
CHAPTER 6

Conclusions

6.1 Summary

This thesis showed results for shock loading of Polymer-Bonded Explosives (PBXs) with
varying degrees of microstructural information. Chapter 1 reviewed detonation physics and
the composition of PBXs. A review of experimental and numerical work in shock loading
of heterogeneous materials showed the need for a multiscale model. Chapter 2 presented
the governing equations, models, and numerical methods needed to simulate shock load-
ing of PBXs. The overall solution procedure was presented using the explicit, one-step,
second-order Taylor-Galerkin scheme. Chapter 3 thoroughly validated numerical results
by comparing them to test problems and experimental PBX results. This chapter used a
continuum approach where material properties were constant spatially and microstructural
information was incorporated via material constants. Various reaction rate models were
studied and showed the effects on run-to-detonation. Mesh density studies were conducted
to ensure that the findings were converged and that the shock features were accurately
captured. Chapter 4 presented results for Direct Numerical Simulation (DNS) where the
microstructure was explicitly modeled. Synthetic microstructures were developed using
Markov Random Field approach. Loading conditions for microstructures with varying
HMX/binder content were investigated. Average pressure and temperature responses were
studied showing the effects of the microstructure on material behavior. Finally, Chap-
ter 5 presented results using First-Order Multiscale modeling. These methods explicitly
modeled material heterogeneities in an average sense in a more computationally efficient
manner when compared to DNS. The effects of microstructural information on average
pressure and temperature responses were studied. Furthermore, results for all methods
were compared.
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6.2 Concluding Remarks

Various conclusions can be drawn from this work. First, it was shown that material behav-
ior is significantly influenced by information from the microscale. In general, a continuum
approach is less reactive than material models that include microscale information. The
study of transition from incident pressure shock to steady detonation, shown in Chapter
3, demonstrated that the Arrhenius model alone lacks the micromechanical mechanisms
needed to induce prompt reaction. The contrast is shown when comparing to the Ignition
and Growth model, where hot spot mechanisms are included in the reaction rate model.
Although the Arrhenius model is based on chemistry, they do not follow empirical results
for heterogeneous explosives. Furthermore, continuum approach includes binder effects
through material properties alone. This inclusion isn’t sufficient to fully capture heteroge-
neous material behavior. These findings are further supported in Chapters 4 and 5, where
the continuum is compared to methodologies where the microstructural information is in-
cluded in other forms. It was observed that the continuum model performed most similarly
to higher binder content material systems upon initiation. However, for most loading con-
ditions the continuum model was vastly different than the heterogeneous material systems
and never achieved pressure, temperature and burn fractions values similar to those of het-
erogeneous material systems.

Loading conditions also played a role in material response. Uniform input density and
energies produced different responses for various material systems. Therefore, numeri-
cal studies compared material systems in an average sense, where pressure and temper-
ature were selected as Pavg ≈ 5GPa and Tavg ≈ 500K. Four loading conditions were
considered, where density and energy were uniformly distributed within regions known
as “hot volumes”. Under the initial load, it was discovered that loading conditions with
similar hot volumes required similar input energy per unit volume required to achieve
Pavg = 5GPa and Tavg = 500K. Specifically the pairs C1/Rm(12.56%/10.95%) and
C2/By(7.06%/6.34%) performed similarly at time t = 0µs. At time t > 0µs the C2/By

pair performed similarly; however, the C1/Rm pair differed greatly. The Rm loading condi-
tion produced significantly higher pressure and temperature values when compared to the
other loading conditions. Interestingly, this loading condition had a smaller hot volume
than the C1 loading condition. The differentiating factor is in the way that the hot volumes
were distributed. While the C1 condition was a singular hot spot located at the center of
the domain, the Rm loading condition was randomly distributed throughout the domain.

Binder content affects heterogeneous material performance and safety. Material sys-
tems with higher binder content required more energy per unit volume to achieve the
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same average pressures and temperatures reached by other heterogeneous material sys-
tems; higher binder content materials are safer. At t > 0µs, these materials had the lowest
performance in terms of pressure and temperature output showing a higher return on energy
investment for HMX heavy content materials. This showed the material performance is at
competition with material safety. This trend was repeated for all loading conditions. To
summarize, HMX heavy materials required less initiation energy and produced the high-
est temperature and pressure outputs, while binder heavy materials followed the opposite
trend. These results have implications for material by design.

Finally, First-Order Multiscale modeling showed the influence of heterogeneity on
shock loading of PBXs. The resolution parameter φ was introduced and described material
heterogeneity or information from the microscale. As the resolution parameter decreased
among the multiscale approach, the material became more homogeneous and the response
increased. On the other hand increasing the resolution parameter, increased the material
heterogeneity and the results were closer to the DNS approach which explicitly models
the microstructure. Increasing HMX content among material systems reduced material
heterogeneity and yielded pressure and temperature trends that aligned within the multi-
scale models. Furthermore, these HMX heavy material systems closed the gap between the
multiscale approach and DNS. The DNS approach, in general, produced less localized hot
spots while the multiscale model produced more. The most hot regions were produced by
the homogenized continuum. These localized regions contributed to the overall material
response where the DNS approach produced lower pressure and temperature output on av-
erage when compared to the multiscale methodologies. Heterogeneous material responses
to shock loading can be captured using the multiscale approach at the fraction of the cost
associated with DNS.

6.3 Future Work

Several future directions exist to extend the work to a number of topics of interest:

• Hot Spot Interactions: Further investigate the Rm loading condition. Specifically
find the transition that occurs from the C1 loading condition to the Rm.

• Adaptive Mesh Refinement: High mesh fidelity is not required for the entire domain
and high accuracy is only necessary near the shock front. Adaptive meshing schemes
can provide a more efficient solution procedure. Though these methods may produce
unstructured grids, methods such as domain decomposition may be implemented.
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• Uncertainty quantification in material constants: Uncertainty quantification of
the material response due to variability in microstructure and material constants is
useful for understanding the robustness of numerical results and its sensitivity to
input parameters [164,165]. Performing this study would allow for the establishment
of bounds for material responses.

• Inclusion of Porosity: Porosity is also known to have an affect on run-to-detonation
of PBXs [48] as pore collapse creates hot spots, the main mechanism for initiation in
heterogeneous explosives.

• Inclusion of metal particles: PBXs typically have metal particles embedded in a
polymeric binder. Adding aluminum content to material greatly influences material
behavior [5,6]. Inclusion metal in material models would allow for the study of these
effects.

• Data driven multi–scaling:Data mining methods may be used to sample from data
generated from this thesis. A data driven multiscale model using adaptive sampling
from high fidelity micro-scale simulations can be used to mitigate computational
expense of concurrent multiscale models [166–168]. At the micro-scale, material
responses, or state variables, for multiple microstructures will be determined using
DNS. A database will be created for multiple responses of various microstructure,
creating a microstructure space. During continuum simulations, material responses
will be approximated by adaptively sampling from the microscale calculations, thus
reducing the total number of expensive fine-scale calculations which must be per-
formed.

• Model Improvements: Include multi-step chemical reaction schemes. Include mod-
els for the anisotropic behavior of each HMX crystal. Include temperature dependent
heat capacity and thermal conductivity.

• Inclusion of higher order microstructural features: Higher order features such
as correlation functions carry information about the phase neighborhood in addition
to the volume fraction information information [169–171]. Future work should in-
vestigate the use of such higher order microstructural information in enhancing the
fidelity of multiscaling while still ensuring high computational efficiency.

• Microstructure design: Ultimate objective of the numerical approach will be to de-
sign optimal microstructures to tailor energy release and sensitivity of the explosives.
Future work should investigate optimization techniques that can be used to identify
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optimal microstructural features that can be used to tailor or modulate the material
response at higher length scales [172–175].

Applying the verified methods and techniques used in this dissertation to various PBX
systems can allow materials to be designed and tailored to specific applications without
having to run physical experiments.
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APPENDIX A

Taylor-Galerkin Scheme:1D

Consider a local 1D domain where i = 1, u = u and x = x. Assuming a one-step reaction,
the Euler equations (2.18) are

Ut + F1x = S (A.1)

where, (·)t and (·)x denote partial derivatives in time and space respectively with

U =


ρ

ρu

ρE

ρYA

 , F1 =


ρu

ρu2 + p

(ρE + p)u

ρuYA

 , and S =


0

0

qρẎA

ρẎA

 . (A.2)

The associated weak form, equation 2.35, expressed in 1d is

∫
x
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ŨT
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(A.3)

Here, the Jacobian A1 is given by the following matrix in terms of the pressure gradient
∂p/∂U

A1 =
∂F1

∂U
=


0 1 0 0

−u2 +
∂p

∂ρ
2u+

∂p

∂ρu

∂p

∂ρE
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∂ρYA

−uE + u
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∂ρ
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ρ
E + u
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+
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ρ
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∂ρE
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∂p
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−uYA YA 0 u

 (A.4)
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APPENDIX B

Taylor-Galerkin Scheme:2D

Consider a local 2D domain where i = 2, u = [u, v] and x = [x, y]. Assuming a one-step
reaction, the Euler equations (2.18) are

Ut + F1x + F2y = S (B.1)

where, (·)t and (·)x,y denote partial derivatives in time and space respectively with

U =
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The associated weak form, equation 2.35, expressed in 2d is

∫
y
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where, dA = dydx and the integration limits are over x and y. Here, the Jacobian’s A1 and
A2 are given by the following matrices in terms of the pressure gradient ∂p/∂U
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APPENDIX C

Taylor-Galerkin Scheme:3D

Consider a local 3D domain where i = 3, u = [u, v, w] and x = [x, y, z]. Assuming a
one-step reaction, the Euler equations (2.18) are

Ut + F1x + F2y + F3z = S (C.1)

where, (·)t and (·)x,y,z denote partial derivatives in time and space respectively with
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The associated weak form, equation 2.35, expressed in 3d is
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ŨT
z (An

3 Sn − An
3 An

1 Un
x − An

3 An
2 Un

y − (An
3 )2Un

3 )dV

−
∫
z

∫
y

[
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where, dV = dzdydx and the integration limits are over x, y and z. Here, the Jacobian’s
A1, A2 and A3 are given by the following matrices in terms of the pressure gradient ∂p/∂U
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APPENDIX D

Equilibrium versus Mixing Rules

In this Section, equilibrium and mixing rules are compared for partially reacted equations
of state. For modeling a mixture of solid and gaseous states, it is assumed that the un-
reacted explosive and reaction products are in temperature and pressure equilibrium; i.e.
T = Ts(νs, es) = Tg(νg, eg) and p = ps(νs, es) = pg(νg, eg). Equilibrium is enforced
by iterating on νs and es. The following system can be solved using a Newton-Raphson
method.

{
pg − ps
Tg − Ts

}
=

 ∂ps
∂νs
− ∂pg
∂νs

∂ps
∂es
− ∂pg
∂es

∂Ts
∂νs
− ∂Tg
∂νs

∂Ts
∂es
− ∂Tg
∂es

{ δνs

δes

}
(D.1)

To relate the unreacted solid and reaction products, the following mixture rule is used.

ν = (1− λ)νs + λνg (D.2)

e = (1− λ)es + λeg (D.3)

Here, λ is the burn fraction; the mass fraction of detonation products in the mixture. For the
one–step reaction in this work, λ = NB. Now, the system of equations is closed and both
EOS can be expressed in terms of the solid specific volume and internal energy. Mixture
rules are shown in equations 2.13 and 2.15 in Chapter 2. The pressure and temperature
profiles for PBX 9501 are shown in density-energy space on Figures D.1(a)-D.2(f) and
D.3(a)-D.4(f) respectively for each approach. On the y-axis, specific internal energy varies
from e = 0.0 − 0.1Mbarcm3/g. On the x-axis density varies from ρ = 1.0 − 3.5 g/cm3.
These figures show that there is little difference between these two methods.
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(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure D.1: Pressure profiles using mixture rules for PBX 9501 in density-energy space.
Plots vary by ∆λ = 0.2.

(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure D.2: Pressure profiles using equilibrium for PBX 9501 in density-energy space.
Plots vary by ∆λ = 0.2.
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(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure D.3: Temperature profiles using mixture rules for PBX 9501 in density-energy
space. Plots vary by ∆λ = 0.2.

(a) λ = 0.0 (b) λ = 0.2 (c) λ = 0.4

(d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure D.4: Temperature profiles using equilibrium for PBX 9501 in density-energy space.
Plots vary by ∆λ = 0.2.
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APPENDIX E

DNS Numerical Results

This Appendix presents Direct Numerical Simulation (DNS) of shock loading of polymer
bonded explosives. The results supplement Chapter 4. A uniform mesh, using 3-noded
constant strain triangle elements, is considered with a mesh density of 2000ELM/cm.
With 8 local degrees of freedom, and 251001 nodes the global number of degrees of free-
dom is 2008008. A constant time step of ∆t = 1e − 5µs for a duration of t = 0.16µs.
Computationally, the solution procedure for all results used 8 computational nodes with 16
cores each for a total number of 128 processes.

E.1 Numerical Results: η = 0.75

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.1: Pressure contours of η = 0.75 heterogeneous material under C1 loading condi-
tions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.2: Temperature contours of η = 0.75 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.3: HMX fraction contours of η = 0.75 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.4: Solid binder contours of η = 0.75 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.5: Pressure contours of η = 0.75 heterogeneous material under C2 loading condi-
tions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.6: Temperature contours of η = 0.75 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.7: HMX fraction contours of η = 0.75 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.8: Solid binder contours of η = 0.75 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.9: Pressure contours of η = 0.75 heterogeneous material under BY loading con-
ditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.10: Temperature contours of η = 0.75 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.11: HMX fraction contours of η = 0.75 heterogeneous material underBY loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.12: Solid binder contours of η = 0.75 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.13: Pressure contours of η = 0.75 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.14: Temperature contours of η = 0.75 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.15: HMX contours of η = 0.75 heterogeneous material under BY loading condi-
tions from t = 0.06− 0.16µs.
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(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.16: Binder contours of η = 0.75 heterogeneous material under Rm loading con-
ditions from t = 0.06− 0.16µs.

E.2 Numerical Results: η = 0.85

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.17: Pressure contours of η = 0.85 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.18: Temperature contours of η = 0.85 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.19: HMX fraction contours of η = 0.85 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.20: Solid binder contours of η = 0.85 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.21: Pressure contours of η = 0.85 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.22: Temperature contours of η = 0.85 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.23: HMX fraction contours of η = 0.85 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.24: Solid binder contours of η = 0.85 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.25: Pressure contours of η = 0.85 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.26: Temperature contours of η = 0.85 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.27: HMX fraction contours of η = 0.85 heterogeneous material underBY loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.28: Solid binder contours of η = 0.85 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.29: Pressure contours of η = 0.85 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.30: Temperature contours of η = 0.85 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.31: HMX contours of η = 0.85 heterogeneous material under BY loading condi-
tions from t = 0.06− 0.16µs.

197



(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.32: Binder contours of η = 0.85 heterogeneous material under Rm loading con-
ditions from t = 0.06− 0.16µs.

E.3 Numerical Results: η = 0.95

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.33: Pressure contours of η = 0.95 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.34: Temperature contours of η = 0.95 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.35: HMX fraction contours of η = 0.95 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

199



(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.36: Solid binder contours of η = 0.95 heterogeneous material under C1 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.37: Pressure contours of η = 0.95 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.38: Temperature contours of η = 0.95 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.39: HMX fraction contours of η = 0.95 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.40: Solid binder contours of η = 0.95 heterogeneous material under C2 loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.41: Pressure contours of η = 0.95 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.42: Temperature contours of η = 0.95 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.06 (b) t=0.08 (c) t=0.10 (d) t=0.12

(e) 0.14 (f) 0.16

Figure E.43: HMX fraction contours of η = 0.95 heterogeneous material underBY loading
conditions from t = 0.06− 0.16µs.
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(a) 0.06 (b) 0.08 (c) 0.10 (d) t=0.12

(e) t=0.14 (f) t=0.16

Figure E.44: Solid binder contours of η = 0.95 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.45: Pressure contours of η = 0.95 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.
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(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.46: Temperature contours of η = 0.95 heterogeneous material under BY loading
conditions from t = 0.06− 0.16µs.

(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.47: HMX contours of η = 0.95 heterogeneous material under BY loading condi-
tions from t = 0.06− 0.16µs.
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(a) t=0.01 (b) t=0.02 (c) t=0.03 (d) t=0.04

(e) t=0.05 (f) t=0.06

Figure E.48: Binder contours of η = 0.95 heterogeneous material under Rm loading con-
ditions from t = 0.06− 0.16µs.
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APPENDIX F

First-Order Multiscaling Numerical Results

This Appendix presents numerical results for First-Order Multiscaling of shock loading
of polymer bonded explosives. The results supplement Chapter 5. A uniform mesh,
using 3-noded constant strain triangle elements, is considered with a mesh density of
2000ELM/cm. A constant time step of ∆t = 1e − 5µs for a duration of t = 0.16µs.
Computationally, the solution procedure for all results used 8 computational nodes with 16
cores each for a total number of 128 processes.

F.1 Initial Conditions

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.1: Initial C1 shock loading for η = 0.75 at various levels of coarseness.

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.2: Initial C2 shock loading for η = 0.75 at various levels of coarseness.
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(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.3: Initial By shock loading for η = 0.75 at various levels of coarseness.

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.4: Initial Rm shock loading for η = 0.75 at various levels of coarseness.
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Figure F.5: Energy per unit volume for all loading conditions for η = 0.75 material system,
with varying coarseness
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Loading
Condition

ρ
(g/cm3)

E
(Mbar−
cm3/g)

102 Vhot
Vtotal

ρEavg
(Mbar)

Pavg
(GPa)

Tavg
(K)

η = 0.75
φ = 50
C1 2.747 0.0336 12.56 0.0116 5.02 501.31
C2 2.908 0.0585 7.06 0.0120 5.03 501.25
By 2.930 0.0645 6.34 0.0119 5.02 502.22
Rm 2.782 0.0381 10.95 0.0117 5.02 500.869

η = 0.75
φ = 1
C1 2.745 0.0335 12.56 0.0115 5.01 500.63
C2 2.907 0.0584 7.06 0.0119 5.02 501.1
By 2.935 0.0644 6.34 0.0119 4.99 499.64
Rm 2.784 0.0384 10.95 0.0118 5.03 502.83

Table F.1: Summary of initial conditions for η = 0.75 material system, with varying coarse-
ness

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.6: Initial C1 shock loading for η = 0.85 at various levels of coarseness.

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.7: Initial C2 shock loading for η = 0.85 at various levels of coarseness.
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(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.8: Initial By shock loading for η = 0.85 at various levels of coarseness.

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.9: Initial Rm shock loading for η = 0.85 at various levels of coarseness.
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Figure F.10: Energy per unit volume for all loading conditions for η = 0.85 material
system, with varying coarseness
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Loading
Condition

ρ
(g/cm3)

E
(Mbar−
cm3/g)

102 Vhot
Vtotal

ρEavg
(Mbar)

Pavg
(GPa)

Tavg
(K)

η = 0.85
φ = 50
C1 2.728 0.0329 12.56 0.0113 5.03 501.66
C2 2.889 0.0573 7.06 0.0117 5.05 501.53
By 2.913 0.0639 6.34 0.0116 5.02 500.79
Rm 2.764 0.0373 10.95 0.0114 5.04 501.12

η = 0.85
φ = 1
C1 2.735 0.0331 12.56 0.0113 5.15 500.16
C2 2.886 0.0569 7.06 0.0116 5.01 500.74
By 2.914 0.0633 6.34 0.0116 5.00 502.19
Rm 2.765 0.0374 10.95 0.0113 5.04 501.62

Table F.2: Summary of initial conditions for η = 0.85 material system, with varying coarse-
ness

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.11: Initial C1 shock loading for η = 0.95 at various levels of coarseness.

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.12: Initial C2 shock loading for η = 0.95 at various levels of coarseness.
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(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.13: Initial By shock loading for η = 0.95 at various levels of coarseness.

(a) Pressure, φ = 50 (b) Pressure, φ = 1 (c) Temperature φ = 50 (d) Temperature φ = 1

Figure F.14: Initial Rm shock loading for η = 0.95 at various levels of coarseness.
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Figure F.15: Energy per unit volume for all loading conditions for η = 0.95 material
system, with varying coarseness
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Loading
Condition

ρ
(g/cm3)

E
(Mbar−
cm3/g)

102 Vhot
Vtotal

ρEavg
(Mbar)

Pavg
(GPa)

Tavg
(K)

η = 0.95
φ = 50
C1 2.710 0.0321 12.56 0.0109 5.04 501.56
C2 2.870 0.0560 7.06 0.0113 5.05 501.80
By 2.898 0.0618 6.34 0.0113 5.03 500.71
Rm 2.748 0.0366 10.95 0.0111 5.05 501.91

η = 0.95
φ = 1
C1 2.708 0.0320 12.56 0.0108 5.00 501.49
C2 2.869 0.0558 7.06 0.0113 5.03 500.90
By 2.898 0.0620 6.34 0.0114 5.02 501.84
Rm 2.747 0.0366 10.95 0.0111 5.03 503.22

Table F.3: Summary of initial conditions for η = 0.75 material system, with varying coarse-
ness
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