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ABSTRACT

Gromov-Witten invariants are numbers that roughly count curves of a fixed type on an

algebraic variety X . For example, for 3 general points and 6 general lines in X = P3,

there are exactly 190 twisted cubics intersecting all of them, so 190 is a Gromov-Witten

invariant of P3. Gromov-Witten invariants appear in algebraic geometry and string the-

ory. In the special case when X is a toric variety, Kontsevich found a method to compute

any Gromov-Witten invariant of X . Givental and Lian-Liu-Yau used Kontsevichs algo-

rithm to prove a mirror theorem, which states that Gromov-Witten invariants of X have

an interesting rigid structure predicted by physicists. The main result of this thesis is

a mirror theorem for the nontoric orbifold X = Symd(Pr), the symmetric product of

projective space, which parametrizes unordered d-tuples of points in Pr.
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CHAPTER 1

Introduction

Over the last 20 years, following predictions from string theory [10], mathematicians have proven a
series of results known as mirror theorems. These theorems reveal elegant patterns and structures
embedded in the collection of (usually genus-zero) Gromov-Witten invariants, or counts of curves
satisfying geometric constraints, of a fixed target variety or orbifold X . They also allow for indirect
computation of these invariants in many cases where direct computation is combinatorially difficult.
However, the scope of these results is essentially limited to the world of toric geometry; in every
case, X is either a complete intersection in a toric stack, or a stack admitting a toric degeneration.

The goal of this thesis is to develop tools for mirror symmetry outside of toric geometry.
The main theorem (Theorem 6.1.2) is a genus-zero mirror theorem for the orbifold Symd Pr

parametrizing unordered d-tuples of points in projective r-space. Because Symd Pr is nontoric, and
further nonabelian, this result is not possible using existing techniques. Theorem 6.1.2 gives an
explicit formula for a generating function of Gromov-Witten invariants of Symd Pr. This is the only
known mirror theorem for a nonabelian orbifold, besides single-point orbifolds [•/G].

1.1 Enumerating curves

From an algebro-geometric perspective, Gromov-Witten stems from enumerative geometry of
curves in varieties, motivated by questions like these1:

1. How many plane conic curves pass through five general specified points?

2. How many twisted cubic curves in 3-space pass through three general specified points and
intersect six general specified lines?

3. How many lines are contained in a general cubic surface in 3-space?

1Here “plane” refers to CP2 and “3-space” refers to CP3. We work over C throughout.
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Classically, the answers are 1, 190, and 27 respectively. A natural kind of question generalizing
these is the following:

Question 1.1.1. Fix2 a smooth complex projective variety X , a genus g ∈ Z≥0, a homology class
β ∈ H2(X,Z), and a list of cohomology classes γ1, . . . , γn ∈ H∗(X,Z). How many smooth genus
g curves in X of homology class β intersect generic subvarieties V1, . . . , Vn representing the classes
γ1, . . . , γn?

Note that in the case X = P2, g = 0, β = 2[L], n = 5, and γ1 = · · · = γ5 = [pt],
Question 1.1.1 is precisely Question (1) above, and in the case X = P3, g = 0, β = 3[L], n = 9,

γ1 = γ2 = γ3 = [pt], and γ4 = · · · = γ9 = [L] it is precisely Question 2. For a general cubic
surface X = S, with g = 0, β = [L], and n = 0, Question 1.1.1 is the same as question 3.

In practice, these questions are usually very difficult to answer. In Gromov-Witten theory, the
objects of study are not the correct answers, but certain natural incorrect answers called Gromov-

Witten invariants.
In detail, the counting problem can be set up as an intersection theory problem on a moduli

spaceMg(X, β) parametrizing genus g curves of degree β in X , as follows. The condition that a
curve intersects Vi defines a closed subvarietyMi ⊆Mg(X, β), where

Mi = {C ∈Mg(X, β) : C ∩ Vi 6= ∅}.

The intersection
⋂n
i=1Mi is the set of genus g, degree d curves in X that intersect all of the

subvarieties V1, . . . , Vn. Therefore the number of points in this intersection is the correct answer to
Question 1.1.1.

A strategy to compute this number is the following.Mg(X, β) is not compact. We compactify
Mg(X, β) to get a spaceMg(X, β), and we obtain compactified subvarietiesMi ⊆ Mg(X, β)

such thatMi ∩Mg(X, β) = Mi. We calculate the class of the intersection
⋂n
i=1Mi using the

intersection product
∏n

i=1[Mi] in the cohomology ring ofMg(X, β). The answer is some multiple
of the class of a point, and this number is a Gromov-Witten invariant, denoted 〈γ1, . . . , γn〉Xg,n,β.
The three motivational questions correspond to the Gromov-Witten invariants:

〈[pt], [pt], [pt], [pt], [pt]〉P2

0,5,2[L], 〈[pt], [pt], [pt], [L], [L], [L], [L], [L], [L]〉P3

0,9,3[L], and 〈〉S0,0,[L].

The reason that 〈γ1, . . . , γn〉Xg,n,β may be an incorrect3 answer to Question 1.1.1 is that even if
the subspacesMi intersect transversely for general choices of Vi, the intersection

⋂n
i=1Mi may

2To be precise, this is not exactly a generalization of the question (3), since (3) works with a generic cubic surface,
whereas here we have fixed a variety X . Making sense of this discrepancy (i.e. making the answer invariant under
deformations of X) leads to the “virtual” intersection theory discussed in Section 2.4.

3Indeed, 〈γ1, . . . , γn〉Xg,n,β is a rational number, not even an integer. This is because Mg(X,β) is an Deligne-
Mumford stack/orbifold rather than a variety.
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contain points of the boundaryMg(X, β) rMg(X, β).

The compactificationMg(X, β) and the marked versionsMg,n(X, β) are introduced in Section
2.4; they are spaces of maps (f : C → X) from (possibly singular) curves to X , called stable

maps. (The interiorMg(X, β) ⊆Mg(X, β) consists of embeddings of smooth curves, i.e. actual
smooth curves contained in X .) In fact, the spacesMg,n(X, β) are not really compactifications, in
thatMg,n(X, β) may contain irreducible components other than the Zariski closure ofMg,n(X, β).
Similarly, the subvarietyMi may be larger than the Zariski closure ofMi.

In this thesis, the main case of interest is X = Symd Pr, which is not a smooth projective
variety; it is a smooth complex orbifold. The entire discussion above works with little modification
(see Section 2.4) for X an orbifold.

1.2 Mirror theorems

A mirror theorem for a smooth variety or orbifold X states that a generating function f of Gromov-
Witten invariants of X is equal to an explicit analytic function IX (an “I-function”). Such a
statement asserts that there is a rigid structure to the various Gromov-Witten invariants of X .
Because a Gromov-Witten invariant has many inputs (i.e. the genus g, the class β, and the list of
cohomology classes γ1, . . . , γn), the generating function f and the explicit function I will have
many variables.

The statement of a mirror theorem usually involves generating functions of descendant Gromov-

Witten invariants, a generalization of Gromov-Witten invariants. These generating functions are
easier to compute with than generating functions of usual Gromov-Witten invariants. A descendant
Gromov-Witten invariant has extra inputs a1, . . . , an, and is denoted 〈ψa1γ1, . . . , ψ

anγn〉g,n,β. The
symbols ψa1 , . . . , ψan represent certain cohomology classes ψa1

1 , . . . , ψ
an
n ∈ H∗(Mg,n(X, β),Q)

(see Definition 2.4.3), and the descendant Gromov-Witten invariant is defined as an intersection
product with extra factors (see Section 2.5 for the precise definition):

〈ψa1γ1, . . . , ψ
anγn〉g,n,β :=

n∏
i=1

[Mi] · ψaii .

Gromov-Witten invariants as discussed in the previous section are the case a1 = · · · = an = 0 of
descendant Gromov-Witten invariants. From now on, we use the term “Gromov-Witten invariants”
to include descendant Gromov-Witten invariants.

Example 1.2.1. Givental [27] (and Lian-Liu-Yau [45] in slightly different language) proved the
following mirror theorem for projective space.
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Theorem 1.2.2 (Givental, Lian-Liu-Yau). Let

J(t, Q, z) := z + tH +
∑
n,β≥0

r∑
i=0

Qβ

n!
〈tH, . . . , tH, H i

z − ψ
〉Pr0,n,βH

r−i. (1.1)

Here the symbol 1
z−ψ means the series expansion

∑
m≥0

ψm

zm+1 . The series J(t, Q, z) is a cohomology-

valued generating function; explicitly, J(t, Q, z) ∈ H∗(Pr,Q)[[Q]]((z−1)). Then

J(t, Q, z) = I(t, Q, z) := z
∑
β≥0

et(H/z+β)Qβ∏β
γ=1(H + γz)r+1

. (1.2)

We should note that this example (unlike the next one, Example 1.2.3) is not useful from the
point of view enumerating curves in Pr, for two reasons. First, the cohomology classes tH appearing
in the coefficients of J(t, Q, z) mean that we are counting curves that intersect a fixed hyperplane —
but in projective space, every curve meets every hyperplane, so this is no restriction at all. Second,
almost all of the coefficients are descendant Gromov-Witten invariants, which do not have a clear
enumerative significance.

In fact, this theorem can be significantly generalized; the equality (1.2) is obtained from the
equality on the bottom of page 20 in [14] by setting many variables equal to zero. The generating
function in that generalization does have enumerative significance, since every nondescendant
Gromov-Witten invariant appears as a coefficient. (For example, the number 190 of twisted cubics
intersecting 6 general lines and 3 general points in space is a coefficient, when r = 3.) We did not
state it here because the statement requires the formalism of the Givental cone, which we discuss
next.

Usually, mirror theorems cannot be stated as simply as Theorem 1.2.2; instead, they are usually
stated using a framework introduced by Givental to encode genus-zero Gromov-Witten invariants
of X . Givental’s insight was to focus on a special class of generating functions, those of the form:

f := −z + t(t, Q, z) +
∑

n≥0,β effective
β 6= 0 or n ≥ 2

Qβ

n!
〈t(t, Q, ψ), . . . , t(t, Q, ψ),

γφ
−z − ψ

〉X0,n,βγφ. (1.3)

Some explanation is required. The formal variable Q keeps track of the degree β ∈ H2(X,Z).
Here t(t, Q, z) is a polynomial in z with coefficients in H∗(X,Q)[[t, Q]]. Note that the coefficients
are well-defined (sums of) (descendant) Gromov-Witten invariants, where t(t, Q, ψ) means that
ψ is formally substituted into t(t, Q, z). In Theorem 1.2.2, J(t, Q,−z) is of the form (1.3), with
t(t, Q, z) = tH.

Givental gave a geometric interpretation of generating functions of the form (1.3). Namely,

4



there is a (germ of an) infinite-dimensional scheme LX , called the Givental cone of X (see Section
2.6), such that generating functions f as in (1.3) are in natural bijection with C[[t, Q]]-valued points
of LX . Using this setup, the typical statement of a mirror theorem is of the form, “the following
explicit function IX(t, Q,−z) ∈ H∗(X,Q)[[t, Q]]((z−1)) is a C[[t, Q]]-valued point of the Givental
cone LX .” One may then write IX(t, Q,−z) as a generating function of Gromov-Witten invariants
of the form (1.3), where −z + t(t, Q, z) is the part of IX(t, Q,−z) with nonnegative powers of z in
the Laurent expansion of IX(t, Q,−z) in z−1.

Example 1.2.3. Givental [28] and Lian-Liu-Yau [44] also proved a mirror theorem for the general
quintic threefold Q ⊆ P4. Stating this theorem requires the language of the Givental cone.

Theorem 1.2.4 (Givental,Lian-Liu-Yau). Let

I(t, Q, z) := z
∑
β≥0

et(H/z+β)Qβ

∏5β
γ=1(5H + γz)∏β
γ=1(H + γz)5

, (1.4)

where H is the pullback of the hyperplane class on P4. Then I(t, Q,−z) is a C[[t, Q]]-valued point

of the Givental cone LQ.

By the definition of the LQ, I(t, Q,−z) is equal to a generating function of Gromov-Witten
invariants, but in this example it is difficult to say which one. In order to find out, we need to
identify the terms with nonnegative power of z, in the Laurent expansion of I(t, Q,−z) in z−1. Let
−z + t(t, Q, z) ∈ H∗(Q,Q)[[t, Q, z]] be the sum of all such terms. We calculate the coefficient of
Q in t(t, Q, z) as follows. The first terms of I(t, Q, z) are (using H4 = 0):

I(t, Q, z) = zetH/z + zQet(H/z+1) (5H + z)(5H + 2z)(5H + 3z)(5H + 4z)(5H + 5z)

(H + z)5
+O(Q2)

= zetH/z + zQet(H/z+1) 10625H3z + 5625H2z2 + 1370Hz3 + 120z4

(H + z)4
+O(Q2)

Writing 1
(H+z)5 = 1

z5 − 5H
z6 + 15H

2

z7 − 35H
3

z8 , and et(H/z+1) = et(1 + tH/z +O(z−2)) we have

I(t, Q,−z) = −z + tH +Qet(−120z + (770 + 120t)H) +O(z−1) +O(Q2).

In other words, t(t, Q, z) = tH + Qet(−120z + (770 + 120t)H) + O(Q2). Let t1(t, Q, z) =

5



tH +Qet(−120z + (770 + 120t)H). Then by the definition of LQ, we find

I(t, Q,−z) = −z + t1(t, Q, z)

+
∑
n,β≥0

β > 0 or n ≥ 2

3∑
i=0

Qβ

n!
〈t1(t, Q, ψ), . . . , t1(t, Q, ψ),

H i

−z − ψ
〉Q0,n+1,β

H3−i

5

+O(Q2). (1.5)

Repeating this process with the Q2 term of I(t, Q,−z) (and subsequently higher order terms), we
can calculate t(t, Q, z) to arbitrarily high order in Q. That is, we can identify I(t, Q,−z) as a
generating function of Gromov-Witten invariants.

The invariants in this generating function do not immediately appear to have enumerative
significance, similarly to the last example. However, one can use the fact that Q is a Calabi-Yau
threefold to express any degree β Gromov-Witten invariant of Q explicitly in terms the invariant
〈〉Q0,0,β. (This is the Gromov-Witten invariant corresponding to the enumerative question of how
many degree β rational curves lie on Q. This is essentially the only enumerative question one can
ask about genus zero curves on Q.) The process uses certain recursive identities called the string

equation, dilaton equation, and divisor equation, see Section 26.3 of [32]. This allows one to recover
all “enumerative” (non-descendant) Gromov-Witten invariants, in particular the invariants 〈〉Q0,0,β,
from Theorem 1.2.4. (This is how Givental and Lian-Liu-Yau verified the predictions of [10].) We
illustrate this is Example 2.6.5, which computes 〈〉Q0,0,1 = 2875 and 〈〉Q0,0,2 = 609250 + 2875/8.

So far, mirror theorems have been proven in genus zero for:

• Quintic threefolds [28, 44],

• Complete intersections in toric varieties [27, 45],

• Complete intersections in homogeneous spaces [39],

• Toric bundles [8],

• Toric orbifolds/stacks and certain complete intersections, and [12, 18, 17]

• Toric stack bundles [35].

There are also some results in higher genus, see e.g. [57, 43, 25]. The proofs of all of these theorems
rely on toric geometry, specifically the fact that toric varieties and orbifolds admit a torus action
with isolated fixed points and 1-dimensional orbits. (See Section 1.5 and 4.2.)
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1.3 Statement of main theorem

The main result is a mirror theorem forX = Symd Pr, the orbifold parametrizing unordered d-tuples
of points of Pr. Using the language of Section 1.2, the statement is as follows.

Theorem 6.1.2. Introduce formal variables Q, z, {ti}0≤i≤r, and {x$}$∈Part(d), where Part(d) is
the set of partitions of d. Let

ISymd Pr(t,x, Q, z) := z
∑

σ∈Part(d)

1σ
∑
β≥0

exp

(
r∑
i=0

ti([Hσ,i]/z + β)

)
Qβ

∑
Z>0-labels L = (Lη) of
the parts of σ with sum β ∑

k=(k$)$∈Part(d)

k$≥0

H(σ
∏
$

$k$)
∏

$∈Part(d)

xk$$
zk$k$!

 (1.6)

·
(
|Sσ|
|Sσ,L|

)∏
η∈σ

1∏Lη
γ=1

∏r
i=0

(
Hσ,η,i + γ

η
z
)
 .

Then ISymd Pr(t,x, Q,−z) is a C[[{ti}, Q, {x$}]]-valued point of the Givental cone LSymd Pr . Here
we use the notation:

• 1σ ∈ H∗CR,T (Symd Pr,Q) is the Chen-Ruan cohomology class of the twisted sector corre-
sponding to the partition σ (see Section 3.2.2),

• [Hσ,i] and [Hσ,η,i] are hyperplane classes defined in Section 3.1.3,

• H(σ
∏

$$
k$) is the number of ways of factoring 1 ∈ Sd as a product a1 · · · a1+

∑
k$ , where

the conjugacy classes (i.e. partitions) of the permutations aj are given by the list (σ
∏

$$
k$),

and

• Sσ and Sσ,L are automorphism groups, of the partition Sσ and the labeled partition Sσ,L,
respectively (see Section 1.7).

As in Example 1.2.3, we may write ISymd Pr(t,x, Q,−z) as a generating function of Gromov-
Witten invariants by calculating the terms −z + t(t,x, Q, z) of its Laurent expansion in z−1 with
nonnegative powers of z. We get

t(t,x, Q, z) = θ :=
∑
σ

r∑
i=0

ti[Hσ,i] +
∑

$∈Part(d)

x$1$. (1.7)

The following corollary is immediate:
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Corollary 6.3.1. Let

JSymd Pr(Q, θ, z) = z + θ +
∑
β,n

Qβ

n!

〈
θ, . . . , θ,

γφ

z − ψ

〉Symd Pr,T

0,n+1,β

γφ,

where θ is as in (1.7). Then ISymd Pr(t,x, Q, z) = JSymd Pr(t,x, Q, z).
Corollary 6.3.1 allows us to recover some, but not all, non-descendant Gromov-Witten invariants.

This is because, when we vary the coefficients ti and x$, θ takes values in a proper subspace of
H∗CR,T (Symd Pr,Q). In the future we hope to generalize Theorem 6.1.2 along the lines of Ciocan-
Fontanine and Kim’s “big” mirror theorem for toric varieties [14]. For such a theorem, there would
be no analog of Corollary 6.3.1, since the I-function would contain arbitrarily higher powers of z.

1.4 Motivation: the crepant resolution conjecture

Mirror theorems show that the Gromov-Witten invariants of an orbifold X have internal structure,
a natural question is how Gromov-Witten invariants of X are related to those of another orbifold
Y , when there is a geometric relationship between X and Y . We focus on one example of such a
relationship.

An orbifold X has an underlying singular variety (or algebraic space) X , called the coarse
moduli space of X , with a natural map X → X (see Section 2.3). Since X is not smooth, it does
not have Gromov-Witten invariants. However, suppose Y is a crepant resolution of singularities of
X , i.e. a resolution such that KX pulls back to KY :

X Y

X
coarsemoduli crepant

(Such resolutions have long been studied in algebraic geometry, see [52].) Physicists predicted that
X and Y are equivalent from the point of view of mirror symmetry. This claim was formulated as a
precise mathematical conjecture, the crepant resolution conjecture, by Ruan and others ([53, 9, 20]).
The conjecture states that the the Gromov-Witten invariants of X are related in an explicit way
to those of Y : there is a certain reversible transformation that turns a generating function of
Gromov-Witten invariants of X into a generating function of Gromov-Witten invariants of Y .

The crepant resolution conjecture has been proved for toric orbifolds X , when Y is a toric
crepant resolution [19]. The proof is via the mirror theorem for toric orbifolds [18]; the mirror
theorem provides explicit analytic functions IX and IY , which are directly compared. The conjecture
has also been proven for the non-proper orbifolds SymdC2 [9] (whose moduli spaces of stable maps
Mg,n(SymdC2, β) exist only for β = 0), and by explicit computations for Sym2 P2 [56].
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•
1

•
2

• 3

• 3

Unordered 9-tuple of points in P2

•

•

•

•

Schematic picture of the ideal:
(x+ y, x2) ∩ (yz − (x− 2z)2 + z2, x3)

∩(x− z, y − 2z) ∩ (z2, z(x− 2y), (x− 2y)2)

Figure 1.1: A point of Sym9 P2 (or Sym9 P2) and a point of Hilb(9)(P2) mapping to it

We are interested in the following case of this conjecture. The Hilbert scheme Hilb(d)(P2) of
points in P2 is a smooth scheme that is a moduli space for length d subschemes of P2. Such a
subscheme S is a disjoint union of (at most d) subschemes S1, . . . , Sk, of lengths d1 + · · ·+ dk = d,
concentrated at distinct single points P1, . . . , Pk. This defines an unordered d-tuple of points of P2,
consisting of di copies of Pi for i = 1, . . . , k. (See Figure 1.1.) This does not define a regular map
Hilb(d)(P2)→ Symd P2, but it does define a regular (birational) map Hilb(d)(P2)→ Symd P2, and
one can show that this map is a crepant resolution. This gives a diagram

Symd Pr Hilb(d)(P2)

Symd Pr
coarsemoduli crepant

(More generally, such a resolution exists for symmetric products of any smooth surface. For
symmetric products of higher-dimensional varieties X , there is still a map Hilb(d)(X)→ SymdX,

but is not generally birational, nor is Hilb(d)(X) smooth.) The goal is to prove the crepant resolution
conjecture in this case using the method of [19], but to do so one must prove two mirror theorems;
one for Symd P2 and one for Hilb(d)(P2). The case r = 2 of Theorem 6.1.2 is the first of these.

1.5 Proof techniques

There is a tool called Atiyah-Bott torus localization, which can be used to simplify computations of
integrals on an orbifoldM whenM admits an action of a torus T (see Chapter 4). Specifically,
torus localization expresses any integral overM as an integral over the T -fixed locusMT (See
Section 4.1.
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In Gromov-Witten theory, if an orbifold X admits a T -action, then so does the moduli space
Mg,n(X, β). Specifically,Mg,n(X, β) is a space of maps to X , and T acts by postcomposition.
Since Gromov-Witten invariants are defined as intersection products (integrals) onMg,n(X, β),

torus localization can be applied. Using the natural T = (C∗)r+1-action on Pr, Kontsevich [41]
developed an algorithm to compute any Gromov-Witten invariant of a complete intersection in
Pr. The algorithm involves a combinatorial description of the geometry of the T -fixed locus
Mg,n(Pr, β)T .

Givental found a recursive structure in Kontsevich’s algorithm, which implies that when X is a
complete intersection in Pr (or more generally a smooth projective toric variety), any generating
function of the form (1.3) satisfies a certain recursion relation. Furthermore, Givental showed that
an element of H∗(X,Q)[[t, Q]]((z−1)) is of the form (1.3) if any only if it satisfies this recursion.
In other words, the recursion relation exactly characterizes C[[t, Q]]-valued points of LX .

Using predictions from string theory, Givental produced I-functions IX(t, Q, z), and showed
via a direct check that IX(t, Q,−z) satisfies the recursion relation. This proved Theorem 1.2.4, and
after finding the initial terms t(t, Q, z), proved Theorem 1.2.2.

This method has been streamlined since Givental’s proof, by Kim [39], Brown [8] (while proving
the mirror theorem for toric bundles), and Coates-Corti-Iritani-Tseng [18] (while proving the mirror
theorem for toric orbifolds). The argument in [18] relies on calculations of Johnson [36] and Liu
([46], Section 9) involving toric orbifolds, which are analogous to (but much more subtle than)
Kontsevich’s calculations in projective space.

We use torus localization to prove Theorem 6.1.2, and our proof has the same overall structure as
that of the mirror theorem for toric stacks [18]. We use the natural diagonal action of T = (C∗)r+1

on Symd Pr, which as above induces a T -action on the moduli spacesMg,n(Symd Pr, β) for all g,
n, and β (though we need only g = 0).

We immediately run into one of the main obstacles in the proof of Theorem 6.1.2. Applying
Kontsevich’s algorithm or Givental’s recursive argument requires a description of the fixed locus
M0,n(Symd Pr, β)T . (In particular, one must be able to effectively compute integrals over the fixed
locus, and be able to compute the normal bundle.) For X a toric orbifold, Kontsevich’s description
ofM0,n(X, β)T was completely combinatorial. This is essentially due to the fact that T -fixed stable
maps to X are closely related to 1-dimensional T -orbits in X , and in a toric orbifold (with its dense
torus action) these orbits are isolated. However, in Symd Pr with its diagonal T = (C∗)r+1-action,
the 1-dimensional T -orbits are not isolated; they come in positive dimensional families. (In other
words, one can find points that are very close together, whose T -orbits are 1-dimensional and
distinct.) In order to carry out the argument, we must first describe each family explicitly (see
Theorem 4.5.23). Our description applies in more generality, for example to symmetric products of
toric varieties.
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In Chapters 4 and 5, we carry out the analog of the Johnson and Liu’s toric computations, which
are needed to compute the relevant integrals over the fixed lociM0,n(Symd Pr, β)T . Altogether, the
description of the T -fixed locus and these calculations allow us to prove the analog of Givental’s
recursion, which says that an element of H∗CR,T (Symd Pr,Q)[[t, Q]]((z−1)) is a point of LSymd Pr if
and only if it satisfies a certain recursion (Theorem 5.1.4).

Finally, we show directly, via Tseng’s orbifold quantum Riemann-Roch theorem [54], that the
series ISymd Pr(t,x, Q,−z) also satisfies these recursions.

It is natural to ask where these complicated functions (1.2), (1.4), and (1.6) come from. Besides
preditions by physicists, there is recent work of Ciocan-Fontanine, Kim, and others [15, 13, 14, 12]
(with origins in Bertram’s [7] for X = Pr) showing that in many cases, the I-function can be written
in terms of quasimap invariants [13]. In particular, the authors produce I-functions for a large
class of targets X , including toric orbifolds and certain complete intersections in toric orbifolds.
However, we could not make rigorous sense of the method for X = Symd Pr. In Section 6.4, we
informally discuss how we found ISymd Pr , and conjecture the existence of a particular moduli space
that would allow one to produce a candidate function IX for quite general orbifolds X .

Finally, we would like to draw the reader’s attention to a technical aspect of the recursion in
Theorem 5.1.4, condition (II). The recursion expresses Laurent coefficients in f with negative
exponents in terms of those with positive exponents. We have not seen this type of recursive
structure before — it is a certain generalization of the one in Theorem 41 of [18] — but suspect it
will be useful in more generality. We give a more detailed discussion of this point in Section 5.2.

1.6 Organization of the thesis

Section 1.7 sets up notational and combinatorial conventions. Chapter 2 gives background on
orbifolds and orbifold Gromov-Witten theory. Chapter 3 defines and gives important properties of
symmetric products, especially of projective space. In Chapter 4, we introduce Atiyah-Bott torus
localization and virtual localization for moduli spaces of stable maps, and carry out the various
calculations required to apply localization to compute Gromov-Witten invariants. Chapter 5 proves
the recursive characterization (Theorem 5.1.4) of the Givental cone LSymd Pr . Finally, Chapter 6
defines the explicit series ISymd Pr , and proves that it lies on LSymd Pr .
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1.7 Notation and conventions

1.7.1 Multisets, partitions, and multipartitions

A finite multiset $ is an unordered finite collection of elements a (we write a ∈ $), possibly
appearing more than once. Multisets are denoted with braces, e.g. {a, a, b}, and we will clarify if
an object is a set or a multiset when necessary. We write Mult($, a) for the number of times that
a appears in $. If a multiset is indexed by another multiset, we write e.g. {ai}i∈I . A submultiset

$′ ⊆ $ is a multiset such that for Mult($′, a) ≤ Mult($, a) for a ∈ $′. Unions are always taken
to be disjoint, e.g. {a, a, b} ∪ {a, c} = {a, a, a, b, c}. The cardinality or length of a multiset is
the number of elements, including multiplicities. We take sums and products over multisets with
multiplicity, e.g.

∑
η∈{1,2,2} η = 5.

For d ∈ Z>0, a partition of d is a multiset of positive integers whose sum (with multiplicities)
is d. The (finite) set of partitions of d is denoted Part(d). The ones partition of d is the multiset
{1, . . . , 1} of size d. A nonnegative ordered partition of d is an ordered tuple of nonnegative
integers whose sum is d. The (finite) set of nonnegative ordered partitions of d of length r is denoted
ZPart(d, r).

If D is a tuple of positive integers, a multipartition of D is a tuple ($d)d∈D, with $d a partition
of d. The (finite) set of multipartitions of D is denoted MultiPart(D). The ones multipartition

of D is the multipartition of D each of whose elements $d is the ones partition of d. We think
of a multipartition as a multiset, via the forgetful map MultiPart(D) → Part(

∑
d∈D d) sending

($d)d∈D to
⋃
d∈D$d. For example, we write η ∈ ($d)d∈D to mean that η is a part of some $d.

If $ is a partition, we write S$ for the group of automorphisms of the partition; e.g. for the
partition $ = {1, 1, 1, 2, 2} of 7, we have S$ ∼= S3 × S2. For σ = ($d)d∈D a multipartition of D,
we define Sσ :=

∏
d∈D S$.

Let A be a set, and let σ = ($d)d∈D be a multipartition of D. An A-labeling L of σ is an
assignment {Lη}η∈σ of an element of A to each part η of each $d. Precisely, it is the data of a tuple
σ̃ = ($̃d)d∈D, where $̃d is a multiset of pairs (η, a) with η ∈ Z>0 and a ∈ A, such that the tuple
σ = ($d)d∈D obtained by forgetting the second entry of each pair in each $̃d is equal to σ. We
define Sσ,L to be the subgroup of Sσ of permutations that preserve labels.

1.7.2 Graphs

Let Γ be a graph. We write V (Γ) for the set of vertices and E(Γ) for the set of edges. A flag of Γ is
a pair (v, e) with e incident to v; we write F (Γ) for the set of flags of Γ. We write E(Γ)v for the set
of edges incident to v, and E(Γ)v1,v2 for the set of edges connecting v1 to v2.

A map of graphs φ : Γ → Γ′ is a pair of maps φV : V (Γ) → V (Γ′) and φE : E(Γ) → E(Γ′),
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such that φE(E(Γ)v1,v2) ⊆ E(Γ′)φV (v1),φV (v2).
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CHAPTER 2

Orbifold Gromov-Witten theory

This chapter is intended as an introduction to the parts of orbifold Gromov-Witten theory that we
require. Since this material can be found elsewhere [54, 46, 36, 2], we concentrate on an intuitive
elementary discussion of the behaviors of orbifolds/stacks, as compared to varieties. Of course, this
material can also be found elsewhere [4].

2.1 Orbifolds and orbifold maps

Question 2.1.1. What does the moduli spaceM of unordered pairs of real numbers look like?

By calling M a moduli space, one thing we mean is that any point of M corresponds to
an unordered pair of real numbers, and that for any unordered pair of real numbers, there is a
corresponding point ofM. We may visualizeM as follows.

For any unordered pair {a, b} of real numbers, we may uniquely put the pair in (weakly)
ascending order. In other words, there is a bijective map P fromM to the half-plane {(x, y) ∈ R2 :

y ≥ x}.
Is “manifold with boundary” the correct geometric structure onM? We claim thatM comes

with extra structure along the line y = x. Intuitively, this line behaves as a mirror. To see this, we
must consider not only single unordered pairs (points ofM), but also 1-dimensional families of
unordered pairs (paths inM).

Consider the family {t, 3 − 2t} of unordered pairs. Via the map P , this defines a path in the
half-plane {y ≥ x}: here are some values.

t = 0 (0, 3)

t = 1 (1, 1)

t = 2 (−1, 2)

Between t = 0 and t = 2, here is the path:
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−x

y

This is what we meant by mirror behavior. An equivalent way of saying this is the following. Rather
than choosing an ordering, we could simply keep track of both orderings. For a pair {a, b}, we
obtain two (unordered) points of R2, namely (a, b) and (b, a). These points are permuted by an
action of S2 on R2, where the nontrivial element σ of S2 acts by reflecting over the line x = y. In
other words,M is in bijection with the space of orbits R2/S2.

As a topological space, R2/S2 is isomorphic to the half-plane y ≥ x. However, R2/S2 has extra
structure, giving way to the “mirror” behavior above. In particular, there is a notion of a smooth
curve on R2/S2; given a smooth curve in R2, we just take its image under the quotient map. The
path above is smooth, since it is the image of a line in R2.

In general, “well-behaved” moduli spaces behave like the quotient space of a manifold V by a
group G acting by automorphisms — at least locally. An orbifold is the correct geometric object to
capture this behavior. An orbifold has a cover by charts U whose data is a manifold together with a
group action, and the transition functions must respect the group actions. (See [4], Section 1.1 for
the precise definition.) As an orbifold,M “remembers” the group S2, in that any orbifold chart
containing a point on the line y = x can be identified with a small neighborhood of that point in R2,

together with the action of S2 fixing that point. We say that S2 is the isotropy group at that point. In
general, for a point x of an orbifold X , we write Gx for the isotropy group at x. If Gx is nontrivial
we call x an orbifold point.1

The simplest orbifolds are quotients of a manifold by a finite group; these are called global

quotients. We write X = [V/G] for such an orbifold, where V is the manifold and G the group. The
main topic of this thesis, the example Symd Pr := [(CPr)d/Sd], is one of these. Also, any manifold
is a global quotient orbifold, taking G to be trivial. In Section 2.2 we will see orbifolds that are not
global quotients.

1Since Gx depends upon a choice of orbifold chart, it is only defined up to isomorphism.
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Example 2.1.2. Consider [R2/(Z/n/Z)], where a ∈ Z/nZ acts by rotation on R2 by 2πa/n. The
result is in bijection with a half-open sector in R2, with the edges identified. (As a topological space,
this isomorphic to R2, but not as an orbifold.) We may picture [R2/(Z/nZ)] as a cone, with cone
angle 2π/n, and isotropy group Z/nZ at the cone point:

∼=

Note that (unlike in some literature) the group G need not act faithfully. (For a general orbifold,
this translates to Gx being nontrivial for every point x.2) As an extreme example, one of the
orbifolds we will often need to consider is BG, the quotient of a point by the trivial action of the
group G. Another example is X ×BG for any orbifold X and finite group G; this is the same as
the quotient [X/G] by the trivial action of G.3 These orbifolds are sometimes called ineffective

orbifolds, or G-gerbes, where G is the isomorphism class of the generic point of X .

Definition 2.1.3. A structure that can be defined on a manifold can usually be defined on an orbifold.
We can make sense of the notion of complex (or Riemannian or symplectic) structures, vector
bundles/sheaves, tangent spaces, maps of orbifolds, covering maps, fundamental groups, homology
and cohomology of orbifolds, etc. For global quotient orbifolds, these all simplify:

• A complex structure on [V/G] is a complex structure on V such that G acts by biholomor-
phisms.

• A vector bundle E on [V/G] is a G-equivariant vector bundle Ẽ on V . (Note: For v ∈ V , Gv

acts on the fiber Ẽv. This is called the monodromy action.)

• The tangent space at x ∈ [V/G] is the disjoint union of the tangent spaces at all points
of the corresponding G-orbit in V , modulo the derivative of the action of G. This has the
structure of a vector space modulo a group acting by linear automorphisms, or equivalently a
representation (of Gx).

• A map of orbifolds f : [V/G] → [V ′/G′] is a map4 f̃ : V → V ′, together with a map
φ : G → G′, such that f̃(g · v) = φ(g) · f̃(v) for all v ∈ V and g ∈ G. (Two maps (f̃1, φ1)

2Here and elsewhere, we assume X is connected.
3It is straightforward to define the quotient of an orbifold by a finite group; the result is another orbifold.
4There is a subtle technical detail here. It may be possible to write [V1/G1] ∼= [V2/G2], but the set of maps

[V1/G1] → [V ′/G′] is not in bijection with the set of maps [V2/G2] → [V ′/G′] (in our definition). This is fixed by
taking a “common refinement”, i.e. a presentation [V0/G0] where G0 contains G1 and G2. In general, one defines
orbifold maps using Morita equivalences, see [4].
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and (f̃2, φ2) are identified if there exists h ∈ G′ such that f̃1(v) = h · f̃2(v) for all v ∈ V ; in
this case we have

f̃2(g · v) = h−1f̃1(g · v) = h−1φ1(g)f̃1(v) = h−1φ1(g)h · f̃2(v),

i.e. φ2 is the postcomposition of φ1 with conjugation by h.) The map φ : G→ G′, which is
well-defined up to postcomposition by conjugation, is called the monodromy map.

• A covering map f : [V/G] → [V ′/G′] of orbifolds is a map such that f̃ : V → V ′ is a
covering map. In particular, the natural quotient map V → [V/G] (of orbifolds) given by
f̃ = id is a covering map for any V and G.

• The universal cover Ṽ of V is also the universal cover of [V/G], and the (orbifold) fundamental
group of [V/G] is the group of deck transformations of Ṽ over [V/G].

• The homology and cohomology of [V/G] are canonically isomorphic to the G-equivariant
homology and G-equivariant cohomology of V .

The following fact is helpful for computing intersection products: if x, x′ are points of a
(connected) orbifold X , then |Gx| [x] = |Gx′ | [x′] ∈ H0(X,Q). In particular, [x] is 1

|Gx| times the
class of a nonorbifold point of X .

There is an important construction associated to any orbifold X , called its inertia orbifold IX .
(See Example 2.5 in [4].)

Definition 2.1.4. Let X = [V/G] be a global quotient orbifold. The inertia orbifold I[V/G] is the
quotient of {(v, g) ∈ V ×G|g · v = v} by G, where h ∈ G acts by h · (v, g) = (h · v, hgh−1).

For a general orbifold X , this construction glues to form an orbifold IX. As a set, IX consists
of pairs (x, (g)) with x ∈ X and (g) a conjugacy class in Gx.

Example 2.1.5. Let X = BG, for G a finite group. Then IX is the quotient of G (as a set of
points) by itself, acting by conjugation. Points of IX are in bijection with conjugacy classes (g)

of G, and the isotropy group of a point (g) is CG(g). There is a distinguished conjugacy class (e),
which corresponds to a point of IX with isotropy group BG (since CG(e) = G). For example, if
G = S3, then IX is the disjoint union of three orbifold points (e) ∼= BS3, (tr) ∼= B(Z/2Z), and
(cy) ∼= B(Z/3Z).

Example 2.1.6. Let X = [R2/S2] as above. Then IX is the quotient of R2 × {e} ∪∆ × {σ} ⊆
R2 × S2 by S2, where ∆ is the diagonal {x = y}, and σ ∈ S2 is the transposition. Thus, IX is the
union of a copy of X with the quotient [∆/S2], where S2 acts trivially.
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Definition 2.1.7. In general, IX has a copy of X as a connected component, corresponding to
pairs (v, e) ∈ V ×G. (These automatically glue in the case where X is not a global quotient.) This
connected component is called the untwisted sector, and other connected components are called
twisted sectors.

2.2 Orbifold curves

Besides Symd Pr, the other orbifolds we will use most often are (complex) orbifold curves, or
orbifold Riemann surfaces. These are similar to Riemann surfaces, except that instead of being
locally isomorphic to C with biholomorphic transition functions, they are locally isomorphic to
[C/µn] (with its complex structure) for some n, where µn is the group of nth roots of unity acting
by multiplication. (Again, the biholomorphic transition functions have to be compatible with the
group actions on charts.) The point 0 ∈ [C/µn] has isotropy group µn, and all other points in the
chart have trivial isotropy group; this local behavior also appeared in Example 2.1.2.

There is a natural map [C/µn]→ C that sends the orbit {a, ζna, ζ2
na, . . . , ζ

n−1
n a} to an, which

implies that there is a natural holomorphic map from an orbifold Riemann surface X to a Riemann
surface X . (This is a special case of the “coarse moduli space” map mentioned in the introduction;
see Section 2.3.) We may think of X as being the data of X endowed with “extra structure” at
finitely many points P , namely the data of the size rP of the isotropy group at P .

Remark 2.2.1. There is a close relationship between covering maps of orbifold curves and ramified
covers of (nonorbifold) curves. Let f : C → D be a degree d ramified cover of curves, and let
y ∈ D. The ramification profile of f at y is a partition $f ∈ Part(d), and for each part η of $f ,
there is a point xη of C mapping to y with local degree η.

We modify C and D. We replace a small neighborhood U of y with a copy of [C/µN ], where
N = lcm($f ) is the least common multiple lcm($f ) of all parts η ∈ $f . For each xη ∈ C, we
replace the neighborhood f−1(U) with a copy of [C/µN/η], mapping down to [C/µN ] ⊆ D by the
pair (f̃ , φ), with f̃(z) = z and φ(ζ) = ζ−1.

After doing this operation for all ramification points of D, we are left with a canonical covering
map of orbifold curves (in the sense of Definition 2.1.3, at least locally). The original map is
recovered as the induced map on coarse moduli spaces.

Some orbifold curves are global quotient orbifolds. For example, there is a curve, constructed
below, whose coarse moduli space is isomorphic to P1, with whose only orbifold points are over
0 and∞, both with isotropy group isomorphic to µn. This orbifold curve is the quotient of P1 by
µn, where µn acts by scaling on P1. However, if we had introduced only one orbifold point, the
result would not be a global quotient. (If it were, then Remark 2.2.1 would assign to the nontrivial
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covering map V → [V/G] a ramified cover of P1, ramified at a single point. No such ramified cover
exists.) Similarly, if the isotropy groups at the two orbifold points had different sizes, then the curve
would not be a global quotient.

These curves are constructed as follows. The complement [C∗/µn] of the cone point in [C/µn]

is isomorphic to C∗, via the diagram

C∗ C∗

[C∗/µn] C∗

f̃

quotient id

with f̃ = z 7→ zn (and φ : µn → 1 trivial). Therefore we may glue [C∗/µn] to [C∗/µm] by
identifying the respective copies of C∗ via the isomorphism z 7→ z−1.

2.3 Orbifolds and stacks

We will need to consider singular objects, so we use the algebraic analog of orbifolds: Deligne-
Mumford stacks. For the remainder of the thesis, we use the terms “orbifold” and “smooth
Deligne-Mumford stack” interchangeably. Working with stacks requires dealing with unfortunate
technical difficulties. For example, morphisms of stacks do not behave like arrows in a category, but
rather like 1-arrows in a 2-category.5 Luckily one can usually avoid these issues. For more details,
see e.g. [21].

One way to define a (separated) Deligne-Mumford stack (over C) is by mimicking the last
section, using (étale) charts and transition functions, where each chart is the quotient of an affine
scheme by a finite group (Lemma 2.2.3 of [3]). This definition is difficult to state precisely, and it
is also more natural to define Deligne-Mumford stacks via maps from schemes, along the lines of
the “functor of points” perspective. That is, a stack X is usually defined as a category CX , with a
functor FX : CX → Sch to the category of schemes, that satisfies certain properties. The objects η
of CX with FX(η) = S are thought of as “maps from S to X .” Morphisms of stacks are functors
that commute with FX , and 2-morphisms are natural transformations. Any scheme is naturally a
stack, and indeed, considering a scheme S as a stack, the category of 1-morphisms f : S → X is
equivalent to the subcategory F−1

X (S) of CX .

Example 2.3.1. For V a scheme and G a group acting on V by automorphisms, [V/G] is a Deligne-
Mumford stack. (This is obvious using the first definition of a Deligne-Mumford stack. To use the

5This means e.g. that morphisms may themselves have automorphisms. In fact this already came up in Definition
2.1.3, when we identified certain morphisms via an action of G. One has to treat these identifications not as an
equivalence relation, but as a collection of 2-arrows.
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second definition, we need to define a map S → [V/G]. Such a map is defined to be a principal
G-bundle S̃ → S, together with a G-equivariant map S̃ → V .) Similarly any orbifold curve has the
natural structure of a Deligne-Mumford stack.

As with orbifolds, properties of a scheme can usually be extended to Deligne-Mumford stacks
[21]:

• A Deligne-Mumford stack is reduced/smooth if it has a covering of charts [Ui/Gi], where Ui
is a reduced/smooth scheme.

• A Deligne-Mumford stack is separated if its diagonal morphism is proper after base change
to any scheme. (Part of the defition of a Deligne-Mumford stack is that this base change is a
map of schemes.)

• A separated Deligne-Mumford stack is proper if it admits a surjective map from a proper
scheme.

As mentioned in the introduction, an orbifold has an underlying variety. More precisely and
generally, any separated Deligne-Mumford stack X admits a coarse moduli space map X → X,

where X is an algebraic space, and the map is bijective on C-points and universal with respect to
maps to algebraic spaces (see [38].) If {[Ui/Gi]}i is an atlas for X with Ui = Spec(Ai), then X has
an étale atlas consisting of the charts {Ui/Gi = Spec(AGi )}. This allows us to think of a separated
Deligne-Mumford as an algebraic space, endowed with some extra structure, in the spirit of the first
example (Question 2.1.1).

Example 2.3.2. It will be important later that even ifX is smooth,X is usually singular. (Exceptions
include orbifold curves, or more generally Deligne-Mumford stacks whose only isotropy is cyclic
and along a divisor.) Let X = [C2/(Z/2Z)], where 1 ∈ Z/2Z acts by 1 · (x, y) = (−x,−y). Then
X is a smooth Deligne-Mumford stack by definition. By the description of coarse moduli spaces on
charts, we have

X ∼= Spec(C[x, y]Z/2Z) ∼= Spec(C[x2, xy, y2]) ∼= Spec(C[a, b, c]/(b2 − ac)).

The latter is a quadric cone in C3, a singular variety.

A map X → Y of Deligne-Mumford stacks is representable if for every map S → Y from a
scheme S, the base change X ×Y S is a scheme. Equivalently, the map of isotropy groups at every
point is injective.

Finally, we see a few more examples.
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Example 2.3.3. Orbifold curves are exactly the smooth, proper, connected, 1-dimensional Deligne-
Mumford stacks.

Example 2.3.4. A balanced twisted curve or prestable orbifold curve C is a connected, proper,
1-dimensional Deligne-Mumford stack that is (étale) locally isomorphic to:

1. isomorphic to [C/µn] for some n, where µn acts by multiplication, or

2. isomorphic to [V(xy)/µn], where V(xy) ⊆ C2 is the union of the coordinate axes, and µn
acts by multiplication by opposite roots of unity on x and y.

We often consider these curves with labeled marked points b1, . . . , bn, where every smooth orbifold
point is marked, and no nodes are marked. If every rational component has at least three nodes or
markings (collectively known as special points), then we say C is stable. Prestable orbifold curves
are the building blocks of orbifold stable maps.

Remark 2.3.5. One can generalize Remark 2.2.1 to covers of prestable orbifold curves, as follows.
One may check that any connected étale cover of a node [V(xy)/µn] from Example 2.3.4 is of the
form [V(xy)/µn/a] → [V(xy)/µn] for some a, where the map is the quotient by the action of µa
by multiplication by opposite roots of unity. The induced map on coarse moduli spaces is the map
V(xy)→ V(xy) given by (x, y) 7→ (xa, ya). This is the local (balanced) structure of an admissible

cover in the sense of [30]. (An admissible cover is a map of nodal curves whose restriction to the
smooth locus of the source is a ramified cover, and whose restriction to an étale neighborhood of a
node is that just described.)

Indeed, given an étale cover of a prestable orbifold curve, the coarse moduli map is an admissible
cover, by Lemma 4.2.1 of [1]. However, [1] shows that unlike in Remark 2.2.1, the process of
taking the coarse moduli spaces is not quite reversible. In particular, the induced map from the
moduli stack of étale covers of prestable orbifold curves to the moduli stack of admissible covers is
the normalization map. (The moduli stack of admissible covers is in general singular, whereas the
moduli stack of étale covers of prestable orbifold curves is smooth.)

Example 2.3.6. Consider the quotient X = [V (xy, yz, xz)/(Z/3Z)], where V (xy, yz, xz) is the
union of the coordinate axes in CP3, and µ3 acts by cycling the coordinates x, y and z. Then X
is birational to P1, and has a single singular point whose tangent space has dimension 3. One can
check that the coarse moduli space of X is isomorphic to P1.

Similarly, we could replace µ3 by S3, acting on the coordinates by permutations. The result X ′

is an S2-gerbe over X . (Incidentally, the normalization of X ′ is the “nonbanded” gerbe [P1/S3] in
Example II.9 of [36].)
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Example 2.3.7. Consider the quotient of the scheme V = Spec(C[ε]/(εn)) by the group G = µ2,

acting by multiplication on ε. This is a nasty nonreduced Deligne-Mumford stack, that might arise
as a substack of a smooth stack, based at a point with isotropy group µ2. We can calculate its coarse
moduli space:

[V/G] ∼= Spec((C[ε2]/(εn))µ2) ∼= SpecC[δ]/(δdn/2e).

2.4 Moduli spaces of stable maps

The fundamental objects of Gromov-Witten theory are the moduli spaces of stable mapsMg,n(X, β),
developed by Kontsevich and Manin. Fix X a smooth projective variety, nonnegative integers g and
n, and a class β ∈ H2(X,Z). The moduli spaceMg,n(X, β) parametrizes the data of:

• A genus g connected curve C with at worst nodal singularities,

• A collection of n distinct labeled marked smooth points b1, . . . , bn on C, and

• A map f : C → X with f∗[C] = β,

subject to the condition that if C ′ ⊆ C is a rational irreducible component, and f |C′ is a constant
map, then C ′ is stable, i.e

(# nodes on C ′) + (# marked points on C ′) ≥ 3.

By work of Kontsevich [41], and Fulton-Pandharipande [26],Mg,n(X, β) is a proper and separated
Deligne-Mumford stack. (It may be viewed as a “compactification” of the spaceMg,n(X, β) of
smooth genus g curves in β, but in reality may have extra irreducible or connected components,
possibly of large dimensions; see Example 2.4.1.)

There is a natural universal curve C overMg,n(X, β), with sections s1, . . . , sn, and a universal
map f :

C X

Mg,n(X, β)

f

π
si

There are “evaluation maps” evi = f ◦ σi :Mg,n(X, β)→ X.

WhileMg,n(X, β) is singular, it has a structure called a perfect obstruction theory (see [6] and
[42]), which gives rise to a virtual fundamental class [Mg,n(X, β)]vir ∈ Hvd(Mg,n(X, β), where

vd = (1− g)(dimX − 3) + n+

∫
β

c1(TX).
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There is a useful long exact sequence of sheaves onMg,n(X, β):

0→ Aut(C)→ R0π∗f
∗TX → T 1 →

→ Def(C)→ R1π∗f
∗TX → T 2 → 0,

where Aut(C) and Def(C) parametrize infinitesimal automorphisms and deformations of the
marked curve (C, b1, . . . , bn), R0π∗f

∗TX and R1π∗f
∗TX parametrize infinitesimal deformations

and obstructions of the map f : C → X, and T 1 and T 2 are the “tangent sheaf” and “obstruction
sheaf” ofMg,n(X, β). One reason this is useful is that in the special case when T 1 and T 2 are
vector bundles, we have [Mg,n(X, β)]vir = e(T 2) (using Poincaré duality).

Example 2.4.1. We describeM0,0(Q, 2), where Q ⊆ P4 is a general quintic threefold. It is a
classical fact that Q contains exactly 2875 nonintersecting lines (see also Example 2.6.5 below),
and it was shown in [37] that Q contains exactly 609250 smooth conic curves. This implies that
there are three types of genus zero, degree 2, unmarked stable maps to Q:

1. Maps f : P1 → Q that map isomorphically to a conic in Q (there are 609250 of these),

2. Maps f : P1 → Q that map to a line in Q as a degree 2 cover, ramified over two distinct
points, and

3. Maps f : C → Q, where C consists of two copies of P1 joined at a node, and f maps each
P1 with degree 1 to a line in Q.

One can check by explicit construction that stable maps of type 3 are precisely the limits of those of
type 2 in families when the two ramification points collide. ThusM0,0(Q, 2) consists of 609250
points (from maps of type 1), together with 2875 copies of [P2/S2], where S2 acts trivially on P2.
Here an open subset (the complement of the discriminant conic) of each P2 parametrizes maps of
type 2 up to automorphism, and the discriminant conic parametrizes maps of type 3 (which are
uniquely defined by the image point of the node). The reason for the S2 action is that each of these
maps has a symmetry, namely switching the two branches of the source curve.

One can also compute the virtual fundamental class [M0,0(Q, 2)]vir (see [32], Chapter 27): it is
the sum of the fundamental classes of the 609250 points, plus the sum of [pt]/8 over each copy of
[P2/S2]. (Here [pt] is the class of a nonorbifold point, i.e. the pushforward of the fundamental class
along any map SpecC→ [P2/S2].) The total degree of the class is 609250 + 2875/8; this number
is the Gromov-Witten invariant 〈〉Q0,0,2 defined in Section 2.5. (This invariant is calculated via the
Theorem 1.2.4 in Example 2.6.5.)

Example 2.4.2. Another important case is X = Pr. If g = 0, then the spacesM0,n(Pr, β) are
smooth irreducible Deligne-Mumford stacks, whose coarse moduli spaces are projective varieties.
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There is a natural inclusion j :M0,n(Q, β) ↪→M0,n(Pr, β), and one can use j to compute intersec-
tion numbers onM0,n(Q, β). In particular, the cohomology of the ambient spaceM0,n(Pr, β) is
relatively well-understood, so after calculating j∗[M0,n(Q, β)]vir, one can compute any intersection
product onM0,n(Q, β) of classes pulled back fromM0,n(Pr, β).

In general (especially in high genus), one should not expectMg,n(X, β) to be smooth, though
it happened to be smooth in the previous two examples. (In fact, there is a precise sense in which it
can be “arbitrarily singular,” even for X = Pr [55].)

Definition 2.4.3. We define natural classes in H2(Mg,n(X, β),Q):

ψi := c1(s∗i (T
∗
C|Mg,n(X,β)

)),

where T ∗
C|Mg,n(X,β)

is the relative cotangent bundle of π.

2.4.1 Orbifold stable maps

All of the above can be extended to the case where X is a smooth proper Deligne-Mumford stack,
due to Abramovich-Graber-Vistoli [3, 2]. There are a few modifications:

(i) The curve C is allowed to have orbifold structure at marked points and nodes: it must be a
prestable orbifold curve as in Example 2.3.4.

(ii) The map f : C → X is required to be representable.

(iii) The maps evi take values in the inertia stack IX rather than in X . Intuitively, at a marked
point P ∈ C, there is a canonical generator g ∈ GP , and the monodromy map takes g to a
well-defined conjugacy class in Gf(P ), namely a point of IX.

(iv) Depending on the definition one uses, the maps si may not exist, due to the possibility that
the marked points form a nontrivial gerbe over the moduli space. We adopt the convention as
in Section 7.1 of [46], that marked gerbes come with the data of a trivialization.6 Because of
this convention, the classes ψi may be defined as above.

Example 2.4.4. The case X = BSd (and more generally X = BG) is studied in detail [1]. Spaces
of orbifold stable maps to BSd are closely related to Hurwitz spaces and Harris-Mumford spaces
of admissible covers [30]. An orbifold stable map f : C → BSd is (by definition) a principal

6If we did not take this convention, then the maps evi would land in a rigidification of IX , i.e. a stack that looks the
same as IX geometrically, but has smaller isotropy groups.

24



Sd-bundle P → C. There is a correspondence between principal Sd-bundles and degree d étale
covers, that sends

(P → C) 7→ (P ×Sd {1, . . . , d} → C).

Example 2.2.1 says that there is, in turn, a correspondence between these degree d étale maps
D → C of orbifold covers, and degree d ramified covers D → C of nonorbifold curves. These
two correspondences identify an open subset ofMg,n(BSd, 0) with a Hurwitz space parametrizing
(possibly disconnected) degree d ramified covers of genus g nonorbifold curves, with arbitrary
ramification profiles at marked points.

The monodromy map in Definition 2.1.3 at a marked point of C with isotropy group µn is a map
µn → Sd, up to conjugacy. These maps are in bijection with conjugacy classes of Sd, which in turn
are in bijection with partitions of d. Indeed, the partition of d associated to an orbifold marked point
of C by the monodromy map is precisely the ramification profile at the corresponding nonorbifold
marked point of C.

2.5 Gromov-Witten invariants and twisted Gromov-Witten in-
variants

A Gromov-Witten invariant is an integral of the form

〈ψa1

1 γ1, . . . , ψ
an
n γn〉Xg,n,β :=

∫
[Mg,n(X,β)]vir

n∏
j=1

ψ
aj
j ev∗j γj ∈ Q, (2.1)

where

• ψj is the jth cotangent class onMg,n(X, β), coming from the cotangent space to the coarse

moduli space of C,7 and

• the “insertions” γj are in the Chen-Ruan cohomology H∗CR(X,Q) := H∗(IX,Q) (see item
(iii) of Section 2.4.1).8

If X has an action of a torus T , it induces a natural T -action on IX and Mg,n(X, β), and
[Mg,n(X, β)]vir, ψj , and ev∗j γj are naturally equivariant classes (where γj ∈ H∗CR,T (X,Q)). In this
case (2.1) defines an equivariant Gromov-Witten invariant (an element of H∗T (SpecC,Q), denoted
by 〈· · · 〉X,Tg,n,β) via T -equivariant integration.

7Note that ψj = rjψj , where rj is the size of the isotropy group at the mark bj , and ψj is the usual ψ class.
8In enumerative terms, we may think of these insertions as not only specifying incidence conditions (as in Section

1.1), but also specifying the failure of a curve, locally in a chart [V/G] ⊆ X , to lift to V .
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There is also a notion of a twisted Gromov-Witten invariant. Let E be a vector bundle on
X , equipped with the linear action of a torus T (that acts trivially on X). Consider the class
Rπ∗f

∗E ∈ K0
T (Mg,n(X, β)). This has a well-defined invertible Euler class eT (Rπ∗f

∗E), see [33].
We define twisted Gromov-Witten invariants:

〈ψa1

1 γ1, . . . , ψ
an
n γn〉

X,T,E
g,n,β :=

∫
[Mg,n(X,β)]vir

n∏
j=1

ψ
aj
j ev∗j γj ∪ e−1

T (Rπ∗f
∗E).

2.6 The Givental cone

For the rest of the thesis, we restrict to the case g = 0.

Notation 2.6.1. We write H∗T,loc(SpecC,Q) for the fraction field of H∗T (SpecC,Q), and

H∗T,loc(X,Q) := H∗T (X,Q)⊗H∗T (SpecC,Q) H
∗
T,loc(SpecC,Q).

Definition 2.6.2. Following [18], the T -equivariant Novikov ring of X is

Λnov
T := H∗T,loc(SpecC,Q)[[NE(X) ∩H2(X,Z)]],

We write Q := {Qi}i for a set of generators of NE(X) ∩H2(X,Z), and use the shorthand

H∗T,loc(SpecC,Q)[[Q]] := H∗T,loc(SpecC,Q)[[NE(X) ∩H2(X,Z)]].

When X = Symd Pr, there is a single generator, denoted Q. (See Section 3.2.2.)

Definition 2.6.3. Givental’s symplectic9 vector space is

H := H∗CR,T,loc(X,Q)[[Q]]((z−1)) = H+ ⊕H−,

whereH+ = H∗CR,T,loc(X,Q)[[Q]][z] andH− = z−1H∗CR,T,loc(X,Q)[[Q]][[z−1]].

Inside H, there is a special subscheme LSymd Pr called the Givental cone of Symd Pr, which
encodes the genus-zero Gromov-Witten invariants of Symd Pr. (Precisely, LSymd Pr is a formal germ
of a subscheme, defined at −1 · z, where 1 ∈ H∗CR,T,loc(Symd Pr,Q) is the fundamental class of the
untwisted sector.) Fix a basis γφ of H∗CR,T,loc(Symd Pr,Q), with Poincaré dual basis γφ.

9The symplectic structure is not relevant to us, so we do not define it.
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Definition 2.6.4. A ΛT
nov[[x]]-valued point of LSymd Pr is defined to be a formal Laurent series

−1z + t(z) +
∞∑
n=0

∞∑
β=0

∑
φ

Qβ

n!

〈
t(ψ), . . . , t(ψ),

γφ

−z − ψ

〉Symd Pr,T

0,n+1,β

γφ ∈ H[[x]],

where t(z) ∈ (x,Q) ⊆ H+[[x]]. (For brevity, we suppress the variables x and Q in t.)

LSymd Pr has several important geometric properties that follow from relations between Gromov-
Witten invariants: see Appendix B of [16], which also defines LSymd Pr rigorously as a non-
Noetherian formal scheme. For example, it is a cone in a certain sense, hence the name (Proposition
B.2 of [16]). It is also (formal) Lagrangian with respect to the symplectic structure onH, so is often
called the Lagrangian cone of X .

Example 2.6.5. We illustrate how the Theorem 1.2.4, the mirror theorem for quintic threefolds, can
be used to recover Gromov-Witten invariants. In the discussion after Theorem 1.2.4, we saw that

I(t, Q,−z) = −z + t1(t, Q, z)

+
∑
n,β≥0

β > 0 or n ≥ 2

3∑
i=0

Qβ

n!
〈t1(t, Q, ψ), . . . , t1(t, Q, ψ),

H i

−z − ψ
〉Q0,n+1,β

H3−i

5

+O(Q2), (2.2)

where t1(t, Q, z) = tH + Qet(−120z + (770 + 120t)H) and I(t, Q, z) is defined in (1.4). For
simplicity, we consider (2.2) with t set to 0. Equating the coefficients of Q in (2.2) gives

−z (5H − z)(5H − 2z)(5H − 3z)(5H − 4z)(5H − 5z)

(H − z)5
(2.3)

= −120z + 770H +
3∑
i=0

〈 H i

−z − ψ
〉Q0,1,1

H3−i

5

By construction, the coefficients of 1 and H agree on both sides. The remaining terms on the left
side of (2.3) are

−575H2

z
− 1150H3

z2
. (2.4)

The moduli spaceMg,n(Q, β) is n-dimensional. A dimension count implies that the coefficients of
H2 and H3 on the right side of (2.3) are equal to:

〈 ψ
z2
〉Q0,1,1

H3

5
+ 〈 H
−z
〉Q0,1,1

H2

5
. (2.5)
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Using the dilaton and divisor equations, (2.5) simplifies to

−2

z2
〈〉Q0,0,1

H3

5
+

1

−z
〈〉Q0,0,1

H2

5
.

Setting this equal to (2.4) gives 〈〉Q0,0,1 = 2875.

We also calculate 〈〉Q0,0,2, since the computation will show that there is some recursive structure
in the Gromov-Witten invariants of Q. Again setting t = 0, we compute that the Q2-coefficient of
t(0, Q, z) is t2(0, Q, z) := −113400z + 810225H . Equating the coefficients of Q2H2

−5z
in (2.2) gives

−z
∏10

γ=1(5H − γz)∏2
γ=1(H − γz)5

=
1

2
〈−120ψ + 770H,−120ψ + 770H,H〉Q0,3,0 + 〈−120ψ + 770H,H〉Q0,2,1

+ 〈H〉Q0,1,2

Applying the dilaton and divisor equations yields:

21040875

4
= 296450〈H,H,H〉Q0,3,0 + 120〈〉Q0,0,1 + 770〈〉Q0,0,1 + 2〈〉Q0,0,2

Plugging in the known values 〈H,H,H〉Q0,3,0 = 5 (a translation of that fact that H3 = 5[pt] ∈
H6(Q,Q)) and 〈〉Q0,0,1 = 2875 then gives:

〈〉Q0,0,2 =
4876875

8
= 609250 +

2875

8
,

as claimed in Example 2.4.1.

There is also a notion of a twisted Givental cone LEX . As above, let E be a T -equivariant vector
bundle over X , where T acts trivially on X . A ΛT

nov[[x]]-valued point of LEX is defined to be

−1z + t(z) +
∞∑
n=0

∞∑
β=0

∑
φ

Qβ

n!

〈
t(ψ), . . . , t(ψ),

γφ

−z − ψ

〉X,T,E
0,n+1,β

γφ, (2.6)

for some t(z) ∈ 〈x,Q〉 ⊆ H+[[x]].

Remark 2.6.6. We may allow t(z) to be a power series in z, because ψ is nilpotent (as the T -action
on X is trivial). We will need this to make sense of Condition (III) of Theorem 5.1.4. Also, here γφ
and γφ are dual bases of H∗T (X,Q) under the twisted Poincaré pairing, see [18].
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CHAPTER 3

Properties of Symd Pr

This chapter introduces symmetric product stacks/orbifolds SymdX and discusses geometric
properties. Specifically, we describe the tangent bundle of SymdX (Lemma 3.1.1), and compute
the Chen-Ruan cohomology of SymdX with rational coefficients (Section 3.1.3). We make this
computation more explicit in the case X = Pr (Section 3.2.2).

3.1 Symmetric product stacks

3.1.1 Two definitions of SymdX

Let X be a scheme. The dth power Xd has a natural action of Sd. The dth symmetric product
SymdX is the orbifold [Xd/Sd]. That is, for S a scheme, an object f : S → SymdX of SymdX

over S is a principal Sd-bundle S̃ over S, together with an Sd-equivariant map f̃ : S̃ → Xd. A
morphism (f : S → SymdX)→ (g : T → SymdX) over S → T is a diagram

S̃ T̃ Xd

S T

f̃

g̃

such that the square is cartesian and the triangle commutes. If X is smooth, then so is SymdX,

since it has an étale cover by the smooth scheme Xd.

There is an equivalent characterization of SymdX , which will allow us to sidestep some of the
complications of working with stacks. We define a stack S̃ym

d
X that is naturally isomorphic to

SymdX . Roughly, rather than parametrizing “d ordered points of X up to reordering”, S̃ym
d
X

will parametrize “Maps P : d(•) → X,” where d(•) =
⋃d
j=1 SpecC. Precisely, an object

f : S → S̃ym
d
X over S is an étale map ρ : S ′ → S of degree d (i.e. a bundle with fiber d(•)),

together with a map f ′ : S ′ → X. A morphism (f : S → S̃ym
d
X) → (g : T → S̃ym

d
X) over

S → T is a diagram
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S ′ T ′ X

S T

f ′

g′

There is a map SymdX → S̃ym
d
X that sends:

 S̃ Xd

S

f̃

 7→
 S̃ ×Sd {1, . . . , d} X

S

 ,

where the Sd-action on {1, . . . , d} is the obvious one, and the map S̃ ×Sd {1, . . . , d} → X sends
(s̃, i) 7→ pri ◦f̃(s), where pri denotes the ith projection Xd → X. It is easy to check that this is
Sd-equivariant, and defines a morphism of stacks.

In the other direction, we may send: S ′ X

S

f ′
 7→

 IsomS(S ′, {1, . . . , d}) Xd

S

 ,

where IsomS(S ′, {1, . . . , d}) is the principal Sd-bundle given on small (étale) open sets U → S by
the set of isomorphisms S ′ ×S U → {1, . . . , d} × U. Given such an isomorphism, f ′ determines
a U -valued point of Xd. It is again straightforward to check that this defines a map of stacks
S̃ym

d
X → SymdX, and that it is an inverse to the previous map. For the rest of the thesis we will

use the descriptions interchangeably and denote them both by SymdX. It is useful to keep in mind
the following diagram, where the cube is Cartesian and the left and right faces consist of étale maps:

S̃ × {1, . . . , d} Xd × {1, . . . , d}

S̃ Xd

S ′ = S̃ ×Sd {1, . . . , d} Xd ×Sd {1, . . . , d} X

S SymdX

f̃

ρ ρ

P

f

pr pr (3.1)

(The composition S ′ → Xd ×Sd {1, . . . , d}
P−→ X is f ′.)
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3.1.2 The tangent bundle to SymdX

Now we assume X is a smooth scheme. The two definitions of SymdX in Section 3.1.1 give
two descriptions of the tangent bundle T SymdX . First, since SymdX is isomorphic to [Xd/Sd],

T SymdX is the vector bundle on SymdX corresponding to the Sd-equivariant vector bundle
T (Xd) on Xd, where Sd acts by the derivative. Consider the portion of Figure (3.1), with more
maps named:

Xd × {1, . . . , d}

Xd

Xd ×Sd {1, . . . , d} X

SymdX

ρ̃

pr′

ρ

P

pr

Lemma 3.1.1. There is a natural isomorphism T SymdX ∼= ρ∗(P
∗TX).

Proof. Since the square is cartesian and the maps are étale, we have

pr∗(ρ∗(P
∗TX)) ∼= ρ̃∗((pr′)∗(P ∗TX)) = ρ̃∗((pr′ ◦P ∗TX)).

Recall that pr′ ◦P is simply the “universal coordinate map,” so since ρ̃ is a trivial étale cover, there
is a canonical isomorphism

ρ̃∗((pr′ ◦P ∗TX)) ∼=
d⊕
`=1

P ∗` TX
∼= T (Xd).

Since ρ̃ is Sd-equivariant, there is an induced Sd-action on T (Xd) which agrees with the usual one.
Thus the isomorphism descends to give ρ∗(P ∗TX) ∼= T SymdX.

3.1.3 The inertia stack and Chen-Ruan cohomology of SymdX

Again, let X be a smooth variety. We describe the inertia stack of SymdX , see Definition 2.1.4.
(See also Section 3 of [2]).

To a map d(•) P−→ X , we may assign a partition σ ∈ Part(d), where parts correspond to points
of Im(P ). This gives a stratification of SymdX into locally closed strata (SymdX)σ indexed by
σ ∈ Part(d).
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Proposition 3.1.2. For each σ ∈ Part(d),

(SymdX)σ ∼=

(∏
i≥1

SymMult(σ,i) X

)
r ∆

up to generic stabilizer, where ∆ is the union of all diagonals. Each point of (SymdX)σ has

isotropy group isomorphic to
∏

η∈σ Sσ.

Proof. On (SymdX)σ, there is a natural operation of contracting fibers of each map S ′ P−→ X , and
remembering the number of points in each contracted fiber. This induces a well-defined map

(SymdX)σ →

(∏
i≥1

SymMult(σ,i) X

)
r ∆.

The “obvious” scheme-theoretic inverse fails to be a functor, but it is easy to check that the map
above is a rigidification in the sense of [1]. The isotropy group at a point d(•) P−→ X is simply
the group of automorphisms of d(•) commuting with P , which by definition of (SymdX)σ is∏

η∈σ Sσ.

It follows from Proposition 3.1.2 that components of I SymdX are indexed by Part(d). We
denote the component associated to σ ∈ Part(d) by (I SymdX)σ. We have, up to generic stabilizer,

I(SymdX)σ ∼= (SymdX)σ ∼=
∏
i≥1

SymMult(σ,i)X.

From Example 2.5 of [4], the generic stabilizer is isomorphic to the centralizer of (any representative
of) σ in Sd. Explicitly, this is the group (see Section 1.7):

C(σ) = Sσ n
∏
η∈σ

µη. (3.2)

The (nonorbifold) cohomology with rational coefficients of each component I(SymdX)σ may
be computed explicitly from that of X , using the fact that

H∗(SymdX,Q) ∼= H∗(Xd,Q)Sd ∼= (H∗(X,Q)⊗d)Sd .

In particular, there are isomorphisms:

H2(SymdX,Q) ∼= (H2(X,Q)⊕d)Sd ∼= H2(X,Q).
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3.2 Symmetric products of projective space

In this section we expand on some of the above in the case X = Pr, and discuss the natural torus
action on Symd Pr. First, we introduce some notation to be used throughout.

3.2.1 Notation for projective space

We denote a point of Pr = P(Cr+1) by [x0 : x1 : · · · : xr] with xi ∈ C. We denote the coordinate
points of Pr by P0, P1, . . . , Pr, where Pi is the point where all coordinates except xi vanish. We
denote by L{i1,i2} (where 0 ≤ i1, i2 ≤ r and i1 6= i2) the coordinate line passing through Pi1 and
Pi2 . We write P{i1,i2} for the midpoint of this line, i.e. the point where xi1 = xi2 and xi = 0 for
i 6= i1, i2. We also write Hi for the ith coordinate hyperplane {xi = 0} ⊆ Pr.

Throughout, we use the action of T := (C∗)r+1 on Pr by scaling the coordinates. We have
H∗T (SpecC,Q) = Q[α0, . . . , αr], and H∗T,loc(SpecC,Q) = Q(α0, . . . , αr), where −αi is the
weight of the character T → C∗ defined by (λ0, . . . , λr) 7→ λi.

We denote by [Pi], (resp. [L{i1,i2}], [Hi]) the class in H∗T (Pr,Q) identified with Pi (resp. L{i1,i2},
Hi) under the equivariant Poincaré duality isomorphism.

3.2.2 The Chen-Ruan cohomology of Symd Pr

In Section 3.1.3, we saw that there exists an isomorphism H2
T (SymdX,Q) ∼= H2

T (X,Q). For con-
venience, we now fix such an isomorphism. If α ∈ H2

T (X,Q), then we write α ∈ H2
T (SymdX,Q)

for the class that pulls back to
d∑
j=1

pr∗j α ∈ H2
T (Xd,Q).

Using this isomorphism, we write [Hi] ∈ H2
T (Symd Pr,Q), which gives a distinguished set

of generators for H2
T (Symd Pr,Q). (Via the Poincaré pairing, this defines a natural notion of the

degree of a curve on Symd Pr.)
From Section 3.1.3, the components of I Symd Pr are indexed by Part(d), and are given by

(I Symd Pr)σ ∼=
∏
i≥1

SymMult(σ,i) Pr.

We then have

H∗T ((I Symd Pr)σ,Q) ∼=
⊕
i≥1

H∗T (SymMult(σ,i) Pr,Q).
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For η ∈ σ, there is a corresponding factor H∗T (SymMult(σ,i) Pr,Q), and we denote by [Hσ,η,i] the
class [Hi] in this factor. We write [Hσ,i] for

∑
η[Hσ,η,i].

The Chen-Ruan cohomology is

H∗CR,T (Symd Pr,Q) :=
⊕

σ∈Part(d)

H∗T ((I Symd Pr)σ,Q),

with an appropriate shift in grading that we will not need.

3.2.3 The action of (C∗)r+1 on Symd Pr

The natural action of T := (C∗)r+1 on Pr induces a diagonal T -action on (Pr)d. This commutes
with the action of Sd, hence acts on Symd Pr. It is easy to check that this action agrees with that
on S̃ym

d
Pr defined by postcomposition of f ′ : S → Pr with the action on Pr. The T -action on

Symd Pr induces an action onM0,n(Symd Pr, β) for all n, and β.

34



CHAPTER 4

Localization and virtual localization

In this chapter, we give a detailed description of T := (C∗)r+1-equivariant geometry of Symd Pr and
M0,n(Symd Pr, β). We focus on the aspects of this geometry required to compute Gromov-Witten
invariants. In particular, we describe the T -fixed points and 1-dimensional T -orbits in Symd Pr. We
use this to give a complete description (Theorem 4.5.23) of the T -fixed locus inM0,n(Symd Pr, β),
and we compute the T -equivariant Euler class of the (virtual) normal bundle to the T -fixed locus
(Proposition 4.6.2). We also give an example-heavy discussion (Section 4.2) of what can be said for
general targets (smooth projective varieties).

4.1 The localization and virtual localization theorems

If T = (C∗)r acts on a Deligne-Mumford stack X , the equivariant cohomology H∗T (X,Q) is a
module over H∗T (SpecC,Q) ∼= Q[α0, . . . , αr], where −αi is the weight of the character T → C∗

defined by (λ0, . . . , λr) 7→ λi. We write H∗T,loc(SpecC,Q) for the localization Q(α0, . . . , αr), and
more generally H∗T,loc(X,Q) := H∗T (X,Q)⊗H∗T (SpecC,Q) H

∗
T,loc(SpecC,Q). We will often use the

Atiyah-Bott localization theorem, as well as Graber-Pandharipande’s generalization, the virtual

localization theorem.

Theorem 4.1.1 (Atiyah-Bott [5], see Edidin-Graham [22] for statement in the Chow ring). Let

T be a torus acting on a smooth compact manifold X , with fixed point set F . Then the map

(ιF )∗ : H∗T,loc(F,Q)→ H∗T,loc(X,Q) is an isomorphism, where (ιF )∗ is the Gysin map associated

to the inclusion F ↪→ X . The inverse map is ι∗F/eT (NF |X), where eT (NF ) is the equivariant Euler

class of the normal bundle to F . In particular, for α ∈ H∗T,loc(X,Q), we have∫
X

α =

∫
X

(ιF )∗

(
ι∗Fα

eT (NF )

)
=

∫
F

ι∗Fα

eT (NF )
.

Theorem 4.1.2 (Graber-Pandharipande [29]). Let X be a Deligne-Mumford stack with a T -action

and a T -equivariant perfect obstruction theory E•. Again, let ιF : F ↪→ X denote the inclusion of
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the fixed locus. Let [X]vir denote the virtual fundamental class associated to E•. The T -fixed part

of E• defines a perfect obstruction theory on F , with virtual fundamental class [F ]vir. The virtual
normal bundle Nvir

F to F is the T -moving part of E•. Then∫
[X]vir

α =

∫
[F ]vir

ι∗Fα

eT (Nvir
F )

. (4.1)

Remark 4.1.3. The proof in [29] requires that X have an equivariant embedding into a smooth
Deligne-Mumford stack, but this condition was removed in [11]. Also, it is usually convenient to
write F as a union of connected components (or a union of open and closed substacks) Fj , in which
case (4.1) becomes ∫

[X]vir

α =
∑
j

∫
[Fj ]vir

ι∗Fjα

eT (Nvir
Fj

)
.

4.2 The T -fixed locus inM0,n(X, β), nonorbifold case

If X has a T -action, then postcomposition induces a T -action onM0,n(X, β) for all n and β. In this
section, we describe the behavior of torus-fixed stable maps to X when X is a smooth projective
variety. The main purpose of the section is to emphasize, via examples, that this behavior is often
very complicated, and one needs a lot of information about X and its torus action in order to write
downM0,n(X, β) explicitly. This section contains no original results.

Definition 4.2.1. Let X be a smooth projective variety with an action of a torus T . The T -graph

ΓX,T of X is the graph with a vertex v for every connected component XT
v of XT , and an edge

e = {v1, v2} for every connected component of the union of all 1-dimensional T -orbits joining v1

and v2.

As an example, the T -graphs for P2 × P2 with two different torus actions are shown in Figure
4.1.

Remark 4.2.2. By Lemma 5 in [50], ΓX,T contains no self-edges. We do not know whether or not
ΓX,T may contain multiple edges between two fixed vertices.

Example 4.2.3. In the case where T acts on X with isolated fixed points and 1-dimensional orbits,
ΓX,T is identified (as a topological space) with the 1-skeleton of X , i.e. the union of 0-dimensional
and 1-dimensional T -orbits. This condition holds, for example, in any toric variety, e.g. Figure

When the T -graph of X is known,M0,n(X, β)T may be written as a union of combinatorially
indexed pieces. If one is lucky, it may be clear how these pieces fit together into connected
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Figure 4.1: The T -graph of P2 × P2 with the action of its dense torus, and the diagonal action of
(C∗)3, respectively.

components, or unions of connected components, of M0,n(X, β). (Computing these may still
be difficult.) For e ∈ E(ΓX,T ) a union of 1-dimensional T -orbits, we denote by H2(X,Z)e the
subgroup of H2(X,Z) generated by the classes of these 1-dimensional orbits. (They need not all be
linearly equivalent, as we see in Example 4.2.14.)

Definition 4.2.4. An n-marked (X,T )-decorated tree Γ̃ = (Γ,Mark, f, d, vdeg) is

• A tree Γ,

• A marking map Mark : {1, . . . , n} → V (Γ),

• A map f of graphs Γ→ ΓX,T ,

• An edge degree map βedge : E(Γ)→ H2(X,Z)e, and

• A vertex degree map vdeg : V (Γ)→ H2(f(v),Z). (Recall that f(v) is a connected component
of XT .)

We will often refer to an n-marked (X,T )-decorated tree as simply a “decorated tree” when the the
meaning is clear.

Definition 4.2.5. The degree β(Γ̃) of an n-marked (X,T )-decorated tree is

β(Γ̃) :=
∑
e∈E(Γ)

βedge(e) +
∑

v∈V (Γ)

vdeg(v) ∈ H2(X,Z).

Notation 4.2.6. We denote the set of n-marked (X,T )-decorated trees of degree β by Trees0,n(X, β).

Proposition 4.2.7. There is a natural map

Ψ : (M0,n(X, β))T → Trees0,n(X, β).
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Proof. If (f : C → X) ∈M0,n(X, β)T , then on each irreducible component C, the restriction of
f either

1. factors through XT or

2. is a finite map to the closure of a 1-dimensional T -orbit.

We define a graph Γf whose vertex set V (Γf ) is the set of connected components of f−1(XT )

(which are unions of components of type 1), and whose edge set E(Γf ) is the set of irreducible
components of type 2. Any irreducible component of type 2 contains exactly two distinct points
that map to XT , so E(Γf ) makes sense as a set of edges. The fact that Γf is a tree follows from the
fact that C is genus zero.

There is a natural map ff of graphs from Γf to ΓX,T , which sends a connected component
C0 of f−1(XT ) to the component of XT containing f(C), and sends an irreducible component
C1 ∈ E(Γf ) to the component of the union of 1-dimensional T -orbits that contains f(C1).

Since (f : C → X) is T -fixed, each marked point is mapped to XT . We define a marking map
Markf : {1, . . . , n} → V (Γf ) that sends i to the connected component of f−1(XT ) containing
bi. We define a map βedge,f : E(Γ) → N that takes an edge e to (f |Ce)∗[Ce], and a map vdegf :

V (Γ) → H2(f(v),Z) that sends a vertex v to (f |Cv)∗[Cv]. We then define Ψ(f : C → X) =

(Γf , ff ,Markf , βedge,f , vdegf ).

Notation 4.2.8. Let Γ̃ be a decorated tree, and let (f : C → X) ∈ Ψ−1(Γ̃). If v ∈ V (Γ), then from
Proposition 4.2.7, v corresponds to a union of irreducible components of C, or possibly a single
point. We denote this by Cv. Similarly, an edge e ∈ E(Γ) corresponds to an irreducible component
of C, and we denote it by Ce. For (v, e) ∈ F (Γ), we write ξ(v, e) for the point Cv ∩ Ce ∈ C. We
say (v, e) is a special flag if ξ(v, e) is a special point (mark or node), equivalently if val(v) > 1,
vdeg(v) > 0, or Mark−1(v) 6= ∅.

For any (f : C → X) ∈ Ψ−1(Γ̃), the tangent space to Ce at ξ(v, e) is naturally a (fractional)
character of T . We denote the weight of this character by w(v, e) ∈ H2

T (Spec(C),Q). It is
straightforward to check that this does not depend on the choice of (f : C → X).

We adapt the following notation from [46], Definition 53:

V 1(Γ̃) = {v ∈ V (Γ)| val(v) = 1, vdeg(v) = 0,
∣∣Mark−1(v)

∣∣ = 0}

V 1,1(Γ̃) = {v ∈ V (Γ)| val(v) = 1, vdeg(v) = 0,
∣∣Mark−1(v)

∣∣ = 1}

V 2(Γ̃) = {v ∈ V (Γ)| val(v) = 2, vdeg(v) = 0,
∣∣Mark−1(v)

∣∣ = 0}

V S(Γ̃) = V (Γ) r (V 1(Γ̃) ∪ V 1,1(Γ̃) ∪ V 2(Γ̃)).

We call vertices in V S(Γ̃) stable. A vertex v is stable if and only if Cv is 1-dimensional (a prestable
curve, rather than a single point).

38



For v ∈ V 1(Γ̃) ∪ V 1,1(Γ̃), we will usually write E(Γ)v = {ev = {v, v′}}. For v ∈ V 2(Γ̃), we
will usually write E(Γ)v = {e1

v = {v, v1}, e2
v = {v, v2}}.

Example 4.2.9. If T acts on X with isolated fixed points and 1-dimensional orbits, then the
fibersMΓ̃ := Ψ−1(Γ̃) are easy to describe. In this case a decorated tree Γ̃ determines irreducible
components Ce and maps f |Ce . The only things that are not determined are the curves Cv, which
are stable genus zero curves with marking sets Mark−1(v) ∪ E(Γ)v. (The map f |Cv is the constant
map from Cv to the single point f(v).) Thus we have1:

MΓ̃
∼=

 ∏
v∈V (Γ)

M0,Mark−1(v)∪E(Γ)v

/Aut(Γ̃) (4.2)

(The automorphism group Aut(Γ̃) consists of automorphisms of Γ that commute with the maps
Mark, f, and βedge.)

Since these fibers are proper, and there are finitely many of them for fixed n and β, they are in
fact open and closed substacks ofM0,n(X, β)T . (Since they are connected, they are exactly the
connected components ofM0,n(X, β)T .) In other words, if T acts on X with isolated fixed points
and 1-dimensional orbits, then we have completely described the structure ofM0,n(X, β)T : it is a
disjoint union, over index set Trees0,n(X, β), of spacesMΓ̃ as in (4.2).

Remark 4.2.10. It is important to note that this example is very special: in general, the fibers of
Ψ−1 are only locally closed substacks ofM0,n(X, β)T , as we see in the following example. Also,
in general one should not expectMΓ̃ to be connected.

Example 4.2.11. Let C∗ act on (P1)2 diagonally. The fixed points of the action are:

(0, 0), (0,∞), (∞, 0), (∞,∞).

(We identify P1 with C∪{∞} for now.) The complement of these points is a union of (1-dimensional)
orbits. The T -graph is:

Γ(P1)2,C∗ =
•

•

•

•

The outer edges of the square correspond to unique orbits, whereas the diagonal edge corresponds

1To be precise, one must further take the quotient by the trivial action of a group of automorphisms of the ramified
cover Ce → f(Ce) for each edge e.
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•

•

•

•

(0, 0)

(0,∞)

(∞, 0)

(∞,∞)

Figure 4.2: The torus orbits in (P1)2

to the family of orbits of the form

{(t, at) : t ∈ C∗}. (4.3)

The base of this family, given by the a-coordinate, is isomorphic to C∗. (See Figure 4.2; this family
is shown in red.)

If (f : C → (P1)2) is C∗-fixed, then an irreducible component of C is either contracted to one
of the four fixed points, or maps as a ramified cover of a 1-dimensional orbit, ramified over two of
the fixed points.

Consider a degree d cover by P1 of an orbit of the form (4.3), ramified over (0, 0) and (∞,∞).

As a stable map, this lies in Ψ−1(Γ̃) ⊆M0,0((P1)2, (d, d)), where Γ is the tree •v e •v′ , with

• f(v) = (0, 0),

• f(v′) = (∞,∞),

• f(e) equal to the diagonal edge in Γ(P1)2,C∗ ,

• βedge(e) = (d, d), and

• vdeg(v) = vdeg(v′) = 0.

The family (4.3) of orbits induces a family (fa : P1 → (P1)2) of stable maps, corresponding to
a map C∗ ↪→M0,0((P1)2, (d, d)). It is easy to compute that the limit as a → 0 is the stable map
f0 : C → (P1)2, where C is isomorphic to two copies of P1 glued at a node, and f0 sends the two
components to the lines P1 × 0 and∞× P1, each with degree d, each fully ramified over the two
C∗-fixed points.
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The limit (f0 : C → (P1)2) lies in the fiber Ψ−1(Γ̃0 = (Γ0, f0, βedge,0, vdeg0)), where Γ0 is the

tree
•v
e1 •
v1

e2 •v′ , with

• f0(v) = (0, 0),

• f0(v1) = (∞, 0),

• f0(v′) = (∞,∞),

• f0(e1) equal to the bottom edge of the square in Γ(P1)2,C∗ ,

• f0(e2) equal to the rightmost edge of the square,

• βedge,0(e1) = (d, 0),

• βedge,0(e2) = (0, d), and

• vdeg0(v) = vdeg0(v1) = vdeg0(v′) = 0.

This shows that Ψ−1(Γ̃0) ⊆ Ψ−1(Γ̃) ⊆ M0,0((P1)2, (d, d)). (The former is a single point, with
some automorphism group.)

Note that if we had taken the limit a→∞ instead, we would have gotten a similar limit f∞,
but the two components would map to the top and leftmost edges of the square.

Remark 4.2.12. In Example 4.2.11, Γ̃ is obtained from Γ̃0 by contracting a chain of edges e1 ∪ e2,
with intermediate vertex v1, satisfying:

• v1 ∈ V 2(Γ̃),

• w(v1, e1) + w(v1, e2) = 0.

This operation of “chain contraction” defines a partial ordering ≤ on Trees0,n((P1)2, β), where
Γ̃ ≤ Γ̃′ if Γ̃ may be reached from Γ̃′ via a sequence of chain contractions. Generalizing the example,
one may check that Γ̃ ≤ Γ̃′ if and only if Ψ−1(Γ̃′) ⊆ Ψ−1(Γ̃). Furthermore, ≤ has the property that
if Γ̃1 ≤ Γ̃′ and Γ̃2 ≤ Γ̃′, then there exists Γ̃ satisfying Γ̃ ≤ Γ̃1 and Γ̃ ≤ Γ̃2.

It follows from these observations that the connected components of M0,n((P1)2, β) are in
bijection with decorated trees that are minimal with respect to ≤, namely those that admit no chain
contractions, where the bijection identifies Γ̃ withMΓ̃ := Ψ−1(Γ̃).

In fact, using Example 4.2.11, one may explicitly write downMΓ̃ as a stack, in terms of certain
moduli spaces of marked curves. This is closely related to the computation in Section 4.5 for
X = Symd Pr.
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Figure 4.3: The graph ΓP2,C∗ and a picture of the 1-dimensional C∗-orbits

Caution 4.2.13. Working from Example 4.2.11, one may be led to make all sorts of incorrect
conjectures. The next few examples illustrate some of these.

Example 4.2.14. In Example 4.2.11, the ramification data of a T -fixed stable map was essentially
constant in families. More specifically, when taking limits inM0,n((P1)2, β), the only combinatorial
difference between the special and general fibers is that irreducible components mapping as degree
d fully ramified covers could be replaced with chains of rational curves, also mapping as degree d
fully ramified covers. We see now that ramification data may change in a degeneration of T -fixed
stable maps. Further, this change is not detected by our naive notion of decorated trees.

Consider X = P2, with C∗ acting by t · [x0 : x1 : x2] = [x0 : tx1 : t2x2]. The curves x2
1 = ax0x2

are 1-dimensional orbit closures for a ∈ C∗. The graph ΓP2,C∗ is shown in Figure 4.3, along with a
pictorial representation of the orbits. We may identify this family of curves with a family of stable
maps, namely the inclusions of the 1-dimensional orbit closures Ca ↪→ P2. Taking the limit as
a→∞ gives a similar answer to that in Example 4.2.11: a nodal source curve C∞, embedding in
P2 as the union of the lines L{1,2} and L{0,1}. (Recall from Section 3.2.1 that L{1,2} := {x0 = 0}
and L{0,1} = {x2 = 0}.) However, taking the limit as a→ 0 gives a degree 2 map f0 from C0

∼= P1

to the line L{0,2}, ramified over the points P2 and P0.

In this example, the decorated tree is the same when a 6= 0 or a = 0, namely Γ̃ = •v e •v′ ,
with

• f(v) = P2,

• f(v) = P0,

• f(e) is the bottom edge of the triangle,

• βedge(e) = 2[L], and

• vdeg(v) = vdeg(v′) = 0.
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We note that the tangent weights at the points Cv and Cv′ are constant. To see this, note that the
action on the tangent space at P2 is equivariantly isomorphic to t · (x0, x1) = (t−2x0, t

−1x1) on C2.

For every a 6= 0, f(Ce) is tangent to the line L{1,2}, so the tangent weight w(v, e) is −λ, where
λ ∈ H2

C∗(Spec(C),Q) is the canonical generator. When a→ 0, f(Ce) is tangent to L{0,2}, and is f
is ramified at Cv with degree 2. Thus we have w(v, e) = −2λ

2
= −λ.

The following example is modified from one pointed out to us by D. Speyer.

Example 4.2.15. In Example 4.2.11, we saw that if a graph Γ̃′ contained •v
e1 •
v1

e2 •v′ as a

subgraph, where

• v1 ∈ V 2(Γ̃′) and

• w(v1, e1) + w(v1, e2) = 0,

then any (f ′ : C ′ → (P1)2) ∈ Ψ−1(Γ̃′) could be deformed to some (f : C → (P1)2) ∈ Ψ−1(Γ̃),

where Γ̃ is obtained from Γ̃′ by contracting the chain e1 ∪ e2.

It is easy to see that the conditions v1 ∈ V 2(Γ̃′) and w(v1, e1) + w(v1, e2) = 0 are necessary for
such a deformation to exist. In general, a node of a curve may only be equivariantly smoothed if the
tangent weights on the two branches add to zero. If v1 6∈ V 2(Γ̃′), then v1 ∈ V S(Γ̃′). Thus at the
nodes ξ(v1, e1) and ξ(v1, e2), the tangent weight on one branch is zero, while the other is nonzero.
Such nodes cannot deform.

However, we show that the two conditions are not sufficient. Consider P2, with the C∗-action
t · [x0 : x1 : x2] = [x0 : tx1 : t2x2]. We blow up P2 at P1. Note that the C∗-action lifts to this
blowup, as pictured in Figure 4.4. It is easy to check that if we interpret the red curves as a family
of stable maps and take the limit “upwards”, the limit curve is a chain of three rational components,
mapping to the three black lines. The middle component maps as a degree 2 ramified cover.

(One way to see this is by degree-counting. The generic map is degree 2H, where H is the
pullback of the hyperplane class. In the limit, the degree is 2(H − E) + kE, where E is the
exceptional divisor, H −E is the class of the proper transforms of the lines L{1,2} and L{0,1}, and k
is the degree of the map on the middle component. For the degree to be constant, we must have
k = 2. We can also check that the tangent weights on the middle component are double those on
the axes.)

Now consider the following stable map. Let C be isomorphic to two copies of P1 glued at a
node, and let f map one copy to (the proper transform of) the line L{1,2} isomorphically, and the
second copy to the exceptional divisor as a degree 2 ramified cover. It is easy to check (and follows
from the previous paragraph) that the two tangent weights at the node are opposites. On the other
hand, f may not deform. Indeed, it would need to deform to a cover of an irreducible 1-dimensional
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Figure 4.4: The graph ΓB`P1
P2,C∗ and a picture of the 1-dimensional C∗-orbits

orbit closure, but we have already classified all such orbits. We say a chain contraction is realizable

if it corresponds to a smoothing of a node on the source curve of a stable map. This example then
shows that not every chain contraction is realizable.

Note that the characterization of the limit of generic 1-dimensional orbit closures also shows
that there are realizable chain contractions where the two branches of the node being smoothed have
different ramification degrees.

Definition 4.2.16. In [50], and later in [13], there are introduced (slightly incompatible) notions of
breaking nodes and breaking subcurves. We use the definition from [13]; namely, a breaking node

of a stable map (f : C → X) is one where the tangent weights of the two branches do not add up to
zero.

By definition, Ψ(f) contains a flag (or perhaps two) for every node, except those nodes on the
interior of a subcurve that maps to XT . These nodes are not breaking, since both tangent weights
are zero. Therefore the set of breaking nodes includes into F (Γ); we call a flag a breaking flag if it
is in the image of this map.

Remark 4.2.17. Any flag (v, e) with v ∈ V S(Γ̃) is a breaking flag.

Example 4.2.18. As we saw above, breaking nodes may not be equivariantly deformed. We saw in
Example 4.2.15 that it may also be impossible to deform a nonbreaking node. We illustrate one
more case of this, where the node is on the interior of a subcurve that maps to XT .

First, consider the blowup Y of P2 at the points [1 : 0 : 1], [2 : 0 : 1], and [3 : 0 : 1]. The
inclusion of the proper transforms of the x0 and x1 axes is a stable map to X . If it were to deform
to a smooth curve, if would need to deform to the proper transform of a smooth plane conic passing
through the three given points. But a smooth plane conic cannot pass through three colinear points.
Therefore, the node cannot be smoothed.

To relate this to nonbreaking nodes, we need to realize Y as a component of the fixed locus of
some variety X . We may simply take X = Y × P1, with C∗ acting on P1.
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Having seeing these pathologies, we must settle for a very weak proposition, with no hope for
any kind of converse.

Proposition 4.2.19. Let (f0 : C0 → X) be in the closure ofMΓ̃. Then Γ̃ can be obtained from

Ψ(f) by a sequence of chain contractions.

Proof. Let (ft : Ct → X) ∈MΓ̃ be a family of stable maps whose limit as t→ 0 is (f0 : C0 → X).

Locally at t = 0, Ct is a smoothing of some collection of nodes of C0. By equivariance, these
nodes are nonbreaking, hence none of them connects an edge curve Ce to a vertex curve Cv.
Thus smoothing these nodes corresponds to deleting vertices in V 2(Γ̃0), i.e. a sequence of chain
contractions.

4.3 The T -fixed locus inM0,n(X, β), orbifold case

If X is an orbifold, the situation is much more subtle than that above, and we know very little about
the general case. As above, we may use decorated trees to isolate certain open and closed substacks
ofM0,n(X, β)T . We give a refinement of the definition that captures some of the “orbifold data:”

Definition 4.3.1. An n-marked (X,T )-decorated tree Γ̃ = (Γ,Mark, f, d, vdeg) is

• A tree Γ,

• A marking map Mark : {1, . . . , n} → V (Γ),

• A map f of graphs Γ→ ΓX,T ,

• An edge degree map βedge : E(Γ)→ H2(X,Q)e, and

• A vertex degree map vdeg : V (Γ)→ H2(f(v),Q).

• A “monodromy map” Mon that assigns to each i ∈ {1, . . . , n} a component of the inertia
stack of f(Mark(i)), and to each flag (v, e) ∈ F (Γ) a conjugacy class in Gξ(v,e).

Remark 4.3.2. There are various conditions on these objects for the associated moduli space to be
nonempty, such as: if v ∈ V 2(Γ), then Mon(v, e1

v) and Mon(v, e2
v) must be in inverse conjugacy

classes of Gξ(v,e).

In the nonorbifold case, there was a simple description of the T -fixed stable maps from an orb-
ifold P1 to a specified 1-dimensional orbit closure; namely, a map is determined by its ramification
degree at the two fixed points. In the orbifold case, it is much less clear what to do:

• When X is a toric stack, these maps may be computed exactly — this appears in [46], using
methods from [36].
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Figure 4.5: A point with one dimensional T -orbit in Sym17 P2, with i1 = 1 and i2 = 2

• For X = Symd Pr, we are able to compute the maps, and we do so in the next two sections.

• More generally, if X is a quotient of a variety by a finite group G, then the maps may be
described using principal G-bundles.

• If X (or more specifically the specified 1-dimensional orbit) is not toric, and is not a quotient
of a variety by a finite group, then we do not know how to describe the maps.

4.4 T -Fixed points and 1-dimensional T -orbits in Symd Pr

As in Section 3.1.1, we write (d(•) P−→ Pr) to denote a point SpecC→ Symd Pr. We use notation
from Section 3.2.1 for coordinate points and lines in Pr.

Proposition 4.4.1. 1. A point (d(•) P−→ Pr) ∈ Symd Pr is T -fixed if and only if Im(P ) ⊆
{P0, . . . , Pr}.

2. (d(•) P−→ Pr) is in a 1-dimensional T -orbit if and only if (it is not T -fixed and) Im(P ) ⊆
{P0, . . . , Pr} ∪ L{i1,i2} for some 0 ≤ i1, i2 ≤ r. (See Figure 4.5.)

Proof. 1 follows from the description of the T -action on S̃ym
d
Pr, and the fact that {P0, . . . , Pr} is

the T -fixed locus of Pr.
The r-dimensional subtorus defined by ti1 = ti2 acts trivially on {P0, . . . , Pr}∪L{i1,i2}, proving

the backwards direction of 4.4.1. If Im(P ) 6⊆ {P0, . . . , Pr} ∪ L{i1,i2}, the T -orbit is clearly at least
2-dimensional.

Remark 4.4.2. The T -fixed points of Symd Pr are in natural bijection with ZPart(d, r + 1), where
the ith part is the number of points of d(•) mapping to Pi. (See Section 1.7.) We will use this
identification from now on.

By the second part of Proposition 4.4.1, for each 1-dimensional T -orbit there is the associated
data:
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Figure 4.6: The T -graph, and a picture of 1-dimensional orbits, for Sym3 P2

1. Two (unordered) indices i1 and i2,

2. An element of ZPart(d′),where d′ < d is the number of points of P mapping to {P0, . . . , Pr},
and

3. A (d− d′)-tuple of points of L{i1,i2}, up to scaling.

In Figure 4.5, 1 refers to the indices 0 and 2, and 2 refers to the nonnegative ordered partition
(2, 5, 3). (Of course, 3 depends on the relative coordinates of the 7 points on L{0,2}.) Explicitly, this
orbit is obtained from the point shown by simultaneously scaling the 7 points on the line L{0,2}. As
a consequence of Proposition 4.4.1, we obtain a description of ΓSymd Pr,T , pictured in Figure 4.6 for
d = 3 and r = 2. (The frontispiece to this thesis is ΓSym4 P2,T .)

4.5 The T -fixed locus inM0,n(Sym
d Pr, β)

This section, which is in some sense the essential part of the proof of Theorem 6.1.2, draws heavily
on the notations introduced in Sections 1.7, 3.1.1, 3.2.1, and 4.2. We will see that 1-dimensional
orbits in Symd Pr are reasonably well-behaved, in that the behaviors observed in Examples 4.2.14,
4.2.15, and 4.2.18 do not occur. As in Remark 4.2.12, we will define a partial ordering on decorated
trees via chain contractions. The closureMΓ̃ of a minimal decorated treeMΓ̃ is an open and closed
substack ofM0,n(Symd Pr, β)T . Theorem 4.5.23 exhibits each of these substacks as a quotient of a
specific variety by a finite group. The variety in question is a toric compactification of the moduli
spaceM0,n, and parametrizes chains of rational marked curves glued at nodes. It was introduced
by Losev and Manin [47].
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4.5.1 Symd Pr-decorated trees

As above, for a T -fixed stable map f : C → Symd Pr, each component Cν of C maps into the fixed
locus (Symd Pr)T , or maps a 1-dimensional orbit closure, with special points (nodes and marks)
and ramification points mapping to fixed points. Since T acts with isolated fixed points, we refer to
the two types of components as contracted and noncontracted, since those of the first type map to a
single point of Symd Pr.

Lemma 4.5.1. Let (f : C → Symd Pr) ∈ M0,2(Symd Pr, β) be a T -fixed stable map of degree

β > 0 with irreducible source curve. This is a map to a 1-dimensional orbit closure, which by

Proposition 4.4.1 has associated indices i1 and i2. Denote by b1 and b2 the two marked points of C.

Then:

• The associated étale cover ρ : C ′ → C from Section 3.1.1 is a disjoint union of rational

connected components,

• Under the associated map f ′ : C ′ → Pr, each component of C ′ is either contracted to a

T -fixed point of Pr, or maps to the coordinate line L{i1,i2},

• On each component C ′η of the latter type, ρ−1(b1) and ρ−1(b2) are each a (single) fully

ramified point, and

• If cη is the degree of ρ|C′η : C ′η → C and βη is the (coarse) degree of f ′|C′η : C ′η → L{i1,i2},

then the ratio q := βη/cη is independent of η (where η runs over noncontracted components

of C ′).

Proof. The first three statements follow from the fact that C has exactly two orbifold points, and
from Proposition 4.4.1. It is straightforward to check that the last statement is equivalent to the
fact that the T -action is compatible with the map ρ, i.e. that the action of λ ∈ T corresponds to
changing coordinates on C.

Remark 4.5.2. The same statement and proof apply toM0,1(Symd Pr, β) andM0,0(Symd Pr, β)

and in these cases we have a slightly stronger statement: since C has at most one orbifold point, it
has no nontrivial étale cover, i.e. C ′ ∼= C × {1, . . . , d}.

For X = Symd Pr, we translate Definition 4.3.1 into the following equivalent, and more explicit,
definition.

Definition 4.5.3. An n-marked (Symd Pr, T )-decorated tree Γ̃ = (Γ,Mark,VEval, q,Mon) is

• A tree Γ,
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• A marking map Mark : {1, . . . , n} → V (Γ),

• A “vertex evaluation map” VEval = (VEval0, . . . ,VEvalr) : V (Γ) → ZPart(d, r + 1),

where ZPart(d, r + 1) is the set of nonnegative ordered partitions of d of length r + 1,

• An “edge degree ratio” map q : E(Γ)→ Q>0,

• A “monodromy map” Mon that assigns to each i ∈ {1, . . . , n} an element of the set
MultiPart(VEval(Mark(i))) of multipartitions (see Section 1.7) of VEval(Mark(i)), and
assigns to a flag (v, e) ∈ F (Γ) an element of MultiPart(VEval(v)),

subject to the conditions:

1. If e is an edge of Γ connecting vertices v and v′, then VEvalk(v) = VEvalk(v
′) for all

but exactly two 0 ≤ k ≤ r, denoted imov(v, e) and imov(v′, e), which are defined so that
VEvalimov(v,e)(v)− VEvalimov(v,e)(v

′) > 0,,

2. If e is an edge connecting vertices v and v′, then for i 6= imov(v, e), imov(v′, e), Moni(v, e)

is equal2 (as a partition of VEvali(v) = VEvali(v
′)) to Moni(v

′, e). Furthermore, we have
Monimov(v,e)(v

′, e) ⊆ Monimov(v,e)(v, e), Monimov(v′,e)(v, e) ⊆ Monimov(v′,e)(v, e), and the
relation between complements holds:

Monimov(v,e)(v, e) r Monimov(v,e)(v
′, e) = Monimov(v′,e)(v

′, e) r Monimov(v′,e)(v, e) =: Mov(e),

3. For η ∈ Mov(e), we have q(e)η ∈ Z,

4. If v ∈ V 1(Γ) then Mon(v, ev) is the ones multipartition of VEval(v),

5. If v ∈ V 1,1(Γ) with v = Mark(i), then Mon(v, ev) = Mon(i), and

6. If v ∈ V 2(Γ), then Mon(v, e1
v) = Mon(v, e2

v).

Definition 4.5.4. Let Γ̃ be an n-marked (Symd Pr, T )-decorated tree Γ̃. If e ∈ E(Γ)v,v′ , then
the degree of e is βedge(e) := q(e)(VEvalimov(v,e)(v) − VEvalimov(v,e)(v

′)). The degree of Γ̃ is
β(Γ̃) =

∑
e∈E(Γ) βedge(e).

Remark 4.5.5. We explain why this is equivalent to Definition 4.3.1.

2Here Mon(v, e) is an r + 1-tuple of partitions, which we index by {0, . . . , r}, so that Moni(v, e) is the (i− 1)st
partition.
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• Because ΓSymd Pr,T has a unique edge between any two adjacent vertices, the map f is
determined by the induced map of vertex sets fv : V (Γ) → V (ΓSymd Pr). The map VEval

above is exactly this map, since we saw in Section 4.4 that fixed points of Symd Pr are in
natural bijection with ZPart(d, r + 1). Condition 1 in the definition guarantees that VEval

comes from a map of graphs.

• By Lemma 4.5.1, the edge degree map in Definition 4.5.4 agrees with the one in Definition
4.3.1.

• Since T acts with isolated fixed points, vdeg is trivial.

• The sets MultiPart(VEval(Mark(i))) and MultiPart(VEval(v)) are in bijection with the
sets of appropriate conjugacy classes, so the monodromy map defined here is the same as that
in Definition 4.3.1.

The analog of Proposition 4.2.7 holds:

Proposition 4.5.6. There is a natural map

Ψ : (M0,n(Symd Pr, β))T → Trees0,n(Symd Pr, β).

The proof is identical to that of Proposition 4.2.7, with the obvious definition of the map Mon.

Remark 4.5.7. Conditions 2–6 on a decorated tree eliminate decorated trees for which MΓ̃ is
trivially empty:

• Condition 2 is the condition that the monodromies at the two fixed points of a noncontracted
component are compatible. (Unlike the others, this is specific to Symd Pr.)

• Condition 3 requires that the map f ′|C′η be a ramified cover with integer degree. (See Lemma
4.5.1)

• Condition 4 says that if a point of C mapping to a T -fixed point is not special, then it is not
an orbifold point, hence has trivial monodromy.

• Condition 5 says that if a point of C mapping to a T -fixed point is marked, then the mon-
odromy is the same whether this point is viewed as ξ(v, e) or the ith marking.

• Condition 6 says that if the monodromy at the two branches of a node must be inverses, when
both branches are noncontracted.
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These conditions are still not enough to guarantee thatMΓ̃ is nonempty. Another, more complicated,
condition is needed on the set of monodromies at special points on a contracted component. Namely,
there must exist a ramified degree d cover of P1 whose ramification profile is given by that set of
monodromies. This is equivalent to the nonemptiness of a Hurwitz space Hv associated to each
vertex v with

∣∣Mark−1(v)
∣∣+ val(v) ≥ 3.

Alternatively, we could include in Definition 4.5.3 the additional data of a connected component
of each Hurwitz spaceHv. (We could even defineHv by convention when

∣∣Mark−1(v)
∣∣+val(v) < 3,

in which case Conditions 4– 6 of Definition 4.5.3 would no longer be necessary.) In this case,
Theorem 4.5.23 would imply thatMΓ̃ is nonempty and connected. However, we do not adopt this
definition, because the combinatorial description of the connected components of a Hurwitz space
is quite complicated.

Notation 4.5.8. Note that the isotropy group at ξ(v, e) (resp. bi) has order lcm(Mon(v, e)) (resp.
lcm(Mon(i))). For brevity we denote this by r(v, e) (resp. ri).

We now describe how the spacesMΓ̃ fit together via chain contractions (as defined in Remark
4.2.12). In particular, Theorem 4.5.15 tells us that any chain contraction gives rise to a limiting
process of stable maps.

Definition 4.5.9. Let Γ̃ ∈ Trees0,n(Symd Pr, β), and let e1, e2 ∈ E(Γ). We say e1 and e2 are
combinable, and write e1 ‖ e2, if there exists v ∈ V 2(Γ̃) with {e1, e2} = {e1

v, e
2
v} and the following

hold:

• q(e1) = q(e2),

• imov(v1, e1) = imov(v, e2) and

• imov(v, e1) = imov(v2, e2).

Denote by P ⊆
(
E(Γ)

2

)
the set of pairs {{e1, e2} : e1 ‖ e2}.

Fix (f : C → Symd Pr) ∈MΓ̃. We compute that for a flag (v, e) with e = {v, v′}, the tangent
weight at ξ(v, e) along Ce is w(v, e) =

αimov(v,e)−αimov(v′,e)
q(e)

. Thus two edges are combinable if and
only if they correspond to components of C separated by a nonbreaking node.

Definition 4.5.10. Let (v, e) ∈ F (Γ). We say (v, e) is a steady flag if either of the following holds:

1. v 6∈ V 2(Γ), or

2. v ∈ V 2(Γ) and {e1
v, e

2
v} 6∈ P .

Otherwise (v, e) is unsteady.
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Figure 4.7: Combining edges
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Figure 4.8: Combining two pairs of edges

Definition 4.5.11. Let Γ̃ ∈ Trees0,n(Symd Pr, β) and let e1 ‖ e2 be a pair of combinable edges. We
may define a new decorated tree Comb(Γ̃, e1 ‖ e2) ∈ Trees0,n(Symd Pr, β) by combining e1 and
e2. In other words, we delete the vertex v and the edges e1 and e2, and add an edge e12 = {v1, v2}
with q(e12) = q(e1) = q(e2), Mon(v1, e12) = Mon(v1, e1), and Mon(v2, e12) = Mon(v2, e2). (See
Figure 4.7.) It is easy to check that Γ̃(e1, e2) satisfies the two conditions of a decorated tree, and that
Mov(e12) = Mov(e1) ∪Mov(e2), and Mon(e12) = Mon(e1) = Mon(e2). There is a natural map
φ{e1,e2} : E(Γ)→ E(Comb(Γ̃, e1 ‖ e2)) with φ{e1,e2}(e1) = φ{e1,e2}(e2) = e12, and φ{e1,e2}(e) = e

for e ∈ E(Γ) r {e1, e2}.

Proposition 4.5.12. Let Γ̃ ∈ Trees0,n(Symd Pr, β), and let e1 ‖ e2 and e′1 ‖ e′2 be two distinct

pairs of combinable edges of Γ. Then φ{e1,e2}(e
′
1) ‖ φ{e1,e2}(e′2) as edges of Comb(Γ̃, e1 ‖ e2) and

φ{e′1,e′2}(e1) ‖ φ{e′1,e′2}(e2) as edges of Comb(Γ̃, e′1 ‖ e′2). Also, combining pairs commutes, i.e.

Comb(Comb(Γ̃, e1 ‖ e2), e′1 ‖ e′2) ∼= Comb(Comb(Γ̃, e′1 ‖ e′2), e1 ‖ e2),

and this isomorphism identifies the maps φ{e1,e2} ◦ φ{e′1,e′2} and φ{e′1,e′2} ◦ φ{e1,e2}.

Proof. There are two cases, pictured in the left side of Figure 4.5.1; either the pairs e1 ‖ e2 and
e′1 ‖ e′2 share an edge, or they do not. Suppose we are in the first case, i.e. the top line of Figure
4.5.1. By definition of φ{e1,e2}, the edges φ{e1,e2}(e

′
1) and φ{e1,e2}(e

′
2) meet at v′ (precisely, at the

corresponding vertex in Comb(Γ̃, e1 ‖ e2)), and satisfy the three conditions of Definition 4.5.9. Thus
φ{e1,e2}(e

′
1) ‖ φ{e1,e2}(e′2). Similarly φ{e′1,e′2}(e1) ‖ φ{e′1,e′2}(e2). To see that Comb(Comb(Γ̃, e1 ‖

e2), e′1 ‖ e′2) ∼= Comb(Comb(Γ̃, e′1 ‖ e′2), e1 ‖ e2), we note that both are obtained from the tree

52



in Figure 4.5.1 by replacing the three edges shown with a single edge e connecting v1 to v′2. The
decorations on this edge are:

• q(e) := q(e1) = q(e2) = q(e′2),

• Mon(e) := Mon(e1) = Mon(e2) = Mon(e′2),

• imov(v1, e) := imov(v1, e1) = imov(v, e2) = imov(v′, e′2), and

• imov(v′2, e) := imov(v2, e
′
2) = imov(v′, e2) = imov(v, e1),

where the equalities follow from e1 ‖ e2 and e2 ‖ e′2. The maps φ{e1,e2}◦φ{e′1,e′2} and φ{e′1,e′2}◦φ{e1,e2}
both send all of e1, e2 = e′1, and e′2 to e.

The second case (the bottom line of 4.5.1) is a special case of this argument, so we omit it.

Corollary 4.5.13. Let Γ̃ ∈ Trees0,n(Symd Pr, β), and let E be any subset of the set P(Γ̃) of pairs

of combinable edges in Γ. Then there is a well-defined tree Comb(Γ̃, E) ∈ Trees0,n(Symd Pr, β)

obtained by combining all edge pairs in E , in any order, and a well-defined associated map

φE : E(Γ)→ E(Comb(Γ̃, E)). Furthermore, E is determined by the trees Γ̃ and Comb(Γ̃, E), and

the map φE .

Proof. The existence statement comes from repeatedly applying Proposition 4.5.12. The uniqueness
statement amounts to the fact that if e1 ‖ e2 is a compatible pair of edges in Γ̃, then φE(e1) = φE(e2)

if and only if (e1, e2) ∈ E . This follows from factoring φE as a sequence of edge combination maps
as in Definition 4.5.11.

Corollary 4.5.13 may be restated as follows. Definition 4.5.11 determines a partial order ≤
on Trees0,n(Symd Pr, β), where Γ̃′ ≤ Γ̃ if Γ̃′ can be obtained from Γ̃ by combining edges. The
Corollary then states that for Γ̃ ∈ Trees0,n(Symd Pr, β), there is a natural order-reversing bijection
between {Γ̃′ : Γ̃′ ≤ Γ̃} and {subsets of P(Γ̃)}, where the latter is partially ordered by inclusion. In
particular, associated to Γ̃ is a unique minimal decorated tree Comb(Γ̃,P(Γ̃)).

Notation 4.5.14. Denote by Treesmin
0,n (Symd Pr, β) ⊆ Trees0,n(Symd Pr, β) the set of minimal

elements with respect to ≤.

Theorem 4.5.15. Let Γ̃0 ∈ Trees0,n(Symd Pr, β). The closure of Ψ−1(Γ̃0) is⋃
Γ̃∈Trees0,n(Symd Pr,β)

Γ̃0≤Γ̃

Ψ−1(Γ̃),

where Ψ is the map from Proposition 4.2.7.
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Lemma 4.5.16. Let Γ̃0 = •v1
e •v2 , where each of v1 and v2 contains a single marked point,

b1 and b2. Let f : C → Symd Pr be in the closure of Ψ−1(Γ̃0), and let ρ : C ′ → C and f ′ : C ′ → Pr

be the associated maps. Write C ′η for a noncontracted irreducible component of C ′, corresponding

to η ∈ Mov(e) ⊆ Mon(e), as described in Lemma 4.5.1. Denote by Le := L{imov(v1,e),imov(v2,e)} the

line in Pr connecting Pimov(v1,e) and Pimov(v2,e). Then:

1. C and C ′η are nodal chains of rational curves,

2. f ′|C′η maps one irreducible component of C ′η to Le with degree βη(e) = q(e) · η (on coarse

moduli spaces), and is fully ramified at the two special points of this component, and

3. f ′|C′η contracts all other irreducible components of C ′η to one of the endpoints of Le.

Proof of Lemma. Let f : C → Pr be a family over S of stable maps whose generic fiber is in
Ψ−1(Γ̃0), and let s ∈ S such that the fiber over s is the stable map f : C → Symd Pr. After an étale
base change S̃ → S, C ′ is a union of connected components C ′η indexed by Mon(e), and the maps
C ′η → C have degrees determined by Mon(e).

Consider the Stein factorization relative to S:

C ′η
sf−→ C ′η

f ′−→ Pr.

The pullbacks along f ′ of the divisors Pimov(v1,e) and Pimov(v2,e) on Le are divisors on C ′η, that by the
definition of the Stein factorization do not contain a component of any fiber. On a generic fiber,
these divisors are each supported on a single point, i.e. ρ−1(b1) and ρ−1(b2). Thus on the fiber C ′η
over s, the divisors are still supported on single points, and ρ−1(b1) and ρ−1(b2) each lie above one
of these points. (Also, the points are distinct since f ′ is well-defined.)

As any component of C ′η maps surjectively to Le, the above implies that C ′η is irreducible. This
proves claims (2) and (3).

Since f ′ is T -fixed, any irreducible components of C ′η that are contracted by f ′ map to either
Pimov(v1,e) or Pimov(v2,e), i.e. they lie over either (f ′)−1(Pimov(v1,e)) or (f ′)−1(Pimov(v2,e)). Also, all
nodes of C ′η lie over one of these two points. Since η was arbitrary, this shows that any irreducible
component D of C ′ that is not contracted by f ′ has at most two special points, where a special point

here means either a node or one of the points ρ−1(b1) and ρ−1(b2). Since ρ−1(b1) and ρ−1(b2) lie
above distinct points of D, D has exactly two special points.

If C is not a chain, some component has only one special point. By stability there is a component
D of ρ−1(D) that is not contracted by f ′, which contradicts the fact that D has two special points.
Thus C is a chain, and it follows that each connected component C ′η is a chain. This proves claim
(1).
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· · ·

· · ·

C ′η

· · · · · ·C • •

Le

• Pimov(v1,e)

• Pimov(v2,e)

Figure 4.9: A portion of a map in Ψ−1(Γ̃0), with η = 1 and q(e) = 3

Remark 4.5.17. In summary, the restriction to C ′η of a point in Ψ−1(Γ̃0) may be represented as in
Figure 4.5.1 (where despite appearances we mean for the map to Le to have a single preimage point
over each of Pimov(v1,e) and Pimov(v2,e)).

Proof of Theorem 4.5.15. It is sufficient to consider the situation of Lemma 4.5.16. To see this, note
that any Γ̃0 ∈ Trees0,n(Symd Pr, β) may be decomposed into subtrees of the form in the Lemma,
together with single-vertex trees, glued at marked points. There is a corresponding decomposition
of Ψ−1(Γ̃0) as a product (up to a finite morphism), and this decomposition extends to the closure
(see [2], Section 5.2, or [46], Section 9.2). Thus we may treat each factor of the product separately.

First, we show
Ψ−1(Γ̃0) ⊆

⋃
Γ̃,Γ̃0≤Γ̃

Ψ−1(Γ̃).

Let (f : C → Pr) ∈ Ψ−1(Γ̃0). It follows from Lemma 4.5.16 that f−1((Symd Pr)T ) is exactly the
set of nodes of C, together with the two marked points. By stability, all irreducible components of
C are noncontracted. Thus the tree Ψ(f : C → Symd Pr) is a chain with a vertex for each node and
marked point, and an edge for each irreducible component.

Denote by v1 and v2 the leaves of C, such that v1 = {b1} and v2 = {b2}. For v 6= v1, v2, we
have Mark−1(v) = ∅. By claim 2 of Lemma 4.5.16, the degree ratios q(e) are equal for all edges
e. By the description of the connected components of C ′, the partitions Mon(e) are equal for all
e. Finally, deleting an edge e breaks C into two connected components, one containing v1 and
one containing v2. Let v be on the component with v1, and v′ on the component with v2, such
that e = {v, v′}. Then from the proof of Lemma 4.5.16, we have imov(v, e) = imov(v1, e12) and
imov(v′, e) = imov(v2, e12). Thus any pair of adjacent edges in Ψ(f : C → Symd Pr) is combinable.
Combining them all yields Γ̃0, i.e. Γ̃0 ≤ Ψ(f : C → Symd Pr).
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For the converse, by induction on
∣∣∣E(Γ̃)

∣∣∣− ∣∣∣Γ̃0

∣∣∣ =
∣∣∣E(Γ̃)

∣∣∣− 1, it is sufficient to show that

Ψ−1(Γ̃0) ⊇
⋃

Γ̃ such that
Γ̃0=Comb(Γ̃,e1‖e2)

for some e1 ‖ e2 ∈ P(Γ̃)

Ψ−1(Γ̃).

Fix such a tree Γ̃ = •v1
e1 •v

e2 •v2 , and fix (f : C → Symd Pr) ∈ Ψ−1(Γ̃).We will construct
a family f : C → Symd Pr over C whose restriction to 0 ∈ C is the map f : C → Symd Pr.

By Lemma 4.5.1 and by representability of f : C → Symd Pr, the orbifold points and nodes ofC
have order lcm(Mon(e1)) = lcm(Mon(e2)). Thus C is isomorphic to V (xy) ⊆ [P2/µlcm(Mon(e1))],

where P2 has coordinates x, y, z, and lcm(Mon(e1)) acts by multiplication by inverse roots of unity
on the first two coordinates. Define C so that Ct = V (xy − tz2) for t ∈ C. Precisely, C is an open
subset of

[
B`[1:0:0],[0:1:0]P2/µlcm(Mon(e1))

]
.

For η ∈ Mon(e1) a part, there is an étale quotient map ρ̃ : [P2/µη]→ [P2/ lcm(Mon(e1))]. As
above, define (C ′η)t = V (xy − tz2) ⊆ [P2/µη].

We must now define a map f̃ ′ : C ′η → Pr for each η ∈ Mon(e1). As Pr is a variety, it is
enough to define this on coarse moduli spaces. We choose isomorphisms of the fibers (C ′η)0 and
C0 with C ′η and C respectively, such that the maps ρ̃ and ρ are identified. Then f ′ defines a map
f̃ ′0 : (C ′η)0 → Le1 = Le2 . (The case where C ′η is contracted is trivial, so we assume it is not
contracted.) By Lemma 4.5.16, after equivariantly identifying Le1 ∼= P1, f̃ ′0 is given (without loss
of generality, on coarse moduli spaces) by

[x : 0 : z] 7→ [0 : 1]

[0 : y : z] 7→ [yβη(e1) : zβη(e1)].

It remains to extend this to a map f̃ ′ : C ′η → Le1 that is fixed with respect to the T -action, i.e. fully
ramified over the endpoints of Le1 . We observe that the rational map

[x : y : z] 7→ [yβη(e1) : zβη(e1)]

is regular after blowing up the point [1 : 0 : 0]. This defines a map f̃ ′ as desired. Doing this for all η
simultaneously shows that f : C → Symd Pr is in Ψ−1(Γ̃0) as desired.

Because (M0,n(Symd Pr, β))T =
⋃

Γ̃ Ψ−1(Γ̃), we have:

Corollary 4.5.18. Let Γ̃ ∈ Treesmin
0,n (Symd Pr, β). Then Ψ−1(Γ̃) is an open and closed substack of

(M0,n(Symd Pr, β))T . We denote it byMΓ̃.
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4.5.2 An explicit description ofMΓ̃

In order to describeMΓ̃ , we recall certain moduli spaces of marked curves, studied originally by
Losev and Manin [47].

Definition 4.5.19. Let k ≥ 1, and fix a 2-element set {0,∞}. An 0|k|∞-marked Losev-Manin

curve is a connected genus zero k + 2-marked nodal curve (C, b0, b1, . . . , bk, b∞), satisfying:

• The irreducible components of C form a chain, with two leaves C0 and C∞,

• The points b0, b1, . . . , bk, b∞ are smooth points of C, with b0 ∈ C0 and b∞ ∈ C∞,

• bi 6= 0 and bi 6=∞ for i = 1, . . . , k (though it is possible that bi = bj for i 6= j), and

• Each irreducible component of C contains at least one point of b1, . . . , bk.

Theorem 4.5.20 (Losev-Manin [47], Theorems 2.2 and 2.6.3). The moduli space of 0|k|∞-marked

Losev-Manin curvesM0|k|∞ is a smooth, proper variety, and the natural morphism ϕ :M0,k+2 →
M0|k|∞ is birational.

Remark 4.5.21. The spacesM0|k|∞ are special cases of moduli spaces of weighted stable curves,
developed by Hassett [31], and Theorem 4.5.20 is a special case of Theorems 2.1 and 4.1 of
[31]. Specifically, there is a natural isomorphismM0|k|∞ →M0,A, where A is the weight datum
(1, ε, ε, . . . , ε, 1) of length k + 2, for ε ≤ 1/k.

Definition 4.5.22. Let s ≥ 1 be an integer. An order s orbifold 0|k|∞-marked Losev-Manin curve

is a k + 2-marked twisted curve (C, b0, b1, . . . , bk, b∞) (in the sense of [51]) whose coarse moduli
space is a k-marked Losev-Manin curve, such that C has orbifold structure only at b0, b∞, and the
nodes of C, all of which have order s.

By standard arguments about twisted curves, the moduli space Ms

0|k|∞ of order s orbifold
k-marked Losev-Manin curves has a natural isomorphismMs

0|k|∞ → M0|k|∞ that comes from
taking coarse moduli spaces. The rest of this section proves the following:

Theorem 4.5.23. For a stable vertex v or edge e = {v1, v2} of a minimal decorated tree Γ̃ =

(Γ,Mark,VEval, q,Mon) ∈ Treesmin
0,n (Symd Pr, β), we define

Mv : =M
0,
−−→
Mon(v)

(BSVEval(v), 0)

Me : =

Mlcm(Mon(e))

v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

 ,
where:
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•
−−→
Mon(v) is the list of multipartitions {Mon(i)}i∈Mark−1(v) ∪ {Mon(v, e)}(v,e)∈F (Γ),

• Mlcm(Mon(e))

v1|mov(e)|v2
is the order lcm(Mon(e)) orbifold Losev-Manin space with mov(e) marked

points b1, . . . , bmov(e) and labeling set {v1, v2},

• Se is the group CStat(e) × SMov(e), where CStat(e) is the centralizer of any element of the

conjugacy class Stat(e) in
∏r

i=0 S|Stat(e)i|, and acts trivially on the Losev-Manin space,

• A generator of µβη(e) acts by translating the marked point bη by e2πi/q(e), and

• wr denotes the wreath product.

Then the substackMΓ̃ associated to Γ̃ is isomorphic (see Remark 4.5.24) to ∏
v∈V S(Γ)

Mv ×
∏

e∈E(Γ)

Me

/Aut(Γ)

 . (4.4)

Remark 4.5.24. More precisely, MΓ̃ has extra automorphisms coming from gluing at nodes,
and is thus a gerbe over (4.4). Gluing of components is fibered over the rigidified inertia stack
I Symd Pr (see [2] or [46]). In particular, for each steady flag (v, e) of Γ̃, we get an extra factor
of
∣∣CVEval(v)(Mon(v, e))

∣∣ /r(v, e) in the fundamental class of MΓ̃, where CVEval(Mon(v, e)) is
the centralizer of any element of the conjugacy class Mon(v, e) of GVEval(v). (We make the usual
correction for double counting when v ∈ V 2(Γ).)

Proof of 4.5.23. Using the gluing morphisms, we may write

MΓ̃
∼=

 ∏
v∈V (Γ)

M
0,
−−→
Mon(v)

(BSVEval(v), 0)×
∏

e∈E(Γ)

M0,{Mon(e),Mon(e)}(Le, β(e))T

/Aut(Γ)

 ,
We need to show that, for all e = {v1, v2} ∈ E(Γ), we have

M0,{Mon(e),Mon(e)}(Le, β(e))T ∼=

Mlcm(Mon(e))

v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

 .
( Note that the left hand side is isomorphic toMΓ̃e

for Γ̃e = •v1
e •v2 , where the decorations

on Γ̃e are induced from Γ̃. (Here the two vertices are labeled, i.e. Aut(Γ̃e) = 1.) Write Pe :=

P(imov(v1,e),imov(v2,e)) for the midpoint of Le. For (f : C → Pr) ∈MΓ̃e
, consider the preimage of Pe

under the associated map f ′ : C ′ → Pr. By Lemma 4.5.16, C ′ is a union of connected components
C ′η for η ∈ Mon(e), and if η ∈ Mov(e) then the preimage of Pe on C ′η consists of βη(e) points on
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the single noncontracted component of C ′η. These points are µβη(e)-translates of each other, under
the natural action that fixes the two special points.

After a principal (
∏

η∈Mov(e) µβη(e) wrSe)-cover M̃Γ̃e
→ MΓ̃e

, we may fix a labeling of the
connected components C ′η, and label a distinguished preimage of Pe on C ′η for η ∈ Mov(e). (The
Se-cover removes all automorphisms of stable maps induced by automorphisms of the image curve
that commute with the monodromy at bv1 and bv2 .) Remembering the images of these distinguished
points under ρ yields a nodal chain of rational curves with mov(e) labeled marked points, none
of which coincides with bv1 or bv2 . The stability condition forM0,{Mon(e),Mon(e)}(Le, β(e)) implies
that this is a Losev-Manin curve, with orbifold points of order lcm(Mon(e)) at marked points and
nodes. This construction works in families, so it defines a map M̃Γ̃e

→ Mlcm(Mon(e))

v1|mov(e)|v2
, which is

equivariant by definition with respect to the action of
∏

η∈Mov(e) µβη(e) wrSe. This gives a map

Φ :MΓ̃e
→

Mlcm(Mon(e))

v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

 .
We now construct an inverse to this map. Let (C, bv1 , b1, . . . , bmov(e), bv2) ∈ Mlcm(Mon(e))

v1|mov(e)|v2

be a Losev-Manin curve whose points are indexed by the multiset Mov(e). Fix a curve C ′ =⊔
η∈Mon(e) C

′
η with étale maps ρη : C ′η → C of degree η. This may be done uniquely up to

isomorphism. Also, uniquely up to isomorphism (of C ′ commuting with ρ : C ′ → C), for each
η ∈ Mov(e) ⊆ Mon(e) we may choose a preimage point b′η ∈ C ′η of the corresponding marked
point bη ∈ C. Finally, there is a unique map f ′ : C ′ → Pr that sends:

• C ′η to a T -fixed point, for η 6∈ Mov(e),

• C ′η to Le with degree βη(e), with b′η mapping to Pe, ρ−1(bv1) mapping to Pimov(v1,e) and
ρ−1(bv2) mapping to Pimov(v2,e), for η ∈ Mov(e).

Again, this works in families, and defines a map Θ̃ : Mlcm(Mon(e))

v1|mov(e)|v2
→ MΓ̃e

, which we claim is
invariant under the action of

∏
η∈Mov(e) µβη(e) wrSe. Indeed, acting by e2πi/q(e) on bη translates the

preimage b′η by some power of e2πi/βη(e), and commutes with f ′. Thus Θ̃ descends to a map

Θ :

Mlcm(Mon(e))

v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

→MΓ̃e
,

which is by construction an inverse to Φ.

Corollary 4.5.25. The (
∏

η∈Mov(e) µβη(e) wrSe)-action on Mlcm(Mon(e))

v1|mov(e)|v2
extends to the universal

curve, so we have a universal curve onMe, and by gluing, a universal curve on the left side of

(4.4). The isomorphism of 4.5.23 naturally identifies this with the universal curve onMΓ̃.
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Proof. The first statement is by definition of the action, and the second is immediate from the proof
of Theorem 4.5.23.

Remark 4.5.26. Theorem 4.5.23 shows in particular thatMΓ̃e
is irreducible, so connected compo-

nents of (M0,n(Symd Pr, β))T are indexed by minimal decorated trees with the additional data of a
connected component ofM−−→

Mon(v)
(BSVEval(v), 0) for each v.

Notation 4.5.27. For a special flag (v, e) ∈ F (Γ), we denote by ψMe
v the ψ-class onMe at the point

labeled by v. If v ∈ V S(Γ̃), we denote by ψMv
e the ψ-class onMv at the marked point ξ(v, e). We

use the same notation for the ψ-classes.

4.6 The virtual normal bundle and virtual fundamental class
ofMΓ̃

In this section we compute the Euler class of the virtual normal bundle toMΓ̃, and show that the
virtual fundamental class of MΓ̃ is equal to its fundamental class. Many of the arguments are
“classical,” and we refer the reader to [46] for these.

In this section we fix Γ̃ ∈ Treesmin
0,n (Symd Pr, β). Let π : C →MΓ̃ and ρ : C ′ → C denote the

universal curve and universal étale cover, respectively:

C ′ Pr

C Symd Pr

MΓ̃

f ′

ρ

f

π

By a standard argument (see [46], Section 9.3), we have an exact sequence of T -equivariant
sheaves onM0,n+1(Symd Pr, β) giving the perfect obstruction theory3

0→ Aut(C)→ R0π∗(C, f ∗T Symd Pr)→ Def(C, f)→ (4.5)

→ Def(C)→ R1π∗(C, f ∗T Symd Pr)→ Obs(C, f)→ 0,

where Aut(C) (resp. Def(C)) is the sheaf onM0,n+1(Symd Pr) of infinitesimal automorphisms
(resp. deformations) of the marked source curve C. (See [46] for rigorous definitions.) For

3We will always use the notation in (4.5) for higher direct image sheaves, writing e.g. Riπ∗(C, f∗T Symd Pr)
instead of Riπ∗f∗T Symd Pr. This is because we will restrict π to various substacks of C, and wish to avoid renaming
maps.
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(f : C → Symd Pr) ∈MΓ̃, we also have a normalization exact sequence computing the fibers of
the middle terms:

0→ H0(C, f ∗T Symd Pr)→
⊕
ν

H0(Cν , f
∗T Symd Pr)→

⊕
ξ

H0(ξ, f ∗T Symd Pr)→ (4.6)

→ H1(C, f ∗T Symd Pr)→
⊕
ν

H1(Cν , f
∗T Symd Pr)→ 0,

where ν runs over the set of irreducible components ofC, and ξ runs over nodes ofC. The sequences
(4.5) and (4.6) each split as direct sums of two exact sequences: the T -fixed part and the T -moving
part. We use the notations Aut(C)fix and Aut(C)mov (and similar) to denote the T -fixed subsheaf or
subspace and its T -invariant complement. By definition (see [29]), the Euler class of the virtual

normal bundle eT (Nvir
Γ̃

) is

eT (Def(C, f)mov)

eT (Obs(C, f)mov)
=
eT (Def(C)mov)eT (R0π∗(C, f ∗T Symd Pr)mov)

eT (Aut(C)mov)eT (R1π∗(C, f ∗T Symd Pr)mov)
∈ H∗T (MΓ̃,Q), (4.7)

and the virtual fundamental class [MΓ̃]vir of MΓ̃ is eT (Obs(C, f)fix). We compute the various
terms of (4.5) and (4.6) one by one. It is convenient to compute by pulling back to the canonical
Aut(Γ)-coverMrig

Γ̃ ofMΓ̃, so that the correspondence between C and Γ̃ is more concrete.

The sheaves Aut(C) and Def(C). In the toric case, from [46] Section 9.3.1, we have

eT (Aut(C)mov) =
∏

v∈V 1(Γ̃)

eT (Tξ(v,ev)C) =
∏

v∈V 1(Γ̃)

ψMev
v . (4.8)

The same argument and answer apply here, using (Theorem 4.5.15 and) the observation that
combining edges gives a natural identification of V 1(Γ̃). Briefly, moving automorphisms come
from noncontracted components with only one special point, and correspond to vector fields on
such a component that are nonvanishing at the nonspecial T -fixed point.

Similarly, in the toric case [46] Section 9.3.2 gives

eT (Def(C)) =

 ∏
v∈V 2(Γ̃)

(v, e1v) steady

(−ψ
M

e1v
v − ψ

M
e2v

v )


 ∏

(v,e)∈F (Γ)

v∈V S(Γ̃)

(−ψMv
e − ψMe

v )

 . (4.9)

This is again correct in our case. The factors in (4.9) come from smoothing nodes. (Classically,
the deformation space of a node is the tensor product of the tangents spaces to the two branches.)
Therefore the observation we need is that breaking nodes correspond to steady flags.
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The bundles R0π∗(C, f ∗T Symd Pr) and R1π∗(C, f ∗T Symd Pr). We use the sequence (4.6). The
computation is very similar to the original one by Kontsevich [41] (and the orbifold computations
of Johnson [36] and Liu [46]), but requires some care due to the edge moduli spaces.

Because normalization does not commute with base change, (4.6) only computes fibers of
Riπ∗(C, f ∗T Symd Pr). However, normalization of breaking nodes does commute with base change
onMrig

Γ̃ , because the set of breaking nodes is canonically identified for any two points ofMrig

Γ̃ .
Thus we have the sequence

0→ R0π∗(C, f ∗T Symd Pr)→
⊕
ν

R0π∗(Cν , f ∗T Symd Pr)→
⊕
ξ

R0π∗(ξ, f
∗T Symd Pr)→

→ R1π∗(C, f ∗T Symd Pr)→
⊕
ν

R1π∗(Cν , f ∗T Symd Pr)→ 0, (4.10)

where ν runs over maximal subcurves of C containing only nonbreaking nodes, and ξ runs over
breaking nodes. (Cν may contain a single branch of a breaking node, but not both branches.) Observe
that either Cν is contracted by f , or each fiber Cν of Cν contains only noncontracted components.

By Section 3.1.2, we have

Riπ∗(Cν , f ∗T Symd Pr) = Riπ∗(Cν , ρ∗(f ′)∗TPr) = Ri(π ◦ ρ)∗(Cν ′, (f ′)∗TPr).

(The second equality follows from the fact that ρ is étale, hence ρ∗ is exact.) After an étale base
change, we may distinguish the connected components of fibers of C ′ν →M

rig

Γ̃ . In other words, we
may write

C ′ν =
⊔
η

C ′ν,η,

where C ′ν,η has connected fibers. Then

Riπ∗(C ′ν , (f ′)∗TPr) =
⊕
η

Ri(π ◦ ρ)∗(C ′ν,η, (f ′)∗TPr). (4.11)

If Cν = Cv is contracted, then (f ′)∗TPr is trivial on C ′ν,η. Thus we have

Ri(π ◦ ρ)∗(C ′ν,η, (f ′)∗TPr) ∼= Ri(π ◦ ρ)∗(C ′ν,η,OC′ν,η)⊗ TPi(η)
Pr,

where as usual we write Pi(η) for f ′(C ′ν,η). In particular,

R0π∗(Cv, f ∗T Symd Pr)fix = R1π∗(Cν , f ∗T Symd Pr)fix = 0. (4.12)
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The bundle R1π∗(Cv, f ∗T Symd Pr)mov is nontrivial, and is isomorphic to a Hurwitz-Hodge bundle
(see [46], Section 7.5). However, note that eT (Rπ∗(Cv, f ∗T Symd Pr)) is the inverse of the twisting
class from (2.6). We will use this fact in Section 5.1 in our characterization of LSymd Pr , and in
Section 6.2.3 to apply the orbifold quantum Riemann-Roch theorem.

Similarly for a breaking node ξ(v, e), we have

R0π∗(ξ(v, e), f
∗T Symd Pr)fix = 0 (4.13)

R0π∗(ξ(v, e), f
∗T Symd Pr)mov = T(VEval(v),Mon(v,e))I Symd Pr =

⊕
η∈Mon(v,e)

TPi(η)
Pr.

Suppose Cν is not contracted. The components C ′ν,η are in bijection with Mon(e), where e is the
edge of Γ̃ corresponding to Cν .) First, we argue that R1(π ◦ ρ)∗(C ′ν,η, (f ′)∗TPr) vanishes for all η.
The normalization exact sequence for a fiber C ′ν,η reads:

0→ H0(C ′ν,η, (f
′)∗TPr)→

⊕
ν∈ν

H0(C ′ν,η, (f
′)∗TPr)→

⊕
ξ

H0(ξ, (f ′)∗TPr)→

→ H1(C ′ν,η, (f
′)∗TPr)→

⊕
ν∈ν

H1(C ′ν,η, (f
′)∗TPr)→ 0,

where we also denote by ν the set indexing irreducible components Cν of Cν (equivalently, irre-
ducible components C ′ν,η of Cν,η). For each ν ∈ ν, we have

H1(Cν , (f
′)∗TPr) = 0 (4.14)

by convexity of Pr. We claim that the map⊕
ν∈ν

H0(C ′ν,η, (f
′)∗TPr)→

⊕
ξ

H0(ξ, (f ′)∗TPr)

is surjective, so that H1(C ′ν,η, (f
′)∗TPr) = 0. (The map takes the difference of the sections on

the two branches of a node.) If C ′ν,η has a component C ′ν0,η
not contracted by f ′, there is at most

one, by Lemma 4.5.16. On any other component C ′ν,η, we have (f ′)∗TPr ∼= OC′ν,η ⊗ TPr, i.e.
H0(C ′ν,η,OC′ν,η ⊗ TPr) ∼= TPr. Fix an arbitrary section s ∈ H0(C ′ν0,η

, (f ′)∗TPr). Then “working
outward” from C ′ν0,θ

shows that the map is surjective. The case where f ′ contracts C ′ν,η is similar
and simpler.

Next, we compute R0(π ◦ ρ)∗(C ′ν,η, (f ′)∗TPr). If C ′ν,η is contracted, (f ′)∗TPr is trivial and we
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have

R0(π ◦ ρ)∗(C ′ν,η, (f ′)∗TPr) ∼= TPr ⊗OMrig

Γ̃

by properness of π ◦ ρ. Suppose C ′ν,η is not contracted. Consider the Stein factorization of f ′|C′ν,η
relative to π ◦ ρ:

C ′ν,η C ′ν,η Pr

Mrig

Γ̃

sf

f ′

π◦ρ

f ′′

π◦ρ

If (f : C → Symd Pr) is in the dense open substack Ψ−1(Γ̃) ⊆ Mrig

Γ̃ , then Cν is irreducible,
hence so is C ′ν,η. This, with the fact that C ′ν,η is not contracted, implies that sf is birational. By the
projection formula for coherent sheaves,

(π ◦ ρ)∗(f
′)∗TPr = (π ◦ ρ)∗sf

∗(f ′′)∗TPr

= (π ◦ ρ)∗sf∗sf
∗(f ′′)∗TPr

= (π ◦ ρ)∗((f
′′)∗TPr ⊗ sf∗OC′ν,η)

= (π ◦ ρ)∗(f
′′)∗TPr.

After an étale base change onMrig

Γ̃ , the map f ′′ trivializes the family C ′ν,η. Thus the vector bundle
R0(π ◦ ρ)∗(C ′ν,η, (f ′′)∗TPr) is trivial.

Calculation of the T -weights of this vector bundle is identical to Kontsevich’s calculation in
Section 3.3.4 of [41], which uses the Euler sequence on Pr. The weights are

A

βη(e)
αimov(v1,e) +

B

βη(e)
αimov(v2,e) − αi,

where 0 ≤ A,B ≤ βη(e), A + B = βη(e), and i ∈ {0, . . . , r}. Note that this is zero exactly
when A = 0 and i = imov(v2, e), or B = 0 and i = imov(v1, e). (These factors contribute to
eT (R0(π ◦ ρ)∗(C ′ν,η, (f ′′)∗TPr)fix).) The Euler class eT (R0(π ◦ ρ)∗(C ′ν , (f ′′)∗TPr)mov) for ν non-
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contracted is thus

 ∏
η∈Stat(e)
i 6=i(η)

(αi(η) − αi)




∏
η∈Mov(e)

∏
A+B=βη(e)

0≤i≤r
(A,i)6=(0,imov(v2,e))
(B,i) 6=(0,imov(v1,e))

(
A

βη(e)
αimov(v1,e) +

B

βη(e)
αimov(v2,e) − αi

)


(4.15)

Summary. We collect the arguments of this section in the following two statements.

Proposition 4.6.1. For any minimal decorated tree Γ̃,MΓ̃ is smooth, and the virtual fundamental

class is equal to the fundamental class.

Proposition 4.6.2. The equivariant Euler class eT (Nvir
MΓ̃

) of the virtual normal bundle toMΓ̃ is


∏

v∈V 2(Γ̃)(−ψ
M

e1v
v − ψ

M
e2v

v )
∏

(v,e)∈F (Γ)

v∈V S(Γ̃)

(−ψMv
e − ψMe

v )∏
v∈V 1(Γ̃) ψ

Mev
v



·
∏

e∈E(Γ)


 ∏
η∈Stat(e)
i 6=i(η)

(αi(η) − αi)

∏
a
b
c
d

·


∏

η∈Mov(e)

∏
A+B=βη(e)

0≤i≤r
(A,i)6=(0,imov(v2,e))
(B,i)6=(0,imov(v1,e))

(
A

βη(e)
αimov(v1,e) +

B

βη(e)
αimov(v2,e) − αi

)




·
∏

v∈V 1(Γ)∪V 1,1(Γ)∪V 2(Γ) eT (T(VEval(v),Mon(v))I Symd Pr)∏
(v,e)∈F (Γ) eT (T(VEval(v),Mon(v))I Symd Pr)

·
∏

v∈V S(Γ̃)

eT (Rπ∗(Cv, f
∗T Symd Pr)).

Proof of Proposition 4.6.1. Recall from Theorem 4.1.2 that the virtual fundamental class ofMΓ̃ is
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obtained from the fixed part of the perfect obstruction theory onM0,n(Symd Pr, β). By (4.13), the
fixed part of

⊕
ξ R

0π∗(ξ, f
∗T Symd Pr) is zero. Thus by (4.10), we have

R1π∗(C, f ∗T Symd Pr) ∼=
⊕
ν

R1π∗(Cν , f ∗T Symd Pr).

But we showed, in (4.12) and (4.14), that
⊕

ν R
1π∗(Cν , f ∗T Symd Pr) has no fixed part. Thus

R1π∗(C, f ∗T Symd Pr) has no fixed part. By Proposition 5.5 of [6], the Proposition follows.
(Smoothness already followed easily from Theorem 4.5.23.)

Proof of Proposition 4.6.2. The first line is the contribution from Def(C)mov and Aut(C)mov, from
(4.8) and (4.9). The second line is the contribution to Rπ∗(C, f ∗T Symd Pr) from noncontracted
components Cν , as in (4.15) and (4.14). The third line is the contribution of breaking nodes to
Rπ∗(C, f ∗T Symd Pr), from (4.13). (The numerator corrects for the fact that F (Γ) overcounts
the breaking nodes.) The last line is the contribution to Rπ∗(C, f ∗T Symd Pr) from contracted
components Cν , by definition.
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CHAPTER 5

The Givental cone is characterized by recursion
relations

5.1 Characterization of the Givental cone LSymd Pr

In this section, we apply the results of Sections 4.5 and 4.6 to give a criterion (Theorem 5.1.4) that
exactly determines whether a given power series lies on the Givental cone LSymd Pr .

Definition 5.1.1. Fix (µ, σ) ∈ (I Symd Pr)T . Let Υ(µ, σ) ⊆ Trees0,2(Symd Pr, β) be the set of

1-edge decorated trees κ̃ = •v1
e •v2 , with marking set {n+ 1, •}, with Mark(n+ 1) = v1

and Mark(•) = v2, such that µ = VEval(v1) and σ = Mon(v1, e).

Notation 5.1.2. For κ̃ ∈ Υ(µ, σ) as in Definition 5.1.1, we write:

• q(κ̃) := q(e),

• Mov(κ̃) := Mov(e),

• mov(κ̃) := mov(e),

• Stat(κ̃) := Stat(e),

• imov
1 (κ̃) := imov(v1, e),

• imov
2 (κ̃) := imov(v2, e),

• µ′(κ̃) := VEval(v2),

• σ′(κ̃) := Mon(v2, e), and

• r(κ̃) := r(v1, e) = r(v2, e) = rn+1.

• w(κ̃) := w(v1, e).

67



We compute:

w(v1, e) =
αimov

1 (κ̃) − αimov
2 (κ̃)

q(κ̃)
∈ H2

T (SpecC,Q).

Similarly to the notations ψ and ψ, we write w = r(κ̃)w.

Definition 5.1.3. Let κ̃ ∈ Υ(µ, σ) and let a ∈ Z>0 We define the recursion coefficient as

RC(κ̃, a) =
(−1)mov(κ̃)−a

q(κ̃)mov(κ̃)

(
σimov

1 (κ̃)

Mov(κ̃)

)(
mov(κ̃)− 1

a− 1

)
·

· 1∏
η∈Mov(κ̃)

∏
1≤B≤βη(e)

0≤i≤r
(B,i)6=(βη(e),imov

2 (κ̃))

(
βη(e)−B
βη(e)

αimov
1 (κ̃) + B

βη(e)
αimov

2 (κ̃) − αi
) ,

where
(σimov

1 (κ̃)

Mov(κ̃)

)
is the number of ways of choosing Mov(κ̃) as a subpartition of σimov

1 (κ̃) with
specified parts.

The following theorem and its proof are adapted from Theorem 41 of [18], which in turn is
adapted from Theorem 2 of [8].

Theorem 5.1.4. Let f be an element of H[[x]] such that f |Q=x=0 = −1z, where 1 denotes the

fundamental class of Symd Pr ⊆ I Symd Pr. Then f is a ΛT
nov[[x]]-valued point of LSymd Pr if and

only if for each T -fixed point (µ, σ) ∈ I Symd Pr, the following three conditions hold:

(I) The restriction f(µ,σ) along ι(µ,σ) : (µ, σ) ↪→ I Symd Pr is a power series in Q and x, such

that each coefficient of this power series is an element of H∗T,loc(•,Q)(z). Each coefficient is

regular in z except for possible poles at z = 0, z =∞, and

z ∈ {w(κ̃) : κ̃ ∈ Υ(µ, σ)}.

(II) The Laurent coefficients of f(µ,σ) at the poles (other than z = 0 and z = ∞) satisfy the

recursion relation:

Laur(fµ,σ, (w − z)−a) =
∑

κ̃∈Υ(µ,σ)

w(κ̃)=w
Mov(κ̃)≥a

Qβ(κ̃) RC(κ̃, a) Laur(f(µ′(κ̃),σ′(κ̃)), (w − z)mov(κ̃)−a)

(5.1)

for a > 0, and

(III) The restriction fµ along ιµ : Iµ ↪→ I Symd Pr is a ΛT
nov[[x]]-valued point of LT Symd Pr

µ , the

twisted Givental cone from Section 2.6.
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Remark 5.1.5. In (III), ΛT
nov is the equivariant Novikov ring associated to Symd Pr, not µ. In other

words, ΛT
nov[[x]] = H∗CR,T,loc(µ,Q)[[x,Q]].

Remark 5.1.6. The major difference between Theorem 5.1.4 and the corresponding theorems in
[18] and [8] is that condition (II) gives a recursive relation for all negative-exponent Laurent
coefficients at z = w(κ̃), in terms of positive-exponent ones. In [18] and [8], only stacks with
isolated 1-dimensional T -orbits are considered. Thus the poles at z = w(κ̃) are simple, and a
recursive relation is given for their residues.

Proof. For convenience, we abbreviateM0,n+1,β :M0,n+1(Symd Pr, β). Let f be a ΛT
nov[[x]]-valued

point of LSymd Pr . By definition, we can write

f = −1z + t(z) +
∑
n,β≥0

β > 0 or n ≥ 2

∑
φ

Qβ

n!

〈
t(ψ), . . . , t(ψ),

γφ

−z − ψ

〉Symd Pr,T

0,n+1,β

γφ

= −1z + t(z) +
∑
n,β≥0

β > 0 or n ≥ 2

Qβ

n!
(evn+1)∗

(
n∏
j=1

ev∗j t(ψ) ∪ 1

−z − ψ
∩ [M0,n+1,β]vir

)

for t(z) ∈ H+[[x]] with t|Q=x=0 = 0. The restriction f(µ,σ) is then

−δσ={1,...,1}z + ι∗(µ,σ)t(z)

+
∑
n,β≥0

β > 0 or n ≥ 2

Qβ

n!
ι∗(µ,σ)

(
(evn+1)∗

(
n∏
j=1

ev∗j t(ψ) ∪ 1

−z − ψ
∩ [M0,n+1,β]vir

))
.
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Using the projection formula, we write

ι∗(µ,σ)

(
(evn+1)∗

(
n∏
j=1

ev∗j t(ψj) ∪
1

−z − ψn+1

∩ [M0,n+1,β]vir

))

= |Cµ(σ)|
∫

Symd Pr
(ι(µ,σ))∗ι

∗
(µ,σ)

(
(evn+1)∗

(
n∏
j=1

ev∗j t(ψj) ∪
1

−z − ψn+1

∩ [M0,n+1,β]vir

))

= |Cµ(σ)|
∫

Symd Pr
[(µ, σ)] ∪

(
(evn+1)∗

(
n∏
j=1

ev∗j t(ψj) ∪
1

−z − ψn+1

∩ [M0,n+1,β]vir

))

= |Cµ(σ)|
∫

Symd Pr

(
(evn+1)∗

(
n∏
j=1

ev∗j t(ψj) ∪
ev∗([(µ, σ)])

−z − ψn+1

∩ [M0,n+1,β]vir

))

= |Cµ(σ)|
∫

[M0,n+1,β ]vir

(
n∏
j=1

ev∗j t(ψj) ∪
ev∗([(µ, σ)])

−z − ψn+1

)

= |Cµ(σ)|
〈
t(ψ), . . . , t(ψ),

[(µ, σ)]

−z − ψ

〉Symd Pr,T

0,n+1,β

.

The first equality uses the identification of
∫

Symd Pr ◦ι(µ,σ) with the identity map SpecC→ SpecC
on coarse moduli spaces, and the factor |Cµ(σ)| corrects for the isotropy at (µ, σ) ∈ I Symd Pr.
(Recall that Cµ(σ) denotes the centralizer of any element of σ in Gµ.) In summary,

f(µ,σ) = −δσ={1,...,1})z + t(µ,σ)(z) (5.2)

+
∑
n,β≥0

β > 0 or n ≥ 2

|Cµ(σ)|Qβ

n!

〈
t(ψ), . . . , t(ψ),

[(µ, σ)]

−z − ψ

〉Symd Pr,T

0,n+1,β

,

where t(µ,σ)(z) := ι∗(µ,σ)t(z). Now we calculate (5.2) by virtual torus localization (see Theorem
4.1.2). Namely, we may write

|Cµ(σ)|
〈
t(ψ), . . . , t(ψ),

[(µ, σ)]

−z − ψ

〉Symd Pr,T

0,n+1,β

=
∑

Γ̃∈Treesmin
0,n+1(Symd Pr,β)

Contr(µ,σ)(Γ̃). (5.3)

We can partition Treesmin
0,n+1(Symd Pr, β) into three subsets:

(i) Γ̃ such that (VEval(Mark(bn+1)),Mon(bn+1)) 6= (µ, σ),

(ii) Γ̃ such that (VEval(Mark(bn+1)),Mon(bn+1)) = (µ, σ) and Mark(bn+1) ∈ V 1,1(Γ), and

(iii) Γ̃ such that (VEval(Mark(bn+1)),Mon(bn+1)) = (µ, σ) and Mark(bn+1) ∈ V S(Γ).
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In some literature, e.g. [13], decorated trees of type (ii) are called recursion type and those of type
(iii) are called initial type. Let v1 := Mark(bn+1) be the vertex containing the point bn+1. (We will
see below, however, that in our setup both types are used recursively.)

For a tree Γ̃ of type (i), the restriction ev∗n+1([(µ, σ)]) vanishes, hence Contr(µ,σ)(Γ̃) = 0.
For this reason, we may simplify our notation, and write Contr(Γ̃) := Contr(µ,σ)(Γ̃), where
µ = VEval(Mark(bn+1)) and σ = Mon(Mark(bn+1)).

If Γ̃ is a tree of type (iii), then by Theorem 4.5.23 and Corollary 4.5.25, ψn+1 is pulled back
fromM

0,
−−→
Mon(v1)

(BGµ, 0), where Gµ is the isotropy group of µ. Since this stack parametrizes maps
that factor through the fixed point µ, the action of T is trivial, hence

H∗T,loc(M0,
−−→
Mon(v1)

(BGµ, 0),Q) ∼= H∗(M
0,
−−→
Mon(v1)

(BGµ, 0),Q)⊗H∗T,loc(•,Q).

In particular, ψn+1 is nilpotent. It follows that Contr(Γ̃) is a polynomial in z−1, hence has a pole
only at z = 0.

Finally, let Γ̃ be a tree of type (ii). By (4.1), we have

Contr(Γ̃) = |Cµ(σ)|
∫

[MΓ̃]′

1

eT (Nvir
Γ̃

)
ι∗
Γ̃

(
n∏
j=1

ev∗j t(ψ) ∪
ev∗n+1[(µ, σ)]

−z − ψn+1

)
, (5.4)

where ιΓ̃ is the inclusionMΓ̃ ↪→M0,n+1(Symd Pr, β), and [MΓ̃]′ denotes the fundamental class,
weighted by factors from Remark 4.5.24. Note that evn+1 ◦ιΓ̃ factors through (µ, σ), hence
ι∗
Γ̃

ev∗n+1[(µ, σ)] is the weight eT (T(µ,σ)I Symd Pr).
Then Γ̃ has a decorated subtree κ̃ ∈ Υ(µ, σ), obtained by removing all edges except for

e := ev1 (and necessary vertices), and all marked points except bn+1. Let Γ̃ r κ̃ denote the
tree obtained by pruning κ̃. That is, Γ̃ r κ̃ ∈ Treesmin

0,n+1(Symd Pr, β − β(κ̃)) is defined by
V (Γ r κ) = V (Γ) r {v1}, E(Γ r κ) = E(Γ) r e, and decorations Mark, VEval, q, and Mon are
unchanged, except Mark(bn+1) := v2, where v2 is the common vertex of κ̃ and Γ̃ r κ̃. Observe that
an automorphism of Γ fixes bn+1, and therefore fixes e, so we have Aut(Γ̃) = Aut(Γ̃ r κ̃) and may
write

MΓ̃
∼=Me ×MΓ̃rκ̃

by Theorem 4.5.23, up to a gerbe from Remark 4.5.24. We factor the T -equivariant mapMΓ̃ →
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SpecC through the second projection, i.e. we integrate overMe:

Contr(Γ̃) =
|Cµ(σ)|

∣∣Cµ′(κ̃)(σ
′(κ̃))

∣∣
r(κ̃)

·
∫

[MΓ̃rκ̃]′

(∫
Me

eT (T(µ,σ)I Symd Pr)
eT (Nvir

Γ̃
)

ι∗
Γ̃

(
n∏
j=1

ev∗j t(ψ) ∪ 1

−z − ψn+1

))
.

The factor
∣∣Cµ′(κ̃)(σ

′(κ̃))
∣∣ /r(κ̃) is the correction from Remark 4.5.24. From Proposition 4.6.2, we

may write

eT (T(µ,σ)I Symd Pr)
eT (Nvir

Γ̃
)

=
1

W
·
eT (T(µ′(κ̃),σ′(κ̃))I Symd Pr)

e(Nvir
Γ̃rκ̃)(−ψ

Mv2
e − ψMe

v2
)
, (5.5)

where

W =

∏
η∈Stat(e)
i 6=i(η)

(αi(η) − αi)

eT (T(µ,σ)I Symd Pr)

∏
η∈Mov(κ̃)

∏
A+B=βη(κ̃)

0≤i≤r
(A,i)6=(0,imov(v2,e))
(B,i)6=(0,imov(v1,e))

(
A

βη(κ̃)
αimov(v1,e) +

B

βη(κ̃)
αimov(v2,e) − αi

)

=
∏

η∈Mov(κ̃)
1≤B≤βη(κ̃)

0≤i≤r
(B,i)6=(βη(κ̃),imov(v2,e))

(
βη(κ̃)−B
βη(κ̃)

αimov(v1,e) +
B

βη(κ̃)
αimov(v2,e) − αi

)
∈ H∗T,loc(SpecC,Q)

Note that the cancellation in the last step removes the terms with B 6= 0 in the product, and that
1/W is the product appearing RC(κ̃, a).

To avoid confusion, we write ψ
Γ̃

n+1 (resp. ψ
Γ̃rκ̃
n+1) for the ψ-class at the (n + 1)st marked

point onMΓ̃ (resp. MΓ̃rκ̃), recalling that on Γ̃ r κ̃ we defined Mark(bn+1) = v2. We also have

ι∗
Γ̃
ψ

Γ̃

n+1 = ψ
Me

v1
. The T -weight on ψ

Me

v1
is −w(κ̃) (see Notation 5.1.2), so we have

ψ
Me

v1
= ψ

ne

v1
− w(κ̃) ∈ H∗T (MΓ̃,Q) ∼= H∗(MΓ̃,Q)⊗H∗T (SpecC,Q), (5.6)

where ψ
ne

v1
denotes the nonequivariant ψ-class. Similarly ψ

Me

v2
= ψ

ne

v2
+w(κ̃). Then since ι∗

Γ̃
ev∗j t(ψ)
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is pulled back fromMΓ̃rκ̃,

Contr(Γ̃) =
|Cµ(σ)|

∣∣Cµ′(κ̃)(σ
′(κ̃))

∣∣
r(κ̃)

eT (T(µ′(κ̃),σ′(κ̃))I Symd Pr)
W

·
∫

[MΓ̃rκ̃]′

ι∗Γ̃
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γ̃rκ̃)

∫
Me

1

(−ψΓ̃rκ̃
n+1 − ψne

v2
− w(κ̃))

1

(−z − ψne

v1
+ w(κ̃))

 .

We compute the last integral using the fact that w(κ̃) is invertible, the following lemma, which
follows immediately from Lemma 2.3 of [48]:

Lemma 5.1.7. Let ψ0,LM and ψ∞,LM denote the tautological cotangent classes at b0 and b∞ on

M0|k|∞. The pullbacks ϕ∗ψ0,LM and ϕ∗ψ∞,LM along the reduction morphismM0,k+2 →M0|k|∞

are the cotangent classes ψ0 and ψ∞, respectively.

This says that we may integrate onMk+2 (with an appropriate constant factor) instead ofMe.
We use r(κ̃)(−ψΓ̃rκ̃

n+1 −ψne
v2
−w(κ̃)) = ψ

Γ̃rκ̃
n+1 −ψ

ne

v2
−w(κ̃). It is well-known (see e.g. [40], Lemma

1.5.1) that ∫
M0,k

ψm1 ψ
k−3−m
2 =

(
k − 3

m

)
.

By Lemma 5.1.7, this identity holds onM0|k|∞ also. Thus:∫
Me

1

(−ψΓ̃rκ̃
n+1 − ψ

ne

v2
− w(κ̃))

1

(−z − ψne

v1
+ w(κ̃))

=
1

|Se|
∏

η∈Mov(κ̃) βη(κ̃)

∫
Mv1|mov(κ̃)|v2

 ∞∑
m1,m2=0

(ψv2
)m1

(−ψΓ̃rκ̃
n+1 − w(κ̃))m1+1

(ψv1
)m2

(−z + w(κ̃))m2+1


=

1

|Se|
∏

η∈Mov(κ̃) βη(κ̃)

∑
m1+m2=mov(κ̃)−1

(
mov(κ̃)−1

m1

)
(−ψΓ̃rκ̃

n+1 − w(κ̃))m1+1(−z + w(κ̃))m2+1

(5.7)

=
1

|Se|
∏

η∈Mov(κ̃) βη(κ̃)

(−z − ψΓ̃rκ̃
n+1)mov(κ̃)−1

(−ψΓ̃rκ̃
n+1 − w(κ̃))mov(κ̃)(−z + w(κ̃))mov(κ̃)

.

(The last inequality is gotten in the backwards direction by writing the numerator as ((−z+w(κ̃)) +
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(−ψΓ̃rκ̃
n+1 − w(κ̃)))mov(κ̃)−1 and expanding.) We have

Contr(Γ̃) =
|Cµ(σ)|

∣∣Cµ′(κ̃)(σ
′(κ̃))

∣∣
|Se|

∏
η∈Mov(κ̃) βη(κ̃)

eT (T(µ′(κ̃),σ′(κ̃))I Symd Pr)
W (−z + w(κ̃))mov(κ̃)

(5.8)

·
∫

[MΓ̃rκ̃]′

ι∗Γ̃
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γ̃rκ̃)

(−z − ψΓ̃rκ̃
n+1)mov(κ̃)−1

(−ψΓ̃rκ̃
n+1 − w(κ̃))mov(κ̃)

 .

For fixed β0, and n0, from (5.3), the coefficient of Qβ0xn0 in f(µ,σ) only has contributions from
Γ̃ ∈ Trees0,n(Symd Pr, β) for β+n ≤ β0 +n0. This is because t(z) ∈ 〈x,Q〉, so ifH[[x]] is graded
by giving Q and x degree 1, then the (n, β) term in (5.2) has degree at least n + β. In particular,⋃
β+n≤β0+n0

Trees0,n(Symd Pr, β) is a finite set. Thus (5.3) and (5.8) realize the contribution to
such a coefficient from trees of type (ii) as a finite sum of rational functions with poles at the weights
κ̃. Together with the analysis above for types (i) and (iii), this proves that f(µ,σ) satisfies condition
(I) of the Theorem.

We consider the Laurent coefficient Laur(Contr(Γ̃), (w−z)−a). By (5.8), Laur(Contr(Γ̃), (w−
z)−a) is zero if w 6= w(κ̃), or if mov(κ̃) < a. Otherwise,

Laur(Contr(Γ̃), (w − z)−a)

=
1

(mov(κ̃)− a)!

(
dmov(κ̃)−a

d(w(κ̃)− z)mov(κ̃)−a (w(κ̃)− z)mov(κ̃) Contr(Γ̃)

)∣∣∣∣∣
z 7→w(κ̃)

=
(−1)mov(κ̃)−a |Cµ(σ)|

∣∣Cµ′(κ̃)(σ
′(κ̃))

∣∣ (mov(κ̃)−1
a−1

)
W |Se|

∏
η∈Mov(κ̃) βη(κ̃)

·
∫

[MΓ̃rκ̃]′

ι∗Γ̃
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γ̃rκ̃)

eT (T(µ′(κ̃),σ′(κ̃))I Symd Pr)

(−ψΓ̃rκ̃
n+1 − w(κ̃))mov(κ̃)−a+1

 .

Now, summing over all Γ̃ of type (ii) with associated subtree κ̃ yields

(−1)mov(κ̃)−a |Cµ(σ)|
∣∣Cµ′(κ̃)(σ

′(κ̃))
∣∣ (mov(κ̃)−1

a−1

)
W |Se|

∏
η∈Mov(κ̃) βη(κ̃)〈

t(ψ), . . . , t(ψ),
[(µ′(κ̃), σ′(κ̃))]

(−ψΓ̃rκ̃
n+1 − w(κ̃))mov(κ̃)−a+1

〉Symd Pr,T

0,n+1,β−β(κ̃)

. (5.9)
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On the other hand, the coefficient Laur(f(µ′(κ̃),σ′(κ̃)), (w(κ̃)− z)mov(κ̃)−a) is

∑
n,β≥0

β > 0 or n ≥ 2

∣∣Cµ′(κ̃)(σ
′(κ̃))

∣∣Qβ

n!

〈
t(ψ), . . . , t(ψ),

[(µ′(κ̃), σ′(κ̃))]

(−ψΓ̃rκ̃
n+1 − w(κ̃))mov(κ̃)−a+1

〉Symd Pr,T

0,n+1,β

(5.10)

We compute |Cµ(σ)|
|Se|

∏
η∈Mov(κ̃) βη(κ̃)

explicitly:

|Cµ(σ)| = |Sσ|
∏
η∈σ

η

|Se| = |CStat(κ̃)|
∣∣SMov(κ̃)

∣∣ =
∣∣SStat(κ̃)

∣∣ ∣∣SMov(κ̃)

∣∣ ∏
η∈Stat(κ̃)

η

|Cµ(σ)|
|Se|

∏
η∈Mov(κ̃) βη(κ̃)

=
|Sσ|

∏
η∈Mov(κ̃) η∣∣SStat(κ̃)

∣∣ ∣∣SMov(κ̃)

∣∣∏
η∈Mov(κ̃) βη(κ̃)

=
1

q(κ̃)mov(κ̃)

(
σ

Mov(κ̃)

)
With (5.9) and (5.10), this proves (II). Note that the contribution from all graphs of type (ii) (and
the term t(µ,σ)(z)) is

τ (µ,σ)(z) := t(µ,σ)(z) +
∑

κ̃∈Υ(µ,σ)
a≤mov(κ̃)

Qβ(κ̃) RC(κ̃, a)

(w(κ̃)− z)a
Laur(f(µ′(κ̃),σ′(κ̃)), (w(κ̃)− z)mov(κ̃)−a). (5.11)

The proof of condition (III) is identical to that of condition (C3) in [18], and we reproduce the
argument here for convenience.

Consider a decorated tree Γ̃ of type (iii). We write v := Mark(bn+1) ∈ V S(Γ). The marked
points ofMv correspond to (1) elements of Mark−1(v), and (2) edges e ∈ E(Γ)v. To e is associated
a maximal subtree Γe containing v, with E(Γe, v) = e. We decorate Γe so that Mark−1(v) = b, and
the rest of the decorations inherited from Γ̃. We will then write Contr(Γ̃) in terms of Contr(Γ̃e) for
e ∈ E(Γ)v, and integrals over the vertex moduli spaceMv.

We apply (5.4) again. After an étale base change M̃Γ̃ →MΓ̃, we may label the subtrees Γ̃e.

(Write M for the degree of this base change.) We then write M̃Γ̃
∼=Mv ×

∏
e∈E(Γ)v

MΓ̃e
. Now

we again apply Proposition 4.6.2, to see that

1

eT (Nvir
Γ̃

)
= e−1

T (Rπ∗(Cv, f
∗T Symd Pr))

∏
e∈E(Γ)v

r(v, e)eT (T(µ,Mon(v,e))I Symd Pr)

(−ψMv

e − ψMe

v )eT (Nvir
Γ̃e

)
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Observe that eT (T(µ,Mon(v,e))I Symd Pr)

(−ψMv
e −ψMe

v )
is the insertion at b in Contr(Γ̃e)|

z 7→ψMv
e

. Thus

Contr(Γ̃) =
1

M

∫
Mv

 ∏
e∈E(Γ)v

|Cµ(σ)|Qβ(Γ̃e) Contr(Γ̃e)|
z 7→ψMv

e

 ∪
 ∏
bi∈Mark−1(v)

t(ψ)


∪
eT (T(µ,σ)I Symd Pr)
−z − ψn+1

∪ e−1
T (Rπ∗(Cv, f

∗T Symd Pr)).

This is almost a twisted Gromov-Witten invariant of VEval(v), but not quite, since there are restric-
tions on the monodromies at the marked points. Summing over Γ̃e for a single e, with everything
else fixed, gives the insertion τ (µ,Mon(v,e))(ψ), where the initial term comes from replacing Γ̃e with
a marked point. Thus summing over all σ, and over all Γ̃ of type (iii), gives

∞∑
m=2

∑
σ

1

m!

〈
τ µ(ψ), . . . , τ µ(ψ),

[(µ, σ)]

−z − ψn+1

〉VEval(v),T,T Symd Pr

0,m+1,0

1(µ,σ) ∈ H∗T,loc(Iµ,Q),

where 1(µ,σ) is the fundamental class of (µ, σ) ∈ Iµ, and τ µ(z) =
∑

σ′∈MultiPart(µ) τ (µ,σ′)(z)1(µ,σ).
Adding in the contributions from type (ii) graphs, summing (5.2) over σ yields:

fµ =
∑
σ

f(µ,σ)1µ,σ

= −1µz + τ µ(z) +
∞∑
m=2

∑
σ

1

m!

〈
τ µ(ψ), . . . , τ µ(ψ),

[(µ, σ)]

−z − ψn+1

〉VEval(v),T,T Symd Pr

0,m+1,0

1(µ,σ),

where 1µ is the untwisted fundamental class on Iµ. This shows that fµ is a ΛT
nov[[x]]-valued point of

LT Symd Pr
µ . (Here we are using both comments in Remark 2.6.6.)

The converse also requires no modification from [18]. Suppose f satisfies the conditions of
theorem. By conditions (I) and (II), we may uniquely write

fµ = −1µz +
∑

σ∈MultiPart(µ)

τ (µ,σ)(z)1(µ,σ) +O(z−1),

where τ (µ,σ)(z) is the expression in (5.11), for some t(µ,σ)(z) ∈ ι∗µ(H+)[[x]]. We claim that the set
{t(µ,σ)(z)} for all fixed points (µ, σ) determines f . By the localization isomorphism, if suffices to
show that it determines f(µ,σ) for all (µ, σ). We induct on the degree β + k, where k is the exponent
of x. The base case β = k = 0 is taken care of by the assumption f |Q=x=0 = −1z. Assume the
coefficients of f(µ,σ) up to degree β + k are determined by {t(µ,σ)}. Consider the coefficients of
degree β+k+1. Some of these appear in t(z), but these are given. Some of them appear in τ (µ,σ)(z),
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but these are determined since they are of the form: Qβ(κ̃) multiplied by a factor determined by the
inductive hypothesis. The sum of all of these terms is in H∗CR,T,loc(µ,Q)[[x,Q]][[z]].

Finally, some of them appear in O(z−1). However, condition (III) and (2.6) show that these
are determined by terms of −1z + τ (µ,σ)(z) of degree at most β + k + 1. Since all such terms are
determined by t(µ,σ) and induction, the degree β + k + 1 coefficients of f(µ,σ) are determined. Thus
in fact f is determined by {t(µ,σ)(z)}.

Again by the localization isomorphism, the set {t(µ,σ)(z)} corresponds uniquely to an element
t(z) ∈ H+[[x]] that restricts to each t(µ,σ)(z). This in turn corresponds uniquely to a ΛT

nov[[x]]-valued
point fGW of Lx. By the uniqueness argument above we have f = fGW.

Remark 5.1.8. No modifications are required to replace x with a tuple (x1, . . . , xm).

5.2 Characterization of the Givental cone LX , general (nonorb-
ifold) case

In this section, we discuss the extent to which Theorem 5.1.4 can be extended to a general variety
X with action of a torus T . Here are a few of the major points:

1. In Condition (II) of Theorem 5.1.4, the terms of the recursion are elements of H∗((µ, σ),Q)

for various (µ, σ), and the equality is via the canonical isomorphism between these groups.
For more general (X,T ), these terms a priori lie in the homology groups of various compo-
nents of XT . Thus (5.1) must have a somewhat different form when X does not have isolated
fixed points.

2. As in the proof of Theorem 5.1.4, for each component µ of XT , one may compute fµ by
localization, and decompose fµ as a sum of two terms, the contributions from trees of initial
and recursion type. As before, these correspond to poles at z = 0 or∞, or poles at z = w(κ̃),
respectively.

3. Essentially the same argument as in the last section shows that Condition (III) of Theorem
5.1.4 holds in general, with LT Symd Pr

µ replaced with the Givental cone LNµ|Xµ of µ twisted by
the normal bundle to µ in X . (This coincides with TX when µ is a point.)

4. In [24] Theorem 3.5, Fan and Lee show the existence of a general recursion for points on the
Givental cone, via a similar method. Our recursion (5.1) is, in appearance, much simpler than
theirs. In particular, the left side of ours is a single Laurent coefficient of fµ, and the right side
is expressed in terms of Laurent coefficients of fµ′ for various µ′. On the other hand, the left
side of their recursion is the entire principal part Prinz=w fµ, and the right side is expressed in
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terms of nonprincipal parts of certain derivatives of fµ′ for various µ′. Theorem 5.1.4 makes
us hope that a simpler form such as this is possible for arbitrary X , and we suspect that it is.
For X = Symd Pr, the refined form was enabled by the “miracle” computation (5.7).

Though we are unable to prove a sufficiently refined recursion, we go through some of the steps to
demonstrate what is needed and what is difficult.

Definition 5.2.1. (CHANGE THIS) Analogously to 5.1.1, for µ ∈ V (ΓX,T ) a connected component
of XT , let Υ(µ) ⊆ Trees0,2(X, β) be the set of X-decorated trees

κ̃ = •v1 · · ·
e1 ek•
v2

•
vk

•vk+1

with Mark(1) = v1, Mark(2) = v2, µ = f(v1), vdeg(v1) = · · · = vdeg(vk+1) = 0, and (vi, ei−1)

unsteady for 2 ≤ i ≤ k.

Notation 5.2.2. For κ̃ ∈ Υ(µ) as in Definition 5.1.1, we write µ′(κ̃) := f(vk+1) and w(κ̃) :=

w(v1, e1) = w(vi, ei).

Let f be a ΛT
nov[[x]]-valued point of LX .Using the projection formula, we can write

fµ = −1µz + tµ(z) +
∑
n,β≥0

β > 0 or n ≥ 2

Qβ

n!

∑
ϕ

〈
t(ψ), . . . , t(ψ),

(ιµ)∗(γ
µ
ϕ)

−z − ψ

〉X,T
0,n+1,β

γϕµ . (5.12)

where tµ(z) := ι∗µt(z). Ignoring the subtleties of Section 4.2, we define a partial order on decorated
trees using (not necessarily realizable) chain contractions, as in Section 4.5.1. We consider minimal
trees Γ̃, and writeMΓ̃ for the locus of T -fixed stable maps (f : C → X) satisfying Ψ(f) ≥ Γ̃.

Then we may write

∑
β,n

∑
ϕ

〈
t(ψ), . . . , t(ψ),

(ιµ)∗(γ
µ
ϕ)

−z − ψ

〉X,T
0,n+1,β

γϕµ =
∑

Γ̃∈Treesmin
0,n+1(X,β)

Contrµ(Γ̃), (5.13)

and we may decompose the right side as two sums, one over trees of initial type, and the other over
trees of recursion type.

Let Γ̃ be a tree of recursion type. By (4.1), we have

Contr(Γ̃) =
∑
ϕ

γϕµ

∫
[MΓ̃]vir

1

eT (Nvir
Γ̃

)
ι∗
Γ̃

(
n∏
j=1

ev∗j t(ψ) ∪
ev∗n+1(ιµ)∗(γ

µ
ϕ)

−z − ψn+1

)
. (5.14)
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Since evn+1 ◦ιΓ̃ factors through µ, we have

ι∗
Γ̃

ev∗n+1(ιµ)∗(γ
µ
ϕ) = ι∗

Γ̃
ev∗n+1(γµϕ ∪ eT (Nµ|X)).

From Γ̃, via “edge pruning” we again obtain two decorated trees κ̃ ∈ Υ(σ) and Γ̃ r κ̃ ∈
Trees0,n+1(X, β − β(κ̃)). This realizesMΓ̃ as the fiber product of moduli spacesMe andMΓ̃rκ̃.

Note thatMe may be quite complicated — for example, the generic source curve may be nodal.
(These are the moduli spaces Mω,2(X) in [49], which works in the case T = C∗, and in the
additional generality of weighted stable maps.)

We factor the T -equivariant mapMΓ̃ → SpecC through the second projection, i.e. we integrate
overMe:

Contr(Γ̃) =
∑
ϕ

γϕµ

∫
[MΓ̃rκ̃]vir

∫
[Me]vir

ι∗
Γ̃

(
ev∗n+1(γµϕ ∪ eT (Nµ|X) ∪

∏n
j=1 ev∗j t(ψ) ∪ 1

−z−ψn+1

)
eT (Nvir

Γ̃
)

.

(5.15)

By the proof of Lemma 7.5.2 of [13] (pp. 441–442), we may generalize (5.5) to:

1

eT (Nvir
Γ̃

)
=

eT (ev∗•(Nµ′(κ̃)|X))

eT (Nvir
Me

)eT (Nvir
Γ̃rκ̃)(−ψ

Mv2
e − ψMe

v2
)
.

Then (5.15) becomes

Contr(Γ̃) =
∑
ϕ

γϕµ

∫
[MΓ̃rκ̃]vir

ι∗
Γ̃

(∏n
j=1 ev∗j t(ψ)

)
eT (Nvir

Γ̃rκ̃)∫
[Me]vir

eT (ev∗•(Nµ′(κ̃)|X)) ∪ ev∗n+1(γµϕ ∪ eT (Nµ|X))

eT (Nvir
Me

)(−ψMv2
e − ψMe

v2
)(−z − ψn+1)

 . (5.16)

As in (5.6), we write ψMe
v1

= ψne
v1
− w(κ̃) and ψMe

v2
= ψne

v2
+ w(κ̃). Expanding the denominator in
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(5.16),

Contr(Γ̃) =
∑
ϕ

γϕµ

∫
[MΓ̃rκ̃]vir

eT (ev∗•(Nµ′(κ̃))) ∪ ι∗Γ̃
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γ̃rκ̃)

·

(∫
[Me]vir

ev∗n+1(γµϕ ∪ eT (Nµ|X))

eT (Nvir
Me

)

∑
m1,m2≥0

(ψne
v2

)m1(ψne
v1

)m2

(−ψ ˜Γrκ̃
n+1 − w(κ̃))m1+1(−z + w(κ̃))m2+1

))

=
∑
ϕ

γϕµ
∑

m1,m2≥0

∫
[MΓ̃rκ̃]vir

 eT (ev∗•(Nµ′(κ̃))) ∪ ι∗Γ̃
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γ̃rκ̃)(−ψ

˜Γrκ̃
n+1 − w(κ̃))m1+1(−z + w(κ̃))m2+1


·

(∫
[Me]vir

ev∗n+1(γµϕ ∪ eT (Nµ|X))(ψne
v2

)m1(ψne
v1

)m2

eT (Nvir
Me

)

)
(5.17)

Note that the sums over m1 and m2 are finite, since ψne
v1

and ψne
v2

are nonequivariant, hence nilpotent.
Also, the second line of (5.17) is now valued inH∗T (SpecC,Q) instead ofH∗T (MΓ̃rκ̃,Q). Applying
the projection formula, (5.17) is equal to

∑
m1,m2≥0

1

(−z + w(κ̃))m2+1

∫
[MΓ̃rκ̃]vir

eT (ev∗•(Nµ′(κ̃))) ∪ ι∗Γ̃
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γ̃rκ̃)(−ψ

˜Γrκ̃
n+1 − w(κ̃))m1+1


· (evn+1)∗

(
(ev∗n+1 eT (Nµ|X)) ∪

(ψne
v2

)m1(ψne
v1

)m2

eT (Nvir
Me

)
∩ [Me]

vir

)
(5.18)

The integral in this expression is, formally, the contribution of Γ̃ r κ̃ to

1

m!

∫
µ′(κ̃)

dm+1fµ′(κ̃)

dzm+1

∣∣∣∣
z 7→w(κ̃)

.

However, this expression is not well-defined, since
dm+1fµ′(κ̃)

dzm+1 has, in general, a pole at z = w(κ̃).

Summing over all trees of recursion type gives instead

∑
κ̃

∑
m1,m2≥0

1

(−z + w(κ̃))m2+1

1

m!

∫
µ′(κ̃)

(
dm+1fµ′(κ̃)

dzm+1
− Prinz=w(κ̃)

dm+1fµ′(κ̃)

dzm+1

)∣∣∣∣
z 7→w(κ̃)

· (evn+1)∗

(
(ev∗n+1 eT (Nµ|X)) ∪

(ψne
v2

)m1(ψne
v1

)m2

eT (Nvir
Me

)
∩ [Me]

vir

)
, (5.19)

where Prin denotes the principal part of the Laurent expansion.
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Remark 5.2.3. As mentioned, this recursion (which is the one appearing in [24]) does not contain
individual Laurent coefficients of the other restrictions fµ′(κ̃). We have hope that summing over the
index m1 should give a more elegant expression similar to that in Theorem 5.1.4. If true, this would
give us information about the geometry of the mysterious spacesMe.
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CHAPTER 6

The I-function and mirror theorem for Symd Pr

6.1 Statement of the main theorem

In this section we introduce the function ISymd Pr(t,x, Q,−z). We will then show that it is a
ΛT

nov[[t,x]]-valued point of LSymd Pr , where x = {x$}$∈Part(d) are formal variables.

Definition 6.1.1. The (extended) I-function is

ISymd Pr(t,x, Q, z) = z
∑

σ∈Part(d)

1σ
∑
β≥0

exp

(
r∑
i=0

ti([Hσ,i]/z + β)

)
Qβ

∑
Z>0-labels L = (Lη)

of σ with sum β

·

 ∑
k=(k$)$∈Part(d)

k$≥0

xkH(σ
∏

$$
k$)

k!zk

( |Sσ||Sσ,L|

)∏
η∈σ

1∏Lη
γ=1

∏r
i=0

(
Hσ,η,i + γ

η
z
)


(6.1)

where:

• 1σ ∈ H∗CR,T (Symd Pr,Q) is the fundamental class of the twisted sector corresponding to σ,

• [Hσ,i] and [Hσ,η,i] are defined in Section 3.1.3,

• xk :=
∏

$ x
k$
$ ,

• k! :=
∏

$ k$!,

• zk :=
∏

$ z
k$ , and

• H(σ
∏

$$
k$) is the number of ways of factoring 1 ∈ Sd as a product a1 · · · a1+

∑
k$ , where

the conjugacy classes (i.e. partitions) of the permutations aj are given by the list (σ
∏

$$
k$).
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Note that (6.1) uses the normal cup product on H∗(I Symd Pr,Q), not the Chen-Ruan product.
As mentioned, we prove:

Theorem 6.1.2. ISymd Pr(t,x, Q,−z) is a ΛT
nov[[t,x]]-valued point of LSymd Pr .

6.2 Proof of Theorem 6.1.2

Instead, we will show that a different series ISymd Pr(x, Q,−z) is a ΛT
nov[[x]]-valued point of

LSymd Pr ,where ISymd Pr(x, Q,−z) is obtained from ISymd Pr(x, Q,−z) by removing the exponential
factor. The divisor equation in Gromov-Witten theory then implies Theorem 6.1.2.

It is immediate that ISymd Pr(0, 0, 0,−z) = −1z. Per Theorem 5.1.4, it now suffices to prove
conditions (I), (II), and (III), which we do in Sections 6.2.1, 6.2.2, and 6.2.3. We write I(µ,σ) for
the restriction of ISymd Pr(x, Q,−z) to a T -fixed point (µ, σ) ∈ I Symd Pr. We write rσ := lcm(σ).

6.2.1 ISymd Pr(x, Q,−z) satisfies condition (I)

From (6.1),

I(µ,σ) = −z
∑
β≥0

Qβ
∑

labels L = (Lη)
of σ with sum β

(6.2)

 ∑
k=(k$)$∈Part(d)

k$≥0

xkH(σ
∏

$$
k$)

k!(−z)k

( |Sσ||Sσ,L|

) 1∏
η∈σ
∏Lη

γ=1

∏r
i=0

(
rσ(αi(η) − αi)− γ

η
z
)
 .

It is clear that the coefficient of a single power x and Q is a rational function in z. The poles of such
a coefficient are (at worst) z = 0, z = ∞, and z =

rσ(αi1−αi2 )

q
, where i1 = i(η) for some η ∈ σ,

and q ∈ 1
η
Z. This is exactly the set of values arising as w(κ̃) for κ̃ ∈ Υ(µ, σ). This proves (I).

6.2.2 ISymd Pr(x, Q,−z) satisfies condition (II)

We work with the left and right sides of (5.1). Fix a and w =
rσ(αi1−αi2 )

q
. When applied to

f = ISymd Pr(x, Q,−z) the factor

Ω := −z

 ∑
k=(k$)$∈Part(d)

k$≥0

xkHσ(σ
∏

$$
k$)

k!(−z)k


 1∏

η∈σ
i(η)6=i1 or
Lη<qη

∏Lη
γ=1

∏r
i=0

(
rσ(αi(η) − αi)− γ

η
z
)
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appears identically on both sides, so we may prove (5.1) instead for I(µ,σ)/Ω. We break up I(µ,σ)/Ω,
the left-hand side of (5.1), into terms by the label L (with sum β):

T(µ,σ),L(Q, z) :=
|Sσ|
|Sσ,L|

 Qβ∏
η∈σ

i(η)=i1
Lη≥qη

∏Lη
γ=1

∏r
i=0

(
rσ(αi(η) − αi)− γ

η
z
)
 . (6.3)

Write σT for the multiset {η ∈ σ|i(η) = i1, Lη ≥ qη}. This consists of parts of σ that are in Mov(κ̃)

for some κ̃ with weight w based at (µ, σ). We compute

Laur(T(µ,σ),L(Q, z), (w − z)−a) =
1

(|σT | − a)!

(
d|σT |−a

d(w − z)|σT |−a
(w − z)|σT |T(µ,σ),L(Q, z)

)
z 7→w

=
|Sσ| / |Sσ,L|
(|σT | − a)!

∑
A

∏
(η,γ,i)∈A

γ/η(
rσ(αi1 − αi)− γ

η
w
)


 Qβ

q|σT |
∏

η∈σT

∏r
i=0

∏
1≤γ≤Lη

(γ,i)6=(qη,i2)

(
rσ(αi1 − αi)− γ

η
w
)
 , (6.4)

where A ranges over (|σT | − a)-tuples of factors in the denominator of T(µ,σ),L(Q, z), i.e. over
unordered tuples of triples (η, γ, i), with η ∈ σT , 1 ≤ γ ≤ Lη, 0 ≤ i ≤ r, and (γ, i) 6= (qη, i2).

Observe that
rσ(αi1 − αi)−

γ

η
w = rσ

(
qη − γ
qη

αi1 +
γ

qη
αi2 − αi

)
.

For the right-hand side of (5.1), let κ̃ ∈ Υ(µ, σ) with w(κ̃) = w. Such an edge corresponds to
a subset Mov(κ̃) ⊆ σT . Let L′(κ̃) be the label of σ′(κ̃) obtained by decreasing Lη by qη for η ∈
Mov(κ̃), using an identification of σ and σ′(κ̃) as partitions. (There is a factor of

∣∣Sσ,L′(κ̃)

∣∣ / |Sσ,L|
from different choices of identification.) As above we write T(µ′(κ̃),σ′(κ̃)),L′(κ̃)(Q, z) for the factors
of I(µ′(κ̃),σ′(κ̃)) coming from σT . (The meaning of the multiset σT ⊆ σ has not changed.) Then as
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before

Laur(T(µ′(κ̃),σ′(κ̃)),L′(κ̃)(Q, z), (w − z)mov(κ̃)−a)

=
1

(|σT | − a)!

(
d|σT |−a

d(w − z)|σT |−a
(w − z)|σT |−mov(κ̃)T(µ′(κ̃),σ′(κ̃)),L′(κ̃)

)

=
|Sσ| / |Sσ,L|Qβ−β(κ̃)

(|σT | − a)!q|σT |−mov(κ̃)

∑
Bκ̃

∏
(η,γ,i)∈Bκ̃

γ/η(
rσ(αi(η) − αi)− γ

η
w
)
 (6.5)

·

 1∏
η∈Mov(κ̃)

∏r
i=0

∏Lη−qη
γ=1

(
rσ(αi2 − αi)− γ

η
w
)


·

 1∏
η∈σTrMov(κ̃)

∏r
i=0

∏
1≤γ≤Lη

(γ,i)6=(qη,i2)

(
rσ(αi1 − αi)− γ

η
w
)
 ,

where Bκ̃ runs over (|σT | − a)-tuples of factors in the denominator. The product in the denominator
over η ∈ σT r Mov(κ̃) appears identically in (6.4), and the product over η ∈ Mov(κ̃) of the factors(

rσ(αi2 − αi)−
γ

η
w

)
=

(
rσ(αi1 − αi)−

(
q +

γ

η

)
w

)
appears in (6.4) via the substitution γ 7→ γ − qη. Together with the denominator of RC(κ̃, a), this
makes up entire denominator of (6.4), excluding the sum over A. The factor Qβ also appears on
both sides, so it remains to prove:

∑
A

∏
(η,γ,i)∈A

γ/η =
∑
κ̃

∑
Bκ̃

(−1)mov(κ̃)−a
(
σimov

1 (κ̃)

Mov(κ̃)

)(
mov(κ̃)− 1

a− 1

) ∏
(η,γ,i)∈Bκ̃

γ/η. (6.6)

We switch the order of summation on the right-hand side, and identify each tuple Bκ̃ with one
of the tuples A via the substitution γ/η 7→ γ/η − q for η ∈ Mov(κ̃). We now want to prove:

∑
A

∏
(η,γ,i)∈A

γ/η =
∑
A

∑
Mov⊆σT
|Mov|≥a

(−1)|Mov|−a
(
σi1

Mov

)(
|Mov| − 1

a− 1

) ∏
(η,γ,i)∈A
η∈Mov

(γ/η − q)
∏

(η,γ,i)∈A
η 6∈Mov

γ/η.

85



We break up the right side further by fixing the set A′ := {(η, γ, i) ∈ A|η ∈ Mov} :

∑
A

∑
A′⊆A

∏
(η,γ,i)∈A′

(γ/η − q)
∏

(η,γ,i)∈ArA′
γ/η

∑
Mov⊆σT
|Mov|≥a

η∈Mov for (η,γ,i)∈A′
η 6∈Mov for (η,γ,i)∈ArA′

(−1)|Mov|−a
(
σi1

Mov

)(
|Mov| − 1

a− 1

)
.

(6.7)

The factor
(
σi1
Mov

)
turns the second summation on the right into a sum over labeled submultisets

Mov ⊆ σT . We then use the straightforward combinatorial identity:

∑
labeled multisets Mov⊆σT

|Mov|≥a
η∈Mov for (η,γ,i)∈A′

η 6∈Mov for (η,γ,i)∈ArA′

(−1)|Mov|−a
(
|Mov| − 1

a− 1

)
=

0 A′ 6= ∅

1 A′ = ∅.

Thus (6.7) is equal to
∑

A

∏
(η,γ,i)∈A γ/η, proving (6.6) and (II).

6.2.3 ISymd Pr(x, Q,−z) satisfies condition (III)

Finally, we prove (III) using Tseng’s orbifold quantum Riemann-Roch operator. From Proposition
3.4 of [34], Proposition 3.4, we compute that Jµ(x, Q,−z) is a ΛT

nov[[x]]-valued point of the
untwisted Givental cone Lµ, where1

Jµ(x, Q, z) := z
∑
σ

∑
k,β

1σQ
βxkHσ(σ,k)

β!zβk!zk
.

Here σ runs over conjugacy classes in Gµ, and t(x, Q, z) = Q · 1 +
∑

$ x$1$. We introduce
variables Qσ,η indexed by a multipartition σ and part η, and define

JQµ (x, Q,−z) := −z
∑
σ

∑
k,β,L

1σx
kHσ(σ,k)

k!(−z)k

(
|Sσ|
|Sσ,L|

∏
η∈σ

Q
Lη
σ,ηηLη

(−z)LηLη!

)

IQµ := −z
∑
σ,β,k,L

1σx
kHσ(σ

∏
$$

k$)

k!(−z)k

 |Sσ|
|Sσ,L|

∏
η∈σ

Q
Lη
σ,ηηLη

(−z)LηLη!
∏Lη

γ=1

∏r
i=0

(
αi(η) − αi − γ

η
z
)
 .

Using combinatorics we may check that specializing Qσ,η = Q for all σ, η recovers Jµ(x, Q, z) and
Iµ. This is the analog of the change of variables after Equation 36 of [18].

1Note that the coefficients of Jµ(x, Q, z) differ from the Gromov-Witten invariants of µ (as calculated in [34]) by a
factor of |G|; this is because on an orbifold point, the Poincaré dual to the fundamental class 1 is |G| · 1.
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From here, (III) essentially follows from the proof in Section 7.3 of [18], despite the fact that
Tµ Symd Pr is not a direct sum of line bundles. We give an outline.

As in [18], we work with a general multiplicative characteristic class cs. Denote by ∆s the
orbifold quantum Riemann-Roch operator, which by [54] maps Lµ to LT Symd Pr

µ . Explicitly,

∆s :=
⊕
σ

exp


∑
η∈σ

0≤i≤r
i 6=i(η)

∑
0≤`≤η−1

∑
m≥0

sm−1R(σ, `)
Bm(`/η)

m!
zm−1

 ,

whereBm is themth Bernoulli polynomial, andR(σ, `) is the rank of the eigenbundle of Tµ Symd Pr

on which elements of σ ⊆ Gµ act with eigenvalue e2πi`/η. Note that the values

sk =

− log(αi(η) − αi) k = 0

(−1)k (k−1)!
(αi(η)−αi)k

k > 0

recover the T -equivariant Euler class. Using the functional equation of the Bernoulli polynomials,
we may check that IQµ,σ = ∆s(J

mod
µ (x, Q,−z)), where

Jmod
µ (x, Q,−z) : = −z

∑
σ

∑
k,β,L

1σx
kHσ(σ

∏
$$

k$)

k!(−z)k
|Sσ|
|Sσ,L|

∏
η∈σ

(
Q
Lη
σ,ηηLη

(−z)LηLη!

)
(6.8)

exp

∑
i 6=i(η)

η−1∑
`=1

∑
n,m≥0

sn+m−1Bm(0)R(σ, `)

(
z`/η − z

⌊
Lη+`

η

⌋)n
n!

zm−1

m!

 .

Analyzing the floor function, we have

η−1∑
`=1

(
z`/η − z

⌊
Lη+`

η

⌋)n
n!

=

η−1∑
`=1

(z(−Lη + `)/η)n

n!
.

Now (6.8) is equal to P (Qσ,η
∂

∂Qσ,η
)(JQµ ), for

P (a) = exp

∑
i 6=i(η)

η−1∑
`=1

∑
n,m≥0

sn+m−1Bm(0)R(σ, `)
(z(−a+ `)/η)n

n!

zm−1

m!

 .

The inductive argument at the end of the proof of Theorem 4.6 of [16] shows that (after specializing
Qσ,η = Q) the series Jmod

µ (x, Q,−z) is a H∗T,loc(SpecC,Q)[[Qσ,η,x]]-valued point of Lµ, and
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orbifold quantum Riemann-Roch then shows that Iµ(x, Q,−z) is a H∗T,loc(SpecC,Q)[[Qσ,η,x]]-
valued point of LT Symd Pr

µ .

6.3 ISymd Pr(t,x, Q, z) is equal to the J-function of Symd Pr

The beginning terms of ISymd Pr(t,x, Q, z) are

ISymd Pr(t,x, Q, z) = 1z +
∑
σ

r∑
i=0

ti[Hσ,i] +
∑

$∈Part(d)

x$1$ +O(z−1).

On the other hand, by definition, there is a unique ΛT
nov[[t,x]]-valued point of LSymd Pr of this form,

namely the J-function

JSymd Pr(Q, θ, z) = 1z + θ +
∑
β,n

Qβ

n!

〈
θ, . . . , θ,

γφ

z − ψ

〉Symd Pr,T

0,n+1,β

γφ, (6.9)

where θ =
∑

σ

∑r
i=0 ti[Hσ,i] +

∑
$∈Part(d) x$1$. Thus:

Corollary 6.3.1. ISymd Pr(t,x, Q, z) = JSymd Pr(Q, θ, z).

6.4 The origins of the I-function

6.4.1 Quasimaps

One of the main challenges of proving a mirror theorem such as Theorem 6.1.2 is that the series
ISymd Pr(t,x, Q, z) must be guessed in some way (or, in the original story, predicted by physicists).

Recently, there has been major progress on this front, due to work of Ciocan-Fontanine and
Kim [13] on quasimaps. For X = W // G a GIT quotient of an affine variety, they produce a
collection of moduli spaces Qε,δ0,n(X, β) of (ε, δ)-stable quasimaps, such that when ε, δ � 0, we
have Qε,δ0,n(X, β) ∼=M0,n(X, β). (When ε� 0 they are spaces of weighted stable maps.)

Precisely, these spaces parametrize maps to [W/G], with weighted markings, where points of C
may map into the G-unstable locus of W . The parameters ε > 0 and 0 < δ ≤ 1 specify a stability
condition which governs the number of marked points that may collide, and the maximum order of
contact the curve may have with the unstable locus at a point.

The authors then define quasimap invariants, a generalization of Gromov-Witten invariants, via
a perfect obstruction theory on Qε,δ0,n(X, β). As in Gromov-Witten theory, twisted invariants and
equivariant invariants can also be defined.
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6.4.2 Graph spaces and I-functions

By the stability condition on stable maps, the space M0,n(X, β) is empty when β = 0 and
n < 3. Indeed, in the definition of a point of the Givental cone, the sum is over n, β ≥ 0 with
(n+1, β) 6∈ {(1, 0), (2, 0)}. The first two terms−1z and t(z) of such a function f may be understood
as corrections, corresponding to these two “missing” cases (respectively).

This can be made precise. There is a moduli space, called a graph moduli space and de-
noted MG0,n(X, β), that parametrizes stable maps with a single parametrized component (on
which the stability condition is not required). This space has a C∗-action, and one may exhibit a
Gromov-Witten invariant of X appearing in f as a localization contribution to a certain integral
onMG0,n(X, β). The advantage of this point of view is thatMG0,n(X, β) exists for any n and
β. Applying the same computation when β = 0 and n < 3 yields a conventional way of defining
“extra” Gromov-Witten invariants. These exactly give the terms −1z and t(z) in f . This technique
was used in Givental’s proof of a mirror theorem for quintic threefolds [28].

The same technique can be adapted to quasimaps, as follows. The moduli space Qε,δ0,n(X, β) is
instead empty whenever

−2 + δn+ εβ ≤ 0. (6.10)

There is a quasimap graph space QGε,δ
0,n(X, β) that is defined for all n and β, even in the limit

ε, δ → 0. The same operation as above of defining conventional extra invariants works here. Note
that in the limit ε, δ → 0, condition (6.10) is always satisfied, i.e. all quasimap invariants are defined
via this convention. The I-function IX of X is a generating function analogous to f (with the simple
value t(z) = t({tφ}, Q, z) =

∑
φ tφγφ), but defined using quasimap invariants in the limit ε, δ → 0.

In many special cases, IX may be computed explicitly. The authors conjecture that the I-function
defined this way is on the Givental cone LX , and prove it in a special case:

Theorem 3.3 of [14]. If X has a T -action with isolated fixed points and 1-dimensional orbits, then

IX is on the (equivariant) Givental cone LX .

6.4.3 I-functions of orbifolds

In the case that X does not admit such a torus action, we may still hope that the I-function produced
this way would lie on the Lagrangian cone, and that this could be proven by other means. In general
this is a very promising method, but there is an obstruction when X is an orbifold.2 To explain this

2An orbifold GIT quotient is the stack quotient [W ss/G] of the semistable locus by G. For example, X = Symd Pr
is a GIT quotient via the presentation C(r+1)d // ((C∗) wrSd).
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obstruction, we need to be more explicit about how to express a quasimap invariant as a localization
contribution on QGε,δ

0,n(X, β).

The group C∗ acts on QGε,δ
0,n(X, β) by scaling on the parametrized component of each curve C.

If a point (f : C → [W/G]) is to be C∗-fixed, then this component, identified with P1, must map
to a single point of X = [W ss/G], except for 0 and∞, which may map into the unstable locus
[W uns/G]. Similarly marked points and nodes must be at 0 or∞. If there are nodes at 0 and∞,
then chopping C at 0 and∞ yields two quasimaps to X , of degrees adding up to β.

Consider the case where there is a node at 0, but just the marked point bn+1 at∞. This locus
Fn,β is an open and closed substack of the C∗-fixed locus of QGε,δ

0,n+1(X, β). It is isomorphic
to Qε,δ0,n+1(X, β). The normal bundle NFn,β parametrizes smoothings of the node 0, as well as
infinitesimal movements of the special points at 0 and∞ on P1. It has equivariant Euler class

e(NFn,β) = −z2(−z − ψ),

where ψ is the cotangent class of the (n + 1)st marked point under the identification with
Qε,δ0,n+1(X, β), and z is the equivariant parameter. Thus (using the fact that evn+1 is identified with
itself under this isomorphism) the contribution of Fn,β to an integral 〈t(ψ), . . . , t(ψ), φ〉X,G0,n+1,β over
the graph space is precisely the non-graph quasimap invariant 〈t(ψ), . . . , t(ψ), φ

−z2(−z−ψ)
〉X0,n+1,β.

Up to the factor −z2, this is the invariant appearing in f .
The previous paragraph only makes sense when condition (6.10) does not hold, since in that

case there can be no node at zero. When it does hold, however, the locus Fn,β still makes sense;
it parametrizes maps P1 → [W/G], where n marked points are at 0, one marked point bn+1 is at
∞, and where the point 0 maps into the unstable locus. This moduli space is now, at least in many
cases, isomorphic to X via evn+1. Computing the virtual normal bundle Nvir

Fn,β
is now more difficult,

but by doing so one essentially obtains the I-function.
We can now see why this strategy fails when X is an orbifold. For one thing, above we had all

n marked points of C concentrated at the point 0 ∈ P1. But there is no known way to make sense
of multiple orbifold points colliding in a family. Second, there are additional complications if one
would like orbifold points to map into the unstable locus, which generally has an infinite stabilizer.

There is a modification presented in [12] for dealing with these problems. The authors simply
restrict to the case n = 0. This gives an I-function with significantly less data than hoped (it is a
ΛT

nov-valued point of LX , rather than a ΛT
nov[[x1, . . . , xn]]-valued point), but the authors show that in

the case where X is a toric orbifold, by carefully picking a GIT presentation all of the data may be
recovered.

Let us see why this modification is not available in the case X = Symd Pr. When n = 0, the
source curve C has a single orbifold point, at ∞. A quasimap f : C → Symd Pr consists of
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a principal Sd-bundle over C, and an Sd-equivariant quasimap to (Pr)d. However, there are no
nontrivial Sd-bundles over a P1 with one orbifold point. Therefore in some sense, the I-function
obtained via this modification will not see the fact that Symd Pr is an orbifold at all! Precisely,
the I-function will take values in the usual cohomology of Symd Pr, rather than the Chen-Ruan
cohomology. In general, we only expect the recovery process mentioned above to work in rare
cases, possibly only for toric orbifolds.

6.4.4 I-functions of orbifolds, attempt 2

We propose a method that in some simpler sense allows orbifold points to collide. We will show
how this method gives rise to the I-function of Theorem 6.1.2, which gives strong evidence that the
method is good.

Let f : C → X be a map from an orbifold curve into an orbifold X . By pulling back a cover
of orbifold charts of X , we may cover C with open sets {Ui} such that f |Ui is a map to a quotient
[Mi/Gi] ⊆ X, i.e. f |Ui is given locally by a principal Gi-bundle Ũi → Ui and a Gi-equivariant map
Ũi →Mi, where Gi is finite. This still works if f : C → X is a family of maps over a base scheme
S.

Suppose S = C∗, and as s → 0, two orbifold points of C approach each other. (It is easy to
make rigorous sense of this, as in the case of usual moduli of weighted stable maps.) From above,
we have the data of a principal Gi-bundle on C. Is it possible to find a flat limit of C over C such
that the map and principal Gi-bundle extend? First, we deal with the question of how to extend C.

Example 6.4.1. Consider the family [{xy = tz2}/S2] ⊆ [P2/S2]×C∗, where µr acts by permuting
x and y. This is a family over C∗ of orbifold curves, each of which has two orbifold points of order
2. When we fill it in the natural way, the limit is [{xy = 0}/µ2], a singular Deligne-Mumford curve
with coarse moduli space isomorphic to P1.

This construction generalizes as follows. We replace the group S2 with the dihedral group D2n,
where a reflection acts by permuting x and y, and a rotation acts by scaling x and y by an nth root
of unity. Then one checks that this is also a family of orbifold curves, each with two orbifold points
of order 2. The limit is again singular with coarse moduli space P1, but it is not isomorphic to the
previous one (e.g. it has isotropy group D2n at the singular point). This shows that in general there
are many possible limiting curves resulting from the collision of two orbifold points. (In fact, they
may come in a positive-dimensional family, if the base S has higher dimension.) These particular
singularities were studied by Ekedahl [23].

In any example like this, properness of BGi allows one to extend the principal Gi-bundle to
the filled-in family. However, because the behavior of degenerating orbifold curves is extremely
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complicated, we do not know how to define a quasimap moduli space where orbifold points may
collide. Even if we could do so, we would not know how to compute with it.

Instead we propose the following solution. Again suppose we are given a family of orbifold
stable maps over S = C∗. There is a well-defined monodromy, a conjugacy class in Gi, around
a marked section. In the limit, there is also a well-defined monodromy around the collection of
colliding marked sections, given by taking a small loop that encloses those sections. Rather than
taking the limiting curve as s→ 0, we will puncture C at the marked sections (which does not lose
any data) and then fill in a limiting punctured curve. This curve has a natural principal Gi-bundle
with monodromy around the collided marked points equal to the one just described. We may use
this monodromy to fill in a curve and a map to X , but the resulting curve does not fit in a flat
family with C. Therefore our moduli space will parametrize quasimaps from punctured curves,
with specified monodromy data at the punctures.

Here is how we use this to compute, when X = [M/G] is a global quotient by a finite group.
The part of the fixed locus Fn,β in QGε,δ

0,n+1(X, β) parametrizes maps where all marked points have
collided at 0. A point of Fn,β now carries not only the information of the target point in X , but
also the monodromy data of all n collided marked points. Thus it contains an open and closed
substack for each possible assignment of monodromy data; these are indexed by factorizations of
the identity in G. In particular, for X = Symd Pr, we have G = Sd. This is where the Hurwitz
number appearing in (6.1) comes from.

The other interesting part of (6.1) is the product at the end, which comes from the normal bundle
to Fn,β. For (f : C → Symd Pr) ∈ Fn,β, the étale cover C ′ → C is simply a union of covers, fully
ramified over 0 and∞. The monodromy is given by the partition σ = Mon(n + 1). The degrees
of the map C ′ → Pr on each rational connected component give a Z≥0-labeling of σ with sum β.
The deformations of the maps C ′ → Pr are a product over these connected components, and the
weights are computed using Kontsevich’s argument. The result is the product in (6.1) (when done
equivariantly).
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