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ABSTRACT

This thesis consists of two parts. In the first, a high speed X-ray Computed Tomography

(CT) system for multiphase flows is developed. X-ray Computed Tomography (CT) has

been employed in the study of multiphase flows. The systems developed to date often have

excellent spatial resolution at the expense of poor temporal resolution. Hence, X-ray CT

has mostly been employed to examining time averaged phase distributions. In the present

work, we report on the development of a Scanning Electron Beam X-ray Tomography

(SEBXT) CT system that will allow for much higher time resolution with acceptable spatial

resolution. The designed system, however, can have issues such as beam-hardening and

limited angle artifacts. In the present study, we developed a high speed, limited angle

SEBXT system along with a new CT reconstruction algorithm designed to enhance the

CT reconstruction results of such system. To test the performance of the CT system, we

produced example CT reconstruction results for two test phantoms based on the actual

measured sinograms and the simulated sinograms.

The second part examines, the process by which fluid mixes between two parallel flow

channels through a narrow gap. This flow is a canonical representation of the mixing

and mass transfer processes that often occur in thermo-hydraulic systems. The mixing

can be strongly related to the presence of large-scale periodic flow structures that form

within the gap. In the present work, we have developed an experimental setup to examine

the single-phase mixing through the narrow rectangular gaps connecting two rectangular

channels. Our goal is to elucidate the underlying flow processes responsible for inter-

xxvi



channel mixing, and to produce high-fidelity data for validation of computational models.

Dye concentration measurements were used to determine the time average rate of mixing.

Particle Imaging Velocimetry was used to measure the flow fields within the gap. A Proper

Orthogonal Decomposition (POD) of the PIV flow fields revealed the presence of coherent

flow structure. The decomposed flow fields were then used to predict the time averaged

mixing, which closely matched the experimentally measured values.
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CHAPTER 1

Background and Motivation

The following thesis is composed of two main sections. The first reports on the develop-
ment of an x-ray computed tomography system for the measurement of multiphase flows,
and the second reports on an experiment that was conducted to examine the mixing between
two flow streams that are connected with a narrow stream-wise channel. In this chapter, we
will provide some background and motivation for this work

1.1 Electron Beam X-Ray Computed Tomography for
Multiphase Flows

The advancement of Computational Fluid Dynamics (CFD) methods along with enhanced
computer power make the simulation of three dimensional multiphase flows feasible at
a scale of practical interest. However, the complexity of even canonical high Reynolds
number multiphase flows still presents a challenge. The accurate modeling of such multi-
phase flows will rely on high fidelity experimental observations that can resolve the phase
fraction and dynamics of the various flow components [1]. Ideally, we would be able to
measure the phase distributions with high spatial and temporal resolution, and researchers
have developed a variety of intrusive and non-intrusive measurement methods.

A principal goal of multiphase flow measurements is often the characterization of the
temporally and spatially evolving phase distribution without intrusive probes. Optical
methods have been used for some relatively low volume fraction of the dispersed phase.
Zachos et al. [2] performed PIV for the solid-liquid flows with 1.3% glass sphere volume
fraction in the water, and Lindken and Merzkirch [3] performed Particle Imaging Velocime-
try (PIV) for the gas-liquid flows with 2.5% gas volume fraction. As can be seen, optical
methods can only be used for flows with very low volume fraction of the dispersed phase.

While optical methods have provided some tremendous insights, in many instances,
multiphase flows are opaque, and optical methods cannot be employed. Therefore, a num-
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ber of non-optical methods have also been developed. Many of these are well summarized
in Heindel [4]. They include electrical, magnetic, and acoustic methods. Heindel [4] fo-
cusses his review on the use of x-rays to probe multiphase flows. X-ray enable the non-
invasive visualization of high volume fraction dispersed phase flows (greater than a few
percent disperse phase fraction). And, x-ray based measurements can be made with high
spatial resolution for time-averaged flows. Methods previously employed include radiog-
raphy [5–9], stereography [10–13], and the Computed Tomography (CT) [14–16]. X-ray
CT systems have been developed that can measure multiphase flows with excellent spa-
tial resolution but poor temporal resolution, and they have been used to mainly measure
time-averaged phase distributions. Recently, researchers have attempted to develop faster
X-ray CT system for the measurement of multiphase flows. Such systems often employed
multiple stationary x-ray sources and a number of fixed detectors [17, 18]. Such systems
can achieve a high temporal resolution with a sacrifice of spatial resolution. Another ap-
proach to enhancing the temporal resolution of X-ray CT is the use of a scanning electron
beam to create a rapidly moving source of x-rays, known as Scanning Electron Beam X-ray
Tomography (SEBXT) [19–26]. SEBXT can significantly improve the temporal resolution
of the X-ray CT. Instead of physically rotating a source and detector pair, SEBXT deflects
the electron beam by applying electro-magnetic fields to generate X-rays in a sequence of
specific positions along a tungsten target. A fixed array of detectors acquires the projection
images at the same time as the beam sweeps the arc.

Although EBXT significantly enhances the temporal resolution that can be achieved
compared to conventional CT, it still has several drawbacks. Because of its fixed source-
detector configuration, full-angle CT data requires angular overlap between the source tar-
get and the detector. The conventional solution was to place an axial offset between the
source and the detector [20]. However, this axial displacement can generate artifacts due to
the misalignment between the source and detector in 2-D CT as each projection scans a dif-
ferent plane. Furthermore, 2-D array detectors are not easily usable for this configuration
because the target can block the detectors. To solve the overlapping problem while enabling
the use of 2-D array detectors, a tungsten coated graphite target was developed, enabling
full-angle CT by making the X-ray source almost transparent to X-rays [22]. However, it
is not yet available for commercial applications.

In the present study, our goal is to develop a high speed, limited angle SEBXT system
along with the new CT reconstruction algorithm specifically designed to enhance the CT
reconstruction result of such SEBXT system under development at the University of Michi-
gan. The desired frame rate is of the order 100 to 1000 frames per second. This would allow
us to resolve the time-variation of high Reynolds number multiphase flows, while maintain-
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ing adequate spatial resolution. In the present study, we characterized the electron beam
X-ray system under development, we created a new CT reconstruction algorithm and the
numerical simulation that is adapted for the new system, and then we compared the initial
experimentally developed images with companion numerical simulation results.

This portion of the thesis is presented in Chapters 2 through 5. In §2, we described the
scanning electron beam X-ray tomography (SEXBT) system, and the testing methods used
to identify the beam focal spot and the beam localization. In §3, we provided a CT recon-
struction algorithm developed for the specific SEBXT system. In §4, we produced example
CT reconstruction results using two test phantoms, and the results are then compared the
experimentally determined CT reconstructions with the simulated CT reconstructions to as-
sess the performance of the current SEBXT system. In §5, we summarized the conclusions
and present ideas for future work.

1.2 An Experimental Study of Inter-channel Mixing

Mixing through narrow gaps connecting adjacent primary flow paths is an important mass
and heat transfer process for many thermo-hydraulic applications, such as flows through
nuclear reactor rod bundles and heat exchangers. In addition to the steady mixing due to any
pressure gradients across the gap and mixing due to small scale turbulent flows (incoherent
turbulent), mixing can result from the development of large-scale periodic flow structures
(coherent turbulent) due to the shear flows on either side of the gap. The presence of these
large-scale flow structures can drastically change the rate of mixing. Several researchers
have studied the basic flow processes of the flow between parallel flow channels connected
by gaps [27–34]. Meyer [34] offers a comprehensive review of past work on inter-channel
mixing. He reported that researchers have gleaned significant insights into the underlying
flow processes, including the observation of large-scale coherent structures in the narrow
gaps between the channels.

With the advent of advanced computational fluid dynamics solvers, the flow in com-
plex geometries such as rod bundles can be simulated with increasing resolution. However,
given the complexity of these flows, it is important to validate such models with careful
observations. Moreover, it is essential that simulations be compared against experimen-
tal observations only after the appropriate boundary conditions are matched between both
computation and experiment. Inter-channel mixing has been numerically investigated by
numerous researchers, including Chang and Tavoularis [35, 36], Home et al. [37], Derk-
sen [38], and Home and Lightstone [39]. Merzari et al. [40] also used Proper Orthogonal
Decomposition (POD) to better understand the underlying dynamics of the flow oscilla-
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tions observed in the inter-channel flow. However, few studies have produced experimental
data sets that are immediately suitable for the validation of high-fidelity Computational
Fluid Dynamics (CFD) models. Since the resulting flows are sensitive to small changes in
boundary conditions (see Ko et al. [41] for example of the sensitivity of similar flows), data
sets that do not have accompanying characterization of the flow boundary conditions are
not ideally suited for rigorous CFD code Verification and Validation (V&V). Derksen [38]
performed computations and compared his results with experimental data, but also noted
the lack of expected symmetry in the experimental data, again suggesting that there was an
underlying issue with the flow geometry, the inlet conditions, the outlet flow conditions, or
some combination of effects.

The present work is the extension of the previously published work, Mäkiharju et al.

2015 [42], where we have developed a canonical geometry that is analogous to the sub-
channel flow within a rod bundle. We have examined the single-phase mixing through
the narrow rectangular gaps connecting two channels with emphasis on measurement un-
certainties, quantifying the inflow conditions, and closely coordinating each stage of the
experiment to produce high-fidelity V&V data sets. The inlet flow conditions extensively
surveyed via Laser Doppler Velocimetry (LDV) in order to verify that the flow was well-
conditioned as it approached the test section gap. We determined the bulk mass trans-
fer through the various gap openings from the mass flow rate and fluorescein tracer dye
concentration measurements at the channel inlets and outlets. We preformed these mea-
surements for seven channel flow rate combinations and eleven gap heights for both test
sections.

Planar Particle Image Velocimetry (PIV) was employed to visualize the flow within
the gat at select conditions to further examine the dynamics of the mixing phenomena.
We used Proper Orthogonal Decomposition (POD) to decompose the flow velocity field
into multiple linear modes, to identify the coherent structures in the gap. As far as we
know, POD in fluid experiments is used mostly for the validation purpose, and there has
not been an attempt to calculate the mass transfer directly from the POD analysis. Here, we
used these POD results along with the time-averaged velocity field to compute the gross
mixing rate. These results are favorably compared to the measured mixing determined from
measurements of dye concentration.

The basic experimental setup and the inflow conditions are described in §6. The time-
averaged results of integral mixing of both balanced and unbalanced inlet mass flow rates
are presented in §7. We provided some additional details of the observed coherent struc-
tures based on POD applied to PIV data in §8, and the estimation of the mixing coefficients
based on the PIV in §9. Finally, we summarized the conclusions and possible future work
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in §10.
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CHAPTER 2

Experimental Setup for X-ray Computed
Tomography System

2.1 Introduction: Computed Tomography Using A Scan-
ning X-Ray Source

A new X-ray tomography system is being developed at the University of Michigan for the
investigation of multiphase flows. It is called the University of Michigan Scanning Electron
Beam X-ray Tomography (SEBXT) system. This Computed Tomography (CT) system
uses multiple X-ray projection images, in which we can extract the attenuation ratio taken
between the source and a detector array as the X-rays pass through a measurement domain.
The projected images are collected for various angles within a volume of the domain, and
they are combined to form a reconstructed map of the attenuation distribution within the
measurement volume.

The SEBXT creates X-rays through the impingement of a focused electron beam on a
tungsten target. It differs from a conventional X-ray CT system in that the deflected electron
beam (through the application of an electro-magnetic field) is used to generate X-rays at
specific positions on a stationary target. This is in contrast to traditional systems where
the X-ray source and detectors may be physically rotated around the domain in order to
collect a wide range of projection angles. Because the electron beam can be rapidly moved
along the target, the sweep speed of the SEBXT can collect projections much faster than a
conventional CT (like the ones used for cardiac CT in medical application).

Fig. 2.1 shows a conceptual drawing of the SEBXT system with a single detector. Here
the left vertical rectangular box represents the vacuum chamber of the electron beam gun,
the gray object at the center is the object that rests in the measurement domain, and the
circuit on the right represents a single detector of a detector array. Note that objects in
Fig. 2.1 are not to scale. Once the X-ray beam is generated by the source, a fraction of the
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Figure 2.1: A schematic representation of the SEBXT-system showing the electron beam
gun, the target and resulting X-rays, the X-rays passing through the measurement domain,
and a single X-ray detector.

emitted photons pass through the object along a straight line from the source to a specific
detector. In the SEBXT system, an array of detectors will be employed. These detectors
will collect a fraction of the transmitted X-ray photons for multiple source positions at
various angles, as the EB sweeps along the Tungsten target. We therefore collect one set
of projections for each position of the X-ray source. A complete set of those projection
data is called the sinogram. The amount of attenuation along a given path depends on the
materials composition, density and thickness that the X-rays have to pass through, and this
enables the reconstruction of a material map of the object in the measurement domain.
The sinogram is then used to reconstruct the attenuation distribution in the domain and,
hence, the material or phase distribution. The SEBXT is designed to measure the material
distribution on a cross-section plane through the domain.

2.2 University of Michigan Scanning Electron Beam X-
ray Tomography System (SEBXT)

The Scanning Electron Beam X-ray Tomography (SEBXT) system is comprised of a 150
kV, 20 kW scanning electron beam gun, a vacuum chamber with linear and semi-circular

12



Figure 2.2: Major system components of the SEBXT. The electrical enclose houses the
control system and the laser used to heat the cathode; the high voltage tank and power
supplies provide the potential between the cathode and the tungsten target in the electron
beam gun; the main enclosure contains the gun and the detector, and has a lead shielding
around it which is omitted in this figure to show the interior.

tungsten targets, and a detector sub-system. A rendering of the major system components
are shown in Fig. 2.2. These include the high-voltage tank that supplies the voltage bias
between the filament (cathode) and the anode, the electronics enclosure, and the Electron
Beam (EB) gun assembly. The cathode, bias cap, anode, and focusing/deflecting coils are
enclosed in the top of the EB gun assembly, and the target is at the bottom of the assembly.
The gun and chamber are maintained under high vacuum by a system of roughing and
turbo-pumps.

2.2.1 The electron beam X-ray source

X-rays are produced with a 150 kV 20 kW electron beam gun system. To produce the elec-
tron beam, a tungsten filament is heated by a 50 W laser to emit electrons by the thermionic
emission process [1, 2]. Laser heating of the filament is a novel feature of this system to
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(a) (b)

(c) (d)

Figure 2.3: Photographs of the University of Michigan SEBXT. (a) upper part of the elec-
tron beam gun; (b) lower part of the electron beam gun; (c) high voltage supply; (d) elec-
trical enclosure and operating panel.
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minimize the unwanted beam deflection induced by the electricity to heat the filament.
When not controlled by additional electro-magnetic force, the amount of emitted electrons
from the heated tungsten filament is greater than the desired value. Therefore, a bias con-
trol circuit is utilized to block the over-production of electrons by applying a maximum of
5 kV bias between the cathode and the bias cap (formally known as the Wehnelt cylinder).
Application of a bias voltage to the anode can either block or accelerate the passage of
electrons from the filament to the target.

During beam operation, emitted electrons pass the bias cap aperture and are accelerated
by the voltage bias between the cathode (filament) and the anode. Subsequently, they are
focused and deflected by the focusing and deflecting coils. The focused electron beam
then impinges on the tungsten target to generate X-rays. When the accelerated electrons
interact with the tungsten target, they can produce a distribution of high energy photons. If
an electron has energy higher than 10 keV, it can generate a “hard X-ray” photon that can
effectively penetrate relatively highly attenuating matters, such as titanium.The chamber
and electron beam gun assembly must be maintained in a high vacuum, less than 10-6 mbar
(absolute). Without the high vacuum, destructive arcing can be produced across potential
differences above 1.5 kV. Also, gas molecules in the air can scatter the electrons of the
beam, lowering the energy of electrons before they strike the target and changing the focus
of the beam.

Fig. 2.4 shows the cutout view zoomed-in at the bottom part of the chamber where the
tungsten target is located. The circular tungsten target has inner diameter of 76 mm and 102
mm outer diameter, and the surface emitting the X-rays is at a 30-degree angle with respect
to the measurement plane. Both tungsten targets are mounted on a water-cooled copper
base to more effectively remove heat. It should be noted that the geometry was designed to
accommodate replacing the targets with piecewise linear rotating tungsten targets, which is
why the emitting surface was located such a distance from the copper base.

The electron beam that originates from the top of the gun is guided through slits in a
molybdenum screen, which is used to prevent the beam from impinging on the aluminum or
copper components of the base. When the electron beam passes through the slit it impinges
on the tungsten target, generating a poly-energetic beam of X-rays. The highest energy of
X-ray photons produced by the electron beam is limited by the maximum energy of the
electrons.
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Figure 2.4: Cutout showing the bottom part of the chamber with the molybdenum safety
screen, tungsten targets, and the water-cooled copper base. Note that the aluminum is
also cooled underneath the o-ring to prevent o-ring failure. This system has two tungsten
targets, linear and arc. The linear target was included simply to enable testing of the damage
threshold of the tungsten material during the safety testing to generate the X-rays, and for
other testing of basic ideas.
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Figure 2.5: Conceptual drawing of the focal spot measurement configuration. The focal
spot size of the beam is measured by taking the projected image of the tungsten collimator
with the hole diameter 1 mm and the thickness 2 mm.

2.2.2 The electron beam focusing on the arc tungsten target

Along with the detector physical dimension, one of the important features that determines
the resolution of the reconstructed image is the beam focal spot size on the tungsten target
(i.e., the size of the source and its intensity distribution). To check the beam focal spot size,
a 2 mm thick tungsten collimator with 1 mm diameter aperture is placed in front of the
source, 29 mm from the approximate focal spot location, and 140 mm from the detector,
with estimated uncertainties in relative positions less than 1 mm. The conceptual drawing
of the focal spot measurement configuration is shown in Fig. 2.5.

A total of 30 projection images of the tungsten collimator are obtained by Dexela
1207CL flat panel detector, and a profile of the collimator aperture is taken from the ensem-
ble average of the 30 images. The PerkinElmer Dexela 1207 CL is a 2-D flat panel X-ray
detector with DRZ-standard scintillator film, and a CMOS panel with a total of 1536× 864

pixels with 75× 75 µm2 face area. This 2D flat panel detector was not used for the CT re-
construction. Fig. 2.6 shows the profile of the beam focal spot with various focus currents.

The beam focal spot sizes are computed by the deconvolution process based on the
projected image. Let g be the measured projected image of the collimator aperture, and f
the projected image of the collimator aperture with the ideally focused beam (infinitesimal
focal spot). Because the aperture is much smaller than the distance between the source and
the collimator, we assume the intensity of the initial X-ray beam is constant to simplify f .
Let h be the ideal projected image of the beam profile through the ideal pin hole, i.e. a pin
hole with infinitesimally small hole and thickness. We want h be unitless, with the integral
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Figure 2.6: Comparisons of the profiles of the projected collimator with 1 mm aperture for
beam focus currents ranging from 990 mA to 1090 mA.

of h being unity. ∫ ∞
x=−∞

h(x)dx = 1. (2.1)

The flat panel detector does not specify the unit or the gain of the sensor response. However,
we can make h satisfying Eqn. (2.1) by adjusting the intensity of f so that

∫
x
g(x)dx =∫

x
(f)dx.

Assume the X-ray collimating is a linear shift-invariant system, g can be expressed as
a convolution between h and f

g(x) = (h ∗ f)(x) (2.2)

where ∗ denotes convolution in terms of x.
Once discretized, the convolution can be re-written as a matrix multiplication as

g = F h, (2.3)

where F is the convolution matrix of f . To find h, we need to invert the linear system given
in (2.3). However, (2.3) is not directly invertible if the size of h is not equal to the size of g.
Furthermore, naive deconvolution by matrix inversion amplifies noise significantly. Thus,
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we use the regularized least-square method. Since the beam profile is generally smooth,
we use the Tikhonov regularizer.

ĥ = arg min
hi>0

||F h− g||22 + α||C h||22, (2.4)

where α is the regularizer strength parameter, and C is the first order finite difference
matrix. α is set to be 1011 in this estimation. (We cannot guarantee that α = 1011 is the
optimal value. We just choose the value so that the image looks neither too smooth nor too
noisy.) Since the X-ray beam cannot have negative value, we employ a iterative constrained
gradient method to solve (2.4).

h(n+1) = P0

[
h(n) − ν

(
F

T
(
F h(n) − g

)
+ αC

T
Ch(n)

)]
, (2.5)

where P0 is the element-wise projection operator defined as P0[t] = max[t, 0]. Once h

is computed, we can scale down the estimated projected profile to get the actual beam
profile according to the distance ratio. Fig. 2.7 shows the measured projected image profile
obtained by the Dexela 1207 flat panel detector and the simulated projected image profile
with ideal infinitesimal focal spot beam. Fig. 2.8 shows the estimated beam profile.

Based on the experiments, best full-width at half-maximum (FWHM) of the focal spot
diameter was estimated to be 1.18 mm at the focus current of 1050 mA. Later, we found
that the actual focal spot size is possibly much wider than the estimated value, approxi-
mately 4 mm FWHM, by comparing the simulation and experiment sinogram data. The
possible reason for this large focal spot is the electron beam machine malfunctioning due
to the outgassing. We found that the electron beam machine took several seconds after the
beam is on to initially set up the focal spot. The overheated cathode emits gas molecules,
which may results in collisions between the emitted electrons and the gas molecules, caus-
ing the electrons to deflect. Another pumping system has been added to the bottom of the
gun to reduce the gas molecules. When the focal spot size is larger than the size of the
collimator aperture, the finite thickness greatly affects the projected image, makes the pro-
jection non-linear and shift-variant. Fig. 2.9 shows the examples showing the difference of
the projected images of the collimator aperture for ideal, small, and large focal spots.

2.2.3 The electron beam positioning on the arc tungsten target

The location of the electron beam is controlled by the electro-magnetic forces induced
by deflecting coils, which steer the beam laterally in a plane. The voltage readings in
the control panel do not directly indicate the location of the beam, hence a voltage-to-
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Figure 2.7: Measured projected image profile of the collimator aperture taken at the row
with maximum intensity and simulated projected image profile of the collimator aperture
with ideal infinitesimal focal spot beam. The measured profile has an unknown unit. We
adjusted the intensity of the ideal beam profile so that the ideal profile has the same area
under the curve as the measured profile.

Figure 2.8: Estimated profile of the X-ray beam at the focusing current 1050 mA. Beam
profile is adjusted so that the area under the profile is normalized to one.
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(a)

(b)

(c)

Figure 2.9: A schematic drawing of the focal spot size measurement experiment; (a) ideal
infinitesimal focal spot, (b) small focal spot, and (c) large focal spot. Images are not in
proportion to emphasize the effect of the focal spot size. A 2 mm thick tungsten collimator
with 1 mm diameter aperture is placed 29 mm away from the approximate focal spot loca-
tion, and 140 mm away from the detector, with estimated uncertainties in relative positions
less than 1 mm. When the focal spot diameter is larger than the collimator aperture diame-
ter, the projected image becomes significantly nonlinear, which violates the shift-invariant
assumption.
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coordinate correction factor must be obtained based on the projection images of a known
object. The amount of deflection per voltage applied to coils is a function of the voltage
bias between the cathode and anode. Therefore, to avoid damage to system components,
one must first carefully calibrate the voltage at minimal beam current, around 0.3 mA, only
after beam location is known increase the beam current to the operational level. (That is,
the required deflection coil voltage is taken to be independent of the beam current, and is
presumably linearly dependent on the bias voltage.)

A calibration phantom (Phantom 0) was used to determine the location of the electron
beam on the semi-circular tungsten target. The calibration phantom consists of seven pairs
of 1/32 inch (0.79 mm) diameter tungsten carbide balls that are placed in a 3 inch (76.2 mm)
diameter acrylic disk along the straight lines that pass through the center of the phantom
drawn at every 25 degrees, in a plane where the source and the detector are aligned. Refer
to Appendix A for the detailed CAD drawing.

Fig. 2.10 shows the setup used to relate the deflection control voltage to the beam posi-
tion. To produce the projection image, the calibration phantom was placed at the center of
the domain, and the X-ray beam was generated from a spot on the tungsten target. Because
the X-ray attenuation of the tungsten is much higher than that of the acrylic, the tungsten
balls cast shadows on a flat panel X-ray detector. By examining the location of the shad-
ows, we can determine the origin of the X-ray source. The flat detector is rotated to form
the desired angle with respect to the line formed by a pair of tungsten balls. By changing
the U and V voltages, the beam is deflected to a new position on the tungsten target. This
then produces a different image on the flat panel. The voltages applied on the deflecting
coils are adjusted until the shadows of two paired tungsten balls become concentric.

We recorded the X-ray projection image of the calibration phantom using the flat panel
detector Dexela 1207 CL. Fig. 2.11 shows the image taken with the Dexela 1207 CL panel
detector at four different angles, (a) 0 degree, (b) 25 degrees, (c) 50 degrees, and (d) 58.68
degrees, when the corresponding pair of tungsten balls are aligned with the X-ray source
spot. The red circle in Fig. 2.11 indicates a pair of the tungsten balls to be aligned with the
X-ray source spot in each configuration. The entire table for the deflection control voltage
input for seven different angles is shown in Table 2.1. The beam location based on above
described localization is assumed known within 1 mm.

We obtain the calibration matrix by least square fitting based on the angular position-
voltage data shown in Table 2.1. As a result, the input deflection voltage U and V for any
given physical coordinate x and y can be obtained from the following affine linear relation:
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Figure 2.10: 3D drawing of the isometric view (left) and photograph of the top view (right)
of the EB gun, target, domain, and flat panel detector configuration used for the beam
positioning process

Figure 2.11: Alignment calibration images obtained by the Dexela 1207 CL flat panel X-
ray detector. Images are shown here for alignment angles of (a) 0 degrees (b) 25 degrees
(c) 50 degrees (d) 58.68 degrees. Red circles indicate where two tungsten balls are aligned.
(Note: While the balls were located along the lines intersecting the center of the phantom
every 25 degrees, other angles (e.g. 58.68 degrees as shown in (d)) could be formed when
imaging balls along a line that does not intersects the center of the phantom.)
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2.2.4 The resulting X-ray spectrum

The spectrum of the X-ray source was measured using the Amptek XR-100T-CdTe detector.
Due to the inability of the detector to cope with as high photon flux as the arc would be
exposed to, greater than O(106) counts per second (cps), we operate the source at 115
kV and 0.5 mA beam current and applied a tungsten collimator with a 100 µm diameter
aperture on the detector to reduce the photon flux. The photon flux is then corrected for 100
mA beam with pixel face size 0.7×0.7 mm2 detector, which is the actual condition for the
SEBXT being operated in the future. The dead time ratio of the measured spectrum was
13.5 %, which means that the 13.5 % of total number of the photons were rejected by the
pile-up detection. we compensate the dead time by multiplying the entire spectrum by 1/(1
- deadtime ratio/100). Note that we only applied this dead time correction to measure the
spectrum. For the CT reconstruction, we acquired data without the pulse pile-up rejection,
as we only need the integral of the energy, not the spectrum.

The measured spectrum was compared with the simulated spectrum produced using the
X-ray source spectrum simulation software SpekCalc [3]. Fig. 2.12 shows the spectrum
measured, and a comparison to the simulated spectrum. We can see that the measured
spectrum has less low energy photons and more high energy photons. This might be due to
the effect of pulse pile-ups. Note that not all pile-up can be removed by the circuit and some
fast pile-ups are recorded as true energy of photons. The results show that the measurement
spectrum is deformed by a Spectral Response Function (SRF), and it is important for the
reconstruction algorithm to take the effect of the SRF into consideration in order to have
an accurate quantitative result. The spectral response function will be further discussed in
the reconstruction part in §3.2.4. Note that we recorded the measured spectrum data in Fig.
2.12 without a steel filter, which was used to obtain the actual sinogram data to follow. A
tungsten collimator with a 100 µm diameter aperture was used instead, which is not usable
in CT reconstruction due to the wide variation of incident angles.
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Figure 2.12: A comparison of the measured and computed photon energy spectrum for 115
kV electrons impinging on a tungsten target. The calculated spectrum was obtained using
the simulation software (SpekCalc). The measured spectrum was recorded with the 100
µm diameter tungsten collimator, and the distance between the source and the detector was
168.69 mm. The results show that the measurement spectrum was deformed by the spectral
response function, and that it is important for the reconstruction algorithm to take the effect
of the spectral response function into consideration in order to have an accurate quantitative
result. The shift of the Compton peak to the higher energy shows the occurence of pulse
pile-ups.
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Table 2.1: Voltages applied to the deflection coils at each aligning angle position with the
electron beam cathode voltage set to 115 kV. The voltage input of the beam control software
has the accuracy of three decimal places.

Angle
(degree)

U
(volt)

V
(volt)

-58.68 0.510 0.994
-50.00 0.250 0.770
-25.00 -0.355 0.090
0.00 -0.59 -0.800
25.00 -0.428 -1.705
50.00 0.145 -2.450
58.68 0.406 -2.635
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2.2.5 The X-ray detector array

A detector array has been developed for use on the SEBXT, designed and manufactured
by the manufacturer Integrated Detector Electronics AS (IDEAS). The array consists of
eight linear modules covering approximately 180 degrees. Each module has 32 pixels
horizontally and 4 pixels vertically with a pixel pitch of 0.8 mm. Each pixel has a CZT
semiconductor with the face size of 0.7×0.7 mm2 connected to the charge-integrating cir-
cuit (current mode). Maximum design frame rate is 125 kfps for line scanning, 31.25 kfps
for area scanning. Exposure time can be adjusted independent of the frame rate, with the
minimum of 5 µs. For the present experiments, however, the X-ray arc detector was not
available. Therefore, we created projection sets and the resulting sinograms by traversing
the single point detector. An Amptek XR-100T-CdTe spectrometer with a PX5 multichan-
nel analyzer (MCA) was utilized as a solitary detector that could be positioned along the
location of the notional detector arc, and hence the data generated by this one detector at
the locations of the detectors in the notional arc mimicked the data such an arc would yield.
The detector is a thermo-electrically cooled X-ray and gamma-ray detector using a 3×3×1
mm3 CdTe diode, which can resolve the energy of the photon with a resolution of 1.2 keV
for 122 keV 57 Co source (with actual resolution depending on photon energy, flux and
detector settings).

The SEBXT system is designed to include an array of CZT energy-integrating detectors
capable of O(100)kHz simultaneous data acquisition. With 100 projections per slice, this
will enable O(1)kHz CT of moving objects or flow. Presently, only a single pixel spec-
trometer is mounted on the motorized rotary stage (RV160 PP) and rotated to mimic the
arc detector array of radius 8 cm. Due to the inability of the detector to cope with as high
photon flux as the arc would be exposed to, greater than O(106) counts per second (cps),
the source was operated at 115 kV and 1.0 mA beam current (1/130th of maximum) to
reduce the photon flux. Additionally, a 0.5 inch (12.7 mm) thick steel filter was installed
in front of the spectrometer to reduce the photon flux from O(108) cps to O(106) cps. Fig.
2.13 shows a photograph of the setup with the single pixel spectrometer with the steel filter
mounted on the rotary stage.

Fig. 2.14 shows the input counts/output counts ratio of an Amptek Silicon Drift De-
tector (SDD) with the PX5 analyzer for different peaking time τp of the pulse generation,
illustrating the nonlinear response due to pile-ups (multiple photons arriving at the detec-
tor too close in time to be distinguished), and the energy resolution of the same detector.
(The type of the semiconductor used for this analysis is different from our CdTe detector.
As CdTe has better efficiency than SDD, we expect that the CdTe detector will have more
pile-up issues while it has better resolution.)
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Figure 2.13: Single pixel spectrometer setup. A single pixel spectrometer is mounted on
the motorized rotary stage (RV160 PP) and rotated to mimic the arc detector array of radius
8 cm. The tip of the spectrometer is covered by a 0.5 inch (12.7 mm) thick steel filter to
reduce the X-ray photon flux down to O(106) cps.
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Figure 2.14: The input counts/output counts ratio of an Amptek Silicon Drift Detector
(similar, but not identical to the one utilized) with the PX5 multi-channel analyzer for
different peaking time τp, illustrating the nonlinear response due to the effect of pile-ups
(multiple photons arriving at the detector too close in time to be distinguished). (Data from
http://amptek.com/products/xr-100sdd-silicon-drift-detector/)

Figure 2.15: The energy resolution vs. input counts for different peaking time τp. As
the peaking time is reduced, so is the energy resolution of the detector. However,
lower peaking time is required to reduce the chance of pulse pile-ups. (Data from
http://amptek.com/products/xr-100sdd-silicon-drift-detector/)
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2.3 Description of the test phantoms

We created a total of three phantoms in order to evaluate the SEBXT system performance
and to develop and test reconstruction algorithm. All phantoms are manufactured with a
typical tolerance of ±0.0005 inches (12.7 µm).

The first, Phantom 0, is used for testing the electron beam localization. Phantom 0 is
made of clear acrylic with seven pairs of 1/32 inch (0.79 mm) diameter tungsten carbide
balls. Phantom 0 is designed to calibrate the beam positioning, thus quantitative attenuation
data are not necessary. Phantom 1 and Phantom 2 are used to test the CT reconstruction
algorithms. The two latter phantoms were made out of Plastic waterTM LR [4], a water
equivalent plastic which mimics the attenuation coefficient of water from 15 keV to 8 MeV
within 1%. Both the plastic Phantom 1 and Phantom 2 were tightly encircled by a 3-inch
(76.2 mm) diameter SCH-10 titanium pipe. The outer diameter of the pipe is 3.5 inches
(88.9 mm), the inner diameter is 3.26 inches (82.8 mm), and the wall thickness of the pipe
is 0.12 inches (3.0 mm).

31



2.3.1 Phantom 0: Calibration phantom for electron beam positioning

The calibration phantom (Phantom 0) was used to determine the location of the electron
beam. Explanation on how this phantom was utilized are included in §2.2.3. Fig. 2.16
shows a picture of Phantom 0. Detailed CAD drawing is

Figure 2.16: Picture of the calibration phantom, Phantom 0. This phantom incorporates
seven pairs of 1/32 inch (0.79 mm) diameter tungsten carbide balls that are placed in a
3 inch (76.2 mm) diameter acrylic disk along radial lines that pass through the center of
the phantom every 25 degrees. They determine when the X-ray source and detectors are
aligned. Total of 14 tungsten carbide balls are used for seven different angles. The plastic
component is encircled by a 3-inch SCH-10 titanium pipe. The outer diameter of the pipe
is 3.5 inches (88.9 mm), the inner diameter is 3.26 inches (82.8 mm), and the wall thickness
of the pipe is 0.12 inches (3.0 mm)
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2.3.2 Phantom 1: Plastic rectangle in titanium pipe

To investigate the resolution of the reconstructed image with the current source-detector
pair, a sinogram of a rectangular phantom that is identical with the one in [5] was recorded
and reconstructed. The rectangle has dimensions of 18×22 mm2. Fig. 2.17 shows a picture
of Phantom 1.

Figure 2.17: Picture of Phantom 1. Phantom 1 is a rectangular block placed on a circular
disk substrate. The phantom was made of Plastic WaterTM LR, a water equivalent plastic
which mimics the attenuation coefficient of water from 15 keV to 8 MeV within 1%. The
plastic component is encircled by a 3-inch SCH-10 titanium pipe. The outer diameter of
the pipe is 3.5 inches (88.9 mm), the inner diameter is 3.26 inches (82.8 mm), and the wall
thickness of the pipe is 0.12 inches (3.0 mm)
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2.3.3 Phantom 2: “Bubbles in water” in a titanium pipe

Phantom 2 was designed to study the resolution of the SEBXT for circular objects, similar
to gas bubbles in water. As it is desired to conserve the void fraction even when the SEBXT
cannot resolve each bubble separately, this phantom contains regions of known void frac-
tion with holes small enough that they were expected to be unresolvable. The phantom has
circular openings of diameters ranging from 11.25 mm to 0.5 mm. All locations and sizes
of the holes are summarized in Appendix B. Phantom 2 was made of Plastic WaterTM LR,
a water equivalent plastic which mimics the attenuation coefficient of water from 15 keV
to 8 MeV within 1%. The plastic component is encircled by a 3-inch (76.2 mm) diameter
SCH-10 titanium pipe. Fig. 2.18 shows a picture of Phantom 2.

Figure 2.18: Picture of Phantom 2. The phantom has circular openings of diameters ranging
from 1.125 cm to 0.05 cm. Locations and sizes of the holes are summarized in Appendix
B. The phantom was made of Plastic WaterTM LR, a water equivalent plastic which mimics
the attenuation coefficient of water from 15 keV to 8 MeV within 1%. The phantom is
encircled by a 3-inch (76.2 mm) diameter SCH-10 titanium pipe. The outer diameter of
the pipe is 3.5 inches (88.9 mm), the inner diameter is 3.26 inches (82.8 mm), and the wall
thickness of the pipe is 0.12 inches (3.0 mm)
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CHAPTER 3

Computed Tomography Reconstruction
Algorithm

3.1 Introduction

In this chapter, we introduce a computed tomography (CT) reconstruction algorithm specif-
ically designed to enhance the CT reconstruction result of the SEBXT system described in
the previous chapter, §2. In theory, SEBXT can significantly enhance the temporal res-
olution of the CT image compared to the conventional CT. However, it still has several
drawbacks. Full-angle CT data requires angular overlap between the source target and the
detector. The SEBXT has limited angle settings, which inevitably generates artifacts due
to the missing projection data to resolve the entire tangential line of the objects. More-
over, applying conventional CT reconstruction algorithms such as filtered back-projection
(FBP) to the SEBXT system with a poly-energetic source induces an artifact due to the
nonlinearity of the attenuation (i.e. low energy photons are attenuated more than high en-
ergy photons). With this condition, the reconstructed image has 1) cup-like global intensity
distortion which is undesirable for quantative result, 2) dark and bright streaks between
greater attenuation objects such as metals [1]. Therefore, we have endeavored to develop a
custom CT reconstruction algorithm that is meant to produce the best reconstructions from
the SEBXT projections.

For limited angle CT of two phase flows, there have been attempts to improve the result-
ing image by thresholding binarization [2] and level-set binarization [3]. However, bina-
rization can only be applied to images where all objects of significance have size larger than
the reconstruction resolution (i.e., voxel size). The size of objects (bubbles) in multiphase
flows, particularly cavitating flows, ranges from microns to centimeters. Our objective is
to develop an SEBXT system that can be used for any two-phase pattern of flows as long
as the flow speed is within an acceptable range. In multi-phase fluid mechanics, a volume
fraction approach is commonly used to account for smaller objects that cannot be fully
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resolved, where the material property is volume-averaged over each voxel. With volume
fraction approaches, each pixel can have any gray value (i.e., phase fraction) between 0 to
1. Applying binarization to the flows having void fractions varying continuously from 0 to
1, and being far from either extreme over a large part of the volume, can cause significant
inaccuracy.

Numerous statistical reconstruction methods for reducing the beam hardening artifacts
in poly-energetic source CT have been published. Among them, dual energy (DE) CT
has been a popular method to account for the energy-dependent nonlinearity of the X-
ray photon attenuation [4–30]. Although details vary, but most of the dual energy CT
reconstructions use the dual material decomposition, which represents every material in
the domain as a linear combination of two (soft and hard) materials to simplify the prob-
lem. DECT acquisitions can be classified into four categories: dual source [6, 19, 27], fast
kVp switching [21, 22], dual layer detectors [31, 32] and energy binning detectors [9, 14].
Applying dual source or dual layer detector to the electron beam is difficult, as collima-
tors cannot be used in SEBXT because the incident angle of the beam changes along the
scan. Fast kVp switching in SEBXT requires synchronization between the sequences of
beam voltages and deflection coils, and may not be achievable due to limitations of high
voltage (HV) supply response time. Additionally, failed synchronization could cause the
beam to hit the chamber walls, which can cause permanent damage in mere fractions of a
second. To date, SEBXT has only been utilized for single energy CT, i.e., single source
with energy-integrating detectors.

Achieving DECT-like results when using only the single bin energy-integrated data are
not straightforward, especially when only limited angle projection data is available. Unlike
the Poisson maximum likelihood of the photon counting detector, less attention has gone
into finding an accurate probabilistic model for energy-integrating detectors, and many
existing iterative methods use conventional weighted least square (WLS) method for data-
fitting (likelihood) objective functions [11,28]. While WLS is a widely accepted method for
high photon count rate, it could fail to accurately estimate parameters when photon count
rates are low. Whiting et al. 2006 [33] showed that the compound Poisson distribution of
the energy-integrating data match well with the measured probability density function, and
it quickly becomes Gaussian-like when the number of photons becomes greater than 20.
That work also showed that the mean and the variance of the energy-integrating data have
a linear relation. Recently, Lasio et al. 2007 [34] proposed a simple Poisson log likelihood
for energy-integrating detectors using equivalent photon counts, i.e., total energy divided
by the equivalent mean energy of incident photons. Although the simple Poisson model
was accurate enough for a certain problem [34], its linear approximation does not fully
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reflect the nonlinear physics of the attenuation of photons.
In §3.2.2, we describe a way to take advantage of the dual material decomposition

method similar to that used for the beam-hardening removal, while using energy-integrating
detectors. To do this, we used the material decomposition method based on the volume
fraction maps following [30], and a nonlinear Gaussian model as an approximation of the
aggregated compound Poisson distribution. Then, we incorporate the spectral response
model of the detector crystals into the probability model, by using a simple Gaussian and
tail mixture model suggested by Srivastava et al. 2012 [35].

Estimating dual material volume fractions using only a single bin energy-integrated
data leads to an ill-posed problem where the solution is not unique. Solving the ill-posed
problem is challenging, and often it gives an unexpected result that is far from the actual
solution. One way to help solving the ill-posed problem is applying a priori knowledge
about the parameters to be estimated. For example, we may know that adjacent pixels of
the images have similar values, or how the image values are bounded, and thus cannot ex-
ceed a certain value. Iterative CT reconstruction enables implementing these constraints.
The Gradient Descent (GD) method is an iterative method that leads to the locally optimal
CT solution where the given objective function is maximized (or minimized) by taking the
gradient direction (or the negative gradient direction if it is minimization problem). The
objective function is a vector-to-scalar function that measures how well the estimated data
matches the measured data (data-fitting), or how well the parameters conform to the a priori

knowledge (regularization). Classically, the X-ray CT reconstruction problem was approx-
imated as linear, and Fourier transform based filtered-back projection (FBP) is used, which
is faster than any other existing method. However, especially for sparse or limited angle
CT, iterative reconstruction methods have proven to provide better results than the FBP.
This is owing to its self-correcting characteristics and the freedom of choice for applying
non-linear data-fitting functions, regularizers, or any other constraints that can improve the
result.

Employing the volume fraction map has a benefit as its physical constraints, i.e., non-
negativeness and the bounded sum, help to narrow the feasible domain. Even after the
constraints are applied, the solution is still not unique. We employ two regularizers, an
edge-preserving and `0 norm regularizer to determine the solution. Based on the dual ma-
terial decomposition, different regularizers can be applied to the fraction maps depending
on the characteristics of the materials.

In the present chapter, we employ a constrained and regularized, non-linear maximum
likelihood iterative reconstruction. Maximum Likelihood (ML) estimation is a method to
find parameters of a known probability density function that render the likelihood of the
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measured data as great as possible [36]. For the proposed CT reconstruction, the parame-
ters to be estimated are chosen as the material volume fraction maps, and the goal of the
ML is to maximize the probability density function value of the energy-integrated detector
data at the measured data point. To use ML estimation, a distribution model of the mea-
surement data must be provided first. §3.2 will describe the modeling process to obtain
the probability distribution. Once the probability distribution is defined, we need to con-
vert it to a objective (cost) function and then find a set of parameters that minimizes the
objective function. §3.3 describes the algorithm to find the locally optimal parameters that
minimizes the objective function. CT reconstruction involves a large size data connected to
a large size of parameters. To boost the speed of computation, a parallel computing is re-
quired. We will use a massively parallel GPU computation to accelerate the reconstruction
process. GPU implementation of the reconstruction algorithm is shown in §3.4.

3.1.1 Basic principles of computed tomography reconstruction

We start our discussion of the computed tomography (CT) with the attenuation of X-ray
photons under a ‘narrow beam’ or ‘good geometry’ assumption, in which X-ray rays are
well-collimated such that only the straight beam can hit detectors [37, 38]. In other words,
the X-ray photons that had gone through large angle scattering are assumed to be atten-
uated. With the narrow beam assumption, the attenuation ratio of monoenergetic photon
flux passing through matter can be presented by a negative exponential function of the path
length multiplied by material dependent factors. This is called the Beer’s law or Beer-
Lambert law:

y

I0
= e−µl, (3.1)

where y is the transmitted photon flux, I0 is the initial photon flux, µ is the attenuation
coefficient, and l is the path length. Each material has its own unique µ, which is dependent
on the energy of the photons. In a more common case of multiple poly-energetic rays
passing through mixture of matters, Eqn. (3.1) can be expressed as

yi(E)

I0
i (E)

= e
−

∫
Li
µ(x,E)dl

, (3.2)

where i is the ray index, E is the energy level, and Li is the photon path of the ith ray
assumed to be a straight line.

Energy-integrating detectors measure the integrated current over exposure time along
the ith source-detector pair. Our measurement data hi are the total integrated X-ray photon
energy obtained by linearly transforming the integrated current data. For an ideal ‘large’
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Figure 3.1: Example of a sinogram, i.e., map of the measurement data h plotted in a two
dimensional array with the source and the detector indices as its axes. The thick red line
indicates the region beyond which data are missing due to the use of a limited angle CT
system (i.e. a system where every voxel in the domain is not imaged from every angle,
from 0 to 180 degrees).

detector, which transfers the entire X-ray photon energy to electric energy, the measurement
data (hi) can be simply written as the integral of the energy of transmitted X-ray photons.

hi =

∫ ∞
0

yi(E) E dE . (3.3)

The map of hi drawn with axes indicating the source and detector positions is called a
sinogram. In reality, the process of X-ray transmission cannot be exactly described in a
deterministic way. Not only are the generation and the attenuation process of the X-rays
random, but X-ray photon energy is not fully transferred to the detectors. Those uncer-
tainties require a more complicated statistical model to invert the measurement data. A
statistical model which accounts for the efficiency of the detectors is discussed in §3.2.4.
Fig. 3.1 shows an example of a simulated sinogram showing the relation between the source
and detector geometry, and the axes of the sinogram.

Reconstructing an attenuation image µ(x, E), or any other variations such as a volume
fraction image, from the measurement data h is an inverse problem, as it has to invert
the physical X-ray system to recover the object image from its projected data. CT recon-
struction is the process by which many X-ray projection images are combined to create a
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two-dimensional or a three-dimensional slice image. CT is usually ill-posed, i.e., a unique
solution does not exist since there is not enough information to uniquely determine the
solution. Moreover, the experimentally obtained projection data are corrupted by noise
whose exact value is unknown. Even though over-determined data can improve the quality
of reconstruction, acquiring more data means more cost (i.e. more detectors or projections,
or a higher X-ray beam power).

Another challenge arises for sparse or limited angle projection datasets. The sparse
angle problem occurs when the projection angles are too far apart, resulting in a loss of
the connection between the projection images. The limited angle problem occurs when the
projection dataset cannot cover the required angle of view. Generally, electron beam X-ray
CT suffers either from sparse angles or the limited angle problem, unless a special X-ray
transparent target is used [39].

3.2 Mathematical modeling of CT systems

3.2.1 Probability model

For current mode (energy-integrating) semiconductor type detectors with a polyenergetic
source, the actual distribution of the energy transferred to the detector by photons falls into
the sum of independent compound Poisson random variables, called the aggregated com-
pound Poisson random variable [40], which is not practically applicable for the iterative
maximum likelihood estimator due to its complicated form. As a common approach, the
distribution of the measurement data Hi of the current mode detector is approximated by
the normal distribution [40], [41], and [42]:

Hi ∼ N
(
η(ȳi), σ

2(ȳi)
)
, (3.4)

where η is the mean of the measurement data H , σ2 is the variance of H , i is the index
of rays, and ȳi is the ideal expected transmitted X-ray photon count at the ith ray. After
discretizing the continuous X-ray photon energy level E into Nk bins with an interval ∆E ,
we define ȳi(Ek) as the ideal expected photon counts at the ith ray and the kth energy bin
based on the Beer’s law:

ȳi(Ek) ≡
∫ Ek+1/2∆E

Ek−1/2∆E
I0
i (E) exp

(
−
∫
Li
µ(x, E) dl

)
dE , (3.5)
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where k is the energy level index, ∆E is the interval between energy levels, I0
i (E) is the

continuous initial emission spectrum,
∫
Li · dl is the line integral along the ith ray, and

µ(x, E) is the attenuation coefficient at the spatial location x and energy E . Further, assume
∆E is small enough that we can approximate (3.5) as

ȳi(Ek) ≡ I0
i (Ek) exp

(
−
∫
Li
µ(x, Ek) dl

)
∆E . (3.6)

The main goal of the following section is to define the analytic expression of η and
σ2, then apply the maximum likelihood estimation, and lastly, solve it iteratively using a
majorization-minimization algorithm specifically designed for the given likelihood func-
tion.

3.2.2 Basis material decomposition

In (3.5), the attenuation coefficient µ(x, E) is a function of both space and energy. For
the sake of simplicity, we first decompose it into an energy-dependent term and a space-
dependent term. Sukovic and Clinthorne 1994 [8], 1999 [10] and 2000 [11] suggested a
decomposition method to split the attenuation coefficient into the mass attenuation coeffi-
cient which depends on energy, and the local density which depends on space, as follows:

µ(x, E) =

Nl∑
l=1

βl(E)ρl(x) , (3.7)

whereNl is the total number of materials in the object, βl(E) is the known mass attenuation
coefficient of the lth material at energy level E , and ρl(x) is the local density at the spatial
location x. Elbakri and Fessler 2003 [17] further decomposed the density map into actual
material density and fraction map,

µ(x, E) =

Nl∑
l=1

βl(E) ρ(x) fl(ρ(x)) . (3.8)

In this model, the material fraction is assumed to be a function of the density, where the
function can be obtained by empirical curve fitting based on the known material data. While
this approach can be used for the specific field where there is a strong relationship between
the density and fraction, it cannot be applied to the more general case where the fraction is
not a one-to-one function of the density. Instead, Long and Fessler 2014 [30] introduced a
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modified volume fraction method in which the fraction is independent of the density:

µ(x, E) =

Nl∑
l=1

βl(E) ρl fl(x) . (3.9)

This type of decomposition can facilitate applying physical constraints. For example, if
all materials in the object are considered in the reconstruction, we can set the constraint∑

l fl(x) = 1 for any x. This sum-to-one constraint is called volume conservation. Usually,
X-ray attenuation due to the air is negligibly small, thus the attenuation of the air is assumed
to be zero. Then, we can set the constraint

∑
l fl(x) ≤ 1 for any x, excluding the air

fraction. This constraint significantly improves the quality of reconstructed images for
limited angle CT, as shown later.

Finally, we can discretize µ(x, E) using the piecewise constant basis in energy,

µ(x, Ek) =

Nl∑
l=1

ul(Ek) fl(x) , (3.10)

where ul(Ek) = u(k,l) = βl(Ek)ρl. After discretizing fl(x) in space, and substituting (3.10)
into (3.5), the discretized average photon flux ȳ(i,k) can be written as:

ȳ(i,k) = I0
(i,k) exp

(
−

Nl∑
l=1

u(k,l)

[
Af(l)

]
i

)
∆E , (3.11)

where I0
(i,k) = I0

i (Ek), [t]i is the ith element of the vector t ∈ RNi , A ∈ RNi×Nj is the
projection matrix with its element a(i,j) being the Radon transform of the j th spatial basis
along the ith ray, and f(l) = [f(1,l), · · · , f(Nj ,l)

]′, where Nj is the number of image pixels in
space.

3.2.3 Spatial discretization based on the Zwart-Powell box spline

In (3.11), we use the weight matrix A to discretize the volume fraction image in space.
A box-spline basis interpolator is used to build A. A box-spline is a generalized, non-
separable version of the B-spline. While 2D B-spline can be computed by the tensor prod-
uct of the two 1D B-spline, which is the multiple auto-convolution of 1D rectangular func-
tion, 2D box-spline is computed by convolving rotated rectangular functions defined in 2D
that cannot be represented by a tensor product of two 1D functions. Separability in Carte-
sian coordinate is useful property for the uniform grid system, but it is not much helpful
for Radon transform as it is performed in a cylindrical coordinate.

43



By sacrificing separability, box-spline attained some good properties compared to the
B-spline. Among the group of box-spline elements, Zwart-Powell (ZP) element has been
widely used, due to its advantages of symmetric and smooth shape, less aliasing but still
covering high frequency region slightly better [43]. Fig. 3.2 and 3.3 show the shape of ZP
element, and its frequency response compared with other typical B-spline elements, respec-
tively. A good basis element should have a smaller support (faster computation), frequency
response that covers the entire input within the Nyquist frequency square (high frequency
restoration), but reject the input outside the Nyquist frequency square (anti-aliasing). In
Fig. 3.2, we can see that ZP element has better response at the corners of the Nyquist
frequency square compared to the bi-quadratic B-spline element, and much less aliasing
(outside of the Nyquist frequency square) compared to the square box element. Also, ZP
element has slightly smaller support compared with the bi-quadratic B-spline element.

Entezari et al. 2012 [44] developed a closed form solution to compute the Radon trans-
form of the box-spline of any arbitrary order, and showed in noiseless reconstructed images
that ZP box-spline outperforms linear B-spline. A box-spline element can be defined by a
direction matrix Ξ, which is a set of the basis directional vectors ξi:

Ξ = [ξ1 · · · ξNb
] . (3.12)

Each directional vector ξi indicates the direction of the impulse-rectangular functions (ele-
mentary box-splines), which form the box-spline by convolving each other.

MΞ(x) =
(
Mξ1 ∗ Mξ2 ∗ · · · ∗ MξNb

)
(x) , (3.13)

Mξi(x) = Rect

{
1

|ξi|2
ξ′ix

}
δ

{
ξ′i⊥x

}
, (3.14)

where δ[·] is the Dirac delta function, ξi⊥ is the unit vector orthogonal to ξi, and Rect[·] is
the scalar rectangular function:

Rect
[
t
]

=

1, if |t| < 1

2

0, otherwise
. (3.15)

Zwart-Powell element is a special case of box-spline in 2-D, which has the direction matrix:

Ξ =

[
1 0 1 −1

0 1 1 1

]
. (3.16)

Estimating X-ray attenuation based on the Beer’s law requires a line integral of the atten-
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(a)

(b)

(c)

Figure 3.2: Shape of the square box (a), Zwart-Powell box spline (b), and the bi-quadratic
B-spline elements (c).
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(a)

(b)

(c)

Figure 3.3: Frequency response of the square box (a), Zwart-Powell box (b), and the bi-
quadratic B-spline elements (c) shown in log scale.
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Figure 3.4: Radon transform coordinates

uation coefficient along the rays. This line integral can be represented by the projection
along the direction of the ray θ and the corresponding hyperplane coordinate x′, which is
called the Radon transform. In two dimensional space, Radon transform of any spatial
function(image) f(x) can be written as

R{f(x)}(x′, θ) =

∫∫ ∞
−∞

f(x)δ(x cos θ + y sin θ − x′)dxdy

=

∫ ∞
−∞

f(Pθ⊥x′ + Pθl)dl , (3.17)

where the row vectors Pθ⊥ = [cos θ sin θ], and Pθ = [− sin θ cos θ]. Radon transform
has several useful linear properties. One of the convenient property for the computation of
box-splines is the convolution-projection theorem:

R{(f1 ∗ f2) (x)} = R{f1} ∗ R{f2}. (3.18)

Using the theorem (3.18), the Radon transform of the box-spline element can be computed
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as

R{MΞ(x)}(x′, θ) =
(
R{Mξ1} ∗ · · · ∗ R{MξNb

}
)

(x′, θ)

=
(
Mζ1 ∗ · · · ∗MζNb

)
(x′)

= MZ(x′) , (3.19)

where Z is the projected direction matrix:

Z = Pθ⊥ [ξ1 · · · ξNb
] = [ζ1 · · · ζNb

] . (3.20)

Convert the rectangular function into the difference of two step functions,

Mζ(x′) = ∆ζ{u(x′)}, (3.21)

where u(x′) is the unit step function, and ∆ζ{f(x′)} is the finite-difference operator, de-
fined as

∆ζ{f(x′)} =
f(x′)− f(x′ − ζ)

ζ
. (3.22)

Finally, by plugging (3.16) into (3.19), and applying auto-convolution property of step
functions, Entezari et al. 2012 [44] found the solution of the Radon transform of the ZP
element:

R{MΞ(x)}(x′, θ) =
∆cos θ{∆sin θ{∆cos θ+sin θ{∆cos θ−sin θ{(x′+)3}}}}

3!
, (3.23)

where x′+ is the projection to the non-negative value, x′+ = max{x′, 0}.
One drawback of higher order box-spline elements including ZP element, is that it is

computationally expensive when compared to commonly used constant box element. Fur-
thermore, while strip integral of constant box basis can be achieved by an analytical expres-
sion, closed form of the strip integral of Zwart-Powell box-spline is not easy to be found. To
reduce the excessive computation while slightly sacrificing the accuracy, first order inter-
polation with a pre-computed table is used along with the numerical integral scheme based
on the six point Gauss-Legendre quadrature. A six point Gauss-Legendre quadrature can
yield the exact integral value of polynomial functions up to 11 degrees. Gauss-Legendre
quadrature integral of the square box basis suffers from the error due to its non-smooth
corner, which cannot be accurately estimated by polynomial functions. Luckily, ZP ele-
ment has a smooth shape which is preferable for the numerical Gauss-Legendre quadrature
integral. Also, ZP element is four-axis symmetric, so mirrored boundary condition with 0
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to 45 degree and positive distance data table suffices to cover the whole area. With textur-
ing functionality of CUDA associated with the 2D CUDA array, this interpolation can be
efficiently computed, which will be explained in §3.4.

3.2.4 Energy detection statistics for current mode detectors

To obtain statistical properties η̄ and σ2 for the total photon energy probability density func-
tion, assume that the event of the photo-electric interaction of each photon is independent,
and number of X-ray photons at each discretized energy level follows independent Poisson
distribution.

Y(i,k) ∼ Poisson
(
ȳ(i,k)

)
, (3.24)

where the parameter (mean) ȳ(i,k) is defined in (3.11).
Then, a mathematical model is needed to compute the probability density function of

energy transferred to the detector for each photon of the discrete energy level Ek, which
is interpreted as the spectral response B(Ek) of the detector. Detectors measure total inte-
grated energy of X-ray photons by reading the current induced by the occurrence of elec-
trons and holes when photons interact with the semiconductor material. For photons with
energy less than 1 MeV, two major interactions convert the photon energy to the electron
energy, i.e., photo-electric and Compton scattering interaction. While photo-electric in-
teraction fully converts each photon energy to electron energy, Compton scattering only
transfers small amount of energy to electrons and generate less energy photons. Unless
the detector crystal is extremely small, photons are converted to electrons through either a
single photo-electric interaction, or multiple Compton scattering interactions. Probability
of multiple Compton scattering event depends on the size of the detector, and it is hard to
compute analytically. Instead, Srivastava et al. 2012 [35] suggested a simplified empirical
model for B(E) as a mixture of Gaussian photo-peak and uniform Compton continuum:

B(E ′; E) = wEBG(E ′; E , σE) + (1− wE)BC(E ′; E) , (3.25)

BG(E ′; E) =
1√

2πσE
exp

(
−(E ′ − E)2

2σ2
E

)
, (3.26)

BC(E ′; E) =


1/E if 0 ≤ E ′ ≤ E

0 otherwise
, (3.27)

σE = k
√
E . (3.28)

Here, wE is the mixture probability of photo-electric interaction, and k is the variance coef-
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Figure 3.5: Mixture weight of photo-electric interaction wE of 1 mm CdTe detector (based
on the efficiency data from Amptek XR-100T-CdTe [45])

ficient. Without conducting experiments with multiple monoenergetic sources, estimating
k and wE of the detector by experiment is impossible. For the simulation purpose, we
extracted wE from the existing efficiency data of the commercial 1 mm thick CdTe detec-
tor provided by Amptek [45]. Fig. 3.5 shows estimated wE for 1 mm thick commercial
CdTe semiconductor detector. Note that wE depends on both the material and the size of
the detector. Estimated values of wE in Fig. 3.5 are for the simulation only. For actual
data reconstruction, wE must be tuned to fit the spectral response of the specific detectors.
In general, CdTe detector shows good efficiency at low energy, then gradually loses its
efficiency after the energy higher than 100 keV.

Denote Em(E) as the energy transferred to the detector from mth photon which origi-
nally had energy E . As noted before, energy transferring events at the detector are assumed
to be independent, thenEm(E) can be seen as independent and identically distributed (i.i.d.)
random variables that have the spectral response function as their probability density func-
tion,

Em(E)
i.i.d.∼ B( · ; E) . (3.29)

To get η̄ and σ2, we first need to compute the first, second, and third moment of Em(E)

using (3.25) to (3.28),

m
(1)
E ≡ E

[
Em; E

]
=
wE + 1

2
E , (3.30)

m
(2)
E ≡ E

[
E2
m; E

]
= wEσ

2
E +

2wE + 1

3
E2 , (3.31)

m
(3)
E ≡ E

[
E3
m; E

]
= 3wEEσ2

E +
3wE + 1

4
E3 . (3.32)
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Let Ti be the total energy transferred to the ith detector from the monoenergetic beam
with energy level Ek, then Ti can be written as the compound Poisson random variable, i.e.,
sum of the i.i.d. random variables where the total number is Poisson random variable:

Ti(Ek) =

Yi∑
m=1

Em(Ek). (3.33)

The mean, variance, and skewness of Ti(Ek) can be computed using the moments of
Em(Ek) in (3.30) to (3.32) as

E
[
Ti(Ek)

]
= ȳ(i,k)m

(1)
Ek
, (3.34)

Var
[
Ti(Ek)

]
= ȳ(i,k)m

(2)
Ek
, (3.35)

Skew
[
Ti(Ek)

]
=

m
(3)
Ek√

ȳ(i,k)

(
m

(2)
Ek

)3
. (3.36)

Details to obtain the statistical properties of the compound Poisson random variables can
be found in [40]. For the polyenergetic beam, assume that all Ti(Ek) at different discretized
energy levels are mutually independent. Then the sum Hi =

∑Nk

k=1 Ti(Ek) becomes the
aggregated compound Poisson random variable [40], and its statistical properties are

E
[
Hi

]
=

Nk∑
k=1

ȳ(i,k)m
(1)
Ek
, (3.37)

Var
[
Hi

]
=

Nk∑
k=1

ȳ(i,k)m
(2)
Ek
, (3.38)

Skew
[
Hi

]
=

∑Nk

k=1 ȳ(i,k)m
(3)
Ek(∑Nk

k=1 ȳ(i,k)m
(2)
Ek

)3/2
. (3.39)

where ȳ(i,k) is defined in (3.11).
Since skewness of Hi is non-zero, approximating probability density function of Hi

requires at least a three-parameter distribution model to satisfy all the mean, variance and
skewness at the same time. Shifted gamma distribution is known to be a good candidate to
estimate the compound Poisson distribution [40], defined as

Gtr(h;h(0), a, b) = G(h− h(0); a, b) . (3.40)

whereG is the two-parameter gamma distribution. a and b are the shape and rate parameters
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of the two-parameter gamma distribution, respectively. h(0) is the mean-shifting parameter.
To find the parameters that satisfy the statistical properties described in (3.37), (3.38) and
(3.39), first find a and b from the variance and skewness, then find h(0) to satisfy the mean
by shifting the two-parameter gamma distribution. Then, we get the following analytic
expressions for the shifted gamma approximation:

ai = 4

(∑Nk

k=1 ȳ(i,k)m
(2)
Ek

)3

(∑Nk

k=1 ȳ(i,k)m
(3)
Ek

)2 , (3.41)

bi = 2

∑Nk

k=1 ȳ(i,k)m
(2)
Ek∑Nk

k=1 ȳ(i,k)m
(3)
Ek

, (3.42)

h
(0)
i =

Nk∑
k=1

ȳ(i,k)m
(1)
Ek
− ai
bi
. (3.43)

Even though the shifted gamma distribution can approximate the given compound Pois-
son approximation accurately, developing maximum likelihood for the X-ray CT which
has massive amount of parameters to be estimated is not feasible due to the complicated
digamma functions. Hence, we need some sort of simpler distribution model to design the
estimator. As mentioned earlier, Gaussian distribution is chosen in the hope of the central
limit theorem. Naive Gaussian approximation based on the mean (3.37) and the variance
(3.38) are

Hi ∼ N
(
η(ȳi), σ

2(ȳi)
)
, (3.44)

η(ȳi) =

Nk∑
k=1

ȳ(i,k)m
(1)
Ek
, (3.45)

σ2(ȳi) =

Nk∑
k=1

ȳ(i,k)m
(2)
Ek
, (3.46)

where ȳi =
[
ȳ(i,1), · · · , ȳ(i,Nk)

]′. Note that the estimator based on (3.44) does not fall into
WLS, as the variance is also a function of ȳi. Due to the skewness error, maximum like-
lihood estimation of Gaussian approximation always give a biased result as the mean and
the mode of the compound Poisson distribution are not in the same place. The difference
between the mean and the mode can be seen in Fig. 3.6 where the mean is at the peak
of the Gaussian distribution, and the mode is at the peak of the gamma or actual distribu-
tion. Thus, we want to move the mean of the Gaussian distribution close to the mode. For
αi > 1, the difference between the mode and the mean can be found from the approximated
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shifted gamma distribution:

E
[
Hi

]
−mode

[
Hi

]
=

(
ai
bi

+ t0i

)
−
(
ai − 1

bi
+ t0i

)
=

1

bi
. (3.47)

In terms of maximum likelihood, shifting the mean of Gaussian distribution onto the mode
of the actual distribution increases the accuracy of the estimation when the data is close to
the mode, but it also decreases the accuracy when the data is away from the mode. As a
trade off, we chose a parameter υ̂ that minimizes the mean-squared error between the actual
distribution and the shifted Gaussian approximation within the full-width at half maximum
(FWHM) region as:

Hi ∼ N
(
η(ȳi)− υ̂

1

b(ȳi)
, σ2(ȳi)

)
, (3.48)

υ̂ = arg min
υ

∫ HM−

HM+

(
Ptrue(h)−N

(
h; η − υ1

b
, σ2
))2

dh , (3.49)

where Ptrue is the actual probability density function, HM− and HM+ indicates low and
high FWHM bound, respectively. Finding optimal υ is difficult as the actual distribution
Ptrue has a complicated form. Up to now, υ̂ could be found only from the numerical
experiments. As a result of experiments, υ was found roughly at 0.8. Even though υ̂ = 0.8

is a rough estimation and not the analytical solution of (3.49), this value will be sufficient
as there are many other uncertainties that can exceed the error of υ̂.

To validate the approximated probability density function in (3.4), analytic expression
of the total energy is also obtained from the following recursive auto-convolution equation
[33]. For monoenergetic beam,

fTi(E)(t) =
∞∑
y=1

fTi|Yi(E) (t|Yi(E) = y) · Pr (Yi(E) = y)

=
∞∑
y=1

(
fTi|Yi(E) (t|Yi(E) = y − 1) ∗ fTi|Yi(E)(t|Yi(E) = 1)

)
· Pr(Yi(E) = y) . (3.50)
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Figure 3.6: Comparison of the probability density functions for the energy transferred to
the detector by bichromatic X-ray photons at FWHM region, ȳ(E1) = 10, ȳ(E2) = 5,
E1 = 20, E2 = 100, w1 = w2 = 0.8, k = 0.5, υ = 0.8

where ∗ denotes 1-D convolution with respect to t. For a polyenergetic beam,

fHi
(t) = f∑

k Ti(Ek)(t)

=
(
fTi(E1) ∗ fTi(E2) ∗ · · · ∗ fTi(EK)

)
(t) . (3.51)

Fig. 3.6 compares the analytic compound Poisson, shifted Gamma approximation, Gaus-
sian approximation, and shifted Gaussian approximation for the case of bichromatic beam
at FWHM region of the actual distribution. Note that the mean total number of photons are
15 in this case, which is equivalent to the worst case of the actual attenuated photon rate of
our SEBXT.

Finally, assuming readout noises ri are additive and independent, then η and σ2 can
be obtained by the linearity of the expectation and the variance of independent random
variables:

Hi ∼ N
(
η(ȳi)− υ̂

1

b(ȳi)
+ r̄i, σ

2(ȳi) + σ2
ri

)
, (3.52)
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where r̄i and σ2
ri

are the mean and variance of the readout noise ri, respectively.

3.3 Reconstruction Algorithm

3.3.1 Maximum likelihood estimation

For simplicity, we drop readout noise terms hereinafter. We assume the detector signals
are mutually independent, so that the jointly distributed probability density (likelihood)
function can be derived from (3.48) as

fH(h;η, b,σ) =
1√

2πNi
∏Ni

i=1 σ
2
i

Ni∏
i=1

exp

(
−
(
hi − ηi + υ̂/bi

)2

2σ2
i

)
, (3.53)

where Ni is the number of detector pixels, hi is the measurement data at ith detector
pixel, ηi = η(ȳi), bi = b(ȳi), σ2

i = σ2(ȳi), h = [h1, · · · , hNi
]′, η = [η1, · · · , ηNi

]′,
b = [b1, · · · , bNi

]′, and σ = [σ1, · · · , σNi
]′, Since fH is non-negative, finding the minimum

of the negative log of the likelihood function is equivalent to finding the maximum of the
likelihood function.

− log fH(h;η, b,σ) =
Ni

2
log 2π +

1

2

Ni∑
i=1

log σ2
i +

1

2

Ni∑
i=1

(hi − ηi + υ̂/bi)
2

σ2
i

. (3.54)

After discarding the constant term, the data-fitting objective function ΨL(ȳ) is defined as

ΨL(ȳ) =
1

2

Ni∑
i=1

ψL(ȳi) =
1

2

Ni∑
i=1

[
log σ2

i (ȳi) +

(
hi − ηi(ȳi) + υ̂/bi(ȳi)

)2

σ2
i (ȳi)

]
. (3.55)

Convexity of the data-fitting function is preferred for the sake of the uniqueness of the
solution. To check the convexity, first see the second derivative of ψL(ȳ) for the case of
monoenergetic beam:

∂2ψL
∂ȳ2

=
2h2 −m(2)

E ȳ

m
(2)
E ȳ3

. (3.56)

According to (3.56), the function ψ(ȳ) is convex up to the critical point ȳc = 2h2/m
(2)
E , and

the rest is concave. To evaluate how significant this concavity is, we can check the order
of ȳc and the curvature of ψL. Let Y be the dimension of the photon counts, and E be the
energy level. Practically, we can assume that Y � 1 and E � 1. Then, the order of each
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variable is

ȳ ∼ O(Y) , (3.57)

h ∼ O(EY) , (3.58)

m
(2)
E ∼ O(E2) , (3.59)

ȳc ∼ O

(
E2Y2

E2

)
= O(Y2) . (3.60)

For ȳ > 10, the probability of the event y > ȳc is O(10−63), which is extremely unlikely.
However, like all non-convex problems, iterative solution could be trapped in a local mini-
mum, particularly if the initial estimate of ȳ is larger than ȳc. In our case, we set the initial
estimate to be the true titanium pipe image fully filled with water, which we found avoids
the concavity region adequately in practice.

As shown in (3.11), ȳ is a function of the fraction image f =
[
f(1), · · · , f(Nl)

]
. Conse-

quently, we want to find f that minimizes the data-fitting function in (3.55).

f̂ = arg min
f∈F

ΨL

(
ȳ(f)

)
, (3.61)

where F is the volume fraction constraint,

F =
{

f ∈ RNj×Nl

∣∣∣ f(j,l) ≥ 0,
∑

l f(j,l) ≤ 1

for j = 1, · · ·, Nj and l = 1, · · ·, Nl

}
. (3.62)

Finding analytic solution of (3.61) is not feasible. In general, it must be solved iteratively.
The gradient of ΨL is:

∂ΨL

∂f(j,l)

=

Ni∑
i=1

[
1

2

(
1

σ2
i

− g2
i

)
∂σ2

i

∂f(j,l)

− gi
∂ηi
∂f(j,l)

− υ̂gi
1

b2
i

∂bi
∂f(j,l)

]
(3.63)

'
Ni∑
i=1

[
1

2

(
1

σ2
i

− g2
i

)
∂σ2

i

∂f(j,l)

− gi
∂ηi
∂f(j,l)

]
. (3.64)
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where gi is defined as:

gi =
hi − ηi + υ̂/bi

σ2
i

. (3.65)

To derive the approximated gradient (3.64) from the exact gradient (3.63), we need to check
the order of each partial derivative term. One can verify that

1

b2
i

∂bi
∂f(j,l)

∼ O(E) , (3.66)

∂ηi
∂f(j,l)

∼ O(EY) , (3.67)

∂σ2
i

∂f(j,l)

∼ O(E2Y) . (3.68)

Since Y � 1, we can safely remove the partial derivative of bi from (3.63). This approxi-
mation also applies to the preconditioning matrix that is derived later. The remaining partial
derivative terms in (3.64) can be further expanded by finding the partial derivative of ȳ(i,k)

with respect to f(j,l) as

∂ȳ(i,k)

∂f(j,l)

= − I0
(i,k) u(k,l) a(i,j) exp

(
−

Nl∑
l=1

u(k,l)

[
Afl
]
i

)
= − a(i,j) u(k,l) ȳ(i,k) , (3.69)

∂ηi
∂f(j,l)

=

Nk∑
k=1

m
(1)
Ek

∂ȳ(i,k)

∂f(j,l)

= − a(i,j)

Nk∑
k=1

(
u(k,l) m

(1)
Ek

)
ȳ(i,k) , (3.70)

∂σ2
i

∂f(j,l)

=

Nk∑
k=1

m
(2)
Ek

∂ȳ(i,k)

∂f(j,l)

= − a(i,j)

Nk∑
k=1

(
u(k,l) m

(2)
Ek

)
ȳ(i,k) . (3.71)

Plugging (3.70) and (3.71) into (3.64), we get

∂ΨL

∂f(j,l)

'
Ni∑
i=1

a(i,j)

[
1

2

(
1

σ2
i

− g2
i

)
n

(2)
(i,l) − gi n

(1)
(i,l)

]
, (3.72)
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where

n
(1)
(i,l) = −

Nk∑
k=1

u(k,l) m
(1)
Ek
ȳ(i,k) , (3.73)

n
(2)
(i,l) = −

Nk∑
k=1

u(k,l) m
(2)
Ek
ȳ(i,k) . (3.74)

3.3.2 Preconditioned gradient descent (asymptotic majorization -
minimization)

So far, we have obtained the data-fitting objective function (3.55) and its gradient (3.72)
with respect to the parameters to be estimated, i.e., the fraction image of the lth material
f(j,l). Using those equations, we want to find the minimum by taking the direction of the
negative gradient. The following iteration is called the preconditioned gradient descent
method:

f (t+1) = f (t) −N
−1

L ∇ΨL(f (t)). (3.75)

Here, preconditioning matrix NL defines the step size. Depending on the characteristics
of the objective function, if the eigenvalues of N−1

L are too large, the iterates may not con-
verge at all. On the other hand, if the eigenvalues of N−1

L is too small, it will take a long
time to converge. Thus finding appropriate step size is crucial for fast and stable iterative
computation.

For quadratic objective functions, the Hessian matrix is the asymptotically optimal one-
step (analytic) choice for NL:

NL = H{ΨL(f)} , (3.76)

where H{·} is the Hessian operator, which is also called the curvature. However, com-
puting NL for non-linear problems is challenging. Furthermore, even when the system is
quadratic, inverting a large matrix NL can be computationally expensive. In this case, a
surrogate function Ψ

(t)
L at each iteration step t can be adopted, which is easier than the ob-

jective function to solve, and guaranteed to monotonically descend the objective function.
Then, instead of minimizing the objective function, we minimize the surrogate function to
move to the next iteration. This process is called majorization-minimization [46].

To decrease the objective function monotonically, we chose the majorizer Ψ
(t)
L at each
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iteration step t to satisfy the following majorization conditions:

Ψ
(t)
L (f) ≥ ΨL(f) for all f , (3.77)

Ψ
(t)
L (f) = ΨL(f) for f = f (t) . (3.78)

There are many majorization tricks that satisfy (3.77) and (3.78). Here, we are going to
use a quadratic upper bound. Since we have an analytic solution for the quadratic function,
and the objective function is twice differentiable, we want to design a quadratic surrogate
function that satisfies (3.77) and (3.78). If ψL is twice differentiable, then there exists
c ∈ (0, 1) such that

ψL(f) = ψL(f (t)) +∇ψL
(
f (t)
)′ (

f − f (t)
)

+
1

2

(
f − f (t)

)′H{ψL((1− c)f (t) + cf
)} (

f − f (t)
)
. (3.79)

Further, if there exists a constant matrix NL such that NL � H{ψL(f)} for any f , i.e., if
the curvature of ψL(·) is bounded, then we can design a quadratic surrogate function that
satisfies (3.77) and (3.78) as

ψL(f) ≤ ψ
(t)
L (f ; f (t))

= ψL(f (t)) +∇ψL
(
f (t)
)′ (

f − f (t)
)

+
1

2

(
f − f (t)

)′
NL

(
f − f (t)

)
. (3.80)

Then, the update finds the minimizer of ψ(t)
L (f ; f (t)):

f (t+1) = arg min
f

ψ
(t)
L (f ; f (t)). (3.81)

By repeating (3.80) and (3.81), we can monotonically descend to find a minimizer of the
original objective function.

One of the problems applying (3.77) to the objective function (3.55) is that the gradient
of the objective function is not Lipschitz continuous, i.e., the curvature goes to infinity
as ȳ(i,k) approaches to zero, which can be seen from (3.56). For objective functions with
unbounded curvatures, it is difficult to find a quadratic surrogate function that can descend
the objective function monotonically.

To overcome this issue, we divide the objective function into two regions, gi(f (t)) > 0

and gi(f (t)) ≤ 0, where gi(·) is defined in (3.65). By numerical experiments, we found
that the curvature of the objective function ΨL(f) decreases almost monotonically as gi(f)
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approaches zero. In an ideal case, where yi is infinitely large, finding f̄ that satisfies gi(f̄) =

0 for all i leads to the optimal solution. This noiseless solution f̄ cannot be achieved in
reality, but we can still expect that f tends toward the direction where gi(f) ' 0. In that
case, we can find the maximum curvature at every iteration step t as

N
(t)
L = H

{
ΨL(f (t))

}
. (3.82)

In addition, the curvature of the logarithmic term in (3.55) is of the order O(1), while
the other term is O(Y). Thus, we neglect the curvature of the logarithmic term. The
approximated majorization curvature can be computed as

∂2ψLi
∂f(j1,l1)∂f(j2,l2)

' 2

σ2
i

∂ηi
∂f(j1,l1)

∂ηi
∂f(j2,l2)

+
2gi
σ2
i

(
∂ηi

∂f(j1,l1)

∂σ2
i

∂f(j2,l2)

+
∂σ2

i

∂f(j1,l1)

∂ηi
∂f(j2,l2)

)
− 2gi

∂2ηi
∂f(j1,l1)∂f(j2,l2)

+
2g2

i

σ2
i

∂σ2
i

∂f(j1,l1)

∂σ2
i

∂f(j2,l2)

− g2
i

∂2σ2
i

∂f(j1,l1)∂f(j2,l2)

. (3.83)

Expanding all partial derivatives, and substituting, we have:

∂2ψLi
∂f(j1,l1)∂f(j2,l2)

' w(i,l1,l2)

≡ 2a(i,j1)a(i,j2)

[
1

σ2
i

n
(1)
(i,l1)n

(1)
(i,l2)

+
gi
σ2
i

(
n

(1)
(i,l1)n

(2)
(i,l2) + n

(2)
(i,l1)n

(1)
(i,l2)

)
− gin(1)

(i,l1,l2) +
g2
i

σ2
i

n
(2)
(i,l1)n

(2)
(i,l2) −

g2
i

2
n

(2)
(i,l1,l2)

]
, (3.84)

where n(1)
(i,l) and n(2)

(i,l) are defined in (3.73) and (3.74) respectively, and n(1)
(i,l1,l2) and n(2)

(i,l1,l2)

are defined as

n
(1)
(i,l1,l2) =

Nk∑
k=1

u(k,l1)u(k,l2) m
(1)
Ek
ȳ(i,k) . (3.85)

n
(2)
(i,l1,l2) =

Nk∑
k=1

u(k,l1)u(k,l2) m
(2)
Ek
ȳ(i,k) . (3.86)
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We can express N
(t)
L for each lth material image in matrix form:

N
(t)
L(l) = A′

(
Nl∑
l2=1

W
(t)
(l,l2)

)
A , (3.87)

where W
(t)
(l,l2) = diag

[
w

(t)
(i,l,l2)

]Ni

i=1
.

Most of the terms in (3.87) do not require additional computation as they are already
found when computing the gradient, except n(1)

(i,l1,l2) and n(2)
(i,l1,l2). However, since the size of

the matrix NL is huge, inverting NL is computationally expensive. Thus, a diagonal matrix
DL such that DL � NL (separable quadratic surrogate) is preferred [47], [48]:

D
(t)
L(l) = diag

[
A′

(
Nl∑
l2=1

W
(t)

(l,l2)

)
A1

]
, (3.88)

where W
(t)

(l,l2) = diag
[ ∣∣∣w(t)

(i,l,l2)

∣∣∣ ]Ni

i=1
, and 1 is the all-ones vector. Forward-projection

A1 can be pre-computed, thus additional overhead required at each step is mostly a single
back-projection.

Finally, we need to address the physical constraints F , where the set F is defined in
(3.62). For the case of dual material decomposition, the feasible domain that satisfies (3.62)
forms a triangle in the two dimensional plane. In general, the projection onto the simplex is
moving the outlying points to the closest points on the simplex, which involves orthogonal
projection, as shown in Fig. 3.7a. However, because the direction of the preconditioned
gradient is almost orthogonal to the hypotenuse due to the ill-posed nature of the problem,
the orthogonal projection cancels the update. Instead, we use a two-step projection scheme
shown in (3.89) to (3.92). Fig. 3.7b shows the graphical representation of the two-step
projection.

f
(t+1)
(1) = P1

[
f

(t)
(1) −M

(
D

(t)
L(1)

)−1

∇f(1)Ψ
(t)
L

]
(3.89)

f
(t+1)
(2) = P2

[
f

(t)
(2) −M

(
D

(t)
L(2)

)−1

∇f(2)Ψ
(t)
L ; f

(t+1)
(1)

]
(3.90)

where P1[t] and P2[t; s] are element-wise projection operators defined as

P1[t] = min
[

max
[
t, 0
]
, 1
]
, (3.91)

P2[t; s] = min
[

max
[
t, 0
]
, 1− s

]
, (3.92)
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(a) (b)

Figure 3.7: Simplex projection; (a) orthogonal projection, (b) two-step projection

and M is the masking matrix. The masking matrix M is essential for minimizing limited
angle artifacts due to the lack of information by multiplying zeros to the pixel outside the
‘known outline’ of the object.

M = diag[mj] ,

mj = 1{j ∈ Q}, (3.93)

where 1{t} is the indicator function, 1 if t is true, and 0 otherwise. Q is the known bounded
domain in the image where no objects are located outside of it. This approximated pro-
jection requires specific initial condition. To have this projection scheme work, material
corresponds to f1 needs to have higher attenuation coefficients than the other. As higher
attenuation material images converge faster, lower attenuation material image can take the
advantage of the faster converging higher attenuation material images.

3.3.3 Regularizer

Like any other data-fitting scheme, the data-fitting objective function in (3.55) tends to-
ward overfitting, i.e., as the number of parameter grows, the objective function becomes
overly sensitive and it tries to fit the parameters to the noisy data instead of its true under-
lying value. A statistical justification of the regularizer can be found from the Bayesian
prior. First, find Maximum A Posteriori (MAP) estimator using the conditional probability
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density function of f given the data h by applying the Bayes’ rule,

f̂ = arg max
f∈F

p(f |h) = arg max
f∈F

p(h|f) p(f)

p(h)
= arg max

f∈F
p(h|f) p(f) (3.94)

Then, as usual, take the negative logarithm of the conditional density function:

f̂ = arg min
f∈F

{
− log p(h|f)− log p(f)

}
= arg min

f∈F

{
ΨL(f) + κΨR(f)

}
, (3.95)

where κ is called the regularization parameter, which is the ratio between the constant gains
in ΨL(f) and ΨR(f). In general, the true value of κ is neither known nor necessary, and it
usually is tuned manually or automatically to have the best experimental result. The first
term ΨL(f) is called the data-fitting term, which was explained in §3.3.1. The second term
ΨR(f), which comes from the prior distribution, is called the regularizer, or the penalty
function. Even though the role of regularizers can be explained in the probabilistic frame-
work, the efficiency of the regularizer is evaluated based on the quality of the reconstructed
images, rather than how accurately it can represent the prior, i.e., the actual probability
density of f .

To build the regularizer, we need to consider the characteristics of images. Most of
the natural image pixels are continuous and correlated, i.e., the adjacent pixels likely have
similar values, with some random variation. To build an approximate mathematical model,
denote a 2-D image as a re-ordered 1-D array image fj such that j = x + Nxy. Then,
assume fj takes the independent and identically distributed Gaussian random walk process.
Excluding boundary pixels, the Gaussian random walk process for a Cartesian grid can be
expressed as:

fj − fj−1

fj − fj−Nx

}
i.i.d∼ N (0, σ2) for fj not at the boundary . (3.96)

In this case, ΨR(f) falls into the L2-norm regularizer, which is also called the generalized
Tikhonov regularizer,

ΨR(f) = ‖Cf‖2
2 , (3.97)

where C is the first order finite difference matrix,

C =

[
Cx

Cy

]
. (3.98)
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Here Cx and Cy are the first order finite difference matrix in the x and y directions with
appropriate boundary conditions, respectively. In the actual computation, finite difference
matrix is not stored in the memory. Instead, matrix-equivalent functions are used, as it
requires less memory and is faster computationally than the stored matrices computation.
In general, this `2-norm regularization tends to smooth out the image excessively. If the
actual image is not smooth, `1-norm is preferred as it preserves “edges”,

ΨR(f) = ‖Cf‖1 . (3.99)

This type of regularizer is called the `1-norm total variation regularizer, also known as
the Least Absolute Shrinkage and Selection Operator (LASSO). Solving the minimization
problem with the `1-norm regularizer requires additional effort as it is not differentiable. A
simple “walk-around” is to round the tip of the `1-norm regularizer to make it differentiable,

ΨR(f) =

Np∑
p=1

ψR ([Cf ]p) , (3.100)

where [t]p is the pth element of an arbitrary vector t ∈ RNp , and ψR(t) is a scalar function
defined as

ψR(t) = δ2
R

(√
1 + (t/δR)2 − 1

)
. (3.101)

ψR(t) is twice differentiable, thus much easier to solve using the gradient-based method.
This smoothed corner version of the approximated `1-norm regularizer is called the hyper-
bola potential regularizer. Its first and second derivatives are

ψ̇R =
t√

1 + (t/δR)2
, (3.102)

ψ̈R =
1

(1 + (t/δR)2)3/2
. (3.103)

Using (3.102) and (3.103), the gradient and the Hessian of ΨR can be written as

∇ΨR = C′
[
ψ̇R([Cf ]p)

]Np

p=1
, (3.104)

H{ΨR} = C′ diag
[
ψ̈R([Cf ]p)

]
C . (3.105)

A separable preconditioner for the regularization term can be found from the spectral
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radius. Since the curvature of the hyperbola potential is bounded, i.e., ψ̈R ≤ 1,

H{ΨR} � C′IC � DR , cRI , (3.106)

where cR is the spectral radius of the matrix C. Assuming matrix C is circulant, cR can be
found from the discrete Fourier transform of the point spread function, i.e., take one row of
the matrix, then shift it left or right to make it properly centered.

F{Cx} = 1− e−iw ,

F{C′xCx} = F∗{Cx}F{Cx} = 2− 2 cos(w) ,

max (F{C′xCx}) = max
(
F{C′yCy}

)
= 4 . (3.107)

As the circulant matrices of the same rank share the same eigenvector set (simultaneously
diagonalizable), the spectral radius cR can be found from the superposition of the maximum
eigenvalues,

cR = max (F{C′xCx}) + max
(
F{C′yCy}

)
= 8 . (3.108)

Finally, the transition equation for the preconditioned gradient descent in (3.89) and (3.90)
can be rewritten after including the regularization terms as

f
(t+1)
(l) = Pl

[
f

(t)
(l) −M

(
D

(t)
(l)

)−1

∇f(l)Ψ
(t)

]
= Pl

[
f

(t)
(l) −M

(
D

(t)
L(l) + κ(l)DR(l)

)−1 (
∇f(l)Ψ

(t)
L + κ(l)∇f(l)Ψ

(t)
R(l)

)]
. (3.109)

Note that the regularizer Ψ
(t)
R(l) does not have to be the same for every l. For example, a

steel fraction image has larger, flatter and sharp-edged objects than a water fraction image.
We apply a larger value of κ to the steel fraction image to reduce the limited angle artifacts,
and a lower κ to the water fraction image to maintain small objects in the water fraction
image.

While edge-preserving regularizer is good for the denoising without much loss of high
frequency details, it is not very effective to remove the limited angle artifacts. Further-
more, limited angle artifacts in a high attenuation material fraction map can greatly affect
the quality of the lower attenuation material fraction map. For example, an attenuation
coefficient of Fe at 100 keV is 17 times greater than that of the water, which means that
a 5.9% error in iron fraction image can induce a 100% error in the water fraction image.
By numerical experiments, we found that a combination of the edge-preserving hyperbolic
regularizer and the sparsity-based `0-norm regularizer can effectively remove limited angle

65



artifacts in the hard material fraction image with minimal sacrifice of the small fraction
values, while applying only the edge-preserving hyperbolic regularizer to the soft material
fraction image.

A fraction image of the higher attenuation material l = 1, especially when the ma-
terial is metal, is almost binary, in which the fraction value is either 0 or 1 except at the
boundaries. In other words, pixels that have values other than 0 or 1 are “sparse”, thus,
encouraging the sparsity usually improves the quality of the image significantly. Since the
fraction image requires a quantitative result, the `1-norm is not preferred as the correspond-
ing soft-thresholding shrinkage operator decreases the original value everywhere. Instead,
`0-norm regularizer is used, where the corresponding hard-thresholding shrinkage operator
only affects a finite region.

f̂ = arg min
f∈F

{
ΨL(f) +

∑
l
κ(l)ΨR(l)(f(l)) + κ0||f(1)||0

}
, (3.110)

where ||t||0 is defined as
||t||0 =

∑
i
1{ti 6= 0}. (3.111)

Note that ||f(1)||0 is not differentiable. Thus it cannot be solved by the naive gradient descent
method. Instead, the overall objective function (3.110) including the sparsity based regu-
larizer can be solved using the iterative shrinkage-thresholding algorithm (ISTA), which is
a member of the proximal gradient (PG) methods [49]. ISTA is an extension of the gradient
descent method, where a shrinkage operator is iteratively applied after taking the gradient
descent step without the sparsity regularizer. For `0 norms, the corresponding proximal
operator is the element-wise hard-thresholding shrinkage operator, defined as

T [t; s] = t · 1{|t| > s}. (3.112)

Then, (3.110) can be solved by taking the following iterative step:

f
(t+1)
(1) = T

[
P1

[
f

(t)
(1) −M

(
D

(t)
(1)

)−1

∇f(1)Ψ
(t)

]]
. (3.113)

Note that the `0 norm regularizer is only applied to the hard material fraction image l = 1,
so there is no change for l = 2. (3.113) can be further simplified by merging the hard-
thresholding operator T [·] and the projection operator P1[·], which become the truncated
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hard-thresholding operator:

f
(t+1)
(1) = Q

[
f

(t)
(1) −M

(
D

(t)
(1)

)−1

∇f(1)Ψ
(t); κ0

(
D

(t)
(1)

)−1

1

]
, (3.114)

where the element-wise operator Q [t; s] is defined as

Q [t; s] =


0 if t < s

t if s ≤ t < 1

1 if t ≥ 1

. (3.115)

While ISTA can be applied to the gradient method without much effort, the convergence
speed of ISTA is slow. To accelerate the convergence of the proximal gradient method,
Nesterov’s momentum-based method is widely used because of its simplicity. Beck and
Teboulle [50] introduced a fast iterative shrinkage-thresholding algorithm (FISTA) that has
a convergence rate O(1/t2) using Nesterov’s linear momentum acceleration method [51].
While the original FISTA algorithm is designed for the Lipschitz continuous function, Zuo
and Lin [52] further generalized the algorithm to the quadratic, preferably separable, sur-
rogate problem that leads to the faster convergence. It is called the generalized accelerated
proximal gradient method (GAPG). The convergence rate of the original Nestrov’s method
is guaranteed only when the objective function is strongly convex, i.e., there should be a
quadratic function with a constant γ > 0 such that

Ψ(f) ≥ Ψ(g) +∇Ψ(g)′(f − g) +
γ

2
||f − g||22 ∀ f ,g ∈ Rn. (3.116)

The data-fitting objective function in (3.55) does not satisfy the strong convexity condition
in (3.116). As a result, overshoot can happen in the update step which slows down the
convergence rate. O’Donoghue and Candès [53] suggested two possible conditions; the
objective function or the gradient value to re-initialize the acceleration parameter to avoid
overshoot. While O’Donoghue and Candès showed that there is no obvious difference
in performance between those two options, we chose gradient value-based restart scheme
combined with GAPG as an acceleration method in this study. The combined scheme is
written in pseudocode as Algorithm 1.

3.3.4 Gauss-Legendre quadrature and dithering update

The line integral in Beer’s law (3.6) is derived to compute the attenuation rate at an infinites-
imal point. Since the detector has finite size pixels, we need to average the attenuation rate
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Algorithm 1 Adaptive restart GAPG

1: z
(0)
(1) = f

(0)
(1) , z

(0)
(2) = f

(0)
(2) , d

(0) = 1

2: for t = 0, 1, · · · do
3: z(t) =

[
z

(t)
(1), z

(t)
(2)

]
4: f

(t+1)
(1) = Q

[
z

(t)
(1) −M

(
D

(t)
(1)

)−1

∇f(1)Ψ
(
z(t)
)

; κ0

(
D

(t)
(1)

)−1

1

]
5: f

(t+1)
(2) = P2

[
z

(t)
(2) −M

(
D

(t)
(2)

)−1

∇f(2)Ψ
(
z(t)
)

; z
(t)
(1)

]
6: if

∑
l

(
∇f(l)Ψ

)′(
f

(t+1)
(l) − f

(t)
(l)

)
> 0 then

7: d(t) = 1
8: end if

9: d(t+1) =
(
1 +

√
1 + 4(d(t))2

)
/2

10: z
(t+1)
(1) = f

(t+1)
(1) + d(t)−1

d(t+1)

(
f

(t+1)
(1) − f

(t)
(1)

)
11: z

(t+1)
(2) = f

(t+1)
(2) + d(t)−1

d(t+1)

(
f

(t+1)
(2) − f

(t)
(2)

)
12: t = t+ 1
13: end for

along the span of the detector pixel for a more accurate model.

ȳi(Ek) =

[
1

∆s

∫ si2

si1

I0
i (s, Ek) exp

(
−
∫
Ls
µ(s, Ek) dl

)
ds

]
∆E , (3.117)

where ∆s is the width of the detector pixel, si1 and si2 are the end points of the detector
pixel corresponding to the ith ray.

Often, when the detector pixel is reasonably small, the negative exponential part is
assumed to be linear along the span, so that we can move the integral along s inside the
exponential function.

ȳi(Ek) = I0
i (Ek) exp

(
− 1

∆s

∫ si2

si1

∫
Ls

µ(s, Ek) dl ds
)

∆E . (3.118)

Joseph and Spital 1981 [54] showed that this type of approximation can lead to a streak
artifact called the ‘exponential edge-gradient effect’, when the detector size is not small
and there exists a sharp transition of the attenuation in the object. This exponential edge-
gradient effect is usually neglected as modern x-ray detectors have very small pixel size,
which even achieved micrometer scale [55]. However, there can be an application where
small pixel detectors are expensive, mainly due to the complexity of the electrical circuit
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Figure 3.8: Source, ray, detector geometry and Gaussian-Legendre quadrature dithering
points

and the data transferring latency. Moreover, large pixel detectors help to maximize the
efficiency of the photo-electric interaction, while minimizing the charge sharing [56]. In-
stead of using this “internal” strip integral approach, we want to use a numerical integration
to compute (3.117) directly, which will be called the “external” strip integral hereinafter.
For the numerical implementation, assume I0

i (s, E) is constant along the span of the ith
ray detector pixel, as the initial spectrum is less variant than the attenuation part. Assume
the exponential part is an arbitrary polynomial function of s, and use the Np point Gauss-
Legendre quadrature for the integral over s, which can yield the exact value up to 2Np − 1

degree polynomial functions [57].

ȳi(Ek) =
1

∆s
I0
i (Ek)

Np∑
p=1

ω(p) exp

(
−
∫
L(p)i

µ(s(p)
i , Ek) dl

)
∆s

2
∆E

=
1

2
I0
i (Ek)

Np∑
p=1

ω(p) exp

(
−
∫
L(p)i

µ(s(p)
i , Ek) dl

)
∆E , (3.119)

s(p)
i =

si1 + si2
2

+ τ (p) si2 − si1
2

, (3.120)

where τ (p) and ω(p) are the abscissa and the weight of the Gauss-Legendre quadrature.
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Lowan et al. 1943 [58] computed the abscissas and weights table up to 16 point Gauss-
Legendre quadrature. Here, we use six point Gauss-Legendre quadrature, where τ (p) and
ω(p) with 7 digit significant numbers are given by

p τ (p) ω(p)

1 −0.9324695 0.1713245
2 −0.6612094 0.3607616
3 −0.2386192 0.4679139
4 0.2386192 0.4679139
5 0.6612094 0.3607616
6 0.9324695 0.1713245

Table 3.1: Six point Gauss-Legendre quadrature coefficients

Compared to the internal strip integral (3.118), implementing the external strip integral
(3.120) requires more computational cost as it requires computing the attenuation part Np

times, while the internal strip integral requires it only once. Instead, we propose a dithering
update algorithm, which is similar to the ordered subset algorithm in that it only uses a part
of the projection matrix at each iteration, but different as the separated data for each subset
is not available.

Hudson and Larkin 1994 [59] suggested the ordered subset algorithm which takes a
subset of the system matrix and corresponding data at each iteration, then compute the
forward and back projection for the chosen set of detectors to update the parameters (image)
to be estimated. To apply the ordered subset algorithm, each subset must satisfy the subset
balance condition.

∇Ψ ' Nq∇Ψ(1) ' · · · ' Nq∇Ψ(Nq) , (3.121)

where Nq is the number of subsets, and Ψ(q) is the subset gradient. In a similar way, we
can consider a set of Gauss-Legendre points as a separate detector pixel. The simplest
way to achieve the subset balance for the Gauss-Legendre points is to split the Gauss-
Legendre points into two equally weighted, self-balanced subsets, P(0) = {1, 2, 4} and
P(1) = {3, 5, 6}. With those subsets, based on experiments, the difference between the
internal and the external strip integral within the subset is not significant, thus we can
push the summation and weights into the exponential part, i.e., a partially internal strip
integral. Then, define ȳ(q)

i (E) as the Beer’s law equation corresponding to the qth subset of
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the Gauss-Legendre points:

ȳ
(q)
i (Ek) = I0

i (Ek) exp

− ∑
p∈P(q)

ω(p)

∫
L(p)i

µ(s(p)
i , Ek) dl

∆E

for q = 0 or 1 , (3.122)

and define the projection matrix Ap as a line integral projection matrix with its element
a

(p)
(i,j) being the Radon transform of the jth spatial basis along the pth Gauss-Legendre point

of the ith ray. Also, define A(q) as

A(q) =
∑
p∈P(q)

ω(p)Ap for q = 0 or 1 . (3.123)

After applying the material decomposition and discretization written in §3.2.2, the discrete
version of (3.122) can be written as

ȳ
(q)
(i,k) = I0

(i,k) exp

(
−

Nl∑
l=1

u(k,l)

[
A(q)fl

]
i

)
∆E for q = 0 or 1 . (3.124)

Let q be the remainder of t/2, and replace every instance of ȳ(i,k) with ȳ(q)
(i,k), and A with

A(q) in (3.42), (3.45), (3.46), (3.65), (3.73), (3.74), (3.86), (3.88), and (3.109), we get the
transition equation for the dithering update:

f
(t+1)
(l) = Pl

[
f

(t)
(l) −M

(
D

(t,q)
L(l) + κ(l)DR(l)

)−1 (
∇f(l)Ψ

(t,q)
L + κ(l)∇f(l)Ψ

(t)
R(l)

)]
, (3.125)

where

D
(t,q)
L(l) = diag

[(
A(q)

)′( Nl∑
l2=1

W
(t,q)
(l,l2)

)
A(q)1

]
, (3.126)

W(t,q) and∇Ψ
(t,q)
L(l) are the same as W(t) and∇Ψ

(q)
L(l) with all ȳ(i,k) and A being replaced by

ȳ
(q)
(i,k) and A(q).

3.4 GPU Implementation (CUDA)

Due to the physical problem of modern central processing units (CPUs) such as heat dis-
sipation, development of faster CPU is increasingly difficult. Instead, CPU manufacturers
are trying to find a breakthrough from the multi processor. Currently, two types of multi
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processors exist, one is the multi-core processor represented by Intel chipsets, the other is
massively-parallel processor represented by Nvidia GPUs. While the former is still inher-
ited from the conventional CPUs, the latter has totally different architectures.

GPU adopts the single instruction - multi data (SIMD) concept to control massively
many but individually slow cores efficiently, and provides broad memory bandwidth to
read and write data that are requested by massively many cores. This concept enables
GPUs to compute a simple but enormously large scale data efficiently. These character-
istics of GPUs also distinguish the GPU programming from the programming for CPUs.
Also, GPU provides several hardware units which are originally designed for the graphic
processing. For example, texture units (shown as Tex in Fig. 3.9), whose primary purpose
was the texture mapping of a two dimensional image to the three dimensional surface, but
can be used for any problem that requires two or three-dimensional interpolation. Nvidia
GPUs also provide special function units (SFUs) to approximately compute CPU-intensive
functions such as trigonometric functions.

In 2007, Nvidia released libraries, compilers, and toolboxes called Compute Unified
Device Architecture (CUDA), which enables their GPUs to be used for the general purpose
computing, in opposition to the graphic processing. This usage of GPU is called GPGPU
(general-purpose GPU). GPU computation can benefit the CT reconstruction as its system
is simple and its data size is massive. However, one problem with this approach is that CT
reconstruction system is sparse. Naive immigration of CPU code to GPU is not efficient
as too many cores become idle due to the SIMD restriction. Also, high order interpolation
scheme such as Zwart-Powell box spline can make the CT system to be compute-intensive,
which is inefficient system for GPU computing. In this chapter, we will explain how we
can overcome those issues by using the simple compacting algorithm and hardware units
in GPUs. Fig. 3.10 shows the flow diagram of the reconstruction algorithm.
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Figure 3.9: Architecture of streaming multiprocessors in Nvidia Kepler GPUs [60]. 32
parallel cores are scheduled together as a warp. Special Function Units (SFUs) provide
hardware computation of the CPU-bound functions such as trigonometric functions with
slightly lower accuracy. Each thread can have up to 255 32-bit registers (fastest local
memory). Texture memory provides its own read-only cache space and hardware unit to
enable GPU to fetch continuously addressed data (linear interpolation) fast.
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3.4.1 Texture unit and interpolation

Computation of Zwart-Powell elements in GPU is compute-bounded, i.e., computation
clock cycles take more time than memory access clock cycles, thus latency of memory
access is hidden by the compute latency. In this situation, improving memory access does
not help to reduce the computation time. A common approach to boost the computation
speed of the ZP element is to pre-compute a table of values, then interpolate to get
the approximated values. However, fetching interpolated values at non-uniformly
chosen points from a two dimensional array stored in a conventional C type linear
array is inefficient due to the uncoalesced memory access. In CUDA, CUDA array and
texturing are specifically designed to resolve this problem. CUDA array and texturing
are originally designed for graphic processing to render a 2-D texture image on the
non-uniform grid surface of the body, but it can be used for any type of data that requires
localized interpolation. CUDA array uses special addressing technique called block-linear
addressing which is faster in accessing spatially -localized data in multi-dimensional
arrays. Unfortunately, Matlab does not provide built-in memory structure to store CUDA
array in Workspace, thus data must be read from the Matlab GPU array then stored to
CUDA array every time the GPU kernel is called. Once a memory is bound to texture,
texture provides its own read-only cache space and hardware unit to enable GPU to
fetch spatially-localized data rapidly [61]. For the bi-linear interpolation, four adjacent
elements near the point to be estimated are required at every fetch operation. Along
with fast uncoalesced memory access and linear interpolation, texture memory provides
several useful hardware units such as automatic boundary addressing mode (clamp,
wrap, and mirror), thus user can focus on the main algorithm without computing those
vexing boundary conditions. As a result, ZP elements are computed mostly by hardware
interpolation, and only angles and distances are computed by software. Based on the
experiments, with only 1 Kbyte table of 8 angle intervals between 0 to 45 degrees and
32 distance intervals between 0 to 2.5 pixel units, the result of the single-precision,
fourth order Gaussian -Legendre quadrature integral of the first-order interpolated ZP
elements only differ by 0.002% in terms of the normalized absolute error from that of the
double-precision, sixth order Gaussian-Legendre quadrature integral of the analytic ZP
basis.

3.4.2 Compacting operations

The projection matrix for CT is sparse, for example, reconstruction of 128×128 (Nx×Ny)

pixels by 192×128 (sources × detectors) rays with ZP basis requires six million nonzero
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recon_ML_gpu_*.m

1. start reconstruction

2. data copy from cpu to gpu

3. compute interpolation table
for ZP element

4.
load gpu mexs
build wrapper functions

gpu_Ax_*.mex*(CUDA)
gpu_expAx_*.mex*(CUDA)
C_fin_diff*.mex*(CPU)

5. initialize f (0), compute Ψ(0)

6. start iteration, t = 1

7. compute asymptotic curvature
D(t)

8. compute gradient ∇Ψ(t)

9.
update
f (t+1) = f (t) −(
D(t)

)−1∇Ψ(t)

10.
apply constraints
f (t+1) = PF

[
f (t+1)

]
11. compute Ψ(t+1)

12. Ψ(t+1)−Ψ(t)

Ψ(1)−Ψ(0) < τ ?

13.
t = t+ 1,
f (t+1) = f (t)

14. end of iteration

yes

no

Figure 3.10: Flow diagram of the reconstruction algorithm
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elements among the total of 400 million elements, which is about 1.5 percent of the total
elements. To avoid unnecessary computation in a sparse system, one approach is to store
the pointer array which indicates where the nonzero elements are, along with the non-zero
data array. With this method, all processors in a warp can be fully utilized, but the size of
the array is too big to be stored in a fast memory, thus it inevitably increases the number
of access to the slowest global memory. Even worse, for three-dimensional CT, too much
memory space is required which makes it less practicable. Another way to proceed is to
loop over the whole elements, then compute the basis function when an element passes a
conditional statement, i.e., compute the basis function only when the distance between the
center of an image pixel and ray is within the maximum support size. This is the simplest
approach, but is slow as it needs to compute the distances for every combination of image
pixels and rays.

To utilize the threads efficiently, we introduce a simple search algorithm which does
not involve additional computation other than already used distance and angle calculations
to reduce unnecessary work.

For the forward projection, cosine approximation is used. Assume the image matrix is
stored in a row-major sense, and let the angle between the orthogonal line of the ray and
the horizontal line be θi. Define di,j as the smallest distance between the center of image
pixel j and ray i minus the maximum support length

di,j =
det
{[
qi−pi , rj−pi

]}
||qi−pi||2

− ls , (3.127)

where det {·} is the determinant of a matrix, rj =
[
r

(x)
j , r

(y)
j

]′
is the location vector of

the jth image pixel, pi =
[
p

(x)
i , p

(y)
i

]′
and qi =

[
q

(x)
i , q

(y)
i

]′
are the location vector of

the source and the detector pixel corresponding to the ith ray respectively, and ls is the
maximum support length from the center. For small angle θ, d can be approximated by a
Taylor series expansion as

di,j = cos(θi) li,j

= li,j

(
1− θi

2

2!
+
θi

4

4!
− · · ·

)
' li,j. (3.128)

Based on the approximation (3.128), if the image pixel j is not within the support range,
the next image pixel to be searched, j∗, is chosen to be j∗ = j + bdc. As l ≥ d, jumping

76



bdc pixels does not skip any pixels within the support, i.e. l is monotonically decreasing
throughout the searching. Once the location of the pixel passes the support range of the
ray, the next image pixel is chosen to be the next line. For example, if an image is in the
n×m grid, the next image pixel is n (bj/nc + 1). Distance d is required to check whether
the pixel is within the support, thus this method does not need any additional computation.
Fig. 3.11 shows a graphical explanation of the compacting scheme.

The upper bound of the total iteration count for the searching can be computed from the
Taylor expansion of the cosine function. For simplicity, drop the index i and j, and denote
l0 as the distance between the first image pixel of the row and the ray minus maximum
support, and lk as the distance between the image pixel after kth search and the ray minus
maximum support.

lk ' lk−1

(
1− cos(θ)

)
' l0

(
1− cos(θ)

)k
= l0

(
1− 1 +

θ2

2!
− · · ·

)k
' l0

(
θ2

2!

)k
(3.129)

For the distance normalized by the image pixel width, iteration k stops when lk ≤ 1, and
the maximum value of l0 is equal or smaller than n. Thus the upper bound of the iteration
count for the searching per row is

n

(
θ2

2!

)k
= 1 (3.130)

k = log2/θ2(n) = O(log n) (3.131)

Since we need to find k for each row, total iteration counts for the searching is O(m log n).

Similarly, back projection can be done using the projection angle. For uniformly
distributed circular detector arrays, the angle between detectors is constant. Define this
angle as θc, and angle ψj as the angle between the line that connects center of the image
pixel j and the source, and the line that connects the source and the first detector pixel. The
first ray index i∗ that has nonzero element can be found by i∗ = i + bψj/θcc. The iteration
count for the searching is O(1) in this case. For detectors not uniformly distributed or not
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Figure 3.11: Schematic of the compacting operation for the forward projection

circular, we need to find the maximum angle difference (Lipshitz constant) θl such that

θl = max (θi − θi−1), (3.132)

then find the next ray index i∗ as i∗ = i+ bψj/θlc. This could fall into an exhaustive search
with iterations O(Nj), where Nj being the number of the detector pixels. However, if the
detector array is distributed close to a circular shape, i.e. with piece-wise linear array with
as many linear pieces as possible, it can be done in constant time. Fig. 3.12 and 3.13
show the graphical representation of the compacting operation for a circular detector and a
piecewise linear detector, respectively
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Figure 3.12: Schematic of the compacting operation for the back projection of the circular
detector

Figure 3.13: Schematic of the compacting operation for the back projection of the
piecewise linear detector
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CHAPTER 4

Synthetic Phantom Simulation and Experiment

4.1 Introduction

In this chapter, we produce example CT reconstruction results using two synthetic
phantoms, and the results are then compared the experimentally determined CT
reconstructions with the simulated CT reconstructions to assess the performance of the
current SEBXT system. For both the measurement data and the simulation data, we use
the volume-fraction based CT reconstruction algorithm introduced in §3. As mentioned
in §2.2.5, the charge-integrating X-ray arc detector array was not available at the time of
writing, so we used a single pixel spectrometer that can be positioned along the location
of the notional detector arc to mimic the data such an arc detector would yield. Details
of the measurement procedure are written in §4.2. A sinogram simulation was created to
evaluate the best-expected performance of SEBXT. Details of the simulation procedure
are written in §4.3 Phantom 1 and Phantom 2 are used as a reference to compare the
CT reconstruction results based on the measurement data and the simulated data. The
comparison results are shown in §4.4.

4.2 Collection of Measured Projection Set (Sinogram)

4.2.1 Measurement procedure

Projection sets were collected for Phantom 1 and Phantom 2 by traversing the single
detector to a given location, and then moving the X-ray source position. We collected
the data using the following procedure:

1. Position the point detector at 1 of 64 locations along the notional detector arc (Fig.
4.1).

2. Collect attenuation data for 128 X-ray source locations:
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Figure 4.1: Geometry of the source points, detector points, and the region of interest

(a) Turn on the electron beam
(b) Move the beam to the discrete spot on the target
(c) Wait 0.05 sec (communication time between the server and the controller)
(d) Acquire data from the detector for 0.5 sec
(e) Wait 0.05 sec (communication time between the server and the controller)
(f) Move the beam to the next location on the tungsten target

3. Move the detector to the next location along the detection arc and repeat from step 2.

The voltage bias between the cathode and the anode was set to 115 kV, and the beam
current was set to 1.0 mA. The beam current generally has a fluctuation of 0.1 mA. (Note:
0.1 mA fluctuation of the beam current is not insignificant considering that it is equivalent
to 10% of the setting.) For the present study, the beam current could not be increased,
because the spectrometer associated with the detector can be easily saturated. However,
a current up to 133 mA may be supplied by the SEBXT, and hence with the full detector
arc capable of handling a higher photon flux, the 0.1 mA fluctuation of the beam current
is not expected to be a significant issue. The settings used to position the beam on the arc
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tungsten target (the physical (x, y) coordinates) was related to the beam deflection voltage
(U, V ) after performing the alignment calibration described in §2.2.3.

4.2.2 Correction of measured data due to detector limitations

Fig. 4.2 and Fig. 4.3 show the raw data sinograms obtained from the measurement of
Phantom 1 and Phantom 2, respectively. The raw measurement data obtained by the
Amptek spectrometer cannot be used immediately for the reconstruction because 1) the
measured data do not directly indicate energy values, but a relative energy intensity due to
lack of accurate calibration, 2) the detector loses significant fraction of the photons when
counting at a high count rate, as was seen in Fig. 2.14. Hence, while the spectrometer
records the X-ray photon counts at each bin, the energy level of each bin must be
calibrated by the user. Because of the distortion due to the high pulse pile-up events,
energy calibration of the spectrometer could not be implemented. As a result, a relative
energy intensity is used to record the result, where the relative energy intensity is defined
as:

h̄i =

Nk∑
k=1

ȳi(Ek)k. (4.1)

Here k is the energy bin number (it is implicitly assumed photons counted, e.g., in bin 50
has twice the energy as those in bin 25), ȳi(Ek) is the number of photons counted in bin k
for ith ray and Nk is the total number of energy bins. The actual energy-integral is defined
as:

hi =

Nk∑
k=1

ȳi(Ek)Ek. (4.2)

If the hardware response of the spectrometer is linear, then the actual energy integral can
be found by affine-transforming the relative energy intensity. However, the detector system
lost some of its input photon count due to pulse pile-ups and the amount of the energy
lost due to the pile-up events increases with increased photon flux experienced by the
detector. Consequently, the response of the detector becomes nonlinear, and a correction
must be made to compensate for photons lost due to pile-up events. In order to convert the
raw measurement data to the energy-integrated data, a correction of the nonlinear effect
due to the saturation and pulse pile-ups is accomplished by fitting the radical-polynomial
functions to the data. Guided by experiments, the following function is chosen as the
objective fitting curve:

hi = C1 h̄
2.5
i + C2 h̄

2
i + C3 h̄i + C4. (4.3)
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Figure 4.2: Raw measured sinogram data, Phantom 1. Source id and detector id indicate
the location of the source and detector given in Fig. 4.1. The unit of the image intensity is
arbitrary.

Figure 4.3: Raw measured sinogram data, Phantom 2. Source id and detector id indicate
the location of the source and detector given in Fig. 4.1. The unit of the image intensity is
arbitrary.
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Figure 4.4: Energy data correction curve. The fitted curve is used to correct for the
nonlinear response of the detector due to the pulse pile-up. Sampled data are taken from
the center of the sinogram, detector location from 32 to 33 and source location from 34
to 94. Here horizontal axis has the unit of relative energy h̄i described in (4.1) for the
data measured by the Amptek XR-100T-CdTe, and vertical axis has the unit of the true
integrated energy hi described in (4.2) for the simulated data.

Samples for the estimation of coefficients in (4.3) are taken from the center location of
the sinogram (detector id from 31 to 33, and source id from 34 to 94) of the empty pipe,
Phantom 1 and the Phantom 2 sinograms for both measured data and the simulations, and
the coefficients are computed based on a least-square fit, yielding

C1 = 8.2545e− 14,

C2 = −8.1578e− 14,

C3 = 1.8386e− 6,

C4 = 7.6151e− 19.

The data points and the fitted curve for the energy correction are shown in Fig. 4.4.
Additionally, another correction is made using the difference of the simulated and

measured sinograms for the empty pipe. The simulation does not entirely reflect the actual
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environmental attenuation. For example, aluminum wall of the gun is assumed to be an
exact half circle, while the actual aluminum wall is not perfectly circular and the wall
thickness varies from center to side. Also, a steel filter was placed between the phantom and
the detector. This steel filter is assumed to have an infinitely long width in the simulation,
but it is only 2-inch-wide in the real system. Hence, the simulated environment deviates
from the actual environment as the beam or the detector moves to the side. A correction
map is obtained by dividing the values of the empty pipe simulation sinogram by those of
the empty pipe measurement sinogram after corrected by the fitting curve described in (4.3).
Fig. 4.5 shows the correction map obtained by comparing the empty pipe sinograms. This
correction map is applied to each of Phantom 1 and Phantom 2 sinograms by element-wise
multiplication.
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Figure 4.5: A correction map obtained from the empty pipe sinogram. This correction map
is used to correct the unidentified environmental attenuation error between the simulation
and the measurement. The correction factor of each pixel is obtained by dividing the
simulated empty pipe sinogram by the measured empty pipe sinogram.

The comparisons between the corrected measurement sinograms and the simulated
sinograms for Phantom 1 and Phantom 2 are shown in Fig. 4.6 and Fig. 4.7, respectively,
for select detector locations. As can be seen in the comparison, corrected measurement data
conform to the simulation data in the global aspect, but is blurred and lose detail compared
to the simulation data. The noise level is much higher in the corrected measurement
sinogram due to the unstable beam current at the low range. Unfortunately, the simulation
does not include this type of control-related randomness of the beam current because the
data acquisition with the SEBXT has been designed to employ much higher current in order
to produce the lowest acquisition time.
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Figure 4.6: Comparisons between the corrected measurement and the simulated data from
Phantom 1 at the detector locations 1, 16, 32, 48, and 64. Corresponding detector positions
are shown in Fig. 4.1.
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Figure 4.7: Comparisons between the corrected measurement and the simulated data from
Phantom 2 at the detector locations 1, 16, 32, 48, and 64. Corresponding detector positions
are shown in Fig. 4.1.
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4.3 Simulation of projection set (sinogram)

We created a simulation code to get the best-expected CT reconstruction result based on
the physics of the X-ray source, the propagation physics of the X-ray photons through the
domain, and the known performance of the detectors. By doing this, we can validate the
simulation’s performance with measurement data. The requirement is that the simulation
must adequately represent reality.

In order to simulate the performance of an X-ray Computed Tomography system, we
would like to predict the sinogram that will be created for a given object with the system
measurement domain. The sinogram will be strongly related to both the attenuation of
materials (or equivalently, volume fraction of materials) within the domain as well as the
system parameters and characteristics (e.g. the X-ray source spot size, the number and
size of the detectors, the detector arc angle). The simulation program therefore will model
several important physical features of the CT system, including models of the following
system elements:

1. The X-ray source spot size, photon energy distribution, and the uncertainties in the
number of X-ray photons and their energies based on the input control parameters to
the EB gun.

2. The physical range of the X-ray projections for the given control inputs.

3. The X-ray attenuation through the measurement domain for each expected material
within the domain for the given X-ray photon energy spectrum.

4. The response of the detector for each level of X-ray photon energy given its finite
surface area and thickness.

Once these elements are modeled, a simulation of the noiseless sinogram can be created
given Beer’s law. Then, we added the gamma-approximated system-specific random noise
to the sinogram as described in §3.2.4. The final result of the simulation is a noise-corrupted
sinogram. This noise-corrupted sinogram will be used for the CT reconstruction

4.3.1 Flow diagram of the sinogram simulation

The steps performed in the simulation are described in Fig. 4.8. First, the detector and
source positions are computed based on the input parameters. Then, the attenuation
coefficients are obtained at each discrete energy bin by interpolating the National Institute
of Standards and Technology (NIST) dataset of the X-ray attenuation coefficients [1].
For each source-detector pair, the attenuation coefficients are integrated along the line
formed by the X-ray source point and 20 evenly spaced sampling points on the surface of
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tomo_sim_main.m

15. load environment variables tomo_sim_init.m

16. load phantom data tomo_sim_phantom*.m

17. load attenuation coefficients mac_*_SI.m

18. compute source geometry

19. compute detector geometry

20.
compute emission spectrum
I0

21.
exist true
sinogram h̄?

22.
compute analytic line integral
of µ

23. compute photon count ŷ

24. compute energy integral h̄

25. load h̄

26.
apply focal spot blur,
h̄ = kblur∗∗ h̄

27. apply noise, h = Gtr(h̄)

28.
exist true
image f̄?

29. compute f̄30. load f̄

31. to start reconstruction recon_ML_gpu_*.m

yes

no

yes

no

Figure 4.8: Flow diagram of the sinogram simulation
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the detector, which is then averaged over the 20 sampled points. Analytic solutions for
the X-ray projection of rectangular and elliptical objects are used to compute the line
integrals. Scattering is assumed to be small and is therefore neglected in the simulation.
Once the analytic attenuation is computed for each source-detector pair, a noise is applied
to the data using the shifted gamma distribution. A brief explanation of each node is
presented below.

1, 2, 4, 5. load environment/phantom variables, compute source/detector geometry
Most of the geometries for the source/detector and the phantoms are parameterized,
and those parameters are stored in “tomo_sim_init.m” (source and detector) and
“tomo_sim_phantom XXX.m”, where XXX denotes the identification number
of the phantom.

3. load attenuation coefficients
For every energy bins, mass attenuation coefficients are obtained by interpolating the
data tables given by NIST [1]. Since the data points for the interpolation are spread
evenly in the logarithmic scale, linear interpolation fails to achieve a good estimation.
To get a better estimation, Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) is used. (See http://www.mathworks.com/help/matlab/ref/pchip.html for
more details.)

6. compute emission spectrum
The emission X-ray photon spectrum obtained by the SpekCalc software [2] account
for the case when the attack angle is 0 degrees, detector face size is 1 cm2 and the
distance between the source and the detector is 1 m. Thus, the emission spectrum
must be corrected for each beams angle of attack and the distance between the source
and the detector. The following formula has been used to correct the emission X-ray
photon spectrum.

I
(i)
0 = Is(E)Ad

(
100

d
(i)
t

)2

cos
(
a

(i)
t

)
(4.4)

where I
(i)
0 is the corrected emission spectrum of the ith ray, Is is the emission

spectrum obtained by the SpekCalc software, E is the energy level, Ad is the
detector face area in cm2, d(i)

t is the distance between the source and the detector of
the ith ray in cm, a(i)

t is the angle of attack of the ith ray as defined in Fig. 4.9.

7. exist sinogram?
The code saves sinograms with the name convention “y_data kW=XXX kV=XXX
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source

detector

X-ray beam
dt

at

Figure 4.9: Schematic diagram of X-ray beam attack angle and distance

kHz=XXX Ns=XXX Nd=XXX type=XXX phantom=XXX dyn=XXX.mat”,
where XXX are values from left to right, beam power, beam voltage, scan frequency,
number of source location, number of detectors, source type, phantom ID, and flow
speed. If the sinogram exists, go to 12. Otherwise, generate a new sinogram for the
given condition.

8. compute analytic line integral of µ

a) Generate the iup
th source - detector pair after up-sampling the detector position

by a factor of 20, i→ iup

b) Compute tiupio , the thickness of ioth object along the iup
th ray. The current code

can only compute thickness of two shapes, 3-D ellipses and 2-D rectangles,
and the corresponding Matlab codes are “sol_intersect3.m”, and “rect
_intersect.m”.

c) Compute the line integral of µ along the iup
th ray

µ
(iup)
tot (Ek) =

∑
io

{
µio(Ek)

∫
Liup

t
iup
io

dl

}
(4.5)

9. compute mean photon count ŷ

a) Down-sample µ(iup)
tot by a factor of 1/20, iup → i

b) Compute ŷ for each discrete energy level Ek

ŷ(i)(Ek) = I(i)
o (Ek) exp (−µtot(i)) ∆E . (4.6)

10. compute mean energy integral ĥ
Total energy acquired by a detector can be obtained from the first moment of (̂y) with
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respect to Ek,
ĥ(i) =

∑
k

Ek ŷ(i)(Ek). (4.7)

12. apply blur
To apply the effect of the blurring due to the beam focal spot size, the following steps
occur:

a) Assuming the object is small, the blur kernel is approximated by the blurring
effect of the beam passing through the center point of the object (In reality,
blurring effect due to the beam profile significantly changes depending on the
location. The method applied here is a rough approximation in the average
sense.)

b) Assume the beam profile is Gaussian curve-shaped with known FWHM, and
the transmitted X-ray beam intensity is constant throughout the surface of each
detector, which can be represented by a rectangular function. For example, a 3
mm FWHM beam profile and the beam intensity on the surface of 3 mm width
detector is shown in Fig. 4.10a and 4.10b, respectively.

c) A continuous blur kernel is computed by convolving the transmitted X-ray
beam intensity with the beam profile. An example of continuous blur kernel
with the condition described in the item b) is shown in Fig. 4.10c. Each colored
square represents the range of each detector.

d) To get the discrete blur kernel, the value of the continuous blur kernel is
numerically integrated over the range of each detector. For the support size of
the blur kernel, total of 9 detectors (4 on the left, center, and 4 on the right) are
considered.

e) The discrete kernel values are normalized so that the sum of the discrete kernel
values becomes unity. An example of discrete blur kernel with the condition
described in the item b) is shown in (d) of Fig. 4.10. Each colored circle
represents the discrete value corresponding to the detector with the same color.

f) Finally, the columns (detector axis) of the original sinogram are convolved with
the discrete blur kernel obtained at the item e). Fig. 4.11 shows the comparison
between the measurement data and simulated data with different focal spot
Full-Width at Half-Maximum (FWHM), to show the effect of the beam focal
spot to the projected image. Note that the object size in the simulation differs
depending on the actual location of the object.
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For the simulations presented in this work, FWHM of the beam focal spot is chosen
to be 4 mm, which is much worse case than the experimentally obtained FWHM of
1.18 mm. However, by comparing sinograms, we found that FWHM 4 mm is more
adequate as shown in Fig. 4.11. Possible reason for this deviation is explained in §5.

13. apply noise
Considering the physics of the X-ray photons interacting with the detector crystal, the
noise follows the aggregated compound Poisson distribution, in which photon energy
follows the spectral response distribution of the detector, while the total number
of photons follows the Poisson discrete distribution. However, since this approach
takes too much time to simulate, an approximated three-parameter distribution (i.e.,
shifted gamma distribution) is used to apply the noise. An approximation method to
convert the aggregated compound Poisson distribution to shifted Gamma distribution
can be found in [4]. Detailed process to acquire parameters for the shifted Gamma
distribution is explained in §3.2.4.

14, 15. exist true image? If not, compute true image
Same as the sinogram, true image is obtained after up-sampling the image grid by
a factor of 20, draw the binary fraction image, and then down-sample by a factor of
1/20. The true image is stored in the name formatted “actual NxXXX NyXXX

phantomXXX.mat”, where XXX are number of pixels in x, number of pixels in y,
and phantom ID, from left to right. If the true image already exists, load the image
and start reconstruction. Otherwise, build the true image.

4.4 CT Reconstruction of Measured and Simulated Sino-
grams Compared to the Physical Phantom

The reconstruction images are achieved by applying the Matlab code, which is the
implementation of the algorithm described in Chapter 3. Using the energy-integrated
measurement sinogram data obtained by synthesizing the slow energy-resolved detector
data, two volume fraction images (titanium and water) are obtained as an output based on
the material decomposition scheme. The quality of the reconstructed image is represented
by the root mean square errors (RMSE) of each volume fraction image given by:

RMSE(l) =
√

1/Nj

∑
j

(
f̂(j,l) − f̄(j,l)

)2
. (4.8)
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(a) (b)

(c) (d)

Figure 4.10: Generation of the discrete blur kernel for 3 mm FWHM beam profile and 3 mm
detector as detailed in “step 12” of the algorithm. All computations are based on 2D, small,
and centered objects; (a) the electron beam profile on the tungsten target, assumed Gaussian
shaped; (b) transmitted beam intensity on the detector surface when zero-area focal spot,
assumed constant; (c) continuous blur kernel, obtained by the convolution between (a),
(b), and the sensitive area of adjacent detectors (colored squares); and (d) the discrete
blur kernel, obtained by integrating the continuous blur kernel over each sensitive area of
adjacent detector, and then normalized.
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Figure 4.11: Comparisons of the blurring effect due to the beam focal spot FWHM taken
for Phantom 1 at the center detector location. In the simulated sinograms, the blurring
effect induced by the finite focal spot is applied using the discrete blur kernel explained in
§4.3, Item 12).
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4.4.1 Phantom 1

Fig. 4.12 shows the reconstructed images based on the corrected measurement and
simulated sinogram data, and true volume fraction images of Phantom 1. Fig. 4.13 shows
the volume fraction deviation of the reconstructed Phantom 1 images compared with the
true images, and the volume fraction deviation between the reconstruction images based
on the corrected measurement and the simulation sinogram data. Each RMSE of the
reconstructed image is shown below the corresponding figure.

To quantify the resolution of the CT system, a Modulation Transfer Function (MTF) is
obtained from the sampled edge of Phantom 1 reconstruction in the same manner described
in Fischer et al. (2008) [3]. Fig. 4.14 presents the steps to compute the modulation transfer
function obtained from Phantom 1, (a) edge sampling location, (b) edge spread function,
(c) line spread function, and (d) modulation transfer function at the sampled edge. Based
on the MTF results, the current system has a maximum spatial resolution of 0.52 lp/mm
(line pair per millimeter) at 10% MTF, which is comparable to the result of 0.51 lp/mm
in [3]. For reference, the heart-shaped bubble clusters at the bottom of the Phantom 2 have
frequency components of 0.42 lp/mm and higher. Considering the present UM SEXBT is a
limited angle system with effectively 64 3 mm×3 mm detector pixels, the resolution result
is promising. However, the modulation transfer function of Phantom 1 does not form a
smooth curve due to the structured noise. This structured noise is suspected to be induced
by the unstable current and the focal spot uncertainty of the beam, combined with the effect
of the edge-preserving regularizer.

4.4.2 Phantom 2

Fig. 4.15 shows the reconstructed images based on the corrected measurement and
simulated sinogram data, and true volume fraction images of Phantom 2. Fig. 4.16 shows
the volume fraction deviation of the reconstructed Phantom 2 images compared with the
true images, and the volume fraction deviation between the reconstruction images based
on the corrected measurement and the simulation sinogram data. Same as Phantom 1,
each RMSE defined in (4.8) of the reconstructed image is shown below the corresponding
figure.

Average void fractions of the sampled partial images are compared with those of true
image with the same resolution. Samples taken from the true image and the reconstructed
images based on the corrected measurement and simulation are shown in Fig. 4.17 for
comparison. The averaged void fraction results for all sampled areas are summarized in
Table 4.1.
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(a) Real data, corrected

(b) Simulated data

(c) True image

Figure 4.12: CT reconstructed volume fraction image based on (a) the corrected
measurement sinogram and (b) the simulated sinogram for Phantom 1. True volume
fraction image of Phantom 1 is shown in (c).
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(a) Real data, corrected

(b) Simulated data

(c) Simulated data - real data

Figure 4.13: Volume fraction deviation of the reconstructed images; (a) error image of the
CT reconstructed image based on the corrected measurement data; (b) error image of the
CT reconstructed image based on the simulated data; (c) deviation between the corrected
measurement CT result and the simulated CT result for Phantom 1.
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(a) (b)

(c) (d)

Figure 4.14: Modulation transfer function obtained from Phantom 1; (a) sample edge
location, (b) sampled edge spreading, (c) line spreading, and (d) modulation transfer
function at the sampled edge. Image pixel size is 0.520 mm, and corresponding Nyquist
frequency is 0.96 lp/mm2.

Table 4.1: Comparison of true, measured and simulated void fraction data at the sampled
locations shown in Fig. 4.17

Region true measured simulated
true -

measured
true -

simulated

(a) 1.000 0.837 0.952 0.16 0.05
(b) 0.100 0.036 0.041 0.06 0.06
(c) 0.226 0.117 0.161 0.11 0.07
(d) 0.401 0.258 0.338 0.14 0.06
(e) 0.112 0.113 0.082 0.00 0.03
(f) 0.236 0.163 0.168 0.07 0.07
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(a) Real data, corrected

(b) Simulated data

(c) True image

Figure 4.15: CT reconstructed volume fraction image based on (a) the corrected
measurement sinogram and (b) the simulated sinogram for Phantom 2. True volume
fraction image of Phantom 2 is shown in (c).
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(a) Real data, corrected

(b) Simulated data

(c) Simulated data - real data

Figure 4.16: (a) error image of the CT reconstructed image based on the corrected
measurement data; (b) error image of the CT reconstructed image based on the simulated
data; (c) deviation between the corrected measurement CT result and the simulated CT
result for Phantom 2.
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Figure 4.17: Sampled areas to test the accuracy of feature size void fraction shown in Fig.
4.18.
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(a)

(b)

(c)

Figure 4.18: Sampled images and the resulting average void fractions of the true (left),
measured (middle) and simulated (right) images. The locations of the sampled areas for (a)
to (f) are shown in Fig. 4.17
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(d)

(e)

(f)

Figure 4.18: (cont.) Sampled images and the resulting average void fractions of the true
(left), measured (middle) and simulated (right) images. The locations of the sampled areas
for (a) to (f) are shown in Fig. 4.17
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4.5 Effect of the focal spot and detector sizes on the qual-
ity of CT reconstruction evaluated based on the simu-
lations

In X-ray CT, there are many factors affecting the resolution of the CT reconstructed images,
number of projected images, number of detector pixels, focal spot size, detector size, and
X-ray scattering, to give a few examples. In this section, we evaluate the effect of the
focal spot and detector sizes on the resolution of the CT reconstruction using a series of
simulation results with different settings.

We consider two different acquisition modes, low speed and high speed acquisition
modes. Low speed acquisition mode represents the current measurement condition, where
we used the slow response photon counting detector with a 0.5 inch steel filter to reduce the
X-ray photon flux down to O(105∼6) cps. Maximum total photon counts of the meaningful
projection (meaningful projection means a set of beam attenuated by the phantom so that
it is actually used for the CT reconstruction) is approximately 6 × 104 when the detector
size is 3× 3 mm. For the low speed acquisition mode, the source has a 115 kV, 1 mA beam
with 0.5 inch steel filter on the detector side with integral time 0.5 seconds.

Fast acquisition mode is what the SEBXT is designed for, but cannot be used because
the charge-integrating detector was not available. For the fast speed acquisition mode, the
source has 115 kV, 133 mA beam without any filter. Integral time is only 5 µs. The cps of
high speed acquisition mode is a lot higher than the low speed acquisition mode, amount
to O(1011∼12) cps. However, maximum total photon counts of the meaningful projection is
only 1 × 104 for high speed acquisition mode when the detector size is 3 × 3 mm, which
is 6 times lower than the low acquisition mode. Thus, the noise level will be higher in
high speed acquisition mode, and the optimal detector size can be different in low and high
acquisition modes.

For each mode, we ran simulations for four different focal spot sizes, FWHM 1 to 4 mm,
and three different detector sizes 0.5×0.5, 1×1, and 3×3 mm2. Additionally, we added the
simulation results with a detector size 0.7×0.7 mm2 for the fast acquisition mode, which
is the size of the pixel in the charge-integrating arc detector that we are going to use in the
future. Note that the scattering effect is not considered in the simulated sinograms. Actual
image quality might depend on the scattering as we cannot apply collimators due to the
varying incident angles.
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4.5.1 Low speed acquisition mode

Fig. 4.19 and 4.20 show the RMSE values of the reconstructed image of Phantom 1 and 2
at low speed acquisition setting based on the simulated sinograms, respectively. Intuitively,
smaller focal spot size is always better in terms of the image resolution (although it is easier
to damage the tungsten target physically when the beam is more concentrated). However,
detector size is a trade-off between the resolution and the noise. Smaller detector size
means less blurriness, but the photon flux also decreases, inducing more noise.

To quantify the resolution of the reconstructed image, we define f10 be the frequency
in line pairs per millimeter (lp/mm) where the value of MTF crosses 10% of the
maximum value (maximum value is 1 in our case because the reconstructed image is
non-dimensional). The higher f10 is, the better the CT reconstruction can resolve the
smaller object. Fig. 4.21 shows f10 with detector size 3 × 3 mm2. For detector size
smaller than or equal to 1×1 mm2, f10 is greater than the Nyquist frequency even with the
maximum focal spot of FWHM 4 mm.

4.5.2 High speed acquisition mode

Fig. 4.22 and 4.23 show the RMSE values of the reconstructed image of Phantom 1 and
2 at high speed acquisition setting based on the simulated sinograms, respectively. The
increase in error in the case of detector size 0.5× 0.5mm is more prominently shown in the
high speed acquisition mode, because noise level is higher than that of the slow acquisition
mode. Among the detector sizes we considered, 1mm2 had the best performance in terms
of RMSE. However, we can further increase the resolution of the reconstructed image by
decreasing the pixel size when the detector face size is small. In that case, smaller detector
might have more benefit to resolve the small objects.
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Figure 4.19: RMSE of the simulated CT reconstruction results for Phantom 1 at the low
speed acquisition setting.

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 1 2 3 4 5

R
M

S
E

source focal spot FWHM (mm)

detector size 3x3 mm^2

detector size 1x1 mm^2

detector size 0.5x0.5 mm^2

Figure 4.20: RMSE of the simulated CT reconstruction results for Phantom 2 at the low
speed acquisition setting.
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Figure 4.21: Frequency at 10% of the maximum MTF of the simulated CT reconstruction
results for Phantom 1 with the detector face size 3×3 mm2 at the low speed acquisition
setting.
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Figure 4.22: RMSE of the simulated CT reconstruction results for Phantom 1 at the high
speed acquisition setting.
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Figure 4.23: RMSE of the simulated CT reconstruction results for Phantom 2 at the high
speed acquisition setting.
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CHAPTER 5

Conclusions: Electron Beam X-Ray Computed
Tomography for Multiphase Flows

We reviewed the electron beam X-ray system that is being developed at the University
of Michigan and described the basic principles of its design and operation. As the
energy-integrating X-ray arc detector was not available, we described how we use a single
pixel spectrometer to generate data similar to the data generated by the energy-integrating
arc detector array. Therefore, we measured the intact energy spectrum using the single
pixel spectrometer and a tungsten collimator with 100 µm diameter aperture. The
measured intact energy spectrum of the X-ray matches well with the simulated X-ray
spectrum when the spectral response of the detector is applied.

To characterize the beam spot size and location, we estimated the focal spot profile
using the iterative regularized and constrained least square method based on the images
of the tungsten collimator with 1 mm diameter aperture. As a result, we get the minimum
full-width-half-maximum of the beam profile being 1.18 mm at the beam current 1050 mA.

We characterized the relationship between the deflection voltages applied to the electron
beam and the ultimate location of the focal spot on the target. This data was not provided by
the manufacturer, so we performed a localization test for seven different angles. We used
an acrylic phantom with seven pairs of tungsten carbide balls to determine the position
where the electron beam meets the tungsten target. Based on those data, we estimated the
mapping function between the deflection voltages and the physical position of the beam as
a form of a linear matrix system based on the least square estimation.

Finally, we introduced three phantoms that was used for the beam alignment (Phantom
0), and will be used to test the performance of the CT reconstruction (Phantom 1 and
Phantom 2).

We developed a CT reconstruction method for the Scanning Electron Beam
Tomography (SEBXT) system characterized by a limited angle, single bin energy
integrating measurement. For the data-fitting term, the method involved a nonlinear

118



Gaussian model for the energy-integrating statistics combined with the volume fraction
material decomposition method.

The reconstruction method employed several assumptions that may affect the quality
of the result in practice. Those include no charge sharing, no scattering of X-ray photons,
ideally pulsed and focused electron beam. Without collimators, the scattering effect is
an important factor as the power of scattered beam can reach up to 78% of the primary
beam [1]. Unfortunately, collimator cannot be used in SEBXT due to the wide variation
of incident angles. Those scattering would show up as a blurred sinogram, and eventually
a blurred reconstructed image. The blurring induced by the X-ray scattering is not linear
shift-invariant, and it depends on all the materials that the beam has passed through, which
makes it more difficult to estimate and invert. The spectral response depends on the type
of the electric circuits combined with the detector crystal. One example is the incomplete
charge collection. Holes are slower than electrons, a portion of holes may not be collected
due to their limited mobility. Those electric circuit effects are not considered in the spectral
response model. In reality, an experiment, ideally with a monochromatic source, to acquire
the spectral response of the specific detector is required. This issue will be considered when
the detector array is installed in the system.

The `0 norm and the edge-preserving hyperbola regularizers are applied accordingly
depending on the characteristics of the materials. The role of regularizers is to provide
additional removal of small local volume fraction errors and limited angle artifacts. As
two regularization schemes are combined, the `0 norm and the edge-preserving hyperbola
potential regularizer are connected by the curvature, and competing with each other. As
a result, actual strength of the `0 norm regularizer depends on the strength parameter of
the edge-preserving regularizer indirectly, as well as its own strength parameter. Finding
optimal values for the strength parameters may require combining the strength parameters
into a single parameter.

We used an asymptotic curvature along with the separable quadratic surrogate
functions to simplify the minimization step while maintaining a reasonable convergence
speed. However, this asymptotic curvature has not been proven to monotonically decrease
the objective function for all cases. A further study regarding the convergence may be
required in the future.

Interpolation based spatial basis computation and compacting algorithm are used to
increase the GPU computing speed. The compacting algorithm is effective when the
register spilling is the main factor of the bottleneck as it does not require any register space
other than registers used for the Radon transform computation. However, performance of
the compacting has not been compared with other methods, and the result can be different
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when there are enough registers in each thread. More extensive comparison will be required
to assess the efficiency of the compacting.

The reconstruction results shown in Fig. 4.12 and 4.15 showed that the present SEBXT
system captures the object between the source and the detector. However, the accuracy of
detecting local structures was much lower than expected, as shown in Table 4.1. Below is
the list of problems identified during the beam calibration and CT reconstruction process
that cause the low accuracy.

1. Electron beam focal spot

The source’s focal spot was not focused adequately, causing blurry images. It
is possibly due to the interaction between electrons and gas molecules in the
chamber. Two possible sources of gas molecules exist. First, the turbo-molecular
pump installed on the upper part of the chamber cannot effectively remove the gas
molecules at the bottom of the chamber, thus it is possible that the pressure at the
lower part of the gun is much higher than the pressure level indicated by the upper
chamber pressure gauge. Second, slow acquisition in low power resulted in heating
the cathode for too long. Overheated cathode can cause the outgassing, another
source of the gas molecules. To improve the focal spot, additional turbo pump will
be installed at the lower chamber in the future. Cathode overheating problem can be
solved once the machine can be operated in high speed acquisition mode.

The effect of focal spot varies with the relative location of each object, source and
detectors, thus the linear shift-invariant blur kernel applied to the simulation does not
reflect the actual effect of the focal spot. If focal spot size is still a significant factor
after the installation of the additional turbo pump, the effect of the finite focal spot
can be added as a matrix form in the system matrix, then solved iteratively along with
the CT reconstruction.

2. Scattered X-ray
Conventionally, detectors have collimators to block scattered X-rays. However,
detectors on the SEBXT cannot use collimators because the angle between the
source and detector is variable due to the fixed configuration of the detectors. The
code does not directly include the effect of scattered photons that may reach the
detector. This is expected to cause a notable discrepancy near the high gradient
regions. A software approach similar to the item 1 may be considered to reduce the
blurring due to the scattered X-ray, i.e., build a matrix that represents the scattering,
then solve iteratively along with the CT reconstruction.
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3. Pulse pile-ups
The SEBXT is not designed to be used along with photon-counting detectors.
The single pixel spectrometer used for sinogram acquisition was not capable of
fully collecting all charges, and the count rate often exceeded the capacity of the
detector to measure accurate spectrum due to pulse pile-ups. The presently utilized
photon-counting detector can count the photons with reasonable accuracy up to
O(105) counts per second (cps), while the source at 1 mA generates O(106) cps
after 0.5 inch steel filtering, and this can cause up to 30% loss of total counts due to
pile-up. This effect makes the response of the detector nonlinear. A correction has
been made to linearize the response, but there are uncertainties related to the pile-up
events. (Note: We had to operate the source at relatively higher current than the
detector capacity, due to instability in beam current with 0.1 mA fluctuation.) In the
future, charge-integrating detectors will be used, which give almost linear response
in the operating cps range. The correction function may not be required when the
new detector is fully operational.

4. Beam current instability
The beam current fluctuations were of the order of 10% for the 1 mA beam current.
This leads to higher noise compared to the simulation, in which the beam current
is assumed to be constant and only photon production uncertainty is accounted for.
However, the effect of the power fluctuation would relatively decrease by factor of
1/133, less than 0.1% of the signal, if the source was operated at full power.

5. Low void fraction
In Table 4.1, void fraction is always lower than the true value for both the corrected
measurement and simulation data. Despite of its edge-preserving characteristics,
strong regularizer tends to make the image flat. Regularizer strength parameter in this
chapter was unusually large to correct the error due to the beam current uncertainty,
which was not considered in the probability model. This low void fraction problem
will be disappeared by lowering the regularization strength once we are able to
operate the source at full power.

6. Acquiring intact emission spectrum
To get the best correction image, we need an empty scan data set. (Empty scan
means that scanning without any objects, including the pipe, in the measurement
domain.) We cannot acquire the empty scan data as the photon energy spectrum was
distorted too much due to the excessive pile-up events. Thus, we used an empty pipe
image to correct the unknown obstacles such as the actual source’s aluminum wall
thickness. The correction map had errors due to the uncertainty of the pipe location.
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The uncertainty of the pipe location is less than 1 mm, but that is enough to generate
a significant error.

7. Large detector face size
The detector that we used has the face area of 3 × 3mm2, which is not designed for
the CT reconstruction. Part of the blurriness in the reconstructed image comes from
the large size detector as shown in §4.5. This can be easily improved by adopting
smaller size detectors. The forthcoming charge-integrating arc detector has face size
of 0.7 × 0.7mm, As shown in the numerical simulations in §4.5, we can potentially
improve the reconstructed images once the arc detector is available.

In conclusion, we have characterized the X-ray source for the SEBXT, we have
developed a novel CT reconstruction algorithm, and we experimentally implemented the
CT reconstruction method for two phantoms. By doing this, we have readied the system
for the installation of the fast detector array. Future work will include the integration of
the array into the SEBXT control system, characterization of the array response with
calibrated X-ray sources, and the characterization of the interaction of the SEBXT X-ray
beam with the detectors. The new detector array has gaps between modules. We may need
a new simulation code to account for the effect of those gaps. Once this is done, we will
return to measurement of the two phantoms.
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