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Associate Professor Johannes Muhle-Karbe
Associate Professor Stillian Stoev
Professor Virginia Young



Copyright c© 2017

by

Roman Gayduk

gayduk@umich.edu

ORCID 0000-0003-4232-5877

All Rights Reserved

mailto:gayduk@umich.edu


ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor for his infinite patience

and support throughout these years. I wouldn’t have been here without his skillful

management, and this research would’ve been much poorer without his sometimes

intimate involvement and help.

I would like to thank all the members of my committee for their time, and espe-

cially my reader Johannes for reviewing the whole almost 200 pages of my thesis and

for his comments.

I thank the Mathematics Department at the University of Michigan for being a

welcoming home for many years, and for supporting my sometimes unconventional

academic journey.

I thank the Financial Mathematics group at the University of Michigan for the

community and the advice I received from different people throughout the years, and

Christian Keller in particular. I am thankful to our Quantitative Finance Masters

Program which allowed me to teach stochastic calculus instead of the regular one.

I would like to thank my good friend and colleague Alex Munk: his companionship

ii



was invaluable and he taught me a lot over the years. I am thankful to my friends

Charlotte Chan, Patricia Klein, Wendy Shang, Suchandan Pal, Harold Blum, Alexey

Bufetov, Troy Long, Amirreza Rastegari, David Stapleton and others for their good

company which helped me survive the lows of the journey, and for their advice and

wisdom which helped me find where I need to go.

I thank my family for their support and encouragement, for always being there

for me and for always helping me have the right perspective.

I thank Xinzhu for her gentle care.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Liquidity Effects of Trading Frequency . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Modeling framework for a finite-frequency auction-style exchange . . . . . . 9

2.2.1 Mechanics of the exchange . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Example: a Gaussian random walk model . . . . . . . . . . . . . . . . . . . . 23
2.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Conditional tails of the marginal distributions of Itô processes . . . . . . . . 42
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ABSTRACT

This thesis is devoted to investigating possible approaches to endogenous modeling of market
microstructure of an auction-based exchange. In chapter II we develop the framework in discrete
time and apply it to understanding the economics of trading at high frequency. In chapter III
we adapt our modeling approach to continuous time and develop a rich beliefs-driven model of
limit-order book evolution between two trades. In the last chapter we introduce discrete admissible
prices (i.e. a finite tick size) into our model and investigate the special spatial structures of the
equilibria this produces.

Given the novelty of the approach, we have to solve somewhat unusual mathematical problems
throughout. We derive a novel estimate of conditional tails of general Ito processes in chapter II,
solve a ’non-monotone oblique reflection’ RBSDE system and a discontinuous infinite-dimensional
fixed point problem in chapter III, and solve a system of control-stopping problems discontinuously
coupled through stopping barriers in chapter IV.

We also develop some numerical examples in chapters II, III to illustrate the features of our
models and indicate possible applications.
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CHAPTER I

Introduction

This thesis is devoted to investigating possible approaches to endogenous model-

ing of market microstructure, that is, dynamics of orders, trades, prices etc., on an

auction-based exchange. We refer the reader to the introductions of the individual

chapters for a more detailed discussion of the promise and advantages of such mod-

els. Our aim is to develop endogenous models which also have realistic mechanics,

capturing a possibly simplified but sensible view of the actual exchanges’ mechanism.

The disadvantage of this approach is that the resulting models are rather complex

and hard to analyze. We hope to convince the reader that hard in this case does not

mean impossible, and demonstrate that the resulting models are rich and interesting

and can shed light on various subtle microstructure issues.

This work is comprised of three somewhat independent projects, which are nev-

ertheless closely linked by the commonalities in the framework, modeling approach

and sometimes even mathematical issues arising. Below, we first describe how these

projects contribute to the development of our microstructure modeling framework

and what microstructure issues they deal with. We then describe mathematical

challenges and contributions of each project.

In the first project, described in chapter II, we develop a discrete-time continuous-
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price model of a limit-order book formation at an auction-style exchange, in which a

continuum of players can submit both market and limit orders at any prices based on

their beliefs about the future order flow. After setting up and motivating the model,

we proceed to analyze how the market behavior, in particular the liquidity provision,

changes with increasing frequency of trading, arriving at the characterization of

efficiency-fragility role of high trading frequency. The results are valid for a very

general class of models, and thus should be viewed as concerning the fundamental

economics of trading on auction-style exchanges rather than specifics of a particular

model.

In the second project, described in chapter III, we focus on the market partici-

pants’ behavior between two consecutive trades. We extend the modeling framework

to continuous-time, and then investigate the trade-off between market and limit or-

ders faced by the agents. The resulting “microscopic” model, in equilibrium, can

produce rich dynamics of posted prices and limit-order book shapes. This model

allows us to investigate the impact of agents’ beliefs (or changes in the signals that

affect their beliefs) on the bid-ask spread and on the limit-order book evolution, al-

lowing one to model such beliefs-driven phenomena as for example indirect market

impact of both limit and market orders (e.g. the so-called “spoofing” effect).

In the last project, described in chapter IV, we consider a continuous-time and

discrete-price framework, by introducing a non-zero tick size. This allows one to

explore the interplay between the continuous “true price” estimate and the discrete

admissible order price levels, resulting in different behavior depending on whether

the “true price” estimate is close to admissible price level or not. Resulting models

can be used to explain the clustering of market orders over time and to predict the

consequences of changing the tick size.
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On the mathematical side, the first project stands somewhat separate from the

other two. The main issues there arise from dealing with unusual functionals of

general Itô processes under multiple measures, leading us to develop some novel

estimates of conditional tails of general Itô processes.

The other two projects are similar in that they deal with (continuum- or two-

player) games, coupled through controls and stopping barriers in a way that lacks any

of the traditional monotonicity, convexity, contractivity or sometimes even continuity

properties, which makes them hard to solve.

In the second project, the difficulties arise from the fact that there are multiple

(>2) players whose stopping barriers are given by functionals of all other players’

value functions, making the players’ interdependence rather discontinuous. Such

continuum-player problem appears intractable in general, but under certain mono-

tonicity assumptions on agents’ beliefs we manage to split the problem into a 2-agent

control-stopping game and an infinite-dimensional fixed point problem. This 2-player

game we are then able to reduce to a somewhat unusual 2-dimensional system of RB-

SDEs with solutions reflected against each other. This system is still not amenable to

standard methods, but we manage to solve it by exploiting certain geometric proper-

ties of its generator and the specific nature of the reflection. The infinite-dimensional

fixed point problem above is also not trivial as its objective is discontinuous. We

solve it by exploiting the structure of the problem allowing us to show we can replace

that objective by its ’mollification’ to which standard fixed-point results can then be

applied.

The main challenge of the third project is solving a system of two (control-

stopping) optimization problems coupled through controls and barriers which are

discontinuous functionals of other agent’s value function. Because of the presence of
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those discontinuous functionals, the fixed point problem corresponding to this sys-

tem is in a sense even more discontinuous than the one from the second project and

doesn’t appear tractable. This fixed point problem turns out to be continuous if we

can ensure certain monotonicity of individual agents’ value functions. We show this

monotonicity in the case of a sufficient noise using the recent geometric approach

to the optimal stopping of linear diffusions (with irregular barriers) combined with

certain special features of the problem.



CHAPTER II

Liquidity Effects of Trading Frequency

2.1 Introduction

This chapter is concerned with liquidity effects of trading frequency on an auction-

style exchange, in which the participating agents can post limit or market orders. On

the one hand, higher trading frequency provides more opportunities for the market

participants to trade, hence, improving the liquidity of the market and increasing

the market efficiency. On the other hand, higher trading frequency also provides

more opportunities for some participants to manipulate the price and disrupt the

market liquidity. Such a manipulation creates a new type of risk, which reveals itself

in unusually high price deviations, which cannot be explained by the changes in the

present, or projected, fundamental value of the asset. The most famous example of

this phenomenon is the “flash crash” of 2010. This example motivates the need for a

comprehensive study of the tradeoff between the liquidity providing role of strategic

players and the liquidity risk they generate, and its relation to trading frequency.

The collective liquidity of the market is captured by the Limit Order Book (LOB),

which contains all the limit buy and sell orders.

The goal of the present chapter is two-fold. First, we develop a new framework

for modeling market microstructure, in which the shape of the LOB, and its dynam-

5
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ics, arise endogenously from the interactions between the agents. Among the many

advantages of such approach is the possibility of modeling the market reaction to

changes in the rules of the exchange: e.g. limited trading frequency, transaction tax,

etc. The second, and most important, goal of the present work is to investigate the

liquidity effects of trading frequency, using the proposed modeling framework. In

particular, the main results of this chapter (cf. the discussion in Section 2.3, as well

as Theorems II.19, II.21 and Corollary II.20, in Section 3.4) describe the dual effect

of high trading frequency. On the one hand, if the agents choose to provide liquidity

in equilibrium, higher trading frequency decreases the bid-ask spread and makes the

expected profits of all market participants converge to the same (fundamental) value,

thus, improving the market efficiency. On the other hand, higher trading frequency

also makes the LOB more sensitive to the deviations of the agents from market-

neutrality. It is, of course, clear that a strong bullish or bearish signal makes the

market participants trade at a higher or lower price. However, the novelty of our

observation is in the role that the trading frequency plays in amplifying this effect.

Namely, we show that, if the trading frequency is high, even if the agents have plenty

of inventory, a very small deviation from market-neutrality may cause the agents to

stop providing liquidity, by either withdrawing from the market completely, or by

posting the limit orders very far away from the fundamental price. Such actions

cause disproportional deviations in the LOB, which cannot be explained by any fun-

damental reasons: they are much higher than the trading signal (i.e. the expected

change in the fundamental price), and they occur without any shortage of supply or

demand for the asset. We refer to such a deviation as an internal (or, self-inflicted)

liquidity crisis, because it is due to the trading mechanism (i.e. the rules by which

the market participants interact), rather than any fundamental reasons (note the
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similarity with the flash crash). Our framework allows us to provide more insight

into how such liquidity crisis unfolds, connecting it to the so-called adverse selection

effect. In particular, Section 2.3 constructs an equilibrium model in which an internal

liquidity crisis does not occur because of an abnormally large market order, wiping

out the liquidity on one side of the LOB, but it occurs because the optimal strategies

of the agents require them to stop providing liquidity on one side of the LOB. On

the mathematical side, our analysis makes use of the properties of conditional tails

of the increments of a general Itô process, with the corresponding result stated in

Lemma II.23. This lemma provides a uniform exponential bound on the conditional

tails of the increments of a general Itô process. We believe that this result is useful

in its own right, and, to the best of our knowledge, it is not available in existing

literature.

In recent years, we observed an explosion in the amount of literature devoted to

the study of market microstructure. In addition to various empirical studies, a large

part of the existing theoretical work focuses on the problem of optimal execution:

see, among others, [48], [3], [54], [31], [22], [6], [5],[7], [24], [51], [36], [19], [37],

[57], and references therein. In these publications, the dynamics and shape of the

LOB are modeled exogenously, or, equivalently, the arrival processes of the limit

and market orders are specified exogenously. In particular, none of these works

attempt to explain the shape and dynamics of the LOB, arising directly from the

interaction between the market participants. A different approach to the analysis of

market microstructure has its roots in the economic literature. For example, [50],

[29], [34], [17], [44], [52], [27], [9], [10], [12] consider equilibrium models of market

microstructure, and they are more closely related to the present work. However, the

models proposed in the aforementioned papers do not aim to represent the mechanics
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of an auction-style exchange with sufficient precision, and, in particular, they are not

well suited for analyzing the liquidity effects of trading frequency, which is the main

focus of the present chapter. A somewhat related strand of literature focuses on the

endogenous formation of LOB in markets with a designated market maker: see e.g.

[33], [43], [28], [18], [1]. In these papers, the LOB is not an outcome of a multi-agent

equilibrium: instead, it is controlled by a single agent, the market maker. In the

present chapter, we model the entire LOB as an output of an equilibrium between

a large number of agents, each of whom is allowed to both consume and provide

liquidity (in particular, we have no designated market maker). Our setting is related

to the literature on double auctions (cf. [58], [27]), with the crucial difference that

the participants of each auction are allowed to choose two “asymmetric” types of

strategies: market or limit orders. In addition, the present framework assumes that,

ex ante, all agents have access to the same information, and, in this sense, it is similar

to [50], [34], [52]. In particular, the adverse selection effect, herein, does not arise

from any a priori information asymmetry of the agents, and, instead, it is caused by

the mechanics of the exchange. We formulate the problem as a continuum-player

game – this abstraction allows us to obtain computationally tractable results (cf. [4],

[56], [15] for more on the concept of a continuum-player game, and [46], [14], [16],

[45] for the particular subclass of mean field games).

The chapter is organized as follows. Subsection 3.2 describes the probabilistic

setting, along with the execution rules of the exchange and the resulting state pro-

cesses of the agents. Subsection 2.2.2 defines the equilibrium and introduces the

notion of degeneracy of the market (which represents an internal liquidity cirsis). In

Section 2.3, we construct an equilibrium in a simple model, illustrating how an in-

ternal liquidity crisis unfolds, and how it is connected to the adverse selection effect.



9

Theorems II.19, II.21, and Corollary II.20, in Section 3.4, are the main results of the

chapter: they formalize and generalize the conclusions of Section 2.3. In Section 2.5,

we prove the key technical results on the (conditional) tails of marginal distributions

of Itô processes. Sections 2.6, 2.7 contain the proofs of the main results. We conclude

in Section 2.8.

2.2 Modeling framework for a finite-frequency auction-style exchange

2.2.1 Mechanics of the exchange

We consider an exchange in which trading can only occur at discrete times n =

0, 1, . . . , N . We assume that the market participants are split into two groups: the

external investors, who are “impatient”, in the sense that they only submit market

orders, and the strategic players, who can submit both market and limit orders, and

who are willing to optimize their actions over a given (short) time horizon, in order

to get a better execution price.1 In our study, we focus on the strategic players,

who are referred to as agents, and we model the behavior of the external investors

exogenously, via the exogenous demand. The interpretation of the external investors

is clear: these are the investors who either have a longer-term view on the market,

or who simply need to buy or sell the asset for reasons other than the short-term

profits. The strategic players (i.e. agents), on contrary, are the short-term traders,

who attempt to maximize their objective at a shorter time horizon N . During every

time period [n, n+ 1), all the orders coming to the exchange are split into the limit

and market orders. The limit orders are collected in the so-called Limit Order Book

(LOB), and the market orders form the demand curve. At time n + 1, the market

orders in the demand curve are executed against the limit orders in the LOB. Then,

1We do not distinguish the “aggressive” limit orders, which are posted at the price level of an opposite limit order,
and treat them as market orders. This causes no loss of generality, as the market participants in our setting have a
perfect observation of the LOB.
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the same is repeated in the next time interval. In particular, during a time period

[n, n+1) (for simplicity, we say “at time n”), an agent is allowed to submit a market

order, post a limit buy or sell order, or wait (i.e. do nothing). If a limit order is

not executed in a given time period, it costs nothing to cancel or re-position it for

the next time period. Notice that our framework does not allow to model the time-

priority of limit orders. However, introducing a time-priority would not change the

agents’ maximum objective value, as the “tick size” is assumed to be zero (i.e. the

set of possible price levels is R), and, hence, an agent can always achieve a priority by

posting her order “infinitesimally” above or below a given competing order. Further

details on modeling the formation of an LOB and the execution rules are presented

below.

The demand curves are modeled exogenously by a random field

D = (Dn(p))p∈R,n=1,...,N

on a filtered probability space
(

Ω,F = (Fn)Nn=0 ,P
)

, such that F0 is a trivial sigma-

algebra, completed w.r.t. P. The random variable D+
n (p) = max(Dn(p), 0) denotes

the amount of asset that the external investors and the agents submitting market

orders are willing to purchase at or below the price p, accumulated over the time

period [n − 1, n), and D−n (p) = −min(Dn(p), 0) denotes the amount of asset that

the external investors and the agents submitting market orders are willing to sell

at or above the price p, in the same time period. We assume that Dn(·) is a.s.

nonincreasing and measurable w.r.t. Fn ⊗ B(R). We denote by A a Borel space

of beliefs, and, for each α ∈ A, there exists a subjective probability measure Pα on

(Ω,FN), which is absolutely continuous with resect to P. We assume that, for any n =

0, . . . , N and any α ∈ A, there exists a regular version of the conditional probability
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Pα given Fn, denoted Pαn.2 We denote the associated conditional expectations by Eαn.

We also need to assume that, for any α ∈ A, there exists a modification of the family

{Pαn}
N
n=0, which satisfies the tower property with respect to P, in the following sense:

for any n ≤ m and any r.v. ξ, such that Eαξ+ <∞, we have

EαnEαmξ = Eαnξ, P-a.s.

There exists such a modification, for example, if Pα ∼ P. In any market model,

for every α, we fix such a modification of conditional probabilities (up to a set of

P-measure zero) and assume that all conditional expectations {Eαn} are taken under

this family of measures. The Limit Order Book (LOB) is given by a pair of adapted

process ν = (ν+
n , ν

−
n )Nn=0, such that every ν+

n and ν−n is a finite sigma-additive random

measure on R (w.r.t. Fn ⊗ B(R)). Herein, ν+
n corresponds to the cumulative limit

sell orders, and ν−n corresponds to the cumulative limit buy orders, posted at time

n.The bid and ask prices at any time n = 0, . . . , N are given by the random variables

pbn = sup supp(ν−n ), pan = inf supp(ν+
n ),

respectively. Notice that these extended random variables are always well defined

but may take infinite values.

We define the state space of an agent as S = R × A, where the first component

denotes the inventory of an agent (i.e. how much asset she currently holds), and

the second component denotes her beliefs. Every agent in state (s, α) models the

future outcomes using the subjective probability measure Pα. There are infinitely

many agents, and their distribution over the state space is given by the empirical

distribution process µ = (µn)Nn=0, such that every µ is a finite sigma-additive random

measure on S (w.r.t. Fn⊗B(S)). In particular, the total mass of agents in the set S ⊂
2This assumption holds, for example, if FN is generated by a random element with values in a standard Borel

space.
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S at time n is given by µn(S). The inventory level s represents the number of shares

per agent, held by the agents at state (s, α). In particular, the total number of shares

held by all agents in the set S ⊂ S is given by
∫
S
sµn(ds, dα). The interpretation of

this definition in a finite-player game is discussed in Remark II.1 below. We refer

the reader to [15] for more on the general concept a continuum-player game.

Remark II.1. The continuum-player game defined in this section can be related to a

finite-player game as follows. Denote by µ0 the empirical distribution of the agents’

states at a given time. Recall that µ0 is a measure on S = R × A, and assume

that it is a finite linear combination of Dirac measures: µ0 = 1
M

∑M
i=1 δ(si,αi). In this

case, we interpret si as the number of shares per agent held by the agents in the

ith group. Let us explain how this notion is related to the actual inventory levels

(i.e. the actual numbers of shares held by the agents) in the associated finite-player

game. To this end, consider a collection of M agents, whose states are given by

their (actual) inventories and beliefs, denoted (s, α), with the current states being

{(s̃i = si/M,αi)}. Define the “unit mass” of agents to be M . In this finite-player

collection, the mass of agents (measured relative to the unit mass, M) at any state

(Ms, α) is precisely µ0({(s, α)}), and their total inventory is Msµ0({(s, α)}). The

number of shares per agent is, then, defined as the total inventory held by these agents

divided by their mass, and it is equal to Ms. Choosing s = s̃i, we conclude that,

in the finite-player collection, the number of shares per agent held by the agents at

state (s̃i, αi) is given by Ms̃i = si, which coincides with our interpretation of si in the

continuum-player game. It is also easy to show that an equilibrium in the proposed

continuum-player game (defined in the next subsection) produces an approximate

equilibrium in the associated finite-player game, when the inventory levels {s̃i} are

small (cf. Subsection 2.3 in the extended version of this chapter, [32])
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As the parameter α does not change over time, the state process of an agent, de-

noted (Sn), is an adapted R-valued process, representing her inventory.3 The control

of every agent is given by a triplet of adapted processes (p, q, r) = (pn, qn, rn)N−1
n=0 on

(Ω,F), with values in R2 × {0, 1}. The first coordinate, pn, indicates the location of

a limit order placed at time n, and qn indicates the size of the order (measured in

shares per agent, and with negative values corresponding to buy orders).4 The last

coordinate rn shows whether the agent submits a market order (if rn = 1) or a limit

order (if rn = 0). Assume that an agent posts a limit sell order at a price level pn.

If the demand to buy the asset at this price level, D+
n+1(pn), exceeds the amount of

all limit sell orders posted below pn at time n, then (and only then) the limit sell

order of the agent is executed. Market orders of the agents are always executed at

the bid or ask price available at the time when the order is submitted. We interpret

an internal market order (i.e. the one submitted by an agent) as the decision of

an agent to join the external investors, in the given time period. Summing up the

above, we obtain the following dynamics for the state process of an agent, starting

with initial inventory s ∈ R at time m = 0, . . . , N − 1:

S(p,q,r)
m (m, s, ν) = s, ∆S

(p,q,r)
n+1 (m, s, ν) =

S
(p,q,r)
n+1 (m, s, ν)− S(p,q,r)

n (m, s, ν) = −qn1{rn=1}

(2.1)

−1{rn=0}

(
q+
n 1{D+

n+1(pn)>ν+
n ((−∞,pn))} − q

−
n 1{D−n+1(pn)>ν−n ((pn,∞))}

)
, n = m, . . . , N−1.

The above dynamics represent an optimistic view on the execution by the agents. In

particular, they imply that all limit orders at the same price level are executed in full,
3Note that, although Pα does not change over time, the conditional distribution of the future demand, as perceived

by the agent, changes dynamically, according to the new information received.
4Note each agent is only allowed to place her limit order at a single price level, at any given time. However, this

results in no loss of optimality. Indeed, using the Dynamic Programming Principle derived in Appendix A, one can
show, by induction, that, in equilibrium, an agent does not benefit from posting multiple limit orders at the same
time. As shown in [56], this is typical for a continuum-player game.
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once the demand reaches them: i.e. each agent believes that her limit order will be

executed first among all orders at a given price level. In addition, all agents’ market

orders are executed at the bid and ask prices: i.e. each agent believes that her market

order will be executed first, when the demand curve is cleared against the LOB, at

the end of a given time period. These assumptions can be partially justified by the

fact that the agents’ orders are infinitesimal: qn is measured in shares per agent,

and an individual agent has zero mass. However, if a non-zero mass of agents submit

limit orders at the same price level, or execute market orders, at the same time, then,

the above state dynamics may violate the market clearance condition: the total size

of executed market orders (both in shares and in dollars) may not coincide with the

total size of executed limit orders (at least, as viewed by the agents). Nevertheless,

this issue is resolved if, at any time, the mass of the agents positing limit orders at

the same price level is zero, as well as the mass of the agents posting market orders.

In other words, (ν, p, q, r) satisfy, P-a.s.: νn is continuous, as a measure on R (i.e. it

has no atoms), and rn = 0. Such an equilibrium is constructed in Section 8 of the

extended version of this chapter, [32]. The general definition of a continuum-player

game and its connection to a finite-player game can be found, e.g., in [15] and in the

references therein (see also Subsection 2.3 in the extended version of this chapter,

[32]).

The proposed modeling framework has a close connection to the models of double

auctions, existing in the economic literature (cf. [27], [58]). The main difference

of the present setting is in the non-standard design of the auction. Namely, in the

proposed setting, the auction participants may choose different styles of trading, i.e.

market or limit orders, which generates an ex-post information asymmetry between

the participants: the limit orders have to be submitted before the demand curve is
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observed, while the market orders are submitted using a complete information about

the LOB. This difference is not coincidental – it is, in fact, crucial for a realistic

representation of the risks associated with each order type, and it is at the core of

the results established herein. A more detailed discussion of the information structure

of the proposed framework is provided in the next subsection.

2.2.2 Equilibrium

The objective function of an agent, starting at the initial state (s, α) ∈ S, at any

time m = 0, . . . , N , and using the control (p, q, r), is given by the Fm-measurable

random variable:

(2.2) J (p,q,r)(m, s, α, ν) = Eαm
[(
S

(p,q,r)
N (m, s, ν)

)+

pbN −
(
S

(p,q,r)
N (m, s, ν)

)−
paN

−
N−1∑
n=m

(
pn1{rn=0} + pan1{rn=1,qn<0} + pbn1{rn=1,qn>0}

)
∆S

(p,q,r)
n+1 (m, s, ν)

]
where we assume that 0 · ∞ = 0. In the above expression, we assume that, at the

final time n = N , each agent is forced to liquidate her position at the bid or ask

price available at that time. Alternatively, one can think of it as marking to market

of the residual inventory, right after the last external market order is executed.

Definition II.2. For a given LOB ν, integer m = 0, . . . , N − 1, and state (s, α) ∈ S,

the triplet of adapted processes (p, q, r) is an admissible control if the positive part

of the expression inside the expectation in (2.2) has a finite expectation under Pα.

For a given LOB ν, an initial condition (m, s, α), and a triplet of F×B(S)-adapted

random fields (p, q, r), we identify the latter (whenever it causes no confusion) with

stochastic processes (p, q, r) via:

pn = pn
(
S(p,q,r)
n (m, s, ν), α

)
, qn = qn

(
S(p,q,r)
n (m, s, ν), α

)
,

rn = rn
(
S(p,q,r)
n (m, s, ν), α

)
,
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and the state dynamics (2.1), for n = m, . . . , N . This system determines (p, q, r) and

S(p,q,r) recursively.

Definition II.3. For a given LOB ν, we call the triplet of progressively measurable

random fields (p, q, r) an optimal control if, for any m = 0, . . . , N and any (s, α) ∈

S, we have:

• (p, q, r) is admissible,

• J (p,q,r)(m, s, α, ν) ≥ J (p′,q′,r′)(m, s, α, ν),

P-a.s., for any admissible control (p′, q′, r′).

In the above, we make the standard simplifying assumption of continuum-player

games: each agent is too small to affect the empirical distribution of cumulative

controls (reflected in ν) when she changes her control (cf. [15]). Note also that our

definition of the optimal control implies that it is time consistent: re-evaluation of

the optimality at any future step, using the same terminal criteria, must lead to the

same optimal strategy. Next, we discuss the notion of equilibrium in the proposed

game. First, we notice that, if pbN or paN becomes infinite, the agents with positive or

negative inventory may face the objective value of “−∞”, for any control they use.

In such a case, their optimal controls may be chosen in an arbitrary way, resulting

in unrealistic equilibria. To avoid this, we impose the additional regularity condition

on ν.

Definition II.4. A given LOB ν is admissible if, for any m = 0, . . . , N − 1 and any

α ∈ A, we have, P-a.s.:

Eαm|paN | ∨ |pbN | <∞.

Let us consider the (stochastic) value function of an agent for a fixed (m, s, α, ν):

(2.3) V ν
m(s, α) = esssupp,q,rJ

(p,q,r) (m, s, α, ν) ,
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where the essential supremum is taken under P, over all admissible controls (p, q, r),

and J (p,q,r) is given by (2.2). Appendix A shows that, for any admissible ν, V ν
m(·, α)

has a continuous modification under P, which we refer to as the value function of

an agent with beliefs α. Using the Dynamic Programming Principle, Appendix A

provides an explicit system of recursive equations that characterize optimal strategies

and the value function. In particular, the results of Appendix A (cf. Corollary II.31)

yield the following proposition.

Proposition II.5. Assume that, for an admissible LOB ν, there exists an optimal

control (p̂, q̂, r̂). Then, for any (s, α) ∈ S, the following holds P-a.s., for all n =

0, . . . , N − 1:

V ν
n (s, α) = s+λan(α)− s−λbn(α)

with some adapted processes λa(α) and λb(α), such that λaN(α) = pbN and λbN(α) =

paN .

The values of λa(α) and λb(α) can be interpreted as the expected execution prices

of the agents with beliefs α, who are long and short the asset, respectively.

Definition II.6. Consider an empirical distribution process µ = (µn)Nn=0 and a

market model, as described in Subsection 3.2. We say that a given LOB process ν

and a control (p, q, r) form an equilibrium, if there exists a Borel set Ã ⊂ A, called

the support of the equilibrium, such that:

1. µn

(
R×

(
A \ Ã

))
= 0, P-a.s., for all n,

2. ν is admissible, and (p, q, r) is an optimal control for ν, on the state space

S̃ = R× Ã,
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3. and, for any n = 0, . . . , N − 1, we have, P-a.s.:

(2.4) ν+
n ((−∞, x]) =

∫
S̃
1{pn(s,α)≤x,rn(s,α)=0} q

+
n (s, α)µn(ds, dα), ∀x ∈ R,

(2.5) ν−n ((−∞, x]) =

∫
S̃
1{pn(s,α)≤x,rn(s,α)=0} q

−
n (s, α)µn(ds, dα), ∀x ∈ R.

Remark II.7. It follows from Proposition II.5 that, in equilibrium, it is optimal for

an agent with zero initial inventory to do nothing. Hence, in equilibrium, roundtrip

strategies are impossible. To allow for roundtrip strategies in equilibrium, one can

e.g. introduce an upper bound on |q| or on the total inventory of an agent (as it

is done, e.g., in [13]). However, we do not believe that such a modification would

change the qualitative behavior of market liquidity as a function of trading frequency,

which is the main focus of the present chapter.

Notice that, because the optimal controls are required to be time consistent under

P, the above definition, in fact, defines a sub-game perfect equilibrium. It is also

worth mentioning that Definition III.6 defines a partial equilibrium, as the empirical

distribution process µ is given exogenously. A more traditional version of Nash

equilibrium would require µ to be determined by the initial distribution and the

values of the state processes:

(2.6) µn = µ0 ◦
(
(s, α) 7→

(
S(p,q,r)
n (0, s, ν), α

))−1
,

which must hold P-a.s., for all n = 0, . . . , N , with S
(p,q,r)
n (0, s, ν) defined via (2.1),

in addition to the other conditions in Definition III.6. Nevertheless, we choose not

to enforce the condition (2.6) in the definition of equilibrium, in order to allow new

agents to enter the game, which, in effect, amounts to modeling µ exogenously. If

one assumes that no new agents arrive to the market, then, the fixed-point condition
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(2.6) has to be enforced. Note also that our interpretation of the demand curve

Dn(·) implies that it consists of both the external (i.e. due external investors) and

internal (i.e. due to the agents) market orders. Therefore, it may be reasonable

to consider an additional consistency condition for an equilibrium. A part of this

condition is to ensure that a non-zero mass of agents submit market buy orders only

if the fundamental price rises above the ask price (i.e. only if a market buy order

is actually executed), and, similarly, a non-zero mass of agents submit market sell

orders only if the fundamental price falls below the bid price. We assume that the

agents’ market orders enter into the demand curve with the highest level of priority:

e.g. their market buy orders enter the demand curve at the price level infinitesimally

close to, but below, the fundamental price, in order to guarantee that they are the

first ones to be executed. Thus, another part of the aforementioned consistency

condition is to ensure that the absolute value of the demand curve to the left or

to the right of the fundamental price is sufficiently large to account for all internal

market orders. Mathematically, such consistency condition can be formulated as

follows:

(2.7) dbn := µn ({(s, α) : qn(s, α) < 0, rn(s, α) = 1}) > 0

⇒ p0
n+1 > pan, lim

p↑p0
n+1

D+
n+1(p) ≥ dbn,

(2.8) dan := µn ({(s, α) : qn(s, α) > 0, rn(s, α) = 1}) > 0

⇒ p0
n+1 < pbn, lim

p↓p0
n+1

D−n+1(p) ≥ dan.

The above conditions become redundant if the agents never submit market orders

in equilibrium. Section 8 of the extended version of this chapter, [32], shows how

to construct an equilibrium which satisfies condition (2.6), and in which the agents
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never submit market orders (hence, (2.7) and (2.8) are also satisfied). However, it is

important to emphasize that the main results of the present work (cf. Section 3.4)

provide necessary conditions for all equilibria: for those satisfying the conditions

(2.6), (2.7), (2.8) and for the ones that do not.

Remark II.8. Let us comment on the information structure of the game. In the

present setting, all agents observe the same information, given by the filtration F.

We consider an open-loop Nash equilibrium, in which the agent’s strategy is viewed

as an adapted stochastic process (rather than a function of the states and controls

of other players), and the definition of optimality is chosen accordingly. In addition,

as µ is adapted to F, each agent has a complete information about the present and

past states of other agents, and their beliefs. However, as the agents use different

(subjective) measures {Pα}, their views on the future values of µ may be different. Of

course, it would be more realistic to assume that the agents do not have a complete

information about each other’s current states, but this would make the problem sig-

nificantly more complicated. In the present setting, the agents also have a complete

information about the current location of the fundamental price. In the next chapter

we relax this assumption, which allows us to develop a more realistic model for the

“local” behavior of an individual agent. However, such a relaxation does not seem

necessary for the questions analyzed herein.

As all agents use the same information, the present work belongs to the strand of

literature that attempts to explain microstructure phenomena without information

asymmetry (cf. [34], [52], [50], [29]). Nevertheless, it is important to mention that

certain information asymmetry arises ex-post, between the market participants sub-

mitting market and limit orders. This asymmetry is not due to superior information

a priori available to any of the agents. Instead, it stems from the very nature of limit
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orders, which are “passive” by design (cf. the discussion on the last paragraph of

Subsection 3.2). Similar observation is made in [34].

Next, we need to add another condition to the notion of equilibrium. Notice that

equations (3.7)–(3.8) should serve as the fixed-point constraints that allow one to

obtain the optimal controls (p, q, r), along with the LOB ν. However, these equations

only hold for n = 0, . . . , N−1: indeed, the agents do not need to choose their controls

at time n = N , as the game is over and their residual inventory is marked to the bid

and ask prices. However, the terminal bid and ask prices are determined by the LOB

νN , which, in turn, can be chosen arbitrarily. To avoid such ambiguity, we impose an

additional constraint on the equilibria studied herein. First, we introduce the notion

of a fundamental price.

Definition II.9. Assume that P-a.s., for any n = 1, . . . , N , there exists a unique p0
n

satisfying Dn (p0
n) = 0. Then, the adapted process (p0

n)Nn=1 is called the fundamental

price process.

Whenever the notion of a fundamental price is invoked, we assume that it is well

defined. The intuition behind p0 is clear: it is a price level at which the immediate

demand is balanced. However, it is important to stress that we do not assume that

the asset can be traded at the fundamental price level. Rather, p0 is a feature of

the abstract immediate demand curve, whereas all actual trading happens on the

exchange, against the current LOB. This makes our setting different from many

other approaches existing in the literature.

Definition II.10. Assume that the fundamental price is well defined and denote

ξN = p0
N −p0

N−1. Then, an equilibrium with LOB ν is linear at terminal crossing
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(LTC) if

(2.9) νN = νN−1 ◦ (x 7→ x+ ξN)−1, P-a.s.

The above definition assumes that the terminal LOB νN is obtained from νN−1 by a

simple shift, with the size of the shift equal to the increment of the fundamental price.

This definition connects the LOB at the terminal time with the demand process,

ruling out many unnatural equilibria. In particular, the question of existence of an

equilibrium becomes non-trivial. However, the mere existence of an equilibrium is

not the main focus of the present work: the existence results, established herein, are

limited to Section 2.3, which constructs an LTC equilibrium in a specific Gaussian

random walk model (a slightly more general existence result is given in Section

8 of the extended version of this chapter, [32]). What is central to the present

investigation is the observation that the agents may reach an equilibrium in which

one side of the LOB becomes empty (as demonstrated by the example of Section

2.3). We call such LOB, and the associated equilibrium, degenerate.

Definition II.11. We say that an equilibrium with LOB ν is non-degenerate if

ν+
n (R) > 0 and ν−n (R) > 0, for all n = 0, . . . , N − 1, P-a.s..

Intuitively, the degeneracy of LOB refers to a situation where, with positive proba-

bility, one side of the LOB disappears from the market: i.e. ν+
n (R) or ν−n (R) becomes

zero. Clearly, this happens when the agents who are supposed to provide liquidity

choose to post market orders (i.e. consume liquidity) or wait (neither provide nor

consume liquidity). Such a degeneracy can be interpreted as the internal (or, self-

inflicted) liquidity crisis – the one that arises purely from the interaction between

the agents, and cannot be justified by any fundamental economic reasons (e.g. the

external demand for the asset may still be high, on both sides). Taking an optimistic
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point of view, we assume that the agents choose a non-degenerate equilibrium, when-

ever one is available. However, if a non-degenerate equilibrium does not exist, an

internal liquidity crisis may occur with positive probability. One of the main goals

of this chapter is to provide insights into the occurrence of an internal liquidity crisis

and its relation to trading frequency.

2.3 Example: a Gaussian random walk model

In this section, we consider a specific market model for the external demand D to

construct a non-degenerate LTC equilibrium. More importantly, using this model,

we illustrate the liquidity effects of trading frequency, which, as mentioned in the

introduction, is the main goal of the present work. The present example, albeit

very simplistic, allows us to identify certain important phenomena that occur to the

optimal strategies of the agents (and, hence, to the LOB) as the trading frequency

increases. In particular, we demonstrate how the adverse selection effect may be

amplified disproportionally by the high trading frequency and may cause a liquidity

crisis. Note that the adverse selection phenomenon, in the present setting, is not a

consequence of any ex-ante information asymmetry but is due to the mechanics of

the exchange (i.e. the nature of limit orders), which is similar to the phenomena

documented in [34], [29]. In the rest of the chapter, we show that the conclusions

of this section are not due to the particular choice of a model made in the present

section and, in fact, persist in a much more general setting.

On a complete stochastic basis (Ω, F̃ = (F̃t)t∈[0,T ],P), we consider a continuous

time process p̃0:

(2.10) p̃0
t = p0

0 + αt+ σWt, p0
0 ∈ R, t ∈ [0, T ],

where α ∈ R and σ > 0 are constants, and W is a Brownian motion. We also consider
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an arbitrary progressively measurable random field (D̃t(p)), s.t., P-a.s., the function

D̃t(·) − D̃s(·) is strictly decreasing and vanishing at zero, for any 0 ≤ s < t ≤ T .

Finally, we introduce the empirical distribution process (µ̃t), with values in the space

of finite sigma-additive measures on S. We partition the time interval [0, T ] into N

subintervals of size ∆t = T/N . A discrete time model is obtained by discretizing the

continuous time one:5

Fn = F̃n∆t, p0
n = p̃0

n∆t, Dn(p) = (D̃n∆t − D̃(n−1)∆t)(p− p0
n), µn = µ̃n∆t.

In this section, for simplicity, we assume that the set of agents’ beliefs is a sin-

gleton: A = {α} and Pα = P. We also assume that (at least, from the agents’

point of view) there are always some long and short agents present in the market:

µn ((0,∞)× A) , µn ((−∞, 0)× A) > 0, P-a.s., for all n. Clearly, N represents the

trading frequency, and the continuous time model represents the “limiting model”,

which the agents use as a benchmark, in order to make consistent predictions in the

markets with different trading frequencies. We assume that the benchmark model is

fixed, and N is allowed to vary. In the remainder of this section, we propose a method

for constructing a non-degenerate LTC equilibrium in the above discrete time model.

We show that the method succeeds for any (N, σ) if α = 0. However, for α 6= 0, we

demonstrate numerically that the method fails as N becomes large enough. We show

why, precisely, the proposed construction fails, providing an economic interpretation

of this phenomenon. Moreover, we analyze the market close to the moment when a

non-degenerate equilibrium fails to exist and demonstrate that the agents’ behavior

at this time follows the pattern typical for an internal (or, self-inflicted) liquidity

crisis.
5In order to ensure the existence of regular conditional probabilities for the discrete time model, we can, for

example, assume that F̃T is generated by a random element with values in a standard Borel space.
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In view of Proposition II.5, in order to construct a non-degenerate LTC equilib-

rium, we need to find a control (p̂, q̂, r̂), and the expected execution prices (λ̂a, λ̂b), s.t.

the value function of an agent with inventory s is given by Vn(s) = s+λ̂an−s−λ̂bn, and

it is attained by the strategy (p̂, q̂, r̂). In addition, we need to find a non-degenerate

LOB ν, s.t. (3.7), (3.8) and (2.9) hold. Our ansatz is as follows:

νn =
(
hanδpan , h

b
nδpbn

)
, pan = p̂an + p0

n, pbn = p̂bn + p0
n, −∞ < p̂bn, p̂

a
n <∞,

p̂n(s) = pan1{s>0}+p
b
n1{s<0}, q̂n(s) = s, r̂n(s) = 0, λan = λ̂an+p0

n, λbn = λ̂bn+p0
n,

where δ is the Dirac measure, (p̂a, p̂b, λ̂a, λ̂b) are deterministic processes, and han =∫∞
0
sµn(ds) > 0, hbn =

∫ 0

−∞ |s|µn(ds) > 0. With such an ansatz, the conditions (3.7),

(3.8) are satisfied automatically. Thus, we only need to choose finite deterministic

processes (p̂a, p̂b, λ̂a, λ̂b) s.t.: p̂aN = p̂aN−1, p̂bN = p̂bN−1 (so that the equilibrium is LTC)

and the associated (p̂, q̂, 0) form an optimal control, producing the value function

Vn(s) = s+λan − s−λbn. Appendix A contains necessary and sufficient conditions for

characterizing such families (pa, pb, λa, λb). In particular, we deduce from Corollaries

II.31 and II.32 that (p̂aN−1, p̂
b
N−1, λ̂

a
N−1, λ̂

b
N−1) form a suitable family in a single-period

case, [N − 1, N ], if they solve the following system:

(2.11)



p̂aN−1 ∈ arg maxp∈R E
(
(p− p̂bN−1 − ξ)1{ξ>p}

)
, p̂bN−1 < 0,

p̂bN−1 ∈ arg maxp∈R E
(
(p̂aN−1 − p+ ξ)1{ξ<p}

)
, p̂aN−1 > 0,

λ̂aN−1 = p̂bN−1 + α∆t+ E
(

(p̂aN−1 − p̂bN−1 − ξ)1{ξ>p̂aN−1}
)
,

λ̂bN−1 = p̂aN−1 + α∆t− E
(

(p̂aN−1 − p̂bN−1 + ξ)1{ξ<p̂bN−1}
)
,

p̂bN−1 ≤ λ̂aN−1, λ̂bN−1 ≤ p̂aN−1, p̂aN−1 ≥ p̂bN−1 + |α|∆t,

where ξ = ∆p0
N ∼ N (α∆t, σ2∆t). Let us comment on the economic meaning of

the equations in (2.11). The expectations in the first two lines represent the relative

expected profit from executing a limit order at time N , at the chosen price level
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p+p0
N−1, versus marking the inventory to market at timeN , at the best price available

on the other side of the book: i.e. pbN = p̂bN−1 + ξ + p0
N−1 or paN = p̂aN−1 + ξ + p0

N−1.

Notice that a limit order is executed if and only if the fundamental price at time N

is above or below the chosen level of agent’s limit order: i.e. if p0
N−1 + ξ > p+ p0

N−1

or p0
N−1 + ξ < p + p0

N−1.6 Clearly, it is only optimal for an agent to post a limit

order if the relative expected profit is nonnegative, which is the case if and only

if p̂bN−1 < 0 < p̂aN−1. The third and fourth lines in (2.11) represent the expected

execution prices of the agents at time N − 1, assuming they use the controls given

by (p̂aN−1, p̂
b
N−1). Each of the right hand sides is a sum of two components: the

relative expected profit from posting a limit order and the expected value of marking

to market at time N , measured relative to p0
N−1. Let us analyze the inequalities in

the last line of (2.11). If the bid price at time N − 1 exceeds the expected execution

price of a long agent, i.e. p̂bN−1 + p0
N−1 > λ̂aN−1 + p0

N−1, then every agent with

positive inventory prefers to submit a market order, rather than a limit order, at

time N − 1, which causes the ask side of the LOB to degenerate. Similarly, we

establish λ̂bN−1 ≤ p̂aN−1. Finally, if α > 0 and p̂aN−1 < p̂bN−1 +α∆t, an agent may buy

the asset using a market order at time N − 1, at the price p̂aN−1 + p0
N−1, and sell it at

time N , at the expected price p̂bN−1 + p0
N−1 +α∆t > p̂aN−1 + p0

N−1 (a reverse strategy

works for α < 0). This strategy can be scaled to generate infinite expected profit

and, hence, is excluded by the last inequality in the last line of (2.11).

We construct a solution to (2.11) by solving a fixed-point problem given by the first

two lines of (2.11) and verifying that the desired inequalities hold.7 We implement

this computation in MatLab, and the results can be seen as the right-most points

6The execution of limit orders simplifies in the chosen ansatz, because the agents on each side of the book (i.e.
long or short) post orders at the same prices level.

7In fact, it is not difficult to prove rigorously that, for any (α, σ), there exists a unique solution to such system,
provided ∆t is small enough. We omit this result for the sake of brevity.
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on the graphs in Figure 3.2. From the numerical solution, we see that, whenever ∆t

is small enough, the conditions p̂bN−1 ≤ λ̂aN−1 and λ̂bN−1 ≤ p̂aN−1 are satisfied (cf. the

right part of Figure 3.2).8 In addition, for α ≥ 0, we have

0 < E
(
p̂aN−1 − p̂bN−1 − ξ | ξ > p̂aN−1

)
=

p̂aN−1 − p̂bN−1 − E
(
ξ | ξ > p̂aN−1

)
≤ p̂aN−1 − p̂bN−1 − α∆t,

which yields the last inequality in (2.11). The case of α < 0 is treated similarly.

Notice that λ̂aN = p̂bN = p̂bN−1 and p̂aN−1 = p̂aN = λ̂bN . Thus, the single-period

equilibrium we have constructed satisfies:

(2.12) p̂bn ≤ λ̂an, λ̂bn ≤ p̂an, λ̂an+1 < 0, λ̂bn+1 > 0,

for n = N − 1. If one of the first two inequalities in (2.12) fails, the agents choose

to submit market orders, as opposed to limit orders, which leads to degeneracy of

the LOB – one side of it disappears. If one of the last two inequalities fails, the

execution of a limit order, at any price level, yields a negative relative expected

profit for the agents on one side of the book (given by the expectation in the first or

second line of (2.11)). As a result, it becomes optimal for all such agents to not post

any limit orders, and the LOB degenerates. The latter is interpreted as the adverse

selection effect. For example, if the third inequality in (2.12) fails, then, every long

agent believes that, no matter at which price level her limit order is posted, if it is

executed in the next time period, her expected execution price at the next time step

will be higher than the price at which the limit order is executed. Hence, it does not

make sense to post a limit order at all.

In a single period [N − 1, N ], by choosing small enough ∆t, we can ensure that

the inequalities in (2.12) are satisfied. However, it turns out that, as we progress
8This is easy to explain intuitively, as the optimal objective values in the first two lines of (2.11) are of the form

C
√

∆t+ αO(∆t).
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recursively backwards, constructing an equilibrium, we may encounter a time step

at which one of the inequalities in (2.12) fails, implying that a non-degenerate LTC

equilibrium cannot be constructed for the given time period (at least, using the

proposed method). To see this, consider the recursive equations for (p̂a, λ̂a) (which

are chosen to satisfy the conditions of Corollary II.31, in Appendix A, given our

ansatz):

(2.13)

 p̂an ∈ arg maxp∈R E
((
p− λ̂an+1 − ξ

)
1{ξ>p}

)
,

λ̂an = λ̂an+1 + α∆t+ E
((
p̂an − λ̂an+1 − ξ

)
1{ξ>p̂an)}

)
< 0,

and similarly for (p̂b, λ̂b). Using the properties of Gaussian distribution, it is easy to

see that, if λ̂an+1 < 0, we have p̂an > 0. Similar conclusion holds for (λ̂b, p̂b). Thus,

if λ̂ak < 0 < λ̂bk, for k = n + 1, . . . , N , our method allows us to construct a non-

degenerate LTC equilibrium on the time interval [n,N ], with p̂b < 0 < p̂a. Such a

construction always succeeds if the agents are market-neutral: i.e. α = 0. Indeed, in

this case, assuming λ̂an+1 < 0 < λ̂bn+1, we have: p̂bn < 0 < p̂an and

λ̂an+1+
(
E
((
p̂an − λ̂an+1 − ξ

)
1{ξ>p̂an)}

))+

= E
(
λ̂an+11{ξ>p̂an)}

)
+E

(
(p̂an − ξ) 1{ξ>p̂an)}

)
< 0.

Hence, λ̂an < 0, and, similarly, we deduce that λ̂bn > 0. By induction, we obtain a

non-degenerate LTC equilibrium on [0, N ], for any (N, σ), as long as α = 0. Corollary

II.20 shows that, as N → ∞, the processes (λ̂a, λ̂b) converge to zero, which means

that the expected execution prices converge to the fundamental price. The latter is

interpreted as market efficiency in the high-frequency trading regime: any market

participant expects to buy or sell the asset at the fundamental price. The left hand

side of Figure 3.3 shows that the bid and ask prices also converge to the fundamental

price if α = 0. This can be interpreted as a positive liquidity effect of increasing the

trading frequency.
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However, the situation is quite different if α 6= 0. Assume, for example, that

α > 0. Then, the second line of (2.13) implies that λ̂a increases by, at least, α∆t at

each step of the (backward) recursion. Recall that the number of steps is N = T/∆t,

hence, λ̂a0 ≥ λ̂aN + αT . If |λ̂aN | is small (which is typically the case if N is large),

then, we may obtain λ̂an+1 ≥ 0, at some time n, which violates the third inequality

in (2.12), or, equivalently, implies that the objective in the first line of (2.13) is

strictly negative for all p. The latter implies that it is suboptimal for the agents with

positive inventory to post limit orders, and the proposed method fails to produce a

non-degenerate LTC equilibrium in the interval [n,N ]. Figure 3.2 shows that this

does, indeed, occur. Figures 3.2 and 3.3 also show that, for a given (finite) frequency

N , if |α| is small enough, a non-degenerate equilibrium may still be constructed.

Nevertheless, for any |α| 6= 0, however small it is, there exists a large enough N , s.t.

the non-degenerate LTC equilibrium fails to exist (at least, within the class defined

by the proposed method). This is illustrated in Figure 3.3.

It is important to provide an economic interpretation of why such degeneracy

occurs. A careful examination of Figure 3.2 reveals that, around the time when λ̂a

becomes nonnegative, the ask price p̂a explodes. This means that the agents who

want to sell the asset are only willing to sell it at a very high price. Notice also that

this price is several magnitudes larger than the expected change in the fundamental

price (represented by the black dashed line in the left hand side of Figure 3.2).

Hence, such a behavior cannot be justified by the fundamental reasons. Indeed, this

is precisely what is called an internal (or, self-inflicted) liquidity crisis. So, what

causes such a liquidity crisis? Recall that there are two potential reasons for the

market to degenerate: the agents may choose to submit market orders (if p̂bn > λ̂an

or p̂an < λ̂bn), or they may choose to wait and do nothing (if λ̂an+1 ≥ 0 or λ̂bn+1 ≤ 0).
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The right hand side of Figure 3.2 shows that the degeneracy is caused by the second

scenario. This means that the naive explanation of the internal liquidity crisis, based

on the claim that, in a bullish market, those who need to buy the asset will submit

market orders wiping out liquidity on the sell side of the book, is wrong. Instead, if

the agents on the sell side of the book have the same beliefs, they will increase the

ask price so that it is no longer profitable for the agents who want to buy the asset to

submit market buy orders. In fact, the ask price may increase disproportionally to

the expected change in the fundamental price (i.e. the signal), and this is what causes

an internal liquidity crisis. The size of the resulting change in the bid or ask price

depends not only on the signal, but also on the trading frequency, which demonstrates

the negative liquidity effect of increasing the trading frequency: it makes the market

more fragile with respect to deviations of the agents from market-neutrality. The

latter, in turn, is explained by the fact that higher trading frequency makes the

adverse selection effect more pronounced. To see this, consider e.g. an agent who is

trying to sell one share of the asset. Increasing the trading frequency increases the

expected execution value of this agent, bringing it closer to the fundamental price:

this corresponds to λ̂a approaching zero (from below). Assume that the agent posts

a limit sell order at a price level p. If this order is executed in the next period, then,

the agent receives p, but, for this to happen, the fundamental price value at the next

time step, p0
n+1, has to be above p. On the other hand, the expected execution price

of the agent at the next time step is p0
n+1 + λ̂an+1. Thus, the expected relative profit

of the agent, given the execution of her limit order, is En(p− p0
n+1− λ̂an+1 | p0

n+1 > p).

The latter expression cannot be positive, unless λ̂an+1 < 0 and |λ̂an+1| is sufficiently

large. Therefore, if |λ̂an+1| is small relative to En(p0
n+1 − p | p0

n+1 > p), the agent is

reluctant to post a limit order at the price level p. Hence, p needs to be sufficiently
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large, to ensure that En(p0
n+1 − p | p0

n+1 > p) is smaller than |λ̂an+1| (in the Gaussian

model of this section, the latter expectation vanishes as p → ∞) – and smallest

such level of p determines the effect of adverse selection. It turns out that, if the

agents are market-neutral (i.e. α = 0), as the frequency N increases, the quantity

En(p0
n+1− p | p0

n+1 > p), for any fixed p, converges to zero at the same rate as |λ̂an+1|,

hence, the above adverse selection effect does not get amplified. On contrary, if the

agents are not market-neutral, λ̂an+1 reaches zero at some high enough (but finite)

frequency, while En(p0
n+1 − p | p0

n+1 > p) remains strictly positive, for any p, which

amplifies the adverse selection effect infinitely and causes the market to degenerate.

Of course, so far, these conclusions are based on a very specific example and on a

particular method of constructing an equilibrium. The next section shows that all

these conclusions remain valid in any model (with, possibly, heterogeneous beliefs)

in which the fundamental price is given by an Itô process.

It is worth mentioning that a similar adverse selection effect arises in [34], and

it is referred to as the “winner’s curse” in [29]. However, the latter papers do not

investigate the nature of this phenomenon and focus on other questions instead. In

the literature on double auctions (cf. [27], [58]), a similar effect arises when the

auction participants choose to decrease their trading activity in a given auction,

because they expect many more opportunities to trade in the future. The latter

is similar to the agents choosing not to post limit orders and wait, in the present

example.

2.4 Main results

In this section, we generalize the conclusions made in the previous section, so that

they hold in a general model and for any choice of an equilibrium. As before, we
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begin with the “limiting” continuous time model. Consider a terminal time horizon

T > 0 and a complete stochastic basis (Ω, F̃ = (F̃t)t∈[0,T ],P), with a Brownian motion

W on it.9 We define the adapted process p̃0 as a continuous modification of

(2.14) p̃0
t = p0

0 +

∫ t

0

σsdWs, p0
0 ∈ R,

where σ is a progressively measurable locally square integrable process.

Assumption II.12. There exists a constant C > 1, such that, 1/C ≤ σt ≤ C, for

all t ∈ [0, T ], P-a.s..

Consider a Borel set of beliefs A and the associated family of measures {Pα}α∈A

on (Ω, F̃T ), absolutely continuous with respect to P. Then, for any α ∈ A, we have

p̃0
t = p0

0 + Aαt +

∫ t

0

σsdW
α
s , p0

0 ∈ R, Pα-a.s., ∀t ∈ [0, T ],

where Wα is a Brownian motion under Pα, and Aα is a process of finite variation.

We assume that Aα is absolutely continuous: i.e. for any α ∈ A, there exists a locally

integrable process µα, such that:

Aαt =

∫ t

0

µαs ds, Pα-a.s., ∀t ∈ [0, T ].

Assumption II.13. For any α ∈ A, the process µα is P-a.s. right-continuous, and

there exists a constant C > 0, such that |µαt | ≤ C, for all t ∈ [0, T ], P-a.s..

Thus, we can rewrite the dynamics of p̃0, under each Pα, as follows: Pα-a.s., the

following holds for all t ∈ [0, T ]:

(2.15) p̃0
t = p0

0 +

∫ t

0

µαs ds+

∫ t

0

σsdW
α
s , p0

0 ∈ R.

In addition, we modify the above stochastic integral on a set of Pα-measure zero, so

that (2.15) holds for all (t, ω). In what follows, we often need to analyze the future
9In order to ensure the existence of regular conditional probabilities for the discrete time model, we can, for

example, assume that F̃T is generated by a random element with values in a standard Borel space.
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dynamics of p̃0 under Pα, conditional on F̃t, for various (t, α) simultaneously. This

is why we need the following joint regularity assumption.

Assumption II.14. There exists a modification of regular conditional probabilities

{
P̃αt = Pα

(
· | F̃t

)}
t∈[0,T ], α∈A,

such that it satisfies the tower property with respect to P (as described in Section

3.2).

Assumption II.14 is satisfied, for example, if Pα ∼ P, for all α ∈ A, or if the set

A is countable. Throughout the rest of the chapter, P̃αt refers to a member of the

family appearing in Assumption II.14. All conditional expectations Ẽαt are taken

under such P̃αt .

The main results of this section require additional continuity assumptions on σ and

µα. The following assumption can be viewed as a stronger version of L2-continuity

of σ.

Assumption II.15. There exists a function ε(·) ≥ 0, such that ε(∆t) → 0, as

∆t→ 0, and, P-a.s.,

P̃αt
(
Eα
(
(σs∨τ − στ )2 | Fτ

)
≤ ε(∆t)

)
= 1

holds for all t ∈ [0, T −∆t], all s ∈ [t, t + ∆t], all stopping times t ≤ τ ≤ s, and all

α ∈ A.

The above assumption is satisfied, for example, if σ is an Itô process with bounded

drift and diffusion coefficients. Next, we state a continuity assumption on the drift,

which can be interpreted as a uniform right-continuity in probability of the martin-

gale Ẽαt µαs .
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Assumption II.16. For any α ∈ A and any t ∈ [0, T ), there exists a deterministic

function ε(·) ≥ 0, such that ε(∆t)→ 0, as ∆t→ 0, and, Pα-a.s.,

P̃αt′
(∣∣∣∣∫ T

t

(
Ẽαt′′µαs − Ẽαt′µαs

)
ds

∣∣∣∣ ≥ ε(∆t)

)
≤ ε(∆t)

holds for all t ≤ t′ ≤ t′′ ≤ t+ ∆t ≤ T .

Notice that Assumptions II.14, II.15, and II.16 are not quite standard. Therefore,

below, we describe a more specific (although, still, rather general) diffusion-based

framework, in which the Assumptions II.12–II.16 reduce to standard regularity con-

ditions on the diffusion coefficients, and are easily verified. To this end, consider

a model in which µαt = µ̄α(t, Yt), σt = σ̄(t, Yt), and, under P, the process Y is a

diffusion taking values in Rd:

dYt = Γ(t, Yt)dt+ Σ(t, Yt)dB̄t,

where Γ : [0, T ] × Rd → Rd, Σ = (Σi,j) is a mapping on [0, T ] × Rd with values in

the space of d×m matrices, and B̄ is m-dimensional Brownian motion under P (on

the original stochastic basis). We assume that Γ and Σ possess enough regularity to

conclude that Y is a strongly Markov process. Notice that Assumptions II.12 and

II.13 reduce to the upper and lower bounds on the functions µ̄α and σ̄. Assumption

II.14 is satisfied if we assume that Pα ∼ P, for all α ∈ A. Let us further assume that

the Radon-Nikodym derivative of each measure is in Girsanov form:

dPα

dP
= exp

(
−1

2

∫ t

0

‖γα(s, Ys)‖2ds+

∫ t

0

γα(s, Ys)dB̄s

)
,

with an Rd-valued function γα, for each α ∈ A. Let us assume that all entries of

Γ, γα and Σ are absolutely bounded by a constant (uniformly over α ∈ A). As-

suming, in addition, that σ̄ is globally Lipschitz, we easily verify Assumption II.15.

In order to verify Assumption II.16, we assume that the quadratic form generated
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by A(t, y) := Σ(t, y)ΣT (t, y) is bounded away from zero, uniformly over all (t, y),

and that the entries of Γ, γα and Σ are continuously differentiable with absolutely

bounded derivatives (uniformly over α ∈ A). Then, the Feynman-Kac formula im-

plies that, for any t ≤ s,

Ẽαt µαs = us,α(t, Yt),

where us,α is the unique solution to the associated partial differential equation (PDE):

∂tu
s,α +

d∑
i=1

Γα,i∂yiu
s,α +

1

2

d∑
i,j=1

Ai,j∂2
yiyj

us,α =

0, (t, y) ∈ (0, s)× Rd, us,α(s, y) = µ̄α(s, y),

and Γα = Γ + Σγα. Assume that, for each s ∈ [0, T ], the function µ̄α(s, ·) is contin-

uously differentiable with absolutely bounded derivatives, uniformly over all (s, α).

Then, the standard Gaussian estimates for derivatives of the fundamental solution

to the above PDE (cf. Theorem 9.4.2 in [30]) imply that every ∂yiu
s,α is absolutely

bounded, uniformly over all (s, α). Then, Itô’s formula and Itô’s isometry yield, for

all t′ ≤ t′′ and s ≥ t′:

Ẽαt′
(
Ẽαt′′µαs − Ẽαt′µαs

)2

=

m∑
j=1

∫ t′′∧s

t′
Ẽαt′

(
d∑
i=1

∂yiu
s,α(v, Yv)Σ

i,j(v, Yv)

)2

dv ≤ C1(t′′ ∧ s − t′),

with some constant C1 > 0. The above estimate and Jensen’s inequality imply the

statement of Assumption II.16 and complete the description of the diffusion-based

setting.

As in Section 2.3, we also consider a progressively measurable random field D̃,

s.t. P-a.s. the function D̃t(·)− D̃s(·) is strictly decreasing and vanishing at zero, for

any 0 ≤ s < t ≤ T . We assume that the demand curve, D̃t(·) − D̃s(·), cannot be

“too flat”.
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Assumption II.17. There exists ε > 0, s.t., for any 0 ≤ t − ε ≤ s < t ≤ T , there

exists a F̃s ⊗ B(R)-measurable random function κs(·), s.t., P-a.s., κs(·) is strictly

decreasing and
∣∣∣D̃t(p)− D̃s(p)

∣∣∣ ≥ |κs(p)|, for all p ∈ R.

Finally, we introduce the empirical distribution process (µ̃t), with values in the

space of finite sigma-additive measures on S. The next assumption states that every

µ̃t is dominated by a deterministic measure.

Assumption II.18. For any t ∈ [0, T ], there exists a finite sigma-additive measure

µ0
t on (S,B (S)), s.t., P-a.s., µ̃t is absolutely continuous w.r.t. µ0

t .

We partition the time interval [0, T ] into N subintervals of size ∆t = T/N . A

discrete time model is obtained by discretizing the continuous time one:

Fn = F̃n∆t, p0
n = p̃0

n∆t, Dn(p) = (D̃n∆t − D̃(n−1)∆t)(p− p0
n), µn = µ̃n∆t.

Before we present the main results, let us comment on the above assumptions. These

assumptions are important from a technical point of view, however, some of them

have economic interpretation that may provide (partial) intuitive explanations of the

results that follow. In particular, Assumption II.12 ensures that the fundamental

price remains “noisy”, which implies that an agent can execute a limit order very

quickly by posting it close to the present value of p0, if there are no other orders

posted there. In combination with Assumption II.17, the latter implies that, when

the frequency, N , is high, an agent has a lot of opportunities to execute her limit order

at a price close to the fundamental price (at least, if no other orders are posted too

close to the fundamental price). Intuitively, this means that the agent’s execution

value should improve as the frequency increases. Assumption II.16 ensures that,

if an agent has a signal about the direction of the fundamental price, this signal

is persistent – i.e. it is continuous in the appropriate sense. When the trading
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frequency N is large, such persistency means that an agent has a large number of

opportunities to exploit the signal, implying that she is in no rush to have her order

executed immediately. The main results of this work, presented below, along with

their proofs, confirm that these heuristic conclusions are, indeed, correct.

As mentioned in the preceding sections, our main goal is to analyze the liquidity

effects of increasing the trading frequency. Therefore, we fix a limiting continuous

time model, and consider a sequence of discrete time models, obtained from the

limiting one as described above, for N → ∞. This can be interpreted as observing

the same population of agents, each of whom has a fixed continuous time model for

future demand, in various exchanges that allow for different trading frequencies. We

begin with the following theorem, which shows that, if every market model in a given

sequence admits a non-degenerate equilibrium, then, the terminal bid and ask prices

converge to the fundamental price, as the trading frequency goes to infinity.

Theorem II.19. Let Assumptions II.12, II.13, II.14, II.15, II.17, II.18 hold. Con-

sider a family of uniform partitions of a given time interval [0, T ], with diameters

{∆t = T/N > 0} and with the associated family of discrete time models, and denote

the associated fundamental price process by p0,∆t. Assume that every such model ad-

mits a non-degenerate LTC equilibrium, and denote the associated bid and ask prices

by pb,∆t and pa,∆t respectively. Then, there exists a deterministic function ε(·), s.t.

ε(∆t)→ 0, as ∆t→ 0, and, for all small enough ∆t > 0, the following holds P-a.s.:

∣∣∣pa,∆tN − p0,∆t
N

∣∣∣+
∣∣∣pb,∆tN − p0,∆t

N

∣∣∣ ≤ ε(∆t)

The above theorem has a useful corollary, which can be interpreted as follows:

if the market does not degenerate as the frequency increases, then, such an increase

improves market efficiency. Here, we understand the “improving efficiency” in the
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sense that the expected execution price (i.e. the price per share that an agent expects

to receive or pay by the end of the game) of every agent converges to the fundamental

price.

Corollary II.20. Under the assumptions of Theorem II.19, denote the support of

every equilibrium by Ã∆t and the associated expected execution prices by λa,∆t and

λb,∆t. Then, there exists a deterministic function ε(·), such that ε(∆t) → 0, as

∆t→ 0, and, P-a.s.,

sup
n=0,...,N, α∈Ã∆t

(∣∣λa,∆tn (α)− p0,∆t
n

∣∣+
∣∣λb,∆tn (α)− p0,∆t

n

∣∣) ≤ ε(∆t),

for all small enough ∆t > 0.

Proof: Denote Eαn = Ẽαn∆t. It follows from Corollary II.31, in Appendix A, and

the definition of LTC equilibrium that λa,∆tN (α) = pb,∆tN and λb,∆tN (α) = pa,∆tN . It

also follows from Corollary II.31 (or, more generally, from the definition of a value

function) that λa,∆t(α) is a supermartingale, and λb,∆t(α) is a submartingale, under

Pα. Thus, we have: λa,∆tn (α) ≥ Eαnp
b,∆t
N and λb,∆tn (α) ≤ Eαnp

a,∆t
N . On the other hand,

notice that we must have: λa,∆tn (α) ≤ Eαnp
a,∆t
N and λb,∆tn (α) ≥ Eαnp

b,∆t
N . Assume,

for example, that λa,∆tn (α) > Eαnp
a,∆t
N on the event Ω′ of positive Pα-probability.

Consider an agent at state (0, α), who follows the optimal strategy of an agent at

state (1, α), starting from time n and onward, on the event Ω′ (otherwise, she does

not do anything). It is easy to see that the objective value of this strategy is

Eα
(
1Ω′

(
λa,∆tn (α)− Eαnp

a,∆t
N

))
> 0,

which contradicts Corollary II.31. The second inequality is shown similarly. Thus,

we conclude that, for any n = 0, . . . , N − 1, both λa,∆n (α) and λb,∆n (α) belong to the

interval [
Eαnp

b,∆t
N , Eαnp

a,∆t
N

]
,
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which, in turn, converges to zero, as ∆t → 0, due to the deterministic bounds

obtained in the proof of Proposition II.19.

The results of Theorem II.19 and Corollary II.20 can be viewed as a specific case

of a more general observation: markets become more efficient as the frictions become

smaller. In the present setting, the limited trading frequency is viewed as friction,

and the market efficiency is measured by the difference between the bid and ask

prices, or between the expected execution prices. Many more instances of analogous

results can be found in the literature, depending on the choice of a friction type.

For example, the markets become efficient in [33] and [43] as the number of insiders

vanishes. Similarly, the markets become efficient in [27] as the trading frequency

increases and the size of private signals vanishes. It is also mentioned in [13] that

the market would become efficient if there was no restriction on the size of agents’

inventories therein.

The above results demonstrate the positive role of high trading frequency. How-

ever, they are based on the assumption that the market does not degenerate as

frequency increases. In the context of Section 2.3, we saw that the markets do not

degenerate only if the agents are market-neutral (i.e. α = 0). If this condition is vio-

lated and the frequency N is sufficiently high, the market admits no non-degenerate

equilibrium (i.e. there exists no safe regime, in which the liquidity crisis would never

occur). It turns out that this conclusion still holds in the general setting considered

herein.

Theorem II.21. Let Assumptions II.12, II.13, II.14, II.15, II.16, II.17, II.18 hold.

Consider a family of uniform partitions of a given time interval [0, T ], with diameters

{∆t = T/N > 0}, containing arbitrarily small ∆t, and with the associated family

of discrete time models. Assume that every such model admits a non-degenerate
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LTC equilibrium, with the same support Ã. Then, for all α ∈ Ã, we have: p̃0 is a

martingale under Pα.

The above theorem shows that the market degenerates even if the signal µα is very

small (but non-zero), provided the trading frequency N is large enough. Therefore,

as discussed at the end of Section 2.3, such degeneracy cannot be attributed to any

fundamental reasons, and we refer to it as the internal (or, self-inflicted) liquidity

crisis. Let us provide an intuitive (heuristic) argument for why the statement of

Theorem II.21 holds. Assume, first, that all long agents (i.e. those having positive

inventory) are bullish about the asset (i.e. have a positive drift µα). Then, similar

to Section 2.3, the higher trading frequency amplifies the adverse selection effect,

forcing the long agents to withdraw liquidity from the market (i.e. they prefer to

do nothing and wait for a higher fundamental price level). Note that, in the present

setting, the agents may have different beliefs, the LOB may have a complicated

shape and dynamics, and the expected execution prices are no longer deterministic.

All this makes it difficult to provide a simple description of how the high frequency

amplifies the adverse selection. Nevertheless, the general analysis of this case is still

based on the idea discussed at the end of Section 2.3: it has to do with how fast

Ẽαn∆t(p
0
n+1 − p | p0

n+1 > p) vanishes (as the frequency increases), relative to the rate

at which the expected execution prices approach the fundamental price. Thus, there

must be a non-zero mass of long agents who are market-neutral or bearish. As the

trading frequency grows, these agents will post their limit orders at lower levels.

Next, assume that there exists a bullish agent (long, short, or with zero inventory).

Then, at a sufficiently high trading frequency, the agent’s expected value of a long

position in a single share of the asset will exceed the ask prices posted by the market-

neutral and bearish long agents. In this case, the bullish agent prefers to buy more
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asset at the posted ask price, in order to sell it later. As the agents are small and

their objectives are linear, the bullish agent can scale up her strategy to generate

infinite expected profits. This contradicts the definition of optimality and implies

that an equilibrium fails to exist. Thus, all agents have to be either market-neutral

or bearish. Applying a symmetric argument, we conclude that all agents must be

market-neutral.10 A rigorous formulation of the above arguments, which constitutes

the proof of Theorem II.21, is given in Section 2.7.

It is worth mentioning that the possible degeneracy of LOB is also documented

in [33], and is referred to as a “market shut down”. The setting used in the latter

paper is very different: it analyzes a quote-driven exchange (i.e. the one with a

designated market maker) and assumes the existence of insiders with superior in-

formation. Nevertheless, it is possible to draw a parallel with the LOB degeneracy

in the present setting. Namely, the degeneracy in [33] occurs when the number of

insiders increases, which implies that the signal, generated by the insiders’ trading,

becomes sufficiently large. The latter is similar to the deviation from martingality

of the fundamental price in the present setting. However, an increase in the number

of insiders in [33] also implies an increase in frictions (since the insiders can be inter-

preted as friction in [33]). Theorem II.21, on the other hand, states that a market

degeneracy will occur when the frictions are sufficiently small. Perhaps, this dual

role of the number of insiders did not allow for a detailed analysis of market shut

downs in [33]. Many other models of market microstructure (cf. [34], [52], [50], [29],

[27]) are not well suited for the analysis of market degeneracy, either because the

agents in these models pursue “one-shot” strategies (i.e. they cannot choose to wait

and post a limit order later) or because the fundamental price (or its analogue) is

10This argument, along with the fact that Definition II.3 requires an optimal control to be optimal for all α,
explains why the statement of Theorem II.21 holds for all, as opposed to µn-a.e., α ∈ Ã.
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restricted to be a martingale.

2.5 Conditional tails of the marginal distributions of Itô processes

As follows form the discussion in the preceding sections, in order to prove the main

results of the chapter, we need to investigate the properties of marginal distributions

of the fundamental price p̃0 (more precisely, the distributions of its increments).

In order to prove Theorem II.19, we need to show that the difference between the

fundamental price and the bid or ask price converges to zero, as the frequency N

increases to infinity. It turns out that, for this purpose, it suffices to show that

the distribution of a normalized increment of p̃0 converges to the standard normal

distribution. The following lemma summarizes these results. It is rather simple,

but technical, hence, its proof is postponed to Appendix B. In order to formulate

the result (and to facilitate the derivations in subsequent sections), we introduce

addiitonal notation. For convenience, we drop the superscript ∆t in many variables

which do, in fact, depend on ∆t, hoping it causes no confusion (we emphasize this

dependence whenever it is important). For any market model on the time interval

[0, T ], associated with a uniform partition with diameter ∆t = T/N > 0, and having

a fundamental price process p0, we define

(2.16)

ξn = p0
n−p0

n−1 = p̃0
tn−p̃

0
tn−1

, Eαn = Ẽαtn , Pαn = P̃αtn , tn = n∆t, n = 1, . . . , NT/∆t.

We denote by η0 a standard normal random variable (on a, possibly, extended prob-

ability space), which is independent of FN under every Pα.

Lemma II.22. Let Assumptions II.12, II.13, II.14, II.15 hold. Then, there exists a

function ε(·) ≥ 0, s.t. ε(∆t)→ 0, as ∆t→ 0, and the following holds P-a.s., for all

p ∈ R, all α ∈ A, and all n = 1, . . . , N :
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(i) (|p| ∨ 1)
∣∣∣Pαn−1

(
ξn√
∆t
> p
)
− Pαn−1

(
σtn−1η0 > p

)∣∣∣ ≤ ε(∆t)

(ii)
∣∣∣Eαn−1

(
ξn√
∆t

1{ξn/√∆t>p}
)
− Eαn−1

(
σtn−1η01{σtn−1η0>p}

)∣∣∣ ≤ ε(∆t)

In addition, the above estimates hold if we replace (ξn, η0, p) by (−ξn,−η0,−p).

In order to prove Theorem II.21 we need to compare the rates at which the con-

ditional expectations Eαn(p0
n+1 − p | p0

n+1 > p) vanish (as the frequency N goes to

infinity) to the rate at which the expected execution prices converge to the fun-

damental price. This requires a more delicate analysis – in particular, the mere

proximity of the distribution of a (normalized) fundamental price increment to the

Gaussian distribution is no longer sufficient. In fact, what we need is a precise

uniform estimate of the conditional tail of the distribution of a fundamental price

increment. The desired property is formulated in the following lemma, which, we

believe, is valuable in its own right. This result allows us to estimate the tails of the

conditional marginal distribution of an Itô process X uniformly by an exponential.

To the best of our knowledge, this result is new. The main difficulties in establishing

the desired estimates are: (a) the fact that we estimate the conditional, as opposed

to the regular, tail, and (b) the fact that the estimates need to be uniform over the

values of the argument. Note that, even in the case of a diffusion process X, the

classical Gaussian-type bounds for the tails of the marginal distributions of X are

not sufficient to establish the desired estimates. The reason is that, in general, the

Gaussian estimates of the regular tails from above and from below have different

orders of decay, for the large values of the argument, which makes them useless for

estimating the conditional tail (which is a ratio of two regular tails).

Lemma II.23. Consider the following continuous semimartingale on a stochastic



44

basis (Ω̂, (F̂t)t∈[0,1], P̂):

Xt =

∫ t

0

µ̂udu+

∫ t

0

σ̂udBu, t ∈ [0, 1],

where B is a Brownian motion (with respect to the given stochastic basis), µ̂ and σ̂

are progressively measurable processes, such that the above integrals are well defined.

Assume that, for any stopping time τ with values in [0, 1], c ≤ |σ̂τ | ≤ C holds a.s.

with some constants c, C > 0. Then, there exists ε > 0, depending only on (c, C),

s.t., if

µ̂2
τ ≤ ε, Ê

(
(σ̂s∨τ − σ̂τ )2 | F̂τ

)
≤ ε a.s.,

for all s ∈ [0, 1] and all stopping time τ , with values in [0, 1], then, for any c1 > 0,

there exists C1 > 0, depending only on (c, C, ε, c1), s.t. the following holds:

P̂(X1 > x+ z |X1 > x) ≤ C1e
−c1z, ∀x, z ≥ 0.

Proof: In the course of this proof, we will use the shorthand notation, Êτ and P̂τ ,

to denote the conditional expectation and the conditional probability w.r.t F̂τ . We

also denote

At =

∫ t

0

µ̂udu, Gt =

∫ t

0

σ̂udBu.

For any x ≥ 0, let us introduce τx = 1 ∧ inf {t ∈ [0, 1] : Xt = x}. Then

P̂(X1 > x+ z) ≤ P̂( sup
t∈[0,1]

Xt > x+ z) = Ê

(
1{τx<1}P̂τx

(
sup

s∈[τx,1]

(Xs − x) > z

))
Notice that, on {τx ≤ s}, we have: Xs− x = As∨τx −Aτx +Gs∨τx −Gτx . In addition,

the process (Y )s∈[0,1], with Ys = As∨τx − Aτx , is adapted to the filtration (F̂τx∨s),

while the process (Z)s∈[0,1], with Zs = Gs∨τx − Gτx , is a martingale with respect to

it. Next, on {τx < 1}, we have:

P̂τx

(
sup

s∈[τx,1]

(Xs − x) > z

)
= P̂τx

(
sup
s∈[0,1]

(Ys + Zs) > z

)



45

≤ P̂τx

(
sup
s∈[0,1]

exp

(
c1Zs −

1

2
c2

1〈Z〉s
)
> exp

(
c1z − c1

√
ε− 1

2
c2

1C
2

))
,

where we used the fact that 〈Z〉s ≤ 〈X〉1 ≤ C2, for all s ∈ [0, 1]. Using the Novikov’s

condition, it is easy to check that

Ms = exp

(
c1Zs −

1

2
c2

1〈Z〉s
)
, s ∈ [0, 1],

is a true martingale, and, hence, we can apply the Doob’s martingale inequality to

obtain, on {τx < 1}:

P̂τx
(

sup
s∈[0,1]

exp

(
c1Zs −

1

2
c2

1〈Z〉s
)
>

exp

(
c1z − c1

√
ε− 1

2
c2

1C
2

))
≤ exp

(
−c1z + c1

√
ε+

1

2
c2

1C
2

)
.

Collecting the above inequalities, we obtain

(2.17)

P̂(X1 > x+z) ≤ P̂( sup
t∈[0,1]

Xt > x+z) ≤ C2(ε)e−c1zP̂(τx < 1) = C2(ε)e−c1zP̂( sup
t∈[0,1]

Xt > x).

The next step is to estimate the distribution tails of a running maximum via the

tails of the distribution of X1. To do this, we proceed as before:

(2.18) P̂(X1 > x) = Ê
(
1{τx<1}P̂τx (Y1 + Z1 > 0)

)
,

with Y and Z defined above. Notice that, on {τx < 1},

P̂τx (Y1 + Z1 > 0) =

P̂τx
(
σ̂τx

B1 −Bτx√
1− τx

+
1√

1− τx

∫ 1

τx

µ̂udu+
1√

1− τx

∫ 1

0

(σ̂u∨τx − σ̂τx)dBx
u > 0

)
,

where Bx
s = Bs∨τx is a continuous square-integrable martingale with respect to

(F̂s∨τx). Denote

Rs =

∫ s

0

(σ̂u∨τx − σ̂τx)dBx
u, s ∈ [0, 1],
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and notice that it is a square-integrable martingale with respect to (F̂s∨τx). Then,

on {τx < 1} (possibly, without a set of measure zero), we have:

Êτx
(

1√
1− τx

R1

)2

=
1

1− τx
ÊτxR2

1 ≤
1

1− τx

∫ 1

τx

Êτx(σ̂u∨τx − σ̂τx)2du ≤ ε.

In addition,

Êτx
(

1√
1− τx

∫ 1

τx

µ̂udu

)2

≤ ε.

Collecting the above and using Chebyshev’s inequality, we obtain, on {τx < 1}:∣∣∣∣P̂τx (Y1 + Z1 > 0)− P̂τx
(
σ̂τx

B1 −Bτx√
1− τx

≤ −ε1/3

)∣∣∣∣ ≤ 2ε1/6.

On the other hand, due to the strong Markov property of Brownian motion, on

{τx < 1}, we have, a.s.:

P̂τx
(
σ̂τx

B1 −Bτx√
1− τx

≤ −ε1/3

)
= P̂

(
ξ ≤ −ε

1/3

σ

)∣∣∣∣
σ=σ̂τx

,

where ξ is a standard normal. As σ̂τx ∈ [c, C], we conclude that the right hand side

of the above converges to 1/2, as ε→ 0, uniformly over almost all random outcomes

in {τx < 1}. In particular, for all small enough ε > 0, we have:

1{τx<1}

∣∣∣P̂τx (Y1 + Z1 ≤ 0)− P̂τx (Y1 + Z1 > 0)
∣∣∣ ≤ 1{τx<1}δ(ε) < 1,

and, in view of (2.18),

P̂(X1 > x) ≥ Ê
(
1{τx<1}P̂τx (Y1 + Z1 ≤ 0)

)
− δ(ε)P̂(τx < 1)

Summing up the above inequality and (2.18), we obtain

2P̂(X1 > x) ≥ (1− δ(ε))P̂(τx < 1) = (1− δ(ε))P̂( sup
t∈[0,1]

Xt > x),

which, along with (2.17), yields the statement of the lemma.
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2.6 Proof of Theorem II.19

Within the scope of this proof, we adopt the notation introduced in (2.16) and

use the following convention.

Notation II.24. The LOB, the bid and ask prices, the expected execution prices,

and the demand, are all measured relative to p0. Namely, we use νn to denote

νn ◦ (x 7→ x+p0
n)−1, pan to denote pan−p0

n, pbn to denote pbn−p0
n, λan to denote λan−p0

n,

λbn to denote λbn − p0
n, and Dn(p) to denote Dn(p0

n + p).

Herein, we are only concerned with what happens in the last trading period – at

time (N − 1), where N = T/∆t. Hence, we omit the subscript N − 1 whenever it is

clear from the context. In particular, we write pa and pb for paN−1 and pbN−1, ν for

νN−1, and ξ for ξN . Note also that, in an LTC equilibrium, we have: pa = paN = paN−1,

with similar equalities for pb and ν. For convenience, we also drop the superscript

∆t in the LOB and the associated bid and ask prices. Finally, we denote by Ã the

support of a given equilibrium. As the roles of pa and pb in our model are symmetric,

we will only prove the statement of the proposition for pb. We are going to show that,

under the assumptions of the theorem, there exists a constant C0 > 0, depending

only on the constant C in Assumptions II.12 and II.13, such that, for all small enough

∆t, we have, P-a.s.:

(2.19) − C0 ≤ pb/
√

∆t < 0

First, we introduce Âα(p;x), which we refer to as the simplified objective:

(2.20) Âα(p;x) = EαN−1

(
(p− x− ξ)1{ξ>p}

)
.

Recall that the expected relative profit from posting a limit sell order at price level
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p, in the last time period,11 is given by Aα(p; pbN), where

(2.21) Aα(p;x) = EαN−1

(
(p− x− ξ)1{D+

N (p−ξ)>ν+((−∞,p))}

)
.

The simplified objective is similar to Aα, but it assumes that there are no orders

posted at better prices than the one posted by the agent. In particular, Âα(p;x) =

Aα(p;x) for p ≤ pa. Corollary II.31, in Appendix A, states that, in equilibrium,

P-a.s., if the agents in the state (s, α) post limit sell orders, then they post them

at a price level p that maximizes the true objective Aα(p; pb). The following lemma

shows that the value of the modified objective becomes close to the value of the true

objective, for the agents posting limit sell orders close to the ask price.

Lemma II.25. P-a.s., either ν+({pa}) > 0 or we have:

∣∣∣Aα(p; pb)− Âα(pa; pb)
∣∣∣→ 0,

as p ↓ pa, uniformly over all α ∈ Ã.

Proof: If ν+({pa}) = 0, then ν+ is continuous at pa, and ν+((−∞, p])→ 0, as p ↓ pa.

Then, we have ∣∣∣Aα(p; pb)− Âα(pa; pb)
∣∣∣

=
∣∣∣EαN−1

(
(p− pb − ξ)1{D+

N (p−ξ)>ν+((−∞,p))}

)
− EαN−1

(
(pa − pb − ξ)1{ξ>pa}

)∣∣∣
≤ |p− pa|+

∥∥pa − pb − ξ∥∥L2(PαN−1)
PαN−1

(
ξ > pa, D+

N(p− ξ) ≤ ν+((−∞, p))
)

Thus, it suffices to show that: (i)
∥∥pa − pb − ξ∥∥L2(PαN−1)

is bounded by a finite random

variable independent of α, and (ii)

PαN−1

(
ξN > pa, D+

N(p− ξ) ≤ ν+((−∞, p))
)
→ 0, P-a.s.,

11Recall that everything is measured relative to the fundamental price, according to the Notational Convention
II.24
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as p ↓ pa, uniformly over α. For (i), we have:

∥∥pa − pb − ξ∥∥L2(PαN−1)
≤ |pa − pb|+ ‖ξ‖L2(PαN−1) ≤ |p

a − pb|+ 2C
√

∆t,

where the constant C appears in Assumptions II.12 and II.13. For (ii), we note that

{ξN > pa, D+
N(p− ξ) ≤ ν+((−∞, p))} = {ξN > pa, ξ ≤ p−D−1

N

(
ν+((−∞, p))

)
},

as DN(·) is strictly decreasing, with DN(0) = 0. Assumption II.17 implies that

κ−1(ν+((−∞, p))) ≤ D−1
N (ν+((−∞, p))) < 0,

where κ is known at time N − 1. Therefore,

PαN−1

(
ξ > pa, D+

N(p− ξ) ≤ ν+((−∞, p))
)
≤ PαN−1

(
ξ ∈

(
pa, p− κ−1(ν+((−∞, p)))

])
.

It remains to show that, P-a.s., the right hand side of the above converges to zero,

uniformly over all α. Assume that it does not hold. Then, with positive probability

P, there exists ε > 0 and a sequence of (pk, αk), such that pk ↓ pa and

PαkN−1

(
ξ ∈ (pa, pk − κ−1(ν+((−∞, pk)))]

)
≥ ε.

Notice that, P-a.s., the family of measures
{
µ̂k = PαkN−1 ◦ ξ−1

}
k

is tight. The latter

follows, for example, from the fact that, P-a.s., the conditional second moments of ξ

are bounded uniformly over all α (which, in turn, is a standard exercise in stochastic

calculus). Prokhorov’s theorem, then, implies that there is a subsequence of these

measures that converges weakly to some measure µ̂ on R. Next, notice that, for any

fixed k in the chosen subsequence, there exists a large enough k′, such that

∣∣µ̂ ((pa, pk − κ−1(ν+((−∞, pk)))
])
− µk′

((
pa, pk − κ−1(ν+((−∞, pk)))

])∣∣ ≤ ε/2.

Thus, for any k in the subsequence, we have

µ̂
((
pa, pk − κ−1(ν+((−∞, pk)))

])
≥ ε/2.
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The above is a contradiction, as the intersection of the corresponding intervals,

(pa, pk − κ−1(ν+((−∞, pk)))], over all k is empty.

Now we are ready to prove the upper bound in (2.19).

Lemma II.26. In any non-degenerate LTC equilibrium, pb < 0 < pa, P-a.s..

Proof: We only show that pb < 0 hold, the other inequality being very similar.

Assume that pb ≥ 0 on some positive P-probability set Ω′ ∈ FN−1. We are going

to show that this results in a contradiction. First, Corollary II.31, in Appendix A,

implies that, P-a.s., if the agents in state (s, α) post a limit sell order, then we must

have: sup
p∈R

Aα(p; pb) ≥ 0. In addition, on Ω′, we have: Âα(pa; pb) < 0 for all α ∈ Ã, as

ξ has full support in R under every PαN−1 (which, in turn, follows from the fact that σ

is bounded uniformly away from zero). Then, Lemma II.25 implies that there exists

a FN−1-measurable p̄ ≥ pa, such that, on Ω′, the following holds a.s.: if ν+({pa}) = 0

then p̄ > pa, and, in all cases,

(2.22) Aα(p; pb) < 0, ∀p ∈ [pa, p̄], ∀α ∈ Ã

Clearly, it is suboptimal for an agent to post a limit sell order below p̄. However, an

agent’s strategy only needs to be optimal up to a set of P-measure zero, and these

sets can be different for different (s, α). Therefore, a little more work is required to

obtain the desired contradiction. Consider the set B ⊂ Ω′ × R× Ã:

B = {(ω, s, α) | q̂(s, α) > 0, p̂(s, α) ≤ p̄} .

This set is measurable with respect to FN−1 ⊗B
(
R× Ã

)
, due to the measurability

properties of q̂ and p̂. Notice that, due to the above discussion and the optimality

of agents’ actions (cf. Corollary II.31, in Appendix A), for any (s, α) ∈ R × Ã, we

have:

P({ω | (ω, s, α) ∈ B}) = 0,
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and hence

EN−1

∫
R×Ã

1B(ω, s, α)µN−1(ds, dα) =∫
R×Ã

EN−1 (1B(ω, s, α)ρN−1(ω, s, α))µ0
N−1(ds, dα) = 0,

where ρN−1 is the Radon-Nikodym density of µN−1 w.r.t. to the deterministic mea-

sure µ0
N−1 (cf. Assumption II.18).

The above implies that, PN−1-a.s., 1B(ω, s, α)ρN−1(ω, s, α) = 0, for µ0
N−1-a.e.

(s, α). Notice also that, for all (ω, s, α) ∈ Ω′ × R× Ã,

1{p̂(s,α)≤p̄}q̂
+(s, α)1Bc = 0.

From the above observations and the condition (3.7) in the definition of equilibrium

(cf. Definition III.6), we conclude that, on Ω′, the following holds a.s.:

ν+([pa, p̄]) = 0,

where p̄ ≥ pa, and, if ν+({pa}) = 0, then p̄ > pa. This contradicts the definition of

pa (recall that pa is P-a.s. finite, due to non-degeneracy of the LOB).

It only remains to prove the lower bound on pb in (2.19). Assume that it does not

hold. That is, assume that there exists a family of equilibria, with arbitrary small

∆t, and positive P-probability FN−1-measurable sets Ω∆t, such that pb < −C0

√
∆t

on Ω∆t. We are going to show that this leads to a contradiction with pa > 0. To this

end, assume that the agents maximize the simplified objective function, Âα, instead

of the true one, Aα. Then, it turns out that, if pb is negative enough, the optimal

price levels become negative for all α. The precise formulation of this is given by the

following lemma.
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Lemma II.27. There exists a constant C0 > 0, s.t., for any small enough ∆t, there

exist constants ε, δ > 0, s.t., P-a.s., we have:

Âα(−δ;x) ≥ ε+ sup
y≥0

Âα(y;x),

for all α ∈ Ã and all x ≤ −C0

√
∆t.

Proof: Denote ξ̄ = ξ/
√

∆t and consider the random function

Āα(p;x) = EαN−1

(
(p− x− ξ̄)1{ξ̄>p}

)
.

Notice that

Âα(p;x) =
√

∆tĀα
(
p/
√

∆t;x/
√

∆t
)
,

and, hence, we can reformulate the statement of the lemma as follows: there exists

a constant C0 > 0, s.t., for any small enough ∆t, there exist constants ε, δ > 0, s.t.,

P-a.s., we have:

Āα(−δ;x) ≥ ε+ sup
y≥0

Āα(y;x),

for all α ∈ Ã and all x ≤ −C0. Notice that

Āα(−δ;x)− Āα(y;x) =

− xEαN−1

(
1{−δ<ξ̄≤y}

)
− EαN−1

(
ξ1{−δ<ξ̄≤y}

)
− δEαN−1

(
1{ξ̄>−δ}

)
− yEαN−1

(
1{ξ̄>y}

)
is non-increasing in x, and, hence, such is Āα(−δ;x)−sup

y≥0
Āα(y;x). Hence, it suffices

to prove the above statement for x = −C0. Next, consider the deterministic function

Aσ(p;x), defined via

(2.23) Aσ(p;x) = Ê
(
(p− x− ση0)1{ση0>p}

)
,

where η0 is a standard normal random variable on some auxiliary probability space

(Ω̂, P̂). It follows from Lemma II.22 that there exists a function ε2(·) ≥ 0, s.t.
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ε2(∆t)→ 0, as ∆t→ 0, and, P-a.s., we have:

∣∣∣Āα(p;−C0)− AσtN−1
(p;−C0)

∣∣∣ ≤ ε2(∆t),

for all α ∈ Ã and all p ∈ R. Then, as we can always choose ∆t small enough, so

that ε2(∆t) < ε, the statements of the lemma would follow if we can show that there

exist constants ε, δ, C0 > 0, s.t., P-a.s.,

AσtN−1
(−δ;−C0) ≥ 3ε+ sup

y≥0
AσtN−1

(y;−C0)

As σtN−1
(ω) ∈ [1/C,C], P-a.s., it suffices to find ε, δ, C0 > 0, s.t.

Aσ(−δ;−C0) ≥ 3ε+ sup
y≥0

Aσ(y;−C0), ∀σ ∈ [1/C,C].

Note that the above inequality does not involve ω or ξ, and it is simply a property of

a deterministic function. Notice also that Aσ(p;x) = σA1 (p/σ;x/σ), with A1 given

in (2.23). Then, if we denote by F (x) and f(x), respectively, the cdf and pdf of a

standard normal, we obtain:

A1(p;x) = (p− x)(1− F (p))−
∫ ∞
p

tf(t)dt.

A straightforward calculation gives us the following useful properties of A1 and Aσ:

(i) For any σ > 0 and any x < 0, the function p 7→ Aσ(p;x) has a unique maximizer

pσ(x), in particular, it is increasing in p ≤ pσ(x) and decreasing in p ≥ pσ(x).

(ii) The function

x 7→ pσ(x) = σp1(x/σ) = σ ((1− F )/f)−1 (−x/σ)

is increasing in x < 0 and converges to −∞, as x→ −∞.

Then, choosing C0 large enough, so that p1(−C0/C) < 0, ensures pσ(−C0) < 0,

for all σ ∈ [1/C,C]. Setting δ = −p1(−C0/C)/C guarantees that pσ(−C0) ≤ −δ, for
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all σ ∈ [1/C,C]. Then, by property (i) above, we have, for all σ ∈ [1/C,C]:

Aσ(−δ;−C0) > Aσ(0;−C0) = sup
y≥0

Aσ(y;−C0).

Finally, as Aσ(−δ;−C0) − Aσ(0;−C0) is a continuous function of σ ∈ [1/C,C], we

can find ε, such that

Aσ(−δ;−C0) ≥ 3ε+ sup
y≥0

Aσ(y;−C0), ∀σ ∈ [1/C,C].

Recall that our assumption is that pb < −C0

√
∆t holds on a set Ω∆t of positive

P-measure. Recall also that pa > 0, P-a.s., due to Lemma II.26. Then, Lemmas II.25

and II.27 imply that there exists FN−1-measurable p̄ ≥ pa, s.t., on Ω∆t, we have a.s.:

if ν+({pa}) = 0 then p̄ > pa, and, in all cases,

Aα(p; pb) < sup
p′∈R

Aα(p′; pb), ∀p ∈ [pa, p̄], ∀α ∈ Ã.

It is intuitively clear that posting limit sell orders at the above price levels p must

be suboptimal for the agents. However, the above inequality, on its own, does not

yield a contradiction, as the agents’ strategies are only optimal up to a set of P-

probability zero, and these sets may be different for different states (s, α). To obtain

a contradiction with the definition of pa, we simply repeat the last part of the proof

of Lemma II.26 (following equation (2.22)). This ensures that (2.19) holds and

completes the proof of the theorem.

2.7 Proof of Theorem II.21

Within the scope of this proof, we adopt the notation introduced in (2.16) and

use Notational Convention II.24 (i.e. we measure the LOB, the expected execution

prices, and the demand, relative to p0, but keep the same variables’ names). Assume
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that the statement of the theorem does not hold: i.e. there exists α0 ∈ Ã, such that

p̃0 is not a martingale under Pα0 . Then, there exists s ∈ [0, T ), s.t., with positive

probability Pα0 , we have:

Ẽα0
s p̃

0
T 6= p̃0

s.

Without loss of generality, we assume that there exists a constant δ > 0 and a set

Ω′ ∈ Fs, having positive probability Pα0 (and hence P), s.t., for all random outcomes

in Ω′, we have:

(2.24) Ẽα0
s (p̃0

T − p̃0
s) ≥ δ

(the case of negative values is analogous). Next, we fix an arbitrary ∆t from a given

family and consider the associated non-degenerate LTC equilibrium.

Lemma II.28. There exists a deterministic function ε(·) ≥ 0, s.t. ε(∆t) → 0, as

∆t → 0, and, for any small enough ∆t > 0, there exists n = 0, . . . , N − 3 and

Ω′′ ∈ Fn, s.t. Pα0
n (Ω′′) > 0 and the following holds on Ω′′:

Pα0
n+2

(
Eα0
n+3

(
p0
N − p0

n+3

)
≤ δ/2

)
≤ ε(∆t).

Proof: The proof follows from Assumption II.16. Consider t = t′ = s and t′′ = tn+2.

Then, Assumption II.16 implies

P̃α0
s

(∣∣∣∣Ẽα0
tn+2

∫ T

s

µα0
u du− Ẽα0

s

∫ T

s

µα0
u du

∣∣∣∣ ≥ ε(∆t)

)
≤ ε(∆t)

on Ω′, a.s.. Notice also that

Ẽα0
s (p̃0

T − p̃0
s) = Ẽα0

s

T∫
s

µα0
u du.

Then, assuming that ε(∆t) is small enough and recalling (2.24), we obtain

P̃α0
s

(
Ẽα0
tn+2

∫ T

s

µα0
u du ≤ 3δ/4

)
≤ ε(∆t),
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on Ω′. Therefore, there exists a set Ω′′ ∈ Fs ⊂ Ftn , s.t. P̃α0
tn (Ω′′) > 0 and

Ẽα0
tn+2

∫ T

s

µα0
u du ≥ 3δ/4,

on Ω′′. Next, we choose t = s, t′ = tn+2, t′′ = tn+3, and use Assumption II.16, to

obtain:

P̃α0
tn+2

(∣∣∣∣Ẽα0
tn+3

∫ T

s

µα0
u du− Ẽα0

tn+2

∫ T

s

µα0
u du

∣∣∣∣ ≥ ε(∆t)

)
≤ ε(∆t),

on Ω′′, a.s.. Assuming that ε(∆t) is small enough and using the last two inequalities,

we obtain

P̃α0
tn+2

(
Ẽα0
tn+3

∫ T

s

µα0
u du ≤ δ/2

)
≤ ε(∆t).

Finally, due to Assumption II.13, and as ∆t is small, we can replace
∫ T
s
µα0
u du by∫ T

tn+3
µα0
u du, and δ/2 by δ/4, in the above equation. This completes the proof of the

lemma.

Using the strategy at which the agent in state (1, α0) waits until the last moment

n = N , we conclude that the process (λan(α0) +p0
n) must be a supermartingale under

Pα0 . More precisely, due to the definition of an optimal strategy, we have, P-a.s.:

λan+2(α0) ≥ Eα0
n+2λ

a
N(α0) + Eα0

n+2

(
Eα0
n+3(p0

N − p0
n+3) + ξn+3

)
.

Recall that λaN(α0) = pbN and, due to Theorem II.19 (more precisely, it follows from

the proof of the theorem), there exists a constant C0 > 0, s.t., for all small enough

∆t > 0, the following holds P-a.s.:

−C0

√
∆t ≤ pbN < 0 < paN ≤ C0

√
∆t.

Thus, we have, P-a.s.:

(2.25) λan+2(α0) ≥ −C0

√
∆t+ Eα0

n+2

(
Eα0
n+3(p0

N − p0
n+3)

)
+ Eα0

n+2ξn+3.
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Due to Assumption II.13, we have, P-a.s.:

Eα0
n+2ξn+3 ≤ C∆t,

∣∣Eα0
n+3(p0

N − p0
n+3)

∣∣ ≤ CT,

and, hence,

λan+2(α0) ≥ −C0

√
∆t+ CT + C∆t.

In addition, making use of Lemma II.28, we conclude that, for any small enough ∆t,

there exist n = 0, . . . , N − 2 and Ω′′ ∈ Fn, s.t. Pα0
n (Ω′′) > 0 and

Pαn+2

(
Eαn+3

(
p0
N − p0

n+3

)
≤ δ/2

)
≤ ε(∆t), on Ω′′.

Using (2.25) and assuming that ∆t is small enough, we obtain:

λan+2(α0) ≥ δ/4, on Ω′′.

Next, Corollary II.31, in Appendix A, implies that, P-a.s.,

pbn+1 ≥ Eα0
n+1

(
λan+2(α0) + ξn+2

∣∣ξn+2 < pbn+1

)
.

Thus, on Ω′′, we obtain:

(2.26) pbn+1 − Eα0
n+1

(
ξn+2

∣∣ξn+2 < pbn+1

)
≥ δ/4.

The following lemma shows that, for any number p, the conditional expectation

of the fundamental price increment, Eα0
n+1(ξn+2|ξn+2 < p), approaches p as the size of

the time interval vanishes. This result follows from Lemma II.23.

Lemma II.29. There exists a constant C3 > 0, s.t., for all small enough ∆t > 0,

and for any t ∈ [0, T −∆t], the following holds P-a.s.:

sup
p≤0

∣∣∣p− Ẽα0
t

(
p̃0
t+∆t − p̃0

t

∣∣ p̃0
t+∆t − p̃0

t < p
)∣∣∣ ≤ C3

√
∆t.
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Proof: Fix t and ∆t > 0 and consider the evolution of p̃0
s, for s ∈ [t, t + ∆t], under

Pα0
t :

p̃0
s − p̃0

t =

∫ s

t

µα0
u du+

∫ s

t

σudW
α0
u ,

where Wα0 is a Brownian motion under Pα0 . Rescaling by
√

∆t, we obtain

(p̃0
s − p̃0

t )/
√

∆t = X(s−t)/∆t, Xs =

∫ s

0

µ̂udu+

∫ s

0

σ̂udŴu, s ∈ [0, 1],

with

µ̂s =
√

∆t µα0
t+s∆t, σ̂s = σt+s∆t, Ŵs =

1√
∆t

(
Wα0
t+s∆t −W

α0
t

)
, s ∈ [0, 1].

Notice that the above processes are adapted to the new filtration F̂, with F̂s = F̃t+s∆t,

and, P-a.s., under P̃α0
t , Ŵ is a Brownian motion with respect to F̂. Next, due to

Assumptions II.12 and II.15, for any small enough ∆t > 0, P-a.s., the dynamics of

(−Xs), under P̃α0
t , satisfy all the assumptions of Lemma II.23. As a result, we obtain:

P̃α0
t (X1 < −x− z) ≤ C1e

−zP̃α0
t (X1 < −x), ∀x, z ≥ 0.

Finally, we notice that

sup
p≤0

∣∣∣p− Ẽα0
t

(
p̃0
t+∆t − p̃0

t

∣∣p̃0
t+∆t − p̃0

t < p
)∣∣∣ =

√
∆t sup

p≤0

∣∣∣p− Ẽα0
t

(
X1

∣∣X1 < p
)∣∣∣

=
√

∆t sup
p≤0

∣∣∣∣∣p−
∫∞
−p x d P̃

α0
t (X1 < −x)

P̃α0
t (X1 < p)

∣∣∣∣∣ =
√

∆t sup
p≤0

∣∣∣∣∣
∫∞

0
P̃α0
t (X1 < p− z)dz

P̃α0
t (X1 < p)

∣∣∣∣∣ ≤ C1

√
∆t,

which completes the proof of the lemma.

Using (2.26) and Lemma II.29, we conclude that, for all small enough ∆t, we

have: pbn+1 > 0 on Ω′′, P-a.s.. In addition, Corollary II.31, in Appendix A, implies

that, for any α ∈ Ã, the following holds P-a.s.:

λan+1(α) ≥ pbn+1.
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Next, with a slight abuse of notation (similar notation was introduced in the proof

of Proposition II.19), we consider the simplified objective of an agent who posts a

limit sell order at the ask price pan:

Âα(pan;λan+1) = Eαn
(
pan − λan+1 − ξn+1 | ξn+1 > pan

)
The above estimates imply that, on Ω′′, we have, P-a.s.:

(2.27)

Âα(pan;λan+1) ≤ Eαn (pan − ξn+1 | ξn+1 > pan)−Eαn
(
pbn+11Ω′′ | ξn+1 > pan

)
< 0, ∀α ∈ Ã.

To obtain the last inequality in the above, we recall that Ω′′ ∈ Fn and, P-a.s.,

1Ω′′Pn(Ω \ Ω′′) = 0, pbn+1 > 0 on Ω′′, and Pαn(ξn+1 > pan) > 0, for all α ∈ Ã.

Next, repeating the proof of Lemma II.25 (and using the fact that λan+1 is absolutely

bounded, as shown in Corollary II.20), we conclude that, P-a.s., either ν+
n ({pan}) > 0,

or we have: ∣∣∣Aα(p;λan+1)− Âα(pan;λan+1)
∣∣∣→ 0,

as p ↓ pa, uniformly over all α ∈ Ã, where we introduce the true objective,

Aα(p;λan+1) = Eαn
((
p− λan+1 − ξn+1

)
1{D+

n+1(p−ξn+1)>ν+
n ((−∞,p))}

)
.

This convergence, along with (2.27), implies that there exists a Fn-measurable p̄ ≥

pan, such that, on Ω′′, the following holds P-a.s.: if ν+
n ({pan}) = 0 then p̄ > pan, and,

in all cases,

Aα(p;λan+1) < 0, ∀p ∈ [pan, p̄], ∀α ∈ Ã.

Finally, we repeat the last part of the proof of Lemma II.26 (following equation

(2.22)), to obtain a contradiction with the definition of pan, and complete the proof

of the theorem. The last argument also shows that, when ∆t is small enough, it

becomes suboptimal for the agents to post limit sell orders, as the expected relative

profit from this action becomes negative, causing the market to degenerate.
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2.8 Summary and future work

In this chapter, we present a new framework for modeling market microstructure,

which does not require the existence of a designate market maker, and in which the

LOB arises endogenously, as a result of equilibrium between multiple strategic players

(aka agents). This framework is based on a continuum-player game. It reproduces

the mechanics of an auction-style exchange very closely, so that, in particular, it can

be used to analyze the liquidity effects of changes in the rules of the exchange. We

use the proposed modeling framework to study the liquidity effects of high trading

frequency. In particular, we demonstrate the dual nature of high trading frequency.

On the one hand, in the absence of a bullish or bearish signal about the asset, the

higher trading frequency makes market more efficient. On the other hand, at a

sufficiently high trading frequency, even a very small trading signal may amplify the

adverse selection effect, creating a disproportionally large change in the LOB, which

is interpreted as an internal (or, self-inflicted) liquidity crisis.

The present work raises many questions for further research. Notice that the main

results of the present work are of a qualitative nature: they demonstrate the general

behavior of LOB, as a function of trading frequency, but do not immediately allow

for any computations. It would also be interesting to establish quantitative results.

In particular, we would like to construct an equilibrium in a more realistic, and more

concrete, model than the one used in Section 2.3. Such a model would allow for

heterogeneous beliefs, and it would prescribe the specific sources of information (i.e.

relevant market indicators) used by the agents to form their beliefs. A model of this

type could be calibrated to market data and used to study the effects of changes

in relevant market parameters on the LOB. Finally, it is interesting to develop a
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Figure 2.1: On the left: ask price p̂a (in red) and the associated expected execution prices λ̂a (in
blue); different curves correspond to different trading frequencies (N = 20, . . . , 500);
black dashed line is the expected change in the fundamental price α(T − t). On the

right: ask price p̂a (in red) and the associated expected execution price λ̂a (in blue),

bid price p̂b (in orange) and the associated expected execution price λ̂b (in green), for

N = 100. Non-degenerate equilibrium exists only on a time interval where λ̂a < 0. All
prices are measured relative to the fundamental price and are plotted as functions of
time. Positive drift: α = 0.1, σ = 1, T = 1.

continuous time version of the proposed framework, in order to better capture the

present state of the markets, where the trading frequency is not restricted. All these

questions are the subject of the next chapter.

2.9 Appendix A

This section contains several useful technical results on the representation of the

value function of an agent in the proposed game. Notice that (2.1) and (2.2) imply

that, if ν is admissible, then, for any (α,m, p, q, r), we have, P-a.s.:

∣∣J (p,q,r) (m, s, α, ν)− J (p,q,r) (m, s′, α, ν)
∣∣ ≤ |s− s′|Eαm|paN | ∨ |pbN |, ∀s, s′ ∈ R

This implies that every J (p,q,r) (m, ·, α, ν) and V ν
m(·, α) has a continuous modification

under P. Thus, whenever ν is admissible, we define the value function of an agent

as the aforementioned continuous modification of the left hand side of (2.3).

Lemma II.30. Assume that an optimal control exists for an admissible LOB ν.
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Figure 2.2: The horizontal axis represents trading frequency, measured in the number of steps
N . Left: time-zero bid-ask spread in the zero-drift case (α = 0). Right: the maximum
value of drift α for which a non-degenerate equilibrium exists on the entire time interval.
Parameters: σ = 1, T = 1.

Assume also that, for any α ∈ A, the associated value function V ν
n (·, α), defined

in (2.3), is measurable with respect to Fn ⊗ B(R). Then, it satisfies the following

Dynamic Programming Principle.

• For n = N and all (s, α) ∈ S, we have, P-a.s.:

(2.28) V ν
N(s, α) = s+pbN − s−paN

• For all n = N − 1, . . . , 0 and all (s, α) ∈ S, we have:

V ν
n (s, α) =

esssupp,q,r
{
1{rn=0}Eαn

(
V ν
n+1 (s, α) +

(
qnpn + V ν

n+1 (s− qn, α)− V ν
n+1 (s, α)

)
·

(2.29) ·
(
1{qn≥0, D+

n+1(pn)>ν+
n ((−∞,pn))} + 1{qn<0, D−n+1(pn)>ν−n ((pn,∞))}

))
+1{rn=1}

(
q+
n p

b
n − q−n pan + EαnV ν

n+1 (s− qn, α)
)}
,

where the essential supremum is taken under P, over all admissible controls

(p, q, r).
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Proof: The most important step is to show that, for all n = 0, . . . N−1 and (s, α) ∈ S,

(2.30) V ν
n (s, α) = esssupp,q,rEαn

(
V ν
n+1

(
S
n,s,(p,q,r)
n+1 , α

)
− gνn (pn, qn, rn, Dn+1)

)
,

where the essential supremum is taken under P, over all admissible controls (p, q, r),

and

gνn (pn, qn, rn, Dn+1) =
(
pn1{rn=0} + pan1{rn=1,qn<0} + pbn1{rn=1,qn>0}

)
∆S

n,s,(p,q,r)
n+1

does not depend on s. Assume that J (p,q,r) (n, ·, α, ν) is a continuous modification of

the objective function. Notice that, for all m ≤ k ≤ n, we have, P-a.s.:

EαkJ (p,q,r)
(
n, Sm,s,(p,q,r)n , α, ν

)
= J (p,q,r)

(
k, S

m,s,(p,q,r)
k , α, ν

)
+Eαk

n−1∑
j=k

gνj (pj, qj, rj, Dj+1)

Notice also that, for any (p, q, r) we have, P-a.s.: J (p,q,r) (m, s, α, ν) ≤ V ν
m(s, α), for

all s ∈ S. Let us show that the left hand side of (2.30) is less than its right hand

side:

V ν
m(s, α) = essupp,q,rJ

(p,q,r)
(
m,Sm,s,(p,q,r)m , α, ν

)
= essupp,q,rEαm

(
J (p,q,r)

(
m+ 1, S

m,s,(p,q,r)
m+1 , α, ν

)
− gνm (pm, qm, rm, Dm+1)

)
≤ essupp,q,rEαm

(
V ν
m+1

(
S
m,s,(p,q,r)
m+1 , α

)
− gνm (pm, qm, rm, Dm+1)

)
Next, we show that the right hand side of (2.30) is less than its left hand side. For

any (p, q, r), we have, P-a.s.:

Eαm
(
V ν
m+1

(
S
m,s,(p,q,r)
m+1 , α

)
− gνm (pm, qm, rm, Dm+1)

)

= Eαm
(
J (p̂,q̂,r̂)

(
m+ 1, S

m,s,(p,q,r)
m+1 , α, ν

)
− gνm (pm, qm, rm, Dm+1)

)
=

J (p̃,q̃,r̃) (m, s, α, ν) ≤ V ν
m(s, α),

where (p̃n, q̃n, r̃n) coincide with (p̂n, q̂n, r̂n), for n ≥ m + 1, while they are equal to

(pm, qm, rm), for n = m. The proof is completed easily by plugging the dynamics of

the state process, (2.1), into (2.30).
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The following corollary provides a more explicit recursive formula for the value

function and optimal control. In particular, it states that the value function of an

agent at any time remains linear in s, in both positive and negative half lines (with

possibly different slopes).

Corollary II.31. Assume that an admissible LOB ν has an optimal control (p̂, q̂, r̂).

Then, for any (s, α) ∈ S, the following holds P-a.s., for all n = 0, . . . , N − 1:

1. V ν
n (s, α) = s+λan(α) − s−λbn(α), with some adapted processes λa(α) and λb(α),

such that λaN(α) = pbN and λbN(α) = paN ;

2. pan ≥ Eαn
(
λan+1(α)

)
and pbn ≤ Eαn

(
λbn+1(α)

)
;

3. if, for some p ∈ R, Pαn
(
D+
n+1(p) > ν+

n ((−∞, p))
)
> 0, then

p ≤ Eαn
(
λbn+1(α) |D+

n+1(p) > ν+
n ((−∞, p))

)
;

4. if, for some p ∈ R, Pαn
(
D−n+1(p) > ν−n ((p,∞))

)
> 0, then

p ≥ Eαn
(
λan+1(α) |D−n+1(p) > ν−n ((p,∞))

)
;

5. for all s > 0,

• λan(α) =

max

{
pbn,Eαnλan+1(α) +

(
supp∈R Eαn

((
p− λan+1(α)

)
1{D+

n+1(p)>ν+
n ((−∞,p))}

))+
}

,

• if q̂n(s, α) 6= 0 and r̂n(s, α) = 0, then

λan(α) = Eαnλan+1(α) + sup
p∈R

Eαn
((
p− λan+1(α)

)
1{D+

n+1(p)>ν+
n ((−∞,p))}

)
,

and p = p̂n(s, α) attains the above supremum,

• if q̂n(s, α) = 0 and r̂n(s, α) = 0, then λan(α) = Eαnλan+1(α),

• if r̂n(s, α) = 1, then λan(α) = pbn;
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6. for all s < 0,

• λbn(α) =

min

{
pan,Eαnλbn+1(α)−

(
supp∈R Eαn

((
λbn+1(α)− p

)
1{D−n (p)>ν−n−1((p,∞))}

))+
}

,

• if q̂n(s, α) 6= 0 and r̂n(s, α) = 0, then

λbn(α) = Eαnλbn+1(α)− sup
p∈R

Eαn
((
λbn+1(α)− p

)
1{D−n (p)>ν−n−1((p,∞))}

)
,

and p = p̂n(s, α) attains the above supremum,

• if q̂n(s, α) = 0 and r̂n(s, α) = 0, then λbn(α) = Eαnλbn+1(α),

• if r̂n(s, α) = 1, then λbn(α) = pan.

Proof:

Let us plug the piecewise-linear form of the value function into (2.29):

V ν
n (s, α) = esssupp,q,r

{
1{rn=0}

(
s+Eαnλan+1(α)− s−Eαnλbn+1(α)

+Eαn
((
qnpn + (s− qn)+λan+1(α)− (s− qn)−λbn+1(α)− s+λan+1(α) + s−λbn+1(α)

)
·(

1{qn≥0, D+
n+1(pn)>ν+

n ((−∞,pn))} + 1{qn<0, D−n+1(pn)>ν−n ((pn,∞))}
)))

+1{r=1}
(
q+
n p

b
n − q−n pan + (s− qn)+Eαnλan+1(α)− (s− qn)−Eαnλbn+1(α)

)}
First, notice that it suffices to consider the essential supremum over all random

variables (pn, qn, rn).12 Moreover, the essential supremum can be replaced by the

supremum over all deterministic (pn, qn, rn) ∈ R2 × {0, 1}. To see the latter, it

suffices to assume that the supremum is not attained by the optimal strategy (with

positive probability), and construct a superior strategy via the standard measurable

selection argument (cf. Corollary 18.27 and Theorem 18.26 in [2]), which results in

12The admissibility constraint does not cause any difficulties here, as, in the case where (pn, qn, rn) do not attain
the supremum, they can be improved, so that (pn, qn) increase by no more than a fixed constant.
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a contradiction. It is easy to see that, for any fixed (pn, s, rn), the above function

is piece-wise linear in qn, with the slope changing at qn = 0 and qn = s. Hence,

for a finite maximum to exists, the slope of this function must be nonnegative, at

qn → −∞, and non-positive, at qn → ∞. This must hold for any (pn, rn, s), to

ensure that the value function of an agent is finite: otherwise, an agent can scale up

her position to increase the value function arbitrarily. Considering rn = 1, we obtain

condition 2 of the corollary. The case rn = 0 yields conditions 3 and 4. Notice also

that the maximum of the aforementioned function is always attained at qn = 0 or

qn = s. Considering all possible cases: rn = 0, 1, qn = 0, s, s = 0, s > 0 and s < 0

– we obtain the recursive formulas for λan and λbn (i.e. conditions 5 and 6 of the

corollary). In addition, as the optimal qn takes values 0 and s, it is easy to see that

the piece-wise linear structure of the value function in s is propagated backwards,

and, hence, condition 1 of the corollary holds.

It is also useful to have a converse statement.

Corollary II.32. Consider an admissible LOB ν and admissible control (p̂, q̂, r̂),

such that q̂n(s, α) ∈ {0, s}. Assume that, for any α ∈ A and any n = 0, . . . , N , there

exists a progressively measurable random function V ν
· (·, α), such that, for any s ∈ R,

P-a.s., (p̂, q̂, r̂, V ν) satisfy the conditions 1–6 of Corollary II.31. Then, (p̂, q̂, r̂) is an

optimal control for the LOB ν.

Proof: It suffices to revert the arguments in the proof of Corollary II.31, and re-

call that q̂ can always be chosen to be equal to 0 or s, without compromising the

optimality.
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2.10 Appendix B

Proof of Lemma II.22. The following lemma shows that the normalized price

increments are close to Gaussian in the conditional L2 norm.

Lemma II.33. Let Assumptions II.12, II.13, II.14, II.15 hold. Then, there exists a

deterministic function ε(·) ≥ 0, such that ε(∆t)→ 0, as ∆t→ 0, and, P-a.s., for all

α ∈ A and all n = 1, . . . , N , we have:

Eαn−1

((
ξn/
√

∆t− σtn−1(Wα
tn −W

α
tn−1

)/
√

∆t
)2
)
≤ ε(∆t).

Proof: Notice: ξn/
√

∆t − σtn−1(Wα
tn −W

α
tn−1

)/
√

∆t = 1√
∆t

tn∫
tn−1

µαs ds + 1√
∆t

tn∫
tn−1

(σs −

σtn−1)dWα
s . Then, using Assumptions II.13, II.15, and Itô’s isometry, we obtain the

statement of the lemma.

The next lemma connects the proximity in terms of L2 norm and the proximity

of expectations of certain functions of random variables. This result would follow

trivially from the classical theory, but, in the present case, we require additional

uniformity – hence, a separate lemma is needed (whose proof is, nevertheless, quite

simple).

Lemma II.34. For any constant C > 1, there exists a deterministic function γ(·) ≥

0, s.t. γ(ε) → 0, as ε → 0, and, for any ε > 0, σ ∈ [1/C,C], and any random

variables η ∼ N (0, σ2) and ξ (the latter is not necessarily Gaussian), satisfying

E(ξ − η)2 ≤ ε, the following holds for all p ∈ R:

(i) (|p| ∨ 1) |P(ξ > p)− P(η > p)| ≤ γ(ε),

(ii)
∣∣E(ξ1{ξ>p})− E(η1{η>p})

∣∣ ≤ γ(ε).

Proof: (ii) Note that∣∣E(ξ1{ξ>p})− E(η1{η>p})
∣∣ ≤ ∣∣E ((ξ − η)1{ξ>p}

)∣∣+
∣∣E (η(1{ξ>p} − 1{η>p})

)∣∣
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≤
√
ε+ ‖η‖2

√
P(ξ > p, η ≤ p) + P(ξ ≤ p, η > p),

and

P(ξ > p, η ≤ p) ≤ P(p ≥ η ≥ p− 3
√
ε) + P(|ξ − η| > 3

√
ε) ≤

M 3
√
ε+

E(ξ − η)2

( 3
√
ε)2

≤ (M + 1) 3
√
ε,

where we used the fact that η has a density bounded by a fixed constant M . We can

similarly show that P[ξ ≤ p, η > p] ≤ (M + 1) 3
√
ε. The resulting estimates yield the

statement of the lemma.

Taking ε(∆t) = γ(ε(∆t)) and applying the above lemmas, we get the statement

of Lemma II.22, with (Wα
tn −W

α
tn−1

)/
√

∆t in place of η0. Finally, we note that the

laws of the two random variables coincide under Pαn−1, and the statement depends

only on these laws. The last statement of Lemma II.22 follows from the fact that

Lemma II.34 is stable under analogous substitution.



CHAPTER III

Dynamics Between Trades

3.1 Introduction

In this chapter, we continue the development of an equilibrium-based modeling

framework for market microstructure, initiated in the previous chapter. As in that

chapter, we analyze the market microstructure in the context of an auction-style

exchange (as most modern exchanges are), in which the participating agents can

post limit or market orders. A crucial component of such a market is the Limit

Order Book (LOB), which contains all the limit buy and sell orders, and whose

shape and dynamics represent the liquidity of the market. We are interested in

developing a modeling framework in which the shape of the LOB, and its dynamics,

arise endogenously from the interactions between the agents. This is in contrast to

many of the existing results on market microstructure, which assume that the shape

and dynamics of the LOB are given exogenously. Among the many advantages of

our approach is the possibility of modeling the reaction of the LOB to the changes

in a relevant market indicator or in the rules of the exchange.1

Herein, we extend the discrete time modeling framework proposed in chapter II

to continuous time. We analyze the dynamics of the LOB between two consecutive

1We refer the reader to chapter II, whose introduction contains a more detailed explanation of the problems of
market microstructure and a motivation for our study.
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trades. The latter simplifies the problem and is justified by the well known empiri-

cal fact that most changes in the market microstructure are not due to trades. We

manage to establish the existence, and obtain a numerically tractable representation,

of an equilibrium in a general continuous time framework, in which the competing

agents have different beliefs about the future demand for the asset. These beliefs

determine the future distribution of the demand, given the (common) information

observed thus far. The latter may, e.g., be generated by a relevant signal (or, market

indicator). One can view such conditional distributions as the “models” that the

market participants use to predict future demand, and which are based on the (com-

monly observed) relevant market indicators. Given the beliefs, the agents choose

their optimal trading strategies (i.e. limit and market orders), aiming to maximize

their expected profits. and find an equilibrium Herein, we obtain the desired “quanti-

tative” description of an equilibrium in such a game, which constitutes an endogenous

model of market microstructure. Such a result can be used for modeling the reaction

of a LOB to various changes in the relevant market indicators. In particular, if the

relevant market indicator depends on the LOB itself, our framework allows one to

model the indirect market impact: i.e. how an initial change to the LOB may cause

further changes to it. Note that the initial change may or may not be due to a trade.

Indeed, a trade (i.e. a market order) eliminates a part of the LOB, thus, making a

direct impact on it. However, it is well known that, even after a trade is completed,

the LOB keeps changing, representing the reaction of the market participants to the

information revealed by the initial change. Similarly, a large incoming limit buy or

sell order does not constitute a trade, nevertheless, it also affects the LOB, which

causes further changes to it, due to the same reason. In fact an extreme example of

the latter activity is called “spoofing”, and it is an illegal activity aimed at manipu-
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lating the market. Our model can be used to quantify such indirect market impact,

and it can be, ultimately, used to improve the optimal execution algorithms or to test

the consequences of “spoofing” activity. We provide a simplistic example illustrating

the use of our model in Section 3.5.

On the mathematical side, the problem we analyze is the construction of an equi-

librium in a control-stopping game with a continuum of players (cf. [4], [56], [15],

for more on the general theory of continuum-player games). The main mathemat-

ical challenges stem from three sources: the complicated dependence between the

individual state dynamics and the controls of other players (which lacks the stan-

dard convexity and continuity properties), the presence of multiple participants (as

opposed to analyzing a two-player game) and the mixed control-stopping nature of

the game. Equilibria in the games with any number of players can often be con-

structed directly, by means of a system of Partial Differentia Equations or a system

of (Forward-) Backward Stochastic Differential Equations (BSDEs). However, as

the number of players grows, solving such systems numerically becomes very chal-

lenging. In such cases, the description of an equilibrium is, typically, limited to the

proof of its existence, which, in turn, is obtained by an abstract fixed-point argu-

ment. However, even the latter method presents a challenge in the game considered

herein. Namely, the complicated dependence structure between the players’ controls

and state processes, along with the mixed-control stopping nature of the game, make

it very challenging (or even impossible) to (a) find the right space for the controls

and states, on which the compactness of the range of the objective function can be

established, and (b) establish the sufficient regularity of the objective function (e.g.

even its continuity may be lacking). In order to overcome these challenges, we make

certain “monotonicity” assumptions on the space of agents’ beliefs (which is a part
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of the state space), which allow us to split the problem into two parts: a control-

stopping game with two players, and a pure control game (without stopping) with a

continuum of players. Such a split simplifies our task dramatically, but both resulting

problems remain challenging. The first one, concerned with the construction of an

equilibrium in a two-player game, leads to a non-standard system of Reflected BS-

DEs (RBSDEs), whose components reflect against each other, and whose generator

lacks to desired regularity. In Subsection 3.3.2, we prove the existence of a solution

to this system, and, in Section 3.5, we show how it can be computed in a simple ex-

ample. The second problem, concerned with the equilibrium in a continuum-player

game (without stopping), reduces to the maximization of an instantaneous reward

function, which depends both on the individual controls and on the joint controls of

all players. The latter is formulated as a fixed-point problem, and is solved in Sub-

section 3.4.1. One of the computational benefits of the solution method proposed

herein is that the aforementioned fixed-point problem can be solved separately for

each (t, ω). In particular, it is not necessary to solve a forward-backward system at

each step of the iteration, as it is, for example, done in a typical mean field game

(cf. [46], [14], [16], [45], for more on mean field games). On the other hand, the

local nature of the fixed-point problem causes additional measurability issues, in the

proof of the existence result (i.e. choosing a measurable selector from the set of

fixed points requires more work than choosing it from the set of maxima points). In

addition, the objective function of the aforementioned fixed-point problem lacks the

desired continuity properties, and, hence, it has to be “mollified” before an abstract

fixed-point argument can be applied. All these issues are addressed in Subsection

3.4.1, and the main existence result is stated in Theorem III.29, in Section 3.4. Of

course, the results of Section 3.3 and Subsection 3.4.1 are also needed to construct
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an equilibrium (which is demonstrated in Section 3.5).

The literature on market microstructure is vast. However, most of the theoretical

work is concerned with the problem of optimal execution, in which an investor needs

to liquidate her position in the asset within a given time horizon, by submitting

smaller (limit or market) orders and aiming to maximize the profits. The relevant

publications, include, among others, [48], [3], [53], [54], [31], [47], [22], [6], [5],[7],

[24], [51], [36], [19], [37], [57], and references therein. In these publications, the

dynamics and shape of the LOB are modeled exogenously, or, equivalently, the arrival

processes of the limit and market orders of other agents are specified exogenously.

In particular, none of these works attempt to explain the shape and dynamics of

the LOB, arising directly from the interaction between market participants. Finally,

several recent papers have applied an equilibrium-based approach to the problem

of optimal execution (cf. [55], [40]). These papers describe an equilibrium between

several agents solving an optimal execution problem, with the LOB (or, the market),

against which these agents trade, being specified exogenously, rather than being

modeled as an output of the equilibrium. The endogenous formation of the LOB is

investigated, e.g., in [50], [29], [34], [17], [44], [52], [9], [10], [11], [12]. However, the

models proposed in the aforementioned papers do not aim to represent the mechanics

of an auction-style exchange with sufficient precision, which is needed to address the

questions we investigate herein.

The chapter is organized as follows. Section 3.2 describes the proposed continuum-

player game and defines the associated equilibrium. Section 3.3 introduces an aux-

iliary two-player game. This game can be interesting in its own right, but its main

purpose is to facilitate the construction of an equilibrium in the continuum-player

game. The equilibria in the two-player game can be described by a system of RBS-
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DEs, whose generator does not satisfy the desired regularity conditions. Proposition

III.20, in Subsection 3.3.2, provides the existence and uniqueness result for such a sys-

tem, which, to the best of our knowledge, is not available in the existing literature.

Section 3.4 completes the construction of an equilibrium in the continuum-player

game, stating the main result of the chapter, Theorem III.29. Finally, in Section 3.5,

we implement an example of the proposed continuum-player game and show how it

can be used to study certain empirically observed phenomena.

3.2 Modeling framework in continuous time

3.2.1 Preliminary constructions

We consider an auction-style exchange in which the trades may occur, and the

limit orders may be posted, at any time t ∈ [0, T ]. The market participants are

split into two groups: the external investors, who are “impatient”, in the sense that

they only submit market orders and need to execute immediately, and the strategic

players, who can submit both market and limit orders, and who are willing to spend

time doing so, in order to get a better execution price. In our model, we focus

on the strategic players, who we refer to as agents, and we model the behavior of

the external investors exogenously, via the external demand. The external demand

for the asset is modeled using three components: the arrival times of the potential

external market orders, the value of the potential fundamental price at these times,

and the elasticity of the demand. In our previous investigation in chapter II, we have

considered a general family of discrete time games for an auction-style exchange, with

the exogenous demand process given by a discretization of a (very general) continuous

time demand process, over a chosen partition of [0, T ]. One of the main conclusions

of that chapter can be, roughly, interpreted as follows: in order for a non-degenerate
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equilibrium2 to exist in a high-frequency limit (i.e. as the diameter of the partition

vanishes), the agents have to be market-neutral – i.e. they should not expect the

future fundamental price of the asset to increase or decrease. In other words, the

results of chapter II seem to imply that it is hopeless to search for an equilibrium in

a continuous time game (i.e. with unlimited trading frequency) in which the agents

have non-trivial trading signals about the direction of the future moves of the asset

price. This may sound very discouraging, however, there is a subtle feature hidden in

the setting considered in chapter II. Namely, the assumptions of that chapter imply

that, in the limiting high-frequency regime, the (potential) external market orders

arrive with an infinite frequency, while the beliefs of the agents (i.e. their trading

signals) satisfy certain continuity properties. In other words, the agents’ signals are

assumed to be persistent relative to the trades – they cannot change on the same time

scale on which the market orders arrive. It turns out that this assumption is crucial,

and, allowing the (potential) external market orders to arrive at a finite frequency,

and making the agents’ beliefs be short-lived (i.e. only lasting until the next market

order is executed), we can obtain a non-degenerate equilibrium in the continuous

time (i.e. unlimited trading frequency) regime. Thus, herein, we model the arrival

of the (potential) external market orders via a (rather general) point process, and

we assume that the game ends after the first trade occurs.

Let (Ω, F̃ = (F̃t)t∈[0,T ],P) be a stochastic basis, satisfying the usual conditions,

and supporting a (multidimensional) Brownian motion W and a Poisson random

measure N . We assume that the compensator of N is finite on [0, T ] × R (i.e.

N is the jump measure of a compound Poisson process) and that it is absolutely

continuous w.r.t. Lebesgue measure in time and space. We denote by FW the usual

2Degeneracy of an equilibrium is defined formally in chapter II. For the discussion presented herein, it suffices to
know that degeneracy is an extremal state of the market, and the present work is concerned with the description of
the typical (or, normal) states.
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augmented filtration generated by W . We assume that W and N are independent

under P. The arrival times of the potential external market orders and the values of

the potential fundamental price at these times are described by a counting random

measure M on [0, T ]× (R \ {0}), defined as

M(A) =

∫ T

0

∫
R

1A (t, Jt(x))N(dt, dx),

where J : (t, x) 7→ Jt(x) is a predictable random function (as defined in [39]). We

assume that J is adapted to FW (in particular, it is independent of N). It is clear

that the compensator of M is finite on [0, T ] × R, it is absolutely continuous w.r.t.

Lebesgue measure in time and space, and it is adapted to FW . Then, it can be

represented as λtft(x) dt dx, with an R-valued process λ ≥ 0 and a random func-

tion f : (t, x) 7→ ft(x) ≥ 0, progressively measurable and adapted to FW , and s.t.∫
R ft(x)dx = 1. Notice that, conditional on FWT , M is a Poisson random measure

with the compensator λtft(x) dt dx. The t-components of the atoms of M are the

arrival times of the potential external market orders, and their x-components repre-

sent the values of the potential fundamental price at these times. A positive value

of x corresponds to the arrival time of a potential external buy order, and a neg-

ative value corresponds to the arrival time of a potential external sell order. More

precisely, we define the fundamental price process X as the jump process of M :

Xt =

∫
R
xM({t} × dx).

The process λ describes the intensity of arrival of the potential external market orders

(both buy and sell). The function ft is the probability density of the value of the

potential fundamental price at time t. We refer to f as the density process of the jump

sizes. When the jump size of the fundamental price (along with the demand elasticity,

defined below) is not enough to trigger a trade, the jump remains “unregistered”
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by the agents, and the fundamental price returns to zero. The elasticity of the

external demand for the asset is described by the progressively measurable random

field D : (t, p) 7→ Dt(p), adapted to FW . We assume that, a.s., Dt(·) is a strictly

decreasing continuous function taking value zero at zero. Then, the total external

demand to buy and sell the asset at time t, at the price level p and at all more

favorable prices, is equal to

(3.1)

D+
t (p) = max

(
0, Dt(p−Xt)1{Xt>0}

)
, D−t (p) = −min

(
0, Dt(p−Xt)1{Xt<0}

)
,

respectively.

At any time t, every agent (i.e. strategic player) is allowed to submit a market

order or a limit order. The assumptions made further in the chapter make it possible

to submit a limit order at such a level that it may never get executed – this, effectively,

allows the agents to wait (i.e. do nothing). We do not allow for any time-priority in

the limit orders. Instead, we assume that the tick size is zero (the set of possible price

levels is R), and, hence an agent can achieve a priority by posting her order slightly

above or below the competing ones (and arbitrarily close to them). The game stops

at the terminal time T or at the time when the first trade occurs – whichever one is

the earliest. The mechanics of order execution are explained in the next subsection.

There is an infinite number of agents, and the inventory of an agent is measured

in “shares per unit mass of agents” (see a discussion of this assumption in chapter

II). We assume that the agents are split into two groups: the ones whose initial

inventory s is positive (the long agents, typically, indicated with a superscript “a”),

and those whose initial inventory s is negative (the short agents, indicated with a

superscript “b”). We assume that the absolute size of each agent’s inventory is the

same, s ∈ {−1, 1}, and that an agent with inventory s posts orders of size s. These
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assumptions are motivated by the results of our previous investigation in chapter II,

which demonstrate that, in equilibrium, the absolute value of the agent’s inventory

only scales the size of her orders proportionally, but does not change their type and

location (which, ultimately, is due to the fact that each agent is infinitesimally small

and has no risk aversion). We also assume that we are given a pair of measurable

spaces of beliefs, A and B, and, for each α ∈ A∪B, there exists a subjective probability

measure Pα on
(

Ω, F̃
)

, which is dominated by P. An agent with beliefs α models the

external demand under measure Pα. The empirical distribution of the agents across

beliefs is given by a pair of countably additive finite measures µ = (µa, µb), on A and

B, respectively. Note that, because the game stops right after the first market order

is executed, the empirical distribution µ remains constant throughout the game. We

make the following assumption on the measures {Pα}.

Assumption III.1. Under every Pα, W remains a Brownian motion, and the jump

process of N is a process with conditionally independent increments w.r.t. FWT (in

the sense of [39]).

The above assumption holds throughout the chapter. It implies that, under every

Pα, X is a process with conditionally independent increments w.r.t. FWT . Using this

observation and the absolute continuity of Pα w.r.t. P, it is easy to deduce that,

under every Pα, the compensator of the jump measure of X, i.e. of the measure M ,

is given by

λαt f
α
t (x)dtdx,

with some nonnegative FW -adapted λ and FW -progressively measurable fα, s.t.∫
R f

α
t (x)dx = 1. The interpretation of λα and fα is the same as the interpreta-

tion of λ and f , but under the measure Pα. It is clear that the above assumption is

satisfied if Zα
T = dPα/dP is given by a stochastic exponential of a process that is an
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integral of FW -adapted random function w.r.t. compensated N . Namely,

dZα
t = Zα

t−

∫
R

Γαt (x) [N(dt, dx)− λtft(x)dtdx],

where Γα ≥ −1 is FW -progressively measurable. The compensator of N under Pα is

obtained by multiplying its compensator under P by 1+Γα, hence, Assumption III.1

is clearly satisfied in this case (cf. [39]). In Section 3.5, we provide an example of a

family of probability measures {Pα} in the above form.

3.2.2 The continuum-player game

Throughout the rest of this chapter we, mostly, work with the filtration FW , hence,

we denote F = FW . The state of an agent is (s, α) ∈ ({1} × A) ∪ ({−1} × B) =: S.

Let us now discuss the controls of the agents and the order execution rules. First,

we assume that α, representing the agent’s beliefs, does not change over time.3

Therefore, the state process of an agent represents only her inventory, which can

only change once (because the game ends after the first trade). The control of every

agent is given by a pair of processes (p, v) = (pt, vt)t∈[0,T ], progressively measurable

with respect to F (note that the controls are, in particular, predictable). The process

p takes values in P(R), the space of probability measures on R, equipped with the

weak topology, while v takes values in R. The first coordinate, pt, indicates the

time-t distribution of the agent’s limit orders across the price levels. For example,

if pt is a Dirac measure located at x, then, at time t, the agent posts all her limit

orders at the price level x. The collection of all limit orders is described by the Limit

Order Book (LOB), which is a pair of process ν = (νat , ν
b
t )t∈[0,T ], with values in the

finite sigma-additive measures on R, adapted to F. Herein, νat corresponds to the

cumulative limit sell orders, and νbt corresponds to the cumulative limit buy orders,

3Note that the conditional distribution of the future demand can change dynamically, according the new infor-
mation revealed.
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posted at time t.4 The bid and ask prices at any time t ∈ [0, T ] are given by the

random variables

pbt = Q+(νbt ), pat = Q−(νat ),

respectively, where the functions Q− and Q+ act on sigma-additive measures κ on R

via

(3.2) Q+(κ) = sup supp(κ), Q−(κ) = inf supp(κ).

Notice that pbt and pat are always well defined as extended random variables, but

may take infinite values. Assume that, at time t, an agent posts a limit sell order

at a price level p′. If the demand to buy the asset at or below the price level p′,

D+
t (p′), exceeds the amount of all limit sell orders posted below p′ at time t, i.e.

D+
t (p′) > νat ((−∞, p′)), then the limit sell order of the agent is executed. Analogous

execution rules hold for the limit buy orders. Thus, for an agent following strategy

(p, v), her limit order is (partially) executed by an external market order at the time

T p,a = inf{t ∈ [0, T ] : D+
t

(
Q−(pt)

)
> νat

(
(−∞, Q−(pt))

)
},

T p,b = inf{t ∈ [0, T ] : D−t
(
Q+(pt)

)
> νbt

(
(Q+(pt),∞)

)
},

for the long and short agents, respectively. The value of vt indicates the critical level

of the bid or ask price (i.e. a threshold), at which the agent decides to submit a

market order. We assume that the size of the agent’s market order is equal to her

inventory, and it is executed at the bid or ask price available at the time when the

order is submitted. Thus, the agent will submit her own market order at the time

τ v,a = inf{t ∈ [0, T ] : vt ≤ pbt}, τ v,b = inf{t ∈ [0, T ] : vt ≥ pat },
4For convenience, we sometimes refer to νt as a “measure”, rather than a “pair of measures”.
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for the long and short agents, respectively.5 The collection of all thresholds v is

described by the pair of processes θ = (θat , θ
b
t )t∈[0,T ], with values in the finite sigma-

additive measures on R, adapted to F. We define

vbt = Q+(θbt ), vat = Q−(θat )

Remark III.2. The above definitions of the execution times make use of the assump-

tion that each agent is infinitesimally small, and, hence, her order is necessarily

executed once the demand reaches it. They also use the following two implicit as-

sumptions: each agent believes that her limit order will be executed first among all

orders at the same price level, and her market order will be executed at the best

price available. These assumptions and their connection to a finite-player game are

discussed in chapter II.

Consider the first “significant” execution times of external market orders:

T a = inf{t ∈ [0, T ] : D+
t (pat ) > νat ((−∞, pat ))},

T b = inf{t ∈ [0, T ] : D−t (pbt) > νbt ((p
b
t ,∞))},

(3.3)

Similarly, we define the first “significant” execution times of internal market orders:

(3.4) τa = inf{t ∈ [0, T ] : vat ≤ pbt}, τ b = inf{t ∈ [0, T ] : vbt ≥ pat }.

For a long agent with strategy (p, v), the game ends at the time T p,a∧ τ v,a∧T ∧T a∧

T b∧ τa∧ τ b (and similarly for the short agents). If an agent has any inventory left at

the end of the game, then it is marked to market. The precise rules for computing an

agent’s payoff are described below. For a given market (ν, θ,M,D), let us introduce

the clearing prices:

p̃c,at = sup{p < Q+(νat ) : D+
t (p) > νat ((−∞, p))}, pc,at = p̃c,at 1{p̃c,at ≥pat },

5It is clear that, for every stopping time τv,a/b with respect to F, there exists a process vt, adapted to F, such
that τv,a/b has the above representation.
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p̃c,bt = inf{p > Q−(νbt ) : D−t (p) > νbt ((p,∞))}, pc,bt = p̃c,bt 1{p̃c,bt ≤pbt}
.

Consider a long agent who follows a strategy (p, v). Then, the payoff function of the

agent is described by the following list of rules.

• Assume that T p,a ∧ T a ∧ T b < T ∧ τa ∧ τ b (note that equality is impossible, as

the right hand side is predictable and the left hand side is totally inaccessible).

– If T p,a ∧ T a < T b (equality is impossible), then the payoff is∫ p̃c,at

−∞
zpt(dz) +

∫ ∞
p̃c,at

(pc,at + pbt)pt(dz), with t = T p,a ∧ T a.

– If T b < T p,a ∧ T a, then the payoff is pb
T b

+ pc,b
T b

.

• Assume that T ∧ τa ∧ τ b < T p,a ∧ T a ∧ T b.

– If τa ∧ T ≤ τ b then the payoff is pbτa .

– If τ b < τa ∧ T then the payoff is pa
τb

.

Remark III.3. The above choice of the payoff is motivated by the desire to project the

agent’s view on what happens after the game is over. In particular, if an external

market order arrives but does not fully execute the agent’s limit orders, then the

residual is marked to the bid price shifted by the clearing price (i.e. the new projected

value of the bid price, after the game is over). If an internal market order is executed

first, then, depending on which side of the book initiates this order, the agent’s

position is marked to the bid or to the ask price.

Similar rules apply to the short agents. Thus, the objective function of an agent

in the market (ν, θ,M,D), starting at the initial state (1, α) and using the control
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(p, v), is given by:

(3.5) J (ν,θ),(p,v)(1, α) =

Eα
[ ∫

R

(
z1{z≤p̃c,a

T̂p,a
} +

(
pb
T̂ p,a

+ pc,a
T̂ p,a

)
1{z>p̃c,a

T̂p,a
}

)
pT̂ p,a(dz)1{T̂ p,a<T b∧τ̂v,a∧τb}+(

pbT b + pc,b
T b

)
1{T b<T̂ p,a∧τ̂v,a∧τb} +

(
paτb1{τb<τ̂v,a} + pbτ̂v,a1{τb≥τ̂v,a}

)
1{T̂ p,a∧T b>τ̂v,a∧τb}

]
where T̂ p,a = T ∧ T p,a ∧ T a, τ̂ v,a = T ∧ τ v,a ∧ τa, and we assume that 0 · ∞ = 0.

Similarly,

(3.6) J (ν,θ),(p,v)(−1, α) =

Eα
[
−
∫
R

(
z1{z≥p̃c,b

T̂ p,b
} +

(
pa
T̂ p,b

+ pc,a
T̂ p,b

)
1{

z<p̃c,b
T̂ p,b

}) pT̂ p,b(dz)1{T̂ p,b<Ta∧τ̂v,b∧τa}

− (paT b + pc,aTa) 1{Ta<T̂ p,b∧τ̂v,b∧τa} −
(
pbτa1{τa<τ̂v,b} + paτ̂v,b1{τa≥τ̂v,b}

)
1{T̂ p,b∧Ta>τ̂v,b∧τa}

]
where T̂ p,b = T ∧ T p,b ∧ T b, τ̂ v,b = T ∧ τ v,b ∧ τ b. Every agents aims to maximize the

objective. In the following definitions, we assume that a stochastic basis, a Brownian

motion W , a random measure M , a random field D, spaces A and B, an associated

set of measures {Pα}α∈A∪B, and the empirical distribution µ, are fixed and satisfy

the assumptions made earlier in this section. The above objectives may seem very

convoluted – this is because they are meant to provide a close approximation to

the real-world execution rules and marking to market. In the next subsection, we

establish a more transparent representation of the objectives.

Definition III.4. For a given market (ν, θ) and a state (s, α) ∈ S, a pair of F-

progressively measurable processes (p, v) is an admissible control, if the positive

part of the expression inside the expectation in (3.5) (if s = 1) or (3.6) (if s = −1)

has a finite expectation under Pα.

Definition III.5. For a given market (ν, θ) and state (s, α) ∈ S, we call an admissible
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control (p, v) optimal if

J (ν,θ),(p,v)(s, α) ≥ J (ν,θ),(p′,v′)(s, α)

P-a.s., for any admissible control (p′, v′).

In the above, we make the standard assumption of games with a continuum of

players : each agent is too small to affect the distribution of cumulative controls (de-

scribed by ν) when she changes her control. Next, we define the notion of equilibrium

in the proposed game.

Definition III.6. A given market (ν, θ) and a pair of F-progressively measurable

random fields (p, v) : Ω× [0, T ]× S→ P(R)× R form an equilibrium, if

1. for µ-a.e. (s, α) ∈ S, (p(s, α), v(s, α)) is an optimal control for (ν, θ) and (s, α),

2. and the following holds P-a.s., for any t < T̄ := T ∧ T a ∧ T b ∧ τa ∧ τ b) and any

x ∈ R:

νat ((−∞, x]) =

∫
A
pt (1, α; (−∞, x])µa(dα),

νbt ((−∞, x]) =

∫
B
pt (−1, α; (−∞, x])µb(dα),

(3.7)

(3.8)

θat ((−∞, x]) =

∫
A

1{vt(1,α)≤x}µ
a(dα), θbt ((−∞, x]) =

∫
B

1{vt(−1,α)≤x}µ
b(dα).

Remark III.7. In the above definition, it is implicitly assumed that the empirical

measure of the agents’ states remains constant in time until the game is over for all

players. This is, indeed, the case, if the equilibrium is such that, P-a.s., for all t < T̄ ,

we have:

(3.9) µ ◦ ((s, α) 7→ St(s, α))−1 = µ,
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with

St(1, α) = 1[0,T p(1,α),a∧τv(1,α),a)(t), and St(−1, α) = −1[0,T p(−1,α),b∧τv(−1,α),b)(t).

The condition (3.9) may fail if a non-zero mass of agents manages to execute their

orders strictly before T̄ : i.e. if T p(1,α),a ∧ τ v(1,α),a < T̄ for a set of α with a positive

µa-measure, or T p(−1,α),b ∧ τ v(−1,α),b < T̄ for a set of α with a positive µb-measure.

However, the first scenario is impossible, because the external market orders only

arrive at a finite number of times and, before T a ∧ T b ≥ T̄ , only a zero mass of

agents can execute their limit orders against any such market order (cf. (3.3)). It

is also true that, at any time t, before τa ∧ τ b ≥ T̄ , only a zero mass of agents can

execute their internal market orders (cf. (3.4)). However, the set of such times t

may be uncountable. Therefore, to ensure that µ remains constant and, hence, (3.9)

holds, it suffices to consider only the equilibria satisfying, P-a.s., for all t, except,

possibly, a countable set:

vt(1, α) ≥ vat , vt(−1, α) ≤ vbt , ∀α ∈ A ∪ B.

In the subsequent sections, we construct such an equilibrium.

3.2.3 Representation of the objective

In this section, we provide an equivalent representation of the objective of the

agents, which makes it more tractable and more convenient for the analysis that

follows. This representation is derived following standard arguments, making use of

the independence of the driving Poisson measure and W . First, we introduce new

notation that will be used throughout the chapter. For any α ∈ A ∪ B, t ∈ [0, T ],
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p, x, y ∈ R and κ ∈ P(R), we define:

F+,α
t (p) =

∫ ∞
p∨0

fαt (u)du, F−,αt (p) =

∫ p∧0

−∞
fαt (u)du,

cαt (x, y) = λαt
(
F−,αt (y) + F+,α

t (x)
)
,

(3.10)

(3.11) lc,at (x) = sup
{
p < Q+(νat ) : Dt(p− x) > νat ((−∞, p))

}
,

(3.12) lc,bt (x) = inf
{
p > Q−(νbt ) : −Dt(p− x) > νbt ((p,∞))

}
,

(3.13) hα,at (κ, x, y) =

λαt

∫ ∞
(Q−(κ)∧x)∨0

fαt (u)

[∫ lc,at (u)

−∞
zκ(dz) +

(
y + lc,at (u)1{lc,at (u)≥x}

)
κ ((lc,at (u),∞))

]
du+

λαt

∫ y∧0

−∞
fαt (u)

(
y + lc,bt (u)

)
du,

(3.14) hα,bt (κ, x, y) =

λαt

∫ (Q+(κ)∨y)∧0

−∞
fαt (u)

[∫ ∞
lc,bt (u)

zκ(dz) +
(
x+ lc,bt (u)1{lc,bt (u)≤y}

)
κ
(

(−∞, lc,bt (u))
)]

du+

λαt

∫ ∞
x∨0

fαt (u) (x+ lc,at (u)) du.

Notice that, if X has a positive jump at time t, then the clearing price at time

t is given by p̃c,at = lc,at (Xt). Similarly, if X has a negative jump at time t, then

p̃c,bt = lc,bt (Xt). Using the above notation, we can obtain the following simplified

expression for the objective.

Lemma III.8. Let Assumption III.1 hold. Given a market (ν, θ), for any α ∈ A∪B

and any admissible strategy (p, v), we have:

(3.15)

J (ν,θ),(p,v)(1, α) = E
[ ∫ τ̂v,a∧τb

0

exp

(
−
∫ s

0

cαu
(
pau ∧Q−(pu), p

b
u

)
du

)
hα,as (ps, p

a
s , p

b
s)ds
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+ exp

(
−
∫ τ̂v,a∧τb

0

cαu
(
pau ∧Q−(pu), p

b
u

)
du

)(
paτb1{τb<τ̂v,a} + pbτ̂v,a1{τb≥τ̂v,a}

) ]
,

(3.16) J (ν,θ),(p,v)(−1, α) =

− E
[ ∫ τ̂v,b∧τa

0

exp

(
−
∫ s

0

cαu
(
pau, p

b
u ∨Q+(pu)

)
du

)
hα,bs (ps, p

a
s , p

b
s)ds+

exp

(
−
∫ τ̂v,a∧τb

0

cαu
(
pau, p

b
u ∨Q+(pu)

)
du

)(
pbτa1{τa<τ̂v,b} + paτ̂v,b1{τa≥τ̂v,b}

) ]
,

where τ̂ v,a = T ∧ τ v,a ∧ τa, τ̂ v,b = T ∧ τ v,b ∧ τ b and the expectations are taken under

P.

Proof: The proof follows easily by conditioning onW . Notice that, conditional on FT ,

M is a Poisson random measure, with the deterministic compensator λαt f
α
t (x) dt dx,

which is finite on [0, T ]×R. Recall also that D, ν, θ, p, v, pa, pb, τ v,a, τ v,b, τa, τ b, and

all the random functions defined above the lemma, are adapted to F. Conditional

on FT , they become deterministic functions of time. Recall the fundamental price

process, Xt =
∫
R xM({t} × dx), and introduce

Yt = Xt

(
1{Xt>(pat∧Q−(pt))∨0} + 1{Xt<pbt∧0}

)
.

Notice that T̂ p,a is the time of the first positive jump of Yt, and T b is the time of

its first negative jump. Notice also that, conditional on FT , the clearing price p̃c,at

becomes a deterministic function of t and Yt: p̃
c,a
t = lc,at (Yt). Thus, conditional on

FT , the expression inside the expectation in (3.5) becomes a function of the time

and size of the first jump of Y . Conditional on FT , X is the jump process of a

Poisson random measure with the compensator λαt f
α
t (u)dudt. It is also clear that,

conditional on FT , Y is the jump process of a non-homogeneous compound Poisson

process with intensity cαt
(
pat ∧Q−(pt), p

b
t

)
, and with the distribution of jump sizes
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at time t given by

λαt f
α(x)

cαt
(
pat ∧Q−(pt), pbt

) (1{x≤pbt∧0} + 1{x≥(pat∧Q−(pt))∨0}

)
dx.

A standard computation, then, yields (3.15). The equation (3.16) is derived similarly.

The expectations in (3.15) and (3.16) are taken under P, because the expressions

inside the expectations are adapted to F = FW , and W has the same distribution

under P and Pα.

3.3 A two-player game

In this section, we consider an auxiliary two-player game. It is related to the

continuum-player game, but the precise connection will be established in the subse-

quent sections. Assume that all the probabilistic constructions made in Subsection

3.2.1 are in place. Namely, we are given a stochastic basis, with a Brownian motion

W , a Poisson measure N , a counting random measure M , a family of probability

measures {Pα}, and with the demand elasticity process D, as described in Section

3.2. We assume that Assumption III.1 holds. Assume, in addition, that A = {α0}

and B = {β0}. Consider a two-player game, in which the first (long) player starts

with the initial inventory 1 and has beliefs α0, and the second (short) player starts

with the initial inventory −1 and has beliefs β0. The game proceeds according to

the rules similar to those described in the previous section: each agent can post limit

orders on the respective side of the book, or can terminate the game by submitting

a market order. The execution of limit orders against the external market orders oc-

curs in exactly the same way as described in the previous section. However, herein,

at any given time, each agent is only allowed to post limit orders at a single location

(i.e. the control pt is a Dirac measure). In addition, the main difference between the

present game and the one defined in the previous section is that, herein, each player
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has a non-zero mass and, hence, can affect the LOB. In fact, since there is only one

player on each side of the book, the LOB is given by a combination of two Dirac

measures: νat = δpat , ν
b
t = δpbt , controlled by the locations of the players’ limit orders:

pa for the long agent, and pb for the short one. Clearly, pa also coincides with the

ask price, and pb is the bid price. Note that each of these prices is now controlled by

a single agent, which is not the case in the original game described in the previous

section. The same is true for the stopping thresholds: θa and θb are given by Dirac

measures, and the locations of these measures correspond to the thresholds va and

vb used by the long and short agents, respectively. In this new game (due to its

simplicity), it turns out to be more convenient to work with the associated stopping

times τa and τ b. In fact, we will further constraint the agents’ controls, so that

τa = τ b =: τ and paτ = pbτ = p̄τ . The meaning behind these constraints is clear:

every agent assumes that the counterparty will execute a market order at exactly

the same time as she does, and that these orders are executed at the same price.

Taking into account the above considerations, we transform (3.5) into the objective

of a long player:

(3.17) J̃a,(p
b,p̄),(p,τ) = Eα0

[
pT p,a1{T p,a<T b∧τ} + 2pbT b1{T b<T p,a∧τ} + p̄τ1{T p,a∧T b>τ}

]
,

where pb, p̄ and p are R-valued F-adapted processes, τ is a stopping time with values

in [0, T ], and

T b = inf{t ∈ [0, T ] : Xt < pbt}, T p,a = inf{t ∈ [0, T ] : Xt > pt}, Xt = M({t}×R).

Similarly, for the short agents,

(3.18) J̃ b,(p
a,p̄),(p,τ) = −Eα0

[
pT p,b1{T p,b<Ta∧τ} + 2paTa1{Ta<T p,b∧τ} + p̄τ1{T p,b∧Ta>τ}

]
,
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where pa, p̄ and p are R-valued F-adapted processes, τ is a stopping time with values

in [0, T ], and

T a = inf{t ∈ [0, T ] : Xt > pat }, T p,b = inf{t ∈ [0, T ] : Xt < pt}.

Using Lemma III.8, we deduce the following form of the objective functions

(3.19) J̃a,(p
b,p̄),(p,τ) = E

[ ∫ τ

0

exp

(
−
∫ s

0

cα
0

u (pu, p
b
u)du

)
gas (ps, p

b
s)ds

+ exp

(
−
∫ τ

0

cα
0

u (pu, p
b
u)du

)
p̄τ

]
,

where cα is defined in (3.10) and

(3.20) gat (x, y) = λα
0

t

(
2yFα0,−

t (y) + xFα0,+
t (x)

)
.

Similarly,

(3.21) J̃ b,(p
a,p̄),(p,τ) = −E

[ ∫ τ

0

exp

(
−
∫ s

0

cβ
0

u (pau, pu)du

)
gbs(p

a
s , ps)ds

+ exp

(
−
∫ τ

0

cβ
0

u (pau, pu)du

)
p̄τ

]
,

where

(3.22) gbt (x, y) = λβ
0

t

(
yF β0,−

t (y) + 2xF β0,+
t (x)

)
.

To ensure that the above expressions are well defined, and to analyze the equilibrium

in a two-player game, we need to make the following assumptions.

Assumption III.9. There exists a constant C ′ > 0, s.t., P-a.s., |λαt |, |fαt (x)| ≤ C ′,

for all α ∈ A ∪ B, t ∈ [0, T ] and x ∈ R.

We also assume that the possible price jump sizes are bounded.

Assumption III.10. There exists a constant Cp > 0, s.t., P-a.s., supp(fαt ) ⊆

[−Cp, Cp], for all α ∈ A ∪ B and t ∈ [0, T ].
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Denote by S2 the set of continuous F-adapted processes Y , such that sup0≤t≤T |Yt| ∈

L2. We say that the terminal execution price p̄ is admissible if p̄ ∈ S2. A control

(p, τ) is admissible if p is F-progressively measurable, satisfying, P-a.s., |pt| ≤ Cp

for all t ∈ [0, T ], and τ is F-stopping time. Next, we introduce the notions of opti-

mality and equilibrium in the two-player game – they are analogous to Definitions

III.5–III.6.

Definition III.11. For a given admissible (pb, p̄), we call an admissible control (p, τ)

optimal for the long agent if

J̃a,(p
b,p̄),(p,τ) ≥ J̃a,(p

b,p̄),(p′,τ ′),

for any admissible control (p′, τ ′). Similarly, for a given admissible (pa, p̄), we call an

admissible control (p, τ) optimal for the short agent if

J̃ b,(p
a,p̄),(p,τ) ≥ J̃ b,(p

a,p̄),(p′,τ ′),

for any admissible control (p′, τ ′).

Definition III.12. A combination (pa, pb, τ, p̄) is an equilibrium in the two-player

game, if it is admissible and, given (pb, p̄), the control (pa, τ) is optimal for the long

agent, while, given (pa, p̄), the control (pb, τ) is optimal for the short agent.

In the next subsection, we characterize the equilibrium strategies via a system of

Reflected Backward Stochastic Differential Equations (RBSDEs).

3.3.1 Characterizing the equilibria via a system of RBSDEs

The next assumptions are used to guarantee the uniqueness and regularity of the

optimal control of an agent.

Assumption III.13. P-a.s., for any α ∈ A ∪ B and t ∈ [0, T ], fαt (·) is continuous

in the interior of its support, fαt (0) = 0, and 0 < F+,α
t (0) < 1.
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Assumption III.14. P-a.s., for any α ∈ A and t ∈ [0, T ], F+,α
t (·)/fαt (·) is a de-

creasing function in the interior of supp(fαt ) ∩ R+, vanishing at the right end of the

interval. Similarly, P-a.s., for any β ∈ B and t ∈ [0, T ], F−,βt (·)/fβt (·) is an in-

creasing function in the interior of supp(fβt ) ∩ R−, vanishing at the left end of the

interval.

Remark III.15. The monotonicity of F+,α
t (·)/fαt (·), for example, is implied by the log-

concavity of the distribution of positive jumps (similarly, for the negative jumps).

Instead of requiring that F+,α
t (·)/fαt (·) is decreasing, it suffices to assume that its

growth rate is bounded from above by 1 − ε, for a constant ε > 0 independent of

(t, ω).

To prove the existence of a solution to a system of RBSDEs characterizing the

equilibria in a two-player game, we also need to assume that “the range of beliefs is

relatively bounded”.

Assumption III.16. There exists a constant C > 0, s.t., P-a.s.:

1

C
≤

∣∣∣∣∣λα
0

t

λβ
0

t

∣∣∣∣∣ ≤ C,
1

C
≤

∣∣∣∣∣fα
0

t (x)

fβ
0

t (x)

∣∣∣∣∣ ≤ C, ∀x ∈ R t ∈ [0, T ].

First we analyze the individual optimization problem of an agent, taking the

actions of the counterparty as given. Assume that we are given a process p̄ ∈ S2 and

progressively measurable (pa, pb), such that P-a.s., |pat |, |pbt | ≤ Cp, ∀t ∈ [0, T ]. Let us

introduce the value functions of the agents:

(3.23) V a
t = ess supτ∈Tt, p E

[ ∫ τ

t

exp

(
−
∫ s

t

cα
0

u (pu, p
b
u)du

)
gas (ps, p

b
s)ds

+ exp

(
−
∫ τ

t

cα
0

u (pu, p
b
u)du

)
p̄τ

∣∣∣Ft],
(3.24) V b

t = ess infτ∈Tt, p E
[ ∫ τ

t

exp

(
−
∫ s

t

cβ
0

u (pau, pu)du

)
gbs(p

a
s , ps)ds
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+ exp

(
−
∫ τ

t

cβ
0

u (pau, pu)du

)
p̄τ

∣∣∣Ft],
where Tt is the set of F-stopping times with values in [t, T ], p is any F-progressively

measurable process, with |p| ≤ Cp, and cα, ga and gb are defined in (3.10), (3.20)

and (3.22). In addition, we introduce the following random functions:

Ga,xt (y, z) = −cα0

t (x, z)y + gat (x, z), x, y ∈ R,

Gat (y, z) = sup
x∈R
Ga,xt (y, z) = −cα0

t (P a
t (y), z) y + gat (P a

t (y), z) , y ∈ R,

where P a
t provides the optimal price location at the ask side, given in a feedback

form:

(3.25) P a
t (y) = inf arg max

p∈R
(p− y)F+,α0

t (p), y ∈ R.

Similarly, for any admissible pa, we define

(3.26) P b
t (y) = sup arg max

p∈R
(y − p)F−,β

0

t (p), y ∈ R,

Gbt (z, y) = −cβ
0

t

(
z, P b

t (y)
)
y + gbt

(
z, P b

t (y)
)
, y ∈ R.

The value of P a
t (y) can be described as the unique nonnegative solution p of

(3.27) p− y = F+,α0

t (p)/fα
0

t (p),

unless y is too large, in which case P a
t (y) is the upper boundary of the support of fα

0

t ,

or too small, in which case P a
t (y) = 0. Similarly, P b

t (y) is the unique non-positive

solution p of

(3.28) y − p = F−,β
0

t (p)/fβ
0

t (p),

or the lower boundary of the support of fβ
0

t , if y is too small, or zero, if y is too

large.
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Lemma III.17. Let Assumptions III.1–III.14 hold. Then, the random functions P a

and P b are progressively measurable and satisfy, P-a.s., for all t ∈ [0, T ]:

0 ≤ P a
t (y) ≤ Cp, −Cp ≤ P b

t (y) ≤ 0, P a
t (y) ≥ y, P b

t (y) ≤ y, ∀y ∈ R,

and, in addition, P a
t (·) and P b

t (·) are non-decreasing and 1-Lipschitz.

Proof: The progressive measurability property and the above inequalities follow

directly from Assumptions III.9–III.13. The monotonicity and 1-Lipschitz property

follow from Assumption III.14 and the representations (3.27)–(3.28).

The above lemma, along with Assumptions III.9–III.13, implies that, for any ad-

missible (p, pb, p̄), Gat (0, pbt) and Ga,ptt (0, pbt) are bounded processes, and that Gat (y, pbt)

and Ga,ptt (y, pbt) are Lipschitz in y, uniformly over a.e. (t, ω). This allows us to use

Proposition 7.1 from [42], to show that, for any admissible (p, pb, p̄), the process Y ,

which is a continuous modification of

Yt := Ĵ
a,(pb,p̄),p
t = ess supτ∈Tt E

[ ∫ τ

t

exp

(
−
∫ s

t

cα
0

u (pu, p
b
u)du

)
gas (ps, p

b
s)ds

+ exp

(
−
∫ τ

t

cα
0

u (pu, p
b
u)du

)
p̄τ

∣∣∣Ft],
is the unique S2 solution of the affine RBSDE,

−dYt = Ga,ptt (Yt, p
b
t)dt− ZtdWt + dKt 0 ≤ t ≤ T(3.29)

Yt ≥ p̄t 0 ≤ t ≤ T,

∫ T

0

(Yt − p̄t)dKt = 0(3.30)

YT = p̄T ,(3.31)

where Z is a progressively measurable square-integrable (multidimensional) process,

K ∈ S2 is increasing and satisfies K0 = 0. Similarly, the existence results from [42]



95

imply that

−dYt = Gat (Yt, p
b
t)dt− ZtdWt + dKt 0 ≤ t ≤ T(3.32)

Yt ≥ p̄t 0 ≤ t ≤ T

∫ T

0

(Yt − p̄t)dKt = 0(3.33)

YT = p̄T(3.34)

has a unique solution (Yt, Zt, Kt). Then, Theorem 7.2 in [42] implies that Y is a

continuous modification of V a, and that pat = P a
t (Yt) and τa = inf{s ≥ 0: Ys = p̄s}

form an optimal control for the long agent. Similarly, for a given admissible (pa, p̄),

there exists a unique solution (Yt, Zt, Kt) to

−dYt = Gbt (pat , Yt)dt− ZtdWt − dKt 0 ≤ t ≤ T(3.35)

Yt ≤ p̄t 0 ≤ t ≤ T,

∫ T

0

(p̄t − Yt)dKt = 0(3.36)

YT = p̄T ,(3.37)

Y is a continuous modification of V b, and pbt = P b
t (Yt) and τ b = inf{s ≥ 0: Ys = p̄s}

form an optimal control for the short agent. It turns out that, because the optimal

stopping time has to be the same for both agents in equilibrium, we can formulate a

system of equations for V a and V b without p̄. In order to state this result formally,

we need to introduce the following random functions

(3.38)

G̃at (y, z) = Gat (y, P b
t (z)) = −cα0

t

(
P a
t (y), P b

t (z)
)
y + gat

(
P a
t (y), P b

t (z)
)
, y, z ∈ R,

(3.39)

G̃bt (y, z) = Gbt (P a
t (y), z) = −cβ

0

t

(
P a
t (y), P b

t (z)
)
z + gbt

(
P a
t (y), P b

t (z)
)
, y, z ∈ R,

where cα, ga and gb are defined, respectively, in (3.10), (3.20) and (3.22), and P a and

P b are given by (3.25) and (3.26).
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Lemma III.18. Let Assumptions III.1–III.16 hold. For any equilibrium (pa, pb, τ, p̄)

in the two-player game (in the sense of Definition III.12), the value functions of the

agents, V a, V b ∈ S2, satisfy

(3.40)



−dV a
t = G̃at (V a

t , V
b
t )dt− Za

t dWt + dKa
t

−dV b
t = G̃bt (V a

t , V
b
t )dt− Zb

t dWt − dKb
t

V a
t ≥ V b

t ∀t ∈ [0, T ],
∫ T

0
(V a

t − V b
t )d(Ka

t +Kb
t ) = 0

V a
T = V b

T ,

with some increasing processes Ka, Kb ∈ S2, starting at zero, and with progres-

sively measurable square-integrable (Za, Zb). Moreover, (p̂a, p̂b, τ̂ , p̄) also form an

equilibrium, with the same value functions, where: p̂at = P a
t (V a

t ), p̂bt = P b
t (V b

t ) and

τ̂ = inf{s ≥ 0: V a
s = V b

s }. Conversely, given a solution to (3.40), we can define

the optimal controls (p̂a, p̂b, τ̂) as above, and choose p̄ = (1 − η)V a + ηV b, with any

progressively measurable process η taking values in (0, 1), to obtain an equilibrium

(p̂a, p̂b, τ̂ , p̄).

Proof: Consider an equilibrium (pa, pb, τ, p̄). As discussed earlier, the standard results

on BSDEs (cf. [42]) imply that (V a, Za, Ka) solves (3.32)–(3.34), and (V b, Zb, Kb)

solves (3.35)–(3.37) (both systems are considered with the same p̄). It follows from

the optimality of τ , via the standard theory, that V b
τ = p̄τ = V a

τ . Consider the

long agent. It is clear that the objective of the long agent cannot increase if we

replace p̄ by V b in its definition (cf. (3.19)). On the other hand, τ is optimal and

p̄τ = V b
τ , hence, the value function V a remains the same if we replace p̄ by V b in its

definition (cf. (3.23)). Therefore, (V a, Za, Ka) solves (3.32)–(3.34) with p̄ replaced

by V b. Similar argument applies to the short agent, and yields that (V b, Zb, Kb)

solves (3.35)–(3.37) with p̄ replaced by V a. Next, using the optimality of pa and

the comparison principle for the BSDE (3.29), we easily deduce that, for a.e. (t, ω),
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pat coincides with p̂at = P a
t (V a

t ) whenever λα
0

t > 0 and V a
t < sup supp(fα

0

t ). On

the other hand, Assumption III.16 implies that, if λα
0

t = 0 or V a
t ≥ sup supp(fα

0

t ),

then λβ
0

t = 0 or V a
t ≥ sup suppfβ

0

t , and, in turn, Gbt
(
pat , V

b
t

)
= Gbt

(
p̂at , V

b
t

)
. Thus, we

conclude that V b satisfies (3.35)–(3.37) with pa replaced by p̂a. Similarly, we conclude

that V a satisfies (3.32)–(3.34) with pb replaced by p̂b. Thus, (V a, V b) satisfy (3.40).

Next, consider a solution to (3.40). Choosing p̄ as shown in the statement of the

lemma, we conclude that (V a, Za, Ka) solves (3.32)–(3.34), with pb replaced by p̂b.

Then, the standard results (cf. [42]) imply that, given p̂b and p̄, V a is the value

function of the long agent, and her optimal control is given by p̂a and

inf{s ≥ 0: V a
s ≤ p̄s} = inf{s ≥ 0: V a

s = V b
s } = τ̂ .

Similar argument applies to the short agent, completing the proof.

3.3.2 Existence of a solution

In this subsection, we address the question of existence of a solution to the RBSDE

(3.40). The main difficulty in analyzing (3.40) is the non-standard form of the

reflection: the components of the solution reflect against each other, as opposed

to reflecting against a given boundary. Related equations have been analyzed in the

literature on BSDEs constrained by oblique reflections (e.g. in [20]): indeed, our

problem can be viewed as a limit of oblique reflection problems (see [20], for further

details). However, the present problem is new, and, in particular, the question of

existence of its solution has not been addressed in the existing literature. Before

we analyze the existence, it is convenient to consider the question of uniqueness.

Note that the arbitrary choice of η in Lemma III.18 indicates that there may be

multiple solutions to (3.40). Indeed, a different choice of η produces a different p̄,

which results in a different pair of value functions (V a, V b), which, nevertheless,



98

have to solve the same system (3.40). This heuristic observation turns out to be

correct and, in fact, allows us to construct a solution to (3.40). Consider a solution

(V a, V b, Ka, Kb, Za, Zb) to (3.40). Introducing Kt = Ka
t + Kb

t , we notice that there

must exist a process η, with values in [0, 1], such that dKa
t = ηtdKt, dKb

t = (1 −

ηt)dKt. Then, we introduce Ỹ 1
t = V a

t − V b
t and Ỹ 2

t = (1 − ηt)V a
t + ηtV

b
t as the new

variables, replacing V a and V b. Assuming that η is sufficiently regular, one can obtain

a system of RBSDEs for (Ỹ 1, Ỹ 2), in which only the first component reflects against

zero, and Ỹ 1
T = 0. Conversely, we can start by prescribing η and a terminal condition

for Ỹ 2, solving the associated system of RBSDEs for (Ỹ 1, Ỹ 2), and, then, recover

(V a, V b) from (Ỹ 1, Ỹ 2, η) via the above formulas. Naturally, the resulting (V a, V b)

are expected to satisfy (3.40). This method seems to describe all solutions to (3.40),

however, herein, we are only interested in constructing a particular one.6 Hence, we

choose η ≡ 1/2 and Ỹ 2
T = 0, to obtain Y 1 = Ỹ 1 = V a−V b and Y 2 = 2Ỹ 2 = V a+V b,

which are expected to satisfy:

(3.41)



−dY 1
t = G1

t (Y
1
t , Y

2
t )dt− Z1

t dWt + dKt

Y 1
t ≥ 0,

∫ T
0
Y 1
t dKt = 0, Y 1

T = 0

−dY 2
t = G2

t (Y
1
t , Y

2
t )dt− Z2

t dWt, Y 2
T = 0

where Y 1, Y 2 ∈ S2, the processes Z1, Z2 are progressively measurable and square-

integrable, K ∈ S2 is increasing and satisfies K0 = 0. In addition, we denote

G1
t (y

1, y2) = G̃at
(
(y1 + y2)/2, (y2 − y1)/2

)
− G̃bt

(
(y1 + y2)/2, (y2 − y1)/2

)
,

G2
t (y

1, y2) = G̃at
(
(y1 + y2)/2, (y2 − y1)/2

)
+ G̃bt

(
(y1 + y2)/2, (y2 − y1)/2

)
6It is an interesting topic for future research, to describe rigorously all solutions of (3.40)
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where G̃a and G̃b are defined in (3.38) and (3.39). The following lemma formalizes

the connection between (3.41) and (3.40).

Lemma III.19. Let (Y 1, Y 2, Z1, Z2, K) be a solution to (3.41). Then

V a =
1

2
Y 1 +

1

2
Y 2, V b =

1

2
Y 2 − 1

2
Y 1,

Za =
1

2
Z1 +

1

2
Z2, Zb =

1

2
Z2 − 1

2
Z1, Ka =

1

2
K,Kb =

1

2
K

form a solution to (3.40).

Proof: Follows easily by a direct verification.

However, the existence of a solution to (3.41) is far from obvious. Indeed, the

generator of this system can be written as

(3.42) G1
t (y

1, y2) = −c1
t (y

1, y2)y1 + c2
t (y

1, y2)y2 + g1
t (y

1, y2),

(3.43) G2
t (y

1, y2) = −c2
t (y

1, y2)y1 − c1
t (y

1, y2)y2 + g2
t (y

1, y2),

where

c1
t (y

1, y2) =

1

2
cα

0

t

(
P a
t

(
(y1 + y2)/2

)
, P b

t

(
(y2 − y1)/2

))
+

1

2
cβ

0

t

(
P a
t

(
(y1 + y2)/2

)
, P b

t

(
(y2 − y1)/2

))

c2
t (y

1, y2) =

1

2
cβ

0

t

(
P a
t

(
(y1 + y2)/2

)
, P b

t

(
(y2 − y1)/2

))
−1

2
cα

0

t

(
P a
t

(
(y1 + y2)/2

)
, P b

t

(
(y2 − y1)/2

))
,

g1
t (y

1, y2) =

gat
(
P a
t

(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
− gbt

(
P a
(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
,
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g2
t (y

1, y2) =

gat
(
P a
t

(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
+ gbt

(
P a
(
(y1 + y2)/2

)
, P b

(
(y2 − y1)/2

))
,

with cα, P a, P b, ga and gb defined in (3.10), (3.25), (3.26), (3.20) and (3.22). It is

easy to see that every cit(·, ·) and git(·, ·) is bounded and globally Lipschitz, uniformly

over a.e. (t, ω). However, due to the presence of the multipliers y1 and y2, Git(·, ·) is

unbounded and does not possess the global Lipschitz property. There exists an ex-

istence theory for one-dimensional BSDEs with linear growth. However, the present

equation is multidimensional, and it cannot be reduced to the one-dimensional case:

event if we restrict one coordinate yi to a bounded range, the corresponding genera-

tor Gi is not bounded or Lipschitz in yi, as the other component can take arbitrarily

large values. Nevertheless, we can make use of the fact that the generator of (3.41)

has the “correct” asymptotic behavior, to prove the existence of a solution. In par-

ticular, we exploit the fact that, due to the assumptions made earlier in this section,

whenever ‖(Y 1
t , Y

2
t )‖ becomes large, the generator (G1

t ,G2
t ) pushes (Y 1

t , Y
2
t ) in the

direction in which the largest |Y i
t | decreases.

Proposition III.20. Let Assumptions III.9–III.16 hold. Then, there exists a solu-

tion to (3.41), s.t. its components Y 1 and Y 2 are absolutely bounded by a constant.

Such a solution is unique.

Proof: Step 1: Existence for the fully capped system. For any constant C > 0, denote

ΨC(y) = (−C ∨ y) ∧ C. Clearly, this function is 1-Lipschitz in y and absolutely

bounded by C. We fix arbitrary constants {Cj
i > 0} and consider the fully capped
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system:

(3.44)

−dY 1
t =(

−c1
t (Y

1
t , Y

2
t )ΨC1

1
(Y 1

t ) + c2
t (Y

1
t , Y

2
t )ΨC2

1
(Y 2

t ) + g1
t (Y

1
t , Y

2
t )
)

dt− Z1
t dWt + dKt,

−dY 2
t =

(
−c2

t (Y
1
t , Y

2
t )ΨC1

2
(Y 1

t )− c1
t (Y

1
t , Y

2
t )ΨC2

2
(Y 2

t ) + g2
t (Y

1
t , Y

2
t )
)

dt− Z2
t dWt

Here, and in some expressions that follow, we omit the terminal condition, barrier,

and the minimality condition for Kt, as they remain unchanged throughout. As-

sumptions III.9–III.16 imply that c1
t (y

1, y2), c2
t (y

1, y2), g1
t (y

1, y2) and g2
t (y

1, y2) are

bounded and globally Lipschitz in (y1, y2), uniformly over a.e. (t, ω). Hence, the

generator of (3.44) is globally Lipschitz in (y1, y2) (and independent of (Z1, Z2)),

and the standard existence results for Lipschitz BSDEs (cf. for example, Theorem

2.2 in [59]) yield the existence (and uniqueness) of a solution to (3.44). Denote the

Y -component of this solution (Y 1c
t , Y 2c

t ).

Step 2: Bounds on solution components via partial uncapping. We want to bound the

components (Y 1c
t , Y 2c

t ), of the solution to the capped system, by using the control-

stopping interpretation of the individual (R)BSDEs comprising our system. Consider

the associated equation for Y 1, with Y 2c
t being given:

(3.45)

−dY 1
t =(

−c1
t (Y 1

t , Y
2c
t )Y 1

t + c2
t (Y 1

t , Y
2c
t ) ΨC2

1
(Y 2c

t ) + g1
t (Y 1

t , Y
2c
t )
)

dt− Z1
t dWt + dKt,

Y 1
t ≥ 0,

∫ T
0
Y 1
t dKt = 0, Y 1

T = 0

Note that, as c1
t ,c

2
t , g

1 and ΨC2
1

are bounded, this one-dimensional RBSDE has a

continuous generator with linear growth in Y 1, and, for example, by Theorem 4.1 in

[59], it has a solution, which we denote Y 1
t . Next, for Y 1 and Y 2c constructed above,
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we introduce the processes

c̃1
t = c1

t (Y
1
t , Y

2c
t ), c̃2

t = c2
t (Y

1
t , Y

2c
t ), g̃1

t = g1
t (Y

1
t , Y

2c
t ), g̃2

t = g2
t (Y

1
t , Y

2c
t ),

and consider the one-dimensional RBSDE (for Ỹ ), obtained from (3.45) by pretend-

ing that the coefficients should depend on the solution itself:

(3.46)

 −dỸ 1
t =

(
−c̃1

t Ỹ
1
t + c̃2

tΨC2
1
(Y 2c

t ) + g̃1
t

)
dt− Z1

t dWt + dKt

Ỹ 1
t ≥ 0,

∫ T
0
Ỹ 1
t dKt = 0, Ỹ 1

T = 0

Note that Ỹ = Y 1 is the unique solution of this equation. On the other hand, the

above RBSDE is affine in Ỹ , and, for example, by Theorem 7.1 in [42], its unique

solution admits the following interpretation, as the value function of an optimal

stopping problem:

Y 1
t = sup

τ∈Tt
E
[∫ τ

t

exp

(
−
∫ s

t

c̃1
udu

)(
c̃2
sΨC2

1
(Y 2c

s ) + g̃1
s

)
ds
∣∣Ft]

We will use this representation to establish a bound on |Y 1|. First, note that, under

our assumptions, there exist constants C0 > 0 and λ ∈ (0, 1), such that, for all t, y1,

y2, and a.e. ω, we have:

∣∣∣∣git(y1, y2)

c1
t (y

1, y2)

∣∣∣∣ = 2

∣∣∣∣∣∣
gat

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
± gbt

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
cα

0

t

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
+ cβ

0

t

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
∣∣∣∣∣∣

≤ C0,

∣∣∣∣c2
t (y

1, y2)

c1
t (y

1, y2)

∣∣∣∣ =

∣∣∣∣∣∣
cα

0

t

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
− cβ

0

t

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
cα

0

t

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
+ cβ

0

t

(
P a
t

(
y1+y2

2

)
, P b

t

(
y2−y1

2

))
∣∣∣∣∣∣

≤ λ < 1,

with cα, P a, P b, ga and gb defined in (3.10), (3.25), (3.26), (3.20) and (3.22). The

first inequality holds with C0 = 5Cp, and it follows from the boundedness of P a,
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P b and the jump sizes. The second one follows from Assumption III.16. The above

inequalities imply: ∣∣∣∣∣ c̃2
tΨC2

1
(Y 2c

t ) + g̃1
t

c̃1
t

∣∣∣∣∣ ≤ λC2
1 + C0,

for all t and a.e. ω. The latter estimate, together with the following lemma, imply

the desired upper bound:

|Y 1
t | ≤ λC2

1 + C0

for all t and a.e. ω.

Lemma III.21. Consider any constant C > 0, any continuous function S : [0, T ]→

R, absolutely bounded by C, any nonnegative continuous function c on [0, T ], and

any continuous function g on [0, T ], satisfying |g| ≤ C|c|. For any 0 ≤ t ≤ τ ≤ T ,

denote:

Yt,τ =

∫ τ

t

exp

(
−
∫ s

t

c(u)du

)
g(s)ds+ exp

(
−
∫ τ

t

c(u)du

)
S(τ).

Then

|Yt,τ | ≤ C, ∀ 0 ≤ t ≤ τ ≤ T.

Proof: For any 0 ≤ t ≤ τ ≤ T , we have∣∣∣∣∫ τ

t

exp

(
−
∫ s

t

c(u)du

)
g(s)ds+ exp

(
−
∫ τ

t

c(u)du

)
S(τ)

∣∣∣∣
≤ −

∫ τ

t

Cd

(
exp

(
−
∫ s

t

c(u)du

))
+ exp

(
−
∫ τ

t

c(u)du

)
C = C

Thus, we have a solution Y 1 of (3.45) which satisfies |Y 1
t | ≤ λC2

1 + C0, P-a.s., for

all t. Then, for C1
1 ≥ λC2

1 + C0, we have ΨC1
1
(Y 1

t ) = Y 1
t , and, hence, Y 1 also solves −dY 1

t =
(
−c1

t (Y
1
t , Y

2c
t )ΨC1

1
(Y 1

t ) + c2
tΨC2

1
(Y 2c

t ) + g1
t (Y

1
t , Y

2c
t )
)

dt− Z1
t dWt + dKt

Y 1
t ≥ 0,

∫ T
0
Y 1
t dKt = 0, Y 1

T = 0



104

Note that the above RBSDE coincides with the Y 1-equation in (3.44). This one-

dimensional RBSDE has a globally Lipschitz generator and, thus, a unique solution.

This implies that Y 1 = Y 1c, and we obtain the desired bound on Y 1c:

|Y 1c
t | ≤ λC2

1 + C0,

P-a.s. for all t, provided C1
1 ≥ λC2

1 + C0. Similarly, considering the Y 2 part of the

capped system (3.44), with Y 1c fixed, we obtain

|Y 2c
t | ≤ λC1

2 + C0,

P-a.s. for all t, provided C2
2 ≥ λC1

2 + C0.

Step 3: Solution of the appropriately capped system solves the original system. To

show that the solution (Y 1c
t , Y 2c

t ) of (3.44) also solves the original system (3.41),

we only need to show that, given the bounds on (Y 1c, Y 2c), the capped system’s

generator coincides with the original generator, which translates into

ΨC1
1
(Y 1c

t ) = Y 1c
t , ΨC2

2
(Y 2c

t ) = Y 2c
t , ΨC2

1
(Y 2c

t ) = Y 2c
t , ΨC1

2
(Y 1c

t ) = Y 1c
t .

The first two equalities are satisfied if

C1
1 ≥ λC2

1 + C0, C2
2 ≥ λC1

2 + C0,

while the last two require

λC1
2 + C0 ≤ C2

1 , λC2
1 + C0 ≤ C1

2 .

One can check these inequalities have a solution, as long as λ < 1. The “minimal”

solution being

C1
1 = C1

2 = C2
2 = C2

1 =
C0

1− λ
.
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With the above choice of capping, the solution to (3.44) also solves (3.41), thus,

showing the existence of a solution of (3.41). This solution is bounded by construc-

tion. The uniqueness of a bounded solution follows from the fact that, when (y1, y2)

vary over a bounded set, the generator of (3.41) is Lipschitz, hence, the standard

results yield uniqueness.

Remark III.22. The above proof provides an existence result for any system (3.41),

whose generator is given by (3.42)–(3.43), with arbitrary (bounded and Lipschitz)

progressively measurable random functions {ci, gi}, as long as the following holds for

a.e. (t, ω) and all (y1, y2) ∈ R2:

2∑
i=1

∣∣git(y1, y2)
∣∣ ≤ C0c

1
t (y

1, y2),
∣∣c2
t (y

1, y2)
∣∣ ≤ λc1

t (y
1, y2),

with some constants C0 > 0 and λ ∈ (0, 1).

3.4 Equilibrium in the continuum-player game.

In this section we construct an equilibrium for the continuum-player game de-

scribed in Section 3.2, in the sense of Definition III.6. The main difficulty in con-

structing the equilibrium stems from the mixed control-stopping nature of the game

(and, of course, the fact there are multiple participants). Therefore, we attempt to

break the problem into two parts - isolating the “stopping” part of the game. In

order to do this, it is convenient to make assumptions that guarantee the existence

of the so-called “extremal” agents on each side of the book. These agents are called

“extremal”, because their beliefs dominate the beliefs of the other agents on the

same side of the book, in the appropriate sense. We denote the extremal beliefs

on the long side by α0, and, on the short side, by β0. It is worth mentioning that

the “extremal” beliefs are, in fact, the mildest ones: i.e. the agents with beliefs α0

are the least bullish among the long ones, and the agents with beliefs β0 are the
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least bearish among the short ones. There are two economic interpretations of the

extremal agents. First, they can be viewed as market-makers, as they are closer to

being market-neutral, than any other agent on the same side of the book (although,

we do not have any designated market maker in this game). Second, they can be

viewed as the fastest traders. Indeed, instead of thinking of these beliefs in terms

of bullishness or bearishness, it is possible to interpret the extremal beliefs as the

beliefs that the jumps of the fundamental price are small (relative to the beliefs of

other players). This, in turn, can be interpreted as the ability of extremal agents

to predict, and react to, the smallest changes in the price (whereas the other agents

are too slow for this, and, hence, they only take into account larger jumps). In this

section, we construct an equilibrium in which the time of the first internal market

order and the bid and ask prices are determined by the extremal agents, while the

rest of the shape of the LOB is due to the other agents’ actions. The construction

of an equilibrium, thus, splits into two parts. In the first part, the extremal agents

find an equilibrium among themselves, using the results of the auxiliary two-player

game, and determining the time of the first internal market order τ and the bid and

ask prices pa and pb. In the second part, the other agents, taking (pa, pb, τ) as given,

determine their optimal actions. Of course, we, ultimately, prove that the strategy

of every agent is optimal in the overall market, consisting of both extremal and non-

extremal agents. The resulting LOB ν has two atoms – at the bid and ask prices –

comprised of the limit orders of the extremal and some of the non-extremal agents.

The rest of the LOB contains limit orders of the non-extremal agents only.

In order to implement the above program, we assume that A = {α0} ∪ Â and

B = {β0}∪B̂. We assume that Assumptions III.1–III.16 hold throughout this section.

In addition, we make the following assumptions.
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Assumption III.23. For any α ∈ Â, β ∈ B̂ and a.e. (t, ω), we have:

λαt F
+,α
t (p) ≥ λα

0

t F
+,α0

t (p), λβt F
+,β
t (p) ≤ λβ

0

t F
+,β0

t (p), ∀p ≥ 0,

λαt F
−,α
t (p) ≤ λα

0

t F
−,α0

t (p), λβt F
−,β
t (p) ≥ λβ

0

t F
−,β0

t (p), ∀p ≤ 0.

Assumption III.24. For any α ∈ Â, β ∈ B̂ and a.e. (t, ω), we have:

F+,α0
t (p)

fα0
t (p)

≤ F+,α
t (p)

fαt (p)
,

F−,β0
t (−p)
fβ0
t (−p)

≤ F−,βt (−p)
fβt (−p)

∀ p ≥ 0.

Assumption III.23 ensures that the distribution of the fundamental price at any

time t, from an α-agent’s perspective, dominates stochastically the respective dis-

tribution from the α0-agent’s perspective. The opposite relation holds for the short

agents. The first inequality in Assumption III.24 ensures that
∣∣logF+,α0

t (·)
∣∣ decays

faster than
∣∣logF+,α

t (·)
∣∣, which is also consistent with the interpretation that α0-

agents assign smaller probabilities to the large jumps of the fundamental price, and

larger probabilities to the small jumps, as opposed to the α-agents. Analogous inter-

pretation holds for the second inequality in Assumption III.24. Assumption III.24

ensures that, in an empty LOB, the non-extremal agents would prefer to post their

limit order further away from zero than the extremal ones do.

Lemma III.25. Let Assumptions III.1–III.24 hold. Fix any α ∈ Â and β ∈ B̂.

Then, for a.e. (t, ω), the following holds for all y ∈ R: p 7→ (p − y)F+,α
t (p) is

non-decreasing in p ∈ [y, P a
t (y)], and p 7→ (y − p)F−,βt (p) is non-increasing in p ∈

[P b
t (y), y].

Proof: The statement follows easily by differentiating the target functions, recalling

(3.27)–(3.28), and making use of Assumption III.24.

We also need to make an assumption that limits the maximum possible demand

size, as viewed by the extremal agents. Namely, the extremal agents believe that the
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external demand can never exceed the inventory held by these agents.

Assumption III.26. For Leb⊗ P-a.e. (t, ω), we have:

Dt

(
−Q+

(
fα

0

t (x)dx
))
≤ µa

(
{α0}

)
, −Dt

(
−Q−

(
fα

0

t (x)dx
))
≤ µb

(
{β0}

)
,

−Dt

(
−Q−

(
fβ

0

t (x)dx
))
≤ µb

(
{β0}

)
, Dt

(
−Q+

(
fβ

0

t (x)dx
))
≤ µa

(
{α0}

)
.

where Q+ and Q− are defined in (3.2).

In order to construct an equilibrium, we need to impose certain topological con-

ditions on the space of beliefs and on the mapping α 7→ fα.

Assumption III.27. The spaces Â and B̂ are compact metric spaces, with the Borel

sigma-algebras on them (i.e. µa and µb are measures with respect to the Borel sigma-

algebras). In addition, for a.e. (t, ω), the mapping α 7→ fαt is continuous as a

mapping Â→ L1[0, Cp] and as a mapping B̂→ L1[−Cp, 0].

Finally, we need to ensure that the demand size curve is “not too flat”.

Assumption III.28. There exists an increasing continuous (deterministic) function

ε : [0,∞)→ [0,∞), s.t. ε(0) = 0 and, for a.e. (t, ω), |D−1
t (x)−D−1

t (y)| ≤ ε(|x− y|),

for all x, y ∈ R.

Now, we proceed to construct a special class of equilibria in the continuum-player

game. As announced earlier, the equilibrium is constructed by, first, solving the

auxiliary two-player game, as described in Section 3.3. In the two-player game, we

assume that the two agents have beliefs α0 and β0. Thus, we consider the unique

bounded solution (Y 1, Y 2) to (3.41) and construct the associated (V a, V b), which

solve (3.40), according to Lemma III.19. Then, Lemma III.18 implies that (V a, V b)

are the value functions of the two-player equilibrium (p̂a, p̂b, τ̂ , p̄), where

p̂at = P a
t (V a

t ), p̂bt = P b
t (V b

t ), τ̂ = inf{t ∈ [0, T ] : V a
t = V b

t }, p̄t =
1

2
V a
t +

1

2
V b
t .
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Let us introduce

pat = p̂at1{t<τ̂} + p̄τ̂1{t≥τ̂}, pbt = p̂bt1{t<τ̂} + p̄τ̂1{t≥τ̂}.

Using these auxiliary quantities, we aim to construct an equilibrium for the continuum-

player game, in which (ν, θ) satisfy the following two conditions. First,

(3.47) νat = µa({α0})δpat + ν̄at , νbt = µb({β0})δpbt + ν̄bt ,

with progressively measurable ν̄a and ν̄b taking values in the space of sigma-additive

measures on R, such that, P-a.s., for all t ∈ [0, T ], ν̄at is supported on [pat , Cp] and ν̄bt

is supported on [−Cp, pbt ].7 Second,

(3.48) θat = µa(A)δV at , θbt = µb(B)δV bt .

Note that, in such a market, we have

τa = τ b = τ̂

The following theorem is the main result of this chapter.

Theorem III.29. Let Assumptions III.1–III.28 hold. Then, there exist progres-

sively measurable measure-valued processes (ν, θ), satisfying (3.47)–(3.48), and pro-

gressively measurable random fields p, v : Ω× [0, T ]× S→ P(R)×R, which form an

equilibrium, in the sense of Definition III.6. Moreover, an equilibrium can be con-

structed so that vt(1, α) = V a
t , vt(−1, α) = V b

t , for all (t, ω, α), and the optimal limit

order strategies of extremal agents are as follows: pt(1, α
0) = pat , pt(−1, β0) = pbt, for

all (t, ω).

The remainder of this section is devoted to the proof of Theorem III.29. First,

we show that, in a market (ν, θ), as described by (3.47)–(3.48), it is never (strictly)

7The components ν̄a and ν̄b are introduced for convenience, in order to indicate that νat ({pat }) ≥ µa({α0}) and
νb({pbt}) ≥ µb({β0}).



110

optimal for the agents to post limit sell orders below the ask price or to post limit

buy orders above the bid price. In addition, it is never (strictly) optimal for the

agents to submit a market order before τ̂ . To achieve this, we need to compare the

value functions of the agents to V a and V b, making use of Assumptions III.23, III.24.

Lemma III.30. Let Assumptions III.1–III.24 hold, and let (ν, θ) satisfy (3.47)–

(3.48). Given any α ∈ A and any admissible control (p, τ), for a long agent with

beliefs α, there exists an admissible control p′, s.t., P-a.s., supp(p′t) ⊂ [pat ,∞), for all

t ∈ [0, T ], and (p′, τ̂) does not decrease the objective value, i.e.

J (ν,θ),(p,τ)(1, α) ≤ J (ν,θ),(p′,τ̂)(1, α).

Similarly, given any β ∈ B and any admissible control (p, τ), for a short agent with

beliefs β, there exists an admissible control p′, s.t., P-a.s., supp(p′t) ⊂ (−∞, pbt ], for

all t ∈ [0, T ], and (p′, τ̂) does not decrease the objective value, i.e.

J (ν,θ),(p,τ)(−1, β) ≤ J (ν,θ),(p′,τ̂)(−1, β).

Proof: We consider a long agent with beliefs α and introduce

J̄
α,(p,τ)
t = E

[ ∫ τ

t

exp

(
−
∫ s

t

c̄αu
(
pau ∧Q−(pu), p

b
u

)
du

)
h̄α,as (ps, p

a
s , p

b
s)ds

+ exp

(
−
∫ τ

t

c̄αu
(
pau ∧Q−(pu), p

b
u

)
du

)
pbτ∧τ̂ |Ft

]
,

where

c̄αt (x, y) = cαt (x, y)1{t≤τ̂}, h̄α,at (κ, x, y) = hα,at (κ, x, y)1{t≤τ̂}, x, y ∈ R κ ∈ P(R),

with cα and hα,a defined in (3.10) and (3.13). Next, for any t ∈ [0, T ], any α ∈ A,

and any admissible p, we introduce

(3.49) Y α,p
t = ess supτ∈Tt J̄

α,(p,τ)
t ,
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The standard results on RBSDEs imply that Y α,p is the unique S2 solution of the

affine RBSDE,

−dY α,p
t = Ḡα,pt (Y α,p

t )dt− ZtdWt + dKt 0 ≤ t ≤ T(3.50)

Y α,p
t ≥ pbt∧τ̂ 0 ≤ t ≤ T,

∫ T

0

(Y α,p
t − pbt∧τ̂ )dKt = 0(3.51)

Y α,p
T = pbτ̂ ,(3.52)

where

Ḡα,pt (y) = −c̄αt
(
pat ∧Q−(pt), p

b
t

)
y + h̄α,at (pt, p

a
t , p

b
t) =[

−cαt
(
pat ∧Q−(pt), p

b
t

)
y + hα,at (pt, p

a
t , p

b
t)
]
1{t<τ̂},

with cα and hα,a defined in (3.10) and (3.13). Recall that V a satisfies (3.40), with

the generator

Gat (y, pbt) = 2λα
0

t p
b
tF

α0,−
t (pbt)−λα

0

t F
−,α0

t (pbt)y+λα
0

t P
a
t (y)Fα0,+

t (P a
t (y))−λα0

t F
+,α0

t (P a
t (y))y.

It is easy to deduce that

Ḡα
0,pa

t (V a
t ) = Gat (V a

t , p
b
t)1{t<τ̂}.

Hence, (V a
t∧τ̂ ) satisfies the same RBSDE as (Y α0,pa

t ). From the comparison principle,

we conclude that Y α0,pa

t = V a
t∧τ̂ . On the other hand, for any α ∈ A, let us choose

pt = δpat , to obtain:

Ḡα,p
a

t

(
Y α0,pa

t

)
= Ḡα,p

a

t (V a
t ) =

[
λαt p

b
tF
−,α
t (pbt) + λαt

∫ pbt

−∞
fαt (u)lc,bt (u)du− λαt F

−,α
t (pbt)V

a
t

+λαt p
a
tF

+,α
t (pat )− λαt F

+,α
t (pat )V

a
t

]
1{t<τ̂}

≥
[
λαt F

−,α
t (pbt)(p

b
t − V a

t ) + λαt F
+,α
t (pat )(p

a
t − V a

t ) + λα
0

t p
b
tF
−,α0

t (pbt)
]

1{t<τ̂},
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where lc,b is defined in (3.12), and the last inequality is based on the Assumptions

III.23, III.26, and on the monotonicity of lc,bt (·), which imply

λαt

∫ pbt

−∞
fαt (u)lc,bt (u)du ≥ λα

0

t

∫ pbt

−∞
fα

0

t (u)lc,bt (u)du = λα
0

t p
b
tF
−,α0

t (pbt).

Notice that, by construction, pbt ≤ V b
t ≤ V a

t ≤ pat . Then, Assumption III.23 implies

λαt F
−,α
t (pbt)(2p

b
t − V a

t ) ≥ λα
0

t F
−,α0

t (pbt)(2p
b
t − V a

t ),

λαt F
+,α
t (pat )(p

a
t − V a

t ) ≥ λα
0

t F
+,α0

t (pat )(p
a
t − V a

t ).

Thus, we obtain:

Ḡα
0,pa

t

(
Y α0,pa

t

)
≤ Ḡα,p

a

t

(
Y α0,pa

t

)
.

Using the comparison principle for RBSDEs, we conclude that Y α,pa

t ≥ Y α0,pa

t =

V a
t∧τ̂ . Consider an arbitrary strategy (p, τ). By switching between pa and p, we can

construct a new strategy p′, such that Y α,p′

t ≥ V a
t∧τ̂ ∨ Y

α,p
t , for all t. More precisely,

we define

Ḡα,p
′

t (y) = Ḡα,p
a

t (y) ∨ Ḡα,pt (y),

and solve the RBSDE (3.50)–(3.52). By the standard argument, the Y -component

of the solution is Y α,p′ , where p′t is defined to be equal to δpat if the maximum in

the above equation is achieved at Ḡα,p
a

t (Y α,p′

t ), and it is equal to pt otherwise. The

comparison principle implies that Y α,p′

t ≥ Y α,pa

t ∨ Y α,p
t ≥ V a

t∧τ̂ ∨ Y
α,p
t . Then, the

standard results on RBSDEs imply that the optimal stopping time associated with

Y α,p′ is

inf{t ∈ [0, T ] : Y α,p′

t ≤ pbt∧τ̂} = inf{t ∈ [0, T ] : V a
t ≤ pbt∧τ̂} = τ̂ .

Thus,

J
(ν,θ),(p,τ)
0 (1, α) = J̄

α,(p,τ)
0 ≤ Y α,p

0 ≤ Y α,p′

0 = J̄
α,(p′,τ̂)
0 = J

(ν,θ),(p′,τ̂)
0 (1, α).
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Next, we show that the control p can be chosen so that, P-a.s., for all t, supp(pt) ⊂

[pat ,∞). Consider any control p. By switching, if necessary, between pa and p, we

can ensure that Y α,p
t ≥ V a

t∧τ̂ . Then, for t < τ̂ , the generator of Y α,p is given by

Ḡα,pt (y) = −cαt
(
pat ∧Q−(pt), p

b
t

)
y + hα,at (pt, p

a
t , p

b
t)

= −λαt F
+,α
t (pat ∧Q−(pt))y + λαt p

b
tF

+,α
t (Q−(pt) ∧ pat )pt ((pat ,∞)) +

λαt

∫ pat

(Q−(pt)∧pat )∨0

fαt (u)

∫ pat

−∞

[(
z ∧ u+

(
pbt − u

)
1{z>u}

)]
pt(dz)du+

λαt F
+,α
t (pat )

∫ pat

−∞
zpt(dz)− λαt F

−,α
t (pbt)y + 2λαt p

b
tF
−,α
t (pbt)− λαt pbtF

+,α
t (pat )pt ((pat ,∞))

+ λαt

∫ ∞
pat

fαt (u)

∫ ∞
pat

[(
z ∧ lc,at (u) + pbt1{z>lc,at (u)}

)]
pt(dz)du

Let us estimate the first four terms in the right hand side of the above (i.e. the ones

that depend on pt(dx) restricted to x < pat ):

− λαt F
+,α
t (pat ∧Q−(pt))y + λαt p

b
tF

+,α
t (Q−(pt) ∧ pat )pt ((pat ,∞))

+ λαt

∫ pat

(Q−(pt)∧pat )∨0

fαt (u)

∫ pat

−∞

[(
z ∧ u+

(
pbt − u

)
1{z>u}

)]
pt(dz)du+

λαt F
+,α
t (pat )

∫ pat

−∞
zpt(dz)

≤ λαt sup
x≤pat

[ (
−y + pbt

)
F+,α
t (x) + pt ((−∞, pat ]) sup

z∈[x,pat ]

[
(z − pbt)F

+,α
t (z)

]]
.

Notice that, for t < τ̂ and y = Y α,p
t , we have pbt − y ≤ 0, and, hence,

sup
x≤pat

[ (
−y + pbt

)
F+,α
t (x) + pt ((−∞, pat ]) sup

z∈[x,pat ]

[
(z − pbt)F

+,α
t (z)

]]
= sup

z≤pat

[
(z − y)F+,α

t (z) + pbtpt ((pat ,∞))F+,α
t (z)

]
.

Due to Lemma III.25, the function z 7→ (z−y)F+,α
t (z) is nondecreasing in z ≤ P a

t (y).

As pbt ≤ 0, the function z 7→ pbt pt ((pat ,∞))F+,α
t (z) is also nondecreasing, and, hence,

the above supremum is attained at z = pat , provided P a
t (y) ≥ pat . The latter does



114

hold for t < τ̂ and y = Y α,p
t , as P a

t (·) is non-decreasing, pat = P a
t (V a

t ) and Y α,p
t ≥ V a

t .

Thus, the generator Ḡα,pt (Y α,p
t ) does not decrease if we replace p by

p′t(dx) = pt(dx)1[pat ,∞) + pt((−∞, pat ))δpat (dx).

In other words,

Ḡα,pt (Y α,p
t ) ≤ Ḡα,p

′

t (Y α,p
t ).

The comparison principle, then, yields Y α,p
t ≤ Y α,p′

t . Moreover, the optimal stopping

strategy associated with Y α,p′ is τ̂ . Repeating the argument used earlier in this

proof, we conclude that any strategy (p, τ̂) can be modified to (p′, τ̂), satisfying the

properties stated in the lemma, so that the objective value does not decrease. The

case of short agents is treated similarly.

The above lemma has a straight-forward but useful corollary.

Corollary III.31. Let Assumptions III.1–III.24 hold, and let (ν, θ) satisfy (3.47)–

(3.48). Given any α ∈ A, let (p, τ) be an optimal strategy for the long agents with

beliefs α, in the class of all admissible strategies satisfying: P-a.s. supp(pt) ⊂ [pat ,∞),

for all t ∈ [0, T ], and τ = τ̂ . Then (p, τ) is optimal in the class of all admissible

strategies, in the sense of Definition III.5. Similarly, given any β ∈ B, let (p, τ) be

an optimal strategy for the short agents with beliefs β, in the class of all admissible

strategies satisfying: P-a.s. supp(pt) ⊂ (−∞, pbt ], for all t ∈ [0, T ], and τ = τ̂ . Then

(p, τ) is optimal in the class of all admissible strategies, in the sense of Definition

III.5.

Thus, no matter which limit order strategy p an agent is using, it is optimal for

her to choose the following stopping threshold:

v̂(s) = V a1{s>0} + V b1{s<0}.
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This implies that, given a LOB ν in the form (3.47) and the stopping strategy v̂

as above, if an optimal limit order strategy p̂(s, α) exists for any state (s, α), then

(p̂(s, α), v̂) form an optimal control for the agents in state (s, α), in the sense of

Definition III.5. Moreover, in such a case, θ, given by (3.48), satisfies the condition

(3.8). Next, we need to construct a LOB ν, in the form (3.47), and the associated

optimal limit order strategies for all agents, s.t. (3.7) is satisfied. We begin by

showing that, for any ν in the form (3.47), the strategies (δpa , V
a) and (δpb , V

b) are

optimal for the extremal agents.

Lemma III.32. Let Assumptions III.1–III.26 hold, and let (ν, θ) satisfy (3.47)–

(3.48). Then, given (ν, θ), the strategy (δpa , V
a) is optimal for a long agent with

beliefs α0, and the strategy (δpb , V
b) is optimal for a short agent with beliefs β0, in

the sense of Definition III.5.

Proof: Consider a long agent with beliefs α0. In view of Corollary III.31, it suffices to

show the optimality in the class of strategies (p, τ̂), with supp(pt) ⊂ [pat ,∞). Notice

that Assumption III.26 implies:

lc,at (x) = x ∧ pat , ∀x ∈ supp
(
fα

0

t

)
.

Using the above observation, we recall the constructions from the proof of Lemma

III.30, to obtain, for any strategy p and all t < τ̂ :

Ḡα
0,p

t (y) = −λα0

t F
+,α0

t (pat )y − λα
0

t F
−,α0

t (pbt)y + 2λα
0

t p
b
tF
−,α0

t (pbt)

+λα
0

t F
+,α0

t (pat )
(
pat pt({pat }) + (pat + pbt)pt ((pat ,∞))

)
.

As pbt ≤ 0, the above expression is maximized at pt = δpat . Using the comparison

principle for the RBSDE satisfied by Y α0,p, we conclude that p = δpa produces the
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largest Y α0,p and, hence, the largest objective value for the long agents with beliefs

α0. The case of short agents is treated similarly.

3.4.1 Equilibrium strategies of the non-extremal agents

In this subsection we construct the measure-valued processes (νa, νb), in the form

(3.47), and a progressively measurable random field (p̂t(s, α)), such that the controls

(p̂(1, α), V a) and (p̂(−1, α), V b) are optimal for the non-extremal agents with beliefs

α, long and short, respectively (recall that the optimal strategies for the extremal

agents are constructed in Lemma III.32), and the fixed-point constraint (3.7) is

satisfied. In view of Lemma III.30, we can restrict the possible controls p to the

those satisfying: supp(pt) ⊂ [pat ,∞), for all t ∈ [0, T ]. It is also obvious that we can

restrict the support of pt to be in [−Cp, Cp]. As the stopping strategy is fixed, for

any α ∈ Â, the objective of a long player reduces to J̄
α,(p)
0 , where

J̄
α,(p)
t =

E
[ ∫ T

t

exp

(
−
∫ s

t

c̄αu
(
pau, p

b
u

)
du

)
h̄α,as (ps, p

a
s , p

b
s)ds+exp

(
−
∫ T

t

c̄αu
(
pau, p

b
u

)
du

)
pbτ̂ |Ft

]
,

c̄αt (pat , p
b
t) = cαt (pat , p

b
t)1{t≤τ̂}, h̄α,at (pt, p

a
t , p

b
t) = hα,at (pt, p

a
t , p

b
t)1{t≤τ̂},

and cα and hα,a defined in (3.10) and (3.13). Due to Assumptions III.23 and III.26,

we have

lc,bt (x) = inf
{
p > Q−(νbt ) : −Dt(p− x) > νbt ((p,∞))

}
= pbt ∨ x, ∀x ∈ supp(fαt ).

In addition, for any z ≥ pat ,

{u > 0 : lc,at (u) ≥ z} = {u > 0 : u ≥ z −D−1
t (νat ([pat , z)))},

and, hence, for any B ≥ pat ,∫ B

pat

fαt (u)(lc,at (u)− pat )du =

∫ lc,at (B)−pat

0

∫ Cp

u+pat−D
−1
t (νat ([pat ,p

a
t+u)))

fαt (y)dydu.
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The above observations allow us to simplify the objective:

hα,at (pt, p
a
t , p

b
t) = λαt

∫ ∞
pat

[
(z − pbt)F

+,α
t

(
z −D−1

t (νat ([pat , z)))
)

+ pbtF
+,α
t (pat )

+

∫ z−D−1
t (νat ([pat ,z)))

pat

fαt (u)lc,at (u)du
]
pt(dz) + 2λαt p

b
tF
−,α
t (pbt) =

λαt

∫ Cp

pat

[
(z − pbt)F

+,α
t

(
z −D−1

t (νat ([pat , z)))
)

+∫ z−pat

0

F+,α
t

(
u+ pat −D−1

t (νat ([pat , p
a
t + u)))

)
du
]
pt(dz)+

2λαt p
b
tF
−,α
t (pbt) + λαt p

b
tF

+,α
t (pat ).

Notice that the above objective does not depend on νb (for a given pb), hence, we

can separate the equilibrium problems of the long and short agents (this is only

true for the non-extremal agents, of course). For simplicity, we only consider the

problem of the long agents – the short agents can be treated similarly. Denote by

κt and ν̂at the push-forward measures of pt and νat , under the mapping x 7→ x − pat .

Clearly, the measurability property is preserved by this transformation, hence, we

can reformulate the equilibrium problem as a search for κ and ν̂a, with the values

in the space of measures with support in [0, Cp]. In the new variables, the objective

takes a more convenient form. In particular, hα,at (pt, p
a
t , p

b
t) = ĥα,at (κt, p

a
t , p

b
t), where

ĥα,at (κt, p
a
t , p

b
t) = λαt

∫ Cp

0

[
(z + pat − pbt)F

+,α
t

(
z + pat −D−1

t (ν̂at ([0, z)))
)

+

∫ z

0

F+,α
t

(
u+ pat −D−1

t (ν̂at ([0, u)))
)
du
]
κt(dz) + 2λαt p

b
tF
−,α
t (pbt) + λαt p

b
tF

+,α
t (pat ).

Note that J̄α,(p) solves a BSDE with the affine generator

Ĝαt (y) = c̄αu
(
pau, p

b
u

)
y + ĥα,at (κt, p

a
t , p

b
t).

In order to maximize J̄α,(p), it suffices to find a strategy κ which maximizes the above

generator. The latter is, in turn, equivalent to maximizing ĥα,at (·, pat , pbt). Thus, we
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need to find a progressively measurable random field (κt(α)), with values in P(R)

(with the weak topology on it), s.t., for µa-a.e. α ∈ Â,

(3.53) κt(α) ∈ argmaxκ′∈ψĥ
α,a
t (κ′, pat , p

b
t)

holds for dt × P-a.e. (t, ω), where ψ = {p ∈ P(Π): supp(p) ⊆ Π} and Π = [0, Cp].

The standard BSDE results, then, imply that κ(α) is optimal for the agents in state

(1, α), for µa-a.e. α ∈ Â. If, in addition, we ensure that the fixed-point constraint

(3.7) is satisfied (and a similar construction holds for the short agents), we obtain

an equilibrium in the continuum-player game, in the sense of Definition III.6. Notice

that we can rewrite

ĥα,at (κ′, pat , p
b
t) = λαt

∫
R
Ft(α, p, ν̂

a
t )κ′(dp) + 2λαt p

b
tF
−,α
t (pbt) + λαt p

b
tF

+,α
t (pat ),

(3.54) Ft(α, p, ν̂
a
t ) = (p+ pat − pbt)F

+,α
t

(
p+ pat −D−1

t (ν̂at ([0, p)))
)

+∫ p

0

F+,α
t

(
u+ pat −D−1

t (ν̂at ([0, u)))
)
du.

Assuming the extremal long agents post limit orders at pa, the fixed-point constraint

(3.7) (more precisely, the part of (3.7) that corresponds to the long agents) becomes:

(3.55) ν̂at ([0, x]) = µa({α0}) +

∫
Â
κt(α; [0, x])µa(dα), ∀x ≥ 0.

The above equations can be solved separately for different (t, ω), hence, to this end,

we fix (t, ω) and omit the t subscript whenever it causes no ambiguity. The statements

that follow hold for a.e. (t, ω). It turns out that it is more convenient to search for

a measure

K(dα, dx) = κ(α; dx)µa(dα),

which is an element ofMµa

(
Â× Π

)
, the space of finite sigma-additive measures on

Â × Π, with the first marginal µa. Transition from K to κ is accomplished via the
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usual disintegration. Thus, for a.e. (t, ω), we need to find (K, ν) ∈Mµa

(
Â× Π

)
×

Mµa(A) (Π) solving the following system

(3.56)

 K ∈ argmaxK∈Mµa(Â×Π)
∫
F (α, p, ν)K(dα, dp),

ν(dx) = µa({α0})δ0(dx) +K
(
Â× dx

)
,

whereMµa(A) (Π) is the space of finite sigma-additive measures on Π, with the total

mass µa(A) = µa({α0})+µa(Â). The above system can be formulated as a fixed-point

problem, in an obvious way. However, the main challenge in solving this problem

stems from the fact that F (α, ·, ·) is not continuous: e.g. it may be discontinuous in

p, if ν has atoms. Therefore, we replace F by its “mollified” version:

F̂ (α, p, ν) = sup
p′∈Π

F (α, p′, ν)− |p′ − p| .

The following lemma shows that we can replace F by F̂ in (3.56), and any solution

to the new problem will solve the original one.

Lemma III.33. For any α ∈ Â and ν ∈Mµa(A) (Π), the function p 7→ F̂ (α, p, ν) is

1-Lipschitz in p ∈ Π, and

argmaxp∈Π F̂ (α, p, ν) = argmaxp∈Π F (α, p, ν).

Proof: For convenience, we drop the dependence on (α, ν). The first statement is

clear from the definition. It is also clear that supp∈Π F̂ (p) = supp∈Π F (p), and we

denote this supremum by S. As F̂ is continuous in Π, it achieves its supremum,

hence, it suffices to show that F (p0) = S, for every p0 such that F̂ (p0) = S (note

that the opposite implication is obvious). Assume the contrary, then F (p) ≤ S − ε,

for some ε > 0 and all p ∈ Π ∩ (p0 − ε, p0 + ε) by the upper semi-continuity of F .

Then, we obtain F̂ (p0) ≤ S − ε, which is a contradiction. To see that F is upper

semi-continuous, notice that it is left-continuous, with only downward jumps, which

follows directly from (3.54).
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Summarizing the above discussion, to find a solution to (3.56), it suffices to find

a fixed point of the following correspondence

Mµa

(
Â× Π

)
3 K 7→ K̃ (ν̃(K)) ,

where

(3.57) ν̃(K; dx) = µ({α0})δpa(dx) +K(Â× dx) ∈Mµa(A) (Π)

is single-valued, and

(3.58) K̃(ν) = argmaxK∈Mµa(Â×Π)

∫
F̂ (α, p, ν)K(dα, dp) ⊂Mµa

(
Â× Π

)
.

Proposition III.34. Let Assumptions III.27, III.28 hold. Then, the correspondence

K : K 7→ K̃ (ν̃(K)), defined by (3.57)–(3.58), has a fixed point.

Proof: To prove the proposition, we use the Kakutani’s theorem for correspondences

(cf. Definition II.7.8.1 and Theorem II.7.8.6 in [35]). Note that Mµa

(
Â× Π

)
,

equipped with the weak topology, is convex and compact (by Prokhorov’s theorem).

In addition, it can be viewed as a subspace of the dual of the space of continuous

functions on Â×Π, which is semi-normed. Thus, in order to apply the Kakutani’s the-

orem, it only remains to show that K is upper hemi-continuous (uhc), with nonempty

compact convex values. Notice also that K̃(ν) is convex by definition (as an argmax

of a linear functional on a convex set), hence, K is convex-valued, and we only need

to show that it is uhc, with non-empty compact values. As p 7→ ν̃(p) is a continuous

function, and a composition of a continuous function and a uhc correspondence is a

uhc correspondence, it suffices to verify that ν 7→ K̃(ν) is a uhc non-empty compact

valued correspondence. To achieve this, we use the classical Berge’s theorem (cf.

[49], section E.3), which reduces to problem to the continuity of the functon

(3.59) (K, ν) 7→ φ(K, ν) =

∫
F̂ (α, p, ν)K(dα, dp),
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on Mµa

(
Â× Π

)
× Mµa(A) (Π), metrized via the Lévy-Prokhorov metric. In the

remainder of the proof, we show that φ(K, ν) is jointly continuous in (K, ν). More

precisely, φ(K, ν) is continuous in K, and it is continuous in ν (with respect to

Lévy-Prokhorov metric), uniformly over K.

First, we show that φ(K, ν) is continuous in K. By the definition of weak topology,

the desired continuity would follow from the joint continuity of F̂ (α, p, ν) with respect

to (α, p). Due to Lemma III.33, F̂ (α, p, ν) is 1-Lipschitz in p (uniformly over α ∈ Â),

hence, it suffices to check that F̂ (α, p, ν) is continuous in α. The latter follows from

the fact that F (α, p, ν) is continuous in α, uniformly over p ∈ Π. Indeed, notice that,

if, for some α′ ∈ U(α), we have |F (α′, p, ν)− F (α, p, ν)| ≤ ε ∀p ∈ Π, then

F̂ (α′, p, ν) = F (α′, p′, ν)− |p′ − p| ≤ F (α, p′, ν)− |p′ − p|+ ε ≤ F̂ (α, p, ν) + ε,

which, together with the analogous symmetric inequality, shows that

∣∣∣F̂ (α′, p, ν)− F̂ (α, p, ν)
∣∣∣ ≤ ε

The first equality in the above follows from the fact that F is upper semi-continuous

in p (and bounded from above by 2Cp), which is shown in the proof of Lemma III.33,

and, hence, the supremum in the definition of F̂ is achieved at some p′. To show

that F (α, p, ν) is continuous in α, uniformly over p ∈ Π, we recall (3.54), and the

desired continuity follows directly from Assumption III.27.

It remains to show that φ(K, ν) is continuous in ν ∈ Mµa(A) (Π), uniformly over

K ∈ Mµa

(
Â× Π

)
. As every such K has a fixed finite total mass, due to the defi-

nition of φ, the desired continuity follows from the fact that F̂ (α, p, ν) is continuous

in ν, uniformly over (α, p) ∈ Â × Π. To prove the latter, fix ε > 0, and let d0 be

Lévy-Prokhorov metric on Mµa(A) (Π). Let us show that there exists an increasing
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continuous deterministic function C0 : [0,∞)→ [0,∞), s.t. C0(0) = 0 and∣∣∣F̂ (α, p, ν1)− F̂ (α, p, ν2)
∣∣∣ ≤ C0(ε), ∀ p ∈ Π, α ∈ Â, d0(ν1, ν2) ≤ ε.

If we manage to show that there exists an increasing continuous deterministic func-

tion B : [0,∞)→ [0,∞), s.t. B(0) = 0 and

(3.60) F (α, p, ν1) ≤ F (α, (p− ε) ∨ 0, ν2) +B(ε),

then

F̂ (α, p, ν1) = F (α, p′, ν1)− |p′ − p| ≤ F (α, (p′ − ε) ∨ 0, ν2)− |p′ − p|+B(ε)

≤ F (α, (p′ − ε) ∨ 0, ν2)− |(p′ − ε) ∨ 0− p|+B(ε) + ε ≤ F̂ (α, p, ν2) +B(ε) + ε.

The latter, together with the analogous inequality in which ν1 and ν2 are switched,

yields the desired uniform continuity of F̂ in ν. Thus, it is only left to prove (3.60).

For any p ∈ Π, by the definition of the Lévy-Prokhorov metric, we have:

ν1([0, p)) ≥ ν2([0, (p− ε) ∨ 0))− ε

and, hence, by Assumption III.28,

−D−1(ν1([0, p))) ≥ −D−1 (ν2([0, (p− ε) ∨ 0)))− ε(ε).

Then, for any p ∈ Π,

p+ pa −D−1(ν1([0, p))) ≥ (p− ε) ∨ 0 + pa −D−1 (ν2([0, (p− ε) ∨ 0)))− ε(ε),

which implies

F+,α
(
p+ pa −D−1(ν+

1 (p))
)
≤ F+,α

(
(p− ε) ∨ 0 + pa −D−1(ν+

2 ((p− ε) ∨ 0))
)
+Mfε(ε),

where we used the fact that fα is bounded by some constant Mf . The above estimate,

along with the boundedness of pa, pb and F+,α, yields the desired inequality (3.60)
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for the first term in (3.54). Integrating the above estimate, we obtain the analogous

inequality for the last term in the right hand side of (3.54), thus, completing the

proof.

Proposition III.34 implies that, for a.e. (t, ω), we can find Kt,ω ∈ Mµa

(
Â× Π

)
,

s.t.

Kt,ω ∈ K̃ (ν̃(Kt,ω)) ,

and, hence, (Kt,ω, ν̃(Kt,ω)) satisfies (3.56). Next, we need to establish the measur-

ability of Kt,ω with respect to (t, ω). Namely, we need to show that there exists a

progressively measurable mapping (t, ω) 7→ Kt,ω ∈Mµa

(
Â× Π

)
, such that

(3.61) Kt,ω ∈ argmaxK′∈Mµa(Â×Π)φt,ω (K ′, ν̃(Kt,ω)) ,

for Leb ⊗ P-a.e. (t, ω), where φ and ν̃ are defined in (3.59) and (3.57). We denote

S = [0, T ]×Ω, and let S be the progressive sigma-algebra (defined w.r.t. the filtration

F) on S. We also denote X = Mµa

(
Â× Π

)
and introduce the correspondence

g1 : S × X→ X, given by

(t, ω,K) 7→ argmaxK′∈Xφt,ω(K ′, ν̃(K)).

Notice that X is separable and metrizable, and consider the function (t, ω,K,K ′) 7→

φt,ω(K ′, ν̃(K)), defined on (S×X2,S⊗B(X2)). Note that this function is continuous

in K ′ (as shown in the proof of Proposition III.34) and measurable in (t, ω,K) (as it is

continuous in K and measurable in (t, ω), as shown in the proof of Proposition III.34),

hence, it is a Carathéodory function. Then, the Measurable Maximum theorem (cf.

Theorem 18.18 in [2]) implies that g1 is a (S ⊗ B(X))-measurable correspondence

with nonempty and compact values. Consider another correspondence g2 : S → X,

given by

(t, ω) 7→ {K ∈ X : K ∈ argmaxK′φt,ω(K ′, ν̃(K))} .
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Let us show how to measurably select from g2, for Leb⊗P-a.e. (t, ω). The standard

measurable selection results (cf. Corollary 18.27 and Theorem 18.26 in [2]) imply

that such a selection is possible if g2 has S ⊗B(X)-measurable graph and non-empty

values. The latter follows from Proposition III.34, and the former is guaranteed by

the following lemma.

Lemma III.35. The correspondence g2 has a S ⊗ B(X)-measurable graph.

Proof: Denote this graph by Γg2 . Let IX : X→ X× X be given by IX(K) = (K,K).

Then, Γg2 = (id× IX)−1 (Γ), where Γ ⊂ S × X× X is given by

Γ = {(t, ω,K,K ′|(t, ω) ∈ S, K ∈ X, K ′ ∈ argmaxK′′∈Xφt,ω(K ′′, ν̃(K)))}

∩ {(t, ω,K,K)|(t, ω) ∈ S, K ∈ X} .

Clearly, id× IX is a measurable map, and the set {(t, ω,K,K)|(t, ω) ∈ S, K ∈ X} is

measurable. Therefore, we only need to check that

{(t, ω,K,K ′|(t, ω) ∈ S, K ∈ X, K ′ ∈ argmaxK′′∈Xφt,ω(K ′′, ν̃(K)))}

is S ⊗ B(X2)-measurable. The latter set is precisely the graph of g1, and it is mea-

surable as the correspondence g1 is measurable (cf. Theorem 18.6 in [2]).

Thus, we conclude that there exists a progressively measurable K, with values

in Mµa

(
Â× Π

)
, satisfying (3.61) for Leb ⊗ P-a.e. (t, ω). It only remains to

construct κ from K, by disintegration. Let us introduce A = S × Â, equipped

with the sigma-algebra S ⊗ B
(
Â
)

, and the measure Q on A × Π, defined via

Q(dt, dω, dα, dp) = Kt,ω(dα, dp)dtP(dω). Note that the marginal distribution of

Q on A is µa(dα)dtP(dω). Then, as the natural projection from A × Π to Π has

a Borel range, Theorems 5.3 and 5.4 from [41] imply that there exists a kernel

κ : A 3 (t, ω, α) 7→ κt,ω(α) ∈ P(Π), which is a regular conditional distribution of the
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natural projection from A× Π to Π, given the natural projection from A× Π to A,

under Q. Namely, for every absolutely bounded measurable f : A×Π→ R, we have

(3.62)∫
A×Π

f(t, ω, α, p)Kt,ω(dα, dp)dtP(dω) =

∫
A×Π

f(t, ω, α, p)κt,ω(α; dp)µa(dα)dtP(dω).

The above property yields that ν̂at,ω = ν̃(Kt,ω) and κt,ω satisfy the fixed-point con-

straint (3.55). It only remains to show that κ satisfies (3.53), for Leb ⊗ P ⊗ µa-

a.e. (t, ω, α). Assume that this is not the case, then, there exists a measurable set

B ⊂ [0, T ] × Ω, with positive measure, s.t. for any fixed (t, ω) ∈ B, there exists a

measurable set C ⊂ Â, s.t. µa(C) > 0 and, for all α ∈ C,∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κt,ω(α; dp) ≤

∫
R
Ft,ω(α, p, ν̃(Kt,ω))κt,ω(α; dp)

< sup
κ′∈ψ

∫
R
Ft,ω(α, p, ν̃(Kt,ω))κ′(dp) = sup

κ′∈ψ

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ′(dp).

The above inequality becomes non-strict for all α ∈ Â \C. Then, for a fixed (t, ω) ∈

B, we can choose a measurable κ̃ : Â → P(Π) (in the same way as we chose a

measurable K, except that, in this case, the measurability is required in the α-

variable), s.t.

sup
κ′∈ψ

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ′(dp) =

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ̃(α; dp), µa-a.e.α ∈ Â.

Thus, we obtain∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κt,ω(α; dp) <

∫
R
F̂t,ω(α, p, ν̃(Kt,ω))κ̃(α; dp),

for all α ∈ C, and the non-strict inequality holds for all α ∈ Â. Integrating with

respect to µa, and using (3.62) with f(t, ω, α, p) = F̂ (t, ω, α, p, ν̃(Kt,ω))), we obtain

a contradiction with (3.61) on the set B (which has a positive measure). Thus, for

µa-a.e. α ∈ Â, (3.53) holds for Leb ⊗ P-a.e. (t, ω). This means that, if we define
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p̂t(α) as the push-forward of κt(α), under the mapping x 7→ x + pat , the resulting

strategy p̂(α) maximizes the generator Ĝαt (y), for any y and a.e. (t, ω). Then, we

define νat to be the push-forward of ν̂at , under the mapping x 7→ x+ pat , and use the

standard BSDE results to conclude that, for µa-a.e. α ∈ Â,

J (ν,θ),(p̂(α),V a)(1, α) = J̄
α,(p̂(α))
0 ≥ J̄

α,(p′)
0 = J (ν,θ),(p′,V a)(1, α)

holds for all admissible strategies p′, which means that p̂(α) is optimal for the long

agents with beliefs α. With such a choice of νa and p̂, the fixed-point condition on

νa, given in (3.7), is satisfied, as it is equivalent to (3.55) (assuming the extremal

long agents post limit orders at pa, which is optimal for them). This, along with

Corollary III.31, implies that (p̂(α), V a) is an optimal strategy for the long agents

with beliefs α ∈ Â. The short agents are treated similarly. Thus, we complete the

proof of Theorem III.29.

Remark III.36. Notice that, as announced in Remark III.7, we have constructed an

equilibrium, satisfying

vt(1, α) = vat = V a
t , vt(−1, α) = vbt = V b

t , ∀α ∈ A ∪ B, (t, ω) ∈ [0, T ]× Ω.

Therefore, in such an equilibrium, no agents execute market orders before the end

of the game τ̂ , and, hence, the empirical distribution µ remains constant and (3.9)

holds.

3.5 Example

In this section, we consider the simplest concrete example of our model and show

how it can be used. Consider a stochastic basis (Ω, F̃ = (Ft)t∈[0,T ] ,P), with a Poisson

random measure N , whose compensator is λtft(x)dxdt, as described in Subsection

3.2.1. We assume that Jt(x) = x (i.e. M ≡ N), so that N is the jump measure of
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the (potential) fundamental price process X. We also assume that T = 20, λt ≡ 1

and ft is the density of a uniform distribution on [−C0, C0], where the constant C0

is chosen to be sufficiently large, so that this interval contains the supports of all fα

described below. We take A = {α0} ∪ Â, B = {β0} ∪ B̂, where

Â =

{
i

K
|0 ≤ i < K

}
, B̂ =

{
− i

K
|0 ≤ i < K

}
are the uniform partitions of unit intervals, and K = 500 is used for most of the

computations herein. The restrictions of µa (resp. µb) on Â (resp. B̂) assign a mass

of 1/K to every point of the corresponding discrete space. Note that this implies

µa(Â) = µb(B̂) = 1. We also define µa({α0}) = µb({β0}) = 0.1.

Next, we consider a collection of positive numbers {λ+,α, λ−,α, C+,α, C−,α}α∈A∪B,

and define

fα(x) =
λ+,α

(λ+,α + λ−,α)C+,α
1[0,C+,α](x) +

λ−,α

(λ+,α + λ−,α)C−,α
1[−C−,α,0](x),

λα = λ+,α + λ−,α.

Herein, we use C+,α0 = C−,α0 = C+,β0 = C−,β0 = 0.5 and

C+,α = a+ bα, C−,α = C−,α0 , ∀α ∈ Â,

C−,β = a− bβ, C+,β = C+,β0 , ∀ β ∈ B̂,

with a = 0.5 and b = 10. Finally, for any α ∈ A ∪ B, we introduce

Γα(x) =
λα

λ

fα(x)

f(x)
− 1, dZα

t = Zα
t−

∫
R

Γα(x) [N(dt, dx)− λf(x)dtdx],

and define Pα << P by its Radon-Nikodym density Zα
T . One can easily check, using

the general results in [39] (or in [23], for the deterministic case, used herein) that,

under such Pα, N is a Poisson random measure with the compensator λαfα(x)dxdt.
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We assume that the demand elasticity is deterministic, constant in time, and

linear in price:

Dt(p) = −kp,

with the elasticity parameter k = 0.2.

With the above choice of {C±,α0 , C±,β0 , µa({α0}), µb({β0}), k}, it is easy to see

that Assumption III.26 is satisfied. Notice that the choice of λ±,α, for α ∈ Â ∪ B̂,

does not affect the equilibrium, as long as Assumptions III.23 and III.24 are satisfied.

This is, clearly, the case if we choose λ±,α = λ±,α
0

and λ±,β = λ±,β
0
, for α ∈ A and

β ∈ B. Herein, we consider several different sets of values for {λ±,α0
, λ±,β

0}.

Let us construct an equilibrium in this example. Notice that, in the present case,

the Brownian motion W does not affect the jump intensities and, in turn, the agents’

objectives, hence, the RBSDE system (3.41) becomes a system of reflected ODEs.

We can solve it easily, using a simple Euler scheme, then, recover the value functions

(V a, V b), as shown in Lemma III.19, and construct the bid and ask prices, (pa, pb), in

the feedback form, as shown in Lemma III.18. We implement this strategy with the

parameters chosen above, and with λ+,α0 = 2.5, λ−,α0 = 1, λ+,β0 = 1, λ−,β0 = 2.5 (so

that the extremal ask agents are bullish whereas the extremal bid agents are bearish).

The results are shown in the left part of Figure 3.1. Using the same parameters, we

consider the book beyond the best bid and ask prices. In order to construct it, we

solve the fixed-point problem (3.56) numerically. The latter is achieved by limiting

the set of possible price levels for the limit orders to a finite set (i.e. to a partition

of a large interval), which reduces (3.56) to a finite-dimensional fixed-point problem.

In addition, we allow each agent to post a limit order at a single price level only,

which further simplifies the problem.8 Thus, we find a solution by the standard

8Note that this restriction does not compromise the optimality of the agents’ actions, provided a fixed point
can be found. Indeed, it is a well known phenomenon that, in a continuum-player game, an equilibrium with pure
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recursive iteration, maximizing, at each step, the objective over a finite set. The

resulting optimal limit order strategies of the agents (at time zero) are plotted in the

right part of Figure 3.1, as a function of the agents’ beliefs α ∈ Â ∪ B̂. Notice that

the optimal limit order strategy p(·) is piece-wise constant. It is worth mentioning

that this discreteness seems to be inherent in the model and not just an artifact of

the discretization of prices or beliefs that we chose herein. Indeed, Figure 3.1 was

obtained with 500 different values of beliefs (i.e. K = 500) and with 1000 possible

price levels, while the number of jumps of p(·) is clearly much smaller than any one

of these numbers. In fact, we have repeated the computations, increasing both K

and the number of possible price levels, and the results do not change. Naturally,

the associated LOB is given by a finite combination of Dirac measures – it is shown

in the left part of Figure 3.2.

Finally, we demonstrate how the proposed framework can be used to model the

indirect market impact: i.e. how a change to the LOB may create a “feedback” effect

and cause further changes to it. Note that the initial change may be triggered by

a trade (which is the case in the classical literature on optimal execution), or by a

new limit order. An extreme example of the latter is the so-called “spoofing” – i.e.

posting a large limit order with the goal to make the price of the asset move in the

opposite direction.9 To the best of our knowledge, to date, there exists no model

capable of explaining how exactly this activity causes the LOB (and, in particular,

the price) to change. To model this process within the present example, we assume

that {λ±,α0
, λ±,β

0} are, in fact, functions of a relevant market indicator, which we

controls also provides an equilibrium for a setting with distributed controls. This is, in fact, one of the advantages of
the continuum-player games. We consider distributed controls only to prove that the equilibrium does exist, which
is much harder (if at all possible) to show for a setting with pure controls.

9We stress that intentional spoofing is an illegal activity.
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denote by I:

λ+,α0

= 2.3 exp (Is) , λ−,α
0

= 1 exp (−Is) ,

λ+,β0

= 1 exp (Is) , λ−,β
0

= 2.3 exp (−Is) ,

where s = 2.6 is the sensitivity. We further assume that I is the so-called market

imbalance: the ratio of the size of all orders at the best bid over the size of all orders

at the best ask, less one. It is a well known empirical fact (cf. [21]) that such an

indicator has a predictive power for the direction of the next price move. Note that

I is a function of the LOB, which, in turn, is an outcome of an equilibrium, in which

I is the input. Strictly speaking, our results do not guarantee the existence of an

equilibrium with this additional fixed-point constraint. Nevertheless, we can try to

compute it numerically. For example, choosing the initial factor value I = .0984456,

we obtain the equilibrium LOB (consistent with the chosen level of market imbalance

I) shown in the right part of Figure 3.2 (at the top). Next, we add an extra limit

buy order of size 0.05, located at the best bid price, to this LOB – as shown in the

bottom graph in the right part of Figure 3.2. Clearly, the new LOB is no longer in

equilibrium, hence, the agents will adjust their controls to reach a new equilibrium.

Of course, in theory, this process happens instantaneously, and we simply observe

the outcome of the new equilibrium. However, it is also very insightfull to see how

the new equilibrium is reached, in a sequence of steps. At each step, we fix the value

of I given by the imbalance of the LOB at the previous step, and compute the new

LOB from the equilibrium, and so on. Figure 3.3 shows what happens to the LOB

and to the functions (V a, V b) in the first five steps. We can see that the change in

the factor makes the agents more bullish about the asset, and they tend to move

their limit orders higher. In particular, the size of the best bid increases, while the

size of the best ask decreases, further increasing the market imbalance. The left part
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of Figure 3.3 also shows that, starting from step three, the value functions V a and

V b coincide at time zero, which means that the agents, in fact, choose to submit

an internal market order, terminating the game. Thus, our model, in particular,

shows how the market imbalance can be interpreted as a “self-fulfilling prophecy”:

the fact that the agents base their beliefs on the market imbalance, itself, implies

that a sufficient increase in the market imbalance will, indeed, trigger a market buy

order.

Of course, the analysis provided in this section is merely an example, which is

meant to illustrate how our results can be used to model the changes in a LOB

resulting from the changes in a relevant market indicator. In general, we do not need

to limit ourselves to the market imbalance, but may consider other indicators: e.g.

choosing the size and direction of the last trade as the relevant indicator, would allow

one to model the “indirect” impact of a market order on the LOB (in addition to

the obvious, direct, impact resulting from immediate execution of the limit orders).

In our future research, we plan to find an appropriate model specification (including

the choice of the most appropriate market factors), that is consistent with empirical

findings, and to test the predictions of our model against the real market data.



132

Figure 3.1: On the left: value functions (V b, V a) (red and blue), and the bid and ask prices (pb, pa)
(purple and orange), as functions of time. On the right: the optimal price level of a

limit order, as a function of the beliefs α ∈ Â∪ B̂. Parameters: λ+,α0 = 2.5, λ−,α0 = 1,
λ+,β0 = 1, λ−,β0 = 2.5.

Figure 3.2: Left: LOB at time zero, with λ+,α0 = 2.5, λ−,α0 = 1, λ+,β0 = 1, λ−,β0 = 2.5. Right:
equilibrium LOB at time zero, with the parameters depending on the market imbalance
I (top), and the same LOB, with an additional (yellow) limit order (bottom).
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Figure 3.3: On the left: value functions (V b, V a) (red and blue), as functions of time. On the right:
LOB at each step of the convergence to a new equilibrium.



CHAPTER IV

Effects of Tick Size

4.1 Introduction.

In this chapter we continue our investigation of agent-based approaches to mod-

eling various phenomena in market microstructure initiated in chapters II, III. This

time we focus on a continuous-time case with discrete prices, to model more realisti-

cally the actual markets which have a finite tick size. Unlike in those two chapters,

we only consider a two-agent game with one long and one short agent. It should be

understood that the equilibrium we construct for this game can be extended to an

equilibrium for the continuum-player game with two clusters of equivalent agents on

buy and sell sides, similarly to chapter III.

What we focus on here is instead the relevance of the location of the agents’

estimate of the ’true price’ relative to multiples of the tick size: this spatial inho-

mogeneity is important for understanding the clustering of market orders and, more

generally, the non-uniformity of market impact across time. Consider the following

as an example of a possible practical relevance of this spatial structure: if we think of

the true price as an imbalance-weighted bid-ask price, it is well-known that for many

1-tick stocks the trade volume is higher on average when this true price is close to

bid or ask. But this is exactly what our model would imply, as with realistic param-

134
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eters equilibria it produces are such that the agents would join external investors in

submitting market orders when the true price is close to a multiple of the tick size.

Moreover, the spatial structure implied by the model depends on the potentially

measurable model parameters (volatility, adverse selection level), suggesting some

avenues for empirical investigations we plan to pursue in the future work.

The main challenges of this work are on the mathematical side. The game we

consider reduces to a system of two Markovian control-stopping optimization prob-

lems, coupled through controls and stopping barriers which are discontinuous func-

tionals (actually, floors and ceilings) of the other agent’s value function. A fixed

point problem which solving such system reduces to lacks continuity, contractivity

or monotonicity properties, rendering it intractable by conventional methods. We

are able to solve it for the case of a 1-dimensional Brownian motion true price, which

allows us to utilize the geometric approach to (possibly rather irregular) linear dif-

fusion stopping problems developed in [26],[25]. This approach, combined with the

quasi-periodic structure of the problem arising from the discreteness of admissible

order price levels, allows us to establish a sufficiently strong monotonicity property of

agents’ value functions in the case when the true price volatility is sufficiently high.

This monotonicity implies the agents’ value processes are sufficiently noisy, which

means that the discontinuity of the coupling between the agents gets smoothed out.

Along with a few other special properties of agents’ value functions, this allows us

to restrict the fixed point problem to a subset on which its continuity can actually

be established.

The chapter is organized as follows. In section 4.2 we describe the game mechan-

ics and introduce the main ingredients of the model. In section 4.3 we investigate

the properties of the individual agent’s value function given that the price controls



136

of both agents and the other agent’s value function are fixed. We first show its basic

relative boundedness and quasi-periodicity properties. We then introduce the analyt-

ical machinery of second order ODEs related to linear diffusions, which together with

the geometric approach to the linear diffusion optimal stopping mentioned above al-

lows us to establish a sufficiently strong monotonicity of an agent’s value function

for all admissible price controls. The section ends with a proposition establishing

the continuity of one agent’s value function in the other agent’s value function pro-

vided the latter is appropriately monotonous, relatively bounded and quasi-periodic.

In section 4.4 we first address the control parts of agents’ optimization problems:

we introduce response control operators and show the price controls they produce

are indeed optimal. Our situation is somewhat less regular than the one treated

in standard references, so we have to exploit the special structure of the problem

and introduce some additional tricks to show this optimality. We then show these

response control operators are continuous in the appropriate topology and also show

how the coupled optimization problem we are solving reduces to a certain fixed point

problem. Finally we show the continuity of this fixed point problem and the exis-

tence of a fixed point of a special type, which implies the existence of a solution to

our coupled optimization system.

4.2 Buyers-sellers game

Consider two agents, long and short, aiming to sell and buy, respectively, one unit

of the asset.

Every agent can post a limit order (of the respective type – buy or sell) at a chosen

price level, or submit a market order (of the same type). We denote the location

of a limit order posted by the long agent at time t by pat . Similarly, we denote the
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location of a limit order posted by the short agent at time t by pbt . Both processes

take values in he set of integers Z. We interpret their values as prices in multiples of

tick size for the asset.

We denote the stopping time at which the long agent executes a market order by

τa. Similarly, we denote the stopping time at which the long agent executes a market

order by τ b.

Each agent believes that the external investors arrive to the market according to

a Poisson process N with intensity λ.

The current estimated mean value of the fundamental price, from the point

of view of each agent, is given by the process X, with

Xt = X0 + σBt,

where B is a Brownian motion, independent of N .

The processes (pa, pb) and the stopping times (τa, τ b) are adapted to FB.

At any arrival time t of N , the value of the fundamental price, p0
t , is determined

by

p0
t = Xt + ξ

where ξ is a random variable, independent of B, with mean 0 and cdf F .

An external market buy order is executed at time t if and only if t is an arrival

time of N and p0
t ≥ pat . Similarly, an external market sell order is executed at

time t if and only if t is an arrival time of N and p0
t ≤ pbt .

If a long (short) agent submits an internal market sell (buy) order at time t, it

is executed at bV b
t c (resp. dV a

t e), where V b, V a are value processes for short and

long agents respectively. Given our perfect information/perfect rationality setup, a

sell agent would run away from a predictable buy market order if it doesn’t improve
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on her value function, and would take it if it does, so the smallest price (which also

should be an integer) at which the long agent would agree to trade is dV a
t e. Hence,

a short agent can execute her market buy order at this price level.

The game ends at the time of the first trade: when the first market order is

executed. The agent, or agents, who participated in that trade receive/pay the

price the trade was struck at. If the trade ended via an external market buy (resp.

sell) order, so that only one of the agents actually traded, at some time τ , and

ξτ = p0
τ −Xτ , then the short (resp. long) agent’s remaining inventory is marked to

dXτ+αξτe (resp. bXτ+αξτc). The choice of Xτ+αξτ (where 0 < α < 1 is the adverse

selection parameter) is based on the following. The observed difference between the

actual fundamental price p0 and the mean fundamental price X is informative (to a

degree controlled by α) for the subsequent estimate of the mean fundamental price,

or, in other words, the external order flow affects linearly the agents’ estimate of the

mean fundamental price. Taking the ceiling and floors is meant to approximate the

’next round’ pa and pb.

In this work, we consider a game with infinite time horizon and only allow for

Markovian strategies, so that pat , p
b
t are (time-independent) functions of Xt, and τa,

τ b are hitting times of Xt.

Then agents value processes are given by functions of Xt as well. It’s not hard

to show that if one of the agents is using such Markovian controls, it is possible for

the other agent to choose optimal controls which are Markovian as well. (We do not

claim that all equilibria of the game are Markovian.)

Similarly to chapter III, one can show that an equilibrium in the control-stopping

game described above can be constructed by solving the following fixed point problem
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for the functions (pa∗, pb∗, V̄ a, V̄ b):

(4.1)


V̄ a(x) = suppa∈Aa supτ J

a
(
x, τ, pa, pb∗, V̄ b

)
,

V̄ b(x) = infpb∈Ab infτ J
b
(
x, τ, pa∗, pb, V̄ a

)
,

where the classes of admissible control functions, Aa, Ab, are defined below, in As-

sumption IV.2, and the optimal pa∗ ∈ Aa and pb∗ ∈ Ab satisfy

sup
pa∈Aa

sup
τ
Ja
(
x, τ, pa, pb∗, V̄ b

)
= sup

τ
Ja
(
x, τ, pa∗, pb∗, V̄ b

)
,

inf
pb∈Ab

inf
τ
J b
(
x, τ, pa∗, pb, V̄ a

)
= inf

τ
J b
(
x, τ, pa∗, pb∗, V̄ a

)
,

and

Ja
(
x, τ, pa, pb, v

)
= Ex

[ ∫ τ

0

exp

(
−
∫ t

0

c(pa(Xs), p
b(Xs), Xs)ds

)
ga(pa(Xt), p

b(Xt), Xt)dt

+ exp

(
−
∫ τ

0

c(pa(Xs), p
b(Xs), Xs)ds

)
bv(Xτ )c

]
,

(4.2)

J b
(
x, τ, pa, pb, v

)
= Ex

[ ∫ τ

0

exp

(
−
∫ t

0

c(pa(Xs), p
b(Xs), Xs)ds

)
gb(pa(Xt), p

b(Xt), Xt)dt

+ exp

(
−
∫ τ

0

c(pa(Xs), p
b(Xs), Xs)ds

)
dv(Xτ )e

]
(4.3)

with Ex[·] = E [·|X0 = x] and

(4.4) c(pa, pb, x) = λ
(
(1− F (pa − x)) + F

(
pb − x

))
,

(4.5) ga(pa, pb, x) = λ
(
pa (1− F (pa − x)) + F b(pb, x)

)
,

(4.6) gb(pa, pb, x) = λ
(
pbF

(
pb − x

)
+ Fa(pa, x),

)
(4.7) F b(pb, x) =

∫ pb−x

−∞
bx+ αycdF (y),

(4.8) Fa(pa, x) =

∫ ∞
pa−x
dx+ αyedF (y).
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4.3 Agents’ optimal stopping problems

In this section, we introduce the assumptions and derive a number of properties

of the agents’ objective functions. In the subsequent section, we use these results to

establish the existence of a solution to the target fixed-point problem, and, in turn,

construct an equilibrium of the associated control-stopping game.

First we introduce the notion of admissible prices. Unfortunately, we have to

constrain agents’ choice a bit a priori, namely, we have to assume agents bid and ask

prices are always such that the order execution rate at either side is bounded away

from zero. It is necessary to have this undegenerate discounting for our analytical

machinery to work, and we couldn’t find a way to obtain this property endogenously

in sufficient generality. In all the realistic examples we investigated this constraint

is not binding. More specifically, define

Aa0 = {x|1− F (x) ≥ cl
2λ
}, Ab0 = {x|F (x) ≥ cl

2λ
}

Aa(x) = x+Aa0, Ab(x) = x+Ab0

For any cl > 0 we define

Definition IV.1. The control pa(x) (pb(x)) is admissible if it is a measurable func-

tion and

pa(x) ∈ Aa(x) ∩ Z, ∀x
(
resp.pb(x) ∈ Ab(x) ∩ Z, ∀x

)
and there exists at least one pb (resp. pa) with the above property such that pa ≥ pb.

One can check admissibility of pa, pb implies in particular that

‖pa(x)− x‖∞ ≤ C,
∥∥pb(x)− x

∥∥
∞ ≤ C

for some C > 0, where ‖ · ‖∞ denotes L∞ norm. It also implies

c(pa(x), pb(x), x) ≥ cl, ∀x



141

Also, from the definition of c, and as λ is fixed throughout the chapter, we get

(4.9) c(pa(x), pb(x), x) ≤ cu = 2λ > 0

We denote by Aa (Ab) the sets of all admissible pa (resp. pb). These sets might

be empty for all cl > 0 if the support of ξ is too narrow, so we need to make the

following

Assumption IV.2. There exists cl > 0 so that the corresponding Aa, Ab are non-

empty.

We fix such cl for the rest of the chapter.

Another property we are going to use a lot is the following

Definition IV.3. We say a measurable function f is C-close to x, where C > 0 is

a constant, if

‖f(x)− x‖∞ ≤ C

We call a barrier v(x) admissible if it is measurable and is C-close to x.

Consider

(4.10) V a
(
x, pa, pb, v

)
:= sup

τ
Ja
(
x, τ, pa, pb, v

)
,

(4.11) V b
(
x, pa, pb, v

)
:= inf

τ
J b
(
x, τ, pa, pb, v

)
.

It’s easy to see these are well-defined and C-close to x for some C for all admissible

controls pa, pb and admissible barriers v.

Note that pa, pb, V̄ a, V̄ b and x are measured in ticks, and only the relative

measurements are interpretable, not the absolute numbers, so the sensible equilibria

should satisfy

(4.12)

V̄ a(x+1) = V̄ a(x)+1, V̄ b(x+1) = V̄ b(x)+1, pa∗(x+1) = pa∗(x)+1, pb∗(x+1) = pb∗(x)+1
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We will use this property a lot in what follows so we introduce a term for it:

Definition IV.4. We say a function f(x) has 1-shift property if

f(x+ 1) = f(x) + 1, ∀x ∈ R

An important first step toward establishing the existence of an equilibrium of (4.1)

in the class of functions which have 1-shift property and are C-close to x would be to

check these properties are preserved by individual agents’ optimization functionals

V a(· · · ), V b(· · · ):

Lemma IV.5. If admissible barriers va, vb and admissible controls pa, pb have 1-shift

property then so do V a(x, pa, pb, vb) and V b(x, pa, pb, va). Additionally, we have

c(x+ 1, pa + 1, pb + 1) = c(x, pa, pb)

ga

c
(x+ 1, pa + 1, pb + 1) =

ga

c
(x, pa, pb) + 1,

gb

c
(x+ 1, pa + 1, pb + 1) =

gb

c
(x, pa, pb) + 1,

for all x, pa, pb, which means that c(x, pa(x), pb(x)) is 1-periodic and ga

c
(x, pa(x), pb(x)),

gb

c
(x, pa(x), pb(x)) have the 1-shift property.

Proof: Immediate after rewriting the objective in the form (4.14).

In what follows we will often suppress the dependence on pa(x), pb(x) from nota-

tion to avoid clutter, and denote

c(x) = cp(x) = c(pa(x), pb(x), x)

ga(x) = gap(x) = ga(pa(x), pb(x), x)

gb(x) = gbp(x) = gb(pa(x), pb(x), x)

F b(x) = F bp(x) =

∫ pb(x)−x

−∞
bx+ αycdF (y)

Fa(x) = Fap (x) =

∫ ∞
pa(x)−x

dx+ αyedF (y)

(4.13)
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where we use the subscript p when we want to emphasize the dependence of certain

coefficients on pa(x), pb(x).

Lemma IV.6. If admissible barriers va, vb, admissible controls pa, pb are such that

va, vb, ga

c
, gb

c
are C-close to x then so are V a(x, pa, pb, vb) and V b(x, pa, pb, va).

Proof: We will now show the claim for V a(· · · ), the one for V b(· · · ) being analogous.

From the definitions (4.10) and (4.2) we get

(4.14) V a(x, pa, pb, vb)− x =

sup
τ

Ex
[∫ τ

0

exp

(
−
∫ t

0

c(Xs)ds

)
ga(Xt)dt+ exp

(
−
∫ τ

0

c(Xs)ds

)
bvbc

]
− x =

sup
τ

Ex
[ ∫ τ

0

ga

c
(x)− x d

(
− exp

(
−
∫ t

0

c(Xs)ds

))
+

exp

(
−
∫ τ

0

c(Xs)ds

)(
bvbc − xc

) ]
To get the upper bound, note the last expression in the above is

≤ sup
τ

Ex
[∫ τ

0

Cd

(
− exp

(
−
∫ t

0

c(Xs)ds

))
+ exp

(
−
∫ τ

0

c(Xs)ds

)
C

]
= C,

where makes use of ga

c
− x ≤ C, bvbc − x ≤ vb − x ≤ C, by assumption. To get the

lower bound, note the same expression also is

≥ Ex
[∫ ∞

0

ga

c
(x)− xd

(
− exp

(
−
∫ t

0

c(Xs)ds

))]
≥

Ex
[∫ ∞

0

−Cd

(
− exp

(
−
∫ t

0

c(Xs)ds

))]
≥ −C

where we used τ =∞.

In what follows, we analyze V a(x, pa, pb, vb) (V b(x, pa, pb, va being analogous) more

closely, in particular establishing its monotonicity in x and continuity in vb (resp.

va), under appropriate conditions. Throughout this analysis, we think of pa and pb as

fixed functions of x, while we vary x and vb(va). We are going to make heavy use of
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the well-known connection between linear diffusions and certain second-order ODEs.

Our discounting and running cost functions are a bit less regular (measurable and

locally bounded, but not continuous) than is commonly assumed in the literature,

so a modicum of care is required in making this connection rigorous.

First, as in [38], define, for given pa(x), pb(x)

(4.15) ψ(x) = ψp(x) =


Ex
[
exp

(
−
∫ τ0

0
cp(Xs)ds

)]
, x ≤ 0

E0
[
exp

(
−
∫ τx

0
cp(Xs)ds

)]−1
, x > 0

and

(4.16) φ(x) = φp(x) =


Ex
[
exp

(
−
∫ τ0

0
cp(Xs)ds

)]
, x > 0

E0
[
exp

(
−
∫ τx

0
cp(Xs)ds

)]−1
, x ≤ 0

Clearly ψ(0) = φ(0) = 1, ψ is strictly increasing, φ is strictly decreasing. The

results from [38] (and the absolute continuity of the killing measure for the diffusion

corresponding to our discounted problem) imply f = φ or f = ψ has right derivative,

f+, everywhere and satisfies

2

σ2

∫
(a,b]

c(x)f(x)dx = f+(b)− f+(a)

for all b > a. Passing to the limit b ↓ a or a ↑ b shows that f+ is continuous. One

can also show the following.

Lemma IV.7. If f is continuous and has continuous right derivative on [a, b] then

f ∈ C1(a, b).

The (elementary) proof of this fact can be found in the appendix. Thus, the

equation for f = φ or f = ψ can be rewritten as

(4.17)
2

σ2

∫
(a,b]

c(x)f(x)dx = f ′(b)− f ′(a)
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As c ∈ L∞(R) and f ∈ C(R), fxx exists a.e. and satisfies

σ2

2
fxx − cf = 0, a.e.

for f = ψ or f = φ, and, in particular, f ∈W2,loc.

Next, define

(4.18) fa(x) = fap (x) =
2

σ2W

(
φ(x)

∫ x

−∞
ψ(y)ga(y)dy + ψ(x)

∫ ∞
x

φ(y)ga(y)dy

)

(4.19) f b(x) = f bp(x) = − 2

σ2W

(
φ(x)

∫ x

−∞
ψ(y)gb(y)dy + ψ(x)

∫ ∞
x

φ(y)gb(y)dy

)
where the Wronskian W = ψ′(x)φ(x) − φ′(x)ψ(x) is actually independent of x and

positive. Using the fact that φ(x)
∫ x
−∞ ψ(y)ga(y)dy (and other similar terms) is

equal to the integral of its (a.e. defined) derivative as a product of two absolutely-

continuous (on bounded intervals) functions, we get that fa is an integral of a con-

tinuous function

2

σ2W

(
φ′(x)

∫ x

−∞
ψ(y)ga(y)dy + ψ′(x)

∫ ∞
x

φ(y)ga(y)dy

)
and so has a continuous derivative, which is moreover a.e. differentiable (as φ′, ψ′

and the integrals terms are), and furthermore

(4.20)
σ2

2
faxx − cfa = −ga, a.e.

Similar claims hold for f b. This implies in particular that fa, f b are in W2,loc. Apply-

ing Dynkin’s formula together with some easy to get asymptotics to exp
(
−
∫ t

0
c(Xs)ds

)
fa(Xt)

and passing to the limit over a sequence of increasing to infinity stopping times one

can further get the following probabilistic representation

(4.21) fa(x) = Ex
[∫ ∞

0

exp

(
−
∫ t

0

c(Xs)ds

)
ga(Xt)dt

]
and similarly for f b.

We’ll also make use of the following elementary bounds on φ, ψ:
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Lemma IV.8. Let cl > 0 (cu > 0) be the lower (resp. upper) bound of c(x). Then

for all x

ψ(x) ≤ exp

(√
2cl
σ2
x

)
∨ exp

(√
2cu
σ2

x

)
and

φ(x) ≤ exp

(
−
√

2cl
σ2
x

)
∨ exp

(
−
√

2cu
σ2

x

)
See appendix for the proof.

Next, these fa, f b inherit the C-closeness to x and 1-shift property from prices:

Lemma IV.9. If admissible pa, pb are such that ga

c
, gb

c
are C-close to x then so are

fa(x), f b(x).

Proof: The claim about fa follows from

(4.22) fa(x)− x = Ex
[∫ ∞

0

(
ga

c
(Xt)−Xt

)
d

(
exp

(
−
∫ t

0

c(Xs)ds

))]
and similarly for the one about f b.

Lemma IV.10. If admissible pa, pb have 1-shift property then so do fa, f b.

Proof: Follows from the representation (4.22) and lemma IV.5.

More interestingly, the 1-shift property of pa, pb implies fa, f b approach f0(x) = x

in C1 in fast-diffusion limit, and admit two-sided derivative bounds as long as the

diffusion coefficient is nonzero:

Proposition IV.11. If admissible pa, pb have 1-shift property, and are such that ga

c
,

gb

c
are C-close to x, then for f = fa, f b we have

(4.23) 1− w ≤ f ′(x) ≤ 1 + w

where the constant w depends only on C, cl, cu, σ and satisfies

(4.24) w(σ)→ 0 asσ →∞.
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Proof: We’ll only show the upper bound on the derivative for fa only, the proof of

other parts being analogous. Differentiating the representation (4.18) we get

(4.25) (fa)′ (x) =
|φ′(x)|ψ′(x)

W

(∫ ∞
x

ga

c
(y)φ(y)c(y)

2

σ2|φ′(x)|
dy−∫ x

−∞

ga

c
(y)ψ(y)c(y)

2

σ2ψ′(x)
dy
)

As our diffusion killed at the rate c(x) − cl has ±∞ as natural boundary points,

results of [38] imply φ′(−∞) = 0, ψ′(∞) = 0, so passing to the appropriate limits in

(4.17) we get

(4.26) ψ′(x) =
2

σ2

∫ x

−∞
ψ(y)c(y)dy

and

(4.27) φ′(x) = − 2

σ2

∫ ∞
x

φ(y)c(y)dy

From the representations above we see φ(y)c(y) 2
σ2|φ′(x)| is a density on [x,∞) and

ψ(y)c(y) 2
σ2ψ′(x)

is a density on (−∞, x]. Using this and ga

c
(x) ≤ x+ C we get

(fa)′ (x) ≤ 2C
|φ′(x)|ψ′(x)

W
+ (fa0 )′ (x)

where f̃a(x) is ’the fa’ corresponding to g̃a(x) = xc(x), which is the unique solution

of

σ2

2
f ′′(x)− c(x)f(x) = −xc(x)

which is easily seen to be given by f̃a(x) = x, hence
(
f̃a
)′

= 1 and we get

(fa)′ (x) ≤ 1 + 2C
|φ′(x)|ψ′(x)

W

Thus to show the claim we only need to establish the appropriate bound on the last

summand above.
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To do this, first note c(x+ 1) = c(x) implies φ(x+ 1) = γφ(x),ψ(x+ 1) = 1
γ
ψ(x),

where 0 < γ = φ(1) < 1 and so |φ′(x)|ψ′(x) is 1-periodic, so it is sufficient to bound

2C |φ
′(x)|ψ′(x)
W

only for x ∈ [0, 1]. As

|φ′(x)| = 2

σ2

∫ ∞
x

c(y)φ(y)dy

For x ≥ 0, using lemma IV.8 and the bounds on c(x), we further get that the above

expression is

≤ 2cu
σ2

∫ ∞
x

exp

(
−
√

2cl
σ2
y

)
dy =

2cu
σ
√

2cl
exp

(
−
√

2cl
σ2
x

)
Combined with a similar estimate from below this gives

(4.28)
2cl

σ
√

2cu
exp

(
−
√

2cu
σ2

x

)
≤ |φ′(x)| ≤ 2cu

σ
√

2cl
exp

(
−
√

2cl
σ2
x

)
for x ≥ 0. Similarly, for x ≤ 0 we get

2cl
σ
√

2cu
exp

(√
2cu
σ2

x

)
≤ |ψ′(x)| ≤ 2cu

σ
√

2cl
exp

(√
2cl
σ2
x

)
which using ψ′(x+ 1) = 1

γ
ψ′(x) gives

(4.29)
1

γ

2cl
σ
√

2cu
exp

(√
2cu
σ2

(x− 1)

)
≤ |ψ′(x)| ≤ 1

γ

2cu
σ
√

2cl
exp

(√
2cl
σ2

(x− 1)

)
for x ∈ [0, 1]. Combining the above and replacing exp-terms with their worst-case

bounds we get

|φ′(x)|ψ′(x) ≤ 1

γ

(
2cu
σ
√

2cl

)2

Note on [0, 1] 1 ≥ φ(x) ≥ γ, 1
γ
≥ ψ(x) ≥ 1, which together with |φ′|, ψ′ estimates

from above gives

(4.30)

W = φψ′+ψ|φ′| ≥ γ·

(
1

γ

2cl
σ
√

2cu
exp

(√
2cu
σ2

(x− 1)

))
+1· 2cl

σ
√

2cu
exp

(
−
√

2cu
σ2

x

)
≥

4cl
σ
√

2cu
exp

(
−
√

2cu
σ2

)
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and so

|φ′(x)|ψ′(x)

W
≤ 1

σ

1

γ

(
2cu√
2cl

)2 √
2cu

4cl
exp

(√
2cu −

√
2cl

σ

)
Note also that as 1

γ
= ψ(1) the bound on ψ from lemma IV.8 implies

1

γ
≤ exp

(√
2cu
σ2

)

This together with the previous expression implies the existence of the desired upper

bound on 2C |φ
′(x)|ψ′(x)
W

and hence on (fa)′ (x), which goes to 0 as 1
σ

when σ →∞.

Define

(4.31) F(x) = Fp(x) =
ψ(x)

φ(x)

and

(4.32) ·̂ : h→ ĥ(y) =
h

φ
(F−1(y))

where ĥ is defined on (0,∞). Then for given pa, pb, va, vb we have the following

description of the value function of the individual stopping problem.

Proposition IV.12. For any admissible controls pa, pb and admissible barriers

va, vb, the individual agents’ value functions V a(x) = V a(x, pa, pb, vb), V b(x) =

V b(x, pa, pb, va) are uniquely determined by

V̂ a(y) = mcm ̂(J b − fa)(y) + f̂a(y)

V̂ b(y) = −mcm ̂(f b − Ja)(y) + f̂ b(y)

(4.33)

where mcm(f) denotes the smallest nonnegative concave majorant of a function f .
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Proof: We only prove the claim for V a. First, note

Ja(τ, x, pa, pb, vb) =

Ex
[∫ τ

0

exp

(
−
∫ t

0

c(Xs)ds

)
ga(Xt)dt+ exp

(
−
∫ τ

0

c(Xs)ds

)
bvb(Xτ )c

]
=

Ex
[ ∫ ∞

0

exp

(
−
∫ t

0

c(Xs)ds

)
ga(Xt)dt+

exp

(
−
∫ τ

0

c(Xs)ds

)(
bvb(Xτ )c −

∫ ∞
0

exp

(
−
∫ t

0

c(Xτ+s)ds

)
ga(Xτ+t)dt

)]
=

fa(x) + Ex
[
exp

(
−
∫ τ

0

c(Xs)ds

)(
bvb(Xτ )c − fa(Xτ )

)]
hence

V a(x, pa, pb, vb) = fa(x) + sup
τ

Ex
[
exp

(
−
∫ τ

0

c(Xs)ds

)(
bvb(Xτ )c − fa(Xτ )

)]
Given bvbc(x)− fa(x) is measurable and locally bounded, the last term above (i.e.,

the value function of a pure stopping problem (with discounting)) has the claimed

mcm-characterization by Proposition 3.4 from [25].

For the use in the proofs below, we’d also need a y-domain version of the shift-

properties from Lemma IV.10.

Lemma IV.13. Given admissible pa, pb which have 1-shift property, and φ, ψ defined

as in (4.16,4.15), we get

(4.34) φ(x+ 1) = γφ(x), ψ(x+ 1) =
1

γ
ψ(x)

where γ = φ(1), 0 < γ < 1.

Furthermore

(4.35) F(x+ 1) =
1

γ2
F(x), Ĥ

(
y

γ2

)
=

1

γ
Ĥ

for any 1-periodic H(x). In particular this can be applied to H = va − fa, f b − vb, if

va, vb have 1-shift property, by Lemma IV.10.
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The next proposition is the most important one in this subsection, and it is the

key to our proof of existence of a Markovian equilibrium for sufficiently large σ.

Without the monotonicity established therein, the fixed point problem we need to

solve appears to be too discontinuous to be tractable.

Proposition IV.14. Consider admissible controls pa, pb, admissible barriers va, vb

which have 1-shift property and such that dvae, bvbc, ga

c
, gb

c
are C-close to x. Then,

V (x) = V a(x, pa, pb, vb), V b(x, pa, pb, va) is absolutely continuous and its derivative

satisfies:

(4.36) |V ′(x)− 1| ≤ w, a.e.

with w(σ)→ 0, as σ →∞, uniformly in pa, pb, va, vb with the properties above. In

particular, there exists ε > 0, s.t.

V ′(x) ≥ ε, a.e.

for all σ large enough.

Proof: We only prove the lower bound on the derivative of V a, other parts being

similar. Note that Proposition IV.12 implies

V a(x) = fa(x) + φ(x) mcm
(

̂bvbc − fa
)

(F(x))

As fa, φ,F ∈ C1(R), and the mcm above is absolutely continuous as it is concave,

then so is V a, and for its (a.e. defined) derivative we have

(V a)′(x) = (fa)′(x)+φ′(x) mcm
(

̂bvbc − fa
)

(F(x))+φ(x)F′(x) mcm
(

̂bvbc − fa
)′

(F(x))

From Proposition IV.11, we get (fa)′(x) ≥ 1− w with w as in the statement of the
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proposition, so we only need to show

(4.37) (V a)′(x)− (fa)′(x) = φ′(x) mcm
(

̂bvbc − fa
)

(F(x))+

φ(x)F′(x) mcm
(

̂bvbc − fa
)′

(F(x)) ≥ −w̃(σ)

with w̃ having appropriate asymptotic properties. As, by Lemma IV.5, V a is 1-

periodic, it is sufficient to only consider x on any bounded interval of length at least

1 and not on the entire real line. To simplify the notation a bit, we denote

h(y) = mcm
(

̂bvbc − fa
)

(y)

Note that the assumed 1-shift property of vb and fa, via Lemma IV.10, imply that

bvbc − fa is 1-periodic, which by Lemma IV.13 implies that

h0(y) =
(

̂bvbc − fa
)

(y)

satisfies h0( y
γ2 ) = 1

γ
h0(y). It can be easily checked that this property passes on to its

minimal concave majorant h(y). Define

φ̄(y) = φ̂2(y) = φ(F−1(y))

It’s easy to check
(
σ2

2
∂2

∂x2 − c(x)
)

(φ2) > 0 and so φ̄(y) is convex by the following

lemma which can be proven by a straightforward calculation.

Lemma IV.15. Let H ∈ W2,loc then Ĥ(y) is convex (resp. concave) on (y1, y2),

yi = F(xi), if

σ2

2
Hxx − cH > 0, (resp. < 0) a.e. on (x1, x2)

Furthermore, φ̄ is decreasing and satisfies φ̄( y
γ2 ) = γφ̄(y). Let us define

c̃ = sup
y∈[1, 1

γ2 ]

h0(y)φ̄(y)
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Note that, as (h0φ̄)( 1
γ2y) = (h0φ̄)(y), we get

h0(y) ≤ c̃

φ̄(y)
,

for all y (and not just y ∈ [1, 1
γ2 ]), as follows from the definition of c̃.

Next, suppose that c̃ ≤ 0. We will show that, in this case, h(y) ≡ 0, and w̃ = 0

gives the desired lower bound for (4.37), and thus there is nothing left to prove.

Indeed, the constant function 0 is a concave majorant of h0 in this case. If the actual

mcm of h0 was different we’d be able to find y > 0 s.t. h(y) = z < 0. But then as

h( y
γ2 ) = 1

γ
h(y) all the points ( y

γ2k ,
z
γk

) for all integer k will also lie on the graph of h.

But one can check the slope between two consecutive such points increases if z < 0

contradicting the concavity of h.

Having dealt with the simpler c̃ ≤ 0 case we assume c̃ > 0 for the rest of the

proof. As

h0(y)φ̄(y) =
(
bvbc − fa

)
(F−1(y))

and bvbc, fa (see Lemma IV.9) are (C+1)-close to x , we get c̃ ≤ 2C+2. . Moreover

1/φ̄(y) = 1̂ (that is, the ·̂-transform applied to a constant function 1) is concave by

the previous lemma as (
σ2

2

d2

dx2
− c(x)

)
(1) < 0

and so c̃/φ̄(y) is actually a concave majorant of h0(y) which implies

h(y) ≤ c̃

φ̄(y)
, ∀y ∈ (0,∞)

From the definition of c̃ we can find a sequence of points {yi} on [1, 1
γ2 ] s.t. (h0φ̄)(yi)→

c̃. Let y∗ be any concentration point of that sequence. Then, from the continuity of

the concave majorant h(y) and by h(y) ≤ c̃/φ̄(y), we get

h(y∗) =
c̃

φ̄(y∗)
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Recall that we only need to establish (4.37) on some x-interval of length ≥ 1. It

would be convenient to use the x-interval corresponding (via F−1) to the y-interval

[y∗,
y∗
γ2 ]. Note that, as y∗ ∈ [1, 1

γ2 ], this x-interval necessarily lies inside [0, 2]. Note

also that

φ(x) = φ̄(F (x)), φ′(x) = φ̄′(F (x))F ′(x)

and so the left-hand side of (4.37) can be rewritten as

F ′(x)
(
φ̄′(F (x))h(F (x)) + φ̄(F (x))h′(F (x))

)
To estimate the above, it would suffice to get an estimate of F ′(x), for x ∈ [0, 2], and

of

φ̄′(y)h(y) + φ̄(y)h′(y),

for y ∈ [y∗,
y∗
γ2 ].

For F ′, we have

F ′(x) =
ψ′φ− φ′ψ

φ2
(x) =

W

φ2(x)

so we need to estimate W :

W = ψ′(0)φ(0) + |φ′(0)|ψ(0) = ψ′(0) + |φ′(0)|

Each of these derivatives can be estimated using their integral representation, as in

the proof of Proposition IV.11, using the asymptotic properties of φ and ψ from

Lemma IV.8. This yields:

4cu
σ
√

2cl
≥ W ≥ 4cl

σ
√

2cu

And, as φ(x) is between 1 and γ2, for x ∈ [0, 2], we further get

1

γ2

4cu
σ
√

2cl
≥ F ′(x) ≥ 4cl

σ
√

2cu
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for x ∈ [0, 2]. So it remains to estimate

φ̄′(y)h(y) + φ̄(y)h′(y)

for y ∈ [y∗,
y∗
γ2 ] ⊂ [1, 1

γ4 ]. As φ̄′ < 0, h > 0, and, as shown below, h′ > 0, to estimate

the above expression from below we need the estimates on φ̄′ from below, on h from

above, on φ̄ from below, and on h′ from below. Clearly, φ̄(y) ≥ γ2, for the chosen

range of y. In addition, as h is dominated by c̃
φ̄
, we get h(y) ≤ c̃

γ2 on the y-range we

consider.

To estimate h′(y) on [y∗,
y∗
γ2 ], note that h(y) coincides with c̃/φ̄(y) at the endpoints

of this interval, and h ≤ c̃/φ̄ on the entire interval. Then, as c̃/φ̄ is differentiable, we

must have (
c̃

φ̄

)′(
y∗
γ2

)
≤ h′

(
y∗
γ2

)
,

as, otherwise, we get a contradiction with the domination relationship between these

two functions in the left neighborhood of y∗
γ2 . In the above, and in the rest of the ar-

gument, h′(y) is understood as the left derivative at y = y∗/γ
2, as the right derivative

at y = y∗, and as any element in the superdifferential for y ∈ (y∗,
y∗
γ2 ).

The last inequality together with the concavity of h implies that for all y ∈ [y∗,
y∗
γ2 ]

h′(y) ≥
(
c̃

φ̄

)′(
y∗
γ2

)
= − c̃

φ̄2( y∗
γ2 )

φ̄′(
y∗
γ2

) ≥ − c̃

γ2
φ̄′(

y∗
γ2

)

Note further that as y∗
γ2 ≤ y

γ2 for any y ∈ [y∗,
y∗
γ2 ] and −φ̄′ is positive decreasing we

get

− c̃

γ2
φ̄′(

y∗
γ2

) ≥ − c̃

γ2
φ̄′(

y

γ2
) = − c̃

γ
φ̄′(y)

as φ̄′( y
γ2 ) = γφ̄′(y). Combinig the estimates above we get for x ∈ [F−1(y∗),F

−1(y∗)+1]

F ′(x)
(
φ̄′(F (x))h(F (x)) + φ̄(F (x))h′(F (x))

)
≥ F ′(x)

(
φ̄′(F (x))

c̃

γ2
− c̃γφ̄′(F (x))

)
=

F ′(x)φ̄′(F (x))c̃

(
1

γ2
− γ
)
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As F ′(x)φ̄′(F (x)) = φ′(x) ≥ φ′(0), c̃ ≤ 2C + 2, the last expression above is further-

more

≥ φ′(0)(2C + 2)

(
1

γ2
− γ
)

Finally, as φ′(0) ≥ − 2cu
σ
√

2cl
and exp

(√
2cl
σ2

)
≤ 1

γ
≤ exp

(√
2cu
σ2

)
, we have

(
1
γ2 − γ

)
→

0, as σ → ∞, at a rate depending only on cl, cu. This, in turn, yields (4.37) and

completes the proof of the proposition.

If we assume the existence of a positive lower bound on derivatives of the barrier

functions of the agents’ stopping problems, as suggested by the last proposition, it

becomes relatively easy to prove the continuity of the value function with respect to

the barrier.

Proposition IV.16. Assume admissible controls pa, pb and admissible barriers J1, J2

have 1-shift property, and J ′(x) ≥ ε > 0 for J = J1, J2, and J1, J2 are C-close to x,

ga

c
, g

b

c
are C-close to x . Then, if |J1(x)− J2(x)| ≤ δ for all x in R, we get

(4.38)
∣∣V a(x, pa, pb, J1)− V a(x, pa, pb, J2)

∣∣ ≤ ε(δ), ∀x ∈ R

for some ε(δ)→ 0, as δ → 0. Analogous statement holds for V b.

Proof: We will show that V a(x, pa, pb, J1) ≥ V a(x, pa, pb, J2)− ε(δ), which, together

with the symmetric inequality (proved analogously), yields the statement of the

proposition. For any δ > 0, consider an almost-optimal τ2, such that

Ja(τ2, x, p
a, pb, J2) ≥ V a(x, pa, pb, J2)− δ

Then it suffices to find τ1 such that

Ja(τ1, x, p
a, pb, J1) ≥ Ja(τ2, x, p

a, pb, J2)− ε(δ)

We construct τ1 ≥ τ2 separately on two different Fτ2-measurable sets. On the event

Ω1 =
{
ω : bJ1(Xτ2)c ≥ bJ2(Xτ2)c

}
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we set τ1 = τ2. If bJ1(Xτ2)c < bJ2(Xτ2)c we still have

J1(Xτ2) ≥ J2(Xτ2)− δ

and so, by the assumption on J ′,

J1

(
Xτ2 +

δ

ε

)
≥ J2(Xτ2)

The above implies

(4.39) bJ1

(
Xτ2 +

δ

ε

)
c ≥ bJ2(Xτ2)c

On

Ω2 = Ωc
1 =

{
ω : bJ1(Xτ2)c < bJ2(Xτ2)c

}
we define

τ10 = inf

{
t ≥ τ2 : Xt ≥ Xτ2 +

δ

ε

}
, τ11 = inf {t ≥ τ2 : Xt ≤ Xτ2 − 1} , τ1 = τ10∧τ11.

In the subsequent derivations, we express various quantities in terms of the following

expression, which can be interpreted as the ’relative to x’ objective, and which is

more convenient than its ’absolute’ version.

(4.40) Ja(τ, x, pa, pb, J)− x =

Ex
[ ∫ τ

0

exp

(
−
∫ t

0

c(Xs)ds

)
(ga(Xt)− c(Xt)Xt) dt+

exp

(
−
∫ τ

0

c(Xs)ds

)
(bJ (Xτ )c −Xτ )

]
where |bJ(x)c − x| ≤ C + 1 and |ga(x) − c(x)x| ≤ cuC by the assumption of the
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proposition. Using the above expression, we get

Ja(τ1, x, p
a, pb, J1)− Ja(τ2, x, p

a, pb, J2) =

Ex
[
1Ω1 exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ1(Xτ2)c − bJ2(Xτ2)c

)
+

1Ω2

∫ τ1

τ2

exp

(
−
∫ t

0

c(Xs)ds

)
(ga(Xt)− c(Xt)Xt) dt+

1Ω2

(
exp

(
−
∫ τ1

0

c(Xs)ds

)(
bJ1 (Xτ1)c −Xτ1

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

) )]
Note that the first one of the three summands inside the expectation above is non-

negative for every ω, by the definition of Ω1. Note also that, as |ga(x)−c(x)x| ≤ cuC,

we have the following bound for the second summand:

∣∣∣∣Ex [1Ω2

∫ τ1

τ2

exp

(
−
∫ t

0

c(Xs)ds

)
(ga(Xt)− c(Xt)Xt) dt

]∣∣∣∣ ≤
cuCEx|τ1 − τ2| = cuCE0τ ′ ≤ ε(δ)

where

τ ′ = inf {t ≥ 0: Xt /∈ (−1, δ/ε)}

and E0τ ′ is easily seen to go to 0 as O(δ) for δ → 0. So it only remains to deal with
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the last term. We have

Ex
[
1Ω2

(
exp

(
−
∫ τ1

0

c(Xs)ds

)(
bJ1 (Xτ1)c −Xτ1

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

) )]
=

Ex
[
1Ω21{τ1=τ10}

(
exp

(
−
∫ τ10

0

c(Xs)ds

)(
bJ1 (Xτ10)c −Xτ10

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

) )
+

1Ω21{τ1=τ11}

(
exp

(
−
∫ τ11

0

c(Xs)ds

)(
bJ1 (Xτ11)c −Xτ11

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

) )]
As |J(x)− x| ≤ C, for J = J1, J2, and as

Px (τ1 = τ11) =

P0

(
inf

{
t ≥ 0 : Xt =

δ

ε

}
> inf {t ≥ 0 : Xt = −1}

)
=

δ
ε

1 + δ
ε

= O(δ)

for δ → 0, we get

∣∣∣Ex[1Ω21{τ1=τ11}

(
exp

(
−
∫ τ11

0

c(Xs)ds

)(
bJ1 (Xτ11)c −Xτ11

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

))]∣∣∣ ≤ (2C + 2)Px(τ1 = τ11) = ε(δ)
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Finally, we estimate the remaining term from below:

Ex
[
1Ω21{τ1=τ10}

(
exp

(
−
∫ τ10

0

c(Xs)ds

)(
bJ1 (Xτ10)c −Xτ10

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

))]
≥

Ex
[
1Ω21{τ1=τ10}

(
exp

(
−
∫ τ10

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ10

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

)(
bJ2 (Xτ2)c −Xτ2

))]
=

Ex
[
1Ω21{τ1=τ10}

( (
bJ2(Xτ2)c −Xτ2

) (
exp

(
−
∫ τ10

0

c(Xs)ds

)
−

exp

(
−
∫ τ2

0

c(Xs)ds

))
+ (Xτ2 −Xτ10) exp

(
−
∫ τ10

0

c(Xs)ds

))]
≥

(−C − 1)Ex
[
exp

(
−
∫ τ2

0

c(Xs)ds

)
− exp

(
−
∫ τ1

0

c(Xs)ds

)]
− δ

ε

where the first inequality follows from Xτ10 = Xτ2 + δ/ε and

bJ1(Xτ10)c = bJ1(Xτ2 +
δ

ε
)c ≥ bJ2(Xτ2)c,

by (4.39); the second inequality follows from Xτ2 −Xτ10 = −δ/ε and bJ2(x)c − x ≥

−C − 1 together with τ1 ≥ τ2. It only remains to notice that

∣∣∣∣Ex [exp

(
−
∫ τ2

0

c(Xs)ds

)
− exp

(
−
∫ τ1

0

c(Xs)ds

)]∣∣∣∣ ≤
Ex
∣∣∣∣∫ τ1

τ2

c(Xs)ds

∣∣∣∣ ≤ cuEx|τ1 − τ2| = O(δ),

which concludes the proof.

4.4 Optimization over prices and existence of equilibrium.

For any admissible va, vb, define

P a(va)(x) = min argmaxp∈Aa(x)∩Z (p− va(x))F+ (p− x)

P b(vb)(x) = max argmaxp∈Ab(x)∩Z
(
vb(x)− p

)
F (p− x)

(4.41)
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where we denote

F+(x) = 1− F (x)

for a cdf F .

The following fundamental proposition allows us to reduce the control-stopping

problem to just a stopping problem and a fixed point problem for response controls.

Proposition IV.17. If

V
a
(x) = sup

τ
Ja(x, τ, P a(V

a
), pb, vb)

for some admissible pb, with pb and vb with 1-shift property and vb, ga

c
C-close to x,

and with
(
vb
)′ ≥ 1− w > 0, then

V
a
(x) = sup

pa∈Aa(x)∩Z
sup
τ
Ja(x, τ, pa, pb, vb)

and similarly for V
b
, P b(V

b
).

Proof: Subtracting x from all V
a

and Ja as in (4.43), (4.42) below, we see it’s

sufficient to show the claim for these relative versions.

What we need to do here is the verification that our response-form control pa =

P a(V
a
) is optimal, which requires some sort of differential characterization of the

objective

V a(x, p, pb, vb) = sup
τ
Ja(x, τ, p, pb, vb)

for any control p, together with a comparison principle allowing us to claim our

response-form control constructed in a way to maximize the appropriate generator

would indeed result in maximal objective. We use the theory of variational inequal-

ities (VIs) to implement this program. Unfortunately, we could not locate any VI

results to deal with our case (unbounded domain, L∞ discount factor and running
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costs, discontinuous obstacle) directly: we have VI existence, uniqueness and com-

parison results, but are lacking stopping problem to VI solution connection under this

combination of circumstances, so we’ll need to do additional approximation steps.

More specifically, in step 1 we show we can replace our discontinuous barrier

bvbc by its continuous majorating approximation sε = sε(bvbc), without affecting

the value of the associated optimal stopping problem, no matter which admissible

(p, pb) are chosen. In step 2, we use a sequence of smooth approximating functions

J bn ↓ sε and continuity of VI solutions in the obstacle from [8] to show that the value

function corresponding to sε satisfies an appropriate VI. Finally, in step 3 we use the

comparison results for that VI to show P a(V
a
) is indeed the optimal control.

As we’re now going to use obstacles which aren’t floors of some other function,

we need to redo the definitions (4.2), (4.10), and also to put them in a relative to x

form to get better boundedness properties for the coefficients, so we define for any

admissible controls p, pb, admissible barrier J b,

(4.42) Ja0 (x, τ, p, pb, J b) =

Ex
[ ∫ τ

0

exp

(
−
∫ t

0

c(p(Xs), p
b(Xs), Xs)ds

)(
ga(p(Xt), p

b(Xt), Xt)− c(p(Xt), p
b(Xt), Xt)Xt

)
dt

+ exp

(
−
∫ τ

0

c(p(Xs), p
b(Xs), Xs)ds

)(
J b(Xτ )−Xτ

) ]
(4.43) V a

0 (x, p, pb, J b) = sup
τ
Ja0 (x, τ, p, J b)

(4.44) fa0 (x, p, pb) =

Ex
[∫ ∞

0

exp

(
−
∫ t

0

c(Xs, p(Xs), p
b(Xs))ds

)(
ga(p(Xt), p

b(Xt), Xt)− c(p(Xt), p
b(Xt), Xt)Xt

)
dt

]
Notice V a

0 and fa0 are 1-periodic and C-close to 0 if J b, ga

c
are such. Also f =

V a
0 , f

a
0 satisfies |f ′| ≤ w by applying slight modifications of Lemmas IV.6, IV.5 and

Proposition IV.14 for either J b = bvbc or J b = sε
(
bvbc

)
.
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Step 1. This step is taken care of by the following lemma, whose (geometric) proof

can be found in the appendix.

Lemma IV.18. If p, pb are admissible controls, vb an admissible barrier, p, pb, vb

have 1-shift property, vb, ga

c
, gb

c
are C-close to x, and

(
vb
)′ ≥ 1− w > 0, then there

exists continuous piecewise linear sε ≥ bvbc independent of pb, p, satisfying 1-shift

property and C-close to x, and such that

V a
0 (·, p, pb, bvbc) = V a

0 (·, p, pb, sε)

for all p, pb satisfying the properties above.

Step 2. First we need to introduce some notation from [8]. Let µ > 0. We introduce

the weight function

mµ(x) = exp(−µ|x|)

Denote by Hµ = W0,2,µ, Vµ = W1,2,µ appropriate mµ-weighted Sobolev spaces on R

(we need weighted spaces as our coefficients are bounded and periodic while we want

to make them integrable over the whole unbounded domain).

For any u, v ∈ Vµ define

a(u, v) =

∫
σ2

2
m2
µuxvx − 2µ sgn(x)

σ2

2
mµvxmµv + cpm

2
µuv

where the integral is over R,

Let

fp(x) = gap(x)− cp(x)x ∈ Hµ

be the running cots of our relative-to-x stopping problem, and

Kµ(J b) =
{
v ∈ Vµ|v ≥ J b − x a.e.

}
the appropriate set of test functions.
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We will call VI(p, J b) the following VI (in the weak form)

(4.45) a(u, v − u) = ap(u, v − u) ≤ (fp, v − u), ∀v ∈ Kµ(J b)

where

(u, v) = (u, v)µ =

∫
m2
µuv

We say u is a solution of the above VI if u ∈ Kµ(J b) and u satisfies (4.45).

As all our coefficients c, σ2

2
, fp, J

b − x are in L∞(R), and as the form a(·, ·) is

coercive for µ sufficiently small, we get that (for such µ) the VI (4.45) has a unique

solution in Kµ(J b) for any admissible p, any J b C-close to x, by Theorem 1.13, [8]

p. 217.

Let J bn be a C∞-approximation from above of sε, associated with vb as in Lemma

IV.18, which is 1/n close to sε in sup-norm. Then by Theorem 3.19, [8] p. 387

, un = V a
0 (·, p, pb, J bn) is the unique solution (for sufficiently small µ) of VI(p, J bn).

Denote also by u0 the unique solution of VI(p, sε). Rewriting these VIs as unweighted

VIs for mµu and restricting to a bounded domain, one can generalize Theorem 1.10,

[8] p. 207, to get un → u0 in L∞(R). The latter fact, together with the easy to check

convergence of value functions

V a
0 (·, p, pb, J bn)→ V a

0 (·, p, pb, sε) = V a
0 (·, p, pb, bvbc),

implies that the latter value function is the unique solution of VI(p, sε).

Step 3. By Theorem 1.4, [8] p. 198 , extended to the unbounded domain as in

Remark 1.21, p. 219, the unique solutions u, ũ ∈ Kµ(J b) of VIs

a(u, v − u) ≤ (h, v − u), ∀v ∈ Kµ(J b)

resp. a(ũ, v − ũ) ≤ (h̃, v − ũ), ∀v ∈ Kµ(J b)
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sharing the obstacle J b and the form a, but with different right-hand sides h, h̃,

satisfy ũ ≥ u if h̃ ≥ h.

Now let V
a

0(x) = V
a
(x)− x, p̄ = P a(V

a
).

We need to show that, in this case,

ū := V
a

0 = V a
0 (·, p̄, pb, bvbc) = V a

0 (·, p̄, pb, sε) ≥

V a
0 (·, p0, p

b, sε) = V a
0 (·, p0, p

b, bvbc) =: ū0 = ū0(p0)

for any admissible p0. It is shown in step 2 that ū satisfies a version of (4.45) with

running costs fp̄ and the quadratic form ap̄, which after some algebraic manipulations

turns out to be equivalent to

(4.46) ap0(u, v − u) ≤ (f̃ , v − u), ∀v ∈ Kµ(J b)

where f̃ = fp0 + a,

a = gp̄ − cp̄(u+ x)− (gp − cp(u+ x)) ≥ 0,

which follows from the definition of p̄ = P a(V
a
) and the fact that ū(x) + x = V

a
(x).

As ū0 satisfies the above equation with running costs function fp0 instead of f̃ , and

fp0 ≤ f̃ , we can apply the comparison principle stated at the beginning of this step,

which completes the proof.

Proposition IV.17 allows us to sidestep the optimization over pa or pb in the

definitions of V̄ a and V̄ b, respectively, by using the feedback controls P a and P b

throughout. To ensure that these feedback controls are well-behaved, we make the

following assumption (compare to chapter III, Assumptions 2, 5).

Assumption IV.19. The distribution of ξ has density f , which is bounded so that

f(x) ≤ Cf , ∀x, with some constant Cf > 0, and which is supported inside [−C0, C0]



166

for some constant C0 > 0. Furthermore, f is continuous in the interior of its support,

and is such that

F+

f
(x) is decreasing,

F

f
(x) is increasing, ∀x ∈ int suppf

where int denotes the interior of a set.

See also Remark 4 in chapter III for sufficient conditions for Assumption IV.19.

This assumption, in particular, implies that the optimal feedback prices will always

be C ′0 = C0 + 1 close to x, and also inherit the 1-shift property from the value

functions they correspond to:

Lemma IV.20. If

pa(x) = P a(va)(x), pb(x) = P b(vb)(x)

for some admissible barriers va, vb, then

|pa(x)− x| ≤ C ′0, |pb(x)− x| ≤ C ′0

and ∣∣∣∣gac (x)

∣∣∣∣ ≤ C ′0,

∣∣∣∣gac (x)

∣∣∣∣ ≤ C ′0

If in addition va (vb) has 1-shift property, then so does pa (resp. pb).

Proof: From definition (4.41) and supp ξ ⊂ [−C0, C0], it’s easy to see that p(x) − x

must be no smaller than the largest integer ≤ −C0 and no larger than the smallest

integer ≥ C0 so that

p(x) ≥ x− C ′0, p(x) ≤ x+ C ′0

Similar conclusion holds for pb(x).

From (4.4,4.5) we get∣∣∣∣gac (x)− x
∣∣∣∣ =

∣∣∣∣(pa(x)− x) (1− F (pa(x)− x)) + F b(pb(x), x)− xF (pb(x)− x)

(1− F (pa(x)− x)) + F (pb(x)− x)

∣∣∣∣
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A similar representation holds for gb. Thus, to prove the claim, it suffices to show

|pa(x)− x| ≤ C ′0, |F b(pb(x), x)− x| ≤ C ′0F (pb(x)− x)

The first inequality has already been established. For the second one, we have

F b(pb(x), x)− x =

∫ pb(x)−x

−∞
bx+ αyc − xdF (y)

To finish the proof it’s enough to notice that

|bx+ αyc − x| ≤ C ′0

when y ∈ supp ξ (as dF (y) = 0 otherwise). The claim for gb

c
can be proven analo-

gously.

1-shift property for pa, pb given that of va, vb is immediate from (4.41).

Next, for any admissible barriers va, vb, define

(4.47) Φ(va, vb) =
(
V a
(
·, P a(va), P b(vb), vb

)
, V b(·, P a(va), P b(vb), va)

)
It’s easy to see the components of the right-hand side of the equation above are

themselves admissible barriers, so we can iterate this mapping. We will actually be

only interested in the restriction of Φ to either A0 or A0(w), where

Definition IV.21. We say v ∈ A0 if v ∈ C(R), has 1-shift property and is C ′0-close

to x. We say v ∈ A0(w) if v ∈ A0, v absolutely continuous and 1− w ≤ v′ ≤ 1 + w

a.e.

Note by lemma IV.20 and the results from the previous section Φ maps A0×A0 into

itself, or more precisely into A0(w)× A0(w) for w sufficiently large (see proposition

IV.14).

Using Proposition IV.17, we will show, below, that a fixed point of this mapping

in the appropriate subset gives a solution to the system (4.1). But first we need to

establish the existence of such a fixed point.
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The first step is to show that Φ is continuous on A0(w) for w < 1. To this end,

we first choose an appropriate topology and the space for intermediate price controls

P a(v), P b(v), and show that P a(v), P b(v) are continuous operators in va, vb ∈ A0(w).

Then, we show that V a
(
·, pa, pb, vb

)
and V b

(
·, pa, pb, va

)
are each continuous (as op-

erators) in (functions) pa, pb jointly, with respect to the chosen topology, uniformly in

va, vb ∈ A0. This, together with the continuity of V a
(
·, pa, pb, vb

)
and V b

(
·, pa, pb, va

)
in va and vb, established in Proposition IV.16, yields the continuity of Φ.

First we define the space for the intermediate price controls:

Definition IV.22. Denote by B0 the space of functions which are admissible prices

and have 1-shift property.

This definition also implies the functions in B0 are C0-close to x, by the definition

of admissibility IV.1 and assumption IV.19. We equip B0 with a topology induced

by its natural restriction mapping into L1([0, 1]). Note P a(v), P b(v) ∈ B0 for any

admissible barrier v with 1-shift property.

The following, somewhat tricky, lemma is the first result we need in order to

establish the continuity of Φ.

Lemma IV.23. The mappings

va 7→ P a(va), vb 7→ P b(vb)

from A0(w), w < 1, (with uniform topology) to B0 (with the topology described above)

are continuous.

Proof: We only show the P a version, the P b one being analogous. We do it in two

steps. First we show that, given va, with the properties described in the statement

(in particular, increasing), P a(va)(x) is also an increasing function of x. Then, we

use this monotonicity property to show the desired continuity of P a.
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Step 1. For a fixed va, we denote px = P a(va)(x). Assume, to the contrary, that

for some x1 > x2 we have px1 < px2 . Note the admissible control set Aa(x) shifts

upward with x, and so if px2 was admissible at lower x2, and px2 > px1 with the

latter being admissible at x1, then px2 is admissible at x1 as well, and similarly px1

is admissible at x2. Then to obtain a contradiction it is sufficient to just show px2

gives better objective value at x1 than px1 :

(4.48) (px2 − va(x1))F+(px2 − x1) > (px1 − va(x1))F+(px1 − x1)

This is clearly true if px1 ≤ va(x1). Hence, without loss of generality, we assume

px1 > va(x1). Then, the above inequality is equivalent to:

(4.49)
px2 − va(x1)

px1 − va(x1)
>
F+(px1 − x1)

F+(px2 − x1)

Note

(4.50) (px2 − va(x2))F+(px2 − x2) ≥ (px1 − va(x2))F+(px1 − x2)

from the fact that px2 is the optimal price at x2 and is thus no worse than another

admissible at x2 price px1 . The assumption px1 > va(x1) above implies also px2 >

va(x2), as va(x2) < va(x1), so the inequality (4.50) is equivalent to

(4.51)
px2 − va(x2)

px1 − va(x2)
≥ F+(px1 − x2)

F+(px2 − x2)

To get the desired contradiction it will thus suffice to notice that

px2 − v
px1 − v

= 1 +
px2 − px1

px1 − v

is strictly increasing in v ∈ R, for v < px1 , and that

F+(px1 − x)

F+(px2 − x)
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is decreasing in x. The former is obvious, while the latter follows from

∂

∂x

(
F+(px1 − x)

F+(px2 − x)

)
=
f(px1 − x)F+(px2 − x)− f(px2 − x)F+(px1 − x)

F+ (px2 − x)2 =

f(px1 − x)f(px2 − x)

F+ (px2 − x)2

(
F+

f
(px2 − x)− F+

f
(px1 − x)

)
≤ 0,

which, in turn, follows from the fact that F+/f is decreasing, by Assumption IV.19.

Given the above monotonicity properties of the terms in (4.51), we deduce (4.49),

thus, obtaining the desired contradiction and proving the monotonicity of P a(va)(·).

Step 2. One can easily check P a(va1) ≥ P a(va2), if va1(x) ≥ V a
2 (x) for all x. To

show that P a(va1) and P a(va2) are close in the topology of B0, it suffices to show that∫ 1

0

|P a(va1)− P a(va2)| dx

is small. Notice that∫ 1

0

|P a(va1)− P a(va2)| dx =

∫ 1

0

|P a(va1 ∧ va2)− P a(va1 ∨ va2)| dx

as P a(v)(x) is uniquely determined by the value of v at x, and {va1(x), va2(x)} =

{va1(x) ∨ va2(x), va1(x) ∧ va2(x)} for all x.

Thus, without loss of generality, we can assume that va2 ≥ va1 . Assume va1 and va2

are also δ-close in sup-norm, so we have va2 ≤ va1 + δ. Then, we need to show that∫ 1

0

|P a(V a
2 )− P a(V a

1 )| dx→ 0

as δ → 0.

Note that the monotonicity and the 1-shift property of the integer-valued function

P a(va2) imply that it coincides with bx−α2c (except, possibly, on a countable number

of jump points of the latter), for some α2. Similar conclusion holds for P a(va1), with

some α1 ≥ α2, as va2 ≥ va1 . If we can further show that

(4.52) α1 ≤ α2 +
δ

1− w
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then a straightforward calculation would yield∫ 1

0

|P a(va1)− P a(va2)| dx = O(δ)

Thus, it remains to show (4.52). To this end, we note that, under our assumptions

on va-s, for every x ∈ R, there exists x ≤ x∗ ≤ x + δ
1−w such that va1(x∗) = va2(x).

Assuming that

P a(va1)(x∗) < P a(va2)(x)

and recalling that x∗ ≥ x and va1(x∗) = va2(x), we follow the arguments in step 1 to

obtain a contradiction. Thus,

P a(va1)(x∗) ≥ P a(va2)(x)

which implies (4.52).

The following lemma provides the last result we need in order to prove the conti-

nuity of Φ.

Lemma IV.24. The operators (pa, pb) 7→ V a
0 (·, pa, pb, J b), V b

0 (·, pa, pb, Ja), from B0×

B0 to A0, are continuous, uniformly over Ja, J b ∈ A0.

Proof: We’ll only show the continuity of V a
0 in pa, pb, uniformly over x and in J b ∈ A0

, the other part being analogous. Recall that

V a
0 (x, pa, pb, J b) = sup

τ
Ja0 (x, τ, pa, pb, J b)

Thus, it suffices to show that Ja0 -s corresponding to two close pairs prices (pa1, p
b
1) and

(pa2, p
b
2), with the same τ , are also close, uniformly in τ . To this end we can write,
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recalling the formula (4.42)

Ja(x, τ, pa1, p
b
1, J

b)− Ja(x, τ, pa2, pb2, J b) =

Ex
[ ∫ τ

0

exp

(
−
∫ t

0

c1(Xs)ds

)
(ga1(Xt)− c1(Xt)Xt) dt−∫ τ

0

exp

(
−
∫ t

0

c2(Xs)ds

)
(ga2(Xt)− c2(Xt)Xt) dt+(

exp

(
−
∫ τ

0

c1(Xs)ds

)
− exp

(
−
∫ τ

0

c2(Xs)ds

))(
J b(Xτ )−Xτ

) ]
where we denote

c1(x) = c(pa1(x), pb1(x), x), c2(x) = c(pa2(x), pb2(x), x)

ga1(x) = c(pa1(x), pb1(x), x), ga2(x) = c(pa2(x), pb2(x), x)

The previous expression for the difference of objectives is furthermore equal to

(4.53)

Ex
[ ∫ τ

0

(
exp

(
−
∫ t

0

c1(Xs)ds

)
− exp

(
−
∫ t

0

c2(Xs)ds

))
(ga1(Xt)− c1(Xt)Xt) dt+∫ τ

0

exp

(
−
∫ t

0

c2(Xs)ds

)
(ga1(Xt)− c1(Xt)Xt − (ga2(Xt)− c2(Xt)Xt)) dt+(

exp

(
−
∫ τ

0

c1(Xs)ds

)
− exp

(
−
∫ τ

0

c2(Xs)ds

))(
J b(Xτ )−Xτ

) ]
So to complete the proof it is sufficient to show the expectations of the absolute

values of each of the three terms on different lines inside the expectation above are

small when (pa1, p
b
1) and (pa2, p

b
2) are close in their topology.

For the third term, note that as | exp(−x)−exp(−y)| ≤ max (exp(−x), exp(−y)) |x−
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y|, and as ci(x) ≥ cl > 0 for all x, i = 1, 2, we get

∣∣∣∣(exp

(
−
∫ τ

0

c1(Xs)ds

)
− exp

(
−
∫ τ

0

c2(Xs)ds

))(
J b(Xτ )−Xτ

)∣∣∣∣ ≤
exp(−clτ)

(∫ τ

0

|c1(Xs)− c2(Xs)| ds
) ∣∣J b(Xτ )−Xτ

∣∣ ≤
C

∫ τ

0

exp(−cls) |c1(Xs)− c2(Xs)| ds ≤

C

∫ τ

0

exp(−cls)
(
|pa1(Xs)− pa2(Xs)|+

∣∣pb1(Xs)− pb2(Xs)
∣∣) ds

where the positive constants C can differ between the lines. The second inequality

in the above follows from the closeness to x of J b, and the last follows from the fact

that

c(pa(x), pb(x), x) = λ
(
F+(pa(x)− x) + F (pb(x)− x)

)
is Lipschitz in pa(x) and pb(x), as the density of ξ is bounded by assumption IV.19.

Similarly, it’s not hard to show that

|(ga1(x)− c1(x)x− (ga2(x)− c2(x)x)| ≤ C
(
|pa1(x)− pa2(x)|+

∣∣pb1(x)− pb2(x)
∣∣)

using the boundedness of the density of ξ and the uniform closeness of all admissible

pa, pb to x. This allows us to estimate the second term in (4.53):

∣∣∣∣∫ τ

0

exp

(
−
∫ t

0

c2(Xs)ds

)
(ga1(Xt)− c1(Xt)Xt − (ga2(Xt)− c2(Xt)Xt)) dt

∣∣∣∣ ≤
C

∫ τ

0

exp(−clt)
(
|pa1(Xt)− pa2(Xt)|+

∣∣pb1(Xt)− pb2(Xt)
∣∣) dt

Finally, we notice that |ga1(Xt)− c1(Xt)Xt| ≤ C, which follows from the fact that

ga1/c1 is C ′0-close to x, and recall that c1 ≤ cu. This allows us to estimate the first
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term in (4.53)∣∣∣∣∫ τ

0

(
exp

(
−
∫ t

0

c1(Xs)ds

)
− exp

(
−
∫ t

0

c2(Xs)ds

))
(ga1(Xt)− c1(Xt)Xt) dt

∣∣∣∣ ≤
C

∫ τ

0

exp(−clt)
(∫ t

0

(
|pa1(Xs)− pa2(Xs)|+

∣∣pb1(Xs)− pb2(Xs)
∣∣) ds

)
dt ≤

C

∫ τ

0

exp(−clt)
(
|pa1(Xt)− pa2(Xt)|+

∣∣pb1(Xt)− pb2(Xt)
∣∣) dt

where the second inequality follows from integration by parts, after discarding some

negative terms.

Thus, the absolute values of all terms in (4.53) are estimated from above via∫ τ

0

exp(−clt)
(
|pa1(Xt)− pa2(Xt)|+

∣∣pb1(Xt)− pb2(Xt)
∣∣) dt ≤∫ ∞

0

exp(−clt)
(
|pa1(Xt)− pa2(Xt)|+

∣∣pb1(Xt)− pb2(Xt)
∣∣) dt

which implies

∣∣V a
0 (x, pa1, p

b
1, J

b)− V a
0 (x, pa2, p

b
2, J

b)
∣∣ ≤

CEx
[∫ ∞

0

exp(−clt)
(
|pa1(Xt)− pa2(Xt)|+

∣∣pb1(Xt)− pb2(Xt)
∣∣) dt

]
It only remains to estimate the latter expectation in terms of L1 ([0, 1]) norms of

pa1 − pa2, pb1 − pb2. The latter follows easily by passing the expectation inside the

integral and using the standard estimates of a Gaussian kernel.

Now we state our main result.

Theorem IV.25. Let σ be sufficiently large so that w, defined in Proposition IV.14,

is < 1.

Let A = A0(w)× A0(w). It is a closed convex subset of C(R)2.

Then Φ, defined in (4.47), is a continuous mapping of A into itself.

In particular, as A is also compact, Φ has a fixed point.
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Proof: Given our choice of w, Φ maps A into itself, see definition IV.21. The closeness

and convexity of A are also clear.

A is compact because A0(w) is. A0(w) is compact because (by 1-shift property)

the restriction mapping C(R) → C([0, 1]) induces an isomorphism between A0(w)

and a closed subset of the compact set of functions in C[0, 1] which are bounded by

C ′0 + 1 and are Lipschitz with constant 1 + w.

Finally, Φ is continuous because it can be written as a composition of

e : (va, vb) 7→
(
va, vb, P a(va), P b(vb)

)
and

V : (va, vb, pa, pb) 7→
(
V a(·, pa, pb, vb), V b(·, pa, pb, va)

)
In the above, e : A → A × (B0)2 is continuous by Lemma IV.23. The operator

V : A × (B0)2 → A is continuous as it is continuous in (pa, pb) ∈ (B0)2, uniformly

over va, vb ∈ A0(w), by Lemma IV.24, and it is continuous in va, vb ∈ A0(w) by

Proposition IV.16.

The existence of a fixed point for Φ follows from the Schauder fixed point theorem.

Combining the last theorem with proposition IV.17 we immediately get

Corollary IV.26. There exists a solution (V a, V b, P a(V a), P b(V b)) of the problem

(4.1).

Remark IV.27. Note for any solution (V a, V b, P a(V a), P b(V b)) of (4.1) we have

(4.54) P a(V a)(x) = pa(x) ≥ pb(x) = P b(V b)(x), ∀x ∈ R

Indeed, let pamax(x) (pbmin(x)) be the largest (smallest) integer in Aa(x) (Ab(x)).

By definition IV.1 of admissibility, admissible pa(x) ≥ pbmin(x), admissible pb(x) ≤
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pamax(x) and pamax(x) ≥ pbmin(x). By definition (4.41), pa(x) = P a(V a)(x) ≥ V a(x) if

V a(x) ≤ pamax(x), pa(x) = pamax(x) otherwise, and similarly for pb(x). Thus (4.54) is

clear if V a(x) > pamax(x) or V b(x) < pbmin(x). If neither of these hold, then

pa(x) ≥ dV a(x)e ≥ bV b(x)c ≥ pb(x)

4.5 Appendix.

4.5.1 Proof of lemma IV.7

We need to show that if f is continuous and has continuous right derivative on

[a, b] then f is continuously differentiable on (a, b). If for any x < y in (a, b) we can

find ξ ∈ [x, y] s.t.

(4.55)
f(y)− f(x)

y − x
= f+(ξ)

then for any x ∈ (a, b) we can take y ↓ x and y ↑ x limits in f(y)−f(x)
y−x using the above

and the continuity of f+ to get that f−(x) = f+(x) hence f is differentiable for every

x, and its derivative coincides with f+ and hence continuous. So it only remains to

show (4.55) holds.

Consider

h(u) = f(u)− f(x)− (u− x)
f(y)− f(x)

y − x

Clearly h has continuous right derivative on [x, y], h(x) = h(y) = 0, and (4.55) is

equivalent to the existence of ξ ∈ [x, y] such that h+(ξ) = 0. Assume the contrary.

Then as h+ is continuous it must have values of only one sign over [x, y]. Note

also h is not identically 0 in this case, and so replacing it with −h if necessary we

can assume it has maximum > 0 achieved at some xmax ∈ (x, y). Then from the

definition of right derivative we must have h+(xmax) ≤ 0, hence < 0, hence h+ must

be < 0 on [x, y]. But if h+(x) < 0, h(x) = 0 then h also achieves minimum < 0 at

some xmin ∈ (x, y) which immediately leads to contradiction with h+(xmin) < 0.
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4.5.2 Proof of lemma IV.18

The idea is that if we take bxc or a similar stepping function, and modify it around

jump points by replacing jumps by steep line segments, this wouldn’t affect its mcm.

Recall our value function can be represented as

V a
0 (x, p, pb, J b) = fa0 (x) + φ(x) mcm

(
̂J b − fa0 − x

)
(F(x))

Where the only dependence on the obstacle is inside the mcm, and fa0 , V a
0 were

defined in (4.44,4.43). So it is sufficient to show that this y-domain mcm doesn’t

change if we replace J b = bV bc by J b = sε.

First we need to define sε. We know bV bc has 1-shift property, jumps up by

1 at a sequence of points {x0 + n}n∈Z, and is constant in between two consecu-

tive points from that sequence. We define sε(x) to coincide with bV bc outside the

intervals (x0 + n − ε, x0 + n], and to coincide with the line segment connecting

(x0 + n− ε, bV bc (x0 + n− ε)) and (x0 + n, bV bc (x0 + n+)) on those intervals; note

sε is a line segment with slope 1/ε in the left ε-neighborhood of bV bc jump point,

and coincides with it (and locally constant) elsewhere. Notice also sε ≥ bV bc by

construction, and so mcm
(

̂sε − fa0 − x
)
≥ mcm

(
̂bV bc − fa0 − x

)
and it only re-

mains to prove the opposite inequality. Note also, under our running assumption

of sufficiently large σ, fa0 + x is strictly increasing, and so bV bc − fa0 − x achieves

its maximum exactly at points {x0 + n}; if this maximum is non-positive, we know

from the proof of proposition IV.14 that the corresponding mcm is ≡ 0, and so the

claimed inequality is clear as sε−fa0 −x has the same supremum as bV bc−fa0 −x. So

from now on we deal with the case where that supremum is positive, which implies

mcm
(

̂bV bc − fa0 − x
)
> 0 everywhere.

Similarly to the mcm of the function dominating its modification by replacing it



178

by line segment connecting any two points of its graph over appropriate interval,

φ(x) mcm
(
f̂
)

(F(x)) dominates the function obtained from f by replacing its values

on some [x0, x1] by the values of aφ(x)+bψ(x) function coinciding with f at x0,x1 (as

̂operation converts aφ+ bψ into a line segment). So to show mcm
(

̂sε − fa0 − x
)
≤

mcm
(

̂bV bc − fa0 − x
)

it suffices to show sε − fa0 − x is dominated on [x0, x0 + 1] by

aφ(x) + bψ(x) interpolation between (x0, y) and (x0 + 1, y), where y = bV bc(x0) −

fa0 (x0)− x0 = bV bc(x0 + 1)− fa0 (x0 + 1)− (x0 + 1).

So, consider h = aφ + bψ, h(x0) = y > 0, h(x1) = y > 0, x1 = x0 + 1. As h

satisfies

σ2

2
hxx − ch = 0, a.e.

and is continuously differentiable, we get a contradiction if we assume h achieves

maximum on [x0, x1] in the interior of this interval, as then by the equation above

h and so hxx are positive (as y > 0) in the neighborhood of that maximum, which

is not possible. So h(x) ≤ y on [x0, x1]. But then as h(x) ≤ y the equation above

implies

hxx ≤
2c

σ2
y ≤ 2cu

σ2
y

and as average slope of h over the length 1 interval [x0, x1] is 0 this implies also

hx ≤
2cu
σ2

y

As y = supbV bc− x− fa0 , the (C + 1)-closeness to x (0) of V b (resp. f 0
x) implies y ≤

2C+2. But this means hx is bounded by a constant independent of the choice of p, pb,

V b with properties as in the statement of the lemma. As h(x1) = sε(x1)−x1−fa0 (x1),

and sε(x) − fa0 − x has slope ≥ 1/ε − 1 − w on [x1 − ε, x1], if ε is small enough so

that this last expression is above the constant bounding hx, we get

sε(x)− fa0 − x ≤ h, x ∈ [x1 − ε, x1]
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hence also elsewhere on [x0, x1], and on other intervals [x0 + n, x0 + n + 1] by the

same argument. This shows

mcm
(

̂sε − fa0 − x
)
≤ mcm

(
̂bV bc − fa0 − x

)
and so also

mcm
(

̂sε − fa0 − x
)

= mcm
(

̂bV bc − fa0 − x
)

as claimed.

4.5.3 Proof of lemma IV.8

We’ll prove the claim about ψ, the one about φ being analogous. As ψ satisfies

ψ(x) = Ex
[
exp

(
−
∫ τ0

0

c(Xs)ds

)]
for x < 0 and as c(Xs) ≥ cl > 0 we have

ψ(x) = Ex
[
exp

(
−
∫ τ0

0

c(Xs)ds

)]
≤ Ex [exp (−clτ0)] = ψ0(x)

where ψ0 is the ψ corresponding to c(x) ≡ cl and so is a unique positive increasing

solution with ψ0(0) = 1 of

σ2

2

d2f

dx2
− clf = 0

and hence ψ0 = exp
(√

2cl
σ2 x
)

. Similarly for x ≥ 0 ψ satisfies

ψ(x) = E0

[
exp

(
−
∫ τx

0

c(Xs)ds

)]−1

≤ E0 [exp (−cuτx)]−1 = ψ1(x)

where ψ1 is the positive increasing solution with ψ1(0) = 1 of

σ2

2

d2f

dx2
− cuf = 0

and hence ψ1 = exp
(√

2cu
σ2 x
)

. This gives the required bound by observing cl < cu

which allows to resolve max there for x ≥ 0 or x ≤ 0 to ψ0 or ψ1 as appropriate.
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