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Abstract 
 

This dissertation is concerned with the emergence of social patterns. The ability of groups of 

humans to bring order to both the physical and abstract realms may be our species’ most 

distinguishing characteristic. It is dependent upon our willingness to cooperate and otherwise 

coordinate, yet willingness alone is not sufficient for achieving coordinated outcomes on a large-

scale because the informational demands of bottom-up organizing are high. Understanding the 

emergence of social order then requires, in part, understanding how information flows are 

structured in ways that allow groups to meet the informational demands of self-organization. Of 

particular importance in this regard are the patterns of person-to-person interactions. In 

contemporary social network research these interactions are often described as the conduits 

through which information flows, but person-to-person interactions are also the site and source 

of the coordination problem needing to be solved. To resolve this tension, network interactions 

must be patterned in ways that allow for the free flow of information, yet social networks most 

often exhibit high degrees of clustering, a characteristic which can impede the free flow of 

information and, thus, large-scale coordination.  

Does this mean bottom-up processes do not drive coordination within large groups? Is 

resolution by fiat the only way? Many have made the argument we create and tolerate authorities 

for precisely this reason, but is that the only viable mechanism for the establishment of large-

scale coordination? Inspired by stigmergy, a form of communication used by social insects to 

coordinate hive activities, this dissertation explores the value of signals occurring outside or 

alongside of the person-to-person interactions studied using social network analysis. Social life 

features an abundance of small signals—often in the form of verbal or written communication, 

but also physical objects and even sounds and smells—potentially freighted with meanings or 

embedded knowledge. Several research traditions have regarded these signals as part of the 

fabric of social life, but is the information these signals yield patterned in a way that can help 

overcome the challenges of large-scale coordination? 
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To begin to answer whether these signals can play a role in mass coordination, this 

dissertation takes three distinct approaches. The first analyses coupled differential equations 

describing a system in which a common resource environment is structured by the ongoing actor-

to-actor interactions. This system is a modification of a canonical model of molecular self-

organization, the hypercycle, and succeeds in organizing vastly more complex sets of 

interactions than the original. This confirms the information embedded in the environment can 

indeed be a powerful source of information for coordination. The second paper takes this formal 

insight into the lab to test whether the addition of a small number of extra-network signals can 

enable the emergence of conventions in a large, networked group of human participants. It can, 

and the probability of it happening depends on the strength of the extra-network signal and the 

topological features of the network. The final paper uses a unique dataset and topic modeling in 

an attempt to track the emergence of consensus around the themes in works of fiction. While 

there can be movement in the direction of consensus, the path lengths of the underlying network 

are too long to support large-scale consensus, a finding consistent with results of the experiment. 

Implications of these three findings are discussed in the conclusion. 
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Chapter 1: Introduction 
 

 

 

The ability of groups of humans to bring order to both the physical and abstract realms 

may be our species’ most distinguishing characteristic. We have a great deal in common with our 

evolutionary next-of-kin physiologically, yet zoologically our propensity and capacity to 

organize our collective enterprises and experiences is unrivaled. We have succeeded in shaping 

much of the natural world around our needs, created highly complex economies, and produced 

tremendously rich systems of communication and meaning. The processes that gave rise to these 

outcomes are rife with tensions, but nonetheless require large-scale coordination at their core. 

Humans have thrived because of our manifest ability to coordinate from the bottom-up to create 

well-ordered symbolic and economic systems, that is, to self-organize societies. 

This sense of how deeply cooperative our species is has emerged after centuries of a 

more pessimistic view of social life. Hobbes’ state of nature coupled with a narrow reading of 

Darwin helped paint a picture of insuperable conflict among the members of our species. Yet, 

from genes up to the level of societies, it is clear that that view does not do the facts justice. 

Epigenetics, evolutionary developmental biology, and powerful critiques of sexual selection 

(Bar-Yam 2000; Roughgarden 2009; Sober and Lewontin 1996) have undermined the primacy of 

genes as the selfish motors of evolution in the sense popularized by Richard Dawkins (Dawkins 

1976, 1978). While the proper unit of selection is not clear, it is not selfish genes. Furthermore, 

the evolutionary strengths of reciprocity and cooperation are analytically clear (Axelrod 1984; 

Gintis and Bowles 2011) and have vital empirical support (Fehr, Fischbacher, and Gächter 2002; 

Henrich et al. 2001; Henrich and Henrich 2007; Ostrom 1990). The dual inheritance model of 

evolution (Boyd and Richerson 1985; Cavalli-Sforza et al. 1982) and its focus on the coevolution 

of genes and culture has done much to explain how and why our tendency to coordinate activities 
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has benefitted us (Boyd, Richerson, and Henrich 2011; Enfield 2006; Kendal, Tehrani, and 

Odling-smee 2011). This dissertation, however, does not study the ways in which coordinated 

and cooperative behaviors are deeply constitutive of human societies. Instead, it takes the human 

tendencies toward coordination as given and asks what else is necessary for those tendencies to 

deliver the desired result. In particular, it explores whether a class of signals—stimuli that may 

yield actionable information—often treated as analytically unimportant is in fact instrumental for 

large-scale coordination and, therefore, in part responsible for our species’ ability to self-

organize.  

While recent research on coordination problems has very reasonably focused on 

information gained from direct interaction between individuals, the public spaces we construct 

also carry a wide range of signals that can yield information that drives a group toward a 

particular collective outcome. Consider the ongoing attempts to adopt a mobile phone-based 

payment system. As a network good—one that is more valuable as more users opt-in—with little 

in the way of a top-down push for adoption, if it does become widely used, it will very likely be 

because a crucial wave of new users adopt it after seeing others use the method in public. The 

signal that is seeing a stranger do something may not even rise to the level of consciousness for 

the observer, yet multiple signals carry crucial information about the behavior of others that 

individuals can use to coordinate activities. Adopting a payment system is an example of 

coordination in the usual sense of all doing the same thing, but small signals from unidentified 

others can also drive processes of coordinated differentiation, like how subtle physical cues can 

help determine individuals’ choice of housing, which gives rise to distinctive neighborhoods, or 

how public signaling via sartorial choice creates identifiable personal styles. This sort of 

differentiation can be an important form of coordinated behavior, especially economically, where 

the division of labor enables the creation of more complex products.  

The above examples are of coordination in the physical realm, but public signals likely 

play an important role in ordering the realm of cognition and abstract thought, from language to 

ideas about what is possible. The pairing of the word phishing with a set of practices for stealing 

personal information was a gradual and public process of coordination that resulted in a new 

word, a conceptual category of practices, and, for many, new understandings of what is possible. 

But while successful coordination can create anew, coordination via public signals likely also 
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reinforces otherwise outdated patterns. It is easy to imagine that highly gendered professions like 

nursing or plumbing remain so because impressionable children come to think of them as 

gender-specific occupations over years of casual public observation and thus create implicit ideas 

about occupational suitability that have no basis but nonetheless maintain the pattern.  

The role of signals emanating from the public spaces we construct is underappreciated in 

today’s networked world, but has been noted and even figured prominently in the past. Public 

signals clearly occupied an outsized role in Bentham’s design of the Panopticon (Bentham 1787; 

Chwe 2001; Foucault 1977); Durkheim saw the public nature of rituals as integral to their effects 

(Durkheim 2001); Simmel worried the overwhelmingly public nature of life in cities dampens 

our emotive capacities (Simmel 1903); Walras’s public price-sharing mechanism (the auctioneer) 

was thought necessary to reach equilibrium prices (Walras 1954); The popular Bass model of 

product diffusion (Bass 1969), Schelling’s model of residential segregation (Schelling 1971), and 

Granovetter’s threshold model of collective behavior (Granovetter 1978) all implicitly rely on 

public signals about behavior. Beyond these well-known examples involving the public 

observation of others, several research programs highlight the importance of nonhuman objects 

as signals. Material-semiotic approaches (Callon 1998; Latour 2005; Law and Mol 1995) assert 

the importance of manmade objects and other nonhuman entities in social life. Likewise, the 

theory of distributed cognition argues that cognitive processes are spread across individuals 

through the externalized products of cognition (i.e. physical objects) (Hutchins 1995). The 

material culture tradition focuses on the rich cultural meanings and messages that can be 

embedded in objects (Tilly et al. 2006). Ecological psychologists argue that affordances—

assumptions about possibilities of behavior vis-à-vis objects—are instrumental to cognition and 

action (Barker 1968; Gibson 1977; Rietveld and Kiverstein 2014; Withagen et al. 2012).  

Suffice it to say that my assertion of the social importance of such public signals is not 

novel. Indeed, others have even already argued that an extreme form of them is instrumental for 

coordination (Chwe 2001). My goal, rather, is to provide more analytical clarity about the origins 

and structure of such signals and explore whether they alter social processes. In particular, I 

argue these signals can push processes of self-organization toward coordinated equilibria. To 

help unpack this claim, I develop the concept of niche signals. Biologists and ecologists have 

long used the term niche to refer to the environment a species is adapted to, but there is a 
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renewed interest in the concept stemming from the development of the theory of niche 

construction, the evolutionary process by which the inhabitants of an environment (i.e. a species) 

structure it in ways that alters evolutionary fitness (Odling-Smee, Laland, and Feldman 2003). 

The classic example of niche construction is a beaver dam. Beavers build a physical structure 

and are adapted to the unique environment it creates. Importantly, the dam changes the whole 

local ecology and can alter the fitness of species that played no part in the construction of the 

dam. A dam is a large and obvious altercation to the environment, but most species structure 

their local environments in ways that other species in the same environment adapt to. This is so 

pervasive that it might simply be called co-evolution (Laland et al. 2014), but niche construction 

highlights the mediating role of the local environment. This sense of niche then refers to the 

broad context for action and something produced by those actions, and evokes the existence of 

important endogeneity in the evolutionary process.   

 Humans are the exemplar niche constructing species, to the point that little of our daily 

life exists in environments not fundamentally of our own making. At this point, our fitness as 

individuals has little relation to the natural environment Darwin had in mind and is almost 

wholly determined by our ability to navigate and exploit social niches we have constructed. To 

navigate these complex niches, humans can use information obtained directly from other actors, 

but, I argue, indirect signals from within the niche can also be vital sources of information. 

Signals from a niche can lead to knowledge about the state of niche, but importantly often also 

knowledge about the social value of particular behaviors or beliefs. Observing others in the 

niche, or the traces they leave behind in the niche, can create or reinforce beliefs. For example, 

seeing lots of hybrid vehicles parked in one’s neighborhood would likely reinforce beliefs about 

their social desirability, reliability, or practicality in addition to the basic information about their 

prevalence.  

Other sources of information can do the same, but signals from the niche can have a 

distinct structure compared to other potential sources. Within-network signals can provide a 

heavily biased sample of the broader system, aggregate information is most often too expensive 

or impractical to gather, and broadcast mechanisms can be nonexistent or too weak. Niche 

signals, however, have the potential to yield less biased information about the state of the whole 

system because the space in which social networks reside is often folded over on itself when 
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mapped to the physical and digital niches in which social life resides space. This means socially 

distant persons, who are more likely to have access to different information, can be in the same 

physical space and niche signals can quickly traverse long social distances. The same can be said 

in the digital realm, where websites create “networked publics” (Boyd 2010; Ito 2008), which 

can have both public and private subspaces. Because so much of social life is now digital, I 

generally do not refer to physical space and instead use niche to encompass both physical and 

digital spaces. 

Niche signals can be distinct from within-network signals in ways other than potentially 

being less biased. First, they can be qualitatively different than the often-conversational signals 

from acquaintances; there is no conversational equivalent to seeing hundreds of cars over the 

course of a day. Second, they can be received without rising to the level of consciousness; one 

rarely consciously observes the cars of a neighborhood, but can often report a sense of the 

population when prompted. Unconscious processing is likely necessary because, thirdly, the 

signals are incredibly abundant. An implicit awareness of many of these signals is a part of the 

everyday tasks of navigating social spaces, but often not a part of higher order cognition.  

These features suggest niche signals are an area ripe for more theorizing and research. 

Before undertaking that task, however, it is advisable to first explore whether these signals, in 

any number forms, can be shown to have an impact on social processes So while niche signals 

can quickly travel long social distances, the question remains whether the signals yield useful 

information. I argue that they do and therefore have been undervalued. In the era of “big data,” 

that signals like these have been undervalued might be the consequence of an elision of the terms 

signal and information. It is common in the social sciences to use the term information to refer to 

content of some sort, whether a conversation, an article, or a video. This shorthand is natural but 

can be misleading. Reading the same syndicated article on the websites of two different 

newspapers does not yield twice the information. Information theory separates the concept of 

information from the signal or message that delivers it by emphasizing what receiving a signal 

does to reduce the receiver’s uncertainty about some state of the world. So receiving the same 

message again does nothing to increase information. Furthermore, one reader might learn a great 

deal more by reading an article than another reader does in virtue of the differences in the 

readers’ backgrounds. This highlights the fact that a strict definition of the information yielded 
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by a signal or message requires contextualizing in a history of signals received. This distinction 

relates to why weak ties (Granovetter 1973) spanning structural holes (Burt 1992) are beneficial; 

the signals gained through these ties yield a great deal of information relative to non-brokers. On 

the other hand, for most social ties there is a high level of redundancy, with very similar 

messages coming from the same alters. While redundancy may reinforce some aspects of 

cognition, it can fail to yield new information. However, niche signals can cumulatively yield a 

great deal of information even though each is by itself a weak signal.  

The informational redundancies in social networks highlight a tension common to 

dynamical systems; local order prevents the emergence of a global order. A classic example is 

that of ferromagnetics: a ferrous material becomes magnetized when the dipole spins of its atoms 

are oriented in the same direction. The spins naturally want to align, but because an individual 

atom’s orientation is constrained by the local order of the often-conflicting orientation of 

neighboring atoms, a collection of atoms in a disordered state will remain there. In order to break 

this symmetry—the conflicting forces holding the system in a disordered global state—

additional fluctuations or noise need to be added to the system. For ferrous materials this can be 

achieved by either heat or an external magnetic field. In social systems, the high degree of 

clustering endemic to social networks can lead to similar failures to “break symmetry.” This 

dissertation explores whether the addition of niche signals can convey the information necessary 

to break those symmetries. The papers that follow study that effect with three distinct 

approaches. 

The first paper stems from work done with John Padgett and takes the hypercycle model 

of autocatalysis (Eigen and Schuster 1979), a mathematical model of the self-organization of 

molecules into a reciprocal role system, and adapts it to allow the acting elements to have 

information about the activities of others not immediately adjacent in the role structure. This 

information is present in the common environment as the inputs/outputs of the reactions (or 

interactions) in the cycle. The original model exhibits a barrier to self-organization for even 

modest levels of complexity (i.e. the number of possible molecules or roles able to chain 

together) (Hofbauer and Sigmund 1988). A numerical analysis of the modified system of 

differential equations shows, however, that interactions with an environment formed by the 

activities of others allows for the emergence of significantly more complex hypercycles. It does 
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so by inhibiting the rate of reactions that have success early but ultimately undermine the 

viability of the whole system. This result depends on the strength of the feedback from the 

environment. While this highly formalized and stylized approach necessarily misses important 

aspects of social interactions, we believe it offers a strong deductive basis for the claim that 

niche signals can be critical to processes of self-organization. 

The second paper puts this claim to the test with a behavioral experiment. A recent paper 

by Centola and Baronchelli (Centola and Baronchelli 2015) explored experimentally the 

emergence of conventions (e.g. calling unwanted email SPAM) within large networked groups of 

individuals and found the puzzling result that a single convention for the whole group emerged 

only if interactions were randomized across the whole group (i.e. homogeneous mixing). Groups 

embedded in random and lattice networks never converged to a global convention. While these 

networks and interaction topologies are all stylized, that a convention would emerge only in the 

absence of meaningful network structure does not square with what we know about the world; 

conventions do exist and the social networks in which people are embedded exhibit clustering. 

This paper explores whether niche signals can resolve this puzzle. Participants are simply shown 

the behavior of random and unidentified group member(s). The results for 32 trials show that the 

presence of niche signals can indeed break the symmetry in networks with clustering and lead to 

the emergence of conventions. The effect, however, is mediated by the average shortest-path-

length of the network. The longer it is the more niche signals are required. These results offer 

strong support for the importance of public signals in the emergence of coordinated “goods” like 

conventions. Experiments however must greatly simplify behaviors and contexts in order to be 

tractable. Can this type of self-organization be observed in action? 

The third and final paper seeks to identify and understand the process of self-organization 

in the reception of new works of literary fiction. Literary fiction is a genre rich with themes and 

meaning but full of ambiguity. Yet a book’s audience often comes to focus on a particular theme 

or attribute to the text a specific meaning. Using a rich data set from an online literary 

community, the paper uses the method of topic modeling in a novel way to seek evidence of a 

convergence within the readership toward an accepted set of meanings for a work of literary 

fiction. In spite of anecdotal evidence of this happening, my analysis reveled only weak evidence 

of such a convergence. A supplementary analysis of the network in which readers are embedded 
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revealed a possible reason no widely accepted meaning emerged; the average shortest-path-

length for the network of readers of each book was very high (roughly 4.5 on average). The 

experiment showed networks with high path lengths need more niche signals for consensus to be 

achieved and suitable amounts are not likely to be consumed by readers using the site.  

This work is undertaken with one eye toward understanding our species’ past successes at 

coordination and the other eye toward the future. As economic life and technologies have 

changed the ways in which people associate and communicate, many have worried we are losing 

public spaces and public discourse (Arendt 1948; Etzioni 1994; Fukuyama 2000; Putnam 2000; 

Simmel 1903). While my research agrees that public spaces and the information they yield can 

be integral for the emergence of coordination, it also suggests that the loss of full-throated public 

discourse (if we ever had it) does not spell ruin for efforts at coordination. A relatively small 

number of niche signals can have beneficial effects by breaking the symmetries that prevent 

coordination across clusters. Furthermore, in a world in which exposures to signals are often 

controlled by the proprietary algorithms of websites and apps, tweaks to those algorithms could 

have significant positive effects. 
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Chapter 2: Niche Construction by Hypercycles: A Powerful Means of Self-organization 
 

 

 

 

 

 

 

 

 

Abstract 

The emergence of complex organizations and industries requires that the self-interested behavior 

of individuals be sufficiently interdependent and that the whole be robust in the face of the 

steady churn of individuals. The hypercycle, an abstract system of chemical reactions believed to 

be necessary for the emergence of life, offers an insightful framework for understanding the 

reconciliation of these issues by describing a cycle of mutualisms among a set of roles that 

reproduce their own occupants. Unfortunately, the basic hypercycle is limited in how complex a 

set of reactions it can sustain. This paper’s numerical analysis of a system of coupled differential 

equations shows that by explicitly describing the population dynamics of what the role-occupants 

produce, already implicit in the application of hypercycle theory to social settings, and coupling 

those dynamics to the reproduction of role-occupants, the resulting hypercycles can become 

significantly more complex. The precise degree of complexity this “niche construction” 

mechanism supports depends on the amount of feedback available from the product 

environment. 
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Introduction 

The robustness of a complex network of social or economic interactions depends on its ability to 

integrate individual interests and continually reconstruct and reconfigure itself in the face of 

destructive and otherwise transformative forces. Communities and cultures lose individuals, 

organizations lose skilled workers, industries lose businesses, and economies lose industries. 

And more than offsetting those losses are the newcomers, from children and businesses to 

technologies and industries, which need to be integrated without disrupting the balance of 

interests. What is necessary for complex patterns of interactions to persist and even flourish in 

the headwinds of constant flux? Drawing on work by Eigen and Schuster (Eigen 1971a, 1971b; 

Eigen and Schuster 1977) on self-organization in prebiotic chemistry, Padgett and collaborators 

(Padgett 1997; Padgett, Lee, and Collier 2003; Padgett and Powell 2012) propose a hypercycle 

approach to social organization to understand first how interaction networks arise and then how 

novelty can emerge therefrom; when a reaction is the catalyst for itself or another, the reaction is 

autocatalytic, and if there exists a set of reactions for which each catalyzes exactly one other 

within the set, it is referred to as an autocatalytic set or hypercycle. 

 The theory of hypercycles originated as an explanation for how diverse self-replicating 

macromolecules (e.g. RNA and DNA) could arise on prebiotic Earth (Maynard Smith 1979; 

Szostak, Wasik, and Blazewicz 2016). Such molecules produce both other macromolecules (e.g. 

proteins) and copies of themselves. The existence of life depends on such molecules, and the 

hypercycle framework arose to explain more specifically the origin of RNA, a process many 

have argued is necessary for the emergence of life1. In spite of their importance, explaining the 

origin of such molecules is not easy because self-replicating RNA molecules faithfully replicate 

themselves using a complex protein created itself by RNA (RNA replicase). Without this protein, 

if the naturally occurring mutation rate in replication were too high, any nascent species (a 

population of identical molecules) of RNA would quickly return to a random collection of 

protein sequences. But even if the mutation rate were lower, a single, less complex and less 

                                                
1 This account has challenges in the details (Boza 2015; Martin and Russell 2003; Maynard Smith 1979; Orgel 
2004) and alternatives exist (Shapiro 2006; Wächtershäuser 1988, 1990). Nonetheless, it is widely-accepted, if not 
hegemonic (Bartel and Unrau 1999; Copley, Smith, and Morowitz 2007; Joyce 2002; Martin and Russell 2003). The 
status of this debate, however, has no bearing on the basic insights of the hypercycle model (Padgett and Powell 
2012). 
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useful species of molecule would come to dominate through selection induced by the need for 

common resources (Eigen and Schuster 1977; Maynard Smith 1979). These related problems 

have been referred to as an “information crisis” (Hofbauer and Sigmund 1988) because natural 

forces appear to select against the amount of information contained in complex macromolecules. 

Thus, there was a need to explain how the errors intrinsic to replication would not be fatal while 

simultaneously ensuring a single, simple molecular species did not come to dominate. The 

hypercycle solves this problem by positing a self-replicating cycle of molecular quasi-species. 

The quasi-species sequentially catalyze the replication of the next in a complete cycle. The 

mutual dependency overcomes the two problems of the information crisis; it allows the quasi-

species to be shorter and less complex than the whole cycle, which significantly reduces the 

problem of replication errors,2 and it balances the competition between the quasi-species by 

ensuring each species’ success replicating (or lack thereof) has a corresponding impact on the 

replication of the other species. A sudden loss or gain of a particular molecule type will ripple 

forward through the cycle as the rates of the subsequent reactions in the chain slow down or 

speed up until balance is restored. 

 These features of the hypercycle framework make it an enticing approach for 

understanding the emergence of complex social entities. The knowledge and knowhow 

embedded in a product like a car or computer did not originate in a single person or even firm. 

Instead, it was the result of the bringing together of individuals or firms with particular skills and 

knowledge bases for more than just one moment in time. Fruitful interactions encourage and 

facilitate the reproduction of the associated skills and knowledge, thereby transferring the weight 

of the collective enterprise from individuals to roles new actors can be trained to fill. In this 

sense, a role in a complex production network is like one of the quasi-species in the hypercycle; 

individuals may come and go, but as long as a role’s function is being fulfilled and remains in 

balance with the others, the network of roles is maintained and will become a cohesive whole. 

This dynamic, while fairly conservative in isolation, importantly also provides explanatory 

purchase for understanding the origins of novelty social forms and products. The rebalancing 

dynamic will produce a new hypercycle when two or more existing hypercycles are brought into 

                                                
2 If the error rate is .01, the typical replication of a molecule with 100 nucleotides will contain an error. However, a 
molecule with 25 nucleotides will successfully replicate 3 out of 4 times. The combination of four of the shorter 
molecules can contain the same sequence of 100 nucleotides as the larger one.    
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contact, given that a new autocatalytic set exists in the union of the originals. This second, re-

configurative feature of the hypercycle model makes it a particularly rich metaphor for 

understanding the evolution of social organization (Baron 2014; Page 2013; Zuckerman 2014). It 

can explain how a network of actors and practices can stabilize in the short run, but also how 

those actors and practices can be fundamentally transformed as different networks are brought 

into contact with each other.  

 The potential explanatory power of the theory of hypercycles for both prebiotic chemistry 

and social science is great as long as the hypercycles can emerge spontaneously, but there are 

some serious challenges in that regard. Setting aside the decades of unsuccessful attempts to 

grow RNA in a controlled experiment (Anastasi et al. 2007; Szathmáry 2013; Szostak et al. 

2016), there are several problematic entailments of Eigen’s original mathematical model. For 

one, a hypercycle is vulnerable to parasites, quasi-species that benefits from a catalyst produced 

by the hypercycle but does not contribute its own catalyst to the cycle (Maynard Smith 1979). A 

hypercycle also needs to be localized (compartmentalized) to allow for the evolution of 

population (Bresch, Niesert, and Harnasch 1980; Michod 1983). Furthermore, even when 

assuming away these first two issues, the number of quasi-species that can spontaneously 

assemble into a hypercycle is at most four (Hofbauer and Sigmund 1988); the feedback 

mechanism is fatally weakened if it must be transmitted through more than four quasi-species, 

meaning the hypercycle largely fails to deliver on its promise of being an information 

“integrator” (Küppers 1983). Subsequent research has shown the first two of these issues can be 

simultaneously addressed by spatializing the model (Boerlijst and Hogeweg 1991, 1995; Padgett 

1997; Padgett et al. 2003; Szathmáry and Demeter 1987) and the length of the cycles can be 

increased by enriching the environment (Padgett et al. 2003; Padgett and Powell 2012). This 

paper presents formal results showing this latter issue can also be addressed to great effect by 

including the dynamics of product formation. Just as RNA produces proteins, the occupants of 

social roles create products, whether durable physical objects or more abstract results like an 

accounting ledger. By coupling the dynamics of this product space to the dynamics of the skills 

space, we show the hypercycle model can yield significantly larger cycles. Furthermore, the 

number of skills that can co-exist in a cycle is no longer predetermined and instead becomes a 

function of the amount of feedback from the product space. These results are shown through the 

numerical analysis of coupled differential equations. 
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 The upshot of this analysis is a strong argument for a particular ecological approach to 

understanding the emergence of social organization. There is no shortage of ecologically 

informed approaches to social science, but, as one of us has argued elsewhere (Padgett and 

Powell 2012), these approaches excel at explaining selection from among species but neglect the 

emergence of the species selection happens to. Failing to link emergence and selection should be 

problematic in social settings because humans excel at constructing niches, environments that 

define the fitness landscape on which selection happens (Kendal et al. 2011; Odling-Smee et al. 

2003). Said differently, the particular species or forms of social organization that exist today are 

endogenous to the environments they themselves created, and selection cannot be decoupled 

from the effects a species has on the local environment. As it happens, our analysis suggests this 

fact can do much to explain the relative complexity of social organization; niches can carry a 

great deal of information that actors can use and the result is the ratcheting up of complexity 

(Taylor 2004). Versions of this argument have been made previously and in a number of ways 

(Boyd et al. 2011; Hutchins 1995; Kendal et al. 2011; Pinker 2010; Taylor 2004), and this paper 

explores this process mathematically.  

The results and interpretations are directed at a social science audience and not the 

literature on chemical autocatalysis for the simple reason that the present model makes two 

assumptions that, while defensible, if not called for, in the description of social interactions, are 

not readily justifiable in known chemistries. The model we present in fact has important 

similarities to the lesser-known hypercycles-with-translation model of Eigen and Schuster (Eigen 

and Schuster 1978). We re-conceptualize that model’s persistent catalysts as mutable or 

intermediate products being transformed by the RNA templates. However, self-replication occurs 

when a template donates a product (enzyme) to another template, not when it receives one. This 

better matches the flow of rewards in social and economic transactions, but is at odds with the 

forward-looking mutualisms of how the original hypercycle equation was first defined (but not 

the general idea of autocatalysis (Szathmáry 2013)) . Nonetheless, our findings largely agree 

with those of Eigen and Schuster in that modeling of a second class of molecules increases the 

number of molecular species that can co-exist in a metastable cycle. 
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The Basic Hypercycle Model 

 Before detailing the model we analyze, we review the original model of the hypercycle 

proposed by Eigen and Schuster, discuss its social science interpretation and review key relevant 

results from previous analyses of it. While not known when the model was first proposed, the 

hypercycle equation is a special case of a general class of equations called the replicator equation 

(Hofbauer and Sigmund 1998; Schuster and Sigmund 1983; Szathmáry 2013), familiar to many 

through its use in the modeling of evolutionary processes, from population dynamics to game 

theory. As is the case with the replicator equation, the hypercycle equation is a differential 

equation that deals with species, here molecular species. A species is a classification scheme for 

individual molecules based on the sequences of nucleotides that make it functionally distinct. 

While in principle replicator equations could count the individuals of a type, it is customary to 

track the population percentages instead. In chemistry, this percentage is referred to as the 

concentration of the species, a terminology we adopt. Equation 1 is simplified version of the 

original for n molecule types .3 

 

 

𝑟! is the rate of change in the concentration of molecule type 𝑟!. Contributing to that rate is the 

first term of the right-hand side, the probability with which molecules of type i and i-1 interact in 

a well-mixed solution, which is equal to the concentration of the first, 𝑟!, multiplied by the 

concentration of the second, 𝑟!!!. By the assumption of the “chemistry” involved, if type i 

molecules encounter molecules of types other than i-1, nothing happens.  While more complex 

chemistries can exist and have been analyzed (Padgett et al. 2003; Padgett and Powell 2012), 

equation 1 describes a chemistry in which a single potential hypercycle exists—molecules of 

type i catalyze molecules of type i+1, type i+1 catalyzes type i+2, and so on until type n 

catalyzes type 1. This cycle is depicted in Figure 2.1. 

                                                
3 The original included reaction rate and dissipation rate constants. These can be removed by a barycentric 
coordinate transformation (Hofbauer and Sigmund 1988) without changing the results of the stability analysis.   

ṙi = riri�1 � ri

nX

j=1

rjrj�1 (1)
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Figure 2.1: The Basic Hypercycle: The basic hypercycle is compromised of n molecule types that sequentially 
catalyze each other’s replication. The molecule types are labeled from 𝑟! to 𝑟! and have a circular arrow around 
them indicating replication. The arrows between molecule types indicate the direction of the catalyzing reaction (i.e. 
molecules of type 𝑟! catalyze molecules of type 𝑟!). The dashed arrows indicate the possibility of additional (or 
fewer) reactions existing.  

  

In a system of unlimited size, population growth could be unbounded, but to make the 

system mathematically tractable, a second, dilution flux term is added. It maintains a constant 

population of molecules by removing the same number of molecules just created in the growth 

terms of all n molecule types (the summed terms), but removing molecules in proportion to that 

molecule’s current concentration, 𝑟!. 

The social interpretation of the system this equation treats the species of molecules as 

skilled roles filled by individuals. Similar to the molecules in the chemistry interpretation, the 

individuals use a skill unique to their role type to affect some change, but instead of creating a 

catalytic enzyme, they are creating or transforming a product, providing a service, or otherwise 

adding something of social value. When this skill leads to a successful interaction with another 

role or skill type, the interaction prompts the replication of a skill. As written in equation 1, the 

replicated skill would be the one receiving the product or service. This direction has a clear 

interpretation in chemistry, as does the other (Szathmáry 2013). While certainly one can imagine 

a successful service or product “creating” new customers, we prefer the interpretation of the 

r1 

rn 

rn-1 

r2 
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replication occurring in the provider of the product or service; a successful forward-facing 

transaction will often induce further investment in the associated skill. As it happens, which skill 

is replicated after a transaction does not alter the outcome of the dynamics of Equation 1. (The 

same cannot be said for the equation we introduce below). 

Stability Analysis of Equation 1 

 In order to understand how complex (i.e. long) a cycle the system described by equation 

1 can support, we turn to the stability analysis of the equation. The dynamics of a system of 

differential equations can exhibit a variety of behaviors. Stability is a property of the behavior of 

the system around its fixed points—any set of values that yield themselves when the equation is 

applied to them (i.e. an equilibrium or rest point). The hypercycle equation has a unique inner 

(i.e. all values are positive) fixed point when concentrations are all exactly equal, 𝑟! = 1/𝑛 for all 

i (Hofbauer and Sigmund 1988). However, the stability of that rest point depends on n. For 

n=2,3,4, the fixed point is globally stable, meaning the concentrations can start out at any 

positive fraction and the system will converge to equal concentrations. For 𝑛 ≥ 5, however, the 

inner rest point is unstable. Thus, unless the concentrations start at exactly even, at least one of 

the molecule types will approach zero and the hypercycle will effectively die. Because positing 

even concentrations is to assume the order the hypercycle seeks to explain, this means the basic 

hypercycle model cannot account for the emergence of cycles containing more than four 

molecule types. These results have been shown formally.4 The panels in Figure 2.2 give the 

visual intuition of the outcomes for initial conditions in which a single molecule/skill type 

dominates the population in the beginning. The stability of the equation is not altered by the 

initial conditions as long as the system is not at its precise equilibrium point and the choice of 

initials conditions here is to highlight the ability of the hypercycle (for N=2,3,4) to not only 

maintain diversity but to amplify it. Nonetheless, these plots help make it clear that the basic 

hypercycle equation does not support particularly complex cycles. 

 Perhaps not immediately clear is that Equation 1 describes an aspatial system. The 

molecules exist in a “well-mixed” solution, meaning the reaction rates are only dependent of 

their current concentration (this is the result of the law of mass action). Locating reactions in 

                                                
4 Hofbauer and Sigmund (Hofbauer and Sigmund 1988) in fact show that the hypercycle is permanent for all n. This 
means no concentration hits zero in spite of the fixed point being unstable. However, the local minima are some very 
small delta away from zero, which is traditionally interpreted as failure of the hypercycle.  
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space has the potential to alter reaction rates because suitably reactive molecules can become 

spatially separated. Boerlijst and Hogeweg (Boerlijst and Hogeweg 1991, 1995) have shown that 

spatializing the basic model in fact changes the reaction rates in beneficial ways; it induces a 

wave-like structure of replication that prevents the emergence of parasitic molecule types and 

supports the emergence of more complex cycles. This finding is mirrored in the work of Padgett 

(Padgett 1997; Padgett et al. 2003; Padgett and Powell 2012), which shows more complex cycles 

are possible if the model is spatially embedded. However, in addition to adding space, this 

hypercycle model adds an external resource environment to reflect the more transactional nature 

of social settings. The complexity of the resulting hypercycles depends crucially on the nature of 

this environment, and we now turn to explicating and analyzing the role of such an environment. 

 

Figure 2.2: Basic Hypercycle Solution Curves: Solution curves and trajectories for N = 3, 4, 5. The first row plots 
the concentrations of the molecule types over time. The second row plots the projection of a trajectory in the N-
dimensional space onto the R1 and R2 plane. The initial conditions for all trajectories are r1=.9, rj≠i= .1/(n-1). The 
system asymptotically approaches equal concentrations quickly for N=3. For N=4, the sinusoidal oscillations also 
converge to the fixed point. For N=5, the concentrations reach a stable periodic orbit. 
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The Environmentally-dependent Hypercycle Model 

 The hypercycle of equation 1 models autocatalytic reactions as two suitable molecules 

bumping into each other, hence the probability of replication being exclusively dependent on the 

molecules’ concentrations.  In reality, one molecule would not catalyze the replication of the 

other directly by bumping into it, but rather through the addition of a catalyst molecule it 

produced. But because this product is always assumed to be collocated, it can be safely omitted. 

However, social interactions are not chemical reactions, and in applying the concept of a 

hypercycle to social life, Padgett and collaborators adapt the framework to be more clearly social 

in nature. The self-replicating molecules are individuals with a specific skill (referred to as a 

rule) that takes an input, transforms it, and later releases it. These outputs are referred to as 

products and are the “catalysts” for the work done later by other skilled individuals. To start a 

series of transformations, a rule needs a product to transform and attempts to find a suitable one 

in the common resource environment. Using an agent-based model, Padgett and collaborators 

have found that when the environment contains all inputs in constant and equal probabilities, the 

resulting hypercycles can be up to 9 types long, more than twice as long as the original 

hypercycle. Furthermore, if the product environment is endogenously produced by the rules, it 

also supports more complex cycles. Of particular interest is the fact that this result holds when 

the environment starts out with a single product type instead of assuming diverse and plentiful 

products are already available. This suggests the endogenous construction of the product 

environment is indeed a powerful mechanism aiding the emergence of more complex 

hypercycles. However, the model is spatialized and these results could largely be driven by the 

well-documented ameliorative effect space has on the hypercycle. To explore the effect of the 

endogenous structuring of the product environment, a process we refer to as niche construction 

because of its similarity to the well-studied evolutionary phenomenon of the same name, we 

modify the equation for the original hypercycle. This removes space from consideration, 

allowing us to study the mechanism in isolation. We analyze the new system’s stability using 

numerical techniques below. 

Niche Constructing Hypercycles 

 To make the role of products explicit, we modify equation 1 such that the replication of a 

rule, 𝑟!, occurs when it encounters a product it can transform, 𝑝!, transforms it, and finds a 
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suitable rule to pass the product to, 𝑟!!!. The fact that replication occurs after passing on a 

product instead of upon receiving it differs from the original equation. Reversing the order 

allows for a more natural correspondence to social and economic interactions; a skill is 

reinforced when its application results in a successful interaction or transaction. The probability 

of such a replication event is simply the product of the three relevant concentrations, 𝑟!𝑝!𝑟!!!. As 

before, the growth rate of each rule type is offset by a dilution flow equal to the rule-type’s 

current proportion in the population times the total number of replication events, in other words, 

the sum of the growth terms for all rule types. Equation 2 captures these micro-dynamics.   

 

 

To account for the dynamics of the concentrations of products, which can be thought of 

formally as a second class of molecules, a second equation is needed to capture both the growth 

and loss terms for each product type. When a product is a part of a successful transaction (as in 

equation 2), it is not immediately included in the growth or loss terms because it is participates in 

a chain of transformations until a rule fails to find a compatible rule to pass the transformed 

product to.5 Upon failure to find a compatible rule, the product is released back to the 

environment in whatever state it is currently in. Returning products to the environment is how it 

becomes endogenously structured. The probability of a new instance of a product type 𝑝! being 

returned to the environment is the probability of it being transformed into its current state, 

𝑟!!!𝑝!!!, but also failing to be passed to a rule of the type that can transform it (i.e. 𝑟!). The 

probability of such failure is just the probability of encountering any other rule type instead, or 

1− 𝑟!. Thus, the growth term is 𝑟!!!𝑝!!!(1− 𝑟!). There is no dilution term for the product types 

because there is no replication of products, just the transformation of already existing products. 

Instead, products of type i are lost as they are transformed into the next product type in the cycle, 

                                                
5 These chains of transformations are not included in Equations 2 and 3 but the versions of the equations with the 
chaining terms included appear in Appendix 2A. Our analysis here does not address this expanded form for several 
reasons. First, it is standard practice to ignore these higher order terms in chemical kinetics because the law of mass 
action renders them inconsequential. They are relatively rare and the terms for each rule/molecule type often cancel 
each other out. However, our main justification for omitting them is that our analysis of them showed the dynamics 
to be, for all intents and purposes, identical.  

ṙi = ripiri+1 � ri

nX

j=1

rjpjri+1 (2)



20 
 

i+1. Thus the second, loss term is equal to the growth term of the next product type. This yields 

equation 3a. 

 

The coupled nature of equations 2 and 3a introduces feedback between the populations of rule 

types and product types, but the strength of the feedback depends on the relative size of the 

populations because each transformation is applied to a single product. Thus, if the population of 

products consists of a single product, the probability of each transformation would always be 

either zero or one. If the population were infinite, however, a single transformation would have 

no effect on probabilities of replication or transformation events. One way to think about the 

relationship between the environment and the strength of feedback is as the ratio between the 

number of rule instances and the number of product instances. If there are twice as many 

products as rules, the feedback will necessarily be less for each transformation. However, 

differential equations do not count discrete units, just the percentages of the total population. 

Thus equations 2 and 3a assume a ratio of 1 if the rule and product concentrations are defined in 

terms of independent populations. But because we are interested in the effects of the endogenous 

structuring of the environment, we need an expression that allows for the control of the amount 

of feedback from the environment. We accomplish this with the introduction of a capacity factor 

C. This factor effectively controls the ratio of rules to products, but can be more directly thought 

of as the capacity of rules to alter the environment. The larger the capacity, the larger the impact 

on the population of product types and the larger the corresponding change in the probabilities of 

finding suitable product types. Thus, a larger capacity is associated with stronger feedback. The 

addition of the capacity factor C results in equation 3b. Equation 2 remains unaltered. The 

dynamics of these coupled differential equations correspond to an aspatial hypercycle model in 

which individuals with skills alter inputs into outputs usable by others. For related specifications, 

see Appendix 2B. We now turn to the stability analysis of the system defined by equations 2 and 

3b.  

 

 

ṗi = ri�1pi�1(1� ri)� ripi(1� ri+1) (3a)

ṗi = ri�1Cpi�1(1� ri)� riCpi(1� ri+1) (3b)
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Stability Analysis of the Niche Constructing Hypercycle 

 The niche constructing hypercycle equations may be tractable for a formal approach to 

stability analysis, but given that our primary goal is illustrating the power of the niche 

construction mechanism, we use a numerical approach instead. Figure 2.3 shows the solution 

curves for N = 10, 15, and 25 and for capacity factor C = 1, 2, and 4. All products start as type 

𝑝!. Figure 2.4 shows the projection of the trajectory from the N-dimensional space onto the 

𝑟!and 𝑟!-plane. These two figures make it clear that the niche-constructing hypercycle model 

supports the emergence of significantly more complex (i.e. long) hypercycles than the original 

model does. The curves in Figure 2.3 correspond to the concentrations of rule types and exhibit a 

sinusoidal form with decreasing amplitude, suggesting each rule type is orbiting around the 

equilibrium fixed point of all concentrations being equal to 1/N. Examples of these orbits can 

more readily be seen in Figure 2.4. This strongly suggests this version of the hypercycle is stable 

for all values of N analyzed. While the analysis of yet larger N is possible, a hypercycle of length 

25 is already very complex and evidence of its stability is ample ground for concluding the niche 

construction mechanism significantly alters the prospects for self-organization, even when the 

system starts from a state of being dominated by one rule type and has only a single product 

type. 

Figures 2.3 and 2.4 also make clear that the rules’ capacity to alter the environment can 

speed the time to convergence, but in principle does not alter the stability of the system. 

However, various concentrations can approach zero before beginning to converge and this would 

likely presents an issue in a stochastic version of the system.  Small and random accumulations 

of errors could easily completely extinguish a rule type and therefore kill the hypercycle. 

(Koopman et al (Koopman et al. 2002) argue all stochastic systems will die off given enough 

time). 
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Figure 2.3. Niche Constructing Solution Curves. The columns correspond to N=10, 15 and 25, left to right, and the 
rows correspond to capacity factors C = 1, 2, and 4, from top to bottom. The initial conditions for each simulation 
allowed the first rule type to dominate; 𝑟! was equal to .55, .533, and .52 for N=10, 15, and 25, respectively. The 
remaining types had equal concentrations. The graphs make clear that the niche constructing hypercycle has stable 
equilibrium points for high values of N and that increasing the capacity speeds the rate at which the system 
converges to the equilibrium. 
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Figure 2.4. Trajectory Projections for Niche Constructing Hypercycle. The columns correspond to N=10, 15 and 25, 
left to right, and the rows correspond to capacity factors C = 1, 2, and 4, from top to bottom. The initial conditions 
for each simulation allowed the first rule type to dominate; 𝑟! was equal to .55, .533, and .52 for N=10, 15, and 25, 
respectively. The remaining types had equal concentrations. Each plot is the projection of the trajectory through the 
N-dimension space onto the 𝑟! and 𝑟!-plane. This view makes clear the concentrations are converging to parity. 
Each trajectory spirals in the equilibrium point. Nota Bene: The trajectories in column two (N=15) are truncated and 
have not reached a stationary orbit. Were the trajectories to be calculated for a sufficiently large number of time 
steps, the orbits would become filled in. 

  

This is the same argument made against the relevance of Hofbauer and Sigmund’s finding that 

the original hypercycle is in fact permanent for all N, meaning no concentration reaches zero. 
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The small distances from zero make the system too vulnerable to consider it alive. The same 

might be said of niche constructing hypercycle, but this problem is attenuated as the capacity 

factor is increased. The greater the ability of the rules to alter the environment, the less time it 

takes for the corrective feedback to kick in. This helps ensure the system maintains a safe 

distance from the boundary as it begins to converge toward the equilibrium point. Thus, while 

the capacity factor does not influence the dynamics in the deterministic system, it is more likely 

to play an important role in any stochastic version of it.  

 The above analysis is for the version of the system in which a rule is replicated when its 

own transformation of a product leads to a successful interaction with another rule. In the 

original model, it is the receiving rule, not the sending rule that is replicated after a successful 

interaction. This choice is supported by a straightforward interpretation of autocatalytic 

chemistry, but is less plausible in social settings. This is fortunate because the niche-constructing 

hypercycle is fundamentally unstable when it is the receiving rule that is replicated. It does not 

support a cycle of even length 2. The reason for this is straightforward, although not necessarily 

obvious. Because the vast majority of transformations are not followed by pass to a compatible 

rule type, products are often being returned to the environment in a transformed state without any 

replication occurring. This quickly leads to a flattening of the distribution of product types, but 

little change in the distribution of rules. Replications only start to occur when rules of the n-th 

type start finding products of the n-th type. Those rules transform the product and succeed in 

passing it to the very abundant type-1 rules. This leads to the replication of type-1 rules, which 

maintains that type’s advantage and increases the selection pressure on the other rule types. One 

rule type inevitably dies off and the hypercycle fails. This does not happen when it is the sending 

rule that is replicated because the replication of the n-th rule type creates selection pressure on 

the type-1 rule population. This reduction in selection pressure apparently leaves enough of a 

window for other rule types to grow in number and begin to stabilize. 

Our stability analysis only looks at rule types. As the preceding paragraph suggests, the 

dynamics of the product concentrations can be interesting, but the form of equation 3b precludes 

the need to consider the property of stability. The concentration of a product type can reach zero 

will no ill effects. Furthermore, the concentration can never be less than zero. The former is true 

because products originate as another type and the new type need not currently exist for the 
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transformation to take place. The latter is true because the only way the concentration of a 

product type is reduced is if one is transformed into the next type. Such transformations 

necessarily cease to happen when the population is zero. So while the dynamics of the product 

concentrations are integral to the stability of the hypercycle, there is no need to directly analyze 

the stability of this population. 

Discussion 

 The stability of the niche constructing hypercycle is based in the feedback induced by 

having a malleable environment. The need to find suitable products to transform naturally limits 

the replication of recently successful rule types, as their success has ensured fewer of those 

products are available. And as the concentrations of products shift to types further along the 

cycle, the related rule types become more likely to replicate. Said another way, the peaks in the 

product concentrations are always one step ahead of the peaks in rule types. This is because 

unsuccessful passes result in the transformed product being returned to the environment, 

allowing that product concentration to build up before the related rule concentration does. The 

overall effect is a dampening of the selective pressures on vulnerable rule types (i.e. those with 

low concentrations). 

 While exploratory in nature, these results suggest that human’s capacity to alter our 

environments could be an important factor in explaining the complexity of our species’ social 

organization relative to other species. This is not an uncommon perspective (Atwell and Savit 

2016; Boyd et al. 2011; Odling-Smee et al. 2003; Pinker 2010; Savit, Riolo, and Riolo 2013; 

Taylor 2004), but by wedding the niche construction mechanism to the hypercycle framework, 

we have explicated a framework that excels at accounting for the stability of novel networks of 

interdependencies. Furthermore, it offers a new explanation for why innovative industries tend to 

take hold in geographically bounded regions. Instead of benefiting from “network spillovers” 

between skilled individuals, the construction of a niche of alters the selection pressures in ways 

that maintains and even supports the growth of a diverse set of interdependent skills. Thus, it is 

less that social distances are lessened by geographical propinquity, but that important 

information about the relative value of skills is conveyed through a common and dynamic pool 

of resources. This informational pathway appears to play an important role in processes of self-

organization independent of the physical space in which it is necessarily embedded. Indeed, in 
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conjunction with previous research, our study of the niche construction mechanism in isolation 

suggests that the spatial extension of it only weakens its effects. This interaction and others that 

may arise with it merit more analysis and our ongoing work explores such interactions. 

Conclusion 

 The hypercycle model has been lauded as an “information integrator” that allows for the 

emergence of wholes with complex interdependences in settings otherwise too noisy for self-

organization. This capacity, however, is limited to a relatively small number of 

interdependences. This number can be increased somewhat by spatializing the model, but this 

paper instead models the endogenous formation of the product environment, a process referred to 

as niche construction in the literature on evolution. By coupling the population dynamics of the 

rule types to the dynamics of the product types, a powerful feedback mechanism emerges. The 

addition of this feedback supports the emergence of significantly more complex 

interdependencies (up to at least 25 rules types), including when the process begins with the 

products all of the same type and a single rule type dominates the population. Even with such 

unfavorable conditions, the rule types converge to the stable equilibrium point. The addition of a 

capacity factor, a measure of the rules’ ability to alter the common product environment, can 

speed the convergence and protect the system against random disturbances. Taken together, these 

results show the potential of the niche construction process to be a powerful aid to the self-

organization of interdependent elements. We analyzed a simple model for analytical purchase, 

but in practice this mechanism would operate alongside others and this paper is meant only as an 

exercise to highlight its potential. 

 Should a niche construction mechanism prove operant in social life, it would provide an 

account of the importance of geography in economic life different than the prevailing 

“knowledge spillover” explanation (Funk 2014; Gertler 2003; Whittington, Owen-Smith, and 

Powell 2009). The structuring of the local environment itself would be instrumental to the 

process of creating complex networks of interaction by constraining any pathological growth of 

any single type of interaction. As suggested by the hypercycle equation’s deep relationship to 

replicator dynamics, the niche construction mechanism links the fitness of species to a common 

resource environment. This creates more powerful feedback and is more sensible than just 
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directly linking the fitness of the species because the productive capacity of skilled individuals is 

limited both by the other skills present and the resources necessary to apply the skills.  
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Appendix 2A: Extensive form of the Niche Constructing Hypercycle 

A direct translation of the agent-based models that appear in the work of Padgett and 

collaborators would include chains of transformations. This is because when an agent 

successfully transforms a product, that agent attempts to pass it to another agent who can 

transform it again. If such an agent is found, the new agent receives the product, transforms it 

and then looks to pass it to another agent. This will continue until an agent fails to find an agent 

with a compatible rule type, at which point the product is returned to the environment.  

 The probability of chains of significant length occurring is very low. Indeed, in a system 

with 5 rule and product types, if the concentrations of both rules and products are balanced, the 

probability of a chain of only two transformations occurring is 𝑟!𝑝!𝑟!!!𝑟!!! =  .2 ∗ .2 ∗ .2 ∗ .2 =

 .0016. The probability of a product making it around the cycle (i.e. from product type 1 to 

product type 5) is a little more than 1 16000. Nonetheless, given there are enough agents in the 

system that even low probability events do occur, it is worth exploring the effect of accounting 

for chains contra the results from equations 2 and 3.  

 A binomial expansion makes it possible to reduce what would be an infinite number of 

possible chain lengths to a single term. Consider the probability that a rule of type 𝑟! is replicated 

in a given time step after a series of transformations starting with a product of type 𝑝!!!. For a 

system with 5 types, that is equal to sum of all the successful single step transformations, all the 

5-step cycles ending that time step, all the 10-step cycles ending that time step and so on. For 

rule type 𝑟!, this can be written as the following: 

𝑝!𝑟!𝑟! + 𝑝!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟! + 𝑝!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟!𝑟! +⋯ 

Thus: 

Pr 𝑟! → 2𝑟!  | 𝑝!!! = 𝑝!!!𝑟!!! 𝑟! +  𝑟!𝑟!!!𝑟!!!𝑟!!!𝑟!!!𝑟! + 𝑟!𝑟!!!! 𝑟!!!! 𝑟!!!! 𝑟!!!! 𝑟!! +⋯  

Factoring out the 𝑟!, it becomes clear that all chains can be included by writing the expression as 

follows: 
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Pr 𝑟! → 2𝑟!  | 𝑝!!! = 𝑝!!!𝑟!!!𝑟!  𝑟!𝑟!!!𝑟!!!𝑟!!!𝑟!!! !
!

!!!

 

By the binomial theorem, the infinite sum is equal to 1 [1−  𝑟!𝑟!!!𝑟!!!𝑟!!!𝑟!!!]. Thus  

Pr 𝑟! → 2𝑟!  | 𝑝!!! =  
𝑝!!!𝑟!!!𝑟!

1−  𝑟!𝑟!!!𝑟!!!𝑟!!!𝑟!!!
 

This expression only accounts for chains starting with a product of 𝑝!!!being removed from the 

environment and the full growth term for 𝑟! needs to include chains originating with other 

product types. These terms are the same as above except for the addition of the partial cycles of 

transactions before it. Thus, 

Pr 𝑟! → 2𝑟!  | 𝑝!!! =  
𝑝!!!𝑟!!!𝑟!!!𝑟!

1−  𝑟!𝑟!!!𝑟!!!𝑟!!!𝑟!!!
 

The overall growth of rule type 𝑟! is the sum of all these terms. Factoring out the common terms 

and adding the dilution flux term, the final growth rate of rule type 𝑟!  can be written as: 

 

 

where, 

 

By similar logic, one can model the growth rate of product type 𝑝! as the following: 
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Naturally the behavior of this system is dominated by the terms with the fewest number of 

interactions, that is, those terms that appear in equations 2 and 3. A side-by-side numerical 

analysis of the systems showed them to be nearly indistinguishable so for the sake of parsimony, 

we present the results of the analysis the simplified system. 
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Appendix 2B: Alternative Niche Constructing Hypercycles 

In a testament to the detail with which Eigen and Schuster analyzed the hypercycle, they 

proposed a version that has important similarities with the niche constructing version presented 

in this paper (Eigen and Schuster 1978). Referred to as the hypercycle with translation model, it 

explicitly represents the translation of the RNA sequence of a given molecule into a catalytic 

protein. This protein can bind with a molecule of a different type and can then replicate that 

molecule. Importantly, however, that catalytic protein is not converted into something else in the 

process. It persists in the complex with RNA species it originally bonded with, possibly 

separating only later. Thus the translation process can create concentrations of catalytic 

molecules, but lacks the input-output dynamic we believe is important to the application of the 

hypercycle framework to social setting. Nonetheless, their analysis of the equations showed that 

hypercycles with translation allowed for slightly more complex hypercycles. 

 Another way of conceiving of an input-output hypercycle would be to ignore the 

requirement of finding another rule to transform a product for replication. Replication would 

simply occur after a successful transformation of the product and the newly transformed product 

would be immediately returned to the environment. The associated equations are S1 and S2. The 

solution curves and trajectories appear in figures S1 and S2. The results are qualitatively very 

similar to those presented in the body of the text. 

 

  

 

 

ṙi = piri � pi

nX
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Figure 2.5: Solution Curves for the system defined by equations S1 and S2.  
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Figure 2.6: Trajectories for the system defined by equations S1 and S2. 
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Chapter 3: The Value of Niche Signals in Social Dynamics: An Experimental Study of 
Extra-Network Social Signals 

 

 

 

 

 

 

 

Abstract 

 In addition to being embedded in social networks, individuals are embedded in physical 

space and, now, digital publics. These spaces are teeming with socially relevant signals actors 

can use to learn about broader patterns within the population. What is the informational value of 

such signals as they occur alongside those traversing social networks, a comparatively well-

understood domain? This paper reports the results of a large group experimental design in which 

participants attempt to coordinate to create an arbitrary convention. Participants embedded in a 

variety of common network topologies are unable to reach a consensus convention when 

information can only flow through network ties. The addition of small number of signals across 

the public space, however, often leads to successful group-wide coordination. The number of 

such signals necessary for successful coordination depends crucially on the average path length 

of the network. This result corroborates views that material objects can be important to social 

and particularly cultural life and suggests such signals merit consideration alongside other 

sources of information in the study of group dynamics. 
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Introduction 

Research on group dynamics and networks has transformed our understanding of social life, 

from how actors gain social advantages (Burt 1992; Gargiulo and Benassi 2000; Granovetter 

1973; Mizruchi and Potts 1998; Nahapiet and Ghoshal 1998) and how groups perform in 

organizations (Cummings and Cross 2003; Lazer, Friedman, and Friedman 2007; Mason and 

Watts 2011; Reagans et al. 2001; Rulke et al. 2000; Sparrowe et al. 2001) to why behaviors are 

similar (Burt 1987; Friedkin 1984; Mizruchi 1993) , how behavior and information diffuses 

(Bakshy et al. 2011; Centola 2010; Watts and Dodds 2007) and how culture (Centola et al. 2017; 

Derex and Boyd 2016; Shaw 2015) and organizations (Padgett and Powell 2012) emerge. The 

cumulative results show that social networks condition what is possible for both individual 

members of a group and the emergent properties of the group as a whole. As is often explicit in 

this field of research, network structure is rarely itself a variable of interest. Rather, it is a useful 

way of tracking interactions that include exposures to something, most often signals that yield 

information. Information gained from interacting with network neighbors can drive individual 

behavior, and the heterogeneous patterns of interactions and exposures can determine the 

emergent group outcomes. Social network analysis excels at operationalizing this insight, but this 

network view of exposures and information does not track socially relevant signals from other 

sources. 

 The fields of media studies and mass communication analyze the ways visual and audio 

media influence the beliefs and behaviors of individuals and groups. From the perspective of 

social behavior, exposure to mass media is qualitatively different than within-network exposures; 

significantly more people are reached by the same signal, receivers can form expectations that 

others have received the signal as well, and the information can describe the state of the social 

system itself. The broad reach of broadcast mechanisms and its implications for behavior makes 

it appealing for media and marketing outlets. Expecting that others have received the same 

information can have important effects on more strategic behavior (Gintis 2009). Finally, when 

broadcasted information describes the aggregate state of the system, it can be a powerful 

determinant of behavior, as when economic data are used in making investment decisions or 

bandwagon effects (Nadeau, Cloutier, and Guay 1993). Recognizing the important qualitative 
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differences between local, network signals and global, broadcast signals, researchers have 

studied the effects of combining them (Bass 1969; Goel et al. 2016). 

 The distinction between local and global information is important and well known but it 

is not a comprehensive typology of information sources in social life. This paper focuses on 

another type of information that can emanate from the traces found in a shared social 

environment of the activities or choices of others. These traces can be used to infer, consciously 

or not, the beliefs, knowledge, preferences and characteristics of other actors, whether the 

observer can positively identify the actors or not. Consider visiting an urban neighborhood to 

evaluate it as place to live; the counts and types of bicycles, for instance, one observes can yield 

relevant information about the values, income, or habits of the residents. Other objects such as 

motor vehicles, strollers, clothing, or landscaping might provide similar insights. These traces 

can be visual (including text), but are often auditory—overheard conversation or music—or 

olfactory—smells of tobacco or coffee. They might even include chance, unrepeated interactions. 

The potential informational value of these traces is not readily apparent6. In fact, unlike in the 

example of exploring new neighborhoods, we are most often navigating social environments in 

which we have extensive social networks that provide more direct information. When this is the 

case, such traces might appear to be just a weaker source of the same basic type of local 

information. However, this is often not the case because different social networks, or distant 

parts of the same network, can occupy the same public space, ensuring that many of the traces 

are produced by socially distant actors. Propinquity has long been known to be an important 

factor in social and industrial organization (Fujita, Krugman, and Venables 2001; Logan 2012; 

Voss 2007) and there is some research on the interplay between physical and network-social 

space (Browning et al. 2017; Whittington et al. 2009), but the importance of signals in public 

spaces for group dynamics has gone largely unstudied. I refer to these signals as niche signals, in 

reference to the idea of a constructed niche. However, public life is no longer exclusively 

physical because of the robust digital communities that exist today and this new social proximity 

outside of social networks needs to be acknowledged. Thus niche encompasses both physical and 
                                                
6 Several research programs highlight the importance of human and other objects in human affairs but do not 
explicitly pursue this as a matter of information. Material-semiotic approaches (Callon 1998; Latour 2005; Law and 
Mol 1995) seek to understand the importance of objects to the realm of ideas and concepts. Likewise, distributed 
cognition (Hutchins 1995) seeks to understand how cognition can be distributed across many individuals through the 
externalized products (objects) of cognition. The material culture tradition focuses on the rich cultural meanings and 
messages that can be embedded in objects (Tilly et al. 2006). 
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digitals spaces as necessary. 

 Niche signals are distinguishable from within-network signals by at least two features. 

First, they are relatively abundant and can be consumed with little engagement. This allows an 

observer to collect these signals and create semi-aggregate information about the state of some 

system with relative ease; one can learn a great deal about the incomes of a neighborhood by 

going down only a few streets and observing the models of the vehicles. Second, because these 

signals can come from socially distant actors, they can yield information about the broader state 

of the social setting otherwise difficult to ascertain; noting the food ordered by patrons—

typically socially distant—can be a good way to learn about the strong points of a restaurant’s 

menu. These features of niche signals do not make them generally relevant to understanding 

group processes, however. Relevance requires that human actors are in fact observing these 

stimuli, that observation can influence behavior, and finally that the behavior undertaken in light 

of observation affects the outcomes of group processes. While there is significant evidence that 

these stimuli are a regular part of human cognition and behavior (Call and Carpenter 2002; Heft 

et al. 2014; Hoppitt and Laland 2013; Rietveld and Kiverstein 2014; Withagen and van 

Wermeskerken 2010)—indeed, ecological psychology argues the affordances we attribute to 

stimuli in behavior settings are instrumental to cognition and action (Barker 1968; Gibson 

1977)—its role in determining the emergent outcomes of group processes has not been studied.  

To begin to understand the role, if any, such niche signals play in social life, this paper 

uses an experimental design to show they can alter at least one important class of group 

dynamics, the emergence of conventions. Conventions are the solutions to group coordination 

problems with the important feature that the solutions are arbitrary in the sense that an alternative 

could have worked as well (Lewis 1969; Marmor 2009; Young 1993). The particular solution 

matters much less than the fact that the vast majority of relevant actors is aware of and behave in 

accordance with the convention. Social life is rife with conventions, from core cognitive 

machinery like the words of a language to unimportant practices like “proper” use of silverware. 

As used here, arbitrariness does not mean that all potential solutions are equally as good and this 

fact might suggest groups should converge to superior alternatives, but any Nash equilibrium 

would do and even that likely requires unrealistic assumptions (Gintis 2009). In practice, groups 

select and lock into inferior conventions even when better alternatives are known, such as 

continued use of the imperial and US customary systems of measurement. An established 
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convention creates shared expectations for behavior that disincentivizes deviation. This self-

reinforcing feature of conventions makes them particularly durable and an important part of 

social and cultural life instead of just momentary states of an exploration of a problem space 

(Gintis 2009). It also suggests problems with conflicts of interest can in practice exhibit elements 

of conventionality in their solutions, as Bicchieri (Bicchieri 2006) argues is the case with social 

norms that curtail self-interested behavior at the expense of others. Thus the study of conventions 

is very much the study of how groups come to have shared expectations and mental 

representations, a core undergirding of culture and sociality more generally.  

 In spite of the importance of conventions and their relative analytical simplicity, the 

group dynamics, and more specifically the patterns of information exposures, leading to their 

spontaneous emergence are only very recently starting to be studied. Conventions can of course 

be established by top-down mechanisms such as the coordinated dissemination of aggregated 

information, authoritative fiat, or the implementation of rewards for coordination, but a 

significant number of conventions emerge without such support. Rather they emerge 

spontaneously from a bottom-up process of self-organization (Centola and Baronchelli 2015; 

Helbing et al. 2014; Steels 1995; Young 1993). Individuals observe the behavior of others and 

use this information to inform their future behavior, which others then observe. Whether or not 

this iterative process leads to all individuals exhibiting the same behavior depends on what 

individuals are able to observe and how they act on what they observe. This makes the process 

ripe for social network analysis and careful observation of behaviors, but, while online data 

sources can afford the opportunity to study networks and realistic behavior, it is immensely 

challenging to fully identify information exposures and therefore impute cognitive processes. A 

behavioral experiment, while sacrificing some realism, allows for full control over information 

exposures, and this paper builds on a model and design first proposed by Centola and 

Baronchelli (Centola and Baronchelli 2015).  

 
The “Name Game” and Prior Results 

 Centola and Baronchelli (C&B) propose the “name game” as a large group behavioral 

experiment for studying the effect of network topology on the emergence of conventions. 

Participants embedded in a network interact as pairs of neighbors over many rounds and attempt 



39 
 

to submit the same name for a pictured individual. The sheer number of possible names ensures 

the arbitrariness of solution to the coordination problem. Matching within the pair is rewarded 

and not matching is penalized. There is no direct incentive for global coordination, but, as is the 

case with real conventions, global coordination ensures beneficial local interactions. Group sizes 

varied from 24 to 96 participants7 and three networks—a one-dimensional lattice of degree 4, a 

random graph with constant degree 4, and a fully-connected graph (i.e. homogeneous mixing)—

were used as the primary treatments. Remarkably, the results showed a global convention 

emerged only in the homogeneous mixing treatment. In trials with the random and lattice 

networks, sub-global conventions emerged but a single alternative never won out.  

This result confirms the importance of interaction topologies for group dynamics but begs 

the question of whether conventions can in fact be the result of self-organization. Homogeneous 

mixing is a mathematically pithy and sometimes-useful first order approximation of interactional 

processes, but it also undermines the very idea of social networks as providing meaningful 

structures for interaction. By itself the emergence of global conventions with homogeneous 

mixing might be an encouraging sign that it is possible on heterogeneously structured networks, 

but given the negative results for such networks, the homogeneous mixing case becomes an 

abstract case with little empirical value. Instead we are left wondering if conventions can in fact 

self-organize or if they necessarily require institutions or authorities to come into existence. Yet 

the success with homogeneous mixing does confirm that, given the suitable exposures to 

information about what others are doing, conventions can self-organize. The question I focus on 

in this article is: what types of exposures along side those resulting from being embedded in 

social networks can lead to successful self-organization? The following experiment shows niche 

signals in even small amounts can be sufficient.  

Setup  

 To introduce niche signals into the “name game,” the whole group is treated as if it 

occupies the same social (or even physical) space in spite of the social distances inherent to the 

social networks. Conceptualizing socially distant actors as being in the same space makes it 
                                                
7 The boundary between small and large groups is not firm and depends on the setting (Levine and Moreland 1990). 
There is, however, considerable evidence that the outcomes of small group processes do not scale as the size of the 
group increases (Lowry et al. 2006; Wheelan 2009). While it seems wholly possible that there are more than two 
scales, the window between dozens and hundreds appears to be distinct from small groups (N<10). 
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plausible that participants would periodically be exposed to information about the behavior of 

others within the group at large. These exposures take the form of each participant being shown a 

name or two, depending on the treatment condition, played by any other group member that 

round. It is shown on the round’s result page along with the name played by their partner. There 

is no information given regarding who played the name or whether it matched the name played 

by the respective playing partner. For each participant names are drawn at random without 

replacement and can include null values if the corresponding player failed to submit a valid name 

(See Software and Subject Management Details in the Supplemental Information for details on 

game play). Importantly, there is no direct benefit for matching any or all of these additional 

names and, furthermore, without the knowledge of the corresponding partner’s behavior, the 

value of that name for coordination’s sake is not knowable. It is merely a trace of socially 

relevant activity observers can process as they see fit.   

 Based on the finding in C&B that the size of the group did not have an effect on the 

outcome, all trials in this design were conducted using 24 participants. The design includes the 

three networks topologies in the original—a random network with constant degree 4, a circular 

lattice of degree 4, and the fully-connected network—but also includes as an additional factor a 

small world network created using the Watts-Strogatz algorithm (Watts and Strogatz 1998) 

initialized with the circular lattice of degree 4. Small world networks share important 

characteristics—local clustering and short characteristic path lengths—with real world social 

networks (Watts 1999), but as an interpolation between the lattice and random networks, a small 

world network would not have added anything to the analysis in the original experiment. 

However, the niche signals treatment factor in the present experiment interacts with network 

topology and makes the results for small world networks relevant. 

 The second factor of niche signaling has three conditions: participants may be exposed to 

no niche names, one such name, or two such names. The inclusion of the no-name condition 

replicates the original experiment and trials in this condition were done before the others to 

confirm the commensurability of the game interface in spite of minor design differences (see 

Model Details in the Supplement Information). Because the fully connected network produces 

global conventions without the addition of niche signals, no trials were conducted for the other 

conditions.  
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Results 

The results of 32 trials of the full experiment appear in Table 3.1 below and show that exposures 

to niche signals can indeed make it possible for global conventions to emerge in spatial 

networks. The effect is partly dependent on the network topology. The fact that trials in the same 

treatment cell exhibit different outcomes indicates the presence of one or more additional factors, 

the details of which are discussed below. The larger pattern, however, shows a clear trend in the 

efficacy of niche signals as the network’s average shortest path length, otherwise known as the 

characteristic path length, is decreasing.  

 

 

Table 3.1: Experiment Results: Each box in the cells of the table represents one trial of the experiment for the given 
treatment combination. If the box is green, a global convention emerged. If it is red, one did not. The size of the box 
does not indicate anything other than the fact that some conditions had fewer trials, because they were replicating 
the results in C&B or, in the case of the one-name lattice treatment, very unlikely to lead to a global convention. 
One of the trials for the lattice network exposed participants to three names. It is identified within the cell for the 
two-name treatment.  

 

The average shortest path length (ASPL) is a measure that operationalizes the idea of 

social distance and is calculated by averaging all the shortest paths between all pairs of nodes. 

Fully connected networks have an ASPL of 1 and the circular lattice with degree 4 has an ASPL 

of 3.39. For comparison, the ASPL of the entire Facebook network was 3.57 as of 2016 (Bhagat 

et al. 2016). Because random and small world networks are ensembles of networks, there is not a 

precise ASPL for the topology. The average for the networks used in the trials had ASPLs of 

  Network Treatment 
Increasing Average Shortest Path à   

  Full Random Small World Lattice 

Signal 
Treatment 

No name     
    
  

One 
name N. A. 

      
    

Two 
names 

N. A. 
      
     3 names 



42 
 

2.34 and 2.51, respectively. The relationship between ASPL and niche signals is sensible in light 

of both research on the diffusion of information and the results in C&B. Because lower ASPLs 

correspond to ease of diffusion (Lazer et al. 2007; Watts 1999; Yamaguchi 1994), we would 

expect the fully-connected network (i.e. homogeneous mixing) to have a higher success rate for 

the emergence of global conventions. The addition of niche signals can help overcome the 

deficiencies of topologies with longer ASPLs in regards to the circulation of information, but the 

amount necessary is proportional to the lengths of the average shortest paths. 

Average shortest path length cannot be the only factor mediating the effect of niche 

signals, however, because one of the crucial features of small world networks is that the ASPL is 

comparable to that of random networks of the same size and average degree, yet it appears that 

more niche signals are required for a global convention to reliably emerge for small world 

networks. This is because of the high local clustering characteristic of small worlds. In virtue of 

the higher rate of closure among triads, local clustering is associated with successful local 

coordination. However, local coordination often comes at the expense of global coordination 

because the tacit benefits of global coordination are not enough to overcome the immediate 

benefits of maintaining local coordination.  

 In addition to ASPL and clustering, there at least two more factors influencing outcomes. 

Separable from the overall network topology is the exact sequence of partner pairings (e.g. 

exposures). Pairings are randomized throughout the 25 rounds of play but the same for each 

distinct network within the broader topology (see Networks in the Supplemental Information). 

The sequence of pairings engendered by the exact network is a likely explanation for the 

presence of both potential outcomes within the same treatment cell. The other potential 

explanation is participant skill or naiveté. While not formally tracked, the suitability of 

participants’ responses to available information varied, as would be the case in real social 

dynamics. Such suitability can be the result of mental faculty but also conscious strategies 

undertaken with the knowledge they are playing in a highly complex environment. Indeed, some 

participants appeared to intuit the value of anchoring behavior (i.e. being unresponsive to the 

choices of others), which can foster local coordination, but extreme commitment to this strategy 

by multiple participants would necessarily prevent the emergence of global conventions. 
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Group Dynamics of Emergence 

 The temporal dynamics underlying the above outcomes bifurcates within the first several 

rounds, as can be seen in Figure 3.1. The successful emergence of a global convention features 

the rapid winnowing of the number of alternatives in circulation in the first third of the rounds 

and then the more gradual elimination of all but one. However, the second stage does not 

necessary follow from the first. Failure to quickly reduce the number of alternatives in 

circulation ensures no global convention will emerge, but success in the first stage does not 

guarantee success in the second stage. This importance of the number of names still in 

circulation is somewhat at odds—but not inconsistent—with the analysis of the dynamics 

presented in C&B. That analysis found that failure in early rounds to coordinate locally (i.e. low 

rate of partner matches) was the basis for future global coordination, as a single alternative won 

out more gradually. Conversely, success in the early rounds lead to protracted competition 

among robust alternatives. This remains the case in the no-name treatments and can be seen in 

the first row of Fig 3.1. But in the one- and two-name treatments, early failure is not a 

prerequisite for eventual global coordination. Rather, there is a unique combination of a low 

coordination success rate and, yet, a rapid reduction of the number of alternatives in circulation 

in the homogeneous mixing treatment. The trials for the lattice treatment exhibited high levels of 

local success early on, but not a suitable diminution of the number of alternatives to overcome 

the propensity toward entrenched competition. Trials with the random network treatment had 

low success rates, but a large number of names remained in circulation deep into the rounds.  

The addition of niche names, however, allowed for quick reduction in the number of 

alternatives to be paired with a robust level of local success. In the homogeneous mixing 

treatment, the rate of local success is low in the beginning because of the low probability of 

repeat interactions, but a handful of names are nonetheless becoming popular within the 

population. In the spatial networks, a higher probability of repeat interactions often facilitates 

local success, but it is in only the niche signal treatments that the number of names in circulation 

can also be quickly dropping. This reduction is necessary but not sufficient for a global 

convention to emerge. Once only a few names are in circulation, the chance of convergence to a 

single name depends on the rate of local success.  
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Figure 3.1. Example Dynamics: Examples of dynamics leading to global conventions and not. Column one shows 
the number of names in circulation in a given round. Being in circulation is defined as having already been played 
(participants occasionally submit new names after the first round) and will be played in the present or a future round. 
This definition accommodates the fact that participants alternate names between rounds and names can reappear in 
spite of not occurring in the present round. Column two shows the success rate, the fraction of partners who 
successfully coordinated, as a 3-value moving mean. The third column shows the normalized entropy of the 
distribution of names to highlight trials in which very few names are in circulation, but they are relatively balanced 
in their number of occurrences. Each row displays the time series for the name count, success rate and entropy for a 
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number of trials. The network treatments for the row are identified in the legend in the third column. The respective 
trial is the same for each panel in the row. The niche signals treatment is identified to the left of the row.  

High rates of success in the middle rounds means clusters within the network are 

converging toward different alternatives, which can compete indefinitely. A lower rate of 

success, however, suggests participants are still exploring and will ultimately push the group 

toward a global convention. This reflects the logic described in C&B, but it appears in the second 

stage of the process instead of the beginning. The higher the clustering in the network, the fewer 

names in circulation and the more experimenting in the middle rounds are needed for the group 

to converge on a single name. The exposure to niche names can both rapidly drive down the 

number of names in circulation, presumably by making participants more aware of and 

amplifying nascent patterns in the names, and by maintaining the exposures necessary to give 

participants the ability to continue to explore. The latter is dependent on the former because 

fewer names make exploration more effective. 

Discussion 

 The above results demonstrate that the addition of niche signals can help engender the 

behavior required for conventions to emerge in groups embedded in spatial networks that 

otherwise inhibit such emergence. This suggests that when conventions are the result of bottom-

up self-organization, the diffusion of information via niche signals is a necessary, albeit not 

sufficient, condition. The clustering natural to social networks defines the dynamics and 

outcomes of group processes (Browning, Feinberg, and Dietz 2004; Fang et al. 2010; Lazer et al. 

2007; Mason and Watts 2011; Mizruchi and Potts 1998; Shaw 2015; Uzzi and Spiro 2005) but 

the availability of niche signals can alter these processes. Furthermore, surprisingly few niche 

signals are required; knowing what a small fraction of the whole population is doing can be 

sufficient to tip the group dynamics toward successful coordination. 

As a problem of coordination, the creation of conventions is particularly challenging 

because of the size of the groups and the number of possible solution. These features however 

are distinct from challenges present in competitive and other non-cooperative large group 

settings, so it is far from clear what impact niche signals might have in those situations. 

Processes in which sub-group differentiation is desirable are likely to be affected, but when 

benefits are more localized and there are little in the way of network externalities—as in the case 

in a variety of types of strategic interaction—the chances of an effect seem lower. Nonetheless, a 



46 
 

great deal of social life requires coordination across large groups and the effects exhibited in this 

experiment merit exploring the effects of niche signals in empirical settings. 

The ability of niche signals to effectively shorten social distances raises the question of 

whether more network ties could have the same effect. One reason this might not be the case is 

that niche signals have a distinctive structure to them; as currently operationalized, it is a 

remarkable tool for understanding the state of the whole system because the probability of seeing 

a name in any given round is directly proportional to its frequency in the population. If more 

structure is introduced such that individuals are repeatedly sampled from the same regions of the 

system, the informational value of niche signals would likely decline. In the world, of course, 

there is more structure to niche signals than what was implemented in this experiment; the 

addition of such structure would likely resemble ecological networks, which map standard social 

network and their spatial loci into a bipartite network of social and physical space (Browning et 

al. 2017; Browning and Soller 2014). Whether more realistic patterns in propinquity would alter 

the observed results is a valid and open question. 

Conclusion 

 In addition to being embedded in social network space, we are embedded in physical and 

digital space. Those spaces often contain the traces of the socially relevant behavior of others. 

Those niche signals are a potential source of information that has largely been neglected, but the 

experimental evidence presented here shows it can alter group dynamics in important ways. 

Particularly in settings involving the coordination of behavior, the high degree of clustering 

common in social networks inhibits the self-organization of coordinated behavior, but the 

addition of a small number of niche signals can be enough to tip the group toward coordinated 

behavior. This suggests these signals might play important roles in social dynamics more broadly 

in virtue of their ability to disseminate information widely without the costs of broadcast 

mechanisms. 
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Appendix 3A: Supporting Information 

Subject Recruitment 

All subjects were recruited through Amazon’s Mechanical Turk marketplace. This platform 

enables the recruitment of workers to complete online tasks and has been validated as source of 

subjects for a wide range of behavioral experiments (Casler, Bickel, and Hackett 2013; Crump, 

McDonnell, and Gureckis 2013; Hauser and Schwarz 2016; Mason and Suri 2012; Paolacci and 

Chandler 2014; Rand 2012; Shank 2016). To build the subject pool, any worker with a 

reasonably healthy history of work on Mturk was offered compensation to complete a short 

training module and take a comprehension test. The task paid well for the amount of time it took 

so it was easy to recruit workers into the subject pool. This initial interaction familiarized 

subjects with the interface and game structure, but also satisfied Mturk’s requirements for 

uniquely identifying and communicating with the worker in the future. This allowed the creation 

of a well-defined subject pool and the gaining of control over which workers were permitted to 

join live sessions of the experiment. The day before a scheduled trial, a number of subject pool 

members were invited to play. Following the recommendation of Mason and Suri (Mason and 

Suri 2012), roughly four times as many pool members were invited than was necessary to run the 

experiment. Those invitees were contacted shortly before the scheduled game as a reminder and 

again at the start of each session in order to provide a link to the interface. 

  The subject pool included slightly more than 300 members at any given time, as 

members were removed periodically for being unresponsive to invites and then replaced. Pool 

members were allowed to complete up to five sessions; the average number of completed 

sessions was 2.95, with an average of 20 days between sessions. For each game a list of invitees 

was created from this pool using the following criteria: No participants from the last session can 

be included; those who were recently invited but did not complete a session receive the highest 

priority; those who have yet to be invited get the next highest priority; those who have been 

invited but have not played get the next highest priority; for the remaining pool members, 

priority is less than the previous categories and inversely related to how recently they completed 

a session. If ever a set of members of equal priority was larger than what is necessary to create 

the list of invitees, the correct number of members was added by sampling uniform at random 
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from that set. The above procedure was repeated until no more than four participants who 

completed the same previous session were included.   

Game Play Details 

  The game interface was created using the oTree, an open source python platform for 

experiments (Chen, Schonger, and Wickens 2016). As participants arrive for a session, they are 

shown a brief description of the task and the IRB statement of risk (Exempt-status). If they 

accept the task, they are shown the game instructions, which include a small comprehension test. 

Next, they must agree to not use means outside of the interface to attempt to coordinate. This is 

largely an attempt to induce guilt if necessary because the real controls against such attempts are 

built into the software (see Software and Subject Management Details). Once they agree, they 

are taken to a waiting page until enough participants arrive. Subjects are paid one cent for every 

five seconds of waiting and are shown how long they have been waiting and their bonus for that 

time. This greatly increases the retention of subjects and their satisfaction with the task and 

compensation, which is crucial for maintaining a responsive pool. 

 Once enough subjects have arrived, the game begins. Participants are shown a picture of 

a headshot of a younger woman and are asked to submit a name for the pictured woman. 

Participants have 15 seconds to submit a name and failure to do so in that time results their 

submission as being recorded a null. Fig S1 is an example of this submission page. After 

everyone has submitted, the results are displayed. This differs from the design in C&B, which 

allowed for an asynchronous progression through rounds. While it seems unlikely to make a 

difference, synchronizing the rounds was necessary in this design because two treatment factors 

required sampling from all names played in a round. To maintain commensurability between all 

treatment factors, rounds were synchronized for all treatments, a choice that ultimately did not 

have an effect. 

Partners who successfully coordinated earn $0.10. Partners who did not coordinate are 

penalized $0.05, unless their current cumulative total is already $0.00. The results page always 

shows the name both partners played, whether they matched, the amount of the reward or 

penalty, their current cumulative rewards and their history of successes or failures through the 

previous rounds (but that the names associated with those successes or failures). In the 

treatments where it was applicable, additional names where displayed. Fig S2 is an example of 
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the results page. This page times out after 10 seconds. The submission and results page constitute 

of round of play. There are 25 such rounds in each session. After the 25 rounds, if applicable, 

participants were ask if they thought the appearance of the random names influenced their choice 

of names to use with partners. The final page reported the participant’s final earnings, broken 

down into base pay, waiting bonus and game bonuses, and offered the opportunity to leave 

feedback. 

Software and Subject Management Details  

 In order to ensure the subjects’ experience corresponded to the ideal experiment and that 

the experiment is internally valid, there are a number of important details to the design of the 

software and management of subjects. Most of these features described below were added after 

reviewing data from trial runs of the experiments and research on the experience from the 

perspective of the workers done through direct (and compensated) correspondence and reviewing 

forums that host robust communities related to working on Mturk (e.g. MturkNation, TurkerHub, 

Reddit).  

 In general, workers on Mturk are interested in participating in academic research but not 

at rates lower than they typically earn. In fact, because a new academic researcher lacks a good 

reputation (see Turkopticon) and presents a risk to workers, a premium on the typical rate can be 

necessary to ensure data quality, especially if the task takes more than a couple minutes. The 

modal worker is not doing tasks for entertainment, but rather to supplement income (Ipeirotis 

2010; Paolacci, Chandler, and Ipeirotis 2010).This makes them sensitive to the effective hourly 

wage, and, although there is variability in their reservation wages, most workers seem to have the 

federal minimum wage in mind. Because most choose to accept a task based on a rough 

calculation of the effective hourly wage, any misrepresentations of estimated earnings or time to 

completion are likely to provoke ire.  

Importantly, because workers think in terms of an effective hourly wage, the 

compensation structure of the experiment needs to correspond to the workers’ overall incentive 

structure in the Mturk marketplace. In particular, a significant portion of the overall payment 

must be guaranteed for the completion of the task. Workers always have the opportunity to quit 

the current task and start a different one and therefore are often aware of a changing opportunity 

costs. If the task progresses slowly or bonus earnings appear lower than expected or advertised, a 
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small guaranteed payment might lead them to exit the task in spite of already having sunk costs. 

It is important then that the opportunity costs at any given stage of the game are less than the 

subjects’ reservation wage. In practice this means the guaranteed payment should be large 

relative to potential bonus earnings and idle time should be additionally compensated. The 

former incentive structure generally corresponds to rational behavior in regards to opportunity 

costs, but furthermore does not appear to undermine the ability of within game incentives to 

“induce preferences” in the sense of Smith (Smith 1976); once the guaranteed payment meets the 

reservation wage, in-game bonuses become an exciting opportunity to exceed the worker’s 

earnings goal and workers try in earnest to maximize bonus earnings.  

The compensation of idle time should in principle not be necessary if that time is 

included in the estimate of the time necessary to complete the whole task, but workers generally 

view idle time as distinct from time spent on the task, likely because the experience of waiting 

makes them more aware of opportunity costs. Casual experimentation led to an idle-time 

compensation structure that delivered an effective hourly wage close to the prevailing reservation 

wage and was broken into small increments. Paying one cent for every five seconds of waiting 

ensured a wage of $7.20/hour and that any amount of what could be perceived as “unpaid” time 

was very small. Additionally, live tracking of the elapsed time and accrued bonus on the wait 

page created a gratifying experience for workers of being able to watch earnings grow. 

A complication of this overall compensation structure is that it is more challenging to 

implement a “show-up” payment often used with traditional subject pools. Ensuring that the 

required 24 subjects are available requires over-recruiting and even carefully monitoring arrivals 

and immediately removing the task from the Mturk listings once enough accept still often results 

in subjects in excess of 24. The Mturk platform does not allow people to be turned away once the 

task has been accepted, but one can ask workers to “return” the task. Unfortunately this 

precludes being able to compensate them through the normal means, requires them to trust you to 

follow up, and generally risks upsetting them. Furthermore, given that workers have been 

personally invited and have been watching for an email to start the task, sending them off with a 

smaller show up fee might harm their responsiveness to future invitations. While it increased 

costs, the best long-term solution was for subjects in excess of 24 to play a version of the game 

against a network of bots designed to make moderately intelligent choices. None of those 
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subjects ever gave any indication they knew they were not doing the real task (although 

interestingly, some playing live participants commented that they thought they were playing 

bots). Subjects who played against bots were paid what they earned and were later dropped from 

the analysis.   

Once subjects joined a session (after having read a brief description of the task and the 

IRB statement), they were shown the game instructions. This page had a comprehension task 

built in; rather than clicking a standard button to advance to the next page, subjects were directed 

at the end of the instructions to click a button hidden as the text “match names with playing 

partners” where it first appeared in the instructions. Knowing to click these words and scanning 

for them reinforced the basic task of the game and ensured active engagement. Roughly 10% of 

would-be subjects never made it passed this stage, although it was not possible to tell if they left 

the game for other reasons. Any subject who did not pass this comprehension test was unable to 

join the game and was forced to return the task.  

Those subjects who passed the instructions and comprehension page were then asking to 

agree to not attempt use means outside of the game’s interface to coordinate. This is a real 

concern for a population that has a robust set of forums and chat rooms dedicated to its 

community. I describe the primary software and management mechanisms used to defeat such 

attempts below. By asking subjects to agree to not use external means of coordination, a very 

weak form of control, I hoped to make subjects think twice about engaging in such behavior, but 

more importantly, create grounds for removal from the subject pool if there was evidence of 

attempts to coordinate.  

If subjects agreed to not use external means of coordination (all did), they were taken to a 

page to wait until enough subjects arrived. This page showed them the number of minutes and 

seconds they have been waiting and their compensation for that wait. Once 24 subjects made it to 

the wait page, the game began.  The first page of each round displayed a headshot of a younger 

woman and a field to enter a name. An example of this page appears in Fig 3.2. (With only two 

exceptions, the picture was always a younger woman because pretesting showed that other 

demographics had some focal points; photographs of middle age and older men without 

distinctive characteristics often quickly elicited a handful of competing alternatives (e.g. Bob, 

Mike, and Bill). The same was true of older women (e.g. Janet, Susan, Patty). Pictures of 
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younger women (roughly 25-45) elicited a broad range of first submissions.) Participants had 15 

seconds to submit a name and were taken to a wait page until all participants submitted names. 

On the results page, participants were shown the name they submitted, the name their current 

partner played, and, where applicable, the other randomly submitted names. They were also 

explicitly told whether the names matched, their payoff for the round, their cumulative earnings 

and their history of matches and failures (but not the related names). This page timed out after 10 

seconds, although participants could advance past it to a wait page. An example of this page 

appears in Fig 3.3. 

After 25 rounds of game play, where applicable participants were asked if they thought 

the presence of the random names influenced their choice of names (True/False). The final page 

showed their total earnings and broken them down into the various parts. It also offered the 

opportunity to leave open-ended feedback. Payments were issued through the game interface 

after the data were reviewed.  

As mentioned above, I took several measures to ensure there was no external collusion 

among the subjects. Together these measures address multiple potential means of collusion and 

work together to all-but-ensure it does not happen. First, as subjects arrived the related IP 

addresses are screened to make sure there is only one subject per address. The first subject to 

arrive from any address is allowed to remain, but all others are blocked from continuing, 

informed why, and asked to return the HIT. It is not uncommon for Mturk workers to work in the 

same household or workspace and while they might honestly avoid collusion, I aired on the side 

of caution and permitted only one. The more problematic case is a worker with multiple Mturk 

accounts. This is a violation of the Mturk Terms of Service agreement, but by their own 

admission on forums, some workers use multiple accounts. Those willing to ignore such rules 

might also try to use virtual private networks to use different IP addresses for each account, but 

they would have had to do that before arriving. Furthermore, in virtue of how invitation groups 

are chosen, the probability of two or more of their worker IDs being present in the same group is 

very low. This is because the experimenter controls which worker accounts receive an invitation 

to a game and have the necessary “qualification” for it. (A qualification is a virtual token within 

Amazon Mechanical Turk platform that can be used to control which workers can do which 

tasks.) Without an invitation and the requisite qualification, workers are unable to join a session. 
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I used qualifications to ensure that no more than 4 workers ever played the same session 

together. The final precaution I took to protect against in vivo–collusion was to make sure there 

was no relationship between arrival time and the location in the network; while small-scale 

efforts at collusion could be successful if those colluding are network neighbors, the nature of the 

game renders such efforts ineffective or possibility counterproductive if would-be colluders are 

not network neighbors.   

Within the game itself, there are several features that undermine efforts at collusion. The 

first is actually just a basic design of the game; participants have only 15 seconds to submit a 

name. Failure to submit costs a participant rewards and can lead to expulsion from the game, a 

fact participants are reminded of every time they fail to submit. Given this time constraint 

participants typically submit immediately (~5 seconds). Even those who do not submit 

immediately have very little time to attempt to communicate with other participants about 

emerging patterns in the names. Timed submissions do nothing to protect against premeditated 

attempts at collusion, however. Given workers know the date and time of the game in advance, 

they might seek each other out on forums in advance and agree to use the same name. I have 

found no evidence of this on the forums I was able to gain access to (some have very high bars 

for admission), but I nonetheless added more comprehensive features to defeat such efforts. The 

primary means is a screening and blocking of names that exhibit surges in frequency. A name 

that appears for the first time with more than two instances is “blacklisted” for that round. It is 

not farfetched for the name “Sarah” to be the first submission for multiple participants, but, 

airing on the side of caution, my software barred any name that first appeared with three or more 

instances. When a name was barred, those submitting the name were told the name is blacklisted, 

but not why. Partners of those submitting the barred name were informed that their partner had 

not submitted a name, not that it had been barred. Multiple names could be barred in any given 

round, but the barred status is confined to that round only. If one or two instances of a previously 

barred name are submitted in a subsequent round, it is accepted without comment. This is 

because participants frequently exhibit the suboptimal behavior of introducing new names well 

into the game and there is no reason for barred these submissions (this behavior was also 

observed in C&B). This barring mechanism was triggered a total of 20 times in the 825 total 

rounds of play. All instances occurred in the first round of play. 12 of instances were three 

participants submitting the same name. Five instances included multiple names being barred. The 
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largest incident was the submission of the same name by 9 participants.  The barring mechanism 

effectively removed the name from circulation, as participants immediately abandoned it.  

Crucially, this means that a barred name never became a global convention. Interestingly, only 5 

of the trials for which the barring mechanism was trigger ultimately resulted in a global 

convention, suggesting something about the barring mechanism or the behavior it targets harmed 

the prospects for future success. It is clear that, whether premeditated or coincidence, these 

instances did not contribute the emergence of conventions, although they might have inhibited it 

in some instances, leading to the underestimated of the effect of niche signals. 

The screening of names for the purpose of barring is only applied to names that have not 

yet appeared in the session. Once a name has been successfully introduced, it might still be 

implicated in collusion efforts happening outside of the game interface. If the name “Sarah” is 

submitted by a single participant in the first round, but then by 10 participants in the second 

round, collusion could be the reason. That is not guaranteed to be the case, however. After a 

participant submits the name, their partner sees it and is very likely to play it. In treatments 

where random names are also shown, any number of other players may have seen the name on 

their results page and accordingly played it. (For each participant, names are sampled without 

replacement from all names played that round. This sampling is repeated for each participant, 

meaning any given participant’s names are independent of the names other participants are 

shown and, in spite of it being unlikely, in principle all participants see the name played by one 

individual.) Given this structure, preventing collusion requires judging whether a name is 

spreading around the network too quickly. To do this, I track each participant’s exposure to 

names, meaning simply any name they have seen or successfully played. Once a participant has 

been exposed to a name, I assume it is completely reasonable for them to play it and therefore 

the spread of that name to this participant did not happen outside the confines of the game 

interface. One could have a more demanding definition of exposure that considers the likelihood 

that participants will forget names seen many rounds ago, but implementing a suitable rule for 

the game would require making specific assumptions about how participants process the 

information that may not be justified. Furthermore, the real goal of tracking participants’ 

exposure to names is to identify when a participant has played a name they have not been 

properly exposed to, yet participants often exhibit the unfortunate behavior introducing new 

names well into the game.  
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To reconcile the idea of proper exposure with the fact the participants contribute names 

they have not been exposed to, only one player per round is permitted to play a name they were 

not properly exposed to. If two or more participants submit a name they were not properly 

exposed to, the name is barred for all such participants and their submission is recorded as a null. 

Others playing the same name but who have been properly exposed do not have their submission 

barred. While not a foolproof system for guarding against impermissible coordination, it would 

take an impressive amount of organizing by the participants to defeat and still grants participants 

significant latitude in name choice. This type of screening happened only 6 times in the 792 

applicable rounds of play and none of the affected names went on to become a global 

convention. 

The two mechanisms of barring name described above offer significant protection against 

any organized effort on the part of participants to game the system. Another possible way to 

game the system would be to submit natural focal point words, such as “woman” or “name”. 

Such efforts would have the virtue of being of not needing to be centralized. This potential 

problem is addressed simply by creating a list of invalid inputs, that is, words the input field will 

not accept thereby preventing the participant from submitting and advancing to the next page. 

Whereas barring surges in names requires the names to have been submitted and tallied, focal 

point words can be screened out before submission and participants can still submit a valid name. 

Roughly twenty focal point words were screened-out, including a number of obscenities. 

Furthermore, any names that appeared in the trainings module were added for the obvious reason 

that participants could be primed to focus on them. 

A few additional design features work to ensure the integrity of the experiments. The 

pictures of the individuals to be named by participants were changed every two games. No 

worker in the subject pool can play two games in a row, so the changing the picture every two 

games ensured no worker ever saw the same picture. The usual means of downloading images 

was also disabled for the game just in case workers considered attempting to use the image as a 

means of coordination.  

As the above description of the software suggests, using Amazon Mechanical Turk as a 

subject pool presents some challenges and still has some of issues any subject pool can have, but 

most of these issues can be addressed through proper subject pool management and software 
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design. The attempts to game the system were successfully defeated and if anything led to the 

underestimation of the effect of niche signals. In principle a very sophisticated effort built around 

knowledge of my defeat devices could go undetected by my software, but even in the highly 

improbable event such an effort succeeded regularly, one would still need to account for the 

consistent pattern in the results; the information dynamics play a crucial role in determining 

group-level outcomes. Finally, related to the consistency of the results, the fact that subject pool 

members often participated in several games allowed them to learn from their experience and 

possibility improve their play overtime, but this fact only bolsters the central pattern in the 

results; when a group is able to find a global convention does not depend on the skill of the 

participants but rather the information dynamics. 

Network Design Details 

 All networks were generated using the python package NetworkX (Hagberg, Schult, and 

Swart 2008). The small world networks had a rewiring probability of .2 and where guaranteed to 

be connected. These graphs were used to create pairs of neighbors for the 25 rounds of each trial. 

Participants need a partner for each round, so the set of pairings for each round was chosen 

random from among complete pairings. Because the sequence of pairings could have its own 

effect, the sequences were reused for the different treatments of niche signals. For example, the 

12 trials with small world networks used only four network-pairing sequence combinations, 

reusing each of the four once in each information treatment. There was no obvious effect of 

pairing sequences so no further analysis was pursued. 
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Fig 3.2. Name Game Submission Page. It displays the time remaining to submit, the total earnings, the last reward 
(or penalty), the current round and round histories. 

 
Fig 3.3. Name Game Results Page. Note the display of the participant’s, the partner’s and a random player’s name. 
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Chapter 4: Meaning Production for Cultural Objects in a Networked Public 
 

 

 

 

Introduction 

Humans' evolutionary success can in many ways be traced back to our willingness and 

ability to cooperate despite the temptations of narrow self-interest (Axelrod 1984; Fehr et al. 

2002; Gintis and Bowles 2011; Henrich et al. 2001; Henrich and Henrich 2007; Ostrom 1990; 

Roughgarden 2009). Cooperation is part of phenomena as diverse as group hunts, economic 

exchange, the production of knowledge, and, importantly, the building of consensus around the 

meanings associated with public symbols, behaviors, and objects. This cooperative tendency has 

allowed humans to self-organize into societies of great size and complexity. But do these 

advancements afforded by cooperation diminish our very capacity to cooperate? Many have 

argued that modern societies have new patterns of social interaction that reduce social cohesion 

and therefore cooperation (Arendt 1948; Bishop 2008; Etzioni 1994; Fukuyama 2000; Putnam 

2000; Simmel 1903). A lack of cohesion suggests fewer social ties spanning across social 

groupings, and we know those ties are vital for acquiring the knowledge and perspective about 

the larger world so necessary for cooperation and consensus building (Burt 1992; Centola and 

Baronchelli 2015; Granovetter 1973; Lazer et al. 2007; Sparrowe et al. 2001; Watts 1999; Watts 

and Dodds 2007). 

A robust literature has emerged around the role of the internet in political life (Adamic 

and Glance 2005; Bakshy, Messing, and Adamic 2015; Brundidge 2010; Colleoni, Rozza, and 

Arvidsson 2014; Dahlgren 2005; Kahler 2015; Oates, Owen, and Gibson 2006; Sunstein 2001) 

and foregrounds the question of whether we can continue to be a cooperative species if the 

internet is transforming how we interact in fundamental ways. This research, however, focuses 
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on the particular problem of democracy in the public sphere, a domain rife with tensions. The 

internet may well exacerbate these tensions, but this need not be the case for all domains of 

social life. Much of the information consumed via the internet is less about politics and more 

about basic knowledge, economics, and culture. The production of consensus in these domains is 

also important for the smooth functioning of society. Are the changes in how we interact 

endangering our capacity as a society to produce consensus in these domains as well? To begin 

to answer this question, I study the production of meaning in a “networked public” (Boyd 2010; 

Ito 2008), a public sphere created by modern communication technologies like mobile phones or 

the internet. In particular, I focus on the production of meaning in the domain of literary fiction. 

As a genre, literary fiction is rich with potential themes and meanings, but the reading public 

often focuses on particular themes, thereby producing the public meaning of the book (Griswold 

1987). Today much of this complex process happens online. This shift has likely altered the 

dynamics of the process itself but also offers the possibility of a more detailed analysis of it with 

extensive and public data. I use data from the website Goodreads, the home of a robust and 

public literary community, to explore the production of meaning in the realm of literary fiction. 

To do this I use the Latent Dirichlet Allocation (LDA) approach to topic modeling (Blei, 

Ng, and Jordan 2003) in a novel way. With human supervision, the LDA model is a powerful 

tool for identifying the themes present in a corpus of documents. It is a generative probabilistic 

model, which attempts to impute the hidden set of topics that “generated” the observed 

documents. This is an unsupervised algorithm in the sense that there is no measure to judge the 

fit of a particular outcome; furthermore, exploring the full set of possible distribution is 

computationally intractable. Instead, human intelligence is generally required to judge the 

validity of the results. However, the machinery of the LDA can be used to explore the general 

structure of the topic space without trying to interpret the semantic content of the topics. Here I 

compare sets of documents from different time periods using many possible topic distributions 

derived from the LDA model. Statistically analyzing these sampled comparisons reveals basic 

features about the topic space including whether the posts of users are converging on a set of 

salient themes over time.  

The evidence is mixed. Close to half of the analyzed books have statistically significant 

shifts toward fewer topics being discussed by the community, but there are reasons to belief the 
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effect size is quite moderate. This suggests that as a networked-public, Goodreads is not 

conducive to the production of public meanings. One reason for this might be that the audience 

of readers for each book, while very open, is not socially close as measured by the site’s 

friendship network. The experimental work in Chapter 3 showed the longer those distances are, 

the more public information is necessary in order to facilitate group coordination. This suggests a 

networked-public like Goodreads is not a good venue for the production of public meanings. 

The Public Sphere Online 

 Habermas proposed the public sphere as virtual space in which individuals engage in 

discussion about items of mutual interest (Habermas 1991), often for the purpose reaching a 

consensus position. His interest in these discussions is related to the functioning of democratic 

societies and therefore the public sphere is generally equated with politics. The advent of the 

internet created a whole new type of public sphere and a field of study around the political public 

spheres online (Adamic and Glance 2005; Bakshy et al. 2015; Brundidge 2010; Colleoni et al. 

2014; Dahlgren 2005; Kahler 2015; Oates et al. 2006; Sunstein 2001). Because this sense of 

public sphere is restrictive in a way that Habermas found important to the concept, he relegated 

other social discourse to the private sphere. Critics have argued this insistence on the public 

sphere containing only political discourse misses how intrinsic to politics identity is and how 

identity is constructed in and for the public (Boyd 2010; Calhoun 1992; Fraser 1990). This 

critique suggests the core facet of the public sphere—a community, imagined or otherwise, 

meeting to discuss items of mutual interest—can be fruitfully used in nonpolitical domains. The 

usefulness has only grown as the internet has created a whole new dimension of social life in 

which individuals freely congregate to discuss topics of interest in a very public fashion. While 

not all new technology-enabled platforms for social interaction are public in the Habermasian 

sense, there are enough such spaces that researchers have labeled them “networked publics” 

(Boyd 2010; Ito 2008; Varnelis and Friedberg 2008). 

 The distinction between the public sphere and networked publics is important because the 

latter has its own unique features. Content shared in a networked public can persist over long 

periods of time, be easily replicated or modified, reach larger audiences and be indexed for 

search (Boyd 2010). If these features alone are not enough to change the dynamics of public 

discourse, in networked publics the boundaries of social contexts are much more porous and 
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audiences are often truly imagined, as there need not be the dyadic interactions through which 

one gets to know one’s audience (Boyd 2010). These differences are grounds for believing 

networked publics are a unique social form worthy study in the own right. This is made all the 

more important by the fact that these networked publics are supplanting the public spheres once 

present in physical space. 

 While commenters often worry about the effects of networked publics on political 

discourse, there are good reasons to believe that network publics can be very effective forums for 

groups to reach consensus in other domains. The low cost of engagement and the exposure to a 

wide range of content, often by accident (Brundidge 2010), afford the opportunity for more 

robust public discussions. As the work in Chapter 3 showed, exposure to signals and information 

in public spaces can help push group dynamics toward a coordinated outcome instead of 

sustained competition. Thus, instead of new communication technologies inhibiting our species’ 

ability to cooperate, they could in fact improve the prospects for success. This paper explores 

that claim by focusing on the emergence of public meanings for cultural objects, in this case 

novels of within the genre of literary fiction. The website Goodreads is a networked public that is 

home to a robust community of readers who engage with others as a part of their reading 

practices. Before detailing the site, the data and the analysis, I turn to describing why literary 

fiction is a domain ripe for group coordination.  

The “Fabrication” of Meaning in Literary Fiction 

Fiction is often rich with meaning, but most commenters and authors agree that no one 

person controls the meanings ascribed to a text by its reading public (Livingstone 2005). The text 

itself constrains the possible meanings in obvious ways, but within those constraints, the 

readership has great power to find meanings. This happens against the protestations of the 

authors who believe readers are obliged to do their best to understand the author’s intentions. 

Even an author as revered as Flannery O’Connor, who argued strongly for the primacy of 

authorial intentions, had to acknowledge that a text takes on a life of its own.8  

Cultural sociology is very sympathetic to this view and often sees cultural objects as capable of 
                                                
8 “The writer can choose what he writes about but he cannot choose what he is able to make live.”-Flannery 
O’Connor. 
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supporting a multitude of meanings. This raises an important question of how those meanings 

come into existence, a process Griswold has referred to as the “fabrication of meaning” 

(Griswold 1987). In her study of the reception the works of Barbadian author George Lamming 

in the United States, Great Britain and the West Indies, Griswold showed the three national 

readerships focused on race, language, and national identity, respectively, in the interpretation of 

Lamming’s work. This finding shows that the meanings present in a literary text are many and 

interpretation is a rich social process that can allow any of the available themes become more 

salient than others.  

The fact that meaning is socially “fabricated” cuts against the commonplace assumption 

that there is a straightforward relationship between texts and readers. This unproblematic model 

of “intentionalist interpretation” (Carroll 2000) is depicted in Figure 4.1 below. In this model, the 

author has semantic content in mind (intentions) as they craft the text. Miraculously, the author is 

able to put that semantic content into a textual form that allows any reader to interpret the work 

as having the exact semantic content of the author’s intention. No serious scholar of literature 

would fully endorse this view, but articulating it thusly helps to reveal that meaning must be 

fabricated to some degree.  

 

Figure 4.1: Intentionalist Model of Interpretation: This graphic depicts a model of the production of literature that is 
unproblematic. The author has a set of themes in mind while writing the book, depicted in the left hand “semantic 
content space.” The written work cannot not correspond directly to the semantic themes the work is engaged with, 
but there is a rough correspondence in the “textual content space.” Nonetheless, readers are able to successful 
interpret the textual content to gain the semantic content intended by the author.  
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Griswold argues that the fabrication of meaning is a function of social contexts; “The meanings 

attributed to any cultural object are fabrications, woven from the symbolic capacities of the 

object itself and from the perceptual apparatus of those who experience the object” (p. 1079). 

Individuals from different social contexts will inevitably have different apparatuses, 

“expectations and concerns” (p. 1077), and those guide the process of interpreting the work. This 

argument is presented graphically in Figure 4.2. 

 

 

Figure 4.2: The Fabrication of Meaning: As shown by Griswold (1987), meaning is fabricated; because an author’s 
intentions cannot be directly extracted from the text, readers situated in different social contexts are likely to have 
different semantic associations with the text. This can give rise to multiple interpretations of the same text.  

The assertion that different social contexts will produce different cultural meanings does 

not by itself describe how that happens. Griswold argues the reviews written by the literary elites 

of the respective nations tended to focus on (or avoid, in the case of Great Britain’s colonial past) 

issues salient to their nation’s history because their perceptual apparatuses were primed to find 

these things. Some diversity existed across the individual reviews, but the literati tended to 

independently focus on the same handful of themes. Thus, the meaning of the text was the 

summation of many individualistic acts of interpretation. This argument is presented visually in 
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Figure 4.3. From the text, individual readers craft interpretations, and the joint distribution of the 

themes from these interpretations creates a more general sense of the cultural object for the 

broader public. There is no need or opportunity for the individuals to coordinate their individual 

interpretations.  

 

 

Figure 4.3: Public Meaning as Joint Distribution: Within a social context, the fabricated meaning could be produced 
in several ways. One way, depicted here, is to look at the joint distribution of individuals’ semantic interpretations of 
the textual content of the book. The “theme” on the right of graphic representation of the public interpretation is 
darkened because of its prevalence in the individual interpretations. The readers are not interacting in a meaningful 
way, but the group has created a dominant meaning for that social context. 

 

A same outcome might be possible without assuming that the readers start with very similar 

perceptual apparatuses. Instead, as public interpretations are shared, they create the perceptual 

apparatus, or anchoring frames, for future readers. If these frames resonate enough with later 

readers, those readers’ interpretations would look similar to the early interpretations. If this 

process is repeated for long enough, eventually some interpretations become entrenched. This 

process is depicted in Figure 4.4. 
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Figure 4.4: Public Meanings as Consensus Meaning. Early readers create frames and perceptual apparatuses for 
others by making their interpretations public. This influences later readers’ interpretations, which can carry forward 
through readers and time. 

This alternative mechanism of the fabrication of meaning is a form of coordination. 

While Figure 4.4 depicts a single chain of influence, there can be many more sources of 

influence within a networked public like Goodreads and the production of a consensus 

interpretation depends crucially on the pattern of exposures to these influences (see Chapter 3). 

That a shared interpretation could emerge through such a mechanism is not obvious, and the 

question of its tenability reflects the basic problem of coordination in networked publics. 

Following the work of Griswold, I now analyze the production of meaning by an audience of 

fiction readers. 
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Data and Methods 

The act of reading fiction is, with few exceptions, a private activity, but for a significant portion 

of the reading public, the practice of reading is not wholly private. Before, during and after 

reading a text, they might read or write reviews, seek out and share recommendations, describe 

and discuss texts with others, use texts for making points or drawing comparisons, and deploy 

texts as symbolic capital (Bourdieu 1984). Recently, these activities have moved online where 

readers can more readily do all of these activities. For the English speaking world, two sites in 

particular dominate this space: Amazon.com and Goodreads.com9. While Amazon.com has 

automated book recommendations and asks purchasers of books to rate and review them, it is not 

a social networking site in the sense that one can formally establish relationships with other 

users. Goodreads, however, is a social site that allows users to create profiles, write public or 

private posts, add friends, join and contribute to discussion groups and forums, create public lists 

of books, and see the activities of friends and others. The site’s mission “is to help people find 

and share the books they love” (Goodreads.com 2007). At the time of data collection, the site 

claimed some 40 million registered users, 1 billion books in its database, and 45 million reviews 

of books. This heavy traffic leads the site to often be in the top 100 most visited sites in the 

United States. According to traffic-tracking service Quantcast, in the period covering the 

submission of the data analyzed herein, the site had roughly 10 million unique visitors based in 

the United States and 20 million unique global visitors each month (Quantcast.com 2017). Of the 

global visits, about 25% came from the combination of the United Kingdom, Canada, Australia 

and India. The site hosts pages for books published in languages other than English and links 

translations of the same text such that the content on a book’s page is not always in the same 

language. The user base is heavily female (74%) and, compared to the composition of all internet 

users in the US, is young; 17% are 17 years old and younger, 36% are 18 to 34, 20% are 35 to 

44, 27% is age 45 and above. The users have more college degrees and significantly more 

graduate degrees than average. 

 This site is exactly what researchers have in mind when they refer to networked publics. 

Users come to the site on a regular basis seeking to engage with others, cultivate an identity and 
                                                
9 Goodreads.com was established as an independent site in early 2007, but purchased by Amazon.com in early 2013 
(Amazon.com 2013). Goodreads.com appears to remain largely independent with the exception of prominently 
placed links to Amazon’s marketplace for the purpose of buying books. 
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community, and consume information related to culture and society. While there are low 

engagement users who passively use the site, a great deal of the networking, reviewing, posting, 

and discussing is done by a group of avid readers who engage with the site extensively in a 

public fashion. All reviews, ratings, comments and membership in groups are public and, in 

principle, visible to all. Roughly 80% of users maintain a public profile page, meaning their 

friendship connections, posts, and bookshelves—user-constructed collections of books already 

read or to be read—are visible to any registered user. By the standards of leisure related social 

networking sites, it is a very open community; in 2012, only 20% of users of social networking 

sites reported having a wholly public profile (Madden 2012).   

Unlike social networking sites built around a network of friends, Goodreads is built 

around the webpages for books. Publishers will submit titles, imagery, cover descriptions and 

blurb, and author information for the creation of the page, except for small and independent 

presses where the author will often submit the information. While the publisher/author and users 

with a special “librarian” status can update this information, the reviews and ratings are 

contributed by the site’s users and can only be modified by the original poster or Goodreads’ 

staff when necessary. Thus, a book’s page quickly becomes the creation of the user-public. Users 

rate the book, submit reviews, comment on reviews, like reviews, ask questions, categorize into 

genres and post trivia. The reviews are the most public aspect of the page, as each features the 

name, profile picture, rating, timestamp, and comments and likes in response to the review. 

When a user visits the page, reviews written by “friends” are displayed on a section beneath the 

basic information on the page, and reviews from the broader community are beneath that. The 

community reviews are presented in an order calculated by a proprietary algorithm that factors in 

the number of likes, how well-liked the reviewer’s other reviews are, how recent the review is 

and the length of the review (Goodreads.com 2017), although message boards suggest the exact 

ordering depends on the user actually visiting the page. If more than 30 reviews exist, the user 

must page through to find more or adjust the sorting criteria.10 This matters because it is common 

for books published by established presses to have hundreds and thousands of reviews. (Highly 

successful books will have hundreds of thousands of reviews and millions of ratings.) This list 

evolves as reviews are added over time. 

                                                
10 The maximum number of reviews a user can retrieve is 10,000, a limit that matters for the research purposes.  
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The content of the reviews varies significantly. Some are just a verbal expression of the 

evaluation of the book (in addition to the 1 to 5 star rating system). Others include extensive plot 

summaries. A significant fraction includes visual components like pictures, GIFs, or other art. 

The modal review, however, highlights one or more aspects of the book the reviewer found 

salient. Together these reviews could constitute a public discourse on the title, or a cacophony of 

users speaking past each other. The social nature of the site and prevalence of commenting and 

liking reviews suggests it is might be the former. Instead of surveying users about behavior, 

some forms of which they might not be consciously aware, I analyze the text of the reviews 

using the techniques of natural language processing. The volume of texts and the focus on 

dynamics over the meanings within the text makes the analysis ripe for a computational 

approach. The details of the analysis follow the description of the sample. 

Sample 

Of the million of books on Goodreads, a small percentage have the ambiguities necessary 

for the type of analysis I am proposing; in addition to documenting the process of the fabrication 

of meaning, Griswold (Griswold 1987) shows the process requires the text itself to have enough 

ambiguities to be interpretable in a variety of ways. Because such ambiguities are the hallmark of 

literary fiction, the sample is restricted to that genre. However, because works of literary fiction 

can fit in multiple genres, identifying literary fiction is not straightforward. While regular readers 

of literary fiction might recognize the title and cover imagery conventions of the genre, or the 

publishing houses known for it, to construct a sample of titles of literary fiction, I rely on site 

users’ categorization of individual books. Users can place books on “shelves”, self-defined 

collections of books. The site supplies some names, but allows user to make their own. The site 

tabulates the names of all the shelves the book appears on and displays the top ranked names and 

the number of users using that name on the book’s homepage as the “genre” of the book. I 

classify a book as literary fiction if the number of users putting the book on shelves with the 

names “literary fiction” or “literature”, an alterative name of the same genre, would be a top 10 

genre, a threshold that takes into account that some categories are very broad (e.g. fiction, 

contemporary, 2015). 

Another criterion for inclusion in the sample is that the book is a debut novel. This 

restriction prevents reviews from incorporating themes from or comparisons to an author’s 



69 
 

previous work. Such information would generally be an element of the fabrication of meaning, 

but inclusion here could introduce hard to account-for historical factors. Furthermore, the 

audience for debut novels is more likely to be comprised of readers for whom the practice is an 

important part of their identity. While not testable, I assume the importance of identity leads to 

more engagement with the community and the review writing process.  Within literary fiction 

debuts, I focus on titles published between 2011 and 2014. This period begins well after the site 

became the main online literary community and ends at a point that allowed for the collection of 

at least two years of review data for all titles. The bulk of reviews are submitted in the first half-

year after a book’s publication, but there is often a longer tail over the next 18 months. Two 

years then covers most reviews, except in some cases where a movie adaptation or highly 

successful second book spurs new interest. Finally, the book needed a minimum of 500 and a 

maximum of 10,000 reviews at the time of collection. The lower bound was necessary for 

analytic purposes and the upper is the maximum number of reviews a user can access on the site. 

To avoid any issues regarding how the site’s proprietary algorithm determines which reviews are 

visible, I simply restrict the sample to books for which I could retrieve all reviews. A random 

sampling from the population of all books on the site was not practical11 so I used several 

different lists of titles identified as literary fiction by other sites12 to construct a population. From 

that, I sampled until I had 51 books meeting the above criteria. These books are treated as 

individual cases to be considered, not the observations from a population of reviews constituting 

a larger discourse around literary fiction. While that larger discourse is ripe for analysis, here I 

focus on the many simultaneous meaning-making projects that have some degree of autonomy 

from each other. Finally, only 30 of these cases are included in the final analysis because the 

others were used for exploratory analyses.  

Data 

 I collected all the reviews posted for each of the 51 books. After identifying the user 

posting the review, I collected, if possible, the user’s list of friends and list of titles in the 
                                                
11 Truly random sampling is possible, as each book has a unique integer identifier on the site. However, there is no 
easily discerned numbering system and because the population is so large and diverse, the rate at which suitable 
titles would be found is extremely low. Even if a thousand suitable titles were published each year (there are not), in 
expectation, a random draw from the population of over a billion books would find a suitable book only one in a 
quarter million times.  
12 For example, the Morning News Tournament of Books and The Million’s “Most Anticipated” lists.	
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bookshelf identified as “read.” This resulted in 122,562 reviews and 85,825 unique reviewers. 81 

percent of those reviewers maintained a public profile, allowing for the construction of a 

friendship network with 2,037,000 nodes and 3,790,000 ties. 2,019,000 of these nodes are in the 

giant component, but only 68% of reviewers are in it, in virtue of their privacy settings (19%) or 

because they are members of a small component (13%). This highlights some of the different 

ways users engage with the community on the site. The “read” bookshelves identified a total of 

1,754,000 unique titles users identified as read13, 947,000 of which appeared on multiple lists. 

The most commonly identified title, “To Kill a Mockingbird”, appeared on 31,000 lists.  

 The reviews themselves are of primary importance for the present research question and 

were collected with basic metadata including date and time posted, the associated rating, and 

how many likes it received. To be included in the data for analysis, the review needed to have 25 

or more words. This both screened out reviews will little content and ensured the documents 

were suitable for the topic modeling method. Reviews were also excluded if they appeared after 

the publication of another fiction title by the same author in order to prevent readers interpreting 

the first book based on their reading of the second. Finally, the foreign language reviews, as 

identified by the Google language detection library, were removed. The analyses were conducted 

on a book’s collection of reviews, which were stemmed and stop-listed to remove high frequency 

words. 

Natural Language Processing and Topic Modeling 

 Natural language processing is a set of computer-aided techniques for processing text. It 

ranges from identifying root words and parts of speech to translation of texts and the 

identification of meaning. The contexts in which these techniques are used are diverse, and 

therefore their successful application very often requires the expertise of a native speaker to 

guide the automated aspects. The techniques vary greatly in their statistical bases, but together 

create of powerful suite of tools for approaching large corpuses of text. 

The basic question this paper seeks to answer is: Do the number of themes readers 

address in their reviews tend to decrease over time? The goal then is to be able to locate each 

                                                
13 Some users appeared to interpret “read” in the future tense, as in “to read”, and added thousands of books to the 
list. I collected only 1400 titles from these lists and did not exclude them because the aspirational identity implicit in 
them could be just as important as the virtue cultural capital of previously read books.  
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review within a space of themes or topics that are emerging from the reviews themselves.14 The 

field of topic modeling arose to do just that and matured with the invention of the Latent 

Dirichlet Allocation (LDA) model (Blei et al. 2003). An LDA is a generative probabilistic model 

that treats a topic as a distribution over the words present in a collection of documents. The 

individual documents of within the collection are treated as a finite mixture of those topics. As a 

mixture model, it allows individual texts to reference multiple topics instead of simply the most 

prominent one. Figure 4.5 depicts the intuition behind the model visually. 

 

 

Figure 4.5: LDA Depiction: The model assumes writers create documents with a number of topics in mind. These 
topics can be identified by the co-occurrence of comparatively unique words and so each topic is modeled as a 
discrete distribution over all the words occurring in more than one document. Each document can be identified as a 
distribution over the topics, as indicated by the arrows identifying the generation process. For example, Document 1 
references Topics 1 and 2 and Topic 1 is referenced by Documents 1, 2 and 3. 

 

In many settings, understanding what topics individual documents refer to is the ultimate 

goal, but first the underlying set of topics needs to be identified. The assumption is that a number 

of topics exist in the background of a corpus and individual documents reference some of them. 

The basic research question then is what set of topics generated the observed documents, or in 

                                                
14 It would be desirable to use the text itself to understand the themes, but literary fiction is very much about 
“showing” instead of “telling” and therefore the words we most often associate with themes or topics are not 
common in the text itself. For example, the word revenge appears only nine times in all of Moby Dick. This 
disconnect between the literal text and its potential meanings would hamper any analysis of the text itself. But even 
if that analysis were possible, the position this project takes is that meaning is something created by the text’s 
interpreters. (However, the potential meanings are presumably constrained by the text itself.) 
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probabilistic terms, what set of topics is most likely to have generated the documents. If we 

could observe topics, the problem would be straightforward, but because the topics are hidden 

variables, an LDA calculates a conditional distribution of the topics given the observed 

documents. If it were possible to do this for all possible topic structures, it would be easy to 

determine what topic structure was most likely to have generated the documents, but this is 

computationally intractable for all but the smallest collection of documents. Instead, as is the 

case with all probabilistic models, we are left to approximate that posterior distribution of topics 

within the word space. 

Both stochastic and deterministic techniques can be used to perform the estimation, but 

because of free parameters and the noisy nature of the observations, either class of techniques 

can yield a wide range of results. Thus, a great deal of the process is left up to the human 

overseeing the process and interpreting the results, making topic modeling a very subjective 

endeavor (Chang et al. 2009; Grimmer and Stewart 2013). Having confidence about the positive 

identification of the topics in a discussion around a book, let alone dozens of them, is an 

intractable task. Thankfully, the content of the topics is not relevant to the present research 

question. Instead, we are interested in changes in how documents are distributed over topics 

through time.15 This is fundamentally a question about the structure of the population of 

documents and not their content; thus, while LDA is primarily the re-estimation of nuisance 

parameters until the results are interpretable by humans, I assume those parameters are bounded 

and normally distributed and then seek to identify patterns present in all individual estimations. 

This is very similar in principle to what agent-based modelers do when they run multiple trials of 

the same stochastic process with identical initial conditions. Conducting multiple trials is not 

equivalent to running more iterations of the estimation process because these techniques are 

either stochastic themselves (Gibb’s sampling) or deterministic but reliant on the initial prior 

distributions (variational methods) and yield different results independent of the number of 

iterations. Each trial then is a new sampling of the true posterior distribution and yields more 

information about its structure. Multiple runs of the LDA process are not uncommon on trial data 

                                                
15 This should not be confused with what a dynamic topic model does (Blei and Lafferty 2006). That model captures 
the change of the distribution of words to topics over time in order to address the problem of the same idea being 
expressed through different words as knowledge changes. This type of change happens over long periods of time 
and is not relevant in this application.  
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as the analyst attempts to improve the human intelligibility of the results, but these runs are not 

considered a part of their analysis. Here, however, such trials are the core of the analysis. 

The validation of topic models requires domain experts, and in this setting there are 

none16, so I approach the problem statistically. I treat results of an LDA as one data point about 

the “true” posterior distribution of topics and collect 30 such data points for each set of 

parameters for the LDA. There are several parameters for the LDA algorithm, the main one 

being the number of topics. This quantity must be fixed because it is equivalent to the 

dimensionality of the posterior distribution, and attempting to infer the likelihood of the 

dimensionality is not possible. The other parameters are hyperparameters controlling the sparsity 

of the posterior; these I hold fixed at widely used values. The number of topics ranges from three 

to ten. Thus, for each book there are a total of 240 trials of the LDA estimation process. 

However, because the number of topics is a key assumption about the structure of the problem 

about which we have no prior probabilities, I treat the 30 trials for each number of topics as a 

unique case and only look at the average measures for book-topic count cases. Using a subset of 

30 books then yields a total of 240 book-topic count cases.  

Before describing the measures I use to track the change in the discussion, it is important 

to clarify that comparisons are made only within a single LDA. Each LDA defines a set of 

topics, and it is sensible to compare the prevalence of those topics in the reviews at different 

points in time. One such comparison constitutes an observation. While it might be fruitful to 

consider individual documents in light of a topic space constructed by the sum of the trials, this 

is not the approach taken here because of the challenges around understanding the uncertainty 

present in such an approach.  

Measures  

The first goal of this analysis is to understand whether the range of themes in public 

discourse around a book winnows over time. Another way of asking the question is whether 

those reviewers joining the discourse later focus on a narrower range of themes than earlier 

reviews did. Topic modeling can answer the second form of the question. To do this, I run a trial 
                                                
16 This research posits that the act of reading a review creates anchors that influence the reading of future related 
text, so in principle a human cannot do an unbiased reading of the entirety of the reviews. I do believe, however, a 
careful coder can get pretty close. 
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of LDA to approximate the topics present in the whole corpus of reviews. I order the individual 

reviews chronologically and divide the corpus into three sequential slices of roughly equal sizes. 

No attention is given to posting dates, just chronology, meaning the last third of reviews likely 

cover a wider range of posting dates, as the rate of new postings declines over time. I then sum 

the topic distributions of all the documents in the first slice to calculate the prevalence of topics 

in that time period. This is repeated for the last time slice. The resulting distributions are 

approximations of what topics were discussed in the respective time periods.  

 To compare the prevalence of topics in these two time periods, I calculate the Shannon 

entropy for each distribution and compare them. Entropy is a useful measure of how ordered a 

categorical distribution is because it is agnostic about how the frequencies are distributed to 

categories and only considers the how the frequencies relate to each other. Thus, if the reviewers 

merely stop discussing a particular topic and replace it with a new one, the entropy is unchanged. 

It will only decrease if some topic weightings grow at the expense of others. The entropy for N 

topics at time t is defined as 

𝐻! =  − 𝑝!,! log𝑝!,!
!

!!!
 

Entropy is equal to one when the distribution is uniform and equal to zero when all observations 

fall in single category. Thus, the lower the entropy, the more peaked the distribution is. 

Comparing entropies between the first and last time periods then reveals whether the discussion 

is focusing on a narrower range of topics over time. This would be the case when 𝐻! − 𝐻! > 0. 

 As suggested above, it is possible that the public discourse is changing significantly 

without any appreciable change in entropy. This type of change, while not immediately relevant 

to the question at hand, could be a useful diagnostic of whether there is any movement in the 

discussion over time in the event that prevalence of topics is not narrowing. A static distribution 

of topics would imply the site is not host to dynamic discussions in any meaningful sense and is 

just a repository of individual thoughts. To track this sort of change, I use the Jensen-Shannon 

divergence (Goldberg et al. 2016; Lin 1991; Pechenick, Danforth, and Dodds 2015) measure. 

This divergence is derived from the more common Kullback-Leibler divergence, but is 

symmetric. The Kullback-Leibler divergence between distributions P and Q is defined as  
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𝐾𝐿 𝑃 || 𝑄 =  𝑝! log
𝑝!
𝑞!

!

!!!
 

The Kullback-Leibler divergence from P to Q is not the same as from Q to P, so the Jensen-

Shannon divergence solves by defining a third distribution of the average frequencies and 

comparing the originals to that average. The average distribution V is defined as  

𝑉 =
1
2  (𝑃 +  𝑄) 

and the Jensen-Shannon of P and Q is then 

𝐽𝑆 𝑃 || 𝑄 =
1
2𝐾𝐿 𝑃 || 𝑉 +

1
2  𝐾𝐿(𝑄 || 𝑉) 

A divergence of zero means nothing has changed, but a positive divergence means one of three 

things. Like the entropy measure, if the prevalence of some topics is increasing over time, the 

divergence will be positive. This would also be the case if the prevalence of particular topics 

were decreasing over time. However, these changes will be captured by the entropy measure, and 

we only want to know if there are any kinds of changes in the case that the entropy is unchanged. 

Thus, we use the measure to determine if there are nonetheless shifts in structure of prevalence 

of topics when there is no change in entropy.  

 The basic hypothesis for each book-topic count case is that some topics come to dominate 

the discussion over time. The entropy measure tests that, and the divergence measure either 

corroborates it or checks to make sure the discussion is dynamic. If the discussions are in fact 

narrowing, an important follow up question is whether reviews are starting to look more similar 

or if there is any sort of polarization.  This is where the Jensen-Shannon measure is more useful. 

It can compare individual documents to the distribution of topics for the whole group for the 

document’s respective time slice. In cases where the discussion is narrowing, the reviews could 

begin to look more like each other or they could become more polarized. The divergence of 

individual reviews to the group averages can provide some insight into how polarized the 

discussion is at any given time, but more important is whether the discussion is becoming more 
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or less polarized over time. In a secondary analysis, I compare the average individual 

divergences for the first and last time slices.  

I first test the hypothesis that the change in entropy is greater than zero for each book-

topic count case. If statistically significant for the measures from the LDA trials, this decrease in 

entropy would indicate that the same comparisons would hold for the true posterior distribution 

of the topics. The effect size however is not readily interpretable. While a full analysis of the 

behavior of the measures is not possible here, a few examples can give an intuition. Consider a 

model with 4 topics and distribution A, B and C, as depicted in Figure 4.6. The difference in 

entropy between A and B, and A and C, is approximately .067. The difference between B and A, 

and C and A is then -.067. The divergence from A to B, A to C, B to A, and C to A are all .0164. 

The difference in entropy between B and C is zero, but the divergence is .0617. Both these 

measures are comparable for different numbers of topics (e.g. when A = 

[.125,.125,.125,.125,.125,.125,.125,.125] and B = [.2,.2,.125,.125,.1,.1,.075,.075], the difference 

in entropy and the divergence remain the same as in the first example). 

 

 

Figure 4.6: Several Example Distributions: B and C are identical with respect to entropy but not with respect to 
divergence.  

Results 

 Table 4.1 reports basic data about the books and the reviews of them, as well as the 

average shortest path length between all pairs of reviewers of that title. Some of  



77 
 

Book 
Author 
Gender 

Number 
of 

Reviewers 

Review 
Period 
(Days) 

Avg. 
Review 
Length 

Min. 
Review 
Length 

Max. 
Review 
Length 

Average 
Path 

Length 

Fraction 
In 

Gnt. Cmp. 

18498569 Female 4334 728 55.619 2 595 4.827 0.712 
17225311 Female 1565 1107 77.806 2 995 4.233 0.845 
10996342 Male 6097 1861 65.642 5 93 5.003 0.828 
16045140 Female 1227 1093 81.938 6 1171 4.691 0.863 
13366259 Male 1904 1406 71.999 6 680 4.937 0.793 
12401556 Female 6823 1568 73.702 2 1318 4.833 0.807 
18428067 Male 2534 611 68.703 3 834 4.956 0.837 
17333230 Female 4209 1077 84.618 2 1246 5.002 0.741 
10364994 Female 1199 1883 70.608 7 510 4.881 0.809 
8366402 Female 6031 2044 61.353 6 1189 5.107 0.771 

17934521 Male 1094 945 68.084 6 859 4.711 0.813 
12408149 Male 922 651 61.038 8 718 4.719 0.83 
15852479 Female 1193 1157 86.984 8 696 4.719 0.808 
17830123 Male 2131 694 71.48 6 889 4.976 0.788 
10846336 Female 1140 742 67.889 7 537 4.704 0.853 
13330761 Male 2426 637 54.183 3 1017 4.907 0.819 
18652002 Female 2110 799 70.85 6 525 4.693 0.791 
18507827 Female 750 743 62.297 6 543 4.953 0.837 
10306358 Male 1035 1778 59.59 7 411 4.511 0.826 
11250317 Female 3961 1848 85.414 2 1267 4.482 0.703 
15781725 Female 2489 1337 60.151 5 499 5.209 0.75 
17333319 Female 4212 1037 56.57 5 647 4.782 0.778 
9902278 Female 818 1286 50.502 5 347 4.499 0.814 

13320466 Female 2937 1315 55.771 7 566 5.158 0.786 
16158508 Female 1465 1078 66.952 7 791 4.913 0.811 
13593526 Male 1127 1526 68.929 7 558 4.888 0.765 
10149142 Male 1701 1532 63.735 7 691 4.747 0.847 
12888599 Female 2060 1463 64.607 4 570 4.949 0.774 
16099196 Female 781 1128 70.083 7 700 4.608 0.835 
13540215 Female 2994 1422 57.92 7 775 5.249 0.756 

Avg. 1-15 9f/6m 2826.87 1171.13 71.164 5.07 822 4.82 0.807 
Avg. 22-30 7f/2m 2010.56 1309.67 61.674 6.22 627.22 4.866 0.796 

 

Table 4.1: Basic book data. The Average Path Length is the average distance between all pairs of reviewers in the 
giant component of the friend network. The Fraction in Gnt. Cmp. (giant component) is the number of pairs in the 
giant component over the total number of pairs. The review lengths are of the stemmed and stop-listed reviews, so 
while the full text of the reviews had at least 25 words to begin, the stemmed version can have as few as 1 token. 
Last two rows are, respectively, the averages for the books that clearly exhibit some convergence and those that do 
not. 
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Table 4.2: Differences in Entropy: Results of 30-sample T-test for 240 book-topic-count cases. Each cell is colored 
according to its test statistic and contains the average decrease in the topic entropy over time. The books are ordered 
by weighting the cases according to the number of occurrences of the various significance levels. 
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these variables will be discussed below. Before testing whether the measures differ significantly 

from zero, I use the Jarque-Bera test (Jarque and Bera 1980) to explore whether there is a 

significant probability that the data points are not distributed normally. Of the 240 book-topic 

count cases, not a single population of measures was significantly different from normal. 

Therefore I conducted a one-tail one-sample T-test with the null last time slice is equal to zero. 

The results are reported in Table 4.2. 

For 13 of the 30 books, the difference in entropies is statistically different from zero for 

all topic-counts. The effect sizes vary both between books and across the number of topics but 

nonetheless indicate a shift toward fewer topics being discussed. The practical implications of a 

shift associated with those effect sizes are not immediately clear, and additional analysis will be 

necessary to give a meaningful assessment. What does seem clear is such effect sizes are not 

associated with the emergence of a consensus reading of the book, a point I return to shortly. 

Then there is a second group of books for which the difference is significant for most topics, 

except the cases with a large number of topics. Finally there is a sizable group of books that 

exhibit significance for only a few or no number of topics. Interpreting this table as a whole then, 

one can conclude that the community’s discussion of a book can often begin to coalesce around a 

subset of the earlier topics, but in other cases it does not happen at all. The probability of it 

happening is at least close to 50%, but ultimately depends on how many topics truly are present 

in the discussion. While it might seem reasonable to conclude that a small number of topics is 

likely, an assumption that would mean convergence is more probable, Goodreads is a unique, 

engagement driven community and it is not clear what number of topics would be likely. 

Furthermore, given the vastly different themes works in literary fiction, the breadth of the 

discussion is likely to vary between books. 

The ambiguous nature of these results suggests other factors might drive the outcome. 

The most obvious factor is the text itself. While this project assumes the public reading of a text 

has some measure of independence from the words on the page, that reading is certainly 

constrained by the text itself. However, gauging the interpretive challenges these individual 

works present is not possible on the very grounds this study is predicated; meaning is a cultural 

phenomenon and therefore must be analyzed at the level of the group, and an individual analyst’s 

reading of the text would be insufficient for identifying the inherent ambiguity of the texts. There 
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are, however, other features that might help explain why some books do exhibit a shift toward 

few topics. The gendered marketing and interpretation of fiction is often noted (Ellis-Petersen 

2015; Flood 2013; Matthews and Moody 2007) and Goodreads itself reports the audience for 

books by female authors is 80% female while it is 50% for male authors (Goodreads.com 2014). 

As the averages Table 4.1 show, however, the gender of the author would be a weak predictor of 

a shift toward fewer topics. Perhaps then a feature of the population of the reviewers predicts the 

shift? The averages for the group of books clearly exhibiting convergence (the first 15) and the 

group clearly not exhibiting convergence (the last 9), presented at the bottom of Table 4.1 

indicate that neither the number of reviewers nor the length of the reviews is of importance. A 

shorter period for the collection of reviews, an artifact of the logic by which the sample was 

constructed, might miss the important winnowing phase of the dynamics, but, in fact, also does 

not appear to play any role in predicting the shift. Finally, the connectivity of the reviewer 

network, as measured by the fraction of reviewer pairs in the network’s giant component, and the 

network distances between reviewers are essentially equal for both groups of book. 

 There may be much to be learned by a more detailed analysis of the audience. The data 

on the books the reviewers have read may reveal important information about the pre-existing 

tastes of the reviewers. A narrower range of tastes among the readers and reviewers would likely 

make easier the process of winnowing topics. Alternatively, high-centrality reviewers or popular 

reviews might be key to the process; I have the data to explore both factors in future work on this 

project. However, the value of such work is not yet known because first I need to better 

understand the size of the effect for the case when it is present. There are reasons to be 

pessimistic that the effect size is related to an appreciable reduction in the number of topics being 

discussed; the results of the experiment and the data in Table 4.1 suggest Goodreads is in fact 

may not be a good platform for encouraging the emergence of consensus views. The average 

path lengths between reviewers is long, and the experiment in Chapter 3 showed it would take a 

significant amount of niche signals to overcome path lengths as long as those between 

Goodreads reviewers.  

 Another reason to think there is a low chance of the convergence being meaningful to 

human interpreters is that there is evidence that the conversation maybe polarizing. I compared 

the individual reviews to the group level topic distribution for that time period using the Jensen-
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Shannon divergence. That divergence is a measure of how similar an individual review is to the 

general frequency of topics. While we would certainly not expect all reviews to look the same as 

the prevailing frequencies, we might expect them to start to look more like the general discussion 

over time. If the average Jensen-Shannon divergence is decreasing from the first to the last time 

period, that would be a strong indicator of an emerging consensus regarding themes. Conversely, 

an increase in average divergence would indicate the conversation is becoming more splintered, 

with different groups contributing specific themes to the conversations. Table 4.3 shows there is 

evidence of increases and decreases in average divergences, as well as evidence of neither. An 

increase in average divergence is compatible with a general reduction in the number of relevant 

topics, but also indicate the existence of tensions that make a more significant winnowing of 

topics unlikely; different segments of the audience are focusing on different themes, a type of 

sorting that forestalled global coordination in the experiment in Chapter 3. This again suggests a 

real shift toward a few topics dominating is unlikely. 

Discussion and Conclusion 

 Taken as a whole, the results above paint an inconclusive picture about the group 

dynamics of reviewing books on Goodreads. The fact that close to half of the books exhibit a 

decrease in topic-prevalence entropy over time suggests that later reviews are indeed focusing on 

fewer aspects of the work. This is valuable support for the hypothesis that, as a networked 

public, Goodreads can facilitate discussions leading toward consensus. The size of the shift 

toward fewer topics is not clear, however. As a first order problem, while there is a shift toward 

fewer topics for 13 books for all studied topic counts (3 through 10) and for all but one for two 

more books, the size of effect is variable across the number of topics. Thus, as a matter of model 

selection, we do not know which best captures the true magnitude of the shift in spite of having a 

high degree of certainty that one exists. Beyond this issue, a loss of entropy is hard to interpret as 

a measure of change in discourse. I provided a toy example to give the slightest of intuitions 

behind the measure, but, frankly, a great deal more can be done to study the behavior of the 

measure more generally. Furthermore, that would only be one step in understanding how to 

interpret effect sizes. The next step would be to assess what meaningful consensus looks like in 

terms of entropy. It seems clear that, functionally speaking, a consensus meaning is established 

before the topic-prevalence entropy reaches zero. Consensus meanings do not invite further 
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commentary, so actors cease to engage each other around that item of mutual interest, and the 

discourse halts. Thus, as a matter of measurement, consensus would be achieved at non-zero 

entropy, but it is not at all clear what would be a suitable value in any given case. 

 

Table 4.3: The Difference in Average Divergences. Each cell is colored according to the results of a two-tailed T-
test for a significant difference from zero for the difference in the average divergence between time periods. The 
number reported in the cell is the average difference. 
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Related to the interpretation of entropy as a measure of convergence is the result that the 

prevalence of some topics can be increasing while the discourse is becoming more splintered. By 

measuring the divergence of an individual document from the general pattern of topics in 

circulation in the time period it was contributed, I showed that over time individual documents 

could become less like the group level distribution of topics. This means the group distribution is 

a summation of distinct threads of conversations instead of reflective of the modal reviewer. If 

this pattern continues, the group is not headed toward consensus but rather a protracted state of 

discord. But this can also be a transient state of local coarsening that is a natural part of the 

production of consensus. This pattern was often observed in the experiments of Chapter 3. 

Nonetheless, entropy can be decreasing while such a splintering process is happening and 

therefore cannot be immediately equated with what we typically mean by consensus. Adequately 

measuring the convergence process accordingly will require multiple or a composite measure. 

Finally, there is also the thorny issue of the behavior of the LDA model for low entropy 

corpuses. The LDA process is somewhat biased against identifying heavily skewed distributions 

as the posterior (Blei 2017; Grimmer and Stewart 2013) and therefore might not perform well if 

the documents are truly converging on a small number of topics. Nonetheless, the encouraging 

signs of the nascent consensus producing-dynamic above warrant further work here to better 

understand the issues. 

 Beyond the problems of the interpretability of the entropy measure, there is also a great 

deal of variation across books to be explained. A substantial number of books exhibited very 

different patterns in the significance of their entropy loss. For some, the significance of the effect 

depends on the number of topics in the model, and for others the measure was never significant. 

In fact, post testing shows several of the books to experience a statistically significant increase in 

entropy over time. This reveals the presence of one or more currently unobserved explanatory 

variables. I have shown basic features like the gender of the author or the size or number of 

reviews do not appear to be factors. There is much more to be explored, however, in terms of the 

composition of the readers and the dynamics of influence. I have data for exploring both these 

sources of influence.  

 As noted in the data description, I collected the reviewers’  “bookshelves”, their self-

identified collection of books they have read. These lists can be used to compare the tastes of 
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users in order to assess whether having a readership with similar tastes is important for driving 

convergence. Assuming readers tend to prefer books of certain types, the bookshelves can be 

thought of as vectors in a multidimensional space of genres. For a variety of reasons the best 

methodology for extracting the latent genres from the collection of lists is again the Latent 

Dirichlet Allocation model. (The LDA model is in fact more suitable for data like these because 

book titles do not exhibit properties of words like polysemy and homonymy or need to be 

cleaned of high frequency words. I have already run the data through the model and obtained 

very sensible results.) There are several reasons why the LDA is a great, if not the best, way to 

approach comparing readers’ tastes. For one, readers will read books from multiple genres, 

perhaps in different proportions, and as a mixed membership model the LDA is designed with 

exactly that property in mind. Secondly, readers likely read different amounts, and that makes it 

challenging to directly compare the bookshelves. Finally, readers can be reading in the same 

genre but not have listed the same books. It is easy to be a fan of mystery novels, even 

steampunk-urban-fantasy-mystery novels, and not have read the same titles as follow fans. By 

approaching taste as a location in a genre space, readers can be located near each other in spite of 

having very different bookshelves. By measuring the divergence of tastes between readers, it 

becomes possible to measure the diversity of the reviewers’ taste and test whether it can help 

explain why some cases show signs of convergence and others do not. 

 Another data set that could yield any number of insights into the causes of the different 

outcomes is the site’s friendship network. Drawing on this sample, I have already shown the 

average shortest path lengths between pairs of reviewers to be high. The experiment results in 

Chapter 3 showed the higher that average, the more niche signals are necessary for the process to 

lead to convergence. The very open nature of the community and the layout of the site allows for 

exposure to a great deal of niche signals, but determining if those play a role in the outcome—the 

original motive for this whole project—will require better understanding the influence of 

particular documents. As is often the case, social influence can be equated with being central in 

the network of friendships, and I will calculate and compare the standard centrality measures. 

However insightful, centrality measures would exclude the content of the reviews from 

consideration alongside the reviewer’s independent influence. Other techniques, like document 

influence models (Nallapati, Mcfarland, and Manning 2011) and collaborative topic modeling 

(Blei 2017) can be used to explore the interplay between text and non-textual factors. 
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 While significant work remains on this project, I am encouraged by its general direction. 

The results were initially disappointing, as I expected more books to exhibit a winnowing of the 

related discussion, but I now believe the variation observed offers the opportunity to learn more 

about what can make a digital platform host to an effective “networked” public sphere in which 

groups strive for consensus instead of a medium through which individuals speak past each 

other. 
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Chapter 5: Conclusion 
 

 

The aim of the work that constitutes this dissertation is to understand more about the 

sources of information that can facilitate self-organization in social systems. This is a 

challenging problem analytically because information is not an external resource, but rather is 

something produced through the process of self-organization itself. This endogeneity allows for 

independent mechanisms of information production to amount to something more than the sum 

of their parts when operating concurrently. A major motive in the design of this dissertation was 

a concern that today’s focus on network mechanisms might sometimes be excluding signals that 

carry information relevant to self-organization. The signals I have in mind are those present in 

the broader social environments, be they physical or digital, that are not attached to known alters 

but nonetheless can be used to infer the practices, knowledge, preferences, or values of the 

broader population. I refer to signals of this type as niche signals. Physical propinquency can 

help explain the knowledge spillovers that allow economic clusters to thrive (Fujita et al. 2001; 

Funk 2014; Gertler 2003; Whittington et al. 2009) and can similarly be a source of the signals I 

study. However, a significant proportion of social life has moved online and the digital public 

spheres created by communication technologies, networked publics (Boyd 2010; Dahlgren 2005; 

Ito 2008), constitute a whole new social space in which individuals can encounter each other. To 

reflect the importance of these digital realms for the type of signals I study, I use the term niche 

to mean both physical and digital spaces. 

To assess the potential importance of these signals, I conducted three very different 

studies. In the first, I used a modified form of the hypercycle equation (Eigen and Schuster 1977; 

Padgett 1997; Padgett and Powell 2012) to explore the effect of the signals provided by the 

endogenous structuring of a common resource environment. Coupling the hypercycle dynamics 

to a dynamic environment significantly increased the complexity (i.e. length) of the resulting 

hypercycles. While the model is minimal, the results suggest that the information embedded in 
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these products is a powerful aid for self-organizing systems. To assess if the same is true in 

human interactions, the second study made use of a behavioral experiment. Participants 

embedded in various network topologies attempted to coordinate with partners to name a 

pictured individual. The surest way to coordinate is if everyone plays the same name, that is, a 

global convention. A previous experiment showed global conventions do not emerge in 

heterogeneous networks (Centola and Baronchelli 2015), but my work showed that the addition 

of a small number of niche signals facilitated the emergence of a global convention, although the 

number of signals necessary depended on topology of the network. I believe this is an 

unintuitive, but important result; if a small number of these signals can alter the outcome of one 

dynamic process, we ought to be exploring its role in a wide range of dynamic processes. The 

final project originally sought to assess whether an effect of these signals could be identified 

empirically within a unique dataset on discussions around literary novels. That might happen 

eventually, but the project is currently focused on first understanding whether there is any sort of 

convergence in the discussion. This is a challenging problem methodologically and while I have 

made significant progress there is still much more to be done.  

I will continue addressing the same basic question as I move forward with my work. The 

theoretical framings and terminologies may change, but I believe there are several trends that 

make this work valuable. The first is the fact that dual-process models of cognition are being 

integrated into sociological theories (Lizardo et al. 2016; Vaisey et al. 2009). Social science 

research involving information processing focuses on the signals recipients consciously process, 

but the types of signals I’m studying might not be processed consciously, but nonetheless create 

the background against which we make conscious decisions. The recent growth in the 

appreciation of the cognition happening unconsciously gives me the space necessary to pursue 

my agenda.  

A second trend is the rise of algorithms. Networked publics like the one I studied in 

Chapter 4 are structured in part by human-designed algorithms. These programs determine users’ 

exposures to various signals in these public spheres and might well introduce biases into 

dynamic processes. There is already plenty of work on online “echo-chambers” (Barberá et al. 

2015; Bessi et al. 2016; Colleoni et al. 2014; Dahlgren 2005; Prior 2013), but others have 

pointed out these spaces also expose us to a wide range of signals, often inadvertently 
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(Brundidge 2010). Thus, understanding the role of these algorithms requires a framework for 

assessing the importance of these small, currently analytically neglected signals. 

The final trend is a blurring of the boundaries between computational methodologies in 

the social sciences. In particular, I am excited about the prospect of the integration of behavioral 

experiments with natural language processing (Fong and Grimmer 2016). While there are still 

details to be worked out in the statistical models, experimental designs could help control some 

of the issues that make assessing the roles of various mechanisms in social dynamics so 

challenging to study. My work with the Goodreads data made these challenges clear, and while I 

have no intention to stop doing research on observational data, I believe that work would be 

made stronger by complementary work creating bridges between the world of rich text and well-

specified mechanisms. Furthermore, I believe I am well positioned to carry out that work as I 

move forward. 
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