(d) (e) ®

Figure 4.4: Various iterations of the sampling scheme described in Section 4.1.2. The
algorithm initiates at the center of the synthetic microstructure, building outward layer by

layer.

S
%%%**#

Figure 4.5: Input 642 seed image(left) with a height of 0.5mm compared to final synthetic

6402 microstructure(right) with a height of 5.0mm. Figures are not to scale.

In order to test the physical features and properties of the synthesized microstructure,

the following criteria are considered:

* The synthetic microstructure must ‘look like’ the seed image; e.g grain size/shape
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distribution.

 Physical properties of the synthetic microstructure such as volume fraction/density

must be within reasonable bounds to the properties of the original microstructure.

It is clear from Figure 4.6 that the first criteria is met. Multiple cuts from the synthetic
microstructure are compared with the seed image show in the center. Distinct features,
such as HMX particle size and orientation are well captured. In fact, it it may be difficult
to distinguish the seed image from the synthetic cuts. For the second criteria, the syn-
thetic microstructure has a volume fraction of approximately n = 0.63 corresponding to
the fraction of the seed image. The volume fraction is adjusted to better capture the mate-
rial systems studied in this work. For instance, a volume fraction of n = 0.93 is required
to reach the bulk density of PBX 9501 (p = 1.844g/cm?) given the reference densities
for HMX and binder reported on 3.1. The aim of this work is to study the effects of the
microstructure on shock loading of PBXs; therefore, three volume fractions are consid-
ered. These microstructures are plotted on Figures 4.7(a)- 4.7(c)below, where the image
is inverted for visualization purposes. The lowest fraction n = 0.75 is shown on Figure
4.7(a) corresponding to bulk density of p = 1.73¢g/cm?. The volume fraction is increased
to n = 0.85, shown on Figure 4.7(b) corresponding to bulk density of p = 1.80g/cm3.
Finally a fraction of n = 0.95, shown on Figure 4.7(c) corresponding to bulk density of
p = 1.86g/cm3. The bulk density of PBX 9501 is captured between n = 0.85 — 0.95.
In this treatment, it is assumed that all microstructures produce a bulk density of of PBX

9501; therefore reference densities are made to be p = 1.844g/cm?.

B

as AL

Figure 4.6: Seed image (center) compared with various cuts of synthetic microstructure
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Figure 4.7: Synthetic microstructures at various mass fractions. Images are inverted for vi-

sualization purposes, where white pixels represent HMX and black pixels represent binder.
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Similarly, the process is repeated to generate a 3D microstructure using the algorithm
described in Section 4.1.3. However, in this case the synthetic microstucture size is not in-
creased. The final size 643 corresponds to a length of the original seed image 0.5mm. The
length scale is fixed due to computational cost of both generating the synthetic microstruc-
ture and fidelity required for shock loading of the sample. The final synthetic sample is
shown on Figures 4.8(a) and 4.8(b). The first Figure shows the outside surfaces of the vol-
ume element with a quarter cut, showing the variability within the micorstructure. Again,
the microstructural features are well captured. Figure 4.8(b) shows the Iso-surfaces of
HMX crystals.

() (b)

Figure 4.8: 3D synthetic microstructures generated using the algorithm described in Sec-
tion 4.1.3. Image are inverted for visualization purposes, where white pixels represent
HMX and black pixels represent binder. Iso-surfaces(b) plotted show 3D HMX crystals.

4.2 Initial Shock Loading

This section considers shock loading of various material systems. Initiation of shock load-
ing is not trivial; heterogeneous material systems have different responses for the same
initiation conditions. The goal here is to compare material responses of continuum model
to heterogeneous materials (synthetic microstructures); therefore, the average material re-
sponse is considered. Here, the input parameters are density p and specific total energy
E. These input parameters are uniformly distributed within a designated space within the
material system. The output is measured in volume averages of pressure and temperature.
All sample material systems are 5.0mm x 5.0mm in area.

A r = 1.0mm hot spot located at the center of the sample is considered. This load-

ing condition is shown on Figure 4.9, where density and energy are uniformly distributed

83



within the hotspot. Outside the hotspot, the material is at inert reference conditions where
p = poand E = 0.0(Mbar — cm?/g). This produces a “hot” volume ratio of V},.;/V =
12.56%. This loading condition is henceforth known as C;. Similarly, C, shown on Fig-
ure 4.10(a) is a » = 0.75mm hot spot located at the center of the sample. This loading
condition produces a “hot” volume ratio of V},,;/V = 7.06% a decrease from the previous
loading condition. A binary loading condition, B, is considered to study the interaction of
two hotspots and is shown on Figure 4.10(b). These hotspots have radii of r; = 0.45mm
and 7o = 0.55mm located at O; = [0.42,0.42]Jmm and Oy = [—0.50,0.00]mm respec-
tively. The binary loading condition produces a "hot” volume ratio Vj,,/V = 6.34%
near half of C'; and near C5. The final loading condition considered is 100 randomly dis-
tributed(uniform) hotspots of » = 0.10mm. This loading condition, appropriately named

R, produces a hot” volume ratio V},,;/V = 10.95% close the initial loading condition.

Figure 4.9: C1: A r = 1.0mm hot spot with uniformly distributed density and energy,
producing a ’hot” volume ratio of V},,;/V = 12.56%.

(@) Co:Viot/V = 7.06% (b) By:Vhot/V = 6.34% ©) Rm:Vihot/V = 10.95%

Figure 4.10: Various loading conditions, where density and energy are uniformly dis-

tributed within hot(red) regions.
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Next, density and total specific energy is varied to study the effects on average pressure
and temperature over the entire domain. The effects are studied for each loading condition
and for each material system, starting with the continuum model. This work specifically
considers regimes where detonation occurs; therefore, sufficiently high average pressures
and temperatures are needed. However, great care must be used when selecting the ap-
propriate target average values. When selecting input densities and energies, prohibitively
high local pressures and temperatures may be produced. The material Hugoniots described
in Section 3.2.1 must be considered. Detonation occurs in flat-topped shock experiments
above 2G Pa, therefore the target values are P,,, = 5G Pa and T;,, = 500K are consid-

ered in this work. These conditions are sufficient to cause chemical reaction.

4.2.1 Initial Conditions: Continuum

This section considers initiation of a continuum material system where material proper-
ties are constant spatially. Specifically, PBX9501 is considered, where 95% of the ma-
terial is HMX and the remaining is polymeric binder. Each of the components are not
explicitly modeled, and the effects of the composite material system are incorporated into
the empirical constants within the equations of state. To find the average target values of
P,,y = 5GPa and Ty, = 500K a wide search is performed. Density is varied from p =
1.844 — 3.0 g/cm? and specific total energy is varied from £ = 0.0 — 0.1 Mbar — cm?/g,
where the lower bounds produce the ambient conditions of Py = 0.0GPa and Ty = 295K.
Since material properties are invariant spatially the average values produced by the input

pressure density and energy can be found using volume fractions; i.e.
Povg = PViot/V) + Po(1 = Vit / V) (4.6)

Tovg =T (Viot/V) + To(1 — Vit / V) 4.7)

where the volume ratio V},,;/V varies by loading condition. The values of local pressure
and temperature(P,T") are found from Equations 2.7-2.9, where the material is a pure solid.
It is only necessary to calculate the local pressures and temperatures once, since they are
uniform within the hot volume. Results for average pressure and temperature for the contin-
uum are reported for all loading conditions on Figures 4.11(a)-4.14(c). Each figure shows
the loading condition (a), the average pressure (b) and the average temperature (c). Average
pressure and temperature are represented by contour plots where the x-axis is density and
the y-axis is specific energy; for an input density and energy a corresponding average pres-

sure/temperature over the entire domain is represented by the contour map. Although the
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average target values of P,,, = 5G'Pa and T;,,, = 500K are considered in this work, these
plots can be used in future work to find other desired average values. Furthermore, opti-
mization techniques can be implemented to find the desired average values by minimizing

the difference between the desired values and Equations 4.6-4.7.
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Figure 4.11: Average pressure F,,,(b) and temperature 7,,,(c) contours for the continuum

subjected to (' loading condition. The input density(x-axis) and energy(y-axis) produce

the corresponding average value(contour) over the entire domain.
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Figure 4.13: Average pressure F,,,(b) and temperature 7;,4(c) contours for the continuum
subjected to B, loading condition. The input density(x-axis) and energy(y-axis) produce

the corresponding average value(contour) over the entire domain.
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Figure 4.14: Average pressure I,,,(b) and temperature 7,,,(c) contours for the continuum
subjected to I?,, loading condition. The input density(x-axis) and energy(y-axis) produce

the corresponding average value(contour) over the entire domain.

To further study these contours and the effects of loading conditions on the continuum
material system, a 45° cut is taken across each contour. The cut is take from [1.844,0.0] to
[3.0,0.1] in density-energy space. Although these plots may not lead to the desired average
values, they are important in understanding the response of the material system. Figure
4.15(a) shows pressure slices of contours from Figures 4.11(b) 4.12(b) 4.13(b) 4.14(b),
where the x-axis represents energy per unit volume (p£) and the y-axis represents the cor-
responding average pressure in Mbar. For all loading conditions, trends initiate from the
ambient condition (P = F;) and pressure increases with energy per unit volume. The rate
at which pressure changes, increases with energy. As energy increases, the first loading
condition C requires the least amount of energy per unit volume to produce any pressure
when compared to all other loading conditions. The binary condition 5,, on the other

hand, requires the most. Intuitively, this makes sense as the hot volume for ('} is almost

87



twice as much as the hot volume of B,; i.e. Vior/V = 12.54 to Vj,pt/V = 6.34 respec-
tively. As an example, for an energy per unit volume value of pE = 0.2Mbar — cm?/g
loading condition C'; produces F,,, ~ 0.60M bar while the loading condition B, produces
a P,,; =~ 0.20Mbar, a substantial difference. In other words, it takes more input energy
per unit volume into the binary loading condition due to the percentage of hot volume.
The other loading conditions fall in between these two extremes. However, the C; and
R, loading conditions exhibit similar behavior. This is due to their similar percentages of
hot volume; i.e. Vo /V = 12.54 to Vjpe/V = 10.95. Similarity, the C5 and B, loading
conditions follow the same trends due to their corresponding percentages of hot volume.

For the temperature profiles shown on Figure 4.15(b), similar observations are made.
For all loading conditions, trends initiate from the ambient condition (7" = 1) and Tem-
perature increases with energy per unit volume. However, the rate at which temperature
changes decreases with energy; i.e. temperature plateaus, unlike pressure. Again, the load-
ing condition C requires the least amount of energy per unit volume while the binary
condition B, requires the most. As an example, for an energy per unit volume value of
pE = 0.2Mbar — cm? /g loading condition C; produces T,,, ~ 1100K while the loading
condition B, produces a T;,,, = 600K, a substantial difference. Loading conditions C; and
R,,, follow similar paths as do C and B,,.. As expected, percentages of hot volume V},,; A%
for each loading condition significantly affect the desired average values for both pres-
sure and temperature; more energy per unit volume is required for loading conditions with
smaller hot volumes. Adding more energy per unit volume to each system will increase the
pressure but will have less of an impact on temperature.

To find the desired average values, density and energy values were manually selected
through trial and error process, by probing the contour plots for each loading condition.
These values were adjusted until a P,,, ~ 5GPa and T,,, ~ 500K and are reported on
Table 4.1. The values reported on Table 4.1 include values for density p, specific energy
E, volume percentages V},,;/V, average energy per unit volume pF, average pressure P,
and average temperature 7, for each loading condition. The input values (p,£) presented
on the table are uniformly distributed within each hot region and produce the correspond-
ing target values. For each case, the average energy per unit volume was calculated and is
presented on Figure 4.16. For the target values, the average energy per unit volume does
not change significantly, however they do change as a result of hot volume percentages.
In an average sense, the pairs C/R,, and Cy/B,, perform similarly much like the trends
observed from the contours. Initial shock loading of the continuum material system pro-
vides a baseline from which to compare heterogeneous material systems examined in the

following sections.
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4.2.2 Initial Conditions: n = 0.75

This section considers the initiation of the heterogeneous material system shown in Fig-
ure 4.7(a) where the mass fraction of HMX is = 0.75. Here the microstructure is ex-
plicitly modeled and a binary representation is considered, where each pixel represents
either pure HMX or polymeric binder. Unlike the continuum, material properties vary
spatially; equations of state for both HMX and binder are necessary. To find the av-

erage target values of F,,, = 5GPa and T,,, = 500K a wide search is performed.
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Density is varied from p = 1.844 — 3.0 g/cm? and specific total energy is varied from
E = 0.0 — 0.1 Mbar — cm?/g, where the lower bounds produce the ambient conditions of
Py = 0.0GPa and Ty = 295K. Equations 4.6 and 4.7 no longer hold as material proper-
ties vary spatially; V},, contains both HMX and binder. However, within each individual
material system, pressure values and temperature values do not change and the following

equations are used

Povg = (Pa(Vhotr) + P(Vits))/V + Po(1 = Vit / V) (4.8)
Tavg - (TH(VhotH) + TB(VhotB))/V + TO(l - Vhot/v) (49)

where subscript with 7 and B denote HMX and binder respectively. Here volumes of
hot HMX and binder make up the total hot volume; i.e. Vipy = Vietm + Viets. The
values of local pressure and temperature(Py 3,1 ) are found from Equations 2.7-2.9,
where the materials are pure solids. Results for average pressure and temperature of the
heterogeneous material where 7 = 0.75 are reported for all loading conditions on Figures
4.17(a)-4.20(c). Each figure shows the loading condition (a), the average pressure (b) and
the average temperature (c). Average pressure and temperature are represented by contour
plots where the x-axis is density and the y-axis is specific energy; for an input density and
energy a corresponding average pressure/temperature over the entire domain is represented
by the contour map. Again, optimization techniques may be exploited to find the target
values using Equations 4.8-4.9.
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Figure 4.17: Average pressure I,,,(b) and temperature 77,,(c) contours for heterogeneous
material where ) = 0.75 subjected to C'; loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.
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Figure 4.19: Average pressure F,,,(b) and temperature 7;,,(c) contours for heterogeneous
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Figure 4.20: Average pressure F,,,(b) and temperature 7;,,(c) contours for heterogeneous
material where n = 0.75 subjected to 12,,, loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.
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The same study is performed where a 45° cut taken from [1.844,0.0] to [3.0,0.1] in
density-energy space is taken across each contour. Figure 4.21(a) shows pressure slices of
contours from Figures 4.17(b), 4.18(b), 4.19(b), and 4.20(a), where the x-axis represents
energy per unit volume (pE) and the y-axis represents the corresponding average pressure
in Mbar. For all loading conditions, trends initiate from the ambient condition (P = Fp)
and pressure increases with energy per unit volume. The rate at which pressure changes,
increases with energy. Similar to the previous material system, the first loading condition
() requires the least amount of energy per unit volume to produce any pressure while the
binary condition B, requires the most. The pairs C/R,, and Cy/B, perform similarly
due to their similar hot volume percentages. For an energy per unit volume value of p£ =
0.2Mbar—cm? / g loading conditions Cy/R,, produces P,,, ~ 0.60M bar while the loading
condition Cy/B,, produces a P,,, ~ 0.30M bar, a substantial difference. These trends will
be compared with all material systems in Section 4.2.5

For the temperature profiles shown on Figure 4.21(b), similar observations are made.
For all loading conditions, trends initiate from the ambient condition (7' = 7j) and Tem-
perature increases with energy per unit volume. However, the rate at which tempera-
ture changes, decreases with energy; i.e. temperature plateaus, unlike pressure. Again,
the loading condition pairs C/R,, require the least amount of energy per unit volume
while the Cy/B,, pair requires the most. For an energy per unit volume value of pF =
0.2Mbar — ¢cm?/g loading condition C; produces T,,, =~ 900K while the loading con-
dition B, produces a T,,, ~ 600K, a substantial difference. Percentages of hot volume
Viot/V for each loading condition significantly affect the desired average values for both
pressure and temperature; more energy per unit volume is required for loading conditions
with smaller hot volumes. Further increasing energy per unit volume of each system will
increase pressure but will have less of an effect on temperature.

To find the desired average values, density and energy values were manually selected
through trial and error process, by probing the contour plots for each loading condition.
These values were adjusted until a P,,;, ~ 5GPa and T,,, ~ 500K and are reported
on Table 4.1. Initial pressure contours for each loading condition are shown on Figures
4.22(a)- 4.22(d). From these plots the microstructure is visible through the contour showing
the variability in pressure values between HMX and binder. Figure 4.22(a) shows the C
loading condition where local pressures for HMX and binder are P ~ 0.40Mbar and P ~
0.25Mbar respectively. Figures 4.22(b) and 4.22(c) show the Cy/B,, loading conditions
where the local HMX pressure is P ~ 0.5Mbar and the local binder pressure is P ~
0.35Mbar. The R,, loading condition is similar to the C; condition, with slightly higher
values needed to make up for the difference in volume. Initial temperature contours for each
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Figure 4.21: A 45° slice across pressure(a) and temperature(b) contours for each loading
condition on the heterogeneous material where 7 = 0.75. More energy per unit volume is
required for loading conditions with smaller hot volumes.

loading condition are shown on Figures 4.23(a)- 4.23(d). Unlike the pressure contours,
the microstructure is not visible in the current color map ranges, and the temperature is
nearly uniform. Figure 4.23(a) shows the (' loading condition with temperature values
T =~ 1800K. Figures 4.23(b) and 4.23(c) show values of 7' ~ 3000K and above. The
R, loading condition has local temperature values near 7' ~ 2100K. For each case, the
average energy per unit volume was calculated and is presented on Figure 4.24. For the
target values, the average energy per unit volume does not change significantly, however
they do change as a result of hot volume percentages. In an average sense, the pairs C/R,,
and Cy/B,, perform similarly much like the trends observed from the contours. All material

systems are compared in Section 4.2.5.

(@) G4 (b) C; (c) By (d) Rm

Figure 4.22: Initial pressure (Mbar) contours of 77 = (.75 material for all loading conditions
where Py, = 5GPa and T,,, = 500K. Local pressures within hotspots appear to vary
spatially.
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Figure 4.23: Initial temperature (K) contours of = 0.75 material for all loading condi-
tions where F,,, = 5G Pa and T,,, = 500K. Local temperatures within hotspots appear

uniform.
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Figure 4.24: Average energy per unit volume of 1 = 0.75 heterogeneous material for each
loading condition where P,,, = 5G' Pa and T;,, = 500K.

4.2.3 Initial Conditions: = 0.85

This section considers the initiation of the heterogeneous material system shown in Figure
4.7(b) where the mass fraction of HMX is n = 0.85. Here the microstructure is explic-
itly modeled and material properties vary spatially. Equations of state for both HMX and
binder are necessary. The same wide search is performed where density and energy are
varied with lower bounds producing ambient conditions. Again, V},,; contains both HMX
and binder and, therefore, average pressure and temperature are calculated using equa-
tions 4.8 and 4.9. The values of local pressure and temperature( Py g,1x, g) are found from
Equations 2.7-2.9, where the materials are pure solids. Results for average pressure and
temperature are reported for all loading conditions on Figures 4.25(a)-4.28(c). Each fig-

ure shows the loading condition (a), the average pressure (b) and the average temperature
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(c). Average pressure and temperature are represented by contour plots where the x-axis is
density and the y-axis is specific energy; for an input density and energy a corresponding

average pressure/temperature over the entire domain is represented by the contour map.
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Figure 4.25: Average pressure I,,,(b) and temperature 77,,(c) contours for heterogeneous
material where 1 = 0.85 subjected to (' loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.

|
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

°
8

300 450 600 750 900 1050 1200 1350 1500
[
|
|
L
[

008

°
3
8

°
2

°

2

=
=
€
?
5
H
2
o

E (Mbar-cm’/g)

°
R

°

R

3 28 3

2 22 0

2 22 6 28 3

24 2
p (g/em’)

242
p (g/em’)

(a) Loading Condition: Co (b) Average pressure (c) Average temperature

Figure 4.26: Average pressure I,,,(b) and temperature 77,,(c) contours for heterogeneous
material where 1 = 0.85 subjected to (5 loading condition. The input density(x-axis) and
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Figure 4.27: Average pressure F,,,(b) and temperature 7g,,,(c) contours for heterogeneous
material where 7 = 0.85 subjected to B,, loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.
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Figure 4.28: Average pressure Fy,,,(b) and temperature 7g,,4(c) contours for heterogeneous
material where 17 = 0.85 subjected to R,, loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.

The same study is performed where a 45° cut taken from [1.844,0.0] to [3.0,0.1] in
density-energy space is taken across each contour. Figure 4.29(a) shows pressure slices of
contours from Figures 4.25(b), 4.26(b), 4.27(b), and 4.28(a), where the x-axis represents
energy per unit volume (pE) and the y-axis represents the corresponding average pressure
in Mbar. For all loading conditions, trends initiate from the ambient condition (P = Fp)
and pressure increases with energy per unit volume. The rate at which pressure changes,
increases with energy. Similar to the previous material system, the first loading condition
(' requires the least amount of energy per unit volume to produce any pressure while the
binary condition B, requires the most. The pairs C1/R,, and Cy/B, perform similarly
due to their similar hot volume percentages. For an energy per unit volume value of p£ =
0.2Mbar —cm? / g loading conditions Cy/R,, produces P,,, ~ 0.60M bar while the loading
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Figure 4.29: A 45° slice across pressure(a) and temperature(b) contours for each loading
condition on the heterogeneous material where 7 = 0.85. More energy per unit volume is
required for loading conditions with smaller hot volumes.

condition Cy/B,, produces a P,,, ~ 0.20Mbar, a substantial difference. These trends will
be compared with all material systems in Section 4.2.5

For the temperature profiles shown on Figure 4.29(b), similar observations are made.
For all loading conditions, trends initiate from the ambient condition (7" = 7j) and Tem-
perature increases with energy per unit volume. However, the rate at which tempera-
ture changes, decreases with energy; i.e. temperature plateaus, unlike pressure. Again,
the loading condition pairs C}/R,, require the least amount of energy per unit volume
while the Cy/B,, pair requires the most. For an energy per unit volume value of pFE =
0.2Mbar — ¢cm?/g loading condition C; produces T,,, =~ 900K while the loading con-
dition B, produces a T,,, ~ 600K, a substantial difference. The same conclusions are
made; percentages of hot volume V},,;/V for each loading condition significantly affect the
desired average values for both pressure and temperature. Additional energy per unit vol-
ume of each system will increase pressure but these gains are not observed in temperature.

The same trial and error process was used to find the target average values of P,,, ~
5G Pa and T,,, ~ 500K with initial conditions reported on Table 4.1. Initial pressure con-
tours for each loading condition are shown on Figures 4.30(a)- 4.30(d). From these plots
the microstructure is visible through the contour showing the variability in pressure values
between HMX and binder. Figure 4.30(a) shows the ('} loading condition where local pres-
sures for HMX and binder are P ~ 0.45Mbar and P ~ 0.25M bar respectively. Figures
4.30(b) and 4.30(c) show the C5/B, loading conditions where the local HMX pressure is
P =~ 0.5Mbar and the local binder pressure is P ~ 0.35Mbar. The R,, loading condi-
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Figure 4.30: Initial pressure (Mbar) contours of 77 = (.85 material for all loading conditions
where F,,, = 5GPa and T,,, = 500K. Local pressures within hotspots appear to vary
spatially
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Figure 4.31: Initial temperature (K) contours of 1 = 0.85 material for all loading condi-
tions where F,,, = 5GPa and T,,; = 500K. Local temperatures within hotspots appear
uniform.

tion is similar to the C condition, with slightly higher values needed to make up for the
difference in volume. Initial temperature contours for each loading condition are shown on
Figures 4.31(a)- 4.31(d). Unlike the pressure contours, the microstructure is not visible in
the current color map ranges, and the temperature is nearly uniform. Figure 4.31(a) shows
the C'; loading condition with temperature values 7' ~ 1800 K. Figures 4.31(b) and 4.31(c)
show values of 7' ~ 3000K and above. The R,, loading condition has local temperature
values near 7" ~ 2100K. For each case, the average energy per unit volume was calcu-
lated and is presented on Figure 4.32. For the target values, the average energy per unit
volume does not change significantly, however they do change as a result of hot volume
percentages. In an average sense, the pairs C'/R,, and C5/B,, perform similarly much like

the trends observed from the contours. All material systems are compared in Section 4.2.5.
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Figure 4.32: Average energy per unit volume of 1 = 0.85 heterogeneous material for each
loading condition where P,,, = 5G'Pa and T,,, = 500K

4.2.4 Initial Conditions: n = 0.95

This section considers the initiation of the heterogeneous material system shown in Fig-
ure 4.7(c) where the mass fraction of HMX is n = 0.95. Here the microstructure is ex-
plicitly modeled and material properties vary spatially. Average pressure and temperature
are calculated using equations 4.8 and 4.9. Results for average pressure and temperature
are reported for all loading conditions on Figures 4.33(a)-4.36(c). Each figure shows the
loading condition (a), the average pressure (b) and the average temperature (c). Average
pressure and temperature are represented by contour plots where the x-axis is density and
the y-axis is specific energy; for an input density and energy a corresponding average pres-

sure/temperature over the entire domain is represented by the contour map.
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Figure 4.33: Average pressure I,,,(b) and temperature 77,,(c) contours for heterogeneous
material where 1 = 0.95 subjected to C'; loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain..
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Figure 4.34: Average pressure F,,,(b) and temperature 7,,4(c) contours for heterogeneous
material where = 0.95 subjected to (5 loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.
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Figure 4.35: Average pressure F,,,(b) and temperature 7;,,(c) contours for heterogeneous
material where = 0.95 subjected to B,, loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.
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Figure 4.36: Average pressure I,,,(b) and temperature 77,,(c) contours for heterogeneous
material where 17 = 0.95 subjected to R,, loading condition. The input density(x-axis) and

energy(y-axis) produce the corresponding average value(contour) over the entire domain.

Slices are taken across each contour, where Figures 4.37(a) and 4.37(b) show pressure
and temperature respectively. Here, the x-axis represents energy per unit volume (p£) and
the y-axis represents the corresponding average pressure or temperature values. Similar to
all previous material systems, the first loading condition C requires the least amount of
energy per unit volume while the binary condition B, requires the most. The pairs C'/R,,
and Cs/B,, perform similarly due to their similar hot volume percentages. Additional en-
ergy per unit volume of each system will increase pressure but these gains are not observed
in temperature. Initial conditions needed to achieve average values of F,,, ~ 5G'Pa and
Tovg =~ 500K are reported on Table 4.1. Initial pressure contours for each loading condi-
tion are shown on Figures 4.38(a)- 4.38(d). From these plots the microstructure is visible
through the contour showing the variability in pressure values between HMX and binder.
Figure 4.38(a) shows the (', loading condition where local pressures for HMX and binder
are P ~ 0.40Mbar and P =~ 0.25M bar respectively. Figures 4.38(b) and 4.38(c) show the
Cy/B,, loading conditions where the local HMX pressure is P ~ 0.5Mbar and the local
binder pressure is P =~ 0.35Mbar. The R,, loading condition is similar to the C'; condi-
tion, with slightly higher values needed to make up for the difference in volume. Initial
temperature contours for each loading condition are shown on Figures 4.39(a)- 4.39(d),
where temperature is nearly uniform. Figure 4.39(a) shows the (' loading condition with
temperature values 7' ~ 1800K . Figures 4.39(b) and 4.39(c) show values of 7" ~ 3000 K
and above. The R,, loading condition has local temperature values near 7' ~ 2100/K. For
each case, the average energy per unit volume was calculated and is presented on Figure
4.40. For the target values, the average energy per unit volume does not change signifi-
cantly, however they do change as a result of hot volume percentages. In an average sense,

the pairs C'1/R,, and Cy/B, perform similarly much like the trends observed from the con-
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tours. Next, all material systems are compared in Section 4.2.5.
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Figure 4.37: A 45° slice across pressure(a) and temperature(b) contours for each loading
condition on the heterogeneous material where 7 = 0.95. More energy per unit volume is

required for loading conditions with smaller hot volumes.
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Figure 4.38: Initial pressure (Mbar) contours of 77 = 0.95 material for all loading conditions
where F,,, = 5GPa and T,,, = 500K. Local pressures within hotspots appear to vary
spatially.
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Figure 4.39: Initial temperature (K) contours of = 0.95 material for all loading condi-
tions where F,,, = 5G Pa and T,,, = 500K. Local temperatures within hotspots appear

uniform.
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Figure 4.40: Average energy per unit volume of 1 = 0.95 heterogeneous material for each
loading condition where P,,;, = 5G'Pa and T,,, = 500K.

4.2.5 Initial Conditions: All Material Systems

In this section, initiation of material system from the previous sections are compared. The
continuum and heterogeneous systems, with mass fractions of n = 0.75,0.85,0.95, are
considered for all loading conditions. Average values in density -energy space are com-
pared by taking a 45° cut taken from [1.844,0.0] to [3.0,0.1] across each pressure and
temperature contour. First, the C'; loading condition is investigated on Figures 4.41(a) and
4.41(b), where each color corresponds to a different material system. Figures 4.41(a) shows
average pressure as a function of energy per unit volume. All material systems on this plot
follow the same trend; increasing energy per unit volume increases average pressure, and
the rate at which average pressure changes. All curves originate from the ambient condi-
tion (P = 0.0 Mbar) and align at low energies per unit volume. However, as energy per
unit volume increases, the curves begin to deviate from one another with the greatest de-
viation from the continuum material system. The heterogeneous material systems deviate
but are tightly bound. From these trends, the effects of including microstructural informa-
tion are apparent; explicitly modeling the microstructure plays a significant role in initial
shock loading of PBXs. Heterogeneous material systems produce higher average pressure
values when compared to the continuum material system. By including microstructural
information, the material system is more sensitive in an average sense. As an example, for
pE = 0.25 Mbar — ¢cm?/em?, the continuum media produces P,,, ~ 0.07 Mbar, while
the heterogeneous media is near P,,;, ~ 0.09 Mbar. Thus, the continuum material sys-

tems require more energy per unit volume to achieve the same average pressure values of
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heterogeneous material systems.
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Figure 4.41: A 45° slice across pressure(a) and temperature(b) contours for C; loading
condition for all material systems. The effects of the microstructure grow with increasing

energy per unit volume.

In comparing the heterogeneous material systems, material systems deviate at larger
energies per unit volume. The differences in response can be attributed to binder con-
tent; materials with larger percentages of binder content require more energy to produce
the same output as those with less binder content. In this sense, increasing binder con-
tent decreases the sensitivity of the average pressure material response. As an exam-
ple, for pE = 0.25 Mbar — cm®/em?, the n = 0.75 material system produces P,,, =
0.087 Mbar. Increasing the percentage of HMX by 10% increases the average response
P,yg = 0.092 Mbar. For the maximum HMX content, where ) = 0.95, P,y = 0.097 Mbar,
a 12% increase from the 7 = 0.75 material system. The relationship between average re-
sponse and binder content is linear for a give energy per unit volume.

Figures 4.41(b) shows average temperature as a function of energy per unit volume.
All material systems on this plot follow the same trend; increasing energy per unit volume
increases average temperature, However, the rate at which average temperature changes
decreases, unlike pressure. All curves originate from the ambient condition (1" = 295 K))
and align at low energies per unit volume. However, as energy per unit volume increases,
the curves begin to deviate from one another with the greatest deviation from the continuum
material system.

The heterogeneous material systems deviate but are tightly bound and converge to the
final value 7,,, ~ 655 K. From these trends, the effects of including microstructural

information are apparent; explicitly modeling the microstructure plays a significant role in
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initial shock loading of PBXs. However, the opposite effect is observed when compare
to average pressure. Heterogeneous material systems produce lower average temperature
values when compared to the continuum material system. By including microstructural
information, the material system is less sensitive in an average sense. As an example, for
pE = 0.25 Mbar — ¢cm?/em?, the continuum media produces T,,, ~ 709 K, while the
heterogeneous media is near 7, ~ 655K Thus, continuum material systems require less
energy per unit volume to achieve the same average temperature values of heterogeneous
material systems. Furthermore, due to the declining rate of increase, the heterogeneous
material systems plateau and may never be able to achieve the same average temperature
ranges as the continuum.

In comparing the heterogeneous material systems, material systems deviate at larger
energies per unit volume. The differences in response can be attributed to binder content;
materials with larger percentages of binder content require more energy to produce the
same output as those with less binder content. In this sense, increasing binder content
decreases the sensitivity of the average temperature material response. As an example, for
pE = 0.25 Mbar — em?/cm?, the n = 0.75 material system produces T,,, = 651 K.
Increasing the percentage of HMX by 10% increases the average response 1,,, = 656 K.
For the maximum HMX content, where = 0.95, T;,,, = 661 K, a 1% increase from the
n = 0.75 material system. The relationship between average response and binder content
is linear for a give energy per unit volume. Plots 4.42(a)-4.44(b) show results for the other
loading conditions (Cs,B,,[%,,) and follow the same trends and observations of the first
case. They will not be discussed in further detail

In general, from these plots, the continuum performs much like the heterogeneous ma-
terial systems at lower energies per unit volume. As more energy is put into each system,
the curves begin to deviate. The continuum is less sensitive in average pressure space but
more sensitive in average temperature space. Note, that the continuum material system in-
cludes binder effects through manipulation of material constants. These effects, however,
are significantly different when explicitly modeling the microstructure where material het-
erogeneity heavily influences the loading conditions. Among heterogeneous material sys-
tems binder content reduces sensitivity. The continuum material most closely follows the
n = 0.75 system for average pressure and the higher HMX content = 0.95 system for
temperature. Note, that the desired average values of F,,, = 5G Pa and T,,, = 500K are
not achieved on this plane for all material systems and loading conditions. To reach the
desired temperature a much higher energy per unit volume is needed than for the desired
average pressure.

The desired averages for all loading conditions and all materials are reported on Table
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Figure 4.42: A 45° slice across pressure(a) and temperature(b) contours for Cs loading
condition for all material systems. The effects of the microstructure grow with increasing

energy per unit volume.
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Figure 4.43: A 45° slice across pressure(a) and temperature(b) contours for B, loading
condition for all material systems. The effects of the microstructure grow with increasing
energy per unit volume.
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Figure 4.44: A 45° slice across pressure(a) and temperature(b) contours for R, loading
condition for all material systems. The effects of the microstructure grow with increasing
energy per unit volume.

4.1. The average energy per unit volume is reported on Figure 4.45. The continuum per-
forms most like the n = (.75 material in an average sense. As expected, percentages of hot
volume V},;/V for each loading condition significantly affect the desired average values
for both pressure and temperature; more energy per unit volume is required for loading con-
ditions with smaller hot volumes. Next, numerical simulation is performed for all material

systems and all loading conditions.
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E

Loac‘ii'ng p (Mbar—  10° Yoot pE g Py Tong
Condition  (g/cm?) ) Vietat (Mbar) (G Pa) (K)
cm’/g)
Continuum
Ch 2.838 0.0325 12.56 0.0115 5.00 500.41
Cs 3.025 0.0568 7.06 0.0121 5.00 503.04
B, 3.061 0.0627 6.34 0.0121 5.01 501.08
R, 2.884 0.0372 10.95 0.0118 5.04 501.78
n = 0.75
Ch 2.747 0.0335 12.56 0.0116 5.04 499.55
Cs 2.910 0.0585 7.06 0.0120 5.07 500.31
B, 2.931 0.0646 6.34 0.0119 5.06 502.13
R,, 2.781 0.0384 10.95 0.0117 5.03 504.22
n = 0.85
Ch 2.731 0.0333 12.56 0.0114 5.08 504.71
Cy 2.881 0.0566 7.06 0.0115 4.97 500.83
B, 2.915 0.0636 6.34 0.0117 5.06 503.52
R,, 2.764 0.0374 10.95 0.0113 5.05 502.06
n = 0.95
Ch 2.713 0.0323 12.56 0.0110 5.09 501.79
Cy 2.870 0.0559 7.06 0.0113 5.05 501.17
B, 2.897 0.0616 6.34 0.0112 5.02 499.66
R,, 2.747 0.0364 10.95 0.0110 5.04 500.30

Table 4.1: Summary of initial conditions for all material systems and all loading conditions

needed to achieve a P,,, = 5GPa and a T}, = 500K.
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Figure 4.45: Average energy per unit volume of all material systems for each loading

condition where P, = 5G Pa and Tg,,; = 500K

4.3 Numerical Results

In this section Direct Numerical Simulation (DNS) results are presented for shock loading

on heterogeneous material systems. For DNS, the Euler Equations 2.18 are numerically

solved using the Taylor-Galerkin Scheme described in Chapter 2.2. The microstructure is

explicitly modeled and four species exist: solid HMX, fully reacted gaseous HMX, solid

polymeric binder and gaseous polymeric binder. Therefore, additional transport equations

for each species are required and the 2D DNS equations in vector form are written as

pu
pv

PYhs
PYhg
PYs
PYbg

U
pu® +p
pUv
(PE + p)u
puYns
PUY g
puYps
puYpg
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/J(thY'hs + thY}Lg + s Yos + ngng)
PYhs
PYrg
PYis
PYog

and S = 4.10)

where the first subscript denotes the material (HMX/Binder) and the second denotes the
state (solid/gas). Reaction rates for each species are first order Arrhenius models with
parameters taken from Table 3.3. Here, the rates Yhs = —th and Y},s = —Y},g where
energy release qns = qng and qps = @qpy. Given the Eulerian description of the solution
procedure, all four species may be present at one point in space and time. A uniform
mesh, using 3-noded constant strain triangle elements, is considered with a mesh density
of 2,000E LM /cm. With 8 local degrees of freedom, and 251, 001 nodes the global num-
ber of degrees of freedom is ~ 2million. A constant time step of At = 1 x 10~°us for a
duration of ¢ = 0.16us. Computationally, the solution procedure for all results used 8 com-
putational nodes with 16 cores each for a total number of 128 processes. Computational
cost information for each study will be investigated in the following Chapter. Additional

contour plots for the following material systems are shown in Appendix E.

Figure 4.46: Uniform mesh, using 3-noded constant strain triangle elements. Material

interfaces captured where red represents HMX and blue represents binder.
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4.3.1 Numerical Results: n = 0.75

Figure 4.47: Computational representation of heterogeneous n = 0.75 material system

where red represents HMX and blue represents binder.

In this section, DNS results are presented for shock loading on the heterogeneous material
system with a HMX mass fraction of = 0.75. Contour plots of pressure, temperature,
HMX mass fraction and binder fraction are shown on Figures 4.48(a)-4.63(d). These fig-
ures show the material response within ¢ = 0.01us for all loading conditions. Contour
plots for the remaining duration of the simulation are found in Appendix E.1.

Figures 4.48(a) through 4.51(d) show shock loading for loading condition C;. Figure
4.48(a) through 4.49(d) show contours for temperature and pressure respectively. From
these figures, it is apparent that the materials heterogeneity contributes to the material re-
sponse. Hot spots form in each contour with peak pressures near 50G Pa and peak temper-
atures above 3000 K . Figures 4.50(a) through 4.51(d) show species mass fractions. Initially
both HMX and binder are present in solid form within the shocked region. However, as the
solution progresses both HMX and binder burn up becoming pure gaseous products. These
plots show that binder burns faster than HMX.

Figures 4.52(a) through 4.55(d) show material response to the C5 loading condition.
Similar to C] the pressure Contour shown on Figure 4.52(a) shows the material hetero-
geneity. Peak pressures reach 50G Pa, however, for temperature the response for the initial
displayed time step is near 3000/K and is uniformly distributed. Figure 4.54(a) through

4.55(d) show species mass fractions of the material. Unlike the previous loading condition
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HMX and binder are fully burnt up at the initial displayed time step. For the B, loading
condition contour plots are shown on 4.56(a) through 4.59(d). Contour plots of pressure
reach values near 50G Pa and display non-uniform pressure distributions. Similar to the
previous condition the binary loading contour for temperature has a uniform distribution
and the mass fraction content is fully reacted within the shock region for both HMX and
binder.

Finally, the R,, loading condition is considered on 4.60(a) through 4.63(d). Both con-
tour plots for pressure and temperature shown on Figures 4.60(a) through 4.61(d) respec-
tively. Each show material heterogeneity as both display non-uniform pressure and tem-
perature distributions with peak values again near 50G Pa and 3000/  within the shocked
region. Similar to the first loading case, HMX 1is present during the first displayed time
step and is fully burnt up as a solution progresses. Solid binder, on the other hand is not
present in the initial displayed time step and is fully burnt up. These results are studied in

an average sense in the following plots.
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.48: Pressure contours at initial shock loading of 7 = 0.75 heterogeneous material

system at various time steps under C'; loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.49: Temperature contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under C'; loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.50: Solid HMX mass fraction contours at initial shock loading of n = 0.75 het-

erogeneous material system at various time steps under C'; loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.51: Solid binder contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under C loading condition.
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Figure 4.52: Pressure contours at initial shock loading of = 0.75 heterogeneous material

system at various time steps under C5 loading condition

(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.53: Temperature contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under Cs loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.54: Solid HMX mass fraction contours at initial shock loading of n = 0.75 het-

erogeneous material system at various time steps under C loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.55: Solid binder contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under C5 loading condition.

(a) t= 0.0025 (b) t=0.0050 () t= 0.0075 () t= 0.0100

Figure 4.56: Pressure contours at initial shock loading of = 0.75 heterogeneous material

system at various time steps under By loading condition
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Figure 4.57: Temperature contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under By loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.58: Solid HMX mass fraction contours at initial shock loading of n = 0.75 het-

erogeneous material system at various time steps under By loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.59: Solid binder contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under By loading condition.

(a) t= 0.0025 (b) t=0.0050 () t= 0.0075 () t= 0.0100

Figure 4.60: Pressure contours at initial shock loading of n = 0.75 heterogeneous material

system at various time steps under ), loading condition

(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.61: Temperature contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under R,; loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.62: Solid HMX mass fraction contours at initial shock loading of n = 0.75 het-

erogeneous material system at various time steps under R, loading condition

(a) t=0.0025 (b) t=0.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.63: Solid binder contours at initial shock loading of n = 0.75 heterogeneous

material system at various time steps under 2, loading condition.

Figures 4.64(a) and 4.64(b) show the average pressure and average temperature as a
function of time for each loading condition. Average responses were taken by integrat-
ing over the previous plots and those shown in Appendix E.1. Figure 4.64(a) shows the
pressure response of the n = (.75 material system to all loading conditions. The first ob-
servation is that three of the loading conditions follow a similar trend, while the R,,, loading
condition deviates from the other trends. Although the material system initiated with the
same average pressure and average temperature, the response is different for varying load-
ing conditions. All curves initiate from the shock pressure of P, = 5.0GPa. As time
increases all trends show pressure increasing. The loading conditions C; and B, initially
decrease in pressure, going below F,, = 5.0GPa. As time increases pressure recovers
and reaches a final value near F,,, = 8.0G Pa. These trends align due to their similar hot
volume percentages (V},.;/V") described in the previous section. This shows that percent-
age of hot volume can be an indicator for how the material may perform. The C) loading
condition does not decrease in pressure initially, however, the overall trend is similar to that
of the C; in B, loading conditions. Since there is no initial offset pressure, the C'; loading
condition is able to achieve a higher maximum pressure near F,,, = 9.0G Pa. Finally, the

R,, loading condition is observed to have a vastly different trend than the previous loading
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conditions. In fact, the trend is opposite in that it is concave rather than convex. The rate
at which temperature increases is much higher than the previously discussed loading con-
ditions. Pressures above F,,, = 10.0G Pa are reached within ¢ = 0.05us, while the other
loading conditions take the duration of simulation to reach values near this. This shows
that loading conditions play a significant role in material responses. Although hot spot in-
teractions were considered in the 5, loading condition it is apparent that multiple hot spot
interactions provide a more reactive environment for the material.

Next Figure 4.64(b) shows temperature as a function of time. Again the C, C and B,
loading conditions follow a similar trend while the R,, condition is vastly different. The
C5 and B, loading condition are aligned through the duration of the simulation. The C}
condition is slightly higher than these loading conditions and achieves a higher tempera-
ture at the end of the simulation. However, the slopes of these lines, or the rate at which
temperature increases, are similar. It is also observed that the percentage of hot volume
does not have a significant effect on these temperature profiles as they do with the pressure
profiles. Finally, the random loading condition is considered. The rate at which tempera-
ture increases is significantly higher than the other loading conditions. The material system
reaches on average temperature values near 7g,, = 2000K by ¢t = 0.05us. Again, this
shows that loading conditions where multiple hot spot interactions occur are much more
suitable for rapid energy release and initiation.

To complete this section, the solid mass fractions of HMX and binder are investigated.
Figures 4.65(a)-4.65(b) show average mass fractions as a function of time for all loading
conditions. Solid HMX mass fraction is shown on figure4.65(a). All curves initiate from
the initial mass fraction of = 0.75. As the solution progressives mass fraction decreases in
all cases. Loading conditions C5 and B, perform similarly, where the rate of consumption
of HMX is the smallest. The (' loading condition follows a similar trend however the
rate of consumption of HMX is greater. The R, case rapidly consumes HMX and has
solid mass fractions below 30%. All other cases never fall below 40%. Again, this shows
that multiple hot spot interactions are highly reactive. Figure 4.65(b) shows mass fraction
of binder as a function of time. All trends initiate from 1 — 1 = 0.25 binder content.
As the solution progresses the binder is consumed with the loading conditions C5 and
B, consuming the least amount of binder for the duration of the simulation. Again C}
follows a similar trend but more binder is consumed. The final loading condition R,,
shows a high consumption rate of average binder mass fraction. Binder fraction values
reach below 9% while other simulations never fall below 13%. Again, these plots show
that hot volume percentage may indicate material behavior however only for certain loading

cases. Although all loading conditions started with the same average pressure and average
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temperature, loading cases for heterogeneous material are a significant factor in responses

especially where multiple hot spot interactions occur.
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Figure 4.64: Average pressure and temperature of the 7 = 0.75 material system as a func-

tion of time for each loading condition. Material response is different for varying loading

conditions.
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Figure 4.65: Average mass fractions of the 7 = 0.75 material system as a function of time

for each loading condition. Material response is different for varying loading conditions.
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4.3.2 Numerical Results: n = 0.85

Figure 4.66: Computational representation of heterogeneous n = 0.85 material system

where red represents HMX and blue represents binder.

In this section DNS results are presented for shock loading on the heterogeneous material
system with a HMX mass fraction of = 0.85. Contour plots of pressure, temperature,
HMX mass fraction and binder fraction are shown on Figures 4.67(a)-4.82(d). These fig-
ures show the material response within ¢ = 0.01us for all loading conditions. Contour
plots for the remaining duration of the simulation are found in Appendix E.2.

Figures 4.67(a) through 4.68(d) show pressure and temperature contours for the C}
loading condition. Like the previous case, material heterogeneity is displayed through non-
uniform pressure and temperature distributions. Hot spots form in both plots with values
reaching 50G Pa and 3000K. Figures 4.69(a) through 4.70(d) show solid mass fractions
for HMX and binder. At the initial displayed time step, both HMX and binder are present
in the shocked region. At the following time step, only a mixture of solid HMX in the
shocked region is present while binder is fully burnt up. As the solution progresses HMX
continues to be consumed.

Figures 4.71(a) through 4.74(d) show the C5 loading condition. Pressure contours
shown on 4.71(a) reach values near or above 50G Pa again. The pressure contour shows
a non uniform distribution however the temperature contour, with values above 3000 K, is
uniform. Unlike the previous case the mass fractions for HMX and solid are fully con-

verted to gaseous product by the initial displayed time step as shown on figures 4.73(a) and
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4.74(a). Non-uniform pressure distributions are on display for the B, loading condition
on Figures 4.75(a) through 4.75(d), however uniform temperature distributions are shown
on Figures 4.76(a) through 4.76(d). For the binary loading condition HMX and binder are
fully converted to gaseous product within the shocked region by the initial displayed time
step, as shown on Figures 4.77(a) through 4.78(d). The last loading condition, I?,, is shown
on Figures 4.79(a) through 4.82(d). Again the multiple hots pots produce non uniform dis-
tributions, and pressure and temperature values reach 50G Pa and 3000K. For the initial
displayed time step a mixture of solid HMX is still present however binder is fully reacted
within the multiple shocked regions. Average values for pressure, temperature and mass

fraction are calculated from these plots and from the plots shown Appendix E.2.
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Figure 4.67: Pressure contours at initial shock loading of 7 = 0.85 heterogeneous material

system at various time steps under C'; loading condition

(a) t= 0.0025 (b) t= 0.0050 () t= 0.0075 () t= 0.0100

Figure 4.68: Temperature contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under C'; loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.69: Solid HMX mass fraction contours at initial shock loading of n = 0.85 het-

erogeneous material system at various time steps under C'; loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.70: Solid binder contours at initial shock loading of n = 0.85 heterogeneous

05 01 4045 05

material system at various time steps under C loading condition.
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Figure 4.71: Pressure contours at initial shock loading of = 0.85 heterogeneous material

system at various time steps under C5 loading condition

(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.72: Temperature contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under Cs loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.73: Solid HMX mass fraction contours at initial shock loading of n = 0.85 het-

erogeneous material system at various time steps under C loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.74: Solid binder contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under C5 loading condition.
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Figure 4.75: Pressure contours at initial shock loading of = 0.85 heterogeneous material

system at various time steps under By loading condition

(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.76: Temperature contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under By loading condition
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(a) t=0.0025 (b) t=0.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.77: Solid HMX mass fraction contours at initial shock loading of n = 0.85 het-

erogeneous material system at various time steps under By loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.78: Solid binder contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under By loading condition.
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Figure 4.79: Pressure contours at initial shock loading of = 0.85 heterogeneous material

system at various time steps under ), loading condition

(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.80: Temperature contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under R,; loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.81: Solid HMX mass fraction contours at initial shock loading of n = 0.85 het-

erogeneous material system at various time steps under R, loading condition

(a) t=0.0025 (b) t=0.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.82: Solid binder contours at initial shock loading of n = 0.85 heterogeneous

material system at various time steps under 2, loading condition.

Average values for pressure and temperature are shown for the n = 0.85 heterogeneous
material system on Figures 4.83(a) and 4.83(b). Figure 4.83(a) shows pressure as a func-
tion of time. All pressures initiate from the initial average pressure of F,,, = 5.0G Pa. As
the solution progresses the C, and B, loading conditions decrease in pressure. The pres-
sure value recovers and begins to increase with time. Again these loading conditions align
due to their percentages of hot volume. Unlike the previous loading cases the C'; condition
does not decrease in pressure and increases initially. As the solution progresses this load-
ing condition reaches average values near F,, = 12.0G Pa, while the previous loading
conditions reach F,,, = 10.0G'Pa. The rates at which pressure increases for the C, C
and B, loading conditions are similar. The random loading condition, R, is significantly
different than the previous three loading conditions. The rate at which pressure increases is
greater than C'y, Cy and B,,. Near a value of ¢ = 0.05us the R,, loading condition reaches
P,,; = 12.0GPa. It takes an additional 0.1us for the C loading condition to achieve
the same average value. Again this shows that loading conditions with multiple hot spot
interactions provide significantly higher pressure increases.

Figure 4.83(b) shows average temperature as a function of time for all loading con-

ditions. All curves initiate from the initial temperature of 500K . The rate of increase is
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similar for the C;, C5 and B, loading conditions. However, the final temperature output
achieved by the C; and B,, systems are less than that of the C'; system. Again, percentages
of hot volume may indicate material response for certain loading conditions. In the case
of the temperature profile disparities of hot volume between the C, C; and B, loading
conditions aren’t as significant as with the pressure profile. The rate at which the temper-
ature increases for the R,,, condition is significantly higher than the previous three loading
conditions. The values achieved by this loading condition are never met by the other three
conditions. This shows that loading conditions with multiple hot spot interactions play a
role in the average performance for heterogeneous materials.

Finally Figures 4.84(a) and 4.84(b) show the rate of consumption for solid HMX and
solid binder. Figure 4.84(a) shows solid mass fraction of HMX as a function of time where
all curves initiate from the initial mass fraction of 85%. As time increases solid binder
is consumed in all cases with the total amount of consumption for the R,, case being the
fastest. For a total solid mass fraction near 30% the C; condition requires a duration near
t = 0.15us. However the same solid HMX content is achieved with the R,, condition
within ¢ = 0.05us. The C, and B, conditions never achieve a mass fraction below 40%
in the given time. Figure 4.84(b) shows similar trends for the consumption of binder. All

curves generate from the initial binder fraction of 15%.

(a) Pressure (b) Temperature

Figure 4.83: Average pressure and temperature of the 7 = 0.85 material system as a func-
tion of time for each loading condition. Material response is different for varying loading

conditions.
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Figure 4.84: Average mass fractions of the 7 = 0.85 material system as a function of time

for each loading condition. Material response is different for varying loading conditions.

4.3.3 Numerical Results: 7 = 0.95

Figure 4.85: Computational representation of heterogeneous n = 0.95 material system

where red represents HMX and blue represents binder.

In this section DNS results are presented for shock loading on the heterogeneous material
system with a HMX mass fraction of 7 = 0.95. Contour plots of pressure, temperature,

HMX mass fraction and binder fraction are shown on Figures 4.86(a)-4.101(d). These
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figures show the material response within ¢ = 0.01us for all loading conditions. Contour
plots for the remaining duration of the simulation are found in Appendix E.3.

Figures 4.86(a) through 4.87(d) show contour plots for pressure and temperature for the
(' loading condition. Although the material response is non uniform the values are not as
varied as with the previous material systems. This is due to the fact that HMX content is
dominating the material system, so the medium is nearly homogeneous. Pressure values
reach 45G Pa while temperature values exceed 2700 K near the shock front. Figures 4.88(a)
through 4.89(d) show the HMX and binder content of the material system. Initially both
HMX and binder are present within the shocked region in the displayed time step. As
time increases the HMX and binder are consumed, however binder is consumed at a much
faster rate than the HMX. Figures 4.90(a) through 4.93(d) show the C'; loading condition.
Both pressure and temperature are uniformly distributed unlike the previous two material
systems. Both HMX and binder fractions, shown on Figures 4.92(a) through 4.93(d), are
fully converted within the initial displayed time step. Pressure and temperature profiles
for the B, loading condition shown on Figures 4.94(a) through 4.95(d), again, display a
uniform distribution with values reaching 50G Pa and 3000K. Similar to the previous
loading condition HMX and binder are fully reacted within the shocked region at the initial
displayed time. Finally the R,, loading condition is displayed on Figures 4.98(a) through
4.101(d). Material heterogeneity is shown through pressure and temperature profiles. Hot
spots are generated as non-uniform pressure and temperature distributions are displayed.
HMX and binder mass fractions are shown on the final two plots where solid HMX is
present on the initial plotted time step, and binder is fully consumed within the shock

region.

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.86: Pressure contours at initial shock loading of 77 = 0.95 heterogeneous material

system at various time steps under C'; loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.87: Temperature contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under C'; loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.88: Solid HMX mass fraction contours at initial shock loading of n = 0.95 het-

erogeneous material system at various time steps under C loading condition

(a) t= 0.0025 (b) t= 0.0050 () t= 0.0075 () t= 0.0100

Figure 4.89: Solid binder contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under C'; loading condition.

(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.90: Pressure contours at initial shock loading of = 0.95 heterogeneous material

system at various time steps under ', loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.91: Temperature contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under Cs loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.92: Solid HMX mass fraction contours at initial shock loading of n = 0.95 het-

erogeneous material system at various time steps under C5 loading condition

(a) t= 0.0025 (b) t= 0.0050 () t= 0.0075 () t= 0.0100

Figure 4.93: Solid binder contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under C loading condition.
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Figure 4.94: Pressure contours at initial shock loading of = 0.95 heterogeneous material

system at various time steps under By loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.95: Temperature contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under By loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.96: Solid HMX mass fraction contours at initial shock loading of n = 0.95 het-

erogeneous material system at various time steps under By loading condition

(a) t= 0.0025 (b) t= 0.0050 () t= 0.0075 () t= 0.0100

Figure 4.97: Solid binder contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under By loading condition.

(a) t=0.0025 (b) t=0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.98: Pressure contours at initial shock loading of 7 = 0.95 heterogeneous material

system at various time steps under R, loading condition
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(a) t=0.0025 (b) t= 0.0050 (c) t=0.0075 (d) t= 0.0100

Figure 4.99: Temperature contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under R,; loading condition

(a) t=0.0025 (b) t=0.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.100: Solid HMX mass fraction contours at initial shock loading of n = 0.95

heterogeneous material system at various time steps under R, loading condition

(a) t=0.0025 (b) t=10.0050 (c) t=0.0075 (d) t=0.0100

Figure 4.101: Solid binder contours at initial shock loading of n = 0.95 heterogeneous

material system at various time steps under 7, loading condition.

Average values for pressure temperature and mass fractions are reported on a Figures
4.102(a) through 4.103(b). These averages were calculated from the previous plots and
the plots shown in Appendix E.3. Figure 4.102(a) shows pressure as a function of time.
All curves initiate from the initial average pressure of Py, = 5.0G Pa. As time increases
pressure decreases for the (s and B, loading condition. These loading conditions align
throughout the duration of the simulation. The 'y loading condition achieves higher pres-
sure values than those observed by the previous two loading conditions. However the rates

at which pressure increases for these loading conditions are similar. Again, the random
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loading condition is significantly different than the other pressure profiles. The rate at
which pressure increases is significantly greater than the previous loading conditions. An
average value near P,,, = 13.0G'Pa is achieved through the R,, loading condition by
t = 0.05us. The € loading condition takes ¢ = 0.15us to achieve this value and the Cs
and B, loading conditions never reach this value within the simulation duration.

Temperature profiles are shown on Figure 4.102(b) for all loading conditions, where
each curve initiates from an average temperature of 7;,, = 500K. As the solution pro-
gresses (o and B, loading condition align. The C; loading condition follows a similar
trend but reaches greater temperature values than the previous two conditions. Again the
rates of change in temperature are similar for these three conditions. The R,,, loading con-
dition achieves higher temperatures at a faster rate than the three previous conditions. The
peak temperature achieved by the random loading condition is never met by the C5 or B,
condition and takes a significantly longer time for the C'; loading condition to reach this
value.

Finally the rates at which solid HMX and binder are consumed are studied on Figures
4.103(a) and 4.103(b). 4.103(a) shows HMX content initiating from 95%. As time in-
creases HMX is consumed and is converted to gaseous product. The lowest values achieved
during this study are by the C; and B,, loading conditions. The rate at which 4 M X is con-
sumed for these conditions is similar to the C'; loading condition while the random loading
condition consumes HMX at a much faster rate. The same trends are seen for binder con-
sumption on Figure 4.103(b). Similar conclusions are drawn from those in the previous
studies where loading conditions with similar hot volume content may behave similarly
and loading conditions with multiple hot spot interactions produce the highest values of

pressure and temperature.
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Figure 4.102: Average pressure and temperature of the n = 0.95 material system as a
function of time for each loading condition. Material response is different for varying
loading conditions.
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Figure 4.103: Average mass fraction of the = 0.95 material system as a function of time

for each loading condition. Material response is different for varying loading conditions.

4.3.4 Numerical Results: Comparison

In this section, all material systems are compared including the continuum model. The con-
tinuum uses global reaction rates and the equation of State for PBX 9501. Reaction rates
are shown on Table 3.4, from reference [106]. Pressure temperature and solid mass frac-
tions are shown for all material systems for the C'; loading condition on Figures 4.104(a),

4.104(b) and 4.105. Figure 4.104(a) shows average pressure as a function of time. The
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first observation is that all material systems follow the same trend. All trends initiate from
the initial average pressure of F,,, = 5.0GPa. Here the material system with 95% HMX
produces the highest average pressure output, while the continuum produces the least. The
continuum material system never achieves the pressure values obtained by the material sys-
tems that are heterogeneous. This shows that explicitly modeling the microstructure affects
the average pressure output. The continuum performs most similarly to the heterogeneous
material with the most binder content, 7 = 0.75. These two materials systems required the
most energy per unit volume to achieve the desired average pressure of P,,, = 5.0G Pa;
however, they achieved the lowest pressure values. In other words, the continuum and the
1 = 0.75 material systems produce the least return in energy investment. Among heteroge-
neous material all systems follow the same trends. Increasing the HMX content increases
the pressure output for the given duration. Increasing HMX in the composite, or decreasing
binder content, increases sensitivity in terms of average pressure.

Figure 4.104(b) shows temperature profiles for the C'; loading condition. Here the plots
originate from the average temperature of 7;,, = 500K. The continuum produces the
least amount of average temperature output similar to the pressure profile. This shows that
incorporating microstructural information leads to higher temperature values on average.
Heterogeneous material systems perform similarly during the initial stages of the simu-
lation however as time progresses these trends begin to diverge with n = 0.75 acting as
the lower bound and n = 0.95 the upper. Increasing HMX mass fraction in the compos-
ite increases the sensitivity of the material in an average sense. Also observed is that the
n = 0.85 and n = 0.95 material systems are more tightly bound then the = 0.75 and
1 = 0.85 material systems showing the effects of more binder content.

Figure 4.105 shows the solid mass fraction of the C; loading condition for all material
systems. The continuum explicitly solves the burn fraction transport equation in the Euler
equations. The solid mass fractions for the composite materials are taken by summing the
solid species of HMX in binder. Initially all materials consist of a pure solid composition.
As time increases each material begins to react. Again for the heterogeneous materials the
75% and 95% HMX systems act as bounds. Higher binder content material shows smaller
chemical reaction. The continuum model reacts the least within the given duration while the
highest HMX content material reacts the most with close to 25% of the material converted
to a pure gas. From these trends it is clear that microstructure plays an important role in
average output for different quantities and that the continuum model under predicts the
values when compared to the heterogeneous materials. These results also demonstrate the
effect of binder content on average responses with composites with higher HMX fractions

generating higher pressure, temperature and faster chemical reaction.
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Figures 4.106(a), 4.106(a) and 4.105 show the C; loading condition for all material
systems. Figure 4.106(a) shows pressure as a function of time. Initially the heterogeneous
materials decrease from the initial average pressure. As time increases these values recover
and begin to increase with time. The divergence between these curves begins to increase as
a simulation continues with the n = 0.95 material system producing an upper bound of av-
erage pressure and the 7 = (.75 material producing the lower bound. Again higher average
pressure is achieved with materials with higher HMX content. During the simulation the
n = 0.95 material system reaches a pressure near F,,, = 12G Pa while the n = 0.75 mate-
rial system reaches P,,, = 8G Pa. Initially the continuum system does not exhibit the same
characteristics as the heterogeneous material systems; pressure only slightly decreases ini-
tially. As time progresses the continuum model crosses the heterogeneous materials and
for the duration of ¢ = 0.1us falls within the values of the heterogeneous material systems.
In the previous loading condition these curves never achieved similar values. However the
material system diverges after ¢ = 0.1us. Material systems that incorporate microstructural
information show higher pressure values on average than those that do not for this loading
condition.

Figure 4.106(a) shows average temperature for C5 loading condition. Unlike the pre-
vious loading condition temperatures are indistinguishable within the first ¢ = 0.5us of
the simulation. It is assumed that because the loading condition requires a higher average
per unit volume input than the previous case the, material responses are similar, as the ef-
fects of the microstructure do not have time to influence the materials response. However
the effects of the microstructure can be seen as the simulation continues. Here the contin-
uum method acts as a lower bound performing similarly to the heterogeneous material with
the highest binder content. The composite with the most HMX content acts as the upper
bound. It is also observed that the continuum system has a near-constant increase in the
rate of temperature while the rate for the heterogeneous material systems are increasing.
Heterogeneous material systems reach values near 7,,, = 1900/ while the continuum
system reaches a value near 7,,, = 1900K.

Mass fractions of solid material are investigated on Figure 4.105. Here the HMX heavy
composite is much more volatile than all other material systems with over 40% of the
material reacting and becoming a gaseous product. The continuum reaches values near
75%. Again this demonstrates the drastic effect of including microstructural information in
reactive burn models. Similar to the temperature profiles initially the rates at which solid
material is consumed are indistinguishable and as a solution progresses these trends begin
to diverge. The rate at which the continuum model changes is near-constant while the rate

for the heterogeneous material systems increase with time.
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Next the binary system is considered on Figures 4.108(a), 4.108(a) and 4.109. Due to
their similar hot volume fractions this loading condition performs similarly to the previous
(s loading condition. Therefore the same conclusions can be drawn. However for the R,,
loading condition shown on Figures 4.110(a), 4.110(b) and 4.111 the same conclusions
cannot be drawn when comparing to the similar hot volume fraction from Cf.

Figure 4.110(a) shows pressure as a function of time. All material systems follow simi-
lar trends where initially the pressure decreases with the greatest pressure decrease coming
from the continuum system. Similar to the previous loading conditions the HMX heavy
composite produces the highest average pressures with the continuum approach producing
the lowest. However unlike the other loading conditions the continuum approach and the
heterogeneous material with the largest binder content (n = 0.75) converge. This shows
that for this loading condition the continuum model can achieve the same pressure values
as a model that explicitly incorporates microstructural information. Figure 4.110(b) shows
temperature as a function of time. Initially all heterogeneous material systems align for the
first ¢ = 0.02pus of the simulation. After this point in time, the effects of the microstruc-
ture influence the trends with n = 0.75 and n = 0.95 material systems acting as the lower
and upper bounds. The continuum model produces less temperature on average than the
heterogeneous models for the majority of the duration of the simulation. However the gap
between these values begins to close as time increases. Again the continuum model is able
to achieve values near the heterogeneous model for this loading condition. Finally mass
fractions for this loading conditions are studied on Figure 4.111. Initially all heteroge-
neous material systems align. Near the same point in time, the effects of the microstructure
take over and these trends begin to deviate with the n = 0.95 system becoming the most
volatile. Similar to the previously studied loading conditions, the continuum model con-
sumes the least amount of solid mass fraction. This shows that the continuum model on
average can produce similar pressure and temperature profiles to those of heterogeneous
material systems while being the least reactive. These plots show that microstructural in-
formation plays a role in average material performance for varying loading conditions. For
certain loading conditions the continuum model is vastly different than the heterogeneous
material systems and may never achieve pressure, temperature and burn fractions as those
for heterogeneous material systems. However, for loading conditions with multiple hot spot
interactions it is possible. These trends also show that increasing binder content decreases
the sensitivity of each heterogeneous material. Material systems that require higher input
energy per unit volume have the lowest performance in terms of pressure and temperature
output showing a higher return on energy investment for HMX heavy content materials.

This study showed that material systems with the same average initial conditions behave
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differently depending on how the material is loaded. These results have implications for

material by design.
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time for R,, loading condition. Response varies for each material system.

To close out this Chapter, performance and safety are investigated for each material.
Figures 4.112(a) and 4.112(b) show pressure and temperature as a function of initial av-
erage energy per unit volume. Here, the pressure and temperature values reported are for
t = 0.16us for the Cy, C5 and B, loading conditions. For the much more volatile R,,

loading condition the values reported are for ¢ = 0.05us. These plots give a “snap shot”
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of material performance, measured in pressure and temperature, and safety, measured in
input average energy per unit volume. Note, there is not distinction between loading con-
ditions on these plots. The ideal explosive would be safe (require less input energy) and
high performing (high pressure and temperature values). In general these plots show that
performance and safety are at competition with each other, where the relationship is linear.
Safer materials require higher input energy per unit volume. Higher performing materials
produce larger pressure and temperature values at the reported time. Of the material sys-
tems studied, it is observed that the HMX heavy materials have better performance than
the materials with more binder content. However, these high performing material systems
require much less initial energy per unit volume to reach these values, indicating that they
are less safe. On the other side of the spectrum are materials with higher binder content.
These material systems (1 = 0.75) require much more initial input energy per unit volume,
indicating that accidental detonation is much less likely to occur. However their output

pressures and temperatures are not as high as the HMX heavy materials.
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Figure 4.112: “Snap shot” of material performance, measured in pressure and temperature,
and safety, measured in input average energy per unit volume for all material systems.

Performance and safety are at competition.

4.4 Summary

This chapter presented Direct Numerical Simulation (DNS) of shock loading of polymer
bonded explosives. Material heterogeneities were explicitly modeled through synthetic
microstructures generated using a Markov Random Field approach. Synthetic microstruc-

tures were generated with varying HMX/binder content. Initiation of these microstructures
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and a continuum were studied for four different loading conditions. Results showed that
material systems with the same average initial conditions behave differently depending on
how the material is loaded. Material systems with higher binder content required more
energy per unit volume to achieve the same average pressures and temperatures reached
by other heterogeneous material systems. It was also observed that the continuum model
performed similarly to higher binder content material systems upon initiation. Numerical
results showed that hot volume percentage may indicate material behavior however only
for certain loading cases. Although all loading conditions started with the same average
pressure and average temperature, loading cases for heterogeneous material are a signifi-
cant factor in responses especially where multiple hot spot interactions occur. Hot volume
percentages do not correlate to performance. For certain loading conditions the continuum
model was vastly different than the heterogeneous material systems and never achieved
pressure, temperature and burn fractions values like those of the heterogeneous material
systems. However, for loading conditions with multiple hot spot interactions it was pos-
sible. These results also showed that increasing binder content decreases the sensitivity
of the heterogeneous material. Material systems that require higher input energy per unit
volume have the lowest performance in terms of pressure and temperature output showing
a higher return on energy investment for HMX heavy content materials. This shows the

material performance is at competition with material safety.
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CHAPTER 5

First-Order Multiscale Modeling

This chapter presents First-Order Multiscale modeling of shock loading of polymer bonded
explosives. These methods explicitly model material heterogeneities in the average sense.
Section 5.1 presents the multiscale approach used where varying resolutions of the mi-
crostructure are considered. Section 5.2 presents numerical results for all material systems
under various loading conditions. These results are compared to results obtained using
the Direct Numerical Simulation approach discussed in Chapter 4. The Chapter closes by
comparing performance versus safety results for all methodologies, including the contin-

uum approach. Finally, computational cost for each methodology is investigated.

5.1 Multiscale Approach

The multiscale linking methodology considered here is called “computational homogeniza-
tion” [97,98, 100, 101]. The approach is general and allows one to embed micro-scale sim-
ulations into continuum simulations. The idea of computational homogenization is to start
with a continuum problem and find the missing information in the form of material proper-
ties by performing local simulations of the microscale models. Properties at a point in the
coarse-scale(continuum) can be obtained from a fine-scale unit cell (with finite volume).
In this work, the continuum fields are passed to the micro-scale and uniformly distributed.
Continuum fluxes and properties (at all integration points) are computed from the underly-
ing microstructural sub-problem using averaging schemes. The term‘First-Order” signifies
that volume averages are used to measure the effects of the microstructure, as opposed to
“Full-Order” where equilibrium is enforced on the micro-scale. The approach used in this
work allows for straightforward incorporation of physical and geometrical nonlinearities
in material response and is based on the direct extraction of the constitutive behavior from
the heterogeneity of a material. This provides significantly faster computational time than

a direct numerical simulation.
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To further illustrate the differences between the previous methodologies considered in
this work, all approaches are graphically depicted on Figures 5.1(a) -5.1(c). Here the finite
element mesh is represented by the red grid over the domain. Figure 5.1(a) depicts the
continuum approach described in Chapter 3. Continuum methods are most common in en-
gineer applications as they require the lease amount of fidelity. This is due to the fact that no
microstructural information included as homogenized material properties are considered.
Within each finite element, material properties are uniform. Furthermore, within the entire
domain material properties are uniform. Figure 5.1(b) depicts the Direct Numerical Sim-
ulation (DNS) approach described in Chapter 4. DNS requires the highest fidelity among
presented methods and is computationally intractable at engineering levels. High fidelity
is required as the microstructure is explicitly modeled. This method is assumed to be the
most accurate as it takes the full effects of the microstructure in to account. Within each
finite element, and over the entire domain, material properties vary. Figure 5.1(c) shows
the multiscale approach considered in this chapter. In general, the First-Order model at-
tempts to capture the “best of both worlds”; the computational efficiency of the continuum
approach and the microstructural effects of DNS. Microstructural effects are found by tak-
ing volume averages of quantities at each integration point within the finite element mesh.
However, unlike DNS, a homogenized transport equation for burn fraction()\), or a global

rate, is considered, and each species is not explicitly modeled.

(a) Continuum (b) DNS (¢) First-Order

Figure 5.1: Schematic of methodologies considered in this work. Continuum methods(a)
require the least amount of fidelity and use modified material constants and treat HMX
and binder as one material. Direct Numerical Simulation(b) requires the highest amount
of fidelity and explicitly models the microstructure. First-Order multiscaling(c) approach

uses volume averaging schemes to incorporate micro-scale effects.

For First-Order Multiscaling, the Euler Equations 2.18 are numerically solved using
the Taylor-Galerkin Scheme described in Chapter 2.2. The microstructure is not explic-
itly modeled and two species exist: solid unreacted explosive and fully reacted gaseous

products. Here, A represents the fractions of gaseous product with in the cell or element.
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However, microstructural effects are incorporated by taking volume averages of pressure

and temperature. The 2D reactive Euler equations for the multiscale model are given as

[ p ] 2 [ v ]
pu pu? + P puU
U= pv |, F = puv ; Fr=| p?+P |,
pE (pE + P)u (pE + P)v
| PN 2. | pvA
and S = 0 (5.1)
gpA
L pA
where .
P== | Pav 5.2
V /V (52)

the volume average of pressure. The global reaction rate is a function of local temperature

where subscripts denote the material; thus,
. 1 1
A== / (1= N g Zye Em/ETa qy 4 — / (1= \)pZpe Fr/BT5 gV, (5.3)
Vv V Iy

Averages are taken by considering equations of state for solid HMX, fully reacted
gaseous HMX, solid polymeric binder and gaseous polymeric binder. Weights for these
averages are determined from the resolution parameter ¢, where each mass fraction 7 has
a corresponding resolution parameter. Essentially, the parameter ¢ further discretizes the
microstructure by ¢ X ¢. As an example take the synthetic microstructure with the mass
fraction of n = 0.75 from Figure 4.7(a). The microstructure, as represented here has a
resolution parameter of ¢ = 640, the number of pixels across the axis. This is shown Fig-
ure 5.2(a) and is the microstructure used in DNS simulations in the previous chapter. If
the parameter is decreased, this coarsens the resolution of the microstructure. The binary
representation is lost and material properties are weighted on the “darkness” of each cell,
where black represents pure HMX(100%) and white represents pure binder(0%). Shades
of grey lie in between these two extremes. Figures 5.2(b), 5.2(c) and 5.2(d) show the

microstructure at varying ¢ levels (shown in caption). By reducing the resolution parame-
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ter, material heterogeneity decreases and the material becomes more uniform; information
from the micro-scale is lost. However, the percentage of HMX content on average remains
the same, n = 0.75. Reducing the parameter further to ¢ = 1 produces a microstructure
where material parameters no longer vary spatially; i.e. a homogenized continuum. It is

important to note that the resolution parameter ¢ has no effect on mesh density.

(a) ¢ =640 (b) » =80 () ¢ =40 (d) =20

Figure 5.2: n = 0.75 synthetic microstructure with varying ¢ levels. Decreasing ¢ reduces

material heterogeneity, however the overall HMX content remains unchanged.

In this work, two main resolution parameters are considered for all material systems and
all loading conditions. The resolution parameter of ¢ = 50 is selected to correspond to an
order of magnitude difference in finite element mesh size (500 x 500 triangular elements),
a common practice in multiscale modeling. The other resolution parameter considered is
the extreme of ¢ = 1, where all material heterogeneity is lost and the material properties
are uniform. The other extreme of ¢ = 500 is considered in special circumstances for
investigative purposes later in the chapter as specified. The computational representation
of the micro-scale information is shown on Figures 5.3(a), 5.3(b) and 5.3(c) for material
systems with overall mass fractions of 75%, 85% and 95% respectively. Note the change in
color map for the n = 0.95 case. Figures for the ¢ = 1 cases are not shown as they would

only be a single color.
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Figure 5.3: Computation representation of microstructural information for various material

systems with resolution parameter ¢ = 50.
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Similar to the shock initiation experiments conducted in Section 4.2, density and total
specific energy is varied to study the effects on average pressure and temperature over the
entire domain. Contour plots for average pressure and average temperature are shown in
Appendix F.1 for all material systems. These results are similar to the previous study and
will not be explored further. The target values of F,,, = 5GPa and Tg,, = 500K are
considered again. Initial density and total specific energy are tabulated in Appendix F.1 for
all material systems. The average energy per unit volume is reported on Figure 5.4 for all
material systems and loading conditions. Note, the results for ¢ = 500 are the same results
reported for DNS on Figure 4.45. These results are similar to the previous study; therefore,

similar conclusions are drawn. In general, percentage of hot volume plays a role. Next,

numerical simulation is performed for all material systems and all loading conditions.

Continuum
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Figure 5.4: Average energy per unit volume of all material systems for each loading condi-
tion where Py, = 5GPa and T,,, = 500K. Resolution parameter ¢ has little no effect on

the initiation.

5.2 First-Order Numerical Results

This section presents numerical results for shock loading on heterogeneous material sys-
tems using First-Order Multiscale approach. A uniform mesh, using 3-noded constant
strain triangle elements, is considered with a mesh density of 2,000 LM /cm. With 5

local degrees of freedom, and 251, 001 nodes the global number of degrees of freedom is
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1,255,005. A constant time step of At = le — 5us for a duration of ¢ = 0.16s. Compu-
tationally, the solution procedure for all results used 8 computational nodes with 16 cores
each for a total number of 128 processes. Computational cost information for each study

will be investigated in the final section.

5.2.1 Numerical Results: n = 0.75, ¢ = 1,50

In this section numerical results from the multiscale approach are presented for shock load-
ing on the heterogeneous material system with a HMX mass fraction of n = 0.75. Here,
resolution parameters of ¢ = 50 and ¢ = 1 are considered. Figures 5.5(a)-5.8(b) show
pressure and temperature profiles for all loading conditions. Averages responses were ob-
tained by integrating pressure and temperature contours over time. For the sake of brevity
contour plots are not shown for each loading condition.

Figures 5.5(a) and 5.5(b) and show pressure and temperature plots for the C loading
condition. These figures show both the DNS approach and the multiscale approach. Figure
5.5(a) a shows average pressure as a function of time. Both methodologies show that the
average pressure response initiates from the average pressure of P,,, = 5GPa. As time
increases the responses begin to diverge. The DNS response produces lower pressure values
than the multiscale approach in general. The difference between the resolution parameters
¢ = 50 and ¢ = 1 is attributed to the loss in material heterogeneity. As the resolution
parameter decreases the material becomes more homogeneous and the response increases.
On the other hand increasing the resolution parameter, ¢ = 50, increases the material
heterogeneity and the results are closer to the DNS approach which explicitly models than
microstructure. Still there is a gap between the ¢ = 50 parameter results and the DNS
results. Again this can be attributed to the lack of heterogeneity in the information fed
into the multiscale approach. This shows that between DNS and the multiscale approach
information from the microstructure is lost since A is the same for both HMX and binder
in First-Order multiscale. Still, both approaches follow similar trends as pressure increases
as a function of time; however, the rates at which pressure increases is significantly higher
for the multiscale approach when compared to the DNS approach. Figure 5.5(b) shows the
temperature profile as a function of time for the C'; loading condition. Both methodologies
originate from the initial average temperature of 7;,, = 500K. As the solution progresses
the methods begin to diverge similar to that of the pressure plot. Again the multiscale
approaches are bound tightly together while the DNS approach is slightly less reactive.
The rates at which temperature increase is higher for the multiscale approach than the DNS

approach.
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Figure 5.6(a) and 5.6(b) show the (5 loading condition for both approaches. Figure
5.6(a) shows pressure as a function of time. Again all methodologies originate from the
P,,; = 5GPa initial loading condition. As time increases pressure decreases initially.
Within the first ¢ = 0.05us all approaches are tightly bound. In fact, the multiscale ap-
proach with the resolution parameter of ¢ = 50 is nearly identical to the DNS approach.
This shows that within this time span the difference in the material heterogeneity is not
as crucial. However after this point the solutions diverge. The multiscale approach in-
creases with pressure at a faster rate than the DNS approach similar to the previous loading
condition. The multiscale approaches are tightly bound. The gap between these two re-
sults shows that the difference in material heterogeneity plays a role in material response.
Again, by increasing the material heterogeneity in the multiscale approach, the solution
approaches the DNS results, while decreasing the resolution parameter makes a material
homogeneous and essentially a homogenized continuum.

Figure 5.6(b) shows temperature profiles as a function of time. All solutions initiate
from the average temperature of 7;,, = 500K. The solutions all follow similar trends
again with temperature increasing as a function of time. All approaches are initially tightly
bound however, unlike pressure, the multiscale approach with the highest resolution does
not line up with the temperature profile of the DNS solution. However both multiscale
approaches are nearly indistinguishable within the first ¢ = 0.1us. After this point the
solutions diverge and the difference between the resolution parameters is small. Here the
DNS approach produces lower temperature values then the multiscale approach.

Next the B, loading condition is considered where Figure 5.7(a) and 5.7(b) show pres-
sure and temperature profiles. Figure 5.7(a) a shows pressure as a function of time for all
approaches. Again, these figures follow similar trends to the previous loading conditions.
However, unlike the previous loading conditions, these pressure profiles do not line up
within the initial £ = 0.05uss. Similar conclusions can be drawn from this plot as the two
previous. Figure 5.7(b) shows temperature as a function of time. These results are simi-
lar to the previous two studies where the multiscale approaches are tightly bound in their
response while the DNS approached diverges and produces smaller values for temperature
within the given duration of the simulation. For both plots it observed that decreasing ma-
terial heterogeneity increases both pressure and temperature profiles while increasing the
resolution parameter, and thus increasing ¢, the solution approaches the DNS results.

Finally the R,, loaning condition is studied on Figures 5.8(a) and 5.8(b). Figure 5.8(a)
shows pressure profiles for both the DNS approach and the multiscale approach. Both
methodologies follow a very similar trend in that pressure increases as a function of time.

Although these solutions do not line up, the solutions are tightly bound and the differ-
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ence between both approaches is less apparent than in the previous studies. Still the DNS
approach produces smaller pressure values than the multiscale approach. The multiscale
Solutions are tightly bound and the difference between the two solutions shows the effect
of including microstructural information. Similarly, the temperature profile shown in figure

5.8(b) mimics this behavior.
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Figure 5.5: Numerical results for First-Order Multiscale approach using resolution param-
eters ¢ = 50 and ¢ = 1. Results for = 0.75 material system under C'; loading conditions

are compared to DNS.
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Figure 5.6: Numerical results for First-Order Multiscale approach using resolution param-
eters ¢ = 50 and ¢ = 1. Results for = 0.75 material system under (' loading conditions

are compared to DNS.
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Figure 5.7: Numerical results for First-Order Multiscale approach using resolution param-
eters ¢ = 50 and ¢ = 1. Results for n = 0.75 material system under B, loading conditions

are compared to DNS.
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Figure 5.8: Numerical results for First-Order Multiscale approach using resolution param-
eters ¢ = 50 and ¢ = 1. Results for n = (.75 material system under R, loading conditions

are compared to DNS.

To further study this phenomenon, contour plots for pressure and temperature are shown
on Figures 5.9(a) through 5.14(d) for the multiscale approaches and DNS. These results
show the R,, loading condition from ¢ = 0.01 — 0.04/s in increments of At,;,; = 0.01pus.
Comparing the pressure contours for DNS and the multiscale approach using a resolution
parameter of ¢ = 50 it is observed that the responses are nearly identical within the first

few plotted time steps. However the difference between both methodologies is apparent in
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the final time step at ¢, = 0.04us. Here both approaches produce peak pressures near
the center of the domain close to 50G Pa. The main differences, though, can be seen in the
cooler regions of the shocked explosive. Note, these regions are where the explosive has
already been shocked, not where the material is still inert. For example by comparing the
region and the upper left corner of the domain we can see that the material responses in
both approaches are different in terms of pressure values. The DNS approach has smaller
pressure values near 10G Pa (shown in blue) while the multiscale approach also has low
pressure values closer to 15G Pa. Similar regions like these exist throughout the explosive
showing that shocked regions within DNS have lower pressure values than those from the
multiscale approach, although peak pressures are similar.

When comparing the pressure contours between the multiscale methods, the difference
is apparent within the first plotted time step. In general the pressure profile with the higher
resolution parameter (¢ = 50) has higher pressure values (green) than the homogenized
continuum(light blue). Comparing the final time step of ¢, = 0.04xs, shown on Fig-
ures 5.10(d) and 5.11(d) it is observed that the peak temperatures are different. While the
multiscale model, with more micro structural information, has peak pressures near 50G Pa
the homogenized continuum has peak pressures closer to 45G'Pa. However on average,
according to Figure 5.8(a), the homogenized continuum has higher pressure values on av-
erage. Again this can be seen by comparing the upper left corner of the domain of both
approaches. It is observed that higher pressure values are located in the homogenized con-
tinuum when compared to the multiscale model with a resolution parameter of ¢ = 50.

Figures 5.12(a) through 5.14(d) show temperature contours for all approaches. Com-
paring all initial plotted time steps it is observed that the pressure profiles are non uniform.
However by decreasing the resolution parameter the contour for the homogenized contin-
uum shows near uniform pressure distributions. Again earlier conclusions show that hot
spot mechanisms contribute to non uniform pressure distributions. Comparing the final
plotted time step for all methods(,,,; = 0.0415) it is observed that the peak pressures are
identical. However the amount of material that contains these peak pressures increases
with decreasing resolution parameter ¢; i.e. the homogenized continuum has more mate-
rial with temperatures near or above 3000/". The DNS approach shows that the average
materials response is less reactive and produces a lower pressure and temperatures than the

multiscale approach.
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Figure 5.9: Pressure contours of 1 = 0.75 heterogeneous material under R,,, loading con-
ditions from ¢t = 0.010 — 0.014us. Results obtained using DNS.
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Figure 5.10: Pressure contours of n = 0.75 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040ps. Results obtained using multiscale method
with ¢ = 50
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Figure 5.11: Pressure contours of n = 0.75 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method
with p =1
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Figure 5.12: Temperature contours of = (.75 heterogeneous material under R, loading
conditions from ¢ = 0.010 — 0.040ps. Results obtained using DNS.
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Figure 5.13: Temperature contours of n = (.75 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method
with ¢ = 50
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Figure 5.14: Temperature contours of n = (.75 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method
with p =1

5.2.2 Numerical Results: n = 0.85, ¢ = 1,50

In this section numerical results from the multiscale approach are presented for shock load-
ing on the heterogeneous material system with a HMX mass fraction of n = 0.85. Here,

resolution parameters of ¢ = 50 and ¢ = 1 are considered. Figures 5.15(a)-5.18(b) show
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pressure and temperature profiles for all loading conditions. Averages responses were ob-
tained by integrating pressure and temperature contours over time. For the sake of brevity
contour plots are not shown for any loading condition.

Figures 5.15(a) and 5.15(b) show pressure and temperature profiles for all for the C
loading condition. In general both plots show that the solutions follow similar trends.
Figure 5.15(a) shows pressure as a function of time. Both methodologies originate from
the initial average pressure of P,,, = 5GPa and increase with time. Compared to the
previous material system, it is observed that both methodologies are more tightly bound. By
increasing HMX content from 75% to 85% this in general reduces material heterogeneity
and explains the similarities in trends between both methodologies. This is also the reason
why the solution parameter does not have as great an effect between the multiscale models.
There is very little difference between the multiscale approaches. In fact when comparing
the temperature profiles, as shown on Figure 5.15(b), the multiscale approaches align. This
shows that for the 85% HMX content material system the microstructural information lost
between ¢ = 50 and ¢ = 1 is negligible. However the differences in heterogeneity of the
material between ¢ = 50 and the DNS approach still plays a role as shown through the
disparities between pressure and temperature profiles. Again the DNS approach produces
lower pressure and temperature values for the given duration of the simulation.

Figures 5.16(a) and 5.16(b) show pressure and temperature profiles for the C'5 load-
ing condition. Similar to the previous study, pressure and temperature profiles follow the
similar trend where the gap between multiscale approaches and the gap between the multi-
scale approach and DNS approach closes due to the higher order of material homogeneity.
The same conclusions are drawn for the 5B, loading conditions shown in figure 5.17(a) and
5.17(b). In general pressure and temperature profiles for the DNS approach produce lower
values than the multiscale approach, while the multiscale approaches align. Finally the
R,, loading condition is studied on Figures 5.18(a) and 5.18(b). The same conclusions can
be drawn from this previous study. Contour plots for this material system are not shown
and will be shown for the following materials system to investigate the loss of material

heterogeneity.
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Figure 5.15: Numerical results for First-Order Multiscale approach using resolution param-
eters ¢ = 50 and ¢ = 1. Results for = 0.85 material system under C'; loading conditions

are compared to DNS.
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Figure 5.16: Numerical results for First-Order Multiscale approach using resolution pa-
rameters ¢ = 50 and ¢ = 1. Results for = 0.85 material system under C; loading

conditions are compared to DNS.
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Figure 5.17: Numerical results for First-Order Multiscale approach using resolution pa-

rameters ¢ = 50 and ¢ = 1. Results for n = 0.85 material system under B, loading

conditions are compared to DNS.
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Figure 5.18: Numerical results for First-Order Multiscale approach using resolution pa-

rameters ¢ = 50 and ¢ = 1. Results for » = 0.85 material system under R, loading

conditions are compared to DNS.

5.2.3 Numerical Results: » = 0.95, ¢ = 1, 50, 500

In this section numerical results from the multiscale approach are presented for shock load-

ing on the heterogeneous material system with a HMX mass fraction of = 0.95. Here,

resolution parameters of ¢ = 50 and ¢ = 1 are considered. Additionally, the resolu-

tion parameters of ¢ = 500 is investigated for the random loading condition R?,,. Figures

157



5.19(a)-5.22(b) show pressure and temperature profiles for all loading conditions. Aver-
ages responses were obtained by integrating pressure and temperature contours over time.
For the sake of brevity contour plots are not shown for each loading condition.

Figures 5.19(a) and 5.19(b) show pressure and temperature profiles for all method-
ologies. Pressure is shown as a function of time in Figure 5.19(a). Here the multiscale
approaches are nearly indistinguishable as they align throughout the duration of the sim-
ulation. Again this is attributed to the lack and heterogeneity in the material, as binder
content is 5% of the material. This also affects the relationship between both approaches as
the homogenized continuum is near the DNS approach. The gap between both methodolo-
gies again can be attributed to the loss of microscale information between both approaches.
The same material behavior can be observed on the temperature plot, shown in Figure
5.19(b), where the multiscale plots are indistinguishable and the gap between the multi-
scale methodologies and DNS has closed. Comparing to the previous material systems, the
75% HMX content system had a larger disparity while the intermediate material system of
85% HMX content closed this gap. This material system further makes these approaches
indistinguishable.

Figure 5.20(a) through 5.21(b) show numerical results for the C and B, loading condi-
tions. Similar conclusions can be drawn from these experiments when compared to the first
loading condition. The First-Order multiscale models are nearly indistinguishable while the
gap between the multiscale approach and the DNS methodology has closed; however a gap
still exists between these two approaches. To further investigate this gap, the resolution
parameter of ¢ = 500 is considered for the R,, loading condition.

These results are shown on Figure 5.22(a) and 5.22(b). Figure 5.22(a) shows the pres-
sure profile as a function of time for all approaches including three multiscale models.
Here, unlike the previous experiments, the homogenized continuum and the multiscale
model with ¢ = 50 do not align. Again this shows that loading conditions play a role in
material response and that material heterogeneity is responsible for the behavior. For the
previous loading conditions the material heterogeneity had no effect. Next, the resolution
parameter is increased by an order of magnitude. By increasing the resolution parameter
to match the size of the finite element mesh, it is observed that the response approaches the
behavior of DNS. The gap between the ¢ = 500 and ¢ = 50 multiscale models is much
smaller than the ¢ = 50 and homogenized continuum(¢ = 1). This shows that increasing
microscale information by an order of magnitude does not always produce the same change
in response; the inclusion of more information from the microscale provides little benefit.
Although the gap between methodologies decreases, the multiscale model is never able to

fully capture the results from the DNS approach. The same behavior can be seen in Figure
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5.22(b) where temperature is plotted as a function of time. A gap still exists between mul-
tiscale models; however increasing the parameter ¢ by an order of magnitude provides no
benefit to the multiscale model as the ¢ = 50 results align with the ¢ = 500 results. Again
the gap between the homogenized continuum and the other multiscale models show that
material heterogeneous plays a role for certain loading conditions.

To further study the material behavior under R, loading, contour plots for each method-
ology, including the ¢ = 500 multiscale model, are shown on Figures 5.23(a) through
5.30(d) for pressure and temperature. Comparing the pressure contours for each approach,
it is observed that the profiles are nearly indistinguishable. The profiles at each time step
are nearly identical between the DNS approach and the multiscale model.

All models produce localized hot regions near the center of the domain where pres-
sure is near 50G Pa. Similarly the temperature contours shown on Figures 5.27(a) through
5.30(d) show similar material behavior for all approaches. Localized hot regions where
temperatures exceed 3000 Kelvin are shown for the final plotted time step ¢,,,: = 0.04ps.
Here, the DNS approach produces less localized hot spots while the multiscale model in
general produces more. The most localized hot regions are produced, again, by the ho-
mogenized continuum. This contributes to the overall material response where the DNS
approach produces lower temperature output on average when compared to the multiscale

methodologies.
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Figure 5.19: Numerical results for First-Order Multiscale approach using resolution param-
eters ¢ = 50 and ¢ = 1. Results for n = 0.95 material system under C'; loading conditions

are compared to DNS.
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Figure 5.20: Numerical results for First-Order Multiscale approach using resolution param-

eters ¢ = 50 and ¢ = 1. Results for n = 0.95 material system under C' loading conditions

are compared to DNS.
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Figure 5.21: Numerical results for First-Order Multiscale approach using resolution param-

eters ¢ = 50 and ¢ = 1. Results for n = 0.95 material system under B, loading conditions

are compared to DNS.
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Figure 5.22: Numerical results for First-Order Multiscale approach using resolution pa-
rameters ¢ = 50 and ¢ = 1. Results for = 0.95 material system under R,, loading

conditions are compared to DNS.
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Figure 5.23: Pressure contours of n = 0.95 heterogeneous material under R,, loading
conditions from £ = 0.010 — 0.040us. Results obtained using DNS.
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Figure 5.24: Pressure contours of n = 0.95 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method
with ¢ = 500
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Figure 5.25: Pressure contours of 7 = 0.95 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method

with ¢ = 50
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Figure 5.26: Pressure contours of 7 = 0.95 heterogeneous material system under R,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method

with p =1
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Figure 5.27: Temperature contours of 7 = 0.95 heterogeneous material under R,, loading
conditions from ¢ = 0.010 — 0.040ps. Results obtained using DNS.
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Figure 5.28: Temperature contours of n = 0.95 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040s. Results obtained using multiscale method
with ¢ = 500
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Figure 5.29: Temperature contours of = 0.95 heterogeneous material system under R,,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method
with ¢ = 50
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Figure 5.30: Temperature contours of 7 = (.95 heterogeneous material system under R,
loading conditions from ¢ = 0.010 — 0.040us. Results obtained using multiscale method
with ¢ =1

5.2.4 Numerical Results: All Material Systems

In this section, results from all material systems, loading conditions and methodologies

are compared. Similar material behavior is observed using the First-Order approach when
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compared to DNS; therefore, similar conclusions are drawn. Loading cases for hetero-
geneous material are a significant factor in responses especially where multiple hot spot
interactions occur. Hot volume percentages do not necessarily correlate to performance.
Increasing binder content decreases the sensitivity of the heterogeneous material. Material
systems that require higher input energy per unit volume have the lowest performance in
terms of pressure and temperature output showing a higher return on energy investment
for HMX heavy content materials. Performance and safety is further investigated for each
material using all methods. This is a continuation of the study performed in Section 4.3.4.
Figures 5.31(a) and 5.31(b) show pressure and temperature as a function of initial aver-
age energy per unit volume. Here, the pressure and temperature values reported are for
t = 0.16us for the C4, Cy and B, loading conditions. For the much more volatile 7,
loading condition the values reported are for ¢ = 0.05us. These plots give a “snap shot” of
material performance, measured in pressure and temperature, and safety, measured in input
average energy per unit volume. Note, there is not distinction between loading conditions
on these plots. Similar to the previous study these plots show that performance and safety
are at competition with each other, where the relationship is linear. HMX heavy materials
have better performance than the materials with more binder content. However, these high
performing material systems require much less initial energy per unit volume to reach these
values, indicating that they are less safe. On the other side of the spectrum are materials
with higher binder content. These material systems(n = 0.75) require much more initial
input energy per unit volume, indicating that accidental detonation is much less likely to
occur. However their output pressures and temperatures are not as high as the HMX heavy
materials. These results corroborate the results shown in the previous study. In general, it
is better to over predict the response than under predict the response due to safety concerns.

To close out this Chapter, computational cost of each methodology is studied. As a
summary, a 2D uniform mesh using 3-noded constant strain triangle elements, was used
with a mesh density of 2,000E LM /cm and 251,001 nodes. A constant time step of
At = le — 5us was used for a duration of ¢t = 0.16us. Computationally, the solution
procedure for all results used 8 computational nodes with 16 cores each for a total number
of 128 processes. The Direct Numerical Simulation (DNS) solution has 8 local degrees of
freedom producing a global number of degrees of freedom of 2, 008, 008. The continuum
solution procedure described in Chapter 3 and the First-Order approach described in this
chapter each have 5 local degrees of freedom. These methodologies have a global number
of degrees of freedom is 1,255, 005. Computational cost is measure in terms of seconds
per iteration and is shown on Figure 5.32. For the duration of ¢ = 0.16us, 16 K iterations

were required. The continuum approach, is the fastest method, while DNS requires more
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computational power. The performances of the continuum approach and the multiscale
approach compare favorably. The First-Order approach requires more computational time
due to the averaging schemes; however, there differences are negligible when compared
to DNS. The DNS approach requires significantly more time per iteration. This disparity
is due to the 753,003 difference in global degrees of freedom; this amount of fidelity is
required to explicitly model the microstructure. In the context of numerical results, the
multiscale approach agreed favorably with the DNS results. At worst, the material trend
we followed, and at best they were nearly indistinguishable. This shows that heterogeneous
material responses to shock loading can be captured using the multiscale approach at the
fraction of the cost associated with DNS.
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Figure 5.31: “Snap shot” of material performance, measured in pressure and temperature,
and safety, measured in input average energy per unit volume for all material systems, using

all methods. Performance and safety are at competition.
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Figure 5.32: Computational cost for each methodology. DNS requires the most amount
of computational power while the Continuum approach and the Multiscale model perform

similarly.

5.3 Summary

This chapter presented First-Order Multiscale modeling of shock loading of polymer bonded
explosives. These methods explicitly modeled material heterogeneities in the average sense
using the resolution parameter ¢. Essentially, this parameter describes material heterogene-
ity and represents information from the microscale. Resolution parameters of ¢ = 50, a
reduced order of magnitude from the finite element mesh and ¢ = 1 were considered. The
material system with ¢ = 1 represented a homogenized continuum. Numerical results for
all material systems and all loading conditions were presented and compared with results
obtained via Direct Numerical Simulation (DNS). The DNS approach produces less local-
ized hot spots while the multiscale model in general produces more. The most localized
hot regions are produced by the homogenized continuum. This contributes to the overall
material response where the DNS approach produces lower temperature output on average
when compared to the multiscale methodologies. As the resolution parameter decreases
among the multiscale approach, the material becomes more homogeneous and the response
increases. On the other hand, increasing the resolution parameter, increases the material
heterogeneity and the results are closer to the DNS approach which explicitly models than

microstructure. Increasing HMX content among material systems reduces material hetero-
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geneity and yields pressure and temperature trends that align within the multiscale models.
Furthermore, these HMX heavy material systems close the gap between the multiscale ap-
proach and DNS. However, loading conditions still play a role in material response for all
models. Performance versus safety results were investigated for all methodologies. HMX
heavy materials have better performance than the materials with more binder content. How-
ever the benefits of binder are lost and safety of the material is compromised. The Chapter
closes by investigating computational cost for each methodology. Heterogeneous material
responses to shock loading can be captured using the multiscale approach at the fraction of
the cost associated with DNS.
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