
CHAPTER 6

Experimental Setup of Inter-channel Mixing

6.1 Introduction

In this chapter, we describe the basic experimental setup and the inflow conditions used for
the inter-channel mixing experiment. In §6.2, we provide the details of the instruments used
for the experiments, which include the flow loop setup, the geometry of the test section,
flow conditioning methods, and details of all instruments used for the experiment. In §6.3,
we provide the boundary layer conditions of each flow measured by the Laser Doppler
Velocimetry (LDV).

6.2 Experimental Setup

6.2.1 Flow loop and test section

The flow loop consists of a test section with an adjustable gap, two centrifugal pumps
which can condition the flow rate of the channel A and B separately. Each inlet and outlet
of channel A and B has a turbine volume flow rate sensor, and static pressure transducers
and one differential pressure transducer are installed at the inlet of channel A and B. We
installed a baffle box and a contraction at the inlet of each channel to trip the boundary layer
at the wall. Additionally, we added a 0.5 mm protrusion immediately after the contraction
to encourage the turbulent flow near the wall. Water reservoir is used to provide conditioned
water source for PIV and fluorescein concentration measurement. A positive displacement
pump controls the amount of dye injected into the inlet of channel B. Fig. 6.1 shows the
piping and instrument diagram of the flow loop.

The test section consists of two square channels and a rectangular gap between them.
Both channel A and B have the dimension of 127 mm × 127 mm in cross section. The
gap width Wg and length Lg are fixed at 228.6 mm and 1219.2 mm, respectively. The gap
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Figure 6.1: Piping and instrument diagram of the flow loop. The flow loop consists of a
test section with an adjustable gap, two centrifugal pumps which can condition the flow
rate of the channel A and B separately. Each inlet and outlet of channel A and B has
a turbine volume flow rate sensor. Two static pressure transducers and one differential
pressure transducer are installed at the inlet. A baffle box and a contraction is installed
at the inlet of each channel to trip the boundary layer. Water reservoir is used to provide
conditioned water source for PIV and fluorescein concentration measurement. A positive
displacement pump controls the amount of dye injected into the inlet of channel B.
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Figure 6.2: Cross sectional geometry of the test section and the coordinate system used
for the boundary layer description. Axes convention follows the ‘right hand rule,’ with the
origin y = 0 defined at the beginning of the gap.

height Hg can be varied from 0 to 50 mm. Fig. 6.2 shows the cross sectional geometry
of the test section. The hydraulic diameter Dh is defined as Dh = 4Aw/Pw where Aw is
the cross-sectional area and Pw is the wetted perimeter of the channel. For the given test
section, the hydraulic diameter of both channels is Dh = 127mm.

6.2.2 Flow conditioning

The 6-to-1 ratio inlet contractions were designed to produce a uniform and low turbulence
inflow to the rectangular channel. The baffle box located at the bottom of the contraction
contains perforated plates and screens, producing a relatively uniform inflow into the
contraction. Immediately after the contraction, an attempt is made to trip the boundary
layer to become turbulent. At ReDh

= 105, to have a fully developed channel flow
upstream of the gap would have require greater than 36 channel hydraulic diameters of
run-up length (approximately 4.6 m) [17], and hence it was decided to forgo having a
fully developed inflow. Fig. 6.3 shows the detailed sectional drawing of the test section,
contraction, baffle box, and the trip plate.
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Figure 6.3: Sectional geometry of the test section, contraction, baffle box and the trip plate.
Detail D shows the detailed view of the trip plate, where 0.5 mm protrusion is applied to
trip the boundary layer.
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6.2.3 Instrumentation and Equipment

The measurements performed and instrumentation used include:

1. Volumetric flow rates at the inlets

• Omega Engineering SYS/FTB-109/FLSC-18B turbine flow meter

• Manufacturer specified accuracy ±0.5 % of reading

• Manufacturer supplied gal/pulse calibration used (15-225 gpm)
Note: Side B inlet flow meter was replaced between runs 28 and 29. (The
old flow meter suffered a sudden failure. Run 29 was a repeat of run 28
conditions after replacing the flow meter, and yielded the same results, thus
giving confidence that the old flow meter had not been providing erroneous
data prior to failure.)

2. Volumetric flow rates at the outlets

• Omega Engineering FTB740 turbine flow meter with FTB700-T blind 4-20 mA
transmitters

• Manufacturer specified accuracy ±1 % FS (±6 gpm) for turbine flow meter

• Manufacturer specified accuracy ±1 % for 4-20 mA transmitter with 3 sec
response time (95% FS)

• Manufacturer supplied gal/pulse calibration used (6-600 gpm)

3. Fluorescein sodium salt concentration on both sides before and after the test section

• Turner Designs Cyclops 7 fluorometer, PN 2100-000/2108-000, serial number
2180463, F (for Fluorescein dye)

• Custom made fluorometer. Used only to compare against C7 to detect
anomalous readings as they occurred.

• Uncertainty defined as ±0.5 % or reading + 1 ppb.

• Dye used : Fluorescein sodium salt (F6377, Sigma-Aldrich)

4. Water temperature at both inlets and outlets

• Ultra precise 4-wire 100 Ohm platinum Resistance Temperature Detector
(RTD) sensor P-M-A-1/4-6-0-P-3

• Manufacturer specified accuracy ±(0.15 + 0.002|T |) °C from -100 to 450 °C
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• Checked in ice bath, and read the temperature within 0.4 °C (giving a high
reading), and at room temperature agreed with Mannix DLAF-8000 within 0.3
°C.

5. Static pressure immediately downstream of the boundary layer trip in channel B

• Absolute pressure transducer PX219-030A10V with PS-4E snubber

• Manufacturer specified accuracy ±0.25 % FS

6. Static pressures at outlets of both pumps (for the primary purpose of general system
performance monitoring and operator safety, and hence less accurate measurement
was sufficient)

• Omega Engineering PX303-200G5V

• Manufacturer specified accuracy ±0.25 % BFSL (±0.5 psi)

7. Static pressures at inlets to both baffle boxes (for the primary purpose of general
system performance monitoring and operator safety, and hence less accurate
measurement was sufficient)

• Omega Engineering PX303-200G5V

• Manufacturer specified accuracy ±0.25 % BFSL (±0.5 psi)

8. Pressure difference between sides A and B, 6.45 Dh (32.25 inches) upstream of the
gap

• Omega Engineering PX760-06WCDI

• Manufacturer specified accuracy ±0.17 % FS of nominal range

• Also measured using a water-air manometer with estimated accuracy of ±0.03

inches (±0.76 mm) H2O.

• Lines to both transducers were flushed every day to remove bubbles.

Both pumps were controlled by identical Yaskawa E7 variable frequency drives with bypass
option (model: E7LVD024CFX).
Dye injected via Pulsatron ChemTech Peristaltic Pump Model Series XPV-100 - Dual
Head. Model Number XP100-LG-LX. According to manufacturer specifications, the flow
rate is repeatable within ±5 %.
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(a) (b)

Figure 6.4: Boundary layer profiles of (a) the average and (b) RMSD streamwise velocity
at various Reynolds numbers at y/Dh = −4.45 in test section A, where the origin y = 0 is
defined at the beginning of the gap [19].

6.3 Inflow Conditions to Test Section

The incoming flow speed in each channel can be independently varied, enabling the study
of the effect of velocity difference for inter-channel mixing. Nominally the Reynolds
number based on the channels hydraulic diameter in both incoming channels was varied
ReDh

= 40k, 60k, 80k, to 10k. For nominally 20 °C water, these correspond to average
inlet flow speeds of 0.315, 0.472, 0.630 and 0.787 m/s, respectively.

The flow conditions upstream of the gap were thoroughly surveyed by performing
LDV scans of the axial velocity spanning the entire cross-section of the channel, and 1D
boundary layer scans. For the inflow LDV data, the gap was closed. The LDV data was
post-processed in Matlab, where the velocity subranging was also employed to remove
any erroneous near-zero velocity bursts from the data. Fig. 6.4 shows the boundary layer
profiles and Fig. 6.5 shows a sample 2-D slice of the inflow. Note that the inlet flow was
nearly symmetric with no strong secondary flows in the corners. Table 6.1 summarizes the
boundary layer conditions. Typical shape factor Hs is 2.4 for the turbulent flow, and 2.6 for
the laminar flow [18]. Based on the shape factor Hs in Table 6.1, one can see that at ReDh

=
100k, 80k, and 60k, the boundary layers are turbulent, while ReDh

= 40k is transient close
to laminar.
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Figure 6.5: Contours of streamwise velocity at Reynolds numbers 105 at y/Dh = −4.45 in
test section A. The channel was scanned in two sections overlapping at x/Dh = 0.5, and
the lower right corner was in the in the shadow of the channels frame. Gap is centered at
z/Dh = 0.5, y/Dh = 1 [19].
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Table 6.1: Details of the boundary layer; boundary layer thickness δ, displacement
thickness δ∗, momentum thickness θ, shear stress τw, frictional velocity uτ =

√
τw/ρ,

and viscous length l+ = v/
√

(τw/ρ). The latter two were calculated assuming water
temperature Tw = 20 °C and hence the density of water ρw = 998.3 kg/m3 and kinematic
viscosity of water ν = 1.004× 10−6 m2/s [19].

ReDh
U∞

(m/s)
δ

(mm)
δ∗

(mm)
θ

(mm) Hs

τw
(N/m2)

uτ
(m/s)

l+

(µm)

100,000 0.84 13.8 2.2 1.5 1.5 1.4 0.037 27
80,000 0.67 13.8 2.2 1.5 1.5 0.95 0.031 33
60,000 0.5 12.7 1.9 1.3 1.5 0.59 0.024 41
40,000 0.34 10.8 2.4 1 2.4 0.084 0.009 109
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CHAPTER 7

Time-averaged Inter-channel Mixing

7.1 Control Volume Analysis

In this chapter, we investigate the rate of mixing based on the dye concentration. We
introduce the mixing coefficients fA and fB to quantify the total amount of mixing, where
fA is the time-averaged fraction of water mass transferred from A to B, and fB is the
time-averaged fraction of water mass transferred from B to A. The total amount of mixing
can be calculated based on the conservation of mass of water and of the tracer (fluorescein
dye) in a fixed control volume. We define two control volumes, one for each channel, as
shown in Fig. 7.1. From mass conservation in control volumes A and B shown in Fig. 7.1,
the following four equations can be derived:

ṁAO = ṁAI(1− fA) + ṁBIfB (7.1)

ṁBO = ṁAIfA + ṁBI(1− fB) (7.2)

ṁAOCAO = ṁAICAI(1− fA) + ṁBICBIfB (7.3)

ṁBOCBO = ṁAICAIfA + ṁBICBI(1− fB) (7.4)

where ṁ is the mass flow rate in kg/s , and C is the tracer concentration in units of kg of
tracer per kg of water. Eqn. (7.1) and (7.2) are the mass conservation of water in control
volumes A and B, respectively, and Eqn. (7.3) and (7.4) are the mass conservation of tracer
in control volumes A and B. From the sum of Eqn. (7.1) and (7.2), and (7.3) and (7.4), the
mass conservation equations of the water and tracer in the global control volume can be
obtained as:

ṁAO + ṁBO = ṁAI + ṁBI , (7.5)

ṁAOCAO + ṁBOCBO = ṁAICAI + ṁBICBI , (7.6)
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Figure 7.1: Schematic drawing of the test section, inlets, outlets and control volumes
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The system is over-determined as there are four independent equations with only two
unknowns, fA and fB. As a result, four possible sets of solutions can be derived. Because
of the experimental error, the data do not satisfy the global conservation equations shown
in Eqn. (7.5) and (7.6).

f
(1)
A = 1− ṁAO(CAO − CBI)

ṁAI(CAI − CBI)
, (7.7)

f
(1)
B =

ṁAO(CAI − CAO)

ṁBI(CAI − CBI)
, (7.8)

f
(2)
A =

ṁBO(CBO − CBI)
ṁAI(CAI − CBI)

, (7.9)

f
(2)
B = 1− ṁBO(CAI − CBO)

ṁBI(CAI − CBI)
, (7.10)

f
(3)
A =

−ṁAICBI + ṁAOCBI − ṁBICBI + ṁBOCBO
ṁAI(CAI − CBI)

, (7.11)

f
(3)
B =

−ṁAICAI + ṁAOCAI − ṁBICBI + ṁBOCBO
ṁBI(CAI − CBI)

, (7.12)

f
(4)
A =

ṁAICAI − ṁAOCAO + ṁBICBI − ṁBOCBI
ṁAI(CAI − CBI)

, (7.13)

f
(4)
B =

ṁAICAI − ṁAOCAO + ṁBICAI − ṁBOCAI
ṁBI(CAI − CBI)

. (7.14)

The uncertainty of the mixing coefficient fA, δf (i)
A , can be derived from the propagation

of uncertainty. The uncertainties of the inlet and outlet flow meters δṁ were based on
manufactures specs taken to be as 0.5% of reading and 1% of full scale, respectively, as
listed in §6.2.3. The uncertainties of the tracer concentration was assumed to be accurate
within +/- (0.5% or reading + 1 ppm). Assuming all measurements are independent, the
uncertainty for f (i)

A can be computed as :

δf
(i)
A =

[(
∂f

(i)
A

∂ṁAI

)2

δṁ2
AI +

(
∂f

(i)
A

∂ṁAO

)2

δṁ2
AO +

(
∂f

(i)
A

∂ṁBI

)2

δṁ2
BI +

(
∂f

(i)
A

∂ṁBO

)2

δṁ2
BO

+

(
∂f

(i)
A

∂CAI

)2

δCAI
2 +

(
∂f

(i)
A

∂CAO

)2

δCAO
2 +

(
∂f

(i)
A

∂CBI

)2

δCBI
2 +

(
∂f

(i)
A

∂CBO

)2

δCBO
2

]1/2

.

(7.15)
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Note that the equations for f (i)
A are linear, thus the linear approximation (7.15) is the exact

solution of the uncertainty of f (i)
A . The uncertainty of δf (i)

B can be obtained by simply
substituting f (i)

A with f (i)
B in Eqn. (7.15). Averaged values of the four sets of f (i)

A and f (i)
B

derived in Eqn. (7.7) to (7.14) are used as a final solutions fA and fB.

fA =
4∑
i=1

f
(i)
A , (7.16)

fB =
4∑
i=1

f
(i)
B . (7.17)

The uncertainties of fA and fB can be derived from the propagation of uncertainty:

δfA =

[(
∂fA
∂ṁAI

)2

δṁ2
AI + · · ·+

(
∂fA
∂CBO

)2

δCBO
2

]1/2

=
1

4

[(
4∑
i=1

∂f
(i)
A

∂ṁAI

)2

δṁ2
AI + · · ·+

(
4∑
i=1

∂f
(i)
A

∂CBO

)2

δCBO
2

]1/2

. (7.18)

Data were taken by two separate acquisition system with different sampling rates. Flow
rates were recorded with 1.525 second time step, fluorescein concentrations were recorded
with 0.5470 second time step. Values of mass flow rates and dye concentrations are
averaged over the last 100 time steps before the end of the dye concentration measurement.

7.2 Results

Total of 7 flow conditions with 11 different gap sizes are investigated. Flow conditions are
defined by Reynolds numbers of the nominal inlet flows, defined based on the hydraulic
diameter of the channels, i.e.,

ReA (or B) =
V̄A (or B) Dh

ν
(7.19)

where V̄A (or B) is the nominal inlet velocity of channel A (or B),Dh is the hydraulic diameter
of channel A and B, ν is the kinematic viscosity of water. Hereinafter, Reynolds numbers
of channel A and B are written in the shorthand as Re[a, b]k for the Reynolds number of
the channel A, ReA = a× 103, and the Reynolds number of the channel B, ReB = b× 103.
For balanced flow, the following 4 cases of flow conditions are considered: Re[100 100]k,
Re[80 80]k, Re[60 60]k, and Re[40 40]k. For unbalanced flow, the following 3 cases of
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flow conditions are considered: Re[80 100]k, Re[60 100]k, and Re[40 100]k. For each
inlet condition, 11 gap heights are considered: 2, 4, 6, 8, 10, 12, 14, 16, 20, 30, and 50.

7.2.1 Balanced Flow

Fig. 7.2 to 7.5 show the result of fA and fB and their uncertainties for Re[100 100]k, Re[80
80]k, Re[60 60]k, and Re[40 40]k, respectively. All corresponding mixing coefficients
are tabulated in Table 7.1 to 7.4. Intuitively, the averaged mixing coefficients fA and fB
must have the same value at each Reynolds number as it forms an symmetric nominal flow,
which is true as shown in Fig. 7.2 to Fig. 7.4. The deviation between fA and fB in Re[40
40]k (Fig. 7.5) seems mainly due to the large uncertainty when the flow is slow.

Fig. 7.6 show the average mixing coefficients (fA + fB)/2 plotted against the
gap/channel ratio Hg/Dh. The mixing coefficients show weak dependency on Reynolds
numbers when the gap ratio Hg/Dh is larger than 0.06. However, when Hg/Dh < 0.06,
mixing coefficients deviate notably depending on Reynolds number, and there is no
recognizable mixing in any flow velocity when Hg/Dh < 0.025.

When a flow enters into a sudden contraction, a separation occurs at the downstream
of the contraction. Those separated flow forms a bottleneck, and the flow losses energy
when it passes the contraction. Based on the shape factor of the boundary layer shown in
Table 6.1, one can see that the flow conditions Re[100 100]k, Re[80 80]k, Re[60 60]k are
turbulent, while Re[40 40]k is transient (nearly laminar). Turbulence delays the separation
of the flow, thus the energy loss due to the flow separation is relatively low. As a result,
the mixing due to the coherent mode decreases significantly when the gap is narrow, and
the effect is greater when the Reynolds number is low. As the gap height becomes wider,
the effect of this separated flow at the gap entrance becomes less significant. For 0.06 <

Hg/Dh < 0.14, the mixing coefficients converge and increase proportional to the gap
height.
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Figure 7.2: Mixing coefficients fA and fB for Re = [100 100]k. Circles and squares with
bars represent the measured data of fA and fB and their uncertainties (bar) at each data
point. Solid blue and red lines show the linear trend lines of fA and y based on the results
of the gap height from 6 mm to 50 mm.

Table 7.1: Mixing coefficients fA and fB for Re = [100 100]k.

hg fA δfA fB δfB

2 0.0015 0.0192 0.0034 0.0192
4 0.0040 0.0193 0.0055 0.0192
6 0.0062 0.0192 0.0075 0.0192
8 0.0297 0.0190 0.0309 0.0189
10 0.0474 0.0186 0.0485 0.0185
12 0.0689 0.0179 0.0700 0.0178
14 0.0841 0.0178 0.0853 0.0176
16 0.0988 0.0174 0.1012 0.0173
20 0.1343 0.0169 0.1367 0.0167
30 0.2176 0.0156 0.2201 0.0154
50 0.3286 0.0142 0.3299 0.0141
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Figure 7.3: Mixing coefficients fA and fB for Re = [80 80]k. Circles and squares with bars
represent the measured data of fA and fB and their uncertainties (bar) at each data point.
Solid blue and red lines show the linear trend lines of fA and y based on the results of the
gap height from 6 mm to 50 mm.

Table 7.2: Mixing coefficients fA and fB for Re = [80 80]k.

hg fA δfA fB δfB

2 0.0010 0.0214 0.0035 0.0212
4 0.0030 0.0214 0.0041 0.0212
6 0.0070 0.0213 0.0087 0.0211
8 0.0276 0.0209 0.0305 0.0207
10 0.0438 0.0204 0.0456 0.0202
12 0.0600 0.0201 0.0623 0.0200
14 0.0783 0.0198 0.0802 0.0196
16 0.0949 0.0196 0.0971 0.0192
20 0.1303 0.0187 0.1334 0.0185
30 0.2139 0.0173 0.2172 0.0171
50 0.3277 0.0160 0.3303 0.0156
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Figure 7.4: Mixing coefficients fA and fB for Re = [60 60]k. Circles and squares with bars
represent the measured data of fA and fB and their uncertainties (bar) at each data point.
Solid blue and red lines show the linear trend lines of fA and y based on the results of the
gap height from 6 mm to 50 mm.

Table 7.3: Mixing coefficients fA and fB for Re = [60 60]k.

hg fA δfA fB δfB

2 -0.0014 0.0264 0.0011 0.0263
4 -0.0001 0.0264 0.0017 0.0263
6 0.0041 0.0262 0.0060 0.0261
8 0.0076 0.0261 0.0098 0.0261

10 0.0390 0.0254 0.0411 0.0251
12 0.0585 0.0249 0.0610 0.0246
14 0.0752 0.0244 0.0770 0.0242
16 0.0916 0.0242 0.0943 0.0237
20 0.1309 0.0232 0.1333 0.0228
30 0.2087 0.0215 0.2116 0.0212
50 0.3247 0.0199 0.3270 0.0192
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Figure 7.5: Mixing coefficients fA and fB for Re = [40 40]k. Circles and squares with bars
represent the measured data of fA and fB and their uncertainties (bar) at each data point.
Solid blue and red lines show the linear trend lines of fA and y based on the results of the
gap height from 6 mm to 50 mm.

Table 7.4: Mixing coefficients fA and fB for Re = [40 40]k.

hg fA δfA fB δfB

2 0.0018 0.0379 0.0031 0.0376
4 0.0009 0.0380 0.0022 0.0378
6 -0.0010 0.0378 0.0020 0.0379
8 0.0040 0.0377 0.0055 0.0377

10 0.0170 0.0373 0.0177 0.0370
12 0.0468 0.0362 0.0491 0.0358
14 0.0716 0.0358 0.0714 0.0347
16 0.0925 0.0348 0.0952 0.0339
20 0.1280 0.0339 0.1379 0.0323
30 0.2221 0.0320 0.2238 0.0290
50 0.3230 0.0295 0.3366 0.0268
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Figure 7.6: Comparison of average mixing coefficients of the balanced flows plotted against
the axis Hg/Dh.

7.2.2 Unbalanced Flow

Fig. 7.7 to 7.9 show the result of fA and fB and their uncertainties for Re[80 100]k, Re[60
100]k, and Re[40 100]k, respectively. Unlike balanced flows, a steady mixing due to the
pressure gradient occurs in the unbalanced flow. If mixing was due to purely one-way mass
transfer from channel B to channel A, and flow balanced perfectly by the end of the test
section, then by definition,

x = 0, and y =
1

2

(
1− ṁAI

ṁBI

)
. (7.20)

As the flow velocity difference between two channel increases, the effect of the coherent
structure to the mixing decreases, and the mixing tends to follow the pressure-induced
steady mixing. As one can see later in §8.6, the coherent structure gets stronger when two
vorticity sources at the tips of the gap have the same strength. If one vorticity source is
dominantly stronger than the other, the flow pattern is governed by a steady flow.
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Figure 7.7: Mixing coefficients fA and fB for Re = [80 100]k. Circles and squares with
bars represent the measured data of fA and fB and their uncertainties (bar) at each data
point. Solid blue and red lines show the linear trend lines of fA and y based on the results
of the gap height from 6 mm to 50 mm. Solid black line shows the mixing coefficient y
with steady mixing assumption as shown in (7.20).

Table 7.5: Mixing coefficients fA and fB for Re = [80 100]k.

hg fA δfA fB δfB

2 -0.0060 0.0216 0.0830 0.0184
4 -0.0048 0.0214 0.0909 0.0183
6 -0.0035 0.0216 0.0946 0.0184
8 -0.0032 0.0215 0.0951 0.0185

10 0.0008 0.0217 0.0974 0.0184
12 0.0212 0.0207 0.1137 0.0179
14 0.0417 0.0204 0.1308 0.0176
16 0.0575 0.0200 0.1426 0.0174
20 0.0968 0.0193 0.1763 0.0169
30 0.1683 0.0181 0.2342 0.0159
50 0.2693 0.0167 0.3145 0.0147
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Figure 7.8: Mixing coefficients fA and fB for Re = [60 100]k. Circles and squares with
bars represent the measured data of fA and fB and their uncertainties (bar) at each data
point. Solid blue and red lines show the linear trend lines of fA and y based on the results
of the gap height from 6 mm to 50 mm. Solid black line shows the mixing coefficient y
with steady mixing assumption as shown in (7.20).

Table 7.6: Mixing coefficients fA and fB for Re = [60 100]k.

hg fA δfA fB δfB

2 0.0000 0.0246 0.1661 0.0176
4 -0.0064 0.0242 0.1848 0.0177
6 -0.0052 0.0244 0.1898 0.0178
8 -0.0042 0.0242 0.1928 0.0178

10 -0.0120 0.0247 0.1875 0.0179
12 -0.0021 0.0238 0.1938 0.0177
14 -0.0049 0.0243 0.1926 0.0177
16 0.0010 0.0238 0.1981 0.0177
20 0.0270 0.0232 0.2135 0.0174
30 0.0945 0.0219 0.2537 0.0168
50 0.1868 0.0210 0.3074 0.0157
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Figure 7.9: Mixing coefficients fA and fB for Re = [40 100]k. Circles and squares with
bars represent the measured data of fA and fB and their uncertainties (bar) at each data
point. Solid blue and red lines show the linear trend lines of fA and y based on the results
of the gap height from 6 mm to 50 mm. Solid black line shows the mixing coefficient y
with steady mixing assumption as shown in (7.20).

Table 7.7: Mixing coefficients fA and fB for Re = [40 100]k.

hg fA δfA fB δfB

2 -0.0059 0.0311 0.2264 0.0180
4 -0.0051 0.0290 0.2704 0.0177
6 -0.0074 0.0290 0.2844 0.0177
8 -0.0095 0.0290 0.2881 0.0178

10 -0.0150 0.0293 0.2868 0.0178
12 -0.0069 0.0282 0.2912 0.0178
14 -0.0051 0.0285 0.2924 0.0177
16 -0.0085 0.0282 0.2929 0.0177
20 -0.0093 0.0284 0.2918 0.0178
30 0.0043 0.0280 0.2960 0.0177
50 0.1069 0.0262 0.3353 0.0172

148



CHAPTER 8

Visualization of the Coherent Structures within
the Mixing Gap Flow Fields by Proper

Orthogonal Decomposition

8.1 Introduction

In this chapter, we discuss how to extract the coherent structure from the velocity field data
of the gap measured by the Particle Image Velocimetry (PIV) using the Proper Orthogonal
Decomposition (POD) method, and provide four most energetic coherent structures of the
gap mixing flow extracted by POD.

A coherent structure in fluid mechanics is defined as ‘a connected, large-scale
turbulent fluid mass with a phase-correlated vorticity over its spatial extent [1].’ A
coherent structure differs from random (incoherent) turbulence in that it has a periodic (if
not, at least quasi-periodic) structure, and creates large area of mixing which transports
mass, heat, and momentum. Study of coherent structures has been an important topic in
turbulent mechanics to understand the mixing mechanism. Furthermore, because it is
periodic, a resonance with the external force can occur which may bring a critical damage
to the enclosing body.

In the experimental study of turbulent flow, phase-averaging has been widely used to
separate time periodic coherent structures from random turbulence [3]. Phase-averaging
is the ensemble average of any property of fluid at a particular phase [1] of a predefined
frequency. With sufficiently large size of data, any phase-random structure is canceled
during the averaging process, which leaves only the periodic structures with the chosen
frequency and its harmonics. Here, we are going to use the classical phase-averaging that
requires time-resolved measurement data.

Another relatively modern approach is the Proper Orthogonal Decomposition (POD).
Unlike the frequency based method such as Fourier transform where the basis functions are
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predefined as sine and cosine functions, POD extracts the set of basis functions from the
data structure. POD has been introduced to the fluid community by Lumley as a continuous
form in 1967 [4, 5], but the same concept has been developed outside the fluid community
since 1901 [6] under a different name, Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD). POD has two benefits analyzing the flow pattern: 1) it is
insensitive to the outliers, i.e., it can extract the mode (or a pattern) even when the data is
noise-corrupted, not periodic, or missing frames, 2) it decomposes the data into spatial and
temporal basis, which helps understand the structure of the coherent mode. We will show
how the POD can outperform the phase-averaging in §8.4.3.

8.2 Particle Image Velocimetry

We obtained the velocity field data which are used to evaluate the coherent structure by
Particle Image Velocimetry (PIV). PIV is a flow visualization technique by tracking the
seeded particles in the fluid. The particles are preferably small, O(10 − 100)µm, and
neutrally buoyant enough so that it follows the flow motion with minimum interference.
At each time step, two images of the particles are taken consecutively using camera with
the light source from a sheet of laser. Raw images are first filtered to reduce noise, then,
velocity vectors are computed based on the cross-correlation of multiple subset windows of
two consecutive images. As a result, the PIV generates a time series of 2D velocity vector
fields. Generally, there are missing data due to noise or 3D flow effect. In those cases, the
software applies low pass spatial filtering to reduce noise, and fills the missing data using a
interpolator.

Because of the large size of the gap, and the obstructing structures designed to adjust
the gap height, all gap area cannot be fit into a single field of view (FOV) with a desirable
resolution. Thus, the particle images are taken in three separated FOVs. Those data with
different FOV are not time-synchronized as we use one camera moving up and down
manually to have three different FOVs. Fig. 8.1 shows the location of the FOVs in the
gap window with respect to the origin at the center bottom of the gap. Since we fixed the
laser sheet at the center of the gap height, all particle images are acquired at the center of
the gap height as well as 2D velocity fields.

8.2.1 Instrumentation

We used the following hardware/software instruments for PIV recording/processing:

• Recording software: DaVis 7.2.2.470, Windows XP (32 bit).
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Figure 8.1: Locations of the three Fields Of View (FOV) that has been used for PIV and
its coordinate system. Origin (x = y = 0) is defined at the center, bottom plane of the
gap. Hatched area shows the location where the particle image was taken. Note that the
coordinate system of PIV is different from that of LDV shown in Fig. 6.2. Also, note that
the FOVs are not exactly centered on the gap width. All dimensions are in millimeters, and
accurate within ±2 mm.
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• Processing software: DaVis 8.1.4.36762, Windows 7 (64 bit).

• Seeding particles: Potters LCC 110P8, nominal size 11.7 microns.

• ImagerPro camera, S/N VC04-0025 EN: 04000006, 1600x1200 pixels, 12bit

• Lens: Nikon 28mm, 1:2.8D, AF Nikkor.

• Laser: Nd:YAG Dual Cavity pulsed laser - Quantel Evergreen PIV 200, 2 x 200
mJ/pulse at 532 nm, 15 Hz pulse rate, single power supply.

• Light arm.

• Traverse: manually traversed on Linos-rails.

All other instruments that are not shown here are identical with §6.2.3.

8.2.2 Data Processing

We used the following settings for data processing to extract the flow velocity vectors from
the raw particle images using DaVis 8.1.4.36762:

• Subtract time filter

– Subtract Gaussian average

– Filter length: 3 images

– Output format: same as input format

• Subtract sliding background, scale length: 8 pixels

• Masking

– Geometric mask, enable inside,shapes saved in masksettings_FOVx_xxmm.set
where x is the FOV number, xx is the gap height.

• Vector calculations

– Use GPU

– Multi-pass (decreasing size) cross-correlation

* Pass 1: 128× 128, square, 25% overlap, maximum shift: 30 pixels

* Pass 2: 64× 64, square, 25% overlap, maximum shift: 16 pixels

* Pass 3: 32× 32, square, 25% overlap, maximum shift: 8 pixels
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* Pass 4: 32× 32, square, 25% overlap, maximum shift: 4 pixels

* High-accuracy mode for final passes

– Multi-pass options: initial shift 0, symmetric shift

– Multipass post processing

* 1 pass median filter: remove if > 2×r.m.s of neighbor pixels

* 1 pass smooth filter 3× 3

PIV generates massive amount of velocity field data for each flow condition. Those
data cannot be directly compared with other data generated by different methods, for
example, numerical simulations, due to its large size and randomness. Thus, we need
to process/compress the data to analyze the behavior of the flow or to compare with other
data. In the following sections, we will discuss how we can extract the meaningful data,
such as the dominant frequency and the coherent modes, from the raw velocity data.

8.3 Frequency Analysis of the Coherent Structures

Predicting the frequency of the vortex shedding is crucial for preventing structural damages.
Generally, the vortex shedding has more than one frequency mode. In fact, every frequency
mode has non-zero energy due to the random turbulence. Thus, we need to find a way to
characterize the vortex shedding in a single number. To characterize the frequency of the
vortex shedding, we define the dominant period as follows. Denote u(i, j, t) and v(i, j, t) be
the transverse and vertical flow velocity data, respectively, where i and j are 2D spatial axis
indices, and k is the time index. The peak frequency fp of each velocity component at every
position (i, j) is defined as the frequency component that has the maximum amplitude:

f (u)
p (i, j) = arg max

f

∣∣∣Fk{u(i, j, k)
}

(f)
∣∣∣, (8.1)

f (v)
p (i, j) = arg max

f

∣∣∣Fk{v(i, j, k)
}

(f)
∣∣∣, (8.2)

where Fk{·} denotes 1D Discrete-Time Fourier Transform (DTFT), and f is the frequency.
Then, the dominant peak frequency fd is defined as the most frequent peak frequency.

fd = mode
[
fp
]
, (8.3)

where fp = {f
∣∣f = f

(u)
p (i, j) or f = f

(v)
p (i, j) for all 1 ≤ i ≤ Ny and 1 ≤ j ≤ Nx}. As

we have finite size of discretized data, we cannot find true fd based on the discrete data.
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Thus, we use Discrete Fourier Transform (DFT) instead of DTFT, i.e., fd is chosen from a
finite set of discretized frequency.

Strouhal discovered that the frequency of the vortex shedding around a circular cylinder
varies linearly with the nominal flow velocity, and proposed the following non-dimensional
number that describes the vortex shedding frequency called Strouhal number:

St =
fdL

V
, (8.4)

where fd is the dominant peak frequency defined in Eqn. (8.3), L is the characteristic
length, and V is the characteristic flow velocity. For our study, we use the gap width Wg

for the characteristic length, and nominal velocity at the channel inlet for the characteristic
flow velocity.

While the vortex shedding in a balanced flow has a distinctive dominant peak frequency,
the vortex shedding behavior in a unbalanced flow is more chaotic, and the energy is
distributed to a wide range of frequency. For this reason, we could only obtain the Strouhal
number for balanced flows. Fig. 8.2 shows the Strouhal number of each balanced flow
condition. Here, we can see that the Strouhal number is less dependent on the Reynolds
number, compared with the gap height.

To verify that the PIV data obtained is plausible, we compare the Strouhal numbers
based on the dominant frequency described in Eqn. (8.3) with other existing studies.
Unfortunately, there were not many studies regarding the gap mixing between two
rectangular channels which specified Strouhal numbers and the flow entrance conditions
clearly. Meyer and Rehme [7] studied Strouhal number for the vortex shedding in the
mixing gap between two rectangular channels, but their test section has no gap end,
extending the identical sectional shape from the start to the end of the channel, which
inherently differs from our test section that has the gap ends on both upstream and
downstream. When there is no gap end, the velocity difference between the gap and
the channel is generated entirely by the development of boundary layer in the gap, and
the shear layers start to form parallel to the gap edge. In this case, the vortex shedding
frequency strictly depends on the Reynolds number as the main source of the shear flow is
the effect of the boundary layer. On the other hand, when the gap is blocked at the end, the
flow velocity at the gap starts from zero at the gap which is the main source of the velocity
difference between the gap and channels. The shear layers start from the tip of the gap
end, and form two converging diagonal lines, then merged at the center of the gap. The
influence of the Reynolds number to the St is relatively low as the main source of the shear
flow is the abrupt change of the flow velocity at the gap end.
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Consequently, instead of gap-channel experiments with no gap end, we find the
geometric similarity from the flow around the flat plate with a semi-circle leading edge
by Parker and Welsh [8]. Assume the boundary layer starts after the contraction, we can
compare the aspect ratio of the entrance length/gap width with the aspect ratio of the plate
length/plate thickness ratio of the flat plate. Fig. 8.2 shows the area where the St of the
mixing gap lies on the flat plate experiments. The flat plate experiment was carried out
in an open channel, so the result cannot be exactly same, but the Strouhal number of the
semi-circular leading edge plate with similar aspect ratio matches within the range of
mixing gap Strouhal numbers.

Figure 8.2: Strouhal number of the balanced flows Re[100 100]k (blue triangle) and Re[40
40]k (red square) plotted against the gap height/gap width ratio.
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Figure 8.3: Geometric similarity between the contracted channel flow with a gap and the
flow around the semi-circular leading edge plate. Dotted line indicates the assumed starting
points of the boundary layers.
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Figure 8.4: Vortex shedding Strouhal number for flat plates at zero incidence (excerpted
from Parker and Welsh 1983 [8]). Filled red box on the graph shows the range where
the current gap mixing Sts of the balanced flows are bounded in, St = 0.201 to 0.253 at
Le/Wg ' 4, where Le is the entrance length defined in Fig. 8.3.
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8.4 Methods to Identify Coherent Structures and Mixing
Coefficients from the Particle Image Velocimetry Data

8.4.1 Phase-averaging

Phase-averaged image is obtained by averaging a set of data points at the same phase
(ensembles) based on the predefined frequency. In our case we use the dominant peak
frequency described in (8.3). Here, we chose two-period interval (2/fd) to include the
possible subharmonic mode by doubling the frequency resolution.

û(i, j, p) =
1

Nq

Nq∑
q=0

u

(
i, j,

(q + p/Np)fs
fd/2

)
, (8.5)

v̂(i, j, p) =
1

Nq

Nq∑
q=0

v

(
i, j,

(q + p/Np)fs
fd/2

)
. (8.6)

where p is the discrete phase index, fs is the sampling frequency, Nq is the number of
complete two periods in the dataset Nq = bNt ∆t fd/2c, b·c is the round off operator,
and Np is the number of phase angles to be evaluated in the given interval. In this study,
2D velocity field data are measured for 4000 time steps with the frequency of 12 Hz, and
total phase angle of 720 degrees are equally divided into 64 phase steps (Np = 64) for
phase-averaging.

Generally, measurement data at the exact phases for (8.5) and (8.6) are not available
as the measurement data are recorded in discrete time. The data at the exact phase are
estimated by the Piecewise Cubic Hermite Interpolating Polynomials (PCHIP) provided in
Matlab.

Phase-averaging does not give a quantitative data such as true energy and the results
can even give a false impression that every mode is exactly periodic. We will discuss the
drawback of the phase-averaging further in §8.4.3 with some examples.

8.4.2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a method to extract a set of basis functions
(vectors) that have the most energetic modes sequentially. Let two functions f and g are
defined on a interval Ω. An inner product of two functions (f, g) and a norm of a function
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||f || are defined as

(f, g) =

∫
Ω

f(x)g∗(x)dx, (8.7)

||f || = (f, f)1/2. (8.8)

In a continuous function space, POD of a function ψ can be defined as the following
optimization problem [9]:

φ = arg max
φ

〈(ψ, φ)〉
||φ||2

, (8.9)

where 〈·〉 is an averaging operator. However, the continuous function ψ for the
experimental data of turbulent flows is not usually available. Instead, we have a set
of discrete time - discrete space data, so we use discrete data method which is called
as Singular Value Decomposition (SVD). Assuming data is represented by a matrix
A ∈ RM×N that has spatial domain as rows and time domain as columns, SVD theorem
states that there exist matrices L, Σ, and R such that

A = LΣR
T
, (8.10)

L = [l1 l2 · · · lM ] and R = [r1 r2 · · · rN ] are orthogonal matrices, i.e., all its columns
are orthonormal to each other, and Σ is a diagonal matrix with all its diagonal elements
greater than or equal to zero. The diagonal elements of Σ are sorted in descending order,
σ1 ≥ σ2 ≥ · · · ≥ σL ≥ 0, where L is the minimum between M and N .

The most energetic temporal basis vector R1 which corresponds to σ1 is obtained by
solving the following optimization problem:

r1 = arg max
r1

||Ar1||2
||r1||2

= arg max
r1

rT1 ATAr1

rT1 r1

. (8.11)

Since every column of R is orthonormal to each other, the second most energetic temporal
basis vector r2 can be obtained by imposing additional constraint:

r2 = arg max
r2

||Ar2||2
||r2||2

= arg max
r2

rT2 ATAr2

rT2 r2

.

such that rT1 r2 = 0 such that rT1 r2 = 0

(8.12)

One can find that the optimization problem shown above is identical with the principal
component analysis (PCA), and R is the eigenvector matrix of ATA [10, 11]. Similarly,
the most energetic spatial basis vector l1 can be obtained by transposing the data matrix A:
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l1 = arg max
l1

||ATl1||2
||l1||2

= arg max
l1

lT1 AATl1
lT1 l1

, (8.13)

and L is the eigenvector matrix of AAT.
SVD is a linear decomposition which does not necessarily reveal the underlying physics

of coherent structures. Coherent structures are nonlinear phenomena, and they cannot be
superimposed. However, SVD compresses data so that they can be easily compared with
other results.

SVD requires centering the data by subtracting the mean value of u ∈ RNy×Nx×Nt and
v ∈ RNy×Nx×Nt so that SVD can only deal with the fluctuation:

u′(i, j, k) = u(i, j, k)− ū(i, j), (8.14)

v′(i, j, k) = v(i, j, k)− v̄(i, j), (8.15)

where ū and v̄ are the sample mean of u and v, respectively. Then, we need to reorder the
3D data u and v into 2D matrix Au ∈ R2NyNx×Nt:

Au =



v′(1, 1, 1) v′(1, 1, 2) . . . v′(1, 1, Nt)

v′(1, 2, 1) v′(1, 2, 2) . . . v′(1, 2, Nt)
...

... . . . ...
v′(1, Nx, 1) v′(1, Nx, 2) . . . v′(1, Nx, Nt)

v′(2, 1, 1) v′(2, 1, 2) . . . v′(2, 1, Nt)

v′(2, 2, 1) v′(2, 2, 2) . . . v′(2, 2, Nt)
...

... . . . ...
v′(Ny, Nx, 1) v′(Ny, Nx, 2) . . . v′(Ny, Nx, Nt)

u′(1, 1, 1) u′(1, 1, 2) . . . u′(1, 1, Nt)

u′(1, 2, 1) u′(1, 2, 2) . . . u′(1, 2, Nt)
...

... . . . ...
u′(1, Nx, 1) u′(1, Nx, 2) . . . u′(1, Nx, Nt)

u′(2, 1, 1) u′(2, 1, 2) . . . u′(2, 1, Nt)

u′(2, 2, 1) u′(2, 2, 2) . . . u′(2, 2, Nt)
...

... . . . ...
u′(Ny, Nx, 1) u′(Ny, Nx, 2) . . . u′(Ny, Nx, Nt)



(8.16)

The sequence of the u and v, and their spatial indices i and j do not affect the uniqueness of
the solution as long as they are converted to actual domain correspondingly after the SVD
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is performed.
After SVD is performed, each column vector of L (left singular vector) and R (right

singular vector) represents the spatial and temporal basis vector, respectively. To have
the basis vector in 2D, column vectors of L must be reordered back to 2D velocity fields
according to the scheme shown in (8.16).

Total of eight most energetic modes are obtained for the velocity field data of each field
of view (FOV). In most cases, partial energy sum up to eight most energetic modes exceed
90 % of the total energy. Energy ratio of each modes are shown separately in §8.6 for each
specific flow condition.

8.4.3 Comparison between SVD modes after phase-averaging and
without phase-averaging

As mentioned earlier, coherent structures are only quasi-periodic, and they keep interacting
with the random turbulence and slightly change their dominant peak frequency. When we
use the frequency-based method such as phase-averaging, there is high possibility that we
actually filter out some valuable information, because the only frequency components that
survive after phase-averaging are the set of harmonics of the frequency that was used for
phase-averaging.

Even when the coherent structure is strongly periodic, while the amplitude of the first
harmonic may be well-preserved, but the higher harmonics are still vulnerable to the error.
Because we use DFT to find the dominant peak frequency, there is a discretization error
between the estimated and actual dominant peak frequency. As we move up to the higher
harmonics, this error is amplified and the harmonic frequency of the discretized dominant
peak frequency deviates significantly from the actual harmonics of the dominant peak
frequency.

Fig. 8.5 and 8.6 show the first left and right singular vectors of the velocity data
without phase-averaging and with phase-averaging, respectively. Fig. 8.7 and 8.8 show
the first left and right singular vectors of the velocity data without phase-averaging and
with phase-averaging, respectively. The flow condition Re[100 100]k is symmetric, thus
we can expect that the corresponding modes are either symmetric, or anti-symmetric. SVD
results without phase-averaging in Fig. 8.5 and 8.7 show that the coherent structures of
Re[100 100]k are truly symmetric or anti-symmetric. While the first harmonic mode in the
SVD results with phase-averaging in Fig. 8.6 conforms the symmetry, the second harmonic
mode in the SVD results with PIV in Fig. 8.8 have a deformed shaped that is not symmetric.
To explain why the phase-averaging is erroneous, we need to see the Fourier transform of
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each temporal singular vector. Fig. 8.9 show the power spectral densities of the first six
right (temporal) singular vectors, and Fig. 8.10 show the detailed power spectral densities
of the squared areas in Fig. 8.9. One can see that the actual dominant peak frequency does
not lie on the discrete frequency grid, and the energy is split into two discrete frequency
modes. Phase-averaging only saves the exact frequency mode, which means that half of
the actual fluctuation energy. Even worse, the second harmonic mode of the estimated
dominant frequency is one step off from the actual second harmonic mode, and almost all
its energy is lost during the phase-averaging.

In summary, phase-averaging does not preserve the energy quantity, and it can produce
substantial error especially for the higher harmonic modes. In this study, we will only
use the SVD data without applying phase-averaging due to the observed deterioration
of data when phase-averaging is applied. Computing the entire set of SVD without
phase-averaging can take large computational resources, but we only need a few (six)
highest modes to account for more than 80% of the total fluctuation energy.

8.5 Implementation

8.5.1 Matlab codes

Matlab is used to process the phase-averaging, vorticity calculation, and then SVD.
Corresponding m files and result files are explained below.

1. create2DVec_SJ.m Parse the raw data stored in the Matlab structure ‘Frames’
and extract velocity fields and grid information.

2. getTimeStamp.m Parse the raw data stored in the Matlab structure ‘Frames’
and extract time stamp information.

3. vc7_read_v8.m Core routine, read velocity vectors from vc7 binary files and
perform the singular value decomposition.

4. batch_copy_file.m Copy all processed data to the designated folder.

5. batch_read_PA_SVD.m Read folder locations where the data sets are stored,
adjust the image grid based on the fields of view, then call vc7_read_v6.m for
each dataset.

6. ListOfFolderPaths_5b_SJ.m List the folder location where raw dataset is
stored for each case number.
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Figure 8.5: First left and right singular vectors of the velocity data of the flow condition
Re[100, 100]k, gap size 50 mm, FOV 1. The first and second singular modes correspond
to the dominant frequency.

Figure 8.6: First left and right singular vectors of the phase-averaged velocity data of the
flow condition Re[100, 100]k, Hg = 50 mm, FOV 1.
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Figure 8.7: Third left and right singular vectors of the original velocity data of the flow
condition Re[100, 100]k, Hg = 50 mm, FOV 1. The third and fourth singular modes
correspond to the second harmonic of the dominant frequency. The streamline shows
symmetric coherent structure.

Figure 8.8: Third left and right singular vectors of the phase-averaged velocity data of the
flow condition Re[100, 100]k, Hg = 50 mm, FOV 1. The symmetric structure shown in
8.7 is broken during the phase-averaging process.

164



Figure 8.9: Power spectral densities of the first six right singular vectors of the flow
condition Re[100, 100]k, Hg = 50 mm, FOV 1. Each set of Fourier coefficients are shifted
by i − 1 upward, where i is the order of each mode in terms of the magnitude of singular
values. Red squares show the location where the detailed images in Fig. 8.10 are taken.

Figure 8.10: Detailed power spectral densities of the 1st (up) and 3rd (down) right singular
vectors of the flow condition Re[100, 100]k, Hg = 50 mm, FOV 1. The dominant peak
frequency does not lie on the discrete frequency grid exactly, which makes the estimated
dominant peak frequency deviates from the actual dominant frequency slightly. As the
phase-averaging only leaves the exact harmonics of the discrete dominant peak frequency,
the third singular modes, which corresponds to the second harmonic, lost most of its data
due to the offset of the actual second harmonic frequency.
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7. process_Strouhal.m obtain Strouhal number from the frequency
information

8.5.2 Data files

Processed data are stored in the following formats.
Matlab data files

1. raw_data_v3.mat raw data in Matlab format

(a) U_dat raw data stored in cell array, vertical velocity in U_dat{1} and
transverse velocity in U_dat{2}

(b) t_stamp acquisition time stamps (note: time stamp data has not been used
because of the possible error, and time steps are assumed to be constant. It
needs further verification).

2. SVD_Ns=XX.mat Singular value decomposition results for the velocity field and
vorticity field. XX denotes the number of highest energetic modes acquired.

(a) grd_X, grd_Y grid information of the spatial domain

(b) grd_T grid information of the time domain

(c) grd_F grid information of the frequency domain

(d) U_dat_mean time mean of the velocity data in cell array

(e) C_dat_mean time mean of the vorticity data

(f) freq_dom dominant peak frequency

(g) U_L_svd left (spatial) singular vector of the velocity data

(h) U_S_svd singular value matrix of the velocity data

(i) U_R_svd right (temporal) singular vector for the velocity data

(j) energy_ratio_vel accumulated energy ratio of the velocity singular
modes, i.e.,
energy_ratio_vel(n) = (

∑n
i=1 σ

2
i )/(

∑L
i=1 σ

2
i )

PNG files

1. freq_analysis_XX.png Frequency analysis result of

(a) XX=1 Map of peak frequency for the vertical velocity
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(b) XX=2 Map of peak frequency for the transverse velocity

2. VEL_time_avg_1.png Time-averaged velocity field, shown as streamlines.

3. VTC_time_avg_1.png Time-averaged vorticity field.

4. SVD_XXX_sval_Y.png Singular values,

(a) XXX ‘vel’ for velocity field, ‘vtc’ for vorticity field

(b) Y ‘1’ for singular value plot, ‘2’ for partial sum energy ratio

5. SVD_XXX_svec_YYY.png Left and right singular vectors,

(a) XXX ‘vel’ for velocity field, ‘vtc’ for vorticity field

(b) YYY ‘contour’ for contour plots, ‘stream’ for streamline plots

6. SVD_XXX_svec_FFT_1.png Power spectral density of the right singular
vectors. XXX denotes ‘vel’ for velocity field, ‘VTC’ for vorticity field. (note: By
convention of SVD, all left and right singular vectors are normalized. Amplitude
does not have a physical meaning, but one can see which harmonic is dominant in
each mode.)
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8.6 Mean, Singular values, and Singular Vectors of Each
Flow Condition

In this section, we summarize the SVD results in the following manner:

1. Time-averaged velocity field

2. Normalized singular values, and the energy proportion of each singular mode to the
total fluctuation energy. We define the normalized singular value as

σ̂s =
σs√

NxNyNt

, (8.17)

and the energy proportion as

Ês =
σ2
s∑Ns

r=1 σ
2
r

. (8.18)

Note that the normalized singular value is equivalent to the root mean squared
deviation of the mode. Identifying all singular modes are not only time-consuming,
but also not required to compute

∑Ns
r=1 σ

2
r . Instead, we can use the identity of

Frobenius norm. ∑
r

σ2
r = ||Au||2F =

∑
m

∑
n

a2
m,n. (8.19)

3. Four largest left and right singular vectors.

4. Power spectral density of the first six right singular vectors. We define the power
spectral density as

Φr(s, w) =



2

Nk

|R(s, l)|2 if l = 2, 3, · · ·Nk/2,

1

Nk

|R(s, l)|2 if l = 1 or Nk/2 + 1,

0 otherwise

(8.20)

where R(s, w) is the DFT of the sth right singular vector rs(k). w is the frequency
index. All DFT conventions including indices in Eqn. (8.20) follow the Matlab
R2014a FFT(·) conventions. By parseval’s theorem,

∑
w Φr(s, w) = 1.

5. Detailed power spectral densities of the first and third right singular vectors.
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8.6.1 Re[100 100]k, Hg = 10mm

(a)

(b)

(c)

Figure 8.11: Time-averaged velocity field of Re[100 100]k, Hg = 10 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.12: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[100 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2: (c) and (d),
FOV 3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.13: Singular vectors of the first (left) and the second (right) modes, Re[100 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.14: Singular vectors of the third (left) and the fourth (right) modes, Re[100 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.15: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[100 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.2 Re[100 100]k, Hg = 20mm

(a)

(b)

(c)

Figure 8.16: Time-averaged velocity field of Re[100 100]k, Hg = 20 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.17: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[100 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2: (c) and (d),
FOV 3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.18: Singular vectors of the first (left) and the second (right) modes, Re[100 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.19: Singular vectors of the third (left) and the fourth (right) modes, Re[100 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.20: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[100 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.3 Re[100 100]k, Hg = 50mm

(a)

(b)

(c)

Figure 8.21: Time-averaged velocity field of Re[100 100]k, Hg = 50 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.22: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[100 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2: (c) and (d),
FOV 3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.23: Singular vectors of the first (left) and the second (right) modes, Re[100 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.24: Singular vectors of the third (left) and the fourth (right) modes, Re[100 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.

182



(a) (b)

(c) (d)

(e) (f)

Figure 8.25: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[100 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.4 Re[40 40]k, Hg = 10mm

(a)

(b)

(c)

Figure 8.26: Time-averaged velocity field of Re[40 40]k, Hg = 10 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.27: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[40 40]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.28: Singular vectors of the first (left) and the second (right) modes, Re[40 40]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.29: Singular vectors of the third (left) and the fourth (right) modes, Re[40 40]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.30: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[40 40]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.5 Re[40 40]k, Hg = 20mm

(a)

(b)

(c)

Figure 8.31: Time-averaged velocity field of Re[40 40]k, Hg = 20 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.32: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[40 40]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.33: Singular vectors of the first (left) and the second (right) modes, Re[40 40]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.34: Singular vectors of the third (left) and the fourth (right) modes, Re[40 40]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.35: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[40 40]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.6 Re[40 40]k, Hg = 50mm

(a)

(b)

(c)

Figure 8.36: Time-averaged velocity field of Re[40 40]k, Hg = 50 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.37: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[40 40]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.38: Singular vectors of the first (left) and the second (right) modes, Re[40 40]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.39: Singular vectors of the third (left) and the fourth (right) modes, Re[40 40]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.40: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[40 40]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.7 Re[80 100]k, Hg = 10mm

(a)

(b)

(c)

Figure 8.41: Time-averaged velocity field of Re[80 100]k, Hg = 10 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.42: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[80 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.43: Singular vectors of the first (left) and the second (right) modes, Re[80 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.44: Singular vectors of the third (left) and the fourth (right) modes, Re[80 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.45: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[80 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.8 Re[80 100]k, Hg = 20mm

(a)

(b)

(c)

Figure 8.46: Time-averaged velocity field of Re[80 100]k, Hg = 20 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.47: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[80 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.48: Singular vectors of the first (left) and the second (right) modes, Re[80 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.49: Singular vectors of the third (left) and the fourth (right) modes, Re[80 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.50: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[80 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.

208



8.6.9 Re[80 100]k, Hg = 50mm

(a)

(b)

(c)

Figure 8.51: Time-averaged velocity field of Re[80 100]k, Hg = 50 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.52: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[80 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.53: Singular vectors of the first (left) and the second (right) modes, Re[80 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.54: Singular vectors of the third (left) and the fourth (right) modes, Re[80 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.55: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[80 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.10 Re[60 100]k, Hg = 10mm

(a)

(b)

(c)

Figure 8.56: Time-averaged velocity field of Re[60 100]k, Hg = 10 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.57: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[60 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.58: Singular vectors of the first (left) and the second (right) modes, Re[60 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.59: Singular vectors of the third (left) and the fourth (right) modes, Re[60 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.60: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[60 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.11 Re[60 100]k, Hg = 20mm

(a)

(b)

(c)

Figure 8.61: Time-averaged velocity field of Re[60 100]k, Hg = 20 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.62: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[60 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.63: Singular vectors of the first (left) and the second (right) modes, Re[60 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.64: Singular vectors of the third (left) and the fourth (right) modes, Re[60 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.65: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[60 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.12 Re[60 100]k, Hg = 50mm

(a)

(b)

(c)

Figure 8.66: Time-averaged velocity field of Re[60 100]k, Hg = 50 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.67: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[60 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.68: Singular vectors of the first (left) and the second (right) modes, Re[60 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.69: Singular vectors of the third (left) and the fourth (right) modes, Re[60 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.70: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[60 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.13 Re[40 100]k, Hg = 10mm

(a)

(b)

(c)

Figure 8.71: Time-averaged velocity field of Re[40 100]k, Hg = 10 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.72: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[40 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.73: Singular vectors of the first (left) and the second (right) modes, Re[40 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.74: Singular vectors of the third (left) and the fourth (right) modes, Re[40 100]k,
Hg = 10 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.75: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[40 100]k, Hg = 10 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.14 Re[40 100]k, Hg = 20mm

(a)

(b)

(c)

Figure 8.76: Time-averaged velocity field of Re[40 100]k, Hg = 20 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.77: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[40 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.78: Singular vectors of the first (left) and the second (right) modes, Re[40 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.79: Singular vectors of the third (left) and the fourth (right) modes, Re[40 100]k,
Hg = 20 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.80: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[40 100]k, Hg = 20 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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8.6.15 Re[40 100]k, Hg = 50mm

(a)

(b)

(c)

Figure 8.81: Time-averaged velocity field of Re[40 100]k, Hg = 50 mm; FOV 1 (a),
FOV 2 (b), and FOV 3 (C). Red arrows indicate velocity vectors, and blue lines indicate
streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.82: Normalized singular values (left) and their energy proportions (right) of the
first eight modes, Re[40 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2: (c) and (d), FOV
3: (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8.83: Singular vectors of the first (left) and the second (right) modes, Re[40 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.

241



(a) (b)

(c) (d)

(e) (f)

Figure 8.84: Singular vectors of the third (left) and the fourth (right) modes, Re[40 100]k,
Hg = 50 mm; FOV1: (a) and (b), FOV2: (c) and (d), FOV3: (e) and (f). Red arrows are
velocity vectors, and blue lines are streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.85: Power spectral densities of the first four right singular vectors (a), (c), (e), and
the enlarged images of the power spectral densities of the first (top) and the third (bottom)
right singular vectors (b), (d), (f), Re[40 100]k, Hg = 50 mm; FOV 1: (a) and (b), FOV 2:
(c) and (d), and FOV 3: (e) and (f). Red squares on (a), (c), and (e) show the areas where
(b), (d), and (f) are taken, respectively.
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CHAPTER 9

Estimation of the Mixing Coefficients Based on
Particle Image Velocimetry data

9.1 Introduction

In §7, we estimated the time-averaged mixing rate, represented by the ratio between the
volume transfer flow rate and the nominal inlet flow rate, based on the fluorescein dye
concentration. While mixing estimation based on the dye concentration gives us valuable
information of total mixing rate, it does not provide what is causing the mixing, for
example, whether the driving force of the mixing is the steady flow or the unsteady flow.
In this chapter, we will re-estimate the mixing coefficients using the data based on the
singular value decomposition (SVD) of the velocity field obtained by the Particle Image
Velocimetry (PIV) shown in §8. To use SVD, we first assume that the mixing can be
linearly decomposed. By checking each singular mode, we identify how each singular
mode contribute to the mass transfer between Channel A and B. Then, we calculate the
global mixing coefficient of each singular mode that contribute to the global mixing, and
add them together to have the total mixing coefficient. Due to the gap areas where PIV
data is not available, we provide some rough approximation methods to fill the missing
flow information based on the characteristics of the coherent modes. §9.2 explains how to
compute the mixing coefficients for steady and unsteady flows separately, and §9.3 shows
comparisons between the mixing coefficient obtained by the dye concentration and the
SVD based predictions.
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9.2 Method to estimate the mixing coefficients from the
SVD data

Following the classification of the turbulence flow described in §8, we divide the gap
mixing mechanism into three categories: steady mixing, coherent mixing, and local
turbulent mixing. Steady mixing is the mass transfer induced by the mean flow velocity.
If there is no velocity fluctuation, the liquid flows from higher flow velocity channel to
lower flow velocity channel with constant flow rate. As a consequence, the steady mixing
appears as a one-sided mass transfer. Coherent mixing is the global mixing (mass transfer
between two channels) driven by periodic, large coherent turbulence structures consisted
of multiple vortices. Unlike steady mixing, coherent mixing changes direction of flow
each time, so the mixing can happen both way regardless of the flow velocity of each
channel. Local turbulent mixing is a mixing induced by non-periodic turbulence. The
local turbulent does not contribute the global mass transfer directly as it forms relatively
smaller mixing structure. However, it helps the global mixing by agitating the flow entered
into the gap, makes the mixing more evenly spread, without breaking the large coherent
structure. We assume that mixing can be linearly decomposed and then superimposed so
that we can utilize the SVD data to compute the mixing coefficients.

fA = f
(s)
A + f

(c)
A , (9.1)

fB = f
(s)
B + f

(c)
B , (9.2)

where f (s)
A is the steady mixing coefficient, and f

(c)
A is the coherent mixing coefficient.

There is no local turbulence mixing coefficient as it does not directly cause the global
mixing.

Not all coherent modes contribute to the global mixing. For example, we can see Fig.
9.1 and 9.2 which are the third and fourth singular modes of the flow Re[100 100]k, Hg =
50. The streamlines form a symmetric structure with the transverse velocity at the center
line being zero. In this case, there is no flow crossing the center line, i.e., it does not cause
the global mixing by itself. In general, if a spatial singular vector is divided by a set of
nodal lines with transverse velocity being zero, mixing cannot occur, unless more than two
modes are combined. For the sake of global mixing computation, we choose the first two
modes, which correspond to the first harmonic modes, as coherent structures, and the rest
are considered as local turbulences which are not directly involved in the global mixing.
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Figure 9.1: Singular vectors of the third mode, Re[100 100]k, Hg = 50 mm, FOV 1. Note
that the formation of the nodal line at the center of the gap, so there is no flow crossing the
center line of the gap.

Figure 9.2: Singular vectors of the fourth mode, Re[100 100]k, Hg = 50 mm, FOV 1. Note
that the formation of the nodal line at the center of the gap, so there is no flow crossing the
center line of the gap.
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9.2.1 Steady mixing

Let u, v, w denote the flow velocity in the transverse, the vertical, and the depth direction,
respectively, as shown in Fig. 8.1. We assume the flow in the gap is two-dimensional, i.e.,
there is no flow in the depth direction and the 2D velocity field of u and v is identical along
the depth of the gap. We consider the entire gap as a control volume. Because there is no
flow from top and bottom of the gap, we only need to consider the transverse flow from
side edges. Let F̄A and F̄B be the total steady volume flow rates at the side edges of the
gap adjacent to Channel A and Channel B, respectively.

F̄A = Hg

∫ Lg

0

ū(y,Wg/2)dy, (9.3)

F̄B = Hg

∫ Lg

0

ū(y,−Wg/2)dy, (9.4)

where ū is the time-averaged transverse velocity, Hg is the gap height, Lg is the gap vertical
length, Wg is the gap width. (Note: x and y are the local coordinates with the origin at the
center bottom of the gap, while fA and fB are the mixing coefficients.)

We need to discretize Eqn. (9.3) and (9.4) and write them as functions of velocity fields
obtained at three FOVs. Unfortunately, those three FOVs do not cover the entire gap, so we
need to estimate the flow in the missing FOV based on the data from the available FOVs.
By inspecting the time-average velocity fields shown in §8.6, we can see that most of the
transverse flow at the edges of the gap occurs at the start (inflow) and the end (outflow) of
the gap, and the flow rapidly converges to the vertical flow around the middle of the gap.
Thus, instead of weighting the integrated flow rate of each FOV evenly, we can say that the
flow around the missing FOV is similar to the flow at the middle of the gap. To do this, we
introduce a factor β as follows:

βp =

1 if p = 1 or 3,

2.114 if p = 2,
(9.5)

where the factor 2.114 at the FOV 2 is obtained from the ratio between the total area of
FOV 2 plus missing FOVs and the area of FOV 2. After discretization, the corrected flow
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rates including the entire area of the gap are given by:

F̄A = Hg

3∑
p=1

(
βp

Ny∑
i=1

ū(p)(i, 1)∆y

)
, (9.6)

F̄B = Hg

3∑
p=1

(
βp

Ny∑
i=1

ū(p)(i, Nx)∆y

)
, (9.7)

where p is the FOV index, i is the y index, Ny and Nx are the total number of pixels in y

axis and x axis, respectively. ū(p)(i, j) is the time-average of the transverse velocity u at
(i, j) location in FOV p.

The mass conservation in a control volume (entire gap) requires F̄A = F̄B. The
actual PIV data does not satisfy the mass conservation exactly (tilted, uncentered camera
location), so we use the average value of F̄A and F̄B to compute the steady mixing
coefficients. Finally, we can calculate the steady mixing coefficients as

f
(s)
A =

|F̄A + F̄B|
2V̄Ai

, f
(s)
B = 0 if F̄A + F̄B < 0

f
(s)
A = 0, f

(s)
B =

|F̄A + F̄B|
2V̄Bi

if F̄A + F̄B ≥ 0,

(9.8)

where V̄Ai and V̄Bi are the nominal volume flow rates at the inlet of Channel A and Channel
B, respectively.

9.2.2 Coherent mixing

Coherent mixing is induced by the periodic fluctuation of the velocity field. Unlike the
steady mixing, we need to track the transition of the flow on both direction, Channel A to
Channel B and Channel B to Channel A. Thus, instead of integrating the transverse flow
rate entirely, we split the inlet and outlet flows first, and then integrate them separately. We
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first calculate the absolute volume flow rate after the time average velocity is subtracted.

FAin
(t) = −Hg

∫ Lg

0

min {u′(y,Wg/2, t), 0} dy, (9.9)

FAout(t) = Hg

∫ Lg

0

max {u′(y,Wg/2, t), 0} dy, (9.10)

FBin
(t) = Hg

∫ Lg

0

max {u′(y,−Wg/2, t), 0} dy, (9.11)

FBout(t) = −Hg

∫ Lg

0

min {u′(y,−Wg/2, t), 0} dy. (9.12)

Discretizing Eqn. (9.9) to (9.12) for pth FOV yields

F
(p)
Ain

(k) = −Hg

Ny∑
i=1

min
{
u′(p)(i, 1, k), 0

}
∆y, (9.13)

F
(p)
Aout

(k) = Hg

Ny∑
i=1

max
{
u′(p)(i, 1, k), 0

}
∆y, (9.14)

F
(p)
Bin

(k) = Hg

Ny∑
i=1

max
{
u′(p)(i, Nx, k), 0

}
∆y, (9.15)

F
(p)
Bout

(k) = −Hg

Ny∑
i=1

min
{
u′(p)(i, Nx, k), 0

}
∆y. (9.16)

For the coherent mixing, we need two additional assumptions:

1. There is no re-entry of flow to the gap, i.e., F (p)
Ain

(t) is purely from the source of
Channel A, and F (p)

Bin
(t) is purely from Channel B.

2. For each FOV, fluids from two different source are fully mixed by the local turbulence
so that the composition of outgoing flow is uniformly proportional to the incoming
flow rates of Channel A and Channel B.

Then, we can derive the flow rate between Channel A and B as follows:

F
(p)
A→B(k) =

(
F

(p)
Ain

(k)

F
(p)
Ain

(k) + F
(p)
Bin

(k)

)
F

(p)
Bout

(k), (9.17)

F
(p)
B→A(k) =

(
F

(p)
Bin

(k)

F
(p)
Ain

(k) + F
(p)
Bin

(k)

)
F

(p)
Aout

(k). (9.18)

Note that Eqn. (9.17) and (9.18) are time dependent. To compress the data into a
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quantitatively comparable measures, we need to get the time-averaged flow exchanging
rate. SVD decomposes the data into spatial (left singular vectors) and temporal (right
singular vectors) bases along with their intensity (singular values). Using the SVD results,
we can easily find the time-averaged coherent mixing.

Denote l(p,s), σ(p,s), and r(p,s) as the left singular vector, the singular value, and the right
singular vector of the sth mode taken at pth FOV. Let û(p,s)

(i,j) be the reordered matrix of the
transverse velocity part of the pth FOV, sth left singular vector.

û
(p,s)
(i,j) = l(p,s)(NxNy +Nxi+ j), (9.19)

where l(p,s) is the sth left singular vector of pth FOV data. Then, we can rewrite the centered
transverse flow velocity of sth mode u′(p,s)(i,j,k) in terms of û(p,s)

(i,j) , singular value, and right
singular vector.

u
′(p,s)
(i,j,k) = û

(p,s)
(i,j)σ

(p,s)r
(p,s)
(k) . (9.20)

In the right hand side of Eqn. 9.20, only r
(p,s)
(k) depends on time, so we can find the

time-average of u′(p,s)(i,j,k) by just time-averaging r
(p,s)
(k) . However, we only get zero if we

just taking time-average of r(p,s)
(k) . Instead, we need to split r(p,s)

(k) into positive and negative
phase.

{
r(p,s)

}+
=

∑Nk

k=1 max{r(p,s)
(k) , 0}

Nk

, (9.21)

{
r(p,s)

}−
= −

∑Nk

k=1 min{r(p,s)
(k) , 0}

Nk

, (9.22)

whereNk is the total number of the temporal sampling points. One can see that
{
r(p,s)

}+
={

r(p,s)
}− as time-average of r(p,s)

(k) is zero. Using Eqn. (9.21), we can obtain the absolute
valued time-average flow rate as

{
F

(p,s)
Ain

}+
= −Hg

(
Ni∑
i=1

min{û(p,s)
(i,1) , 0}∆y

)
σ(p,s)

{
r

(p,s)
(k)

}+
, (9.23)

{
F

(p,s)
Aout

}+
= Hg

(
Ni∑
i=1

max{û(p,s)
(i,1) , 0}∆y

)
σ(p,s)

{
r

(p,s)
(k)

}+
, (9.24)

{
F

(p,s)
Bin

}+
= Hg

(
Ni∑
i=1

max{û(p,s)
(i,Nx), 0}∆y

)
σ(p,s)

{
r

(p,s)
(k)

}+
, (9.25)

{
F

(p,s)
Bout

}+
= −Hg

(
Ni∑
i=1

min{û(p,s)
(i,Nx), 0}∆y

)
σ(p,s)

{
r

(p,s)
(k)

}+
, (9.26)
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{
F

(p,s)
Ain

}−
=
{
F

(p,s)
Aout

}+
, (9.27){

F
(p,s)
Aout

}−
=
{
F

(p,s)
Ain

}+
, (9.28){

F
(p,s)
Bin

}−
=
{
F

(p,s)
Bout

}+
, (9.29){

F
(p,s)
Bout

}−
=
{
F

(p,s)
Bin

}+
. (9.30)

Applying Eqn. (9.23)-(9.30) to Eqn. (9.17) and (9.18), we can compute the time-averaged
coherent mixing coefficients as follows:

f
(c)
A =

3∑
p=1

Ns∑
s=1

{
F

(p)
A→B

}+
+
{
F

(p)
B→A

}−
V̄Ai

, (9.31)

f
(c)
B =

3∑
p=1

Ns∑
s=1

{
F

(p)
B→A

}+
+
{
F

(p)
A→B

}−
V̄Bi

, (9.32)
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where ∗ denotes the sign, + or −.

9.2.3 Correction for the vertical edge flows with unknown sources

So far, we have only considered flows in/out from side edges of the gap, which is sufficient
if we have entire flow field of the gap. However, our FOVs do not cover the entire gap,
and there are flows in/out from the top and bottom of each FOV, which we do not know the
source of the flow as described in Fig. 9.3. While those unknown source flow is only 5 to
15% of the total absolute volume flow rate for balanced flow conditions, it amounts to 30%
of the total absolute volume flow rate when the flow is unbalanced. Predicting those source
of vertical flows is essential to estimate the coherent mixing.

Because the coherent structures are periodic, and the vorticity of the flow field must
be conserved, we can assume that there is a counter-rotating vortex outside the FOV that
compensates the imbalance between in/out flow rates in the FOV. Also, centers of vortices
form along the shear boundary in unbalanced flow, so we can assume that the strength of
the incoming (outgoing) flow induced by the counter vortex is proportional to the outgoing
(incoming) flow induced by the original vortex in the FOV. The total amount of the flow
rate due to the counter vortices must match with the imbalance of the flow rate obtained
by integrating the flow rate on both side of the gap to satisfy the mass conservation. Let
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Figure 9.3: Explanation of the unknown source of incoming flow to FOV 1 and 2. Because
the flow field around the area between FOV 1 and 2 is unknown, we cannot estimate the
source of the inlet flow marked in red arrows, and therefore the total inlet flow rate of
Channel A and B to the gap.
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out be the total flow rates of the sth singular mode incoming/outgoing from
both sides of the gap in pth FOV, respectively.
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Then, we calculate the corrected flow rates as follows:

If F (p,s)
in > F

(p,s)
out



F̃
(p,s)
Ain

= F
(p,s)
Ain

F̃
(p,s)
Bin

= F
(p,s)
Bin

F̃
(p,s)
Aout

= F
(p,s)
Aout

+
(
F

(p,s)
in − F (p,s)

out

) F (p,s)
Ain

F
(p,s)
in

F̃
(p,s)
Bout

= F
(p,s)
Bout

+
(
F

(p,s)
in − F (p,s)

out

) F (p,s)
Bin

F
(p,s)
in

, (9.37)

otherwise



F̃
(p,s)
Ain

= F
(p,s)
Ain

+
(
F

(p,s)
out − F

(p,s)
in

) F (p,s)
Aout

F
(p,s)
out

F̃
(p,s)
Bin

= F
(p,s)
Bin

+
(
F

(p,s)
out − F

(p,s)
in

) F (p,s)
Bout

F
(p,s)
out

F̃
(p,s)
Aout

= F
(p,s)
Aout

F̃
(p,s)
Bout

= F
(p,s)
Bout

. (9.38)

Then, we substitute the original flow rates in Eqn. (9.33)-(9.34) with the corrected flow
rates in Eqn (9.37)-(9.38).

Since we brought in the in/out flow from the outside of the FOV to satisfy the mass
conservation, there will be overlapped flows between FOVs. With the overlapped flows,
the mixing rate can be double counted. To avoid it, we multiply the corrected flow rate by a
factor αp so that we only consider the flow in/out for each FOV in terms of average values.

αp =
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{
F

(p,s)
in , F

(p,s)
out

}
max

{
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(p,s)
in , F

(p,s)
out

} . (9.39)

Then, we also need to add the effect of missing FOVs. The coherent mixing pattern is quite
different from the steady mixing. While most of the steady mixing happens at the start and
the end of the gap, the coherent mixing occurs every part of the gap. So, we evenly divide
the areas of missing FOVs, assume the flow pattern in each missing FOV follows the flow
pattern of the nearest known FOV. As a result, we multiply the following area ratio to the
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flow rate of each FOV:

γp =


1.275 if p=1,

1.537 if p=2,

1.328 if p=3.

(9.40)

Finally, we compute the corrected coherent mixing coefficients as follows:
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9.3 Results

Total of 5 flow conditions with 3 different gap sizes are investigated. Same as §7.2, flow
conditions are defined by the Reynolds numbers of the nominal inlet flows, defined based
on the hydraulic diameter of the channels, i.e.,

ReA (or B) =
V̄A (or B) Dh

ν
(9.43)

where V̄A (or Channel B) is the nominal inlet velocity of Channel A (or Channel B), Dh is the
hydraulic diameter of Channel A and Channel B, ν is the kinematic viscosity of water. For
balanced flow, the following 2 cases of flow conditions are considered: Re[100 100]k and
Re[40 40]k. For unbalanced flow, the following 3 cases of flow conditions are considered:
Re[80 100]k, Re[60 100]k, and Re[40 100]k. For each inlet condition, total of 3 gap heights
are considered: 10, 20, and 50 mm.

9.3.1 Balanced flows

Fig. 9.4 and 9.5, and Table 9.1 and 9.2 show the comparisons between mixing coefficients
obtained by the dye concentration and the SVD for Re[100 100]k and Re[40 40]k,
respectively. The coherent structures of balanced flows are always symmetrical, and the
effect of the vertical flow is low, which makes the source of the incoming flow is mostly
accounted for. We can also verify the linear dependency between the mixing and the gap
for the balanced flow from the mixing coefficient estimation results.

For both Re[100 100]k and Re[40 40]k, the mixing coefficients based on SVD
follow the same pattern of the mixing coefficients based on the dye concentration, but
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overestimated by 15 to 220%. Because we estimate the mixing coefficient based on the
2D data taken at the midplane of the gap, flow velocity near the wall can be much lower
than the midplane velocity due to the flow separations. Eventually, it is natural that the
actual mixing coefficient is much less than the estimated value based on the 2D PIV data.

Also, we can see that the maximum error occurs at Re[40 40]k, Hg = 10mm. As
the gap height decreases, the effect of the flow separation in the gap becomes relatively
significant. Thus, smaller gap has more deviation than the larger gap. As mentioned in
§7.2, turbulence delays the flow separation, so we expect that the sudden contraction at the
entrance of the gap affects the velocity field more on the laminar flow Re[40 40]k than the
turbulent flow Re[100 100]k.

Fig. 9.6 and 9.7 show the time-averaged velocity fields for Re[100 100]k at FOV 1 with
the gap height 50 mm and 10 mm, respectively. Because the transverse flow velocity u is
anti-symmetric everywhere with the nodal line at the center, there is no steady mixing in
this case. This applies to Re[40 40]k as well. There was a small amount of flow moving
from Channel B to A with mixing coefficient fB less than 0.01. This could be due to the
misalignment of the camera, or the flowmeter error.

Fig. 9.8 and 9.9 show the 8 largest singular values of the velocity fields for Re[100
100]k at FOV 1 with the gap height 50 mm and 10 mm, respectively, and Fig. 9.10 and
9.11 show the first singular vectors of the same flow condition. In the first singular vectors,
Hg = 10mm has slightly smaller structures than Hg = 50mm, and its singular values
are also slightly less than Hg = 50mm. However, the patterns of streamlines are almost
identical in general, which makes the mixing flow rate linearly dependent on the gap height
(if the pressure drop at the entrance of the gap is not considered).
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Figure 9.4: Comparison of mixing coefficients fA and fB of Re[100, 100]k based on the dye
concentration and the SVD of the PIV data; blue square:fA based on the dye concentration,
red circle:fB based on the dye concentration, blue triangle: fA based on the SVD of the
PIV data, red circle:fB based on the SVD of the PIV data.

Table 9.1: Summary of the mixing coefficients of Re[100 100]k

Hg
mixing
Coeff.

steady
coherent

total dye total
dyeFOV 1 FOV 2 FOV 3

∑
p γp(·)p

10
fA 0.000 0.025 0.020 0.007 0.071 0.071 0.047 1.49
fB 0.002 0.025 0.020 0.007 0.071 0.072 0.049 1.49

20
fA 0.000 0.056 0.041 0.017 0.157 0.157 0.134 1.17
fB 0.004 0.056 0.041 0.017 0.157 0.162 0.137 1.18

50
fA 0.000 0.116 0.104 0.054 0.379 0.379 0.329 1.15
fB 0.017 0.116 0.104 0.054 0.379 0.396 0.330 1.20
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Figure 9.5: Comparison of mixing coefficients fA and fB of Re[40, 40]k based on the dye
concentration and the SVD of the PIV data; blue square:fA based on the dye concentration,
red circle:fB based on the dye concentration, blue triangle: fA based on the SVD of the
PIV data, red circle:fB based on the SVD of the PIV data.

Table 9.2: Summary of the mixing coefficients of Re[40 40]k

Hg
mixing
Coeff.

steady
coherent

total dye
total
dyeFOV 1 FOV 2 FOV 3

∑
p γp(·)p

10
fA 0.000 0.015 0.016 0.007 0.054 0.054 0.017 3.15
fB 0.003 0.015 0.016 0.007 0.054 0.056 0.018 3.18

20
fA 0.000 0.052 0.043 0.019 0.158 0.158 0.128 1.23
fB 0.003 0.052 0.043 0.019 0.158 0.161 0.138 1.17

50
fA 0.000 0.108 0.106 0.055 0.373 0.373 0.323 1.16
fB 0.011 0.108 0.106 0.055 0.373 0.384 0.337 1.14
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Figure 9.6: Mean velocity of the velocity field data for the flow condition Re[100, 100]k,
gap size 50 mm, FOV 1

Figure 9.7: Mean velocity of the velocity field data for the flow condition Re[100, 100]k,
gap size 10 mm, FOV 1
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(a) (b)

Figure 9.8: 8 largest singular values of the velocity field data for the flow condition
Re[100, 100]k, gap size 50 mm, FOV 1; (a) singular values normalized by sqrt(NxNyNz)
equivalent to the RMSE of the velocity field in each mode, (b) ratio of energy in each mode
to the total fluctuation energy.

(a) (b)

Figure 9.9: 8 largest singular values of the velocity field data for the flow condition Re[100,
100]k, gap size 10 mm, FOV 1; (a) singular values normalized by

√
(NxNyNz) equivalent

to the RMSE of the velocity field in each mode, (b) ratio of energy in each mode to the
total fluctuation energy.
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Figure 9.10: First left and right singular vectors of the velocity field data for the flow
condition Re[100, 100]k, gap size 50 mm, FOV 1

Figure 9.11: First left and right singular vectors of the velocity field data for the flow
condition Re[100, 100]k, gap size 10 mm, FOV 1

261



9.3.2 Unbalanced flows

Fig. 9.15, 9.16 , and 9.17 show the time-averaged velocity fields for Re[40 100]k at FOV 1
with the gap height 50 mm, 20 mm and 10 mm, respectively. Time-averaged velocity fields
are not symmetric any more, as the flow condition is unbalanced. A shear layer is formed
at the Channel B side starting from the bottom of the gap. By observing this shear layer,
we can qualitatively estimate how much flow is moving from Channel B to Channel A in
2D. As the gap height is being narrower, the shear layer formed at Channel B is getting
thicker, which means more 2D flow from Channel B is moving towards Channel A. This
effect offsets the decrement of the gap height in 3D, makes the steady mixing coefficient
almost independent of the gap height.

Table 9.3, 9.4, and 9.5 show the steady, coherent, and total mixing coefficients for
Re[80 100]k, Re[60 100]k, and Re[40 100]k, respectively. We can see that the steady
mixing coefficients are almost, but not entirely, constant in each flow condition regardless
of the gap thickness. The estimated steady mixing coefficients are mostly 5 to 10% higher
than the ideal steady mixing coefficients shown in Eqn. (7.20).

Fig. 9.18 and 9.20 show the first singular vectors of the velocity fields for Re[40 100]k
at FOV 1 with the gap height 50 mm, 20 mm, and 10 mm, respectively. As the gap height
is becoming narrower, the coherent structure represented by streamlines in the first singular
vector is getting more chaotic as one can see in Fig. 9.18, 9.19, and 9.20. Even worse, the
temporal singular vectors shown in the same figures are not the form of single frequency
wave, which illustrates that the coherent structure may not be even periodic any more.

Fig. 9.12, 9.13, and 9.14 show the comparisons between the mixing coefficients based
on the dye concentration and the SVD of the PIV data, for Re[80 100]k, Re[60 100]k,
and Re[40 100]k, respectively. The mixing coefficient estimation results based on the dye
concentration and the SVD do not match very well in the unbalanced flow as they were in
the balanced flow. This could be due to the rough approximation of the unknown source
from the top and bottom of the FOV as described in §9.2.3. Also, the assumption that the
mixing can be linearly decomposed is not entirely true. There can be interactions between
the steady mixing and the coherent mixing. While it did not affect the result of balanced
flows because there was little steady mixing, the steady mixing and coherent mixing coexist
in unbalanced flow. The flow conditions with the gap height 20 mm have typically the
most discrepancy between mixing coefficients obtained by two different method. We could
not explain why Hg = 20mm has the biggest error at this point, but we suspect that
Hg = 20mm is where the interaction between the steady mixing and the coherent mixing
is stronger than the other conditions.
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Figure 9.12: Comparison of mixing coefficients fA and fB of Re[80, 100]k based on the dye
concentration and the SVD of the PIV data; blue square: fA based on the dye concentration,
red circle: fB based on the dye concentration, blue triangle: fA based on the SVD of the
PIV data, red circle: fB based on the SVD of the PIV data.

Table 9.3: Summary of the mixing coefficients of Re[80 100]k

Hg
mixing
Coeff.

steady
coherent

total dye total
dyeFOV 1 FOV 2 FOV 3

∑
p γp(·)p

10
fA 0.000 0.024 0.014 0.003 0.055 0.055 0.001 68.38
fB 0.103 0.019 0.011 0.002 0.044 0.146 0.097 1.50

20
fA 0.000 0.045 0.044 0.018 0.149 0.149 0.097 1.54
fB 0.113 0.036 0.035 0.015 0.119 0.232 0.176 1.32

50
fA 0.000 0.062 0.095 0.045 0.284 0.284 0.269 1.06
fB 0.157 0.049 0.076 0.036 0.227 0.384 0.315 1.22
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Figure 9.13: Comparison of mixing coefficients fA and fB of Re[60, 100]k based on the dye
concentration and the SVD of the PIV data; blue square: fA based on the dye concentration,
red circle: fB based on the dye concentration, blue triangle: fA based on the SVD of the
PIV data, red circle: fB based on the SVD of the PIV data.

Table 9.4: Summary of the mixing coefficients of Re[60 100]k

Hg
mixing
Coeff.

steady
coherent

total dye
total
dyeFOV 1 FOV 2 FOV 3

∑
p γp(·)p

10
fA 0.000 0.002 0.003 0.000 0.007 0.007 -0.012 -0.55
fB 0.216 0.001 0.002 0.000 0.004 0.220 0.188 1.17

20
fA 0.000 0.023 0.051 0.017 0.129 0.129 0.027 4.78
fB 0.218 0.014 0.030 0.010 0.077 0.296 0.214 1.39

50
fA 0.000 0.017 0.060 0.047 0.176 0.176 0.187 0.94
fB 0.226 0.010 0.036 0.028 0.106 0.332 0.307 1.08
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Figure 9.14: Comparison of mixing coefficients fA and fB of Re[40, 100]k based on the dye
concentration and the SVD of the PIV data; blue square: fA based on the dye concentration,
red circle: fB based on the dye concentration, blue triangle: fA based on the SVD of the
PIV data, red circle: fB based on the SVD of the PIV data.

Table 9.5: Summary of the mixing coefficients of Re[40 100]k

Hg
mixing
Coeff.

steady
coherent

total dye total
dyeFOV 1 FOV 2 FOV 3

∑
p γp(·)p

10
fA 0.000 0.000 0.001 0.001 0.002 0.002 -0.015 -0.15
fB 0.331 0.000 0.000 0.000 0.001 0.332 0.287 1.16

20
fA 0.000 0.003 0.036 0.006 0.067 0.067 0.009 7.18
fB 0.318 0.001 0.014 0.002 0.027 0.345 0.292 1.18

50
fA 0.000 0.004 0.047 0.063 0.161 0.161 0.107 1.51
fB 0.299 0.002 0.019 0.025 0.064 0.363 0.335 1.08
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Figure 9.15: Mean velocity of the velocity field data for the flow condition Re[40, 100]k,
gap size 50 mm, FOV 1

Figure 9.16: Mean velocity of the velocity field data for the flow condition Re[40, 100]k,
gap size 20 mm, FOV 1
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Figure 9.17: Mean velocity of the velocity field data for the flow condition Re[40, 100]k,
gap size 10 mm, FOV 1

Figure 9.18: First left and right singular vectors of the velocity field data for the flow
condition Re[40, 100]k, gap size 50 mm, FOV 1
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Figure 9.19: First left and right singular vectors of the velocity field data for the flow
condition Re[40, 100]k, gap size 20 mm, FOV 1

Figure 9.20: First left and right singular vectors of the velocity field data for the flow
condition Re[40, 100]k, gap size 20 mm, FOV 1
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CHAPTER 10

Conclusions: An Experimental Study of
Inter-channel Mixing

We investigated the time-averaged mixing from the measurement data of inlet/outlet flow
rates and dye concentrations. We calculated the total amount of mixing based on the
conservation of mass of water and of the dye in a fixed control volume of each channel. To
quantify the mixing, we defined a mixing coefficient as a fraction of inlet flow transferred
from one channel to the other.

For the balanced flows, the mixing coefficients show weak dependency on the Reynolds
number when the gap ratio Hg/Dh is larger than 0.06. However, when Hg/Dh < 0.06,
mixing coefficients show some deviation depending on the Reynolds number, and there
is no recognizable mixing in any flow velocity when Hg/Dh < 0.025. The deviation of
mixing under Hg/Dh < 0.06 is within the range of the 68% confidence interval. The
trend shows that the mixing coefficients are somewhat affected by changes in Reynolds
number when the gap height is small. We expect that this is may be due to the fact that
the gap width is on the order of the boundary layer thickness of the incoming flow. Also,
it may be that effect of flow separation (3D flow) at the entry of the gap may be more
important for smaller gap widths. Flow separation can cause blockage at the entrance of
the cross-channel. This is a 3D effect, but our measurements in the gap were 2D. Therefore,
either numerical simulations or experimental data will be required to examine the effect of
the boundary layer in the gap to the mixing.

For unbalanced flow, the effect of the coherent structures on the mixing decreases, as
the mixing due to pressure difference across the gap dominate. And, as the flow velocity
difference between two channel increases, we see weaker large-scale structures. POD
(SVD) results confirmed that the energy of the coherent structures, represented by the
singular values, decreases when the flow velocities of two channels are different. Also, the
right (temporal) singular values become less periodic as the velocity difference between
two channels grows.
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We estimated the mixing coefficients using the data based on the POD (SVD) of the
velocity field obtained by the PIV. The POD (SVD) based mixing estimation provided
us more insights into how both the steady (time averaged) and the unsteady components
of the flow affect the overall mixing. While we made several important assumptions in
order to compute the mixing, the computed mixing closely matched the experimentally
determined values. The result of the estimated mixing coefficients based on SVD follow
the same pattern of the mixing coefficients based on the dye concentration, but consistently
overestimated in most of the case.

Because we estimated the mixing using a 2D PIV measurement of the 3D gap flow, it
is natural that the actual mixing is less than estimated, due to the effect of the separation
near the entrance and exit of the gap.

The mixing coefficient estimation results based on the dye concentration and the
SVD match less well for the unbalanced flows compared to the balanced cases. There is
not enough evidence to explain why this happened, but this could be due to the rough
approximation of the unknown source from the top and bottom of the FOV.

In the future, a better estimate of mixing can be developed from three-dimensional
measurements within the gap. Also, we can measure overlapping and additional FOVs
within the gap. Also, we would repeat the PIV measurements for a wider range of flow
conditions and gap widths. Finally, it would be of interest to repeat these experiments with a
wider range of inlet Turbulent Boundary Layer (TBL) thicknesses in the incoming channel
flow (possibly as a result of intentional TBL thickening). In this way we could further
examine how changes in the TBL thickness alter the mixing when the TBL thickness is
much smaller than or much larger than both the gap width and length.
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APPENDIX A

CAD drawings for Phantom 0, 1, and 2
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Figure A.1: 2D CAD drawing of Phantom 0. All dimensions are in millimeters, unless
otherwise specified.
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Figure A.2: 2D CAD drawing of Phantom 1. All dimensions are in millimeters, unless
otherwise specified.
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To fit in 3.26" ID tungsten pipe

To fit 4mm installation pinAll hole locations and dimensions
are summarized inAppendix B.

 82.80mm  20mm 

 SOLIDWORKS Student License
 Academic Use Only

Figure A.3: 2D CAD drawing of Phantom 2. All dimensions are in millimeters, unless
otherwise specified. All hole locations and sizes are specified in Appendix B.
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APPENDIX B

Geometry of the phantom 2

This supplementary material contains the geometry of the phantom 2 used for simulations
and experiments in §2.3 and §4. The synthetic phantom is filled with water-equivalent
material except for the objects shown in Table B.1.

Table B.1: Object geometry and materials of the phantom 2 used in §2.3 and §4

Titanium pipe outer radius: 4.445 cm (1.75 inch)
Titanium pipe inner radius: 4.140 cm (1.63 inch)

Center x(cm) Center y(cm) Radius(cm) Material

0.3750 0.3750 1.1250 air
-2.2000 -0.5000 0.7500 air
1.9000 -0.9000 0.3750 air
3.0000 0.0000 0.3000 air
-2.2500 1.5000 0.2250 air
0.0000 2.7750 0.0750 air
0.0000 3.0000 0.0750 air
0.2250 3.0000 0.0750 air
-0.2250 3.0000 0.0750 air
0.0000 3.2250 0.0750 air

Continued on next page
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Table B.1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

0.2250 2.7750 0.0750 air
0.4500 2.3250 0.0750 air
0.4500 2.5500 0.0750 air
0.6750 2.5500 0.0750 air
0.2250 2.5500 0.0750 air
0.4500 2.7750 0.0750 air
-0.2250 2.7750 0.0750 air
-0.4500 2.3250 0.0750 air
-0.4500 2.5500 0.0750 air
-0.6750 2.5500 0.0750 air
-0.2250 2.5500 0.0750 air
-0.4500 2.7750 0.0750 air
2.0250 2.1000 0.0750 air
2.0250 2.3250 0.0750 air
2.2500 2.3250 0.0750 air
1.8000 2.3250 0.0750 air
2.0250 2.5500 0.0750 air
2.2500 2.1000 0.0750 air
2.4750 1.6500 0.0750 air
2.4750 1.8750 0.0750 air
2.7000 1.8750 0.0750 air
2.2500 1.8750 0.0750 air
2.4750 2.1000 0.0750 air
1.8000 2.1000 0.0750 air
1.5750 1.6500 0.0750 air
1.5750 1.8750 0.0750 air
1.3500 1.8750 0.0750 air
1.8000 1.8750 0.0750 air
1.5750 2.1000 0.0750 air
-1.6750 -2.8750 0.0500 air

Continued on next page
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Table B.1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

-1.4250 -2.8750 0.0500 air
-1.1750 -2.8750 0.0500 air
-0.9250 -2.8750 0.0500 air
-1.6750 -2.6250 0.0500 air
-1.4250 -2.6250 0.0500 air
-1.1750 -2.6250 0.0500 air
-0.9250 -2.6250 0.0500 air
-1.6750 -2.3750 0.0500 air
-1.4250 -2.3750 0.0500 air
-1.1750 -2.3750 0.0500 air
-0.9250 -2.3750 0.0500 air
-1.6750 -2.1250 0.0500 air
-1.4250 -2.1250 0.0500 air
-1.1750 -2.1250 0.0500 air
-0.9250 -2.1250 0.0500 air
-0.5165 -2.9165 0.0500 air
-0.3495 -2.9165 0.0500 air
-0.1825 -2.9165 0.0500 air
-0.0155 -2.9165 0.0500 air
0.1515 -2.9165 0.0500 air
0.3185 -2.9165 0.0500 air
-0.5165 -2.7495 0.0500 air
-0.3495 -2.7495 0.0500 air
-0.1825 -2.7495 0.0500 air
-0.0155 -2.7495 0.0500 air
0.1515 -2.7495 0.0500 air
0.3185 -2.7495 0.0500 air
-0.5165 -2.5825 0.0500 air
-0.3495 -2.5825 0.0500 air
-0.1825 -2.5825 0.0500 air

Continued on next page
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Table B.1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

-0.0155 -2.5825 0.0500 air
0.1515 -2.5825 0.0500 air
0.3185 -2.5825 0.0500 air
-0.5165 -2.4155 0.0500 air
-0.3495 -2.4155 0.0500 air
-0.1825 -2.4155 0.0500 air
-0.0155 -2.4155 0.0500 air
0.1515 -2.4155 0.0500 air
0.3185 -2.4155 0.0500 air
-0.5165 -2.2485 0.0500 air
-0.3495 -2.2485 0.0500 air
-0.1825 -2.2485 0.0500 air
-0.0155 -2.2485 0.0500 air
0.1515 -2.2485 0.0500 air
0.3185 -2.2485 0.0500 air
-0.5165 -2.0815 0.0500 air
-0.3495 -2.0815 0.0500 air
-0.1825 -2.0815 0.0500 air
-0.0155 -2.0815 0.0500 air
0.1515 -2.0815 0.0500 air
0.3185 -2.0815 0.0500 air
0.6625 -2.9375 0.0500 air
0.7875 -2.9375 0.0500 air
0.9125 -2.9375 0.0500 air
1.0375 -2.9375 0.0500 air
1.1625 -2.9375 0.0500 air
1.2875 -2.9375 0.0500 air
1.4125 -2.9375 0.0500 air
1.5375 -2.9375 0.0500 air
0.6625 -2.8125 0.0500 air

Continued on next page
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Table B.1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

0.7875 -2.8125 0.0500 air
0.9125 -2.8125 0.0500 air
1.0375 -2.8125 0.0500 air
1.1625 -2.8125 0.0500 air
1.2875 -2.8125 0.0500 air
1.4125 -2.8125 0.0500 air
1.5375 -2.8125 0.0500 air
0.6625 -2.6875 0.0500 air
0.7875 -2.6875 0.0500 air
0.9125 -2.6875 0.0500 air
1.0375 -2.6875 0.0500 air
1.1625 -2.6875 0.0500 air
1.2875 -2.6875 0.0500 air
1.4125 -2.6875 0.0500 air
1.5375 -2.6875 0.0500 air
0.6625 -2.5625 0.0500 air
0.7875 -2.5625 0.0500 air
0.9125 -2.5625 0.0500 air
1.0375 -2.5625 0.0500 air
1.1625 -2.5625 0.0500 air
1.2875 -2.5625 0.0500 air
1.4125 -2.5625 0.0500 air
1.5375 -2.5625 0.0500 air
0.6625 -2.4375 0.0500 air
0.7875 -2.4375 0.0500 air
0.9125 -2.4375 0.0500 air
1.0375 -2.4375 0.0500 air
1.1625 -2.4375 0.0500 air
1.2875 -2.4375 0.0500 air
1.4125 -2.4375 0.0500 air

Continued on next page
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Table B.1 – Continued from previous page

Center x(cm) Center y(cm) Radius(cm) Material

1.5375 -2.4375 0.0500 air
0.6625 -2.3125 0.0500 air
0.7875 -2.3125 0.0500 air
0.9125 -2.3125 0.0500 air
1.0375 -2.3125 0.0500 air
1.1625 -2.3125 0.0500 air
1.2875 -2.3125 0.0500 air
1.4125 -2.3125 0.0500 air
1.5375 -2.3125 0.0500 air
0.6625 -2.1875 0.0500 air
0.7875 -2.1875 0.0500 air
0.9125 -2.1875 0.0500 air
1.0375 -2.1875 0.0500 air
1.1625 -2.1875 0.0500 air
1.2875 -2.1875 0.0500 air
1.4125 -2.1875 0.0500 air
1.5375 -2.1875 0.0500 air
0.6625 -2.0625 0.0500 air
0.7875 -2.0625 0.0500 air
0.9125 -2.0625 0.0500 air
1.0375 -2.0625 0.0500 air
1.1625 -2.0625 0.0500 air
1.2875 -2.0625 0.0500 air
1.4125 -2.0625 0.0500 air
1.5375 -2.0625 0.0500 air
0.0000 3.7500 0.2032 air
3.2476 -1.8750 0.2032 air
-3.2476 -1.8750 0.2032 air
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APPENDIX C

Matlab codes for the singular value
decomposition (SVD) and the estimation of the

mixing coefficients based on SVD data

This supplementary material contains the Matlab codes for the singular value
decomposition (SVD) of the particle image velocimetry data shown in §8, and the mixing
coefficient estimation based on the SVD data shown in §9.

C.1 Matlab codes for singular vector decomposition

C.1.1 batch read PA SVD.m

% BATCH_READ_PA_SVD

% Define set ID, then call vc7_read_vxx.m for each set to read vc7 data

and process SVD.

% Written by Seongjin Yoon, University of Michigan, 2017

%% load folder paths

clear variables; cls;

ListOfFolderPaths_5b_SJ % folders for raw data path

% data overwriting

force_overwrite = false;

% false: do not overwrite data, load the existing processed data

% true : overwrite all Matlab-formatted raw & SVD data (choose it when

there were changes in the code)

%% data set definition

% standard sets
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% set ID 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15

set_FOV1 = [ 1, 6, 5, 2, 3, 89, 92, 93, 90, 91, 63, 66, 67,

64, 65]'; % FOV 1 (lower window)

set_FOV2 = [12, 15, 16, 13, 14, 84, 87, 88, 85, 86, 68, 71, 72,

69, 70]'; % FOV 2 (middle window)

set_FOV3 = [ 7, 10, 11, 8, 9, 78, 81, 83, 79, 80, 73, 76, 77,

74, 75]'; % FOV 3 (upper window)

% extra sets that are not specified in the list

% because different lenses are used to acquire data, etc.

% set_extra = [ 0, 0,82;...

% 0,88, 0;...

% 93, 0, 0;...

% 96, 0, 0];

% FOV for extra runs: 82:FOV3, 88:FOV2, 93:FOV1, 96:FOV1

set = [set_FOV1, set_FOV2, set_FOV3];

% Reynolds numbers for each set ID

% [ A, B] x 1000

Re(1,1:2) = [100, 100]; % gap 50

Re(2,1:2) = [ 40, 100];

Re(3,1:2) = [ 40, 40];

Re(4,1:2) = [ 80, 100];

Re(5,1:2) = [ 60, 100];

Re(6,1:2) = [100, 100]; % gap 20

Re(7,1:2) = [ 40, 100];

Re(8,1:2) = [ 40, 40];

Re(9,1:2) = [ 80, 100];

Re(10,1:2)= [ 60, 100];

Re(11,1:2)= [100, 100]; % gap 10

Re(12,1:2)= [ 40, 100];

Re(13,1:2)= [ 40, 40];

Re(14,1:2)= [ 80, 100];

Re(15,1:2)= [ 60, 100];

% gap thickness for each set ID

h_gap(11:15)= 10;

h_gap(6:10) = 20;

h_gap(1:5) = 50;
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%% retrieve data

N_folder = length(Folder);

freq_dom = zeros(N_folder,1); % dominant frequency of each run

record_movie ='no';

for i=1:N_folder

fprintf('\ni = %d \n',i)

% if folder name is empty, skip

if ˜isempty(Folder(i).Ave)

% read run ID

tmp_str = regexp(Folder(i).Ave, 'rrun_\d*','match');

runID = str2double(tmp_str{1}(6:end));

% read set ID

[setID, FOV] = find(set == runID);

% if setID does not exist in the set list, then skip

if ˜isempty(setID)

% Y origin

Yorigin = 5.374 * 625.423 - 3286.5; % constant

switch FOV

case 1

YCoord = 0;

case 2

YCoord = 456;

case 3

YCoord = 920.2;

end

% X origin

if setID <=5

XCoord = 30; % xoffset (mm)

else

XCoord = 14; % xoffset (mm)

end

YShift = Yorigin + YCoord;

XShift = XCoord;
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% read raw data, save processed SVD data, and return

dominant frequency

freq_dom(i) = vc7_read_v8(Folder(i).Ave, YShift, XShift,

record_movie, force_overwrite);

end

end

end

%% save dominant frequency data

save([prefix 'freq_5b.mat'], 'freq_dom');

%% copy data (rearrange processed data based on its runID)

batch_copy_file

batch_copy_file2
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C.1.2 vc7 read v8.m

function freq_dom = vc7_read_v8(file_path, YShift, XShift, rec_movie,

force_overwrite)

%VC7_READ_V8

% Read vc7 binary files, compute singular vector decompositions

% output:

% freq_dom: dominant frequency of the given set and FOV

%

% input:

% file_path: string variable that indicates where vc7 files are

located

% YShift, XShift: origin of the FOV

% rec_movie: (not used any more)

% force_overwrite: overwrite existing files if true, load existing

files if false

%

% Note: No vorticity computation in this file. See 'record_movie.m' for

vorticity computation & video conversion.

% Note: velocity is stored in m/s unit, while all other variables are in

mm.

% Written by Seongjin Yoon, University of Michigan, 2017

%% raw data read parameters

file_name_raw = 'B*.vc7'; % VC7 file name convention

f_sampling = 12; % sampling frequency of the raw data (Hz)

dt = 1/f_sampling; % time step of the raw data

%% processed data store parameters

% subdirectory to store processed data

dir_proc = 'Processed_SJ\';

% SVD parameters

N_svd = 8; % # of singular values to be evaluated

% figures / movie setting

print_figure = true;

%% channel geometry parameters

d_hyd = 127; % hydraulic diameter (mm)

w_gap = 228.6; % gap width (mm)

%% raw data loading

disp(['Move to ' file_path])

cd(file_path);

if ˜exist(dir_proc,'dir')
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mkdir(dir_proc);

end

vc7_list = dir(file_name_raw);

N_t = length(vc7_list); % total number of frames

tmp = readimx(vc7_list(N_t).name); % read the last PIV file to get the

axis information

tmp_v = create2DVec_SJ(tmp.Frames{1});

grd_T = (0:N_t-1)*dt; % time grid

grd_F = (0:N_t/2)/N_t*f_sampling;% frequency grid

% Note: camera is 90 degrees rotated, so the vertical axis is x, and

transverse axis is y in the PIV (.vc7) file.

grd_Y = tmp_v.X+YShift; % spatial y grid (X in the PIV file)

grd_X = tmp_v.Y+XShift; % spatial x grid (Y in the PIV file)

[grd_YY, grd_XX] = ndgrid(grd_Y, grd_X); % Note: data is stored in

ndgrid format

[N_y, N_x] = size(tmp_v.U);

N_xy = N_y * N_x;

im_name = 'raw_data_v3.mat';

if exist([dir_proc, im_name],'file')

fprintf('load Matlab-formatted raw data \n \n');

load([dir_proc, 'raw_data_v3.mat']);

else

fprintf('perform raw data loading \n'); tic;

% initialize arrays

t_stamp = zeros(N_t,1);

U_dat{1} = zeros(N_y, N_x, N_t); % vertical velocity (V)

U_dat{2} = zeros(N_y, N_x, N_t); % transverse velocity (U)

% find AcqTimeSeries (believed to be actual acquisition time, but

unreasonably fluctuating)

% AcqTimeSeries has not been used for analysis as it is unreliable.

for i=1:length(tmp.Frames{1}.Attributes)

if strcmp(tmp.Frames{1}.Attributes{i}.Name, 'AcqTimeSeries')

ATS_idx = i;

break;

elseif i == length(tmp.Frames{1}.Attributes)

error('AcqTimeSeries not found.')

end

end
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% read raw velocity data & save into 3-D matrix (y,x,t) format

for i=1:N_t

tmp = readimx(vc7_list(i).name);

tmp_v = create2DVec_SJ(tmp.Frames{1});

t_stamp(i) = getTimeStamp(tmp.Frames{1},ATS_idx);

U_dat{1}(:,:,i) = tmp_v.U; % vertical velocity (V), (90 degrees

rotated)

U_dat{2}(:,:,i) = tmp_v.V; % transverse velocity (U), (90

degrees rotated)

end

save([dir_proc, im_name],'t_stamp','U_dat')

fprintf('data loading finished, elapsed time = %0.3f s \n \n', toc);

end

% % time stamp (time stamp in the raw data is unreliable, even step size

is used instead.)

% grd_T = (t_stamp - t_stamp(1)) / 10ˆ6; % convert microsecond to second

, and set the start time as zero.

% % plot time steps

% t_dt = circshift(t_stamp,[-1 0]) - t_stamp;

% t_dt(end) = mean(t_dt(1:end-1));

%

% figure(fig_num); clf; fig_num = fig_num + 1;

% plot(t_dt)

% xlabel('Frame')

% ylabel('\Deltat [\mus]')

%% move to the processed data directory

cd(dir_proc)

if force_overwrite == true

delete('*.png');

delete('*.mp4');

else

delete('*.png');

end

%% frequency analysis

fprintf('perform peak frequency analysis \n'); tic;

U_freq = cell(2);

U_max_coef = cell(2);

U_max_f = cell(2);

for i=1:2

U_freq{i} = fft(U_dat{i}, N_t, 3);
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[U_max_coef{i}, U_max_f{i}] = max(abs(U_freq{i}(:,:,2:N_t/2+1))

,[],3); % find peak index excluding the mean

U_max_f{i} = grd_F(U_max_f{i}+1); % find peak frequency excluding

the mean

end

freq_dom = mode(col([U_max_f{1}; U_max_f{2}])); % dominant peak

frequency

fprintf('peak frequency analysis finished, elapsed time = %0.3f s \n \n'

, toc);

%% plot peak frequencies

figure(1)

imagesc([min(grd_Y), max(grd_Y)]/w_gap, [max(grd_X), min(grd_X)]/w_gap,

U_max_f{1}',[0 3]);

text(0.1, -0.4, sprintf('dominant peak frequency = %.4f',freq_dom),'

HorizontalAlignment','left','VerticalAlignment','top')

axis xy

% title('Peak frequency map, V (Hz)')

ylabel('x/w_g')

xlabel('y/w_g')

colorbar

drawnow;

figure(2)

imagesc([min(grd_Y), max(grd_Y)]/w_gap, [max(grd_X), min(grd_X)]/w_gap,

U_max_f{2}',[0 3]);

text(0.1, -0.4, sprintf('dominant peak frequency = %.4f',freq_dom),'

HorizontalAlignment','left','VerticalAlignment','top')

axis xy

% title('Peak frequency map, U (Hz)')

ylabel('x/w_g')

xlabel('y/w_g')

colorbar

drawnow;

%% power spectral density of V

shift_up = 5; % shift up the spectrum for visualization purpose

[˜, c_idx] = min(abs(grd_X));

step_idx = floor(min(c_idx-1, length(grd_X)-c_idx)/2);

figure(3)

tmp_psd = abs(col(U_freq{1}(round((end+1)/2),c_idx + step_idx*2,1:N_t

/2+1))).ˆ2/(f_sampling*N_t);
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tmp_psd(2:end-1) = 2*tmp_psd(2:end-1); % double the value except zero

and Nyquist frequency

semilogy(grd_F, imfilter(tmp_psd,fspecial('gaussian',[7 1],0.75),'

replicate'))

hold on;

tmp_psd = abs(col(U_freq{1}(round((end+1)/2),c_idx + step_idx,1:N_t/2+1)

)).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1); % double the value except zero

and Nyquist frequency

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*1),fspecial('gaussian',[7

1],0.75),'replicate'))

tmp_psd = abs(col(U_freq{1}(round((end+1)/2),c_idx,1:N_t/2+1))).ˆ2/(

f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1); % double the value except zero

and Nyquist frequency

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*2),fspecial('gaussian',[7

1],0.75),'replicate'))

tmp_psd = abs(col(U_freq{1}(round((end+1)/2),c_idx - step_idx,1:N_t/2+1)

)).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1); % double the value except zero

and Nyquist frequency

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*3),fspecial('gaussian',[7

1],0.75),'replicate'))

tmp_psd = abs(col(U_freq{1}(round((end+1)/2),c_idx - step_idx*2,1:N_t

/2+1))).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1); % double the value except zero

and Nyquist frequency

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*4),fspecial('gaussian',[7

1],0.75),'replicate'))

hold off;

xlim([min(grd_F)-0.1 max(grd_F)+0.1])

ylim([10ˆ-5 10ˆ25])

% title('Power spectral density of V')

xlabel('frequency (Hz)')

ylabel('\Phi_V (mˆ2/s)')

text(0.15, 10ˆ(shift_up*4-1), '1','HorizontalAlignment','left','

VerticalAlignment','top')
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text(0.15, 10ˆ(shift_up*3-1), '2','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*2-1), '3','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*1-1), '4','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*0-1), '5','HorizontalAlignment','left','

VerticalAlignment','top')

%% power spectral density of U

figure(4)

tmp_psd = abs(col(U_freq{2}(round((end+1)/2),c_idx + step_idx*2,1:N_t

/2+1))).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

semilogy(grd_F, imfilter(tmp_psd,fspecial('gaussian',[7 1],0.75),'

replicate'))

hold on;

tmp_psd = abs(col(U_freq{2}(round((end+1)/2),c_idx + step_idx,1:N_t/2+1)

)).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*1),fspecial('gaussian',[7

1],0.75),'replicate'))

tmp_psd = abs(col(U_freq{2}(round((end+1)/2),c_idx,1:N_t/2+1))).ˆ2/(

f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*2),fspecial('gaussian',[7

1],0.75),'replicate'))

tmp_psd = abs(col(U_freq{2}(round((end+1)/2),c_idx - step_idx,1:N_t/2+1)

)).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*3),fspecial('gaussian',[7

1],0.75),'replicate'))

tmp_psd = abs(col(U_freq{2}(round((end+1)/2),c_idx - step_idx*2,1:N_t

/2+1))).ˆ2/(f_sampling*N_t);

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

semilogy(grd_F, imfilter(tmp_psd*10ˆ(shift_up*4),fspecial('gaussian',[7

1],0.75),'replicate'))

hold off;
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xlim([min(grd_F)-0.1 max(grd_F)+0.1])

ylim([10ˆ-5 10ˆ25])

% title('Power spectral density of U')

xlabel('frequency (Hz)')

ylabel('\Phi_U (mˆ2/s)')

text(0.15, 10ˆ(shift_up*4-1), '1','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*3-1), '2','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*2-1), '3','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*1-1), '4','HorizontalAlignment','left','

VerticalAlignment','top')

text(0.15, 10ˆ(shift_up*0-1), '5','HorizontalAlignment','left','

VerticalAlignment','top')

if print_figure == true

print_sj_png('freq_analysis',4/3);

end

close all;

%%

% mean velocity field

U_dat_mean = cell(2,1);

for i=1:2

U_dat_mean{i} = mean(U_dat{i},3);

end

% plot mean velocity field

close all;

figure(1); clf;

sline = streamline(grd_YY'/w_gap, grd_XX'/w_gap,...

U_dat_mean{1}',...

U_dat_mean{2}',...

downsample2(grd_YY'/w_gap,[2 2],'warn',false),...

downsample2(grd_XX'/w_gap,[2 2],'warn',false),[0.1 80]);

set(sline,'Color',[0.2 0.6 1]);

hold on;

quiver( downsample2(grd_YY/w_gap,[3 3],'warn',false),...

downsample2(grd_XX/w_gap,[3 3],'warn',false),...
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downsample2(U_dat_mean{1},[3 3],'warn',false),...

downsample2(U_dat_mean{2},[3 3],'warn',false),...

'r','LineWidth',0.75);

% Below indicate where the data for the power spectral densities are

sampled on the mean velocity field figure

% plot(grd_Y(ceil((end+1)/2))/w_gap, grd_X(c_idx + step_idx*2)/w_gap,'k

*');

% plot(grd_Y(ceil((end+1)/2))/w_gap, grd_X(c_idx + step_idx*1)/w_gap,'k

*');

% plot(grd_Y(ceil((end+1)/2))/w_gap, grd_X(c_idx + step_idx*0)/w_gap,'k

*');

% plot(grd_Y(ceil((end+1)/2))/w_gap, grd_X(c_idx + step_idx*-1)/w_gap,'k

*');

% plot(grd_Y(ceil((end+1)/2))/w_gap, grd_X(c_idx + step_idx*-2)/w_gap,'k

*');

% text((grd_Y(ceil((end+1)/2))+5)/w_gap, (grd_X(c_idx + step_idx*2)+10)/

w_gap,'5','Color','k','FontSize',14);

% text((grd_Y(ceil((end+1)/2))+5)/w_gap, (grd_X(c_idx + step_idx*1)+10)/

w_gap,'4','Color','k','FontSize',14);

% text((grd_Y(ceil((end+1)/2))+5)/w_gap, (grd_X(c_idx + step_idx*0)+10)/

w_gap,'3','Color','k','FontSize',14);

% text((grd_Y(ceil((end+1)/2))+5)/w_gap, (grd_X(c_idx + step_idx*-1)+10)

/w_gap,'2','Color','k','FontSize',14);

% text((grd_Y(ceil((end+1)/2))+5)/w_gap, (grd_X(c_idx + step_idx*-2)+10)

/w_gap,'1','Color','k','FontSize',14);

hold off;

% title('Time-averaged velocity field')

ylabel('x/w_g')

xlabel('y/w_g')

xlim([min(grd_Y)-1 max(grd_Y)+1]/w_gap)

ylim([min(grd_X)-1 max(grd_X)+1]/w_gap)

if print_figure == true

print_sj_png('VEL_time_avg',4/3);

end

close all;

%% SVD without phase averaging

if exist(sprintf('SVD_Ns=%.0f.mat', N_svd),'file') && (force_overwrite

== false)

fprintf('load SVD data \n \n');

291



load(sprintf('SVD_Ns=%.0f.mat', N_svd))

else

fprintf('perform SVD, without phase averaging \n'); tic;

% mean subtraction

U_dat_sub{1} = bsxfun(@minus, U_dat{1}, U_dat_mean{1});

U_dat_sub{2} = bsxfun(@minus, U_dat{2}, U_dat_mean{2});

% perform velocity SVD

[U_L_svd, U_S_svd, U_R_svd] = svds([reshape(U_dat_sub{1}, [N_xy,N_t

]);...

reshape(U_dat_sub{2}, [N_xy,N_t])], N_svd);

% FFT

U_R_svd_freq = fft(U_R_svd, size(U_R_svd,1), 1);

% total energy

energy_sum_vel = sum(col(U_dat_sub{1}).ˆ2) + sum(col(U_dat_sub{2})

.ˆ2);

fprintf('SVD finished, elapsed time = %0.3f s \n\n', toc);

end

% compute energy ratio

energy_par_sum = 0;

energy_ratio_vel = zeros(N_svd,1); % cumulative energy of modes divided

by the total energy

for i=1:N_svd

energy_par_sum = energy_par_sum + U_S_svd(i,i).ˆ2;

energy_ratio_vel(i) = energy_par_sum / energy_sum_vel;

fprintf('Modes up to %d contain %2.2f%% of total energy \n', i,

energy_ratio_vel(i)*100)

end

% prefix for the SVD plot

im_name = sprintf('SVD_vel');

% plot singular values

close all;

% singular values

figure(1); clf;

subplot('Position',[0.13 0.15 0.78 0.75]);

bar(diag(U_S_svd)/sqrt(N_xy*N_t))
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ylim([0 0.35])

xlabel('mode')

ylabel('$\sigma_i / (N_x N_y N_t)ˆ{1/2}$ \hspace{5pt} (m/s)','

interpreter','latex')

% energy ratio

figure(2); clf;

bar(diag(U_S_svd).ˆ2 / energy_sum_vel)

ylim([0 0.7])

xlabel('mode')

ylabel('$\sigma_iˆ2 / \sum_{\;\;j} \,\sigma_jˆ2$','interpreter','latex')

if print_figure == true

print_sj_png([im_name '_sval']);

end

close all;

% plot singular vectors u & v, in stream lines

for s=1:6

figure(s); clf;

subplot('Position',[0.15 0.37 0.75 0.58]);

sline = streamline(grd_YY'/w_gap, grd_XX'/w_gap,...

reshape(U_L_svd(1:N_xy,s), [N_y,N_x])',...

reshape(U_L_svd(N_xy+1:2*N_xy,s), [N_y,N_x])',...

downsample2(grd_YY'/w_gap,[2 2],'warn',false),...

downsample2(grd_XX'/w_gap,[2 2],'warn',false),[0.1 80]);

set(sline,'Color',[0.2 0.6 1]);

hold on;

quiver( downsample2(grd_YY/w_gap,[3 3],'warn',false),...

downsample2(grd_XX/w_gap,[3 3],'warn',false),...

downsample2(reshape(U_L_svd(1:N_xy,s), [N_y,N_x]),[3 3],'

warn',false),...

downsample2(reshape(U_L_svd(N_xy+1:2*N_xy,s), [N_y,N_x]),[3

3],'warn',false),...

'r','LineWidth',0.75);

hold off;

xlim([min(grd_Y)-1 max(grd_Y)+1]/w_gap)

ylim([min(grd_X)-1 max(grd_X)+1]/w_gap)

ylabel('x/w_g')

xlabel('y/w_g')

title([str_ord(s) ' left (spatial) singular vector, stream line'])

% str_ord: return ordinal number in string
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subplot('Position',[0.15 0.1 0.75 0.1]);

plot(grd_T, U_R_svd(:,s));

title([str_ord(s) ' right (temporal) singular vector'])

xlim([0 1/freq_dom*10]);

xlabel('time (s)')

end

if print_figure == true

print_sj_png([im_name '_svec_stream'],4/3);

end

close all;

% plot singular vectors u in contour plot

for s=1:6

figure(s); clf;

subplot('Position',[0.15 0.37 0.75 0.58]);

contour(grd_YY/w_gap, grd_XX/w_gap,...

reshape(U_L_svd(1:N_xy,s),[N_y,N_x]),40);

colormap(jet); colorbar;

xlim([min(grd_Y)-1 max(grd_Y)+1]/w_gap)

ylim([min(grd_X)-1 max(grd_X)+1]/w_gap)

ylabel('x/w_g')

xlabel('y/w_g')

title([str_ord(s) ' left (spatial) singular vector, contour of V'])

subplot('Position',[0.15 0.1 0.75 0.1]);

plot(grd_T, U_R_svd(:,s));

title([str_ord(s) ' right (temporal) singular vector'])

xlim([0 1/freq_dom*10]);

xlabel('time (s)')

end

if print_figure == true

print_sj_png([im_name '_svec_contour_V'],4/3);

end

close all;

% plot singular vectors v in contour plot

for s=1:6

figure(s); clf;

subplot('Position',[0.15 0.37 0.75 0.58]);

contour(grd_YY/w_gap, grd_XX/w_gap, reshape(U_L_svd(N_xy+1:2*N_xy,s)
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, [N_y,N_x]),40);

colormap(jet); colorbar;

xlim([min(grd_Y)-1 max(grd_Y)+1]/w_gap)

ylim([min(grd_X)-1 max(grd_X)+1]/w_gap)

ylabel('x/w_g')

xlabel('y/w_g')

title([str_ord(s) ' left (spatial) singular vector, contour of U'])

subplot('Position',[0.15 0.1 0.75 0.1]);

plot(grd_T, U_R_svd(:,s));

title([str_ord(s) ' right (temporal) singular vector'])

xlim([0 1/freq_dom*10]);

xlabel('time (s)')

end

if print_figure == true

print_sj_png([im_name '_svec_contour_U'],4/3);

end

close all;

%% power spectral density of right singular vectors (without phase-

averaging)

figure(1); clf;

shift_up = 1; % shift up each spectrum by shift_up*(mode-1) for

visualization purpose

hold on;

for s=1:6

tmp_psd = abs(col(U_R_svd_freq(1:(N_t/2+1), s))).ˆ2/N_t;

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

plot(col(grd_F)/freq_dom, col(tmp_psd)+shift_up*(s-1));

text(1/16, shift_up*(s-1) + 0.15 ,str_ord(s));

end

hold off;

xlim([0 4])

ax = gca;

set(ax,'XTick',[0 1 2 3 4 5 6]);

title('Power spectral density of right singular vectors');

xlabel('$f/f_d$','interpreter','latex')

% zoomed-in plot for 1st right singular vector

figure(2)

subplot(211)

tmp_psd = abs(col(U_R_svd_freq(1:N_t/2+1, 1))).ˆ2/N_t;
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tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

plot(col(grd_F)/freq_dom, col(tmp_psd));

xlim([0.95 1.05])

xlabel('$f/f_d$','interpreter','latex')

% zoomed-in plot for 3rd right singular vector

subplot(212)

tmp_psd = abs(col(U_R_svd_freq(1:N_t/2+1, 3))).ˆ2/N_t;

tmp_psd(2:end-1) = 2*tmp_psd(2:end-1);

plot(col(grd_F)/freq_dom, col(tmp_psd));

xlim([1.95 2.05])

xlabel('$f/f_d$','interpreter','latex')

if print_figure == true

print_sj_png([im_name '_svec_FFT'],4/3);

end

close all;

%% save data

if exist(sprintf('SVD_Ns=%.0f.mat', N_svd),'file') && (force_overwrite

== false)

% The file already exists, and do not overwrite

else

save(sprintf('SVD_Ns=%.0f.mat', N_svd),...

'freq_dom','grd_X','grd_Y','grd_T','grd_F',...

'U_dat_mean',...

'U_L_svd', 'U_S_svd', 'U_R_svd', 'U_R_svd_freq','energy_sum_vel'

);

end
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C.2 Matlab codes for mixing coefficient estimation

C.2.1 batch compute mixing v5.m

% BATCH_COMPUTE_MIXING_V5

% Define set ID, then call 'compute_mixingxx.m' for each set to compute

mixing coefficients

% based on the SVD data obtained by 'batch_read_PA_SVD.m'.

%

% Written by Seongjin Yoon, University of Michigan, 2017

clear variables; cls;

src_folder = 'C:/task 5b_processed/';

%% set definition

% set ID 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15

set_FOV1 = [ 1, 6, 5, 2, 3, 89, 92, 93, 90, 91, 63, 66, 67,

64, 65]'; % FOV 1 (lower window)

set_FOV2 = [12, 15, 16, 13, 14, 84, 87, 88, 85, 86, 68, 71, 72,

69, 70]'; % FOV 2 (middle window)

set_FOV3 = [ 7, 10, 11, 8, 9, 78, 81, 83, 79, 80, 73, 76, 77,

74, 75]'; % FOV 3 (upper window)

% Reynolds numbers for each set ID

% [ A, B] x 1000

Re(1,1:2) = [100, 100]; % gap 50

Re(2,1:2) = [ 40, 100];

Re(3,1:2) = [ 40, 40];

Re(4,1:2) = [ 80, 100];

Re(5,1:2) = [ 60, 100];

Re(6,1:2) = [100, 100]; % gap 20

Re(7,1:2) = [ 40, 100];

Re(8,1:2) = [ 40, 40];

Re(9,1:2) = [ 80, 100];

Re(10,1:2)= [ 60, 100];

Re(11,1:2)= [100, 100]; % gap 10

Re(12,1:2)= [ 40, 100];

Re(13,1:2)= [ 40, 40];

Re(14,1:2)= [ 80, 100];
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Re(15,1:2)= [ 60, 100];

% nominal flow speed based on the Renolds number

d_hyd = 127; % hydraulic diameter (mm)

mu_water = 1; % kinematic viscosity (mmˆ2/s)

V_nominal = Re*1000/d_hyd*mu_water; % nominal flow speed based on Re (mm

/s)

% gap thickness for each set ID

h_gap(1:5) = 50;

h_gap(6:10) = 20;

h_gap(11:15)= 10;

% balanced flow set ID

set_100_100 = [ 1, 6, 11];

set_40_40 = [ 3, 8, 13];

% unbalanced flow set ID

set_40_100 = [ 2, 7, 12];

set_60_100 = [ 5, 10, 15];

set_80_100 = [ 4, 9, 14];

% compute mixing coefficients

N_set = length(set_FOV1);

steady_mix_coeff = zeros(2,N_set);

coherent_mix_coeff = zeros(2,N_set);

coherent_FOV = init_cell([N_set,1],zeros(2,3));

for setID = 1:15

file_path{1} = [src_folder 'rrun_' num2str(set_FOV1(setID),'%2.0f')

'/'];

file_path{2} = [src_folder 'rrun_' num2str(set_FOV2(setID),'%2.0f')

'/'];

file_path{3} = [src_folder 'rrun_' num2str(set_FOV3(setID),'%2.0f')

'/'];

[steady_mix_coeff(:,setID), coherent_mix_coeff(:,setID),

coherent_FOV{setID}] = ...

compute_mixing5(file_path, h_gap(setID), V_nominal(setID

,:));

end

total_mix_coeff = steady_mix_coeff+coherent_mix_coeff;
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save('mix_coeff_PIV')
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C.2.2 compute mixing5.m

function [steady_mix_coeff, coherent_mix_coeff, coherent_FOV] =

compute_mixing5(file_path, h_gap, v_nominal)

% COMPUTE_MIXING5

% approximate mixing coefficients based on the given SVD data

% output:

% steady_mix_coeff: returns steady mixing coefficients x and y

% computed base on mean flow velocity data of FOV{1}, FOV{2}, and

FOV{3}

% coherent_mix_coeff: returns coherent mixing coefficients x and y

% computed base on singular modes of FOV{1}, FOV{2}, and FOV{3}

% coherent_FOV: returns coherent mixing coefficient x and y for each

FOV

%

% input:

% file_path: cell array (3x1) of file paths for SVD data of FOV{1},

FOV{2}, and FOV{3}

% h_gap: gap height

% v_nominal: (1x2) nominal velocities of channel A and B based on the

Reynolds numbers.

%

% Written by Seongjin Yoon, University of Michigan, 2017

%#ok<*NASGU> % suppress 'assigned variable never used' warning

%#ok<*ASGLU> % suppress 'returned variable never used' warning

N_svd = 8; % # of singular modes

d_hyd = 127; % hydraulic diameter (mm)

w_gap = 228.6; % gap width (mm)

% initialize

temp_x = zeros(1,4);

temp_y = zeros(1,4);

steady_mix_coeff = zeros(2,1);

coherent_mix_coeff = zeros(2,1);

coherent_FOV = zeros(2,3);

steady_flow = 0;

coherent_flow_AtoB = 0;

coherent_flow_BtoA = 0;

% load data

for fovID = 1:3
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load([file_path{fovID}, sprintf('SVD_Ns=%.0f.mat', N_svd)]);

N_x = length(grd_X);

N_y = length(grd_Y);

N_T = length(grd_T);

N_xy = N_x * N_y;

dx = grd_X(2)-grd_X(1);

dy = grd_Y(2)-grd_Y(1);

dT = grd_T(2)-grd_T(1);

[grd_YY, grd_XX] = ndgrid(grd_Y, grd_X);

cnt_YY = grd_Y';

cnt_XX = zeros(size(grd_Y))';

% FOV correction factor beta and gamma

switch(fovID)

case 1

beta = 1.0;

gamma = 1.275;

case 2

beta = 2.114;

gamma = 1.537;

case 3

beta = 1.0;

gamma = 1.328;

end

% steady mixing

U_A = sum(U_dat_mean{2}(:,3)) * dy*h_gap*1000;

U_B = sum(U_dat_mean{2}(:,N_x-1)) * dy*h_gap*1000;

steady_flow = steady_flow + (U_A + U_B)/2*beta;

% coherent mixing

for svdID=1:2

T = U_R_svd(:,svdID);

T_plus = sum(T(T>0))/N_T;

T_minus = -sum(T(T<0))/N_T;

% line integral of the transverse velocity along the edges of A

and B

% (not exactly a transverse velocity because the temporal

singular vector is not multiplied)

U = reshape(U_L_svd(N_xy+1:2*N_xy,svdID), [N_y,N_x]) * U_S_svd(
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svdID,svdID);

U_Ain = -sum(min(U(:,3),0))*dy*h_gap*1000; % convert from m/s to

mm/s

U_Aout= sum(max(U(:,3),0))*dy*h_gap*1000;

U_Bin = sum(max(U(:,N_x-1),0))*dy*h_gap*1000;

U_Bout= -sum(min(U(:,N_x-1),0))*dy*h_gap*1000;

U_in = U_Ain + U_Bin;

U_out = U_Aout + U_Bout;

U_diff = U_in - U_out;

% FOV correction factor alpha

if U_diff > 0 % in > out

U_Aout = U_Aout + U_diff * U_Ain/U_in;

U_Bout = U_Bout + U_diff * U_Bin/U_in;

alpha = 1-abs(U_diff)/(U_in);

else % in < out

U_Ain = U_Ain - U_diff * U_Aout/U_out;

U_Bin = U_Bin - U_diff * U_Bout/U_out;

alpha = 1-abs(U_diff)/(U_out);

end

% Note: after correction, U_Ain + U_Bin = U_Aout + U_Bout

F_AtoB = (U_Ain) / (U_Ain + U_Bin) * U_Bout;

F_BtoA = (U_Bin) / (U_Ain + U_Bin) * U_Aout;

coherent_flow_AtoB = coherent_flow_AtoB + (F_AtoB*T_plus +

F_BtoA*T_minus)*alpha*gamma;

coherent_flow_BtoA = coherent_flow_BtoA + (F_BtoA*T_plus +

F_AtoB*T_minus)*alpha*gamma;

coherent_FOV(1,fovID) = coherent_FOV(1,fovID) + (F_AtoB*T_plus +

F_BtoA*T_minus)*alpha;

coherent_FOV(2,fovID) = coherent_FOV(2,fovID) + (F_BtoA*T_plus +

F_AtoB*T_minus)*alpha;

end

end

% steady mixing coefficients

if steady_flow > 0

steady_mix_coeff(2) = steady_flow / (d_hydˆ2 * v_nominal(2));

else

steady_mix_coeff(1) = -steady_flow / (d_hydˆ2 * v_nominal(1));
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end

% coherent mixing coefficients

coherent_mix_coeff(1) = coherent_flow_AtoB / (d_hydˆ2 * v_nominal(1));

coherent_mix_coeff(2) = coherent_flow_BtoA / (d_hydˆ2 * v_nominal(2));

% coherent mixing at each FOVs

coherent_FOV(1,:) = coherent_FOV(1,:) / (d_hydˆ2 * v_nominal(1));

coherent_FOV(2,:) = coherent_FOV(2,:) / (d_hydˆ2 * v_nominal(2));
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