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ABSTRACT

The goal when solving scheduling problems is to generate a high-quality schedule that

satisfies every scheduling requirement. When scheduling healthcare providers, the qual-

ity of a schedule is often measured through provider satisfaction, a crucial issue that af-

fects provider morale and patient safety. Manually generating a schedule for healthcare

providers, as is often done in practice, can require a significant amount of time and ef-

fort. Additionally, since identifying a schedule that satisfies every scheduling requirement

is challenging, it may not be practical to also consider all of the additional scheduling pref-

erences that lead to improved provider satisfaction. Using computer-based mathematical

programming to solve scheduling problems can dramatically decrease the time required

to generate a schedule while also greatly improving the quality of the schedule. However,

there are additional challenges associated with solving scheduling problems with computer-

aided scheduling methods. This dissertation addresses some of these scheduling challenges

in relation to scheduling healthcare providers.

Specifically, we study three healthcare provider scheduling problems in this disserta-

tion and propose methods for overcoming challenges associated with solving them. In the

first problem, surgeons must be assigned to both operating and clinical rooms while satis-

fying many scheduling requirements. For this problem, we elaborate on the challenges we

experienced while developing a mathematical scheduling model and show how the use of

alternative variable definitions allowed us to overcome those challenges. In doing so, we

explore the art of modeling and its impacts on solving a real-world scheduling problem.

In the second scheduling problem we address, medical residents must be scheduled for

viii



their training rotations. For this problem, we expand on the previously discussed concept of

using alternative decision variables by showing how different decision variable definitions

can be used to simplify complex scheduling rules and improve computational performance.

In both of the first two problems, it is desirable to maximize the number of individual

scheduling requests that can be satisfied. Satisfying every scheduling request, however,

is typically not possible. For solving the third scheduling problem we address, a resident

shift scheduling problem, we develop a novel approach for resolving conflicting schedul-

ing requests. Our approach identifies the exhaustive collection of maximally-feasible and

minimally-infeasible request sets which can then be used by the decision maker to deter-

mine their preferred schedule.
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CHAPTER 1

Introduction

Scheduling problems present significant challenges and are found in almost every indus-

try and application domain, including: manufacturing (Graves, 1981; MacCarthy & Liu,

1993), commercial shipping (Stahlbock & Vo, 2008), passenger railways (Higgins et al.,

1996) and airlines (Cohn & Lapp, 2010), sports (Nemhauser & Trick, 1998; Rasmussen

& Trick, 2008), and healthcare (Cayirli & Veral, 2003; Cardoen et al., 2010; Hall, 2012).

As a result, they have been widely studied for many decades (Pinedo, 2012). Personnel

scheduling presents additional challenges above and beyond scheduling machines, due to

individuals’ unique characteristics and preferences (Van den Bergh et al., 2013). This is

certainly true in healthcare (Cheang et al., 2003). Accommodating preferences can em-

power employees, which often leads to improved task performance and job satisfaction

(Sagie & Krausz, 2003).

Personnel scheduling, in its most basic form, is the process of assigning people to work

shifts. In some cases, rostering (i.e., deciding the size and composition of the workforce)

is also part of the scheduling process. Effective personnel scheduling and rostering can

reduce operating costs while improving workplace morale, but can be challenging in prac-

tice due to the combinatorial nature of the problem. Another major challenge of personnel

scheduling is incorporating issues such as workload balance, fairness, and individual re-

quests. Ernst et al. (2004b) reviews scheduling and rostering problems in many different

application areas and references literature relating to the models and methods used to solve
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these problems. Ernst et al. (2004a) offers an annotated bibliography on over 700 personnel

scheduling papers. Van den Bergh et al. (2013) provides a review of more recent personnel

scheduling literature.

For healthcare personnel, nurse scheduling has received the most attention after first

appearing in the 1960’s (Wolfe & Young, 1965). Much of the work has focused on assign-

ing nurses to shifts in order to satisfy work-related rules and service coverage needs while

attempting to satisfy hospital and nurse preferences. Burke et al. (2004) describes some

of the models and solution approaches that have been used for nurse scheduling problems

and provides a review on some of the related papers. Many other models and solution ap-

proaches for nurse scheduling problems have been published more recently (Chiaramonte

& Chiaramonte, 2008; Aickelin et al., 2009; Burke et al., 2012; Smet et al., 2014; Maass

et al., 2015).

For medical residents (licensed physicians who are receiving additional training from

more experienced physicians), many scheduling studies focus on rotation/block scheduling

(Franz & Miller, 1993; Guo et al., 2014; Bard et al., 2016; Agarwal, 2016; Proano & Agar-

wal, 2017) or shift scheduling (Sherali et al., 2002; Topaloglu, 2006, 2009; Topaloglu &

Ozkarahan, 2011; Perelstein et al., 2016). Rotation scheduling involves assigning residents

to medical units for extended periods of time in order to fulfill both individual educational

and system coverage requirements. Shift scheduling for medical residents is similar to the

nurse scheduling problem, but involves satisfying additional requirements related to the ed-

ucational needs of the residents. Mathematical models for combining both resident rotation

and shift scheduling have also been developed (Smalley & Keskinocak, 2016a).

For physicians who have completed all of their educational requirements, most schedul-

ing work has focused on either assigning physicians to shifts or resources (e.g., operating

rooms) for specific blocks of time. Erhard et al. (2016) provides a review of quantita-

tive methods and literature related to physician scheduling. For physician shift scheduling,

Carter & Lapierre (2001) present a mathematical model for scheduling emergency room

2



physicians. Many additional mathematical models and solution approaches for assigning

physicians to shifts have also been proposed (Beaulieu et al., 2000; Brunner et al., 2009;

Stolletz & Brunner, 2012; Bruni & Detti, 2014; Smalley et al., 2015; Bowers et al., 2016).

For assigning resources to physicians, Blake & Donald (2002), Santibáñez et al. (2007),

and Zenteno et al. (2016) each develop mathematical programming models that assign op-

erating room block time to specific surgical specialties.

Despite the extensive amount of work that has been done within the field of scheduling

healthcare providers, challenges remain. This dissertation contains three main chapters,

each of which focuses on a different healthcare provider scheduling problem and addresses

challenges associated with solving it.

In Chapter 2, the scheduling problem we focus on involves assigning orthopedic sur-

geons to both surgical and clinical rooms within a healthcare system. Each surgeon’s

schedule requires clinical shifts to examine and diagnose patients, as well as operating

room (OR) block time to perform procedures. Scheduling both OR blocks and clinic shifts

concurrently can improve utilization of both resources and, in turn, improve access to and

quality of patient care. In this chapter, we propose an integer programming-based approach

to address scheduling challenges faced by the orthopedic surgery team at the University of

Colorado Hospital (UCH) along with computational results. We also describe how alter-

native variable definitions can be used to simplify the modeling of complex scheduling

requirements and improve the tractability of the mathematical program used to solve the

scheduling problem.

In Chapter 3, we focus on a rotation/block scheduling problem for medical residents and

further explore the concept of using alternative decision variable definitions. During resi-

dency, medical residents rotate across many different services each year in order to satisfy

both educational and service coverage requirements. The duration of each rotation varies by

service and the exact services that each resident rotates across are primarily determined by

the resident’s educational program (e.g., pediatrics, internal medicine, surgery). Although
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each program has its own unique scheduling characteristics, it is possible to define a single

block scheduling problem that encompasses a wide array of rules and requirements and

thereby covers many programs’ scheduling needs. This problem statement can in turn be

modeled by a single mixed-integer programming (MIP) formulation. There may be com-

putational advantages, however, to using different formulations depending on the specific

instances of each program. We formulate, and compare four different models, contrasting

them both analytically and computationally, to assess characteristics of the problem struc-

ture that impact the relative success of different formulations. Our work in Chapter 3 is

based on our experience in building block schedules for several programs at the University

of Michigan Health System.

In Chapter 4, we focus on a shift scheduling problem for medical residents. As is the

case in the first two problems we address, for scheduling healthcare providers, the ob-

jective is often to maximize provider satisfaction across the space of feasible schedules,

relative to the many hard constraints that ensure appropriate patient coverage, adequate

training opportunities, etc. For residents, a common metric for measuring satisfaction is

the number of time-off requests granted. Simply maximizing this total, however, may lead

to undesirable schedules since some requests have higher priority than others. For exam-

ple, it might be better to grant one resident’s request for a family member’s wedding in

place of two residents’ requests to attend a rugby game. Another approach is to assign a

weight to each request and maximize the total weight of granted requests, but determining

weights that accurately represent residents’ and schedulers’ preferences can be quite chal-

lenging. Instead, we propose to identify the exhaustive collection of maximally-feasible

and minimally-infeasible sets of requests which can then be used by schedulers to select

their preferred solution. Specifically, we have developed two algorithms, which we call

Sequential Request Selection Via Cuts (Sequential RSVC) and Simultaneous Request Se-

lection Via Cuts (Simultaneous RSVC), to identify these sets by solving two sequences

of optimization problems. We present these algorithms along with computational results

4



based on a real-world problem of scheduling residents at the University of Michigan C.S.

Mott Pediatric Emergency Department.

Throughout this dissertation, we make a number of contributions. First, we propose

a novel method for identifying solutions to scheduling problems in which it is possible to

satisfy some, but not all of the scheduling preferences. Although we apply our method to a

healthcare scheduling problem, it is applicable to any problem involving preferences. Sec-

ond, we model real-world problems and demonstrate how alternative variable definitions

can be used to simplify the modeling of complex scheduling rules and improve computation

performance when solving the problems.
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CHAPTER 2

Building Coordinated Operating Room and

Surgical Clinic Schedules Using Integer

Programming

2.1 Introduction

In order to treat patients, surgeons require blocks of time in both clinic rooms and operating

rooms (ORs). Both of these are expensive and limited resources, and using them to full

capacity can have many benefits including increasing patient access, reducing costs, and

enhancing provider satisfaction.

Scheduling both clinic and OR blocks simultaneously can greatly improve utilization,

but when taking into account all requirements and preferences, this can become a complex

combinatorial optimization problem. Manual scheduling of just ORs or clinic rooms alone

can be a daunting task; scheduling them concurrently without the assistance of decision

support tools is virtually impossible.

Our research is motivated by a real-world scheduling problem of this type, which we

name the Integrated Clinical and Operating Room Scheduling (ICORS) problem, within the

University of Colorado Health (UCH) system. Increases in patient demand, the construc-

tion of new ORs, and the hiring of new surgeons were key motivating factors in recognizing

the need for decision support tools to help with both incremental changes to the existing
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schedule and green field analyses for strategic planning. Working in close collaboration

with UCH providers and staff, we have developed a mathematical programming-based ap-

proach that captures a wide range of requirements, preferences, and system characteristics

that are critical to ensuring an acceptable and implementable solution.

In the course of this work, we also observed a number of interesting modeling issues. In

particular, we went through several iterations where, based on increasing levels of knowl-

edge about the system, we formulated successive integer programs that were effective at

solving the problem as we currently understood it, but became inadequate when new in-

formation and requirements became available. In particular, we observed that bundling

progressively larger amounts of information into the definition of an individual variable

was key to achieving tractability for the most realistic version of the problem.

Thus, we seek to make contributions of two types through this chapter: 1) We present

a new model for solving and analyzing a real-world scheduling problem, ICORS, that al-

locates time to surgeons in both clinic and operating rooms and 2) We demonstrate how

alternative variable definitions were used to simplify the modeling of complex scheduling

requirements and improve the tractability of the mathematical program used to solve the

scheduling problem. In doing so, we explore the art of modeling and its impacts on solving

a real-world scheduling problem.

The remainder of this chapter is organized as follows. Section 2.2 formally defines

ICORS and Section 2.3 presents a review of the related literature. Section 2.4 elaborates on

the usefulness of alternative variable definitions for modeling complex scheduling require-

ments and presents the mathematical programs developed to address ICORS. Section 2.5

contains computational testing results. Finally, a conclusion and summary, are included in

Section 2.6.

7



2.2 Problem Statement

This chapter addresses a scheduling problem for which orthopedic surgeons must be as-

signed to shifts in both operating and clinical rooms within UCH, subject to numerous

provider and patient-care requirements and limited availability of resources. In this sec-

tion, we define the assignment decisions, requirements, and goals of ICORS.

2.2.1 Assignment Decisions

The fundamental decisions in ICORS are to determine the number and type of rooms to

assign to each provider during each time slot.

• Providers: The Orthopedic Surgery team at UCH consists of 26 providers. Each

provider has an expertise, of which there are six: sports medicine, adult reconstruc-

tion, hand, trauma, oncology, and foot/ankle.

• Room Types: Operating and clinic rooms are located at different facilities through-

out the health system. Each room is assigned a single type based on not only its

location but also the equipment that it contains. For example, all operating rooms

at the main hospital with spinal surgery equipment are one room type. Additional

“room types” are defined to represent other scheduling obligations such as dedicated

research time and time off. In total, there are 15 different room types that can be

assigned to providers.

• Numbers of Rooms: Providers can be assigned to multiple rooms at once, but all

rooms assigned must be of the same type. Specifically, providers can be assigned

one or two operating rooms (of the same type) at a time. For clinic rooms, providers

can be assigned three or four rooms (of the same type) at a time. By being assigned

multiple rooms at once, a provider is able to serve more patients in a day since the

provider can serve a patient in one room while the other room(s) are being changed
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over from one patient to the next.

• Times: The scheduling horizon is one month (four weeks) long and involves only

weekdays. Each weekday is divided into two “half-days”(morning and afternoon).

2.2.2 Requirements

When deciding how to assign providers to rooms, the following rules must be satisfied:

1. Providers can only be assigned to one room type at a time.

2. There are a limited number of rooms of each room type available during each half-

day and providers do not share rooms with other providers during half-days. Room

availability varies from day to day over the month since other surgical groups also

use them.

3. Providers may only work in specific room types, each of which is associated with a

specific location. These restrictions are provider-specific.

4. For each room type, each provider has a minimum number of rooms that they can be

assigned per half-day.

5. For each room type, each provider has a minimum and maximum number of half-

days for which they must be assigned to that room type per month.

6. Some providers have individual “pre-commitment” half-day scheduling requirements

(i.e., some providers must be assigned a specific room type during specific half-days).

7. UCH coverage needs dictate specific requirements for the number of rooms of a

specific type assigned to a specific provider expertise during a specific half-day (e.g.,

at least two ORs with trauma equipment in the main hospital must be assigned to

trauma providers for every half-day).
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8. UCH coverage needs dictate specific requirements for the number of providers of a

specific expertise assigned to specific room types during specific half-days (e.g., at

least one trauma provider must be assigned to operating rooms with trauma equip-

ment in the main hospital for every half-day).

9. Providers may only switch room types between morning and afternoon half-days for

provider-specific room type combinations. For example, some providers are willing

and able to work in a Denver facility in the morning and then drive 30 miles to work

in a Boulder facility in the afternoon, but other providers are not.

10. Some providers require being assigned a single type of room for full-days. This

requirement is primarily driven by the time required to perform certain types of op-

erations. Additionally, when providers are assigned to a full-day in a single type of

room, they must be assigned the same number of rooms of that room type during the

morning and afternoon half-days.

2.2.3 Goals

In addition to satisfying the requirements listed in Section 2.2.2, it is desirable to satisfy

the following preferences:

1. Preferred half-days: Providers each have preferred half-day assignments. Each

preference includes a preferred half-day (e.g., the morning of May 26) and room

type.

2. Extra rooms: Some providers prefer to be assigned an additional room (above their

required minimum) during half-days. For example, a provider that requires being as-

signed three main hospital outpatient clinic rooms at a time may prefer to be assigned

a fourth room if capacity is available.

3. Weekly Continuity: Providers prefer a consistent schedule from week-to-week.
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A consistent schedule is helpful for balancing work loads and makes it easier for

providers to remember when and where they work. However, it is not possible to

generate a schedule for a single week that is repeated for the entire month since room

and provider availability vary on a week-to-week basis. Furthermore, some providers

do not require clinic or operating rooms every week.

2.3 Literature Review

Personnel scheduling, generally speaking, is the process of identifying schedules for indi-

viduals such that all scheduling rules and requirements are satisfied. The goals of personnel

scheduling vary and depend on the situation, but often involve identifying low cost and/or

high quality schedules. Schedule quality can be measured many different ways. Typically,

schedule quality is based on fairness and/or its ability to satisfy individual scheduling pref-

erences. Thus, effective personnel scheduling has the potential to reduce operating costs

while improving workplace morale. However, due to the combinatorial nature of schedul-

ing problems, it can be difficult to identify a schedule that satisfies every scheduling re-

quirement, let alone the cost and quality of the schedule. As such, personnel scheduling is

a widely studied field with Ernst et al. (2004a) providing an annotated bibliography on over

700 personnel scheduling papers. Ernst et al. (2004b) reviews the literature on many dif-

ferent scheduling problems and the methods used to solve these problems. Van den Bergh

et al. (2013) provides a review of more recent personnel scheduling literature.

For healthcare personnel scheduling, nurse scheduling has received the most attention

in the literature. The Nurse Scheduling Problem (NSP) involves assigning nurses to shifts

under a variety of individual and system-wide scheduling requirements. The NSP made its

first appearance in literature in the 1960’s (Wolfe & Young, 1965). Burke et al. (2004) pro-

vides a review of much of the nurse scheduling literature and De Causmaecker & Vanden

Berghe (2011) presents a categorization for nurse scheduling problems.
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For scheduling physicians, much of the literature focuses on either assigning physicians

to shifts or resources (e.g, operating rooms). Erhard et al. (2016) reviews much of the liter-

ature relating to scheduling healthcare physicians. For physician shift scheduling, Carter &

Lapierre (2001) describes a scheduling problem involving emergency room physicians and

presents and mathematical model for solving it. Bowers et al. (2016) addresses a specific

scheduling problem for neonatal physicians and presents a solution approach that considers

each physicians preferences for specific shifts.

For assigning resources to physicians, Blake & Donald (2002), Santibáñez et al. (2007),

and Zenteno et al. (2016) each develop mathematical programming models that assign op-

erating room block time to specific surgical specialties, but do not consider the scheduling

of individual surgeons. Gunawan & Lau (2012) proposes a model that assigns both re-

sources and blocks of time to individual physicians in order for them to complete all of

their tasks for a single week. In their mathematical model, the primary decision variables

represent whether or not a specific physician is assigned to a specific duty on a specific

day during a specific shift. The problem addressed is unique to those addressed in pre-

vious works in that it considers all activities that must be completed in a single week by

each individual physician, as opposed to a single type of activity, such as surgeries. In that

respect, this problem is most similar to ICORS. However, in ICORS the planning hori-

zon is one month (as opposed to one week) and many relationships exist between daily

shifts and across weeks that must be considered when determining a schedule. Thus, a new

formulation for addressing the problem is necessary.

2.4 ICORS Formulation

Before presenting the ultimate formulation that we used to solve ICORS, we believe it

is of value to review the intermediate formulations that we considered and present the

process that we took in reaching the final formulation. In particular, we observe that the
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way in which we defined our core variables evolved as new information about the problem

definition was presented to us. Thus, we begin by first discussing this evolution and then

presenting the ultimate model in Section 2.4.4.

2.4.1 Sets

We use the following notation throughout the remainder of the chapter and provide it here

for reference:

• P is the set of all providers.

• R is the set of room types.

• A is the set of all room assignments with n(a) and r(a) representing the quantity and

room type of room assignment a ∈ A, respectively.

• B is the set of work blocks.

• C is the set of pre-commitments.

• W is the set of work weeks in a month (i.e, {1, 2, 3, 4}).

• T is the set of templates where each template is a set of weeks.

• Y is the set of work days-of-the-week (i.e, {Monday, Tuesday, Wednesday, Thursday,

Friday}).

• D is the set of work days in a month (i.e, { 1st Monday, 1st Tuesday, . . . , 4th Friday}).

• H is the set of work half-days in a month (i.e, { 1st Monday morning, 1st Monday

afternoon, . . . , 4th Friday afternoon }).

• F is the set of preferred half-days.

• E is the set of provider expertises.
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• Ê is the set of expertise requirements.

• P e is the set of all providers with expertise e ∈ E.

2.4.2 Model 1: Basic Assignment Variables

The initial version of the ICORS, as it was presented to us, included only Requirements

1-8 in Section 2.2.2. In the simplest and most direct case, this problem can be modeled

by defining integer variables for representing the number of rooms of each type a provider

is assigned during each half-day. However, to prevent providers from being assigned to

more than one room type at a time, it is necessary to define additional binary variables to

represent whether or not each provider is assigned rooms of each room type during each

half-day and constraints to link the binary and integer variables together.

By using these integer variables in the model, additional variables and constraints must

also be added to restrict providers from being assigned to certain quantities of rooms. For

example, for most types of clinic rooms, providers may only be assigned to zero, three, or

four rooms—they cannot be assigned to only one or two rooms. Modeling these “not equal

to” constraints with integer variables requires additional variables and constraints.

As an alternative, we can instead define a room assignment as being a room type and

quantity of rooms for that type. For example, if it is allowable to simultaneously assign

three or four main-campus clinic rooms, we define the two permissible assignments: “3-

Main-Campus Clinic Rooms” and “4-Main-Campus Clinic Rooms.” We then define A to

be the set of all room assignments with n(a) and r(a) representing the quantity and room

type of room assignment a ∈ A, respectively. With these definitions, the problem can

be modeled by defining binary variables of the type xpah which take value 1 if provider

p is assigned exactly n(a) rooms of type r(a) during half-day h for all p ∈ P , a ∈ A,

h ∈ H . Notice that variables are not required to represent whether or not providers are

assigned zero rooms since doing so is equivalent to setting all associated xpah variables to

zero. Thus, by only defining binary variables that represent valid room assignments, it is
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implicitly ensured that providers are only assigned to acceptable numbers of rooms.

This basic xpah variable definition is easy to understand and enables capturing Require-

ments 1-8 listed in Section 2.2.2 with relatively simple equations. For Requirement 1, since

room types are defined to represent every possible provider assignment during each half-

day (including time off), we can enforce the rule that a provider must be assigned to exactly

one room type during each half-day. Specifically, the following set of equations enforces

Requirement 1:

∑
a∈A

xpah = 1 ∀p ∈ P, h ∈ H (2.1)

Requirement 2 can be enforced by ensuring there is adequate room availability for every

room type during every half-day. With αrh representing the quantity of rooms of type r

that are available during half-day h, the following set of equations is sufficient:

∑
p∈P

∑
a∈A:
r(a)=r

xpah ≤ αrh ∀r ∈ R, h ∈ H (2.2)

Requirements 3 and 4 can be modeled using the assignment variables by setting xpah to zero

(or by simply not defining xpah) if provider p is not allowed assignment a during half-day

h.

To model Requirement 5, let µ
¯
pr represent the minimum number of half-days provider

p requires of room type r during the month and let µ̄pr represent the maximum number

of half-days provider p is allowed of room type r during the month. Then, the following

equations can be used to satisfy these requirements:

µ
¯
pr ≤

∑
h∈H

∑
a∈A:
r(a)=r

xpah ≤ µ̄pr ∀p ∈ P, r ∈ R (2.3)

Requirement 6 can be modeled by ensuring providers are assigned to specific room types
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during specific half-days in order to satisfy their pre-commitments:

∑
a∈A:
r(a)=r

xpah = 1 ∀(p, r, h) ∈ C (2.4)

Requirement 7 can be modeled by ensuring a sufficient number of rooms are allocated to

the providers of a specific expertise during specific half-days. Here, let ε
¯
erh and ε̄erh be

the lower and upper bounds on the number of rooms that must be assigned to providers of

expertise e for room type r during half-day h, respectively:

ε
¯
erh ≤

∑
p∈P e

∑
a∈A:
r(a)=r

(n(a) ∗ xpah) ≤ ε̄erh ∀e ∈ E, r ∈ R, h ∈ H (2.5)

Similarly, Requirement 8 can be modeled by ensuring a sufficient number of providers of

a specific expertise are assigned to a specific room type during specific half-days. Here, let

π
¯
erh and π̄erh be the lower and upper bounds on the number of providers of expertise e that

must be assigned to rooms of type r during half-day h, respectively:

π
¯
erh ≤

∑
p∈P e

∑
a∈A:
r(a)=r

xpah ≤ π̄erh ∀e ∈ E, r ∈ R, h ∈ H (2.6)

2.4.3 Model 2: Daily Assignment Variables

The xpah variable definition works well for modeling Requirements 1 through 8 of Section

2.2.2. However, after presenting UCH with schedules generated by our initial model, we

were informed of additional requirements that relate a day’s morning and afternoon room

assignments for each provider (Requirements 9 and 10 in Section 2.2.2).

For Requirement 9, there are certain room pairs that are not located in the same facility;

for these pairs, some providers are willing and able to travel between them within a single

day and others are not.
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It is possible to capture these travel restrictions with the xpah variables, but additional

constraints are required. As an example, consider a rule that restricts all providers from

traveling between room type r1 and room type r2 during a day. With hd1 representing the

first (morning) half-day on day d and hd2 representing the second (afternoon) half-day on

day d, this rule can be formulated using the following sets of constraints:

∑
a∈A:
r(a)=r1

xpahd1 +
∑
a∈A:
r(a)=r2

xpahd2 ≤ 1 ∀p ∈ P, d ∈ D (2.7)

∑
a∈A:
r(a)=r1

xpahd2 +
∑
a∈A:
r(a)=r2

xpahd1 ≤ 1 ∀p ∈ P, d ∈ D (2.8)

Here, (2.7) says that each provider cannot be assigned to type r1 rooms in the morning and

type r2 rooms in the afternoon on any work day. (2.8) says that each provider cannot be

assigned to type r1 rooms in the afternoon and type r2 rooms in the morning on any work

day. Therefore, for every pair of room types this rule applies to, 2 × |P | × |D| additional

constraints are required. For a 20 work-day month and 26 providers, this equates to 1,040

additional constraints for every such restriction. Given the 15 different room types, 210

different combinations of room types can occur within a day so up to 218,400 additional

constraints are required to model these types of travel restrictions.

For Requirement 10, some providers perform surgeries that are long enough that they

span the morning and afternoon half-days, so these surgeons can only be given full-day,

not half-day, room assignments. As an example, consider a requirement for all providers

in the set P1 to be assigned a full-day shift whenever they are assigned rooms of type r1.

To model this requirement with the xpah variables, the following set of constraints can be

used:

xpahd1 = xpahd2 ∀p ∈ P1, a ∈ {A : r(a) = r1}, d ∈ D (2.9)

Here, constraint set (2.9) enforces the requirement that if a provider is assigned type r1
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rooms in the morning (or afternoon) on day d, then they must also be assigned the same

number of type r1 rooms in the afternoon (or morning).

Although (2.9) reduces the solution space of the problem by “fixing” the value of many

of the variables, ensuring that all providers who are assigned a full-day within a single room

type are assigned the same number of rooms for both the morning and afternoon requires

additional constraints that add complexity to the model. To model these requirements, the

following set of constraints can be used:

xpahd1 +
∑
a′∈A:

r(a′)=r(a),
n(a′)6=n(a)

xpa′hd2 ≤ 1 ∀p ∈ P, a ∈ A, d ∈ D (2.10)

Here, (2.10) prohibits assigning two different quantities of rooms to a provider for the same

type of room within a single day.

As an alternative modeling approach that simplifies the modeling of rules that involve

a relationship between the morning and afternoon assignments, we can define the decision

variables in a slightly different way. First, let S represent the set of sequences, where a

sequence is defined as the combination of morning and afternoon room assignments. For

example, a sequence could be four main-campus clinic rooms in the morning and one

main-campus trauma operating room in the afternoon. Using this approach, we then define

the binary assignment variables xpsd to represent whether or not provider p is assigned

sequence s on day d, where p ∈ P , s ∈ S, d ∈ D.

The total number of possible sequences is (|A|)2, which equals 1,296 for UCH, and

corresponds to 673,920 xpsd variables to model a 20-day schedule for the 26 providers.

However, due to Requirements 9 and 10, only 591 allowable sequences exist for the UCH

problem instance we focus on. Furthermore, due to Requirements 3 and 4, some UCH

providers are limited to being assigned as few as 9 sequences while the maximum number

of allowable sequences for a single provider is 225. Thus, the maximum number of xpsd

variables required to create a 20-day schedule for 26 providers reduces to 117,000. More-
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over, by only including the allowable sequences in S, we can eliminate constraint sets (2.7),

(2.8), (2.9), and (2.10).

In summary, by defining decision variables so that they represent an entire day’s worth

of work, many constraints can be eliminated from the model. Although this modification

has the potential to increase the number of variables in the model since every daily com-

bination of room assignments would need to be represented as a sequence, we find that in

practice the number of allowable sequences is manageable.

2.4.4 Model 3: Weekly Template Variables

With the variables definition from Section 2.4.3 we fully captured the set of feasible solu-

tions. However, modeling the different objective criteria presented new challenges.

We were first asked to consider Goals 1 and 2, which can easily be modeled relative

to the variable definition from Section 2.4.3. However, after generating potential sched-

ules and presenting them to UCH, we learned that providers prefer to have week-to-week

consistency in their schedule (Goal 3 of Section 2.2.3). Modeling Goal 3 with the xpsd

variables is challenging because it requires relating some weeks to others.

In order to measure weekly continuity in a schedule, it is necessary to determine whether

or not a day’s assignment for a provider is repeated on the same day-of-week during other

weeks. Doing this with the xpsd variables requires defining additional variables and con-

straints that increase the complexity of the model and time required to solve the problem

(in some cases making it intractable). For example, to determine if provider p is assigned

the same sequence on the same day-of-week for the first and third weeks of the month (this

is one type of “bi-weekly” continuity) we can define the binary variables zpsy to represent

whether or not provider p ∈ P is assigned sequence s ∈ S on day-of-week y ∈ Y during

both the first and third weeks of the month. Then, letting w(d) ∈ W represent the week

number of day d, and y(d) ∈ Y represent the day-of-week of day d, we can define the

following constraint set:
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xpsd + xpsd′ ≥ 2 ∗ zpsy(d) (2.11)

∀p ∈ P, s ∈ S, d ∈ {D : w(d) = 1}, d′ ∈ {D : w(d′) = 3, y(d′) = y(d)}

By maximizing the sum of zpsy variables, (2.11) ensures that zpsy equals 1 if provider

p is assigned sequence s on the same day-of-week for the first and third weeks of the

month. This allows counting (and optimizing) the number of times this type of continuity

occurs within a schedule. However, this approach results in increased solve times since it

is highly fractional (i.e., if xpsd + xpsd′ = 1, (2.11) is satisfied with zpsy(d) = 0.5, so binary

restrictions are required for zpsy variables). Additionally, since there are three different

types of continuity for UCH (two bi-weekly types and one weekly type) and each provider

has up to 225 sequences, modeling this goal for a 20-day month (i.e., four, 5-day weeks)

requires up to 87,750 additional constraints and zpsy variables.

To eliminate these types of relational constraints required for modeling week-to-week

continuity, we first define a template as a set of weeks. For example, one template is defined

to be the first and third weeks in the month (i.e., {1,3}) while another template is defined

to be all four weeks of the month (i.e, {1,2,3,4}). Then, we define the binary assignment

variables xpsyt to represent whether or not provider p is assigned sequence s on day-of-

week y for the weeks included in template t. For example, one variable could represent

whether or not Dr. Smith is assigned a full-day with three main-campus clinic rooms on

Tuesday for the first and third weeks of the month.

Using the xpsyt variables, we eliminate the need for constraint set (11) and the zpsy

variables described in the previous example for maximizing bi-weekly continuity within

a schedule. To achieve the same result with the xpsyt variables, we can simply maxi-

mize the sum of xpsyt variables such that t is a bi-weekly template (see the full formu-

lation in Section 2.4.6). For UCH, there are a total of seven allowable weekly templates:

{1}, {2}, {3}, {4}, {1, 3}, {2, 4}, and {1, 2, 3, 4}. Thus, in order to model a 20-day sched-
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ule, up to 204,750 xpsyt variables may be required. However, since many providers are not

allowed to work every sequence or every weekly template, far fewer variables are required

in practice.

2.4.5 Objective Function

Based on the goals listed in Section 2.2.3 we defined the following metrics for determining

a schedule’s quality:

• Half-day preferences granted: Each preferred half-day is considered granted if the

associated provider is assigned the preferred room type with at least their minimum

number of rooms for that room type on the preferred half-day. We count the total

number of preferred half-days granted.

• Extra rooms assigned: If a provider prefers an extra room for any room types,

we count the number of half-days of those room types for which an extra room is

assigned to the provider.

• Bi-weekly continuity score: We count the number of times providers are assigned a

sequence for a bi-weekly template ({1, 3} or {2, 4}).

• Weekly continuity score: We count the number of times providers are assigned a

sequence for the weekly template ({1, 2, 3, 4}).

In order to account for differences in the importance of each metric, we define weights

for each metric based on user interactions. Then, we maximize the weighted sum of the

metrics.

2.4.6 Complete ICORS Formulation

In this section, we provide a formal definition and description of our final scheduling model

that incorporates the template variables and metrics described in Sections 2.4.4 and 2.4.5.
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As input to the model, each work block b ∈ B indicates the following:

• Provider Name

• Room type(s) allowable

• Minimum number of full-days required (ξ
¯b

)

• Maximum number of full-days allowed (ξ̄b)

• Minimum number of half-days required (η
¯ b

) (Note: full-day assignments count to-

wards half-day requirements)

• Maximum number of half-days allowed (η̄b)

For each room type r ∈ R, each provider has a minimum number of rooms that they must

be assigned to whenever they are assigned to room type r. Additionally, for each room

type r, each provider p specifies whether or not they prefer being assigned an extra room

(in addition to their minimum number) when they are assigned to room type r.

Each preferred half-day f ∈ F indicates the following:

• Provider name

• Half-day

• Room type

Each expertise requirement i ∈ Ê indicates the following:

• Half-day

• Room type

• Expertise
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• Minimum number of rooms (χ
¯ i

)

• Maximum number of rooms (χ̄i)

• Minimum number of providers (π
¯ i

)

• Maximum number of providers (π̄i)

Next, we describe the variables, parameters, constraints, and objective function of ICORS.

Decision Variables:

• xpsyt: binary variable to represent whether provider p ∈ P is assigned sequence

s ∈ S on day-of-week y ∈ Y for the weeks in template t ∈ T

• z: integer variable to represent the total number of half-days that are assigned an

extra room (if preferred).

• uf : binary variable to represent whether preferred half-day f ∈ F is satisfied.

Parameters:

• ωtw: equals 1 if template t contains week w and equals 0 otherwise.

• φps: equals 1 if sequence s is prohibited for provider p and equals 0 otherwise.

• νpsytc : equals 1 if provider p being assigned sequence s on day-of-week y for template

t satisfies pre-commitment c ∈ C and equals 0 otherwise.

• τ psyti : the number of rooms that satisfy expertise requirement i ∈ Ê when provider p

is assigned sequence s on day-of-week y for template t.

• σpsyti : equals 1 if assigning provider p sequence s on day-of-week y for template t

satisfies expertise requirement i ∈ Ê and equals 0 otherwise.
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• υpsytb : the number of full-days that satisfy workblock b ∈ B when provider p is

assigned sequence s on day-of-week y for template t.

• ψpsytb : the number of half-days that satisfy workblock b ∈ B when provider p is

assigned sequence s on day-of-week y for template t.

• ζrh: the number of type r rooms available during half-day h

• ωpsytrh : the number of type r rooms assigned during half-day h by assigning provider

p sequence s on day-of-week y for template t.

• ρpsytf : equals 1 if assigning provider p sequence s on day-of-week y for template t

satisfies preference f ∈ F with at least the provider’s minimum number of rooms

and equals 0 otherwise.

• δrpsyt equals the number of half-days provider p receives a preferred extra room of

type r if assigned sequence s on day-of-week y for template t.

• β: the objective function weight for half-day preferences granted.

• λ: the objective function weight for half-days with an extra room assigned.

• θ: the objective function weight for bi-weekly continuity score.

• γ: the objective function weight for weekly continuity score.

Constraints:

One sequence every day: Each provider must be assigned exactly one sequence every day.

∑
s∈S

∑
t∈T

ωtwxpsyt = 1 ∀p ∈ P, y ∈ Y,w ∈ W (2.12)
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Prohibited sequences: Providers can only be assigned to sequences within their allow-

able set of sequences. ∑
t∈T

∑
y∈Y

∑
s∈S

φpsxpsyt = 0 ∀p ∈ P (2.13)

Pre-commitments: A particular provider must be assigned a particular room type with

at least the provider’s minimum number of rooms during a particular half-day.

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

νpsytc xpsyt = 1 ∀c ∈ C (2.14)

Bounds on number of rooms of a particular room type assigned to a particular

expertise during a particular half-day shift: For each expertise requirement i ∈ Ê, there

is a lower bound (χ
¯ i

) and upper bound (χ̄i) on the number of rooms of a particular room

type that can be assigned to providers of a particular expertise during a particular half-day.

χ
¯ i
≤

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

τ psyti xpsyt ≤ χ̄i ∀i ∈ Ê (2.15)

Bounds on number of providers of a particular expertise in a particular room

type during a particular half-day: For each expertise requirement i ∈ Ê, there is a lower

bound (π
¯ i

) and upper bound (π̄i) on the number of providers of a particular expertise that

can be assigned to rooms of a particular type during a particular half-day.

π
¯ i
≤

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

σpsyti xpsyt ≤ π̄i ∀i ∈ Ê (2.16)

Satisfy requests for minimum number of full-day only shifts: For each workblock

b ∈ B, a particular provider must get the minimum number of full days (ξ
¯b

) and no more

than the maximum number of full days (ξ̄b) for room types in the work block that have at

least the provider’s minimum number of rooms.

ξ
¯i
≤

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

υpsytb xpsyt ≤ ξ̄i ∀b ∈ B (2.17)
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Satisfy work block requests for total number of half-days: For each workblock

b ∈ B, a particular provider must get the minimum number of half-days (η
¯ b

) and no more

than the maximum number of half-days (η̄b) for room types in the work block that have at

least the provider’s minimum number of rooms.

η
¯ b
≤

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

ψpsytb xpsyt ≤ η̄b ∀b ∈ B (2.18)

Ensure physical capacity for rooms: There must be enough rooms for the providers

assigned to them.

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

ωpsytrh xpsyt ≤ ζrh ∀r ∈ R, h ∈ H (2.19)

Determine if preferred shifts are granted: The following constraint set assigns the

variable uf the value of 1 if and only if preferred half-day f ∈ F is granted.

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

ρpsytf xpsyt = uf ∀f ∈ F (2.20)

Measure the number of half-days for which an extra room is assigned: We count

the number of half-days for which providers are assigned an extra room (when preferred).

∑
r∈R

∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T

δrpsytxpsyt = z (2.21)

Objective Function:

We maximize the weighted sum of preferred shifts granted, half-days with a preferred extra

room assigned, bi-weekly continuity score, and weekly continuity score. We define T2 ⊂ T

to be the set of all bi-weekly templates and T4 ⊂ T to be the set of all weekly templates.

Maximize β
∑
f∈F

uf + λz + θ
∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T2

xpsyt + γ
∑
p∈P

∑
s∈S

∑
y∈Y

∑
t∈T4

xpsyt (2.22)
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2.5 Computational Testing

In this section, we test the performance of our provider scheduling model formulated in

Section 2.4.6 and demonstrate its ability to generate solutions to the scheduling problem

presented in Section 2.2. Specifically, we address the following questions:

1. For real-world problem instances, how much time is required to solve the model?

2. How do the quality of schedules generated using our model compare to an existing

UCH schedule in terms of performance metrics?

To answer these questions, we use our model to solve problem instances based on data from

UCH. To do this, we use an Intel Xeon E3-1230 quad-core running at 3.20 GHz with hyper-

threading and 32 GB of RAM. We also use the IBM ILOG Optimization Studio (CPLEX)

12.6 C++ API software package.

2.5.1 Input Data

The data we use as a “base case” is from an existing schedule used by UCH. For the base

case, 26 providers must be scheduled for a 4-week month (20 workdays). Thus, there are a

total of 1,040 half-day assignments for the month. Of these half-day assignments, 132 are

“pre-commitments.” There are 15 different room types that can be assigned to providers

and 591 allowable sequences. Room capacities for each room type are based on actual

capacities. Expertise requirements (see Requirements 7 and 8 in Section 2.2) are based on

input from UCH. As an example of an expertise requirement, UCH requires at least one

inpatient operating room at the main hospital to be assigned to a trauma provider for the

morning half-day of every day.

For the 1,040 half-day assignments in the existing schedule, the maximum number

of half-days with an extra room that can be granted is 445. In this schedule, 91 weekly

templates and 67 bi-weekly templates are assigned. We use these numbers as a point of

comparison for assessing the quality of alternative schedules.
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2.5.2 Computational Analysis

We conducted three sets of computational experiments. In the first set, we used the same

input data as the base case. In the second set, we increased the problem size and schedule

flexibility by increasing the number of allowable sequences. In the third set, we reduced

the room capacity. For each set of experiments, we evaluated varying trade-offs between

the objective criteria of: (a) number of extra rooms assigned; (b) weekly and bi-weekly

continuity; and (c) number of preferred half-day assignments granted.

For computational testing, we defined the 908 half-day assignments from the existing

schedule that are not pre-commitments as preferred assignments. Thus, it is possible to

grant up to 908 preferred assignments. With this definition of preferred assignments this

way, we can measure the number of half-days for which the room type is unchanged from

that of the existing schedule, recognizing that consistency with the current schedule is also

desirable.

For each computational test set, we solved 30 objective function scenarios. For each

scenario, the objective function weights were varied as indicated in Table 2.1. For simplic-

ity of exposition, the objective function weight for weekly templates is always five times

that of bi-weekly templates.
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Table 2.1: Computational Testing Scenarios

Scenario

Objective Function Weights
Extra Preferred Weekly Bi-weekly

Rooms (Unchanged) Templates Templates
Assignments

1 1 1 5 1
2 1 1 25 5
3 1 1 125 25
4 1 5 5 1
5 1 5 25 5
6 1 5 125 25
7 1 25 5 1
8 1 25 25 5
9 1 25 125 25
10 1 125 5 1
11 1 125 25 5
12 1 125 125 25
13 5 1 5 1
14 5 1 25 5
15 5 1 125 25
16 5 5 5 1
17 5 25 5 1
18 5 125 5 1
19 25 1 5 1
20 25 1 25 5
21 25 1 125 25
22 25 5 5 1
23 25 25 5 1
24 25 125 5 1
25 125 1 5 1
26 125 1 25 5
27 125 1 125 25
28 125 5 5 1
29 125 25 5 1
30 125 125 5 1

2.5.2.1 Test Set 1 - Base Case Data

In Table 2.2 we report the solve time and optimal metric values for each objective function

scenario tested with the base case data. For comparison purposes, we include the metric

values for UCH’s existing scheduling in the bottom row.
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Table 2.2: Test Set 1 Results

Scenario

Optimal Solution Metric Values
Solve Time Extra Preferred Weekly Bi-weekly

(sec) Rooms (Unchanged) Templates Templates
Assignments

1 10 630 803 103 47
2 18 625 776 109 36
3 21 617 784 109 36
4 4 449 904 97 58
5 6 421 904 103 48
6 14 435 864 109 36
7 3 437 908 94 64
8 3 397 908 103 48
9 4 397 908 103 48
10 3 437 908 94 64
11 3 397 908 103 48
12 3 397 908 103 48
13 77 644 776 102 47
14 82 642 734 109 36
15 60 642 734 109 36
16 20 624 825 89 68
17 4 445 908 91 67
18 3 445 908 91 67
19 166 644 776 102 47
20 185 644 736 108 36
21 117 642 734 109 36
22 83 644 798 90 63
23 11 629 822 87 60
24 4 445 908 91 67
25 75 644 776 102 47
26 185 644 736 108 36
27 698 644 736 108 36
28 114 644 798 90 63
29 33 644 801 84 66
30 10 625 826 87 60

Existing N/A 445 908 91 67Schedule

From Table 2.2, we notice that the problem can be solved in under 12 minutes for each

of the scenarios, with some scenarios solving in as few as 3 seconds. For scenarios in which

schedule continuity is prioritized over preferred assignments (i.e., the objective weight of

weekly continuity is greater than that of preferred assignments), the average solve time is

114 seconds—5.7 times greater than the average solve time of the other scenarios. We also

notice that when granting preferred assignments is a relatively low priority, as in Scenarios

14 and 15, it is possible to increase the number of half-days granted with an extra room

(from 445 to 642) while simultaneously assigning more weekly templates (109 instead of

91) than in the existing schedule. In other words, by allowing changes to the existing

schedule, it is possible to assign more extra rooms and improve the weekly continuity of
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the schedule.

2.5.2.2 Test Set 2 - Additional Allowable Sequences

For Test Set 2, we increased the number of allowable sequences by making every combi-

nation of room groups an allowable sequence, for a total of 841 sequences—250 more than

the base case. This change increases the number of decision variables in the problem which

can lead to increased solve times. Since the additional variables provide more options for

an individual provider’s daily schedule, it may be possible to improve the optimal objective

values over those of the base case. In Table 2.3 we report the results from testing each

objective function scenario for Test Set 2.

Table 2.3: Test Set 2 Results

Scenario

Optimal Solution Metric Values
Solve Time Extra Preferred Weekly Bi-weekly

(sec) Rooms (Unchanged) Templates Templates
Assignments

1 22 606 828 104 46
2 68 603 806 109 36
3 50 603 806 109 36
4 6 467 904 96 60
5 7 435 904 103 48
6 12 491 860 109 36
7 4 451 908 94 64
8 4 411 908 103 48
9 4 411 908 103 48

10 4 451 908 94 64
11 4 411 908 103 48
12 4 411 908 103 48
13 84 644 780 103 45
14 135 642 742 109 36
15 1944 642 742 109 36
16 20 624 825 95 61
17 5 463 908 89 71
18 4 463 908 89 71
19 78 644 780 103 45
20 612 644 744 108 36
21 613 642 742 109 36
22 73 644 802 91 60
23 21 629 826 88 60
24 5 463 908 89 71
25 74 644 780 103 45
26 388 644 744 108 36
27 2847 644 744 108 36
28 69 644 801 92 60
29 28 644 805 85 66
30 20 628 827 88 60

By comparing Table 2.3 to Table 2.2, we notice that the solve time remained similar
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or increased for nearly every scenario. For the 30 scenarios tested, the maximum solve

time was just over 47 minutes and the median solve time was 21 seconds. Although the

solve times in Test Set 2 increased, the schedules generated are of better quality for every

scenario (as measured by the optimal objective function value). Given the increase in the

number of allowable sequences, these findings are not surprising.

2.5.2.3 Test Set 3 - Reduced Room Capacity

For Test Set 3, we modified the base case data by reducing the capacity of every room type

by one room during every half-day of the planning horizon. Making this change reduces

the number of half-days for which it is possible to assign providers an extra room for

their preferred assignments. In Table 2.4 we report the results for each objective function

scenario for Test Set 3.
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Table 2.4: Test Set 3 Results

Scenario

Optimal Solution Metric Values
Solve Time Extra Preferred Weekly Bi-weekly

(sec) Rooms (Unchanged) Templates Templates
Assignments

1 18 462 812 102 50
2 43 470 768 109 36
3 50 458 780 109 36
4 8 354 862 96 57
5 8 331 858 103 48
6 15 335 828 109 36
7 6 330 866 94 61
8 5 291 866 102 49
9 8 300 864 103 47

10 5 330 866 94 61
11 4 291 866 102 49
12 5 291 66 102 49
13 365 491 763 101 47
14 415 488 718 109 36
15 69 488 718 109 36
16 22 468 820 92 65
17 9 355 864 88 70
18 6 341 866 89 68
19 255 491 763 101 47
20 719 491 712 108 37
21 356 489 712 109 36
22 345 491 780 88 67
23 13 471 818 92 60
24 8 356 864 85 70
25 269 491 760 102 45
26 491 491 712 108 37
27 903 491 712 108 37
28 371 491 780 88 67
29 55 491 781 86 68
30 10 469 820 92 60

When comparing the results in Table 2.4 to those of Test Set 1 in Table 2.2 we notice

that the solve time increased for every scenario, but most scenarios were solved relatively

quickly and all scenarios were solved to optimality in roughly 15 minutes or less.

2.5.3 Analysis Summary

In Section 2.5, we tested our model by solving multiple problem instances based on real-

world data for a variety of objective function weight scenarios. Although the time required

to solve each problem is affected by specifics of the problem instance (e.g., number of

allowable sequences) and objective function weights, 56 of the 90 instances tested were

solved in less than one minute and no instances required more than 48 minutes to find an

optimal solution. For future work, we hope to explore the problem characteristics that lead
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to longer solve times.

By testing numerous objective function weight scenarios, it is possible to assess the

trade-offs that exist amongst the performance metrics and propose alternative schedules to

UCH. For example, if UCH’s highest priority is assigning half-days with an extra room, it

is possible for them to assign up to an additional 199 half-days with an extra room.

2.6 Summary

In this chapter we address an important healthcare provider scheduling problem faced by

the University of Colorado Health System. In this problem, providers must be assigned

both clinic and operating rooms in order to satisfy numerous work-related requirements

and restrictions.

In formulating a new integer programming model to solve the scheduling problem, we

describe how alternative variable definitions can be used to simplify the modeling of com-

plex scheduling requirements and improve the tractability of the mathematical program.

Our approach is most useful for problem instances in which the number of allowable de-

cision variables (as determined by the problem’s constraints and input data) is relatively

small compared to the number of possible decision variables. Through computational test-

ing, we find that our model is able to quickly solve realistic problem instances to generate

improved schedules.
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CHAPTER 3

Comparing Modeling Approaches for Solving a

Medical Residency Block Scheduling Problem

3.1 Introduction

Following medical school, physicians normally complete an additional three to five years

of medical training as residents—licensed physicians who work under the supervision of

attending physicians. During residency, medical residents rotate across many different ser-

vices in order to satisfy both educational and service coverage requirements. The exact

services that each resident rotates across are primarily determined by the resident’s edu-

cational program (e.g., pediatrics, internal medicine, surgery). The duration and potential

start times of each service varies by service. For example, some services are a full-month

in duration and can start at the beginning of a calendar month while others are a half-month

in duration and can start at the beginning and/or middle of a calender month. Schedules

for each educational program are generated on an annual basis and are often called block

schedules since the residents are assigned to services for specific blocks of time during the

year.

Although it is possible to formulate a generalized mathematical model that is capable of

solving each educational program’s block scheduling problem, due to differences in service

durations and allowable start dates across programs, there may be computational benefits

to using specialized models for each program. Specifically, it may be possible to improve
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computational performance by basing the definitions of decision variables on the specifics

of the block scheduling problem being solved. In this chapter, we present a generalized

block scheduling problem and then demonstrate how alternative variable definitions can

improve computational performance in specific situations. Our research is based on our

experiences scheduling residents at the University of Michigan Hospital in Ann Arbor,

Michigan.

The remainder of this chapter is organized as follows: In Section 2, we review the rele-

vant literature. In Section 3, we describe the decisions, rules, and objective of the general-

ized block scheduling problem that serves as the core of the specific scheduling scenarios

we address in the remainder of the chapter. In Section 4, we discuss the specifics of a

rather basic block scheduling problem variation, propose a mathematical model for solving

it, and present computational results from solving a variety of scheduling instances with

the model. In Section 5, we explain specific scheduling rules that require modifying our

initial model and propose an alternative model to account for the additional rules. Through

computational testing, we demonstrate the improved performance of this alternative model

over that of our modified initial model. In Section 6, we describe another scheduling prob-

lem variation involving an additional rule that necessitates formulating a new scheduling

model. To address the scheduling scenario we describe, we propose two model possibilities

that build on our two initial models and then we compare the performance of each model

through computational testing. We conclude in Section 7 with a summary of our findings

and suggestions for future work.

3.2 Literature Review

Personnel scheduling problems are especially challenging due to the unique characteris-

tics and preferences of individuals. In their most basic form, personnel scheduling prob-

lems require determining a schedule of work for individuals under a set of scheduling
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requirements. Unlike machine scheduling problems, personnel scheduling problems often

consider factors such as schedule fairness and/or the preferences of individuals. Accom-

modating the preferences of individuals can raise the morale of personnel and may lead to

improved task performance (Sagie & Krausz, 2003). Van den Bergh et al. (2013) and Ernst

et al. (2004b) review much of the literature related to personnel scheduling. The extent to

which personnel scheduling has been studied is evident through the annotated bibliography

provided by Ernst et al. (2004a) which includes more than 700 scheduling papers.

Within the application area of healthcare, much of the work on personnel scheduling

has focused on scheduling nurses. The Nurse Scheduling Problem (NSP), which involves

assigning nurses to shifts, has received the most attention. Nurse rostering, the process of

determining the size and composition of the workforce, is another commonly addressed

scheduling problem. Burke et al. (2004) explains some of the models and methods that

have been used to solve nurse scheduling problems and reviews many of the relevant pa-

pers. Maass et al. (2015) is a recent paper on nurse rostering that presents a stochastic pro-

gramming formulation to account for variability in patient census and nurse absenteeism.

For scheduling medical residents, much of the research has focused on: a) block/rotation

scheduling and/or b) shift scheduling. Although similar to nurse scheduling problems, res-

ident scheduling problems include additional rules relating to each resident’s educational

requirements, which can make them especially difficult to solve (Guo et al., 2014). Using

automated shift-scheduling tools for solving resident scheduling problems can improve the

quality of schedules while reducing the time required to generate them (Perelstein et al.,

2016).

Block/rotation scheduling involves assigning residents to services (i.e., rotations) for

blocks of time. Smalley & Keskinocak (2016a) formulates a mathematical program for

solving a multi-objective block scheduling problem and then proposes a separate model

for generating daily shift schedules. Agarwal (2016) also proposes separate models for

generating weekly rotation schedules and daily shift schedules, using a goal programming
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approach for satisfying the multiple objectives. Bard et al. (2016) proposes a model for

adjusting annual rotation schedules in way that more evenly distributes the number of resi-

dents that are available to work in the clinic each half-day.

During certain rotations, residents must also be scheduled for shift work. Sherali et al.

(2002) addresses a specific resident shift scheduling problem that involves assigning resi-

dent to night-shifts. Cohn et al. (2009) presents their findings from developing shift sched-

ules for residents at Boston University School of Medicine—they propose an iterative ap-

proach in which chief residents provide feedback on solutions generated by the model until

an improved schedule cannot be found. Topaloglu & Ozkarahan (2011) also addresses a

multi-objective resident shift scheduling problem and proposes a column generation model

the uses constraint programming to identify feasible schedules.

Many of the mathematical models proposed for solving resident scheduling problems

define decision variables to indicate whether or not each resident is assigned to a specific

service/shift during each block of time. For some models, such as the the weekly rotation

scheduling model proposed in Agarwal (2016), additional decision variables are defined to

indicate whether or not a resident starts a specific rotation during each block. These types

of additional variables are useful when modeling multi-block rotations that are flexible in

when they can start.

Defining decision variables to represent basic assignments (i.e., the assignment of a

single rotation/shift during a specific block of time) enables modeling many problem vari-

ations. However, in some cases there can be computational advantages to defining decision

variables that represent multiple decisions (Armacost et al., 2002). Although Armacost

et al. (2002) focuses on using composite variables to model and solve a package shipping

problem, the concept of using more complex decision variables to improve computational

performance is applicable to a wide variety of problems. In this chapter, we explore the

potential computational advantages of using alternative variable definitions for solving a

resident block scheduling problem.
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We start by formulating a block scheduling problem using basic decision variables to

represent whether or not each resident is assigned to a specific service rotation during each

block of time. We then introduce alternative models with more complex decision variables

and conduct computational testing to analyze the performance of each model.

3.3 Block Scheduling Problem Description

For the general block scheduling problem we consider, residents must be assigned to ser-

vices for blocks of time during the year in order to satisfy both educational and service

related requirements. Thus, for each block of time within the one year scheduling hori-

zon, we must decide which service is assigned to each resident. The duration of the blocks

can vary based on specifics of the scheduling problem being solved. For example, for an

educational program in which all services are one month in duration and can only start at

the beginning of a calendar month, it is reasonable to define blocks to be one month in

duration. However, if some services are a half-month in duration, it is necessary to define

smaller blocks of time. Each resident being scheduled is a specific level (e.g., Level-1,

Level-2, etc.) based on their experience. For assigning residents to services in each of the

educational programs we consider, the following scheduling requirements must be satis-

fied:

1. One Service Per Block: Each resident must be assigned exactly one service during

each block.

2. Educational Requirements: For each service, each resident has a lower and upper

bound on the number blocks for which he or she is assigned to that service.

3. Service Coverage Requirements: For each block, each service has a lower and

upper bound on the total number of residents that can be assigned to it. Additionally,

for each block, each service may have lower and upper bounds on the number of
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residents that can be assigned to it for each resident level.

4. Prerequisite Requirements: Each prerequisite requirement specifies a set of resi-

dents and two services, with one of the services being a prerequisite for the other.

Each resident in the specified set must be assigned to the prerequisite service before

they are assigned to the other service (e.g., Level-1 residents must complete Service

X before they start Service Y).

5. Spacing Requirements: For certain sets of services, it is necessary to spread the

services out across a resident’s schedule (e.g., after a resident completes Service

X, there must be at least four blocks of time before the resident starts Service Y). To

capture these types of requirements more broadly, each spacing requirement specifies

a set of services, a duration of time, and a maximum number of services. For the

specified set of services, each resident is limited to being assigned to no more than

the maximum number of them within the duration of time.

In addition to satisfying these requirements, it is desirable to satisfy specific scheduling

requests. Each scheduling request includes a resident, a block of time, and a service. If the

resident is assigned to the service during the specific block of time, the request is considered

to be satisfied. In this work, we seek to maximize the total number of requests satisfied.

The following notation will be used throughout the remainder of the article:

Sets:

• R is the set of all residents.

• S is the set of all services.

• B is the set of all blocks of time in the scheduling horizon.

• L is the set of all resident levels.

40



• Rl is the set of all level l residents for l ∈ L.

• Q is the set of all resident requests. Each request in Q includes the triplet (r, s, b)

that represents a resident r ∈ R, service s ∈ S, and block b ∈ B.

• E is the set of all prerequisite requirements. Each requirement e ∈ E includes a pair

of services (se1, s
e
2) and a set of residents Re which indicates that for each resident

r ∈ Re, se2 cannot occur unless se1 has already occurred.

• C is the set of all spacing requirements. Each requirement c in C includes a set

of services Sc, a duration of time, δc (in blocks of time), and a maximum number

of services, σc, which indicates that no more than σc of the services in Sc can be

assigned to a resident within any δc consecutive blocks.

3.4 Variation One

We start with a relatively basic variation of the block scheduling problem in which all

services are one month in duration and each service must start at the beginning of a calendar

month. Therefore, we define blocks of time to correspond to the calendar months. To

model this specific scheduling scenario, we define binary decision variables of type xrsb

that represent if resident r is assigned to service s for block (i.e., month) b. Next, we

present our full mathematical formulation for modeling this scenario, which we call the

Service Model.

3.4.1 Service Model Formulation

Parameters:

• ω
¯ rs

and ω̄rs are the lower and upper bounds on the total number of blocks that resident

r ∈ R can be assigned to service s ∈ S, respectively.
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• ρ
¯sb

and ρ̄sb are the lower and upper bounds on the total number of residents assigned

to service s ∈ S during block b ∈ B.

• λ
¯ lsb

and λ̄lsb are the lower and upper bounds on the total number of level l residents

assigned to service s ∈ S during block b ∈ B.

Decision Variables:

• xrsb ∈ {0, 1} indicates if resident r ∈ R is assigned service s ∈ S for block b ∈ B.

Constraints:

∑
s∈S

xrsb = 1 ∀ r ∈ R, b ∈ B (3.1)

ω
¯ rs
≤

∑
b∈B

xrsb ≤ ω̄rs ∀ r ∈ R, s ∈ S (3.2)

ρ
¯sb
≤

∑
r∈R

xrsb ≤ ρ̄sb ∀ s ∈ S, b ∈ B (3.3)

λ
¯ lsb
≤

∑
r∈Rl

xrsb ≤ λ̄lsb ∀ l ∈ L, s ∈ S, b ∈ B (3.4)

xrse2b = 0 ∀ e ∈ E, r ∈ Re, b ∈ {1} (3.5)
b−1∑
i=1

xrse1i ≥ xrse2b ∀ e ∈ E, r ∈ Re, b ∈ {2, . . . , |B|} (3.6)

∑
s∈Sc

b+δc−1∑
i=b

xrsi ≤ σc ∀ r ∈ R, c ∈ C, b ∈ {1, . . . , |B| − δc + 1} (3.7)

Here, (3.1) ensures that each resident is assigned exactly one service during each block.

Constraint set (3.2) enforces the educational requirements for each resident. (3.3) sets

bounds on the total number of residents assigned to each service during each block. Sim-

ilarly, (3.4) sets bounds on the number of residents of each level assigned to each service

during each block. Together, (3.5) and (3.6) ensure that each prerequisite requirement e in
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E is satisfied. Specifically, (3.5) ensures that se2 does not occur during the first block and

(3.6) ensures that if se2 occurs, se1 occurs at least once in a prior block. Finally, constraint

set (3.7) enforces each spacing requirement c in C by limiting the number of services in Sc

that can be assigned during any consecutive δc blocks to σc.

Objective Function:

The objective is to maximize the number of resident requests satisfied:

max
∑

(r,s,b)∈Q

xrsb (3.8)

3.4.2 Computational Testing

To demonstrate the time required to solve fairly simple variations of the block scheduling

problems using our Service Model and assess how the size of the problem instance affects

solve times, we consider four different sets of data instances for Variation One. Across

the sets, we vary the number of residents and number of services. There are three levels

of residents in each data set: one-fourth are Level-1, one-fourth are Level-2, and one-half

are Level-3. For all of the sets, three of the services are considered “hard” services. For

every three consecutive blocks of a resident’s schedule, only two of the hard services can

be assigned. Level-1 residents have a prerequisite requirement that requires them to be

assigned the service “PreReq1” before they are assigned the service “PreReq2.” For the

services “Vacation” and “Elective,” each resident requests when (i.e., which block) they

would like each service to occur.

For the first data set, labeled “Test-1,” 100 residents must be scheduled. In Test-1, there

are a total of 12 services and each resident must be assigned to each service exactly once.

For the ten services other than “Vacation” and “Elective,” eight to ten residents must be

assigned to each service during each block—at least one resident must be Level-3 and no

more than three can be Level-1.
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For Test-2, we double the number of residents being scheduled to 200. Similarly, we

double the coverage requirements. Specifically, sixteen to twenty residents must be as-

signed to each service other than “Vacation” and “Elective” during each block—at least

two residents must be Level-3 and no more than six can be Level-1.

For Test-3, 100 residents must be scheduled, but we double the number of services to

24. In this case, eight of the services (including “Vacation” and “Elective”) are required

for all residents, and each resident must be assigned four of the sixteen “optional” services.

Eight to ten residents must be assigned to each of the mandatory services during each block

and two to four residents must be assigned to each optional service during each block. For

all services other than “Vacation” and “Elective,” at least one Level-3 resident must be

assigned to it during each block and no more than three Level-1 residents can be assigned

to it during each block.

For Test-4, 200 residents must be scheduled and there are 24 services. Like Test-3, eight

of the services are mandatory for all residents and each resident must be assigned to four

of the sixteen “optional” services. We double the coverage requirements of Test-3 which

means that sixteen to twenty residents must be assigned to each mandatory service during

each block and four to eight residents must be assigned to each optional service during each

block. For all services other than “Vacation” and “Elective,” at least two Level-3 residents

must be assigned to it during each block and no more than six Level-1 residents can be

assigned to it during each block.

For the purposes of testing, we create ten problem instances for each case by randomly

generating a set of requests for each instance. For Test-3, we use that same sets of requests

as Test-1. For Test-4, we use the same sets of requests as Test-2. For all computational

testing throughout the remainder of this chapter, we use an Intel Xeon E3-1230 quad-core

running at 3.20 GHz with hyper-threading and 32 GB of RAM. We use the IBM ILOG

Optimization Studio (CPLEX) 12.6 C++ API software package. In Figure 3.1, we report

the solve times for each Variation One Test.
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Figure 3.1: Box & Whisker Plot of Solve Times for Variation One

From Figure 3.1, we notice that an optimal solution was found for all instances in less

than one minute. For the majority of instances in the first three tests, an optimal solution

was found in approximately ten seconds. For Test-4, which included the most residents and

most services of the cases tested, the median solve time was 28 seconds. We recognize that

our sets of test data are rather simplistic and do expect longer solve times for larger, more

complex data sets. However, based on our results and the fact that it is only necessary to

solve these types of problems annually, we conclude that our Service Model is adequate for

solving simple block scheduling problems similar to those presented in this section.

3.5 Variation Two

The mathematical model presented in Section 3.4 works well for solving rather basic block

scheduling problem variations. However, for more complex variations there can be com-

putational advantages (or even necessities) to using to using an alternative model. In this

section we describe a more complex variation of the block scheduling problem that we have
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encountered in our experience with the University of Michigan Health System (UMHS).

We then propose an alternative model for solving it and compare the performance of the

two models.

Specifically, we have observed that it is not always the case that service assignments

are made in one-month blocks. Some assignments might only be for a half month, some

assignments might be for a full month, and in some cases the educational requirement is for

a full month, but it is acceptable to split the assignment into two separate half-month blocks.

This is the case in the UMHS programs in pediatrics and in internal medicine where, for

example, it may be necessary to spend a month on an emergency medicine service, but this

can be done in two half-month blocks.

A further complication stems from the fact that for those activities which can be split

into half-month blocks, not all combinations of services are valid. For example, a resident

can spend a half-month on emergency medicine followed by a half month on vacation,

or a half month on emergency medicine followed by a half month on elective, but cannot

combine elective and night-team in the same month.

To model these types of compatibility restrictions using the Service Model, we can

define the blocks to be a half-month in duration and then define additional constraints to

restrict which combinations of services can occur within a single month for each resident.

Specifically, there are two types of combinations that require additional constraints: 1)

full-month services (i.e., services that must be assigned to both blocks of a month) and 2)

prohibited combinations of half-month services.

Enforcing full-month service restrictions can be done by defining constraints that set

decision variables for the second half of a month equal to decision variables for the first

half of that month. For example, letting S1 be the set of all one-month services, B1 be the

set of all blocks that occur during the first half of a month, and b? be the block correspond-

ing to the second half of the month for block b ∈ B1, we can model full-month service
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relationships using the xrsb decision variables with the following set of constraints:

xrsb = xrsb? ∀r ∈ R, s ∈ S1, b ∈ B1 (3.9)

Although modeling the one-month services in this manner requires additional con-

straints, constraint set (3.9) actually fixes the values of many decision variables, which

in actuality reduces the overall size of the problem instance.

To model prohibited combinations of half-month services however, we must ensure that

specific combinations of services are not assigned to any residents within any month. To

do this, for each prohibited combination of half-month services, we must define constraints

that prevent both services from being assigned within a single month. For example, if the

half-month services s1 and s2 are not allowed to occur within the same month, we can

enforce this restriction using the following sets of constraints:

xrs1b + xrs2b? ≤ 1 ∀r ∈ R, b ∈ B1 (3.10)

xrs2b + xrs1b? ≤ 1 ∀r ∈ R, b ∈ B1 (3.11)

Together, (3.10) and (3.11) ensure that s1 and s2 are not assigned to a resident within

the same month. Unlike constraint set (3.9), constraint sets (3.10) and (3.11) are highly

fractional and can lead to increased solve times. Instead of defining additional constraint

sets (3.9), (3.10), and (3.11) to account for half-month service relationships, we propose an

alternative model in which we define the decision variables differently.

3.5.1 Pattern Model Formulation

As an alternative to defining variables of type xrsb as is done for the Service Model de-

scribed in Section 3.4, we define variables of type yrpt to represent if resident r is assigned

service-pattern p during time interval t. Here, a service-pattern is an allowable sequence
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of services that can occur within a multi-block time interval. For example, in the situation

described above, the blocks would be half months, the intervals would be full months (i.e.

two blocks), and we would define patterns of the form (emergency medicine, vacation)

and (vacation, emergency medicine) as well as (S1, S1) for any service that must be a full

month, but would not define prohibited patterns (S1, emergency medicine), (S1, Vacation),

etc.

By using variables of type yrpt, constraints for enforcing relationships between services

within intervals of time (i.e., (3.9), (3.10), and (3.11)) are not required. Instead, we only

define decision variables to represent each allowable pattern. Thus, as more compatibility

restrictions are added to the scheduling problem, the Service Model grows through the

addition of constraints, but the Pattern Model shrinks through the elimination of decision

variables. Consequently, the computational advantages of the Pattern Model are likely to

increase as more compatibility restrictions are added. Although there may be many possible

patterns, we find that in practice the number of allowable patterns is manageable.

In this example we have focused on assigning pairs of services for each month, but

we define a generalized version of the mathematical model, which we call the Pattern

Model. Next, we define the sets (in addition to those defined in Section 3.3), parameters,

and mathematical formulation for our Pattern Model.

Additional Sets:

• T ∈ {1, 2, . . . , |T |} is the set of all time intervals in the scheduling horizon. Every

time interval is equal in length and is divided into n equally-long blocks.

• P is the set of all service patterns that can occur within a single time interval t ∈

T . Each pattern p ∈ P is represented as (s1, s2, . . . , sn) to indicate which services

occurs during each block of the pattern.

• P ? is the set all patterns for prerequisite requirement e ∈ E in which: a) service se2
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occurs before service se1, or b) service se2 occurs, but se1 does not.

• Cp is the set of all pattern-specific spacing requirements. Here, we assume that

block-specific spacing requirements are translated into pattern-specific spacing re-

quirements before solving the problem. Each requirement c in Cp includes a set of

patterns Pc, a duration of time, δc (in time intervals), and a maximum number of pat-

terns, σc, which indicates that no more than σc of the patterns in Sc can be assigned

to a resident within any δc consecutive time intervals.

Parameters:

• ρ
¯
j
st

and ρ̄jst for j ∈ {1, . . . , n} are the lower and upper bounds on the total number of

residents assigned to service s ∈ S in block j of interval t ∈ T .

• λ
¯
j
lst and λ̄jlst for j ∈ {1, . . . , n} are the lower and upper bounds on the total number

of level l ∈ L residents assigned to service s ∈ S in block j of interval t ∈ T .

• τsp ∈ {0, 1, . . . , n} is the total number of blocks of service s ∈ S included in pattern

p ∈ P .

• αsp ∈ {0, 1} indicates whether or not service s ∈ S occurs in pattern p ∈ P .

• βjsp ∈ {0, 1} for j ∈ {1, . . . , n} indicates whether or not service s ∈ S occurs in

block j of pattern p ∈ P .

• πrptq ∈ {0, 1} equals 1 if assigning resident r ∈ R pattern p ∈ P during interval

t ∈ T satisfies request q ∈ Q, and equals 0 otherwise.

Decision Variables:

• yrpt ∈ {0, 1} indicates if resident r ∈ R is assigned service pattern p ∈ P for interval

t ∈ T .
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Constraints:

∑
p∈P

yrpt = 1 ∀ r ∈ R, t ∈ T (3.12)

ω
¯ rs
≤

∑
p∈P

∑
t∈T

τspyrpt ≤ ω̄rs ∀ r ∈ R, s ∈ S (3.13)

ρ
¯
j

st
≤

∑
p∈P

∑
r∈R

βjspyrpt ≤ ρ̄jst ∀ s ∈ S, j ∈ {1, . . . , n}, t ∈ T (3.14)

λ
¯
j
lst ≤

∑
p∈P

∑
r∈Rl

βjspyrpt ≤ λ̄jlst ∀ l ∈ L, s ∈ S, t ∈ T (3.15)

∑
p∈P ?

yrpt = 0 ∀ e ∈ E, r ∈ Re, t ∈ {1} (3.16)

t−1∑
i=1

∑
p∈P

αse1pyrpi ≥
∑
p∈P ?

yrpt ∀ e ∈ E, r ∈ Re, t ∈ {2, . . . , |T |} (3.17)

∑
p∈Pc

t+δc−1∑
i=t

yrpi ≤ σc ∀ r ∈ R, c ∈ Cp, t ∈ {1, . . . , |T | − δc + 1} (3.18)

Here, (3.12) ensures that each resident is assigned exactly one pattern during each time

interval. Constraint set (3.13) enforces the educational requirements for each resident.

(3.14) sets bounds on the total number of residents assigned to each service during each

block. Similarly, (3.15) sets bounds on the number of residents of each level assigned to

each service during each block. Together, (3.16) and (3.17) ensure that each prerequisite

requirement e in E is satisfied. Specifically, (3.16) ensures that se2 does not occur before se1

during the first time interval and (3.17) ensures that se1 occurs in a block prior to when se2

occurs. Finally, constraint set (3.18) enforces each spacing requirement.

Objective Function:

The objective is to maximize the number of resident requests satisfied:
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max
∑
r∈R

∑
p∈P

∑
t∈T

∑
q∈Q

πrptqyrpt (3.19)

3.5.2 Computational Testing

The specific data sets we use in this section to compare the computational performance of

the Pattern Model to the Service Model are approximately based on those we have encoun-

tered when scheduling pediatric and internal medicine residents. For each test, all services

are either a full or half month in duration and full-month services correspond to the cal-

endar months. For solving each problem instance, we define blocks to be a half month in

duration and time intervals that correspond with the calendar months.

For each service in the data sets, we define the following inputs (see Table 3.1 for

example input values):

• Name: Specifies the name of the service.

• Duration: Indicates whether the service must be assigned as a full month or can be

assigned in half month blocks.

• Min Blocks: The minimum number of half-month blocks required by each resident.

• Max Blocks: The maximum number of half-month blocks that can be assigned to

each resident.

• Compatibility: A list of each half-month service that can occur during the same

month.

• Min Coverage: The minimum number of total residents that must be assigned to the

service during each block.

• Max Coverage: The maximum number of total residents that can be assigned to the

service during each block.
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• Max Level-1: The maximum number of Level-1 residents that can be assigned to

the service during each block.

• Min Level-3: The minimum number of Level-3 residents that must be assigned to

the service during each block

• Level-1 PreReq: Indicates which other service(s), if any, are a prerequisite for Level-

1 residents.

• isHard: Indicates whether or not the service is defined to be a “hard” service. Hard

services are subject to spacing requirements (as described in Section 3.3) in the prob-

lem instances we test.

• isPreference: Indicates whether or not residents can request when each block of the

service is assigned to them.

In Test-5, 100 residents must be scheduled and there are nine total services. For sim-

plicity, we name the services S1, . . . ,S9. The Test-5 inputs for each service are included in

Table 3.1.

Table 3.1: Test-5 Inputs

Name Duration Min Max Compatibility Min Max Max Min Level-1 isHard isPreference
Blocks Blocks Coverage Coverage Level-1 Level-3 PreReq

S1 full 4 4 S1 16 18 5 3 - TRUE -
S2 full 2 2 S2 7 9 5 3 - TRUE -
S3 full 2 2 S3 7 9 5 3 - - -
S4 full 2 2 S4 7 9 5 3 S3 - -
S5 half 2 2 S5,S6,S7,S8 0 100 100 0 - - TRUE
S6 half 2 2 S5,S6 7 9 5 3 - - -
S7 half 2 2 S5,S7 7 9 5 3 - - -
S8 half 7 7 S5,S8,S9 28 30 8 3 - - -
S9 half 1 1 S8, S9 3 5 5 2 - - -

For Test-5, the three full months of “hard” services can not be assigned to a resident

in three consecutive months. With nine services, there are 9 ∗ 9 = 81 possible patterns.

However, since only five of the nine services in Test-5 can be split into half-month blocks,

there are a total of (5 ∗ 5) + 4 = 29 possible monthly patterns. Furthermore, based on the

compatibility of half-month services with one another, only 16 patterns are allowed.
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To test the effect of compatibility restrictions on the two models, for Test-6 we remove

all compatibility restrictions from Test-5. Thus, every half-month service is allowed to

occur in the same month as any other half-month service. As a result, we are able to

remove constraints from the Service Model, but must add decision variables to the Pattern

Model to account for the additional allowable patterns.

We compare the performance of the Pattern Model to the Service Model by randomly

generating ten instances of preferences for each case and then solving each instance with

both models. We report the solve times for each case and model in Figure 3.2.

Figure 3.2: Box & Whisker Plot of Solve Times for Variation Two

For Test-5, the median solve time of the Service Model was 66 seconds (nearly 4x)

greater than that of the Pattern Model. For Test-6, with the compatibility restrictions re-

moved, we observe that there is no longer a computational advantage to using the Pattern

Model over the Service Model. By comparing the solve times of the models instance by in-

stance, the Pattern Model out-performs the Service Model for every instance in Test-5, but

under-performs the Service Model for every instance in Test-6. In summary, we observed

that as the number of compatibility restrictions increases for a particular scheduling prob-
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lem, the computational advantage of the Pattern Model over the Service Model increased.

3.6 Variation Three

In Section 3.5 we considered multi-block services (i.e., services that occurred for consec-

utive blocks of time) that were only allowed to start during specific blocks. Specifically,

full-month services corresponded with the calender months and therefore were only al-

lowed to start at the beginning of a calendar month. However, in some resident programs at

UMHS, multi-block services are less restricted in terms of when they are allowed to start.

For example, in some programs residents are assigned to half-month, full-month, and two-

month services, and the two-month services are allowed to start at the beginning of any

calendar month. Thus, it is possible for one resident to be assigned to a two-month service

for the first two months of the year while another resident is assigned to the same two month

service for the second and third months of the year. It is not possible to model this problem

variation using the Service Model without defining additional variables to represent when

services start. To model this variation using the Pattern Model, it is necessary to define

every allowable full-year pattern (i.e, every possible year-long schedule). Even for rather

small scheduling problems, doing so is not practical and typically leads to an intractable

model. In this Section, we propose two alternative models that build on our previously

proposed models and then compare their performance through computational testing.

For the models we propose in this section, we define a new set of variables which we

call activity variables. Specifically, we define variables of type zrab to indicate if resident r

starts activity a at the beginning of block b. For the first model we propose in this section,

which is an expanded version of the Service Model, an activity is defined to be a single

service for a specific duration of time (in blocks). For example, one activity could represent

an assignment to general medicine for six consecutive blocks while another activity could

represent an assignment to vacation for one block. We call activities that represent a single
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service simple activities.

To model the problem variation described in this section, we link the values of the xrsb

variables in the Service Model to the values of the new zrab variables with constraints.

Consequently, deciding when each activity starts for each resident (i.e., the value of the

zrab variables) determines which service is assigned to each resident for each block (i.e.,

the value of the xrsb variables). Next, we provide the full mathematical formulation of our

alternative model with activity variables, which we call the Simple-Activity Model.

3.6.1 Simple-Activity Model Formulation

Additional Sets:

• A is the set of all activities.

• Ba is the set of blocks in which activity a ∈ A is prohibited from starting.

Parameters:

• s(a) is the service represented by activity a ∈ A.

• d(a) is the duration (in blocks) of activity a ∈ A.

• ω
¯ rs

and ω̄rs are the lower and upper bounds on the total number of blocks that resident

r ∈ R can be assigned to service s ∈ S, respectively.

• ρ
¯sb

and ρ̄sb are the lower and upper bounds on the total number of residents assigned

to service s ∈ S during block b ∈ B.

• λ
¯ lsb

and λ̄lsb are the lower and upper bounds on the total number of level l residents

assigned to service s ∈ S during block b ∈ B.
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Decision Variables:

• zrab ∈ {0, 1} indicates if resident r ∈ R starts activity a ∈ A during block b ∈ B.

• xrsb ∈ {0, 1} indicates if resident r ∈ R is assigned service s ∈ S for block b ∈ B.

Constraints:

xrsb =
b∑

i=max(1,b−d(a)+1)

∑
a∈A:
s(a)=s

zrai ∀ r ∈ R, s ∈ S, b ∈ B (3.20)

∑
r∈R

∑
b∈Ba

zrab = 0 ∀a ∈ A (3.21)

∑
s∈S

xrsb = 1 ∀ r ∈ R, b ∈ B (3.22)

ω
¯ rs
≤

∑
b∈B

xrsb ≤ ω̄rs ∀ r ∈ R, s ∈ S (3.23)

ρ
¯sb
≤

∑
r∈R

xrsb ≤ ρ̄sb ∀ s ∈ S, b ∈ B (3.24)

λ
¯ lsb
≤

∑
r∈Rl

xrsb ≤ λ̄lsb ∀ l ∈ L, s ∈ S, b ∈ B (3.25)

xrse2b = 0 ∀ e ∈ E, r ∈ Re, b ∈ {1} (3.26)
b−1∑
i=1

xrse1i ≥ xrse2b ∀ e ∈ E, r ∈ Re, b ∈ {2, . . . , |B|} (3.27)

∑
s∈Sc

b+δc−1∑
i=b

xrsi ≤ σc ∀ r ∈ R, c ∈ C, b ∈ {1, . . . , |B| − δc + 1} (3.28)

Here, the only differences from the Service Model are the addition of constraint sets

(3.20) and (3.21). Constraint set (3.20) links xrsb variables to the zrab variables and (3.21)

restricts when each activity is allowed to start. The remainder of constraints are the same

as the Service Model and are explained in Section 3.4.1.

Although our Simple-Activity Model can be used to solve a wide-variety of block

scheduling problems, for problem variations similar to those presented in Section 3.5, there
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can be computational advantages to defining activities to represent service patterns, such

as those used in the Pattern Model. We elaborate on how this can be done in the following

section.

3.6.2 Complex-Activity Model Formulation

In Section 3.5.2 we showed that for problem variations in which relationships exist across

services within intervals of time (e.g., calendar months), there can be advantages to defining

patterns of services as we did for the Pattern Model. Based on our findings in Section 3.5.2,

we can extend the idea from 3.6.1 trivially to recognize that each block of an activity need

not be the same service, giving us greater flexibility.

For the last model we propose in this chapter, we define complex activities. Each com-

plex activity represents an allowable service pattern (possibly a single service) and a du-

ration of time (in blocks). By only defining allowable complex patterns, compatibility

restrictions such as those explained in Section 3.5 can be accounted for without needing

additional constraints. For example, consider a specific problem variation involving half-

month, full-month, and two-month services for which many compatibility restrictions limit

the combinations of services occurring within a calendar month. To model this problem

variation, instead of defining activities to represent the half-month, full-month, and two-

month services, activities could be defined to represent the allowable full-month patterns

and the two-month services.

To formulate a new model using complex activities, we simply modify constraint set

(3.20) in the Simple-Activity Model to account for the fact that activities may represent

more than one service. Specifically, we first define the parameter µsan ∈ {0, 1} to equal 1 if

service s occurs during the nth block of activity a ∈ A, and equals 0 otherwise. Then, we
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replace (3.20) in the Simple-Activity Model with the following constraint set:

xrsb =
∑
a∈A

b∑
i=max(1,b−d(a)+1)

µsa(b−i+1)zrai ∀ r ∈ R, s ∈ S, b ∈ B (3.29)

Here, constraint set (3.29) links xrsb variables to the zrab variables. We call this new model

the Complex-Activity Model.

3.6.3 Computational Testing

To compare the performance of the Simple-Activity Model to the Complex-Activity Model,

we make slight modifications to the Test-5 and Test-6 data sets of Section 3.5.2 to create

Test-7 and Test-8. Specifically, we modify the attributes of service S1 in Test-5 and Test-

6 by changing it from a full-month service to a two-month service while still allowing

it to start at the beginning of any calendar month. Thus, for Test-7 and Test-8, S1 can

start during the first block of any month and must be assigned to each resident for four

consecutive half-month blocks. As discussed previously, modeling this problem variation

with the Service Model is not possible without defining additional variables. Modeling it

with the Pattern Model requires defining every allowable full-year pattern. For Test-7 and

Test-8, this means defining 11,543,176 and 483,736,625 patterns, respectively. Defining

this many patterns leads to an intractable model.

For computational testing, we solve a set of ten problem instances for Test-7 and Test-8

with each model. In the Simple-Service Model, each activity represents a single service.

Thus, there are a total of nine activities in the Simple-Activity Model for Test-7 and Test-

8. In the Complex-Activity Model, activities represent allowable full-month patterns or

two-month services. Therefore, in the Complex-Activity Model, there are 16 allowable

activities for Test-7 and 29 allowable activities for Test-8. In Figure 3.3, we present the

solve times from using the Simple-Activity Model and Complex-Activity Model to solve

Test-7 and Test-8 problem instances.

58



Figure 3.3: Box & Whisker Plot of Solve Times for Variation Three

For Test-7 we notice there is a significant difference in solve times between the two

models—the median solve time of the Simple-Activity Model is approximately ten min-

utes, while the median solve time of the Complex-Activity Model is 25 seconds. This is

much less than the 67 seconds difference between the median solve times of the Service

Model and Pattern Model in Test-5. Thus, for the data sets tested, adding activity variables

to the models had much less of an effect when activities were linked to patterns instead of

individual services. We expect that the computational effects of the service compatibility

restrictions were compounded by the addition of activity variables. We acknowledge that

Test-7 only included one service lasting longer than one month and expect solve times to

increase for both models as more multi-block services such as S1 are included.

For Test-8, in which the compatibility restrictions are removed from Test-7, the Simple-

Activity Model performed better than the Complex-Activity Model. This result is similar to

that of Test-6—without service compatibility restrictions, there is no advantage to defining

patterns of services.

In summary, the use of activity variables enables solving more complex problem varia-
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tions. Depending on the specific compatibility restrictions in place for a particular problem,

there can be computational advantages of using complex activities over simple activities.

3.7 Summary

In this chapter, we presented a generalized block scheduling problem and then demon-

strated how alternative variable definitions can be used to enable or improve the compu-

tational performance of mathematical models in specific situations. We explained three

different scheduling problem variations, proposed mathematical models for solving each

problem, and assessed the performance of each model through computational testing.

First, we introduced a rather basic block scheduling problem in which all services were

identical in duration. To solve it, we proposed a model with decision variables representing

a single service for a single block of time. In the second problem variation, compatibility

restrictions limited the combinations of services that could occur within a particular time

interval. For solving this variation, we proposed defining decision variables such that each

variable represented the assignment of a service-pattern for a single interval of time. In the

third problem variation, we introduced multi-block services with less restricted start times.

For solving it, we first proposed defining “simple activities” to represent the assignment of

a single service for some number of consecutive blocks. Since there can be advantages to

using service-patterns for solving certain problem variations, we formulated a fourth model

by defining variables to represent “complex activities”—a combination of service patterns

for some number of consecutive time intervals.

Through computational testing, we demonstrated that there can be computational ad-

vantages to using complex decision variables for solving specific problem variations How-

ever, we also showed that no single model was best for every problem variation. Our find-

ings reinforce the computational benefits of formulating the “right” model for the specific

problem being solved.
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CHAPTER 4

Scheduling Medical Residents With Conflicting

Requests For Time Off

4.1 Introduction

Scheduling medical residents involves satisfying many unique and complex scheduling

requirements. These hard constraints include Accreditation Council for Graduate Medi-

cal Education (ACGME) work-hour restrictions along with hospital- and program-specific

work and educational requirements. Simply creating a schedule that satisfies all of these

hard constraints can be both challenging and time-consuming. Therefore, when manually

creating a schedule, as is often done by chief residents, the primary focus is on finding a

feasible schedule. The resulting schedule often fails to also satisfy many of the scheduling

preferences, or soft constraints, such as requests for time off.

Computerized decision support tools, based on underlying approaches such as integer

programming, not only greatly reduce the time needed to build a schedule, but may dramat-

ically improve the quality of the schedule as well. However, defining an objective function

that precisely represents the preferences of the scheduler can be difficult. When scheduling

residents, it is desirable to satisfy personal requests, but simply maximizing the number

of satisfied requests may not be appropriate. For example, it might be better to grant one

resident’s request for their family member’s wedding in place of two residents’ requests to

attend a rugby game. As an alternative to maximizing the number of satisfied scheduling
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requests, each request could be weighted according to its importance a priori, but deter-

mining weights that accurately represent the schedulers’ preferences and result in the most

preferred schedule can be challenging.

To eliminate the challenge of accurately defining an objective function when using in-

teger programming, we propose identifying the complete collection of maximally-feasible

and minimally-infeasible sets of time-off requests. Here, a set is maximally feasible if it

is possible to grant all requests in the set but adding any additional request to the set will

make the resulting set infeasible (i.e., it is not possible to grant any additional requests).

Similarly, a set is minimally infeasible if it is not possible to simultaneously grant all re-

quests in the set, but removing any one request from the set will make the remaining set

feasible (i.e., it is possible to grant all requests in any proper subset of the set). The collec-

tion of maximally-feasible and minimally-infeasible sets of requests can then be used by

the scheduler to make trade-offs in deciding which resident requests to grant.

The remainder of this chapter is organized as follows. In Section 3.2 we review ex-

isting literature on healthcare personnel scheduling and finding maximally-feasible and

minimally-infeasible sets. In Section 4.3 we describe the specific resident scheduling prob-

lem that we are considering. In Section 4.4 we present the two Request Selection Via Cuts

(RSVC) algorithms and provide computational results in Section 4.5. In Section 4.6, we

present our findings from a scheduling case-study conducted at Mott Children’s Hospital.

We conclude in Section 4.7 by summarizing our findings and providing suggestions for

future work.

4.2 Literature Review

4.2.1 Healthcare Personnel Scheduling

Given the prevalence and complexity of scheduling problems in healthcare, the potential

cost savings of efficient scheduling, and the ability to improve provider morale and patient
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safety with high-quality schedules, scheduling in healthcare has received significant atten-

tion from the research community including a recently published handbook (Hall, 2012).

The majority of research in healthcare personnel scheduling focuses on nurse schedul-

ing. The nurse scheduling problem (NSP) involves assigning nurses to shifts and work days

under various hard and soft constraints such as government regulations, hospital-specific

rules, and individual nurse preferences such as their vacation requests. Satisfying prefer-

ences improves nurse satisfaction and is especially important because it affects retention, a

critical issue faced by many hospitals (Hayes et al., 2006; Li & Jones, 2013).

The NSP first appeared in the literature in the 1960’s (Wolfe & Young, 1965). Since

then, many different models and solution techniques have been proposed for addressing a

variety of specific scheduling rules and objectives. A common objective of nurse schedul-

ing problems is to satisfy nurse scheduling preferences (Warner, 1976; de Grano et al.,

2009). Numerous other models and solution approaches have also been proposed in the

literature (Cheang et al., 2003; Burke et al., 2004).

Medical residents are licensed physicians who are still receiving additional hands-on

training under the supervision of more experienced providers. Because residents rotate

between many different medical services, often as frequently as on a monthly basis, and

because their schedules must not only ensure coverage for adequate patient care (similar to

nurses) but must also ensure adequate training opportunities, resident scheduling problems

can be particularly challenging (Guo et al., 2014).

One important resident scheduling problem is block/rotation scheduling (i.e., schedul-

ing residents to different services for each month of the year). Block schedules must satisfy

coverage needs of the system in addition to individual training requirements in order to ful-

fill each resident’s educational needs (Smalley & Keskinocak, 2016b; Bard et al., 2016;

Agarwal, 2016).

Another resident scheduling problem that is closely related to nurse scheduling is that

of assigning residents to shifts, frequently in emergency departments or to cover call sched-

63



ules. Sherali et al. (2002) develops a mixed integer program and heuristic solution proce-

dures for assigning residents to night shifts while considering staffing needs, skill require-

ments, and resident preferences. Bard et al. (2013) presents an integer goal program and

three-phase solution approach for creating monthly schedules that minimize violations of a

prioritized set of goals. Güler et al. (2013) uses a goal programming model with a weighted

objective function in order to assign the residents to shifts in an anesthesia and reanima-

tion department. Topaloglu & Ozkarahan (2011) and Topaloglu (2006, 2009) discuss other

multi-objective resident shift scheduling models for emergency medicine residents.

Ovchinnikov & Milner (2008) acknowledge some of the challenges of using a multi-

objective function and instead set targets for each of the schedule’s metrics and attempt to

find a feasible schedule that satisfies their targets. However, there are two downsides to

this approach: 1) a feasible solution may not exist (in this case, the targets will need to

be adjusted); 2) solutions may not be Pareto-optimal (i.e., it may be possible to improve a

metric without negatively affecting any other metrics).

As another alternative to using a weighted objective function for a multi-objective prob-

lem, Cohn et al. (2009) proposes an iterative approach in which chief residents provide

feedback on solutions generated by the model until an improved schedule cannot be found.

Like much of the referenced work, we address a multi-objective resident shift schedul-

ing problem that includes many scheduling rules and requirements. However, our approach

for solving this problem is unlike previous work that generates a single feasible schedule by

either optimizing a weighted objective function or satisfying a set of targets for each metric.

Instead, for a set of time-off requests (i.e., soft constraints), we present an algorithm that

identifies every maximally-feasible set of time-off requests.

Maximally-feasible sets are useful since they indicate combinations of requests that

can be granted simultaneously and are maximal in size. With this information, decision

makers can simply decide which maximally-feasible combination of requests they prefer

most. Since some problems have many such sets, making it challenging for decision mak-
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ers to pick their most preferred, we extend our algorithm to also identify every minimally-

infeasible set of time off requests (i.e., sets of requests that are incompatible with one an-

other and are minimal in size). By identifying every minimally-infeasible sets of requests,

each set can be “repaired” by removing any one of its requests from the scheduling problem

in order to generate a feasible schedule.

4.2.2 Generating Maximally-Feasible and Minimally-Infeasible Sets

Although the generation of maximally-feasible and/or minimally-infeasible sets of con-

straints has been studied for other purposes, much of the previous work has focused on

identifying a single maximally-feasible or minimally-infeasible set of constraints. The mo-

tivation for this comes from the desire to determine the cause of infeasiblilty in systems

of constraints, such as those used in mathematical programs. Chinneck (2007) covers a

wide variety of methods related to analyzing infeasible systems and references many of

the works that have made contributions to the area, including Van Loon (1981), Amaldi

et al. (1999), Chakravarti (1994), and Guieu & Chinneck (1999). Currently, the commer-

cial solver software IBM ILOG CPLEX Optimization Studio and Gurobi Optimizer both

have built-in functionality for identifying a single minimally-infeasible set of constraints,

also referred to as an irreducible inconsistent set (IIS).

For a given minimally-infeasible set of constraints, it is possible to repair the set by

removing one of the constraints (in our case, this is equivalent to choosing a time-off request

to deny). If the revised problem were then evaluated again, a new minimally-infeasible set

could be found and the process repeated until the overall problem was feasible. However,

by repairing minimally-infeasible sets one at a time, it is possible to unnecessarily remove

some constraints from the problem, for example, if one fails to notice that some constraints

appear in multiple minimally-infeasible sets. For resident scheduling, this could mean

denying requests that do not need to be denied. Therefore, it is beneficial to identify many

(or all) minimally-infeasible request sets before choosing to deny any individual requests.
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Unlike the previously proposed methods for generating maximally-feasible or minimally-

infeasible sets, our method identifies every maximally-feasible and minimally-infeasible set

for a set of constraints. For identifying maximally-feasible sets, our method is most similar

to that of Cohn & Barnhart (2003) who use optimization to identify “unique and maximal

maintenance-feasible short connects” for an aircraft maintenance routing problem. For gen-

erating minimally-infeasible sets, we leverage the relationship between maximally-feasible

and minimally-infeasible sets presented by Bailey & Stuckey (2005): given the complete

set of maximally-feasible sets of constraints, any set of constraints that is not a subset of

any maximally-feasible set is an infeasible set. Therefore, the smallest-cardinality set of

constraints that is not a subset of any maximally-feasible set is a minimally-infeasible set.

Instead of using a heuristic to identify such minimal sets as Bailey & Stuckey (2005) do,

we formulate and solve a mathematical optimization problem.

4.3 Resident Scheduling Problem

Although our work is generally applicable to any problem with soft constraints, the mo-

tivation for our research is assigning residents to shifts to cover the Pediatric Emergency

Department at C.S. Mott Children’s Hospital in the University of Michigan’s Health Sys-

tem and addressing their potentially conflicting personal requests. This problem, like most

residency scheduling problems, has a large number of requirements (i.e., hard constraints).

Many of the work-hour related rules are governed by the Accreditation Council for Gradu-

ate Medical Education (ACGME). In addition to these rules, there are scheduling require-

ments that are particular to the hospital and the specific resident program. For example, at

Mott Children’s Hospital, first-year residents are not allowed to work the first or last shift of

each day. For the sake of exposition, we will focus on a simplified version of the real-world

problem in which we incorporate the primary hard constraints.
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4.3.1 Description of Residency

Following medical school, doctors typically spend three to five years as residents — li-

censed, practicing physicians who work under the supervision of attending physicians.

During residency, physicians rotate through various programs in order to fulfill their ed-

ucational requirements and get experience in a variety of areas related to their specialties.

During each rotation, residents are assigned to work shifts in the hospital according to the

requirements of their current program. In addition to working shifts, residents are often

required to hold clinic hours each week. Residents may also have additional time commit-

ments related to their particular program, such as mandatory seminars.

4.3.2 Schedule Requirements

For the problem being considered here, residents who have been assigned to spend the

current month staffing the pediatric emergency department must be assigned to specific

shifts. Every day includes seven shifts, each of which lasts for nine hours. Shifts start at

7am, 9am, 12pm, 4pm, 5pm, 8pm, and 11pm. The shifts starting at 8pm and 11pm are

considered “night” shifts. The following rules must be satisfied by a schedule:

• Each shift must be worked by exactly one resident.

• First-year residents are not allowed to work the 7am or 11pm shift on any day.

• The number of shifts worked by each resident during each month must be within a

specified range.

• The number of night shifts worked by each resident during each month must be

within a specified range.

• Each resident is restricted to working no more than five consecutive days in a row.

A day is counted as being worked if a shift starts on that day. For example, if a

resident works the 11pm shift starting on day 2 and no shifts starting on day 3, this

corresponds to working day 2, but not day 3.
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• Each resident is restricted to working no more than four consecutive nights in a row.

Working consecutive night shifts is defined as starting night shifts on consecutive

days.

• Each resident is required to have at least ten hours of rest between two consecutive

work shifts.

• In addition to working shifts in the emergency room, some residents are required to

work in the continuity clinic one day per week, from 8am to 12pm. The specific

day of week (if any) that each resident needs to hold clinic hours remains constant

throughout his or her residency and is determined for each resident before shift sched-

ules are created. When a resident works in the continuity clinic, this resident cannot

work any shifts that start after the 4pm shift on the previous day or before the 8pm

shift on the day of the clinic.

4.3.3 Time-Off Requests

Before each month begins, residents submit requests for days off. It is desirable to grant

every request for time-off, but it is often not possible do so. We begin by describing how

to find a schedule that satisfies every scheduling rule and grants the maximum number of

requests. Then in Section 4.4, we show how this process can be used as the kernel for

generating maximally-feasible and minimally-infeasible request sets.

For the problem we consider, each request is for a single day-off and there is no limit

on the number of requests each resident can submit. We acknowledge that residents may

also make requests for multiple, consecutive days off in practice, but for simplicity of

exposition, we only consider single-day requests; the approach can easily be extended to

accommodate multi-day requests.

If a resident is granted one day-off request, that resident will not be assigned to work

any shift starting after the 12pm shift on the day before the request or before the 7am shift

on the day following the request. This means that this resident will finish working by 9pm
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the day before the requested day-off and will not start working until 7am, at the earliest, on

the day following the requested day-off.

Given a set of requests for time-off and the scheduling rules described in Section 4.3.2,

we formulate and solve a mathematical optimization problem to find a schedule that satis-

fies every rule and grants a maximum number of requests. We include the full formulation

of the problem in Section 4.3.4.

4.3.4 Resident Scheduling Problem Formulation

In this Section, we present the mathematical formulation for the residency scheduling prob-

lem previously described that we use for the computational testing in Section 4.5 and case

study in Section 4.6. We solve this mathematical optimization problem to find a feasible

schedule that grants a maximum number of requests.

Sets:

• P is the set of all residents (physicians).

• P I ⊆ P is the set first-year (“intern”) residents. First-year residents have special

work restrictions.

• S is the set of all shifts. For convenience, shifts are numbered 1 through 7, with the

7am shift being shift 1.

• SN ⊆ S is the set of night shifts.

• SI ⊆ S is the set of shifts that cannot be worked by first-year residents.

• D is the set of days in the planning horizon.

• B = S×D is the set of all shift/day pairs in the planning horizon. For example (1,2)

represents shift 1 on day 2.

• T s,d ⊆ B is the set of shift/day pairs that start within ten hours of the end of shift

s ∈ S on day d ∈ D. For example, T 4,d := {(5, d), (6, d), (7, d), (1, d+1), (2, d+1)}.
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• Cp ⊆ B is the set of shift/day pairs that cannot be worked by resident p due to his

or her continuity clinic day. For residents that do not work in the continuity clinic,

Cp = ∅.

• R is the set of time-off requests. Specification of each request r ∈ R consists of the

associated resident, pr ⊆ P , and a set, Br ⊆ B, that contains the shift/day pairs that

are requested off. For example, if a resident requests day 2 off, the shift/day pairs for

this request are:

Br = {(4, 1), (5, 1), (6, 1), (7, 1), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)}.

Parameters:

• Dmax is the maximum number of consecutive days that can be worked by a resident.

• Nmax is the maximum number of consecutive night shifts that can be worked by a

resident.

• MinShiftsp and MaxShiftsp are the minimum and maximum number of total shifts

that can be worked by resident p ∈ P , respectively.

• MinNightShiftsp and MaxNightShiftsp are the minimum and maximum number of

total night shifts that can be worked by resident p ∈ P , respectively.

Decision Variables:

• ypsd ∈ {0, 1} is a binary variable that specifies whether resident p ∈ P is assigned

shift s ∈ S on day d ∈ D

• xr ∈ {0, 1} is a binary variable that specifies whether time-off request r ∈ R is

granted.

70



Constraints:

• Shift Coverage: Every shift must be covered by exactly one resident.

∑
p∈P

ypsd = 1, ∀ s ∈ S, d ∈ D (4.1)

• 10-hour Rest: There must be at least 10 hours between consecutive shifts for each

resident.

ypsd +
∑

(s̄,d̄)∈T sd

yps̄d̄ ≤ 1, ∀ p ∈ P, s ∈ S, d ∈ D (4.2)

• First-Year Resident Limitations: First-year residents are not allowed to work the

first (7am) or last (11pm) shifts on any day.

∑
p∈P I

∑
s∈SI

∑
d∈D

ypsd = 0 (4.3)

• Consecutive Working Days: There is a maximum number of consecutive days that

can be worked in a row (any shift).

∑
s∈S

d+Dmax∑
d̄=d

ypsd̄ ≤ Dmax, ∀ p ∈ P, d ∈ {1, 2, . . . , |D| − Dmax} (4.4)

• Consecutive Working Nights: There is a maximum number of consecutive nights

that can be worked in a row.

∑
s∈SN

d+Nmax∑
d̄=d

ypsd̄ ≤ Nmax, ∀ p ∈ P, d ∈ {1, 2, . . . , |D| − Nmax} (4.5)

• Total Shifts: There is a minimum and maximum number of total shifts that can be
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assigned to each resident.

MinShiftsp ≤
∑
s∈S

∑
d∈D

ypsd ≤ MaxShiftsp, ∀ p ∈ P (4.6)

• Total Nights: There is a minimum and maximum number of total nights that can be

assigned to each resident.

MinNightShiftsp ≤
∑
s∈SN

∑
d∈D

ypsd ≤ MaxNightShiftsp, ∀ p ∈ P (4.7)

• Continuity Clinic: A resident that works in a continuity clinic cannot work specific

shifts before, during, or after the clinic.

∑
(s,d)∈Cp

ypsd = 0, ∀ p ∈ P (4.8)

• Linking Shifts to Vacation Requests: A resident who is granted a vacation request

cannot work any shifts included in that vacation request. In other words, if xr is 1

(the resident is granted the request) then all variables associated with shifts in the set

Br must be 0 for that resident.

yprsd ≤ (1− xr), ∀ r ∈ R, (s, d) ∈ Br (4.9)

• Variable Restrictions: All ypsd and xr variables may only take on values of 0 or 1.

ypsd ∈ {0, 1} ∀p ∈ P, s ∈ S, d ∈ D; xr ∈ {0, 1} ∀r ∈ R (4.10)
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Objective:

The objective of this problem is to maximize the number of time-off requests granted.

Maximize
∑
r∈R

xr (4.11)

4.4 RSVC Algorithms

As an alternative to finding just a single solution which maximizes the number of requests

granted (without considering the relative importance of each request), we propose to instead

identify all maximally-feasible and all minimally-infeasible request sets.

To generate these sets, we first present a two-stage sequential algorithm that we have

entitled Sequential Request Selection Via Cuts (Sequential RSVC) which first finds all

maximally-feasible request sets and then uses this information as input to find all minimally-

infeasible request sets.

The ideas developed in Sequential RSVC are then used to motivate the more complex

but more effective Simultaneous RSVC algorithm which alternates between maximization

and minimization problems to ultimately find complete collections of both types of request

sets.

4.4.1 Terminology and Notation

We will use the following terminology to describe sets of requests in an instance of the

resident scheduling problem:

• Request Set: For a problem containing n requests, we denote the complete set of

requests by R = {1, 2, . . . , n}, where each number in the set represents a specific

request.

• Feasible Request Set: A subset of requests A ⊆ R is feasible if it is possible to
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create a schedule that satisfies every hard constraint in the scheduling problem and

grant every request in A.

• Maximally-Feasible Set: A feasible request setA ⊆ R is maximally feasible if there

exists no r ∈ R \ A such that the set A ∪ {r} is feasible.

• Infeasible Request Set: A subset of requests A ⊆ R is infeasible if it is not possible

to create a schedule that satisfies every hard constraint in the scheduling problem and

grant every request in A.

• Minimally-Infeasible Set: An infeasible request set A ⊆ R is minimally infeasible

if for any r ∈ A the set A \ {r} is feasible.

The following notation will be used throughout the rest of this chapter:

• x ∈ {0, 1}n is a “request vector,” i.e., an indicator vector of a request set such that

xr = 1 indicates that request r is included in the set, and xr = 0 — that request r is

not included in the set, for r = 1, . . . , n. For example, the request set A = {1, 3, 4}

in a problem with six requests corresponds to x = {1, 0, 1, 1, 0, 0}. We refer to a set

of requests and the corresponding request vector interchangeably.

• If C is a set of constraints on a schedule,

XC = {x : there exists a schedule that grants every request in x

and satisfies every constraint in C}.

In other words, XC is the set of all request vectors that are feasible under C.

• H is the set of hard constraints in a scheduling problem; XH is the set of all request

vectors that are feasible under H .
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4.4.2 Sequential RSVC Algorithm

Given a set of hard constraints H , Sequential RSVC proceeds in two phases: first it finds

all maximally-feasible sets and then — all minimally-infeasible sets. We include a visual

representation of the algorithm in Figure 4.1 and a formal description in Section 4.4.2.3.

4.4.2.1 Phase I of Sequential RSVC: Identifying Maximally-Feasible Request Sets

Sequential RSVC begins by solving the following problem to find a maximally-feasible

request set of largest cardinality:

(NewFeas)0 maximize
∑
r∈R

xr (4.12)

subject to x ∈ XH . (4.13)

For the residency scheduling problem we consider, x ∈ XH indicates that x is part of

the feasible region defined by the problem’s hard constraints ((4.1)–(4.10)), or, more pre-

cisely, the projection of the feasible region onto the space of x variables. Thus, solving the

problem represented by (4.12) and (4.13) is equivalent to solving the problem described in

Section 4.3.

If (NewFeas)0 is infeasible, then it is not possible to generate a schedule that satisfies

all of the hard constraints and the algorithm terminates. Otherwise, let us denote by RF
0 the

set of requests satisfied by the optimal solution of (NewFeas)0 returned by the solver. (Note

that it may be possible to satisfy all the hard constraints, but not to grant any requests, in

which caseRF
0 = ∅.) The setRF

0 is maximally feasible (otherwise, a larger feasible request

set would exist, yielding a larger objective value and thus contradicting optimality of the

solution).

To find the next-largest maximally-feasible set (which might have the same cardinality
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as RF
0 ), we add the cut

∑
r∈R\RF

0

xr ≥ 1 to (NewFeas)0 to get:

(NewFeas)1 maximize
∑
r∈R

xr (4.14)

subject to x ∈ XH (4.15)∑
r∈R\RF

0

xr ≥ 1. (4.16)

The cut
∑

r∈R\RF
0

xr ≥ 1 eliminates exactly those solutions that only satisfy the requests in

RF
0 or a proper subset of the requests in RF

0 . (If RF
0 = ∅, this constraint is interpreted

as
∑
r∈R

xr ≥ 1, and if RF
0 = R — as “0 ≥ 1.”) Since any solution that only satisfies a

proper subset of the requests in RF
0 is not maximally feasible, the only maximally-feasible

request set that is eliminated from the feasible solution space is RF
0 . Therefore, if prob-

lem (NewFeas)1 is feasible, the set of requests satisfied by any of its optimal solutions is

different than RF
0 and is maximally feasible.

If (NewFeas)1 is infeasible, the first phase of Sequential RSVC algorithm terminates.

Otherwise, letRF
1 denote the set of requests satisfied by the optimal solution of (NewFeas)1

returned by the solver. We can add a new cut
∑

r∈R\RF
1

xr ≥ 1 to (NewFeas)1 to get (NewFeas)2.

(NewFeas)2 can then be solved to find the next-largest maximally-feasible request set.

Continuing in this manner of iteratively constructing and solving problems of the form:

(NewFeas)i maximize
∑
r∈R

xr (4.17)

subject to x ∈ XH (4.18)∑
r∈R\RF

k

xr ≥ 1 ∀ k = 0, . . . , i− 1 (4.19)

will result in identifying one new maximally-feasible set of requests RF
i for each iteration,

identified in non-increasing order of cardinality, by Theorem 1. At the first iteration when

a problem (NewFeas)i is infeasible, every maximally-feasible request set will have been
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identified, by Theorem 2.

Theorem 1. Let RF
K be the set of requests that are satisfied in an optimal solution of

(NewFeas)K after iteratively solving the sequence of problems (NewFeas)k for k = 0, . . . , K

in Phase I of Sequential RSVC. RF
K is a maximally-feasible request set such that RF

K 6= RF
k

for any k = 0, . . . , K−1. Moreover, |RF
K | ≤ |RF

K−1|, i.e., maximally-feasible requests sets

are identified in the order of non-increasing cardinality.

Proof. We use induction on K:

Induction base: Suppose K = 0 and let RF
0 be the set of requests satisfied in an op-

timal solution of (NewFeas)0. Then, by construction, RF
0 is a feasible set and, because it

corresponds to an optimal solution of (NewFeas)0, RF
0 is maximal in size. Therefore, RF

0

is a maximally-feasible request set.

Induction step: Suppose the statement is true for some K ≥ 0 and consider K + 1.

Every optimal solution of (NewFeas)K+1 satisfies every hard constraint in the scheduling

problem and each of the K + 1 cuts that were created from the K + 1 previously identified

maximally-feasible request sets. Each cut of the form
∑

r∈R\RF
k

xr ≥ 1 eliminates exactly

those solutions that only satisfy the requests in RF
k or a proper subset of the requests in RF

k .

Since any solution that only satisfies a proper subset of the requests in RF
k is not maximally

feasible, RF
k is the only maximally-feasible request set that is eliminated from the feasible

solution space by each cut. Therefore, if RF
K+1 is the set of requests satisfied in an optimal

solution of (NewFeas)K+1, RF
K+1 is a maximally-feasible request set for the scheduling

problem such that RF
K+1 6= RF

k for k = 0, . . . , K. Moreover, since problem (NewFeas)K+1

is constructed by adding a cut to problem (NewFeas)K , its optimal objective value cannot

be better (i.e., larger), and we conclude that |RF
K | ≥ |RF

K+1|.

Theorem 2. Suppose it is possible to satisfy the hard constraints of the scheduling problem.

Then Phase I of Sequential RSVC algorithm terminates after a finite number of iterations,

say, K̄. RF
k , k = 0, . . . , K̄ − 1 is the exhaustive list of maximally-feasible request sets for
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the resident scheduling problem.

Proof. By Theorem 1, the solution to each problem (NewFeas)k found by the solver cor-

responds to a new maximally-feasible set of requests. Since there is a finite number of

maximally-feasible sets, there exists K̄ such that (NewFeas)K̄ is the first infeasible prob-

lem encountered by Phase I of the algorithm, and thus Phase I will terminate at iteration K̄.

Since cuts of the form
∑

r∈R\RF
k

xr ≥ 1 eliminate exactly those solutions that only satisfy the

requests in RF
k or a subset of the requests in RF

k , any maximally-feasible set is only elimi-

nated from the feasible regions of subsequent problems by a cut after it has been identified.

Thus, every maximally-feasible set will eventually be identified.

4.4.2.2 Phase II of Sequential RSVC: Identifying Minimally-Infeasible Request Sets

Once every maximally-feasible set has been found, the Sequential RSVC algorithm uses

these maximally-feasible sets to identify every minimally-infeasible set. An infeasible set

is, by definition, not a subset of any feasible set and therefore not a subset of any maximally-

feasible set. Thus, any infeasible set must include at least one request from the complement

of each maximally-feasible set. To find the infeasible request set of the smallest cardinality

we can therefore solve the following minimization problem, in which F is the exhaustive

collection of maximally-feasible request sets identified in the first phase of the algorithm:

(NewInfeas)0 minimize
∑
r∈R

xr (4.20)

subject to
∑
r∈R\F

xr ≥ 1 ∀F ∈ F. (4.21)

(If F = {∅}, constraint (4.21) is interpreted as
∑
r∈R

xr ≥ 1, and if F = {R}— as “0 ≥ 1.”)

Note that we no longer consider the feasible region defined by the constraints H since F in

(4.21) contains every maximally-feasible set and, by definition, any set of requests that is

not a subset of any maximally-feasible request set is infeasible.

Let RI
0 be the set of requests corresponding to the optimal solution of (NewInfeas)0
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obtained by the solver. Since (4.21) is satisfied for any optimal solution and F in (4.21)

contains every maximally-feasible request set, RI
0 is not a subset of any maximally-feasible

request set, and thus it is an infeasible request set. Since RI
0 is also minimal in cardinality,

RI
0 is a minimally-infeasible set of requests. Indeed, if this were not the case, a smaller

infeasible request set would exist, yielding a smaller objective value and thus contradicting

optimality of the solution.

The next-smallest minimally-infeasible set can be found by adding the cut
∑
r∈RI

0

xr ≤

|RI
0| − 1 to (NewInfeas)0 to get:

(NewInfeas)1 minimize
∑
r∈R

xr (4.22)

subject to
∑
r∈R\F

xr ≥ 1 ∀F ∈ F (4.23)

∑
r∈RI

0

xr ≤ |RI
0| − 1. (4.24)

The cut
∑
r∈RI

0

xr ≤ |RI
0|−1 eliminates exactly those infeasible sets that contain every request

in RI
0. Since any proper superset of RI

0 is not minimally infeasible, the only minimally-

infeasible request set that is eliminated from the feasible region by the cut is RI
0. Therefore

the set of requests corresponding to any optimal solution of (NewInfeas)1 is different than

RI
0 and is minimally infeasible.

Similarly, letting RI
1 be the set of requests corresponding to the optimal solution of

(NewInfeas)1 obtained by the solver, we can add a new cut of the form
∑
r∈RI

1

xr ≤ |RI
1| − 1

to (NewInfeas)1 to get (NewInfeas)2. (NewInfeas)2 can then be solved to find the next-

smallest minimally-infeasible request set. Continuing in this manner of iteratively con-
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structing and solving problems of the form:

(NewInfeas)j minimize
∑
r∈R

xr (4.25)

subject to
∑
r∈R\F

xr ≥ 1 ∀F ∈ F (4.26)

∑
r∈RI

k

xr ≤ |RI
k| − 1 ∀ k = 0, . . . , j − 1 (4.27)

will result in identifying one new minimally-infeasible request set in each iteration, iden-

tified in non-decreasing order of cardinality, by Theorem 3. At the first iteration when a

problem (NewInfeas)j is infeasible, every minimally-infeasible request set will have been

identified, by Theorem 4.

Theorem 3. LetRI
K be the set of requests corresponding to an optimal solution of (NewInfeas)K

after iteratively solving the sequence of problems (NewInfeas)k for k = 0 . . . K. RI
K is a

minimally-infeasible request set such that RI
K 6= RI

k for k = 0, . . . , K − 1. Moreover,

|RI
K | ≥ |RI

K−1|, i.e., minimally-infeasible request sets are identified in the order of non-

decreasing cardinality.

Proof. We use induction on K:

Induction base: Suppose K = 0 and let RI
0 be the set of requests contained in an

optimal solution of (NewInfeas)0. By construction, RI
0 6⊆ F ∀F ∈ F, and since F con-

tains every maximally-feasible set of requests for the scheduling problem, RI
0 is an infea-

sible request set. Since RI
0 is also minimal in the number of requests it contains, RI

0 is a

minimally-infeasible request set for the scheduling problem.

Induction step: Suppose the statement is true for some K ≥ 0 and consider K + 1. Let

RI
K+1 be the set of requests contained in the optimal solution to (NewInfeas)K+1 identified

by the solver. Following the argument above, we conclude that RI
K+1 is an infeasible re-

quest set for the scheduling problem. Additionally, each cut of the form
∑
r∈RI

k

xr ≤ |RI
k|− 1

for k = 0, . . . , K eliminates exactly those solutions that only contain the requests in RI
k or
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a proper superset of the requests in RF
k . Since any solution that only contains a proper su-

perset of the requests inRI
k is not minimally infeasible, RI

k is the only minimally-infeasible

request set that is eliminated from the feasible solution space by each cut. Therefore, RI
K+1

is a minimally-infeasible request set for the scheduling problem such that RI
K+1 6= RI

k for

k = 0, . . . , K. Moreover, since problem (NewInfeas)K+1 is constructed by adding a cut to

problem (NewInfeas)K , its optimal value cannot be better (i.e., smaller), we can conclude

that |RF
K | ≤ |RF

K+1|.

Theorem 4. Phase II of Sequential RSVC algorithm terminates after a finite number of

iterations, say, K̄. RI
k for k = 0, . . . , K̄ − 1 is the exhaustive list of minimally-infeasible

requests sets for the scheduling problem.

Proof. If problem (NewInfeas)0 is infeasible (which happens if all requests in R can be

granted simultaneously), there are no infeasible sets and the conclusion holds trivially. In

the remainder of the proof we consider the case when (NewInfeas)0 is feasible.

By Theorem 3, the solution to each problem (NewInfeas)k found by the solver cor-

responds to a new minimally-infeasible set of requests. Since there is a finite number of

minimally-infeasible sets, there exists K̄ such that (NewInfeas)K̄ is the first infeasible prob-

lem encountered by Phase II of the algorithm, and thus Phase II will terminate at iteration

K̄. Since cuts of the form
∑
r∈RI

k

xr ≤ |RI
k| − 1 eliminate exactly those solutions that only

contain the requests in RI
k or a superset of the requests in RI

k, any minimally-infeasible set

is only eliminated from the feasible region of subsequent problems by a cut after it has been

identified. Thus, every minimally-infeasible set will be identified.
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In Figure 4.1, (4.27) is represented as
∑
r∈I

xr ≤ |I| − 1 ∀ I ∈ I where I is a single

minimally-infeasible request set and I is the set of minimally-infeasible requests sets iden-

tified so far.

Begin Sequential RSVC

End Sequential RSVC

Solve (NewFeas):

Is (NewFeas) 

Feasible?

Output: 

RF := A new 

maximally feasible set 

of requests

Add RF to 𝔽, the set of known 

maximally feasible sets. 

Output: 

𝔽 =  The complete set 

of maximally feasible 

request sets

Solve (NewInfeas):

Is (NewInfeas) 

Feasible?

Output: 

𝕀 =  The complete set 

of minimally 

infeasible request sets

Output: 

RI := A new minimally 

infeasible set of 

requests

Add RI to 𝕀, the set of known minimally 

infeasible sets. 

Yes

Yes

No

No

Initialization: 

H = All hard constraints

R = All Requests

𝔽 = ∅
𝕀 = ∅

maximize 

𝑟 ϵ 𝑅

𝑥𝑟

subject to 𝐱 ϵ 𝐗𝐻



𝑟 ϵ 𝑅∖𝐹

𝑥𝑟 ≥ 1  𝐹 ϵ 𝔽

minimize 

𝑟 ϵ 𝑅

𝑥𝑟

subject to 

𝑟 ϵ 𝑅∖𝐹

𝑥𝑟 ≥ 1  𝐹 ϵ 𝔽



𝑟 ϵ 𝐼

𝑥𝑟≤ 𝐼 − 1  𝐼 ϵ 𝕀

Is 𝔽 = ∅ ?  

End Sequential RSVC

(It is not possible to satisfy every 

hard constraint)

Yes

No

Figure 4.1: Sequential Request Selection Via Cuts
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4.4.2.3 Formal Description of Sequential RSVC

Algorithm 1 Sequential RSVC Algorithm
1: Begin Initialization:
2: Set F = ∅ and I = ∅, where the sets F and I are used to store the identified maximally-feasible and

minimally-infeasible request-sets, respectively. Let H be the set of all hard constraints for the scheduling
problem and let R be the set of all requests for the problem. Set CI = ∅ and CF = ∅, where CI and CF

are sets of constraints.
3: Generate an initial maximally-feasible request set by solving the problem: maximize

∑
r∈R

xr subject to

x ∈ XH .
4: if problem is infeasible then
5: QUIT. It is not possible to satisfy the hard constraints.
6: else problem is feasible then
7: Let RF be the set of requests granted in the optimal solution found.
8: Add RF to F (it is a maximally-feasible request set).
9: Add the cut

∑
r∈R\F

xr ≥ 1 to CF .

10: end if
11: End Initialization.
12: Solve the problem: maximize

∑
r∈R

xr subject to x ∈ XH and x ∈ XCF .

13: if a feasible solution exists then
14: Let RF be the set of requests that are satisfied in the optimal solution found.
15: Add RF to F (it is a maximally-feasible set).
16: Add the cut

∑
r∈R\RF

xr ≥ 1 to CF

17: Goto Step 12
18: end if
19: for all F ∈ F do
20: Add the cut

∑
r∈R\F

xr ≥ 1 to CI

21: end for
22: Solve the problem: minimize

∑
r∈R

xr subject to x ∈ XCI

23: if a feasible solution exists then
24: Let RI be the set of all requests r such that xr = 1 in the optimal solution found.
25: Add RI to I (it is a minimally-infeasible set).
26: Add the cut

∑
r∈RI

xr ≤ |RI | − 1 to CI

27: Goto Step 22
28: else
29: End algorithm.
30: end if

4.4.3 Simultaneous RSVC algorithm

The Sequential RSVC algorithm first identifies the exhaustive collection of maximally-

feasible sets and then uses that information to identify the exhaustive collection of minimally-

infeasible sets. However, since in some problem instances the number of maximally-
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feasible sets can be quite large, it may not be practical to generate every maximally-feasible

set. Without the exhaustive collection of maximally-feasible sets, the Sequential RSVC al-

gorithm is unable to identify any minimally-infeasible sets.

On the other hand, given even a small number of minimally-infeasible sets, it may be

possible in some cases to find a high-quality solution by eliminating one request from each

set. This motivates our development of an alternative method, which we call the Simul-

taneous RSVC algorithm. In this section we present the Simultaneous RSVC algorithm

which has the ability to identify some (possibly all) minimally-infeasible sets without first

having to identify the exhaustive collection of maximally-feasible sets. We include a visual

representation of the algorithm in Figure 4.2 and a formal description in Section 4.4.3.1.

The key idea behind Simultaneous RSVC is as follows: Given (non-exhaustive) collec-

tions of known maximally-feasible and minimally-infeasible sets, we can find a new candi-

date request set, R?, which is neither a subset of any of the known maximally-feasible sets

nor a superset of any of the known minimally-infeasible sets. Then we can “convert” R?

into either a new maximally-feasible set or a new minimally-infeasible set, depending on

its feasibility status.

The algorithm maintains F and I — sets of request sets containing all maximally-

feasible and minimally-infeasible sets found so far, respectively (both are initialized with

an empty set). The algorithm begins by solving the now-familiar problem:

(FirstFeas) maximize
∑
r∈R

xr (4.28)

subject to x ∈ XH . (4.29)

If (FirstFeas) is infeasible, it is not possible to satisfy the problem’s hard constraints, so

the algorithm terminates. Otherwise, let RF be the set of requests granted in the optimal

solution found. RF is a maximally-feasible request set, by Theorem 1, so we add it to F.

At the beginning of a typical iteration of Simultaneous RSVC, F contains at least one
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maximally-feasible set, and I may be empty or contain some minimally-infeasible sets. We

first find a candidate set of requests, i.e., a set that is not a subset of any known feasible set

and not a superset of any known infeasible set, by solving the problem:

(CandidateSet) minimize
∑
r∈R

xr (4.30)

subject to
∑
r∈R\F

xr ≥ 1 ∀ F ∈ F (4.31)

∑
r∈I

xr ≤ |I| − 1 ∀ I ∈ I. (4.32)

Here, (4.31) ensures that the candidate set is not a subset of any known maximally-feasible

set and (4.32) ensures that the candidate set is not a superset of any known minimally-

infeasible set. Suppose (CandidateSet) is feasible, and let R? be the set of requests that

corresponds to the optimal solution of (CandidateSet) found by the solver. Note that fea-

sibility status of R? is unknown; thus, we next check if there exists a schedule that grants

every request in R? by solving the following problem:

(FeasTest) maximize
∑
r∈R

xr (4.33)

subject to x ∈ XH (4.34)

xr = 1 ∀ r ∈ R?. (4.35)

Here, (4.34) ensures feasibility of the schedule and (4.35) ensures that the solution grants

every request in the candidate set R?. If (FeasTest) is infeasible, R? is a new minimally-

infeasible set, by Theorem 5 part (a), so we add it to I. If (FeasTest) is feasible, let RF

be the set of requests granted in the optimal solution found. RF is a new maximally-

feasible set, by Theorem 5 part (b), so we add it to F. Then, we add the appropriate cut to

(CandidateSet) and re-solve it to identify a new candidate set.

By Theorem 6, (CandidateSet) is infeasible precisely when F and I contain every

maximally-feasible and minimally-infeasible request set, respectively. By Theorem 7 this
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will happen after a finite number of iterations, and the algorithm will terminate.

Theorem 5. Suppose an instance of (CandidateSet) solved in the Simultaneous RSVC algo-

rithm is feasible. Let x? be the optimal solution found and let R? be the corresponding set

of requests. Furthermore, suppose the problem (FeasTest) is solved using R? in constraint

(4.35).

(a) If (FeasTest) is infeasible, then R? is a minimally-infeasible request set such that

R? 6∈ I.

(b) If (FeasTest) is feasible and RF is the set of requests granted in an optimal solution

of (FeasTest), then RF is a maximally-feasible request set such that RF 6∈ F.

Proof: First, consider the case when (FeasTest) is infeasible. Then R? is an infeasible

request set, by definition. By construction, x? does not violate any constraints of the type

(4.32) in (CandidateSet); therefore R? 6∈ I

We now prove that R? is minimally infeasible by showing that every proper subset of

R? is a feasible request set. Let R̃ be a set of requests such that R̃ ⊂ R?, and let x̃ be the

corresponding request set. Since |R̃| < |R?|, x̃ is not feasible to (CandidateSet). Indeed, if

x̃ were feasible to (CandidateSet), x? would not be an optimal solution. Therefore, x̃ must

violate at least one constraint of (CandidateSet).

Notice that x̃ may violate constraints of type (4.31) or (4.32), but will not violate con-

straints of both types. Recall that if x̃ violates a constraint of type (4.31), this indicates that

R̃ is a subset of some known maximally-feasible set, i.e., R̃ is a feasible set. Similarly, if

x̃ violates a constraint of the type (4.32), this indicates that R̃ is a superset of some known

minimally-infeasible set, i.e., R̃ is an infeasible set. Thus, there are two cases to consider:

Case 1: x̃ violates at least one constraint of type (4.32), i.e., it violates a constraint of the

form
∑
r∈I

xr ≤ |I| − 1 for some minimally-infeasible set I ∈ I. Therefore, R̃ ⊇ I .

However, R? ⊃ R̃ ⊇ I . Thus, x? does not satisfy
∑
r∈I

xr ≤ |I| − 1, a contradiction to

the fact that x? is feasible to (CandidateSet).
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Case 2: x̃ violates at least one constraint of type (4.31). Therefore, R̃ ⊆ F for some

F ∈ F, which means that R̃ is a feasible request set.

We conclude that every proper subset of R? is a feasible request set. Therefore, R? is a

minimally-infeasible request set such that R? 6∈ I, establishing part (a) of the theorem.

Next, suppose (FeasTest) is feasible, and letRF be as defined in part (b) of the theorem.

Due to the structure of (FeasTest), RF is a feasible request set, and, since it is not possible

to grant any additional requests, it is a maximally-feasible request set.

IfRF ∈ F, then, sinceR? ⊆ RF , x? violates some constraint of the type (4.31) in (Can-

didateSet), which is a contradiction. Thus, RF is a newly-identified maximally-feasible

request set, establishing part (b) of the theorem.

Theorem 6. The problem (CandidateSet) is infeasible if and only if F and I contain every

maximally-feasible and minimally-infeasible request set, respectively.

Proof: Recall that every constraint of (CandidateSet) of type (4.31) removes precisely

those solutions that correspond to feasible sets that are contained in some F ∈ F, and every

constraint of type (4.32) excludes precisely those solutions that correspond to infeasible

sets that contain some I ∈ I.

If F does not contain maximally-feasible set F̄ , in light of the above observation, re-

quest vector x̄ that corresponds to F̄ is a feasible solution of (CandidateSet). If I does not

contain minimally-infeasible set Ĩ , in light of the above observation, request vector x̃ that

corresponds to Ĩ is a feasible solution of (CandidateSet). Thus (CandidateSet) is feasi-

ble if F does not include all maximally-feasible sets, or I does not include all minimally-

infeasible sets.

Conversely, every feasible set is contained in some maximally-feasible set, and ev-

ery infeasible set contains some minimally-infeasible set. Thus, if F and I contain every

maximally-feasible and minimally-infeasible request set, respectively, every request vector

violates some constraint of (CandidateSet).
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Theorem 7. The Simultaneous RSVC algorithm terminates after a finite number of itera-

tions. At termination, F and I contain every maximally-feasible and minimally-infeasible

request set, respectively.

Proof: If it is not possible to satisfy the hard constraints of the scheduling problem, the

algorithm will terminate in its initialization phase. Otherwise, the algorithm will terminate

if it encounters an infeasible instance of (CandidateSet).

By Theorem 5, each time (CandidateSet) is solved, a new maximally-feasible set is

added to F, or a new minimally-infeasible set is added to I. Since there is a finite number

of maximally-feasible and minimally-infeasible requests sets, every such set will be found

after a finite number of iterations. At that point, (CandidateSet) will become infeasible, by

Theorem 6, and the algorithm will terminate.
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Begin Simultaneous RSVC

End Simultaneous RSVC

Solve (FirstFeas):

Is (FirstFeas) 

Feasible?

Output: 

RF :=  A maximally 

feasible set of requests

Solve (CandidateSet):

Is (CandidateSet) 

Feasible?

Output: 

RF := A new 

maximally feasible set 

of requests

Add RF to 𝔽, the set of known 

maximally feasible sets. 

No

Yes

Yes

No

End Simultaneous RSVC

(It is not possible to satisfy every 

hard constraint)

Add RF to 𝔽, the set of known 

maximally feasible sets. 

Solve (FeasTest):

Is (FeasTest) 

Feasible?

Output: 

RI := A new minimally 

infeasible set of 

requests

No

Yes

Add RI to 𝕀, the set of known minimally 

infeasible sets. 

Output: 

R* := A set of requests 

with unknown 

feasibility that is 

minimal in size

Output: 

𝔽, 𝕀 = The complete 

sets of maximally 

feasible and minimally 

infeasible request sets

Initialization: 

H = All hard constraints

R = All Requests

𝔽 = ∅
𝕀 = ∅

maximize 

𝑟 ϵ 𝑅

𝑥𝑟

subject to 𝐱 ϵ 𝐗𝐻

minimize 

𝑟 ϵ 𝑅

𝑥𝑟

subject to 

𝑟 ϵ 𝑅∖𝐹

𝑥𝑟 ≥ 1  𝐹 ϵ 𝔽



𝑟 ϵ 𝐼

𝑥𝑟≤ 𝐼 − 1  𝐼 ϵ 𝕀

maximize 

𝑟 ϵ 𝑅

𝑥𝑟

subject to 𝐱 ϵ 𝐗𝐻

𝑥𝑟= 1  𝑟 ϵ 𝑅∗

Figure 4.2: Simultaneous Request Selection Via Cuts
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4.4.3.1 Formal Description of Simultaneous RSVC

Algorithm 2 Simultaneous RSVC Algorithm
1: Begin Initialization:
2: Set F = ∅ and I = ∅ where the sets F and I are used to store the identified maximally-feasible and

minimally-infeasible request-sets, respectively. Let H be the set of all hard constraints for the scheduling
problem and let R be the set of all requests for the problem. Set CI = ∅ and CF = ∅ where CI and CF

are sets of constraints.
3: Generate an initial maximally-feasible request set by solving the problem: maximize

∑
r∈R

xr subject to

x ∈ XH .
4: if problem is infeasible then
5: QUIT. It is not possible to satisfy the hard constraints.
6: else problem is feasible then
7: Let RF be the set of requests granted in the optimal solution found.
8: Add RF to F (it is a maximally-feasible request set).
9: Add the cut

∑
r∈R\F

xr ≥ 1 to CF .

10: end if
11: End Initialization.
12: Solve the problem (CandidateSet):

minimize
∑
r∈R

xr subject to x ∈ XCF and x ∈ XCI .

13: if (CandidateSet) is infeasible then
14: QUIT. F and I contain every maximally-feasible and minimally-infeasible request set, respectively.
15: else (CandidateSet) is feasible then
16: Let x? be the optimal solution found and let R? bet the set of requests in x?.
17: Solve the problem (FeasTest):

maximize
∑
r∈R

xr subject to x ∈ XH and xr = 1 ∀ r ∈ R?.

18: if (FeasTest) is infeasible then
19: Add R? to I (it is a minimally-infeasible request set).
20: Add the cut

∑
r∈R?

xr ≤ |R?| − 1 to CI .

21: else (FeasTest) is feasible then
22: Let RF be the set of requests satisfied in the optimal solution found for (MAX SET).
23: Add RF to F (it is a maximally-feasible request set).
24: Add the cut

∑
r∈R\RF

xr ≥ 1 to CF .

25: end if
26: end if
27: Goto Step 12
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4.5 Computational Testing

In this section we present computational experiments to address the following questions:

• Practicality: For real-world residency scheduling problems, how many maximally-

feasible and minimally-infeasible sets exist, typically? For cases in which it is not

practical to identify and evaluate every maximally-feasible request set, does the Si-

multaneous RSVC algorithm identify useful information for the decision maker?

• Performance: How long does it take to run the algorithms? Are they tractable for

real-world use? How do the Sequential RSVC and Simultaneous RSVC algorithms

compare in terms of run time?

To answer these questions, we apply the two algorithms to the resident scheduling problem

described in Section 3. We use an Intel Xeon E3-1230 quad-core running at 3.20 GHz with

hyper-threading and 32 GB of RAM. We use the IBM ILOG Optimization Studio (CPLEX)

12.6 C++ API software package.

4.5.1 Input Data

In order to test how variations in problem data affect the performance and output of the

RSVC algorithms, we consider 24 different scheduling scenarios of varying levels of flex-

ibility based on real-world scheduling instances within Pediatric Emergency Medicine at

Mott Children’s Hospital. Using these scenarios as a foundation, we randomly generate 50

problem instances for each scenario.

In every scenario, 20 residents must be scheduled for a 30-day month that starts on

a Saturday. Each resident is allowed to work a maximum of five days in a row and a

maximum of four nights in a row. Across the 24 scenarios, we vary the following inputs:

• Number of total shifts and night shifts (2 variations) There is a minimum number

and a maximum number of total shifts and night shifts that each resident can work
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during the month. Depending on the scenario, residents are required to work a total of

10 to 11 shifts with 3 to 4 of these as night shifts per month (i.e. a tightly-constrained

schedule) or 5 to 15 total shifts with 0 to 10 as night shifts (much more loosely

constrained).

• First-year residents (2 variations) For the resident scheduling problem we consider,

first-year residents are not allowed to work the first or last shifts of the day. The first-

year status of each resident is assigned randomly, with a probability of either 40%

(tightly constrained) or 10% (loosely constrained) of being a first-year resident.

• Continuity clinic days (2 variations) Each resident has a weekly continuity clinic

(or no continuity clinic at all). In the first variation, each resident has probability

1/3 each of being assigned to clinic on Mondays, Wednesdays, or Fridays (tightly

constrained). In the second variation, the probability is 1/8 for each day of the week,

and 1/8 that they do not get assigned to continuity clinic at all (loosely constrained).

• Time-off requests (3 variations) For each of the 30 days in the month, each resi-

dent has a 10% (loosely constrained), 35%, or 50% (tightly constrained) chance of

requesting that specific day off, depending on the scenario. In scenarios where there

is a 10% chance of requesting any particular day off, each resident will request, on

average, a total of three days off during the month.

Using every combination of input variations results in 24 scenarios. As an example of a

scenario, consider Scenario 1. For Scenario 1 problem instances, each resident must work

five to fifteen total shifts and zero to ten night shifts. There is a 10% chance that each

resident is a first-year resident, a 10% chance that each resident requests each day off, and

residents may work in the clinic on any day of the week or not at all. Based on these

characteristics, we then create 50 problem instances associated with Scenario 1. Table 4.1

summarizes all 24 scenarios that we use to generate problem instances for computational

testing.
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Table 4.1: Computational Testing Scenarios

Scenario Minimum Maximum Minimum Total Maximum Total Probability of Probability of Clinic Day
Name Total Shifts Total Shifts Night Shifts Night Shifts First-Year Time-off Request (equally likely)

1 5 15 0 10 10% 10% Any/None

2 10 11 3 4 10% 10% Any/None

3 5 15 0 10 10% 35% Any/None

4 10 11 3 4 10% 35% Any/None

5 5 15 0 10 10% 50% Any/None

6 10 11 3 4 10% 50% Any/None

7 5 15 0 10 40% 10% Any/None

8 10 11 3 4 40% 10% Any/None

9 5 15 0 10 40% 35% Any/None

10 10 11 3 4 40% 35% Any/None

11 5 15 0 10 40% 50% Any/None

12 10 11 3 4 40% 50% Any/None

13 5 15 0 10 10% 10% Mon/Wed/Fri

14 10 11 3 4 10% 10% Mon/Wed/Fri

15 5 15 0 10 10% 35% Mon/Wed/Fri

16 10 11 3 4 10% 35% Mon/Wed/Fri

17 5 15 0 10 10% 50% Mon/Wed/Fri

18 10 11 3 4 10% 50% Mon/Wed/Fri

19 5 15 0 10 40% 10% Mon/Wed/Fri

20 10 11 3 4 40% 10% Mon/Wed/Fri

21 5 15 0 10 40% 35% Mon/Wed/Fri

22 10 11 3 4 40% 35% Mon/Wed/Fri

23 5 15 0 10 40% 50% Mon/Wed/Fri

24 10 11 3 4 40% 50% Mon/Wed/Fri

4.5.2 Problem Instance Characteristics

For computational testing, a set of 50 random problem instances for each testing scenario

in Table 4.1 was solved using both algorithms. In Figure 4.3, we report the percentage of

those 50 instances in which it was possible to grant every request (“fully feasible”), the

percentage of instances in which no feasible solutions existed (“infeasible”), and the per-

centage of “interesting” instances for each scenario. Here, “interesting” describes instances

in which it is possible to satisfy all of the scheduling rules, but not possible to satisfy all

of the time-off requests. These are the instances for which the RSVC algorithms are rele-
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vant. For the remainder of our computational experiments, we focus on these interesting

instances.
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Figure 4.3: Feasibility of Problem Instances

Since a given instance may have a large number of maximally-feasible and/or minimally-

infeasible request sets, we categorize every “interesting” problem instance as either Type

1 or Type 2. Type 1 instances are those with 1,000 or fewer maximally-feasible sets and

1,000 or fewer minimally-infeasible sets. For Type 1 instances, each algorithm is allowed

to run until it identifies every maximally-feasible and every minimally-infeasible set.

Type 2 instances are the remaining “interesting” problem instances. Type 2 instances

have more than 1,000 maximally-feasible sets or more than 1,000 minimally-infeasible

sets.

4.5.3 Type 1 Problem Instances

In Table 4.2, we list the number of Type 1 and number of “interesting” instances (out of

50) for each of the relevant scenarios. We also list the median, minimum, and maximum

numbers of maximally-feasible sets (MFSs) and minimally-infeasible sets (MISs) for Type
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1 instances.

Table 4.2: Type 1 Problem Instances

Scenario # Type 1/ # MFSs # MFSs # MFSs # MISs # MISs # MISs

Name # Interesting (Median) (Minimum) (Maximum) (Median) (Minimum) (Maximum)

3 20/23 17 9 800 8 1 531

4 19/23 49 9 901 11 1 531

9 22/26 16.5 6 532 5 1 513

10 17/23 49 6 532 6 1 513

15 28/28 35.5 5 891 5 1 84

16 27/38 40 5 891 5 1 84

21 28/40 63 3 720 5 1 72

22 23/37 63 7 720 4 1 72

For Type 1 instances, there are generally far fewer minimally-infeasible sets than maximally-

feasible sets. In these cases, it is typically most efficient for schedulers to identify their

preferred schedule by working with the minimally-infeasible sets and selecting one request

from each to deny. Each scenario also includes at least one instance in which there is a

single minimally-infeasible set. When there is only one minimally-infeasible set, we know

that only one total time-off request must be denied. Of the 184 Type 1 instances, only

eight had fewer maximally-feasible sets than minimally-infeasible sets. We plot the num-

ber of maximally-feasible sets against the number of minimally-infeasible sets for Type 1

problem instances in Figure 4.4.
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Figure 4.4: Numbers of Maximally-Feasible and Minimally-Infeasible Sets for Type 1
Problem Instances

For Type 1 problem instances, the Sequential RSVC and Simultaneous RSVC algo-

rithms both generate the same solutions, so we can compare their run-times directly. To

compare the run-times for both algorithms, we report the median and plot the minimum

and maximum run-times for Type 1 problem instances in Figure 4.5. From Figure 4.5, we

notice that although the median run-times of the two algorithms are similar, the maximum

run-time for the Sequential RSVC algorithm is larger for each of the scenarios. Not surpris-

ingly, we also see that the scenarios with less flexibility had longer run-times. Specifically,

when residents have tighter restrictions on the number of shifts and night-shifts that must be

worked, as is the case in Scenarios 4, 10, 16, and 22, it takes more time for the algorithms

to run since the optimization problems take longer to solve, on average.
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3 4 9 10 15 16 21 22
Seq Median Run-Time 6.6 52.3 5.6 42.5 12.7 39.1 19.7 52.8
Sim Median Run-Time 7.6 55.3 6.1 42.6 13.4 35.2 21.5 46.8
Number of Instances 20 19 22 17 28 27 28 23
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Figure 4.5: Median, Minimum, and Maximum Run-Times for Type 1 Instances

When comparing the run-times of the two algorithms across all Type 1 instances, the

Simultaneous RSVC algorithm rarely takes more time than the Sequential RSVC algorithm

to run and often runs significantly faster, especially for instances that take both algorithms

longer than 100 seconds to solve (Figures 4.6 and 4.7 are plots of the run-times for Type

1 instances). In some cases, the Simultaneous method was up to 20 minutes faster (2x

faster) than the Sequential method. Given that both methods solve similar problems and

the Simultaneous approach solves two optimization problems to yield each new (feasible

or infeasible) request set, whereas the Sequential approach solves only one, this might

seem surprising. However, the first problem in the simultaneous approach, (CandidateSet),

is a small problem that can typically be solved in a fraction of a second and the results

from (CandidateSet) fix many of the decision variables in the second problem, (FeasTest).

Consequently, (FeasTest) is much easier to solve than the similar maximization problem,

(NewFeas), that is solved during the Sequential method.
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Figure 4.6: Algorithm Run-Time Comparison for Type 1 Problem Instances
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Figure 4.7: Algorithm Run-Time Comparison for Type 1 Problem Instances (Logarithmic
Scaling)
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4.5.4 Type 2 Problem Instances

All Type 2 problem instances include at least 1,000 maximally-feasible or at least 1,000

minimally-infeasible sets. For testing Type 2 problem instances, each algorithm is run

on every instance until it finds a total of 1,000 sets, which may be maximally-feasible,

minimally-infeasible, or some of each. In this section, we compare the number of maximally-

feasible and minimally-infeasible sets identified by each algorithm and how long it takes

each algorithm to identify the first 1,000 sets.

Of the 452 Type 2 problem instances, only two had fewer than 1,000 maximally-feasible

sets and instead had more than 1,000 minimally-infeasible sets. For the other 450 instances

the Sequential algorithm did not identify any minimally-infeasible sets. An advantage of

the Simultaneous algorithm is that it can potentially identify some minimally-infeasible

sets before identifying the exhaustive collection of maximally-feasible sets. For nearly

65% of the Type 2 problem instances, the Simultaneous algorithm identified at least one

minimally-infeasible set. Identifying minimally-infeasible sets for schedulers can be useful

since they indicate sets of requests that are incompatible with one another and therefore

require making decisions about which requests to deny. We elaborate on a process for

using minimally-infeasible sets with schedulers in Section 4.6.

When comparing the run-times of the two algorithms for Type 2 instances, we find that

for many cases Simultaneous RSVC is much faster (up to 5x (2.6 hours) faster), and in the

remaining cases is typically comparable. We plot the run-times for each Type 2 instance in

Figures 4.8 and 4.9.
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Figure 4.8: Algorithm Run-time Comparison for Type 2 Problem Instances
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Figure 4.9: Algorithm Run-time Comparison for Type 2 Problem Instances (Zoomed)

4.5.5 Results Summary

From our testing of Type 1 instances we discovered that there are generally far fewer

minimally-infeasible sets than maximally-feasible sets and that for some instances the Si-
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multaneous RSVC algorithm identifies the exhaustive collection of request sets twice as

fast as the Sequential RSVC algorithm. We find that the Simultaneous algorithm is also

faster for Type 2 instances and unlike the Sequential algorithm, is often able to identify

minimally-infeasible sets.

4.6 Case Study

To assess the usability and value of the information provided to schedulers by the RSVC

algorithms, we conducted a case study at Mott Children’s Hospital with a Chief Resident

who is responsible for scheduling pediatric residents. For the case study, we considered

several “interesting” problem instances from Section 4.5 with the Chief using two different

scheduling approaches.

In the first approach, similar to what is done in practice, we first maximize the number

of granted requests. Then, the Chief reviews the list of denied requests and if he feels some-

thing on that list is important to grant, a requirement is added to the scheduling problem

to ensure the request is granted. Next, a solution that maximizes the number of granted

requests subject to these additional requirements is generated and presented to the Chief.

This process continues until the Chief is satisfied with the solution.

In the second approach, we use our RSVC algorithms to generate the maximally-

feasible and minimally-infeasible request sets for the problem instance. The Chief then

uses this information to select a schedule.

In the remainder of the section, we describe the Chief’s experiences using each schedul-

ing approach for a number of problem instances (cases), and discuss his feedback.

4.6.1 Case 1

For Case 1, we solved a problem instance from Scenario 8 involving 199 requests. Using

the traditional approach of maximizing the number of granted requests, we discovered that
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it was possible to grant all but one of the requests. However, the request that was denied

was for a resident’s sister’s wedding. Unsatisfied with this solution, the Chief asked for

an alternative solution in which the wedding request was granted. After adding this re-

quirement to the problem and maximizing the number of granted requests, another solution

that granted all but one of the requests was generated. In this solution, the request that

was denied was for “a baby shower.” After adding a requirement to ensure granting this

request as well, the next solution required denying two requests, one for a wedding and one

for “family in town.” At this point, the Chief decided he was okay with the solution that

only denied the baby shower request, and no additional solutions were generated using the

traditional approach.

Next, as part of our proposed, alternative scheduling approach, we generated the ex-

haustive collections of maximally-feasible and minimally-infeasible request sets. In Figure

4.10 we visually represent every maximally-feasible request set (16 total) and a subset of

the 199 requests for this problem instance using a spreadsheet tool that we created. Here,

the rows represent specific requests by individuals (including the request reason) and the

numbered columns represent the maximally-feasible request sets. For each maximally-

feasible request set, a “D” is used to indicate a request that is denied in that set. For

example, Maximally-Feasible Set #5 involves denying Request #4 from Dr. Dombrock.

Request # Name Reason Grant? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Lockard Brother's wedding D D D D
2 Feely Date night with spouse D
3 Peel Just because
4 Dombrock Family in town D D D D
5 Walker Music concert D D D D
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

197 Conyers Trip to Chicago D
198 Walker Medical Appointment
199 Hobson Sister's wedding D

Maximally-Feasible Request Sets

Figure 4.10: Complete Collection of Requests and Maximally-Feasible Request Sets

Although this problem includes 199 requests, many of the requests (such as Request

#3) are granted in every maximally-feasible set and therefore do not need to be considered

when deciding which requests to grant. By hiding all requests that are always possible to
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grant, as is done in Figure 4.11, it is easier for schedulers to compare the sets. In Figure

4.11, the three solutions considered during the traditional scheduling approach correspond

to Sets 1, 2, and 3.

Request # Name Reason Grant? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 Lockard Brother's wedding D D D D
2 Feely Date night with spouse D
4 Dombrock Family in town D D D D
5 Walker Music concert D D D D

10 Tinucci Baby shower D
24 Conyers Sister's wedding D D D
42 Reidesel Anesthesia assignment D D D D
75 Reidesel Sister's wedding D
88 Dombrock Birthday party out of state D

131 Tinucci Competing in a marathon D D
162 Feely Music concert D D D
197 Conyers Trip to Chicago D
199 Hobson Sister's wedding D

Maximally-Feasible Request Sets

Figure 4.11: Requests That Must Be Considered

When presented with Figure 4.11, the Chief first indicated that he wanted to ensure that

the four requests involving weddings were granted. By inputting this information into the

“Grant?” column, the tool identifies which maximally-feasible sets are no longer an option

and hides them from view. Then, each of the request rows that do not include a “D” in any

of the remaining columns are hidden from view, as is done in Figure 4.12, since they no

longer need to be considered.

Request # Name Reason Grant? 2 5 8 9 11 13 14 15
2 Feely Date night with spouse D
4 Dombrock Family in town D D D
5 Walker Music concert D D D
10 Tinucci Baby shower D
42 Reidesel Anesthesia assignment D D
88 Dombrock Birthday party out of state D

131 Tinucci Competing in a marathon D D
162 Feely Music concert D D

Maximally-Feasible Request Sets

Figure 4.12: After Granting All Requests Involving Weddings

Following the first round of decisions, the Chief indicated that of the remaining requests

he wanted to grant Request #4 and Request #131. By again removing the maximally-

feasible sets that are no longer an option, as is done in Figure 4.13, four sets remained.
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From these sets, the Chief selected MFS #13 (which denies Requests #5 and #162) for

implementation.

Request # Name Reason Grant? 2 11 13 15
2 Feely Date night with spouse D
5 Walker Music concert D D
10 Tinucci Baby shower D
42 Reidesel Anesthesia assignment D
162 Feely Music concert D D

MFS

Figure 4.13: After Granting Requests #4 and #131

Using the traditional scheduling approach for this problem, the Chief settled for a solu-

tion that only denied Dr. Tinucci’s request for a “Baby shower” (Request #10). However,

after analyzing each of the maximally-feasible sets, the Chief selected a different solution

that he was more satisfied with. Thus, by having access to every maximally-feasible set, the

Chief was able to select a better solution despite the fact that the solution requires deny-

ing more requests than the solution selected using the traditional scheduling process. In

addition to finding a solution that the Chief was more satisfied with, since the maximally-

feasible sets are identified in advance, the Chief was not required to wait for new solutions

to be generated after each round of feedback, as is required by the traditional scheduling

approach.

Given the relatively small number of maximally-feasible request sets for this problem

instance, it was easy for the Chief to quickly analyze the exhaustive collection of them. As

a result, it was not necessary to also consider the minimally-infeasible sets.

4.6.2 Case 2

For Case 2, we solved a different problem instance from Scenario 8 involving 218 total

requests. We started by solving the instance using the traditional approach of generating a

solution that grants the maximum number of requests and then adding additional require-

ments to the problem based on feedback from the Chief. After five iterations of generating
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solutions and getting feedback, the Chief settled for a solution that denied two separate

requests for “Weekend Stuff.”

Next, we generated the exhaustive collections of maximally-feasible and minimally-

infeasible request sets. In total, this problem included 516 maximally-feasible and 7 minimally-

infeasible sets. Given these numbers, we decided to work with the minimally-infeasible

sets.

When using minimally-infeasible sets for the scheduling process, for each minimally-

infeasible set of requests it is necessary to deny at least one request that is included in the

set in order to repair the minimally-infeasible set. To simplify this process, we created a

simple visualization tool that helps the scheduler work with the minimally-infeasible sets.

Figure 4.14 is a snapshot of the tool being used to represent all seven minimally-

infeasible request sets and a portion of the 218 requests included in the problem instance.

In Figure 4.14, each column represents a minimally-infeasible set and each row repre-

sents an individual request. Each check mark indicates that the request is a member of the

minimally-infeasible set in the corresponding column. To obtain a feasible solution, the

scheduler must repair every minimally-infeasible set by choosing at least one check mark

in each column and denying the associated request (note that denying a request to repair

one column may repair some other columns as well). For example, from Figure 4.14 we

can see that denying Request #1 repairs Sets #6 and #7; denying Request #3 repairs Sets

#1, #2, #4, and #5; finally, either Request #217 or #218 can be denied to repair Set #3 (note

that denying Request #218 would eliminate the need to deny Request #3). Requests that

are not part of any minimally-infeasible set, such as Request #2, can always be granted

without denying any requests and therefore do not need to be considered when deciding

which requests to deny.
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Request # Name Reason Deny? 1 2 3 4 5 6 7
1 Brisson Doctor appointment √ √
2 Crowther Son's recital
3 Brigley Anesthesia assignment √ √ √ √
4 Palmer Just because √
5 Strahota Golf tournament
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

216 Hecht Weekend stuff (okay to work)
217 Brigley Spouse's birthday √
218 Beulke Fellowship interview √ √ √ √ √

Minimally-Infeasible 
Request Sets

Figure 4.14: Complete Collection of Requests and Minimally-Infeasible Request Sets

By hiding all requests that are not a part of any minimally-infeasible request set (and

therefore never need to be denied) and arranging the remaining requests in lexicographical

order, as is done in Figure 4.15, we can see that only 34 requests need consideration. The

other 184 requests can always be granted.

One way to work through the requests and sets represented in Figure 4.15 is to first

look at Minimally-Infeasible Set #1. From it, we can see that at least one of the top seven

requests must be denied. When presented with this decision, the Chief indicated that he

was willing to deny the first request from Dr. Beulke (Request #87) since it appeared to be

the least important of the requests while also repairing five minimally-infeasible sets.
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Request # Name Reason Deny? 1 2 3 4 5 6 7
87 Beulke Just because √ √ √ √ √

208 Crowther Weekend stuff (okay to work) √ √ √ √ √
218 Beulke Fellowship interview √ √ √ √ √
150 Shea Conference √ √ √ √
99 Linde Fellowship interview √ √ √ √
3 Brigley Anesthesia assignment √ √ √ √
57 Palmer Anesthesia assignment √ √ √ √
28 Ehrich Conference √ √ √ √
30 Aarnio Just because √ √ √ √
49 Strahota Out of town wedding √ √ √ √

103 Brisson Retreat √ √ √ √
195 Mickley Camping √ √ √ √

4 Palmer Just because √
217 Brigley Spouse's birthday √
15 Brigley Training course √

172 Shea Family in town √
1 Brisson Doctor appointment √ √
7 Guerekis Competing in a race √ √
20 Linde My birthday √ √
25 Adams Weekend stuff (okay to work) √ √
30 Hecht Camping √ √
65 Jarratt Day after a wedding √ √
68 Beulke Rehearsal dinner for a wedding √ √
74 Crowther Doctor appointment √ √

122 Morgans Board review course √ √
134 Adams Retreat √ √
141 Beulke Retreat √ √
149 Strahota Car service appointment √ √
159 Brisson Day off with significant other √ √
165 Ehrich Trip to Chicago √ √
188 Esper Trip to Chicago √ √
200 Shea Date night with spouse √ √
67 Mills Retreat √
34 Hecht Retreat √

Minimally-Infeasible 
Request Sets

Figure 4.15: Requests That Must Be Considered

Updating the tool with this information, we hide each repaired set and each request that

is not a part of any remaining minimally-infeasible set, as can be seen in Figure 4.16. In

Figure 4.16, we can see that the Chief must decide to deny a single request from the first

16 requests, or to deny the final two requests from Dr. Mills (#67) and Dr. Hecht (#34).
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Request # Name Reason Deny? 6 7
1 Brisson Doctor Appointment √ √
7 Guerekis Competing in a race √ √
20 Linde My birthday √ √
25 Adams Weekend stuff (okay to work) √ √
30 Hecht Camping √ √
65 Jarratt Day after a wedding √ √
68 Beulke Rehearsal dinner for a wedding √ √
74 Crowther Doctor appointment √ √

122 Morgans Board review course √ √
134 Adams Retreat √ √
141 Beulke Retreat √ √
149 Strahota Car service appointment √ √
159 Brisson Day off with significant other √ √
165 Ehrich Trip to Chicago √ √
188 Esper Trip to Chicago √ √
200 Shea Date night with spouse √ √
67 Mills Retreat √
34 Hecht Retreat √

MIS

Figure 4.16: After Denying Request #87

When presented with this decision, the Chief indicated that he preferred denying Dr.

Strahota’s request for a “Car Service Appointment.” Consequently, no additional requests

must be denied and it is possible to implement a schedule that only denies the two requests

selected by the Chief.

When working with minimally-infeasible sets in this manner, it is possible for sched-

ulers to unnecessarily deny individual requests. For example, consider Figure 4.15. If the

schedulers had first chosen to deny Request #150, they might then choose to deny Request

#87 in order to repair Minimally-Infeasible Request Set #5. However, since Request #87

is in every minimally-infeasible set that Request #150 is in, if #87 is denied, it is not nec-

essary to deny #150. To avoid unnecessarily denying requests, once the schedulers select

a set of requests to deny, they can use the visualization tool to view all maximally-feasible

sets that only deny a subset of the requests selected and then choose their most preferred

set.

With our proposed scheduling approach, the Chief used minimally-infeasible sets to

select a different solution than the one he selected using the traditional scheduling approach.
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Although both solutions denied a total of two requests, the Chief preferred the solution

selected through using the minimally-infeasible sets.

4.6.3 Case 3

In Case 1 and Case 2 we considered problem instances for which the exhaustive collection

of sets is known (i.e., Type 1 problem instances). For Case 1, there were many maximally-

feasible sets, but a small number of minimally-infeasible sets, and a process was presented

for using these minimally-infeasible sets to select a solution. For Case 2, there were rela-

tively few maximally-feasible sets and a process was discussed for using them to select a

solution. In this section we consider a problem instance for which the exhaustive collection

of sets is not known (i.e., a Type 2 problem instance) and present some process options for

selecting a solution.

The problem instance in this case was from Scenario 8 and included 245 total requests.

Using the traditional approach, an initial solution was generated that granted 242 requests.

However, the Chief was not satisfied with the three specific requests that were denied in

the solution, so we added additional requirements to the problem and generated a different

solution. After four iterations of this process, the Chief settled for a solution that granted a

different set of 242 requests.

Using our proposed scheduling process on this problem instance, we generated maximally-

feasible and minimally-infeasible sets until a total of 1,000 sets were generated. In total,

987 maximally-feasible and 13 minimally-infeasible sets were identified. With these sets,

one option for determining a solution is to choose the preferred maximally-feasible request

from those that were identified, similar to Case 2. For this problem instance, since a rela-

tively small number of minimally-infeasible sets had been identified, we decided to work

with them using the process explained in Section 4.6.1.

By doing this, the Chief was able to quickly identify a set of three requests that he

was willing to deny in order to repair all 13 of the known minimally-infeasible sets. To
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check the feasibility of granting the remaining 242 requests and ensure no requests were

unnecessarily denied, we added requirements to the problem to ensure that all of the 242

requests were granted before maximizing the number of additional requests granted. From

this, we confirmed that it was possible to grant these 242 requests, and furthermore that it

was not possible to grant any additional requests. Like in the previous two cases, the Chief

was more satisfied with the solution selected using our proposed scheduling approach than

the solution selected using the traditional process. Thus, even though we did not generate

the exhaustive collections of sets in this case, the Chief was able to quickly select a better

solution using our proposed scheduling approach.

We recognize that when the exhaustive collection of sets is unknown, repairing the

minimally-infeasible sets that are known does not guarantee a feasible schedule. We plan

to explore this situation through future research.

4.6.4 Case Study Feedback

By working with the Chief through multiple problem instances, we learned that his personal

preference is for working with minimally-infeasible sets since each set requires choosing

a single request to deny and it is easier for him to think about “fixing all of the prob-

lems.” When asked if he prefers the traditional scheduling approach or our new scheduling

approach using maximally-feasible and minimally-infeasible sets, the chief commented,

“without question, I like the new approach. With it, it is easy to see what problems need to

be fixed and what solutions are possible.”

4.7 Conclusion and Future Research

In this chapter, we address an important problem that is regularly encountered when schedul-

ing medical residents. Specifically, for resident scheduling problems in which it is impos-

sible to grant every time-off request, we develop a method that identifies the exhaustive
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collection of maximally-feasible and minimally-infeasible request sets which can then be

used by schedulers to choose their preferred solution. To do this, we create two algorithms

that each identify the exhaustive collection of sets and develop visualization tools for pre-

senting the sets to schedulers in a way that allows them to quickly select their preferred

solution.

Through computational testing on our Sequential and Simultaneous RSVC algorithms,

we conclude that Simultaneous RSVC is superior to Sequential RSVC based on run-times

and the fact that Simultaneous RSVC is able to identify some minimally-infeasible sets

without necessarily having to generate the exhaustive collection of maximally-feasible sets.

We directly compare a scheduler’s experience using our proposed scheduling method

to that of the current scheduling process. We find that by presenting a scheduler with every

maximally-feasible and minimally-infeasible set, the scheduler was able to quickly identify

a high-quality solution. An additional benefit of using maximally-feasible and minimally-

infeasible is that the schedulers can be certain that no better solutions exist.

Our new method for resident scheduling has numerous benefits over more traditional

methods, but many opportunities for further research and improvements remain. Specifi-

cally, incorporating additional scheduling metrics of interest other than time-off requests,

such as the number of weekend shifts that each resident is assigned to work, would be use-

ful. For problem instances where it is not practical to generate every maximally-feasible set,

we are currently exploring methods for determining the complete collection of minimally-

infeasible sets. Additionally, we are working to improve the scheduling process through

increased automation and by improving our visualization tool to make it more interactive.

Although the focus of this chapter is on a specific resident shift scheduling problem, our

proposed methods are applicable to any problem involving soft constraints. Specifically,

our methods make it easier for decision makers to see solution possibilities for problems in

which it is feasible to satisfy some, but not all preferences.
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CHAPTER 5

Conclusion

In this dissertation, we study three healthcare provider scheduling problems and address

challenges associated with solving each of them in practice.

In Chapter 2, we develop a mathematical model for allocating both operating and clini-

cal rooms to surgeons within a multi-location health system. In doing so, we describe how

alternative variable definitions can be used to simplify the modeling of complex scheduling

requirements and improve the tractability of the mathematical program used to solve the

scheduling problem.

In Chapter 3, we focus on a block scheduling problem for medical residents and further

explore the concept of using alternative decision variable definitions to improve the com-

putational performance of the mathematical model used to solve the problem. We begin

by describing a general block scheduling problem and then formulate a model for solving

a rather simple problem variation. We then introduce a more complex problem variation

and propose an alternative model for solving it. We use computational testing to compare

the performance of the proposed models. Next, we explain an additional problem variation

that necessitates an alternative modeling approach. For addressing this variation, we define

additional decision variables to indicate whether or not each resident starts a specific rota-

tion during each block of time. Using these variables, we formulate two new models that

are extensions of the first two models. We demonstrate the performance of each model by

using it to solve a set of test problems. In our work, we show that for specific scheduling
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problem variations, there can be computational advantages to defining composite decision

variables that each represent multiple decisions.

For scheduling healthcare providers, a typical objective is to maximize provider satis-

faction. A common approach for accomplishing this objective is to maximize the number of

individual scheduling requests satisfied—as was the case for the scheduling problems ad-

dressed in Chapters 3 and 4. However, since requests have differing levels of importance,

simply maximizing the total number of requests satisfied may not result in a preferred

schedule. Instead of generating a single solution that maximizes the total number of sat-

isfied requests, in Chapter 4, we develop a method that identifies the exhaustive collection

of maximally-feasible and minimally-infeasible request sets which can then be used by

schedulers to choose their preferred solution. We apply our methods to a resident shift

scheduling problem and directly compare a scheduler’s experience using our proposed

scheduling method to that of the current scheduling process. We find that by presenting

a scheduler with every maximally-feasible and minimally-infeasible set, the scheduler is

able to quickly identify a high-quality solution. Although we focus on scheduling medical

residents in Chapter 4, our proposed method is applicable to any problem involving soft

constraints.

In this thesis, we make a number of contributions. Specifically, we propose a novel

method for identifying solutions to scheduling problems in which it is possible to satisfy

some, but not all of the individual scheduling requests. Although we apply our method to

a healthcare provider scheduling problem, it is applicable to any problem involving pref-

erences. Additionally, we model real-world problems and demonstrate how alternative

variable definitions can be used to simplify the modeling of complex scheduling rules and

improve computational performance when solving the problems. The work presented in

this dissertation is intended to help healthcare provider schedulers with some of the chal-

lenges they may experience.
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