingly, inhibition of glucosylceramide synthase with eliglustat slightly, but significantly 

increased VWF secretion despite decreasing globo-series glycosphingolipids (unpublished data). 

While the basis for inability of these treatments to reverse the VWF secretion is not clear, these 

findings may be relevant to the continued occurrence of strokes in advanced patients with ERT 

and will require further study (2, 59). 

In summary, the findings from this study are significant for several reasons. First, there is currently 

a paucity of biomarkers available to specifically assess endothelial dysfunction in Fabry disease. 

Second, cerebrovascular events continue to occur in Fabry patients receiving enzyme replacement 

therapy, suggesting that the underlying vasculopathy may not be completely corrected by enzyme 

replacement and reduction of Gb3 alone. Finally, an elevated urinary Gb3 is associated with near-

term mortality in heart disease patients in the absence Fabry disease (42). Therefore, observations 
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from the current study may support a pathophysiologic link between glycosphingolipid 

metabolism and vascular disease with relevance to a broader population. Future studies on 

enhanced VWF release as a predictor of stroke and myocardial infarction, particularly in Fabry 

patients with and without a history of intravascular thrombotic events, will be important. 
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Figures 

 

 
 
Figure 4 - 1. Age-dependent endothelial activation in mice with Fabry disease 

The blood was drawn via the retro-orbital plexus from male wild type and Gla deficient mice at 
the indicated ages. A. Levels of soluble VCAM-1 were measured by ELISA (n=5-10/group). *p 
< 0.05 compared to the age-matched WT mice, †p < 0.001 compared to the same genotype at 2 
months. B. Circulating plasma VWF levels were measured by AlphaLISA method as described 
in the method section (n=4-8 in each age group). A dilution series of pooled platelet-poor plasma 
(PPP) from C56BL/6 mice (n=10) was used as a reference (100%). *p < 0.05 compared to the 
age-matched WT. †p < 0.02 compared to the same genotype at 2 months. 
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Figure 4 - 2. VWF gene expression in the lung and the liver in WT and Gla deficient mice 

A. Expression of mRNA for VWF in the lung homogenates of WT and Gla deficient mice at 10 
months. mRNA was determined using real-time PCR, normalized to GAPDH, and expressed 
relative to the level in WT lung (n=4/group).  B.  Expression of mRNA for VWF in the liver 
homogenates of WT and Gla deficient mice at 10 months. mRNA was determined using real-
time PCR, normalized to GAPDH, and expressed relative to the level in WT liver (n=4/group). 
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Figure 4 - 3. Elevated VWF secretion in EA.hy926 cells following GLA knockdown 

A. Representative western blot showing the knockdown efficiency of siRNA against GLA in 
EA.hy926 cells. B. Cells were transfected with SCR or GLA siRNA. After the second 
transfection, the transfection media were replaced with 2% serum media and incubated for 3 
days. Levels of VWF accumulation in the media were determined by ELISA using a dilution 
series of pooled normal plasma with known VWF antigen levels as standards and expressed as 
fold changes with respect to siSCR (n=6-8/group). *p < 0.00001 
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Figure 4 - 4. Decreased NO production and suppression of VWF secretion by an exogenous 
NO donor, DETA-NONOate 

A. The cells were collected after the siRNA transfection. Endothelial nitric oxide synthase 
activity was measured by monitoring the conversion from radiolabeled L-arginine to the 
formation of L-citrulline. The activity was expressed as L-citrulline count per minute (cpm), and 
normalized to each sample’s total protein level (n=6/group) *p < 0.0001. B. After the 
transfection, cells were incubated with vehicle (10 mM HEPES) or DETA-NONOate (50 µM) 
for 3 days. VWF levels in the cell culture supernatants were determined by ELISA and expressed 
as fold changes with respect to siSCR vehicle (n=4/group). *p < 0.01 compared to siSCR 
vehicle, †p = 0.02 compared to siGLA vehicle. 
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Figure 4 - 5. Time course basal VWF secretion from CRISPR WT and GLA deficient cells 

A. An equal amount of protein (3 µg) from cell lysates was used. GLA activity in lysates from 
CR-WT and CR-GLA was expressed as mmol/mg protein per hr PNP released (n=6/group). 
N.D.: not detectable. B. Normal growth media were replaced with 2% serum media after 
confluency. The cell culture supernatants were collected at the various time points thereafter 
(n=4/group). VWF levels were expressed as fold changes with respect to CR-WT at 12 hr. C. 
VWF secretion after 2-3 days (n=11/group). *p<0.00001. D. After confluency, cells were 
incubated with vehicle (10 mM HEPES) or DETA-NONOate (100 µM) for 3 days. VWF levels 
in the cell culture supernatants were determined by ELISA and expressed as fold changes with 
respect to CR-WT vehicle (n=8/group). †p < 0.001 compared to vehicle in the same group, *p 
< 0.00001 compared to WT vehicle. 
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A 

 
B 

 
 
Figure 4 - 6. VWF mRNA and IL-8 levels in CRISPR cells 

A. Expression of mRNA for VWF in CR-WT and CR-GLA cells. mRNA was determined using 
real-time PCR, normalized to TATA-binding protein, and expressed relative to the level in CR-
WT (n=6/group). *p < 0.05. B. IL-8 secretion for 3 days in CR-WT versus CR-GLA cells 
(n=7/group). *p<0.00001. 
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Figure 4 - 7. eNOS dysregulation and sepiapterin treatment in CRISPR WT and GLA cells 

A. An equal amount of protein (30 µg) from CR-WT and CR-GLA cells was separated on 4-
12% SDS PAGE (n=9/group). *p < 0.00001. B. Cells were incubated with vehicle (DMSO) or 
various concentrations of sepiapterin for 24 hours. Trypsinized cells were pelleted and subjected 
to eNOS activity assay. eNOS activity was determined as described in Figure 4 - 4A. The data 
are an average of triplicate assays from two separate sets of samples. C. After confluency, cells 
were incubated with vehicle (DMSO) or sepiapterin (300 µM) for 3 days. VWF levels in the cell 
culture supernatants were determined by ELISA and expressed as fold changes with respect to 
CR-WT vehicle (n=4/group). p = 0.01 between CR-WT vehicle and CR-GLA with sepiapterin, 
†p < 0.001 compared to vehicle in the same group, *p < 0.0001 compared to CR-WT vehicle, 
‡p < 0.0001 compared to CR-WT with sepiapterin. D.  After confluency, cells were incubated 
with vehicle (DMSO) or sepiapterin (300 µM) for 3 days. These cells were trypsinized and 
subjected to eNOS activity assay as described above (n=4/group). †p < 0.001 compared to 
vehicle in the same group, *p < 0.001 compared to CR-WT vehicle, ‡p < 0.001 compared to 
CR-WT with sepiapterin. 
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Figure 4 - 8. Effects of ODQ on VWF secretion in CR-WT and CR-GLA cells treated with 
DETA-NONOate and sepiapterin 

A. CR-WT and CR-GLA cells were seeded in a 24-well plate. Cells were incubated with or 
without DETA-NONOate (100 µM) and/or the sGC inhibitor ODQ (5 µM). ODQ was added 1 
hr prior to the addition of DETA-NONOate to inhibit the activation of sGC by NO. VWF levels 
in the cell culture supernatants were determined by ELISA and expressed as fold changes with 
respect to CR-WT vehicle (n=4/group). *p < 0.01 compared to WT vehicle, †p < 0.05 compared 
to vehicle in the same group. B. Cells were treated as described above with or without sepiapterin 
(300 µM) and/or ODQ (5 µM). VWF levels in the cell culture supernatants were determined by 
ELISA and expressed as fold changes with respect to CR-WT vehicle (n=4/group). *p < 0.01 
compared to CR-WT vehicle, †p < 0.01 compared to vehicle in the same group, ‡p < 0.01 
compared to CR-WT with respective treatment. 
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Figure 4 - 9. Increased NSF S-nitrosylation and decreased TRX-1 in GLA deficient cells 

A. EA.hy926 cells treated with siSCR or siGLA were subjected to the biotin switch assay as 
described in the methods section. Isolated biotin-labeled proteins were separated on 4-12% SDS 
PAGE. The level of S-nitroyslation of NSF was normalized to its total protein level (n=6/group). 
*p < 0.02. B. An equal amount of protein from siRNA treated cells was loaded and separated 
on SDS PAGE (n=6/group). *p < 0.05. C. Confluent CR-WT and CR-GLA cells were subjected 
to the biotin switch assay. Isolated biotin-labeled proteins were separated on 4-12% SDS PAGE. 
The level of S-nitroyslation of NSF was normalized to its total protein level (n=6/group). *p < 
0.001. D.  An equal amount of protein from CR-WT and CR-GLA cells was loaded and 
separated on SDS PAGE (n=6/group). *p < 0.01. 
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Figure 4 - 10. Decrease in VWF secretion with antioxidant treatments in CRISPR cells 

A. After confluency, cells were incubated with vehicle (DMSO 0.2%) or ebselen (10 µM) for 3 
days. VWF levels in the cell culture supernatants were determined by ELISA and expressed as 
fold changes with respect to CR-WT vehicle (n=6/group). p = 0.0001 between CR-WT vehicle 
and CR-GLA with ebselen, †p < 0.0001 compared to vehicle in the same group, *p < 0.0001 
compared to CR-WT vehicle, ‡p < 0.05 compared to CR-WT with ebselen. B. After confluency, 
cells were incubated with vehicle or Tempol (1 mM) for 3 days. VWF levels in the cell culture 
supernatants were determined by ELISA and expressed as fold changes with respect to CR-WT 
vehicle (n=6/group). †p < 0.0001 compared to vehicle in the same group, *p < 0.0001 compared 
to CR-WT vehicle, ‡p < 0.0001 compared to CR-WT with Tempol. 
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Figure 4 - 11. Treatment of CR-WT and CR-GLA cells with recombinant human α-
galactosidase A and eliglustat 

A. CR-WT and CR-GLA cells were seeded in a 24-well plate. Next day, vehicle (25 mM Tris 
and 150 mM NaCl, pH 7.5) or recombinant human GLA (10 µg/mL, α-Gal A) was added to 
each well. After 2 days of the treatment, the medium was replaced with 2% serum medium 
containing vehicle or α-Gal A and incubated for 3 days. VWF levels were determined by ELISA 
and expressed as fold changes with respect to CR-WT vehicle (n=6-10/group). p=0.13 between 
vehicle- and α-Gal A-treated CR-GLA; *p < 0.00001 compared to CR-WT vehicle. B. CR-WT 
and CR-GLA cells were seeded in a 24-well plate. The following day, vehicle (DMEM media) 
or Eliglustat (200 nM) was added to each well. After 2 days of the treatment, the medium was 
replaced with 2% serum medium containing vehicle or eliglustat and incubated for additional 3 
days. VWF levels were determined by ELISA and expressed as fold changes with respect to CR-
WT vehicle (n=6/group). *p < 0.00001 compared to CR-WT. †p < 0.02 compared to each 
vehicle condition. 
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CHAPTER 5 

 

Voluntary wheel exercise training improves Akt/AMPK/eNOS signaling cascades, but not 

endothelial dysfunction in aged mice deficient in α-galactosidase A 

 

Abstract 

Fabry disease is caused by loss of activity of the lysosomal hydrolase α-galactosidase A (GLA). 

Premature life-threatening complications in Fabry patients arise from cardiovascular disease, 

including stroke and myocardial infarction. Exercise training has been shown to improve 

endothelial dysfunction in various settings including coronary artery disease. However, the effects 

of exercise training on endothelial dysfunction in Fabry disease have not been investigated. Gla 

knockout mice were single-housed in a cage equipped with a voluntary wheel (EX) or no wheel 

(SED) for 12 weeks. Exercised mice ran 10 km/day on average during the voluntary running 

intervention (VR) period. Despite significantly higher food intake in EX than SED, body weights 

of EX and SED remained stable during the VR period. After the completion of VR, citrate synthase 

activity in gastrocnemius muscle was significantly higher in EX than SED. Western blot analyses 

demonstrated that VR resulted in greater phosphorylation of Akt (S473) and AMPK (T172) in the 

aorta of EX compared to SED. Furthermore, VR significantly enhanced eNOS protein expression 

and phosphorylation at S1177 by 20% and 50% in the aorta of EX when compared with SED, 

suggesting eNOS activation. In contrast, anti- and pro-oxidative enzymes including superoxide 
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dismutase and p67 subunit of NADPH oxidase were not different between groups. Although the 

aortic endothelial relaxation to acetylcholine was slightly increased in EX, it did not reach 

statistical significance. Overall, this study provides the first evidence that VR improves 

Akt/AMPK/eNOS signaling cascades, but not endothelial function in the aorta of aged Gla 

deficient mice.  

 

Introduction 

Fabry disease is an X-linked lysosomal storage disorder that results from a defective or absent 

activity of α-galactosidase A (GLA) (8). The enzymatic defect leads to a progressive accumulation 

of glycosphingolipids including globotriaosylceramide, galabiosylceramide, and 

globotriaosylsphingosine. This toxic accumulation is observed in a variety of cell types, but 

especially found in the endothelium and smooth muscle cells (25, 35). Early symptoms of Fabry 

disease in childhood include episodic acute pain and gastrointestinal involvement with abdominal 

pain, diarrhea, and nausea (25). However, premature life-threatening complications arise from 

cardiovascular diseases around fourth decade of life, and include cerebrovascular events, 

myocardial infarction, hypertrophic cardiomyopathy, and renal failure (18). Whereas enzyme 

replacement therapy (ERT) with recombinant GLA is the only approved treatment for Fabry 

disease, there is no clear evidence that ERT alters the natural course of cardiovascular morbidities 

in patients with advanced Fabry disease (17).  

A mouse model of Fabry disease has been used to explore the vascular pathophysiology in the 

setting of GLA deficiency. Several inducible models of vasculopathy in these mice have 

demonstrated accelerated atherosclerosis, oxidant-induced occlusive arterial thrombosis, impaired 

acetylcholine-induced vascular relaxation, and the presence of endothelial nitric oxide synthase 
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(eNOS) uncoupling (4, 16, 30, 43). A potential link of these experimentally observed abnormalities 

is decreased nitric oxide (NO) bioavailability. Exercise has been shown to be one of the most 

effective non-pharmacological interventions for improving NO bioavailability (37). During the 

last two decades, the beneficial effects of exercise on the vascular endothelium have been 

extensively studied in various aspects including endothelium-dependent vasodilation, anti-

inflammation, and anti-atherosclerosis (7, 15, 46). Furthermore, exercise has been demonstrated 

to improve acetylcholine-mediated coronary blood flow even in the setting of documented 

coronary artery disease (26, 27), suggesting that the presence of advanced disease does not 

preclude improvements in endothelial function resulting from exercise. Although exercise 

intolerance has been reported in patients with Fabry disease previously (19), a more recent study 

showed that exercise training could improve exercise capacity and well-being of Fabry patients 

who refrained from physical activity in the past (45). This suggests that exercise training might be 

an alternative therapeutic option in Fabry disease. Yet, the benefits of exercise training with respect 

to vasculopathy in Fabry disease remain unclear.  

The purpose of the present study, therefore, was to directly assess the effects of 12 weeks of 

voluntary wheel exercise training on signaling and functional alterations in the aorta using an 

established mouse model of Fabry disease. Specifically, we focused on aortic endothelial function, 

selected enzymes influencing the NO bioavailability in the endothelium (AMPK, Akt, eNOS 

expression and S1177, superoxide dismutase, and the p67phox subunit of NADPH oxidase) and 

indirect markers of vascular oxidative/nitrosative stress level (nitrotyrosine). 

 

Methods 

Mice 
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Gla null mice (129/SvJXC57BL/6J) used in this study were bred from mice originally generated 

and provided by Drs. Ashok Kulkarni and Roscoe Brady (National Institute of Health, Bethesda, 

MD) as described previously (42). These mice were back-crossed a minimum of six generations 

to the C57BL/6J strain. The animals were maintained on a 12-h light/dark cycle (0600 h to 1800 

h) with free access to food and water ad libitum. A week before the voluntary wheel intervention, 

groups of male mice (8-11 months) with similar average body weight were single-housed and 

assigned to either a control sedentary (n=20, SED) or voluntary wheel running group (n=20, EX). 

Mice in the EX group were provided with a running wheel (5” diameter x 2” width) equipped with 

an odometer (Bell Dashboard 100-F12) for 12 weeks. Running distance and food intake were 

monitored daily. Body weight was measured weekly. All animal experiments were conducted 

according to the protocol of the Institutional Animal Care and Use Committee of the University of 

Michigan.   

 

Tissue Harvest  

Animals in the EX group had access to the voluntary wheel up until the time of tissue collection. 

Mice were euthanized with an injection of pentobarbital sodium (66.5 mg/kg ip) at approximately 

0900 h.  Due to the logistics of the functional studies of the aorta, one mouse from each group was 

euthanized per day on consecutive days at the end of the 12-week intervention.   

 

Aortic protein expression 

The thoracic aorta was dissected, cleared of surrounding connective tissues in cold PSS, and frozen 

in liquid nitrogen. The vessels were pulverized in liquid nitrogen using a pestle. Each powdered 

sample was lysed with 200 µl RIPA lysis buffer (#R0278, Sigma) with 1X mixture of 
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phosphatase/protease inhibitors (#P2714, P0044, and P5726, Sigma). Homogenates were then 

incubated on a rotor at 4°C for 1 hr. Cell debris was removed by centrifugation at 10,000 x g for 

10 min at 4°C. Quantification of total protein in each aortic lysate sample was determined by a 

bicinchoninic acid assay with bovine serum albumin as a standard. For measures of aortic protein 

expression, 15 µg of protein with LSB were loaded on 4-12% gradient gels, separated by 

electrophoresis, and transferred onto a nitrocellulose membrane. The membrane was blocked in 

5 % non-fat dry milk in Tris-buffered saline with 0.1% Tween-20 (TBST) for at least 1 hr at room 

temperature. After blocking, the membrane was washed with TBST and incubated with primary 

antibody overnight at 4°C followed by washing with TBST. The membrane was incubated with 

appropriate secondary antibody. The immunoreactive bands were detected with ECL western 

blotting substrate (#32106, Thermo Sci), and quantified by densitometric scanning using ImageJ 

software. 

 

Citrate synthase activity assay 

Gastrocnemius muscles from SED and EX mice were dissected and flash frozen in liquid nitrogen. 

Frozen muscles were weighed, transferred to pre-chilled glass tissue grinding tubes (Kontes, 

Vineland, NJ), and homogenized 1:20 (wt:vol) in ice-cold lysis buffer (50mM TRIS-HCl, 1mM 

EDTA, 0.1% Triton X-100, pH 7.2) using a glass pestle attached to a motorized homogenizer 

(Caframo, Wiarton, ON). Homogenates were then incubated on a rotor at 4°C for 1 hr. The lysates 

were centrifuged at 10,000 x g for 10 min at 4°C to remove cell debris. Quantification of total 

protein in each aortic lysate sample was performed by a bicinchoninic acid assay with bovine 

serum albumin as a standard. Two micrograms of gastrocnemius homogenate were used. Citrate 
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synthase activity was determined using an assay kit according to the instructions (#701040, 

Cayman).   

 

Assessment of aortic endothelial function 

Following the tissue harvest, the thoracic aorta was dissected and placed in a dissection petri dish 

filled with cold physiological salt solution (PSS, mmol/L: 130 NaCl, 4.7 KCl, 1.18 KHPO4, 1.17 

MgSO4, 1.6 CaCl2, 14.9 NaHCO3, 5.5 dextrose, and 0.03 EDTA). After removing connective 

tissue, segments (2-3 mm in length) of aorta were mounted on pins in a myograph system (model 

610M, Danish Myo Technology, Aarhus, Denmark). Vessels were slowly warmed (37°C) and 

aerated (95% O2 and 5% CO2) in PSS for 20 min. Rings were set at 700 mg passive tension and 

equilibrated for 60 min with washing with pre-warmed and aerated PSS every 20 min. Prior to 

performing concentration response curves, vessels were subjected to osmotically balanced 60 mM 

potassium physiological salt solution (mmol/l: 14.7 NaCl, 100 KCl, 1.18 KHPO4, 1.17 MgSO4, 

1.6 CaCl2, 14.9 NaHCO3, 5.5 dextrose, and 0.03 EDTA). After washing, the vessels were 

contracted with 100 mmol/L KPSS until plateau, followed by washes. Phenylephrine (PE, 10-9 

mol/L to 10-4 mol/L) was added cumulatively to establish a concentration-response curve, in which 

PE EC80 was calculated for each individual ring. The vessels were contracted with their individual 

PE EC80 values and allowed to reach a stable plateau. Subsequently, acetylcholine (ACh) or 

sodium nitroprusside (SNP) was added cumulatively to the chamber to determine endothelium-

dependent (ACh) or endothelium-independent (SNP) relaxation. All chemicals used in the vascular 

reactivity study were purchased from Sigma (St. Louis, MO). The vascular reactivity to ACh or 

SNP was presented on a percent basis according to the following formula: Relaxation (%) = (TPE80 

– Td) / (TPE80) x 100, where TPE80 is the steady-state tension produced after addition of PE EC80, 
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and Td is the steady state tension following addition of vasoactive agent (ACh, SNP). Sensitivity 

(EC50) was defined as the concentration of the agent that produced 50% of its maximal response.  

A total of eight mice per group were utilized for these studies. 

 

Statistical analysis 

GraphPad Prism software was used for statistical analysis. The data were presented as mean ± 

standard error of the mean. Results were analyzed using the unpaired t-test for comparison of two 

groups. For vascular reactivity studies using ACh or SNP, concentration-response data was 

analyzed using two-way ANOVA (exercise and concentration) to compare the concentration-

response curves between the EX and SED groups. Bonferroni’s post hoc test was used to assess 

differences at individual points on the concentration-response curves if the results of the two-way 

ANOVA comparison between curves was significantly different. Statistical significance was set 

at p<0.05. 

 

Results 

Overall effects of voluntary wheel running on non-vascular endpoints 

The mice in the voluntary running wheel group (EX) ran on average 10 ± 0.75 km/day (Figure 5 - 

1A). During the first week of the exercise intervention, food intake was not different between the 

mice in the sedentary control (SED) and EX groups (Figure 5 - 1B). In the second week, consistent 

with the increased running distance, EX mice consumed 24% more food compared to SED mice. 

Interestingly, body weights were not different at the completion of voluntary wheel running (VR) 

compared to the beginning of VR in both SED and EX mice (Figure 5 - 1C). Despite no changes 

in total body mass, 12 weeks of VR resulted in a significantly higher heart to body mass ratio and 
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lower gonadal fat to body mass ratio in EX mice compared to those in SED mice (Table 5 - 1). 

The activity of citrate synthase as a marker for mitochondrial content was also measured to confirm 

an exercise training effect (33, 36). Consistent with the results in running distance, there was a 49% 

increase in the citrate synthase activity in gastrocnemius muscle of EX mice compared with SED 

controls (Figure 5 - 2). 

 

VR increases Akt / AMPK / eNOS signaling pathways in the aorta of EX mice 

Exercise has been shown to increase eNOS activity, in part, through shear stress (55). Akt and 

AMPK have been proposed to be critical mediators of shear stress-induced eNOS activation (5). 

The expression and phosphorylation status of Akt, AMPK, and eNOS were determined to test the 

hypothesis that VR induced changes in signaling pathways in the aorta. For these measurements, 

phosphorylation site-specific antibodies were used to probe immunoblots from the aortic 

homogenates from SED and EX mice. As shown in Figure 5 - 3, the ratio of p-AMPK (Thr-172) / 

t-AMPK was significantly higher (arbitrary units; 100 ± 9% vs. 137 ± 13%: SED vs. EX) in the 

aorta of EX than SED mice (Figure 5 - 3A). A significant increase in the p-Akt (Ser-473) / t-Akt 

ratio (arbitrary units; 100 ± 9% vs. 148 ± 17%: SED vs. EX) was also noted in the aorta of EX 

mice in comparison with SED mice (Figure 5 - 3B). It has been shown that phosphorylation of 

eNOS at Ser1177 is a major downstream target of Akt and AMPK in response to exercise and 

shear stress (55). Consistent with the previous finding, we observed a significantly higher p-eNOS 

(Ser-1177) to total eNOS ratio (arbitrary units; 100 ± 10% vs. 154 ± 12%: SED vs. EX) in the 

aorta of EX mice when compared to that of SED mice (Figure 5 - 3C). In addition, eNOS protein 

expression was significantly elevated (arbitrary units; 100 ± 2% vs. 120 ± 4%: SED vs. EX) in 

the aorta of EX in comparison with SED mice (Figure 5 - 3D). These results suggested that 12 
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weeks of VR intervention mediated an increase in expression and activity of eNOS and its 

upstream signaling kinases by which exercise/shear stress exert the beneficial effects on the 

endothelium. 

 

Nitric oxide and oxidative stress levels 

In previous studies increased levels of oxidative/nitrosative stress was observed in tissues of 

patients with Fabry disease and GLA-deficient mice (10, 39, 49). Thoracic aortae were used to 

determine the effects of VR on nitrotyrosine (NT) abundance, a cellular marker of peroxinitrite 

formation, therefore vascular oxidative/nitrosative stress (14). In this study, VR did not alter the 

level of NT in the aortic tissue (Figure 5 - 4A), suggesting the balance between NO and superoxide 

did not change significantly by VR. NO level in response to exercise was next determined in the 

aorta. Soluble guanylate cyclase is the major physiological receptor for NO and catalyzes the 

synthesis of intracellular cGMP level (3). Activated by cGMP is protein kinase G that 

preferentially phosphorylates vasodilator-stimulated phosphoprotein (VASP) at Ser-239 (22, 41). 

We observed no changes in p-VASP (Ser 239) to t-VASP ratio in response to 12 weeks of VR 

(Figure 5 - 4B). Because VASP is a common marker used for monitoring NO availability (41), 

this suggests no improvement in NO/cGMP signaling with VR. In addition, VR had no effect on 

the protein expressions of Mn-, CuZn-, and ec-SOD in the aortae of EX compared to SED mice 

(Figure 5 - 5A-C). Finally, we determined the effect of VR on NADPH oxidase, a prominent source 

of vascular-derived reactive oxygen species, in the aorta (23). Phox67 is one of the subunits of 

NADPH, and has been found to be reduced in aorta of mice following VR training (15). In the 

present study, VR did not alter phox67 subunit protein expression in EX mice compared to SED 

(Figure 5 - 5D). 
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Endothelial function 

The vascular contraction mediated by 100 mmol/L KPSS was equivalent in aortae from SED and 

EX mice (1351.81 ± 117.09 mg vs. 1511.36 ± 105.54 mg, n=8/group, p>0.05). Phenylephrine (PE) 

caused a concentration-dependent contraction in isolated aortic rings from both SED and EX mice 

(Figure 5 - 6A). The PE-induced contractions were equivalent in aortae from SED and EX mice 

as demonstrated by similar log EC50 values (-6.58 ± 0.01 vs. -6.63 ± 0.02, p>0.05) as well as 

equivalent Emax values (140.83 ± 4.71% vs. 140.60 ± 10.01%, p>0.05). Based on the PE-induced 

contraction response, PE EC80 was calculated for each aortic ring. Receptor-mediated 

endothelium-dependent relaxation to acetylcholine (ACh) was examined in aortic rings from SED 

and EX mice. The vessels from SED and EX mice were dilated to ACh in a dose-dependent manner 

(Figure 5 - 6B). Both the maximal relaxation elicited by ACh (36.21 ± 7.88% vs. 44.0 ± 7.04%, 

p>0.05) and log EC50 values (-6.73 ± 0.14 vs. -6.78 ± 0.12, p>0.05) did not differ between the 

groups. Sodium nitroprusside (SNP) induced a concentration-dependent, endothelium-

independent relaxation in isolated aortae from SED and EX mice (Figure 5 - 6C). However, SNP-

mediated vasodilation was greater in the aortic rings from both SED and EX mice (67.89 ± 7.48% 

vs. 74.75 ± 6.05%) than the endothelium-dependent dilation to ACh (Figure 5 - 6B), suggesting 

the low magnitude of relaxation to ACh was not due to changes in the sensitivity of vascular 

smooth muscle to NO. 
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Discussion 

Previous research regarding Fabry disease has focused on the pathophysiologic mechanisms using 

both patients and mouse models (4, 16, 38, 40, 43, 47). However, few studies have investigated 

the potential effects of exercise training on endothelial dysfunction in Fabry disease (45). In this 

study, we examined whether 12 weeks of VR intervention could improve endothelial dysfunction 

in the presence of eNOS uncoupling in a mouse model of Fabry disease. Our results indicate that 

in aged mice with Fabry disease, VR (a) induced exercise training adaptations, (b) increased 

Akt/AMPK/eNOS signaling pathways in the aorta, but (c) did not improve endothelial dysfunction 

and systemic markers of oxidative stress in the aorta and plasma.  

Our finding that VR induced training adaptations in tissues was supported by an increase in heart 

size and skeletal muscle citrate synthase activity. After 12 weeks of VR, a heart to total body mass 

ratio was higher in EX compared to SED mice. In addition, the magnitude of the increase in citrate 

synthase activity observed in EX compared to SED mice was comparable with a previous study 

examining the skeletal muscle of wild-type C57BL/6J mice following voluntary wheel exercise 

(20). 

EX mice had 54% and 20% higher levels of aortic p-eNOS at Ser1177 and protein expression of 

eNOS, respectively, compared to SED mice. One possible mechanism by which VR augmented 

eNOS activity as well as protein expression is through an activation of upstream kinases of eNOS 

by an increase in shear stress during exercise. Several lines of evidence have demonstrated that 

eNOS mRNA and protein expression are increased in endothelial cells exposed to shear stress (11, 

12), in isolated coronary arterioles subjected to elevated intraluminal flow (53, 54), and in the aorta 

from exercise trained mice (12, 24, 32, 34) and rats (2). In a previous study, shear stress increased 

eNOS activity, measured by NO production and phosphorylation of eNOS at S1177, via 
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PI(3)K/Akt-dependent pathway in HUVEC cells, which was prevented by wortmannin and in cells 

transfected with dominant-negative Akt mutant (13). Zhang et al. showed that arterial p-eNOS 

S617, which is activated by Akt alone, and p-eNOS S1177, which is activated by both Akt and 

AMPK, were increased in response to treadmill-running in mice (55). In the same study, 

intraperitoneal administration of wortmannin before treadmill running revealed either Akt or 

AMPK alone might be sufficient to activate p-eNOS S1177 during exercise. As such, we 

determined activation status of Akt and AMPK in the aorta in response to VR in this study. In 

keeping with the previous findings, we observed elevated levels of phospho -Akt (S473), -AMPK 

(T172), and -eNOS (S1177) in the aorta of EX in comparison with SED mice. 

Previous study in our lab has observed that endothelial dysfunction in the aorta was evident in 3-

5 month-old GLA deficient mice, characterized by decreased maximal vasodilation to ACh in the 

aorta (Emax: ~60%) (43). In the present study, the Emax to ACh in GLA deficient mice at 11-13 

months was approximately 40%. Another group reported 25% of Emax to ACh in the same mice at 

19 months (28). These results indicate a progressive decline in endothelial function in Fabry 

disease. Indeed, endothelial dysfunction in the mesenteric artery and accelerated oxidant-induced 

thrombosis in the setting of GLA deficiency in other studies were all shown to be age-dependent 

(16, 30). A previous study by Durrant el al. showed that carotid artery vasodilatation to ACh was 

improved in older mice of an aging model subjected to 10-14 weeks of voluntary running 

compared to their age-matched sedentary counterparts (15). On the other hand, some studies have 

reported that exercise did not improve endothelial function and/or arterial stiffness despite 

significant improvement in VO2peak or p-eNOS S1177 (31, 50). One possible reason that VR did 

not improve endothelial relaxation in the aged Fabry mice in the current study might be related to 

the rapid inactivation of NO by reactive oxygen species (ROS). In the presence of elevated ROS, 
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NO binds to superoxide to form peroxynitrite, a powerful oxidizing intermediate (21). NT has been 

used as a specific marker of the presence of reactive oxygen/nitrogen species (15, 29). In a previous 

study, an age-related increase in NT in the aorta of older mice of an aging model was attenuated 

by VR with a corresponding increase in SOD and decreased NADPH oxidase activity (15). 

However, in the current study, the levels of NT were unaltered by VR. Furthermore, the 

phospho/total VASP ratio and the expressions of SODs and p67phox, an important regulatory 

subunit of NADPH oxidase, did not differ significantly between EX and SED mice, indicating no 

changes in the balance between NO availability and oxidative/nitrosative stress. In previous studies 

NT levels of GLA deficient mice were significantly elevated even at 2 months of age compared to 

wild type mice, suggesting oxidative stress in this setting does not simply represent normal age-

related alterations (30, 49). Rather, the changes likely represent direct and/or indirect consequences 

resulting from Gb3 accumulation and related pro-inflammatory conditions, such as elevated ROS 

and eNOS uncoupling (47, 49). These results suggest that the expected shear stress-induced 

benefits on endothelial function may have been prevented by the presence of elevated ROS level 

in these aged Fabry mice.  

Another potential reason that the elevated eNOS activity did not translate to improvement in 

endothelial function in the aorta might be advanced morphological alterations of the smooth 

muscle cells and extracellular matrix preceding the VR intervention. For example, the aortae from 

GLA deficient mice displayed less sensitive endothelium-independent relaxation with an NO 

donor compared to wild type mice, suggesting alterations in vascular smooth muscle cells (SMC) 

(43). Heare et al. reported that aortic wall thickness of GLA-deficient mice was significantly 

increased with high Gb3 storage level in endothelium and vascular SMC compared with wild type 

mice (28). Progressive thickening of the intima-media layers of radial arteries was also observed 
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in patients with Fabry disease (6). One hypothesis is that accumulation of lyso-Gb3 

(globotriaosylsphingosine) in the SMC promotes SMC proliferation resulting in increased intima-

media thickness in the setting of Fabry disease (1). Gb3 accumulation in the endothelial cells has 

also been reported to increase ROS and cellular adhesion molecules (47). Often, these pathological 

conditions are associated with inflammation, hypertrophy, apoptosis, and replacement fibrosis in 

older patients with Fabry disease (48, 51). Thus, VR may not be able to reverse the age-related 

alterations that have accumulated before the initiation of the intervention in Fabry disease. Taken 

together, these data indicate that our exercise intervention does not reverse endothelial dysfunction 

and oxidative stress level in these aged GLA-deficient mice. 

Several limitations exist in our study. First, age-matched wild-type mice were not included for a 

direct comparison of the measurements with GLA-deficient mice. However, we and others have 

previously demonstrated endothelial dysfunction in younger and older mice with Fabry disease 

compared to age-matched wild-type mice (28, 30, 43). In addition, the primary goal of the present 

study was to gain initial insight into the effects of exercise on endothelial dysfunction and changes 

in signaling pathways in aged mice with Fabry disease. Finally, we assessed the levels of signaling 

kinases in aortic homogenates rather than in the aortic endothelial cells alone. However, a recent 

study, using phospho-protein-specific antibodies with immunohistochemistry analysis, 

demonstrated that exercise induced an activation of AMPK with concurrent elevation of p-eNOS 

S1177 in the endothelial cells to a greater extent than those in the smooth muscle cells in the aorta 

of mice (9). Although our study bears some limitations, this is the first study to evaluate the 

influence of voluntary running on endothelial function in a mouse model of Fabry disease. 

In conclusion, VR significantly improved Akt/AMPK/eNOS signaling pathways without 

improvement of the severe endothelial dysfunction evident in the aorta of aged mice with Fabry 
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disease. This finding has clinical relevance to Fabry disease treatment by supporting the notion 

that early intervention may be necessary for clinical improvements. Emerging clinical data 

evaluating the effectiveness of long-term enzyme replacement therapy indicated that this therapy 

does not prevent the occurrence of new cardiovascular complications in Fabry patients with more 

advanced disease (44). Furthermore, another recent study demonstrated that Fabry patients 

without myocardial fibrosis, compared to those with myocardial fibrosis, showed better 

outcomes regarding left ventricular mass, improved myocardial function, and a higher exercise 

capacity during 3 years of enzyme replacement therapy (52). Similarly, the findings of this study 

raise a primary question of whether exercise might suppress the progression of endothelial 

dysfunction in this setting if started earlier in this disease process. Future studies examining the 

effects of exercise in younger age or as an adjuvant treatment with enzyme replacement therapy 

will further our understanding of the effects of exercise as a potential strategy for preventive and 

therapeutic interventions for vasculopathy in Fabry disease. 
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Figures 

 
Figure 5 - 1. Daily running distance and changes in food intake and body weight in SED 
and EX mice during 12-week voluntary wheel intervention 

Graphs show A. the average daily running distance (km/day), B. food intake (g/day); *p<0.001 
compared to SED mice, and C. changes in body weight expressed as percent of that at the 
beginning of the 12-week voluntary wheel intervention (n=19/group). *p<0.05 compared to 
SED mice. The data represent the mean ± SEM. 
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Table 5-1. Summary of parameters of SED and EX mice  

      SED EX 

Final body weight (g) 35.1 ± 0.6 34.0 ± 0.6 

Food intake (g/day) 5.4 ± 0.1 6.9 ± 0.2* 

Heart (mg)  198.4 ± 5.6 225.0 ± 6.2* 

Heart:BW (g/g x 100) 0.57 ± 0.01 0.66 ± 0.01* 

Gonadal fat (mg)  533.7 ± 46.1 277.9 ± 18.7* 

GF:BW (g/g x 100)   1.50 ± 0.12 0.82 ± 0.06* 

 

Data are shown as mean ± SEM (n=19/group). *p < 0.01 compared to SED mice. 
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Figure 5 - 2. Increased citrate synthase activity in gastrocnemius muscle from EX mice 

Gastrocnemius muscle was homogenized as described in the method section. Citrate synthase 
activity in muscle homogenate was determined by measuring the production of SH-CoA from 
the condensation of dicarboxylate oxaloacetate and acetyl CoA by citrate synthase (n=8/group). 
The data was expressed as µmol/min/mg protein. *p < 0.001 compared to SED mice.  
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Figure 5 - 3. Increased p-AMPK, p-Akt, and p-eNOS in the aorta of EX mice 

An equal amount of aortic homogenates was separated by SDS-PAGE. Representative blots 
were shown above each summary graph. A. Phospho-AMPKα (Thr172) was normalized to total 
AMPKα expression and expressed relative to SED mean (n=7/group). *p<0.05. B. Phospho-Akt 
(Ser473) was normalized to total Akt expression and expressed relative to SED mean 
(n=7/group). *p<0.05. C. Phospho-eNOS (Ser1177) was normalized to total eNOS expression 
and expressed relative to SED mean (n=7/group). *p<0.01. D. Total eNOS protein expression 
was normalized to GAPDH and expressed relative to SED mean (n=7/group). *p<0.001. 
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Figure 5 - 4. Levels of ROS/RNS and NO bioavailability in the aortic tissue 

An equal amount of aortic homogenates was separated by SDS-PAGE. Representative blots 
were shown above each summary graph. A. Nitrotyrosine abundance was normalized to 
GAPDH and expressed relative to SED mean (n=7/group). B. Phospho-VASP (Ser239) level 
was normalized to total VASP expression and expressed relative to SED mean (n=7/group). 
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Figure 5 - 5. Levels of SOD and phox67 subunit of NADPH oxidase in the aorta of SED 
and EX mice 

An equal amount of aortic homogenates was separated by SDS-PAGE. Representative blots 
were shown above each summary graph. A. SOD1 was normalized to GAPDH and expressed 
relative to SED mean (n=7/group). B. SOD2 was normalized to GAPDH and expressed relative 
to SED mean (n=7/group). C. SOD3 was normalized to GAPDH and expressed relative to SED 
mean (n=7/group). D. The level of phox67, a subunit of NADPH oxidase, was normalized to 
GAPDH and expressed relative to SED mean (n=7/group). 
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Figure 5 - 6. Endothelium-dependent and -independent aortic vascular relaxation in SED 
and EX mice with Fabry disease 

A. Phenylephrine (PE)-mediated vascular contraction in aortic rings from SED and EX mice 
was expressed as percentage maximum response to KPSS (n=8/group). B. Acetylcholine (ACh)-
mediated endothelium-dependent relaxation in the aortic rings from SED and EX mice was 
expressed as a percentage relaxation of the pre-contraction elicited by PE EC80 (n=8/group). C. 
Sodium nitroprusside (SNP)-mediated endothelium-independent relaxation in the aortic rings 
from SED and EX mice was expressed as a percentage relaxation of the pre-contraction elicited 
by PE EC80 (n=8/group). 
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CHAPTER 6 

 

OVERALL DISCUSSION 

 

It is very clear that cardiovascular disease and stroke contribute to the immense health and 

economic burdens in the United States and globally (11). Although the rates of cardiovascular 

disease have declined over decades, heart disease, stroke, and related vascular deaths still remain 

as the leading causes of morbidity and mortality in the United States (10). Endothelial dysfunction 

has been associated with the primary risk factors for cardiovascular disease, including smoking, 

physical inactivity, obesity, diabetes, hypertension, and dyslipidemia. Endothelial dysfunction is 

characterized by reduced bioavailability of vasodilators, in particular nitric oxide (NO), and 

considered as a key early step in atherosclerosis and a contributor to arterial thrombosis. Fabry 

disease is caused by α-galactosidase A (GLA) deficiency, which has pleiotropic effects on multiple 

organ tissues, resulting in renal disease, cardiomyopathy, and vasculopathy associated with 

accumulation of globo-series glycosphingolipids including globotriaosylceramide (Gb3). 

However, Gb3 has been implicated in other pathological conditions as well. For example, 

hemolytic-uremic syndrome (HUS), characterized by the classic presentation of acute renal injury, 

microangiopathic hemolytic anemia, and thrombocytopenia, is the leading cause of acute renal 

failure in children and associated with enteric infection by Shiga toxin-producing organisms, 

predominantly Escherichia coli (13). Although most patients of hemolytic-uremic syndrome 
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normally recover from kidney damage completely, approximately 5% of patients with hemolytic-

uremic syndrome die by damage to the brain (18). A previous study has shown that elevated levels 

of inflammatory cytokines markedly increased brain endothelial cell surface Gb3 expression, a 

receptor for Shiga toxin, and brain endothelial cell damage (19). Furthermore, a recent study has 

revealed that elevated urinary Gb3 is positively associated with near-term mortality in heart disease 

patients who do not have Fabry disease (15), suggesting abnormalities in glycosphingolipid 

metabolism are associated with cardiovascular diseases beyond this rare lysosomal storage 

disorder. Therefore, Fabry disease provides a unique model to explore the link between Gb3 

accumulation and endothelial dysfunction, findings of which may be applied to a broader 

population with cardiovascular disease. Using this Fabry model, my dissertation projects were 

designed to further characterize the causes and consequences of endothelial dysfunction and 

inflammation in Fabry disease. Furthermore, the effects of an exercise intervention on endothelial 

function were examined in the setting of eNOS uncoupling as present in mice with Fabry disease. 

Together, the three of my dissertation projects discussed herein have enhanced our understanding 

of the effects of: 1) GLA deficiency on microvascular endothelial dysfunction; 2) the disruption 

of GLA on the secretion of endothelial-derived VWF; and 3) exercise on aortic endothelial 

function and signaling alterations related to eNOS activity in the setting of GLA deficiency. 

Important findings of my dissertation studies include that: A) the GLA deficiency resulted in an 

early endothelial dysfunction in the mesenteric artery associated with Gb3 accumulation and eNOS 

uncoupling (STUDY 1); B) the genetic disruption of GLA in endothelial cells directly promoted 

decreased eNOS activity and elevated VWF secretion (STUDY 2); C) improving NO level or 

scavenging reactive oxygen species (ROS) inhibited VWF release in the setting of GLA deficiency 

(STUDY 2); and D) 12 weeks of voluntary wheel exercise improved signaling cascades of selected 
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kinases that are known to activate eNOS in the aorta without alterations of endothelial function in 

older mice with Fabry disease (STUDY 3). In this overall summary of my dissertation, I will 

attempt to expand on the findings of my projects and provide an integrative discussion of the 

collective implications that can be derived from my dissertation studies.  

The key underlying component of all three of my dissertation studies was the examination of the 

hypothesis that dysregulation of eNOS is an important underlying basis for the vasculopathy in 

Fabry disease. The basis for this hypothesis was largely generated from previous studies of Gla-

deficient mice and in vitro endothelial models of Fabry disease. Briefly, Gla deficient mice 

demonstrated a marked increase in atherosclerotic plaque lesion on an apoE1-deficient background 

compared to wild type mice (1). In another model, when arterial injury was induced in the carotid 

artery by the release of photochemical-mediated reactive oxygen species, Gla knockout mice 

exhibited a higher propensity for thrombosis than wild type mice (5). In a third model, aortic rings 

from Gla-deficient mice demonstrated impaired relaxation to acetylcholine (12). Finally, 

disruption of GLA in a human endothelial cell line, EA.hy926, showed decreased eNOS activity 

and robust elevation in 3-nitrotyrosine, a marker for eNOS uncoupling (17). Both STUDY 1 and 

STUDY 2 of my dissertation provide further support for the previous hypothesis. In STUDY 1, I 

reported that Gla-deficiency promoted an early profound reduction (~70%) in acetylcholine-

mediated, endothelium-dependent relaxation in the mesenteric artery of Gla-null mice at 2 months 

of age compared to wild type mice. In an older age (8 months), the endothelium-dependent 

relaxation in the mesenteric artery of Gla knockout mice was completely absent. These conditions 

were associated with increased eNOS uncoupling at the younger age and changes in eNOS-

regulatory phosphorylation sites at the older age. In STUDY 2, both short-term and permanent 

deletion of GLA from cultured endothelial cells promoted a decrease in eNOS activity (~60%) 
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similar to a previous study (17). Subsequently, a robust increase in VWF release from endothelial 

cells was observed when GLA was disrupted. Using VWF as a biomarker for endothelial 

dysfunction in these cells, I have found that pharmacological treatments that increase eNOS 

activity and NO level or decrease reactive oxygen and nitrogen species completely normalized the 

elevated VWF secretion in GLA deficient cells. However, recombinant GLA, the current standard 

of care for Fabry disease, did not improve endothelial dysfunction. This finding is important 

because strokes continue to occur in advanced Fabry disease patients while receiving recombinant 

GLA replacement therapy. The findings of STUDY 2 support the previous hypothesis of eNOS 

dysregulation as an important basis of the underlying vasculopathy in GLA deficiency and 

advocate for new possible strategies to improve endothelial dysfunction in Fabry disease.  

Although my dissertation studies generally reaffirmed the major concepts of the current hypothesis, 

the widely accepted dogma that exercise can reverse an existing endothelial dysfunction in 

pathological conditions, was not supported in STUDY 3. For example, several studies examining 

patients with CAD have demonstrated that aerobic exercise training improves endothelium-

dependent coronary artery dilatation as well as blood flow in CAD patients (7, 8). This 

improvement in endothelial function was associated with elevated eNOS expression and 

phosphorylation at serine1177 (S1177), a major eNOS activating phosphorylation site. The 

beneficial effects of exercise on endothelial dysfunction through activation of eNOS were also 

observed in the setting of sedentary aging (4, 20). In these studies, 3 months of aerobic exercise 

intervention restored the impaired arterial compliance and endothelium-dependent vasodilatation 

in sedentary middle-aged and older men to the level of those in healthy young men. It is important 

to note that beginning an exercise program in healthy men at any stage of life yielded significant 

cardiovascular health benefits (4, 20). However, in STUDY 3, I have found that 12 weeks of 
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exercise intervention did not improve endothelial dysfunction in the aorta of GLA deficient mice 

despite the activation of AMPK/Akt/eNOS signaling pathways. A previous study demonstrated 

that activating eNOS through S1177 phosphorylation under a complete BH4 depletion, a condition 

known to induce eNOS uncoupling, leads to increased superoxide production from the enzyme in 

vitro (3). However, in STUDY 3, the activation of eNOS in the setting of severe eNOS uncoupling 

(i.e. Fabry diease) in vivo was found not to be detrimental.  

Several important findings from STUDY 3 gave rise to questions as to 1) why was the endothelial 

function not improved despite the eNOS activation?, and 2) does this portend that endothelial 

dysfunction is not reversible in this setting? One possible explanation would be the presence of 

advanced morphological alterations of the smooth muscle cells and/or extracellular matrix that 

may have preceded the exercise intervention. This notion is supported by several previous 

observations. For example, aortic wall thickness of GLA-deficient mice has been reported to be 

significantly increased compared with wild-type mice (9). In addition, progressive thickening of 

the intima-media layer of radial arteries was also observed in patients with Fabry disease (2). These 

previous observations together with the results of STUDY 3 raise another question of whether 

exercise can delay/prevent the development of endothelial dysfunction and eNOS uncoupling if 

started earlier in this disease process. This hypothesis that timing of intervention would be 

important is substantiated by previous observations. Weidemann et al. studied the effects of 

enzyme replacement therapy (ERT) over a period of 3 years on disease progression and clinical 

outcomes (left ventricular mass, myocardial function, and exercise capacity) in three groups of 

Fabry patients with no, mild, and severe fibrosis (21). ERT resulted in a significant improvement 

in all of these clinical outcomes only in the patients without left ventricular fibrosis. In comparison, 

the patients with mild or severe fibrosis revealed only a minor reduction in left ventricular mass 
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and no improvement in myocardial function or exercise capacity in response to ERT. This 

observation indicates that once irreversible structural changes such as fibrosis are present, ERT 

has only minor effects in Fabry patients. It follows, therefore, that an early intervention with ERT 

could provide greater protection regarding important cardiovascular complications, including 

stroke. Gb3 accumulation has been hypothesized to be the main mechanism that causes the 

vasculopathy in Fabry disease. This hypothesis seems reasonable because the metabolites that 

accumulate as a result of GLA deficiency, such as Gb3 and lyso-Gb3, have been demonstrated to 

directly or indirectly promote decreased NO level and elevated ROS production (14, 16). However, 

despite the efficacy of ERT on clearing stored globo-series glycosphingolipids from endothelium, 

it has become clear that enzyme replacement has limited impact on the prevention of important 

cardiovascular complications in Fabry disease. This suggests that even though Gb3 could be the 

causal basis for the initial ROS production and decreased NO level, the more complex alterations 

in vascular function occur once the disease is far advanced. Under chronically elevated ROS, 

bioavailability of NO is decreased by a reaction with superoxide, leading to the formation of 

peroxynitrite (6). Peroxynitrite is a potent oxidant, capable of oxidizing BH4, an important cofactor 

for eNOS (6). With reduced BH4 level, eNOS becomes uncoupled, producing more superoxide 

and less NO, which promotes further uncoupling of the enzyme. Thus, the endothelial cells enter 

a vicious cycle (Figure 6) where eNOS dysregulation is exacerbated. Therefore, in the advanced 

stage of Fabry disease, it is possible that simply removing Gb3 may not be sufficient to “recouple” 

eNOS in the presence of elevated ROS. The findings of STUDY 2 support this hypothesis. Using 

VWF as a marker for endothelial dysfunction, I have shown that GLA deficiency can directly 

promote eNOS dysregulation and VWF release in cell culture. Furthermore, providing human 

recombinant GLA back to the deficient cells resulted in only a partial decrease in the VWF 
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secretion, suggesting endothelial cells remained dysfunctional. In contrast, the pharmacological 

agents that are known to increase exogenous NO availability, correct eNOS uncoupling, or to 

decrease ROS level were demonstrated to inhibit VWF exocytosis in cell culture. Therefore, the 

clinical observation of continued cardiovascular disease complications during ERT, including 

cerebrovascular events, may be due to an incomplete restoration of the balance between NO and 

ROS, and endothelial inflammation. In Study 3, the exercise intervention (non-pharmacological 

approach) was observed to improve signaling cascades of eNOS activation. Considering these 

observations together, it is plausible to hypothesize that adjuvant therapies improving NO levels 

by (non)pharmacological approaches with ERT in an earlier stage of the disease process may have 

beneficial effects in Fabry disease.  

Currently, it is challenging to demonstrate the efficacy of ERT or alternate treatment strategies 

specifically for Fabry disease due to the following reasons: 1) a heterogeneous phenotype of 

patients, 2) a difficulty to recruit enough number of patients with this rare disease, and 3) the 

necessity of long-term follow-up studies that use stroke, myocardial infarction, and death as 

endpoint measures due to the lack of biomarkers. In STUDY 1, I have found an early endothelial 

dysfunction in the mesenteric artery, which was exacerbated in an age-dependent manner. Plasma 

VWF, but not sVCAM-1, of GLA-deficient mice was associated with the presence of endothelial 

dysfunction and eNOS uncoupling (STUDY 1 and 2). These results collectively suggest that VWF 

may reveal the presence and/or degree of endothelial dysfunction in Fabry disease. Future studies 

should evaluate whether VWF levels may be useful to determine the risk of stroke and myocardial 

infarction, particularly in Fabry patients with and without a history of intravascular thrombotic 

events. 
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In summary, my dissertation projects support our current understanding that endothelial 

dysfunction is an important mechanism contributing to the accelerated cardiovascular disease 

complications in Fabry disease. Specifically, my dissertation projects provide the first evidence 

that: A) GLA-deficiency causes profound endothelial dysfunction in the mesenteric artery in an 

early stage of the disease, B) the disruption of GLA in endothelial cells directly promotes 

endothelial inflammation and VWF secretion, which is inhibited by restoration of NO level, and 

C) exercise increases signaling cascades that are shown to activate eNOS without significant 

improvement in aortic endothelial relaxation in GLA deficient mice. My dissertation STUDIES 1-

3 collectively reaffirm the notion that the endothelium, as a primary interface between blood and 

body tissues, is an active organ whose normal function is crucial for maintaining vascular health. 

The results of my dissertation studies lay the foundation for future experiments to further 

understand the mechanisms of endothelial dysfunction and inflammation in Fabry disease, and 

may provide a platform to study the efficacy of new treatment strategies. 
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Figure 6 - 1. GLA deficiency promotes eNOS uncoupling 

The loss of activity of the lysosomal GLA results in a toxic accumulation of globo-series 
glycosphingolipids in vascular endothelial cells. The Gb3 accumulation induces the formation 
of reactive oxygen species and oxidative stress. eNOS-derived NO binds to superoxide to form 
peroxynitrite, which reduces an important cofactor of eNOS, BH4, to BH2. In the absence of 
BH4, eNOS generates less NO and more superoxide and produces peroxynitrite, which promotes 
further uncoupling of eNOS. In this vicious cycle, replacement of GLA or removing Gb3 may 
not be sufficient to “recouple” eNOS. Abbreviations: GLA: α-galactosidase A; ROS: reactive 
oxygen species; ONOO-: peroxynitrite; BH4: tetrahydrobiopterin; BH2: dihydrobiopterin; eNOS: 
endothelial nitric oxide synthase; NO: nitric oxide; O2

-: superoxide. 
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Appendix I: Study 2 

 

This section contains additional figures for data collected from Study 2 that were not included in 

Chapter 4. 
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Figure A - I 4 - 1. Elevated sICAM-1 level in WT and Gla deficient mice 

The blood was drawn via the retro-orbital plexus from male wild type (WT) and Gla deficient 
mice at the indicated ages. Levels of soluble intercellular adhesion molecule 1 (sICAM-1) were 
measured by ELISA (n=6/group and n=2-3/group at 2 and 12 months, respectively). *p < 0.02 
compared to the same genotype at 2 months, †p < 0.05 compared to the age-matched WT mice. 
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Figure A - I 4 - 2. Correlation between VWF and the number of cells 

EA.hy926 cells were grown in 75 cm2 flasks and trypsinized. Cell number was counted by 
hemocytometer. The indicated number of cells were lysed with lysis buffer, and VWF levels in 
the lysate samples were measured by AlphaLISA (n=3/group).  
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Figure A - I 4 - 3. Histamine-evoked VWF release from EA.hy926 cells with different days 
of confluency 

EA.hy926 cells were plated at 6 x 106 density in a 100 cm2 petri dish. The cells were grown for 
the indicated days above after cell confluency was attained. The cells were washed twice with 
0% FBS DMEM media and incubated in vehicle (DMEM) or histamine (100 µM) for 90 
minutes. The concentration of VWF released into media was determined by ELISA using a 
dilution series of pooled normal plasma with known VWF antigen levels as standards 
(n=2/group). 
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Figure A - I 4 - 4. Histamine-evoked VWF release in CRISPR cells 

CR-WT and CR-GLA cells were plated at 2 x 105 density in a 24-well plate. The cells were 
grown for 10 days after cell confluency was attained. The cells were washed twice with 0% FBS 
DMEM media and incubated in vehicle (DMEM) or histamine for 60 minutes. A. The 
concentration of VWF released into media was determined by ELISA using a dilution series of 
pooled normal plasma with known VWF antigen levels as standards (n=3/group). B. The VWF 
levels were expressed as fold changes with respect to CR-WT vehicle. C. The VWF levels were 
expressed as fold changes with respect to each vehicle condition. 
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Figure A - I 4 - 5. The effect of DDAVP on VWF secretion in WT and Gla deficient mice 

The blood was drawn via the retro-orbital plexus from female wild type (WT) and Gla deficient 
mice at 10 months of age before an intravenous injection of desmopressin (DDAVP) at 3 µg/kg 
body weight. The blood was drawn again, 2 and 24 hours post DDAVP injection. Circulating 
plasma VWF levels were measured by ELISA (n=6-8/group). A dilution series of pooled 
platelet-poor plasma (PPP) from C56BL/6 mice (n=10) was used as a reference (100%). *p < 
0.02 compared to the time-matched WT. 
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Appendix II: Study 3 

 

This section contains additional figures for data collected from Study 3 that were not included in 

Chapter 5. 
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Figure A - II 5 - 1. VWF levels in EX and SED mice at the completion of 12 weeks of 
voluntary wheel exercise training 

The blood was drawn from mice via the left ventricle using a 3 mL syringe and a 21 gauge 
needle preloaded with sodium citrate (1:9, v/v to blood) (n=19/group). Blood was centrifuged 
at 2,000 x g for 10 min at room temperature to obtain platelet-poor plasma. VWF antigen levels 
in the plasma was determined by ELISA. A dilution series of pooled platelet-poor plasma (PPP) 
from C56BL/6 mice (n=10) was used as a reference (100%). 
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