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ABSTRACT

This dissertation studies shock loading of Polymer-Bonded Explosives (PBXs)

with varying degrees of microstructural information. PBXs are a class of multi-

component solid-state composites consisting of energetic crystals (HMX) em-

bedded in a polymeric binder and are used as propellants, munitions, fuel cell

components and explosives for mining.

The rapid energy release involves tightly coupled nonlinear interactions

between chemistry and mechanics. While the evolution and transfer of chem-

ical energy to thermal and mechanical energy occurs at larger scales, decom-

position and energy release take place at the molecular level. Between the

molecular and continuum levels, material behavior is governed by the material

microstructure; as the shock wave propagates through the energetic material, it

is influenced by the particulate matrix interactions.

Typical hydrocodes that are currently used to simulate detonation of ener-

getic composites do not explicitly model material heterogeneities. Continuum

methods require the least amount of fidelity and use homogenized material

properties. On the other end of the spectrum, Direct Numerical Simulation

(DNS) explicitly models the microstructure and requires the highest amount

of fidelity. A novel approach is introduced in this work which exploits the at-

tractive features (speed/accuracy) of each method; the First-Order multiscaling

approach incorporates micro-scale effects by using volume averaging schemes.

A hydrocode was developed to study shock loading of PBXs for all methods.
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The Eulerian hydrocode is based on the finite element method. The gov-

erning Euler Equations are solved using an explicit, one-step, second-order

Taylor-Galerkin scheme. The solution procedure includes a high-resolution

shock capturing scheme needed for numerical treatment of shocks. Contin-

uum numerical results were validated by comparing to variety of experimen-

tal and numerical PBX results. To incorporate material heterogeneity effects,

synthetic microstructures were generated using Markov Random Field (MRF)

approach, with varying levels of material composition. Initiation of these mi-

crostructures and a continuum were studied for four different loading condi-

tions.

Results shown that material behavior is significantly influenced by infor-

mation from the microscale. In general, a continuum approach is less reactive

than material models that include microscale information. For most loading

conditions the continuum model was vastly different than the heterogeneous

material systems and never achieved pressure, temperature and burn fractions

values by those of the heterogeneous material systems. Although the contin-

uum approach includes binder effects through material properties, this inclu-

sion isn’t sufficient to fully capture heterogeneous material behavior.

Loading conditions also played a role in material response. Uniformly dis-

tributed loading within regions known as “hot volumes” produced different

responses for various material systems. Loading conditions with multiple in-

teractions, not higher hot volumes, were found to have higher pressure and

temperature outputs. Binder content affects heterogeneous material perfor-

mance and safety. HMX heavy materials required less initiation energy and

produced the highest temperature and pressure outputs, while binder heavy

materials followed the opposite trend. These results showed material perfor-

mance is at competition with material safety and have implications for material

xxiv



by design.

Finally, First-Order Multiscale modeling showed promise in capturing the

influence of heterogeneity on shock loading of PBXs. The multiscale approach

compared well to high fidelity DNS results, especially for material systems

with reduced heterogeneity, at the fraction of the cost associated with DNS.

Applying the methodologies and techniques used in this dissertation to vari-

ous PBX systems can allow materials to be designed and tailored to specific

applications without having to run physical experiments.

xxv



CHAPTER 1

Introduction

1.1 Motivation

Polymer-bonded explosives (PBXs) are a class of multi-component solid-state compos-
ites consisting of energetic crystals and metal particles embedded in a polymeric binder.
Unlike traditional fiber based composite structures, PBXs are designated as particulate
composites. They are comprised of a thermoplastic, typically 5 − 20% of the formula-
tion by weight, and organic explosive crystals, such as cyclotetramethylene-tetranitramine
(HMX) [1] which contains fuel and oxidizer needed for combustion processes. These ener-
getic materials react rapidly producing expanding gaseous products, at high pressures and
temperatures, and consequently are used as propellants, munitions, fuel cell components
and explosives for mining. The rapid energy release (detonation) involve tightly coupled
nonlinear interactions between chemistry and mechanics which produce a self-sustaining
shock wave. These detonation waves have extreme features; they travel at typical speeds
of thousands of meters per second, the reaction zone is a few hundred micrometers wide,
the reaction times are of the order of microseconds and the peak pressures can reach about
100GPa [2]. Given the extreme nature of this phenomena there is significant interest in
material performance and, more importantly, safety (accidental detonation).

These two material behaviors, however, are heavily influenced by the material hetero-
geneities. As the shock wave propagates through the energetic material, it is influenced by
the particulate matrix interactions. While the evolution and transfer of chemical energy to
thermal and mechanical energy occurs at larger scales, decomposition and energy release
take place at the molecular level. Between the molecular and continuum levels, material
behavior is governed by the material microstructure [3–7]. Consequently there is great in-
terest in energetic materials by design; i.e. controlling the shock wave by manipulating the
microstructure.

However, energetic materials by design has many challenges. There is a great amount
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of resources needed to develop PBXs. Manufacturing restrictions and safety concerns af-
fect development time and, thus, experimental studies of detonation phenomena are ex-
pensive and sometimes impossible. Numerical methods have become a useful alternative
method of solution, which, if carefully used, can assist in the design of explosives. Typical
hydrocodes that are currently used to simulate detonation of energetic composites do not
explicitly model material heterogeneities. The aim of this work is to begin the construction
of a multiscale model hydrocode, for shock loading of PBXs, that incorporates material
microstructure information and will ultimately aid in the expedition of the development
process.

1.2 Detonation Physics

Explosives are materials that release energy at exceedingly rapid rates. Fundamentally,
their behavior is a result of the coupling between the well-developed fields of fluid me-
chanics and chemistry. In the past, explosive science was relatively primitive and relied
heavily on empirical observations. Recently, however, modern diagnostic techniques [8]
and computational technologies have encouraged growth in the understanding of explo-
sives.

Explosives may be categorized by the rate at which the material expands: low or high
explosives [9]. Low explosives expand at subsonic speeds (deflagration), while high ex-
plosives, expand at supersonic speeds through a shock wave (detonation). High explosives
may be classified further by their sensitivity to mechanical or thermal insult [10]. High
explosives that are extremely sensitive to heat, shock and electrical discharge are known as
primary explosives. High explosives that require a shock of another explosive or a high-
energy impulse in order to detonate are known as secondary explosives. Secondary high
explosives include additives such as metals, binders and plasticizers, and are the focus of
this work.

The distinguishing feature of detonation is the self-sustaining shock wave maintained
by the inertia of the explosive itself. Shock waves are compression wave fronts where
the flow across the front results in an abrupt change of state [11]. The shock process is
irreversible and is associated with a steep pressure rise nearing a discontinuity in fluid
properties. Shock waves may propagate through both reactive and inert liquids or solids.
During detonation, the material in front of the wave is unaffected until the detonation wave
passes through it as the wave front separates stationary materials from material in motion.
Just behind the wave front, pressures and temperatures are extremely high and are pro-
duced by the rapid energy release in the explosive; waves travel at speeds on the order
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of kilometers per second, pressures are on the order of tens of gigapascals, temperatures
range from 2000− 4000K, and 90% of chemical reaction is complete within 10−6 − 10−9

seconds [12]. A detonation wave precedes and is driven by the zone of chemical reaction,
in turn creating high pressures and temperatures necessary to drive chemical reaction. This
coupling provides the necessary conditions to maintain fast chemical reaction and thus the
self-sustaining propagation of the detonation wave.

The detonation wave largely depends on the composition and initiation of the explo-
sive. Explosives with uniform composition are known as homogeneous explosives and
are typically liquid explosives, such as nitromethane, FEFO, IPN, and hydrogen perox-
ide/water [13, 14]. Initiation of the detonation wave occurs via shock heating from com-
pression and thermal explosion at the interface between the material and an impactor. This
creates a super detonation that eventually overtakes the initial shock front. Eventually the
shock is overdriven and steady detonation is reached. This process is illustrated in Fig.
1.1. The wave travels at a constant velocity, heating the material to a bulk temperature. In
order to detonate, the bulk material must be heated above the activation energy; therefore,
homogeneous explosives are less sensitive.

Explosive materials whose composition varies spatially are known as heterogeneous
explosives and are the focus of this work [15–18]. These materials are not heated uniformly
to a bulk temperature. Instead hot regions (hot spots) build in various locations due to
shock loading of the microstructure. Hot spot mechanisms have been studied in explosives
[19, 20] and in the context of engines [21]and propellants [22] as a crucial mechanism in
initiation. The collective interactions of hot spots results in energy release close to the
shock front, resulting in an increase in pressure and temperature. This localized energy
continuously accelerates the shock front until the shock-to-detonation transition occurs as
shown on Fig. 1.1. This transition can be measure as the run-to-detonation and can be
measured in distance or time.
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Figure 1.1: Shock-to-detonation transitions for homogeneous explosives(left) and hetero-
geneous explosives(right).

Run-to-detonation is the main measurement used to assess an explosive’s sensitivity
and is calculated as a function of input pressure [23]. It is determined experimentally by
embedding gauges within the explosive at multiple points. The material is then shocked
with an impactor and the shock-to-detonation wave profiles are measured. Note, as the
shock waves propagate through the material, the embedded gauges move with the material.
From these reactive wave profiles, the location or time at which the explosive reaches steady
detonation is determined. As an example, the wave profiles for a heterogeneous explosive
with five embedded gauges are shown on the left of Fig. 1.2. The y-axis represents pressure
and the x-axis represents time. The initial pressure can be measured from the first gauge
at x1. The shock wave strengthens at gauges x2 and x3 as chemical reaction occurs until
steady detonation is reached by the time the wave reaches the gauges located at x4 and
x5. From the plot, it can be determined that the run-to-detonation distance lies between
gauges located at x3 and x4. This experiment is repeated for various input pressures, each
corresponding to different run-to-detonation quantities.
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Figure 1.2: Run-to-detonation example with shock wave profiles(left) and Pop plot(right).
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The data generated from these experiments are used to make Pop-plots, logarithmic
plots of run-to-detonation distance versus incident shock [24]. When the data is plotted in a
logarithmic scale the relationship between run-to-detonation and incident pressure appears
linear as shown on the right of Fig. 1.2. Pop-plots for various explosives can be quite
different from each other. In this example two explosives are shown, each represented
by a solid line, with varying sensitivity. As input pressure increases, run-to-detonation
decreases. For the same input pressure, the explosive on the left has a shorter run-to-
detonation than the explosive on the right. This means that the explosive on the left is more
sensitive than the explosive on the right; i.e. less energy is required for the explosive on
the left to detonate when compared to the explosive on the right. When presented this way
(pressure on the y-axis and run-to-detonation on the x-axis) explosives occupying the right
side of the Pop-plot are less sensitive than those occupying the left side.

1.3 Hydrocodes

Large computer programs, known as hydrocodes, are typically used to simulate large de-
formations of materials in response to dynamic processes [25–27]. Initially developed in
national laboratories for defense problems, these codes have grown in complexity and so-
phistication and are used in various fields. Hydrocodes are used for problems in penetration
mechanics, fracture mechanics, astronomy [28] and, in particular, have become a useful
tool for blast and detonation analysis by providing insight into phenomena observed in ex-
periments. Many well-developed codes, including CTH [29] DYNA [30, 31], EPIC [32]
and PRONTO [33, 34], solve the continuum equations for the nonlinear response of dy-
namic materials. Like computational fluid dynamics codes (CFD), hydrocodes solve the
Euler equations for the conservation of mass, momentum, energy and species. Hydrocodes
differ from CFD codes in their use of advanced equations of state to model solids in addi-
tion to liquids and gases. Coupled with a method for dealing with shock discontinuities,
hydrocodes allow shock compression of realistic materials to be simulated in complex en-
gineering geometries. Accuracy of hydrocodes demands high resolution of the smallest
scale; the chemical reaction zone must be resolved accurately, for it is the very mechanism
that sustains the leading shock. Hydrocodes are based on Eulerian or Lagrangian methods.

5



Initial Configuration Lagrangian Eulerian

Figure 1.3: Lagrangian and Eulerian descriptions; Lagrangian mesh deforms while Eule-
rian mesh remains fixed

The Lagrangian description moves with the fluid at the fluid velocity while the Eulerian
description has the fluid moving through it [35]. This is depicted in Fig.1.3 where the
Lagrangian description in shown in the center, the Eulerian description is shown to the right
and the fluid and mesh are represented in blue and black respectively. In the Lagrangian
or material description, one would calculate fluid properties at the moving points attached
to the material for each point in time. Mass within the cell is invariant, but the volume
of the cell changes due to the expansion and compression of the material. However, in the
Eulerian or spatial description, one would calculate fluid properties at the fixed points of the
grid at all points in time. The cell volume is invariant since the points and cell boundaries
remain fixed in space. While the Lagrangian codes allow materials to remain pure (due
to moving interfaces) Eulerian codes are attractive in that the spatially-fixed mesh allow
for arbitrarily large deformations; Lagrangian grids may distort without bound and become
unsolvable. Therefore, the Eulerian description is used in the work. These methods can
be combined to take advantage of each description. Arbitrary Lagrangian Eulerian (ALE)
methods perform a Lagrangian time step and follows with a remap step that maps the
solution from the distorted Lagrangian mesh on to the spatially-fixed Eulerian mesh [36].

6



P
re

ss
u

re CJ Point

Unreacted EOS
Rayleigh Line
Fully Reacted EOS

Reference 
Condition

VN Point

Mixture of 
reactants & 

products

Specific volume

Figure 1.4: Curves for CJ and ZND detonation theories. Equations of state for solid unre-
acted explosive and fully gaseous products, with Rayleigh line, CJ point and VN point.

Hydrocode models are based on the CJ and ZND detonation theories. The CJ theory,
developed by Chapman [37] and Jouguet [38], provides a framework for inferring mate-
rial properties from detonation experiments by relating the detonation wave velocity to the
properties of the gases behind the detonation wave front. The theory assumes that as the
detonation front passes through the material, the explosive goes from an unreacted mate-
rial to fully reacted gaseous products instantly. This produces a self-sustaining shock wave
traveling at a constant velocity. The material properties for the detonation products are
represented as an equation of state on Fig.1.4. In this figure, the y-axis represents pressure
and the x-axis represents specific volume. A straight line is drawn from the initial refer-
ence condition (unreacted material) and runs tangent to the fully reacted gaseous products
equation of state curve. This line is the Rayleigh line, whose slope represents the con-
stant detonation velocity. The point at which the Rayleigh line runs tangent to the reacted
gaseous products equation of state curve is known as the “CJ” point; the unique point nec-
essary for stable detonation. Programmed burn hydrocode models uses the CJ theory as its
basis and is advantageous due to its computational cost [39]. Programmed burn initially
prescribes the features of the detonation front where a synthetic chemical reaction zone is
used and the reaction rate is assumed to be constant. As a result, the state of the explosive
at the end of the reaction zone is computed at a relatively modest cost.

The ZND theory, developed by Zeldovich [40], von Neumann [41] and Doering [42],
is an extension of CJ theory and accounts for the finite time required for chemical reaction
to occur, a more realistic assumption. It assumes that as the detonation wave shocks the
unreacted material, chemical reaction begins to occur transforming the solid material into

7



gaseous reaction products. During this process, there exists a finite reaction zone where the
explosive is partially reacted. This process is depicted on Fig.1.4 where the solid unreacted
equation of state is additionally required. Note, the area between the both equation of
state curves represents the partially-reacted explosive. The ZND theory assumes that the
Rayleigh line extends passed the CJ point and intercepts the solid unreacted equation of
state at the von Neumann point. To initiate the explosive, the solid material is shocked to the
von Neumann point. As chemical reaction occurs, pressure decreases along the Rayleigh
line, through the partially-reacted region until it reaches the CJ point, the point where all
reaction has occurred. Reactive burn model use ZND theory as its basis and assumes a finite
chemical reaction rate to be pressure, temperature or entropy-dependent [43–46]. These
rates rely heavily on empirical data, indicating the difficulties associated in predicting the
response of energetic materials under shock loading. This work uses reactive burn models.

1.4 Polymer-Bonded Explosives

Polymer-bonded explosives (PBXs) are a class of multi-component (heterogeneous) solid-
state composites consisting of energetic crystals (HMX) and metal (Al) particles embedded
in a polymeric binder (e.g. estane). PBX’s are pressed from molding powders using sev-
eral techniques and methods [47]. One such method is the slurry technique in which a
crystalline explosive is agitated in a closed container with water. A plastic solvent is added
to the container and wets the crystalline surfaces. The solvent is removed by distillation
allowing the plastic phase to precipitate on the explosive as a coating, creating plastic-
explosive beads. This process continues until the solvent and water is removed, producing
a molding powder. PBX molding powder can be pressed using fluid pressure (i.e. hydro-
static pressure) to obtain densities up to 97% of the theoretical density. The final shape of
the explosive is machined similar to that of conventional plastics.

The characteristics and classifications of PBXs depends on the polymeric coating, typ-
ically 5 to 20 of each formulation by weight, that binds the explosive and the amount of
energetic crystals [48]. As an example, PBX 9404 is 94% HMX by weight with the remain-
ing composition consisting of the plasticizers, nitrocellulose and tris-beta chloroethylphos-
phate, and the stabilizer diphenylamine. PBX 9501 is 95% HMX by weight with the
remaining composition consisting of Estane and bis(2,2-dinitropropyl)acetal and bis(2,2-
dinitropropyl)formal. Materials properties and models for both of these components are
considered in this work.

A common organic explosive crystals, an the one considered in this work, is 1,3,5,7-
Tetranitro-1,3,5,7-tetraazacyclooctane [49], commonly known as Octogen or HMX (high
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melting explosive). HMX crystals are round and approximately isotropic, containing both
fuel and oxidizer components needed for combustion processes. HMX is the most power-
ful military explosive in current use; compared to the common cast munition trinitrotoluene
(TNT), HMX-based PBXs are stronger [50]. Consequently, the cost of production is higher
when compared to other explosives (e.g. RDX) and is therefore restricted to military ap-
plications for use as high performance propellants and explosives. As with any explosive,
there is risk for premature detonation of HMX. The use of explosives in a polymeric matrix
greatly reduces sensitivity and, thus, risk of premature detonation from impact and friction.

The polymeric matrix, or binder, consists of both a polymer and a plasticizer [51].
While providing good energy absorbing properties, lowering the vulnerability of the over-
all explosive, binders are difficult to recover and demilitarize. Binder may be inert or en-
ergetic. Inert binders, such as like hydroxy-terminated polybutadiene (HTPB), contributes
no energy to the explosive decreasing the sensitivity and, therefore decreasing the overall
performance of the explosive. Energetic binders, such as glycidyl azide polymer (GAP),
poly(3-nitratomethyl-3-methyloxetane) (polyNIMMO) and poly(glycidyl nitrate) (polyG-
LYN), increase the energy output of the explosive at the expense of safety. This work
assumes that the polymeric binder is energetic or reactive.

The formulation of the binder affects the hardness, stability and safety of the explosive.
Soft PBXs are susceptible to creep and lack strength, while brittle PBXs can sustain damage
in normal handling and succumb to thermal shocks [52]. However, in general, PBXs are
relatively safe to handle as the polymer absorbs shock and reduces sensitivity to accidental
detonation. This, and the fact that the binder provides mechanical rigidity and dimensional
stability makes PBXs highly malleable. Typical machining methods and tools, such as
CNC machines, band saws and lathes can be used with care [53]. Recently, advanced
manufacturing techniques, such as 3-d printing, have been studied [54] laying groundwork
for the maximum control of material composition and sophisticated geometry.

While decomposition and energy release take place at the molecular level, the evolu-
tion and transfer of chemical energy to thermal and mechanical energy occurs at much
larger scales. Between the molecular and continuum levels, material behavior is greatly
influenced by the material heterogeneities (the microstructure). The microstructure’s com-
plicated geometry arises from the manufacturing process where a mixture of fine and coarse
energetic crystals with random orientations are coated with a thin layer of polymeric binder.
The manufacturing process has an effect on energetic crystal size [55, 56], and may pro-
duce microscale features like cracks [57]. The microstructure can be obtained experimen-
tally [58] using methods such as Polarized Light Microscopy (PLM), Scanning Electron
Microscopy (SEM), and small angle neutron scattering (SANS). A binary representative
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microstructure is illustrated on Fig. 1.5 with the black regions depicting the energetic crys-
tals and white regions depicting the polymeric binder. Energetic crystals vary in both size
and orientation. The schematic shows a mixture of both fine and coarse energetic crystals
with diameters ranging from 1 -1000µm. The height of Fig. 1.5 is approximately 0.5mm.

Energetic crystal
Polymeric binder

Figure 1.5: Binary schematic of typical PBX microstructure. Energetic crystals(black)
range from 1 -1000µm in diameter. Polymeric binder(white) is typically 5 to 20% of the
material by weight. The scale of the figure is approximately 0.5mm.

A large body of experimental work in this area indicate the importance of these features.
Crystal size effects are known to have an influence on the sensitivity and performance of
PBXs. Smaller HMX particles have lesser run times to detonation than larger particles
[3]. However, large grains are more sensitive than small grains at low pressures, while
small grains are more sensitive at high pressures [4]. Adding aluminum (Al) content to the
composition decreases detonation velocity while increasing heat of explosion [5]. Finer
Al particles increase the acceleration ability of the explosive; nanoparticles of Al achieve
higher peak pressures and detonation velocities [6]. The polymeric matrix affects the time
to detonation, as it increases with the strength and content of the binder [7]. Porosity is
also known to have an effect on run-to-detonation of PBXs [48] as pore collapse creates
hot spots, the main mechanism for initiation in heterogeneous explosives (Section 1.2).
However, other hot spot mechanisms exist such as critical hot spots [59]. Critical hot spots
are areas of the explosive that are large and hot enough to initiate the surrounding cooler
explosive. Another mechanism responsible for hot spots is the shock heating of crystals
and binder.
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1.5 Modeling of PBXs

Detonation in PBXs initiate with a rapid shock wave. The reaction zone must be resolved
accurately, for it is the very mechanism that sustains the leading shock. Accurate simulation
of the reaction zone entails bridging the length and time scales associated with microstruc-
ture evolution, reaction kinetics and mass transport. For example, the time scale associated
with the reactive flow is several magnitudes of time larger than the times associated with
the chemical reactions. The remedies proposed include high resolution grids in the reac-
tion zone [60] and time-operator splitting to deal with source terms with different time
scales [61]. However, these numerical techniques do not fully model the physicochemical
aspects of detonation phenomena. With the advent of parallel computing power, it may
now be possible to resolve these aspects using fine-scale simulations.

At the nano-scale, Ab-initio (quantum mechanical) [62] and molecular dynamics [63]
studies have been used to study the chemical mechanisms involved in HMX decomposition.
MD simulations have also been used, along with reactive force fields calibrated from quan-
tum mechanical calculations, to model detonation waves and chemical kinetics [64, 65].
The conventional non-equilibrium MD approach involves creating a shock on one side of
the simulation cell and propagating the shock to another side, but the simulation time is
limited by the time to reach the other side (in order to avoid shock reflection). The quality
of MD simulations depends on a number of factors including the representation of the force
field [66]. New types of shock simulation techniques have been developed that constrain
the computational cell to jump conditions across the shock [67,68]in order to realize larger
simulation times. These methods constrain the energy, velocities or stress in the simulation
cell to converge to the thermodynamic jump conditions across a shock. Recently, a multi-
scale shock technique (MSST [69]) has been proposed that combines atomistic simulations
with the Euler equations to achieve longer simulation times and length scales. However,
these new methods do not scale to level of the microstructure (micro-scale consisting of
grains, particles) where other physical features such as localized heating, formation of hot
spots [70] and interaction between particles need to be considered. However, MD methods
are useful to compute thermophysical parameters such as strength and conductivity [71–75]
that can be used in micro- and meso- scale simulations.

At the micro-scale, studies have been performed that include models for microstructural
information (e.g. grain size). These models include the statistical hot spot models [76, 77],
stochastic material attribute models [78] and the mixture model [79]. The microstruc-
ture may also be represented explicitly. Studies have been performed using discretized
microstructures solved within multi-material hydrodynamics computer codes described in

11



Section 1.3. Coupled with a method for dealing with shock discontinuities, hydrocodes
allow shock compression of realistic materials to be simulated in complex engineering ge-
ometries. In this work, the use of hydrocodes at the microstructural scale is termed “direct
numerical simulation”(DNS). This is done to differentiate this approach to the conventional
method of modeling PBXs as a homogenized material within a hydrocode. The homoge-
nized approach is termed the “continuum”. This model does not explicitly model material
heterogeneities and, therefore, does not require high fidelity. For comparison, note that
the mesh sizes of continuum-scale models are of the order of 100 micrometers while the
mesh size in the micro-scale model is about 0.1 micrometers (which resolves the crystalline
aggregate).

DNS simulations of PBXs have been performed for numerous experiments using a va-
riety of computational methods and models. The response of HMXestane microstructures,
with varying volume fractions, to transient stress waves has been studied using a cohe-
sive finite element framework [80]. Split Hopkinson Pressure Bar (SHPB) measurements
for PBX9501 has been numerically studied using Mori–Tanaka models [81, 82] . The re-
sponse of PBX9501 has also been measured for weak shock using discrete element [83]
and particle-in-cell methods. [84,85]. Both Eulerian and Lagrangian hydocodes have been
used to study the compaction of granular HMX [86–88]. However, the focus of this work
is modeling shock propagation and detonation of PBXs. This phenomena has been investi-
gated previously in the following studies. High resolution three-dimensional simulations of
shock loading on heterogeneous materials found that hot spots are strongly influenced by
multiple crystal interactions [89, 90]; inter-granular voids in porous HMX leads to greater
deformation of the grains and higher temperatures. These types of simulations provide de-
tailed insight into hot spots size [70] and mechanisms such as pore collapse [91]. High res-
olution simulation data like this was then used to determine statistical and mean properties
of the shock fields [92]. Two-dimensional simulations of shock loading has also been stud-
ied and has provided insight into ignition times associated with hot spot temperatures [93]
and the hot spot criteria for polymeric binders [94]. In this work, three-dimensional and
two-dimensional DNS simulations will be studied.

Ideally all length and time scales associated with shock loading of PBXs can be sim-
ulated and coupled. That is, when the material is shocked at the continuum-scale, the
traveling detonation wave creates high pressures and hot spots at the micro-scale. These
hot spots then spread and heat cooler regions of the solid unreacted material. At the nano-
scale, molecules vibrate until molecular bonds break creating a chain reaction. At the
micro-scale, these reactions increase temperature and convert unreacted material to gaseous
products. The hot spots then spread as chemical reaction continues heating the material to
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a bulk temperature. Ultimately, the average quantities across the micros-scale would re-
produce experimental shock and detonation phenomena measured at the continuum-scale.
Unfortunately, the fidelity required for such an idealized model is intractable. The emerg-
ing paradigm of “multiscaling” is a useful alternative to the idealized model and is shown
below on Fig. 1.6.
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Figure 1.6: Paradigm of “multiscaling” applied to shock loading of energetic materials.
Possible methods and models are shown for each length scale (continuum-, micro-, nano-)

Multiscale modeling or, coupling of simulations at various length scales, allow for the
incorporation of important physical behaviors from fine to coarse length and time scales.
Most existing methods are based on concurrent multiscaling, i.e. dividing the computa-
tional domain into atomistic, micro and continuum regions. For example, in quasicontin-
uum methods, a coarse-grained Hamiltonian is used to model the dynamics of the sys-
tem [95] and a matching condition is devised for the continuum-atomistic interface. There
have been several intrinsic difficulties in extending these methodologies to study dynam-
ics and finite temperature systems. One most obvious obstacle is the issue of time scales.
Even though the domain decomposition approach addresses the spatial scale issue, time
scales are still coupled between the atomistic and continuum regions. Another issue is
the matching conditions at the atomistic-continuum interface. Ideally the presence of the
boundary should not influence the results in the atomistic region. In practice, however, it
is usually too expensive to find such boundary conditions. This is especially true when
the atomistic regions change in time, e.g. in order to track a moving shock. Although
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multiscale modeling has been applied to the field of detonation in fluids [96], literature
search reveals that a general methodology to couple simulations at different length scales
(nano-micro-continuum) for shock loading in PBXs is currently lacking.

Conservative Variables

Properties & Fluxes

Continuum-scale Micro-scale

Figure 1.7: Computational Homogenization: Each numerical integration point has a vary-
ing microstructure. Information from the continuum-scale is passed to the micro-scale as
conservative variables. Fluxes and properties are returned to the continuum-scale

The multiscale linking methodology considered here is called “computational homoge-
nization” [97–101]. The approach is general and allows one to embed atomistic simulations
into micro- scale simulations or micro-scale simulations into continuum-scale simulations.
The idea of computational homogenization is to start with a continuum problem and find the
missing information in the form of fluxes and material properties by performing local simu-
lations of the microscale models. These microscale models are constrained to be consistent
with the local continuum state of the system. A crucial component of the method is how to
enforce such constraints so as to conserve energy and mass across length scales. The under-
lying principle is scale separation, which uses the fact that the length-scales of continuum-,
micro- and nano- are vastly separated. Hence, properties at a point in the coarse-scale can
be obtained from a fine-scale unit cell (with finite volume). The continuum-scale fields are
passed to the micro-scale and uniformly distributed. Continuum fluxes and properties (at
all integration points) are computed from the underlying microstructural sub-problem using
averaging schemes. Information from the continuum is passed to the micro-scale as con-
servative variables and is returned as fluxes and properties as illustrated on Figure 1.7. This
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approach allows for straightforward incorporation of physical and geometrical nonlineari-
ties in material response and is based on the direct extraction of the constitutive behavior
from the heterogeneity of a material. This provides significantly faster computational time
than a direct numerical simulation.

Detonation models require as input the initial state of the explosive, the equations of
state of the unreacted explosive and the gaseous detonation products, and the reaction rates.
Currently, empirical reaction rates and equations of state are used that are tuned to a suite
of macroscopic experimental data on each explosive composition. In the microstructural
model, separate HMX, and binder regions are used, and each require a material model. It
is necessary to represent both the unreacted material and the reaction products of all three
species. This is accomplished using an equation of state for the solid unreacted material
and an equation of state for the gaseous reaction products, along with a chemical reac-
tion scheme and a mixing rule to define the properties of partially reacted states [102]. A
variety of equations of state (EOS) have been used to represent explosives including Jones-
Wilkins-Lee (JWL) form [46], the Murnaghan form [103] and Gruneisen form [90]. Since
the primary purpose of the proposed work is to test the multiscale approach rather than fo-
cus on EOS development, a simple linear Grüneisen equation of state will be employed for
the unreacted HMX and binder. The JWL form will be used to model the EOS of gaseous
reaction products for both HMX and the binder. The data for the model is readily avail-
able from carefully calibrated experiments and using molecular simulations for data such
as specific heat and thermal conductivity [104, 105].

Various studies have focused on the detailed reaction kinetics of HMX. Arrhenius ki-
netics schemes have been proposed with single-step [106] or multi-step reactions [107].
In particular a three-step scheme for HMX (depolymerization, gaseous decomposition of
depolymerized HMX followed by gas phase decomposition to form the final reaction prod-
ucts) was proposed. A wide variety of data has been compiled for the time to explosion
in HMX, including one-dimensional time-to-explosion (ODTX) and detonation data [108].
For the binders, two-step Arrhenius schemes have been proposed and fit to limited ex-
perimental data available in literature [109]. The empirical based Ignition and Growth
model [46] is a pressure-dependent model formulated to represent the ignition of hot spots
and the growth of reaction from hot spots into the surrounding explosive. A simplified
version of the Ignition and Growth model is the JWL++ model [103]. The JWL++ model
uses a mixture rule for the total pressure and has found that it is equivalent to enforcing
pressure equilibrium. Both Arrhenius kinetics schemes and Ignition and Growth model
will be considered in this work.
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1.6 Outline

The aim of this work is begin the construction of a multiscale model, for shock loading of
PBXs, that incorporates material microstructure information. This thesis is divided into 6
Chapters. Chapter 2 discusses hydrocode development and includes a review of the gov-
erning equations and models used in this work. The numerical method and shock capturing
scheme are described in detail. Chapter 3 presents continuum methods and validates the
solution procedure with classical fluid dynamics problems. Numerical results for shock
loading of PBXs are compared with experimental data. Mesh convergence studies are
presented. Chapter 4 discusses the framework and numerical results for Direct Numeri-
cal Simulation (DNS). This chapter includes the development of synthetic microstructures
with varying volume fractions and material models for the binary representation. Multiple
loading conditions are investigated. Multiscale modeling is presented in Chapter 5. A First-
Order approach is considered, where volume averages are used. This chapter compares all
methods and provides further discussion of the advantages of each method. Finally, con-
cluding remarks and future work and implications are given in Chapter 6.

1.7 Summary

This chapter presented the motivation behind the need for a multiscale model of shock
loading of PBXs. It began with a review of detonation physics and the classifications of ex-
plosives. The theories behind hydrocodes and their descriptions in the Lagrangian and Eu-
lerian frame followed. Polymer bonded explosives and their compositions were discussed
at great length with experimental work indicating the importance of the microstructure
in shock loading. The existing literature for the modeling of polymer bonded explosives
has been reviewed and showed the need for a multiscale model. Current models for the
continuum-scale, nano-scale, micro-scale, equations of state and reaction schemes needed
for the multiscale model were also discussed. Finally, the outline of this thesis was pre-
sented.
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CHAPTER 2

Numerical Methods

This chapter presents the numerical methods used in this work to model shock loading
of polymer bonded explosives. Section 2.1 presents the governing equations and models
needed for simulating shock loading of PBXs at various scales. The reactive Euler equa-
tions are presented as well as models for the equation of state, temperature and the rate of
change of mass fraction for each species. A one-step second-order finite element scheme
is presented in Section 2.2 where the conservation variables are discretized in time and
space. The elements used in this work are also described in this section. Next, Section
2.3 describes the high-resolution scheme used for the numerical treatment of shock waves.
Finally, Section 2.4 discusses the implementation into the computational environment and
speed tests.

2.1 Governing Equations and Models

The evolution of the solid-state composite during detonation can be computed by solving
the reactive flow problem [110]. During detonation, a broad range of physical phenomena
(e.g. expansion, diffusion, chemical reaction) interact over various scales in time and space.
The scales considered in this work are on the order of microseconds for time, and between
0.1cm − 10cm for space. These scales are necessary for modeling at the microscale and
continuum levels where experimental results may be considered. Therefore, all physical
phenomena are not considered in this work. The effects due to gravity, electromagnetic
forces and radiation are widely neglected in explosives modeling and are neglected in this
work. It is also assumed that the flow is inviscid.

The dynamics of a continuous media can be described with a set of differential equa-
tions. Continuum mechanics uses the principles of conservation of mass, momentum, and
energy to establish these equations. They relate the material density ρ, velocity u and the
specific total energy E. However, reactive media also requires a transport equation for
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each species Yj . The two fundamental descriptions of the kinematic deformation of con-
tinuous media were presented in Section 1.3. The reactive Euler equations, or conservation
equations, are shown in the Eulerian (spatial) description below

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

∂ρu

∂t
+∇ · (ρu⊗ u + pI) = 0 (2.2)

∂ρE

∂t
+∇ · ((ρE + p)u) =

nspecies∑
j=1

qjρẎj (2.3)

∂ρYj
∂t

+∇ · (ρuYj) = ρẎj, for j = 1 . . . nspecies−1 (2.4)

where equation 2.1 relates the rate of change in density to the spatial derivatives of the
velocity vector u. Equation 2.2 relates the rate of change in momentum to the spatial
derivatives of pressure, p. Equation 2.3 relates the rate of change of total energy per unit
volume to the hydrodynamic work and the rate of change of mass for each chemical species
Ẏj , where q is the heat release. A transport equation is needed for each number of j species,
for a total of nspecies with

∑
Yj = 1 and

∑
Ẏj = 0 leading to nspecies−1 independent

equations. Equation 2.4 relates the rate of change of species mass fraction to the convection
of mass fraction through space and the rate of change of mass for each chemical species Ẏj .
Models are needed for the rates of change for each species. The reactive Euler equations,
equations (2.1)-(2.4), are closed with equation of state, relating the state variables of the
material (ρ, ρu, ρE, ρYj) to the pressure, p and temperature, T . Pressure and temperature
are functions of specific volume ν and specific internal energy e and are related to the
conservation variables by

ν = 1/ρ, (2.5)

E = e+
1

2
‖ u ‖2 (2.6)

In reactive flow, it is necessary to represent the material response of both the unreacted
material and the reaction detonation products as described in Section 1.3, figure 1.4; there-
fore, equations of state are needed for both extremes. The pressure for a solid unreacted
material is given by a linear Mie-Grüneisen equation of state [90] of the form:

ps(νs, es) =
a2(ν0 − νs)

(ν0 − b(ν0 − νs))2
+
γ(νs)

νs

(
es −

a2(ν0 − νs)2

2(ν0 − b(ν0 − νs))2

)
(2.7)

where the subscript “s” denotes the solid unreacted material and γ denotes the Grüneisen
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parameter. The linear relationship between shock speed Us and particle velocity up, or the
Hugoniot Us = a + bup, is used as the reference curve where a and b are experimental
constants. Following reference [94], when the Grüneisen parameter γ ≡ γ0 = 1 and the
specific heat cv is held constant temperature is calculated analytically as

Ts(νs, es) =

(
ν0

νs

)γ0 (
T0 +

1

cv,s

(
νs
ν0

)γ0
(es − ei(νs))

)
(2.8)

where

ei(νs) =
−a2

b3

(
ν0

νs

)(
3b(ν0 − νs)

2ν0

+ (3− b)ln
(
ν0 − b(ν0 − νs)

ν0

)
−
(
b− 3

2

)
b(ν0 − νs)

ν0 − b(ν0 − νs)

)
(2.9)

A typical model for the reaction products is the Jones-Wilkins-Lee (JWL) form [46].
The pressure is given by

pg(νg, eg) =

(
1− wν0

R1νg

)
Aexp

(
−R1

νg
ν0

)
+

(
1− wν0

R2νg

)
Bexp

(
−R2

νg
ν0

)
+
weg
νg

(2.10)

where the subscript “g” denotes the gaseous reaction products, and the Grüneisen parameter
γ ≡ w. Again, following reference [94], when the Grüneisen parameter w and the specific
heat cv are held constant temperature is calculated analytically as

Tg(νg, eg) =

(
νCJ
νg

)w (
TCJ +

1

cv,CJ

(
νg
νCJ

)w
(eg − ei(νg))

)
(2.11)

where

ei(νg) =
ν0

R1

Aexp

[
−R1

νg
ν0

]
+
ν0

R2

Bexp

[
−R2

νg
ν0

]
+
Cν0

w

(
ν0

νg

)w
(2.12)

The constants for the solid equations of state (a, b, ν0, cv) and gaseous equations of state
(A,B,C, νCJ , w, cv) are determined experimentally and are taken from references [47, 48,
94]. The following chapters specify each constant for each material.

Although material states are calculated for two extremes(unreacted/fully reacted) using
equations (2.7)-(2.12), according to ZND theory, described in Section 1.3, there exists a
finite reaction zone where the explosive is partially reacted. This state of the explosive
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is determined by the burn fraction. The mass fraction of detonation products, or burn
fraction, is described as λ and is a subset of Yj . As an example, for a one-step reaction
Y1 would describe the mass fraction for unreacted PBX and Y2 would describe the mass
fraction of gaseous products. Since mass is conserved (equation 2.4), Y1 + Y2 = 1 and
λ = Y2 = 1 − Y1. The burn fraction describes the state of the material: fully reacted
material is given by λ = 1, unreacted material is given by λ = 0 and partially reacted
material is given by 0 < λ < 1. The pressure for a partially reacted explosive is calculated
using the following mixture rule.

p = (1− λ)ps + λpg (2.13)

For temperature, typically equilibrium is enforced and the following energy mixture is used.

e = (1− λ)es + λeg (2.14)

However, e = cpT . By assuming a constant specific heat and considering the previous re-
lation, the following equation is obtained; a mixture rule for temperature. Partially reacted
temperature is calculated with Equation (2.15). The conventional equilibrium approach and
mixture rules are compared in Appendix D.

T = (1− λ)Ts + λTg (2.15)

According to the mixture rule shown on equation (2.13), when λ = 0, the total pressure
is equivalent to the pressure of a solid (equation (2.7)). When λ increases, the total pres-
sure is a combination of the solid ps, and gaseous pg, equations of state. As λ increases
and approaches unity, the total pressure is equivalent to the fully reacted equation of state
(equation (2.10)). The total temperature follows the same mixing rule as shown on equation
(2.15).

The transport equation (2.4) for mass fraction, and consequently the burn fraction λ,
is governed by the source term modeling the reaction rate Ẏj . In this work it is assumed
that a one-step reaction occurs for each material, including HMX, binder and homogenized
PBX; i.e. the reaction scheme for each material is described by A 1−→ B, where YA is the
mass fraction of the unreacted explosive and YB is the mass fraction of the gaseous reaction
products(Note, λ = YB = 1− YA). Two different models are considered in this work. The
first is the Ignition and Growth model [46]. This model is empirical and based on total
pressure.

ẎB = I(1− YB)τ1V τ2 +G(1− YB)τ1 Y τ3
B pτ4 (2.16)
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here, I is the ignition parameter, G is the growth parameter and the parameters τ ’s are
empirical constants. The relative volume V = ρ/ρ0 where ρ0 is the reference density.
Similar to the mixture rules described in equations (2.13) and (2.15), the rate is bound by
two extremes; for a solid unreacted material λ = 0 and for the completely reacted products
λ = 1. At these two extremes the reaction rate for the Ignition and Growth model is zero.
The second reaction rate considered in this work is in the Arrhenius model.

ẎA = YAZe
−E1/RT (2.17)

where q is the heat release, Z is the static frequency factor,E1 is the activation energy andR
is the molar gas constant. Detailed reaction kinetics like these are complex, however these
reaction schemes have the considerable advantage of being based on appropriate chemistry.
Parameter for moth the Ignition and Growth model and the Arrhenius model are provided
in the following chapters.

2.2 Taylor-Galerkin Scheme

Shock wave propagation through reactive materials is simulated by solving the reactive
Euler equations (2.1)-(2.4), a nonlinear set of hyperbolic conservation laws. Classical for-
mulations of solid dynamics based on displacement approach are unsuitable for this prob-
lem due to locking issues at extreme mesh distortions and numerical errors in the velocity
of propagation of waves. This problem has been largely addressed in the fluid dynamics
community using Riemann solvers in the context of finite volume methods [91]. In the con-
text of standard finite element methods, various stabilized methods such as Petrov Galerkin
(PG) methods, Galerkin/least-squares (GLS) methods and the Taylor–Galerkin (TG) meth-
ods have been developed to address the issue. In the PG and GLS methods, a stabilization
term with a coefficient is added to the weak form to act as an artificial diffusion, how-
ever, the choice of the coefficient is semi-empirical [111, 112]. The basic TG algorithm
was proposed by Donea [113], Baker et al. [114] and Löhner et al. [115] for first-order
systems of hyperbolic equations in which Taylor expansion in time precedes the Galerkin
space discretization. TG finite element schemes are especially attractive since the diffusion
arises from an improved Taylor approximation to the time derivative of the fields. When
compared to the PG methods, TG methods were found to be approximately three times
faster [116]. TG algorithms have been successfully applied in areas such as pollutant trans-
port [117], shallow water computations [118] and high speed compressible flows [119].
Recently they have been applied to detonation of energetic particles [120–122]. The reac-
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tive Euler equations are solved numerically using the TG scheme.
Consider a the domain Ω ⊂ Rnsd with piecewise smooth boundary Γ. Here, nsd = 1, 2

or 3 denotes the number of space dimensions. In vector form and in 3D (nsd = 3) the Euler
equations (2.1)-(2.4) can be rewritten as

∂U
∂t

+
∂F1

∂x1

+
∂F2

∂x2

+
∂F3

∂x3

= S (2.18)

where U is the vector of conservation variables, Fi are the associated flux vectors for each
spatial dimension and S is the source term. They are defined as follows

U =


ρ

ρu
ρE

ρYj

 , Fi =


ρui

ρuui + p

(ρE + p)ui

ρuYj

 , i = 1, . . . , nsd, S =


0

0

qjρẎj

ρẎj

 (2.19)

The velocity vector u contains components u = [u, v, w] and the position vector x con-
tains components x = [x1, x2, x3]. Equation (2.19) can be compacted further using the
divergence of the flux vector

F =
[

F1 F2 F3

]
(2.20)

and the conservation equations, boundary conditions and initial conditions induce the strong
form of the problem, where n is the normal and t is time

Ut +∇ · F = S in Ω×]0, T [, (2.21a)

Fin · n = G on Γ×]0, T [, (2.21b)

U(x, 0) = U0(x) on Ω at t = 0 (2.21c)

Further, the Euler equations can be expressed in a quasi-linear form where flux components
are written as

Fi(U) = Ai(U)U (2.22)

where Ai(U) = ∂Fi/∂U, with i = 1, . . . , nsd are the Jacobian matrices and are divergence
free. Thus, from equation (2.18), the quasi-linear form of the Euler equations is given by

∂U
∂t

+ A1
∂U

∂x1

+ A2
∂U

∂x2

+ A3
∂U

∂x3

= S (2.23)
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or in compact form
Ut + (A · ∇)U = S. (2.24)

The TG algorithm for the Euler equations begins with a truncated Taylor expansion in
time about the conservation variables followed by the Galerkin space discretization. For
the next time step n+ 1 the Taylor expansion is

Un+1 = Un + ∆t Un
t +

1

2
∆t2 Un

tt +O(∆t3) (2.25)

where (·)t denotes the partial derivative in time and ∆t denotes the time increment. The
time derivatives are replaced by spatial derivatives using the quasi-linear form and equation
(2.21). The first derivative is found by rearranging equation (2.21a)

Ut = −∇ · F + S. (2.26)

The second derivative is found by differentiating the first derivative, found in equation
(2.26), in time

(Ut)t = Utt = (−∇ · F + S)t = −∇ · Ft + St = −∇ ·
(
∂F
∂t

)
+
∂S
∂t
. (2.27)

producing, St the rate of the source term. It is approximated by finite differences on the
known source vector S; i.e. St = (Sn − Sn−1)/∆t. Applying the chain rule to the second
term of the R.H.S. and using Ai(U) = ∂Fi/∂U from equation (2.24) the equation above
becomes

Utt = −∇ ·
(
∂F
∂U

∂U
∂t

)
+
∂S
∂t

= −∇ ·
(

A
∂U
∂t

)
+
∂S
∂t
. (2.28)

but the first derivative of time is known from equation (2.26); therefore the second deriva-
tive is

Utt = −∇ · (AUt) + St = ∇ · (A(∇ · F− S)) + St. (2.29)

The resulting second-order accurate explicit time-stepping method results from combining
equations (2.25), (2.26) and (2.29).

Un+1 = Un + ∆t (−∇ · Fn + Sn) +
1

2
∆t2 (∇ · (An(∇ · Fn − Sn)) + Snt ) (2.30)

rearranging and using equation(2.22) the final strong form is obtained

Un+1 − Un

∆t
= −∇ · Fn + Sn +

1

2
∆t∇ · (An An · ∇Un − An Sn) +

1

2
∆tSnt (2.31)
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Now that the governing equation is discretized in time, Galerkin space discretization
follows. The weak form is obtained with a weighted residual formulation. The test func-
tions, Ũ, do not vary in time and belong to V :=H1(Ω), a space of vector functions. The
space trial functions, St varies as a function of time t

St := {U | U(·, t) ∈H1(Ω), t ∈ [0, T ]} . (2.32)

The strong form in equation (2.31) is multiplied by the test functions Ũ containing ρ̃, ρ̃uiρ̃E,
and ρ̃Y j , and integrated over space

∫
Ω

ŨT Un+1 − Un

∆t
dΩ = −

∫
Ω

ŨT∇ · Fn dΩ +

∫
Ω

ŨT Sn dΩ

+
1

2
∆t

∫
Ω

ŨT ∇ · (AnAn∇ · Un − An Sn) dΩ +
1

2
∆t

∫
Ω

ŨT Snt dΩ (2.33)

The divergence theorem is used to weaken the smoothness requirement of the trial solution
and produces

∫
Ω

ŨT Un+1 − Un

∆t
dΩ =

∫
Ω

∇ŨT Fn dΩ−
∫

Γ

ŨT n · Fn dΓ +

∫
Ω

ŨT Sn dΩ

− 1

2
∆t

∫
Ω

∇ŨT (AnAn∇ · Un − An Sn) dΩ

+
1

2
∆t

∫
Γ

ŨT (AnAn∇ · Un − An Sn) n dΓ +
1

2
∆t

∫
Ω

ŨT Snt dΩ (2.34)

containing boundary terms along Γ. Using equation (2.21b) and rearranging terms results
in the final problem statement: for t ∈]0, T [, find U(x, t) ∈ St such that U(x, 0) = U0(x)

and∫
Ω

ŨT Un+1 − Un

∆t
dΩ =

∫
Ω

∇ŨT Fn dΩ +

∫
Ω

ŨT Sn dΩ +
1

2
∆t

∫
Ω

ŨT Snt dΩ

+
1

2
∆t

∫
Ω

∇ŨT An Sn dΩ− 1

2
∆t

∫
Ω

∇ŨT AnAn∇ · Un dΩ

−
∫

Γ

ŨT

(
Fn +

1

2
∆t (An Sn − AnAn∇ · Un)

)
n dΓ (2.35)

for all test functions Ũ ∈ V . Furthermore, approximating Fn+1 = Fn + ∆t/2 Fnt , the
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boundary term is modified and the final weak form is obtained.

∫
Ω

ŨT Un+1 − Un

∆t
dΩ =

∫
Ω

∇ŨT Fn dΩ +

∫
Ω

ŨT Sn dΩ +
1

2
∆t

∫
Ω

ŨT Snt dΩ

+
1

2
∆t

∫
Ω

∇ŨT An Sn dΩ− 1

2
∆t

∫
Ω

∇ŨT AnAn∇ · Un dΩ

−
∫

Γ

ŨT

(
Fn +

1

2
∆t (Fnt )

)
n dΓ (2.36)

The conservation variables in vector U are approximated spatially within an element using
standard finite element shape functions Nα(x) where α = 1, 2, . . . nne is the node number
and i is the direction.

ρ(x) = Nα(x)(ρ)α (2.37a)

ρui(x) = Nα(x)(ρui)α (2.37b)

ρE(x) = Nα(x)(ρE)α (2.37c)

ρYj(x) = Nα(x)(ρYj)α (2.37d)

producing the elemental conservation vector Uk = NkmUm where the matrix of shape
functionNkm containsNα’s with k = 1, 2, . . . dof (degrees of freedom) andm = 1, 2, . . . dof∗
nne (degrees of freedom by number of nodes per element); i.e.

Nkm = (2.38)



m = 1, 2, · · · nne · · · (dof − 1)nne · · · dof ∗ nne

k = 1, N1 0 · · · 0 Nnne 0 · · · 0

2, 0 N1 · · · 0 Nnne

...
... . . . ... . . .

dof 0 N1 0 Nnne


Similarly, the test functions inside Ũ can be interpolated locally using the same shape
functions. The elemental test function vector Ũ k = NkmŨm. Here, Ũm contains the virtual
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functions (ρ̃)α, (ρ̃ui)α(ρ̃E)α, and (ρ̃Yj)α; therefore, Ũ k is

ρ̃(x) = Nα(x)(ρ̃)α (2.39a)

ρ̃ui(x) = Nα(x)(ρ̃ui)α (2.39b)

ρ̃E(x) = Nα(x)(ρ̃E)α (2.39c)

ρ̃Y j(x) = Nα(x)(ρ̃Yj)α (2.39d)

The gradients of all functions are evaluated by differentiating the interpolation functions.
For example the displacement vector can also be interpolated as x̃i(x) = Nα(x)(x̃i)α;
therefore

∂x̃i
∂xj

=
∂Nα(x)

∂xj
(x̃i)α (2.40)

An issue with finite element discretization of nonlinear hyperbolic problem is the choice
of the local approximation for the nonlinear flux function F. Two options are presented
here, the first being the classical representation. The flux is determined by fist evaluating
the conservative vector Uk at the desired point within the element and then evaluating the
flux.

Fk(U) = Fk(Uk) = Fk(NkmUm) (2.41)

The other approximation considered is the group representation.

Fk(U) = NkmFm(Um) (2.42)

Here the flux is approximated directly with the same interpolation functions Nkm. Group
representation is advantageous as the spatial dependency of the flux function is described
directly by the element shape functions. Therefore, in regions of compression where
∂u/∂x < 0, flux is computed based on a group representation. The weak form equation
(2.35) is formulated for all three spatial directions with their Jacobian’s A in Appendices
A,B and C.

As shown in equations (2.37) and (2.39) values at points inside an element need to be
represented in terms of the nodal values of the element. Although all three spatial directions
are considered in this work, a two-dimensional element is described as an example. Other
formulations can be found in reference [123]. The general quadrilateral element commonly
used in finite element hydrocodes. It has four nodes and is depicted in x−y space on Figure
2.1(left).
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Figure 2.1: The 4-noded quadrilateral element depicted in x − y space(left) and isopara-
metric coordinates(right) for momentum ρui

The local nodes, α are numbered in a clockwise fashion where ρui(x, y) is the momentum
at point (x, y). Again, ρui(x, y) can be calculated from the values at the nodes using the
interpolation functions; i.e.

ρui = N1(ρui)1 +N2(ρui)2 +N3(ρui)3 +N4(ρui)4. (2.43)

To simplify the interpolation functions Nα a pair of local curvilinear coordinates (ξ, η)

known as isoparametric coordinates are introduced. These coordinates range from −1 to
1 as shown on Figure 2.1(right). Interpolation functions must be continuous within the
element, sum to unity at any point within the element and the value of Nα at node β is δα,β .
A set of bilinear interpolation functions satisfy these requirements and are described for the
quadrilateral element in ξ − η space as

Nα =
1

4
(1 + ξξα)(1 + ηηα). (2.44)

Coordinates may also be expressed using the same shape functions

xi(x) = Nα(x)(xi)α (2.45)

Subsequently, derivatives of functions in x− y space need to be expressed in ξ − η space.
Take an arbitrary function f, that is a function of x and y and therefore a function of ξ and
η through equations (2.44) and (2.45); i.e. f = f(x(ξ, η), y(ξ, η)). Using the chain rule[

∂f/∂ξ
∂f/∂η

]
= J

[
∂f/∂x
∂f/∂y

]
. (2.46)
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where the Jacobian

J =

[
∂x/∂ξ ∂y/∂ξ

∂x/∂η ∂y/∂η

]
(2.47)

Equation (2.46) can be inverted to transform between these two spaces. From these rela-
tionships, derivatives can be computed in both spaces and the following result is found.

dxdy = det(J)dξdη (2.48)

where the det(·) is the determinant of the matrix. This relation is needed when numerically
integrating the weak form, equation (2.35). Consider the following integral

I =

∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη (2.49)

The Gaussian quadrature approach is used for evaluating integrals in this work. The n point
approximation of the integral is given as

I ≈
n∑
i=1

n∑
j=1

wiwjf(ξi, ηj) (2.50)

where wi and wj are the weights and ξi and ηj are the Gauss points. Equation (2.50)
provides an exact answer for polynomials f(ξ, η) when n Gauss points and n weights are
selected, even if f(ξ, η) is not a polynomial. Gauss point and weights are readily available
[123] for multiple degrees on polynomials and are shown for the 2×2 quadrilateral element
in Figure 2.2. The same elemental formulation is considered for the 3-noded constant strain
triangle (CST) whose shape functions are given by

N1 = ξ, N2 = η, N3 = 1− ξ − η (2.51)

The 3-dimensional interpretation of the quadrilateral element is the 8-noded brick element
whose shape functions are given by

Ni =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ) (2.52)

where i = 1, 2, . . . , 8 with ζ representing the 3rd dimension for the isoparametric coordi-
nate system.
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Figure 2.2: Gauss points and weights for the 2× 2 quadrilateral element

2.3 Numerical Treatment of Shocks

Fluid variables are related across a shock wave through the Rankine-Hugoniot jump con-
ditions. Although the conditions guarantee a solution for the inviscid equations, numerical
computation of the shock flows with the jump conditions is prohibitive. However, the
Rankine-Hugoniot jump conditions can be satisfied by numerical solutions with the intro-
duction of an artificial viscosity term in the conservation law equations. Essentially, this
term smears the discontinuity over multiple elements removing the spurious oscillations
near the shock front. Great care must be taken when choosing this term; increasing the dis-
sipation can destroy the shock front, the very mechanism needed for detonation of PBXs.
Pseudo viscous pressure methods [124] are often used and produce local smoothing within
the Euler equations (2.18) by the introduction of an additional pressure term. However,
monotone schemes, such as these, are generally too dissipative and can spread shocks over
too many grid points. Higher-order schemes have been developed and implicitly intro-
duce the damping mechanism by choosing the appropriate form of the discrete equations
through the definition of flux functions [125–127]. Limiters produce a high-order method,
at least second-order accuracy, in the smooth parts of the flow and impose constraints on
the flux function (flux limiters) or on the gradient of the dependent variables (slope lim-
iters). Such schemes automatically control amount of added numerical dissipation. Note,
shock capturing schemes for use in finite elements is an active area of research.

A high-resolution scheme is used for the numerical treatment of shocks in this work
and follows [128]. This scheme is used for the purpose of adding minimal numerical dis-
sipation and to give non-oscillatory solutions in the presence of steep solution gradients.
Numerical dissipation is applied in the neighborhood of a discontinuity where the diffusion
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coefficient is calculated based on the local behavior of the solution. After Galerkin spatial
discretization, described in Section 2.2, equation (2.35) can be expressed as the algebraic
equation

M(Un+1 − Un) = ∆tBn (2.53)

where M is the mass matrix and B is the force vector. The consistent mass matrix M acting
on Un+1 is replaced by the diagonal matrix ML, obtained by row sum. This is done to
reduce the second-order scheme to first-order near the shock front. Now Eq.2.53 becomes
the first-order scheme

MLUn+1 = MUn + ∆tBn (2.54)

which can be rewritten as

MLUn+1 = MLUn + (M−ML)Un + ∆tBn (2.55)

where the term (M −ML)Un represents added dissipation. This term is multiplied by the
parameter d, where 0 ≤ d ≤ 1. Now the system is written as

MLUn+1 = MLUn + d(M−ML)Un + ∆tBn (2.56)

For a d = 1 a first-order method is obtained for maximum dissipation. When d = 0 the
second order scheme is recovered, equation (2.53), and no dissipation is added. This can
be divided into a two stage procedure. The first stage corresponds to the second-order
Taylor-Galerkin scheme and the second stage introduces dissipation.

M(U∗ − Un) = ∆tBn (2.57)

ML(Un+1 − U∗) = d(M−ML)U∗ (2.58)

The procedure entails solving equation (2.57) initially using the Taylor-Galerkin scheme
and thus obtaining U∗, followed by solving for the new solution Un+1 using equation
(2.57). Second-order phase accuracy of the method is preserved in the smooth part of
the flow, while introducing dissipation around shocks. For a value of d > 0 the system
adds dissipation to the entire system; i.e. global smoothing. Local smoothing is produced
by controlling d locally, in the presence of shocks. Locally, at a node “i” the right hand
side of equation (2.58) is ∑

j

dijMij(U
∗
j − U∗i ) (2.59)

where nodes j are connected to node i. The dissipation parameter dij is constructed by the
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following equation
dij = min[χmax(di, dj), 1] (2.60)

where χ is a free parameter and di and dj are the local dissipation parameters at nodes i
and j respectively. These local parameters activate at the presence of shocks. An effective
shock sensor is constructed using pressure gradients

di = |pj − 2pi+ pi−
pj + 2pi+ pi−

|,

dj = |pj+ − 2pj + pi

pj+ + 2pj + pi
| (2.61)

where

pi− = pj − 2(xj − xi) · [∇p]i,

pj+ = pi− 2(xj − xi) · [∇p]j. (2.62)

The effects of the adjustable free parameter χ and the smoothing parameter d will are
studied in the following Chapter.

2.4 Computational Implementation

The computational implementation of the explicit, one-step, second-order Taylor-Galerkin
scheme developed in Section 2.2 was developed in-house using resources at the University
of Michigan Center for Advanced Computing (CAC). The numerical scheme was written in
the object-oriented programming language C++, which is often used for high performance
computing(HPC) code development within scientific computing community [129] due to
its performance qualities. To aid in speeding up the solution process, the assembly process
and solution scheme are parallelized. The solution requires sparse matrix inversion as seen
in (2.57). The hydrocode was developed using the parallel toolbox PETSc [130] and the
solution of linear systems is accomplished using a GMRES solver along with block Jacobi
and ILU preconditioning. The University of Michigan CAC’s Flux cluster(27,000 cores-4
GB of RAM per core) was utilized for fast numerical implementation. The overall solution
procedure is shown in the following Algorithm 2.4.

To test the computational performance of the solution process, scalability tests were
performed. In general these tests examine the capability of solution process to an increase
in data load or in resources. The solution procedure was ran for a 0.5cm × 0.5cm sample
for a total of 10 time steps, ∆t with results shown on Figure 2.3. Strong scaling, defined
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by how the solution time varies with the number of processes for a fixed total problem size
was preformed for various problem sizes. The strong scaling efficiency (as a percentage of
linear) is given as by

100

(
t1

N tN

)
(2.63)

where t1 is the amount of time to complete a work unit with 1 process and tN is the amount
of time to complete the same unit of work with N processes. As expected, scaling ef-
ficiency decreases as the number of processes increases due to communication overhead;
however, total computational time decreases. Increasing fidelity, or number of elements per
centimeter, provides a higher scaling efficiency when the number of processes increases.

Figure 2.3: The strong scaling efficiency (as a percentage of linear) versus number of
processes for a 0.5cm× 0.5cm sample for a total of 10 time steps, ∆t

2.5 Summary

This chapter presented the numerical methods and models needed to simulate shock loading
of PBXs. It began with the presentation of the governing Euler equations followed by the
presentation of various equations of state. Models for reaction rates based on temperature
and pressure were presented. Next, the explicit, one-step, second-order Taylor-Galerkin
scheme developed resulting in the variational form of the governing equations. The finite
element method was discussed with the development of the quadrilateral element and its
associated numerical integration scheme. A high-resolution scheme was presented for the
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purpose of adding minimal numerical dissipation in the presence of steep solution gradi-
ents. Finally, the computational implementation of the solution procedure was discussed
along with the scaling efficiency.
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input : Un

output : Un+1

initialize : U(0, x), t, x,∆x,∆t

1 for i := ∆t; + + ∆t; to t do
2 for j := 1; + + 1; to Number of elements do
3 for k := 1; + + 1; to Number of integration points do
4 calculate(Un)⇒ Eq. (2.37);
5 calculate(F);
6 if ∂u/∂x < 0 then
7 F := group representation⇒ Eq. (2.42);

8 else
9 F := classical representation⇒ Eq. (2.41);

10 calculate(P&T);
11 if λ = 0 then
12 P = Ps⇒ Eq. (2.7);
13 T = Ts⇒ Eq. (2.8) - (2.9);

14 else if λ = 1 then
15 P = Pg ⇒ Eq. (2.10);
16 T = Tg ⇒ Eq. (2.11) - (2.12);

17 else
18 Mixture Rule⇒ Eq. (2.13) - (2.15);

19 calculate(S)⇒ Eq. (2.16) or (2.17);
20 calculate(St = (Sn − Sn−1)/∆t);
21 calculate(A)⇒ App. A - C;

22 calculate(Local Mass Matrix & Force Vector)⇒ Eq. (2.35);

23 ~Assemble M and B;

24 Apply boundary conditions;
25 ~Invert M and calculate(U ∗)⇒ Eq. (2.57);
26 calculate(~Smoothing Parameter d)⇒ Eq. (2.60);
27 calculate(U n+1)⇒ Eq. (2.58);
28 Update Values & Print Data;

29 ~ Parallelized process;

Figure 2.4: Numerical solution procedure
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CHAPTER 3

Continuum Methods

This chapter presents the continuum methods used to simulate shock loading of polymer
bonded explosives. These methods do not explicitly model material heterogeneities and
treat PBXs as homogenized materials which is a conventional approach used within hy-
drocodes. Numerical results using the Taylor-Galerkin Scheme described in Chapter 2 are
presented for, ideal gases, homogenized PBXs, and individual species of HMX and poly-
meric binder. Section 3.1 compares numerical results with analytically obtained solutions
for classical fluid dynamics problems and the effects of the free smoothing parameters dis-
cussed in Section 2.3. Model validation of PBXs is presented in Section 3.2. First, Section
3.2.1 presents the Hugoniot for each material considered in this work. The linear shock
relations are calculated and compare to experimental curves. Section 3.2.2 presents the
run-to-detonation data and their corresponding Pop-plots. Section 3.2.3 measures the ef-
fect of mesh density on known shock values for differing reaction models and materials.
Finally, Section 3.2.4 presents 2D experiments for shock loading.

3.1 Model Validation: Test Problems

To test the stability and accuracy of Taylor-Galerkin Scheme described in Chapter 2, the
classical fluid dynamics Sod’s Shock Tube problem is solved. The test consists of two
ideal fluids at differing pressures separated by a membrane at time t = 0. The flow is
non-reactive and thus equation (2.4) is neglected and the hydrodynamics equations, that
is, the equations for the conservation of mass (2.1), momentum (2.2) and energy (2.3) are
solved. No chemical reaction occurs and therefore, the source terms S, or the right hand
side of hydrodynamics equations are zero. At t > 0 the membrane is removed and a rar-
efaction wave, contact discontinuity and shock wave is formed. The analytical solution is
obtained using Riemann invariants [131]. The numerical solution is obtained using the 1D
T-G scheme with no damping (i.e. d = 0 or χ = 0)to study the effect of the smoothing
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parameters discussed in Section 2.3. The analytical solution for density, velocity, pressure,
speed of sound, enthalpy and entropy at t = 0.15 is compared with numerical results on
Figure 3.1. Numerical results were obtained with linear 2-noded elements using a mesh
size of ∆x = 0.01 and a time step of ∆t = 0.001 for a domain of length L = 1. The
numerical results on Figures 3.1 show good agreement with the exact solution and the dis-
tinct characteristics of the test are captured. However, near the shock wave fronts, at which
abrupt changes in the fluid properties occur, spurious oscillations are observed showing the
need for an artificial viscosity term. Great care must be taken when choosing this term;
increasing dissipation can destroy the shock front, the very mechanism needed for deto-
nation of PBXs. The high resolution scheme, described in Section 2.3, is introduced to
the test problem. Essentially, this scheme smears the discontinuity over multiple elements,
smoothing the solution. The dissipation is controlled globally or locally with a free param-
eter. The effects of the global free parameter d on the numerical solution are studied on
Figure 3.2(a). For a value of d > 0 the system adds dissipation to the entire system; i.e.
global smoothing. When d = 0 there is no smoothing and the results from Figures 3.1 is
obtained. Figure 3.2(a) shows the average error per node as a function of the parameter for
varying time steps and mesh sizes. In general, error increases with increasing the parameter
and decreasing the time step increases the average error per node. The value near d = 0.005

produces the minimum average error per node for each case. Similarly, the effects of the
local free parameter χ on the numerical solution are studied on Figure 3.2(b). For the local
scheme, d is controlled locally using Equation (2.60), pressure gradients for shock sensing
and the free parameter χ. When χ = 0 there is no smoothing and the results from Figures
3.1 is obtained. Figure 3.2(b) follows a similar trend to that produced by the global smooth-
ing study and produces the minimum average error per node near χ = 0.2. This value is
used for the numerical results in the following studies and in subsequent sections. Figure
3.3 shows the analytical solution for density, velocity, pressure, speed of sound, enthalpy
and entropy at t = 0.15 compared to the numerical results using χ = 0.2. Again, the nu-
merical results show good agreement with the exact solution and the distinct characteristics
of the test are captured with the spurious oscillations dissipated.

Next, to verify that the numerical scheme described above is accurate for reactive flow,
a simple detonation model is tested. This model is based on ZND theory described in
Section 1.2, which accounts for the finite time required for chemical reaction to occur.
It assumes that as the detonation wave shocks the unreacted material, chemical reaction
begins to occur transforming the solid material into gaseous reaction products. Chemical
reaction is governed by Arrhenius’ law, producing exponentially small reactions near the
von Neumann temperature. Here, nsd = 1 and the vector form of the Euler equations (2.18)
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Figure 3.1: SOD’s Shock Tube problem at t = 0.15. Analytical solution (red) compared
with unsmoothed numerical solution (black). Numerical results show spurious oscillations
near the shock fronts
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Figure 3.2: Average error per node as a function of the free global parameter d and of the
free local parameter χ for the high-resolution scheme discussed in Section 2.3

is considered with

U =

[
u

Y

]
, F =

 1

2
u2

0

 , and S =

[
−qẎ
Ẏ

]
(3.1)

where u is energy and Y is mass fraction. The ZND detonation model is tested on Fig-
ure 3.4. Similar to SOD’s Shock Tube problem, the test consists of two fluids at differing
energies separated by a membrane at time t = 0. At t > 0 the membrane is removed
and chemical reaction occurs producing a von Neumann spike that propagates at a constant
speed. Numerical results for damped and undamped schemes are compared with the ana-
lytical solution [132] at t = 2.5. The unsmoothed solution shown on Figures 3.4(a) and
3.4(b) show good agreement with the exact solution and the distinct characteristics of the
test are captured; however, spurious oscillations are observed near the shock front. The
local high resolution scheme is introduced into the solution using χ = 0.2. However, pres-
sure is not included in this formulation thus, the shock sensing variable is replaced with
energy gradients. This shows the adaptability of the scheme described in Section 2.3. The
numerical results for the smoothed solution are shown on Figures 3.4(c) and 3.4(d). The
spurious oscillations are dissipated and the numerical solution shows good agreement with
the exact solution.
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Figure 3.3: Sod’s Shock Tube problem at t = 0.15. Analytical solution (red) compared
with smoothed numerical solution (black). Numerical results show good agreement with
the exact solution and the distinct characteristics of the test are captured
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Figure 3.4: ZND detonation test problem at t = 2.5. Analytical solution (red) compared
with unsmoothed(a)(b) and smoothed(c)(d) numerical solution (black). Numerical results
show good agreement with the exact solution and the distinct characteristics of the test are
captured

3.2 Model Validation: Polymer-Bonded Explosives

In this section, the models and methods used to simulate shock loading of polymer bonded
explosives are tested and compared to experimental results. Although these models are
informed by empirical data, it is important to validate them with results from experiments.
Reaction rates, material behavior and shock features are tested in the following subsections.
These tests are necessary in developing confidence in the solution scheme and a foundation
for future results in later sections.
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3.2.1 Shock Hugoniot

In reactive flow, it is necessary to represent the material response of both the unreacted
material and the reaction detonation products. Equations of state for both extremes were
presented in Section 2.1. The Mie-Grüneisen form given by Equations (2.7) and (2.8) is
used to describe the behavior of the unreacted explosive. The Jones-Wilkins-Lee (JWL)
form given by Equations (2.10) and (2.11) is used for the fully reacted material. Although
material states are calculated for two extremes(unreacted/fully reacted) there exists a finite
reaction zone where the explosive is partially reacted. This state of the explosive is deter-
mined by the burn fraction or the mass fraction of detonation products λ. The pressure and
temperature for a partially reacted explosive is calculated using the mixture rules described
in Equations (2.13) and (2.15). The constants for the solid equations of state (a, b, ν0, cv)
and gaseous equations of state (A,B,C, νCJ , w, cv) are determined experimentally and are
taken from references [47,48,94]. They are described for PBX 9501, HMX and Polymeric
binder on Table 3.1 and the appropriate units. These equations of state are function of den-
sity (ν = 1/ρ) and internal energy (e = E − 1/2u2). Pressure and Temperature profiles
for each material system are plotted below. According to the mixture rule shown on Equa-
tion (2.13), when λ = 0, the total pressure is equivalent to the pressure of Mie-Grüneisen
form. When λ increases, the total pressure is a combination of the solid ps, and gaseous pg,
equations of state. As λ increases and approaches unity, the total pressure is equivalent to
the Jones-Wilkins-Lee (JWL) form. The total temperature follows the same mixing rule as
shown on Equation (2.15). Equation of state parameters are fixed to the values recorded on
Table 3.1. Adjusting the parameters to better fit experimental measurements is outside the
scope of this thesis. Quantifying uncertainty in these parameters and will be left to future
work.

The pressure and temperature profiles for PBX 9501 are shown in density-energy space
on Figures 3.5(a)-3.5(f) and 3.6(a)-3.6(f) respectively. On the y-axis, specific internal en-
ergy varies from e = 0.0 − 0.1Mbarcm3/g. On the x-axis density varies from ρ =

1.0−3.5 g/cm3. Although these bounds reach extreme values of pressure and temperature,
they ensure that the regions of interest (detonation) are captured. The contours on Figures
3.5(a)-3.5(f) depict pressures ranging from P = 0.0− 1.0Mbar. The contours on Figures
3.6(a)-3.6(f) depict temperatures ranging from T = 295− 5000K. Ambient, or reference
conditions of the explosive are P = 0.0Mbar and T = 295K with ρ = 1.844 g/cm3 and
e = 0.0Mbarcm3/g. Regions of blue may indicate nonphysical regimes; i.e. (T < 0K).
Figures 3.5(a)-3.5(f) and 3.6(a)-3.6(f) vary by burn fraction λ, where each figure varies by
∆λ = 0.2. Thus the initial Figures 3.5(a) and 3.6(a), where λ = 0, refers to the Mie-
Grüneisen equation of state, or Equations (2.7) and (2.8). These initial contours are used in
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Constant HMX Binder PBX 9501 Units
ρ0 1.89 1.27 1.844 g/cm3

T0 295 295 295 K
cv,s 1.1× 10−5 1.6× 10−5 1.1× 10−5 Mbar cm3/gK
a 0.2901 0.24 0.2668 cm/µs
b 2.058 1.70 1.906 −−
Γ 1.0 1.0 1.0 −−
A 7.717 2.0879 8.52 Mbar
B 0.1064 0.0071 0.1802 Mbar
C 0.0085 0.0038 0.01207 Mbar
R1 4.2 4.33 4.55 −−
R2 1.0 0.645 1.30 −−
w 0.3 0.09 0.38 −−
TCJ 3000 2000 3000 K
cv,CJ 2.0× 10−5 2.87× 10−5 1.0× 10−5 Mbar cm3/gK
νCJ 0.3873 0.5901 0.4019 cm3/g

Table 3.1: Material parameters for the unreacted Mie-Grüneisen and fully reacted Jones-
Wilkins-Lee equations of state. Materials considered are HMX, polymeric binder and PBX
9501.

future sections to choose initial conditions that are sufficiently high to cause detonation in
materials. The final Figures 3.5(f) and 3.6(f), where λ = 1, refers to the Jones-Wilkins-Lee
equation of state, or Equations (2.10) and (2.11). Figures where 0 < λ < 1 are goverend by
the mixture rules described by Equations (2.13) and (2.15). As λ increases it is observed
that contours for both pressure and temperature gradually shift. Areas that occupy high
pressures grow smaller as λ increases. Alternatively, areas of high temperatures increases.
Following the passage of a shock wave through a material the Hugoniot is determined. This
curve, shown schematically on Figure 1.4, represents the various states of the material and
is calculated experimentally. The linear relationship between shock speed Us and particle
velocity up is Us = a+ bup where a and b are experimental constants. These constants are
shown on Table 3.1. Matching Hugoniot data is necessary to validate detonation models
especially since both equations of state are informed by the experimental constants a and
b. The Hugoniot is calculated using Rankine-Hugoniot equations which relate the fluid
properties before and after the shock.

The shock velocity Us versus particle velocity up is shown on Figure 3.7 for PBX 9501.
The experimental curve fit is shown in red, while the numerical results are shown in black.
The numerical solution was obtained by choosing initial conditions sufficient enough to
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(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 3.5: Pressure profiles for PBX 9501 in density-energy space. Plots vary by ∆λ =
0.2.

(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 3.6: Temperature profiles for PBX 9501 in density-energy space. Plots vary by
∆λ = 0.2.
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Figure 3.7: Shock velocity Us versus particle velocity up for PBX 9501. Experimental
curve fit (red) compared with numerical solution (black). Numerical results show good
agreement with experimental data.

react the material and transition to detonation. For this experiment the Ignition and Growth
model, Equation (2.16), was used as the reaction rate law. The numerical results show good
agreement with the experimental curve fit signifying that the pre and post shock states are
captured accurately, as expected.

Next, the pressure and temperature profiles for HMX are shown in density-energy space
on Figures 3.8(a)-3.8(f) and 3.9(a)-3.9(f) respectively. On the x and y axes, density and
energy varies with the same bounds of the previous pressure and temperature contours.
The contours on Figures 3.8(a)-3.8(f) depict pressures ranging from P = 0.0− 1.0Mbar.
The contours on Figures 3.9(a)-3.9(f) depict temperatures ranging from T = 295−5000K.
Ambient, or reference conditions of the explosive are P = 0.0Mbar and T = 295K with
ρ = 1.89 g/cm3 and e = 0.0Mbarcm3/g. Regions of blue may indicate nonphysical
regimes; i.e. (T < 0K). Again, these figures vary by burn fraction λ, where each figure
varies by ∆λ = 0.2 and the initial Figures 3.8(a) and 3.9(a) refers to the Mie-Grüneisen
equation of state and the final Figures 3.8(f) and 3.9(f) refers to the Jones-Wilkins-Lee
equation of state. Compared to the PBX 9501, HMX equations of state follow similar
trends by gradually shifting over λ. HMX and PBX behave similarly for pressure and
temperature.

The shock velocity Us versus particle velocity up is shown on Figure 3.10 for HMX.
The experimental curve fit is shown in red, while the numerical results are shown in black.
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The numerical solution was obtained by choosing initial conditions sufficient enough to
react the material and transition to detonation. For this experiment the Ignition and Growth
model, Equation (2.16), and the Arrhenius model, Equation (2.17), were used as the reac-
tion rate law. The numerical results show good agreement with the experimental curve fit
signifying that the pre and post shock states are captured accurately, as expected.

(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 3.8: Pressure profiles for HMX in density-energy space. Plots vary by ∆λ = 0.2.
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(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 3.9: Temperature profiles for HMX in density-energy space. Plots vary by ∆λ =

0.2.
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Figure 3.10: Shock velocity Us versus particle velocity up for HMX. Experimental curve fit
(red) compared with numerical solution (black). Numerical results show good agreement
with experimental data.

46



Next, the pressure and temperature profiles for polymeric binder are shown in density-
energy space on Figures 3.11(a)-3.11(f) and 3.12(a)-3.12(f) respectively. On the y-axis,
energy varies with the same bounds of the previous pressure and temperature contours.
However, the x-axis density varies from ρ = 1.0−3.0 g/cm3, a narrower band due to unre-
alistic regions (T < 0K). The contours on Figures 3.11(a)-3.11(f) depict pressures ranging
from P = 0.0 − 1.0Mbar. The contours on Figures 3.12(a)-3.12(f) depict Temperatures
ranging from T = 295 − 5000K. Ambient, or reference conditions of the explosive are
P = 0.0Mbar and T = 295K with ρ = 1.27 g/cm3 and e = 0.0Mbarcm3/g. These
figures vary by burn fraction λ, where each figure varies by ∆λ = 0.2 and the initial Fig-
ures 3.11(a) and 3.12(a) refers to the Mie-Grüneisen equation of state and the final Figures
3.11(f) and 3.12(f) refers to the Jones-Wilkins-Lee equation of state. Compared to the PBX
and HMX equations of state for the binder follow similar trends, by gradually shifting with
λ. Similar to PBX and HMX, as λ increases areas that occupy high pressures grow smaller.
Areas of high temperatures also decrease like HMX temperature profiles. However, binder
behaves much differently than PBX and HMX. At a density of 2.2g/cm3 and and energy
of 0.02Mbarcm3/g pressures and temperatures reach 0.29163Mbar and 388.22K. This is
substantially higher than PBX and HMX for pressure but an order of magnitude lower for
temperature.

The shock velocity Us versus particle velocity up is shown on Figure 3.13 for polymeric
binder. The experimental curve fit is shown in red, while the numerical results are shown
in black. The numerical solution was obtained by choosing initial conditions sufficient
enough to react the material and transition to detonation. For this experiment the Ignition
and Growth model, Equation (2.16), and the Arrhenius model, Equation (2.17), were used
as the reaction rate law. The numerical results show good agreement with the experimental
curve fit signifying that the pre and post shock states are captured accurately, as expected.

3.2.2 Run-to-Detonation

Run-to-detonation is the main measurement used to assess an explosive’s sensitivity and
is calculated as a function of input pressure. It is determined experimentally by embed-
ding gauges within the explosive at multiple points. The material is then shocked with
an impactor and the shock-to-detonation wave profiles are measured. A schematic of this
process is shown on the left of Figure 1.2. This experiment is repeated for various input
pressures, each corresponding to different run-to-detonation quantities. The data generated
from these experiments are used to make Pop-plots, logarithmic plots of run-to-detonation
distance versus incident shock. When the data is plotted in a logarithmic scale the rela-
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(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 3.11: Pressure profiles for polymeric binder in density-energy space. Plots vary by
∆λ = 0.2.

(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 3.12: Temperature profiles for polymeric binder in density-energy space. Plots vary
by ∆λ = 0.2.
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Figure 3.13: Shock velocity Us versus particle velocity up for polymeric binder. Experi-
mental curve fit (red) compared with numerical solution (black). Numerical results show
good agreement with experimental data.

tionship between run-to-detonation and incident pressure appears linear as shown schemat-
ically on the right of Figure 1.2. Experimentally measured pop-plot data is compared to
numerical results obtained for PBX and HMX material systems. It is important to validate
the numerical model with pop-plot data as it is an accurate assessment of reaction rate laws.
Table 3.2 shows the reaction rate constants for the Ignition and Growth model described by
Equation (2.16) taken from reference [46]. Table 3.3 shows the reaction rate constants for
the Arrhenius model described by Equation (2.17) taken from reference [94]. Adjusting
the parameters to better fit experimental measurements is outside the scope of this thesis;
therefore, they are fixed for this work. Quantifying uncertainty in these parameters and will
be left to future work.

First, detonation of PBXs are studied, using the material parameters of PBX 9501 and
the reaction parameters for the Ignition and Growth model, shown on Table 3.2. A sample
of length L = 1.0cm is shocked on the left boundary of the domain at various input pres-
sures. Virtual gauges are are placed at 0.02cm increments. The domain is discretized in
time and space with a ∆x = 5 × 10−4cm and a ∆t = 1 × 10−4µs. Spatial discretization
effects are considered in the following section. The following plots show a PBX sample
shocked with an input pressure of approximately P = 15Mbars. Figures 3.14(a)-3.14(d)
show the conserved quantities, density ρ, velocity u, total energy E and the burn fraction
λ. Each plot contains various curves corresponding to differing gauge positions. The x-
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Constant PBX Units
I 44 Z in µs−1

G 200 µs−1Mbar−τ4

τ1 0.222 −−
τ2 4.0 −−
τ3 0.666 −−
τ4 1.6 −−

Table 3.2: Reaction rate parameters for the Ignition and Growth Model for PBX

Constant HMX Binder Units
ln(Z) 12.5 13.2 Z in µs−1

E1 1.49 1.49 Mbar cm3/mol
q 0.05861 0.044959 Mbar cm3/g

Table 3.3: Reaction rate parameters for Arrhenius Model for HMX and polymeric binder

Constant PBX 9501 Units
Z = k 2.85× 105 µs−1

E1/R = Ta 17900 K
q 0.05861 Mbar cm3/g

Table 3.4: Global Reaction rate parameters for PBX 9501
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axis represents time in µs, showing how each conserved quantity at a specific gauge point
changes in time. In general, it is obvious to see that once the material is shocked it tran-
sitions to steady detonation. At the initial gauge, density velocity and energy capture the
initial shock. As time increases, chemical reaction occurs as observed by the burn fraction
and von Neumann spikes. The material is fully reacted and the detonation wave travels at
a constant speed.

Figure 3.15(a) shows the pressure profiles of multiple gauges as a function of time. Al-
though there are more gauge location colors correspond to gauges from the previous figure.
Comparing this plot to the schematic the left of Figure 1.2, it is obvious that the transition
to detonation occurs. The initial gauge captures the input pressure of P = 15Mbars. As
the shock wave propagates chemical reaction occurs. A detonation wave precedes and is
driven by the zone of chemical reaction, in turn creating high pressures and temperatures
necessary to drive chemical reaction. This coupling provides the necessary conditions to
maintain fast chemical reaction and thus the self-sustaining propagation of the detonation
wave. The transition to detonation occurs near the gauge located at x = 0.192cm. A peak
pressure of P = 57.0Mbars is reached and maintained as steady detonation is reached.
The location of the shock front is tracked on Figure 3.15(b). The x-axis shows the loca-
tion of the wave front in cm, and the y-axis shows the time in µs. When compared to the
schematic to the right of Figure 1.1, it is obvious that the transition to detonation occurs.
Taking the inverse of the slope of this plot gives the detonation velocity D. Initially the
slope remains constant, as chemical reaction occurs, the shock wave accelerates and the
slope changes to the constant detonation velocity. The detonation velocity will be studied
in the following section.
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Figure 3.14: Conservation variables as a function of time as a PBX sample is shocked with
an input pressure P = 15Mbars. Colors correspond to varying gauge positions.

The data generated from this experiment is used to make a Pop-plot, where the run-
to-detonation distance is plotted versus the incident shock pressure. This experiment is
repeated for multiple shock pressures, generating multiple run-to-detonation distances. Nu-
merical results for the PBX shock loading experiments are shown on Figure 3.16 and are
compared to a host of experiments for various PBXs [47, 133, 134]. Logarithmic plots of
run-to-detonation distance versus incident shock are shown on Figure 3.16. Note the x-axis
is shown in GPa and the y-axis is shown in mm, common units for these plots. Here
experimental data is represented by variously colored scatter points. Numerical results are
represented by “X”s where the solid line is the best curve. Experimental results range from
2− 25GPa with run-to-detonation distances below x = 1mm and as long as x = 25mm.
Numerical results are in the pressure ranges of P = 4 − 18GPa and are within the range
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Figure 3.15: Pressure profiles and shock front of PBX sample. The transition to detonation
occurs near the gauge located at x = 0.192cm.

of experimental data. Numerical results show good agreement with experimental results in
lower pressure ranges but begin to diverge around P = 9GPa. Numerical results show that
the explosive is less sensitive that experimental data. For example, for an incident shock
of P = 14GPa numerical results give a run-to-detonation distance less than x = 1mm

while numerical results give a distance near x = 2mm; i.e. for the same input pressure
the numerical simulation takes a greater distance, and time, to reach steady detonation than
the experimental data for pressures above P = 9GPa. This same behavior is observed on
Figure 6 in reference [46]. In the cited work, the Ignition and Growth parameters listed
on Table 3.2 are used and are adjusted for each input pressure. No such attempt has been
made in this work to adjust parameters. However, for fixed parameter, this work matches
the same trend. Figure 3.17 shows the numerical curve fit from the previous plot and the
experimental curve fit provided in reference [46]. This plot is in good agreement with the
Figure 6 in the cited work. This is expected as the Ignition and Growth parameters listed
on Table 3.2 are taken from this reference, thus validating the finite element model in this
work.

Next, detonation of HMX is studied, using the material constants of HMX found on
Table 3.1. For this experiment both Ignition and Growth model and the Arrhenius model is
considered with constants taken from Tables 3.2 and 3.3. The same experimental setup is
considered; a sample of length L = 1.0cm is shocked on the left boundary of the domain
at various input pressures. Virtual gauges are placed at 0.02cm increments. The domain is
discretized in time and space with a ∆x = 5−4cm and a ∆t = 1−4µs. This experiment is
repeated for multiple shock pressures, generating multiple run-to-detonation distances. Nu-
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Figure 3.16: Logarithmic plots of run-to-detonation distance versus incident shock pressure
for PBXs. Experimental results shown as scatter points, with numerical results represented
by ”X”s with best fit. Results show good agreement in lower pressure ranges and are less
sensitive in higher pressure ranges.
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Figure 3.17: Logarithmic plots of run-to-detonation distance versus incident shock pressure
for PBXs. Experimental curve fit compared to numerical curve fit shows expected behavior;
numerical results are less sensitive than experimental results.

54



merical results for HMX shock loading experiments are shown on Figure 3.18 and are com-
pared to experiments and numerical studies for both solvent-pressed HMX (poly-crystal)
and single crystal HMX [47, 94]. Logarithmic plots of run-to-detonation distance versus
incident shock are shown on Figure 3.18, with the x-axis shown in GPa and the y-axis
shown in mm. Here, data from cited works, including experimental and numerical studies
are represented by variously colored scatter points. Numerical results are represented by
solid lines through scatter points as best curve fits. Results range from 3 − 45GPa with
run-to-detonation distances below x = 1mm and as long as x = 10mm.

Comparing numerical results of HMX using the Ignition and Growth Model (red line)
to experimental results of solvent-pressed HMX (blue scatter points) shows good agree-
ment. Much like the PBX study before, HMX shows good agreement with lower pres-
sures but is less sensitive to higher pressures when compared to these experiments. Good
agreement is expected for the this model as Ignition and Growth Models incorporate igni-
tion mechanisms (hot spots) that are observed when shock loading solvent-pressed HMX.
These observations validate the Ignition and Growth model for HMX in this work.

However, when comparing the Ignition and Growth Model to single crystal data (pink
and orange scatter points), there is a great disparity. Single crystal data performs much
more like a homogeneous explosive rather than a heterogeneous explosive, which are com-
pared on Figure 1.1. In general homogeneous explosives are less sensitive than heteroge-
neous explosives which have mechanisms that create localized regions of energy release
(hot spots). As an example, for a run-to-detonation distance of x = 2mm numerical results
using the Ignition and Growth model need an input pressure near P = 17GPa. For the
numerical single crystal study [94], a P = 26GPa input pressure is required. Similarly
a higher input pressure P = 35 − 40GPa is required to reach the same run-to-detonation
distance for the experimental data [47]. However, when comparing these cited results with
numerical results for the Arrhenius model (green line) there is better agreement. It is ob-
served that the Arrhenius model performs like a homogeneous explosive, due to its lack of
hot spot mechanisms and matches well with the numerical single crystal study. When com-
paring numerical results to the experimental data (orange scatter), the numerical results are
more sensitive. As an example, for a run-to-detonation distance of x = 4mm numerical
results need an input pressure near P = 25GPa. For the experimental single crystal data,
a P = 35GPa input pressure is required. This sensitivity disparity is not addressed in this
work as agreement with the other numerical study validates the Arrhenius model for shock
loading of HMX. To summarize, all numerical results from this work, including PBX and
HMX Ignition and Growth and Arrhenius models, and are shown on Figure 3.19. Com-
paring Ignition and Growth models for PBX and HMX, it is observed that PBX is more
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Figure 3.18: Logarithmic plots of run-to-detonation distance versus incident shock pressure
for HMX. Cited experimental and numerical results shown as scatter points, with numerical
results represented by best fit curves. Ignition and Growth model results show good agree-
ment solvent-pressed experimental data. Arrhenius model results show good agreement
single crystal data.

sensitive than HMX. As an example, an input pressure of P = 10GPa, PBX produces a
run-to-detonation distance of x = 2.5mm while HMX produces a distance of x = 3.0mm.
This behavior is supported by experimental data [47] as the polymeric matrix in PBX is
known to affect detonation [7].

3.2.3 Mesh Density Studies

In this section the effects of mesh fidelity on known shock values for differing reaction
models and materials are studied. It is necessary to validate this model with these features
needed to fully capture the reaction zone. First, PBXs are considered. A sample of length
L = 1.0cm is shocked on the left quarter of the domain at a pressure sufficient to prompt
ignition. The goal is to transition to steady detonation to measure shock features, such
as detonation velocity and peak pressure. Density and energy values selected produce
a pressure near P = 0.55Mbar. Results for this experiment have a fixed time step of
∆t = 1×10−4µs and are shown for various mesh densities on Figures 3.20(a)-3.20(f). The
x-axis of these figures represents position in cm and the y-axis represents pressure inMbar.
Each plot contains pressure profiles at various times with an increment of tplot = 0.05µs
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Figure 3.19: Logarithmic plots of run-to-detonation distance versus incident shock pres-
sure for All numerical results. PBX results are more sensitive than HMX, illustrating the
importance of the effects polymeric binder has on reaction rates, and sensitivity.

for a duration of t = 0.50µs. These plots show how pressure values at a specific location
changes over time. Mesh fidelity size varies from 500 elements per cm to 3000 elements
per cm.

Figures 3.20(a)-3.20(f) show that each experiment transitions and reaches steady det-
onation from the initial shock. For the initial study, Figure 3.20(a), the peak pressure at
steady detonation is below the initial pressure of P = 0.55Mbar and reaches a peak pres-
sure of P = 0.522Mbar. As fidelity increases, the peak pressure increases until converging
to a pressure above the input shock. As an example, Figure 3.20(d) has a peak pressure of
P = 0.556Mbar after steady detonation. At t = 0.5µs the shock front of the 500ELM/cm

case reaches x = 0.646cm. At higher fidelity, it is clear that the shock front passes this
value. The shock front of the 2000ELM/cm is located at x = 0.6537cm. This shows that
mesh density effects, peak pressures and shock speeds. When increasing fidelity further,
the shock front of the 3000ELM/cm is located at x = 0.6537cm showing convergence.
Furthermore, Figure 3.20(f) has a peak pressure of P = 0.57Mbar.

To further study convergence, shock features are compared to published values. The CJ
and ZND detonation theories discussed in Section 1.2 allow for the calculation of material
properties along the reaction zone. Recall, the solid material is shocked to the von Neumann
point. As chemical reaction occurs, pressure decreases along the Rayleigh line, through
the partially-reacted region until it reaches the Chapman-Jouguet point, the point where
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Figure 3.20: PBX sample shocked at various mesh densities. Pressure versus position plots
show the effect fidelity has on peak pressures and wave speeds.
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all reaction has occurred. This is depicted schematically on Figure 1.4. Relative error of
each quantity is plotted along the y-axis of each of the following figures, where the target
values are taken from references [46,47] and are displayed on Table 3.5. The x-axis shows
the time at which the quantity is measured. These times are after the material has reached
steady detonation. Each bar represents a varying mesh density corresponding to the color
shown on Figures 3.20(a)-3.20(f). First the detonation velocity D is considered. This is
calculated by measuring the location of the detonation wave, or the inverse of the slope on
Figure 3.15(b). At the initial time t1, the detonation velocity for the 500ELM/cm case
produces an error of 65%. As the solution continues the error is reduced and falls below
65%. In fact, each of the solutions produce larger errors at the initial time but are well
converged by the end of the simulation. Adding more fidelity greatly reduces the initial
error (below 20%) but does not significantly impact the error at later time points. For the
detonation velocity, it is sufficient to say that the mesh has converged to the value near the
published value(< 5%) with a best value of D = 0.880cm/µs.

Next, the von Neumann conditions are considered on Figures 3.21(b)- 3.21(d). The
von Neumann Pressure is given as Pvn = 0.563Mbar the error relative to this value is
plotted on Figure 3.21(b). The initial mesh of 500ELM/cm produces the largest error
over the duration of the simulation, never reaching below 10%. Higher fidelity is required to
accurately capture the von Neumann Pressure; values above 500ELM/cm produce values
below 5% with the best value of Pvn = 0.563Mbar reported on Table 3.5. The velocity is
also calculated at the von Neumann point and is compared on 3.21(c). Again the coarsest
mesh gives the highest error (≈ 10%) while increasing the fidelity produces relatively low
error(≈ 5%) with the best value of uvn = 0.341cm/µs. Next the relative volume at the von
Neumann point is compared on Figure 3.21(d). Although the 500ELM/cm case produces
the largest error, it is relatively close to the finer meshes. Error fluctuates near 5% for all
cases with the best value of Vvn/V0 = 0.624. Results from the von Neumann point indicate
that a mesh size of 500ELM/cm is not sufficient enough to accurately capture values at
that point while mesh sizes above are.

To conclude this experiment, the Chapman-Jouguet conditions are considered on Fig-
ures 3.21(e)- 3.21(f). The Chapman-Jouguet Pressure relative errors are are shown on
3.21(e). Similar to the von Neumann pressure, the 500ELM/cm case produces the most
error. Adding fidelity to the simulation improves the accuracy but not by much. Er-
ror fluctuates near 15% with the highest fidelity 3000ELM/cm producing a pressure of
PCJ = 0.413Mbar, the value reported on Table 3.5. Finally, the Chapman-Jouguet Ve-
locity is compared on Figure 3.21(f). As expected, the velocity converges with increasing
fidelity; however, the relative error again is near 15%. The best velocity is reported as
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uCJ = 0.250cm/µs. In general, results near the von Neumann point are more accurate
than those at the Chapman-Jouguet Pressure. The difference, made be attributed to differ-
ing numerical schemes, or material models. For instance reference [46] uses JWL eqeations
for both reacted and unreacted explosive. To summarize, mesh sizes above 500ELM/cm

are sufficient in capturing reaction zone properties for shock loading of PBXs.

Lee & Tarver (1980) Dobratz & Crawford (1985) FEM

von Neumann
D(cm/µs) 0.880 0.880− 0.883 0.880

Pvn(Mbar) 0.563 −− 0.563

uvn(cm/µs) 0.347 −− 0.341

Vvn/V0 0.606 −− 0.624

Chapman-Jouguet
PCJ(Mbar) 0.370 0.375 0.413

uCJ(cm/µs) 0.229 −− 0.250

Table 3.5: Results for von Neumann and Chapman-Jouguet values. Best numerical values
are reported. Detonation velocity and von Neumann values are captured well.

Next, the same experiment is performed for a L = 1.0cm sample of HMX using the
Ignition and Growth model. The left quarter of the domain is shocked to a pressure of
P = 0.55Mbar. Experiments use a fixed time step of ∆t = 1 × 10−4µs with mesh sizes
ranging from 500 elements per cm to 3000 elements per cm. Pressure profiles are shown on
Figure 3.22(a)-3.22(f) at various times with an increment of tplot = 0.05µs for a duration
of t = 0.50µs. These figures show that each experiment transitions and reaches steady
detonation from the initial shock. For the initial study, Figure 3.22(a), the peak pressure
at steady detonation is below the initial pressure P = 0.53Mbar. As fidelity increases,
the peak pressure increases until converging to a pressure above the input shock. As an
example, Figure 3.22(a) has a peak pressure of P = 0.57Mbar after steady detonation. At
t = 0.5µs the shock front of the 500ELM/cm case reaches x = 0.659cm. The shock front
of the 2000ELM/cm is located at x = 0.66cm. When increasing fidelity further, the shock
front of the 3000ELM/cm is located at x = 0.66cm showing convergence. Furthermore,
Figure 3.22(f) has a peak pressure of P = 0.57Mbar. To summarize, mesh density affects
peak pressure and does not affect detonation velocity to the same degree as the previous
PBX tests. Calculations above 1000 elements per cm are mesh resolved with the peak
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Figure 3.21: Mesh Density study for PBX material properties at von Neumann and
Chapman-Jouguet points. Relative error is plotted versus time where each bar represents a
varying mesh density. Error bars show that the reaction zone is accurately captured.
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pressure and detonation velocity of HMX using the Ignition and growth model converged.
To study the convergence of detonation velocity, relative error is plotted on Figure

3.23(a) with a target velocity taken from reference [47]. Each bar represents a varying
mesh density corresponding to the color shown on Figures 3.22(a)-3.22(f). The y-axis dis-
plays relative error and the x-axis shows the time at which the quantity is measured. Note,
these times are after the material has reached steady detonation. The detonation velocity D
is calculated by measuring the location of the detonation wave at multiple time increments.
At the initial time t1, the detonation velocity for the 500ELM/cm case produces an error
of less than 1%. In fact, doubling the mesh size to 1000ELM/cm increases the error. Max
error fluctuates between mesh densities with error below 5%. Again, this shows that mesh
density does not affect detonation velocity as significantly as the previous PBX tests. The
detonation velocity for HMX using Ignition and Growth model is converged with the best
value reported on Table 3.6 as D = 0.915cm/µs.
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Figure 3.23: Mesh Density study on relative error of detonation velocity for shock loading
of HMX. Detonation velocity converges for both models.

Dobratz & Crawford (1985) FEM (IG) FEM (Arrhenius)

D(cm/µs) 0.911 0.915 0.9112

Table 3.6: Results for detonation velocity of HMX using Ignition and Growth model and
Arrhenius model. Best values match cited works.

Next, the same experiment is performed for a L = 1.0cm sample of HMX using an
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Figure 3.22: HMX sample shocked at various mesh densities using the Ignition and Growth
model. Pressure versus position plots show the effect fidelity has on peak pressures.
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Arrhenius model; therefore, results for this study are in the temperature domain. The left
quarter of the domain is shocked to a pressure of T = 3000K. Experiments use a fixed
time step of ∆t = 1 × 10−4µs with mesh sizes ranging from 500 elements per cm to
3000 elements per cm. Temperature profiles are shown on Figure 3.24(a)-3.24(f) at various
times with an increment of tplot = 0.015µs for a duration of t = 0.25µs. These figures
show the region of the domain where the material has reached steady detonation. For the
initial study, Figure 3.24(a), the peak temperature at steady detonation is the initial temper-
ature reaches T = 3000K. As fidelity increases, a spike forms and the peak temperature
increases until converging to a temperature above the input shock. As an example, Figure
3.24(a) has a peak temperature of T = 3250K after steady detonation. At t = 0.25µs

the shock front of the 500ELM/cm case reaches x = 0.25cm. The shock front of the
2000ELM/cm is located at x = 0.20cm. When increasing fidelity further, the shock
front of the 3000ELM/cm is located at x = 0.25cm showing convergence. Furthermore,
Figure 3.24(f) has a peak temperature T = 3500K. To study the convergence of deto-
nation velocity, relative error is plotted on Figure 3.23(b) with the same target velocity .
Each bar represents a varying mesh density corresponding to the color shown on Figures
3.24(a)-3.24(f). At the initial time t1, the detonation velocity for the 500ELM/cm case
produces an error of greater than 20%. As the solution time increases, the error remains
the same. Increasing mesh density increases the accuracy giving an error less than 5% for
the 1000ELM/cm case. Increasing mesh resolution produces an error of less than 1%.
This shows that detonation velocity is resolved with the best value reported on Table 3.6 as
D = 0.911cm/µs. To summarize, mesh density affects peak temperature and detonation
velocity for coarser meshes. Peak temperature increases with fidelity converging to a value
of T = 3500K. Detonation velocity decreases with fidelity. Similar to the previous HMX
experiment, calculations above 1000 elements per cm are adequate.

3.2.4 2D Results

This section considers a 2D domain, increasing the local degrees of freedom by an ad-
ditional velocity component; see B for further details. The same experiments from Sec-
tion 3.2.3 is repeated for PBX and HMX using the Ignition and Growth model. First, a
1.0 × 0.5cm sample of PBX is shocked at a pressure near P = 0.55Mbar. Results for
this experiment have a fixed time step of ∆t = 1−4µs and are shown for a mesh density
of 2000 elements per cm on Figures 3.25(a)-3.26(f). The x-axis and y-axis of these figures
represents position in cm. The z-axis represents pressure in Mbar for Figures 3.25(a)-
3.25(f) and the burn fraction λ for Figures 3.26(a)-3.26(f). Each plot contains pressure and
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(c) 1500 ELM/cm
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(d) 2000 ELM/cm
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(f) 3000 ELM/cm

Figure 3.24: HMX sample shocked at various mesh densities using the Arrhenius model.
Temperature versus position plots show the effect fidelity has on peak temperatures and
detonation velocity.
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(a) t = 0.0µs (b) t = 0.1µs (c) t = 0.2µs

(d) t = 0.3µs (e) t = 0.4µs (f) t = 0.5µs

Figure 3.25: Shock loading of a 1.0×0.5cm sample of PBX. Results are in good agreement
with the corresponding 1D simulation.

burn fraction profiles at various times with an increment of tplot = 0.10µs for a duration of
t = 0.50µs.

Figures 3.25(a)-3.25(f) shows the transition to steady detonation. The peak pressure
reaches the value of P = 0.565Mbar with the detonation wave traveling at the speed
of D = 0.880cm/µs. This simulation is in good agreement with the corresponding 1D
simulation shown on Figure 3.20(d). Figures 3.26(a)-3.26(f) show the material is initially
a pure solid at t = 0.0. As the solution progresses the material reacts and converts to
gaseous product as the detonation wave travels through. Next a sample of HMX is shocked
to a pressure of P = 0.55Mbar. Again, a mesh density of 2000 elements per cm is
used. Pressure profiles are shown on Figures 3.27(a)-3.27(f) with the same increments and
duration. Steady detonation is achieved with a peak pressure of P = 0.57Mbar and a
detonation speed of D = 0.915cm/µs. This simulation is in good agreement with the
corresponding 1D simulation shown on Figure 3.22(d). Figures 3.28(a)-3.28(f) show the
burn fraction λ for the HMX experiment.

Finally, a 2.0× 2.0cm domain is considered with a circular initial discontinuity located
at the center of the domain. The purpose of this test is to assess the unidirectional capability
of the solution procedure. The shock front is represented as a circle that expands as the
detonation proceeds, with an initial radius of r = 0.25cm. A uniform mesh is considered
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(a) t = 0.0µs (b) t = 0.1µs (c) t = 0.2µs

(d) t = 0.3µs (e) t = 0.4µs (f) t = 0.5µs

Figure 3.26: Burn fraction of PBX. Initially a pure solid, the material reacts and converts
to gaseous products

(a) t = 0.0µs (b) t = 0.1µs (c) t = 0.2µs

(d) t = 0.3µs (e) t = 0.4µs (f) t = 0.5µs

Figure 3.27: Shock loading of a 1.0×0.5cm sample of HMX. Results are in good agreement
with the corresponding 1D simulation.
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(a) t = 0.0µs (b) t = 0.1µs (c) t = 0.2µs

(d) t = 0.3µs (e) t = 0.4µs (f) t = 0.5µs

Figure 3.28: Burn fraction of PBX. Initially a pure solid, the material reacts and converts
to gaseous products

using the 4-noded linear quadrilateral element developed in Section 2.2. The same mesh
resolution and time step is used. Figures 3.29(a)-3.29(c) show pressure contours of shock
loading of PBX with Figures 3.29(d)-3.29(f) showing the corresponding burn fractions.
Plots vary by increments of tplot = 0.2µs for a duration of t = 0.4µs. Figure 3.29(a)-3.29(f)
indicates that the detonation profile maintains a symmetric circular shape with a shock front
traveling at a constant speed. Values for this results will be reported and studied in future
sections. Figures 3.30(a)-3.30(f) show pressure and burn fraction contours of shock loading
of HMX.

3.3 Summary

This chapter thoroughly validated numerical results using the continuum methods with ex-
perimental results. Numerical results compared with analytically obtained test problems
showed good agreement. The free smoothing parameters were investigated in the context
of these solutions showing their effects on the average error per node. Equations of state
for PBXs, HMX and polymeric binder were investigated in density-energy space. Numer-
ical results for the shock Hugoniot show good agreement with the experimental curve fit
signifying that the pre and post shock states are captured accurately. Run-to-detonation
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(a) t = 0.0µs (b) t = 0.2µs (c) t = 0.4µs

(d) t = 0.0µs (e) t = 0.2µs (f) t = 0.4µs

Figure 3.29: Results for pressure and burn fraction of circular shock loading of PBX. Det-
onation profile maintains a symmetric circular shape demonstrating the unidirectional ca-
pability of the solution procedure.

(a) t = 0.0µs (b) t = 0.2µs (c) t = 0.4µs

(d) t = 0.0µs (e) t = 0.2µs (f) t = 0.4µs

Figure 3.30: Results for pressure and burn fraction of circular shock loading of HMX.
Detonation profile maintains a symmetric circular shape demonstrating the unidirectional
capability of the solution procedure.
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numerical studies were conducted with Ignition and Growth models and Arrhenius mod-
els for PBXs and HMX. The transition from incident pressure shock to steady detonation
was captured for multiple experiments and used to create pop-plots. These plots agreed
well with experimental results validating the numerical model used. Mesh densities studies
were conducted to assess the accuracy of shock features. Results show good agreement
with the various shock quantities including detonation velocity. Finally, 2D experiments of
shock loading matched well with 1D experiments. This chapter showed that many quan-
tities and features associated with detonation of PBXs are accurately captured with the
solution method, establishing a validated baseline with which to compare other methods in
future chapters.
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CHAPTER 4

Direct Numerical Simulation

This chapter presents Direct Numerical Simulation (DNS) of shock loading of polymer
bonded explosives. These methods explicitly model material heterogeneities where both
the binder and HMX are represented. First, synthetic microstructures of polymer bonded
explosives are generated using a Markov Random Field approach. Section 4.1 presents
the mathematical model used to generate these microstructures at various mass fractions.
Section 4.2 investigates shock initiation for various microstructures at different loading
conditions. These findings are compared to the continuum approach described in the pre-
vious Chapter. Finally, Numerical results for volume averages of pressure and temperature
are presented as functions of time.

4.1 Generating Synthetic Microstructures using Markov
Random Fields

Microstructures are stochastic in nature and a single snapshot of the microstructure does
not give its complete variability. However, it is known that different windows taken from
a polycrystalline microstructure generally ’look alike’ [135]. In mathematical terms, this
amounts to the presence of a stationary probability distribution from which various mi-
crostructural snapshots are sampled. There are various ways of modeling this probabil-
ity distribution indirectly. Feature–based algorithms have long been used that categorize
various microstructural snapshots based on a common set of underlying features, and gen-
erate new synthetic images with similar features [136–138]. These features could include
marginal histograms [136], multiresolution filter outputs (Gaussian [137] and wavelet [138]
filters) and point probability functions (eg. autocorrelation function) [139]. These methods
are good at capturing the global features of the image, however local information in the
form of per–pixel data is lost. Thus, features such as grain boundaries are smeared out
when reconstructing polycrystalline structures [138].
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Alternatively, one could start with sampling the conditional probability density for the
state of a pixel given the known states of its neighboring pixels using reference 2D or 3D
experimental images. If only the nearest neighbors are chosen, this amounts to sampling
from a Ising–type model [140]. For general microstructures, the correlation lengths can
span several pixels [139] and a larger neighbor window may be needed. In this chapter,
generalized Ising models called Markov Random Fields (MRFs) are employed to model
the probability distribution. While in Ising models, a lattice is constructed with pixels
(with binary states) interacting with its nearest neighbors, in MRFs, pixels take up inte-
ger or vector states and interact with multiple neighbors over a window. The sampling
of conditional probability of a pixel given the states of its known neighbors is based on
Claude Shannon’s generalized Markov chain [141]. In the one-dimensional problem, a set
of consecutive pixels is used as a template to determine the probability distribution function
(PDF) of the next pixel.

Non-parameteric sampling approaches have been developed [142] for extending the
sampling technique to 2D microstructures. In this approach, microstructures are grown
layer–by–layer from a small seed image (3x3 pixels) taken randomly from the experimental
micrograph. Here, the algorithm first finds all windows in an experimental micrograph that
are similar to an unknown pixel’s neighborhood window. One of these matching windows
is chosen and its center pixel is taken to be the newly synthesized pixel. This technique is
popular in the field of ‘texture synthesis’ [142–145], in geological material reconstruction
literature where such sampling methods are termed ‘multiple-point statistics’ [146], and
more recently, has been applied for modeling polycrystalline microstructures [147].

An alternate methodology based on optimization has become popular in recent years.
The non-parameteric sampling method [142] is posed in the form of an expectation max-
imization algorithm [148–151]. The approach minimizing a neighborhood cost function
that ensures that the local neighborhood of the Ising lattice taken along the x-,y- or z- di-
rections through the 3D microstructure is similar to some neighborhood in the 2D lattice
imaged along that plane. This reconstruction problem leads to anisotropic microstruc-
tures that have similar high order statistics [150], which is in contrast to other such works
in literature that use assumptions of microstructural isotropy [152] or methods that use
lower order statistics such as two-point correlation functions to synthesize 3D microstruc-
tures [153, 154]. The sampling approach and the optimization approach was used to create
synthetic microstructures for PBXs.
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(a) (b)

Figure 4.1: Markov random field as an undirected graph model, circles are pixels in the
image and bonds are used to connect neighbors: (a) Ising model with nearest neighbor
interactions (b) Microstructure modeled by including higher order interactions in the Ising
model.

4.1.1 Mathematical modeling of Microstructures

Some of early attempts at microstructure modeling were based on Ising models [140]. In
the Ising model, aN×N lattice (L) is constructed with valuesXi assigned for each particle
i on the lattice, i ∈ [1, .., N2]. In an Ising model, Xi is a binary variable equal to either
+1 or −1 (eg. magnetic moment). In general, the values Xi may contain any one of G
color levels in the range {0, 1, .., G− 1} (following the integer range extension of the Ising
model in Ref. [155]). A coloring of L denoted byX maps each particle in the lattice L to a
particular value in the set {0, 1, .., G−1}. Ising models fall under the umbrella of undirected
graph models in probability theory. In order to rewrite the Ising model as a graph, neighbors
are assigned to particles and link pairs of neighbors using a bond as shown in Fig. 4.1(a).
The rule to assign neighbors is based on a pairwise Markov property. A particle j is said to
be a neighbor of particle i only if the conditional probability of the value Xi given all other
particles (except (i, j), i.e., p(Xi|X1, X2, .., Xi−1, Xi+1, .., Xj−1, Xj+1, .., XN2)) depends
on the value Xj .

Note that the above definition does not warrant the neighbor particles to be close in dis-
tance, although this is widely employed for physical reasons. For example, in the classical
Ising model, each particle is bonded to the next nearest neighbor as shown in Fig. 4.1(a).
For modelling microstructures, a higher order Ising model (Fig. 4.1(b)) is used. The parti-
cles of the lattice correspond to pixels of the 2D microstructure image. The neighborhood
of a pixel is modeled using a square window around that pixel and bonding the center pixel
to every other pixel within the window [156]. Using this graph structure, a Markov random
field can be defined as the joint probability density P (X) on the set of all possible colorings
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X , subject to a local Markov property. The local Markov property states that the probability
of value Xi, given its neighbors, is conditionally independent of the values at all other par-
ticles. In other words, P (Xi|all particles except i) = p(Xi|neighbors of particle i). Next,
we describe a method based on Ref. [142] to sample from the conditional probability den-
sity p(Xi|neighbors of voxel i). The following sections present methods to sample from
the conditional probability density for generation of synthetic 2D and 3D microstructures.

4.1.2 Spatial Sampling

In this section, the MRF algorithm used to estimate microstructures over larger spatial
regions from experimentally known 2D microstructures is described. Here, the color (Xi)
of a pixel i is represented using G color levels in the range {0, 1, .., G − 1} each of which
maps to an RGB triplet. The number of color levels is chosen based on the microstructure
to be reconstructed; e.g. for binary images G = 2. Let E and S denote the experimental
and synthesized microstructure, respectively. Let v be a pixel in S whose color needs to
inferred using the sampling procedure. Let Sv denote the colors in a neighborhood window
around pixel v. LetEw denote the colors of pixels in a window of the same size in the input
2D micrograph.

Input microstructure (E) 

Initial  synthesized image (S) Progress during first 
iteration 

search 

v Sv 

Ew 

Figure 4.2: The Markov random field approach: The image is grown from a 3x3 seed im-
age (center). As the algorithm progresses along the path shown (right), the unknown output
pixel (shown in blue) is computed by searching for a pixel with a similar neighborhood in
the input image (left).

In order to find the coloring of pixel v, the conditional probability density p(Xv|Sv)
needs to be computed. Explicit construction of such a probability density is often com-
putationally intractable. Instead, the most likely value of v is identified by first finding a
window Ev in the input 2D micrograph that is most similar to Sv (see Fig. 4.2). This is
done by solving the following problem (where Sv,u denotes the color of pixel u in Sv and
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Ew
u denotes the color of pixel u in Ew):

Ev = arg min
Ew

∑
u

ωv,u(Sv,u −Ew
u )2 (4.1)

where, D =
∑

u ωv,u(Sv,u − E
w
u )2 is a distance measure defined as the normalized sum

of weighted squared differences of pixel colors. In order to preserve the short range cor-
relations of the microstructure as much as possible, the weight for nearby pixel is taken to
be greater than pixels farther away (Gaussian weighting function ω is used). If the pixel u
is located at position (x, y) (in lattice units) with respect to the center pixel v (located at
(0, 0)), ωv,u is given as:

ωv,u =
exp(− (x2+y2)

2σ2 )∑
i

∑
j exp(− (i2+j2)

2σ2 )
(4.2)

Here, the summation in the denominator is taken over all the known pixels in Sv. The
weights ωv,u for the unknown pixels in Sv are taken to be zero. This ensures that the
distance measure is computed only using the known values and is normalized by the total
number of known pixels. The standard deviation (σ) is taken to be 0.16w.

The most similar window, shown by Eq. 4.1, is solved using an exhaustive search by
comparing all the windows in the input 2D micrograph to the corresponding neighborhood
of pixel v. In this approach, a measure of stochasticity is introduced by storing all matches
with a distance measure that is within 1.3 times that of the best matching window [142].
The center pixel colors of all these matches give a histogram for the color of the unknown
pixel (Xv), which is then sampled using a uniform random number.

The synthetic microstructure is grown layer–by–layer starting from a small seed image
(3x3 pixels) taken randomly from the experimental micrograph (Fig. 4.2). In this way, for
any pixel the values of only some of its neighborhood pixels will be known. Each iteration
in the algorithm involves coloring the unfilled pixels along the boundary of filled pixels
in the synthesized image as shown in Fig. 4.2. An upper limit of 0.1 is enforced for the
distance measure initially. If the matching window for a unfilled pixel has a larger distance
measure, then the pixel is temporarily skipped while the other pixels on the boundary are
filled. If none of the pixels on the boundary can be filled during an iteration, then the
threshold is increased by 10% for the next i iteration.

The window size is the only adjustable parameter for different microstructures. Window
size plays an important role in the MRF model. At window sizes much smaller than the
correlation lengths, false matches lead to high noise in the reconstructions. At very high
window sizes, not enough matching windows can be identified. Hence, there is an ideal
window size that needs to be found through numerical trial. Results in this work use a
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window size of 11, the optimal size.
The fundamental approximation in this numerical implementation is that the probability

distribution function (PDF) of an unfilled pixel is assumed to be independent of the PDF
of its unfilled neighbors. In other words, PDF for a pixel that is obtained by sampling may
not stay valid as the rest of its neighbors are filled in. One problem with this approach is
the tendency to occasionally slip into a wrong part of the search space and start growing
large grains. Feature mapping [157] and k-coherence techniques [158] have been recently
developed that largely address this issue. Simple color differences often fail to recognize
semantic structure (e.g. grain boundary segregated phases between grains). The introduced
of a feature mask helps to guide the synthesis process used within a MRF pixel-based
scheme [159]. The idea is to include grain boundaries as an additional image channel
prior to neighborhood analysis. The weight w given to the feature-distance channel can be
varied [157]. The tradeoff is that a larger weight w downplays color differences, eventually
resulting in synthesis noise.

When colors are copied from input to output during the synthesis process, it is very
unlikely that they will land on random output locations. Instead, colors that are together
in the input (eg. each grain in a polycrystal) ought to have a tendency to be also together
in the output. This concept is called coherence [158]. Similar ideas have also appeared
in other methods such as jump maps [160] and k-coherence [161]. During initialization, a
similarity-set is built for each input pixel which contains a list of other pixels with similar
neighborhoods. During synthesis, the algorithm copies pixel from the input to the output,
but in addition to colors, the source pixel location is also copied. The algorithm gives signif-
icant improvement in reproduction of color information (in the form of crystal orientations
or phases) and even exceeds the performance of exhaustive search algorithms [162]. The
sampling algorithm can also be extended towards generating 3D synthetic microstructures
from 3D experimental images.

4.1.3 3D Optimization

In this section, the reconstruction of 3D microstructures from three orthogonal 2D sectional
images taken along the x-, y- and z- planes is developed. The information contained in these
three 2D micrographs is in the form of pixels containing colors corresponding to different
constituent phases. The outcome of the reconstruction is a 3D microstructure containing
voxels colored consistently such that any arbitrary x-, y- or z- slice ‘looks’ similar to the
corresponding input micrographs.

In this section, letEx,Ey andEz denote the set of orthogonal (x, y and z, respectively)
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slices of the experimental microstructure. Let V denote the solid (3D) microstructure. The
color of voxel v in the 3D microstructure is denoted by Xv. In addition to the color (e.g.
RGB triplet), the vector Xv may also contain other values including grain orientation and
phase index. Here, the color is represented usingG color levels in the range {0, 1, .., G−1}
each of which maps to an RGB triplet. The number of color levels is chosen based on the
microstructure to be reconstructed; again G = 2 for binary images.

Voxel, 

z
vE y

vE

x
vE

Figure 4.3: The neighborhoods of v in the slices orthogonal to the x, y, and z axis, re-
spectively, are shown. The windows in the input 2D micrograph shown in dotted lines are
denoted by Ei

v (i = x, y, z). These windows closely resemble the neighborhoods of v.

The vectors denoting the spatial neighborhood of voxel v in the slices orthogonal to
the x, y, and z axis, respectively, are denoted as V x

v ,V
y
v, and V z

v, as shown on Figure 4.3.
The neighborhood is taken over a small user-assigned window around the voxel v. Let
Ex,w,Ey,w, and Ez,w denote a window of the same size in the input 2D micrographs. In
order to find the coloring of voxel v based on the neighbor voxels in the x–plane, one needs
to compute the conditional probability density p(Xv|color of x–plane neighbors of v). Ex-
plicit construction of such a probability density is often computationally intractable. In-
stead, the most likely value of v is identified by first finding a window Ex,w that is most
similar to V x

v in the input 2D micrograph. This window is denoted by Ex
v as shown on

Figure 4.3. Similarly, matching windows to the y– and z– plane neighborhoods of voxel
v in the corresponding 2D sectional image, denoted as Ey

v,E
z
v, are found. Each of these

matching windows Ex
v ,E

y
v,E

z
v may have different coloring of the center pixel. Thus, an

optimization methodology to effectively merge these disparate values and identify a unique
coloring for voxel v is needed. The optimization approach is described next.

Let the value V x
v,u denotes the color of voxel u in the neighborhood V x

v . Similarly, the
valueEx

v,u andEx,w
u , respectively, denote the color of pixel u in the windowEx

v andEx,w.
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The 3D microstructure is synthesized by posing the problem as a L2 minimization of the
energy [148]:

V ∗ = arg min
V

∑
i∈{x,y,z}

∑
v

∑
u

ωiv,u(V
i
v,u −Ei

v,u)
2 (4.3)

where, V ∗ is the optimum synthetic microstructure. The optimization is carried out in two
steps as in the 2D case. In the first step, the energy is minimized with respect toEi

v. In this
step, we assume that the most likely sample from the conditional probability distribution
of the center pixel in the 3D image (eg. p(Xv|colors of x–plane neighbors of v)) is the
center pixel of a best matching window in an experimentally obtained 2D slice on the
corresponding plane. The best matching neighborhood of voxel v along the x–plane is
selected by solving the following problem:

Ex
v = arg min

Ex,w

∑
u

ωxv,u(V
x
v,u −Ex,w

u )2 (4.4)

This is an exhaustive search that compares all the windows in the input 2D micrograph to
the corresponding x–slice neighborhood of voxel v and identifies a window that leads to a
minimum weighted squared distance. In this process, for 2D images of size 64 × 64 with
a 16 × 16 neighborhood window, a matrix of size 162 × (64 − 16)2 is built containing all
possible neighborhoods of pixels that have a complete 162 window around it. The column
in this matrix that has a minimum distance to the 3D slice V x

v is then found through a k–
nearest neighbor algorithm [163]. Note that, only a limited 2D experimental sample along
each cross–section is given, which means that the best match may not be an exact match
for V x

v .
Thus, for each voxel v, a set of three best matching neighborhoods are obtained, possi-

bly with different colors corresponding to the center pixel. A unique value of v thus needs
to be found by weighting colors pertaining to location v in not only the matching windows
of voxel v but also its neighbors. This is exactly done in the second step of the optimiza-
tion procedure, where the optimal color of voxel v is computed by setting the derivative of
the energy function with respect to Xv to zero. This leads to a simple weighted average
expression for the color of voxel v:

Xv = (
∑

i∈{x,y,z}

∑
u

ωiu,vE
i
u,v)/(

∑
i∈{x,y,z}

∑
u

ωiu,v) (4.5)

As in the 2D case, the subscripts u and v are switched in the above expression as
compared to Eq. 4.3. This implies that the optimal color of the voxel v is the weighted
average of the colors at locations corresponding to voxel v in the best matching windows
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(Ei
u) of voxels (u) in the solid microstructure. Since Xv changes after this step, the set of

closest input neighborhoods Ei
v will also change. Hence, these two steps were repeated

until convergence, i.e., until the set Ei
v stops changing. As a starting condition, a random

color from the input 2D images is assigned to each voxel v. The process is carried out
in a multiresolution (or multigrid) fashion [149]: starting with a coarse voxel mesh and
interpolating the results to a finer mesh once the coarser 3D image has converged to a local
minimum. Three resolution levels (163, 323 and 643) are used.

4.1.4 Synthetic Microstructures of Polymer-Bonded Explosives

For this treatment, a binary representation is considered; i.e. a single pixel represents either
HMX(black) or polymeric binder(white). A 64× 64 pixel seed image is used to generate a
larger microstructure. The seed image (Figure 4.5 (left)) is a cut taken from an experimental
micrograph [94] and converted to a binary representation, with a volume fraction near η =

0.63. The scale associated with seed image is 0.5mm. The final synthetic microstructure
size is chosen to be 5.0mm, an order of magnitude increase. Figure 4.1.4 shows the various
iterations of the sampling scheme described in Section 4.1.2. The algorithm initiates at
the center of the synthetic microstructure, building outward layer by layer. This process
produces the final synthetic microstructure shown in Figure 4.5(right), next to the seed
image.
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