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This thesis describes Ph.D. research on the half-Heusler class of thermoelectric materials. 

Half-Heusler alloys are a versatile class of materials that have been studied for use in photovoltaics, 

phase change memory, and thermoelectric power generation. With respect to thermoelectric power 

generation, new approaches were recently developed in order to improve the thermoelectric figure 

of merit, ZT, of half-Heusler alloys. Two of the strategies discussed in this work are adding excess 

Ni within MNiSn (M = Ti, Zr, or Hf) compounds to form full-Heusler nanostructures and using 

isoelectronic substitution of Ti, Zr, and Hf in MNiSn compounds to create microscale grain 

boundaries. This work uses computational simulations based on density functional theory, 

combined with the cluster expansion method, to predict the stable phases of pseudo-binary and 

pseudo-ternary composition systems. Statistical mechanics methods were used to calculate 

temperature-composition phase diagrams that relate the equilibrium phases. It is shown that full-

Heusler nanostructures are predicted to remain stable even at high temperatures, and the 

microscale grain boundaries observed in (Ti,Zr,Hf)NiSn materials are found to be 

thermodynamically unstable at equilibrium. A new strategy of combining MNiSn materials with 

ZrNiPb has also recently emerged, and theoretical and experimental work show that a solid 

solution of the two materials is stable.  

  

Abstract 



 

1 

 

1.1 Waste heat 

Over the past fifty years, there has been a global push for renewable energy due to 

environmental concerns. However, despite recent advances in technology, renewable energy is 

still only a small fraction of the total energy market. According to a study by Lawrence Livermore 

National Laboratory, in the year 2016 sustainable renewables only made up about 5.4 % of the 

total energy production in the United States, as shown in Figure 1. It may be many years until 

renewable energy is in a position to fully replace fossil fuels, therefore intermediate technologies 

are necessary to reduce carbon output and increase the efficiency of the existing fossil fuel 

Chapter 1 Introduction to Thermoelectrics 

Figure 1. Energy flow diagram of US energy production and consumption. Source: 

Lawrence Livermore National Laboratory, March 2017. Data is based on DOE/EIA 

MER (2016) 



 

2 

 

technology during this transition period. Thermoelectric power generation is an appealing 

technology to help increase overall efficiency during and after the transition to renewable energy. 

Thermoelectric power generation is a solid state conversion of heat energy directly into electricity. 

Thermoelectric devices are capable of converting waste heat into usable electricity with no moving 

parts, and are extremely compact and reliable in operation.  Using waste heat as a power source 

has considerable promise as 66% of all generated energy is lost as waste heat, shown in light grey 

in Figure 1. Even capturing and converting a small fraction of the waste heat would have a 

tremendous impact on the environment.  

1.2 The thermoelectric effects 

The principle of thermoelectricity is to use the charge carriers within a solid material as the 

working medium for a power generator, or in the reverse process as a cooler. The thermoelectric 

effect was discovered in 1821 by the German physicist Thomas Johann Seebeck. Seebeck 

discovered that if two wires of different metals were joined together to make a loop, and the wires 

were heated at their junction, a voltage would develop between the two open ends. Likewise, if 

the two ends were connected, a current would flow around the loop. The voltage produced, ΔV, 

was found to be linearly related to the difference in temperature of both sides, ΔT. The constant of 

proportionality is now called the Seebeck coefficient, S, given as 

∆𝑉 = 𝑆∆𝑇 (1) 

Later, in 1834, a French watchmaker and physicist, Jean Peltier, discovered that when 

current was passed through the junction between two different metals, heat was absorbed at one of 

the junctions and heat was liberated at the other. The amount of heat released or absorbed was 



 

3 

 

found to be linearly related to the current passed through, and the coefficient of proportionality is 

now called the Peltier coefficient, 𝜋, defined as 

Q = 𝜋𝐼 (2) 

where Q is the heat absorbed or released at the interface and I is the current.  

The Seebeck effect relates an applied temperature difference to a generated voltage 

difference, and the Peltier effect relates an applied current to the heat absorbed or released.  In 

1851, William Thomson (who later became Lord Kelvin) showed that the two effects are related, 

and introduced a third effect known as the Thomson effect, which relates the heat production rate 

of a material to the current passed through it and the temperature gradient. The performance of 

thermoelectric materials was first characterized by Edmund Altenkirch in 1909, and later 

modernized and formalized by Abram Ioffe. Ioffe expressed the maximum efficiency of a 

thermoelectric power generator as a product of the Carnot efficiency and a term that depends on 

the thermoelectric figure of merit, ZT, 

𝜂𝑚𝑎𝑥 =
𝑇𝐻 − 𝑇𝐶

𝑇𝐻
 (

√1 + 𝑍𝑇 − 1

√1 + 𝑍𝑇 +  
𝑇𝐶

𝑇𝐻

) (3) 

where 𝑇𝐻 is the temperature of the hot junction, 𝑇𝐶 is the temperature of the cold junction. The 

first term, 
𝑇𝐻−𝑇𝐶

𝑇𝐻
, is the Carnot efficiency. As ZT goes to infinity, the efficiency of the device 

approaches the Carnot limit, as shown in Figure 2.  

The thermoelectric figure of merit, ZT, is a material dependent parameter given by 

𝑍𝑇 =  
𝑆2𝜎𝑇

𝛫
 (4) 
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where S is the Seebeck coefficient, 𝜎 is the electrical conductivity, 𝑇 is the absolute temperature, 

and 𝐾 is the thermal conductivity. In order to maximize the ZT of a material, one would need to 

maximize the numerator, known as the power factor, where 𝑃𝐹 =  𝑆2𝜎, while simultaneously 

minimizing the thermal conductivity. In practice this is a very difficult task, as the materials 

properties are not independent of each other. The Seebeck coefficient decreases with increasing 

carrier density, whereas the electrical conductivity increases with increasing carrier density. Also 

the electrical contribution to the thermal conductivity increases with carrier density. In this respect, 

strategies must be developed that bypass these standard semiconductor relations.  

 Modern strategies to improve thermoelectrics are largely influenced by two theoretical 

papers published in 1993 by Hicks and Dresselhaus [1, 2]. Before these works, known 

Figure 2. Plot of conversion efficiency vs. hot side temperature. The cold side temperature is 

taken to be 300 K and efficiencies for ZT = 1, 2, 3, and 4 are shown compared to the Carnot limit.  



 

5 

 

thermoelectric materials, such as Bi2Te3, had a maximum ZT of about 1. The Hicks and 

Dresselhaus papers suggested that large improvements could be achieved by utilizing the quantum 

nature of lower dimensional structures, which can advantageously alter the density of states in 

ways that enable simultaneous increases of the Seebeck coefficient and the electrical conductivity. 

In addition to enhancing the electrical properties, strategies emerged to use nanoscale grain 

boundaries to enhance phonon scattering while keeping the electrical properties unharmed. This 

concept is stated best as the ‘phonon glass/electron crystal’ concept, proposed by Slack [3]. These 

new strategies breathed life back into the field of thermoelectrics, which was considered stagnant 

for many years. Since 1993, dozens of new potential thermoelectric materials have been discovered 

and ZT values have improved from 1 to ZT as high as 2.6, specifically in single crystal SnSe [4]. 

Of the new materials focused on in the last 20 years, half-Heusler alloys have gathered 

considerable attention as potential low cost high durability thermoelectric materials. The 

remainder of this work is focused on the class of half-Heusler alloys and their thermoelectric 

properties. 
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2.1 The half-Heusler and full-Heusler crystal structure 

Half-Heusler (HH) alloys  have recently shown great promise as thermoelectric materials. 

HH alloys are made of inexpensive, light weight, and environmentally friendly elements. They are 

stable at high temperatures and have intrinsically high power factors, PF, where PF = 𝛼2𝜎. 

However, the ZT of HH alloys is limited by their large thermal conductivity [5-8], which is around 

10 W/m-K at room temperature. Many of the recent research efforts on HH alloys have indeed 

focused on developing techniques to lower the thermal conductivity while preserving the 

outstanding electronic properties.   

Half-Heusler alloys are named after Friedrich Heusler, a German mining engineer and 

chemist who studied MnCu2Sn in 1903. Materials with MnCu2Sn type structures are now named 

Heusler alloys, which are also referred to as full-Heusler (FH) alloys in order to emphasize the 

distinction between them and half-Heusler alloys. FH alloys are generally ferromagnetic metals, 

and have recently become of interest as half-metallic materials, with applications for spin injection 

in spintronic devices [9].  Half-Heusler alloys, on the other hand, are usually non-magnetic and 

can be semiconductors depending on the valence count of the elements chosen [10]. The half-

Heusler crystal structure is closely related to the FH structure, except it has a 1:1:1 ratio of elements 

rather than 1:2:1. HH alloys have a general composition of XYZ, where X and Y are transition 

Chapter 2 Half Heusler Alloys as Thermoelectric Materials 
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metals, and Z is a main group element. HH alloys take the form of the MgAgAs structure type, 

space group F-43m (SG #216), and the structure is made up of 4 distinct face-centered cubic (fcc) 

sublattices [11], as shown in Figure 3(a). The Z atom is located at (0,0,0), the Y atom at (¼, ¼, ¼), 

and the X atom at (½, ½, ½). The fourth fcc sublattice located at (¾, ¾, ¾) remains vacant. The 

FH structure can be made by simply filling the vacant sublattice with Y atoms, making a 

composition of XY2Z, as shown in Figure 3(b), where the two sublattices, Y1 and Y2, are 

symmetrically equivalent. 

A large amount of thermoelectrics research has focused on half-Heusler alloys with a 

composition of MNiSn which is usually n-type and MCoSb which is usually p-type, where M = 

(Ti, Zr, Hf). Early works showed that MNiSn compounds form in the HH structure [11], and that 

they are indeed small gap semiconductors [7]. The thermoelectric properties of the materials can 

be greatly enhanced by use of dopants such as Sb for MNiSn [5] and Sn for MCoSb [12]. 

Figure 3. (a) The crystal structure of half-Heusler and (b) full-Heusler alloys. Half-Heusler alloys 

have composition XYZ, whereas in the full-Heusler structure, the vacancies are filled in with a 

second atom (Y2-site), making the composition XY2Z. 
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Furthermore, the high thermal conductivity can be greatly reduced by using isoelectronic 

substitution on the M-site with Ti, Zr, and Hf. Mass-defect scattering effectively reduces thermal 

conductivity (~ 4-5 Wm-1K-1 at room temperature), while still preserving good electronic 

properties [5, 13].  

2.2 First principles studies of half-Heusler alloys 

First principles calculations have served an integral role in understanding the basic physical 

properties of thermoelectric half-Heusler alloys from an early stage. In 1994, Öğüt and Rabe [14] 

explored the stability of MNiSn (M = Ti, Zr, Hf) alloys by ab initio calculations. DFT methods 

were used to calculate the band structures. MNiSn compounds were shown to be semiconductors, 

in agreement with experimental work [7]. The theoretical bandgap of about 0.5 eV was found to 

be indirect between the Γ- and X-points in the fcc Brillouin zone. Figure 4 shows the band 

structures of ZrNiSn and ZrNi2Sn, where ZrNiSn has a band gap of 0.48 eV and the full-Heusler 

ZrNi2Sn is metallic without a bandgap. 

Later, it was demonstrated that the electronic structure of HH alloys depends heavily on 

the valence electron count [15-17]. Kandpal et al. [10] explored this concept in terms of bonding. 

Using linear muffin tin orbitals (LMTO) in band structure calculations, they visualized the charge 

density of a unit cell in order to understand the degree of bonding between atoms. The calculations 

showed that in almost all 8- and 18-valence HH alloys, the structure can be thought of as a 

covalently bonded Zinc-blend structure between the Y and Z atoms. The Xn+ ion then fills the 

(YZ)n- Zinc-blend sublattice, see Figure 3(a), where covalent bonds are indicated between the Y 

and Z atoms. In addition, calculations were performed on the p-type TiCoSb compound, and the 

charge density shows evidence of covalent bonding in the form of charge density surfaces located 
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at the midpoint of the Co-Sb tetrahedral bonds. By simply studying the band structure, and 

subsequently the localized charge density,  Kandpal et al. developed a rule that HH alloys with 

total valence electron counts of 8 and 18 form semiconductors, whereas compounds with valence 

counts other than 8 or 18 result in half-metallic ferromagnets [10].  

Recently, in addition to MNiSn and MCoSb compunds, other HH alloys, such as 

(V,Nb)FeSb, and even a full-Heusler alloy, VFe2Al, have come into view as potential candidates 

Figure 4. Calculated band structure of ZrNiSn (a) and ZrNi2Sn. Band energy is relative to the 

valence band maximum (b). Unpublished, Page et al. 
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for thermoelectric devices [18-26]. Studies of the band structure of MFeSb, where M = (V,Nb), 

have led to insights into how to improve their thermoelectric efficiency. MFeSb compounds are 

HH alloys with 18 valence electrons. It was shown that while these materials have high power 

factors, they also have a high thermal conductivity, on the order of ~10 Wm-1K-1 at room 

temperature. The resultant maximum ZT of less than 0.3 does not make MFeSb as attractive as 

other n-type HH alloys for high-temperature power generation[18-20]. However, calculated band 

structures revealed that the MFeSb compounds could be more effective as p-type materials because 

the valence band maxima are located at the L-point, rather than at the Γ-point [19-21]. The L-point 

of the fcc Brillouin zone is 4-fold degenerate. A high valence band degeneracy, 𝑁𝑣 = 4, is 

beneficial for thermoelectric performance as the density of states effective mass, 𝑚∗, depends on 

the band effective mass, 𝑚𝑏
∗  , following 𝑚∗ = 𝑁𝑣

2/3
𝑚𝑏

∗ . A large 𝑚∗ is desired for good 

thermoelectric materials; however, having a large 𝑚𝑏
∗  can decrease the mobility of the charge 

carriers, hurting the electrical conductivity. Increasing 𝑁𝑣 is thus an effective way to improve a 

material’s TE properties without detrimental side effects [22]. In accordance with this concept, 

compounds of (V1-xNbx)1-yTiyFeSb, were synthesized, where Ti acts as a p-type dopant. The 

isoelectronic substitution of Nb for V was done in an effort to reduce the thermal conductivity. 

This resulted in p-type materials with vastly improved ZT of 0.8 at 900 K [23]. 

Following this, Fu et al. [21] further improved the thermoelectric performance by noticing 

subtle differences in the calculated band structures of VFeSb and NbFeSb. The key differences 

between the two compounds are the size of the bandgap, i.e., 0.54 eV for NbFeSb and 0.34 eV for 

VFeSb, and the band effective mass, i.e., 0.16𝑚𝑒 for NbFeSb and 0.25𝑚𝑒 for VFeSb. Based on 

these facts, Fu et al. predicted that Nb1-xTixFeSb would actually perform better than (V1-xNbx)1-

yTiyFeSb. The improvement in ZT came primarily from three sources. First, the band effective 
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mass is reduced in the NbFeSb system, compared to that of VFeSb, leading to large improvements 

in the carrier mobility. Second, the decrease in band effective mass decreased the carrier 

concentration at which the PF is maximized. The carrier concentration achievable is limited by the 

solubility limit of Ti in MFeSb, which is about 20%. Therefore, the PF could be maximized within 

the solubility limit of Ti by decreasing the optimal carrier concentration. Third, the NbFeSb system 

has a larger bandgap, which increases the temperature at which bipolar contributions begin to 

diminish thermoelectric performance. All three effects combined led to a large enhancement in 

performance, with ZT of 1.1 at 1100 K. Soon after, it was discovered that Hf was also an effective 

dopant and has the added benefit of reducing the lattice thermal conductivity via increased point 

defect scattering, compared to that of Ti. The compound Nb0.88Hf0.12FeSn was found to have a 

record high ZT of 1.5 at 1200K [27] for p-type half-Heusler alloys. These works on MFeSb are a 

good example of how band structure predictions quickly reveal important insights, which are key 

in developing new strategies for improving the TE performance of HH alloys. 

2.3 Synthesis of half-Heusler alloys 

Half-Heusler alloys are remarkably stable and strong materials, however the synthesis 

process required to obtain homogenous single phase half-Heusler alloys is difficult and still a very 

active area of research. The synthesis of half-Heusler alloys is challenging because of the very 

different melting points of the constituent elements involved and the high propensity for defects 

in the crystal structure. The melting point of Sn is 232 ˚C, whereas the melting point of Zr is 1,855 

˚C, and the melting point of the half-Heusler ZrNiSn is 1,435 ˚C [28]. This creates the need for 

high temperature techniques such as arc melting [29], melt spinning [30], induction melting [31], 

optical floating zone solidification [32]. In all techniques where the ingot is cooled from a melt, 
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additional processing steps are necessary before a high quality TE material can be achieved. In 

most cases annealing followed by high temperature densification is required. Densification is 

usually done via Spark Plasma Sintering (SPS) or Hot Pressing (HP). Spark plasma sintering has 

the advantage that it is able to rapidly heat the materials from within, by passing electrical current 

directly through the samples. Typically, SPS can take as little as 15-30 minutes to achieve close to 

theoretical density. HP, on the other hand, can take many hours, sometimes as long as 6 hours to 

fully densify a sample.  Additionally, rather than melting the components and solidifying, the half-

Heusler phase can be obtained directly from solid state reaction [33, 34]. Ball milling can also be 

used to reduce the grain size and effectively reduce the thermal conductivity of HH alloys [35]. 

In most of these techniques, one to two weeks of annealing above 800 ˚C is necessary to 

remove high defect densities and produce a homogenous single phase. It was shown early on that 

the electrical properties of MNiSn compounds are highly dependent on annealing time [5]. 

Recently, new methods of synthesis have emerged, such as combustion synthesis. By using a 

controlled combustion wave, called Self-propagating High-temperature Synthesis (SHS), single 

phase HH alloys can be made within minutes [36]. SHS involves rapidly heating a well-mixed 

cold pressed cylinder of raw elements. The heating should be localized in one location, and fast 

enough to start chemical combustion of the elements. The process usually begins once the lowest 

melting point material (Sn in the case of MNiSn) melts. The other elements then dissolve into the 

melt and react. If the reaction is exothermic, and the heat released in the reaction is sufficient to 

melt the surrounding material, the reaction will then propagate along the length of the sample. The 

reaction is quick and easy to start, and can be carried out in air at ambient temperatures. This new 

technique holds great promise for making HH alloys cheaper and more suitable for industrial 



 

13 

 

commercialization. All of the techniques mentioned above have been used to produce high quality 

TE materials and no one technique has come to dominate the field.  

The work contained in the following chapters will remain focused on MNiSn compounds.  

For more in-depth reviews, see the corresponding references [37-40].  
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3.1 Density functional theory 

The search for new thermoelectric materials with higher efficiency, cheaper components, 

and better mechanical properties has necessitated the exploration of more complex materials 

combining three or more elements. The number of possible combinations of ternary compounds, 

if one only considers a 1:1:1 ratio of elements available in the periodic table, is 1,601,496 unique 

compounds. Therefore, it is highly desirable to be able to examine many different types of 

compounds quickly. Some experimental high-throughput techniques have been developed for this 

cause, however they are still expensive and limited in what types of compounds can be tested. A 

much more promising route is to screen many different compounds for their TE properties via 

computational simulations. 

One computational method that has gained tremendous momentum over the past 30 years 

is Density Functional Theory (DFT) [41-44]. DFT is a powerful technique that allows for the 

accurate prediction of physical properties in a variety of materials and molecules. Here we describe 

the basic theory of DFT and then in section 3.2, the details of calculations used in predicting 

properties of half-Heusler alloys are described.  

Chapter 3 Density Functional Theory Calculations 
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3.1.1 Schrödinger's Equation 

The usual method for predicting observables in a quantum system requires solving 

Schrödinger's equation to find the wave function of the system, Ψ, and then calculating expectation 

values of observables, 𝐴 =  ⟨Ψ|�̂�|Ψ⟩. This method gives exact answer for any system, however, 

in practice it cannot be used in condensed matter systems due to how the complexity scales with 

the number of electrons in the system. To see this, take the non-relativistic single particle 

Schrödinger's eq. 

[
−ℏ∇2

2𝑚
+ 𝑣(𝒓)] Ψ(𝒓) = 𝐸Ψ(𝒓) (5) 

with a particle of mass 𝑚 in a spatially dependent potential, 𝑣(𝒓). This equations enables us to 

solve for the wave function as a function of position, 𝒓. For many particles, this expression 

becomes, 

[∑ (
−ℏ∇𝑖

2

2𝑚
+ 𝑣(𝒓𝑖)) + ∑ 𝑈(𝒓𝑖, 𝒓𝑗)

𝑖<𝑗

𝑁

𝑖

] Ψ(𝒓1, 𝒓2, ⋯ , 𝒓𝑁) = 𝐸Ψ(𝒓1, 𝒓2, ⋯ , 𝒓𝑁) (6) 

where N is the number of electrons in the system and 𝑈(𝒓𝑖, 𝒓𝑗) is the potential arising from 

Coulombic electron-electron interactions. This equation has 3N variables, and in solids N is 

typically of the order of 1023 atoms. The goal of density functional theory is to form these equations 

in a more solvable manner by expressing the system as a functional of the charge density, 𝑛(𝒓).  

3.1.2 The Hohenberg-Kohn theorem 

The basic tenets of DFT were set by Hohenberg and Kohn in 1965 with the Hohenberg-

Kohn theorem [45, 46]. The theorem states that the ground state of a system is uniquely defined 
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by the ground state density, 𝑛0(𝒓). This implies that the ground state wave function, 

Ψ0(𝒓1, 𝒓2, ⋯ , 𝒓𝑁) can be expressed as a functional of 𝑛0(𝒓). The theorem can be proved by the 

variational principle. The energy of a system is minimized only in the unique ground state Ψ0, and 

this wave function can be used to calculate the observable 𝑛0(𝒓). If we consider the energy 𝐸 as a 

functional of the charge density, 𝐸(𝑛), the energy will then be minimized by the ground state 

density 𝑛0. Any state with 𝑛 ≠ 𝑛0 must also have Ψ ≠  Ψ0, and therefore have energy 𝐸 > 𝐸0. 

The energy of the system can be expressed as 

𝐸(𝑛) = 𝑇(𝑛) + 𝑈(𝑛) + 𝑉𝑒𝑥(𝑛) (7) 

where 𝑇(𝑛) is the kinetic energy, 𝑈(𝑛) is the electron-electron interaction potential, and 𝑉𝑒𝑥(𝑛) is 

determined by the lattice geometry, which is known for a given system. We now need to use 

approximations to determine 𝑇(𝑛) and 𝑈(𝑛). Note that the functional 𝐸(𝑛(𝒓)) only depends on 

the form of 𝑛(𝒓) and the three spatial coordinates.  

3.1.3 The Kohn-Sham equations 

The Kohn-Sham equations are what enable practical use of DFT for computation. 

Essentially they allow us to transform an interacting manybody system into a non-interacting 

system with an effective potential [46].  

First we define a new fictitious system of N non-interacting electrons. This system is 

described by an anti-symmetric wave function made up of single electron orbitals, 𝜑𝑖, which are 

chosen so that they correctly reproduce the ground state density: 

𝑛(𝒓) =  ∑|𝜑𝑖(𝒓)|2

𝑁

𝑖

 (8) 
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With these new orbitals, we can solve for the non-interacting kinetic energy, 𝑇𝑠, and the classical 

Coulomb electron-electron term, 𝑈ℎ, as follows 

𝑇𝑠(𝑛) =  −
ℏ2

2𝑚
∑⟨𝜑𝑖(𝒓)|∇2|𝜑𝑖(𝒓)⟩

𝑁

𝑖

 ,  𝑈ℎ(𝑛) =
1

2
∬

𝑛(𝒓1)𝑛(𝒓2)

|𝒓1 − 𝒓2|
𝑑𝒓1𝑑𝒓2 (9) 

Substituting these equations into (7), we can rewrite the energy in terms of the single electron 

orbital kinetic and potential energies 

𝐸(𝑛) = 𝑇𝑠(𝑛) + 𝑈ℎ(𝑛) + 𝑉𝑒𝑥(𝑛) + 𝐸𝑥𝑐 (10) 

where we define the Exchange-Correlation energy as  

𝐸𝑥𝑐 = [𝑇(𝑛) − 𝑇𝑠(𝑛)] + [𝑈(𝑛) − 𝑈ℎ(𝑛)] (11) 

The exchange-correlation energy is a grouping of the errors resulting from using the non-

interacting 𝑇𝑠 and 𝑈ℎ. These errors arise from two major contributions: the exchange and 

correlation errors. The exchange error can be thought of as the error introduced by ignoring the 

Pauli exclusion principle in the kinetic energy term [42]. The correlation error is caused by the use 

of independent orbitals, 𝜑𝑖, since in the real system electron orbitals are statistically correlated, 

and electron wave functions tend to repel each other to avoid interaction. The  𝐸𝑥𝑐 contains all of 

the manybody information of the system that was left out of 𝑇𝑠 and 𝑈ℎ.  

Given the energy in (10), it is possible to write down a non-interacting Schrödinger's 

Equation to solve for the 𝜑𝑖 by grouping potential energy terms into an effective potential 

𝑣𝑠 = 𝑣𝑒𝑥(𝒓) + 𝑣ℎ(𝒓)+𝑣𝑥𝑐(𝒓)  (12) 

where 
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 𝑣𝑥𝑐(𝒓) =  
𝛿𝐸𝑥𝑐(𝑛(𝒓))

𝛿𝑛(𝒓)
 (13) 

and 𝜑𝑖 can be solved for in the standard way 

[
−ℏ∇2

2𝑚
+ 𝑣𝑠(𝒓)] 𝜑𝑖 = 𝜖𝑖𝜑𝑖 (14) 

This expression is exact as long as the exact local potential 𝑣𝑠(𝒓) is used. However, the form of 

𝐸𝑥𝑐 remains unknown, thus the effective potential 𝑣𝑠(𝒓) must be approximated.  The problem has 

been reduced to solving the non-interacting Schrödinger's equation. The combination of (12) and 

(14) are known as the Kohn-Sham equations [46].  All that remains for practical use of DFT is an 

accurate approximation of 𝐸𝑥𝑐.  

3.1.4 Exchange-Correlation approximations 

Several different approximations have emerged over the years that are computationally 

viable. The approximations we will briefly discuss are the Local Density Approximation (LDA) 

and the Generalized Gradient Approximation (GGA).  

The local density approximation assumes that the exchange-correlation energy can be 

written as a functional of the electron density, 𝐸𝑥𝑐 → 𝐸𝑥𝑐(𝑛) [46]. This approximation is made so 

that the results calculated from a homogeneous electron gas can be used. The homogeneous 

electron gas was studied by Thomas and Fermi in the early 1920’s, and the results can be applied 

to inhomogeneous systems in some respects. The exchange energy can be calculated explicitly 

assuming that small regions essentially have a homogeneous density, and then summing over all 

such small regions to calculate the total exchange energy. The correlation energy is still difficult 

to solve for using this approximation, and results are generally parameterizations of quantum 

Monte Carlo simulations of a homogeneous electron gas. LDA can be used to reliably calculate 
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vibrational frequencies, elastic moduli, and phase stability of solids. However, LDA’s performance 

drops when dealing with electronic band gaps, binding energies, diffusion energies, and chemical 

reactions. LDA results also tend to slightly underestimate the lattice parameter of solids [47].  

The generalized gradient approximation improves upon LDA by expressing the exchange-

correlation energy as a functional of the local electron density and its gradient, 𝐸𝑥𝑐 → 𝐸𝑥𝑐(𝑛, ∇𝑛). 

This functional improves the accuracy of the approximation but also adds computational 

complexity. In order to make the approximation more flexible and accurate, the energy is written 

as a functional of some generalized function, f, which depends on the electron density and its 

gradient: 

𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫ 𝑛(𝒓)𝑓(𝑛(𝒓), ∇𝑛(𝒓)) 𝑑𝒓   (15) 

where 𝑓(𝑛(𝒓), ∇𝑛(𝒓)) is a function that is determined by calculating fitting parameters to certain 

test systems and constraints. A popular form of 𝑓 was developed by Perdew, Burke, and Ernzerhof 

(PBE) in 1996 [48]. The improvements gained by using GGA over LDA allows for accurate 

calculations of chemical bonding and diffusion energies, however, predictions of intermolecular 

bonds such as Van der Waals forces are still unreliable [42].  

Other more complicated exchange-correlation approximations have since been developed. 

The class of hybrid-functionals incorporate portions of exact exchange energies from Hartree-Fock 

theory that tend to be far better predictors of electronic density of states and band structure in 

semiconductors. In the following chapters, the work is done exclusively within GGA using the 

PBE parameterization.  
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3.2 Ab Initio simulation methods 

3.2.1 General Methods 

All calculations done in the following research used density functional theory as 

implemented in the Vienna Ab Initio Simulation Package (VASP) [49]. Calculations used GGA 

pseudo potentials as parameterized by Perdew, Burke, and Ernzerhof (PBE) [48]. The projector 

augmented wave method [50] was used and the energy cutoff for plane waves included in the basis 

set was taken to be 1.5 times larger than the largest ENMAX of the GGA-PBE pseudo potentials 

used in the simulation.  

For each material of interest for DFT calculations, the material’s sensitivity to several 

VASP input parameters was tested before more complicated calculations were attempted. The 

process begins by entering the material’s crystal structure and atomic basis into a file named 

POSCAR. An example POSCAR file for the ZrNiSn compound with a half-Heusler crystal structure 

is given below.  

ZrNiSn 
   1.00000000000000 
     0.0000000000000000    3.0766718734936536    3.0766718734936536 
     3.0766718734936536    0.0000000000000000    3.0766718734936536 
     3.0766718734936536    3.0766718734936536    0.0000000000000000 
   Zr   Ni   Sn 
     1     1     1 
Direct 
  0.0000000000000000  0.0000000000000000  0.0000000000000000 
  0.2500000000000000  0.2500000000000000  0.2500000000000000 
  0.5000000000000000  0.5000000000000000  0.5000000000000000 
 

Detailed descriptions of the formatting conventions for each line can be found in the VASP 

manual. The POSCAR file can either be constructed using an existing CIF file from an online data 
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base, such as MaterialsProject.org or from scratch by using crystal structure information and 

experimental (or best guess) lattice parameters.  

The material now needs to be tested for k-point energy convergence. This is done simply 

by creating multiple VASP runs, each with a different density of k-points in the first Brillouin 

Zone (BZ).  For initial k-point convergence and subsequent relaxation steps, we use a Monkhorst-

Pack mesh of k-points to sample the BZ [51]. Below is an example of a KPOINTS file with a 15 ×

15 × 15 Γ-point centered mesh.    

ZrNiSn Kpoints 
0 
Gamma 
15 15 15 
0 0 0 
 

For the example of ZrNiSn, k-point meshes of dimensions 3 × 3 × 3 to 15 × 15 × 15 were tested, 

and it was found that the formation energy converged to within 1 meV for meshes of size 7 × 7 ×

7 or greater, as shown in Figure 5. The formation energies are calculated by allowing for full 

relaxation of atomic position, cell shape and cell volume (ISIF = 3). For metals, it is common 

to use the first order Methfessel-Paxton method (ISMEAR = 1) to approximate the partial 

occupancy of energy states near the Fermi level. In this case, the artificial temperature parameter, 

SIGMA, must be tested for convergence such that the free energy, 𝐹, and the energy, 𝐸0, are 

converged (𝐹 − 𝐸0  ≤ 1 meV). A common value used is SIGMA = 0.2, where the units of 

SIGMA are in eV. For semiconductors, it is recommended to use the tetrahedron method with 

Blöchl corrections (ISMEAR = -5) [52].  

After the converged k-point mesh and smearing values have been found, further relaxation 

of the structure is required to accurately predict the equilibrium lattice parameter and atomic 
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positions. The crystal geometry should be allowed to fully relax (ISIF = 3) and the electronic 

steps should be converged to Δ𝐹 ≤ 10−7 eV. This can be set through the EDIFF parameter in the 

INCAR file.  An example INCAR file is given below.  

PREC = Accurate # precision 
ENCUT = 550     # global energy cutoff 
LREAL = .FALSE. # real space projection yes/no 
ISMEAR = -5   # method to determine partial occupancies (relaxation) 
SIGMA = 0.2     # smearing width (eV), only used with ISMEAR = 1 
NSW = 61        # number of ion relaxation steps 
IBRION = 2      # conjugate gradient relaxation (2) 
ISIF = 3        # set degrees of freedom for cell relaxation 
LWAVE = .FALSE. # do not write out WAVECAR file 
NPAR = 2        # parallelization 
EDIFF = 1.0e-7  # energy convergence cutoff, default 1.0e-4 
 

The calculation is then rerun multiple times, typically 2 or 3 times, increasing the EDIFF 

value from the default 1.0e-4 to 1.0e-7.  After the completion of a run, the output structure file, 

CONTCAR, is copied to the input structure file, POSCAR. This process is repeated until the VASP 

run converges after a maximum of 3 ionic relaxation steps.  We consider the final OUTCAR file 

as the “fully relaxed” unit cell and can extract the DFT predicted lattice parameter from the file.  

New materials should be checked to see if magnetic effects are prevalent. This can be done 

by allowing the electrons to obtain a spin polarization by setting the INCAR parameter ISPIN = 

2. The initial magnetic moment of each atom in the basis needs to be set via the MAGMOM 

parameter. In the case of the half-Heusler and full-Heusler alloys studied, none were found to have 

appreciable magnetism, and calculations were carried out without considering the spin polarization 

of electrons.  
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3.2.2 Density of states and band structure calculations 

In order to calculate the Density of State (DOS) it is important to do a single self-consistent 

(ICHARG = 2) static run (NSW = 0) with a high k-point density, such as 25 × 25 × 25 for 

ZrNiSn, to produce a CHGCAR file.  After the self-consistent run is complete, the run should be 

repeated as a non-selfconsistent calculation (ICHARG = 11) and the resulting DOSCAR file will 

hold the proper DOS information. An example INCAR file of the non-selfconsistent run to 

calculate the DOS is given below. 

PREC = High     # precision 
ENCUT = 550     # global energy cutoff 
LREAL = .FALSE. # real space projection yes/no 
ISMEAR = -5     #=1 for normal relaxation, =-5 for tetrahedral 
method  
NSW = 0         # number of ion relaxation steps 
IBRION = -1     #conjugate gradient (=2 normal, =-1 for static run) 
ISIF = 3        # set degrees of freedom for cell relaxation 
LWAVE = .FALSE. # do not write out WAVECAR file 
NPAR = 2        # parallelization 
 
ICHARG=11       # =2 selfconsistent run, =11 non-selfconsistent 

Figure 5. Plot of ZrNiSn formation energy as a function of k-point grid dimension.  
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EMIN=-10        #Set starting energy for DOS 
EMAX=15         #Set max energy for DOS 
NEDOS=1000      #Number of data points 
 

Band structure calculations can be based off of the same self-consistent run used in 

calculating the DOS. The band structure calculation should use a non-selfconsistent run and the k-

point mesh should be replaced with a k-point path that covers the relevant symmetry lines through 

the BZ, following the standards set by Setyawan and Curtarolo [53]. 

3.2.3 Phonon dispersion calculations 

Phonon dispersion curves and other vibrational properties were calculated by fitting force 

constants to Hellman-Feynman forces calculated in VASP on supercells with displaced atoms. We 

used the open source PHONOPY code [54] to generate displaced supercells and fit the force-

displacement data to compute the dynamical matrix. In all calculations we used a displacement 

distance of 0.03 Å and supercells of dimension 2 × 2 × 2 and 3 × 3 × 3 primitive cells. Before 

creating the displaced supercells, the primitive cells were relaxed such that all forces were less 

than 1 × 10−5 eV/ Å, using the EDIFFG tag in the INCAR file. Born Effective Charge corrections 

were calculated using density functional perturbation theory (DFPT) [55, 56] in VASP. Resultant 

phonon density of states are calculated using a dense k-point mesh (31 × 31 × 31), and 

dispersions curves are calculated along the high symmetry lines of the first BZ, similar to the 

electronic band structure calculations. Any ‘soft modes’ which are indications of structural 

instability, will be displayed as having negative frequency for ease of viewing. In this situation, 

the negative frequencies actually represent complex frequencies, which show that the structure is 

in an unstable maximum of energy rather than a minimum that would provide the usual restoring 

force.  
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3.2.4 Migration barriers and activation energy calculations: 

We calculated the migration barriers associated with the self-diffusion of various atoms 

within the HH matrix. To do this we assumed the diffusion happened via a vacancy mechanism, 

where a vacancy located on the corresponding site, Va, swaps with a neighboring atom. This 

mechanism can be thought of as two separate processes: first a vacancy must form in the matrix, 

and then a vacancy-atom exchange must occur. The diffusion coefficient in solids, can be 

expressed as [57], 

𝐷 =  𝐷0 exp [
−𝐸𝑎

𝑘𝐵𝑇
] (16) 

where Ea is an activation energy, kB is the Boltzmann constant, T is the absolute temperature, and 

D0 is the diffusion prefactor, which depends on the jump distance, effective jump frequency, and 

the vibrational entropy of vacancy formation [58]. The prefactor D0, in this form, has a weak 

temperature dependence arising from anharmonic vibrational excitations. The prefactor is 

commonly calculated from first principles within the harmonic approximation [59, 60].  The 

activation energy of vacancy-mediated diffusion is made up of two contributions, Ea = ΔEV + ΔEm, 

where ΔEV is the formation energy of a single vacancy in the matrix, and ΔEm is the migration 

energy. In many cases, it is sufficient to calculate only the activation energy and assume a constant 

value for the prefactor, D0.  

The migration energy was calculated using the DFT calculations along the diffusion 

pathway. The energy of migration, ΔEm, is defined as the difference in energy between the initial 

state and the transition state. The transition state is the “saddle point” between the initial state and 

the final state defined as the highest energy point of the lowest energy migration path from the 

initial to the final state. The migration barrier energy of the HH compounds was found by first 
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fully relaxing 3 × 3 × 3  supercells of the initial and final states. Then, Nudged Elastic Band 

(NEB) calculations were performed in VASP to find the location and energy of the saddle point.  

Nudged Elastic Band calculations are used to create and calculate the energy of 

intermediate structures along the migration path from the initial to final state. This is done by 

adding artificial “spring like” forces that keep the atoms at their desired location in the migration 

path, while at the same time allowing them to relax in directions perpendicular to the path. NEB 

calculations were performed using the built in NEB functionality in VASP.  It is often better to 

start with a small number of images (1 to 3) for the initial NEB run. An example INCAR file is 

given below.  

PREC = Medium    # precision medium 
ENCUT = 550      # global energy cutoff 
LREAL = .FALSE.  # real space projection yes/no 
ISMEAR = 1       # method to determine partial occupancies  
SIGMA = 0.2      # smearing width (eV) - keep T*S < 1 meV/atom 
NSW = 10         # number of ion relaxation steps 
LWAVE = .FALSE.  # do not write out WAVECAR file 
ELMIN = 5        # Min number of steps 
LCHARG = .FALSE. #determines if the charge densities are written. 
 
#Nudged Elastic Band Tags# 
EDIFF = 1e-6     # electronic convergence, default is 1e-4 
EDIFFG = -0.01   # max force 0.01 eV/A 
IMAGES = 1      # num of steps between initial & final configurations 
SPRING = -5      # spring constant 
IBRION = 1       # RMM-DIIS method 
ISIF = 2         # atomic positions relax, no volume or shape 
 

After the location of the saddle point along the reaction path is found, the saddle point 

structure can be further relaxed to find the lowest possible bound on the migration energy. To do 

this, place the migrating atom in the saddle point location, while leaving the rest of the cell 

unchanged from its initial configuration. This cell can then be fully relaxed and, in theory, the 
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migrating atom should stay at its local maxima, while the other atoms relax, further lowering the 

energy. This method sometimes provides an even lower bound on the migration energy, although 

one has to double check to make sure the migrating atom has stayed in position, and that the 

structure has not drastically changed. The calculation of equilibrium vacancy concentrations in 

compounds and alloys [61-67], especially those that are semiconductors [65] is difficult as the 

vacancy formation energy can depend on the charge state of the crystal. In this work, vacancy 

formation energies from other more thorough studies were used rather than attempting to calculate 

them from scratch.  
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The thermoelectric efficiency of half-Heusler alloys can be dramatically raised by doping 

in order to optimize the carrier concentration and by isoelectronic substitution, which can lower 

the lattice thermal conductivity via mass fluctuations. In both methods, it is important to know 

what the solubility limits of defects are inside the HH matrix. Consequently, phase diagrams are 

an extremely valuable tool in understanding and controlling how dopants are incorporated in the 

HH materials. The phase diagram is a compact way of representing which phases are 

thermodynamically stable under equilibrium conditions for a given temperature and composition. 

Such information can be found by extensive experimental work, where compounds of different 

composition are synthesized and annealed at varying temperatures, however, this type of 

investigation is extremely time consuming and expensive. Furthermore, the synthesized material 

depends on the kinetic processes of synthesis, which can obscure the fundamental thermodynamic 

processes we aim to understand. Therefore, it is highly desirable to have an accurate theoretical 

method for determining the phase diagram of a particular composition space. Theoretical methods 

that employ DFT as the backbone for calculations have been developed to create full 

thermodynamic phase diagrams as functions of temperature and composition in a timely and cost 

effective manner.  

The phase diagram of a system can be constructed by finding the free energy of various 

competing phases as a function of composition and temperature. Systems with substitutional 

Chapter 4 Ab-initio Phase Diagrams 
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degrees of freedom, such as an alloy of two materials, require both accurate formation energy 

calculations and statistical mechanics techniques, which can account for configurational entropy, 

in order to calculate finite-temperature thermodynamic properties. The cluster expansion method 

[68] bridges the gap between the accurate but costly DFT formation energy calculations, and the 

macroscopic statistical mechanics tools, such as Monte Carlo simulations or mean field 

approximations.  

The free energy of a solid, F, is given by 

𝐹 =  −𝑘𝐵𝑇 ln(𝑍) , 𝑍 = ∑ exp (
−𝐸𝑠

𝑘𝐵𝑇
)

𝑠

 (17) 

where Z, the partition function is determined by a sum over all possible configurational, electronic, 

and vibrational states of the solid. Here, 𝐸𝑠 is the energy of state 𝑠, 𝑘𝐵 is the Boltzmann constant, 

and 𝑇 is the absolute temperature. Often, in investigations of phase diagrams, the effects of 

vibrational and electronic degrees of freedom are considered small and can be neglected [69]. In 

this case, the sum in (17) is only over the configurational degrees of freedom.  

Consider a specific sublattice in a crystal that can be occupied by either atom A or atom B. 

The number of possible configurations that A and B atoms can be arranged on the lattice sites 

increases with the size of the lattice. Usually we are interested in the arrangement of atoms in the 

A1-xBx alloy for a given composition, x. One possible configuration is shown in Figure 6(a), where 

only two FCC conventional cells are shown. The formation energy of all possible configurations 

of A and B atoms over an arbitrarily large number of sites is required to solve for the free energy 

using (17). This is not possible to compute using DFT, as the vast number of possible 

configurations is far too costly computationally. Luckily, there are several approximations we can 

use that make it possible to accurately predict the formation energy for any given configuration.  
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The cluster expansion requires relatively little DFT calculations. In constructing a cluster 

expansion, each site is assigned an occupation variable, 𝜎𝑖, which takes a value of 1 or -1 if site 𝑖 

is occupied by atom A or B, respectively [70]. We then create groups of occupation variables, 

called a cluster and denoted as 𝛽. Clusters can range from just one site to groups including multiple 

sites. For example, a cluster that includes two sites 𝛽 =  (𝜎𝑖, 𝜎𝑗) is called a pair, and a cluster that 

includes three sites 𝛽 =  (𝜎𝑖, 𝜎𝑗, 𝜎𝑘) is called a triplet, and so on. Some example possible pair 

clusters on an FCC lattice are shown in Figure 6(b). The formation energy can then be expressed 

Figure 6. (a) Example configuration of twenty three atoms A and B (red and blue 

respectively) in an FCC lattice configuration. (b) Examples of possible singlet and 

pair clusters on an FCC lattice.  
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as an expansion in terms of cluster basis functions, 𝛤𝛽(�⃗�),  which are polynomials of the discrete 

occupation variables, 𝜎𝑖 [68, 71]. The configurational energy then takes the form 

𝐸(�⃗�) = 𝑉0 +  ∑ 𝑉𝑖𝜎𝑖 + 
𝑖

∑ 𝑉𝑖,𝑗𝜎𝑖𝜎𝑗 + 
𝑖,𝑗

 ∑ 𝑉𝑖,𝑗,𝑘𝜎𝑖𝜎𝑗𝜎𝑘 + ⋯  
𝑖,𝑗,𝑘

= 𝑉0 + ∑ 𝑉𝛽𝛤𝛽

𝛽

 

(18) 

where 𝑉0 and 𝑉𝛽 are coefficients called effective cluster interactions (ECI) and have a constant 

value. Here, the sum in Eq. (18) is over all possible clusters, β. However, this infinite sum can be 

drastically truncated by eliminating terms that have very small contributions to the formation 

energy. For example, the ECI tend to converge to zero for clusters that involve lattice sites far 

away from each other, such as more than three times the lattice parameter of a material. Also, 

clusters that involve a large numbers of sites, such as greater than five sites, tend to have very 

small ECI. Therefore, this sum can be truncated to a relatively small number of clusters, and 

generally only clusters that contain close range pairs or triplets are included. 

The ECI can then be solved for by fitting Eq. (18) to the calculated DFT formation energies 

of various configurations. To attain an accurate fitting of the ECI, only fifty to eighty separate DFT 

configurational energies are required for a binary system, and around 300 configurations are 

required for a ternary system. This is easily done with modern computing power, and in practice 

using 12 or 24 processors in a computing clusters required around one month to complete the 

calculations for half-Heusler alloy systems. The ECI are fit by using a genetic algorithm. The 

genetic algorithm is required to optimally determine which clusters are most important and should 

be included in the expansion. To do this, sets of clusters are randomly generated and evaluated by 

using a cross validation, CV, score. A set of clusters, called a genome, is usually represented in 
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binary, with a 1 representing that a cluster is included and a 0 representing that a cluster is not 

included. Top scoring genomes of an individual set are then mated together to produce ‘offspring’ 

by swapping a certain fraction of their genes or randomly mutating (i.e. flipping a bit from 0 to 1). 

This new generation is again tested and ranked based on CV score. The process repeats until 

population members achieve CV scores within a specified tolerance, or until the maximum number 

of allowed generations has passed.  

The CV score is found using the ‘leave one out’ method, described as follows. The ECI 

included in a genome are trained on all but one of the configurations used in the DFT calculation. 

The ECI resulting from the training are then used to predict the energy of the configuration which 

was left out of the original training set. The CV score is then found by repeating this process for 

the same genome using different training sets, until all DFT calculated configurations have been 

‘left out’ once. The average error between the ECI predicted formation energy and the DFT 

calculated energy is defined as the CV score.  Typically, the CV score should be less than 10 meV 

and in the case of this work was never larger than 6 meV. 

Once the optimal fit is obtained, the energy of any configuration, no matter its size or 

arrangement, can be calculated to a high accuracy using the truncated version of Eq. (18), which 

now is a sum only over the clusters used in the optimal fit. See Ref. [72] for a more detailed 

description of cluster expansions methods.  

A complete description of the formation energy of different configurations along a 

composition space A1-xBx, allows us to determine the ground state structure. The ground state of a 

material is determined by the lowest energy structures on the “hull”, which is defined by the 

common tangent of the formation energies. From this, we can determine at 0 Kelvin, what the 

equilibrium microstructure of the material is.  However, in order to predict the equilibrium phases 
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of a system at non-zero temperatures, it is necessary to consider more than just the formation 

energy of a given configuration.  

In experimental conditions, we must consider that atomic diffusion is possible within the 

system. From thermodynamics, we know that for a system in thermal and diffusive contact with a 

reservoir at a temperature, T, and chemical potential μ, the probability of states occurring is 

governed by the Gibbs factor. Thus, the ratio of the probability of being in a particular state, 1, 

with N1 particles and energy E1, over another, 2, is given by 

𝑃( 𝑁1, 𝐸1)

𝑃( 𝑁2, 𝐸2)
=

exp (
𝜇𝑁1 − 𝐸1

𝑘𝐵𝑇
)

exp (
𝜇𝑁2 − 𝐸2

𝑘𝐵𝑇
)

= exp (
−∆𝐻

𝑘𝐵𝑇
) (19) 

which is just the ratio of Gibbs factors [73]. We define the enthalpy 𝐻𝑖 =  𝐸𝑖 − 𝜇𝑁𝑖, and ∆𝐻 =

𝐻1 − 𝐻2 as the difference in enthalpy between states 1 and 2. In Monte Carlo (MC) simulations, 

we implement this fundamental thermodynamic law via the Metropolis algorithm [74]. This 

algorithm is as follows: 1) randomly generate a new state of the system; 2) calculate the energy of 

this new state using the ECI to evaluate the local environment of the site; 3) if the new state has 

lower enthalpy that the current state, the change is immediately accepted, but if the new state has 

higher enthalpy than the current state (i.e. ∆𝐻 is positive), then the new state will be accepted with 

the probability 𝑃 =  exp (
−∆𝐻

𝑘𝐵𝑇
). If each lattice site in the MC simulation is visited a sufficient 

number of times, the Metropolis algorithm guarantees that the system will tend to thermodynamic 

equilibrium. Thus, the MC method simulates the randomness of systems at finite temperature and 

acts as an artificial entropy. In practice, when running the simulation, each site is visited around 

3000-5000 times, and the simulation takes place on over 3000 lattice sites. In order to find the 

actual phase boundaries with respect to temperature and composition, multiple MC runs must be 
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made at varying temperature and chemical potentials. From the MC results, thermodynamic 

averages provide the grand canonical energy, concentration x, and structure of crystal. Through an 

integration, the Gibbs free energy can be obtained and thus the equilibrium concentrations are 

found. By plotting the equilibrium concentrations for multiple temperatures, a phase diagram is 

constructed, as shown in Figure 7.  

Figure 7. Calculated pseudo-binary phase diagram of TiNi1+xSn from x = 0 to 1.   

Circles show calculated phase transition points, between which, a two phase 

coexistence is stable. The MC method is limited to temperatures below the 

decomposition point of TiNiSn, above which the phase diagram can no longer be 

considered pseudo-binary.  



 

35 

 

5.1 Introduction 

A  ZT value greater than 2 has still not been achieved in the half-Heusler class of materials. 

Recently, a new strategy has emerged that takes advantage of the structural similarities of the HH 

and FH structures as well as their differing electronic properties. It was shown that by using an 

overstoichiometric amount of Ni in bulk HH, the excess Ni creates FH nano-structures that make 

coherent or semi-coherent boundaries with the HH matrix [33, 34, 75-79]. Coherent nanostructures 

are thought to be less detrimental to the electronic transport and thus are beneficial for TE materials 

[80]. 

Makongo and coworkers [34] found that adding 2% to 3% excess Ni created semi-coherent 

FH nano-structures (see Figure 8), which simultaneously increased the Seebeck coefficient and the 

electrical conductivity while slightly decreasing the lattice thermal conductivity. This resulted in 

an overall 250% increase of ZT compared to the HH bulk at a temperature of 775K. The authors 

attributed this enhancement to an energy filtering effect that occurs at the interfaces of the metallic 

nanoparticles and the bulk semiconducting matrix.  

Chapter 5 Phase Separation of Full-Heusler Nanostructures 

in Half-Heusler Thermoelectrics and Vibrational Properties 

from First-principles Calculations 
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Much is still unknown about the processes that govern the formation of the nanoparticles 

and the properties at their interfaces that contribute to the enhanced power factor. Furthermore, to 

be useful in waste heat recovery applications, small fractions of FH metallic nanoparticles must be 

Figure 8. (a) TEM images of HH with excess Ni forming semi-coherent interfaces with the bulk 

HH matrix. (b) Schematic of the electronic bands across the nanostructure-bulk interface. The 

potential barrier created at the interface could enable an energy filtering process. (a) and (b) 

shown with permission from Makongo et al., JACS 133, 18843 (2011). 
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thermodynamically stable at high temperature within the HH matrix to prevent performance 

degradation during operation and thermal cycling.  

Many theoretical studies using DFT were done regarding aspects of the HH-FH system. 

The formation enthalpy of defects was examined for the MNiSn (M = Ti, Zr, or Hf) structures. 

Studies found that, of the many different defects that can occur in a HH structure, excess Ni filling 

a vacant site results in the lowest change in formation enthalpy [81-84]. While the low formation 

enthalpy of excess Ni indicates that such a defect is likely to form, it remained unclear what the 

resulting microstructure would be. The work of Do et al. [83] showed that the formation energy 

of a supercell with two excess Ni atoms was minimized if the Ni atoms occupied adjacent vacancy 

sites as opposed to sites far away from each other. This was promising qualitative evidence that 

excess Ni atoms would preferentially form a secondary full-Heusler phase as opposed to a solid 

solution. However, it was still unknown what the behavior of Ni defects at non-zero temperatures 

is. Furthermore, predictions of the maximum solubility limits of Ni in MNi1+xSn as a function of 

temperature would reveal if the experimentally observed nanostructures would remain stable 

during prolonged use at high operating temperatures.  

This chapter presents the results of a study of the equilibrium phase diagram along the 

pseudo-binary composition axis between MNiSn and MNi2Sn [85]. First-principles electronic 

structure calculations are combined with a Cluster Expansion (CE) method and statistical 

mechanics simulations to predict phase stability at finite temperature as a function of concentration 

x in MNi(1+x)Sn. Vibrational properties of HH and FH structures are also investigated from first 

principles. It is found that cubic TiNi2Sn is dynamically unstable while the cubic forms of ZrNi2Sn 

and HfNi2Sn are predicted to be dynamically stable. Structural instabilities have been observed in 

FH compounds, such as MnNi2Ga before and were explored for their usefulness as potential 
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magnetic shape memory devices [86-88]. The unstable phonon modes predicted in cubic TiNi2Sn 

differ qualitatively from those of MnNi2Ga.  

5.2 Configurational formation energies 

The clusters approach to statistical mechanics (CASM) software package [90, 91] was used 

to enumerate symmetrically distinct Ni-vacancy configurations over the vacancy sublattice of HH 

MNiSn, to fit  the cluster expansion coefficients to fully relaxed DFT energies, and to perform the 

Monte Carlo simulations. In this work, cluster expansions are parameterized for each MNi1+xSn 

system. Each expansion was fit to over 40 DFT calculated structures with supercell volumes up to 

5 times the primitive cell. The optimized set of ECI was determined by minimizing a cross 

validation (CV) score calculated using the “leave one out” method. The CV scores for each cluster 

expansion were smaller than 6 meV/site.  

 

Fully relaxed lattice constants for the HH and FH structures are shown in Table 1. The 

calculated DFT parameters overestimate the experimental values [89] by a small margin (0.5-0.7%) 

as is to be expected with DFT-GGA. 

 Lattice parameter (Å) HH-FH Mismatch (%) 

 DFT Exp DFT 

TiNiSn 5.945 5.92 2.97 

ZrNiSn 6.153 6.11 2.61 

HfNiSn 6.113 6.07 2.62 

TiNi2Sn 6.116 6.09  

ZrNi2Sn 6.314 6.27  

HfNi2Sn 6.273 6.24  

Table 1. DFT calculated lattice constants from this work compared to experimental values, Exp 

[89], and the lattice mismatch between the HH and FH compounds relative to the HH lattice 

constant. 
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Figure 9. Formation energy per formula unit cell relative to the ground states are shown for 

TiNi1+xSn (A), ZrNi1+xSn (B), and HfNi1+xSn (C). DFT calculated energies are shown as blue 

diamonds. The Cluster Expansion (CE) predicted energies for the DFT structures and further 

predictions for configurations up to x = 0.1 and x = 0.9 are shown as red dots. The dashed circle 

in (B) indicates specific configurations discussed in the text. 
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The DFT formation energies relative to HH MNiSn and FH MNi2Sn are shown in Figure 9 as blue 

diamonds. The cluster expansion predicted energies of different Ni-vacancy arrangements over the 

vacancy sublattice of HH MNiSn are shown as red dots.  

The formation energies of the configurations in Figure 9 are all positive relative to the HH 

and FH structures. This implies that no solid solution or intermediate ordered arrangement of Ni 

and vacancies is stable between x = 0 and 1 at zero temperature. From only the DFT calculated 

energies, it can be predicted that below a certain temperature, called the critical temperature, a two 

phase coexistence region between HH and FH should exist. The cluster expansions fit to the DFT 

formation energies included 11, 12, and 14 ECI, resulting in CV scores of 5.7, 4.3 and 5.9 meV 

for TiNi1+xSn, ZrNi1+xSn, and HfNi1+xSn, respectively.  

 The DFT formation energies of ZrNi1+xSn and HfNi1+xSn exhibit a slight asymmetry 

around x = ½. The formation energy associated with adding Ni to the vacancy sublattice for HH 

ZrNiSn and HfNiSn is higher than that of adding vacancies to FH ZrNi2Sn and HfNi2Sn, indicating 

that vacancy defects in the FH is less costly than Ni defects in HH structures, in agreement with 

previous calculations [82].  The formation energies of the TiNi1+xSn system, by contrast, are far 

more symmetrical. 

Figure 9 also shows formation energies predicted with the cluster expansion for Ni-vacancy 

arrangements in larger supercells than those calculated with DFT. Large supercells can 

accommodate Ni-vacancy configurations at more dilute concentrations (i.e., closer to x = 0 or x = 

1). Supercells up to volumes of 10 times the primitive cell volume were predicted with the CE and 

correspond to the red dots in Figure 9 in the range of 0.1 ≤ x ≤ 0.2 and 0.8 ≤ x ≤ 0.9. The DFT 
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energies of several of the ZrNi1-xSn configurations were predicted to have low energy by the cluster 

expansion at x = 0.875. Two of the configurations were calculated with DFT to further assess the 

accuracy of the cluster expansion (data circled by the dashed line in Figure 9(B)). The DFT results 

match the cluster expansion predictions within 4 meV/f.u, and provide a confirmation of the 

predictive power of the cluster expansion method on the HH class of materials. 

5.3 Pseudo-binary phase diagrams 

Calculated pseudo-binary HH-FH phase diagrams for TiNi1+xSn, ZrNi1+xSn, and HfNi1+xSn 

are shown in Figure 10. The small black diamonds represent calculated phase boundaries while 

the dashed horizontal lines indicate experimentally observed HH melting points [28] (or 

decomposition point for TiNiSn). In all three systems, a large miscibility gap separates HH from 

FH. The persistence of the miscibility gap to high temperatures is a result of the relatively large 

formation energies of intermediate configurations compared to the formation energies of the HH 

and FH structures.  In the TiNi1+xSn phase diagram (Figure 10(A)), a symmetrical and large 

miscibility gap is predicted over the entire temperature range where TiNiSn is observed to be 

thermodynamically stable. At 1453K, TiNiSn is experimentally observed to decompose into 

TiNi2Sn, Ti2Sn, and Sn [28]. The solubility limit of excess Ni in the HH structure is negligible at 

300 K and increases to only 1.0% (x = 0.010) at 1450 K. This is in stark contrast to the ZrNi1+xSn 

phase diagram where the solubility of Ni is predicted to have a stronger temperature dependence 

(Figure 10(B)). At 300 K, the solubility is also negligible but steadily increases to 5.8% at 1450K. 

The solubility continues to increase to 11.0% at 1700 K (ZrNiSn melts at 1760 K). For the 

HfNi1+xSn phase diagram (Figure 10(C)), the solubility limit once again is negligible at 300 K, 
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Figure 10. Temperature-concentration pseudo-binary phase diagrams of TiNi1+xSn (A), 

ZrNi1+xSn (B), HfNi1+xSn (C). The small black diamonds represent calculated points along the 

phase boundary and the horizontal dashed line indicates experimental melting points for the 

HH (or decomposition point for TiNiSn). 
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increases to 1.0% at 1450 K and becomes 2.3% at 1700 K. These low solubility values are in 

agreement with current experiments where FH secondary phases have been observed with as little 

as 3% excess Ni with transmission electron microscopy [34]. The phase boundaries at higher 

temperatures and at compositions closer to x = 0.5 are not accessible using Monte Carlo 

simulations, however the present results cover the temperature range for practical operation as TE 

power generation materials.  

Our study suggests that a secondary FH phase will precipitate within a HH matrix at excess 

Ni concentrations greater than x = 0.01 for temperatures up to 1450 K in TiNiSn and HfNiSn, and 

up to 900 K in ZrNiSn. If precipitation occurs at the nano-scale, the FH phase may be difficult to 

observe experimentally by X-ray diffraction (XRD) techniques for concentrations below 3% [33]. 

However, the authors of Ref. [33] argue that the measured HH bulk lattice parameter remains 

constant for all compositions with x < 3%, suggesting two-phase coexistence, in agreement with 

our predictions.  

The temperature dependence of the ZrNiSn phase has a larger Ni solid solubility at high 

temperatures, however; many studies of TE HH materials find ZT to peak between 600 and 800 K 

[5, 34, 92]. The Zr phase shows only 0.4% solubility at 800 K, implying that FH precipitates are 

predicted to be stable during high temperature operation in the temperature range of interest. 

The solubility of vacancies in the FH phase is seen to be much larger than the solubility of 

Ni in the HH. This is especially true for the ZrNi1+xSn and HfNi1+xSn phase diagrams. All three 

systems begin with negligible vacancy solubility at 300 K. The ZrNi1+xSn system shows vacancy 

solubility of 12% (x = 0.88) at 1450 K and 16% (x = 0.84) at 1700 K. The HfNi1+xSn system shows 

vacancy solubility of 7.3% at 1450 K and 11.0% at 1700 K. The TiNi1+xSn diagram shows an 

increase to only 2.0% (x = 0.980) at 1450 K. The asymmetry between vacancy solubility in FH 
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and Ni solubility in HH arises from the asymmetry in the formation energies in Figure 9. The 

higher solubility of vacancies in the FH matrix implies that HH nanostructures within FH materials 

might be less stable than FH nanostructures in HH materials. However, the low solubility of both 

Ni and vacancies at room temperature implies that if there is sufficient diffusion, both HH and FH 

materials are able to from secondary phase nanostructures. 

The equilibrium phase diagrams calculated here using the CE model are not the only 

consideration in determining the actual microstructure observed in materials. In some cases, a 

material will never realize its thermodynamically stable state because nucleation and diffusion 

barriers may prevent formation and subsequent growth of the stable phase in a supersaturated 

matrix. Our current treatment also neglects contributions to the free energy arising from coherency 

strains during two-phase coexistence. Coherency strains increase the solubility limits of calculated 

miscibility gaps from the additional interface energy required to make a two phase mixture [93-

96]. The lattice mismatch between HH-FH ranges between 2.5% to 3%, which can result in sizable 

strain energy penalties during coherent two-phase coexistence, depending on the elastic moduli of 

the coexisting phases. Strain energies are also very sensitive to the morphology and distribution of 

coherent precipitates within a matrix [97]. 

5.4 Vibrational properties of MNiSn and MNi2Sn compounds 

5.4.1 Half-Heusler vibrational properties 

Phonon dispersion curves along high symmetry directions for TiNiSn, ZrNiSn, and HfNiSn 

structures are shown in Figure 11.  For the semiconducting HH materials a non-analytic correction 

was used to account for the dipole-dipole interactions, resulting in the splitting of longitudinal 
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optical (LO) and transverse optical (TO) bands at the zone-center. Several trends can be identified 

in the HH phonon spectra as the M-site atom is changed from Ti to Zr to Hf. Most noticeably, the 

wide acoustic-optical band gap, which exists in TiNiSn (Figure 11(A)) near 175cm-1, is closed in 

ZrNiSn (Figure 11B) as the lower optical modes drop in frequency. Large gaps between the optical 

and acoustic modes reduce acoustic-optical phonon-phonon scattering [98] and are undesirable for 

low thermal conductivity materials. The qualitative similarity in shape of the TiNiSn and ZrNiSn 

bands shows that the bonding structure is similar, and thus the mass difference between Ti and Zr 

atoms is the primary cause of the frequency shift.   

In HfNiSn the acoustic and optical bands drop lower in frequency than in ZrNiSn and 

greater optical-acoustic band mixing is seen. All three acoustic branches of HfNiSn have 

comparably lower Γ point group velocities than TiNiSn or ZrNiSn, as shown in Table 2. Also, a 

new gap centered around 200 cm-1 is opened between the two sets of optical modes. This suggests 

it is possible to tune the location of the lower optical bands by isoelectronic substitution on the M 

site. Phonon-phonon scattering mechanisms become more important at high temperatures and thus 

are of interest in the search for strategies to lower lattice thermal conductivity in HH alloys. All 

 ӨD (K) υg  (cm x 105 s-1) 

 Calculated Exp LA TA 

TiNiSn 370 335a,407b 5.9 2.8 

ZrNiSn 372 323b 5.7 2.9 

HfNiSn 320 307b 5.1 1.8 

     

ZrNi2Sn 247  4.7 2.7 

HfNi2Sn 266  4.2 2.5 

Table 2 The Debye temperature, ӨD, was calculated from the phonon density of states and is 

compared to experimental results from Ref. [99] (a) and Ref. [100] (b). Group velocities, υg, at the 

zone center were fit to calculated phonon frequency data along the Γ-X direction. 
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calculated HH phonon dispersions agree well with past theoretical studies that relied on different 

computational methods [101-104].  

5.4.2 Full-Heusler vibrational properties 

The calculated dispersion curves for the FH structures, shown in Figure 12, have 3 

additional optical bands arising from the 2nd Ni atom in the primitive cell, making a total of 12 

phonon bands. The dispersion curves for TiNi2Sn show imaginary frequencies (Figure 12(A)). 

Imaginary phonon frequencies (shown as negative frequencies) indicate dynamical instabilities 

within the cubic phase at zero Kelvin. This surprising result was checked by calculating force 

constants with larger supercells of size 3 × 3 × 3, which confirmed the existence of the imaginary 

modes.  

While other magnetic and non-magnetic full-Heusler variants of interest for magnetic 

shape memory applications [86-88] have been found to exhibit dynamical instabilities, the 

particular instabilities that are predicted for TiNi2Sn have not been previously reported. The 

TiNi2Sn phonon dispersions presented here differ from results from a previous computational 

study by Hermet et al. [104]. Hermet’s work uses the Local Density Approximation (LDA), and 

observed no imaginary frequencies. The origins of the instability observed in this work will be 

further discussed later in section 5.5. 

In contrast to TiNi2Sn, the ZrNi2Sn and HfNi2Sn phonon spectra have no unstable phonon 

modes, although both exhibit very low frequency acoustic modes at the X point. The ZrNi2Sn and 

HfNi2Sn dispersion curves show significant mixing between acoustic and optical modes. The 

lower optical modes appear to push down the acoustic modes dropping the group velocities below 

that of HfNiSn, as seen in Table 2. 
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Figure 11. Phonon dispersion curves of TiNiSn (A), ZrNiSn (B), and HfNiSn (C) calculated with 

DFT shown along high symmetry paths. Optical bands are shown in red and acoustic in blue. 
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Figure 12. Phonon dispersion curves of TiNi2Sn (A), ZrNi2Sn (B), and HfNi2Sn (C) calculated 

with DFT shown along high symmetry paths. Optical bands are shown in red and acoustic in 

blue. Imaginary frequencies are shown as negative values. 
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5.4.3 Phonon density of states and thermal properties 

The total phonon density of states (DOS) and partial phonon density of states (PDOS) are 

shown in Figure 13. The PDOS is a measure of the relative contributions of each atom in the 

eigenvector of motion associated with each phonon mode. The FH structures (Figure 13(D-F)) are 

seen to have very mixed states with approximately equal contributions from each atom for the 

acoustic and first optical bands. The TiNi2Sn structure has a significant DOS at frequencies below 

50 cm-1 from the low frequency TA mode contributions, which arise from the instability. The HH 

compounds (Figure 13(A-C)) have modes where the PDOS is dominated by contributions from a 

single atom type. The trends in the HH DOS reflect those seen in their phonon dispersion curves; 

the peaks shift to lower frequencies as the mass of the M-site atom increases. The acoustic modes 

are predominantly formed by the heaviest atom in the basis, which is Sn in TiNiSn and ZrNiSn. 

However, the mass of Hf atoms is larger than that of Sn and the HfNiSn acoustic modes are 

dominated by the Hf atom contributions as a result. 

The acoustic modes dominate heat transport of materials at low and intermediate 

temperatures because of their high group velocities compared to the optical modes. The shift of 

dominance from the Sn atom to the Hf atom in the acoustic PDOS implies that M-site alloying 

would have a greater effect on kL in HfNiSn than in TiNiSn, as previously observed by Hermet et 

al. [104]. Previous experimental studies have wide variance in their synthesis techniques, and the 

resultant microstructure of their materials makes it difficult to confirm the alloying effects on kL 

with our predictions. The optical modes are primarily composed of M-atoms and Ni in TiNiSn and 

ZrNiSn, and switch to Ni and Sn for the HfNiSn structure. The Debye temperature was calculated 

by fitting the total DOS from zero to one quarter of the maximum phonon frequency. The results 

follow the trend of a decreasing Debye temperature when going from lighter (Ti) to heavier (Hf) 
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Figure 13. Total density of states (DOS) and partial density of states (PDOS) calculated with 

DFT. Total DOS is shown in black and contributions from each atom are shown in color, green 

for M = Ti, Zr, or Hf, red for Ni and blue for Sn. Parts (A) through (F) show the DOS for TiNiSn, 

ZrNiSn, HfNiSn, TiNi2Sn, ZrNi2Sn, HfNi2Sn, respectively. 
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transition metal. This trend is consistent with a similar increase in phonon DOS at low frequencies 

with increasing transition metal mass. The calculated Debye temperature match reasonably well 

with experiment [99, 100], as shown in Table 2. 

The phonon contributions to heat capacity at constant volume, Cv, were calculated within 

the Phonopy code and are shown in Figure 14 from temperatures 0 to 1000K. The specific heat at 

constant volume in Figure 14, cv, is normalized by the number of atoms. The computed cv of 

TiNiSn agrees well with experimental measurements [99]. Unfortunately, no experimental data is 

available for comparison with the other HH and FH materials. The per-atom heat capacities at 100 

K are given as: cv = 13.9, 15.4, 16.4, 16.7 18.46, 18.93 (kJ.K-1.mol-1) for TiNiSn, ZrNiSn, HfNiSn, 

TiNi2Sn, ZrNi2Sn, and HfNi2Sn, respectively.  This trend can be explained by the shifting of the 

vibrational DOS to lower frequencies, which increases the number of modes available at low 

temperatures. TiNi2Sn is the exception. The low frequency modes associated with the X-TA 

Figure 14. Heat capacity per atom is calculated using DFT. TiNiSn results are compared to 

experimental data of B. Zhong (ref. 92) 
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instability create a large DOS at frequencies below 50 cm-1 making the cv of TiNi2Sn larger than 

the other structures up to 32 Kelvin. Imaginary modes were not included in the calculation of cv. 

In the case of HH, increasing the mass of the M-site atom causes the DOS shift to lower 

frequencies, and in FH structures the addition of the 2nd Ni atom introduces a new optical band 

that pushes the acoustic bands frequencies lower. As the temperature increases past the Debye 

temperature, all phonon modes become occupied and the calculated specific heat of all the HH and 

FH approach the classical Dulong-Petit limit of 24.94 within ±0.04 (J.mol-1K-1atom-1) at 2000K. 

5.5 TiNi2Sn instabilitiy 

5.5.1 Energies of distorted cells 

The imaginary phonon frequencies of cubic TiNi2Sn are a result of the negative curvature 

of the Born-Oppenheimer energy surface with respect to a particular collective atomic 

displacement. The cubic TiNi2Sn crystal structure can therefore further decrease its energy by 

distorting along the eigenvectors of an unstable phonon mode. The distorted structures lower the 

total formation energy and often have a lower symmetry. Many phases that are predicted to be 

dynamically unstable at zero Kelvin with DFT are, indeed, experimentally observed at high 

temperatures where they are stabilized by anharmonic vibrational excitations [105-108]. The 

predicted phonon dispersion curves for TiNi2Sn show unstable modes near the Brillouin zone edge 

at the X, K, and U points. At the X point, the phonon wave travels along the cubic [001] direction 

with a wavelength equal to the conventional cubic unit cell. The unstable modes at the X point 

correspond to two-fold degenerate transverse acoustic (TA) modes, which we denote as X-TA 

modes. The unstable modes at the K and U-points each are singly degenerate longitudinal acoustic 

(LA) modes.  
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We can further explore the nature of the dynamical instabilities of cubic TiNi2Sn by 

directly calculating the energy of the crystal as a function of the amplitude of the unstable phonon 

modes. While common Bain paths, such as tetragonal and rhombohedral distortions, revealed no 

reduction in the energy of cubic TiNi2Sn, lower energy structures can be found when the atoms 

are internally shuffled according to the X-point TA mode eigenvectors. The atomic displacements 

of this phonon mode are shown in Figure 15, with displacements magnified by 20 times for clarity. 

The energies of MNi2Sn (M=Ti, Zr, Hf) as a function of the amplitude of an X-TA phonon mode 

are shown in Figure 16A. Since the X-TA phonon mode is dominated by Ni displacements, the 

displacement distance of Ni atoms is used as a metric of the phonon mode amplitude (horizontal 

axis in Figure 16A). As is clear in Figure 16A, the cubic form of TiNi2Sn can further lower its 

energy by 1.1 meV per formula unit (f.u.). Cubic ZrNi2Sn and HfNi2Sn, in contrast, are 

Figure 15. Atomic motions of the X-point TA phonon mode are shown for each atom of the 

TiNi2Sn structure. The phonon mode travels in the cubic [001], out of the page. Black arrows 

indicate atomic motion with amplitudes magnified by 20x.    

. 
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dynamically stable for the same X-TA phonon modes (Figure 16(A)). Isoelectronic substitution of 

M-site atoms has little effect on the chemistry of the bonding but there are significant differences 

in the atomic radii of the Ti, Zr, and Hf atoms and, correspondingly, there are large differences in 

the lattice parameter, as shown in Table 1. The energy of TiNi2Sn along the phonon modes having 

Figure 16. Energy per formula unit of 2x2x2 supercells is shown as a function of phonon mode 

displacement amplitude for (A) X-point, (B) K-point, and (C) U-point modes for TiNi2Sn. 

ZrNi2Sn and HfNi2Sn energies are shown in (A) for comparison and have positive curvature 

along the distortion path, whereas TiNi2Sn has negative curvature with energies that drop 1.1 

meV below that of cubic TiNi2Sn. K and U points show no instabilities along their paths. The 

horizontal axis measures the displacement of Ni atoms from their equilibrium position. 

. 

 

Figure 17. Contour plot shows the change in formation energy of TiNi2Sn structure as a 

function of X-TA phonon mode amplitudes ε1 and ε2.  
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imaginary frequencies at the K and U points increase with amplitude (Figure 16(B and C)). Hence, 

the DFT parameterized harmonic phonon Hamiltonian used to calculate phonon dispersion curves 

for TiNi2Sn predicts spurious dynamical instabilities at the K and U points. 

The X point is on the Brillouin zone edge in the symmetrically equivalent cubic [001], 

[010], and [100] directions. Each direction has 2 orthogonal transverse acoustic modes that we call 

ε1 and ε2. The full energy landscape of the X-TA subspace can be characterized by combinations 

of these two modes with varying amplitudes. Figure 17 shows the change in energy (relative to 

cubic TiNi2Sn) as a function of ε1 and ε2 amplitudes. The plot shows that lower energy distortions 

exist for any displacements due to a combination of both X-TA ε1 and ε2 phonon modes, however, 

the minimum energies are found along the symmetrically equivalent (ε1,0) and (0,ε2) directions. 

The minimum energy structures have reduced symmetry, from cubic TiNi2Sn to 

monoclinic. The distorted structure has space group P21/m (space group #11). We did not explore 

whether additional symmetry breaking could reduce the energy of TiNi2Sn any further.  

The energy curve in Figure 16(A) shows not only that TiNi2Sn is dynamically unstable at 

zero Kelvin, but that anharmonic vibrational excitations at elevated temperature should, at some 

transition temperature, result in the stabilization of the high temperature cubic form of TiNi2Sn 

[107]. However, the shallow depth of the energy well at only 1.1 meV/f.u. suggests that the critical 

temperature of stabilization will be very low, if observable at all. A treatment accounting for 

anharmonic vibrational excitations would be necessary to predict the true critical temperature. 

While little is understood about high temperature phases that become dynamically unstable at low 

temperature, the anharmonic excitations that are crucial in making these phases stable above a 

critical temperature should also have a significant impact on their thermal conductivity. 
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5.5.2 Origins of TiNi2Sn instability 

To better understand why ZrNi2Sn and HfNi2Sn full-Heusler structures are dynamically 

stable and TiNi2Sn is not, we explored the effects of interatomic spacing on the TiNi2Sn instability. 

As expected, increasing or decreasing the lattice parameter, and subsequently the total volume of 

the cubic FH crystal structure, results in an overall increase in the formation energy. However, the 

formation energy’s trend as a function of X-TA phonon mode amplitude changes dramatically 

with lattice parameter. Figure 19 shows the energy of distorted TiNi2Sn supercells with varying 

lattice parameter, a. It is found that increasing the lattice parameter makes the structure less stable 

by lowering the energy of the distorted structures relative to the cubic form. Decreasing the lattice 

parameter to a = 0.98a0 results in all distorted structures having a higher energy than the cubic 

structure. The transition from negative to positive curvature occurs near a = 0.99a0 = 6.054 Å. The 

positive energy curvature at these smaller lattice parameters implies that smaller inter atomic 

distances stabilize the cubic structure with respect to the X-TA displacements. 

The results of Ref. [104], which found no complex modes in TiNi2Sn dispersions, can be 

explained by the tendency for the X-TA instability to stabilize for smaller lattice parameters. 

Hermet and coworkers use LDA functionals, which tend to underestimate lattice parameters. Their 

LDA lattice parameter of a = 5.91 Å underestimates the experimental value by 3%, which would 

remove all traces of the instability according to our results.  In our work, GGA functionals 

overestimate the lattice parameter and exceed the experimental value by 0.5%. While the GGA 

calculations achieve better agreement with experiment in this case, on average, GGA can 

overestimate the lattice parameter by about 1% [47]. Given the sensitivity of the energy surface on 

the lattice parameter, the results presented here can only claim that the TiNi2Sn structure is unstable 

according to GGA calculations. 
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Figure 19. Formation energies of TA-X mode distorted TiNi2Sn structures relative to the FCC 

structure are shown for cells of varying lattice parameter a, where a = d*a0 , and d = 0.98, 0.99, 

1.00, 1.01, 1.02, 1.04 and a0 = 6.116 Å 

 

Figure 19. Schematic of the FCC structure (A) and the X-TA mode displaced structure (B), 

viewed along the cubic [001] direction. The distance between atoms is shown next to each bond. 

Black arrows centered on atoms show the direction of their displacement relative to the FCC 

structure.  
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The instabilities seen in other Heusler alloys were also found to be in TA vibrational modes 

dominated by the motion of Ni atoms, however the same explanations of optical-acoustic mode 

mixing cannot be applied to TiNi2Sn [86, 88]. The ordering of the optical bands in MNi2Sn 

structures does not change between TiNi2Sn and ZrNi2Sn or HfNi2Sn. Furthermore, the Fermi 

level is not located at a local maximum of the electronic density of states (eDOS) and little to no 

change in the eDOS is seen near the Fermi level for the distorted structures. Thus, the instability 

cannot be explained by the Jahn-Teller effect either [109]. It is unclear if the Fermi-surface nesting 

proposed for MnNi2Ga can be applied to TiNi2Sn [88]. One possible explanation for the instability 

in TiNi2Sn is a simple rearrangement of atoms to achieve energetically favorable interatomic 

bonding distances. 

We now examine the effects of X-TA mode distortions on the interatomic distances. In the 

cubic full-Heusler structure, each Ti (or Sn) site is at the center of a cube made up of 8 Ni atoms. 

The Ti-Ni and Sn-Ni interatomic distances are equal for all 8 Ni atoms, as shown in Figure 19(A), 

where only the top layer of Ni atoms are shown in blue for clarity. To a close approximation, the 

X-TA distortion moves Ni atoms only in the [100] directions indicated in Figure 19(B). Four of 

the eight Ni atoms slide closer to Ti and shorten the Ti-Ni bond by 0.04 Å. The other 4 move away 

and lengthen their bond by 0.04 Å. Sn atoms also move in the X-TA distortion. Sn atoms move 

away from the oncoming Ni atoms by shifting in the [010] direction. The result is that 4 Ni-Sn 

bonds are only shortened by 0.01 Å and the other 4 only lengthened by 0.01 Å. The overall effects 

result in Ti atoms being closer to 4 of the 8 Ni atoms while the Ni-Sn bond lengths are more or 

less unchanged.  

Strong p-d hybridization seen in other full-Heusler structures [86, 110] may be present in 

the Ni-Sn bonding and result in more rigid bonds. Rigid Ni-Sn bonds might force the structure to 
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have a larger lattice parameter, leaving the Ti atoms unable to fill the voids. The X-TA distortion 

path avoids the energy penalty of altering the Ni-Sn bond lengths while moving the Ti atoms into 

more stable bonds with 4 of the 8 Ni, possibly resulting in the lower formation energies relative to 

the cubic structure. 

5.6 Conclusions 

A thorough analysis of equilibrium phases as a function of temperature and Ni 

concentration was performed using DFT energies combined with a cluster expansion and Monte 

Carlo simulations on the HH-FH systems. The calculated phase diagrams predict a miscibility gap 

between HH-MNiSn and FH-MNi2Sn (M = Ti, Zr, or Hf), with limited Ni solubility in the HH and 

a limited tolerance for Ni vacancies in FH. The calculated phase diagrams suggest that FH nano-

precipitates seen in experiments are thermodynamically stable at concentrations of 1% below the 

temperature of 1400 K in TiNi1+xSn and HfNi1+xSn and below 800 K in the ZrNi1+xSn. Higher 

solubility of vacancies in FH compositions implies that a larger supersaturation is necessary to 

form a HH second phase inside FH bulk at elevated temperatures.  

Phonon spectra and thermodynamic properties were examined using DFT. The phonon 

band structures of the HH materials show that the selection of the M atom changes the frequency 

of optical bands and determines which atom dominates the PDOS of acoustic modes. Calculated 

heat capacity data agrees well with experiment for TiNiSn and other MNiSn and MNi2Sn phases 

show trends that follow from the shifts in DOS frequency with M-site mass. 

The TiNi2Sn structure was predicted to be dynamically unstable at zero Kelvin. It is 

possible to lower the energy compared to cubic FH by displacing atoms along the X-TA mode 
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distortion path. The nature of the instability is found to be different from instabilities found in other 

Heusler compounds. The volume dependent distortion energies show that smaller lattice 

parameters remove the instability along the X-TA mode, indicating that interatomic distances are 

crucial in creating the instability. We propose that the instability could originate from the smaller 

size of the Ti 3d orbitals compared to Zr 4d and Hf 5d orbitals. 
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6.1 Introduction 

While there are many promising half-Heusler compounds for TE power generation, it is 

widely believed that the MNiSn and MCoSb (M = Ti, Zr, or Hf) compounds have the most potential 

for industrial use. These compounds are the most stable and exhibit some of the highest ZT values. 

The state of the art MNiSn and MCoSb compounds have been shown to achieve ZT greater than 1 

by use of isoelectronic alloying between all three Ti, Zr, and Hf elements. In 2005, Sakurada and 

Shutoh observed a high ZT of 1.5 at a temperature of 700 K for the (Hf0.25Zr0.25Ti0.5)NiSn0.998Sb0.002 

compound [6]. For several years, this result could not be reproduced, and it was not well 

understood why the ZT was so much higher than other similar compounds. More recently, high ZT 

was again achieved in the n-type (Hf0.25Zr0.25Ti0.5)NiSn0.998Sb0.002 [92], with a value of 1.2 at 830 

K. Furthermore, a ZT of 1.2 was also found in the p-type (Hf0.75Ti0.25)CoSb0.85Sn0.15 at 983 K [111]. 

The improvements in the figure of merit in both n-type and p-type HH alloys have been attributed 

to the coexistence of multiple HH phases with different compositions. The phase separation has 

been reported to occur on a length scale of micrometers [92, 111-118]. The observed phases have 

mixtures of Ti, Zr, and Hf, which results in mass defect scattering and, additionally, the microscale 

grain boundaries enhance the scattering of long wavelength phonons, thereby significantly 

Chapter 6 Origins of Phase Separation in Thermoelectric 

(Ti,Zr,Hf)NiSn half-Heusler Alloys from First Principles 
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reducing the lattice thermal conductivity of the material. The separate HH phases have coherent 

or semi-coherent grain boundaries and thus do not harm the electronic properties of the material, 

resulting in an overall high ZT. 

The observed microstructures and solubility limits of the (Hf1-x-yZrxTiy)NiSn HH phases 

are highly dependent on synthesis techniques. When samples are synthesized by arc melting, the 

material forms a multi-phase mixture, with two dominating phases. One phase is Ti-rich, with 

smaller amounts of Zr and Hf, while the other phase has a high concentration of Zr and Hf while 

being deficient in Ti [92, 111-116]. In the work of Populoh et al. [112], for example, samples of 

(Hf0.26Zr0.37Ti0.37)NiSn synthesized by arc melting followed by annealing, exhibited a two-phase 

microstructure where the (Zr,Hf)-rich phase appeared to have solidified as dendrites, while the Ti-

rich phase, showing signs of having solidified later, filled in the interdendritic regions. Energy 

dispersive X-ray (EDX) analysis showed that the Ti-rich phase had an average composition of 

(Hf0.06Zr0.22Ti0.72)NiSn, while the (Zr,Hf)-rich phase had an average composition of 

(Hf0.33Zr0.47Ti0.20)NiSn. The Zr and Hf atoms were found to be uniformly distributed within the 

(Zr,Hf)-rich grains, implying ZrNiSn and HfNiSn form a solid solution. In other studies, careful 

X-ray diffraction (XRD) showed that up to five separate half-Heusler phases with distinct lattice 

constants were present within the material [92, 111, 113]. The exact Ti to (Zr, Hf) ratio and degree 

of ordering on the M site of these phases remains unknown.   

Very different microstructures are obtained when solid-state reaction synthesis is used 

[119, 120]. The solid-state method avoids cooling from the disordered melt. In a study by Downie 

et al. [119], solid-state reaction synthesis was used and the samples were reacted for the same 

temperature and duration as the annealing step in the Populoh et al. study (1173 K for 2 weeks).  

No dendritic features were observed. Instead, EDX analysis revealed an absence of any significant 
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variations in the composition of the grains, with the largest variations observed being less than 10 

% [119]. The XRD pattern of the sample with composition Zr0.5Ti0.5NiSn showed multiple peaks 

corresponding to a semi-continuous distribution of Zr1-xTixNiSn phases throughout the 

composition range of 0.24 ≤ x ≤ 0.70 [119]. Similar results were seen with Ti0.5Hf0.5NiSn having 

semi-continuous Ti1-xHfxNiSn phases with a composition range of 0.32 ≤ x ≤ 0.61. Surprisingly, 

Zr0.5Hf0.5NiSn is also seen to form multiple XRD peaks. The observation of multiple XRD peaks 

in the binary systems was used to argue that, despite the uniform microstructure, some degree of 

phase separation must have occurred.  

The above mentioned experimental studies suggest that the solubility limits of Ti, Zr, and 

Hf are heavily dependent on synthesis technique. In this study, we use first principles statistical 

mechanics methods to predict phase stability and solubility limits of half-Heusler phases in the 

pseudo-ternary composition space defined by (Hf1-x-yZrxTiy)NiSn. By comparing the predicted 

stable phases to experiment, it is possible to identify whether the observed microstructural features 

reflect thermodynamic equilibrium or were kinetically trapped during synthesis. Understanding 

the fundamental mechanism responsible for the formation of Ti-rich and Ti-poor grains is 

invaluable in guiding future experimental work and optimization efforts aimed at further 

improving the thermoelectric efficiency of half-Heuslers and other material systems. 

In the following, I present the results of a study [121] of the energies of formation along 

the pseudo-binary compositions of (Hf1-xTix)NiSn, (Zr1-xTix)NiSn, and (Hf1-xZrx)NiSn. The study 

is also expanded to the full pseudo-ternary space of (Hf1-x-yZrxTiy)NiSn in order to relate 

predictions directly to the high efficiency compounds discussed in experiments. First principles 

configurational formation energies are combined with statistical mechanics methods to predict 

equilibrium pseudo-ternary phase diagrams at finite temperatures. Finally, the results are compared 
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with existing experimental evidence and discuss how sluggish atomic diffusion plays an important 

role in kinetically trapping phase separated MNiSn compounds. 

6.2 Methods 

Calculations used a plane wave energy cutoff of 550 eV and a 9 × 9 × 9 Monkhorst-Pack 

[51] k-point mesh to sample the Brillouin zone. All supercells were allowed to fully relax. The 

formation energy was then calculated with a static run using the tetrahedron method. Cluster 

expansions were constructed for the (Hf1-xTix)NiSn and (Zr1-xTix)NiSn pseudo-binaries (0 ≤ x ≤ 1) 

by fitting the DFT formation energies of over 55 different configurations over the M sites within 

supercells of volumes up to five times that of the primitive cell. The pseudo-ternary (Hf1-x-

yZrxTiy)NiSn (0 ≤ (x, y) ≤ 1) cluster expansion was fit to the formation energy of 270 different 

configurations. The CV scores for each cluster expansion were smaller than 2 meV/site. 

6.3 Pseudo-binary MNiSn systems 

6.3.1 Pseudo-binary formation energies 

The formation energies of the enumerated configurations in the (Zr1-xTix)NiSn, (Hf1-

xTix)NiSn, and (Hf1-xZrx)NiSn pseudo-binaries for 0 ≤ x ≤ 1 are shown in Figure 20(a, b, and c). 

The formation energies are calculated relative to the pure compounds TiNiSn, ZrNiSn, and 

HfNiSn. The DFT formation energies are shown as blue diamonds. In the (Zr1-xTix)NiSn and (Hf1-

xTix)NiSn systems, the relative formation energies of intermediate configurations (where 0  x  

1) are positive, implying that only the pure compounds are stable at zero temperature. In contrast, 

several intermediate configurations of the (Hf1-xZrx)NiSn system, shown in Figure 20c, have small 
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negative formation energies. At all intermediate compositions calculated, a configuration with 

negative energy exists. The similarity of the formation energies and the fact that no configuration 

is drastically more favorable than the others indicates that a disordered solid solution of (Hf1-

xZrx)NiSn should be thermodynamically stable even at low temperatures, in agreement with 

experiment [114]. The calculated formation energies of (Zr1-xTix)NiSn and (Hf1-xTix)NiSn are 

relatively small compared to the energy of the Ni-vacancy ordering in the MNi1+xSn system studied 

in previous work [85].  

All three MNiSn compounds have similar electronic band structures [84, 122], indicating 

that large changes in bonding do not occur with isoelectronic substitution of Ti, Zr, and Hf. The 

positive formation energies in (Zr1-xTix)NiSn and (Hf1-xTix)NiSn, are therefore likely a result of the 

elastic strain energy penalty that arises when the smaller TiNiSn structure and the larger 

(Zr,Hf)NiSn structures are forced to mix. The DFT-GGA lattice parameters for MNiSn compounds 

are shown in Table 1. The lattice mismatch between TiNiSn and ZrNiSn compounds is 3.4 %, and 

similarly between TiNiSn and HfNiSn the mismatch is 2.7%. In contrast, the lattice mismatch 

between HfNiSn and ZrNiSn is only 0.7%. All DFT-GGA values are in close agreement with 

experiment [89]. The formation energies of (Zr1-xTix)NiSn are overall higher than those of (Hf1- 

xTix)NiSn. This correlates well with the larger lattice constant mismatch between ZrNiSn and 

TiNiSn compared to that between HfNiSn and TiNiSn. A more thorough study of the elastic strain 

energy is required to quantitatively determine if strain energy is the dominating factor in the 

configurational formation energies calculated here.  
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Figure 20. Formation energy per formula unit relative to the pure end states for Zr1-xTixNiSn (a), 

Hf1-xTixNiSn (b), and Hf1-xZrxNiSn (c). The configurational energies calculated by DFT are 

shown as blue diamonds, and CE predicted energies are shown as red dots. 
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6.3.2 Pseudo-binary phase diagrams 

Configurational energies of the pseudo-binary systems Zr1-xTixNiSn and Hf1-xTixNiSn 

were used in separate cluster expansion fits in order to obtain accurate phase boundaries. Figure 

20 shows the formation energies predicted by the cluster expansions (red dots). The CE fits, which 

Figure 21. The temperature-composition phase diagrams for (a) Zr1-xTixNiSn and (b) Hf1-

xTixNiSn. Black dots represent calculated points along the phase boundary. Outside of the 

boundary, a solid solution minimizes the free energy. Inside the boundary, a two phase 

coexistence minimizes the free energy. 
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have an average error of less than 1 meV per configuration, are in good agreement with the DFT 

formation energies. The Zr1-xTixNiSn was fit to the DFT formation energy of 55 configurations 

and had a CV score of 0.90 meV. The Hf1-xTixNiSn was fit to 55 configurations and had a CV 

score of 0.87 meV. The cluster expansion fits were then used in Grand Canonical Monte Carlo 

simulations. The results of the phase diagram calculations are shown in Figure 21. Calculated 

points of the phase boundary are shown as black dots.  Calculations are in close agreement with 

those of Mena et. al. [123], who used a cluster expansion method along with Canonical Monte 

Carlo simulations. The key difference between Grand Canonical and Canonical simulations is that 

particle exchange is allowed in Grand Canonical and the final composition is dependent on the 

chosen chemical potential. In Canonical Monte Carlo, the initial composition, x, is an independent 

variable. Despite this difference, the critical temperatures of the miscibility gap calculated in the 

two distinct studies agree within 50 ˚C of each other.   
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6.4 Pseudo-ternary Hf1-x-yZrxTiyNiSn system 

6.4.1 Pseudo-ternary formation energies 

Figure 22 shows the DFT calculated formation energies for 277 distinct configurations of 

the pseudo-ternary (Hf1-x-yZrxTiy)NiSn system (0 ≤ (x, y) ≤ 1). The pseudo-ternary energies follow 

similar trends as those of the binary compounds. The formation energies increase with Ti content, 

for all Zr/Hf ratios, with a maximum at y = 0.5. The formation energies are fairly symmetric about 

the y = 0.5 point. Only compositions along the y = 0 line (which corresponds to the binary (Hf1-

xZrx)NiSn configurations) show negative formation energies relative to the pure compositions. All 

Figure 22. Pseudo-ternary DFT formation energies of the Hf1-x-yZrxTiyNiSn system relative to 

the three pure states. 277 different configurations up to volumes five times the primitive cell 

were calculated in VASP.  All configurations are found to have positive formation energy, 

confirming no local ordering is stable at zero temperature. 
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intermediate ordered configurations containing some Ti are predicted to have positive formation 

energies, suggesting that a miscibility gap should exist at finite temperature. The lattice parameters 

of the 277 configurations are plotted in Figure 23. The lattice parameters of the configurations 

follow Vegard’s law closely and show that the lattice parameter of intermediate configurations can 

be predicted accurately. 

 

6.4.2 Pseudo-ternary phase diagram 

Figure 24 (a, b, and c) show the calculated pseudo-ternary phase diagram of the (Hf1-x-

yZrxTiy)NiSn system at temperatures of 300, 500, and 700 K, respectively. A solid black line 

denotes the calculated phase boundary between a single phase solid solution region (shown in 

color) and a two phase miscibility gap region (shown in white). For all temperatures, Hf and Zr 

are fully miscible in the half-Heusler structure and form a (Hf1-xZrx)NiSn solid solution. The 

solubility of Ti within the (Hf1-xZrx)NiSn solid solution depends on the Zr to Hf ratio and the 

Figure 23. Pseudo-ternary DFT lattice parameters of configurations. The lattice parameters 

follow Vegard’s law very closely.  
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temperature. The higher energy of mixing between TiNiSn and ZrNiSn causes the solubility of Ti 

to decrease as the Zr content increases relative to the Hf content. At 300 K (Figure 24(a)), there is 

a large miscibility gap, where less than 1 % of Ti is soluble in Hf1-xZrxNiSn for the majority of the 

composition range, and the Ti solubility limit slightly increases to ~ 3 % for Hf-rich compositions 

(x ≤ 0.1). As the temperature increases to 500 K (Figure 24(b)), the Ti solubility limit increases to 

around 9 % for Zr-rich compounds and up to 42 % for Hf-rich compounds.  At 700 K (Figure 

Figure 24. Pseudo-ternary (Hf1-x-yZrxTiy)NiSn phase diagrams were calculated at 300 K (a), 500 

K (b), 700 K (c). The solid solution region is shown in color, and the miscibility gap region is 

shown in white. As the temperature increases, the miscibility gap shrinks, and completely 

disappears above 900 K. Part (d) shows a summary of phase boundaries calculated from 300 to 

800 K. 
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24(c)), Ti becomes fully soluble along the Hf-rich side, and a small miscibility gap remains near 

the Zr-rich (x = 1) line. 

A summary of the calculated phase boundaries is shown in Figure 24(d). There is a critical 

temperature, Tc, above which the miscibility gap no longer exists, and a solid solution is favorable 

for all concentrations. For the (Hf1-x-yZrxTiy)NiSn system, Tc ≈ 850 K along the Zr-rich (x = 1) line. 

The critical temperature drops to Tc ≈ 500 K, along the Hf-rich (x = 0) line, in agreement with the 

pseudo-binary calculations. This implies that any composition (0 ≤ (x, y) ≤ 1) will form a solid 

solution when held at temperatures above 850 K for a sufficiently long time in order to reach 

equilibrium. Similarly, for temperatures below 850 K, a thermodynamic driving force for 

spontaneous decomposition emerges and Ti-rich and Ti-poor phases should form if sufficient 

atomic diffusion is allowed to occur. The critical temperatures reported in this work have close 

agreement with the predictions of Mena et. al. [123], who used first-principles methods to model 

the pseudo-binary Zr1-xTixNiSn and Hf1-xTixNiSn systems.  The calculated phase diagram in this 

work, however, disagrees with the high critical temperatures reported in the study by Gurth et al. 

[124], which created pseudo-binary phase diagrams based on experimentally measured solubility 

limits of arc melted samples reported in Kenjo et al. [114]. The phase diagram calculated via first-

principles methods in this work suggests that the experimental solubility limits reported cannot be 

interpreted as the result of equilibrium processes, but rather as the result of kinetically trapped 

states. We therefore predict that spinodal decomposition does not occur at the annealing 

temperatures used in experiments (e.g. 1173 K). We examine this further in later sections. 

In this work, (Hf1-x-yZrxTiy)NiSn is treated as a pseudo-ternary system, where we assume 

that the Ni and Sn content remain stoichiometric. It has been observed in several experimental 

studies that other binary phases are present after arc melting [28, 112, 113]. These phases could be 
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related to the fact that TiNiSn does not directly melt but rather decomposes into several other 

phases such as TiNi2Sn, Ni3Sn4, and Ti2Sn [28, 113]. We note that such phases, which are not 

considered in this work, could modify the phase diagram.  

6.5 Analysis and discussion 

6.5.1 Comparison with experiment  

Compositional heterogeneity in alloyed half-Heusler (Hf1-x-yZrxTiy)NiSn compounds 

seems to be crucial to achieving a high thermoelectric figure of merit [6, 92, 111, 116]. Past 

experimental studies have shown that the degree of heterogeneity over the M sublattice of the 

MNiSn half-Heusler compound is very sensitive to the synthesis method [112-114, 119, 120]. The 

experimental literature, however, has not been able to clarify whether the microscale Ti-rich and 

Ti-poor (Hf1-x-yZrxTiy)NiSn phases correspond to the thermodynamic equilibrium state or whether 

these microstructures have been trapped kinetically during synthesis. To help resolve this question, 

a first-principles statistical mechanics study of phase stability in the pseudo-ternary (Hf1-x-

yZrxTiy)NiSn composition space was performed. While the calculations predict a miscibility gap 

at low temperature between a Ti-rich and a Ti-poor half-Heusler phase, this miscibility gap 

disappears at temperatures above 850 K. Therefore, at the high annealing temperatures used in 

experiments (e.g., 1175 K), the equilibrium phase is predicted to be a solid solution characterized 

by disorder of Hf, Zr and Ti over the M sublattice. 

The first-principles predictions of this study therefore suggest that the multiphase 

microstructures observed in arc melted and induction melted samples are generated during 

solidification and are subsequently trapped at lower temperatures due to sluggish kinetics of M 
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atoms in solid MNiSn. Experimental studies have found evidence in support of Ti-poor and Ti-

rich regions that are created during the solidification step in synthesis. The phase diagram of the 

Hf-Zr-Ti-Ni-Sn composition space has not been fully characterized near the solid-liquid 

coexistence region, however, there is a large difference in the melting temperatures of HfNiSn or 

ZrNiSn (1760 K and 1708 K, respectively [28]) and the decomposition temperature of TiNiSn 

(1453 K) [28]. In the study of Gałązka et al. [113], the authors suggest that Zr and Hf rich half-

Heusler phases may solidify first by forming around pure Hf nucleation seeds, followed by the 

solidification of a Ti enriched liquid as the temperature is further reduced. Using EDX, they 

observed Zr and Hf rich half-Heusler dendrites and an enrichment of Ti in the interdendritic areas. 

Hence, the phase separation observed in arc melted samples is likely created during the 

solidification process rather than the two week annealing step at 1173 K. Indeed, in the work of 

Kenjo et al. [114], the Ti-poor grains are well formed after the initial arc melting step. The 

annealing step had little effect on the grains and mainly served to remove the impurities from the 

Ti-rich half-Heusler phase in the intergranular regions.   

6.5.2 Atomic diffusion in half-Heuslers 

In order for the microstructures created during solidification to remain intact after 

annealing, the mobilities of Hf, Zr, and Ti must be sufficiently low, such that solidified 

microstructures are not able to reach the predicted equilibrium solid solution through 

interdiffusion. Solid-state diffusion of Hf, Zr and Ti over the M sublattice of the MNiSn half-

Heusler compound is likely substitutional and mediated by a vacancy mechanism [62-64, 67, 125-

127]. Atomic mobilities and their derived interdiffusion coefficients then not only depend on the 

migration barriers for individual hops, but also on the availability of diffusion mediating vacancies 

[75, 125]. 
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While the calculation of equilibrium vacancy concentrations in compounds and alloys [61-

67], especially those that are semiconductors [65], is quite involved, past first-principles studies 

by Colinet et al. [81] and Hazama et al. [128] predicted a charge-neutral Ti vacancy formation 

energy in TiNiSn of 3.2 and 3.9 eV respectively. These values are very large, especially when 

compared to typical alloys [62-64], and indicate that the equilibrium vacancy concentration over 

the M sublattice of MNiSn half-Heusler compounds will be exceedingly low, even at elevated 

temperature. Furthermore, the migration barriers for atomic hops between a filled and a vacant M 

site of MNiSn half-Heusler compounds are also large. These barriers were estimated for a Ti, Zr 

and Hf hop into an adjacent vacant site of the M sublattice from first principles within a large 

supercell. 

The migration barriers associated with the self-diffusion of M site atoms: Ti, Zr, and Hf 

were calculated. The diffusion of M atoms within the stoichiometric HH matrix is likely to occur 

via a vacancy mechanism, where a vacancy located on the M site, VaM, swaps with an M atom. 

The mechanism can be thought of as two separate processes: the formation of vacancies in the 

matrix and vacancy-atom exchange. As discussed in section 3.2.4, the diffusion coefficient in 

solids can be expressed as [57], 

𝐷 =  𝐷0 exp [
−𝐸𝑎

𝑘𝐵𝑇
] 

 

where Ea is an activation energy, kB is the Boltzmann constant, T is the absolute temperature, and 

D0 is the diffusion prefactor, which depends on the jump distance, an effective jump frequency, 

and the vibrational entropy of vacancy formation [58]. The prefector, D0, in this form has a weak 

temperature dependence arising from anharmonic vibrational excitations. The prefactor is 

commonly calculated from first principles within the harmonic approximation [59, 60].  The 
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activation energy of vacancy-mediated diffusion is made up of two contributions, Ea = ΔEV + ΔEm, 

where ΔEV is the formation energy of a single vacancy in the matrix, and ΔEm is the migration 

energy. The migration energy was calculated using the VASP software in this work, and values of 

vacancy formation were taken from literature [81, 128].  

The energy of migration, ΔEm, is defined as the difference in energy between the initial 

state and the energy of the transition state. The Nudged Elastic Band (NEB) calculations were 

performed in VASP to find the location and energy of the saddle point. Initial NEB calculations 

showed that the saddle point is located half way along the reaction path and the barrier energy is 

symmetric about the saddle point, thus subsequent NEB calculations were carried out with a single 

image at the saddle point. Geometrically, the saddle point was found to be shifted off of the direct 

line connecting nearest neighboring M sites (shown as a dashed line in Figure 25(a)) towards the 

vacant (¾, ¾, ¾) site (shown as an empty black circle in Figure 25(a)).  

The predicted migration barriers for hops between neighboring M sites are 1.9, 3.0 and 2.7 

eV for Ti, Zr and Hf, respectively, as shown in Figure 26. These values are very large compared 

to other substitutional alloys and compounds [60, 63, 129]. Since the overall activation barrier for 

substitutional diffusion is equal to the sum of the vacancy formation energy and elementary 

migration barriers [57, 58], the above estimates suggest activation barriers for intermixing that 

range between 5 and 7 eV. With activation barriers this large, interdiffusion among Ti, Zr and Hf 

will be negligible even at annealing temperatures of 1175 K.  

The migration energy of Ni atoms diffusing to vacant sites on the ¾, ¾, ¾ sublattice was 

also calculated.  Of the many pathways calculated, the lowest energy hops in the ZrNiSn matrix 
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are shown in Figure 25(b) and Figure 25(c). The lowest energy migration path for Ni atoms in 

ZrNi2Sn are shown in Figure 25(d). The migration barrier energy for these hops is 1.90, 3.91, and 

2.2 eV, respectively. The activation energy of these Ni migrations is between 2-3 eV as the 

vacancies on already exist within the half-Heusler structure and thus have no vacancy formation 

energy. This shows that, even compared to Ni atoms within the same material, the activation 

energy of M-atoms is around twice as large as that of Ni atoms. This is qualitatively in agreement 

with experiment where Ni atoms consolidate into full-Heusler nanosturctures via solid state 

reaction [33, 34, 75-79], whereas Ti, Zr, and Hf remain well mixed after solid state reaction [119, 

120].  

Figure 25. (a) Schematic of the migration path in the MNiSn (M = Ti, Zr, Hf) matrix of M-

vacancy diffusion. (b), (c), and (d) show possible paths for Ni diffusion in variable Ni rich 

environments.  
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Figure 26. (top) plot of migration barrier energy along the reaction path for Ti, Zr and Hf atoms 

in TiNiSn, ZrNiSn, and HfNiSn respectively. Symbols represent calculated points along the 

reaction path and schematic lines are drawn to guide the eye. (bottom) Plot of the migration 

barrier energy along the lowest energy path for Ni atoms in stoichiometric ZrNiSn. 
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6.5.3 Experimental evidence of kinetically trapped states 

The low critical temperature of the calculated phase diagram and the prediction of very low 

M site interdiffusion coefficients are consistent with the wide variety of microstructures that can 

be attained through different synthesis techniques. According to the calculated phase diagram, in 

equilibrium conditions, no two-phase decomposition would occur at a temperature of 1173 K. 

Thus, solid-state reaction synthesis can result in samples with relatively uniform microstructures, 

such as those observed in Downie et al. [119]. The slow diffusion of Ti, Zr, and Hf atoms within 

the half-Heusler phase make it possible that small inhomogeneities in the starting reaction mixture 

can form HH phases with slightly varying Ti, Zr, and Hf content, leading to the semi continuous 

distribution of lattice parameters observed in the XRD patterns [119].  

In contrast, for synthesis techniques that cool samples from a melt, such as arc melting, 

induction melting, and melt spinning, the low diffusion rates of Ti, Zr, and Hf atoms would 

kinetically trap the preexisting microstructure. Therefore, the microscale dendrites that formed 

during solidification would remain intact after annealing at 1173 K, as was observed in Kenjo et 

al. [114] and Gałązaka et al. [113].  A schematic of a likely solidification path is shown in Figure 

27. The lense type solid-liquid coexistence region is typical for materials systems with drastically 

different melting points. If the Zr1-xTixNiSn system has such phase diagram, it is possible that the 

rapid cooling inherent to techniques such as arc melting, would create highly non-equilibrium 

conditions. Passing though the solid-liquid coexistence region quickly could then result in the two 

phase mixture of a Ti-poor solid and a Ti-rich liquid. After reaching lower temperatures, the Ti-

rich liquid would solidify in the intergranular areas. The poor diffusion of M atoms would then 

freeze in the microstructure and prevent a solid solution to form even at medium to high 

temperatures.  
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The microscale phase separation is considered critical to lowering the lattice thermal 

conductivity of half-Heusler thermoelectrics. The calculated phase diagram presented in this work 

implies that such a microstructure is only meta-stable. Low diffusion coefficients benefit the 

material and make it possible to trap in heterogeneous microstructures during the solidification 

process. A recent study by Krez et al. [130] tested the stability of Ti0.3Zr0.35Hf0.35NiSn under 

thermal cycling. The sample was cycled from 373 K to 873 K at 10 K min-1 for up to 500 cycles 

and found that the dendritic microstructure remained intact, showing that the phase separated 

MNiSn materials are viable for power generation applications. The first-principles study presented 

in this work suggests that the solidification process is the critical step in creating the desired phase 

separated microstructures. Synthesis techniques, such as induction heating, which allow for better 

control of the cooling rate than arc melting, might provide control over the size and composition 

Figure 27.  Schematic of the solidus and liquidus lines for the Zr1-xTixNiSn system. The CE 

calculated phase boundaries for the solid-solid two phase mixture are shown as black dots. A 

possible route of solidification is shown in red and labeled (a-e).   
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of the resulting microstructure, leading to new methods for further enhancing the thermoelectric 

performance of half-Heusler alloys. 

6.6 Conclusions 

A first-principles statistical mechanics study using the cluster expansion method and Monte 

Carlo simulations was performed to predict phase stability of half-Heusler phases at finite 

temperature in the (Hf1-x-yZrxTiy)NiSn pseudo-ternary composition space. A miscibility gap is 

predicted at low temperatures between TiNiSn and (Zr,Hf)NiSn compounds. The miscibility gap 

disappears above Tc ≈ 850 K along the Zr-rich (x = 1) line. The critical temperature is lower along 

the Hf-rich (x = 0) line (Tc ≈ 500 K). The asymmetry between the Zr-rich and Hf-rich critical 

temperatures is correlated with a larger lattice mismatch between ZrNiSn and TiNiSn, compared 

to that between HfNiSn and TiNiSn.  

The low critical temperature predicted for the pseudo-ternary (Hf1-x-yZrxTiy)NiSn phase 

diagram implies that the phase separation observed in experiments is not caused by an equilibrium 

thermodynamic process, such as spinodal decomposition, as suggested in [124]. Calculated 

migration barriers for Ti, Zr, and Hf diffusion indicate that the mobility of M atoms in MNiSn is 

very low. The calculated phase diagram combined with low diffusion coefficients suggest that Ti-

rich and Ti-poor grains are created during solidification and are then kinetically trapped at lower 

temperatures. The low diffusion rates of M atoms represent new ways of controlling the phase 

separation via synthesis techniques and provides new routes to obtaining higher thermoelectric 

efficiency in HH alloys. 
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7.1 MNiPb compounds 

7.1.1 Introduction 

In section 5.4.1, we discussed the vibrational properties of half-Heuslers. It was mentioned 

in section 5.4.3 that the eigenvectors of the acoustic phonon modes were dominated by the heaviest 

atom in the compound. For TiNiSn and ZrNiSn compounds, the heaviest element is Sn. This 

implies that there is an opportunity to further lower the thermal conductivity of HH alloys by 

disrupting the low frequency phonon transport carried by the Sn atoms [102, 104].  This could be 

accomplished by either weakening the bonds between Sn and its neighboring atoms or by 

substituting other elements that occupy the Sn-site in the lattice. The bonding between Sn and Ni 

is particularly strong in MNiSn compounds as was noted in Chapter 5, so disrupting this covalent 

bonding might have adverse effects on the electronic transport properties. However, it is possible 

that by using isoelectronic substitution on the Sn-site the electrical properties will remain intact, 

and the mass defects on the Sn-site would heavily scatter acoustic phonons.  

Isoelectronic alloying with Sn (atomic mass 118.71 g/mol) could be accomplished by using 

either Ge (atomic mass 72.64 g/mol) or Pb (atomic mass 207.2 g/mol). For either substitution to 

be effective, a large solubility limit is necessary. It is known that ZrNiGe does not form in the half-

Chapter 7 Pb-based half-Heusler Alloys 
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Heusler structure, but instead the AlB2 family (space group Pnma, #62) [89]. The difference in 

structure forces there to be a limited solubility of Ge within ZrNiSn1-xGex in the half-Heusler phase. 

However, the crystal structure of MNiPb was recently determined to form as a half-Heusler, as 

discussed in the next section.                                                                                                          

7.1.2 Stability of MNiPb 

In a work by Gautier et al. [131], a large computational search for stable compounds of the 

ABX structure with a total of 18 valence electrons was performed. The ABX structure, where X 

is a group X element (i.e., Ni, Pb, Pt) or a group IX element (i.e., Co, Rh, Ir), and A and B are 

other elements selected, such that ABX has a total of 18 valence electrons, is found to form in 

many different crystal structures. However, a large fraction of known ABX compounds form in 

the half-Heusler structure. Of the 483 possible compounds in this family, only 83 had been 

synthesized so far. The study designed rigorous criteria for theoretically assessing the stability of 

a compound, and applied it to all 483 compounds. The stable phase of a given ABX compound is 

found through a three step process.  

Step 1: the lowest energy crystal structure is determined by calculating the formation 

energy of 41 prototype structures that ABX structures are known to form in. The search is then 

expanded to combinations of the 41 structures calculated by use of a genetic algorithm, (see 

supplementary materials of [131]). 

Step 2: The lowest energy structure is then tested for dynamic stability by calculating the 

phonon dispersion curves using density functional perturbation theory (DFPT) and identifying any 

imaginary phonon modes.  



 

84 

 

Step 3: The formation enthalpy, ΔHf, of the lowest energy structure is then compared to 

that of competing binary and ternary phases. The competing phases considered are made up of an 

extensive list of known stable phases and unknown potential phases that would compete for 

existence with the structure in question. The list of unknown potential phases is created by making 

isovalent component swaps of known phases. The formation enthalpies of competing phases are 

used to construct a convex hull, C(XABX), where the thermodynamic stability of the ABX structure 

in question is assessed by its distance to the convex hull, ΔHf – C(XABX).  

Using these criteria for thermodynamic stability, Gautier et al. correctly predicted all 84 

previously reported compounds as stable, and identified 54 unreported compounds as stable. Of 

the 54 predicted stable compounds, 30 compounds are predicted to form in the half-Heusler 

structure type. 

In order to test the predictions, 15 compounds were chosen and synthesized. The synthesis 

was carried out by mixing stoichiometric amounts of elemental powder, arc melting, and 

annealing. The results are a testament to the accuracy of their predictions; all 15 compounds 

synthesized were observed to form in the predicted crystal structure and the lattice parameters 

typically only deviated from the calculated values by 1-2 %. 

Concerning thermoelectric materials, the study showed that the compounds ZrNiPb, 

ZrPdPb, and HfNiPb, were all predicted to be stable, and TiNiPb was found to be just barely 

unstable. Furthermore, the study went on to calculate their electronic band structures. All three 

stable Pb-based half-Heuslers have bandgaps less than 0.5 eV, making them possible 

thermoelectric candidates.   
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ZrNiPb was actually synthesized by Gautier et al. and found to form in a single phase. Its 

electronic properties were measured at room temperature and a power factor of 5.2 μW cm-1 K-2 

was found, which is comparable to that of undoped ZrNiSn at room temperature.  

7.2 Solubility limits of Pb in MNiSn1-xPbx 

7.2.1 Computational results 

With the knoweldge that ZrNiPb is a stable half-Heusler compound and potentially good 

TE material, we set out to computationaly predict the solubility limits of Pb in ZrNiSn1-xPbx. Here 

we discuss the unpublished results of our DFT study of the ZrNiSn1-xPbx system. The calculated 

lattice parameter of ZrNiPb matches well with that of Gautier et al. [131], and both are a close 

match with the experiemental value, as shown in Table 3. The lattice mismatch between ZrNiSn 

and ZrNiPb is only ~1.5 %, showing that the two materials are well matched for forming a solid 

solution. 

Figure 28 shows the calculated formation energy of 32 configurations within the pseudo-

binary ZrNiSn1-xPbx system for 0 ≤ x ≤ 1. The configurations have both positive and negative 

energy relative to the ZrNiSn and ZrNiPb compounds. The dispersal of many different 

 
Lattice Parameter (Å) 

 DFT Experiment 

ZrNiSn 6.153a 6.11b 

ZrNiPb 6.241c, 6.267d 6.176d 

Table 3. DFT calculated and experimental lattice constants for ZrNiSn and ZrNiPb.  (a) DFT-

GGA from Page et al. [85], (b) experiemental lattice parameter from [89] , (c) unpublished by 

Page et al., and (d) DFT-GGA and experimental values of solid state reacted ZrNiPb from 

Gautier et al. [131]. 
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configurations with similar values of negative formation energy implies that a solid solution is 

favorable for all values of x. This data implies that there is no phase separation even at low 

temperatures and that a solid solution should be stable for TE power generation.  

7.2.2 Experimental Results 

Sample synthesis was attempted in order to confirm the ability of these materials to form a 

solid solution, however, even obtaining a single phase ZrNiPb material was extremely difficult. 

Both arc melting and solid-state reaction were attempted for ZrNiPb and HfNiPb compounds. The 

solid-state reacted samples were held at 950 ˚C for 2 weeks, and then allowed to cool naturally. 

Arc melted samples were flipped and remelted 3 times, and then powderized. During the arc 

Figure 28. Configurational formation energies of the ZrNiSn1-xPbx system for 0 ≤ x ≤ 

1, plotted relative to ZrNiSn and ZrNiPb formation energy. Lower energy structures 

found along the composition space indicate the formation of a solid solution. 
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melting process, large amounts of vapor coated the inner wall of the chamber, and was thought to 

be unreacted Pb based on its appearance. Scanning electron microscope images were taken with a 

JEOL 7800FLV, as seen in  Figure 29. In Figure 29(a), the solid state reacted ZrNiPb sample is 

observed to have multiple phases indicated by differing density indicated by contrast in the SEM 

image. Compositions of the phases were assessed by energy dispersive spectrometry (EDS) and 

the major phases are labeled directly on the image. The majority phase was found to be half-

Heusler ZrNiPb, in agreement with X-ray diffraction data. The most prominent secondary phases 

are pure Pb and ZrNi2. The Pb phase is not granular and appears to have solidified much later in 

the synthesis. This is possible due to the low melting point of Pb, 327.5 ˚C. It appears that some 

Pb was left unreacted during the solid-state reaction and remained liquid until the sample cooled 

below the Pb melting point.  

Figure 29(b) shows and SEM image of the HfNiPb sample. The HfNiPb sample was found 

to me multiphase as well, this time with no clear majority phase. Pure Pb and Hf2Ni are clearly 

seen in large amounts in the SEM image, and HfNiPb compounds are only found in thin layers on 

the boundaries of Hf2Ni grains. This study suggests that ZrNiPb compounds might be possible via 

some other synthetic route, however HfNiPb compounds seem to be barely stable and it may not 

be possible to achieve as single phase HH at all.  

While we were unable to find a proper synthetic route to remove the Pb impurities and 

obtain a single phase MNiPb compound, a recent study by Mao et al. [132] was successful in 

making ZrNiPb. Mao et al. employed a complicated synthetic process inorder to remove the Pb 

impurities. The process is as follows: 1) combine stoichiometric elemental powders with an extra 

2 at.% of Pb to compensate for loses during arc melting; 2) arc melt Zr and Ni together first, then 

add the Pb and remelt three times; 3) pulverize the ingot with high energy ball milling for 20 hours; 
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4) spark plasma sinter the powders at 900 ˚C for only 2 minutes; and 5) anneal the resulting pellet 

at 800 ˚C for one week.  

Figure 29. SEM images of (a) ZrNiPb and (b)HfNiPb samples prepared by solid-state reaction. 

Labeled compositions were measured using EDS.  
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Mao et al. observed that most of the Pb impurity phase was elminated during the final 

annealing stage. It is interesting to note that they have reversed the usual order of the last two 

synthesis stepes. Samples are usually annealed before densification. The extremly short SPS time 

of 2 minutes followed by annealing indicates that Pb may separate out of the matrix during the 

high temperature and pressure of SPS. This is in agreement with our study where we observed that 

pure Pb was expelled by the sample in liquid form during SPS. Annealing serves to bring the Pb 

back into the HH matrix and drastically improves the electrical properties of the material.  

Mao et al. went on to show Bi to be an effective dopant, with optimal electrial properties 

obtained for ZrNiPb0.98Bi0.02. More critically, the study reports a series of ZrNiPb0.98-xSnxBi0.02 

compounds for x = 0, 0.2, 0.4, 0.6, 0.8, and 0.98. The XRD results show without a doubt that the 

resultant materials form in a single phase half-Heusler structure for the whole compositions range, 

verifying our DFT predictions of a stable solid solution. The thermal conductivity of the x = 0.6 

sample was found to be reduced by ~46% compared to that of the x = 0 sample. The power factors 

were found to be as good as in MNiSn compounds, with PF ≈ 50 μWcm-1K-1, and ZT as high as 

0.75 was found for the x = 0.6 sample. This study serves as a great proof of concept that ZrNiPb 

is a promising TE material that requires further study.  
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Half-Heusler alloys with general composition MNiSn are a promising class of 

thermoelectric materials. I used density functional theory calculations combined with a cluster 

expansion method and Monte Carlo simulations to predict phase equilibria as a function of 

temperature and composition of several exciting half-Heusler systems. By examining the 

MNi1+xSn system, it was found that phase separation is highly favored even at high temperatures, 

suggesting that full-Heusler nano-structures are stable in operating conditions. The vibrational 

properties of MNiSn and MNi2Sn compounds were predicted and it was found that TiNi2Sn has 

unstable phonon modes at the X-point. The instability arises from an atomic rearrangement, where 

the formation energy can be lowered by distorting the cell in such a way that keeps the bonding 

distances the same between Ni and Sn atoms, and shortens 4 of the 8 bonds between Ti and Ni 

atoms.  

In the Hf1-x-yZrxTiyNiSn system, a pseudo-ternary phase diagram was created from first 

principles. The results revealed that separation of Ti-rich and Ti-poor phases is only 

thermodynamically stable below the critical temperature of 850 K. I propose that the observed Ti-

rich and Ti-poor microscale grains are a result of the kinetic process of cooling from melt, and are 

only meta-stable phases. However, atomic diffusion calculations show that diffusion rates are very 

slow, and these meta-stable states may be kinetically locked, such that even after annealing at high 

temperatures, the microscale grains remain unchanged.  

Chapter 8 Concluding Remarks 
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Finally, the ZrNiSn1-xPbx system was examined. The work was inspired by the recent 

discovery that ZrNiPb has a stable half-Heusler crystal structure. My calculations show that a 

randomly ordered solid solution of Sn and Pb atoms is energetically favorable in the half-Heusler 

structure, and thus ZrNiSn1-xPbx compounds with any desired 0 ≤ x ≤ 1 are possible. This prediction 

was experimentally confirmed in the study by Mao et al. [132].  ZrNiSn1-xPbx compounds provide 

an exciting new route to lowering the thermal conductivity of half-Heusler thermoelectrics.  
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