
Predicting the Formation Pathways and Morphologies of Oxygenated 

Carbonaceous Nanoparticle Precursors in Premixed Flames 

 
 

by 

 

Vernon Tyler Dillstrom 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Mechanical Engineering) 

in the University of Michigan 

2017 

 

 

 

Doctoral Committee: 

Professor Angela Violi, Chair 

Professor John R. Barker 

Professor H. Scott Fogler 

Professor Margaret Wooldridge 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

© 
Reserved Rights All

DillstromTyler Vernon 
 2017 

 

       vtdillst@umich.edu 

        ORCID iD 0000-0001-9176-0483 
     

 

 

 

 

 

 

 

 



ii 

Dedication 

Para Diana. 

Mi vida sería severamente disminuida 

sin tu amor y aliento. 

Estoy eternamente agradecido. 

    



iii 

Acknowledgments 

The research represented in this dissertation is the result of several years of 

scholarship which would not have been possible without the guidance of my advisor, 

Professor Angela Violi. Nothing would have been accomplished without her expertise 

and zest for discovery that inspired and motivated me daily. I have learned as much about 

scientific discovery as I have the topic of this dissertation thanks to her advice and 

support; for that I am greatly indebted. 

I owe a sincere thank you to my thesis committee, Professors John Barker, Scott 

Fogler, and Margaret Wooldridge for graciously donating their time and expertise to the 

execution of this dissertation. 

To all the friends I have gained in the Violi Group, thank you for making our 

collaborations invigorating and our conversations exciting. The lessons and knowledge 

learned in my time here are a result of stimulating discussions we have had. 

To the friends that have suffered me for years, I am grateful for our camaraderie 

and the joy we have shared. Life is nothing if not a collection of moments to share. 

Finally, my most heartfelt thanks and love to my family, especially my wife, 

Diana, for investing in me more than I invest in myself. This accomplishment would not 

have been possible without you. Your love and support mean the world to me.  



iv 

Table of Contents 

Dedication .......................................................................................................................... ii 

Acknowledgments ............................................................................................................ iii 

List of Figures ................................................................................................................. viii 

List of Tables ................................................................................................................. xxii 

Abstract ......................................................................................................................... xxvi 

Chapter 1 Introduction ............................................................................................... 1 

1.1 Particle Formation Process ................................................................................... 2 

1.2 Particle Inception .................................................................................................. 3 

1.2.1 Modeling Particle Inception and Growth ............................................ 5 

1.3 Formation and Growth of Aromatic Precursors ................................................... 7 

1.3.1 Kinetic Growth Pathways ................................................................... 8 

1.3.2 Kinetic Reaction Rate Constants ...................................................... 14 

1.3.3 Deterministic Modeling of PAH Formation and Growth ................. 16 

1.3.4 Stochastic Modeling of PAH Formation and Growth....................... 21 

1.4 Composition of Particle Precursors .................................................................... 24 

1.4.1 Oxygenated Precursors ..................................................................... 26 

1.4.2 Influence of Oxygenated Fuels on Particle Precursors ..................... 27 



v 

1.5 Summary and Scope ........................................................................................... 29 

Chapter 2 Methodology ............................................................................................ 38 

2.1 Developing Oxygenation Pathways ................................................................... 41 

2.1.1 Reaction Rate Constant Development .............................................. 43 

2.2 Designing a Synergistic Growth Mechanism ..................................................... 48 

2.3 Reaction Sites Description ................................................................................. 51 

2.4 SNAPS team ....................................................................................................... 55 

2.5 Summary ............................................................................................................. 55 

2.5.1 Contributions..................................................................................... 56 

Chapter 3 Exploring the Effect of Oxygenation Pathways on PAH Growth in a 

Benzene-Air Flame.......................................................................................................... 78 

3.1 Simulation Design .............................................................................................. 78 

3.2 Results and Discussion ....................................................................................... 79 

3.2.1 PAH Production in Simulations ........................................................ 80 

3.2.2 Effect of Seed on Growth Rate ......................................................... 82 

3.2.3 Oxygenation Pathways Increase Precursor Growth .......................... 84 

3.2.4 Effect of Oxygenation Pathways on Mass Spectra ........................... 88 

3.3 Summary and Conclusions ................................................................................. 92 

3.3.1 Contributions and Collaborations ..................................................... 93 

Chapter 4 The Formation of Oxygenated Compounds in a Premixed Ethylene-

Oxygen Flame ................................................................................................................ 100 

4.1 Simulation Design ............................................................................................ 100 



vi 

4.1.1 Experimental Setup ......................................................................... 101 

4.2 Results and Discussion ..................................................................................... 102 

4.2.1 Electronic Structure Calculations ................................................... 103 

4.2.2 Evolution of OPAHs ....................................................................... 105 

4.2.3 Enol Intermediates .......................................................................... 106 

4.2.4 Furanic Structures ........................................................................... 106 

4.2.4.1 Furan Formation Pathway ............................................................ 108 

4.2.4.2 Furan Formation Kinetics............................................................. 110 

4.2.5 Impact of SNAPS Predicted Particles ............................................. 111 

4.2.6 Structural Predictions of Pyrene and its Isomers ............................ 113 

4.2.7 Radical-Radical Recombination ..................................................... 115 

4.3 Summary and Conclusions ............................................................................... 116 

4.3.1 Contributions and Collaborations ................................................... 117 

Chapter 5 Effect of Oxygenated Fuels on PAH Growth and Particle Formation 

in Ethylene Flames ........................................................................................................ 127 

5.1 Simulation Design ............................................................................................ 128 

5.1.1 Primary Flame System .................................................................... 129 

5.1.2 Secondary Flame System ................................................................ 130 

5.2 Results and Discussion ..................................................................................... 131 

5.2.1 Gas-phase Modeling ....................................................................... 131 

5.2.1.1 Primary Flame System ................................................................. 131 

5.2.1.2 Secondary Flame System ............................................................. 133 

5.2.2 Fuel Effects on Growth Rate of Particle Precursors ....................... 134 



vii 

5.2.3 Characteristics of Precursors in the Flames .................................... 137 

5.3 Summary and Conclusions ............................................................................... 140 

5.3.1 Contributions and Collaborations ................................................... 142 

Chapter 6 Conclusions and Recommendations for Future Work ...................... 149 

Appendix ........................................................................................................................ 156 

Bibliography .................................................................................................................. 172 



viii 

List of Figures 

Figure 1.1: Schematic of particulate formation in flames – from fuel and oxidizer to 

small gas-phase molecules through PAH growth to large particulates and then 

oxidized products. The flame is a premixed flame where fuel and air flow from 

the bottom. As the flow of the gas proceed up through the flame the highlighted 

classes of species are likely to be found in that order with respect to flame height. 

Molecules and particles not shown to scale. Image concept adapted from 

reference [39]. ....................................................................................................... 32 

Figure 1.2: Potential representation of a nascent ordered nanoparticle. The particle is 

held together by Van der Waals forces and is formed when PAH dimers, trimers, 

and tetramers agglomerate which generates clusters of physically bound stable 

PAHs. .................................................................................................................... 33 

Figure 1.3: Potential representation of a nascent disordered nanoparticle. The particle 

contains aliphatic side-chains and several oxygenated functional groups including 

enols, furans, and peroxyls. The particle contains aliphatically-linked PAHs. The 

structures are randomly ordered and formed by processes that are not 

thermodynamically controlled. ............................................................................. 33 



ix 

Figure 1.4: Representative “sandwich-style” (parallel planar PAHs whose centers of 

mass are in close proximity to each other) pyrene-pyrene dimerization: two 

pyrene monomers that are in near enough proximity to form a physical bond via 

Van der Waals attractive forces. One of the most common descriptions of particle 

inception includes the formation of dimers like this. Dimerization of pyrene is 

often assumed to initiate particle inception despite the abundance of evidence that 

suggests that such a dimer is not stable or does not have a significant lifetime at 

flame temperatures. ............................................................................................... 33 

Figure 1.5: Pictorial of the formation of an oxygenated polycyclic aromatic hydrocarbon 

(OPAH) in a combustion environment. The evolution of particles and their 

precursors occurs in both time and space dependent on the bulk flow of the gas-

phase environment. ............................................................................................... 34 

Figure 1.6: Chemical formation schemes for the formation of naphthalene: (a) Bittner-

Howard, (b) hydrogen-abstraction-C2H2-addition (HACA). ................................ 35 

Figure 1.7: Hydrogen and ring migration pathways proposed by Frenklach et al. [130] 35 

Figure 1.8: The Diels-Adler growth scheme proposed by Siegmann and Sattler that does 

not involve radical species. ................................................................................... 36 

Figure 1.9: The resonantly stabilized radical (RSR) growth scheme proposed by Colket 

and Seery: (a) propargyl addition to benzyl yields naphthalene, (b) a growth 

scheme up to anthracene from toluene and benzyl. Ring closure reaction require 

hydrogen elimination. ........................................................................................... 36 



x 

Figure 1.10: Ring fusing reactions presented by Marinov et al. in which naphthalene and 

phenanthrene are created via reactions between cyclopentadienyl and indenyl 

radicals. ................................................................................................................. 36 

Figure 1.11: Definition of a free edge site and a zig-zag site on a PAH. In SNAPS the 

carbon sites are distinguished as unique from each other for certain reaction types, 

e.g. ring closures. .................................................................................................. 37 

Figure 2.1: A schematic of the SNAPS algorithm. If a reaction is rejected, step two is 

repeated and the cycle continued. ......................................................................... 69 

Figure 2.2: Flow chart schematic of the design process of the new oxygenated 

hydrocarbon kinetic mechanism used in SNAPS modeling of PAH growth in 

premixed flames for this work. ............................................................................. 70 

Figure 2.3: Examples of key oxygenation reactions in SNAPS mechanism. Specific 

reactions chosen to represent each type of class of reactions are because they are 

the most dominant reactions in their respective class. .......................................... 71 

Figure 2.4: Oxygenated functional groups that are generated in SNAPS trajectories via 

the oxygenation and oxidation pathways. ............................................................. 72 

Figure 2.5: The blue highlights are the definition of a reaction site for bimolecular 

hydroxyl addition to a radical aromatic carbon. They reaction site only considers 

the exact composition and structure of the six highlighted carbon atoms (and their 

attached hydrogen neighbors), thus the two distinct species on the left undergo the 

same reaction event. This eliminates the need to specifically define all species – 

of which there are hundreds of thousands when considering all potential species 

larger than benzene. .............................................................................................. 72 



xi 

Figure 2.6: 92 bimolecular reaction rate coefficients as evaluated at 1750K sorted in 

descending order. 80% of the reaction rate coefficients are within 2 orders of 

magnitude of each other. There is one outlier (far left) on the far side and the 

slowest 10% of rate coefficients are several orders slower than the median 

(1.69*1012 cm3*s-1*mol-1) and average (4.08*1015 cm3*s-1*mol-1). Red bars are 

novel oxygenation pathways. Blue bars are hydrocarbon reactions. The sets of 

pathways work synergistically to create a more comprehensive chemical 

evolution mechanism. ........................................................................................... 73 

Figure 2.7: 48 Unimolecular reaction rate coefficients as evaluated at 1750K sorted in 

descending order. Because the rate coefficients of the lower half of the reactions 

steadily and continuously decrease, the average of the coefficients (2.39*1011 s-1) 

is skewed such that the lower 75% of reactions are slower than the average. The 

median reaction rate coefficient is 2.19*109 s-1. Red bars are novel oxygenation 

pathways. Blue bars are hydrocarbon reactions. The sets of pathways work 

synergistically to create a more comprehensive chemical evolution mechanism. 73 

Figure 2.8: Example subset of a potential reaction pathway diagram. A trajectory where 

indene (center) is the seed molecule could evolve along the given route shown or 

any number of other routes not depicted. All reactions and pathways are 

reversible. .............................................................................................................. 74 

Figure 2.9: Comparing the hydrocarbon-only pathways to the combined oxygenation and 

hydrocarbon pathways. Here the pathways from naphthalene (2 rings) to a 3 ring 

structure with no chains. In the set of pathways (b) there are only a small set of 

pathways that go from naphthalene to a 3 ringed structure, and there are only 4 



xii 

possible structures that contain 3 rings. In the set of pathways (a) oxygenation 

pathways that work synergistically with hydrocarbon growth pathways lead to 

many multiples of potential growth pathways from naphthalene to a 3 ringed 

structure. Additionally there are 10 conformations of a structure with one 

oxygenated ring in addition to the same 4 carbon-only 3 ringed structures present 

in the set of pathways (a). Oxidation pathways present in the oxygen growth 

mechanism provide quick avenues from oxygenated rings to carbon-only rings. 

This provides a mechanism to eliminate embedded oxygen atoms from the PAH 

and nanoparticles structures. Note: not all pathways and bimolecular additions 

present in the SNAPS mechanism are shown in the diagram for the purpose of 

clarity. Because oxygenation reactions work in parallel and in coordination with 

hydrocarbon reactions including all pathways has a multiplier effect on the 

number of number of pathways when oxygen chemistry is included in the SNAPS 

mechanism. ........................................................................................................... 75 

Figure 2.10: The blue highlights are the definition of a reaction site for which a 5 

membered ring could form on a zig-zag site. They reaction site only considers the 

exact composition and structure of the 5 highlighted carbon atoms (and their 

attached hydrogen neighbors), thus the two distinct species on the left undergo the 

same reaction event. This eliminates the need to specifically define all species – 

of which there are hundreds of thousands when considering all potential species 

larger than benzene. .............................................................................................. 76 

Figure 2.11: Reaction site definitions for the key reaction types in the mechanism. Dark 

blue circles are reaction sites for all reactions which lead to hydrogen abstraction 



xiii 

from a saturated aromatic carbon. Light blue circles are reaction sites for all 

reactions which lead to hydrogen abstraction from a saturated aliphatic carbon. 

The top examples are representative of carbons which are a member of a ring of 5 

carbons comprising a zig-zag site. The right examples are representative of 

generic aliphatic carbons. The light green circles are reaction sites for all reactions 

which are vulnerable to ring opening reactions. The top example would be the 

opening of a five-member carbon ring on a zig-zag site. The bottom example 

would be the opening of a pyran (5 carbons, 1 oxygen atom) ring. The light red 

circles are reaction sites for all reactions which lead to the bimolecular addition of 

a gas-phase species to a radical site on the molecule. The top example would be 

addition to an aliphatic carbon. The bottom example would be addition to an 

oxyradical. The light chain highlighted in light maroon on the right is an example 

of a reaction site that could undergo ring closure. The highlighted six carbons in 

that structure and composition are able to form a six-member aromatic ring on the 

edge of the molecule. ............................................................................................ 76 

Figure 3.1: Flow process showing the order and decision points of experimental choice 

and simulations required in the design of this study, as well as subsequent studies.

............................................................................................................................... 94 

Figure 3.2: Ratios of particular species throughout the height of the flame from [248]. 

The experiment measured these species; shown here is the ratio of species: (a) 

acenaphthylene to indene, (b) acenaphthylene to naphthalene, and (c) 

phenanthrene to anthracene. Compared are the experiment (blue), a deterministic 

simulation in CHEMKIN (red), SNAPS while using a mechanism with no oxygen 



xiv 

chemistry (green), and SNAPS while using the more comprehensive 

oxygen/hydrocarbon mechanism (purple). ........................................................... 95 

Figure 3.3: Profiles of the average masses of the ensembles of trajectories versus the 

height of the flame obtained using a mechanism that comprises hydrocarbon and 

oxygenation pathways. The larger pyrene seed allows for more potential growth 

pathways early in the flame when the environment is radical-rich and thus the rate 

of growth is appreciably faster than when using the smaller benzene or toluene 

seeds. The inset molecules are representative of typical SNAPS-generated PAHs 

at 8 mm with a mass roughly equivalent to the average mass of the ensemble at 8 

mm. The top molecule has a mass of 654 amu (average mass for pyrene-seed 

trajectories is 655 amu at 8mm). The lower molecule has a mass of 403 amu 

(average mass for benzene-seed trajectories is 395 amu at 8 mm). ...................... 96 

Figure 3.4: Average SNAPS ensemble masses profiles over the height of the flame. The 

inclusion of oxygenation pathways allows for a greater number of growth options 

and thus a faster rate of growth, hence the much higher plateau mass (about 400 

amu) than when oxygenation is not allowed in the SNAPS mechanism (200 amu 

plateau). A slight deviation is observed greater than 2 mm when the oxygenation 

is accounted for; very little difference is observed when the oxygenation is not 

accounted for because the restricted number of pathways confines toluene and 

benzene to identical growth pathways after 2 mm. The inset molecules are 

representative of typical SNAPS-generated PAHs at 8 mm with a mass roughly 

equivalent to the average mass of the ensemble at 8 mm. The top molecule has a 

mass of 403 amu (average mass for benzene-seed trajectories with oxygenation 



xv 

pathways is 395 amu at 8mm). The lower molecule has a mass of 202 amu 

(average mass for benzene and toluene-seed trajectories without oxygenation 

pathways is 189 amu at 8 mm). ............................................................................ 97 

Figure 3.5: Computed mass spectra using a benzene seed with two varying mechanisms: 

(a) without accounting for the oxygenation of PAHs and (b) while accounting for 

the oxygenation pathways. SNAPS ensembles consist of 3000 trajectories to 

achieve statistical significance. The spectrum created with oxygen chemistry 

included in the SNAPS code shows that the oxygenation pathways work with the 

HACA pathways to broaden the range of potential species to all masses. ........... 98 

Figure 3.6: Computational mass spectra developed with SNAPS using a toluene seed 

with two varying mechanisms: (a) without accounting for the oxygenation of 

PAHs and (b) while accounting for the oxygenation pathways. SNAPS ensembles 

consist of 3000 trajectories to achieve statistical significance. The spectrum 

created with oxygen chemistry included in the SNAPS code is much noisier with 

no dominant peaks because the oxygenated PAHs do not fall into the ± 12 amu 

pattern that purely hydrocarbon PAHs do. ........................................................... 98 

Figure 3.7: (a) Computed mass spectrum using a mixture of initial seed molecules, 

benzene:toluene:pyrene of 0.945:0.045:0.01. The ratios of the relative mole 

fraction concentrations of benzene:toluene:pyrene are 0.037:0.0018:0.00039 at the 

beginning of the flame where SNAPS simulation commence. The computational 

mass spectra are a combination of 4000 trajectories with oxygenation reactions 

and 6000 trajectories without oxygenation reactions. (b) Experimental mass 

spectrum of benzene–air laminar premixed flame [248]. SNAPS correctly predicts 



xvi 

the dominant masses (202, 226, 252, 276, 300 amu) as well as predicting the 

spectrum of less abundant masses that make up the noisy bedding of the spectrum. 

Both sets of growth pathways work in parallel to yield an ensemble of partially 

oxygenated PAHs that represent the spectrum in the flame. ................................ 99 

Figure 4.1: Simulated concentration profiles of key species from the premixed laminar 

ethylene flame. Four distinct deterministic mechanisms were utilized in identical 

simulations using CHEMKIN [155]: Appel et al. [95], Miller et al. [32], Raj et al. 

[158], and Richter et al. [260]. Of the four, all were relatively similar for the 

entire set of species. Miller et al. is the least like the other three. Of the set, the 

mechanism from Appel et al. most closely captured the average of the species 

concentrations and profiles. ................................................................................ 120 

Figure 4.2: Most probable reaction sequence leading to formation of a furan group. (Left 

to Right) H-abstraction followed by OH addition to the radical free edge site on 

an aromatic ring; H-abstraction from the OH group, followed by acetylene 

addition, forming an ether group; H-elimination during ring closure to form a 

furan group. The left side of the molecule has been left attached to an 

indeterminate PAH backbone to illustrate an arbitrary molecular size. ............. 121 

Figure 4.3: Potential-energy diagram for the formation of benzofuran. The energies are 

in kilocalories per mole and are referenced to the reactant species. The ring-

closing reaction is exothermic, and the closed-ring structure is thus favored over 

the phenoxy + acetylene reactants as well as the open-ring structure (first 

intermediate). In SNAPS the first reaction (TS1) is distinct from the second 

reaction (TS2 and TS3). The first reaction is a unimolecular acetylene addition to 



xvii 

an oxyradical and the second reaction is a unimolecular ring closure to form a 

furan ring (steps TS2 and TS3 are treated as one reaction in SNAPS because the 

second intermediate structure would only go to the product or the first 

intermediate due to the unique nature of the over coordination and loss of 

aromaticity of the structure). The energy barriers of the ring closure reaction steps 

are low compared with the average temperature fluctuations in flames. For 

example, at 1,500 K, TS2 is 3kBT and TS3 is−1kBT with respect to the first 

intermediate species. ........................................................................................... 122 

Figure 4.4: Enols predicted by the SNAPS simulations. Enols predicted to be important 

to the OC chemistry at small DFFOs in premixed combustion are (A) 94 u 

(phenol), (B) 108 u (C7H8O), (C) 118 u (C8H6O), (D) 168 u (C12H8O), and (E) 

192 u (C14H8O). ................................................................................................ 123 

Figure 4.5: Frequently predicted oxygen-containing structures of selected masses low in 

a premixed flame. Red atoms, oxygen; gray, carbon; white, hydrogen. (A and B) 

Ether and ether/ketene, 160 u. (C) Furan, 168 u. (D and E) Ether and furan, 194 u. 

(F) Ether, 220 u. .................................................................................................. 123 

Figure 4.6: Predicted H and OH mole fractions at low flame heights in the Ar-diluted 

premixed flame using the Appel–Bockhorn–Frenklach deterministic mechanism 

[95]. The ratio between the H and OH mole fractions is also shown. The vertical 

dashed lines are the edges of the region where the majority of the oxygenation 

occurs, according to the SNAPS simulations. .................................................... 123 

Figure 4.7: Experimental AMS spectra from a premixed flame as measured by 

Michelsen and coworkers [241]. Mass spectra are shown for particles extracted 



xviii 

from selected heights in the flame; that is, DFFOs of (A) 3.5, (B) 5.0, and (C) 7.5 

mm. Red peaks contain signal from oxygenated species. The arrows indicate the 

peaks at 160, 194, and 220 u for comparison with Figure 4.4 where one can see 

the main predicted structures at a DFFO of ∼3.5 mm. ....................................... 124 

Figure 4.8: Relative concentrations of the most abundant species with mass 202 u (left) 

and 226 u (right) at a DFFO of 3.4 mm computed by SNAPS. These species 

account for 98% of all 202-u species and 97% of all 226-u species at 3.4 mm. 125 

Figure 4.9: SNAPS results showing the five most common pairs of radicals that combine 

to make structures at 266 u and 278 u at a DFFO of 3.4 mm in the premixed flame. 

These reactions account for 72% of all combined structures at 266 u and 89% of 

all combined structures at 278 u. ........................................................................ 126 

Figure 5.1: Red solid lines represent the pure ethylene flame and blue dashed lines 

represent the ethanol doped flames.  (a) Temperature profile obtained from the 

Salamanca et al. [234] (b) Axial velocity of the flames as modeled in with the 

CHEMKIN PREMIX [155], [247] software. (c) Residence time of the gases in the 

flames. The residence time is shown to highlight that particles have almost equal 

residence times in the flames to grow, thus differences in SNAPS simulations is 

not due to residence time. ................................................................................... 143 

Figure 5.2: Species profiles of the pure ethylene (solid red lines) and ethanol doped 

(dashed blue lines) flames from [234] simulated in CHEMKIN [155], [247]. (a) 

O2, (b) C2H2, (c) H2, (d) H, (e) OH, (f) O, (g) O2 0-2mm only, (h) OH 0-2mm 

only, (i) O 0-2mm only. The latter three are presented for qualitative clarity at 

HAB less than 2 mm. .......................................................................................... 144 



xix 

Figure 5.3: Species profiles of the pure ethylene (solid red lines) and ethanol doped 

(dashed blue lines) flames from [234] simulated in CHEMKIN [155], [247]. (a) 

benzene, (b) toluene, (c) indene, (d) naphthalene, (e) acenaphthylene. The ethanol 

doped flame has consistently higher concentrations of small aromatics than the 

pure ethylene flame. ............................................................................................ 145 

Figure 5.4: Species profiles of the pure ethylene (solid red lines) and ethanol doped 

(dashed blue lines) flames from Wu et al. [235] simulated in CHEMKIN [155], 

[247]. (a) C2H2, (b) benzene, (c) toluene, (d) naphthalene, (e) acenaphthylene. The 

pure ethylene flame has consistently higher concentrations of acetylene and small 

aromatics than the ethanol doped flame.............................................................. 145 

Figure 5.5: Small (left) and large (right) PAH profiles of the pure ethylene (experiment: 

red star symbols, gas-phase model: solid red lines) and ethanol doped (experiment: 

blue square symbols, gas-phase model: dashed blue lines) flames from Wu et al. 

[235] and simulated in CHEMKIN. The pure ethylene flame has consistently 

higher concentrations of small and large PAHs. The model captures that as well as 

the general shape of the profiles (slight concavity around five mm in the small 

PAH profiles and near linearity in the large PAH profiles). As defined in 

reference [235], the profiles are normalized by the final concentration of the pure 

flame. That is, the models are normalized by the concentration at 20 mm in the 

pure flame, and the sets of experimental data are normalized by the concentration 

at 20 mm in the pure flame. ................................................................................ 146 

Figure 5.6: Average mass of an ensemble of HMAMs generated using SNAPS in the 

pure flame (circles) and doped flame (squares). Closed and open symbols 



xx 

represent simulations with the oxygen/hydrocarbon and the reduced (hydrocarbon 

only, no oxygenation pathways) growth mechanism, respectively. Each line is 

obtained by averaging 11000 trajectories (oxygen/hydrocarbon mechanism) or 

1000 trajectories (HC only). The 99% confidence interval for the ensemble mean 

was calculated for all data points. The largest range for each ensemble is: ±6.1 u 

(pure flame with full mechanism), ±3.9 u (doped flame with full mechanism), 

±12.9 u (pure flame with partial mechanism), and ±16.6 u (doped flame with 

partial mechanism). ............................................................................................. 146 

Figure 5.7: Ensemble average C/H (a) and C/O (b) ratios of the HMAMs predicted by 

SNAPS for the pure ethylene (solid red lines) and ethanol doped (dashed blue 

lines) flames from [234]. At each height every HMAM trajectory is sampled and a 

molecule-specific C/H and C/O ratio is calculated; the ratios are then averaged to 

create the plotted profiles. The sampled heights for both methods were 0.1, 0.2, 

0.5, 1, 3, 6, 8, 10, 12, and 14 mm HAB. ............................................................. 147 

Figure 5.8: Ensemble average ratios of net oxygenation to net carbonation in the pure 

ethylene (solid red lines) and ethanol doped (dashed blue lines) flames of [234]. 

Reported are both the cumulative ratios (a) as well as the non-cumulative ratios (b 

left y-axis) overlaid with the relative O2 concentrations of the flames (b right y-

axis). The medium dashed bright red line represents the O2 profile of the pure 

ethylene flame and the dotted bright blue line represents the O2 profile of the 

ethanol doped flame. Net oxygenation accounts for the difference in reactions that 

add oxygen atoms to the HMAM and those that remove or abstract oxygen atoms 

(including the number of oxygen atoms involved in the reaction). Similarly, for 



xxi 

net carbonation, but with carbon atoms. The cumulative ratios (a) involve 

accounting for all reactions in all SNAPS trajectories up to that height in the 

flame. The non-cumulative ratios involve accounting for all reactions in all 

SNAPS trajectories only in the range of the sampled height, i.e. from midway 

between the previously sampled height and the current sample height to midway 

between the currently sampled height and the next height to be sampled. The 

sampled heights for both methods were 0.1, 0.2, 0.5, 1, 3, 6, 8, 10, 12, and 14 mm 

HAB. The calculation heights are intentionally more compacted from 0 to 2 mm 

because the HMAMs were shown to undergo a much faster rate of growth in that 

region. It is noteworthy that both flames show their highest oxygen addition to 

carbon addition ratios at 0.2 mm (second height represented) and the ratios 

quickly become smaller with flame height. This parallels the rate of growth of 

HMAMs as functions of height of the flame; in particular that the fastest rate of 

growth was between 0.1 and 0.5 mm. ................................................................. 147 



xxii 

List of Tables 

Table 2.1: The main classes of reaction pathways that the oxygenation kinetic growth 

mechanism comprises. .......................................................................................... 58 

Table 2.2: Example reactions from each major class of oxygenation pathways in the 

SNAPS mechanism. (g) signifies a gas-phase molecule interacting with a HMAM, 

Car represents an aromatic carbon on the HMAM, Cal represents and aliphatic 

carbon on the HMAM, C with no subscript represents either type of carbon on the 

HMAM, X(Y) implies that atom(s) Y is bonded to atom X on the HMAM, + 

signifies that the rate was calculated from the forward rate using standard 

thermodynamic properties to calculate the equilibrium constant, and * implies a 

radical or active site. Units for pre-exponential factor A are s-1 for unimolecular 

reactions and cm3*s-1*mol-1 for bimolecular reactions, units for Activation Energy 

(Ea) are kcal*mol-1. ............................................................................................... 58 

Table 2.3: The set of equations used to calculate the reverse rate constant given the 

forward constant, temperature, and NASA polynomials for each species in the 

reaction. This method was used several times at varying temperatures to calculate 

several reverse rates and then modified Arrhenius parameters were fit to the rates 

to derive parameters used in the SNAPS mechanism for reach reverse reaction. 



xxiii 

Note that coefficients {a1…a7} are the appropriate coefficients from the NASA 

polynomial table for that particular species for the temperature at which the 

enthalpy and entropy are being evaluated. ............................................................ 59 

Table 2.4: List of all new oxygenation reactions in the mechanism. A listing of all 

reactions demonstrating how the oxygenation pathways are weaved into 

hydrocarbon pathways is give in Table A.1. Reactions are organized by class 

(color). The classes of reactions (in order top to bottom): light red are hydrogen 

removal/abstraction reactions; dark red are hydrogen addition reactions; dark 

orange are hydrogen transfer reactions; dark blue are fragment addition reactions; 

light blue are fragment removal/abstraction reactions; light green are ring closure 

reactions; dark green are ring opening reactions; tan are isomerization reactions; 

dark tan are oxidation reactions. Within each class (color) the reactions are 

ordered in descending reaction rate coefficient as evaluated at 1750 K (1750 K 

chosen to represent a median combustion temperature for a broad range of flame 

types/conditions). Notations for the “Reaction Description” column: (g) 

represents gas-phase molecule interacting with HMAM, Car represents and 

aromatic carbon on the HMAM, Cal represents and aliphatic carbon on the 

HMAM, C with no subscript represents either type of carbon on the HMAM, X(Y) 

implies that atom(s) Y is bonded to atom X on the HMAM. Units for the pre-

exponential factor (“A” column) are s-1 for unimolecular reactions and cm3*s-

1*mol-1 for bimolecular reactions. Units for the activation energy (“Ea” column) 

are kcal/mol. PW stands for present work, Eq is used to signify that the rate 



xxiv 

constant was calculated in this work using thermodynamic properties to obtain the 

equilibrium constant.............................................................................................. 59 

Table 2.5: Pictorials of reaction types. Dashed lines on the molecules off of atoms 

signify that anything can be attached to those atoms. For example, ---CH signifies 

that they key group is a saturated carbon atom bonded to any other atom (which in 

turn may or may not be bonded to other atoms). Where there is an “X” in the 

pictorial, the “X” can represent any of the species listed underneath the pictorial.

............................................................................................................................... 62 

Table 2.6: SNAPS developer descriptions. ...................................................................... 67 

Table 4.1: Analysis of mass peaks. Columns 5 and 6 are my predictions based on 

analysis of SNAPS simulations. The first four columns are the verifications as 

measured by the XPS experiment. ...................................................................... 119 

Table A.6.1: List of all reactions in the new SNAPS mechanism corresponding to Table 

2.4. All reactions are listed in descending order of rate coefficient evaluated at 

1750 K within each class. Oxygenation reactions and hydrocarbon reactions are 

highly interconnected. Units for the pre-exponential factor (“A” column) are s-1 

for unimolecular reactions and cm3*s-1*mol-1 for bimolecular reactions. Units for 

the activation energy (“Ea” column) are kcal/mol. ............................................. 156 

Table A.6.2: Pictorials of al reaction types in the new SNAPS mechanism corresponding 

to Table 2.5. Dashed lines on the molecules off of atoms signify that anything can 

be attached to those atoms. For example, ---CH signifies that they key group is a 

saturated carbon atom bonded to any other atom (which in turn may or may not be 



xxv 

bonded to other atoms). Where there is an “X” in the pictorial, the “X” can 

represent any of the species listed underneath the pictorial. ............................... 162 



xxvi 

Abstract 

Organic nanoparticles are an inevitable by-product of combustion phenomena that 

have deleterious health and environmental effects. They are carcinogenic because they 

damage biological cells due to their small size and their presence in the atmosphere 

contributes to global warming. We would be better able to effectively manage the 

harmful effects of these nanoparticles if we better understood their formation 

mechanisms and chemical compositions at an atomic level. The complexities of the 

reaction chemistry involved along with the difficulties of experimental techniques to 

capture the atomic level details of nanoparticles and their chemical precursor molecules 

during flame synthesis, has led to a gap in the understanding of their formation pathways 

and molecular structures.  This work presents a novel chemical kinetic reaction scheme 

and utilizes a computational approach to model laboratory-scale flames in order to 

elucidate the compositions and morphologies of organic nanoparticle precursors. Organic 

nanoparticles formed during combustion have long been assumed to comprise only 

hydrogen and carbon atoms, however, recent work has noted the presence of oxygen 

atoms. Using the first model to account for oxygenation of aromatic precursors, this work 

demonstrates that oxygen chemistry is key to understanding the formation pathways and 

morphologies of nanoparticles and their chemical precursors. Kinetic oxygenation 
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pathways capture the influence of alcohol-doped-fuel on particle formation in premixed 

flames by identifying the fuel’s effect on precursor growth. 

Stochastic simulations reveal an abundance of previously unconsidered 

oxygenated aromatic species to be present in premixed aromatic- and aliphatic-fuel 

flames. Key morphologies of oxygenated precursor species predicted by the model were 

confirmed in experiments, including a significant presence of furanic compounds. 

Similarly, simulations led to experiments that confirmed model predictions that large 

oxygenated aromatic molecules are important participants in particle formation. The 

model developed in this work demonstrates for the first time that inclusion of 

oxygenation pathways is necessary and vital in order to represent the chemical kinetic 

growth of nanoparticle precursors in premixed flames. The recognition of the previously 

unexpected importance of oxygenated aromatic precursors and their influence on 

nanoparticle formation in flames constitutes a notable advancement in the field of 

combustion-generated nanoparticle chemistry. The impact of the present findings are 

considerable to the efforts to investigate combustion generated particle formation with 

the aim to reduce their deleterious health and environmental effects.  
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          Chapter 1  

 

 

Introduction 

Carbonaceous nanoparticles (CNPs) are everywhere in our lives; they are formed 

as a result of common manufacturing processes [1], are prevalent in ink pigments, are key 

components of solar cells cathodes [2], and, most importantly, are produced globally at a 

rate of 100 tons per day as a byproduct of hydrocarbon combustion phenomena [3]; in 

fact, combustion is the main process through which particles are emitted in the 

atmosphere. Ascertaining and understanding the underlying causes of the production of 

nanoparticles is important because they have deleterious impacts on human health when 

inhaled in sufficient quantities [4]–[8]. They are toxic partly because their small size 

affords them an ability to interact with cells in the human body [9]–[11]; their 

morphology significantly influences the nature of the interaction with cells – partially 

determining the level of toxicity [12]–[15].  

Additionally, carbonaceous particles have serious negative impacts on the 

environment. They are a contributing factor to changes in global weather patterns [16]–

[18] since the aerosol nature of carbonaceous particles results in unique physical and 

chemical properties that lead to solar absorption and contributes to global warming 
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effects [19], [20]. The fundamentals of the formation pathways of CNPs, their 

composition, and their morphologies are not fully understood despite the value that 

information would provide towards ameliorating their negative effects on human health 

and the environment. Thus the mechanisms that lead to the production of CNPs during 

combustion need to be more thoroughly investigated and clearly defined to elucidate 

some of the uncertainties. 

 

1.1 Particle Formation Process 

It was initially proposed by Jensen [21] and synthesized by Haynes and Wagner 

[22], [23] that particle formation in high temperature combustion environments broadly 

proceeds in three stages: 1) formation of 1- and 2-ring aromatics, 2) growth from the 

small aromatics to larger aromatic precursor molecules, and 3) particle inception – the 

process of transitioning from gas-phase to particle phase, in which molecules accumulate 

into a single solid phase object suspended in a fluid such as air, as depicted in Figure 1.1. 

The supporting evidence for the general process has been reviewed several times since 

1981 [22]–[30] and over the decades, a general consensus has formed that supports this 

process [23], [25], [26]. Most recently, Wang reviewed the particle formation process and 

concluded that the breadth of laboratory-scale flames demonstrated the validity of the 

three stage process for particle formation during combustion [26]. 

The chemical kinetic formation pathways of single ring aromatics have been 

discussed extensively partly because of their importance to particle formation during 

combustion [26]. In particular, studies by Fahr and Stein [31] and Miller and 
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Klippenstein [32]–[35] showed that propargyl combination forms a number of 

vibrationally excited complexes which form benzene through collisional stabilization at 

high temperatures and atmospheric pressures. Several reviews have concluded that the 

two dominant formation pathways in high temperature diffusion and premixed flames are 

the combination of C4 and C2 aliphatic species that close to form benzene or phenyl 

radicals or the self-reaction of propargyl radicals which close to form benzene [26], [29], 

[36], [37]. 

Though particle inception was initially proposed to occur via acetylene 

polymerization [38], ionic species combination [24], or dimerization of polycyclic 

aromatic hydrocarbon (PAH) molecules [23], the latter is the focus of the community 

now because of the plethora of such molecules observed in many types of flames [25], 

[26], [29], [39]. The methods of particle inception are discussed in section 1.2. There is 

now general consensus that gas-phase PAHs are the key particle precursors, but their 

kinetics are not as well defined [23], [25], [26], [38], [40]–[45]; section 1.3 discusses the 

chemical pathways of PAH evolution, rate constants for the pathways, experimental 

evidence, and modeling of PAH formation and growth in flames. 

 

1.2 Particle Inception 

Particle inception mechanisms are complex, involve both chemical and physical 

growth mechanisms [25], and may have a significant impact on the size and morphology 

of mature particles as measured in experiments [46]. Little is known about inception 
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mechanisms because experiments expose limited aspects of the overall process due to 

varying conditions and rapidity in which particle inception occurs.  

While many experiments have measured particles with diameters from 1.5 nm to 

5 nm [47]–[59] and provided valuable insights about particle size distributions such as 

bimodality in flames [52], [57], they provide limited insights as to the chemical 

composition, molecular structure, or mechanism of inception of the particles. However, 

as discussed by Michelsen [39], the collection of experiments [47], [60]–[67] suggests 

two important concepts: 1) there is significant evidence that nascent particulates have 

both aromatic and aliphatic characteristics [68]–[72] and contain oxygen [68], [69], [72]–

[83], and 2) there are two types of particulates – ordered and disordered. Ordered 

particulates tend to be greater than 3 nm in diameter [26], [47], [66], [84]–[88] and 

comprise aromatic content stacked and held together [56], [58], [67], [88]–[90] by van 

der Waals forces [67]. Figure 1.2 shows a representation of an ordered particle consisting 

of a set of pericondensed planar aromatic molecules stacked together in an orderly 

fashion. Disordered particulates tend to be less than 3 nm in diameter [47], [60]–[63], 

[65], [66] and comprise randomly ordered aromatic-aliphatic structures [60], [61], [65], 

[67]. Figure 1.3 represents this type of nascent particle; the structure is not ordered and 

consists of a seemingly random set of aromatic molecules that have either physically 

bonded or chemically bonded. The chemical composition and morphology of the 

constituents of the particle are difficult to ascertain.  

The process of nanoparticle formation starts with the decomposition and oxidation 

of the fuel [24], [91]–[93]. The chemical initiation of combustion generates small radical 

species, e.g. hydrogen, oxygen, hydroxyl, propargyl, and acetylene. The radicals 
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contribute to the formation of single ring aromatics and  PAHs which, despite the lack of 

detailed knowledge about their chemical composition and morphologies, are known to be 

key precursors to nanoparticles [24]–[26], [29], [93], [94]. These larger polycyclic 

aromatic species eventually undergo a process to create solid-phase particulates known as 

nucleation (or inception) [39]. Therefore, knowledge of the composition and 

morphologies of the larger PAHs is integral to understanding the particle formation 

process.  These small particles then aggregate to form larger particles such as soot which 

then continue to grow via chemical and physical reactions. 

The process of creating particulates stretches across both large time scales and 

large size scales. In this process the main knowledge gaps are regarding the composition 

of PAHs and how they initiate particle inception. This process is complex, fast, has 

significant influence on particle size distributions, and is difficult to elucidate because of 

the experimental challenges of measuring these transitory phases of the process. As such, 

it has been necessary to develop models to describe the process from gas-phase aromatics 

to particles. 

 

1.2.1 Modeling Particle Inception and Growth 

The dominant theory for describing particle inception in models revolves around 

PAH-PAH dimerization as depicted in Figure 1.4 that will create molecules large enough 

to initiate particle inception. Many have assumed for the sake of simplicity that pyrene-

pyrene dimerization is the starting point for particle inception [95]–[98] despite the fact 

that some studies have suggested that pyrene-pyrene dimerization is unlikely to occur 
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frequently at flame temperatures due to their relatively small size [99]–[103]. There is 

considerable debate about the molecular size required for two PAH molecules to be 

physically bound long enough to constitute particle nucleation. Miller [101] suggested 

that only PAHs larger than a mass of 800 amu need be considered for potential sticking in 

a dimerization reaction. However, Schuetz and Frenklach [104] found that pyrene dimers 

are stabilized by internal rotational and vibrational motion and thus have a long enough 

lifetime to enable further growth. Similarly it has been suggested that the binding 

energies of dimers with small masses can survive at flame temperatures [105]. However, 

recent experimental evidence [102] and computational calculations [99], [100], [103] 

demonstrated that pyrene dimers are not feasible and thus not a likely source of particle 

inception in flames. According to these studies, it is apparent that monomers would need 

to be larger than pyrene (by mass) in order to form stable dimers at flame temperatures. 

Despite the evidence to the contrary, however, existing models for particle growth 

depend on the simplistic inception concepts and thus have many limitations. Many 

models, for example, assume particle inception occurs solely via irreversible dimerization 

of simple monomers [25], [28], [95]–[98], [106]. For example, Kraft and coworkers 

considered dimerization of pyrene as the method for particle inception in their stochastic 

particle growth model [46], [107], [108]. After the irreversible dimerization process, the 

32 carbon particle then continues growth in the particle phase. However, this model is 

based on unrealistic assumptions – as discussed by Violi and others [99]–[103] – that all 

pyrene dimerization is not only feasible, but the dominant particle inception mechanism. 

Kraft later developed the PAH-PP model [109], [110], and though it expands its 

definition beyond pyrene, it still only considers planar pericondensed PAHs as precursors 
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to particle formation. Similarly, though the recent Reversible PAH Clustering (RPC) 

model from Thomson and coworkers [111], [112] has made advancements by accounting 

for the inherent reversibility of such nucleation events, the model is still limited to 

pericondensed hydrocarbon species. However, precursor species comprise a much more 

complex and intricate set of molecules than simple pericondensed PAHs [113]. Therefore, 

it is necessary to investigate their chemical pathways in order to ascertain detailed 

knowledge of the composition and morphology of the precursor species. 

 

1.3 Formation and Growth of Aromatic Precursors 

Though it is well established that aromatic gas-phase species are involved in the 

particle nucleation process, there is less certainty about the structure, chemical 

composition, size of the particle precursor species, and the kinetic pathways that form 

them. The species are known to be at least partially aromatic in nature and evolve from 

single ring aromatic species to polycyclic structures [22], [23], [25], [29], as depicted in 

Figure 1.5. The chemistry of single ring aromatics formation is well established, but their 

evolution to polycyclic aromatic structures is not fully understood [25], [26], [114]. There 

are several proposed sets of kinetic pathways that describe the evolution of particle 

precursor species in combustion conditions. 
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1.3.1 Kinetic Growth Pathways 

There are several proposed growth schemes for prescribing the manner in which 

particle precursor molecules kinetically evolve in combustion environments. Bittner and 

Howard [115] noted that in a low pressure laminar fuel-rich benzene-oxygen flame the 

concentration of high molecular weight aromatics is controlled by mole fractions of the 

low weight molecular aromatics such as benzene and toluene. They proposed three 

reaction schemes that might account for the evolution of phenyl radical to two-, three-, 

and four-ring PAHs. One such scheme is a three step process: 1) addition of acetylene to 

the radical carbon of phenyl, 2) a second bimolecular reaction where acetylene is added 

to the vinyl radical group, and 3) a unimolecular ring closure forming naphthalene, as 

depicted in Figure 1.6a. They showed that the enthalpies of reaction favor the formation 

of the stabilized naphthalene over decomposition back to phenyl and acetylene reactants. 

Another proposed reaction scheme involves the addition of vinylacetylene to a phenyl 

radical followed by a unimolecular ring closure reaction forming naphthalene. The 

enthalpies of reaction also favor the formation of the stabilized naphthalene over the 

phenyl and vinylacetylene reactants. The latter scheme yields a greater thermodynamic 

gain in enthalpy than the former, but the authors noted that the former scheme may 

account for more PAH formation than the latter because of the much greater abundance 

of acetylene in the flame. An additional scheme described pathways that created 3- and 4-

ring aromatics from the chemical growth of naphthalene via methyl and acetylene 

addition. Methyl addition to naphthalene followed by hydrogen elimination and acetylene 

addition to the resulting methylene group would lead to 3-ring PAHs. A repetition of 

these steps could form 4-ring PAHs such as pyrene.  
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A few years later Frenklach and coworkers introduced the hydrogen-abstraction-

C2H2-addition (HACA) growth scheme based on their experimental studies of the 

pyrolysis of acetylene, 1,3-butadiene, benzene, and ethylene in shock tubes [116], [117]. 

They concluded that the pathway proposed by Bittner and Howard – in which acetylene 

addition to phenyl is followed by acetylene addition to the vinyl radical chain and then 

ring closure – contributed only a minor portion of PAH growth to that pathway. Instead 

the more significant pathway proceeded as: 1) addition of acetylene to phenyl radical just 

like in the Bittner and Howard scheme, 2) ejection of H converting vinyl radical group to 

ethynyl group, 3) abstraction of a hydrogen atom on the neighboring ring carbon to the 

ethynyl chain, 4) addition of acetylene to the radical ring carbon, and 5) unimolecular 

ring closure to form naphthalene, as depicted in Figure 1.6b. This reaction pathway was 

three orders of magnitude faster than the pathway introduced by Bittner and Howard in 

the given conditions because the hydrogen abstraction rates were relatively fast in the H 

radical rich environment. The authors proposed that these pathways would continue in 

the same manner such that two-ring aromatics would grow larger and form stabilized 

three- and four-ring structures (phenanthrene and pyrene, respectively). Additionally, 

they proposed that the acetylene additions could occur on zig-zag sites and be proceeded 

by unimolecular ring closure to form five-member rings [116]. Results from atmospheric 

and higher pressure (up to 3.1 bar) shock tube pyrolysis experiments of 10 binary 

hydrocarbon mixtures (hydrogen-, allene-, and vinylacetylene-acetylene and acetylene-, 

allene-, vinylacetylene-, and 1,3-butadiene-benzene) suggested that the main factor 

affecting PAH production in the mixtures was the rate of acetylene-addition reactions to 

aromatics [118]. For example, the aromatic fuel mixtures had increased PAH production 
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because the global rate of acetylene-addition to phenyl radicals increased. Subsequent 

studies in acetylene-oxygen shock tube experiments noted that the significant single-to-

multiple-ring aromatic pathways were unchanged [119] in an oxidative environment. The 

fuel oxidation chemistry altered the initial decomposition of the fuel but did not alter the 

dominant PAH formation pathways. Frenklach, Warnatz, and Wang subsequently showed 

that the growth mechanism extends to low pressure premixed acetylene-oxygen and 

ethylene-oxygen flames [120]–[122] and that the addition of chlorine to hydrocarbon 

mixtures could increase PAH production because chlorine atoms increase the rate of 

hydrogen abstraction from aromatic carbon atoms [123], [124]. The concluding thoughts 

from Frenklach and coworkers were that: (a) the HACA scheme consisting of one 

irreversible step and two reversible steps is largely responsible for the formation and 

growth of particle precursors in pyrolysis and oxidation environments, and (b) at low 

temperatures the hydrogen abstraction reactions are rate limiting and at high temperatures 

the acetylene addition kinetics are rate limiting [40], [125]–[128]. As Dean noted, 

however, the kinetic rate coefficients for radical additions employed in the HACA 

scheme are several orders of magnitude greater than those usually observed for similar 

reactions [129]; while Wang and Frenklach later concluded that even if the rate constants 

were higher than expected, HACA pathways alone were not sufficient to explain all PAH 

growth [127], [130].  

Thus, Frenklach and coworkers proposed additional growth pathways (that were 

complementary to the tenets of hydrogen abstraction and acetylene addition at the core of 

the HACA mechanism) in which hydrogen migration reactions and ring opening 

reactions played a key role [130], [131]. As depicted in Figure 1.7, the three pathways are 
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induced or assisted by hydrogen atom migration reactions which quantum calculations of 

potential energies and transition state theory evaluation of reaction rates showed to be 

reasonable at combustion temperatures. The basics of the pathways involve hydrogen 

migration which facilitates opening of five-member rings and subsequent ring closure 

reactions to form six-member rings. A result of the reactions is increasing the amount of 

six-member rings on the edge of the PAH at the expense of five-member rings. This 

enables further growth via the HACA scheme which does not provide pathways for 

acetylene addition to five-member rings. Monte Carlo simulations to model aromatic-

edge growth using the fivesix member transformation pathways demonstrated that the 

rate limiting step is the β-scission of five-member rings after hydrogen migration [132]. 

The results of the simulations implied that five-member rings are constantly being formed 

on the graphene-like edge of PAHs, but they do not accumulate because they are 

converted to six-member rings. Further calculations of the energies of structures with 

edge five-member rings demonstrated that species where five-member rings were 

converted to six-member rings are relatively thermodynamically stable below 2500 K and 

can serve as nucleating sites for continued edge growth [133], [134]. 

Siegmann and Sattler proposed an alternative PAH growth pathway in laminar 

methane diffusion flames to explain the presence of compact pericondensed PAHs [135]. 

The growth scheme (depicted in Figure 1.8) does not involve any radical species but does 

involve acetylene addition closing bay sites on PAHs (a Diels-Alder adduct) followed by 

H2 ejection to create a pericondensed structure with one additional ring to the reactant 

PAH. The authors introduced the growth mechanism as a way to account for the 

production of compact PAHs up to 788 amu (C64H20) in the methane flame. However, 
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Mebel and coworkers noted in extensive ab initio studies that this growth scheme cannot 

compete with the HACA and ring migration schemes even at high temperatures due to 

the high reaction barriers and consequently low reaction rate constants [136]. 

Colket and Seery determined that the HACA mechanism alone was not fast 

enough to model the production of PAHs during the high temperature, high pressure 

pyrolysis of toluene in a shock tube [137]. They proposed additional PAH formation 

reactions involving odd-carbon species and resonantly stabilized benzyl radicals – the 

primary toluene radical – which proceeds as: 1) the combination of benzyl and propargyl 

radicals followed by rapid ring closure and H2 loss that leads to naphthalene formation 

(Figure 1.9a), and 2) benzyl addition to toluene followed by a series of ring opening and 

closure reactions that leads to the formation of anthracene (Figure 1.9b). These proposed 

pathways were significant to 2- and 3-ring PAH production during toluene pyrolysis 

because of the great abundance of benzyl, which was the primary species created during 

toluene decomposition in the experimental conditions. In conditions without such an 

abundance of toluene and benzyl, the pathways are not necessarily as significant to the 

production of PAHs. 

Marinov and coworkers studied PAHs in atmospheric pressure laminar premixed, 

rich, sooting, n-butane-, ethylene-, methane-, and ethane-oxygen flames and concluded 

that the rate constants for the previously proposed HACA pathways calculated from first 

principles by Wang and Frenklach [126] were not fast enough to account for the 

abundance of high-mass aromatics they observed [138]–[140]. Similar to the 

recommendations of Colket and Seery, Marinov and coworkers proposed pathways for 

the formation of polycyclic aromatics that involve the combination of radical species. 
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The authors noted that self-combination of cyclopentadienyl radicals through a series of 

ring openings and ring closures leading to the formation of naphthalene (C5H5 + C5H5  

C10H8 + 2H depicted in Figure 1.10a) accounted for the generation of polycyclic 

aromatics in great enough quantity to account for the amount of large aromatics 

generated in the flames. Quantum chemical calculations carried out to determine the 

thermochemical properties of the intermediates and transition states of the reaction 

pathway showed the feasibility of cyclopentadienyl combination is due to the low 

reaction barriers and mobility of hydrogen atoms in the cyclopentadienyl moiety [141]. 

This fused-ring PAH formation scheme was extended to phenanthrene formation via 

combination of indenyl and cyclopentadienyl radicals (C9H7 + C5H5  C14H10 + 2H in 

Figure 1.10b) because the HACA mechanism of sequential acetylene addition to 

naphthalene did not produce significant amounts of phenanthrene in the flames. However, 

the authors noted that combination of larger PAHs containing a shared C5 side structure 

was not likely to be a significant growth pathway because of the high energy barrier 

associated with destroying the aromaticity in both reactant molecules necessary to form a 

larger fused-ring structure.  

This survey yielded a considerable number of proposed kinetic growth pathways 

for PAHs in flames. However, the pathways are considered only as solutions to specific 

PAH structures observed in specific experiments rather than as part of larger set of 

kinetics. Each study focused on the ascertaining or hypothesizing about the dominant 

growth pathways that yield the formation of particular PAH species, while neglecting to 

consider how the pathway participates amongst others. 
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1.3.2 Kinetic Reaction Rate Constants 

Wang and Frenklach [126], [127] employed Rice–Ramsperger–Kassel–Marcus 

(RRKM) rate theory calculations in the first attempt to assign rate constants to HACA 

reactions based specifically on the phenyl-C2H + C2H2 reaction relevant to the growth 

scheme. The rate constant was comparable to other radical-radical reactions for smaller 

hydrocarbons in flames. However, the reaction pathway analysis neglected to consider a 

complex set of pathways also available to the reactant and intermediate species. Thus, 

Kislov, Mebel, and coworkers performed extensive density functional ab initio 

calculations in an effort to elucidate the potential energy surfaces of two-ring PAHs and 

develop reaction rate constants for relevant HACA reactions [142]–[144]. Their first 

significant contribution was to demonstrate that acetylene-addition reactions have 

relatively low barriers and high exothermicity at high temperatures, in support of HACA 

pathways [145]. Bittner-Howard and HACA pathways for naphthalene and phenanthrene 

formation were shown to have appreciably lower barriers and higher reaction rate 

constants than corresponding Diels-Adler pathways [136] at high temperatures. 

Experiments in which crossed molecular beams are used to ascertain product species in a 

high temperature chemical reactor supported the branching ratios given by the 

calculations, namely that naphthalene was formed at a 70% probability for the phenyl-

C2H2 + C2H2 reaction complex. 

Furthermore, Mebel and Kislov showed that ring fusing of cyclopentadienyl 

radicals is a favorable at temperatures below 1000K to form naphthalene, but does not 

compete with HACA pathways at higher temperatures [144]. Experiments by Popov [146] 

and ab initio and RRKM/ master equation (ME) calculations by Cavallotti and coworkers 
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[147]–[149] have provided similar results; though there is an effective route for 

naphthalene formation from cyclopentadienyl self-combination, the reaction is more 

likely to favor indene formation than naphthalene formation at higher flame temperatures. 

Indene formation was also shown to be favored in the event of propargyl and propylene 

addition to phenyl radicals in 1200-2000K conditions [143], [150]. However, Mebel and 

Klippenstein demonstrated that the conversion of indene to naphthalene was feasible 

above 1500K in environments with high methyl radical concentration [151]. 

Recently, RRKM/ME calculations from Kislov, Mebel, and Klippenstein revealed 

three noteworthy concepts: 1) in contrast to the generally accepted view assumed with the 

HACA mechanism, naphthalene + acetylene produces mostly cyclopentafused three-ring 

PAHs instead of PAHs with six-member rings only in the 1000-2000K temperature range 

[152], 2) there is likely to be a strong pressure dependence for HACA reactions below 

2000K [153], and 3) early ab initio and RRKM efforts to calculate reaction rate constants 

for HACA pathways, e.g. Wang and Frenklach [126], yield rate constants that are orders 

of magnitude different from what current calculations yield [154]. Specifically, the 

authors warn against using low pressure flame studies to validate PAH mechanisms for 

broader ranges of pressure and caution against relying on decades-old rate calculations 

because current quantum methodologies are more accurate. Accurate and reliable rate 

constants prove useful to model PAH growth in flames as a complement to experiment. 

Simulations can only be as reliable as the kinetic pathways and their rates that describe 

the expected formation and growth of PAHs. 
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1.3.3 Deterministic Modeling of PAH Formation and Growth 

Computational models of aromatic formation and growth of polycyclic aromatic 

content complement experiments and provide predictive and descriptive capabilities 

beyond those provided by experiments. The most common method to model chemical 

evolution of PAHs in flames is deterministic simulation of gas-phase chemical kinetics. 

This method involves modeling the interconnecting system of gas-phase species as a set 

of coupled ordinary differential equations. The initial, intermediate, and product species 

are required to be known as well as the chemical connectivity among all the species. The 

deterministic mechanism is developed by compiling all the relevant chemical reactions 

for each species and the associated reaction rate constants, which serve as the differential 

equations to be solved in parallel. Deterministic mechanisms are often utilized in 

combustion simulators, e.g. CHEMKIN [155], that solve the set of differential equations 

in discreet time steps to simulate the chemical evolution of gas-phase species in 

combustion environments. Deterministic mechanisms for PAH growth require describing 

the chemical evolution pathways of each structure present in the model, which is 

increasingly difficult to do when defining PAHs because of the sheer number of potential 

reaction pathways and morphologies. However, several such mechanisms have been 

developed that describe, in part, the kinetic pathways of PAH evolution. 

Wang and Frenklach [122], [127] integrated the HACA pathways into a 

deterministic kinetic mechanism and simulated the chemistry of laminar premixed low 

pressure acetylene-oxygen flames [120], [156] and atmospheric pressure ethylene-air 

flames [157]. In the mechanism HACA pathways prescribe all PAH growth starting from 

benzene up to pyrene, which is the largest simulated gas-phase PAH produced in the 
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flames – pyrene is assumed to be the species which initiates nucleation of particles. 

Reaction rate constants describing fuel decomposition and benzene formation are taken 

from those introduced by Westmoreland et al [156]. While the mass growth of PAHs up 

to pyrene was reasonably well described in the 90 torr acetylene flame by HACA 

reactions, PAHs in the atmospheric flames were less well described. The authors note the 

importance of thermochemical information (reverse reaction rate constants are not 

explicitly prescribed but calculated using the equilibrium constant) but do not suggest 

why PAHs are predicted well only in one low pressure flame. Appel et al. updated the 

mechanism by including hydrogen and ring migration pathways in addition to HACA 

pathways; they modeled the chemical growth in nine premixed laminar acetylene, 

ethylene, and ethane flames [95]. Over the range of flames modeled, there is reasonable 

(within a factor of 10) matching of the concentrations of two- to four-ring aromatics. 

However, artificial temperature adjustments were required, which suggests that some 

PAH growth pathways were unaccounted for. 

Chung and coworkers performed several investigations regarding PAH formation 

in counterflow diffusion flames with mixtures of aliphatic fuels (methane, ethane, 

ethylene, propane, and propene) and concluded that HACA pathways alone are 

insufficient in describing PAH production and that odd-carbon chemistry may play a 

significant role [158]–[161]. To that end, Chung and coworkers developed a kinetic 

mechanism that utilizes HACA pathways and the odd-carbon pathways of Colket and 

Seery for formation of PAHs up to coronene. In a set of counterflow diffusion flames 

with varying fuels (methane, ethane, ethylene, propane, n-heptane, iso-octane, and 
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toluene) the mechanism matched concentration profiles of naphthalene, phenanthrene, 

and pyrene within a factor of ten. 

Pitsch and coworkers [162] developed a deterministic mechanism that included 

PAH growth up to a five-ring aromatic structure via 4 growth schemes: 1) HACA [125], 

[136], 2) vinylacetylene addition to aromatic radicals [163], 3) odd-carbon growth via 

propargyl addition to substituted aromatics [34], [35], [138]–[140], [164], and 4) ring 

fusing of cyclopentadienyl radicals to form naphthalene and cyclopentadienyl + indene to 

form phenanthrene [164]. The mechanism was used to model laminar premixed (n-

heptane and iso-octane) and diffusion (acetylene and n-heptane) flames with an emphasis 

on validating the concentration profiles of acetylene, allene, propyne, and benzene. The 

growth schemes for PAHs are more exhaustive than previous deterministic mechanisms, 

yet the authors do not report comparisons of the model to experiments for polycyclic 

species. Even though PAHs with more than three rings are generated only with HACA 

pathways, it would be interesting if the competition amongst growth pathways affects the 

production of naphthalene, which all four growth schemes could generate. 

Westbrook and coworkers developed a deterministic mechanism to describe the 

chemistry of up to four-ring PAHs in laminar premixed atmospheric ethylene- and n-

butane-oxygen flames that utilized cyclopentadienyl ring fusing pathways and propargyl 

addition pathways [138]–[140]. Simulations of the n-butane flame under-predicted the 

amount of two- to four-ring PAHs at low heights above the burner. Additionally, the 

model predicted a lower concentration of pyrene than anthracene but the experiments 

demonstrated the opposite trend. Simulations of the ethylene flame also did not capture 

the concentration profiles of two- to four-ring aromatics within a factor of five 



19 

consistently with respect to distance from the burner. The mechanism under-predicted the 

amount of indene, naphthalene, and phenanthrene by a factor of 10-20 at low heights 

above burner. The mechanism captured the concentrations of benzene, styrene, and 

ethylbenzene much more accurately, hinting that the set of PAH growth pathways needed 

to be broadened. 

Slavinskaya and Frank developed a mechanism to describe the formation of PAHs 

up to five rings in methane and ethane flames utilizing odd-carbon chemistry of mono-

substituted aromatics and propargyl addition to form two-ring structures [165]. The 

formation of three- to five-ring structures was described through the HACA sequence. 

Indene and naphthalene were captured within a factor of 10 while larger PAHs were 

captured within a factor of five in the methane flame. The authors noted the lack of 

reliable thermo kinetic data for larger aromatic structures inhibits the construction of a 

mechanism with a low level of uncertainty. Thomson and coworkers [166], [167] 

extended the mechanism to include hydrogen and ring migration and cyclopentadienyl 

combination for modeling laminar ethylene [168] and ethane [169] diffusion flames from 

Senkan. The mechanism captured the concentration of phenanthrene, pyrene, and 

benzo(a)pyrene within a factor of five, which is considerably better than the mechanism 

from Appel et al. [95] which relies only on HACA pathways and under-predicted the 

same species by three orders of magnitude as well as the mechanism from Marinov et al. 

[140] which relies on ring fusing reactions for polyaromatic formation and under-

predicted by a similar amount.  

Violi, D’Anna, and coworkers developed a kinetic mechanism to describe the 

formation of PAHs up to three rings in premixed acetylene and ethylene flames [170], 
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[171]. The mechanism utilizes resonantly stabilized radical (RSR) pathways, namely, 

cyclopentadienyl combination and propargyl addition to benzyl to form two-ring 

aromatics and cyclopentadienyl plus indene combination as well as propargyl addition to 

form three-ring PAHs [137], [139], [172]. The authors found that in very fuel rich 

environments, the corresponding HACA model predicts similar formation rates of two- 

and three-ring aromatics, but in slightly fuel rich (equivalence ration of 1.5) conditions 

the HACA model predicts significantly slower PAH formation rates than their RSR 

model and under-predicts aromatic concentrations by more than an order of magnitude. 

This indicates that HACA pathways may control formation of polycyclic aromatics in 

very oxygen-poor environments and RSR pathways may control formation of polycyclic 

aromatics in oxidative environments [173], [174]. 

This survey of deterministic kinetic mechanisms describing the formation and 

growth of pericondensed aromatics up to five rings reveals that no one set of pathways 

accounts for PAH formation. Fuel, temperature, and environmental conditions have 

varying effects on different pathways. Furthermore, the deterministic mechanisms 

focused on the formation of aromatics with only a few rings because it is intractable and 

improbable to explicitly specify every potential reaction as PAHs grow in size and 

variability. For example, HACA pathways are extendable only to very specific larger 

PAHs (pericondensed entirely aromatic structures) and it is still unyieldingly complex 

due to the number of species possible for say, five or more rings. It is apparent, however, 

that all the chemical pathways utilized in various deterministic mechanisms are relevant 

to PAH growth in flames. Yet, it is necessary to also include other pathways that describe 

the formation of non-pericondensed structures with aliphatic content chains, and other 
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atomic constituents in order to appropriately capture the breadth of gas-phase aromatic 

content in flames. 

 

1.3.4 Stochastic Modeling of PAH Formation and Growth 

The effectiveness of using deterministic methods to model PAH kinetics is 

limited because it requires that we develop a list of reactions that describe the potential 

kinetic pathways for all species that may be present in the environment. Usually 

mechanisms are compiled by relying on chemical intuition and experience, but it is 

increasingly difficult to be confident in the mechanisms as the complexity of the system 

increases because it is increasingly difficult to explicitly specify all of the pathways. PAH 

growth is a large and complex kinetic system because of the vast set of unique isomers 

and the exponentially expanding number of species that are generated as molecule size 

increases. To counter these drawbacks, Violi and coworkers developed a code to model 

PAH growth in high temperature environments that does not rely on deterministic kinetic 

mechanisms. 

Violi and coworkers developed a unique code to model PAH growth named the 

fully integrated kinetic Monte Carlo/Molecular Dynamics (KMC/MD) which utilized 

both simulation procedures to capture the molecular level configuration of evolving 

precursors during large time scales [175], [176]. This code was updated and renamed 

atomistic model for particle inception (AMPI) and utilized to model particle growth in 

premixed aliphatic and aromatic flames [177]–[179].  
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Molecular dynamics (MD) techniques were employed to resolve the actual 

temporal dynamic resolution of a precursor molecule. Kinetic Monte Carlo (kMC) 

techniques developed by Gillespie [180], [181] were employed to account for the 

infeasibility of molecular dynamics to be employed for the milliseconds timescale of 

particle formation in flames. A simulation is not a collection of molecules that evolve 

simultaneously but rather tracking the evolution of a single target molecule. In a 

simulation, an aromatic seed molecule is placed in a gas-phase environment typical 

during combustion scenarios (as input, the local gas-phase species concentrations and 

temperature are defined). A list of possible kMC events, i.e. kinetic reactions, is provided 

as user input to the code. A kinetic reaction is not a specific reaction between two defined 

species like in a deterministic model. Instead, the target molecule is defined as 

comprising a series of sites. A site, e.g. an aromatic carbon atom, is available to a set of 

reaction types, e.g. hydrogen abstraction. A reaction is selected from the list and the site 

on the target molecule is modified according to the reaction type, e.g. carbon become 

radical after loss of hydrogen. For each kMC step the event (kinetic reaction) is randomly 

chosen according to a probability defined by the rate constant assigned to each reaction, 

i.e. the probability a reaction is selected is equal to its rate relative to the sum of the rates 

of all possible reactions. The MD module of the code serves to equilibrate the structure 

modified during the kMC step. The code alternates between kMC and MD steps and 

defines the time step size for each cycle in proportion to the sum of rates. 

A code called the Stochastic Nanoparticle Simulator (SNAPS) was developed by 

Violi that is based on the established kMC philosophy of AMPI but does not utilize the 

separate MD module for structural equilibration [182]. Rather, an open source 



23 

cheminformatics toolbox, Open Babel [183], was utilized to relax the structural 

conformations with much less computational cost than the MD module used in AMPI. 

Similar to AMPI, SNAPS requires as inputs a list of elementary chemical reaction types 

and a set of environmental conditions such as pressure, temperature, and relative 

concentrations of a select set of gas-phase compounds. Like AMPI, SNAPS utilizes kMC 

algorithms [184], [180], [181], [185] because of their computational efficiency and ability 

to model multi-scale phenomena, the latter of which allows the code to simultaneously 

resolve picosecond kinetic reactions and millisecond transport phenomena in the flame. 

SNAPS focused on elementary chemical reactions for particle precursors as seed 

molecules evolve temporally given time-dependent environmental conditions. Recent 

studies demonstrated the efficacy of SNAPS to model PAH growth in premixed flames 

and exhibited the software’s ability to describe the formation of a wide variety of 

precursor species [182], [186]. 

Kraft and coworkers developed the kinetic Monte Carlo-aromatic site model 

(KMC-ARS) in which HACA pathways are utilized to grow planar pericondensed PAHs 

using similar kMC techniques presented with AMPI [187], [188]. KMC-ARS focuses on 

defining reaction sites on the surface of PAHs – zig-zag, armchair, bay, free-edge (see 

Figure 1.11 for site descriptions) – and implementing reactions specific to each site type 

that result in adding pericondensed rings to the surface of the PAH. The code only 

accounts for the creation of five- and six-member aromatic rings. A subsequent update of 

KMC-ARS included so-called ring capping reactions in which five-member rings are 

formed on zig-zag sites that can induce curvature in the structure [189], a reaction Kislov 

and Mebel showed to be favorable at 1000-2000K temperatures [152]. Despite recent 
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updates, there still exists a lack of reactions in the modeling codes that explore more 

complex kinetic growth pathways; the set of precursor species is more involved than 

pericondensed PAHs. 

 SNAPS shows the most promise as a code to model the formation and growth of 

PAHs due to its adaptability and ability to be expanded and modified. Furthermore, as 

new kinetic pathways are introduced or kinetic rates updated, the code can be altered to 

accept the updated information. Additionally, only SNAPS is able to accommodate 

simulations as one desires more accurate and reliable modeling of complex PAH systems 

comprising structures with a wide range of sizes up to thousands of amu. SNAPS has 

shown the unique ability to predict a great variety of morphological aspects of PAHs and 

capture their atomic level fidelity. 

 

1.4 Composition of Particle Precursors 

Despite the focus on pericondensed PAHs since the introduction of Bittner-

Howard and HACA pathways, results from recent experiments suggest that the set of 

precursor species are likely not all, or even mostly, pericondensed structures. For 

example, hydrogen:carbon (H:C) ratios for measured particles [190], [191] and PAHs 

[192]–[194] fall outside the H:C band in which the those structures reside. Homann and 

coworkers noticed the H:C ratios of large PAHs (250 to 600 amu) measured in low 

pressure benzene-oxygen premixed flame were higher than expected for those composed 

of condensed six-member rings [192]; they attributed the H:C ratios to H-rich PAHs 

resulting from aliphatic content. Separate studies led by Wang, Homann, and Michelsen 
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yielded evidence that point toward the presence of aliphatic content embedded in PAH 

structures [70], [76], [193], [195], [196]. Together these strongly suggest that gas-phase 

particle precursors are not simply pericondensed aromatic structures, but rather a mix of 

aliphatic, aromatic, and unknown content. Computational studies have also contributed to 

the idea that the set of precursors are not composed exclusively of pericondensed  six-

member rings, instead suggesting an abundance of five-member rings and aliphatic side-

chains [75], [100], [182], [186], [196], [197]. Furthermore, recent evidence suggests the 

presence of oxygenated content in particles and their precursors. Studies have observed 

the presence of oxygenated content embedded in small nascent nanoparticles [72], [77], 

[78] and in precursors PAHs [68], [198].  

Oxygenated hydrocarbons produced during combustion can have a wide range of 

detrimental effects on human health, air quality, and regional and global climate. 

Oxygenated PAHs (OPAHs) are frequently found in the exhaust plumes of 

manufacturing processes, in nearby environment of combustion sources, and have been 

found in relatively high concentrations the atmosphere over various rural and 

metropolitan areas [199]–[205]. They come from a number of combustion sources [206] 

and are more mobile in the environment than PAHs due to their polarity, thus they are 

more likely to spread and dissolve into ground water [207], [208]. OPAHs are toxic, 

whether ingested or inhaled, and thus pose a considerable threat to human health [209]–

[213], and they are considered to be among the key compounds in toxicity of particulate 

matter [214]. Of particular interest are furans, which are organic compounds that contain 

five-member rings with four carbon atoms and one oxygen atom. Furans are a high 

priority carcinogenic substance [209], [215] produced during biomass burning [216]–
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[219] and combustion [220], [221]. Furan and its substituted structures have been shown 

to be kinetically linked [222], [223]. Furans released during combustion are often 

partitioned into particles and are found in ash from peat [219] and wood [217] burning 

and in secondary organic aerosols from hydrocarbon oxidation [224], [225]. Despite the 

presence of OPAHs, and specifically furans, formed during combustion, their presence in 

gas-phase precursors [68], [198], and their potential role in particle formation [72], [77], 

[78], there is no significant research into the role of oxygen in the growth mechanisms of 

particle precursors. 

  

1.4.1 Oxygenated Precursors 

Previous studies have shown that small PAHs in premixed and diffusion flames 

contain oxygenated content [68], [198] and that oxygenated species can be embedded in 

particles formed during flame synthesis [69], [76], [77], [79]–[83]. Functional groups that 

have been identified include alcohols/enols, furans, aldehydes, carbonyls, and ethers. 

Wang and coworkers detected oxygenated content in PAHs between 200 and 600 amu in 

jet fuel coflow diffusion flames [68]. Similarly, they found that there is an appreciable 

amount of ether and carbonyl content in small particles sampled in premixed ethylene-

oxygen flames with varying maximum flame temperature [76], suggesting oxygen 

pathways are important to nanoparticles formation over a broad temperature range. X-ray 

photoelectron spectroscopy techniques have been used to detect oxygen content in 

nascent particles created during operation of internal combustion engines [79]–[81]. 

Oxygen atoms bound to organic species on the particle surface have been shown to 
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greatly affect particle hygroscopicity [77] and the ability of particles to adsorb 

atmospheric water vapor and act as cloud-condensation or ice nuclei in the atmosphere. 

Particles emitted from combustors, such as diesel engines, are generally hydrophobic, and 

enhancements in hygroscopic particle emissions could have substantial indirect climate 

effects via their influence on cloud formation [19]. The effect of particulate emissions on 

cloud-nucleation is a major uncertainty in climate predictions [226]–[228]. 

Despite the recent evidence demonstrating the presence of oxygenated content in 

particles and their precursor molecules, there is not much in the way of modeling 

oxygenated PAHs. For example, of all the deterministic mechanisms that attempt to 

describe PAH growth, the current stochastic codes that model PAH growth [175]–[179], 

[182], [187]–[189], [229] or particle formation [46], [107]–[112], none account for the 

potential involvement of oxygen in the process with the exception of an updated version 

of AMPI by Chung and Violi [230]. The latter addresses the oxidation of large particles 

via ring reducing reactions; oxygen interaction results in abstraction of ring carbons and 

reduction of the size of particles. There are no pathways that create oxygenated functional 

groups like ethers and carbonyls observed in some experiments. Therefore, there is a 

need for an approach that accounts for oxygenation during the chemical growth process 

of particle precursors.  

 

1.4.2 Influence of Oxygenated Fuels on Particle Precursors 

Use of oxygenated components in fuel tends to reduce particulates in premixed 

flames by altering the flame temperatures and the combustion chemistry [19]. It has been 
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observed in many laboratory scale experiments [231]–[235] that doping hydrocarbon 

flames with ethanol decreases the amount or size of particulates produced. The reasoning 

behind this seems to be tied to the decreased production of prototypical gas-phase particle 

precursors, namely single-ring aromatics (e.g. benzene) and small hydrocarbon building 

blocks (e.g. acetylene) because it is generally acknowledged that the creation of single-

ring aromatic species is one of the rate limiting steps in PAH, and subsequently 

particulate, formation [26], [236]. Where oxygenate doping increased particulate 

production, it was proposed to be because the oxygen promoted methyl production which 

in turn promotes propargyl formation which in turn promotes benzene formation via 

propargyl self-combination reactions [31], [32], [36], [231]. What had not been 

specifically considered is that the differences in gas-phase environment are important for 

another reason: oxygenated particle precursors may spur or retard their chemical growth. 

Recent work has shown some evidence that oxygen concentrations can impact the 

volume of particulates and soot formed [237], that oxygenated fuels can alter the amount 

of particulate production [238], the chemical composition of nanoparticles [78], [239], 

and that PAHs ranging from one to several hundred atomic mass units (amu) are likely 

oxygenated in laminar premixed and counter-flow diffusion flames [240]–[243]. 

Several experiments have observed that adding excess oxygen to the flame system 

leads to an increase in particulates and soot [244]–[246]. The explanations offered in 

those works do not consider how oxygen itself could drive chemical growth, but rather 

they focus on how the excess oxygen leads to an increase in gas-phase acetylene or 

propargyl, which in turn could lead to greater particle production. However, there is a 

need to explore the effect of oxygenation and how that might spur further chemical 
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growth of particle precursors, and in turn spur the formation of particles. This dissertation 

explores for the first time the kinetic pathways in which OPAHs are generated in flames 

and how they influence the production of particles. 

 

1.5 Summary and Scope 

Characterizing the growth, composition, and morphology of PAHs is an integral 

component of understanding particle formation. The present study investigates chemical 

growth pathways of particle precursors and provides evidence for the integral role that 

oxygen chemistry plays in the evolution of PAHs and the formation of particles in 

premixed flames. Specifically, despite the presence of OPAHs and their potential 

influence on particle formation, the environment, and human health, very little is known 

about their formation mechanisms. This dissertation work utilizes computational 

techniques to characterize the formation, chemical growth, and composition of OPAHs 

working towards elucidating the key processes involved in the evolution of particle 

precursors in premixed flames. It represents an important step toward elucidating the 

morphologies and kinetic growth pathways of OPAHs in addition to ascertaining the 

effects oxygenated fuels have on particle precursors and particle formation.  

The first aim of this dissertation work was to develop kinetic pathways for 

particle precursor molecules that account for oxygen chemistry and to design a novel 

kinetic growth mechanism for particle precursors that includes the oxygen chemistry and 

conventional hydrocarbon chemistry. The mechanism comprises an intricate set of 

pathways incorporating previously proposed reaction schemes as well as those newly 



30 

proposed in this work; the pathways are described by 70 elementary oxygenation and 

oxidation reactions. Where appropriate, reaction constants from analogous reactions were 

assigned to newly proposed oxygenation reactions. Eight important reaction rate 

constants for key pathways were calculated using first principle quantum and chemical 

kinetics methodologies. Rate constants for forward and reverse reactions were assigned 

independently; 16 reaction rate constants were calculated using thermodynamic 

properties and rate constant equilibriums.  

The second aim was to modify the code base of a stochastic simulator to 

accommodate the newly designed mechanism and validate the model against 

deterministic models and experiments. The simulations conducted matched experimental 

data, e.g. mass spectra and chemical composition as determined from mass spectrometry, 

as well as deterministic simulations of small PAH profiles in premixed flames. Validation 

in a sooting benzene flame revealed that the newly designed oxygenation pathways play a 

dominant role in to the formation of large particle precursors; the results matched 

measured mass spectra profiles. Similarly, oxygenation pathways work synergistically 

with traditional hydrocarbon and HACA pathways; the pathways are intertwined and 

operate in parallel. 

The third aim involved simulating kinetic evolution of PAHs in premixed 

ethylene and acetylene flames in an effort to predict the oxygenated compounds in the 

flame and help ascertain if they are present in particulates captured and analyzed ex situ. 

Simulations predict, for the first time, an abundance of OPAHs with oxygen embedded in 

the molecules and reveal their dominant kinetic formation pathways. Several oxygenated 

functional groups, including enols and ethers, are identified as being abundant in smaller 
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molecules ranging from approximately 100 amu to 300 amu and serving as stepping 

stones to larger OPAHs up to 1000 amu that can contribute to particle formation. 

The final aim focused on investing the effects of oxygenated fuels on particle 

production in premixed flames. Oxygenation pathways prove to be the key to 

differentiating between PAH growth in ethylene flames with and without ethanol doped 

fuel. Thus, only with the new reaction mechanism can simulations capture variance in 

rates of particle precursor formation which lead to variance in particle formation rate and 

particle sizes produced in the flames. 

The major species predicted by simulations contrast with the commonly held 

assumptions of PAH growth; across aliphatic and aromatic flames and a broad range of 

C/O ratios, there is a significant presence of oxygenated compounds. Furthermore, the 

present work supports a prominent role of the HACA growth scheme while 

demonstrating the breadth of additional pathways involved in PAH evolution and 

highlighting the importance of oxygen chemistry on the evolution of particle precursors 

and impact on particle formation. This dissertation highlights previously unconsidered 

chemistry of PAHs and further informs the understanding of their growth and influence 

on particles in premixed flames, in particular that oxygen chemistry might play a 

significant role in the formation and growth of PAHs in flames. This work synthesized 

theoretical, computational, and experimental methods to motivate future investigations 

concerning the evolution of key molecular precursors and nanoparticle formation in 

combustion. 
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Figures 

 

Figure 1.1: Schematic of particulate formation in flames – from fuel and oxidizer to 

small gas-phase molecules through PAH growth to large particulates and then oxidized 

products. The flame is a premixed flame where fuel and air flow from the bottom. As the 

flow of the gas proceed up through the flame the highlighted classes of species are likely 

to be found in that order with respect to flame height. Molecules and particles not shown 

to scale. Image concept adapted from reference [39]. 
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Figure 1.2: Potential representation of a nascent ordered nanoparticle. The particle is 

held together by Van der Waals forces and is formed when PAH dimers, trimers, and 

tetramers agglomerate which generates clusters of physically bound stable PAHs. 

 

 

Figure 1.3: Potential representation of a nascent disordered nanoparticle. The particle 

contains aliphatic side-chains and several oxygenated functional groups including enols, 

furans, and peroxyls. The particle contains aliphatically-linked PAHs. The structures are 

randomly ordered and formed by processes that are not thermodynamically controlled. 

 

 

 

Figure 1.4: Representative “sandwich-style” (parallel planar PAHs whose centers of 

mass are in close proximity to each other) pyrene-pyrene dimerization: two pyrene 

monomers that are in near enough proximity to form a physical bond via Van der Waals 

attractive forces. One of the most common descriptions of particle inception includes the 
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formation of dimers like this. Dimerization of pyrene is often assumed to initiate particle 

inception despite the abundance of evidence that suggests that such a dimer is not stable 

or does not have a significant lifetime at flame temperatures. 

 

Figure 1.5: Pictorial of the formation of an oxygenated polycyclic aromatic hydrocarbon 

(OPAH) in a combustion environment. The evolution of particles and their precursors 

occurs in both time and space dependent on the bulk flow of the gas-phase environment. 
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Figure 1.6: Chemical formation schemes for the formation of naphthalene: (a) Bittner-

Howard, (b) hydrogen-abstraction-C2H2-addition (HACA). 

 

 

Figure 1.7: Hydrogen and ring migration pathways proposed by Frenklach et al. [130] 
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Figure 1.8: The Diels-Adler growth scheme proposed by Siegmann and Sattler that does 

not involve radical species. 

 

 

Figure 1.9: The resonantly stabilized radical (RSR) growth scheme proposed by Colket 

and Seery: (a) propargyl addition to benzyl yields naphthalene, (b) a growth scheme up to 

anthracene from toluene and benzyl. Ring closure reaction require hydrogen elimination. 

 

 

 

Figure 1.10: Ring fusing reactions presented by Marinov et al. in which naphthalene and 

phenanthrene are created via reactions between cyclopentadienyl and indenyl radicals. 
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Figure 1.11: Definition of a free edge site and a zig-zag site on a PAH. In SNAPS the 

carbon sites are distinguished as unique from each other for certain reaction types, e.g. 

ring closures. 
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          Chapter 2  

 

 

Methodology 

SNAPS [182] was greatly extended and improved in this work to expand its 

ability to model particle precursor growth and improve its predictive capabilities. SNAPS 

requires as inputs a set of chemical reactions, the growth/oxidation mechanism, a set of 

environmental conditions such as pressure, temperature, and concentrations of a select set 

of gas-phase compounds (obtained from modeling the flame as a laminar premixed flame 

in the CHEMKIN and PREMIX software suite [155], [247] using a deterministic kinetic 

mechanism), and a user-defined ‘seed’ molecule from which to initiate molecular 

evolution; SNAPS then simulates a single possible sequence of consecutive chemical 

reactions for that initial seed molecule. A single stochastic trajectory represents the 

potential chronological order of chemical reactions – or events in kMC algorithm terms – 

that the seed molecule could undergo while in the defined environment. Thus, a large 

ensemble of trajectories is needed in order to represent the statistically probable nature of 

particles in the flame. CHEMKIN is a deterministic differential equation solver used to 

solve complex gas-phase transport and kinetics problems. PREMIX is a code first 

developed by Reaction Design in 2000 for computing temperature and species profiles in 
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steady-state premixed laminar flames; it models finite-rate chemical kinetics and 

multicomponent molecular transport of the flame. Together with the integration solver of 

CHEMKIN, the PREMIX module processes the chemical kinetics, and transport 

properties of the simulated flame in discrete time steps.  

The SNAPS algorithm iteratively computes each successive chemical kinetic 

event with no ‘memory’ of what the previous states of the target particle were with a four 

step approach, as depicted in Figure 2.1: 1) build the list of available reactions (events) 

that can occur with an associated probability (rate) of it happening based on the 

conformation of the particle, the available reaction sites (section 2.3 contains descriptions 

of reactions sites) and the gas-phase environment; 2) select the reaction at random 

 𝑖= 𝑟(𝑟𝑥𝑛 𝑖)𝑗=1𝑛𝑟(𝑟𝑥𝑛 𝑗) ,  (1) 

𝑃(𝑟𝑥𝑛 𝑖) =  
𝑟(𝑟𝑥𝑛 𝑖)

∑ 𝑟(𝑟𝑥𝑛 𝑗)𝑛
𝑗=1

 ,  (1) 

where reaction i is part of the set of reactions j to n, the denominator of the right side of 

the equation is ktot, and n – the number of reactions possible at the given time step 

according to the available reaction sites – is less than or equal to total number of reactions 

in the mechanism; 3) test whether to accept or reject the choice by minimizing the 

structure and comparing the energy to the previous energy of the particle – if the reaction 

is rejected due to a large change in energy (indicating a reaction was implemented that 

forced the particle into an unrealistic conformation) then step 2 is repeated; 4) apply the 

changes to the particle, advance the time according to equation𝛿𝑡𝑘𝑀𝐶= 
−ln (𝑟𝑎𝑛𝑑)

𝑘𝑡𝑜𝑡
 , 

 (2) 

𝛿𝑡𝑘𝑀𝐶 =  
−ln (𝑟𝑎𝑛𝑑)

𝑘𝑡𝑜𝑡
 ,  (2) 
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where δtkMC is the time advancement in seconds and rand is a random number in the 

range (0,1], then check if the simulation should be terminated because the total time is 

greater than the specified simulation end time. An ensemble of dozens of thousands of 

individual trajectory simulations nearly describes the macroscopic evolution of particle 

precursors because, in the limit of an infinite number of trajectories the results are 

equivalent to a deterministic solution. 

Initially, the SNAPS growth mechanism consisted solely of elementary reactions 

that described the interaction of PAHs and gas-phase hydrocarbon molecules including 

growth through addition of methyl, acetylene, ethylene, ethyl, and propargyl. The HACA 

reaction mechanism [122] played the dominant role as reported in previous simulations 

[182], [186]. In addition, experimental mass spectra measured in diffusion [56], [58] and 

premixed [190], [192], [248], [249] flames exhibit dominant peaks separated by 12 or 24 

amu (the mass of one or two carbons, respectively). Though the set of hydrocarbon 

reactions composing the mechanism was adequate to describe growth in specific atomic 

increments, it was not comprehensive. Recent work has suggested the presence of oxygen 

atoms in the chemical composition of PAHs and nanoparticles [77], [78], [230]. To 

include oxygen in SNAPS for the first time in this work required developing a kinetic 

growth scheme to include the addition of oxygenated groups via interactions with, 

amongst others, gas-phase O, O2, OH, HO2, H2O2, H2O, CO, and CO2 species; 70 

reversible oxygenation/oxidation elementary reactions were implemented in the newly 

designed mechanism. Of these reactions, 80% fall into four broad categories: 

addition/removal of oxygenated groups to/from the target molecule, ether 

formation/destruction, oxygenated ring closures/openings, and oxidation. The newly 
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created pathways accounted for reactions wherein oxygen atoms can be added to 

hydrocarbon species on the edge of the molecules as well as those where hydrocarbons 

can attach to oxyradical sites present on the molecule. Present are pathways that describe 

the formation of five- and six-member rings containing one oxygen atom due to their 

favored nature because of relatively lower ring strains. This methodology, as shown in 

the schematic in Figure 2.2, provides for the development of a mechanism that allows for 

incorporation of oxygen atoms on the edges of the molecule as well as embedding 

oxygen atoms in the molecule without favoring molecular growth over molecular 

reduction in any given stochastic event. 

 

2.1 Developing Oxygenation Pathways 

Having established the lack of oxygenation kinetics in current PAH growth and 

particle formation mechanisms, the first aim was to develop and establish a set of kinetic 

pathways that more comprehensively describe the PAH growth process. This was 

accomplished by defining the classes of reactions necessary to explain the interaction of 

PAH evolution and oxygen chemistry. The main classes of reactions are: (1) addition of 

oxygen atoms via bimolecular reactions with the set of oxygenated gas-phase species that 

are most prevalent during combustion, namely molecular oxygen, atomic oxygen radical, 

hydroxyl radical, water, hydroperoxyl radical , hydrogen peroxide, carbon  monoxide, 

and carbon dioxide; (2) the removal, abstraction, or ejection of oxygenated functional 

groups, namely oxyradicals, alcohols, enols, peroxyls, hydroperoxyls, carbonyls, etc.; (3) 

the removal of carbon-oxygen groups like carboxylic acids, aldehydes, ketones, ketenes, 
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ethers, esters, carbon dioxide and carbon monoxide; (4) saturation of oxyradicals and 

peroxy radical groups with bimolecular addition of hydrogen from the set of hydrogen 

containing species, i.e. hydrogen radical, molecular hydrogen, water, hydroxyl radical, 

hydroperoxyl radical, hydrogen peroxide, methyl, methane, ethylene, ethane, etc; (5) the 

bimolecular or unimolecular rejection or removal of hydrogen atoms from oxygen atoms 

thereby creating active oxygen sites; (6) the bimolecular addition of carbonated and 

oxygenated species to oxy radicals, e.g. methyl radical, acetylene, ethylene, ethyl radical, 

propargyl radical, benzene, phenyl, methylene radical, ethynyl radical, carbon monoxide, 

hydroxyl, hydroperoxyl radical etc.; (7) hydrogen transfers between two oxygen atoms as 

well as between an oxygen and carbon atom; (8) isomerizations of oxygenated groups, 

e.g. keto-enol tautomerization, aldehyde-ketone isomerization; (9) furan (5 membered 

ring with 4 carbon atoms and 1 oxygen atom) and pyran (6 membered ring with 5 carbon 

atoms and 1 oxygen atom) formations; (10) generic carbon-oxygen bond fragmentation; 

(11) pyranic to furanic ring manipulation in the style of ring migration present in the 

HACA mechanism; and (12) oxidation chemistry, namely the ejection or removal of 

carbon monoxide, carbon dioxide, molecular oxygen, oxyradicals, hydroxyl groups, and 

hydroperoxyl groups that result in reducing the size of rings of the particle. Every 

reaction implemented has an exact reverse reaction to ensure the reversibility of the 

evolution scheme. Table 2.1 lists the broad types of reaction classes that were 

implemented in the reaction scheme. The new intricate reaction scheme accounting for 

the oxygenation of precursors necessitated a term to encompass all structures, regardless 

of whether or not they are oxygenated, high mass aromatic molecules (HMAMs). In 

Table 2.2 is a brief example of specific reactions that fall into each class of reactions. The 
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nomenclature of the reaction descriptions are such that Car(*) is an aromatic carbon 

radical (an active site) and Car(OH) represents a site where a hydroxyl group is bonded to 

an aromatic carbon (forming an enol). The set of newly proposed kinetic reactions forms 

the set of reaction pathways that will compose the PAH growth scheme. The main 

reaction pathways consist of adding oxygen atoms to PAHs (creating OPAHs), creation 

of active oxygen sites similar to active carbon sites, continued growth upon those active 

oxygen sites, embedding oxygen atoms into the core of the structure via ether formations 

and the construction of oxygenated rings, ring manipulation to promote growth, and 

oxidation to promote reduction of the PAH. Figure 2.3 demonstrates a few key 

oxygenation reaction classes that are significant to the performance of the model. The 

main reaction classes are exemplified with specific example reactions that represent the 

oxygen addition utility of active oxygen sites, embedding oxygen into the core of the 

PAH, creating stable oxygenated groups, and oxidation of the PAH. Figure 2.4 

demonstrates the types of oxygenated functional groups that are constructed during the 

evolution of the particle precursor species in the model.  

 

2.1.1 Reaction Rate Constant Development 

After designing the oxygenation and oxidation reaction schemes I proceeded to 

develop specific reactions that would satisfy the chemical pathways; this also consisted of 

assigning reaction rate coefficients to each reaction type in the mechanism. Once a type 

of reaction was identified and included in the model – for example, a bimolecular 

reaction with gas-phase hydroxyl radical that results in the hydroxyl being added to an 
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aromatic free edge carbon radical, as depicted in Figure 2.5 – a reaction rate coefficient 

needed to be assigned. Note that the same reaction is applied to a given type of reaction 

site, in this example any aromatic free edge carbon radical that resides in a 6-membered 

carbon ring, and thus one rate coefficient is applied when the algorithm executes the 

event no matter the size of the PAH or the morphologic aspects in other parts of the 

molecule. This aspect of the model makes it more realistic to describe the interconnected 

network of growth pathways without needing tens of thousands of reaction parameters in 

the mechanism, but the drawback is the use of one rate where, in reality, the rates are not 

identical for all PAHs. For example a single ring aromatic like phenyl has a different rate 

of hydroxyl addition than a larger aromatic like a pyrene radical. Thus it is important to 

carefully choose the value of the rate coefficient (i.e. the Arrhenius parameters) in order 

to best represent the range of reactant structures and corresponding reaction rates 

associated with each type of reaction site.  

For example, for this reaction type I used the rate coefficient calculated with 

RRKM/ME theory for the naphthyl+O2naphthyl-peroxy reaction [250] rather than a 

rate for the similar phenyl+O2phenyl-peroxy reaction because the former will be more 

realistic for the majority of hydroxyl addition reactions in SNAPS trajectories. That is, 

the vast majority of the times this reaction will be called by the code the target molecule 

will have multiple rings, thus the naphthyl+O2 rate constant is more appropriate in the 

SNAPS mechanism than the phenyl+O2 rate. Of course, the rate constant used is not 

exactly accurate for every hydroxyl addition reaction that can occur in a simulation due to 

the different structures and sizes of the particles.  
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There certainly are implications with the approach to use one rate constant for a 

large number of similar reactions. The cost of a simpler mechanism that does not rely as 

heavily on chemical intuition and enables the code to explore unconventional chemical 

structures is paid by sacrificing some accuracy. If each reaction were explicitly described 

as in deterministic models, rate constants would vary between similar reactions like 

phenyl+O2 vs. naphtyl+O2. It would be difficult to quantify the impact of the approach 

used here because a corresponding deterministic mechanism to compare to would be 

impossibly large and complex to build. However, some tests are still possible, such as in 

this case, the naphthyl+O2 rate coefficient as calculated by Kislov et al. [250] at 1 atm 

and 2000 K is 10.1% faster than the phenyl+O2 rate coefficient – 2.29*1023 cm3mol-1sec-1 

compared to 2.08*1023 cm3mol-1sec-1, respectively. As the size of the structure gets larger, 

the rate coefficient for O2 addition to increases. Thus as target PAHs increase in size, the 

simulation under-predicts the oxygenation rate. However, this drawback is more than 

offset by the unique ability of the model to explore limitless configurations and provide 

insight into the dominant growth pathways and key compositions and conformations of 

PAHs. For the sake of estimation, let us assume the error in mass growth associated with 

this approach can be very roughly estimated by assuming all addition reaction rate 

constants increase 10% for each 64% increase in mass of the PAH (the ratio of rate 

constant increase and mass increase associated with phenyl and naphthyl reactants 

mentioned discussed above). Thus, as an example, the O2 addition reaction rate constant 

to a PAH with mass 600 amu would be approximately 104% greater than the phenyl + O2 

rate constant, or roughly twice as much. Therefore SNAPS would be using a rate constant 
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roughly half of what is expected for an O2 addition to a PAH of 600 amu. The impact of 

this is that SNAPS underestimates the rate of mass growth of large PAHs in flames. 

The reversibility of all the elementary reactions implemented in the reaction 

scheme is a key aspect of the mechanism. For new pathways developed that had 

applicable forward and reverse reaction rate constants previously reported, those were 

used in the model. However, for reactions in which a rate constant was reported for one 

direction only, it was necessary to calculate the rate constant for the opposite direction 

using the thermochemical information of the reactants and products of the reaction. In 

these cases CHEMRev software [251] was used to aid in calculating the backward rate 

constant for a given explicit reaction and forward rate constant. I compiled the 

thermodynamic NASA polynomials of the reactants and products to calculate the 

enthalpy and entropy of the reaction, which are then used to ascertain the Gibbs energy of 

the reaction, which is used to calculate the equilibrium constant; the reverse rate constant 

is directly proportional to the forward rate constant and inversely proportional to the 

equilibrium constant. CHEMRev aids in the process by calculating the constants at many 

temperatures and then fitting modified Arrhenius parameters to the set of reverse rate 

constants. The set of equations used to calculate the reverse rate constant given the 

NASA polynomials for each species in a reaction are listed in Table 2.3. Calculating 

reverse rate constants from the thermodynamic data of the reaction and the forward 

ensured that the mechanisms maintained thermodynamic consistency. Because the rate 

constants are general and not specific to each reaction, it was important that paired 

reactions had rate constants that were in equilibrium. Therefore, there would be no rate 
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imbalance that would prevent an ensemble of simulations from approaching the 

thermodynamic limit. 

The set of reaction types and pathways employed in the kinetic PAH growth 

model are listed in Table 2.4 and categorized according to class, e.g. hydrogen-

abstraction, saturation, fragment addition or removal, isomerizations, oxidation, ring 

formations, etc. The table is color-organized by class of reaction and within each class the 

reactions are sorted in descending order of the reaction rate evaluated at 1750K. The 

reactions are sorted in descending order to easily capture the comparative value of 

competing reactions. 1750K was chosen to represent a relatively ubiquitous temperature 

in many combustion scenarios. Table 2.4 provides Arrhenius parameters for the reaction 

rate coefficients for all oxygenation reactions created in this work. Similarly, Table 2.5 

comprises a list of reaction pictorials that visualize the reaction concepts for all new 

pathways categorized by class of reaction. The pictorials only show the part of the PAH 

that will undergo changes, the dashed lines signify that the PAH can be much larger and 

of any composition and overall structure as long as it contains the substructure 

highlighted in the pictorial. The appendix has corresponding tables that list all the 

reactions in the new mechanism and shows how the oxygenation and hydrocarbon 

pathways are interconnected. 

One aspect of designing a more comprehensive PAH growth model was to 

compare the rate coefficients of oxygenation pathways to traditional hydrocarbon 

pathways. Figure 2.6 compares the rate coefficients of the entire set of bimolecular 

reactions at 1750K – the blue bars are hydrocarbon and the red oxygenation reactions. 

1750K is chosen because temperatures within ±200 K of that temperature often are 
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represented in SNAPS trajectories of premixed flames. Figure 2.7 is the equivalent for 

the set of unimolecular reactions. It is noteworthy that the magnitudes of the rate 

constants for oxygenation kinetics are similar to non-oxygenation kinetics. As will be 

discussed in subsequent chapters, this is an important aspect of the model because it rules 

out the possibility that inappropriately fast oxygen chemistry could be the cause for the 

finding that oxygenation pathways are key determinants of the growth pattern of PAHs. 

That is, the significant amount of oxygenation taking place during PAH growth is not 

caused by dominating kinetics of the oxygenation pathways. 

 

2.2 Designing a Synergistic Growth Mechanism 

It is important to note that the newly implemented oxygenation pathways interact 

in a synergistic manner with the traditional hydrocarbon pathways. A key to creating a 

chemical growth mechanism that describes the kinetic evolution of particle precursors 

was to integrate the oxygenation pathways with the previous hydrocarbon pathways such 

that the sets of pathways work in parallel; specifically, the oxygenation pathways work in 

tandem with the previous set rather than independently. This led to a growth scheme 

where oxygenation reactions compete with but do not dominate or exclude hydrocarbon 

reactions. When the new reactions compete with pervious reactions it creates a more 

comprehensive set of pathways that enables the particles to explore a much more vast set 

of compositions and conformations than any other model. Figure 2.8 displays a 

representative example of HACA and oxygenation pathways operating in parallel to 

create a web of pathways that can explore compositions and conformations not 
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considered by the user, thus eliminating much of the chemical intuition necessary to 

create a deterministic mechanism attempting to describe the evolution of PAHs. In Figure 

2.8 it is clear that the growth trajectory of the end PAH could comprise hydrocarbon and 

oxygenation reactions in several permutations. Additionally, the oxygenation pathways 

neither stunt nor disrupt the hydrocarbon pathways; they provide added avenues of 

hydrocarbon growth on top of active oxygen sites. This is a novel aspect of the 

mechanism; the scheme not incorporates the philosophy of conventional pathways with 

oxygenation pathways to enable the formation of OPAHs not previously considered in 

growth models. 

The new kinetic growth scheme is a much more comprehensive mechanism to 

describe PAH growth than others previously proposed. One of the benefits of this is the 

introduction of so many new pathways, molecular configurations, and compositions that 

can be explored. For example, consider the growth of a two-ringed PAH to a three-ringed 

PAH, and let neither structure contain any side chains. Given a hydrocarbon-only model 

there are two main two-ringed PAH structures, indene and naphthalene. If we say 

naphthalene is the initial structure, then there are only a couple pathways that would 

describe the growth to a three-ringed PAH structure with no side-chains (where said 

structure maintains the two-ringed structure of naphthalene), of which there are six 

possible given the hydrocarbon-only growth scheme like HACA. Figure 2.9a shows those 

pathways and structures and is referenced here when discussing the comparison with the 

oxygenation/hydrocarbon model. In the set of pathways shown in Figure 2.9b the 

oxygenation scheme works synergistically with hydrocarbon growth scheme and leads to 

many multiples of potential growth pathways from naphthalene to a three-ringed 
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structure. In the new model these pathways lead to one of the 15 possible configurations 

in which the original naphthalene backbone structure is not altered and the third ring is 

oxygenated. That plus the same six possible hydrocarbon configurations possible in the 

HACA model are 21 potential structures – all assuming the original naphthalene structure 

is not altered during the process of forming a three-ringed structure. For the purposes of 

clarification Figure 2.9 has been simplified, only the pathways that are initiated with the 

addition of carbon or oxygen to the zig-zag carbon are displayed. The oxygenation 

scheme not only covers all the pathways present in the hydrocarbon-only model but it 

layers oxygen chemistry on top, weaves oxygen reactions into the hydrocarbon pathways, 

and yields an intricate interaction of the two sets. The last level of reactions shown in 

Figure 2.9b is the oxidation step in which furanic and pyranic rings are converted to five-

member and six-member aromatic rings which provides a mechanism to eliminate 

embedded oxygen atoms from the PAH and nanoparticles structures. Not only are there 

many more pathways, but the species are related by one simple oxidation step in the more 

comprehensive oxygen/hydrocarbon growth mechanism. In the example in Figure 2.9 

there are numerous pathways for each end product (three-ringed, no side-chain structure 

with a naphthalene backbone), and there are six times as many products. Those 

multiplicative ratios increase as the scope of the pathways is broadened, such that there 

are thousands of additional pathways in the mechanism that yield the same hydrocarbon 

species, as well as the set of oxygenated structures not possible in traditional growth 

schemes. 

The stochastic nature of the code enables an ensemble of trajectories to explore 

the vast array of pathways and configurations that could not be explored in a 
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deterministic code because of the sheer number of reactions that would be needed as well 

as the immense chemical intuition required to design a mechanism that would explore all 

the configurations. The ability of the model to predict species not previously considered 

is shown in subsequent chapters. The growth pathways and kinetics were in part validated 

by comparing model predictions to experiments – species detected in experimental 

flames included key oxygenated and non-oxygenated species that the model predicted 

would be present. 

 

2.3 Reaction Sites Description 

One of the key features of the SNAPS code is the manner in which reactions are 

defined. Rather than define the entirety of a reactant(s) species and the resulting product(s) 

species as is traditional in deterministic kinetic mechanisms, the code defines a reaction 

site on the species. Reaction sites are specified in terms of properties including the atom 

type (e.g., aromatic carbon, aliphatic carbon, saturated oxygen, oxyradical), the bond type, 

and molecular connectivity (e.g., membership in ring(s) or a specific functional group). 

Reactions are defined in terms of these reaction sites and corresponding kinetic rate 

constants. As a clarifying example let us consider a bimolecular reaction between a 

phenyl radical (our target molecule) and a gas-phase hydroxyl radical resulting in a single 

product, phenol. In a traditional deterministic mechanism this exact reaction would be 

defined as C6H5+OHC6H5OH. Here the exact species are defined for all reactants and 

products. As a second example consider a bimolecular reaction between a naphthyl 

radical (our target molecule) and a gas-phase hydroxyl radical resulting in a single 



52 

product, naphthol. In a traditional deterministic mechanism this exact reaction would be 

defined as C10H7+OHC10H7OH. Again the exact species are defined for all reactants 

and products; thus for these two reactions there are five explicitly defined species.  

In the model created in this work the reaction site definitions are handled 

differently. For the first example the target phenyl molecule would react with the gas-

phase hydroxyl to form phenol, however the methodology doesn’t define the reactant 

species as C6H5 but rather just notes the presence of a free edge aromatic carbon radical 

that is a constituent of a six-member carbon ring and is an active site available to bond 

with a gas-phase species in a bimolecular reaction. The hydroxyl is then attached to the 

active site. Using this reaction site definition enables the user to define the reaction in the 

second aforementioned example with the same reaction site – that is an active carbon site 

that is a member of an aromatic ring – even though the reactant species are different 

molecules. Note that many reaction sites are present and defined on a target molecule. 

The list of available events (reactions) that could possibly occur are those for which there 

is a reaction site defined that matches the expected reaction site of the reaction. For 

example in the case of the naphthyl radical, in addition to the hydroxyl addition reaction 

which occurred, there was a possibility that an oxidation reaction could have occurred. 

This reaction requires the defined reaction site of a six-member carbon ring with a radical 

in which gas-phase oxygen can attack and strip off a carbon in the ring leaving a five-

member ring. Thus, the hydroxyl addition reaction and oxidation reaction were 

competing with each other. 

Figure 2.5 portrays these two example reactions with blue highlights that are the 

defined reaction site (a ring of six aromatic carbons where a free edge carbon is 



53 

unsaturated). The two reactant species have the same reaction site which is available for 

the same hydroxyl addition reaction. In the figure the dashed lines signal that anything 

can be bonded to those atoms; thus no matter how large a species is, if there is an 

aromatic ring on the edge of it the model will identify the radical carbon among the six 

carbons. A second example is depicted in Figure 2.10 where the reaction type is the 

closure of a four carbon, one oxygen ring on a zig-zag site. There are two distinct reactant 

species of different sizes, compositions, and overall structure, but the zig-zag site with an 

oxygenated side chain is common to both reactants; therefore the same reaction site is 

defined (in blue) on both reactants. A set of atoms in the highlighted configuration, 

namely, the three carbons of the zig-zag site and the –OC* chain are the defined reaction 

site for a furanic ring closure. Thus the reaction is executed the same way with both 

reactant species and only one reaction site need be defined. Again the structures can be of 

any size and conformation as long as they have the set of atoms at the edge of the 

molecule that fit the reaction site defined in blue in the figure. Using this type of site 

definition means I have to define one type of reaction for an unlimited number of 

conformations. There is one reaction in the code that can apply to any PAH which 

eliminates the need to design thousands of similar reactions with different specific 

reactant conformations. This is why a target molecule can explore a vast number of 

compositions and conformations and the amount of chemical intuition needed is reduced.  

Figure 2.11 provides a target molecule with several types of reaction sites that the 

algorithm would recognize and use to define the set of potential reactions that are 

possible given the configuration. The blue circles on saturated carbons indicate those 

carbons are available for hydrogen abstraction/removal; dark blue are aromatic and light 
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blue are aliphatic. The reaction sites distinguish between aromatic and aliphatic carbons 

because the rate coefficients for abstraction/removal reactions are significantly different. 

That is the rate of abstraction via interaction with gas-phase OH is appreciably different 

for an aromatic and aliphatic carbon and thus the site definitions are distinct. Additionally, 

the sites distinguish between types of carbon (primary, secondary, tertiary) for similar 

reasons. The red circles in Figure 2.11 highlight the radicals on the target molecule to 

which interactions with gas-phase species could result in saturation or other addition. The 

lower left is an oxyradical and has its set of reactions and accompanying rate coefficients 

very distinct from a carbon radical like in the top right. Again the reaction scheme 

distinguishes between aromatic and aliphatic carbons and amongst types of aliphatic 

carbons. The green circles are sites that are defined as available for ring opening 

reactions. At the top the reaction site would be a set of five carbons forming a ring at a 

zig-zag site. The highlighted ring on the bottom of the molecule is a pyran group whose 

reaction site is defined appropriately to distinguish it from other furan rings and carbon 

rings. Finally, the purple oval highlights a neighboring set of six carbon atoms that are 

available for a ring closing reaction. The last atom of the side-chain would form a bond 

with the ring atom to from a six-member aromatic ring. The molecule in Figure 2.11 

represents a possible step in the growth trajectory of a PAH in SNAPS. For any given 

structure there are several types of reaction sites which are available to undergo a reaction 

of some type. There are usually several reactions that use the same reaction site, e.g. 

hydrogen abstraction could be carried out by one of several gas-phase species or one of 

several species could be absorbed onto a radical site. Thus at each step in the algorithm 

the molecule will change according to the possibilities given its current conformation. 
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The exact reaction that is executed in the code algorithm is randomly chosen based on a 

weighted probability of the reaction rate for the given conditions (temperature, pressure, 

concentration of gas-phase species in the case of bimolecular reactions. 

 

2.4 SNAPS team 

SNAPS is a collaborative code developed under the supervision of principle 

investigator Prof. Angela Violi at the University of Michigan. Principle authors and 

developers of the code are Jason Lai (2011-2014), Paolo Elvati (2011-2014), and this 

author (2014-2017). Table 2.6 lists descriptions of the roles of each author in the process 

of creating and maintaining the code. 

 

2.5 Summary 

The design, implementation, evaluation, validation, and results produced with the 

current work represent a significant advancement in the understanding of the formation 

and precursor growth mechanisms of combustion-generated particles. This work 

produced the first nanoparticles precursor chemical growth mechanism consisting of 

oxygenation pathways and is both novel and noteworthy because the mechanism includes 

the potential formation of oxygenated structures. The methodology generated a set of 

chemical pathways that account for the addition of oxygen onto PAHs structures, the 

formation of stable oxygenated structures, the embedding of oxygen into the core of the 

structures, and the oxidation of OPAHs and PAHs. A new set of pathways, listed in Table 
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2.4 and Table 2.5, created and implemented into a novel PAH reaction mechanism are 

weaved with conventional hydrocarbon pathways in a manner such that simulations can 

model particle precursors more comprehensively. The software SNAPS was appreciably 

modified in order to accommodate the novel reaction scheme developed and to account 

for the formation of complex structures, including OPAHs. The new code and kinetic 

scheme was utilized to model the evolution of particle precursors in premixed flames. 

The impact of the studies upon particle formation kinetics is considerable.  

 

2.5.1 Contributions 

 Recognized that oxygen chemistry is a major missing aspect of previous 

investigations into the production and growth of particle precursors in high 

temperature combustion environments 

 Proposed novel kinetic pathways that might be relevant to PAH production in 

premixed flames in which oxygen plays a role 

 Identified kinetic reactions relevant to PAH-oxygenate interaction as well as 

OPAH interactions with gas-phase environment typical of flames 

 Evaluated kinetic rates known in literature to determine trustworthiness and 

reliability based on a comparisons where available and repeatability of 

experiments 

 Determined with extensive benchmark testing the need for more accurate and 

reliable kinetic rates for the adsorption of hydrocarbon molecules onto oxyradical 

sites 
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 Used first principle techniques to generate energy surface of oxyradical + 

acetylene complex 

 Use master equation techniques to compute kinetic reaction rates of the 

oxyradical + acetylene complex using the thermochemical data generated from ab 

initio calculations 

 Designed and developed a novel kinetic mechanism describing detailed evolution 

pathways of PAHs and OPAHs in flames, and wrote it to be compatible with 

SNAPs software 

 Extended, modified, and re-wrote SNAPS code to enable over 70 new elementary 

reactions, including those that oxygenate PAHs and form stable OPAHs 

 All the work presented in this chapter is the sole work of this author 
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Tables 

Table 2.1: The main classes of reaction pathways that the oxygenation kinetic growth 

mechanism comprises. 

Number Reaction class 

A Addition of oxygen atoms 

B Removal of oxygenated functional groups 

C Ejection of carbon-oxygen compounds 

D Saturation of active oxygen sties 

E Creation of oxyradicals 

F Addition of carbonated species to active oxygen sites 

G Hydrogen transfers between oxygen-oxygen and oxygen-carbon 

H Isomerization of oxygenated functional groups 

I Furan and pyran formation 

J Generic carbon-oxygen bond fragmentation 

K Oxygenated ring migration 

L Oxidation reactions 

 

 

Table 2.2: Example reactions from each major class of oxygenation pathways in the 

SNAPS mechanism. (g) signifies a gas-phase molecule interacting with a HMAM, Car 

represents an aromatic carbon on the HMAM, Cal represents and aliphatic carbon on the 

HMAM, C with no subscript represents either type of carbon on the HMAM, X(Y) 

implies that atom(s) Y is bonded to atom X on the HMAM, + signifies that the rate was 

calculated from the forward rate using standard thermodynamic properties to calculate 

the equilibrium constant, and * implies a radical or active site. Units for pre-exponential 

factor A are s-1 for unimolecular reactions and cm3*s-1*mol-1 for bimolecular reactions, 

units for Activation Energy (Ea) are kcal*mol-1. 

Class Example reaction A N Ea Ref. 

a O(g) + 𝐶𝑎𝑟  𝐶𝑎𝑟(O) 7.06×104 1.03 –6.96 [230] 

b 𝐶𝑎𝑟(O)  O(g) + 𝐶𝑎𝑟 6.09 ×109 0.10 72.77 [230]+ 

c OH(g) + 𝐶𝑎𝑟(O*)  𝐶𝑎𝑟(*) + HO2 5.23 ×1016 -0.66 62.35 [245]+ 

d OH(g) + 𝐶𝑎𝑟(*) Car(OH) 6.50×1014 -0.85 -2.73 [252] 

e O2(g) + C(*) 𝐶𝑎𝑟 (O*) + O(g) 2.60×1013 0.00 6.10 [252] 

f O(g) + 𝐶𝑎𝑟(O*)  𝐶𝑎𝑟(*) + O2(g) 2.21×1017 -0.96 15.0 [230]+ 

g H(g) + 𝐶𝑎𝑟(O)   𝐶𝑎𝑟(OH) 2.50×1014 0.00 0.00 [252] 

h H(g) + 𝐶𝑎𝑟(O)   𝐶𝑎𝑟(OH) 3.47×1029 -4.30 102.3 [253] 

i 𝐶𝑎𝑟(OH)  H(g) + 𝐶𝑎𝑟(O) 8.95×1031 -4.71 98.35 [253]+ 

j CH3(g) + 𝐶𝑎𝑟 (O)  𝐶𝑎𝑟 (OCH3) 1.21×1013 0.0 0.00 [230] 

k C2H2(g) + C(O)  C(OC2H2) 3.20×1011 0.00 0.20 [254] 

l 𝐶𝑎𝑟 (OCH3)  CH3(g) + 𝐶𝑎𝑟 (O) 1.21×1013 0.0 0.00 [230]+ 
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m C4O(*)  C4O + H*(g) 2.65×1013 0.15 17.36 [241] 

n C4O(*)  C4O + H*(g) 2.90×107 1.70 8.16 [241] 

o C5O  C5(*) + CO(g) 3.15×107 0.00 0.00 [250] 

 

 

Table 2.3: The set of equations used to calculate the reverse rate constant given the 

forward constant, temperature, and NASA polynomials for each species in the reaction. 

This method was used several times at varying temperatures to calculate several reverse 

rates and then modified Arrhenius parameters were fit to the rates to derive parameters 

used in the SNAPS mechanism for reach reverse reaction. Note that coefficients {a1…a7} 

are the appropriate coefficients from the NASA polynomial table for that particular 

species for the temperature at which the enthalpy and entropy are being evaluated. 

𝑘𝑟 =
𝑘𝑓

𝐾𝑒𝑞
 (1) 

𝐾𝑒𝑞 =  𝑒
−𝛥𝐺𝑟𝑥𝑛

𝑅𝑇  (2) 

𝛥𝐺𝑟𝑥𝑛 = 𝛥𝐻𝑟𝑥𝑛 − 𝑇𝛥𝑆𝑟𝑥𝑛 (3) 

𝛥𝐻𝑟𝑥𝑛 = 𝐻𝑟𝑥𝑛(𝑇) −  𝐻𝑟𝑥𝑛(298𝐾) (4) 

𝛥𝑆𝑟𝑥𝑛 = 𝑆𝑟𝑥𝑛(𝑇) −  𝑆𝑟𝑥𝑛(298𝐾) (5) 

𝐻𝑟𝑥𝑛(𝑇) = 𝐻𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠(𝑇) −  𝐻𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠(𝑇) (6) 

𝑆𝑟𝑥𝑛(𝑇) = 𝑆𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠(𝑇) −  𝑆𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠(𝑇) (7) 

𝐻𝑟𝑥𝑛(298𝐾) = 𝐻𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠(298𝐾) −  𝐻𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠(298𝐾) (8) 

𝑆𝑟𝑥𝑛(298𝐾) = 𝑆𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠(298𝐾) −  𝑆𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠(298𝐾) (9) 

𝐻𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑇) = 𝑅(
𝑎1

1
𝑇1+

𝑎2

2
𝑇2+

𝑎3

3
𝑇3+

𝑎4

4
𝑇4+

𝑎5

5
𝑇5+𝑎6) (10) 

𝑆𝑠𝑝𝑒𝑐𝑖𝑒𝑠(𝑇) = 𝑅(𝑎1 ln(𝑇) +
𝑎2

1
𝑇1+

𝑎3

2
𝑇2+

𝑎4

3
𝑇3+

𝑎5

4
𝑇4+𝑎7) (11) 

 

 

Table 2.4: List of all new oxygenation reactions in the mechanism. A listing of all 

reactions demonstrating how the oxygenation pathways are weaved into hydrocarbon 

pathways is give in Table A.6.1. Reactions are organized by class (color). The classes of 

reactions (in order top to bottom): light red are hydrogen removal/abstraction reactions; 

dark red are hydrogen addition reactions; dark orange are hydrogen transfer reactions; 

dark blue are fragment addition reactions; light blue are fragment removal/abstraction 

reactions; light green are ring closure reactions; dark green are ring opening reactions; tan 

are isomerization reactions; dark tan are oxidation reactions. Within each class (color) the 

reactions are ordered in descending reaction rate coefficient as evaluated at 1750 K (1750 

K chosen to represent a median combustion temperature for a broad range of flame 

types/conditions). Notations for the “Reaction Description” column: (g) represents gas-

phase molecule interacting with HMAM, Car represents and aromatic carbon on the 

HMAM, Cal represents and aliphatic carbon on the HMAM, C with no subscript 
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represents either type of carbon on the HMAM, X(Y) implies that atom(s) Y is bonded to 

atom X on the HMAM. Units for the pre-exponential factor (“A” column) are s-1 for 

unimolecular reactions and cm3*s-1*mol-1 for bimolecular reactions. Units for the 

activation energy (“Ea” column) are kcal/mol. PW stands for present work, Eq is used to 

signify that the rate constant was calculated in this work using thermodynamic properties 

to obtain the equilibrium constant. 

Rxn A n Ea Reaction type Description order Source 

HAB1 6.0000E+14 0.000 0.000 C2H3(g) + Car(-O-H) --> Car(-O*) + C2H4(g) bi [252] 

HAB2 2.9500E+06 2.000 -1.312 OH*(g) + Car(-O-H) --> Car(-O*) + H2O(g) bi [230] 

HAB3 1.2000E+14 0.000 12.400 H*(g) + Car(-O-H) --> Car(-O*) + H2(g) bi [252] 

HAB4 2.8100E+13 0.000 7.532 O*(g) + Car(-O-H) --> Car(-O*) + OH(g) bi [230] 

HAB6 4.9000E+12 0.000 4.400 C6H5(g) + Car(-O-H) --> Car(-O*) + C6H6(g) bi [252] 

HAB7 1.0000E+12 0.000 1.000 HO2(g) + Car(-O-H) --> Car(*) + H2O2(g) bi [252] 

HAB10 1.0000E+13 0.000 38.000 O2(g) + Car(-O-H) --> Car(*) + HO2(g) bi [252] 

HAB12 6.4450E+16 -0.414 88.127 Car(-O-H) --> H*(g) + Car(-O*) uni Eq 

HAB13 8.9460E+31 -4.717 98.357 Cal(-O-H) --> H*(g) + Cal(-O*) uni Eq 

HAD1 2.5000E+14 0.000 0.000 H*(g) + Car(-O*) --> Car(-O-H) bi [252] 

HAD2 3.4700E+29 -4.303 10.230 H*(g) + Cal(-O*) --> Cal(-O-H) bi [252] 

HT5 1.2200E+04 1.000 8.007 Car(-O*) + Car(-H) --> Car(-O-H) + Car(*) uni [255] 

HT6 3.2200E+03 0.927 7.384 Car(-O-H) + Car(*) --> Car(-O*) + Car(-H) uni Eq 

FA2 5.0000E+13 0.000 0.000 OH*(g) + Car(*) --> Car(-O*) + H*(g) bi [32] 

FA3 3.0000E+13 0.000 0.000 HO2(g) + Car(*) --> Car(-O*) + OH*(g) bi [252] 

FA4 6.3000E+29 -4.690 11.650 HO2(g) + Cal(*) --> Cal(-O*) + OH*(g) bi [252] 

FA5 1.2100E+13 0.000 0.000 CH3*(g) + Car(-O*) --> Car(-O-CH3) bi [256] 

FA6 1.2100E+13 0.000 0.000 C6H6(g) + Car(-O*) --> Car(-O-C6H5) + H*(g) bi [256] 

FA7 1.2100E+13 0.000 0.000 C6H5*(g) + Car(-O*) --> Car(-O-C6H5) bi [256] 

FA11 2.6000E+13 0.000 6.100 O2(g) + Car(*) --> Car(-O*) + O*(g) bi [257] 

FA14 6.5000E+14 -0.850 -2.730 OH*(g) + Cal(*) --> Cal(-O-H) bi [252] 

FA15 3.4000E+30 -5.100 12.950 O2(g) + Car(*) --> Car(-O*) + O*(g) bi [250] 

FA19 2.3300E+06 2.174 20.909 C2H2(g) + Cal(-O*) --> Cal(-O-(CH)=(C*H)) bi pw 

FA22 7.3100E+07 0.080 -9.570 Cal(*) + O2(g) --> Cal(-O-O*) bi [250] 
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FA23 7.0600E+04 1.030 -6.960 O*(g) + Car(*) --> Car(-O*) bi [230] 

FA24 1.8400E+03 1.030 -6.960 O*(g) + Cal(*) --> Cal(-O*) bi [230] 

FR2 1.2700E+20 -1.331 26.087 H*(g) + Car(-O*) --> Car(*) + OH*(g) bi Eq 

FR3 2.2060E+17 -0.957 15.045 O*(g) + Car(-O*) --> Car(*) + O2(g) bi Eq 

FR4 2.8850E+34 -6.058 21.895 O*(g) + Cal(-O*) --> Cal(*) + O2(g) bi Eq 

FR5 4.0300E+13 0.000 12.260 Cal(-O-O*) --> Cal(*) + O2(g) uni [250] 

FR6 7.2900E+31 -5.146 24.866 OH*(g) + Cal(-O*) --> Cal(*) + HO2(g) bi Eq 

FR8 3.7720E+13 0.251 22.552 Cal(-O-(CH)=(C*H)) --> C2H2(g) + Cal(-O*) uni pw 

FR11 3.6100E+12 0.000 37.300 Cal(-O-O*) --> Cal(=O) + OH*(g) uni [245] 

FR12 1.8230E+21 -1.671 66.493 Car(-O-CH3) --> CH3*(g) + Car(-O*) uni Eq 

FR13 3.1390E+16 -0.656 61.355 OH*(g) + Car(-O*) --> Car(*) + HO2(g) bi Eq 

FR14 2.0500E+19 -0.945 81.964 Car(-O-C6H5) + H*(g) --> C6H6(g) + Car(-O*) bi Eq 

FR15 2.0500E+19 -0.945 81.964 Car(-O-C6H5) --> C6H5*(g) + Car(-O*) uni Eq 

FR16 1.0900E+15 0.000 74.120 Cal(-O-H) --> Cal(*) + OH*(g) uni Eq 

FR20 6.0900E+09 0.101 72.772 Car(-O*) --> Car(*) + O*(g) uni Eq 

FR21 1.5900E+08 0.101 72.772 Cal(-O*) --> Cal(*) + O*(g) uni Eq 

RC14 4.728E+09 0.344 7.803 C-C-C-C-O-C[open] --> pyran[closed] + H*(g) uni pw 

RC15 4.728E+09 0.344 7.803 C-C-C-O-C-C[open] --> pyran[closed] + H*(g) uni pw 

RC16 4.728E+09 0.344 7.803 C-C-O-C-C-C[open] -->  pyran[closed] + H*(g) uni pw 

RC17 4.728E+09 0.344 7.803 C-C-C-C-O-C[open] -->furan[closed] + H*(g) uni pw 

RC18 4.728E+09 0.344 7.803 C-C-C-O-C-C[open] -->furan[closed] + H*(g) uni pw 

RC19 4.728E+09 0.344 7.803 C-C-O-C-C-C[open] --> furan[closed] + H*(g) uni pw 

RC21 7.0000E+09 0.000 14.5 C-C-C-C-C*[open] --> C-C-C-C-C[closed]-C1* uni [152] 

RC22 7.0000E+09 0.000 18.7 C-C-C-C-C*[open] --> C2*-C-C-C-C-C[closed] uni [152] 

RO18 3.1400E+07 1.692 8.184 pyran[closed] + H*(g) --> C-C-C-C-O-C[open] bi pw 

RO19 3.1400E+07 1.692 8.184 pyran[closed] + H*(g) --> C-C-C-O-C-C[open] bi pw 

RO20 3.1400E+07 1.692 8.184 pyran[closed] + H*(g) --> C-C-O-C-C-C[open] bi pw 

RO21 3.1400E+07 1.692 8.184 furan[closed] + H*(g) --> C-C-C-C-O-C[open] bi pw 

RO22 3.1400E+07 1.692 8.184 furan[closed] + H*(g) --> C-C-C-O-C-C[open] bi pw 

RO23 3.1400E+07 1.692 8.184 furan[closed] + H*(g) --> C-C-O-C-C-C[open] bi pw 
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RO29 8.9000E+07 0.000 31.200 C-C-C-C-C[closed]-C1* --> C-C-C-C-C*[open] uni [152] 

RO30 8.9000E+07 0.000 36.300 C2*-C-C-C-C-C[closed] --> C-C-C-C-C*[open] uni [152] 

ISO3 1.1200E+30 -5.975 -1.444 Cal(=O) + H*(g) --> H-Cal(-O*) bi Eq 

ISO5 2.9000E+32 -6.500 21.200 H-Cal(-O*) --> Cal(=O) + H*(g) uni [252] 

OX1 2.8100E+12 0.907 7.068 R-C* + *O-C-R(g) --> R-C-O-C-R bi Eq 

OX2 4.5700E+04 1.959 -9.364 R-C-C* + *C-C-R(g) -->  R-C-C-C-C-R bi Eq 

OX3 2.3100E+09 0.763 0.000 
2-naphthyl[closed] + O2(g) --> indenyl[closed] + 

CO2(g)  
bi [152] 

OX4 4.1800E+12 0.185 14.500 
indenyl[closed] + CO(g)  --> 2-naphthyl[closed] 

+ O(g) 
bi [136] 

OX5 4.3600E+13 0.177 40.000 
indenyl[closed] + CO2(g)  --> 2-naphthyl[closed] 

+ O2(g) 
bi Eq 

OX6 4.7900E+11 0.242 33.700 
2-naphthyl[closed] + O(g) --> indenyl[closed] + 

CO(g)  
bi Eq 

OX7 3.1500E+07 0.000 0.000 1-naphthoxy --> 1-indenyl + CO uni [250] 

OX8 3.1500E+07 0.000 0.000 2-naphthoxy --> 1-indenyl + CO uni [250] 

OX9 2.5100E+11 0.000 43.900 c1-c-c-c(-O*)-c-c1 --> c1-c-c*-c-c1 + CO(g) uni [250] 

OX10 2.5100E+11 0.000 43.900 c1-c-c-c(-O*)-c-c1 --> c1-c-c*-c-c1 + CO(g) uni [250] 

OX11 9.1600E+14 0.110 75.820 R-C-O-C-R --> R-C* + *O-C-R(g) uni [258] 

OX12 4.0200E+15 -0.180 78.820 R-C-C-C-C-R --> R-C-C* + *C-C-R(g) uni [258] 

 

 

Table 2.5: Pictorials of reaction types. Dashed lines on the molecules off of atoms 

signify that anything can be attached to those atoms. For example, ---CH signifies that 

they key group is a saturated carbon atom bonded to any other atom (which in turn may 

or may not be bonded to other atoms). Where there is an “X” in the pictorial, the “X” can 

represent any of the species listed underneath the pictorial. 

 Classes of reaction types 

 Hydrogen abstraction/addition 

a  

b 
 

X is H, O2, HO2, C2H3, phenyl, O, OH 
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c  

 Hydrogen transfer 

d 

 

 Fragment addition/removal 

e 

 

X is CH3, CH2, CH4, benzene, phenyl, C2H2, C2H3, C2H4, C2H5, 

C2H6, C3H3, C4H2, C4H4, O, OH, HO2 

f  

g 

 

X is H, O, OH, H2O, H2, CO 

h 

 

 

i 

 

 

 Ring opening/closure 
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j 

 

k 

 

l 

 

m 

 

n 

 

o 

  

p 
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q 

 

r 

 

s 

 

t 

 

u 

 

v 

 

w 

 

 Isomerizations 
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x 

 

 Oxidation 

y 

 

z 

 

aa 

 

ab 

 

ac 

 

ad 
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ae 

 

af 

 

ag 

 

ah 

 

ai 

 

aj 

 

 

 

Table 2.6: SNAPS developer descriptions. 

Code Development Activity 
Jason 

Lai 

Paolo 

Elvati 

Tyler 

Dillstrom 
Implement code base including kMC algorithm and tying 

in the cheminformatics third party libraries OpenBabel  
X X  

Developed initial hydrocarbon kinetic mechanism X   
Extend use of SMARTS string for reaction sites 

containing or involving oxygen and most covalent 

connections among oxygen, carbon, and hydrogen 
  X 
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Extended and refined hydrocarbon mechanism   X 
Identified missing oxygen chemistry in PAH growth 

models 
  X 

Developed and designed oxygenation pathways relevant 

to high temperature PAH growth 
  X 

Implemented oxygen-hydrocarbon mechanism   X 
Extended code base to enable the new reaction sites and 

reactions developed in present mechanism 
  X 

Validated that extended code and new mechanism 

continued to produce expected results of benchmark 

simulations 
  X 
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Figures 

 

 

Figure 2.1: A schematic of the SNAPS algorithm. If a reaction is rejected, step two is 

repeated and the cycle continued. 
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Figure 2.2: Flow chart schematic of the design process of the new oxygenated 

hydrocarbon kinetic mechanism used in SNAPS modeling of PAH growth in premixed 

flames for this work. 

Intuit atomic constituents not in 
present SNAPS mechanism

Investigate how oxygen might be 
involved in PAH growth process 

in flames

Survey literature  for aromatic and 
aliphatic-chain kinetic pathways 

relevant to flame conditions

Identify specific elementary 
reactions and their associated 

kinetic rates

Intuit and implement missing 
reactions and pathways based on 
similarities to other systems, such 

as atmospheric chemistry

Evaluate kinetic rates to determine 
efficacy and reliability based on 

chemical knowledge, intuition, and 
experience, such as repeatability of 
experiments and level of ab initio 

calculation theory

In cases where multiple rates are 
reported or published for a given 
reaction, compare and contrast 

sources and methodology to 
choose the most appropriate

Evaluate the mechanism as a 
whole to determine missing 

pathways or reactions that might 
be relevant

Repeat steps 3-8 until satisfied that 
preliminary simulations can be 

undertaken

Conduct preliminary studies to 
determine the most frequently 
selected reactions over a broad 

range of environmental conditions, 
e.g. species concentrations, 

temperatures, pressures, and fuels

Perform sensitivity studies to 
determine the sensitivity of 
simulations to rates of key 

reactions as ascertained in step 10

If preliminary simulation results 
are very sensitive to rates that are 

not most reliably accurate, 
calculate kinetic rates of those 
reactions from first principles

Repeat preliminary simulations 
and compare results to step 10. If 
calculated rates appreciably alter 
the results, repeat steps 10-12.

Conduct full-scale simulations 
expected to yield information that 
can be analyzed for the purpose of 
investigating PAH production and 

growth in flames
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Figure 2.3: Examples of key oxygenation reactions in SNAPS mechanism. Specific 

reactions chosen to represent each type of class of reactions are because they are the most 

dominant reactions in their respective class. 
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Figure 2.4: Oxygenated functional groups that are generated in SNAPS trajectories via 

the oxygenation and oxidation pathways. 

 

 

Figure 2.5: The blue highlights are the definition of a reaction site for bimolecular 

hydroxyl addition to a radical aromatic carbon. They reaction site only considers the 

exact composition and structure of the six highlighted carbon atoms (and their attached 

hydrogen neighbors), thus the two distinct species on the left undergo the same reaction 

event. This eliminates the need to specifically define all species – of which there are 

hundreds of thousands when considering all potential species larger than benzene. 
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Figure 2.6: 92 bimolecular reaction rate coefficients as evaluated at 1750K sorted in 

descending order. 80% of the reaction rate coefficients are within 2 orders of magnitude 

of each other. There is one outlier (far left) on the far side and the slowest 10% of rate 

coefficients are several orders slower than the median (1.69*1012 cm3*s-1*mol-1) and 

average (4.08*1015 cm3*s-1*mol-1). Red bars are novel oxygenation pathways. Blue bars 

are hydrocarbon reactions. The sets of pathways work synergistically to create a more 

comprehensive chemical evolution mechanism. 

 

 

Figure 2.7: 48 Unimolecular reaction rate coefficients as evaluated at 1750K sorted in 

descending order. Because the rate coefficients of the lower half of the reactions steadily 

and continuously decrease, the average of the coefficients (2.39*1011 s-1) is skewed such 

that the lower 75% of reactions are slower than the average. The median reaction rate 
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coefficient is 2.19*109 s-1. Red bars are novel oxygenation pathways. Blue bars are 

hydrocarbon reactions. The sets of pathways work synergistically to create a more 

comprehensive chemical evolution mechanism. 

 

Figure 2.8: Example subset of a potential reaction pathway diagram. A trajectory where 

indene (center) is the seed molecule could evolve along the given route shown or any 

number of other routes not depicted. All reactions and pathways are reversible. 
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Figure 2.9: Comparing the hydrocarbon-only pathways to the combined oxygenation and 

hydrocarbon pathways. Here the pathways from naphthalene (2 rings) to a 3 ring 

structure with no chains. In the set of pathways (b) there are only a small set of pathways 

that go from naphthalene to a 3 ringed structure, and there are only 4 possible structures 

that contain 3 rings. In the set of pathways (a) oxygenation pathways that work 

synergistically with hydrocarbon growth pathways lead to many multiples of potential 

growth pathways from naphthalene to a 3 ringed structure. Additionally there are 10 

conformations of a structure with one oxygenated ring in addition to the same 4 carbon-

only 3 ringed structures present in the set of pathways (a). Oxidation pathways present in 

the oxygen growth mechanism provide quick avenues from oxygenated rings to carbon-

only rings. This provides a mechanism to eliminate embedded oxygen atoms from the 

PAH and nanoparticles structures. Note: not all pathways and bimolecular additions 

present in the SNAPS mechanism are shown in the diagram for the purpose of clarity. 

Because oxygenation reactions work in parallel and in coordination with hydrocarbon 

reactions including all pathways has a multiplier effect on the number of number of 

pathways when oxygen chemistry is included in the SNAPS mechanism. 

(b) 

(a) 
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Figure 2.10: The blue highlights are the definition of a reaction site for which a 5 

membered ring could form on a zig-zag site. They reaction site only considers the exact 

composition and structure of the 5 highlighted carbon atoms (and their attached hydrogen 

neighbors), thus the two distinct species on the left undergo the same reaction event. This 

eliminates the need to specifically define all species – of which there are hundreds of 

thousands when considering all potential species larger than benzene. 

 

 

 

Figure 2.11: Reaction site definitions for the key reaction types in the mechanism. Dark 

blue circles are reaction sites for all reactions which lead to hydrogen abstraction from a 

saturated aromatic carbon. Light blue circles are reaction sites for all reactions which lead 

to hydrogen abstraction from a saturated aliphatic carbon. The top examples are 

representative of carbons which are a member of a ring of 5 carbons comprising a zig-zag 

site. The right examples are representative of generic aliphatic carbons. The light green 

circles are reaction sites for all reactions which are vulnerable to ring opening reactions. 
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The top example would be the opening of a five-member carbon ring on a zig-zag site. 

The bottom example would be the opening of a pyran (5 carbons, 1 oxygen atom) ring. 

The light red circles are reaction sites for all reactions which lead to the bimolecular 

addition of a gas-phase species to a radical site on the molecule. The top example would 

be addition to an aliphatic carbon. The bottom example would be addition to an 

oxyradical. The light chain highlighted in light maroon on the right is an example of a 

reaction site that could undergo ring closure. The highlighted six carbons in that structure 

and composition are able to form a six-member aromatic ring on the edge of the 

molecule. 
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          Chapter 3  

 

 

Exploring the Effect of Oxygenation Pathways on PAH Growth in a 

Benzene-Air Flame 

3.1 Simulation Design 

The current study as well as the subsequent studies reported in this work, in 

following the order of events depicted in Figure 3.1, consisted of modeling the gas-phase 

chemistry using the solver PREMIX in the CHEMKIN software suite [155] and particle 

precursor growth, using the oxygenation/hydrocarbon model in SNAPS, of a 1 atm fuel-

rich benzene–air premixed laminar flame with a C/O ratio of 0.77 (equivalence ratio of 

1.925) and cold-gas-flow velocity of 4 cm*s–1 [248]. The flame simulation utilized a 

fixed temperature profile measured in the experiment as input to the PREMIX solver. The 

height of the burner was set to 20.0 mm with an inlet velocity of 4.0 cm/sec for the flame.  

The inlet normalized mole fractions for the reactant species (fuel and air) were benzene: 

0.051161363, O2: 0.19932467, and N2: 0.749513967. The maximum number of grid 

points allowed was 250 with the number of adaptive grid points equal to 10. The adaptive 

grid control based on solution gradient and curvature were set to 0.1 and 0.5, respectively. 

The gas-phase deterministic kinetic mechanism from Appel et al. [95] was used to model 
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the combustion chemistry of the flame. Particle formation simulations in SNAPS 

consisted of an ensemble of 12,000 trajectories. The experiments [248] provide measured 

temperature profiles and small PAH profiles, and most importantly, mass spectra in the 

200-400 amu range, which are critical size PAHs for particulate formation.   Importantly, 

mass spectra of PAHs in the range 200–400 amu – calculated by sampling all the 

trajectories of the ensemble at a specific flame height (and time) and assessing their mass 

–  formed in a sooting benzene flame, change dramatically in the presence of the new 

oxygenation chemistry. The results show that the inclusion of oxygen kinetics is a 

significant step in crafting a more descriptive particle precursor simulator. 

 

3.2 Results and Discussion 

The focus of the present study is four-fold: firstly, validating the novel 

oxygenation/hydrocarbon mechanism by comparing the production of small PAHs to 

deterministic models and experiment; secondly, investigating how the user-defined ‘seed’ 

molecule influenced the evolution of aromatics in the flame region (this acted as a 

computational experiment to exercise the code and PAH growth model); thirdly, 

exploring the effects on PAH growth rate when including or excluding the newly 

developed set of oxygenation pathways in the reaction mechanism; and fourthly, 

ascertaining how the two reaction mechanisms influence PAH growth compared to 

experimental mass spectra measurements. The results of these inquires illuminated the 

nuances and intricacies of the kMC algorithm as well as the SNAPS growth scheme and 

more importantly demonstrated that the mechanism that includes the novel oxygenation 
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and oxidation pathways more realistically describes the growth of nanoparticle precursor 

molecules in the sooting laminar benzene-air flame. The development of the oxygenation 

growth scheme and inclusion of oxygen chemistry in the kinetic mechanism for SNAPS 

helps elucidate the key growth process of nanoparticle precursors in flames. 

 

3.2.1 PAH Production in Simulations 

To validate the PAH growth scheme of the model, PAH growth was evaluated by 

comparing the predicted time-histories of several PAHs in a benzene flame [248] to the 

predictions of a sub-model consisting solely of traditional hydrocarbon pathways, 

deterministic models [95], [247], and ratios of the PAH profiles measured in the 

experiment [248]. In Figure 3.2 the PAH profile ratios of indene, naphthalene, 

acenaphthylene, phenanthrene, and anthracene are contrasted with that of a conventional 

hydrocarbon-only growth scheme, CHEMKIN simulations, and the experiment. The set 

of PAHs explored have various formation pathways, including five-member ring 

formation on free edges and zig-zag sites, HACA reactions that lead to pericondensed 

six-member rings, and oxidation pathways that result in ring reduction reactions. 

Hydrocarbon structures are evaluated because only the new model is able to simulate 

oxygenated structures. 

Firstly, the comparison between the oxygen/hydrocarbon SNAPS model and the 

hydrocarbon-only SNAPS model in Figure 3.2 shows that the PAH production of 

acenaphthylene, indene, naphthalene, phenanthrene, and anthracene are within a factor of 

five of each other. This supports the notion that the oxygenation pathways do not 
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appreciably alter the formation HACA pathways that generate those species. When using 

the oxygen/hydrocarbon growth model these structures compose a smaller portion of the 

entire collection of PAHs than when using the HC-only growth model because in the 

former ensemble there are a significant portion of oxygenated structures that cannot exist 

in the latter. However, the ratios of these PAHs remain similar when the new mechanism 

is used. The most significant difference when using the oxygen/hydrocarbon mechanism 

in SNAPS is that the oxidation reactions that lead to ring migration and ring shrinking, 

e.g. converting six-member carbon rings to five-member rings lead to a lesser amount of 

anthracene in favor of indenonaphthalene. 

SNAPS predictions compare favorably with the deterministic simulation from 

CHEMKIN; both simulations demonstrate concentrations of key two- and three-ring 

aromatics within a factor of 10 of the CHEMKIN simulation. Moreover, SNAPS 

simulations using the oxygenation mechanism compare more favorably with the 

deterministic solution (consistently around one half of CHEMKIN) that the SNAPS 

simulations with no oxygenation (consistently between one tenth and one fifth of 

CHEMKIN). Because SNAPS trajectories are influenced by the gas-phase environment, 

which was attained from the CHEMKIN simulation itself and used as an input to SNAPS, 

this result demonstrates that the SNAPS pathways and reaction rates are consistent with 

the PAH growth sub-mechanism of the deterministic mechanism [95] used in the 

CHEMKIN simulation. Thirdly, the largest discrepancy between modeling (SNAPS and 

CHEMKIN) and the experiment is with the acenaphthylene and indene profiles. All the 

models consistently under predict the amount of indene in the flame which is likely a 

product of under emphasizing the indene formation pathways in the models. It is 
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noteworthy that the SNAPS model with oxidation chemistry predicts more indene than 

the SNAPS sub-model with only hydrocarbon pathways. More emphasis might need to 

be placed on the effect these pathways have on PAHs early in their growth trajectory 

compared to late in the particle phase, where oxidation chemistry is usually considered 

important. 

 

3.2.2 Effect of Seed on Growth Rate 

The SNAPS technique for simulating the possible evolution sequence of 

precursors in flames requires the user to define the initial seed molecule. Benzene is 

generally a good choice because of it abundance in fuel rich flames at relatively early 

timeframes and because the formation of an aromatic ring is widely considered to be the 

first step in the nanoparticle production process [29]. Using benzene as a seed molecule 

in this case is particularly relevant because the fuel source is benzene. Additionally, 

because PAHs can germinate from any aromatic molecule, using toluene, which differs 

from benzene in a growth perspective because of the odd-carbon number, and pyrene 

(often considered as the smallest of potentially strong candidates from which particle 

nucleation can be initiated) as seed molecules enabled an interesting computational 

experiment that shed light about how seed choice impacts PAH growth pathways. Thus, I 

performed studies using benzene (78 amu), toluene (92 amu), and pyrene (202 amu) as 

seed molecules and modeled their growth in a laminar premixed benzene flame with a 

carbon/oxygen ratio of 0.77 [248]. This choice of compounds makes it possible to discern 

the importance of size (benzene versus pyrene) but also the effect of the odd and even 
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number of carbons in the initial seed (benzene versus toluene). Figure 3.3 elucidates the 

differences in rates of growth amongst the seed molecules in the fuel rich flame. 

The value on the y axis of Figure 3.3 is an average of the masses of the SNAPS 

particles sampled at numerous heights of the flame over the entire ensemble of 6000 

trajectories. Though the trajectories initiated with a pyrene seed have an initial increased 

mass at time zero relative to the smaller benzene and toluene, the average rate of growth 

is faster for the ensemble of pyrene-seed trajectories, thus the size of the mass gap 

between those and the benzene- and toluene-seed trajectories increases over the flame 

height. What was an initial mass difference of 110 amu between pyrene and toluene 

grows to a mass difference of 206 amu by the time the target PAHs reach the end of the 

flame. This trend demonstrates that a pyrene present in the early stages of a flame grows 

to become a much larger precursor than a toluene or benzene given the same gas-phase 

environment because larger molecules have a greater set of potential growth pathways 

that can be explored due to the increased number of potentially active sites. Therefore, 

given a larger seed at time zero, the probability of evolving into a high mass aromatic 

molecule (HMAM) is greater. A note must be made that benzene is much more abundant 

than toluene in the early portion of the flame because benzene is the fuel source. 

Similarly, toluene is more abundant than pyrene in the lower regions of the flame because 

the dominant pyrene formation pathways in the model and in deterministic models are via 

sequential growth reactions that are initiated from benzene and toluene. Thus, though the 

probability of growing to larger particles is greater for pyrene, there is a greater 

probability that any given particle in a flame originated from a benzene molecule. 

However, because the possibility of a pyrene molecule forming unusually early in the 
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flame due to the stochastic nature of PAH growth is non-negligible, the results of this 

study are still relevant. This could be particularly true if future investigations about early 

PAH growth reveal that the assumed kinetic rates should be revised upwards. 

One should note that the concentration of PAHs in this flame reaches a peak 

between six and eight mm and then begins to decline as the production of particulates 

increases. That is, the majority PAH growth precedes particulate formation which 

depletes the amount of PAHs as they molecules participant in nucleation. The ensemble 

mass profiles as predicted by SNAPS, however, peak at about six mm, which matches the 

expectation from the experiment, but then plateaus because the model considers chemical 

growth only. The average mass plateaus because chemical growth slows significantly as 

the radical pool is depleted and temperature decreases higher in the flame; physical 

nucleation and coagulation affects that consume the PAHs in the same region which 

would deplete the pool of precursor molecules are not accounted for in the model.  

 

3.2.3 Oxygenation Pathways Increase Precursor Growth 

The second phase of the present study was to investigate the effect of oxygen 

chemistry on the reaction pathways that lead to the formation of PAHs in this premixed 

laminar flame. The inherent limitation of the traditional hydrocarbon-only growth model 

is an inability to describe the oxygenation of large gas-phase molecules that are likely 

produced in flames [77], [78] and possibly participate in the formation of particles. In 

order to compare the growth rates of SNAPS particles I performed a sensitivity analysis 

that highlighted the importance of oxygenation chemistry on the chemical growth of 
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particle precursors. Thus, I simulated the same flame with benzene and toluene seeds 

with the oxygen/hydrocarbon growth model and with the hydrocarbon-only growth 

model. When using this reduced mechanism, the average HMAMs grow remarkably 

slower compared to the full mechanism; Figure 3.4 reports the resulting ensemble 

average of the molecules as a function of flame height. When oxygenation chemistry is 

included in the growth scheme, the chemical composition, morphology, and reaction 

pathways of the particles changes somewhat dramatically. Considering the sample size of 

6000 trajectories sampled for each of the 4 ensembles, the expected uncertainty is 

approximately 1.2%. Given that the ensembles with oxygen chemistry accounted for have 

an average PAH mass roughly 100% greater than the ensembles with no oxygen 

chemistry, the uncertainty does not alter the conclusions drawn from the results. 

The ensemble of simulations that utilized the model including oxygen chemistry 

experienced much more kinetic growth of nanoparticle precursor species, on average. 

Without oxygen chemistry the size of the average PAH stagnates at around 200 amu, or 

roughly the size of pyrene. The presence of oxygenation reactions provides the target 

molecule with many more potential growth pathways which in turn yield larger HMAMs. 

It is noteworthy that the choice of seed molecule between benzene and toluene seems to 

make little difference on the ensemble average mass due to the similar nature of the seeds 

and that hydrocarbon additions (including methyl radicals) to aromatic rings are a 

common step in the evolution trajectories of PAHs. 

The results demonstrate that, regardless of seed choice, oxygen addition to PAHs 

occurs predominantly as a consequence of consecutive bimolecular reactions resulting in 

H-abstraction from an aromatic carbon, followed by addition of gas-phase hydroxyl or 
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oxygen species onto the radical aromatic carbon occupying an edge site of the PAH. The 

reactions that lead to oxygen incorporation onto the edges of the molecule are also key to 

embedding oxygen atoms in PAHs and forming furan and pyran rings on the edges of the 

molecules. The most probable pathway for embedding oxygen atoms in the PAHs is via 

ethers formed when hydrocarbon gas-phase molecules (predominantly acetylene) are 

added to radical oxygen atoms when they collide with the target PAH. Most probable 

pathway is determined by the frequency of ethers being formed via that pathway in the 

SNAPS ensemble. SNAPS enables one to track backward from a given species or a given 

type of species, e.g. ethers, and evaluate the kinetic reaction pathways that led to the 

formation of that structure. Thus, the most frequent (and thus dominant) pathways 

leading to ether formation in this benzene flame are acetylene addition to oxyradical sites. 

Furan and pyran rings are formed when the ether formation occurs near an existing ring 

wherein the oxy-hydrocarbon chain forms a ring with an edge or zig-zag carbon on the 

existing ring via a unimolecular ring closure reaction. All the individual steps in the 

scheme are highly reversible, thus the rings and ether groups are able to decompose 

during the evolution of the target molecule. Additionally the generality of the scheme 

does not require a predefined set of possible morphologies and thus the PAHs explore all 

potential configurations and conformations in a non-predefined process. 

There are six main types of configurations that are produced when simulating the 

evolution of PAHs in the flame with the growth mechanism that contains the set of 

oxygenation pathways, namely alcohols, peroxy acids, ketenes, non-cyclic ethers, pyrans, 

and furans. Alcohols and peroxy acids form as a result of bimolecular reactions with gas-

phase OH and O2 molecules and are precursor conformations to the other four classes of 
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molecules. The classes that appear most frequently (and are thus the most abundant) in 

this benzene flame environment are alcohols, non-cyclic ethers, and furans. Alcohols 

form so frequently due to the simplicity of the formation pathway which only requires 

two (H-abstraction followed by OH addition) to four reactions (H-abstraction followed 

by O2 of HO2 addition, O-O cleavage, then H addition). Non-cyclic ethers are common 

because the relatively high concentration of acetylene enables acetylene addition 

reactions to compete with alcohol formation reactions when oxyradicals are present. 

These ethers are abundant and a large portion of them eventually form stable furan 

groups. Pyran groups form less frequently than furan groups because that requires the 

oxygen addition and subsequent acetylene addition and ring closure to occur on 

neighboring zig-zag sites which are less abundant than free-edge sites on most PAHs. 

Along with the wider variance in PAH conformations that occur when accounting 

for oxygenation, the difference between the average mass of ensembles of trajectories 

(Figure 3.4) can be justified by the inclusion of additional reaction pathways due to the 

oxygen chemistry. The most significant reason for increased growth rates is the ubiquity 

of gas-phase hydrocarbons attaching to oxyradicals on the edges of the target molecule 

and thus spurring continued growth via the HACA scheme. However, the increased 

growth rate does not provide information about the statistical frequency of occurrences 

within the ensemble of certain sized species, i.e. the equivalent of a mass spectrum. 
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3.2.4 Effect of Oxygenation Pathways on Mass Spectra 

Beginning with a simulation using benzene as the seed molecule and without the 

oxygen chemistry, I explored the frequency of occurrences of each mass (organized in 1 

amu increments) between 200 and 400 amu at a height of 8 mm above the burner because 

that matches the range of the mass spectra measurements reported in the experiment 

[248]. Computational mass spectra resulting from SNAPS simulations are produced by 

sampling each trajectory in the ensemble at a height to match the height reported in the 

experiment. Because SNAPS simulations are stochastic and reactions (events in kMC 

parlance) occur in discrete intervals, a height range must be considered rather than an 

exact height. This range of ± 0.05 mm around the desired height was chosen because over 

95% of trajectories have a data point in that 0.1 mm range. This was considered to be a 

satisfactory number of trajectories for sampling purposes. Additionally, according to 

literature, the diameter of the sampling probe makes the uncertainty of experimental 

height sampled greater than 0.1 mm. Computational mass spectra are simply a histogram 

of each sampled structure where the exact mass recorded in the simulation is rounded to 

the nearest nominal amu. Figure 3.5a shows a pattern of striking peaks surrounded by 

masses never occupied. This pattern is a result of the HACA dominated growth pathways 

in which two carbons are added and a net of one hydrogen is removed or a net of one 

hydrogen is added, leading to jumps in the mass by 23 or 25 amu. The result is a mass 

spectrum with large sets of peaks about every 24 ± 1 amu and smaller sets of peaks every 

12 ± 1 amu (from odd-carbon chemistry). 400 trajectories sampled were in the mass 

range 200-400 amu which leads to a sampling error of 5.0%. in Figure 3.5a Including the 

oxygen chemistry, as shown in Figure 3.5b, leads to a less regimented mass spectrum. 
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The results suggest that the inclusion of oxygenation pathways leads to many more types 

of structures and chemical compositions. This is consistent with the conclusion reached 

previously that the set of oxygen-containing reactions affords many more pathways for 

the molecule to grow rather than just hydrogen abstraction and acetylene addition. 

Though the spikes are less dominant in Figure 3.5b, the 4 most prominent masses are 

separated by 40 amu. This mass corresponds to an addition of two carbons and an oxygen, 

highlighting the impact that accounting for oxygen chemistry can have on the growth 

patterns of particle precursors. Additionally, with the oxygenated mechanism a greater 

number of trajectories fall in the 200-400 amu range and thus the sampling error is much 

less, approximately 2.2%. 

Similarly, the mass spectra of ensembles with and without the oxygen chemistry 

using toluene as the seed molecule (Figure 3.6a and Figure 3.6b) is consistent with that 

observed when using benzene as the seed molecule. The ensemble without oxygenation 

chemistry shows striking peaks at mass 202, 226, 252, 276, and 300 amu as well as the 

familiar pattern of dominant sets of peaks in 23 and 25 amu increments and smaller sets 

of peaks 11 and 13 amu from the larger sets of peaks. A fewer number of trajectories are 

sampled for the toluene seed study than the benzene seed study and thus the sampling 

errors for the data presented in Figure 3.6a and Figure 3.6b are approximately 6.4% and 

3.5%, respectively. 

It is interesting to note the similarities and differences among the simulated mass 

spectra (Figure 3.5 and Figure 3.6) when the seed choice and evolution mechanism is 

varied. Without accounting for the oxygenation of PAHs the choice of seed makes little 

difference in determining the most prevalent masses that are sampled at the simulated 
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flame height of eight mm; the dominant peaks occur at 202, 226, 252, 276, and 300 amu 

given a benzene or toluene seed (Figure 3.5a and Figure 3.6a, respectively). Even though 

the toluene starts out with an odd number of carbons, for the model without oxygen 

chemistry the dominant peaks all contain an even number of carbons. Toluene molecules 

that end up experiencing the growth pattern highlighted previously tend to undergo a 

methyl addition in the early stages of the flame to become a xylene (or its radical) or a 

methyl removal reaction, then follow into the HACA pathway of adding two carbons at a 

time and maintaining an even number of carbons. Because, when neglecting the potential 

oxygenation of PAHs, there are a limited number of growth pathways for a molecule with 

a methyl group attached to an aromatic ring (due to a lack of significant growth pathways 

available to an odd-carbon structure in a HACA-dependent growth scheme), toluene 

seeds tend to grow in a similar pattern and rate as benzene seeds. However, when we 

consider the possibility of PAHs becoming oxygenated, the choice of seed appears to 

have a more significant impact on the growth trajectories of PAHs. 

When accounting for the oxygenation of PAHs, the dominant masses sampled at 8 

mm differ as a function of the seed molecule (Figure 3.5b and Figure 3.6b). With a 

benzene seed (Figure 3.5b), the four masses that stand out in the simulated spectrum are 

238, 278, 318, and 358 amu. With a toluene seed (Figure 3.6b), there is not a set of a 

select few masses that dominate the spectrum, rather there are nine masses that appear 

with a frequency of at least 80% of the masses that are sampled most often (226 and 240 

amu). Unlike the benzene-seed spectrum, there is no set of distinct masses that dominate 

the toluene-seed spectrum because there are a large portion of structures with an odd 

number of carbon atoms in the toluene-seed ensemble. While only 23% of the structures 
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represented in Figure 3.5b have an odd number of carbons, 48% of the structures 

represented in Figure 3.6b have an odd number of carbons. As a result, there are fewer 

toluene-seed growth trajectories that follow the even-numbered-carbon pathways that are 

more dominant in the benzene-seed trajectories, both before and after oxygenation of the 

molecule. Thus, the spectrum (Figure 3.6b) is more evenly saturated in the 200–400 amu 

mass range and there are no dominant peaks. 

Figure 3.7 reports the computed mass spectrum of PAHs in the 200-400 amu 

range at 8 mm height above burner (HAB), together with the experimental spectrum 

[248]. The dominant peaks are at masses at or about 202, 226, 252, 276, and 300 amu. 

The simulated mass spectrum matches replicates well the experimental spectrum in both 

location of spikes as well as relative abundance of less dominant species. 4000 

trajectories were sampled yielding a sampling error of Approximately 1.5% for the data 

reported in Figure 3.7a. The computational spectrum is a combination of the spectra 

shown is Figure 3.5 and Figure 3.6 that is weighted according to the abundance of gas-

phase benzene, pyrene, and toluene present at a height of 1 mm in the flame. It is 

important to note that the weighted mass spectrum reproduces well the measured mass 

spectrum in terms of locations of dominant peaks as well as the occurrence of species 

with masses neighboring the dominant masses but with much less frequency (Figure 3.7). 

The novel growth scheme, using a combination of hydrocarbon and oxygenation 

pathways working in parallel, matches experimental mass spectra to great detail while 

providing a level of atomic detail (compositions, morphologies, etc.) that cannot be 

observed in an experiment. 
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3.3 Summary and Conclusions 

This chapter reports an implementation of SNAPS to simulate particle growth in a 

laminar premixed benzene-air flame environment and showed the impact and importance 

of the incorporated oxygenation chemistry into the PAH kinetic growth mechanism. The 

development of the novel oxygen/hydrocarbon particle precursor growth scheme was 

shown to be effective and accurate when compared to experiment and deterministic 

growth models based on the similar concentrations of key two- and three-ring aromatics 

and mass spectra for the premixed benzene flame. The model prescribes pathways for 

incorporation of oxygen atoms onto the edges of and embedded in particle precursors 

molecules. This implementation resulted in a significant alteration to the chemical 

composition and morphology of the ensemble of trajectories as compared to a traditional 

hydrocarbon-only growth model. Hydrogen abstractions and acetylene additions are still 

the most common events that the HMAMs experience during their evolution trajectory; 

however, peroxy and hydroxyl additions are also quite frequent. Additionally, 

hydrocarbon additions to oxyradicals present on the edges of PAHs are considerable, 

leading to a significant amount of ethers and rings containing oxygen atoms, specifically 

five-member furan rings. One of the revelations noted when SNAPS was first developed 

was that five-member rings were much more common than anticipated given that PAHs 

were thought to be composed mostly of pericondensed six-member rings, the so-called 

stabilomers proposed by Stein and Fahr, due to their favored thermodynamic stability 

[259]. In line with that result, the present study finds that common structures in this flame 

are not only oxygenated species, but also five-member rings, with and without oxygen. 

SNAPS simulations predict an array of PAHs in the 200–400 amu range that compare 
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very well with experiments and enable the further exploration into the key morphologies 

present, and potentially to inform future studies into the significance of these structures in 

particle formation and their biological impact. 

 

3.3.1 Contributions and Collaborations 

 Validated the newly designed oxygenation-hydrocarbon kinetic mechanism 

against previous hydrocarbon-only mechanism and deterministic models 

 Wrote several python and bash language post processing programs for parsing, 

processing, and analyzing the results of SNAPS simulations 

 Codified the process for isolating specific species and types of PAH structures as 

well as locating their positions in the flames to be used in mass spectra and mass 

profiles reported in this chapter 

 Established the importance of incorporating oxygenation pathways into a PAH 

chemical growth mechanism 

 For the first time reported that oxygen chemistry enables PAHs to grow faster and 

ultimately to larger sizes in a premixed benzene flame 

 For the first time demonstrated that a mechanism including oxygen chemistry 

much more closely represents the measured mass spectra of PAH in the 200-400 

amu range of a premixed benzene flame 

 All work reported in this chapter utilized the framework established in Chapter 2 

and is the sole work of this author 
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Figures 

 

Figure 3.1: Flow process showing the order and decision points of experimental choice 

and simulations required in the design of this study, as well as subsequent studies. 

 

 

 

Choose environment in which to study 
PAH growth, e.g. atmospheric laminar 

premixed flame with ethanol and ethylene 
fuel. Availability of experimentally 
measured gas-phase and PAHs play 

significant role.

Obtain all available measured gas-phase 
and PAH data collected in experiment.

If not all necessary gas-phase speciation 
profiles are collected, including small 

radical species like H, simulate gas-phase 
chemistry with deterministic solver 

CHEMKIN.

CHEMKIN simulations require careful 
choice of deterministic mechanism. 

Mechanism is chosen based on successful 
use in literature for flames of same 

structure and fuel. Additionally, several 
simulations with varying mechanisms may 

be performed to compare results and 
inform ultimate choice.

Gas-phase speciation and velocity profiles 
from CHEMKIN simulations are used as 

inputs into SNAPS.

Having tested the SNAPS code and novel 
kinetic schemes developed in this work, 

small-scale simulations (1000 trajectories) 
are carried out to quantify computational 
cost and verify results will yield relevant 

information.

Full scale (tens of thousands of 
trajectories) are conducted. Number of 

trajectories chosen based on computational 
cost of the simulations and estimated 
sampling error for expected analyses.

Results are analyzed qualitatively and 
quantitatively to match relevant 

experimental measurements, e.g. PAH 
concentrations, mass spectra, and PAH 

mass profiles.



95 

 

 

 

 

Figure 3.2: Ratios of particular species throughout the height of the flame from [248]. 

The experiment measured these species; shown here is the ratio of species: (a) 

acenaphthylene to indene, (b) acenaphthylene to naphthalene, and (c) phenanthrene to 
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anthracene. Compared are the experiment (blue), a deterministic simulation in 

CHEMKIN (red), SNAPS while using a mechanism with no oxygen chemistry (green), 

and SNAPS while using the more comprehensive oxygen/hydrocarbon mechanism 

(purple). 

 

 

 

Figure 3.3: Profiles of the average masses of the ensembles of trajectories versus the 

height of the flame obtained using a mechanism that comprises hydrocarbon and 

oxygenation pathways. The larger pyrene seed allows for more potential growth 

pathways early in the flame when the environment is radical-rich and thus the rate of 

growth is appreciably faster than when using the smaller benzene or toluene seeds. The 

inset molecules are representative of typical SNAPS-generated PAHs at 8 mm with a 

mass roughly equivalent to the average mass of the ensemble at 8 mm. The top molecule 

has a mass of 654 amu (average mass for pyrene-seed trajectories is 655 amu at 8mm). 

The lower molecule has a mass of 403 amu (average mass for benzene-seed trajectories is 

395 amu at 8 mm). 
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Figure 3.4: Average SNAPS ensemble masses profiles over the height of the flame. The 

inclusion of oxygenation pathways allows for a greater number of growth options and 

thus a faster rate of growth, hence the much higher plateau mass (about 400 amu) than 

when oxygenation is not allowed in the SNAPS mechanism (200 amu plateau). A slight 

deviation is observed greater than 2 mm when the oxygenation is accounted for; very 

little difference is observed when the oxygenation is not accounted for because the 

restricted number of pathways confines toluene and benzene to identical growth pathways 

after 2 mm. The inset molecules are representative of typical SNAPS-generated PAHs at 

8 mm with a mass roughly equivalent to the average mass of the ensemble at 8 mm. The 

top molecule has a mass of 403 amu (average mass for benzene-seed trajectories with 

oxygenation pathways is 395 amu at 8mm). The lower molecule has a mass of 202 amu 

(average mass for benzene and toluene-seed trajectories without oxygenation pathways is 

189 amu at 8 mm). 
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Figure 3.5: Computed mass spectra using a benzene seed with two varying mechanisms: 

(a) without accounting for the oxygenation of PAHs and (b) while accounting for the 

oxygenation pathways. SNAPS ensembles consist of 3000 trajectories to achieve 

statistical significance. The spectrum created with oxygen chemistry included in the 

SNAPS code shows that the oxygenation pathways work with the HACA pathways to 

broaden the range of potential species to all masses. 

 

 

Figure 3.6: Computational mass spectra developed with SNAPS using a toluene seed 

with two varying mechanisms: (a) without accounting for the oxygenation of PAHs and 

(b) while accounting for the oxygenation pathways. SNAPS ensembles consist of 3000 

trajectories to achieve statistical significance. The spectrum created with oxygen 

chemistry included in the SNAPS code is much noisier with no dominant peaks because 
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the oxygenated PAHs do not fall into the ± 12 amu pattern that purely hydrocarbon PAHs 

do. 

 

 

Figure 3.7: (a) Computed mass spectrum using a mixture of initial seed molecules, 

benzene:toluene:pyrene of 0.945:0.045:0.01. The ratios of the relative mole fraction 

concentrations of benzene:toluene:pyrene are 0.037:0.0018:0.00039 at the beginning of 

the flame where SNAPS simulation commence. The computational mass spectra are a 

combination of 4000 trajectories with oxygenation reactions and 6000 trajectories 

without oxygenation reactions. (b) Experimental mass spectrum of benzene–air laminar 

premixed flame [248]. SNAPS correctly predicts the dominant masses (202, 226, 252, 

276, 300 amu) as well as predicting the spectrum of less abundant masses that make up 

the noisy bedding of the spectrum. Both sets of growth pathways work in parallel to yield 

an ensemble of partially oxygenated PAHs that represent the spectrum in the flame. 
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          Chapter 4  

 

 

The Formation of Oxygenated Compounds in a Premixed Ethylene-

Oxygen Flame 

4.1 Simulation Design 

The present study involved modeling particle precursor growth in a fuel-rich 

sooting premixed laminar ethylene-oxygen flame. The temperature and gas-phase species 

concentrations inputs SNAPS requires were computed by solving the gas-energy equation 

using the PREMIX program in CHEMKIN [155], [247] with the gas-phase mechanism 

from Appel et al. [95] because it best represented an average of the speciation profiles 

generated when using four well validated gas-phase mechanisms (Appel et al. [95], 

Miller and Melius [32], Richter et al. [260], and Raj et al. [158]). PREMIX is a code first 

developed by Reaction Design in 2000 for computing temperature and species profiles in 

steady-state premixed laminar flames; it models finite-rate chemical kinetics and 

multicomponent molecular transport of the flame. Together with the integration solver of 

CHEMKIN, the PREMIX module processes the chemical kinetics, and transport 

properties of the simulated flame in discrete time steps. Because for this study there were 

no experimental speciation profiles for which to compare CHEMKIN simulations, I 

gathered these oft-used mechanisms and chose from them. Figure 4.1 displays the 
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concentration profiles of a set of species from four simulations, one for each deterministic 

mechanism. All the mechanisms actually yielded speciation profiles very similar to each 

other. Ultimately, the speciation profiles when using the mechanism from Appel et al. 

best captured the average trends of the four mechanisms.  Benzene and toluene were used 

as seed molecules because formation of the first aromatic ring is considered to be the first 

step in particle formation [29]. 

 

4.1.1 Experimental Setup 

For this part of the dissertation work, I collaborated with experimentalists that 

recorded aerosol mass spectra sampled from the ethylene flame, using synchrotron-

generated vacuum-UV (VUV) radiation for ionization, in order to compare with exact 

masses of the predicted chemical compositions. This enabled them to verify that the mass 

spectra showed masses of oxygenated species that agreed with the atomic compositions I 

predicted with the simulations. They also recorded X-ray photoelectron spectroscopy 

(XPS) spectra of samples extracted from these flames for further validation of the growth 

mechanisms that I proposed by comparing with functional groups of the predicted 

oxygenated species. The XPS measurements confirmed formation of furan precursors, 

hydroxyl groups, early in the particle formation process and evolution of furan signatures, 

ether groups, as the combustion and particles evolve.  

The experimental setup consists of sampling condensed particles ex situ and 

capturing them on a heated plate. The plate heats up to 500K as particle start to 

disassociate and decompose into their constituent components. Gas-phase mass 
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spectrometry analysis of the sublimated molecules reveals the constituent molecular 

details as well as information about the precursor species that participate in particle 

nucleation.  Details of the experimental methods utilized to verify the presence of 

predicted oxygenated species and conformational structures can be found in reference 

[241]. 

 

4.2 Results and Discussion 

The simulations demonstrate that oxygen addition to PAHs occurs mainly through 

consecutive bimolecular reactions resulting in H-abstraction followed by addition of OH 

or O2 onto PAH edge sites. The most probable pathway, i.e. the dominant pathway, for 

embedding oxygen into the hydrocarbon molecules – that is the most frequently selected 

set of reactions that lead to the formation of oxygenated structures – is via ethers formed 

when H is abstracted from hydroxyl groups or OH/O is abstracted from peroxyl and 

peroxy groups, followed by hydrocarbon addition to the oxyradical and furan-ring closure. 

Acetylene is the most frequently added hydrocarbon; Figure 4.2 shows the reaction 

sequence leading to formation of a furan group discussed here. This pathway is important 

to a wide range of hydrocarbon oxidation processes and virtually any hydrocarbon-

combustion system because of high acetylene concentrations and low reaction barriers. 

Thus, apart from the toxic potential of furanic species, furans may also play a dominant 

role in determining growth and oxidation sites of the precursors formed during 

combustion. Experimentalists were able to corroborate that as these oxygenated species 

evolve in the flame, they can become large enough to condense onto incipient particles, 
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leading to incorporation of oxygen onto the surface. Oxygen embedded in the particle 

surface might contribute to gaseous oxidation products and affect the further growth and 

oxidation of the particle [223]. 

 

4.2.1 Electronic Structure Calculations 

During the present study, SNAPS simulations revealed a significant production of 

furanic species. The dominant route was through oxygen addition to six-member rings on 

the edges of PAHs followed by acetylene addition and then unimolecular ring closure. In 

order to verify the validity of this pathway, I investigated that reaction pathway using 

first principle computational techniques. I investigated the formation of benzofuran from 

phenoxy + acetylene because that reaction pathway encapsulated the key reactions 

identified as important in SNAPS simulations and because the size of the system was 

reasonable for a relatively high level of theory for the electronic structure calculations. 

Electronic structure calculations for the relevant kinetic pathways were carried out using 

the CBS-QB3 method [261], [262] as implemented in Gaussian 09 [263]. The CBS-QB3 

method [264] used for the electronic structure calculations involves a sequence of five 

calculations: (i) geometry optimization at the B3LYP/CBSB7 level of theory (i.e. 

B3LYP/6-311G(d,p) for the first row atoms and hydrogen) and (ii) frequency calculation 

followed by single-point energy calculations at (iii) CCSD(T), (iv) MP4SDQ, and (v) 

MP2 levels. The extrapolation method unique to CBS then gives the final zero-point 

corrected energies [265]. Singlet, doublet, and triplet spin multiplicities were tested for 

the reactant, and the lowest energy (doublet) was determined to be the ground state and 
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thus used for all subsequent calculations. Intrinsic reaction-coordinate calculations [266], 

[267] were carried out at the B3LYP/CBS level to confirm the identities of the reactants 

and products for each optimized transition state. The potential energy diagram of the 

benzofuran formation pathway is shown in Figure 4.3. The high pressure limit reaction 

rate constants were then computed using the master equation code and software suite 

MultiWell [268]–[270] using canonical transition state theory.  

The unimolecular rate constant for phenoxy-acetylene decomposition (backward 

of TS1 in Figure 4.3) was calculated at many temperatures between 300 and 2500K and 

modified Arrhenius parameters were fit to obtain a rate constant equation of k =  

3.773*1013*T0.2506*exp(11333.67/T) s-1. Similarly, the recombination rate constant was 

defined to be k = 2.3387*106*T2.1741*exp(10522.90/T) cm3mol-1s-1. The rate constants for 

both steps of the ring closure process were calculated in the same method. However, 

because the reaction was implemented in a single step in the mechanism, the slower of 

the rate constants was applied because it was the rate limiter. Interestingly, the first step 

(TS2) was faster than the second step (TS3) at temperatures lower than 900 K. At greater 

temperatures, the first step was slower. The rate constant for the first step was applied in 

the mechanism to represent the ring closure because modeling is conducted in 

temperature regimes greater than 1000 K. A similar methodology was applied to obtain 

the ring opening rate constants. The lower rate constant, and thus rate limiting, in the high 

temperature regime for ring closure was the backward of TS3 in Figure 4.3. The assigned 

rate constants for ring closure and ring opening were, respectively, k = 

4.728*109*100.3442*exp(3927.03/T) s-1 and k = 3.140*107*T1.6919*exp(4118.77/T) 

cm3mol-1s-1. 
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4.2.2 Evolution of OPAHs 

Particle growth simulations for the premixed ethylene flame yielded six main 

classes of oxygenated groups: alcohol/enol, peroxy acid/radical, ketene, pyran, noncyclic 

ether, and furan. Alcohols/enols and peroxy acids and radicals are formed via reactions of 

hydrocarbons with small oxygen-containing molecules, mainly OH and O2, and serve as 

precursors to the other four oxygenated groups. Section 4.2.3 has more details about enol 

formation in the flame. 

The SNAPS simulations showed that ketenes are formed as the result of 

oxyradicals present on the terminal carbon of aliphatic chains. Noncyclic ethers are 

produced when hydrocarbons add to oxyradical sites, following three evolution pathways: 

(i) decomposition, (ii) continued hydrocarbon addition, or (iii) ring-closure reactions to 

form furan/pyran groups. Pyran groups are rare, forming when propargyl or methyl and 

acetylene add to oxyradicals on free-edge sites of aromatic rings, or when acetylene adds 

to oxyradicals on zigzag sites. Furans are much more common because the abundance of 

acetylene (relative to methyl and propargyl) in the gas-phase environment promotes the 

addition of acetylene to oxyradical sites on free-edges of PAHs which then undergo a 

unimolecular ring closure to form a furan. The second most common furan formation 

route, though much less frequent, is the addition of methoxy groups to zig-zag sites that 

close to form furanic groups (section 4.2.4 contains details about furans in the flame). 

The results also showed potential precursor molecules for formation of dioxins, species 

with six-member rings including two oxygen atoms. However, the code does not include 
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any elementary reactions that close a ring containing two oxygen atoms because of their 

relatively unstable nature. 

 

4.2.3 Enol Intermediates 

Enols containing 6–14 carbon atoms account for ∼20% of OPAHs close to the 

burner, where oxygen-containing radicals are present, demonstrating that large enols are 

important for the chemistry of oxygenated particle precursor species. The importance of 

larger enols supports the findings of Taatjes et al. [271], which found a significant 

presence of smaller enols in premixed flames. In addition to the isomerization reactions, 

removal of enols may proceed via reactions with flame radicals, particularly H and OH, 

producing oxyradicals. Production of large enols can proceed through radical attacks on 

the carbon–carbon double bond of enols, followed by alkyl radical addition. Masses 

identified by SNAPS to contain enol contributions at small heights in the ethylene flame 

are 94 u (phenol), 108 u (C7H8O), 118 u (C8H6O), 168 u (C12H8O), and 192 u 

(C14H8O), as displayed in Figure 4.4. 

 

4.2.4 Furanic Structures 

Figure 4.5 shows some of the most common structures obtained from SNAPS at 

160, 168, 194, and 220 u low in the premixed flame. Many of the ether structures formed 

are furan precursors. Competing reactions to furan-ring closure in the final step in Figure 

4.2 includes addition of a second hydrocarbon species (Figure 4.5a and Figure 4.5b) or 
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H-addition forming an R–O–CH=CH2 group (Figure 4.5d and Figure 4.5f) or acetylene 

removal. The most common oxygenated structure at 192 u is the 194-u structure shown in 

Figure 4.5d with a furan ring instead of the –OCHCH2 chain; the most common structure 

at 158 u is the furan formed with the oxygen attached to the phenyl ring in Figure 4.5b. 

The species in Figure 4.5b has a ketene group at the terminal carbon of the aliphatic 

branch, showing that, if acetylene adds to a radical site and OH or O2 adds to the 

acetylene chain, a ketene may form instead of a furan and that aliphatic side chains 

provide sites for the formation of carbonyl bonds.  

Simulations revealed that, between a flame height of 3.5 mm and 8.2 mm, the 

structures in Figure 4.5a and Figure 4.5b evolved into larger furan compounds; the 

structure in Figure 4.5d either evolved into furan compounds (70% probability) or 

became deoxygenated (30%), and the structure in Figure 4.5e maintained its 

dibenzofuran substructure while following traditional HACA growth pathways on the 

other sites of the molecule. Although ethers and ketenes are common in Figure 4.5, the 

majority of the oxygenated compounds predicted by SNAPS at a height of 3.5 mm have 

furanic groups. The fraction of ethers and furans in particular among the oxygenated 

structures increased with increasing distance from the burner in the simulations. This 

result was validated by the XPS measurements which detect a greater abundance of C-O-

C bonds at the expense of C-O-H and C=O bonds at lower heights. 

The evolution of the structure in Figure 4.5f frequently proceeds via acetylene 

loss from the oxygen atom or formation of a pyran ring with the zigzag-site carbon, 

yielding a structure with mass 218u. The majority of the species predicted experienced 

molecular growth as they evolved in the flame. Furans constituted the largest group of 
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oxygenated species at greater distances from the burner, where the flame temperature was 

around 1,750 K. An important furan-destruction pathway identified in the simulations is 

CO reactions: CO can open furan rings and abstract the oxygen atom to form CO2, 

leaving the original furan ring as an aliphatic radical side chain. This oxidation 

mechanism may explain the observed aliphatics on the surface of particles under some 

conditions [69], [70], [76], [83]. 

 

4.2.4.1 Furan Formation Pathway 

In Figure 4.2, an H atom is abstracted/eliminated from the aromatic ring before 

OH addition, because, at high temperatures, the pre-reaction complex formed from direct 

OH addition to an aromatic ring is unstable; above 350K the equilibrium highly favors 

decomposition back to the reactants [272]–[274]. In addition, electronic structure 

calculations have shown that benzene + OH reactions do not lead primarily to oxygen 

addition to benzene at high temperatures. The potential energy barrier for the benzene + 

OH → C6H5OH + H reaction proceeding via the C6H6OH pre-reaction complex is greater 

than the reaction barrier for benzene + OH → phenyl + H2O by a factor of at least 9 

[273], [274], and perhaps as great as a factor of 82 [275]. Hence, H-abstraction reactions 

by OH are much more favorable than direct OH addition to the benzene ring [162], 

[273]–[275]. The substitution reaction (PAH + OH → PAH-OH + H) accounts for less 

than 10% of the H-atom abstraction rate, and the formation of C6H6OH is negligible 

[275]. Electronic structure calculations have also shown that the products following H 

abstraction (phenyl + H2O) are 24–40 kJ/mol more stable than the products following 
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oxygenation (phenol + H) [273]–[275]. In addition, the mole fraction of H is roughly 8–

15 times higher than the OH mole fraction at the flame height where most of the 

oxygenation occurs, that is, between 0.5 mm and 2 mm, as shown in Figure 4.6. Hence, 

PAHs are predominantly activated by H abstraction in the conditions of this flame. An 

OH molecule can then add to the radical site on the aromatic ring. This OH group then 

readily and rapidly decomposes to an oxyradical + H at high temperatures [276]. This 

rapid decomposition leads to an abundance of active oxygen sites attached to aromatic 

rings, which is why the frequency of acetylene addition to the oxyradical is relatively 

significant; at lower temperatures, however, the alcohols are more stable. 

Furanic compounds are stable at later stages of PAH growth because that time 

corresponds to a dearth of hydrogen radicals in the gas-phase environment. In H-rich 

environments, the bimolecular rate of ring opening (directly proportional to the rate 

constant and the concentration of H radical) is competitive with the unimolecular rate of 

ring closure. In the H-poor environments that exist at greater heights in the flame, the rate 

of ring closure is unaffected, but the rate of ring opening decreases severely. Therefore, 

despite the opening rate constant being four orders of magnitude greater than the closure 

rate constant at high temperatures, depletion of the hydrogen radical pool renders the 

former rate much slower and thus opening reactions less probable. Thus, the furan 

compounds essentially gain stability higher in the flame. 
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4.2.4.2 Furan Formation Kinetics 

In part, this study explored the new reaction pathways for the formation and 

decomposition of oxygenated species using ab initio electronic-structure calculations to 

elucidate how oxygen becomes incorporated into the carbon framework of nanoparticle 

precursor species. The investigation revealed a generic furan-formation route with low 

reaction barriers involving species that are abundant in hydrocarbon flames, such as 

acetylene (see Figure 4.3). The reaction pathway is likely to end with a unimolecular ring 

closure, suggesting that there should be a high fraction of furans present among OPAHs 

formed during combustion. Figure 4.3 illustrates the barriers (TS1, TS2, and TS3) of the 

unimolecular furan-ring closure by showing the formation of benzofuran from phenoxy 

radical + acetylene. In SNAPS this pathway is a set of two reactions (and their reverses). 

The first reaction is the bimolecular addition of acetylene to an oxyradical via TS1. The 

first intermediate is a species in SNAPS that could undergo many distinct reactions (e.g. 

hydrogen addition to the terminal carbon in the chain, subsequent bimolecular addition, 

etc.) in addition to the second step in the pathway shown. The second step in the pathway 

is one SNAPS reaction that is unimolecular ring closure. This step is implemented as one 

reaction in SNAPS rather than two because the second intermediate species (between 

TS2 and TS3) is not sufficiently handled in SNAPS due to the over coordination of the 

ring carbon atom and the breaking of aromaticity; the only exit pathways from that well 

would be to the reactant or product. The implementation of this reaction sequence in one 

step in SNAPS neglects the potential formation of the second intermediate but is 

necessary because of the code’s inability to properly handle over-coordinated atoms. The 

energy barriers for this reaction are relatively low compared with the average temperature 
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fluctuations in combustion environments. The low energy barriers support the frequency 

of these reactions being executed during simulations. Similarly, ring closure rate 

constants calculated in this work were comparable to, if not relatively slower than, 

similar reactions in the growth scheme. For example, there are 21 unimolecular ring 

closure reactions in the model and that which forms a furanic ring on the edge of the 

particle (RC19) is second slowest at 1750 K (Table 2.4). Similarly, there are 24 

bimolecular addition reactions in the model and that which results in the adsorption of 

ethylene onto an oxyradical site (the dominant preceding reaction to furan ring closure) is 

the sixth slowest at 1750 K. Thus, the pathways and kinetics of furan formation are valid 

in a PAH growth scheme and the resulting abundance of oxygenated nanoparticle 

precursor species appears to have merit. 

 

4.2.5 Impact of SNAPS Predicted Particles 

Sampling the ensemble at specific flame heights and categorizing the predicted 

structures by mass enabled an identification of the spectrum of masses that consist of a 

majority oxygenated structures. That is, the simulations provided information about 

which masses are likely predominantly oxygenated. The simulations predicted which 

masses would be oxygenated if found in the experiment and what their chemical 

compositions and morphologies would be. Figure 4.7 shows experimental mass spectra of 

species drawn from three flame heights (that match the heights sampled in the SNAPS 

ensemble) in the premixed ethylene flame. The experimental results are consistent with 

the SNAPS simulations and demonstrate that a remarkably large fraction (∼50%) of the 
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mass peaks between 140 and 250 amu are associated with oxygenated species. Mass 

peaks identified as being associated with oxygenated species are highlighted red in Figure 

4.7. The masses of these species agree with the masses of OPAHs predicted by 

simulations; that is, the experimentally observed and predicted species have the same 

atomic compositions (Table 4.1). Both the particle growth simulations and the 

experiments revealed that these oxygenated species are present under a very wide range 

of combustion conditions, suggesting that the generic formation mechanisms proposed in 

this study are consistent with growth in flames.  

The experimental measurements were able to verify the compositions of predicted 

species because analysis of the simulations provided composition and exact masses of 

species that would be present at the given height in the flame. The knowledge of the 

exact mass facilitates experimental analysis in distinguishing pure hydrocarbon species 

from oxygenated structures because the exact mass of one carbon atom and 4 hydrogen 

atoms is not equal to the exact mass of one oxygen atom. The experimental techniques 

utilized the exact mass to distinguish between structures with the same nominal mass to 

verify that the OPAH structures predicted by SNAPS simulations were present in the 

flame. Table 4.1 contains a set of the species I predicted to be present (their chemical 

composition, exact mass, and the type of OPAH) along with the matching measurements 

from the experiment. The experimental matching verified the validity of the model 

predictions, the kinetic growth scheme, and the oxygenation pathways present therein.  
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4.2.6 Structural Predictions of Pyrene and its Isomers 

Amongst the SNAPS predicted structures in the flame, of particular 

noteworthiness is the dearth of pyrene. Pyrene still remains a commonly discussed 

species because of its use in nucleation models (see section 1.2.1 for a discussion of this). 

Specifically, SNAPS simulations of PAH growth in the ethylene flame indicate that the 

mass 202 amu species observed appear to be more closely linked to anthracene than 

pyrene (Figure 4.8 left column). At a flame height of 3.4 mm, pyrene is only the fifth 

most likely (12%) isomer of 202 amu species, and 86% of 202 amu species contain at 

least one five-membered ring and are products of the growth trajectories of 

acenaphthylene (C12H8). This result can be explained by analyzing the most common 

growth pathways observed with SNAPS that lead to species with mass 202 amu. Starting 

from benzene, the initial growth pathways strongly favor the formation of a second six-

member ring (naphthalene) rather than a five-member ring (indene) because the former 

requires the adsorption of two C2 molecules (e.g., acetylene) on neighboring carbons 

while the latter requires the adsorption of either one C3 molecule (e.g., propargyl) or one 

C2 molecule and one methyl group. Because of the high concentration of acetylene 

relative to propargyl or methyl in the gas phase environment of this flame, bimolecular 

reactions involving acetylene are significantly more frequent: the probability of reactions 

that involve acetylene during PAH growth is about 11.3%, whereas for propargyl and 

methyl reactions the probability decreases to 0.008% and 0.04%, respectively. For this 

reason, the vast majority of nascent PAHs are naphthalene molecules, which then grow to 

form acenaphthylene rather than anthracene or phenanthrene because the former simply 

requires the adsorption of one acetylene to one of four zigzag sites of the molecule and a 
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fast unimolecular ring closure, while anthracene or phenanthrene require the addition of 

two acetylene molecules on neighboring carbons. The result is that formation of 

acenaphthylene is about five times more likely in the lower portion of the flame than 

formation of phenanthrene. Hence, the pathways leading to pyrene formation are 

restricted, explaining the low concentration of pyrene relative to mass 202 amu structures 

containing at least one five-membered ring. 

The precursors of species A.I and A.II (Figure 4.8) have similar concentrations. 

Phenanthrene, however, has two main pathways to further molecular growth, i.e., 

addition of one acetylene on the bay site (followed by a ring closure) to form pyrene 

(compound A.V), or addition of one acetylene on the zigzag sites (followed by a ring 

closure) to form compound A.II. Hence, the fraction of phenanthrene molecules that 

grow to 202 amu is divided between compounds A.II and A.V, which ensures a larger 

abundance of A.I than A.II or A.V. 

Although pyrene appears to be insignificant among the species found in incipient 

particles, structure B.I in Figure 4.8 indicates that it may play a role for the continued 

mass growth of gas-phase species in the flames. Structure B.I, which is the most 

commonly predicted structure with mass 226 amu, can be formed through acetylene 

addition to pyrene followed by ring closure, or via acetylene addition to the bay site of 

structure A.II followed by ring closure. 
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4.2.7 Radical-Radical Recombination 

During the course of the collaborative investigation, structures with masses 202 

amu, 226 amu, 266 amu, and 278 amu were identified as being influential in the 

experimental measurements at a flame height of 3.4 mm. Simulations revealed a greater 

abundance of species with masses 202 amu (0.60% of total PAH species) and 226 amu 

(0.46%) than those with masses 266 amu (0.19%) and 278 amu (0.02%) at 3.4 mm. 

However, a significant quantity of smaller (O)PAH radicals (the most common 

are shown in Figure 4.9) were also predicted, and, if chemically linked (i.e. radical-

radical recombination reactions), they could change the amounts of the species at the four 

masses 202 amu, 226 amu, 266 amu, and 278 amu. A negligible amount of masses 202 

amu and 226 amu are formed from PAH radical-radical combination reactions, whereas 

significant amounts of species with masses 266 amu and 278 amu are formed, increasing 

the amount of mass 266 amu by 35% and the amount of mass 278 amu by over 133% at 

3.4 mm. These computational results indicate that masses 266 amu and 278 amu could 

have comparable concentrations to some smaller masses, such as 202 amu, at small flame 

heights if non-sequential growth is a factor. Moreover, in the case of 278 amu, about 93% 

of the species skip sequential hydrocarbon growth pathways and potentially form via 

PAH radical-radical combination. For species at 266 amu, about 26% could have 

undergone PAH radical–radical combination. The importance of the PAH radical–radical 

reaction pathways depends on the distribution of radical species at a given point in the 

flame; frequent combinations will be effective at changing the mass frequency 

distribution. As the concentration of PAH radicals is comparatively small, however, the 

most relevant effects are observed when the small collision frequency is offset by a 
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substantial increase in mass. For these reasons, non-sequential growth via PAH radical-

radical combination grows in importance with increasing height in the flame. The 

presence of non-sequential growth at small heights shows that fast particle precursor 

growth pathways could play a role at lower flame heights. Continued growth of PAHs in 

simulations with flame height also suggests that it is conceivable that these and similar 

pathways also remain active higher in the flame. The hints at non-sequential growth made 

possible by recombination of (O)PAH radicals in the flame is a growth scheme that 

shows promise and is worth exploring further. 

 

4.3 Summary and Conclusions 

This study utilized SNAPS and the novel oxygenation/hydrocarbon growth 

scheme previously validated to investigate the evolution of particle precursors in a 

premixed laminar ethylene-oxygen flame. The simulations revealed a significant quantity 

of oxygenated species, including alcohols, enols, ketones, ethers, pyrans, and notably, 

furanic compounds. The investigation presented support for a generic furan formation 

pathway that involves the creation of enols, followed by acetylene addition to oxyradical 

sites forming ethers, and eventually furan ring closure on the edge of PAHs. As PAHs 

progress up the flame via bulk flow, enols are first produced in great quantity, are 

chemical precursors to ethers, and eventually furans higher in the flame. First principle 

energy and rate constant calculations supported the likelihood of the pathways due to low 

reaction barriers and fast kinetics. The rate constants for the furan forming pathways were 
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slower than comparable pathways leading to pericondensed carbon rings in the 

mechanism. 

With the detailed structural and compositional information presented, I was able 

to collaborate with experimentalists who validated the significant presence of OPAHs 

predicted with simulation and verified the presence of enols at low heights and furans at 

higher heights. Experimental measurements enabled us to match the compositions of 

specific oxygenated structures I predicted would exist at specific heights in the flame 

with techniques that deduced the exact masses of species they observed. This also 

confirmed the prediction that approximately 50% of all masses (nominal) of precursors 

between 140 and 350 amu in the flame contained some amount of oxygenated content. 

Given specific conformations predicted by simulations, the collaboration led to 

confirmation of those species in the flames. This is a very significant finding for the 

community. The presence of oxygenated structures in quantities equal to or slightly 

greater than pure hydrocarbon PAHs suggests that future studies of nanoparticle 

formation and growth during combustion should consider how oxygenated structures 

form, behave, and how their presence may influence particle formation processes. 

 

4.3.1 Contributions and Collaborations 

 Demonstrated for the first time the presence of specific OPAHs in a premixed 

ethylene flame 
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 Showed likely dominant pathway leading to the formation of ethers and furanic 

compounds ranging from 100 to 500 amu, highlighting the significance and 

importance of kinetic pathways leading to the formation of oxygenated rings 

 Reported the stability of furanic compounds in high temperature flame based on 

thermodynamic properties and kinetics 

 Showed for the first time that smaller enols may be key precursors of larger ethers 

and furans in premixed ethylene flame 

 Predicted morphologies of dominant structures at specific oxygenated enols, 

ethers, and furans in the flame 

 Conducted ab initio quantum calculations leading to a report of the only electronic 

structure energy landscape of phenoxy + acetylene complex 

 Utilized Master Equation methodologies to calculate and report the only kinetic 

reaction rates of phenoxy + acetylene complex 

 The radical-radical combination material discussed in section 4.2.7 is generated 

by SNAPS simulations and is the sole work of this author 

 In this chapter, experimental work reported was conducted by collaborators Olof 

Johansson and Hope Michelsen at the Combustion Research Facility of Sandia 

National Laboratories 

 Columns 2-4 of Table 4.1 were the result of work from experimentalists in 

attempt to match the simulation predictions generated by this author reported in 

columns 5 and 6 of Table 4.1 

 Distinguishing between oxygenated and non-oxygenated PAHs in the flame was 

the result of the simulation predictions of structures, produced by this author  
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Tables 

Table 4.1: Analysis of mass peaks. Columns 5 and 6 are my predictions based on 

analysis of SNAPS simulations. The first four columns are the verifications as measured 

by the XPS experiment. 

Mass, amu 

Constituents 

based on 

mass 

Residual*

, amu 

Fit 

accuracy^ 

SNAPS 

prediction 

Predicted 

structure 

Mass peaks related to oxygenated species 

144.0658 C10H8O 0.0082 0.0054 C10H8O Furan 

146.0699 C10H10O 0.0033 0.0077 C10H10O Ether 

160.0478 C10H8O2 0.0046 0.0049 C10H8O2 
Ether, ketene, 

furan 

182.0737 C13H10O 0.0006 0.0033 C13H10O Furan 

184.0602 C12H8O2 0.0078 0.0075 C12H8O2 Furan 

194.0738 C14H10O 0.0007 0.0035 C14H10O Ether, furan 

196.0820 C14H12O 0.0068 0.0039 C14H12O Ether 

198.0587 C13H10O2 0.0094 0.0041 C13H10O2 Furan 

208.0841 C15H12O 0.0047 0.0046 C15H12O Furan 

218.0942 C13H14O3+ 0.0001 0.0021 C16H10O Furan 

220.0851 C16H12O 0.0037 0.0041 C16H12O Ether 

234.0843 C13H14O4+ 0.0050 0.0062 C16H10O2 Furan 

Mass peaks related to pure hydrocarbon species 

102.0528 C8H6 0.0058 0.0028 C8H6 Phenylacetylene 

141.0705 C11H9 0.0000 0.0027 C11H9 
Aromatic with 

aliphatic chain 

152.0568 C12H8 0.0058 0.0016 C12H8 Acenaphthylene 

178.0748 C14H10 0.0035 0.0023 C14H10 
Aromatic with 

aliphatic chain 

190.0736 C15H10 0.0047 0.0020 C15H10 
Aromatic with 

methyl chain 

216.0866 C17H12 0.0073 0.0015 C17H12 
Aromatic with 

aliphatic chain 

226.0814 C18H10 0.0069 0.0012 C18H10 Aromatic 
*The residual is the absolute difference between the peak location of the Gaussian fit to the mass peak and 

the mass derived from the sum of the atomic masses. 

^The fit accuracies are 95% confidence intervals of the center position of the fitted Gaussian functions (i.e., 

the measured species mass). 
+These formulas are highly hydrogenated and have few carbon atoms compared with those of similar 

masses. It is likely that the real structures, as the SNAPS simulations predict, have higher carbon contents 

and fewer hydrogen and oxygen atoms. The actual mass peaks may, however, contain signal from species 

with different atomic compositions. If none of these species completely dominates the signal, the mass 

suggested by the Gaussian fit might not precisely match any of the signal-contributing atomic combination. 
 

  



120 

Figures 

 
Figure 4.1: Simulated concentration profiles of key species from the premixed laminar 

ethylene flame. Four distinct deterministic mechanisms were utilized in identical 
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simulations using CHEMKIN [155]: Appel et al. [95], Miller et al. [32], Raj et al. [158], 

and Richter et al. [260]. Of the four, all were relatively similar for the entire set of 

species. Miller et al. is the least like the other three. Of the set, the mechanism from 

Appel et al. most closely captured the average of the species concentrations and profiles.  

 

 

 
Figure 4.2: Most probable reaction sequence leading to formation of a furan group. (Left 

to Right) H-abstraction followed by OH addition to the radical free edge site on an 

aromatic ring; H-abstraction from the OH group, followed by acetylene addition, forming 

an ether group; H-elimination during ring closure to form a furan group. The left side of 

the molecule has been left attached to an indeterminate PAH backbone to illustrate an 

arbitrary molecular size. 
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Figure 4.3: Potential-energy diagram for the formation of benzofuran. The energies are 

in kilocalories per mole and are referenced to the reactant species. The ring-closing 

reaction is exothermic, and the closed-ring structure is thus favored over the phenoxy + 

acetylene reactants as well as the open-ring structure (first intermediate). In SNAPS the 

first reaction (TS1) is distinct from the second reaction (TS2 and TS3). The first reaction 

is a unimolecular acetylene addition to an oxyradical and the second reaction is a 

unimolecular ring closure to form a furan ring (steps TS2 and TS3 are treated as one 

reaction in SNAPS because the second intermediate structure would only go to the 

product or the first intermediate due to the unique nature of the over coordination and 

loss of aromaticity of the structure). The energy barriers of the ring closure reaction steps 

are low compared with the average temperature fluctuations in flames. For example, at 

1,500 K, TS2 is 3kBT and TS3 is−1kBT with respect to the first intermediate species. 

 



123 

 
Figure 4.4: Enols predicted by the SNAPS simulations. Enols predicted to be important 

to the OC chemistry at small DFFOs in premixed combustion are (A) 94 u (phenol), (B) 

108 u (C7H8O), (C) 118 u (C8H6O), (D) 168 u (C12H8O), and (E) 192 u (C14H8O). 

 

 
Figure 4.5: Frequently predicted oxygen-containing structures of selected masses low in 

a premixed flame. Red atoms, oxygen; gray, carbon; white, hydrogen. (A and B) Ether 

and ether/ketene, 160 u. (C) Furan, 168 u. (D and E) Ether and furan, 194 u. (F) Ether, 

220 u. 

 

 
Figure 4.6: Predicted H and OH mole fractions at low flame heights in the Ar-diluted 

premixed flame using the Appel–Bockhorn–Frenklach deterministic mechanism [95]. 

The ratio between the H and OH mole fractions is also shown. The vertical dashed lines 

are the edges of the region where the majority of the oxygenation occurs, according to the 

SNAPS simulations. 
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Figure 4.7: Experimental AMS spectra from a premixed flame as measured by 

Michelsen and coworkers [241]. Mass spectra are shown for particles extracted from 

selected heights in the flame; that is, DFFOs of (A) 3.5, (B) 5.0, and (C) 7.5 mm. Red 

peaks contain signal from oxygenated species. The arrows indicate the peaks at 160, 194, 

and 220 u for comparison with Figure 4.5 where one can see the main predicted 

structures at a DFFO of ∼3.5 mm. 
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Figure 4.8: Relative concentrations of the most abundant species with mass 202 u (left) 

and 226 u (right) at a DFFO of 3.4 mm computed by SNAPS. These species account for 

98% of all 202-u species and 97% of all 226-u species at 3.4 mm. 
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Figure 4.9: SNAPS results showing the five most common pairs of radicals that combine 

to make structures at 266 u and 278 u at a DFFO of 3.4 mm in the premixed flame. These 

reactions account for 72% of all combined structures at 266 u and 89% of all combined 

structures at 278 u. 
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          Chapter 5  

 

 

Effect of Oxygenated Fuels on PAH Growth and Particle Formation 

in Ethylene Flames 

In order to investigate the impact of oxygenated fuel chemistry on the growth 

pathways of particle precursor molecules, this study details analysis of ethylene–air and 

ethylene/ethanol–air premixed laminar flames [234]. Recent work has suggested the 

addition of ethanol alters the particle size distributions in flames, yet provides no 

information about the effect on particle precursor species [78], [239]. The chosen flames 

make for an interesting case study to investigate the mechanisms leading to the formation 

of nanoparticles because they present similar measured temperature profiles as well as the 

same equivalence ratio and carbon flow rate, thus ensuring a similar gas-phase 

environment between the flames. The measured particle size distributions (PSDF), 

however, differ dramatically [234]: ethanol doped ethylene flames showed less total 

particulate volume fraction and smaller mean size of particles when compared with the 

pure ethylene flame. Additionally, the appearance of bimodal distribution in the PSDF of 

the pure ethylene flame disappears altogether when the fuel is doped with 30% ethanol. 

These systems enable isolation of the effect of an oxygenated dopant and oxygen 

concentration on the evolution of PAHs and the formation of nanoparticles. 
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To study these systems, the study utilized a combination of tools to investigate the 

differences in the gas phase growth chemistry of particle precursors and their aggregation 

propensity. Surprisingly, the study revealed that in the flame systems [234], the addition 

of ethanol as a dopant increases the concentration of species that are generally thought to 

lead to conventional particle precursors, but particle growth was instead hampered by 

lower rates of oxygenation of the larger precursors. The study identified several 

oxygenation pathways that significantly accelerate the rate of growth of PAHs by 

embedding oxygen atoms into the molecular structures, which in turn can affect their 

nucleation propensity. Increased oxygenation spurs increased generation of actives sites 

on the surface of PAHs which enables faster rate of growth and consequently increases 

particle formation. Specifically, deviation from stabilomer structures introduced by 

oxygenation, the formation of five-member rings, and aliphatic chains greatly reduces the 

stabilization of non-chemically bonded aggregates, even for fairly large precursor 

structures (greater than 650 amu). We propose, however, a different mechanism by which 

molecules can reach remarkable size (higher than 1500 amu) quite early in the flame. 

 

5.1 Simulation Design 

The gas-phase chemistries of the atmospheric premixed laminar flames studied by 

Salamanca et al. [234] and Wu et al. [235] were modeled using CHEMKIN-PRO [155] 

and a reaction mechanism developed by D’Anna and Kent [277] amended with the 

ethanol oxidation reaction scheme from Marinov [278]. The ethylene-air (pure) and 

ethanol/ethylene-air (doped) flames from [234] have identical carbon flow rates, 
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equivalence ratios of 2.01, gas velocities of 10.0 cm/sec, and very similar measured 

temperature profiles (see Figure 5.1a). The ethylene-air and ethanol/ethylene-air flames 

from [235] both have the same equivalence ratio of 2.34, carbon flow rates, and similar 

measured temperature profiles. For both systems the measured temperature profiles was 

used as input to CHEMKIN. The primary flame system [234] is that in which SNAPS 

was employed modeled the PAH growth using the novel oxygenation-hydrocarbon 

mechanism. The primary experimental flame system was more interesting to model PAH 

evolution because the pure ethylene flame generated more particles (as expected) despite 

the decrease in “traditional” particle precursor species, e.g. acetylene and benzene, as 

shown in Figure 5.2 and Figure 5.3. The secondary flame [235] system was involved in 

the study to justify the choice of deterministic mechanism and the validity of the 

CHEMKIN flame simulation that was used to collect gas-phase information used as 

SNAPS input data. 

 

5.1.1 Primary Flame System 

The primary flame system [234] consisted of two ethylene flames, one pure and 

the second doped with ethanol. In the doped flame the amount of ethanol added was 

equal to 30% of the total carbon feed. The equivalence ratio was constant at 2.01. A fixed 

temperature profile from the experimental data was inputted for each respective flame 

with a pressure of 1.0 atm. The height of the burner was set to 15.0 mm with an inlet 

velocity of 10.0 cm/sec for both flames. For the pure ethylene flame (EF), the normalized 

reactant mole fractions were 0.692 N2, 0.184 O2, and 0.123 C2H4. For the ethylene flame 
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doped with 30% ethanol, the normalized reactant mole fractions were 0.692 N2, 0.184 O2, 

0.086 C2H4, and 0.037 ethanol. For both flames, the maximum number of grid points 

allowed was 250 with the number of adaptive grid points equal to 10. The adaptive grid 

control based on solution gradient and curvature were set to 0.1 and 0.5, respectively. 

The gas-phase solver PREMIX in the CHEMKIN [155] software suite was used 

to model the gas-phase environment of all the flames in the current work. The gas-phase 

kinetic mechanism is a merger of the small PAH mechanism by D’Anna and Kent [277] 

and the ethanol sub-mechanism by Marinov [278]. The average measured temperature of 

the flames is 1687K and 1705K for the pure ethylene and ethanol doped flames, 

respectively. The doped flame has a consistently higher simulated axial velocity, which 

leads to a shorter residence time for the gases flowing up through the flame as shown in 

Figure 5.1a and Figure 5.1b, respectively. 

 

5.1.2 Secondary Flame System 

The secondary flame system [235] consisted of two ethylene flames, one pure and 

the second doped with ethanol. In the ethanol doped flame the ethanol was added in an 

amount such that 10% of the total weight of oxygen atoms was bound to ethanol fuel 

molecules. Both flames had identical cold flow temperatures and flow rate and an 

equivalence ratio of 2.34. A fixed temperature profile from the experimental data was 

used in CHEMKIN simulations for each respective flame with a pressure of 1.0 atm and 

the burner height was set to 20 mm. For the pure ethylene flame, the normalized reactant 

mole fractions were 0.679 N2, 0.181 O2, and 0.141 C2H4. For the ethylene flame doped 
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with 28.8% ethanol by weight, the normalized reactant mole fractions were 0.679 N2, 

0.181 O2, 0.113 C2H4, and 0.028 C2H5OH. For both flames, the maximum number of grid 

points allowed was 250 with the number of adaptive grid points equal to 10. The adaptive 

grid control based on solution gradient and curvature were set to 0.1 and 0.5, respectively. 

The pure ethylene and ethanol doped flames of the secondary flame system [235] were 

modeled in the same manner and with the same gas-phase mechanism [277], [278] as the 

flames in the primary flame system [234]. 

 

5.2 Results and Discussion 

5.2.1 Gas-phase Modeling 

The first step in this study was to compute the gas-phase environments of the two 

flames (pure and doped) studied by Salamanca et al. [234] (primary flame system). Since 

there are no experimental data available for the gas-phase species in this flame, I 

analyzed a second set of ethylene and ethylene/ethanol premixed flames reported by Wu 

et al. [235] (secondary flame system) to assess the validity of the gas-phase kinetic 

mechanism selected for this study. 

 

5.2.1.1 Primary Flame System 

An interesting result of the experiment conducted in the primary flames [234] is 

that a smaller particulate volume fraction and particle sizes were observed in the doped 



132 

flame, despite the fact that the gas-phase modeling for the same system shows 

consistently higher concentrations of all the conventional aromatic precursors, single-ring 

aromatics, and small multiple-ring aromatics (see Figure 5.2 and Figure 5.3). This result 

suggests that the link between small aromatics and large particles is not straightforward 

and the presence of more benzene and acetylene in the gas-phase does not necessarily 

lead to formation of more particles. 

For example, the pure ethylene flame has a consistently higher O2 concentration 

(between 0.5-4 orders of magnitude, see Figure 5.2a and Figure 5.2g) and a consistently 

lower C2H2 concentration (about 0.5 orders of magnitude, see Figure 5.2b). Rates of 

production analyses showed that the higher level of C2H2 in the ethanol doped flame is 

initially due to a greater concentration of O2, OH, H, and O species which interact with 

C2 species to form acetylene. It is consistent in both flames, however, that at greater 

heights acetylene reaches equilibrium with other small carbon species, accounting for the 

relatively constant concentrations of acetylene with height in each flame. 

The pure etheylene flame also has less benzene, toluene, naphthalene, 

acenaphthylene, and indene (about a half order to one order of magnitude, see Figure 5.3) 

that is a direct result of the flame having a lower concentration of acetylene and 

propargyl species. In the deterministic gas-phase mechanism [277] acetylene and 

propargyl are the precursors to benzene and benzene is the precursor to toluene, 

naphthalene, acenaphthylene, indene, phenanthrene, and pyrene. Rates of production 

analyses demonstrated that the relative rates and pathways are the same for producing the 

aromatics and PAHs; therefore a reduced production of conventional aromatic precursors, 

e.g. acetylene and propargyl, leads directly to fewer aromatics. Additionally, similar 
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trends are evident in the SNAPS simulations wherein evaluation reveals a greater number 

of small PAHs in the ethanol doped flame and larger HMAMs (and thus a higher overall 

average aromatic mass) in the pure ethylene flame. 

 

5.2.1.2 Secondary Flame System 

The secondary flame system served to validate the choice of deterministic 

mechanism because I observed the opposite trends of small aromatics and acetylene as 

those observed in the flames of [234], and match those of the experiment in [235]. The 

gas-phase mechanism thus adequately captures the trends of the key species and small 

aromatics. Figure 5.4 shows the trends of the secondary flame system. In particular, the 

trends of the gas-phase simulation of the flames from the secondary system [235] match 

those of the experiment. Specifically, there is a slightly higher relative concentration of 

acetylene, benzene, toluene, indene, naphthalene, and acenaphthylene over the height of 

the flame. 

Furthermore, the gas-phase mechanism reproduces well the relative 

concentrations of small and large PAHs as measured in the experiment. Figure 5.5 

displays comparisons of experiments and predicted concentrations. As defined by the 

experimentalists [235], small PAHs are the sum of benzene and naphthalene because they 

are the expected dominant one- and two-ring aromatics, and large PAHs are the sum of 

the three- and four-ring aromatics, namely acenaphthylene, phenanthrene, and pyrene. 

For both sets of PAHs, they measure a greater concentration in the pure flame 

consistently throughout all heights of the flame. Similarly, the gas-phase model predicts a 
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greater concentration of small and large PAHs in the pure flame. The model even 

captures the slight concavity of the profile in the small PAHs and the near linearity of the 

large PAH profiles. The comparisons highlight the ability of the 

oxygenation/hydrocarbon mechanism developed in this dissertation to capture the main 

trends of small and large aromatic compounds, as well as the effect of ethanol doping in 

the fuel on the evolution of PAHs. 

The D’Anna and Kent mechanism [277] captured the trends for the key species in 

both the flames in the primary system as well as both the flames in the secondary system. 

Thus, though the gas-phase trends are counter-intuitive in the primary set of flames, the 

ability of the gas-phase mechanism to capture the opposing trends in the secondary 

flames demonstrates the validity of the gas-phase CHEMKIN modeling to be used as 

input into SNAPS simulations. 

 

5.2.2 Fuel Effects on Growth Rate of Particle Precursors 

I  used the computed gas-phase species concentrations and experimental 

temperature profile along the centerline of the pure and doped flames studied by 

Salamanca et al. [234] as inputs for SNAPS. The results of SNAPS simulations, in 

particular the average mass (shown in Figure 5.6, filled symbols) are in agreement with 

the experimental observations, as the particles in the doped flame grow markedly less 

compared to the ones in the pure flame.  The plot also highlights that the crucial region 

for the chemical growth of the HMAMs – species produced by SNAPS with mass greater 

than the original seed (benzene and toluene in this study) – is clearly in the first two 
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millimeters above the burner. The analysis of the most common reactions in this region 

shows that SNAPS predicts faster growth in the pure flame because of the higher 

concentrations of gas-phase O2, OH, and O as compared to the doped flame. Figure 5.2a, 

Figure 5.2e, and Figure 5.2f display the concentration profiles of those species. 

To confirm that the oxygen chemistry has a significant impact on the chemical 

growth, I repeated the SNAPS simulations without including the oxygenation pathways 

developed in this dissertation work (open symbols, labeled as HC-only in Figure 5.6). 

When using this reduced mechanism containing only the hydrocarbon pathways of the 

PAH mechanism, the average growth of HMAMs is remarkably slower as compared to 

the full oxygenation/hydrocarbon mechanism. By the end of the flame (15 mm from the 

burner), when accounting for oxygenation pathways, the average mass of HMAMs in the 

pure flame is 430 u greater than the case without oxygen chemistry. For the doped flame 

the difference is 166 u. These results show not only the importance of the oxygenation 

reactions, but also the extraordinary sensitivity of particle precursor formation to the 

oxygen species present in the gas phase. The fast growth observed in the first two 

millimeters above the burner is due to an environment rich in oxygen and radicals (e.g., H, 

OH, O) that promotes formation of active sites and chemical reactivity [25], [122]. When 

oxygen chemistry is neglected, acetylene addition dominates the growth, but, when 

oxygen chemistry is accounted for in a PAH growth mechanism, addition of O2 and OH 

are competitive with acetylene addition.   

The lower gas-phase O2 and OH concentrations in the first two mm of the doped 

flame compared to the pure flame partially leads to the difference in HMAMs growth in 

these flames. Analysis of the reactions occurring during SNAPS simulations shows that, 
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in the first mm of the flames, HMAMs in the pure flame undergo gas-phase oxygen 

addition reactions 2.6 times more frequently than in the doped flame, and undergo 

hydrocarbon addition to active oxygen sites 3.5 times more frequently. 

Moreover, the portion of hydrocarbon-to-active-carbon addition reactions is only 

slightly higher in the pure flame. The temperature of the flames is relatively equal (Figure 

5.1a). Thus, the key factor driving the faster rate of mass growth in the pure flame is the 

higher (roughly three times) number of mass-growing reactions that occur in the same 

time interval  due to the higher concentration of gas-phase O2, O, OH, and H in the pure 

flame below two mm. For further details about comparisons of reactions between flames 

see section 5.2.3, Figure 5.7 and Figure 5.8. 

The rate of growth of HMAMs slows down considerably above two mm. Analysis 

of the most frequent reactions from two to 15 mm reveals that HACA [122] pathways 

dominate the growth of HMAMs for both flames in this region. Since the doped flame 

has a consistently higher concentration of acetylene (Figure 5.2b), there are 1.7 times 

more acetylene additions per HMAM in the former flame, which accounts for the faster 

rate of growth. However, the rate of growth above two mm, is dwarfed by the rate of 

growth below two mm due to the much smaller radical pool which spurs the creation of 

active sites and thus continued growth on HMAMs. 

It is worth noting that there is a sensitivity of the SNAPS results to the variations 

in the gas-phase concentrations. This is true for bimolecular reactions that are linearly 

dependent on gas-phase concentrations. However, since the probability of selecting the 

top 10 most frequent reactions with SNAPS spans three orders of magnitudes, a change 

in species concentration of even one order of magnitude will affect the relative 
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importance of the associated reaction, but it will still be among the fastest. At the same 

time, a reasonable variance in temperature of ± 60K due to experimental uncertainty 

would lead to a fluctuation of 30% or less in the rates of the fastest reactions in the 

reaction network. This latter value is in turn much less than the variance in the rates 

amount the set of reactions (several orders of magnitude) and thus the dominant growth 

pathways are not significantly affected by a potential temperature uncertainty associated 

with the experiments. 

The key insight is that only when accounting for the potential oxygenation of the 

particles, as done in the growth scheme developed in this work, can models begin to fully 

capture the growth mechanisms of particle precursors in flames. The oxygenation 

pathways present in the growth model are what differentiate the growth and molecular 

characteristics of PAHs in the two flames. Without the insight of the oxygenation 

pathways a model is unable to capture the distinguishing aspects of the sets of HMAMs 

and one would be unable to hypothesize about why there is greater particle production in 

the pure ethylene flame.  

 

5.2.3 Characteristics of Precursors in the Flames 

The HMAMs in the pure ethylene flame are larger on average than in the ethanol 

doped flame because the growth pathways amongst particle precursors differ slightly 

between the flames. In particular, the distinctions between the sets of OPAHs in the two 

flames are highlighted by the stark differences in molecular structure and composition. 

For example, note the ratios of carbons to hydrogens (C/H ratios) and carbons to oxygens 
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(C/O ratios) on each HMAM at several heights in the flames. Figure 5.7 portrays the 

average C/H and C/O ratios for the set of trajectories in the SNAPS ensembles for each 

flame. Given the collection of HMAMs in each flame, those in the pure flame show an 

appreciably higher C/H and appreciably lower C/O ratio over the entire length of the 

flames. This measurement demonstrates that HMAMs in the pure flame tend to evolve by 

adding fewer hydrogen atoms and more oxygen atoms (in net, accounting for the 

difference between addition and removal/abstraction reactions) than HMAMs in the 

ethanol doped flame. This is due to the greater preponderance of hydrogen abstractions 

below 2mm in the pure ethylene flame which is due to the slightly higher concentration 

of H and OH radicals in that range. The higher preponderance of active sites on the 

HMAMs in the pure ethylene flame creates more opportunity for oxygenation of those 

molecules (mainly OH, O, and O2 additions) and thus there is a lower measured ensemble 

averaged C/O ratio amongst the HMAMs in the pure ethylene flame. Additionally, the 

higher relative concentration of acetylene in the ethanol doped flame ensures the rate of 

acetylene additions is slightly faster in that flame than the pure ethylene flame and 

subsequently partially responsible for the higher C/O ratio amongst HMAMs in the 

ethanol doped flame. 

One additional characteristic worth noting is the ratio of oxygenation to 

carbonation reactions that the HMAMs experience. Oxygenation is defined as the net 

gain (or loss) of oxygen atoms to the HMAM via a kinetic reaction. Carbonation is 

defined as the net gain (or loss) of oxygen atoms to the HMAM via a kinetic reaction. 

That is, a reaction can result is the addition or subtraction of an atom from the HMAM. 

The net is the difference between addition and loss of the specific atom types. Analyses 
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can track these throughout the duration of each trajectory and compile an average for the 

entire ensemble (for each flame).  A reaction where a carbon and an oxygen atom are 

ejected from the HMAM will account for a net loss for both the oxygenation and 

carbonation values. I tracked both the non-cumulative values for net oxygenation and 

carbonation as well as the cumulative values. The ratios are presented in Figure 5.8. Non-

cumulative values are isolated to 1 mm height windows (e.g. 0.5-1.5 mm HAB, 1.5-2.5 

mm HAB etc.). Cumulative net oxygenation and net carbonation values are tracked 

during the duration of the flame such that the value at HAB 14 mm is biased by the sum 

of the values up to that point. 

The higher net oxygenation to net carbonation ratios of the HMAMs in the pure 

flame shown in Figure 5.8a and Figure 5.8b are a result of the higher rate of net oxygen 

addition reactions in said flame. Specifically, the greater relative concentration of O2 and 

OH in the pure ethylene flame leads to a higher ratio as seen in Figure 5.8b. The trends of 

the non-cumulative net oxygenation to net carbonation ratios are directly correlated to the 

O2 profiles in each flame. Because the ethanol doped flame has a relative O2 

concentration one to three orders of magnitude lower than pure ethylene flame the ratio 

of oxygen addition to oxygen removal reactions in much lower in the former flame 

resulting in ratio that approaches zero four mm before that in the pure ethylene flame 

(long dashed pale blue line vs. solid dark red line in Figure 5.8b). The lower net 

oxygenation to net carbonation ratio of the HMAMs in the ethanol doped flame results in 

the higher C/O ratio seen in Figure 5.7b and the lower ensemble averaged mass (Figure 

5.6) of the HMAMs in that flame. 
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The increased rate of growth of particle precursor molecules in the pure ethylene 

flame as compared to the doped flame is directly correlated with the increased 

concentration of O2 and OH in the flame environment which leads to a higher 

oxygenation rate of the molecules in the pure flame. The higher rate of oxygenation leads 

to more active sites and more reactive species (and lower C/O ratios) and subsequently 

faster growth and growth to much larger sizes. These molecular trends are consistent with 

the experimental measurements of greater particle production in the pure ethylene flame 

compared to the doped flame. This is all true despite the higher concentration of 

conventional particle precursor species like acetylene and benzene in the gas-phase 

environment of the doped flame. This computational modeling of (O)PAH growth in 

laminar premixed flames suggests that the kinetic growth pathways are much more 

complex than the traditional hydrocarbon pathways and that oxygenation pathways are an 

important defining characteristic of the evolution of particle precursors.  

 

5.3 Summary and Conclusions 

The present study investigated the impact of oxygenated fuel chemistry on the 

growth pathways of particle precursor molecules in ethylene–air and ethylene/ethanol–air 

premixed laminar flames [234]. Experimental analysis of the two flames revealed that the 

addition of ethanol reduced the particle sizes and particle numbers but provided no 

information about the effect on particle precursors. The ethanol doped ethylene flame 

showed less total particulate volume fraction and smaller mean size of particles than the 

pure ethylene flame. Additionally, the appearance of bimodal distribution in the PSDF of 
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the pure ethylene flame disappears altogether when the fuel is doped with 30% ethanol. 

The chosen flames were an interesting case study to investigate the mechanisms of PAH 

growth leading to the formation of nanoparticles because they present similar measured 

temperature profiles as well as the same equivalence ratio and carbon flow rate, thus 

ensuring a similar gas-phase environment between the flames. Simulations using the 

oxygenation/hydrocarbon mechanism developed in this work enables one to isolate of the 

effect of an oxygenated dopant on the evolution of HMAMs and the formation of 

nanoparticles. 

Surprisingly, gas-phase CHEMKIN modeling revealed that the addition of ethanol 

as a dopant increased the concentration of species that are generally thought to lead to 

conventional particle precursors, e.g. benzene and acetylene. However, PAH modeling 

using SNAPS and the new oxygenation/hydrocarbon mechanism revealed that particle 

formation was likely hampered by lower rates of oxygenation of PAHs. The lower PAH 

oxygenation rates were more significant than the reduced abundance of gas-phase 

acetylene and benzene in the doped flame. The study identified several oxygenation 

pathways that significantly accelerate the rate of growth of particle precursors by 

embedding oxygen atoms into the molecular structures, which in turn affect their 

nucleation propensity. Increased oxygenation spurred increased generation of actives 

sites on the surface of PAHs which enabled faster rate of growth and consequently likely 

leads to increased particle formation.  
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5.3.1 Contributions and Collaborations 

 Using deterministic CHEMKIN models, demonstrated that very similar ethanol 

doped ethylene flames can yield different speciation profiles 

 Demonstrated that measured differences in particle yield between pure ethylene 

flame and ethylene-ethanol flame can only be captured if considering oxygenated 

PAH growth pathways 

 Used newly developed kinetic growth mechanism to show that PAHs grow 

quicker and to much larger sizes because of the oxygen chemistry 

 Used the simulations to highlight the importance of oxygen chemistry in the first 

two mm above the burner in both ethylene and ethylene-ethanol flames 

 Reported that, contrary to conventional thought, the most crucial species affecting 

PAH growth in premixed flames are O, OH, and O2, not acetylene and propargyl 

 For the first time showed that C/O ratio of PAHs is directly correlated with 

average mass and rate of growth in premixed ethylene and ethylene-ethanol 

flames 

 All the material presented in this chapter is the sole work of this author 
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Figures 

 
Figure 5.1: Red solid lines represent the pure ethylene flame and blue dashed lines 

represent the ethanol doped flames.  (a) Temperature profile obtained from the 

Salamanca et al. [234] (b) Axial velocity of the flames as modeled in with the CHEMKIN 

PREMIX [155], [247] software. (c) Residence time of the gases in the flames. The 

residence time is shown to highlight that particles have almost equal residence times in 

the flames to grow, thus differences in SNAPS simulations is not due to residence time. 

 

(a) (b) (c)
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Figure 5.2: Species profiles of the pure ethylene (solid red lines) and ethanol doped 

(dashed blue lines) flames from [234] simulated in CHEMKIN [155], [247]. (a) O2, (b) 

C2H2, (c) H2, (d) H, (e) OH, (f) O, (g) O2 0-2mm only, (h) OH 0-2mm only, (i) O 0-2mm 

only. The latter three are presented for qualitative clarity at HAB less than 2 mm. 
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Figure 5.3: Species profiles of the pure ethylene (solid red lines) and ethanol doped 

(dashed blue lines) flames from [234] simulated in CHEMKIN [155], [247]. (a) benzene, 

(b) toluene, (c) indene, (d) naphthalene, (e) acenaphthylene. The ethanol doped flame has 

consistently higher concentrations of small aromatics than the pure ethylene flame. 

 

 
Figure 5.4: Species profiles of the pure ethylene (solid red lines) and ethanol doped 

(dashed blue lines) flames from Wu et al. [235] simulated in CHEMKIN [155], [247]. (a) 

C2H2, (b) benzene, (c) toluene, (d) naphthalene, (e) acenaphthylene. The pure ethylene 

flame has consistently higher concentrations of acetylene and small aromatics than the 

ethanol doped flame. 

(b)(a)

(c) (d)

(e)

(a) (b) (c)

(d) (e)
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Figure 5.5: Small (left) and large (right) PAH profiles of the pure ethylene (experiment: 

red star symbols, gas-phase model: solid red lines) and ethanol doped (experiment: blue 

square symbols, gas-phase model: dashed blue lines) flames from Wu et al. [235] and 

simulated in CHEMKIN. The pure ethylene flame has consistently higher concentrations 

of small and large PAHs. The model captures that as well as the general shape of the 

profiles (slight concavity around five mm in the small PAH profiles and near linearity in 

the large PAH profiles). As defined in reference [235], the profiles are normalized by the 

final concentration of the pure flame. That is, the models are normalized by the 

concentration at 20 mm in the pure flame, and the sets of experimental data are 

normalized by the concentration at 20 mm in the pure flame. 

 

 
Figure 5.6: Average mass of an ensemble of HMAMs generated using SNAPS in the 

pure flame (circles) and doped flame (squares). Closed and open symbols represent 

simulations with the oxygen/hydrocarbon and the reduced (hydrocarbon only, no 

oxygenation pathways) growth mechanism, respectively. Each line is obtained by 
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averaging 11000 trajectories (oxygen/hydrocarbon mechanism) or 1000 trajectories (HC 

only). The 99% confidence interval for the ensemble mean was calculated for all data 

points. The largest range for each ensemble is: ±6.1 u (pure flame with full mechanism), 

±3.9 u (doped flame with full mechanism), ±12.9 u (pure flame with partial mechanism), 

and ±16.6 u (doped flame with partial mechanism). 

 

 

 
Figure 5.7: Ensemble average C/H (a) and C/O (b) ratios of the HMAMs predicted by 

SNAPS for the pure ethylene (solid red lines) and ethanol doped (dashed blue lines) 

flames from [234]. At each height every HMAM trajectory is sampled and a molecule-

specific C/H and C/O ratio is calculated; the ratios are then averaged to create the plotted 

profiles. The sampled heights for both methods were 0.1, 0.2, 0.5, 1, 3, 6, 8, 10, 12, and 

14 mm HAB. 

 

 
Figure 5.8: Ensemble average ratios of net oxygenation to net carbonation in the pure 

ethylene (solid red lines) and ethanol doped (dashed blue lines) flames of [234]. Reported 

are both the cumulative ratios (a) as well as the non-cumulative ratios (b left y-axis) 

overlaid with the relative O2 concentrations of the flames (b right y-axis). The medium 

dashed bright red line represents the O2 profile of the pure ethylene flame and the dotted 

(a) (b)

(a)

(b)
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bright blue line represents the O2 profile of the ethanol doped flame. Net oxygenation 

accounts for the difference in reactions that add oxygen atoms to the HMAM and those 

that remove or abstract oxygen atoms (including the number of oxygen atoms involved in 

the reaction). Similarly, for net carbonation, but with carbon atoms. The cumulative ratios 

(a) involve accounting for all reactions in all SNAPS trajectories up to that height in the 

flame. The non-cumulative ratios involve accounting for all reactions in all SNAPS 

trajectories only in the range of the sampled height, i.e. from midway between the 

previously sampled height and the current sample height to midway between the 

currently sampled height and the next height to be sampled. The sampled heights for both 

methods were 0.1, 0.2, 0.5, 1, 3, 6, 8, 10, 12, and 14 mm HAB. The calculation heights 

are intentionally more compacted from 0 to 2 mm because the HMAMs were shown to 

undergo a much faster rate of growth in that region. It is noteworthy that both flames 

show their highest oxygen addition to carbon addition ratios at 0.2 mm (second height 

represented) and the ratios quickly become smaller with flame height. This parallels the 

rate of growth of HMAMs as functions of height of the flame; in particular that the fastest 

rate of growth was between 0.1 and 0.5 mm. 
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          Chapter 6  

 

 

Conclusions and Recommendations for Future Work 

With the goal of illuminating the chemical growth process preceding the 

formation of carbonaceous nanoparticles during flame synthesis, this dissertation work 

explored the formation and growth of oxygenated aromatic precursor species. This study 

investigated chemical growth pathways of particle precursors and provided considerable 

evidence outlining the integral role that oxygen chemistry plays in the evolution of PAHs 

and the formation of particles in premixed flames. This dissertation work utilizes 

stochastic computational modeling techniques to characterize the formation, chemical 

growth, and composition of OPAHs for the first time. Detailing the importance of oxygen 

chemistry in premixed flames represents an important step toward elucidating the 

morphologies and kinetic growth pathways of OPAHs in addition to ascertaining the 

effects oxygenated fuels have on particle precursors and particle formation.  

The hypothesis that particle precursor species could be oxygenated rather than 

purely hydrocarbons was to be tested in this work. The first step was the creation of a set 

of kinetic pathways for particle precursor molecules that accounted for oxygen chemistry 

and to design a growth mechanism for particle precursors that included the oxygen 

chemistry as well as conventional hydrocarbon chemistry. The mechanism comprised an 
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intricate set of pathways incorporating previously proposed reaction schemes as well as 

those proposed in this work. The mechanism was designed to be used in a previously 

developed stochastic simulator such that reactions not be limited to specific reactant 

species, but rather act on sub-structures within a reactant species. The mechanism 

comprised 70 new reversible elementary reaction types that involved oxygenation or 

oxidation. Where appropriate, reaction rate constants from analogous reactions were 

assigned to newly proposed oxygenation reactions. However, six reaction rate constants 

for two key oxygenation pathways were calculated using first principle quantum 

methodologies. Rate constants for forward and reverse reactions were assigned 

independently, and care was taken to ensure thermodynamic consistency for paired 

reactions. 

The existing code was modified significantly in order to accommodate the newly 

designed mechanism. The model was validated against deterministic models and 

experiments. The simulations conducted matched experimental data, e.g. mass spectra 

and chemical composition as determined from mass spectrometry, as well as 

deterministic simulations of small PAH profiles in premixed flames. Validation in a 

sooting benzene flame revealed that the newly designed oxygenation pathways are 

integral to the formation of large particle precursors and capturing complex mass spectra 

profiles. Similarly, oxygenation pathways work synergistically with traditional 

hydrocarbon pathways; the set of pathways are intertwined and work in parallel. 

The new simulator and growth mechanism was utilized to model kinetic evolution 

of PAHs in premixed ethylene flames in an effort to predict the oxygenated compounds 

in the flame and help ascertain if they are present in particulates captured and analyzed ex 
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situ. Simulations predict, for the first time, an abundance of PAHs with oxygen 

embedded in the molecules and reveal their dominant kinetic formation pathways. 

Several oxygenated functional groups, including enols and ethers, are identified as being 

abundant in smaller molecules ranging from approximately 100 amu to 300 amu and 

serving as stepping stones to larger OPAHs up to 1000 amu that can contribute to particle 

formation. Simulations predicted specific morphologies of PAHs present at particular 

heights in the flame. XPS techniques conducted by collaborators were able to validate the 

presence of specific structures for the first time. 

Simulations elucidated the effects of oxygenated fuels on particle production in 

premixed flames. Oxygenation pathways prove to be the key to differentiating between 

PAH growth in ethylene flames with and without ethanol dopant. Thus, only with the 

reaction mechanism developed in this work can simulations capture variance in rates of 

particle precursor formation which lead to variance in particle formation rate and particle 

sizes produced in the flames. Additionally, simulations revealed that PAHs grow in 

specific regions of the flame. In premixed flames where the temperatures rise quickly 

near the burner surface, there are an abundance of radicals generated by fuel oxidation 

that aid in PAH growth. Hydrogen radicals play a significant role in generating active 

sites on the edge of small aromatics that are then available for interaction with oxygen, 

hydroxyl, and acetylene. As the pool of radicals is reduced, PAH growth slows 

significantly. Importantly, this study revealed that the reduction of oxygen and OH is the 

most significant factor in reducing the rate of PAH growth in premixed ethylene. This 

suggests that the concentration of small carbon species, though a factor, is not the sole 

driving force behind PAH growth. 
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In general, the major species predicted by simulations of premixed flames contrast 

with the commonly held assumptions of PAH growth; across aliphatic and aromatic 

flames and a broad range of C/O ratios, there is a significant presence of oxygenated 

compounds. Furthermore, the present work supports a prominent role of the HACA 

growth scheme while demonstrating the breadth of additional pathways involved in PAH 

growth and highlighting the importance of oxygen chemistry on the evolution of particle 

precursors and impact on particle formation. This dissertation reveals previously 

unexplored chemistry of PAHs and further informs the understanding of their growth and 

influence on particles in premixed flames. In particular, the set of particle precursor 

species is much more broad and complex than previously considered and the expansive 

set of (O)PAHs has diverse effect on particle nucleation. This work synthesized 

theoretical, computational, and experimental methods to motivate future investigations 

concerning the evolution of key molecular precursors and nanoparticle formation in 

combustion. 

Further studies using the methodology established in this work could explore the 

effects of oxygen-rich environments on the evolution of large PAHs, in the vein of 

experiments wherein mature particles are exposed to oxygen-rich environments in order 

to facilitate size reduction caused by oxidation chemistry. Oxidation chemistry abstracts 

carbon from particle surfaces resulting in less total particle mass. Results presented in this 

dissertation hint that these types of reactions are applicable to large PAHs as well. 

However, in the set of premixed flames simulated, the environments quickly became 

oxygen deficient due to the fuel-rich nature of the flames. Thus a study where large PAHs 

and oxygen are abundant in large quantities in the same spatial region might provide 



153 

useful information. If PAHs are reduced in size prior to particle nucleation, the effects on 

particle sizes might be significant. Similarly, oxygenation of PAHs may have a 

significant influence on particle nucleation. 

The presence of OPAHs hints that traditional concepts of particle nucleation, 

namely physical bonding of pericondensed PAHs, are not a full description of the 

mechanism. Oxygenated structures likely affect physical bonding because of their 

polarity compared to pericondensed structures. Recent work that has investigated the 

dimerization stability of PAHs could be extended to include oxygenated structures to 

ascertain the effect of oxygenated functional groups on the process. The presence of 

OPAHs may also affect alternative particle formation mechanisms dependent on 

chemical reactivity. 

The radical-radical combination method for non-sequential PAH growth 

presented in this dissertation can be extended to model particle nucleation. A future study 

could utilize the methodology to test the hypothesis that particles are likely to form 

through chemical reactions alone rather than a combination of chemical and physical 

bonding. The probability of bonding between PAH radicals is greater than the probability 

of physical sticking occurring for equivalent molecules, which suggests that particle 

nucleation may be feasible with relying on physical sticking.  

Though the work presented here constitutes advancement towards elucidating the 

mechanisms of particle precursor growth in flames, there is much room for improvement 

to the modeling methodologies and approaches. Because information about the gas-phase 

environment is required as an input to the PAH modeling code, there are limited 

combustion scenarios applicable to model PAH growth. For example, the code has not 
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been utilized to predict PAH growth and inform particle production during operation of 

internal combustion engines because detailed temporal and spatial gas-phase data is 

difficult to obtain. Reactive computational fluid dynamic (CFD) simulations that couple 

the flow-field with gas-phase data promise to expand the capabilities of PAH modeling. 

Large deterministic mechanisms are not plausible to combine with CFD simulations 

because of the computational expense. Therefore, the stochastic code, if coupled with 

detailed data of the environment during internal engine combustion, could yield valuable 

information about the process of precursor growth and particle formation. 

Additionally, the kinetics in the mechanism could be extended to include low 

temperature chemistry. Currently, low temperature environments result in very little 

molecular evolution because the slow kinetics result in large time steps and few reaction 

events. Low temperature chemistry would greatly benefit the software because it would 

extend the applicable set of combustion scenarios in which PAH modeling would be 

applicable. Similarly, the kinetics could be extended to include sulfuric and metallic 

chemistry towards the goal of modeling a wider variety of nanoparticles produced during 

combustion and manufacturing processes. Additionally, the most computationally 

expensive aspect of the code is geometrical optimization of molecular configurations. 

Great efficiency could be gained by isolating the component of the target molecule that 

was affected by a reaction event and limiting the geometrical optimization to that 

component such that computational time isn’t wasted re-optimizing unaltered geometry. 

In total, the work presented in this investigation represents and advancement 

towards elucidating the mechanisms of particle precursor growth in flames and their 

impact on particle formation. The novel insight into the chemical pathways of PAH 
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growth in laboratory-scale flames contributes significantly to understanding the 

mechanisms of formation and composition of particle precursor species. This atomistic 

modeling provides detailed information about the particle formation process that greatly 

benefits the community and provides a level of detail difficult for experiments to capture. 

This work therefore has a considerable impact on efforts to curtail emissions of harmful 

aromatic content and nanoparticles generated during combustion. 
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Appendix 

Table A.6.1: List of all reactions in the new SNAPS mechanism corresponding to Table 

2.4. All reactions are listed in descending order of rate coefficient evaluated at 1750 K 

within each class. Oxygenation reactions and hydrocarbon reactions are highly 

interconnected. Units for the pre-exponential factor (“A” column) are s-1 for unimolecular 

reactions and cm3*s-1*mol-1 for bimolecular reactions. Units for the activation energy 

(“Ea” column) are kcal/mol. 

Reaction name in SNAPS Abr. A n Ea 
Reaction 

Description 
order Source 

Habs_fromO_byC2H3 HAB1 6.0000E+14 0.000 0.000 

C2H3(g) + Car(-O-

H) = Car(-O*) + 

C2H4(g) 

bi [252] 

Habs_fromO_byOH HAB2 2.9500E+06 2.000 -1.312 
OH*(g) + Car(-O-H) 
= Car(-O*) + H2O(g) 

bi [230] 

Habs_fromO_byH HAB3 1.2000E+14 0.000 12.400 
H*(g) + Car(-O-H) = 

Car(-O*) + H2(g) 
bi [252] 

Habs_fromO_byO HAB4 2.8100E+13 0.000 7.532 
O*(g) + Car(-O-H) = 

Car(-O*) + OH(g) 
bi [230] 

Habs_byOH HAB5 8.6517E+02 3.040 3.675 
Car(-H) + OH(g) = 
Car(*) + H2O(g) 

bi [136] 

Habs_fromO_byphenyl HAB6 4.9000E+12 0.000 4.400 

C6H5(g) + Car(-O-

H) = Car(-O*) + 

C6H6(g) 

bi [252] 

Habs_fromO_byHO2 HAB7 1.0000E+12 0.000 1.000 
HO2(g) + Car(-O-H) 

= Car(*) + H2O2(g) 
bi [252] 

Habs_byH HAB8 6.4600E+07 1.860 15.976 
Car(-H) + H(g) = 

Car(*) + H2(g) 
bi [279] 

Habs_byCH3 HAB9 8.9000E+02 2.890 15.992 
Car(-H) + CH3(g) = 

Car(*) + CH4(g) 
bi [136] 

Habs_fromO_byO2 HAB10 1.0000E+13 0.000 38.000 
O2(g) + Car(-O-H) = 

Car(*) + HO2(g) 
bi [252] 

Hremoval_zigzagR5_anyltoene HAB11 1.0000E+10 0.219 25.540 
Cal*-CH = Cal=Cal 

+ H*(g) 
uni [132] 

remove_H_from_Oar HAB12 6.4450E+16 -0.414 88.127 
Car(-O-H) = H*(g) + 

Car(-O*) 
uni Eq 

remove_H_from_Oal HAB13 8.9460E+31 -4.717 98.357 
Cal(-O-H) = H*(g) + 

Cal(-O*) 
uni Eq 

add_H_to_Oar HAD1 2.5000E+14 0.000 0.000 
H*(g) + Car(-O*) = 

Car(-O-H) 
bi [252] 

add_H_to_Oal HAD2 3.4700E+29 -4.303 10.230 
H*(g) + Cal(-O*) = 

Cal(-O-H) 
bi [252] 

addH_fromH2 HAD3 9.2300E+04 2.386 5.815 
Car(*) + H2(g) = 

Car(-H) + H(g) 
bi [136] 

addH_fromH2O HAD4 5.5900E+00 3.573 8.659 
Car(*) + H2O(g) = 

C(-H) + OH(g) 
bi [136] 
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addH_fromCH4 HAD5 2.1600E+01 3.218 6.921 
Car(*) + CH4(g) = 

Car(-H) + CH3(g) 
bi [136] 

addH_zigzagR5_enetoanyl HAD6 2.7000E+09 0.454 1.820 
Cal=Cal + H*(g) = 

Cal*-CalH 
bi [132] 

Htransfer_rev_ethenylbenz HT1 2.3200E+10 0.693 25.934 
Car(*) + Cal(-H) = 
Car(-H) + Cal(*) 

uni [136] 

Htransfer_ethenylbenz HT2 5.9000E+10 0.547 27.566 
Car(-H) + Cal(*) = 

Car(*) + Cal(-H) 
uni [136] 

Htransfer_rev_zigzagrad_ethen

yl 
HT3 3.2200E+06 0.927 7.384 

Car(*) + Cal(-H) = 

Car(-H) + Cal(*) 
uni [132] 

Htransfer_zigzagrad_ethenyl HT4 1.2200E+06 1.000 8.007 
Car(-H) + Cal(*) = 
Car(*) + Cal(-H) 

uni [132] 

Htransfer_fromC_toO HT5 1.2200E+04 1.000 8.007 
Car(-O*) + Car(-H) = 

Car(-O-H) + Car(*) 
uni [255] 

Htransfer_fromO_toC HT6 3.2200E+03 0.927 7.384 
Car(-O-H) + Car(*) = 

Car(-O*) + Car(-H) 
uni Eq 

phenanthrene_to_indenyl FA1 1.0000E+19 -1.050 -15.560 
phenanthrene[closed] 
= indenyl[closed] + 

C5H5(g) 

bi Eq 

addO_fromOH FA2 5.0000E+13 0.000 0.000 
OH*(g) + Car(*) = 
Car(-O*) + H*(g) 

bi [32] 

addO_fromHO2_Car FA3 3.0000E+13 0.000 0.000 
HO2(g) + Car(*) = 

Car(-O*) + OH*(g) 
bi [252] 

addO_fromHO2_Cal FA4 6.3000E+29 -4.690 11.650 
HO2(g) + Cal(*) = 

Cal(-O*) + OH*(g) 
bi [252] 

add_CH3_to_O FA5 1.2100E+13 0.000 0.000 
CH3*(g) + Car(-O*) 

= Car(-O-CH3) 
bi [256] 

add_benzene_to_O FA6 1.2100E+13 0.000 0.000 

C6H6(g) + Car(-O*) 

= Car(-O-C6H5) + 

H*(g) 

bi [256] 

add_phenyl_to_O FA7 1.2100E+13 0.000 0.000 
C6H5*(g) + Car(-

O*) = Car(-O-C6H5) 
bi [256] 

add_c2h3 FA8 1.5000E+22 -2.601 6.280 
Car(*) + C2H3(g) = 

Car(-(CH)=(CH2)) 
bi [253] 

add_phenyl FA9 2.0000E+26 -3.900 6.320 
Car(*) + C6H5(g) = 

Car(-C6H5) 
bi [253] 

add_c2h2ethenyl FA10 3.2900E+06 2.048 3.162 
Car(*) + C2H2(g) = 
Car(-(CH)=(C*H)) 

bi [253] 

addO_fromO2 FA11 2.6000E+13 0.000 6.100 
O2(g) + Car(*) = 

Car(-O*) + O*(g) 
bi [257] 

add_propargyl_cnacetyl FA12 3.0000E+12 0.000 0.000 
Car(*) + C3H3(g) = 
Car(-C#C-(C*H2)) + 

H*(g) 

bi [171] 

add_propargyl_tobiphenylrad FA13 3.0000E+12 0.000 0.000 

phenyl[closed](-

C#C-(C*H2)) + 
H2C*CCH(g) = 

C12H10(biphenyl)[cl

osed] 

bi [171] 

add_OH FA14 6.5000E+14 -0.850 -2.730 
OH*(g) + Cal(*) = 

Cal(-O-H) 
bi [252] 

addO2 FA15 3.4000E+30 -5.100 12.950 
O2(g) + Car(*) = 

Car(-O*) + O*(g) 
bi [250] 

add_ch3 FA16 2.8200E+44 -9.360 14.310 
Car(*) + CH3(g) = 

Car(-CH3) 
bi [260] 

indenyl_to_phenanthrene FA17 5.0000E+12 0.000 8.000 

indenyl[closed] + 

C5H5(g) = 
phenanthrene[closed] 

bi [280] 

add_c2h4 FA18 2.5100E+12 0.000 6.200 

Car(*) + C2H4(g) = 

Car(-(CH)=(CH2)) + 

H*(g) 

bi [260] 
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add_c2h2_ethenyl_to_O FA19 2.3300E+06 2.174 20.909 

C2H2(g) + Cal(-O*) 

= Cal(-O-
(CH)=(C*H)) 

bi pw 

add_c2h2ethenyl_tomethyl FA20 3.2000E+11 0.000 7.000 
Cal(*) + C2H2(g) = 

Cal(-(CH)=(C*H)) 
bi [280] 

add_benzene FA21 2.2200E+83 

-

20.79
0 

46.890 
Car(*) + C6H6(g) = 

Car(-C6H5) + H*(g) 
bi [260] 

add_peroxy FA22 7.3100E+07 0.080 -9.570 
Cal(*) + O2(g) = 

Cal(-O-O*) 
bi [250] 

add_Oar FA23 7.0600E+04 1.030 -6.960 
O*(g) + Car(*) = 

Car(-O*) 
bi [230] 

add_Oal FA24 1.8400E+03 1.030 -6.960 
O*(g) + Cal(*) = 

Cal(-O*) 
bi [230] 

remove_propargyl_cnacetyl FR1 3.3900E+17 -1.060 -0.937 
Car(-C#C-(C*H2)) + 

H*(g) = Car(*) + 

C3H3(g) 

bi Eq 

Oabs_byH FR2 1.2700E+20 -1.331 26.087 
H*(g) + Car(-O*) = 

Car(*) + OH*(g) 
bi Eq 

Oabs_byOar FR3 2.2060E+17 -0.957 15.045 
O*(g) + Car(-O*) = 

Car(*) + O2(g) 
bi Eq 

Oabs_byOal FR4 2.8850E+34 -6.058 21.895 
O*(g) + Cal(-O*) = 

Cal(*) + O2(g) 
bi Eq 

remove_peroxy FR5 4.0300E+13 0.000 12.260 
Cal(-O-O*) = Cal(*) 

+ O2(g) 
uni [250] 

Oabs_byOH_Cal FR6 7.2900E+31 -5.146 24.866 
OH*(g) + Cal(-O*) = 

Cal(*) + HO2(g) 
bi Eq 

remove_c2h4 FR7 4.8400E+20 -2.170 13.660 

Car(-(CH)=(CH2)) + 

H*(g) = Car(*) + 
C2H4(g) 

bi Eq 

remove_ethenyl_from_O FR8 3.7720E+13 0.251 22.552 

Cal(-O-(CH)=(C*H)) 

= C2H2(g) + Cal(-
O*) 

uni pw 

remove_benzene FR9 1.7900E+22 -2.450 23.589 

Car(-C6H5) + 

H*(g)= Car(*) + 

C6H6(g) 

bi Eq 

remove_ethenyl FR10 2.4800E+15 0.011 46.064 
Car(-(CH)=(C*H)) = 

Car(*) + C2H2(g) 
uni [136] 

ejectOH_formC=O FR11 3.6100E+12 0.000 37.300 
Cal(-O-O*) = 

Cal(=O) + OH*(g) 
uni [245] 

remove_CH3_from_O FR12 1.8230E+21 -1.671 66.493 
Car(-O-CH3) = 

CH3*(g) + Car(-O*) 
uni Eq 

Oabs_byOH_Car FR13 3.1390E+16 -0.656 61.355 
OH*(g) + Car(-O*) = 

Car(*) + HO2(g) 
bi Eq 

rem_benzene_from_O FR14 2.0500E+19 -0.945 81.964 

Car(-O-C6H5) + 

H*(g) = C6H6(g) + 
Car(-O*) 

bi Eq 

rem_phenyl_from_O FR15 2.0500E+19 -0.945 81.964 

Car(-O-C6H5) = 

C6H5*(g) + Car(-
O*) 

uni Eq 

remove_OH FR16 1.0900E+15 0.000 74.120 
Cal(-O-H) = Cal(*) + 

OH*(g) 
uni Eq 

remove_ch3 FR17 1.0300E+22 -1.800 106.815 
Car(-CH3) = Car(*) 

+ CH3(g) 
uni Eq 

remove_phenyl FR18 7.0600E+21 -1.560 119.007 
Car(-C6H5) = Car(*) 

+ C6H5(g) 
uni Eq 

remove_c2h3 FR19 7.1000E+21 -1.671 118.726 
Car(-(CH)=(CH2)) = 

Car(*) + C2H3(g) 
uni Eq 

remove_Oar FR20 6.0900E+09 0.101 72.772 
Car(-O*) = Car(*) + 

O*(g) 
uni Eq 

remove_Oal FR21 1.5900E+08 0.101 72.772 
Cal(-O*) = Cal(*) + 

O*(g) 
uni Eq 
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closearmchair6_6&6 RC1 1.9100E+09 1.138 1.629 

biphenyl-

C2H2[open] = 
phenanthrene[closed] 

+ H 

uni [158] 

close6ring_HACA_ethenyl_eth

enylrad 
RC2 5.1400E+12 0.056 2.127 

benzene-1C2H3,-
2C2H2[open] = 

naphthalene[closed] 

uni [136] 

close6ring_HACA_acetyl_ethe
nylrad 

RC3 9.9500E+11 0.045 5.395 

benzene-1C2H,-

2C2H2[open] = 

naphthyl[closed] 

uni [136] 

close6ring_HACA_butadienyl RC4 3.6100E+09 0.601 3.635 

benzene-C-C-C-
C[open] = 

naphthalene[closed] 

+ H 

uni [136] 

closebay6 RC5 1.1100E+11 0.658 23.990 

C-C-C-C-C-

C*[open] = C-C-C-

C-C-C[closed] + H 

uni [158] 

close6ring_armchair_benz RC6 1.1100E+11 0.658 23.990 

C-C-C-C-C-

C*[open] = C-C-C-

C-C-C[closed] + H 

uni [158] 

close5ring1propenyl RC7 2.8800E+11 0.225 17.027 

C2H2-
naphthyl[open] = 

acenaphtylene[closed

] + H 

uni [136] 

close5ring2propenyl RC8 2.8800E+11 0.225 17.027 

C2H2-

naphthyl[open] = 

acenaphtylene[closed
] + H 

uni [136] 

closezigzag5 RC9 2.8800E+11 0.225 17.027 

C2H2-

naphthyl[open] = 

acenaphtylene[closed
] + H 

uni [136] 

closebay5 RC10 3.8600E+11 0.210 17.700 

C-C-C-C-C*[open] = 

C-C-C-C-C[closed] + 
H 

uni [158] 

close5ring_zigzag_benz RC11 3.8600E+11 0.210 17.700 

C-C-C-C-C*[open] = 

C-C-C-C-C[closed] + 

H 

uni [158] 

close5ring_zigzag_benz_ringra
d 

RC12 3.8600E+11 0.210 17.700 

C-C-C-C-C*[open] = 

C-C-C-C-C[closed] + 

H 

uni [158] 

close5ring_edge_methylbenz RC13 3.8600E+11 0.210 17.700 
C-C-C-C-C*[open] = 
C-C-C-C-C[closed] + 

H 

uni [158] 

close6ring_OC RC14 4.728E+09 0.344 7.803 
C-C-C-C-O-C[open] 

= pyran[closed] + 

H*(g) 

uni pw 

close6ring_OCC RC15 4.728E+09 0.344 7.803 
C-C-C-O-C-C[open] 

= pyran[closed] + 

H*(g) 

uni pw 

close6ring_OCCC RC16 4.728E+09 0.344 7.803 

C-C-O-C-C-C[open] 

=  pyran[closed] + 
H*(g) 

uni pw 

close5ring_O RC17 4.728E+09 0.344 7.803 

C-C-C-C-O-C[open] 

=furan[closed] + 
H*(g) 

uni pw 

close5ring_OC RC18 4.728E+09 0.344 7.803 

C-C-C-O-C-C[open] 

=furan[closed] + 

H*(g) 

uni pw 

close5ring_OCC RC19 4.728E+09 0.344 7.803 

C-C-O-C-C-C[open] 

= furan[closed] + 

H*(g) 

uni pw 

closezigzag5_toanyl RC20 5.0400E+06 0.740 6.566 
C-C-C-C-C*[open] = 
C-C-C-C-C[closed] 

uni [132] 

closeanth_to1benzyl RC21 7.0000E+09 0.000 14.5 

C-C-C-C-C*[open] = 

C-C-C-C-C[closed]-

C1* 

uni [152] 
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closephen_to2benzyl RC22 7.0000E+09 0.000 18.7 

C-C-C-C-C*[open] = 

C2*-C-C-C-C-
C[closed] 

uni [152] 

open6ring_biphenylrad_toprop

argyl 
RO1 2.6700E+21 -0.689 39.250 

C12H10(biphenyl)[cl

osed] = 

phenyl[closed](-
C#C-(C*H2)) + 

H2C*CCH(g) 

bi Eq 

open_5ring_zigzag RO2 6.6700E+12 0.430 15.539 
acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open_5ring_zigzag_ringrad RO3 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-
naphthyl[open] 

bi Eq 

openbay5 RO4 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-
naphthyl[open] 

bi Eq 

open5ring_1propenyl RO5 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open5ring_2propenyl RO6 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open_5ring_1propenyl_ringrad RO7 6.6700E+12 0.430 15.539 
acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open_5ring_2propenyl_ringrad RO8 6.6700E+12 0.430 15.539 
acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open5ring_zigzagbenz RO9 6.6700E+12 0.430 15.539 
acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open5ring_zigzagbenz_ringrad RO10 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-
naphthyl[open] 

bi Eq 

open5ring_edge_methylbenz RO11 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

open5ring_edge_methylbenz_ri
ngrad 

RO12 6.6700E+12 0.430 15.539 

acenaphthylene[close

d] + H = C2H2-

naphthyl[open] 

bi Eq 

openbay6 RO13 3.2900E+11 1.237 26.430 

phenanthrene[closed] 

+ H = biphenyl-

C2H2[open] 

bi Eq 

open_6ring_armchair RO14 3.2900E+11 1.237 26.430 
phenanthrene[closed] 

+ H = biphenyl-

C2H2[open] 

bi Eq 

open_6ring_armchair_ringrad RO15 3.2900E+11 1.237 26.430 
phenanthrene[closed] 

+ H = biphenyl-

C2H2[open] 

bi Eq 

open6ring_armchair_benz RO16 3.2900E+11 1.237 26.430 

phenanthrene[closed] 

+ H = biphenyl-
C2H2[open] 

bi Eq 

open6ring_armchair_benz_ring

rad 
RO17 3.2900E+11 1.237 26.430 

phenanthrene[closed] 

+ H = biphenyl-

C2H2[open] 

bi Eq 

open6ring_OC RO18 3.1400E+07 1.692 8.184 

pyran[closed] + 

H*(g) = C-C-C-C-O-
C[open] 

bi pw 

open6ring_OCC RO19 3.1400E+07 1.692 8.184 

pyran[closed] + 

H*(g) = C-C-C-O-C-

C[open] 

bi pw 

open6ring_OCCC RO20 3.1400E+07 1.692 8.184 

pyran[closed] + 

H*(g) = C-C-O-C-C-

C[open] 

bi pw 

open5ring_O RO21 3.1400E+07 1.692 8.184 
furan[closed] + 

H*(g) = C-C-C-C-O-

C[open] 

bi pw 
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open5ring_OC RO22 3.1400E+07 1.692 8.184 

furan[closed] + 

H*(g) = C-C-C-O-C-
C[open] 

bi pw 

open5ring_OCC RO23 3.1400E+07 1.692 8.184 

furan[closed] + 

H*(g) = C-C-O-C-C-

C[open] 

bi pw 

open6ring_acetyl_ethenylrad RO24 2.2200E+12 0.740 62.399 

 naphthyl[closed] = 

benzene-1C2H,-

2C2H2[open] 

uni [136] 

openzigzagR5rad RO25 1.0000E+10 -0.219 23.220 
C-C-C-C-C*[open] = 
C-C-C-C-C[closed] 

uni [132] 

open6ring_ethenyl_ethenylrad RO26 4.1600E+20 -2.050 66.350 

naphthalene[closed] 

+ H= benzene-

1C2H3,-
2C2H2[open] 

bi Eq 

open6ring_butadienyl RO27 3.9100E+17 -1.510 67.910 

naphthalene[closed] 

+ H = benzene-C-C-
C-C[open] 

bi Eq 

open6ring_butadienyl_ringrad RO28 3.9100E+17 -1.510 67.910 

naphthalene[closed] 

+ H = benzene-C-C-

C-C[open] 

bi Eq 

open1benzyl_anth RO29 8.9000E+07 0.000 31.200 

C-C-C-C-C[closed]-

C1* = C-C-C-C-

C*[open] 

uni [152] 

open2benzyl_phen RO30 8.9000E+07 0.000 36.300 
C2*-C-C-C-C-

C[closed] = C-C-C-

C-C*[open] 

uni [152] 

acetyl_to_ethenyl_byH ISO1 1.0600E+09 1.531 5.630 
Car(-C#C-H) + 
H*(g) = Car(-

(CH)=(C*H)) 

bi [136] 

ethenyl_to_acetyl_byH ISO2 1.6500E+11 0.490 10.630 
Car(-(CH)=(C*H)) + 
H*(g)= Car(-C#C-H) 

+ H2(g) 

bi [136] 

O=C_to_O-C ISO3 1.1200E+30 -5.975 -1.444 
Cal(=O) + H*(g) = 

H-Cal(-O*) 
bi Eq 

ethenyl_to_acetyl ISO4 7.1800E+10 1.020 38.674 
Car(-(CH)=(C*H)) = 

Car(-C#C-H) 
uni [136] 

O-C_to_O=C ISO5 2.9000E+32 -6.500 21.200 
H-Cal(-O*) = 

Cal(=O) + H*(g) 
uni [252] 

acetyl_to_ethenyl_byH2 ISO6 6.9900E+08 1.320 86.997 

Car(-C#C-H) + 

H2(g) = Car(-
(CH)=(C*H)) + 

H*(g) 

bi [136] 

C-O_cleavage_rev OX1 2.8100E+12 0.907 7.068 
R-C* + *O-C-R(g) = 

R-C-O-C-R 
bi Eq 

C-C_cleavage_rev OX2 4.5700E+04 1.959 -9.364 
R-C-C* + *C-C-R(g) 

=  R-C-C-C-C-R 
bi Eq 

remove_freeedgeC2 OX3 2.3100E+09 0.763 0.000 

2-naphthyl[closed] + 

O2(g) = 
indenyl[closed] + 

CO2(g)  

bi [152] 

rev_remove_freeedgeC1 OX4 4.1800E+12 0.185 14.500 

indenyl[closed] + 

CO(g)  = 2-
naphthyl[closed] + 

O(g) 

bi [136] 

rev_remove_freeedgeC2 OX5 4.3600E+13 0.177 40.000 

indenyl[closed] + 
CO2(g)  = 2-

naphthyl[closed] + 

O2(g) 

bi Eq 

remove_freeedgeC1 OX6 4.7900E+11 0.242 33.700 

2-naphthyl[closed] + 
O(g) = 

indenyl[closed] + 

CO(g)  

bi Eq 

remove_CO1_form5Cring OX7 3.1500E+07 0.000 0.000 
1-naphthoxy = 1-

indenyl + CO 
uni [250] 
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remove_CO2_form5Cring OX8 3.1500E+07 0.000 0.000 
2-naphthoxy = 1-

indenyl + CO 
uni [250] 

rev_remove_CO1_form5Cring OX9 2.5100E+11 0.000 43.900 
c1-c-c-c(-O*)-c-c1 = 

c1-c-c*-c-c1 + CO(g) 
uni [250] 

rev_remove_CO2_form5Cring OX10 2.5100E+11 0.000 43.900 
c1-c-c-c(-O*)-c-c1 = 
c1-c-c*-c-c1 + CO(g) 

uni [250] 

C-O_cleavage OX11 9.1600E+14 0.110 75.820 
R-C-O-C-R = R-C* + 

*O-C-R(g) 
uni [258] 

C-C_cleavage OX12 4.0200E+15 -0.180 78.820 
R-C-C-C-C-R = R-C-

C* + *C-C-R(g) 
uni [258] 

 

 

 

Table A.6.2: Pictorials of al reaction types in the new SNAPS mechanism corresponding 

to Table 2.5. Dashed lines on the molecules off of atoms signify that anything can be 

attached to those atoms. For example, ---CH signifies that they key group is a saturated 

carbon atom bonded to any other atom (which in turn may or may not be bonded to other 

atoms). Where there is an “X” in the pictorial, the “X” can represent any of the species 

listed underneath the pictorial. 

Classes of reaction types 

Hydrogen abstraction/addition 

 

 

 

 

X is H, O2, HO2, C2H3, phenyl, O, OH 

 

 

Hydrogen transfer 
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Fragment addition/removal 
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X is CH3, CH2, CH4, benzene, phenyl, C2H2, C2H3, C2H4, C2H5, C2H6, C3H3, 

C4H2, C4H4, O, OH, HO2 
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X is H, O, OH, H2O, H2, CO 

 

 

 

Ring opening/closure 
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Isomerizations 
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Oxidation 
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