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ABSTRACT

While college major choices are consequential, students do not know their capacity to per-
form in academic and non-academic environments related to those majors, and may not be
prepared to take the classes for those majors. In my dissertation, I use detailed course tran-
script data to understand how students explore different majors and the roles of current and
future college policies.

In my first chapter, Learning about College Major Match: Microfoundations from Dynamic

Course-Taking, I develop and estimate an economic model to understand how first year courses
can set students onto the path to their major. I develop and estimate a structural dynamic course-
taking model that highlights how students learn about major match quality and complete course
requirements to graduate in different majors. The model highlights how the breadth and depth
of coursetaking across and within majors affects graduating major and graduation time. Es-
timating my model, I simulate a policy requiring students to take a variety of courses across
different majors during their first year. As a more rigorous version of current colleges’ dis-
tributional course requirements, this counterfactual policy causes the share of Natural Science
graduates to increase ten percentage points. I find this counterfactual causes additional path de-
pendence in the Natural Sciences from completing course requirements, rather than providing
additional information.

My second chapter, Do Grades Matter? Evidence from College Transcripts, complements
the first and dives into the correspondence between courses and majors. I combine administra-
tive transcript data from a large public four-year institution to create a novel measurement of
how student’s progress in majors’ course requirements. I find that four semesters after declar-
ing one major, all students complete between 15% to 25% of the course requirements necessary
to graduate in the Humanities, Social Sciences, and Psychology. Students’ course-taking also
seem to respond to first year grades. I construct a dynamic course-taking model, where in
students take courses to learn about major abilities and complete majors’ course requirements.
The transcript data is consistent with the model’s result that major switching costs increase as
they continue to complete the course requirements in one major.

The third chapter, Math for All? Regression Discontinuity in Signals of Preparation for

xiii



College Quantitative Coursework (with William J. Gehring), uses plausibly exogenous vari-
ation to evaluate how higher education institutions can influence student course-taking and
major choice. College calculus courses can be a stumbling block in pursuit of some goals
for under-prepared students. We study how student course-taking and major decisions at an
elite public institution respond to recommendations to take Pre-Calculus or Calculus. Using
a regression discontinuity framework to estimate Intent-to-Treat effects, we find that, among
the least-prepared students, students with a tentative recommendation to take Pre-Calculus are
60% more likely to ever take Calculus than if they receive a definite recommendation to take
Pre-Calculus. We find suggestive evidence these recommendations equalize course-taking and
major completion outcomes in Economics, Statistics, Biology, and Chemistry. We do find,
however, evidence that students with the least favorable recommendation are more likely to
be diverted toward quantitative courses that do not count toward a major. Our work suggests
inducing students to take Pre-Calculus or Calculus is insufficient to encourage them into quan-
titative majors.

xiv



Chapter 1

Learning about College Major Match:
Microfoundations from Dynamic Course-Taking

1.1 Introduction

Large variation in earnings across college graduates’ majors makes major choice one of the
most consequential economic choices made by young adults (Altonji et al., 2015; Black et al.,
2003; Hastings et al., 2013; Kirkebøen et al., 2016). Altonji et al. (2012) find that the descrip-
tive difference in log earnings between those with bachelor’s degrees in electrical engineering
and education is comparable to the difference between college and high college graduates.1

Despite this importance, indecision casts a large umbra: one-third of students start college un-
declared (U.S. Department of Education, 2016).2 Stinebrickner and Stinebrickner (2014b) find
a substantial proportion of students make unexpected major changes, indicating learning about
major match quality.

United States colleges are designed for students to learn about their capacity to perform in
academic and non-academic environments, or major match quality.3 Colleges provide students
with hundreds of courses designed to inform major choice, and require students to take courses
across majors with distributional course requirements. Yet there is policy room in distributional
course requirements’ flexibilities to choose among courses designed for non-majors and to
satisfy them at any time during college. In this paper, I find that requiring students to take
courses designed for majors during their first year affects major choice by decreasing the effort
needed to graduate in majors rather than providing information about major match quality.

Previous works use major declarations to proxy for students’ information sets and course-
taking, confounding two mechanisms of major choice: major match quality and coursework.

1Among males in the 2009 American Community Survey, and conditional on observerable characteristics
available in the american Community Survey.

2Students do not start college with an official major, or declare before entering, but are “undeclared” in that
they do not have any majors in mind.

3Many other countries require students to simultaneously choose a college and major, prioritizing time-
invariant match quality based on pre-college characteristics and the ability to use focused curricula.
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This paper directly uses course-taking with a course-taking model to separate these two mech-
anisms. It focuses on how courses provide information and complete majors’ course require-
ments. Completed course requirements create natural incentives to ignore new information
about college major match (Arcidiacono et al., 2016; Israel, 2005), because the effort needed
to finish is lower. I measure the effort needed to finish in majors with the amount of courses
needed to complete that major’s course requirements.

Focusing on the role of courses, this paper makes two contributions to the major choice
literature. The first is a structural single-agent dynamic course-taking model where in stu-
dents take courses to jointly maximize short-run payoffs from course-taking during college,
and long-run major-specific graduation payoffs. Courses give students information about their
major match quality and complete majors’ course requirements. Students only graduate in ma-
jors they have completed course requirements in. The model captures the trade-off between
how diversified course-taking leads to more informed choices, and concentrated course-taking
requires less effort to graduate.

The second contribution is using administrative transcript data from a four-year public flag-
ship institution to estimate the structural model and simulate counterfactual academic policies.
I identify the courses needed to graduate in different majors. The model is identified from
students taking courses to control their graduating major and graduation time. The model’s
learning parameters are identified from the correlation of student course-taking and earned
grades.

The model is among the first to use the systematic correspondence between course-taking
and major choice, making it suitable for testing course-taking policies. Policy interest in using
already available courses to influence major choice makes the need for such analysis consid-
erable. I simulate students taking courses across three major groups – Natural Sciences, Hu-
manities, and Social Sciences – during their first year. This corresponds to a more stringent
version of current distributional requirements, designed to inform students’ major choice with
counterfactual information about their major match qualities.

I find this counterfactual policy increases the share of Natural Sciences graduates from
16% to 26%. Both counterfactual information about major match quality and systematically
decreasing the course-taking effort needed to complete majors’ course requirements drive this
result. To decompose this result, I simulate another counterfactual where students do not learn
about their major match quality from their imposed first-year course-taking. Finding similar
results on graduating majors, I conclude that first-year courses affect major choice through
decreasing the course-taking effort needed to complete majors’ course requirements rather than
providing additional information.

Finding previously completed course requirements can be stronger than learned match qual-

2



ity is crucial to understanding the impacts of induced course-taking.4 While courses designed
for majors are likely more informative of major match quality, they give students an additional
incentive to persist in a major. Students’ first-year courses are relatively uninformative but
influence major choice independent of match quality. Administrators wanting to use course-
taking as a policy lever need to be wary of attributing impacts to counterfactual information
rather than completing course requirements.

Section 2 highlights how the paper improves on the college major choice literature. Section
3 presents the institutional context and transcript data. Section 4 presents the structural dynamic
course-taking model. Section 5 discusses the identification strategy and concerns. Section
6 presents the model estimates and counterfactual simulations of how exogenous first year
course-taking affects major choice. Section 7 concludes with policy implications and areas for
future research.

1.2 Literature Review

The literature on college major choice can be separated into identifying different components
of major match quality: expected labor market earnings, pre-college experiences, and college
experiences. Beffy et al. (2012) and Long et al. (2014) find variation in labor market earnings
have limited impacts5 on college major choice. Wiswall and Zafar (2013) and Baker et al.
(2017) find earnings have a substantial role,6 although, observables only account for 20% of
the variation in their major choice. The limited role is not surprising, considering Arcidiacono
et al. (2012b) find students tend to have more information about their own majors’ earnings
potential.

Mixed evidence on the role of earnings prompted additional work focused on separating
pecuniary from non-pecuniary roles in major match quality. One portion of match quality
comes before college. A large segment of the college major choice literature looks at how
students choose their major based on pre-college characteristics, including gender (Alms et al.,
2016; Brown and Corcoran, 1997; Griffith, 2010; Turner and Bowen, 1999), race (Darolia and
Koedel, 2016), family (Anelli and Peri, 2015; Zafar, 2012), and high school peers (Anelli and
Peri, 2016). Some of the match quality is related to college performance (Speer, 2017), and

4Princeton Review and US News and Report encourage students to take courses across
different majors: https://www.princetonreview.com/college-advice/choosing-college-majors,
https://www.usnews.com/education/blogs/twice-the-college-advice/2011/11/15/10-tips-for-choosing-the-right-
major

5Beffy et al. (2012) find a 10 percent increase in earnings causes a 0.25 and 0.53 percentage point increase in
Natural Sciences, and combined Humanities and Social Science majors using French data. Long et al. (2014) find
larger estimates with a reduced form approach using historic variation in earnings from American Community
Survey, with more narrowly defined majors.

6Wiswall and Zafar (2013) find larger elasticities, with a 1 percentage increase in beliefs of own earnings
in a major increasing the probably of majoring by 1.6 percentage points. Baker et al. (2017) find that among
community college students, a one percentage point increase in earnings increases the probability of graduating in
different majors by 1.5 percentage points.
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Avery et al. (2016) find that higher Advanced Placement scores positively effect major choice,
consistent with students learning about match quality.

The main hurdle in this area is that before students graduate in a major, they take courses
and may declare other majors. Arcidiacono (2004) uses a structural model identified from
variation in grades relative to students’ calculated match quality beliefs, and Stinebrickner and
Stinebrickner (2014b) uses students’ surveyed expectations for declaring and finishing in dif-
ferent majors. Both find that students’ beliefs about their major match qualities, independent
from earnings, affect their major choice. I follow this literature using a structural model and
allow correlated major match qualities.

Arcidiacono (2004) implicitly assume students focus their course-taking into a declared
major, while Wiswall and Zafar (2013) assume course-taking is conditionally independent of
major choice. Yet students take diverse course-taking trajectories through majors (Goldhaber
et al., 2015; Hsu, 2017).7 Then all but the last major declarations are noisy measures of course-
taking, which are observable in transcript data and better measure how students learn and face
effort costs during college8.

Previous works modeling major declarations only used students’ last declared majors to
measure the effort needed to graduate in a major. This paper uses course-taking to model
the effort9 needed to graduate in different majors. Modeling courses makes students’ entire
course-taking history relevant and introduces additional dynamics for how students change
their course-taking. Stinebrickner and Stinebrickner (2014b) use students’ initial major interest
and final major choice, note modeling course choices can become computationally intensive
in tracking different combinations of choices, and requires additional assumptions. This is
the first paper to tackle these issues head-on, incorporating how students learn from different
courses10 and the implicit costs of taking courses to learn about major match quality. While
course-taking is the primary way to learn about major match quality, it also affects switching
costs. This creates an unavoidable friction: taking courses in the Natural Sciences provides
information and increases the cost of switching to other majors because they require relatively
more courses to graduate. Switching costs then act as an information friction (Altonji et al.,
2015); as the student gets closer to finishing a major’s course requirements, the incentive to
graduate looms larger.

Finally, this paper complements the literature on higher education design and whether stu-

7(Andrews et al., 2014) finds similar patterns with students transferring between two- and four-year colleges.
8There is substantial work on the role of supply-side factors, such as instructors (Griffith, 2014; Price, 2010)

and grade distributions (Bar et al., 2009).
9Baker et al. (2017) find that students’ expected difficulty of future coursework also affects community college

students’ majors.
10Where Wiswall and Zafar (2013) and Stinebrickner and Stinebrickner (2014b) elicit students’ expectations

about their future major declarations across different majors, the dynamic course-taking model calculates students’
expectations of future course-taking based on their course and grade histories. Relaxing this assumption greatly
increases students’ choices from declaring one major at a time to choosing courses across multiple majors.
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dents should choose a major before college. Bordon and Fu (2015) and Malamud (2010, 2011)
find students benefit from exploring majors before declaring during college, relative to choos-
ing a major before college. Courses likely provide the most amount of information about major
match quality, and modeling course-taking provides a microfoundation for how students ex-
plore majors.

1.3 Institutional Context: the University and Transcript Data

I use administrative transcript data for all students who enter a four-year public flagship insti-
tution, anonymized as the University, through its College of Arts and Liberal Sciences (CALS)
from 2002 to 2011.11 I combine transcript data with institutional information to measure how
students complete different majors’ course requirements.12 This cannot be done with nationally
representative data such as the National Longitudinal Survey of Youth (NLSY) or Beginning
Postsecondary Students Longitudinal Study (BPS) for two reasons: insufficient sample size
within institutions by major, and courses are reclassified with the Classification of Instructional
Programs, making it difficult to identify individual courses that satisfy majors’ course require-
ments.

This paper focuses on how students choose a major within the University’s College of
Arts and Liberal Sciences (CALS). CALS has the largest (60%) enrollment and has the most
diverse set of majors.13 CALS students interested in graduating in other majors must use an
internal transfer process. Besides CALS, enrolling freshmen at the University also enter the
Engineering, Medical-Related, or Arts-Related schools.

The data contains student administrative data on students’ previous college exam scores and
demographic data. To create equivalent math and reading standardized score measures, I use the
percentiles in the SAT and ACT Math and Reading sections, averaging if both are available.14

Also included are students’ interests in different majors before starting any coursework at the
University, reported household income, and reported maximum parental educational attain-
ment.15 Students can list interests in multiple majors, where in most nationally representative

11The transcript data follows students up until 2015. Although this departs from the standard convention of
giving students six years to graduate, Table A.1 shows that more than 80% of students only attend the University
for four years.

12Hendricks and Leukina (2015) use Postsecondary Education Transcript Study data to study student progress
to completing general graduation requirements, rather than individual majors’. Bettinger (2010) uses transcript
data without grades to examine trends in science course-taking. I discuss identification issues from ignoring the
role of courses that do not satisfy any majors’ course requirements in Section 1.5.3, and how requirements are
coded in Appendix Section A.1.8.

13The University provides a contrasting environment to Berea College (Stinebrickner and Stinebrickner,
2014a,b), which focuses on helping underprivileged and talented students, and does not charge tuition, and to
NYU (Wiswall and Zafar, 2013) and Duke University (Arcidiacono et al., 2014), which are private institutions.

14In the sample, around 20% of students only have SAT Scores, 55% only have ACT scores, and the remaining
(except for 33, who are dropped in sample selection) have both.

15Previous academic interests come from the Common Application, and registering for the ACT and SAT. These
questionnaires and discussion of how these interests are used can be found in Section A.1.2. Reported parental
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datasets students can only list one.

One data drawback is the lack of post-graduation outcomes, such as earnings or employ-
ment. Without these data, I rely on estimating students’ combined pecuniary and non-pecuniary
payoff from graduating in different majors. I discuss conceptual difficulties in using earnings
data from external datasets such as the ACS or NLSY97 in Section A.1.3.

1.3.1 Coding Majors’ Course Requirements and Aggregating Majors

To track students’ progress towards completing different majors’ course requirements, I code
CALS’ majors’ course requirements into the transcript data. Coding these requirements, I
observe how much progress students make towards finishing each major’s course requirements.
Course-taking in CALS is not limited by declared majors, so students do not have an incentive
to declare a major when they want to take courses in it.16

I standardize how students progress in majors’ course requirements17 into a percentage,
where completing all the requirements is 100% progress, at the cost of being unable to identify
individual courses.

CALS offers more than fifty different majors, and several have overlapping course require-
ments. To simplify the analysis, I create three different major groups: Natural Sciences, Hu-
manities, and Social Sciences.18 There does not exist a course that completes requirements in
more than one major group.

Table 1.1 lists the individual majors within each major group. The three major groups
are not as extensive as those used in previous works, because CALS simply does not offer
them.19 I include other majors commonly used in these works, such as Business, Engineering,
and Education as internal transfer options for CALS students. At the University, the student
cannot freely internally transfer into different colleges. The Business College requires a set of

characteristics come from the Common Application.
16Courses only satisfy major requirements if the student receives at least a “C.” I observe most grades are above

“C” : 3.67% of all courses taken earn at most a “C,” and a separate 1.5% of all taken courses result in withdraws.
Section A.1.4 provides a more thorough discussion of how major requirements were coded.

17The University offers academic minors as well, typically requiring eight to nine courses. While these minors
are listed on students’ graduation diplomas, they do not substitute for any academic majors and do not contribute
towards graduation. The course requirements for minors are often a subset of those required for majors. I do
not incorporate academic minors into this paper, and implicitly assume that there is no additional payoff from
completing minors’ course requirements.

18To create the aggregate progress towards completion in each major group, I use the maximum of progress of
all the individual majors within that major group. Other statistics such as the average or median would make it
difficult to measure a student completing 100% in that major. Another possible measure is to use the progress from
the “relevant major.” Say that a student has already made 10% progress in Biology and 20% in Chemistry within
the Natural Sciences major group. If the student makes 10% progress in Biology and 5% progress in Chemistry
in the next year, then I would record the 5% as the “relevant major” as it follows the major the student is closest
to finishing. However, this under measures the students’ effort in the Natural Sciences major group.

19Arcidiacono (2004) includes Business and Education. Wiswall and Zafar (2013) includes Business and Engi-
neering. Stinebrickner and Stinebrickner (2014a,b) includes four more majors: Agriculture, Business, Elementary
Education, and Professional Programs.
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Economics courses, the Engineering College requires several Math, Physics, and other science
courses, and other colleges have similar course requirements.

1.3.2 Trends in Completing Major Groups’ Course Requirements

Even though all CALS students face the same general graduation course requirements, they
engage major groups differently. Figure 1.1 finds variation in how different graduates complete
major groups’ course requirements over twelve semesters. Natural Science graduates make
more progress in other major groups than other graduates, while Humanities graduates make
the least. This is consistent with Natural Science graduates exploring other majors to a greater
depth than Humanities graduates.

Regardless of graduating major, the average graduate has taken a substantial amount of
courses across the different major groups. Hsu (2017) shows there is a loose correspondence
between such course-taking and major declarations. Focusing on major declaration would
under-measure how much information and experience students have across major groups.

There is very little variation after students’ eighth semesters, and I limit analysis to students
first four years of enrollment. To understand how students are taking courses to satisfy different
major groups’ course requirements, I create a dynamic course-taking model.

1.4 Dynamic Course-Taking Model

The dynamic course-taking model relaxes a core assumption used in the college major choice
literature: instead of declaring one major or another, the student allocates discrete combina-
tions of requirement units towards completing different major groups’ course requirements.
Requirement units abstractly represent her course-taking and how she completes major groups’
course requirements. If she allocates at least four requirement units into a major group, she
graduates in that major group.20 She trades off diversifying and concentrating her requirement
unit allocations to jointly maximize her payoffs from course-taking in college and graduation
payoffs.

The remainder of the model follows those in the college major choice literature: the stu-
dent uses grades she receives upon allocating requirement units into different major groups to
learn about her major group match qualities. The student also believes her major group match
qualities are correlated.

20Tracking the student’s completed requirements across majors also incorporates path dependence into the
student’s choice. If she is closer to finishing a Natural Sciences major group she has more incentive to finish
it. Allowing for a more flexible choice set, the model is similar to a multi-armed bandit problem (Gittins, 1979;
Whittle, 1988): the student can allocate requirement units across multiple majors, learn about her major group
match qualities, and continues allocating until graduation.
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1.4.1 Choice Structure: Requirement Unit Allocations, Internal Transfers, and Drop
Out

In each academic year t in T , the student i considers different combinations of requirement
units to allocate across M major groups. Each requirement unit completes 25% of a major
group’s course requirements.

The student can allocate at most three requirement units in any of the combinations shown
below. She cannot allocate all three requirement units into (complete 75% of the course re-
quirements for) one major group in one time period. The model treats this as exogenous: in
reality it is likely due to scheduling conflicts (three requirement units corresponds to eight to
ten courses in one year).

All Possible Requirement Unit Allocations, Set L:

(ei, Natural Sciences, t, ei, Humanities, t, ei, Social Sciences, t) =

(1,0,0)
(2,0,0)
(0,1,0)
(1,1,0)

(2,1,0)
(0,2,0)
(1,2,0)
(0,0,1)

(1,0,1)
(2,0,1)
(0,1,1)
(0,2,1)

(0,0,2)
(1,0,2)
(0,1,2)
(1,1,1)

When the student chooses one combination of requirement unit allocations, c ∈ L, she re-
ceives an immediate course-taking payoff ν(c|c ∈ L). If she accumulates at least four require-
ment units in major m, she graduates in major group m the next period and receives graduation
payoffs Wimt. If she simultaneously finishes multiple major groups’ course requirements in
one time period, she also receives a combination-specific graduation payoff.

The student can also internally transfer into separate Business College or Other College.
Internally transferring to other colleges, graduating in a major group, and dropping out are the
only terminal states. Her entire choice set C is internally transferring to these two colleges,
dropping out, and combinations of requirement units L. Her objective can be briefly described
with the following Bellman equation:

V (Sit) = max
{

max
c∈L

{
ν(c|c ∈ L) + 1{Graduate in None|c, Sit}βE[V (Sit+1|c)]+

1{Graduate in m|c, Sit}βWimt

}
,

uBus.,

uOth.,

Drop Out,
}

(1.1)

The student’s state variables – completed requirements and grade point averages (GPA) across
major groups – are Sit. The state variables are used to calculate the student’s expectation of
future payoffs and match quality beliefs. She considers the probability of different possible
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future grades and idiosyncratic shocks to future payoffs to calculate her expected future imme-
diate college flow payoffs from each choice c and future graduation payoffs.

1.4.2 Immediate Course-Taking Payoffs

I parameterize ν(c|c ∈ L) using her requirement unit allocation: cit = (ci NatSci t, ci Human t, ci SocSci t).

The immediate payoff ν(c|c ∈ L) is linearly separable into major-group-specific payoffs,
uimt, which depend on how many requirement units she allocates within one major group, her
major group match quality, and time-invariant individual characteristics Zi. The immediate
payoff also has an interaction payoff u(c) that depends on how she allocates requirement units
across major groups.

ν(c|c ∈ L) =
∑
m∈c

uimt(bimt, cimt,Pre-College Interest in mi, Zi) + u(cit) (1.2)

The student receives uimt from any major group m she allocates at least one requirement unit
into. The student does not know her major group match qualities, and relies on her belief in
them, bimt. Match quality appears in how the student benefits from discussing the material with
peers, expected grades, and effort costs. Payoffs from match quality vary over major groups.
For example, having high match quality may be more valuable in the Natural Sciences than
Humanities.

Parameterizing uimt captures two ways payoffs vary over course-taking. First, the student’s
effort can increase concavely or convexly as she takes more courses in major group m. I use
fixed effects for allocating one or two requirement units to capture non-linearities in effort. Sec-
ond, elective courses are differently designed from introductory courses. The student receives
an additional payoff after allocating two requirement units in that major group – an approxima-
tion for taking advanced elective courses. Third, the student’s course-taking experience simply
scales with her course-taking. Her payoff with respect to her match quality beliefs bimt and
individual characteristics Zi linearly scale with her allocation cimt. Zi proxy for the student’s
familiarity with the major group, and I use indicators of interest in the major group before
college, and indicators of US citizenship, reported household income, and maximum parental
education.

uimt = κ1m1{cimt = 1}+ κ2m1{cimt = 2}+
κadv,m freqadv(cimt) + cimt

(
κb,mbimt + κz,mZi

) (1.3)

where freqadv(cimt) counts the number of requirement unit allocations the student makes after
the first two requirement units.

Aside from how the student completes the requirements within a major group, it is also im-
portant how the student allocates requirement units across major groups. The interaction payoff
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u(c) captures how the student’s payoff changes non-linearly if she concentrates or diversifies
her requirement unit allocations within one time period. The student’s effort likely increases
if she takes courses across multiple major groups, and I have indicators of whether the student
is taking requirement units in one or more major groups. Besides being able to allocate re-
quirement units across major groups, the student can also allocate more than one requirement
unit into a major group. I use the variance of c to account for how this second margin affects
payoffs.

u(c) = π11{c̃it = 1}+ π21{c̃it > 1}+ πvar variance(c) + εict

where c̃it =
M∑̃

m=1

1{cim̃t > 0}
(1.4)

Aside from how the student allocates requirement units across major groups, unobserved pay-
offs to course-taking such as inconvenient scheduling, taking courses with friends, and avail-
ability of certain courses can idiosyncratically affect the immediate payoff. εict captures these
idiosyncratic shocks. It is likely components of εict are common across major groups, such as
major group specific shocks that affect some requirement unit allocations and not others. εict is
distributed over a generalized extreme value distribution, with location and scale parameters 0
and τt and correlated across requirement unit allocations L with correlation ϕL.

1.4.3 Internal Transfer and Graduation Payoffs

Beyond allocating requirement units towards completing major groups’ course requirements
in CALS, the student can also internally transfer to a Business College or Other College or
drop out. The drop out payoff is normalized to zero. If the student internally transfers to the
Business College or Other College within the University, she receives payoffs of uBus. or uOth..

These payoffs vary over when the student starts at the Business College or Other College,
since all students are required to fulfill the same specialized course curricula regardless of
entering year. Then fixed effects of when the student enters the Business College or Other
College during her second, third, or fourth year represents the combined effects of starting the
specialized curricula and potentially graduating later if she enters in her third or fourth year.

I allow uBus. and uOth. to vary over students’ GPAs in the three major groups, and are
reduced form representations for the expected value of successfully applying, internally trans-
ferring, and (most likely) graduating in the Business College or Other College.21 The payoff
also varies over whether the student expressed interest in these Colleges before enrolling at the

21Once she leaves CALS, I assume the student no longer learns about major group match qualities. An inter-
esting avenue for future work is how students decide more specialized fields within each of these colleges.
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University, which proxies for individual motivation independent of GPAs.

uBus. = κBus.
t=2 + κBus.

t=3 + κBus.
t=4 +

κBus.
1 gi, NatSci, t + κBus.

2 gi, Human, t + κBus.
3 gi, SocSci, t+

κBus.
int Pre-College Interest in Bus.i + εict

uOth. = κOth.
t=2 + κOth.

t=3 + κOth.
t=4 +

κOth.
1 gi, NatSci, t + κOth.

2 gi, Human, t + κOth.
3 gi, SocSci, t+

κOth.
int Pre-College Interest in Oth.i + εict

(1.5)

uOth. and uOth. also have idiosyncratic shocks εict that are distributed extreme value type 1 with
location and scale parameters 0 and τt. These idiosyncratic shocks are not correlated with those
in the immediate payoffs, and represent unobserved shifts in the application process or student
interest in transferring to the Business College or Other Colleges.

The student graduates from a major group in CALS if she accumulates at least four require-
ment units into any major group. I denote graduating in major group m as Km.22 She receives
Wimt, which represents her expected future discounted sum of pecuniary and non-pecuniary
payoffs after graduating in major group m. Wimt depends on her graduating major-group GPA,
gimt. Since she graduates after realizing her final grades, she relies on her expectation of her
final GPA in major group m.

I also allow graduation payoffs to vary over entering cohort years to account for graduation
trends. Graduation trends can come from varying labor market returns to different majors, such
as during the Great Recession from 2007 to 2009.23

Wimt = ρm,t=3 + ρm,t=4 +

ρg,mgimt + ρ1m2006 to 2007 Cohorti + ρ2m2008 to 2011 Cohorti
(1.6)

ρm,t=3 and ρm,t=4 represent the combined effect of graduation time on tuition and future earn-
ings. Graduating earlier means paying fewer years of tuition and having additional years to
accrue graduation payoffs. Graduating earlier likely gives employers a positive signal as well.
The University can also influence students’ graduation times through policies such as requiring
students to declare a major after their sophomore year. The time fixed effects are a reduced form
representation of these different mechanisms. Section 1.5.3 discusses possible misspecification
issues.

Finally, if the student finishes multiple major groups’ course requirements in the same time
period, she receives the average of these major groups, as well as an additional combination-
specific payoff. Hemelt (2010) and Rossi and Hersch (2016) find limited labor market returns

22Formally, Km is the condition where
T ′∑
t=1

cimt ≥ 4.
23Timespan comes from the National Bureau of Economics Research: http://www.nber.org/cycles.html
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to double-majoring.

W̃i NatSci & Human t = 1
2
Wi NatSci t + 1

2
Wi Human t + ρNatSci & Human

W̃i NatSci & SocSci t = 1
2
Wi NatSci t + 1

2
Wi SocSci t + ρNatSci & SocSci

W̃i Human & SocSci t = 1
2
Wi Human t + 1

2
Wi SocSci t + ρHuman & SocSci

W̃i NatSci & Human & SocSci t = 1
3
Wi NatSci t + 1

3
Wi Human t +

1
3
Wi SocSci t + ρNatSci & Human & SocSci

(1.7)

The student’s major group match qualities indirectly affect her graduation payoff through her
expectation of graduating GPA. Her beliefs, bimt, directly impact her immediate payoffs from
allocating requirement units. Learning about match qualities from earned grades link the un-
certainty in future grades with learned major group match quality. I describe the learning
framework below.

1.4.4 Learning About Major Group Match Qualities

Before the first period, the student is endowed with immutable major group match qualities
µi = (µi NatSci, µi Human, µi SocSci). µi are drawn from a multivariable normal distribution,
with mean Γ and covariance matrix ∆. She does not know the values of µi, and has a prior
beliefs, bi1, about them based on pre-college characteristics, Xi. Xi includes students’ ACT
and SAT percentile scores, reported gender, and reported race. As she receives grades, git,
and allocates requirement units, she Bayesian updates her major group match quality beliefs
bit = (bi NatSci t, bi Human t, bi SocSci t). I assume the student has rational expectations over
future grade realizations and corresponding belief changes.24

bim1 = φm + φmXi + εbim (1.8)

gimt = µim + ηimt

ηimt ∼ N(0, σ2
m)

(1.9)

She uses her prior beliefs bi1, cumulative progress and GPA to Bayesian update her beliefs after
receiving immediate course-taking payoffs ν(c|c ∈ L) and before making her next choice.

The student believes the expectation error between her expected grade, E[gimt] = bimt, and
actual grade, gimt, comes from not knowing µim and idiosyncratic noise ηimt. In the Bayesian
updating process, the student weights the grades she receives with her previously allocated
requirement units. As she earns more grades and learns more about her match quality, she
attributes more of the expectation error to be idiosyncratic noise.

24The rational expectation and Bayesian learning assumptions are not innocuous. Rational expectations implies
that across the population, students’ expectations of their match qualities align with the population average – on
average, students’ beliefs are correct. Stinebrickner and Stinebrickner (2014b) find differences in students’ beliefs
from the population average, and use students’ elicited beliefs. Without observing beliefs in the data, I rely on
these assumptions to calculate students’ beliefs.
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Since the student’s abilities µi are distributed multivariate normal with covariance ∆, the
student knows match qualities µi are correlated, and uses ∆ in the learning process. With this
correlated framework, the student updates her beliefs in major groups k 6= m from a grade in
major group m. She forms her beliefs as follows (DeGroot, 1979):

Et[µi] = bit = Vt[µit] ·
(

(∆)−1bi1 + (Σ)−1
t∑

t′=1

git′
)

Vt[µi] =
(

(∆)−1 + (Σ)−1(
t∑

t′=1

cit)
)−1 (1.10)

where the diagonal matrix Σ has diagonal entries σ2
m.

There are information gains to allocating requirement units across major groups. The choice
to learn about her match qualities can come at the cost of delaying her graduation – she trades
off short-run gains from graduating earlier with potentially higher payoffs from learning about
match qualities. The student can exploit the correlation between major groups to learn more
quickly, without allocating requirement units into them.

1.4.5 Implications for Information-Seeking Behavior and Switching Costs

This learning framework builds concavity into the student’s requirement unit allocation choice,
because there is an informational risk to allocating two requirement units into a major group.
The student cannot receive multiple grades from the major group in one period,25 and weights
the grade with the total requirement units she allocated in that major group. She risks a large
change to her ability beliefs26 if she allocates two requirement units and receives a low grade.
One way to avoid this is to diversify her requirement units across major groups to learn more
slowly.

Yet for certain students, this risk is low if match quality beliefs are sufficiently high. Stu-
dents with higher match quality beliefs should allocate more requirement units to exploit higher
expected payoffs. Students with lower match quality beliefs have an incentive not to learn
about, allocate requirement units in, and graduate in those major groups. Goldhaber et al.
(2015) find students with higher SAT scores focus more of their course-taking.

A final dynamic is independent of learned match quality and can act against learned match
quality. A student who has concentrated her requirement units in a major group has a greater
incentive to continue because she is closer to graduating. The implicit switching cost of gradu-

25Related to the assumption all courses are identical, keeping track of the course or requirement unit weighted
grade the student receives within a time period creates additional computational burden. Section A.4.3 elaborates
on this.

26Even if the student perfectly knew her match qualities, she may not make the same choices each time period.
Suppose she receives positive immediate payoffs from allocating requirement units to Natural Sciences, but does
not intend to graduate in it. She actually wants to graduate in Social Sciences because it has a higher graduation
payoff. Then one way for her to maximize her utility is to allocate requirement units in Natural Sciences and
Social Sciences, and in the last period, only allocate enough to graduate in the Social Sciences.

13



ating in one major group grows as the student allocates more requirement units into other major
groups. The student stands to potentially graduate later and incur effort costs from allocating
additional requirement units. Switching costs become crucial if the student learns she has low
match quality in a major group, but only needs one more requirement unit to graduate. She has
an incentive to ignore learned match quality to graduate earlier.

1.5 Estimation Strategy and Identification

I estimate model parameters to match the likelihood students make each of the observed choices
and receive observed grades using maximum likelihood estimation. Model parameters are
identified through the share of students who make different choices over time. Cross-sectional
variation in student’s characteristics and panel variation in cumulative requirement units and
GPA across major groups identify major-group-specific payoff parameters in uimt. Graduation
payoff parameters are identified from how students consistently allocate requirement units in a
major group over time, and the share of students who graduate over time. Learning parameters
are identified from the differences between realized grades and calculated match quality beliefs.

In this section, I also discuss identification issues that arise from assuming only courses
that satisfy major groups’ course requirements give students information and assuming that the
University’s other course requirements do not affect students’ decisions.

In order to calculate the probability students make different choices, I use backwards in-
duction to solve the Bellman equation in (1.1). To address computational burden in calculating
the value functions across different combinations of requirement units and GPAs, I estimate the
model using a random subset of 4,000 students from the final sample.

1.5.1 Forming the Choice Set

Within each year, I discretize how students complete major groups’ course requirements into
bins of 25%.27 Each period is one year: I take advantage of the steep drop in attending students
after their fourth year as shown in Table A.1 and aggregate all course-taking from their fourth
year onwards into one year. This is to use a tractable choice set for estimation. A key feature
of the dynamic course-taking model is tracking how students complete major groups’ course
requirements over time. As I increase the number of time periods or number of requirement
unit allocations, the number of possible state variable values exponentially increases.

Discretizing completing course requirements can over-estimate the share of students who
are graduating in each major group. For example, I could infer that a student who takes one
course in the Natural Sciences in each year graduates in the Natural Sciences. To avoid this,
I set 10% as the minimum amount of progress to count as making 25% progress in a major

27 Figure A.1 compares the distributions of how students actually complete major groups’ course requirements
in each academic year, with the discretized requirement units. The discretization adequately represents how few
students complete many course requirements in an academic year.
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group.

Table A.10 shows that more than 99% of observed student-year requirement unit allocations
share two features:

1. Allocate between one and three requirement units across all major groups

2. At most allocate two requirement units in one major group.

It is likely few students complete 75% of the course requirements in one major group (corre-
sponding to eighth to ten courses in a year) due to scheduling conflicts. Using this discretized
measure, I track how students complete major groups’ course requirements over four years.28

1.5.2 Sample Selection

I focus on a sample of students with similar prior college experiences who make the observed
choices in the course-taking model. Table 1.2 shows that I first drop around 12% (4851 out of
the beginning sample 41331) students due to empirical concerns – entering the University with
more than 24 credits from other institutions or AP exams.

Students who transfer a substantial amount of credits from outside institutions start at CALS
with more information about their major group match qualities and have already completed
some major groups’ course requirements. While the University does not accept all these credits
towards different requirements, students with substantial transfer credits have academic expe-
riences that are incomparable to those who start at the University.29

I then drop around 2% of the beginning sample (691 out of 41331) students because they
make choices outside those allowed in the course-taking model. This includes students who
allocate three requirement units in one major group and allocate more than three requirement
units over all major groups in any given year. Again, accommodating these choices increases
the computational burden of calculating the value functions across all combinations of previ-
ous requirement unit allocations and GPAs. I also place restrictions on whether students can
internally transfer: students cannot internally transfer to the Business College or Other Col-

28In the model, students leave the University immediately after accumulating at least four requirement units in
a major group. Therefore, I drop all student-year observations after the student is measured to graduate. I show
how many student-year observations are dropped in Table A.7. Around 3,000 students are inferred to graduate
from CALS before they actually do. Most of these students are coded as graduating in the Humanities or Social
Sciences major groups in their third year but actually graduate in their fourth year. Besides these students, around
4,000 students from the final sample lose observations after they leave CALS because they internally transferred
into Business College or Other Colleges. I consider internally transferring to the Business and Other Colleges as
a terminal state, so this is not a concern for estimation.

29Around 7% of students dropped due to empirical concerns ever enroll at half-time. The decision to attend the
University half-time instead of full-time is likely driven by external factors, since students taking a course load
with fewer than 12 credits each semester face a different half-time tuition payment schedule and have considerably
more time to spend on other priorities. I do not observe any financial aid or tuition expense in the data, and I drop
students who ever enrolled half-time. Section A.2 discusses this in detail.
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lege during their first year.30 Section A.2 compares these dropped students’ characteristics and
outcomes in detail.

Table 1.2 shows CALS students stand out compared to most college students. 40% of
students reported on their Common Applications that their households earn more than $100,000
per year, and 44% of students have at least one parent with an advanced (Masters, Doctorate,
Medical, or Law) degree. Taking these proportions at face-value, these students come from
more advantaged backgrounds than those at Berea College (Stinebrickner and Stinebrickner,
2014b), but have similar backgrounds to students at Duke University (Arcidiacono et al., 2012a)
and New York University (Wiswall and Zafar, 2013).31

1.5.3 Parameter Identification and Bias Issues

I estimate the utility parameters in the immediate payoffs to allocating requirement units in
(1.2), graduation payoffs in (1.6), and Bayesian learning parameters in (1.10). Utility parame-
ters are identified relative to the drop out options normalized to zero.

The immediate course-taking payoffs ν(c|c ∈ L) are identified from the share of students
who allocate different requirement units over time, and how students choose to stay in CALS
to continue allocating requirement units in the future. The model infers that major groups with
higher payoffs must be attracting more students, and students do not rush to graduate and stay
longer in college because ν(c|c ∈ L) values are higher.

Estimates on how advanced requirement units in the immediate course-taking payoffs,
κadv,m, are identified from the share of students who continue to allocate requirement units
in a major group after previously allocating two. κadv,m is an incentive for students to not only
allocate two requirement units, but persist afterwards (this is separate from the identification
for graduation payoffs).

I assume idiosyncratic shocks εict are distributed generalized extreme value, with location
parameter 0, scale parameter τt, and correlated ϕL between requirement units allocations.32

30I also drop the extremely small share of students who I measure as completing the course requirements for
one of the major groups by their second year. There are 95 in the final sample of students. I use a random subset
of the final sample, which exacerbates small share issues. It is also questionable whether students who transfer
out of CALS in their first year had intentions of staying in CALS in the first place.

31Based on Arcidiacono et al. (2012a)’s Table 1, which is conditional on students who have Duke Admis-
sion Office evaluations, my calculations indicate 52% of students’ households have annual earnings greater than
$100,00. My calculations indicate 33% – 45% have at least one parents with an advanced degree. Wiswall and
Zafar (2013)’s sample of New York University students’ annual household earnings is $143,840, and 71% and
75% of mothers and fathers have a bachelors’ degree, respectively.

32This correlation also addresses issues of having no major-group-specific idiosyncractic errors in the imme-
diate payoffs. Major-group-specific errors would introduce mechanical correlations of εict for combinations that
allocate requirement units to the same major groups. Leaving out these major-specific errors introduces bias into
estimating κb,m since students’ match quality beliefs vary over time. Introducing these major-group-specific id-
iosyncratic errors greatly increases the computational burden for using backwards induction to solve the value
functions in (1.1), as it would require simulation-based methods to calculate the probability students make differ-
ent choices.
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The scale parameter is identified from the distribution of students’ choice within an academic
year, and their decision to stay in CALS, conditional on the other payoffs. To normalize utility
levels across years, I normalize the scale parameter for εict in the first period, τ1 = 1.

The continuation value33 of staying in CALS, following McFadden (1978), increases in τt
and ϕL. τt determines the conditional distribution of requirement unit allocations. Intuitively,
as variation in εict increases, students’ choices within a year are left to factors outside the model.
ϕL is identified from the nested logit structure: the share of students who allocate requirement
units rather than internally transfer or drop out.

One identification issue is ignoring the general course requirement to complete 120 credits
to graduate at all. This 120 credit requirement gives students an additional incentive to take
courses and stay in college longer. If the reason students are staying in CALS is to satisfy the
120 credit requirement,34 then the estimates of the value of future choices E[V (Sit+1)|Sit, c],
are upwards biased. This can operate through an upwardly biasing in estimates of immediate
payoffs, ν(c|c ∈ L).35

Internal transfer payoffs are identified from cross-sectional variation in students of different
GPAs who internally transfer to different Colleges. Individual variation comes from GPAs
across major groups and pre-college interest in these Colleges. uBus. and uOth. are reduced form
representations of the entire experience in the Business College and Other College, including
the internal application process. It is likely unobserved factors about student motivation and
Colleges’ preferences for certain types of students positively correlate with GPA. Note that the
idiosyncratic shocks εict also appear in the internal transfer payoffs, which I assume are not
correlated with ϕL.

Graduation payoffs Wimt motivate students to allocate requirement units into a major group
because it directly determines which graduation payoffs students receive. These payoffs dis-
continuously occur once the student has allocated four requirement units into a major group,
while the immediate course-taking payoffs ν(c|c ∈ L) can be received each year the student
is in CALS. The discontinuous change separately identifies utility parameters in graduation
payoffs Wimt from immediate payoffs ν(c|c ∈ L).

Two sources of variation identify the graduation payoffs. The first is students who are “at
risk” of graduating. Among students who have allocated three requirement units in a major
group, the greater the share of students who allocate the fourth requirement unit to graduate,

33The analytical form for the expectation of the maximum of future choices is (A.2). Intuitively, it captures
that a student may want to continue in CALS for the chance to receive a higher εict, even if all the parameters are
negative.

34Consider a simple example. Suppose a student prefers to spend the first two years taking courses that is to
satisfy the 120 credit requirement and the last two years taking courses that satisfy major groups’ course require-
ments. This preference causes her to attend the University for four years instead of two years.

35Similarly, I assume that scheduling restrictions limit how much progress students can make in different major
groups within a year. Table A.2 shows limited evidence that students treat courses that do and do not satisfy major
groups’ course requirements as substitutes.
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the model infers a larger graduation payoff.

The second is how students allocate requirement units conditional on how they have already
completed major groups’ course requirements. If graduation payoffs are high, then students
who have higher cumulative requirement units in a major group will allocate more requirement
units in the next academic year. If students make different requirement unit allocations in each
year, the model would infer graduation payoffs have little value.

It is possible the graduation payoffs are misspecified because I assume students’ allocated
requirement units and GPA in one major group do not affect another major group’s graduation
payoffs. This parameterization rules out a student taking courses in Computer Science (Natural
Sciences) to increase her Economics (Social Sciences) graduation payoff. In this example, the
model would infer the student receives a high immediate course-taking payoff from allocating
requirement units into the Natural Sciences. Relaxing this assumption makes identification
difficult: the model cannot differentiate between students allocating requirement units into a
major group for the short-run immediate payoff or long-run graduation payoff.

Wimt is not identified using labor market earnings, and there is no idiosyncratic shock in
Wimt. Individual variation comes from cohort fixed effects. Idiosyncratic shocks would repre-
sent unforeseen labor market changes or individual shocks to the expected value of graduating
in different major groups. Arcidiacono et al. (2012b) suggests that students learn more about
the earnings of their own majors. Then idiosyncratic shocks must be very large to play a sub-
stantial role, since Wimt represents the future discounted sum of payoffs after graduation.

A key component to the utility payoffs is students’ beliefs about their major group match
qualities. Although the internal transfer payoffs depend on current GPA, students planning
on internally transferring in the next period have expectations of these GPAs. Match qualities
directly enter the immediate course-taking payoff, and students use match quality beliefs to
form expectations of graduating GPAs.

The identification assumption for the learning process in (1.10) is that the expectation error
between grades and match quality belief is random.

E[gimt − bimt|bimt] |= bimt

This expectation error only contains the error about beliefs and idiosyncratic grade errors ηimt.
As students learn more about their match quality, they become more certain about them. They
attribute more of the expectation error to ηimt, and are better able to predict their grades over
time.

The off-diagonal elements covariance matrix ∆ is identified from the correlation between
major group GPAs and future choices. If students who allocate more requirement units in a
major group and have higher GPAs in other major groups, then the model infers the correlation
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between major group match qualities is positive. The diagonal element of ∆ are identified from
the distribution of calculated match qualities.

There are two identification issues with the learning mechanisms. The first is that students
could be learning about their match qualities from their course experiences, independent of their
grades.36 If non-grade match information is negatively correlated with grades, then estimates
of κb,m are downwards biased.

The second identification issue is only that students learn from courses that satisfy major
groups’ course requirements. The model explicitly assumes other courses provide no infor-
mation. Consider a case where a student has taken Biology 201 which does not satisfy any
major groups’ course requirements. She has also taken Economics 101 which satisfies course
requirements in the Social Sciences major group. If she allocates requirement units in the Nat-
ural Sciences because of her grade in Biology 201, the model would incorrectly infer a high
correlation between Natural Sciences and Social Sciences.

1.6 Model Estimates and Counterfactual Simulations

1.6.1 Model Estimates

Model estimates on Table 1.4, Panel A, show the fixed effects for allocating one or two re-
quirement units κ1m and κ2m are negative in the Natural Sciences, suggesting Natural Science
courses are generally uncomfortable for students. The Humanities and Social Science major
groups have positive estimates. I find κ1m > κ2m, consistent with convexly increasing effort
costs. Estimates on the number of advanced requirement units – all requirement units allocated
after the second – are positive. These advanced requirement units proxy for taking elective
courses in different major groups, and the estimates suggest students enjoy these courses.

Relative to students who report less than $100,000 annual household income, students who
report more than $100,000 annual household income receive lower payoffs in the Humanities
and Natural Sciences. Students who did not report also receive lower payoffs. These esti-
mates are neither statistically not substantially significant. Relative to students who report their
maximum parental education is high school, students from more educated backgrounds receive
higher payoffs from allocating requirement units in the Natural Sciences but lower payoffs in
the Humanities and Social Sciences.

The estimated parameters that link match quality beliefs with immediate payoffs, κb,m, are
positive only for the Natural Sciences: students with higher match quality beliefs in the Natural
Sciences are more likely to allocate requirement units in the Natural Sciences. Interestingly, it
is negative for the Humanities and Social Sciences. This differs from previous works, which

36Ackerberg (2003) and Crawford and Shum (2005) find evidence of taste learning in yogurt and pharmaceutical
consumption, and consumers learn about their tastes for different goods.
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largely find major declarations are positively related with GPAs and match quality beliefs.37

Table 1.3 shows there is more variation in whether students allocate one or two requirement
units in the Humanities and Social Sciences, than whether they allocate any.38 This suggests
these estimates are identified off the intensive rather than the extensive margins, and I interpret
the negative estimates for Humanities and Social Sciences as students being more likely to
allocate one rather than two requirement units.

Estimates of graduation payoffs in Panel B are consistent with previous findings of pos-
itive correlations between GPAs and labor market outcomes. The estimates from graduating
in multiple majors are positive, consistent with students wanting to graduate in different major
combinations. However, the estimates are not substantial compared to the major-group-specific
graduation payoffs, consistent with previous finding on limited returns to double or triple ma-
joring (Hemelt, 2010; Rossi and Hersch, 2016).

Yet pre-college interests in major groups seem to play a larger role than learned match
quality. The estimates show students’ pre-college interests give larger immediate course-taking
payoff than match quality beliefs. Although students’ pre-college interests have an ambigu-
ous interpretation (they could come family-related influences, or other factors before college
that result in overconfidence), they provide potentially strong policy levers to influence major
choice.

Students’ ACT and SAT Reading and Math Percentiles, and their reported ethnicities and
gender affect their course-taking through their match quality beliefs. Estimates of students’
characteristics on their prior match quality belief, bi1 are shown in Panel D. Reading Percentiles
are most influential in the Humanities, and Math Percentiles are most influential in the Natural
Sciences.

I find a small gender gap in students’ prior beliefs of match qualities. Among Black or His-
panic students, females have slightly lower prior beliefs across all major groups. Among Asian
and White students, females have lower prior beliefs in the Social Sciences. However, these
gaps are not substantial, with other variables such as Reading Percentiles, Math Percentiles,
and high school GPA being more influential.

Panel E in Table 1.4 shows the estimated covariance of major group match qualities. I find
positive covariances between all major groups, with Humanities ability being strongly related
to the Natural Sciences and Social Science. Consistent with previous findings (Stinebrickner
and Stinebrickner, 2014b), the covariance between Natural Sciences and Social Sciences is
small. The covariances between Humanities and other major groups are surprisingly large.

37Arcidiacono (2004) finds negative payoffs in certain majors based on relative math and verbal abilities, where
the comparison case is also dropping out.

38Table 1.3 shows that around 57% of all observed choices allocate one or two requirement units in both Hu-
manities and Social Sciences. In addition, Panel E of the model estimates shows the distribution of Humanities
and Social Sciences abilities is more narrow, so negative κb,m estimates are identified from smaller variation.
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This suggests the Humanities match quality could proxy for a general ability applicable across
all major groups. Another reason is the bias that comes from ignoring grades from courses that
do not satisfy any major groups’ course requirements.

Altogether, the estimates show students with higher Natural Sciences match quality beliefs
are more likely to allocate requirement units into the Natural Sciences, and less likely to allocate
two requirement units in the Humanities and Social Sciences. This behavior is consistent with
students wanting to keep Social Sciences and Humanities as a back-up option in case they
receive low grades. Humanities and Social Sciences can be back-up options because while
Humanities grades are noisier than Social Sciences grades, the Humanities graduation payoff
is more sensitive to GPA.

1.6.2 Evidence of Model Fit

Figure 1.2 shows that the model reasonably fits the external margin of whether students allocate
any requirement units in the three major groups, internally transfer, or drop out over time. This
fit comes from comparing the actual decisions of a random subset of 16,000 students not used
for estimation to the simulated decisions for this random subset across twenty simulations.39

The model under-estimates the share of Natural Science graduates, and over-estimates the
share of Humanities and Social Science graduates.40 Figure 1.3 shows that while the estimated
model matches when students graduate or otherwise leave CALS, it does not matching the final
share of students who graduate in either the Natural Sciences or Social Sciences. Figure 1.4
shows that where around 27% and 47% of students graduate in at least the Natural Sciences
and Social Sciences respectively in the data, the model estimates 15% and 53%. The model
over-estimates the share of students who double-major in the Humanities and Social Sciences,
which drives over estimating the share of students who graduate in at least the Social Sciences.

Figure A.5 shows the model is unable to capture how observed grades are skewed to the
left. The estimation procedure tries to fit a normal distribution (from the normality assumption
of ηimt), and the model over-estimates the share of students who earn the top grade (4.0 out of
4.0). This is most evidence in the Humanities and Social Sciences grades. The skewed pattern
is consistent across years.

39Figures A.4 and A.5 show the actual decisions – sixteen different requirement unit allocations, internal trans-
fers, and drop out – and grades used for maximum likelihood estimation.

40The model does not allow for unobserved heterogeneity through unobserved types. Doing so would increase
model fit (Heckman and Singer, 1984; Keane and Wolpin, 1997). I use student characteristics, including pre-
college achievement and reported parental educational level, which capture additional variation. Aguirregabira
and Mira (2010) provides a comprehensive review. Table A.11 shows that the estimated model reasonably matches
the characteristics of students who at least graduate in one of the three major groups, internally transfer, and drop
out.
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1.6.3 Counterfactual Showing Learning About Match Quality is Important

The first step to decomposing the mechanisms of learning about major match quality and com-
pleting majors’ course requirements is to test for the presence of learning at the University. Fol-
lowing Stinebrickner and Stinebrickner (2014b), I simulate students’ graduating major groups
if they did not learn about their major match qualities. In this “no-learning” counterfactual,
grades only influence students’ graduation payoffs. Results from the “no-learning” counter-
factual are consistent with students being initially over confident about their Natural Sciences
match quality. I find that this counterfactual increases the share of students who graduate in
at least the Natural Sciences by 7 percentage points, from 16% to 23%. Table 1.5 shows that
4 of the 7 percentage point increase comes from the increase in students who only graduate
in the Natural Sciences. The remaining 3 percentage points is an increase in students who
double-major in the Natural and Social Sciences.

More students will also graduate in other major groups rather than drop out. The drop
out share decreases 2 percentage points from 14% to 12%. If students did not learn about
their major group match qualities over time, then the share of students who double major in
Humanities and Social Sciences would decrease 8 percentage points, from 16% to 8%. The
share of students who only graduate in the Social Sciences decreases 4 percentage points, from
24% to 20%.

1.6.4 Counterfactuals Decomposing the Mechanisms of Imposed First-Year
Course-Taking

I use two counterfactuals of policy interest to decompose the effects of learned major match
quality and completed course requirements on major choice. One way to help students learn
about their major group match qualities is to require them to take a diverse set of courses across
major groups. To maximize counterfactual information, these courses would be those designed
for majors and be required students during their first year. Table A.10 shows 60% of students
in the model already choose to allocate one requirement unit in each of the three major groups
in their first years.

Table 1.5 shows that when students are required to allocate one requirement unit in each
of the three major groups (corresponding to eight to ten courses), the share of students who
graduate in at least the Natural Sciences increases 10 percentage points, from 16% to 26%.
This increases across all Natural Sciences outcomes: students who only graduate in the Natural
Sciences, and graduated in additional major groups. Although the share of students who grad-
uate in the Humanities and Social Sciences decreases 4 percentage points, the overall share of
students who graduate in multiple major groups increases.

Two mechanisms drives this result: counterfactual information about major group match
quality, and counterfactual completion of major groups’ course requirements. Identifying the

22



driving mechanism is crucial, and speaks to how induced course-taking better informs major
choice. I adjust whether students learn from their imposed first-year course regime to separate
the effects of learning about major match quality from completing course requirements on
major choice. This final counterfactual only differs from the penultimate counterfactual in that
students believe first year grades are not informative of their major group match qualities.

When students do not learn from their imposed first year of course-taking, I find similar
changes in graduation outcomes,41 suggesting that the driving mechanism is completing course
requirements. This is jarring since policy-makers would likely introduce such a policy in order
to better inform students’ major choices.

Why is the impact on Natural Science graduates so large? The large negative estimate for
κ2m in Natural Sciences shows students are essentially unwilling to allocate two requirement
units into the Natural Sciences in one year.42 Therefore, it is difficult for students to “catch up”
and graduate in the Natural Sciences by the end of their fourth year if they did not allocate any
requirement units into the Natural Sciences in their first year. Therefore the second and third
counterfactuals substantially increase the value of continuing to allocate requirement units into
the Natural Sciences.

1.7 Discussion and Conclusion

There is public attention on increasing the share of Science, Technology, Engineering, and Math
(STEM) majors 43. Policy-makers or college administrators may try to alter major choice by
assigning freshmen students to take a variety of courses, with the intention of better informing
their major choices. I show that this more restrictive and information-intensive version of many
colleges’ distributional course requirements does affect major choice. Combining a dynamic
course-taking model with transcript data from a four-year public flagship institution, I find the
share of students graduating in the Natural Sciences increases around ten percentage points,
with the Humanities or Social Sciences decreasing around two percentage points.

Where previous literature has confounded the effects of learning about major match qual-
ity and completing majors’ course requirements on major choice, this paper finds the effect
of completing majors’ course requirements looms larger. Although students have additional
information about their major group match qualities, they had to complete course requirements
to get it. Completing these course requirements decreases the effort needed to graduate and

41Table A.12 suggests that the counterfactual students in these graduating outcomes are not substantially dif-
ferent. It shows that there are no substantial differences in the characteristics of students between these two
counterfactuals.

42Table 1.3 shows that in 1% of all observed course-taking, students complete 50% of the course requirements
for the Natural Sciences in one year.

43former-President Barack Obama, https://obamawhitehouse.archives.gov/blog/2016/02/11/stem-all; Home-
land Security Department, Improving and Expanding Training Opportunities for F-1 Nonimmigrant Stu-
dents With STEM Degrees and Cap-Gap Relief for All Eligible F-1 Students; ComputerWeekly.com,
http://www.computerweekly.com/news/4500254034/IT-industry-calls-for-government-to-fill-Stem-skills-gap
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drives students course-taking trajectories.

Though the policy is intended to inform students about their major match quality, it instead
sets students on a path towards graduating in different majors. Students are responding to
being closer to finishing the course requirements in the Natural Sciences, rather than having
more information about their major match quality in the Natural Sciences.

Key to understanding the effects of induced course-taking is how students go from initial
interests and beliefs about major match quality to their graduating majors. Not only do students
want to learn about their major match qualities, but also need to consider whether to respond
to learned match qualities. This paper provides a theoretical framework for how students may
ignore learned major match quality because they are not willing to take the courses needed to
graduate in that major. This paper starts to close the literature’s gap around the effort needed to
graduate in different majors.
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Table 1.1: Aggregated Major Groups

Percentage of Graduates Shown in Parenthesis for Sample of Students

Major Groups in the College of Arts and Liberal Sciences (CALS):

• Natural Sciences

– Biology (18.15%)
– Physics (7.18%)
– Earth Sciences (2.02%)
– Mathematics or Statistics

(1.71%)
– Computer Science (1.41%)

• Humanities

– Foreign Languages (1.29%)
– Area Studies (3.12%)
– History and Art Hist. (1.58%)
– Philosophy (1.11%)
– English and Creative Writing

and Literature (1.25%)
– Communications (1.49%)

• Social Sciences

– Economics (6.48%)
– Psychology (7.32%)
– Sociology (2.62%)
– Political Science (2.77%)
– Anthropology (0.59%)

Internal Transfer Options to Colleges at the University:

• Business

– Business (8.79%)

• Other

– Engineering (2.23%)
– Medical-Related (2.36%)
– Public Policy (1.00%)
– Art-Related (1.98%)
– Education (1.75%)

NOTES – The table does not show extensive lists. Instead it shows the most common
individual majors within each major group.
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Figure 1.1: How Different Graduates Fulfill All
Major Groups’ Course Requirements Over Time

Natural Sciences Graduates

Humanities Graduates

Social Sciences Graduates

NOTES – Cumulative progress is calculated using the proportion of each major groups’
course requirement that are satisfied at the end of each semester. Progress within a major
group comes from taking the maximum progress of individual majors within a major group.
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Table 1.2: Sample Selection Table: Empirical and Model-Driven Concerns

Dropped Due to...
Start Empirical Concerns Model Concerns Final

Time-Invariant Characteristics:
Female 0.563 0.482 0.576 0.574

Black 0.056 0.010 0.097 0.062
Asian 0.138 0.235 0.107 0.126
Hisp 0.052 0.025 0.066 0.055

Reading Perc. 83.621 90.018 81.279 82.811
Math Perc. 86.222 92.776 81.618 85.447
AP Credits 7.237 21.439 5.009 5.362

Total Transfer Credits 2.946 6.644 2.328 2.458
International (non-US Citizen) 0.056 0.063 0.057 0.055

Self-Reported Annual Household Income
< 100K 0.213 0.148 0.270 0.221
≥ 100K 0.401 0.421 0.320 0.400
Missing 0.386 0.432 0.410 0.379

Self-Reported Maximum Parental Education
HS Graduate 0.079 0.056 0.106 0.082

College 0.284 0.205 0.273 0.295
Advanced Degree 0.451 0.527 0.396 0.442

Missing 0.186 0.213 0.225 0.181
Pre-College Interest

Natural Sciences 0.435 0.528 0.399 0.423
Humanities 0.359 0.373 0.434 0.356

Social Sciences 0.357 0.389 0.297 0.354
Other College 0.367 0.358 0.370 0.368

Business College 0.271 0.282 0.175 0.272
Outcomes – Graduation, Internal Transfer, and Dropout:

Internal Transfer – Other College 0.099 0.130 0.068 0.096
Internal Transfer – Business College 0.084 0.167 0.000 0.075

Drop Out 0.101 0.088 0.300 0.098
Graduation from CALS 0.716 0.615 0.632 0.731

N 41331 4851 691 35789

NOTES – Shown Reading and Math percentiles are students’ ACT and SAT last reported
scores represented as percentiles. If a student has both ACT and SAT scores, then the
percentiles are averaged. Self-reported household income and maximum parental education
comes from the Common Application. Advanced degrees include Masters, Doctorates, and
other advanced professional degrees. Students’ citizenship is collected at application time.
Transfer credits are all credits from other institutions that are earned before students start any
coursework at the University. Table A.9 breaks down the Empirical and Model Concerns in
detail.
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Table 1.3: Distribution of Requirement Unit Allocations over Years, Final Sample

Requirement Years
Unit Number of Students Yearly Shares

Allocation 1 2 3 4 1 2 3 4

0 0 0 390 325 453 743 0.011 0.010 0.016 0.030
0 0 1 1292 1180 1695 1977 0.036 0.037 0.060 0.079
0 0 2 23 89 168 115 0.001 0.003 0.006 0.005
0 1 0 1888 2236 3099 3944 0.052 0.071 0.109 0.157
0 1 1 5285 7183 8666 7093 0.147 0.227 0.305 0.282
0 1 2 99 268 183 145 0.003 0.008 0.006 0.006
0 2 0 76 128 227 217 0.002 0.004 0.008 0.009
0 2 1 355 239 196 179 0.010 0.008 0.007 0.007
1 0 0 1473 842 507 566 0.041 0.027 0.018 0.023
1 0 1 4767 3723 3635 2584 0.132 0.117 0.128 0.103
1 0 2 22 139 156 124 0.001 0.004 0.005 0.005
1 1 0 4410 3241 2295 1968 0.122 0.102 0.081 0.078
1 1 1 15619 11895 7013 5258 0.434 0.375 0.247 0.209
1 2 0 267 109 77 83 0.007 0.003 0.003 0.003
2 0 0 7 8 13 32 0.000 0.000 0.000 0.001
2 0 1 22 41 16 30 0.001 0.001 0.001 0.001
2 1 0 23 40 20 81 0.001 0.001 0.001 0.003

NOTES –

Starting from the left, requirement units are allocated in the Natural Sciences, Humanities, and
Social Sciences.
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Table 1.4: Estimates from the Dynamic Course-Taking Model

Panel A: Immediate Payoffs from Course-Taking, found in (1.3) and (1.4)

uimt = κ1m1{cimt = 1}+ κ2m1{cimt = 2}+
κadv,m freqadv(cimt) + cimt

(
κb,mbimt+

κz,mZi

)
u(c) = π11{c̃it = 1}+ π21{c̃it > 1}+ πvar variance(c) + εict

where c̃it =
M∑

m′=1

1{eim′t > 0}, and εict ∼ EV (0, τt)

Natural Sciences Humanities Social Sciences

κ1m −1.112∗∗∗ 1.686∗∗∗ 1.561∗∗∗
[0.185] [0.194] [0.222]

κ2m −6.221∗∗∗ 0.52 −0.162
[0.355] [0.335] [0.399]

κadv,m 0.519∗∗∗ 0.617∗∗∗ 1.132∗∗∗
[0.121] [0.137] [0.152]

κb,m 0.166∗∗∗ −0.345∗∗∗ −0.308∗∗∗
[0.031] [0.032] [0.042]

κPre-College Interest,m 0.713∗∗∗ 0.251∗∗∗ 0.177∗∗∗
[0.032] [0.028] [0.032]

κNon-US Citizen,m 0.367∗∗∗ −0.458∗∗∗ 0.048
[0.097] [0.095] [0.098]

κz,m on Reported Annual Household Income:
κz,m ≥ $100K −0.035 −0.064 0.007

[0.053] [0.050] [0.055]
κz,m is missing −0.045 −0.002 −0.064

[0.059] [0.057] [0.062]
κz,m on Maximum Parental Education:

κz,m College 0.041 −0.308∗∗∗ −0.175∗∗
[0.077] [0.071] [0.085]

κz,m Advanced Degree 0.038 −0.189∗∗∗ −0.158∗
[0.077] [0.070] [0.083]

κz,m Missing 0.012 −0.106 −0.286∗∗∗
[0.094] [0.089] [0.099]

π1 −4.705∗∗∗ τ2 1.59∗∗∗
[0.308] [0.05]

π2 −4.261∗∗∗ τ3 2.00∗∗∗
[0.429] [0.08]

πvariance −2.696∗∗∗ τ4 2.59∗∗∗
[0.661] [0.12]

ϕL 0.75∗∗∗
[0.12]
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Table 1.4 Continued, Labor Market and Internal Transfer Payoffs

Panel B: Labor Market Payoffs, found in (1.6) and (1.7)
Wimt = ρm,t=3 + ρm,t=4+

ρg,mgimt + ρ1m 2006to2007Cohorti +ρ2m 2008to2011Cohorti

W̃i NatSci & Human t = 1
2
Wi NatSci t + 1

2
Wi Human t + ρNatSci & Human

W̃i NatSci & SocSci t = 1
2
Wi NatSci t + 1

2
Wi SocSci t + ρNatSci & SocSci

W̃i Human & SocSci t = 1
2
Wi Human t + 1

2
Wi SocSci t + ρHuman & SocSci

W̃i NatSci & Human & SocSci t = 1
3
Wi NatSci t + 1

3
Wi Human t+

1
3
Wi SocSci t + ρNatSci & Human & SocSci

Natural Sciences Humanities Social Sciences Multiple Major Groups

ρ1m −0.498 −0.283 −0.491∗ ρNatSci & Human 0.000
[0.372] [0.297] [0.283] [0.002]

ρ2m −1.039∗∗∗ −0.838∗∗∗ −0.404∗ ρNatSci & SocSci 0.024∗∗∗
[0.331] [0.255] [0.242] [0.001]

ρm,t=3 4.563∗∗∗ 3.643∗∗∗ 5.939∗∗∗ ρHuman & SocSci 0.000
[0.866] [0.782] [0.705] [0.002]

ρm,t=4 4.363∗∗∗ 3.083∗∗∗ 4.077∗∗∗ ρNatSci & Human & SocSci 0.002∗
[0.771] [0.760] [0.684] [0.001]

ρg,m 1.521∗∗∗ 1.541∗∗∗ 0.911∗∗∗
[0.237] [0.221] [0.192]

Panel C: Business and Other Internal Transfer Payoffs, found in (1.5)

uBus. = κBus.
t=2 + κBus.

t=3 + κBus.
t=4 + κBus.

1 gi, NatSci, t + κBus.
2 gi, Human, t + κBus.

3 gi, SocSci, t+
κBus.
int Pre-College Interest in Bus.i + εict

uOth. = κOth.
t=2 + κOth.

t=3 + κOth.
t=4 + κOth.

1 gi,Nat.Sci.,t + κOth.
2 gi, Human, t + κOth.

3 gi, SocSci, t+
κOth.
int Pre-College Interest in Oth.i + εict

Business
κBus.
t=2 −1.067∗∗

[0.522]
κBus.
t=3 −2.689∗∗∗

[0.866]
κBus.
t=4 −8.525∗∗∗

[1.638]
κBus.
1 1.347∗∗∗

[0.332]
κBus.
2 −0.493∗∗

[0.223]
κBus.
3 0.274

[0.401]
κBus.
int 3.308∗∗∗

[0.280]

Oth.
κOth.
t=2 −0.626∗

[0.320]
κOth.
t=3 0.226

[0.515]
κOth.
t=4 −3.950∗∗∗

[0.838]
κOth.
1 1.734∗∗∗

[0.179]
κOth.
2 −0.490∗∗∗

[0.186]
κOth.
3 −0.508∗∗∗

[0.179]
κOth.
int 1.330∗∗∗

[0.214]
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Table 1.4 Continued

Panel D: Prior Beliefs, found in (1.9)

bim1 = φo
m + φmXi + εbim

gimt = µim + ηimt

ηimt ∼ N(0, σ2
m)

Natural Sciences Humanities Social Sciences

φm Reading Percentile 0.000 0.003∗∗∗ 0.002∗∗∗
[0.001] [0.001] [0.001]

φm Reading Percentile 80-90 0.066∗∗ 0.110∗∗∗ 0.067∗∗
[0.031] [0.032] [0.030]

φm Reading Percentile ≥ 90 0.116∗∗∗ 0.176∗∗∗ 0.132∗∗∗
[0.039] [0.040] [0.036]

φm Math Percentile 0.018∗∗∗ 0.001 0.007∗∗∗
[0.001] [0.001] [0.001]

φm Math Percentile 80-90 −0.039 0.060∗ −0.004
[0.034] [0.034] [0.031]

φm Math Percentile ≥ 90 0.109∗∗∗ 0.083∗∗ 0.046
[0.041] [0.038] [0.035]

φm High School GPA 1.062∗∗∗ 0.592∗∗∗ 0.655∗∗∗
[0.030] [0.025] [0.027]

φm High School GPA ≥ 3.5 −0.073∗∗∗ 0.152∗∗∗ −0.01
[0.031] [0.029] [0.028]

φm Black Hisp −0.043 −0.182∗∗∗ −0.093∗∗
[0.047] [0.036] [0.041]

φm Black Hisp × F 0.015 0.031 −0.069
[0.061] [0.047] [0.051]

φm Asian −0.005 −0.188∗∗∗ −0.139∗∗∗
[0.054] [0.055] [0.050]

φm Asian × F −0.076 0.145∗ 0.002
[0.071] [0.076] [0.067]

φm Female −0.060∗∗∗ −0.058∗∗∗ 0.072∗∗∗
[0.023] [0.024] [0.022]

φo
m −2.982∗∗∗ 0.358∗∗∗ −0.428∗∗∗

[0.055] [0.052] [0.057]

σ2
m 0.843∗∗∗ 0.875∗∗∗ 0.733∗∗∗

[0.009] [0.006] [0.006]
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Table 1.4 Continued

Panel E: Covariance of Match Qualities, found in (1.10)

Et[µi] = bit = Vt[µit] ·
(

(∆)−1bi1 + (Σ)−1
t∑

t′=1

git′
)

Vt[µi] =
(

(∆)−1 + (Σ)−1(
t∑

t′=1

cit)
)−1

where the matrix Σ only has diagonal entries σ2
m

∆ Natural Sciences Humanities Social Sciences

Natural Sciences 4.114∗∗∗ — —
[0.135] — —

Humanities 6.118∗∗∗ 1.563∗∗∗ —
[0.104] [0.052] —

Social Sciences 3.137∗∗∗ 4.634∗∗∗ 2.473∗∗∗
[0.091] [0.84] [0.083]

Standard errors in brackets. ∗∗∗ − p < 0.01,∗∗∗−p < 0.05,∗∗∗−p < 0.10
NOTES – Parameter estimates on Reported Household Income in Panel A are relative to
students who report annual household income less than $100,000. Parameters on Maximum
Parental Education are relative to students who report a high school degree or less. A
maximum parental education of college includes attending “some college,” associates, and
bachelors degree. “Some college” and associates degrees have very small shares. Advanced
Degrees includes masters, doctorates, medical, and legal degrees.
Parameters are estimated with maximum likelihood estimation, where convergence comes
from the Limited Memory Broyden–Fletcher–Goldfarb–Shanno Algorithm. I restrict σ2

m, τt,
and diagonal elements of ∆ to be strictly positive, ϕL to be within 0 and 1, and ∆ to be
symmetric. Corresponding standard errors are calculated with the delta method. I estimate
using a random subset of 4,000 students from the final estimation sample.
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Figure 1.2: Model Fit: Share of Allocating Any Requirement Units Across Major Groups,
Internal Transfers, and Drop Out

NOTES – This compares the share of students who make any progress in different major
groups, internally transfer out of CALS, and drop out. Simulated shares come from twenty
simulations, with draws of εict and ηimt. I run 20 simulations on a random 16,000 students in
the non-estimation sample.
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Figure 1.3: Model Fit: Share of Graduation Outcomes Over Time

NOTES – This compares the share of students who graduate in any of the major groups over
time, internally transfer out of CALS, and drop out. It is possible to graduate in multiple
majors, if the student finishes all requirements in the same year. Since students graduate in
multiple majors, the shares do not add up to one. Simulated shares come from twenty
simulations, with draws of εict and ηimt. I run 20 simulations on a random 16,000 students in
the non-estimation sample.
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Figure 1.4: Model Fit: Share of Graduation Outcomes

NOTES – This shows the cumulative share of students who graduate in mutually exclusive
combinations of major groups, internally transfer, or drop out.
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Chapter 2

Do Grades Matter? Evidence from College
Transcripts

2.1 Introduction

Despite strong evidence of large labor market returns to college major (Altonji et al., 2015;
Hastings et al., 2013; Kirkebøen et al., 2016; Varnevale et al., 2013), there is evidence students’
major choices are not fully informed, and would benefit from learning about their capacity to
perform in academic and non-academic environments related to majors. While this does not
seem surprising considering the limited exposure high school students have to different majors
(Gottfried and Bozick, 2016), it presents an abundance of room for policy to inform major
choice.

The previous literature has examined how students learn about their fit, or ability, in a
major from the one grade they earn after declaring in it. A vital and arguably understudied
component of major choice is that majors’ course requirements separate major choice into a
sequence of choices. Courses, not major declarations, are the information vector to learn about
major ability. Then it is vital to consider how students are receiving grades from many majors
at a time. This paper examines the extent to which course grades influence students’ decisions
to complete majors’ course requirements.

This paper makes three contributions to the literature. First, it is among the first to use
college transcript data to understand how students take the courses needed to graduate in dif-
ferent majors. Rather than major declarations, these courses measure the necessary steps to
graduating in a major and track how students interact with multiple majors at a time. Using
administrative transcript data from a public four-year institution, I identify the courses needed
to graduate in different majors. This approach cannot be done with nationally representative
datasets such as the National Longitudinal Survey of Youths or National Education Longitudi-
nal Study because they do not have sufficient sample size to make comparisons between majors
within an institution.
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Second, where previous works use major declarations to proxy for students’ information
sets and intentions to graduate in a major (Arcidiacono, 2004), this paper finds diverse course-
taking across majors. Students take courses across majors before declaring a major, suggesting
their major choices are informed. After declaring a major, students continue to take courses
needed to graduate in the Social Sciences, Humanities, and Psychology majors. Finding diverse
course-taking persists after declaration argues major declarations are not sufficient to measure
how students engage different majors.

The third contribution is a single-agent dynamic course-taking model that features how stu-
dents take relevant courses to learn about their major abilities and complete majors’ course
requirements. The model conceptually defines ability as students’ performance-related match
quality. Focusing on course-taking rather than major declarations, the model provides a frame-
work for understanding how students may diversify their course-taking relevant to majors in
case they learn they have low major ability, or focus their course-taking in a major if they are
confident in their ability and want to hasten graduation.

The course-taking model’s comparative statics provide a framework to understand how stu-
dent course-taking respond to earned grades. Students who receive higher grades are more
likely to continue taking relevant courses in a major. Course-taking history within and across
majors are also substantial, suggesting students persist in a major independent of ability beliefs.
This is likely due to a desire to graduate quickly, and is a substantial hurdle for successfully
influencing student major choice during college.

The second section discusses how the paper fits into the current college major and course
choice literature. The third section discusses the administrative transcript data and presents
descriptive trends in course-taking. The fifth and sixth sections describes the estimation strategy
and results. The sixth section discusses and concludes with how transcript data can be used in
future work.

2.2 Literature Review

This paper is among the first to look at college transcript data to understand college major
choice and graduation outcomes. Focusing on college majors, it is tied to the college major
choice literature. Although a branch of the college major choice literature finds that labor
market returns1 play a significant role (Beffy et al., 2012; Long et al., 2014; Montmarquette
et al., 2002), a separate branch has looked at the role of non-pecuniary factors. Students often do
not know their own abilities, and the literature has found students changing majors in response
to low grades (Arcidiacono et al., 2012a; Stinebrickner and Stinebrickner, 2014a,b). These
abilities affect earnings and payoffs during college. Payoffs during college come from the

1Students often list labor market returns as an important factor for their college major choice (Malgwi et al.,
2005). This is particularly interesting in light of evidence that students are often surprised to learn the earnings of
majors they have not declared in (Arcidiacono et al., 2012b).
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effort exerted, grades earned, and other psychic values of being in different majors.

Previous approaches assume that students only receive grades in their declared major, and
are ambiguous on how all students transition from being “undeclared” to being in different ma-
jors. This paper uses transcript data to study how students are receiving grades across multiple
majors at a time. Looking at courses not only captures how students engage in different majors,
but also measures the effort needed to finish.2 Bettinger (2010) also uses transcript data from
the University System of Ohio, although it does not use college grades.

Ost (2010) uses a regression discontinuity design to find insubstantial impacts of letter
grade assignments in an introductory microeconomics course on majoring in Economics and
continuing to take courses in Economics, at a selective research university. Owen (2008) uses
the same design and finds positive impacts on females in introductory microeconomics courses,
in a different selective research university and liberal arts college. While these works use
regression discontinuity to study these effects in isolation from other course-taking, this paper
embraces the multi-faceted way students are receiving multiple grades.

To fully engage the transcript data, it is vital to track how students progress through majors’
course requirements. This relies on identifying the courses needed for individual majors, iden-
tifying the most relevant courses for each major. To my knowledge, the college course literature
has not exploited institutional details to examine course-taking in different majors over time.

2.3 Student Transcript Data and Major Progress

I use administrative student transcript data from a large public four-year institution, anonymized
as the Public Higher Education Consortium (PHEC). This transcript data records each course
students take at PHEC, as well as each course credit transferred in from outside institutions,
and Advanced Placement and International Baccalaureate exams.

The largest school at PHEC is the “College of Arts and Sciences” (CAS), with over 60%
of total PHEC enrollment. The data universe is all students who enroll at PHEC through CAS
from 2002 to 2012. While students are not required to start in CAS, CAS offers the most
diverse set of majors, and students interested in majors in business, architecture, public policy,
and other medical related fields must transfer out of CAS. This internal transferring process has
a separate application progress, and offers different tuition rates. Most of these other schools
at PHEC require students to take specific courses across PHEC to have any consideration. I
observe student course-taking after they internally transfer out of CAS.

Other administrative data includes reported sex, ethnicity, and zip code at the time of ad-
mission. PHEC collects students’ SAT and ACT scores. I use percentile scores provided by

2Hendricks and Leukina (2015) uses college transcript data to measure college completion, without focusing
on majors. This is largely because it uses data across multiple institutions with different course requirements and
focuses on the margin of whether students complete any graduation requirements instead of completing different
majors.
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the College Board and ACT to normalize these scores. I focus on students’ Reading and Math
percentiles. Admission records also indicate students’ interests in different careers and majors
prior to enrolling at PHEC. I also observe when students officially declare and file to graduate
in different majors. Students complete majors in this data, not based on their coursework, but
when they successfully file for graduation. Students in certain residential programs at PHEC
do not declare majors.

To identify course-taking relevant to completing different majors, I code each major’s
course requirements to track how students explore different majors.3 Designed for majors,
these courses are likely the most informative of students’ major match quality. With more than
50 majors at CAS and overlapping course requirements,4 I aggregate majors into seven majors,
shown in Table 2.1. There are two significant deviations from previous works. First, Eco-
nomics and Psychology are their own majors because they are the two largest majors at CAS.
Second, commonly used Business, Engineering, and Education majors (Arcidiacono, 2004;
Stinebrickner and Stinebrickner, 2014b) are not present because they are not offered in CAS.

For each of these seven aggregated majors, I measure the amount of progress students have
made to completing the course requirements for each major. I use the maximum amount of
progress of individual majors within the aggregated majors and within a semester. While this
masks the progress students make within a major, it is the relevant statistic5 for measuring
progress towards completing any individual major within that aggregated major group.

One potential issue with interpreting course-taking as interest in majors are general dis-
tributional course requirements. At PHEC, students cannot use the same class to satisfy dis-
tributional and major requirements, and there are many courses outside general distributional
course requirements satisfy major requirements. This is a potential issue because I am using
whether students take courses required for majors as an outcome of their grades. Students tak-
ing courses required for majors to instead satisfy distributional course requirements attenuates
the estimated relationship between grades and course-taking to zero.

To understand the upper bound of measurement error from inferring major interest from
course-taking, Figure 2.1 shows that around 70% of all individual first and second semester
courses taken satisfy general distributional requirements and at least one major’s course re-

3If the student earns less than “C–” in the course, it does not satisfy that major’s course requirement. I code
students’ initial attempt to complete each course requirements, and less than 4% of all observed courses have a
grade less than “C–.” Course withdrawals are only observed if the student withdrew from the course at least three
weeks after the semester starts.

4The multitude of majors also affects interpretation. Changing from Chemistry to Biology courses is very
different from changing from Biochemistry to History major. The latter is of more interest in the model, where
the former choice can be interpreted as a change of focus within a larger group.

5Another possible measure is to use the progress from the “relevant major.” Say that a student has already
made 10% progress in Biology and 20% in Chemistry within the Life & Earth Sciences major. If the student
makes 10% progress in Biology and 5% progress in Chemistry in the next semester, then I would record the 5%
as the “relevant major” it follows the major the student is closest to finishing. However, this under-measures the
student’s effort in the Life & Earth Sciences major.
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quirements. Soon after their second semesters, students quickly concentrate on taking courses
that only satisfy majors’ course requirements. Starting from students’ third semesters, the pro-
portion of courses that only satisfy at least one major’s course requirements sharply increases
to 60%, and stays at 80% afterwards.

2.3.1 How Different Graduates Complete Majors’ Course Requirements

Although all CAS students face the same set of general distributional requirements, there is
variation in how they take courses to progress through different majors ’ course requirements.
From these trends of cumulative progress, I infer how students explore other majors. Since
course-taking is not limited by major declarations at PHEC, I interpret differences in course-
taking between graduates of different majors as exploring. The variation suggests students
explore other majors to varying degrees.

I show students’ cumulative progress in satisfying all majors ’ course requirements in Figure
2.2, for Economics and Psychology graduates. On average, Economics graduates make 30% to
40% progress across all majors (except Arts) by their fourth semester. Psychology graduates’
progress in Psychology has already outstripped their progress in other major groups by their
fourth semesters. Compared to Psychology graduates, Economics graduates make progress in
more majors – consistent with additional exploring. An alternative explanation is Economics
graduates are worried they will meet the majors’ minimum grade requirements. However, only
5% of all assigned course grades are below the minimum grade requirement (C-).

By their fourth semesters, Psychology graduates have less diverse course-taking histories
than Economics graduates. They have completed around 30% of the course requirements in
Life & Earth Sciences, Humanities, and Social Sciences, 20% in Math & Physical Sciences,
and 10% in Economics. Compared to Economics graduates, Psychology graduates are not as
exposed to other majors.

2.3.2 Course-Major Correspondence

After showing diverse course-taking across majors, how could major declarations be under-
measuring how students take courses and participate in other majors? In Table 2.2, I compare
students’ progress across majors with their declarations.

Students’ progress across majors groups the semester before they declare a major sug-
gest how informed their major declarations are. Economics students have made around 25%
progress across all majors (excluding Arts). Math & Physical Sciences and Life & Earth Sci-
ences students have made the most amount of progress in their respective majors the semester
before they declare, and little progress in other majors. Math & Physical Sciences and Life &
Earth Sciences students make less progress in the Humanities than all other students. Humani-
ties and Social Science students behave similarly, with concentrated progress.
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Although this is not definite evidence of how informed students’ major choices are, stu-
dents’ concentrated progress can make it more difficult to switch majors. Table 2.2 shows
students declare their majors after their fourth semester. Humanities and Social Sciences stu-
dents, by the time they have declared, will on average find it more difficult to switch to Math
& Physical Sciences or Life & Earth Sciences majors simply because they have not made as
much progress in them.

If policy-makers are interested in influencing major choice, then prior to major declaration
is likely a more effective time to do so. Table 2.2 shows that four semesters after declaring a
major, students have specialized their course-taking into their declared majors. However, there
are still patterns consistent with continued exploration. Students who did not declare in the
Humanities, Social Sciences, and Psychology make 15% to 25% progress in them. Potential
reasons for continued exploration is students want to learn about their abilities in these majors,
desire to graduate in these majors, completing minors in these majors, and the course-taking
experience itself.

2.3.3 Evidence of Ability Sorting

If students are learning about their abilities across majors, then there will be variation over the
grades they earn. Figure 2.3 suggests students make progress in the Math & Physical Sciences
and Humanities majors in response to their first semester GPAs in these majors.

Figure 2.3 shows that students in higher quartiles of first semester Math & Physical Sciences
GPA make more progress in this majors than students in lower quartiles. This is consistent with
students learning their ability in Math is higher and believing the future payoff of taking Math
courses is directly related to their Math & Physical Sciences ability. Figure 2.3 shows the same
pattern for the Humanities. The Math & Physical Sciences trend has more variance, implying
students are more sensitive to Math & Physical Sciences than Humanities grades.

To help explain why students are taking courses across different majors over time, I develop
a dynamic course-taking model where courses provide students with information about their
major-specific abilities, and also complete the course requirements needed to graduate in those
majors.

2.4 A Model of College Course-Taking

Where the previous literature has used models of major declaration (Arcidiacono, 2004), I
develop a dynamic course-taking model to understand how students take courses to learn about
their major abilities and complete majors’ course requirements. The model can be used to
understand the diverse course-taking patterns before and after major declarations in Tables
2.2. Focusing on course-taking provides a new way to interpret course-taking as a continuous
measure of the student’s revealed preference to graduate in that major and learn about her major
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abilities. The model provides a framework for how earned grades influence students’ course
choices, and why students persist in a major because of previous course-taking.

The model resembles Altonji (1993)’s model of how students work towards graduating in
different majors. The student takes a bundle of courses acrossM majors to maximize her future
discounted sum of college flow payoffs and graduation payoffs. Courses can only satisfy one
major’s course requirements, and give the student an immediate flow payoff during college.
When the student completes a major’s course requirements, she graduates in that major and
receives a major-specific graduation payoff. The student may drop out of college at any point.
Dropping out and graduating are terminal states of the model.

Tracking progress to completing majors’ course requirements makes graduation time en-
dogenous, where in previous models students spent an exogenous amount of time in college
(Arcidiacono, 2004; Kinsler and Pavan, 2015; Stange, 2012). In this model, the student trades
off between spending a time taking courses across different majors in order to make a more in-
formed major choice, with concentrating her course-taking to graduate as quickly as possible.

Finally, the model provides a microfoundation for the cost of switching majors. Focusing
her course-taking in one major hastens graduation, but the student builds large switching costs
because it will take relatively more courses to graduate in other majors. Diversifying her course-
taking increases information about major ability, and keeps switching costs from inhibiting
future choices.

Formally, the student makes an amount of progress, cimt, in major m at semester t. She
receives flow payoffs νm from each major she makes progress in. When she accumulates at
least 100% progress in a major, she graduates in that major and receives a graduation payoff,
Gradimt.

2.4.1 College Flow Payoffs and Graduation Payoffs

The flow payoff depends on the grade the student receives gimt and amount of progress the
student makes in that major, cimt.6 The flow payoff is characterized with the following com-
parative statics:

∂νimt

∂gimt

> 0,
∂νimt

∂cimt

> 0, and
∂2νimt

∂c2imt

< 0 (2.1)

(2.1) assumes students receive a net benefit from earned grades. The model explicitly assumes
the grade yields a benefit net of effort costs.

The major-specific flow payoff is concave in progress cimt. For lower levels of cimt, the

6There is no constraint on how much progress she can make across all majors. Unmodeled effort costs and
logistical limitations can constrain how much progress the student can make in a semester. Other work examining
course choice holds the number of attempted credits each period constant (Hendricks and Leukina, 2015).
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student’s flow payoff increases independent of grades, for reasons such as taking courses with
peers or course experiences with major m. However, her marginal utility from making addi-
tional progress decreases for higher levels of progress. This can be because she receives lower
marginal benefits from non-grade flow payoffs or her total effort costs convexly increase. The
concavity assumption for νimt gives the student incentive to diversify her course-taking in each
time period and also holds the student back from graduating early.

Upon completing major m’s course requirements, the student receives graduation payoff
Gradimt(gimt), where gimt is the student’s grade point average (GPA) in major m. The grad-
uation payoff represents a combination of labor market returns to graduation and other non-
pecuniary benefits such as leisure and marriage (Wiswall and Zafar, 2013). Ties of completing
multiple majors are randomly broken among majors she simultaneously finishes in.

∂Gradimt

∂gimt

> 0 (2.2)

Gradimt does not depend on the student’s progress in other majors. When the student is close
to finishing one major, she may make progress in other majors for the flow payoffs. Graduation
payoffs indirectly depend on her unknown innate abilities because she forms expectations of
future grades.

2.4.2 Ability Learning Framework

As the student makes progress across majors, she receives major-specific grades. The student
believes grades are a function of her innate major-specific abilities. From the student’s beliefs,
she forms expectations of her future grades, E[gimt] = bimt. The difference between her real-
ized and expected grades is a random expectation error, composed of the idiosyncratic errors in
grades and errors in beliefs.

Following Bayesian (DeGroot, 1979) models on worker learning (Altonji and Pierret, 2001),
the random expectation error has two components. The first is that there is random noise around
the grade, and the second is the difference between the student’s actual and believed ability. I
assume that the student has rational expectations of her beliefs, and there is individual variation
in students’ ability beliefs.

The student uses the difference between her major-specific GPAs and initial beliefs in major
abilities to update her beliefs bti = (bi1t, bi2t, · · · , biMt). The student weights the difference
between initial beliefs and major-specific GPAs with her cumulative progress across majors.
Initial beliefs boi are based on time-invariant characteristics, Xi.

boim = φmXi + εbim (2.3)

εbim is an idiosyncratic error of her initial beliefs the econometrician does not observe. The
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student also believes that her abilities are correlated across majors (Arcidiacono, 2004; Stine-
brickner and Stinebrickner, 2014b). Then the student updates her beliefs in majors k 6= m from
a grade in major m.

Since the student does not know her major abilities, she has an information incentive to
experiment with different majors. She can also exploit the correlation between majors and
make progress in a major she believes is highly correlated with others. Expectation errors
cause revisions of the student’s beliefs and change her choices over time.

2.4.3 Model Results for Empirical Testing

The course-taking model’s main features are how students take courses to learn about their
major abilities and complete majors’ course requirements. Then the student’s state variables
are her initial beliefs, GPAs, and cumulative progress: Sit = (boi , git, cit). These state variables
calculate her future expected flow payoffs, graduation payoffs, and beliefs in her major-specific
abilities. The student continues making choices only if she does not drop out and has not
finished any majors. Then her value function is expressed as:

Vt(Sit) = max{0,max
cit

{ Flow Payoff︷︸︸︷
Uit +β

[ Finish Any Major︷ ︸︸ ︷
M∑

m=1

1{K = m}Gradimt̃) +

(1− 1{K = m}) · E
[
V(Sit+1)|Sit

]
︸ ︷︷ ︸

Finish No Majors

}
}

(2.4)

where Uit =
M∑

m=1

νimt(gimt, cimt)1{cimt > 0}.

If the student has no uncertainty about her abilities, her objective becomes a static problem
and her strategy would be one of two extremes. The first is graduating as soon as possible
in order to attain the graduation payoff. The second is to stay in college as long as possible to
attain the positive flow payoffs num before graduating in one major. Then in the static problem,
there is little incentive to diversify course-taking in order to insure against changes in ability
beliefs, and switching costs do not play any role.

Under the learning framework, the student updates her beliefs as she earns grades. The
higher her earned grades are than her previous belief, her ability belief increases. These beliefs
directly impact her valuation of expected payoffs. As she receives more grades, she attributes
more of the expectation error to be idiosyncratic shocks. She grows more certain of her ability
beliefs, and the effect of subsequently earned grades dampen over time.

∂bimt+1

∂gimt

> 0,
∂2bimt+1

∂gimt∂cimt

< 0 (2.5)
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The cross-major comparative statics capture how beliefs are correlated across majors. If majors
are not correlated, then these cross-major comparative statics are zero. Likely these cross-major
derivatives are weakly positive - the student believes all majors are positively correlated.

The comparative statics on beliefs carry over to her choices. There are optimal policy
functions for how much progress she makes in each major e∗it = (e∗i1t, e

∗
i2t, · · · , e∗iMt). Grades

enter the student’s choice through her beliefs bit. Since expected future flow and graduation
payoffs increase with beliefs, comparative statics with respect to her beliefs in own major m
are:

∂e∗imt

∂bimt

> 0⇒ ∂e∗imt

∂gimt

> 0

∂e∗imt

∂bikt
≤ 0 for k 6= m

(2.6)

Comparative statics in (2.6) come from the learning comparative statics in (2.5) – as the stu-
dent’s major-specific GPA increases, she increases her expectation of future flow and gradu-
ation payoffs in that major and makes more progress in that major. The second comparative
static is how getting higher beliefs in one major decreases the incentive to make progress in
other majors.

Results on own-major do not directly translate to comparative statics on cross-major grades,
∂e∗imt

∂gikt
, because of the correlated framework. If the student believes majors m and k are highly

correlated, then the student would upwardly revise her beliefs in both abilities after receiving a
higher grade in major k. Even then it is unclear whether the student will make more progress in
major m when she receives a higher grade in major k, and this depends on the relative payoffs
in majors m and k.

As the student makes more progress in one major and is closer to finishing it, she has a
greater incentive to continue. As the student makes progress across multiple majors, her incen-
tive to continue making progress across majors decreases because she only receives graduation
payoffs from graduating in one major7 and graduating earlier. Another incentive to persist is
that the switching cost may be large: the student does not want to restart taking courses in
another major.

∂e∗imt

∂cimt

> 0

∂e∗imt

∂eikt
< 0, for k 6= m

(2.7)

However, it is not clear from the model if the student should accelerate how much progress she

makes as she gets closer to finishing,
∂2e∗imt

∂cimt
2 > 0. This is because once the student finishes

7If the student can double-major, she has an incentive to make progress in multiple majors. There is still the
trade-off of graduation time.
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a major’s course requirements, then she graduates college and can no longer learn about her
major-specific abilities.

From these comparative statics, I expect students to make more progress in a major as their
major-specific GPA increases. It is unclear whether or not students will similarly respond to
grades in other majors. Their response depends on how majors are correlated and their relative
payoffs.

2.5 Testing the Model’s Comparative Statics

With students constantly making choices depending on their previous academic experiences
and grades, it is difficult to rely on naturally exogenous variation in grades across all the majors.
On the course-taking front, while students are required to take a series of courses to satisfy
general distributional requirements, they can take them in any semester. The course-taking
model provides a framework to test how students change their course-taking in response to
different grades, and how students’ cumulative progress anchors them into different majors.

This estimation strategy is not designed to causally estimate the magnitude and direction
of the comparative statics. I focus on the relationship between course grades and persistence
in taking courses needed to graduate in different majors. To account for how students may be
exploring other majors, and the incentive to graduate in other majors, I control for observed
grade histories and progress across majors. I use a rich set of student covariates to account for
students’ individual preferences to graduate in majors: ACT scores, SAT scores, high school
GPA, pre-college interest.

2.5.1 Sample Selection

The ideal sample is a population of students who have an identical amount of information about
their major-specific abilities before entering CALS and do not enroll in CAS with the intention
to transfer to other schools. Therefore, I drop students with more than 24 transfer credits,
transfer from CAS to another PHEC school within their first two semesters.

Students with transfer credits have information incomparable to those from PHEC courses.
Advanced Placement (AP) exam scores and grades from other institutions are drawn from dif-
ferent distributions.8 Students with significant transfer credits from two-year institutions likely
took courses with the intention of transferring, and students may take AP courses to improve
their admission likelihood. Many schools at PHEC such as the Business, Education, and Pub-
lic Policy schools recruit their entire student does from CAS.9 Then some students enroll in
CAS with the intention of internally transferring to another PHEC school. I use leaving within

8 While PHEC accepts credits from outside institutions and AP exams, their grades do not carry over and
transfer students start with empty cumulative grade point averages.

9The Business School started directly admitting high school students around 2007, but still recruits a substantial
portion of its students as internal transfers from CAS.
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two semesters as a conservative proxy for students’ intentions to leave CAS before enrolling
(approximately 1% of the final sample).

Table 2.3 show descriptive statistics for the sample selection steps. I drop students who enter
CAS with more than 24 transfer or AP credits and leave CAS after two semesters. Compared to
the final sample, students entering with more than 24 transfer credits and AP credits are more
likely to be male, and Asian. Dropped students also score around ten percentiles highers in the
ACT and SAT Math and Reading sections.

2.5.2 Estimating Equations

I estimate logit reqressions10 on whether students make any progress in different majors.11 The
outcome of interest is whether the student makes progress in major m as a function of the
ability signals the student receives, and her cumulative progress in all majors.

I use the difference between the students’ major GPAs and a separately estimated initial
belief of major-specific abilities as grade signals. From the Bayesian learning framework, the
relevant information to the student is not the grade itself, but the grade relative to the student’s
initial belief.12 Using cumulative GPAs, gimt, naturally captures how students’ beliefs should
become more resilient as they receive more grades. I rely on estimates of students’ initial
beliefs from regressing polynomials of student’s time-invariant characteristics on first semester
GPAs. I define the difference between the student’s cumulative GPA and the initial belief, as
“Grade Shocks.”

GSimt = gimt − b̂oim (2.8)

where boim = φmXi + εbim. I regress whether students make any progress in a major on
“Grade Shocks” m GSimt and progress cimt across all majors. The outcome variable yimt

indicates whether or not the student makes any progress in major m in semester t.

yimt = logit
( M∑

k=1

[
αmkGSikt + γmkeikt + δmkGSikt × eikt

]
+

ωm Withdrawsimt +πmXi + τt

) (2.9)

Where Xi are the students’ baseline characteristics: reported gender, race, ACT and SAT Math
and Reading percentile scores, 2012 median zipcode earnings, prior interests in major m. τt
are semester fixed effects, which represent how students may be financially or otherwise con-

10I also estimate ordinary least squares linear probability regressions in Table B.3, showing similar results.
11Table B.1 shows the most common choice across students’ semesters is to make no progress in that major.

Aside from Humanities (36%), in more than 50% of observed student-semesters students make no progress in at
least one of these majors.

12An alternative specification is to fully interact Xi with the cumulative GPAs. Since initial beliefs are time-
invariant, it is preferable to interpret estimates as relative to prior beliefs instead of how the influence of cumulative
grades vary over prior beliefs.
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strained from enrolling in additional semesters.

αmk and γmk test the implications of the model. As students’ “Grade Shocks” increase,
they upwardly revises beliefs in major abilities. As students make more progress, this increases
the incentive to finish that major. The comparative statics (2.6) and (2.7) predict αmm ≥ 0 and
γmm ≥ 0.

The opportunity cost of transitioning course-taking into another major should decrease the
more progress students have made on that major. This predicts estimates of progress across
majors to be negative, γmk ≤ 0, but is ambiguous on whether receiving positive signals in
one major increases or decreases the change of making progress in other majors. Ambiguity
comes from correlation in major abilities, and relative payoffs from course-taking and graduat-
ing across majors.

The model has an ambiguous prediction for the estimate on the interaction term. The inter-
action between “Grade Shocks” and cumulative progress captures how students’ beliefs become
resilient to subsequent “Grade Shocks.” Following the Bayesian learning framework, students
with more positive “Grade Shocks” in a major will make smaller revisions to their major ability
belief, suggesting δmm < 0 and δmk < 0. However, the interaction term also captures how stu-
dents who have made more progress respond when they receive higher “Grade Shocks,” with
predicts a positive relationship, suggesting δmm > 0 and δmk > 0

I also measure students’ ability signals with cumulative course withdraws in that major each
semester. Withdraws are recorded in the administrative data if the student withdraws from the
course after the third week of the semester, and are calculated as a failing grade. I interpret
withdraws as negative signals of ability, and predict ωm < 0.

2.6 Results and Discussion

Table 2.4 underlines the importance of including information across majors. Without condi-
tioning on “Grade Shocks” from other majors, students with higher “Grade Shocks” in the
Humanities and Social Sciences are less likely to make any progress in those majors. A corre-
lation between Humanities and Social Sciences abilities will downward bias these estimates, as
students with high Humanities and Social Sciences abilities likely have high abilities in other
majors.

I report parameters estimates in Table 2.5 and focus on the direction of the parameters.
Again, these estimates are not meant to be causal and test the dynamic course-taking model’s
comparative statics. Students take courses to make progress in majors’ course requirements
as a function of their measured “Grade Shocks” to their initial beliefs, and previous progress
across majors.
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2.6.1 Estimates on Earned “Grade Shocks”

Parameter estimates on students’ “Grade Shocks” over time are consistent with the model. Stu-
dents with higher own–major “Grade Shocks” are more likely to make progress in those ma-
jors, and previously withdrawing from courses in that major is negatively related with making
progress.

Whether students make progress in one major is negatively related to having higher “Grade
Shocks” in other majors. This is consistent with students’ payoffs from taking courses and
graduating in majors to be positively related to grades. Students are drawn away from ma-
jors because they believe they have higher abilities and hence higher payoffs in other majors.
In some cases, the cross-major estimates positive and suggests correlated major abilities: stu-
dents with higher Psychology “Grade Shocks” are more likely to make progress in the Math
& Physical Sciences, Life & Physical Sciences, and Economics majors. Students with higher
Psychology “Grade Shocks” not only believe they have higher abilities in other majors, but that
higher abilities are rewarded more in these other majors.

2.6.2 Estimates on Cumulative Progress

Once students have already completed some of the course requirements for a major, they have
an incentive to continue. Table 2.5 shows students who have made more progress and com-
pleted more of the course requirements for a major are more likely to persist. The incentive to
diversify course-taking across majors seems to pale against against graduating quickly.

When students switch majors, they transition their course-taking across majors. Using stu-
dents’ progress in other majors provides one of the first looks into the microfoundations for
these switching costs. Parameter estimates suggest the more progress students have made in
one major, the less likely they are to make progress in another major. This is consistent with
Table 2.2, where students make more progress in majors they previously declared. The increas-
ing switching costs highlights the importance of first year courses, which can set students on
the path to graduating in a major, independent of major ability belief.

Several positive estimates suggest double-majoring or simultaneously making progress across
majors. Students with more progress in Psychology are more likely to make any progress in
the Life & Earth Sciences, and vice versa. This symmetric relationship suggests Psychology
and Life & Earth Sciences send each other students, and the switching cost is relatively small.
There are also asymmetric relationships between majors, indicating on average the Math &
Physical Sciences and Economics send students to Economics and Psychology, respectively.

2.6.3 Estimates on “Grade Shock” and Progress Interactions

As students make more progress and earn more grades, the model predicts their major ability
beliefs become more resilient. Negative estimates on the interaction between “Grade Shocks”
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and progress support this prediction. With fewer revisions to their major ability beliefs, students
are less likely to make any progress in majors than if they made more progress.

Positive estimates on the interaction of Life & Earth Sciences “Grade Shocks” and progress
shows students who perform better and have made more progress in these majors make progress
in other majors. This is reduced-form evidence that the Life & Earth Sciences is sending high
ability students to other majors.

2.6.4 Estimates on Time Invariant Characteristics

Controlling for “Grade Shocks” and progress across majors accounts for previous experience
and beliefs in major abilities. Estimates on student characteristics capture how certain students
made progress in their first semester.13 Looking at student characteristics, I find that Female
students are more likely to make progress in the Humanities and Social Sciences. This is con-
sistent with previous work on gender gaps in major choice (Brown and Corcoran, 1997), though
the gaps are not substantially significant. Compared to White students, Black students are more
likely to make any progress in the Math & Physical Sciences, Life & Earth Sciences, Social
Sciences, and Psychology. Asian students are less likely to make any progress in the Math
& Physical Sciences and more likely to make any progress in the Humanities. Students with
higher Reading percentile ACT or SAT scores are more likely to continue in the Humanities,
while students with higher Math percentile scores are more likely to continue in the Math &
Physical Sciences, Life & Earth Sciences, and Economics.

Students’ prior interests also play a role in how students progress through majors. These
interests can come from a host of reasons, including family (Anelli and Peri, 2015; Zafar, 2012)
and high school experiences (Darolia and Koedel, 2016). These prior interests generally play
a positive role in students’ course-taking decisions. Students interested in the Social Sciences
prior to enrollment are less likely to make any progress in the Social Sciences major.14 The neg-
ative estimate suggests that after controlling for students’ grade and course histories, students
may be learning they have a lesser preference for the Social Sciences.15 If these interests are
inherently misinformed, then the negative estimate for the Social Sciences suggests students
are learning over time.

13Suppose Female students were always more likely to make progress than Males in each semester, then con-
trolling for cumulative progress account for this time invariant pattern.

14The average marginal effect from Table B.2 is negative 0.8 percentage points, which is relatively smaller than
other factors to making any progress in the Social Sciences.

15Figure B.1 shows the influence of prior interest in the Social Sciences is positive until students’ sixth semester,
even without controlling for “Grade Shocks” and progress. This suggests students are learning about their Social
Sciences ability independently from “Grade Shocks.” Overall, it demonstrates the waning influence of time in-
variant characteristics over time.
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2.6.5 Discussion & Conclusion

With ongoing public and policy attention on influencing major choice, this paper is one of the
first to use transcript data to study the correspondence between course-taking and major choice.
The paper finds descriptive evidence that students are lacking information about their major
ability, which calls into question previous works that students are not making fully informed
major choices. Excluding the Arts and Economics, students have completed between 10% to
20% of the course requirements needed to graduate in all majors before declaring their major.
While the administrative data does not include earnings outcomes, the literature has found
substantial determinants beyond earnings and major ability beliefs (Wiswall and Zafar, 2013).

After declaring their major, students continue to take a substantial amount of courses in
other majors, completing on average 10% to 25% of the course requirements needed to graduate
in the Social Sciences, Humanities, and Psychology. With students taking courses relevant
to majors other than their declare ones, major declaration is likely not suitable to measuring
students’ likelihood of switching majors.

A model of course-taking resolves issues of using major declarations to understand tran-
script data. In the model, students have an incentive to diversify their course-taking in order
to insure against low ability belief revisions, and to prevent substantial switching costs from
limiting their future choices. I find the data is consistent with the model’s comparative stat-
ics: students with higher “Grade Shocks” are more likely to take courses and complete course
requirements in a major, and students are less likely to take courses in a major if they have
completed the course requirements for other majors.

Rather than taking courses across multiple majors throughout college to keep the oppor-
tunity cost of switching majors low, students quickly concentrate their course-taking. This is
consistent with students wanting to quickly graduate and that switching costs become salient
early on. The empirical results stress the complexities that course-taking policies must address:
assigned course-taking may creates inertia to persist in a major independent of major ability
beliefs, and the waning influence of grades on influencing course-taking. On the other hand,
early course-taking can create a counterfactual inertia to continue taking the courses needed to
graduate in a major. This is relevant to constructing future policies, as first year courses can set
students onto the path to graduating in a major.

Taken altogether, the transcript evidence shows students face conflicting incentives to grad-
uate earlier and learn about major abilities, while facing the risk of learning they have low
ability in a major they have already taken many courses in. These issues arise from the higher
education institution’s design goal to let students explore different majors. Yet, courses, par-
ticularly those required to graduate for different majors, may play a substantial role in setting
students on the path to graduating in a major independent of ability.
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Table 2.1: Major Groupings

• Math & Physical Sciences
Computer Science
Actuarial Math
Honors Math
Pure Math
Mathematical Sciences
Statistics
Astronomy
Physics

• Life & Earth Sciences
Biochemistry
Biology
Biomolecular Science
Biophysics
Cellular Molecular Biology
Chemistry
Ecology and Evolutionary Biology
General Biology
Microbiology
Neuroscience
Plant Biology
Earth Sciences
Earth and Environmental Sciences

• Social Sciences
Anthropology
Evolutionary Anthropology
Information Science
Political Science
Politics, Philosophy, and Economics
Sociology

• Economics
Economics

• Psychology
Psychology
Organizational Behavior
Biopsychology, Cognition, and Neu-
roscience

• Humanities
Afroamerican and African Studies
American Culture
Art and Ideas
Communications
Comparative Literature
General English
Honors English
Judaic Studies
Middle Eastern Studies
Asian Studies
International Studies
Latin Studies
Linguistics
Philosophy
Social Theory and Practices
Women’s Studies
Classical Architecture
Classical Civilizations
Classical Languages
Ancient Civilizations and Biblical Stud-
ies
Ancient Greek
History
Art History
French
German
Modern Greek
Italian
Polish
Russian
Spanish

• Arts
Creative Writing
Drama
Music
Screen Art Culture
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Figure 2.1: Overlap in Majors’ and Distributional Course Requirements

NOTES – This figure uses all taken courses at PHEC, in addition to courses taken in other
schools at PHEC. Transfer credits are not known. Courses that students withdraw from are not
used in this figure.
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Figure 2.2: Cumulative Annual Progress for Economics and Psychology Graduates

Economics Graduates:

Psychology Graduates:

NOTES – Average semester cumulative progress is shown here . Students are included if they
are inferred as ever completing the major based on coursework. The first half of the Summer
Semester is included with the Spring Semester and second half included with the Fall
Semester. Cumulative progress is carried forward for students who leave PHEC.
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Figure 2.3: Cumulative Progress over Own-Major First Year GPA Quartiles

Math & Physical Sciences

Humanities

NOTES– Quartiles are calculated based on courses defined as related to the major. These
courses are beyond the required classes to complete the major. Students who did not take
these courses in their first semester are excluded from these statistics. Cumulative progress is
carried forward for students who leave PHEC.
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Table 2.3: Sample Selection

More than 24 More than 24 Missing Leave within Final
Transfer Credits AP Credits ACT/SAT Two Semesters Sample

Female 0.443 0.426 0.667 0.548 0.590
(0.497) (0.495) (0.479) (0.501) (0.492)

Black 0.0314 0.00277 0.0909 0.0548 0.0634
(0.175) (0.0526) (0.292) (0.229) (0.244)

Asian 0.159 0.293 0.303 0.219 0.126
(0.365) (0.455) (0.467) (0.417) (0.332)

Hisp 0.0386 0.0185 0.0303 0.0274 0.0543
(0.193) (0.135) (0.174) (0.164) (0.227)

Reading Percentile 84.62 93.42 — 83.37 83.19
(13.44) (6.689) (—) (15.76) (14.80)

Math Percentile 90.58 95.28 5.697 85.76 85.24
(10.37) (5.427) (22.78) (16.48) (14.05)

Transfer Credits 40.79 1.994 11.82 7.685 2.592
(15.63) (3.873) (20.59) (6.205) (4.163)

AP Credits 8.977 29.69 2.939 7.904 5.881
(9.323) (6.128) (6.164) (7.707) (6.527)

Other Credits 0.764 0.382 0.727 0.123 0.696
(2.481) (2.057) (2.908) (0.600) (2.241)

N 6678 2161 33 72 36647

NOTES – Standard deviations are reported in parentheses. Sample selection steps start from
the left and go to the right. ACT and SAT scores are aggregated using percentile scores, with
the average being taken when both are available.
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Chapter 3

Math for All? Regression Discontinuity in Signals
of Preparation for College Quantitative

Coursework

with William J. Gehring, University of Michigan, Department of Psychology

3.1 Introduction

3.1.1 Addressing the Needs of Under–Prepared Students

A key challenge for American higher education is to accommodate the different levels of pre-
college preparation among high school graduates as they enter college. Some students arrive at
college lacking the background needed for introductory coursework, whereas others arrive al-
ready possessing college credit in the form of Advanced Placement and other courses. A critical
task for colleges is to provide opportunities for less-prepared students to rise to the level nec-
essary to compete with their better-prepared peers. If colleges fail to meet this need, they risk
widening the existing inequities in post-college outcomes for students whose backgrounds have
failed to prepare them adequately for college. Chen and Weko (2009) find that academically
less-prepared students are less likely to graduate college in a Science, Technology, Engineer-
ing, or Math (STEM) field. In this paper, we find recommendations to take Pre-Calculus and
Calculus are not adequate tools to narrow these gaps in selective four-year colleges.

Despite the body of evidence on remedial mathematics at two-year colleges (Bettinger and
Long, 2005, 2009; Boatman and Long, 2010; Horn et al., 2009; Martorell and McFarlin, 2011;
Melguizo et al., 2015; Scott-Clayton and Rodriguez, 2015; Scott-Clayton et al., 2014), there is
a dearth of evidence on the academic trajectories of less-prepared students at selective four-year
colleges. The need for such evidence is strong because of the labor market benefits of enrolling
at a four-year institution (Hoekstra, 2009; Jaegar and Page, 1996; Kane and Rouse, 1995).

Preparatory coursework can help less-prepared students achieve outcomes similar to their
more prepared peers. These courses likely play a role in how higher college quality improves
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the academic outcomes of less-prepared students (Arcidiacono and Lovenheim, 2015; Dillon
and Smith, 2017). In addition, there is evidence that less-prepared students divert from more
difficult majors into easier majors to achieve the same grade-point outcomes as their better-
prepared peers (Arcidiacono et al., 2012a). Where course difficulty comes from students’
preparation levels, preparatory courses that provide the foundation for advanced courses are
important. Hence, understanding the mechanisms driving student course and major choices
has important policy implications.

3.1.2 Studying Institutional Recommendations to take Pre-Calculus and Calculus

Students can learn about their capacity to succeed in different kinds of courses from their actual
course experiences. In particular, students learn about their ability to succeed in college math
and other STEM classes once they have taken a math class. There is evidence that students’
course and major choices are motivated by their anticipated grades (Bar et al., 2009; Main
and Ost, 2014). Thus, researchers must be careful in taking self-selection into account for
drawing proper inferences. We avoid these selection biases by exploiting discontinuities in
an institutional recommendation policy. These recommendations occur before the first day
of class and are among the first interactions students have with their institution, and are an
excellent opportunity for students to learn about their capacity for success in a course without
spending the effort (or financial resources) to take courses.

In this paper, we focus on four mutually exclusive recommendations to take Pre-Calculus
or Calculus at a public flagship four-year institution, which we anonymize as the Flagship Aca-
demic College, FAC. We exploit discontinuities in the administrative formula used to assign
recommendations in a regression discontinuity design to estimate the causal impacts of these
Pre-Calculus and Calculus recommendations on student course-taking over time. Each rec-
ommendation (Pre-Calculus or Calculus) can come with two degrees of firmness (Tentative
or Definite), yielding four mutually exclusive recommendations: Pre-Calculus/Definite Rec-
ommendation; Pre-Calculus/Tentative Recommendation, Calculus/Tentative Recommendation,
and Calculus/Definite Recommendation.

We use a relatively new non-parametric procedure (Calonico et al., 2014) to estimate the
causal Intent-to-Treat (ITT) impacts of receiving different recommendations. We leverage our
transcript data to decompose student course-taking in different subjects and find that students
who marginally receive the “Tentative Recommendation to take Calculus” rather than the “Ten-
tative Recommendation to take Pre-Calculus” are 15 percentage points more likely to take Cal-
culus by their second semester. By the eighth semester, these differences disappear, indicating
the marginal students given the “Tentative Recommendation to take Pre-Calculus” have caught
up with their peers.

Among the least-prepared students (those receiving one of the two Pre-Calculus recommen-
dations), those who marginally receive the “Tentative Recommendation to take Pre-Calculus”
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are 17 percentage points more likely to ever take Calculus. They are also less likely to ever
take a course that fulfills the quantitative graduation requirement but does not count toward a
major at FAC. Across all recommendations, we find limited impacts on course-taking trajecto-
ries in taking courses that require Calculus, and more general subjects: Economics, Statistics,
Biology, or Chemistry. This suggests students do not take advantage of their induced Calculus
experience in future courses and inducing students to take Calculus is insufficient to narrowing
STEM gaps.

3.1.3 Expanding the Literature: Recommendations Instead of Placements

Our work focuses on detailed college course-taking, similar to how Melguizo et al. (2015)
looked at persistence in college course sequences. While these outcomes are important to col-
lege graduation and progress to degree, it is perhaps less so at our elite public institution, which
has among the highest persistence and graduation rates among public institutions.1 Conse-
quently, our study focuses on more fine-grained outcomes that can reveal changes in course-
taking trajectories. Another difference in our context is that the recommendation we use has
several levels, allowing us to study the effects of recommendations on students of different
preparation levels. Because we study a four-year institution, our analysis also follows stu-
dents into longer and more diverse academic tracks than Melguizo et al. (2015). The rich
options available to students in a four-year university allow us to study how the recommenda-
tions influence students’ subsequent decisions to take quantitative courses and courses having
quantitative prerequisites.

We view the placement recommendation as an informational treatment, similar to the ap-
proach taken in the growing literature using regression discontinuity designs based on Ad-
vanced Placement (AP) exam scores Papay et al. (2011); Smith et al. (2017). This literature
finds that, independent of granted AP credits, students with almost identical abilities are more
likely to major in fields related to the exams in which they scored higher. Recommendations
are an informational treatment, giving students information about their likelihood of success in
quantitative coursework. Students can also interpret this recommendation as an indication of
how they stand relative to their peers. While students with AP credits at FAC also receive Pre-
Calculus or Calculus recommendations, they likely respond very differently from less-prepared
students without AP credits. For example, their AP credits can reduce the need for prerequisite
courses prior to STEM classes. Students taking AP exams are likely not under-prepared, and
are not in the population of interest in our paper.

To reiterate, our paper studies students’ reactions to “Definite” and “Tentative” recom-
mendations to take Pre-Calculus and Calculus. Unlike the developmental (remedial) litera-
ture where students are placed into a developmental course, we do not evaluate the impacts
of taking Pre-Calculus or Calculus. While Scott-Clayton and Rodriguez (2015) consider the

1Revealing actual statistics also reveals FAC’s identity.
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informational impacts of being placed into remedial courses, our context is quite different. Re-
medial courses do not count towards graduation credit, and taking them does not get students
closer to graduating. FAC does not offer remedial courses; thus the Pre-Calculus and Calculus
courses both count toward graduation credit and satisfy the distributional quantitative gradua-
tion requirement.2 In addition, students are free to ignore this recommendation and take other
courses that satisfy the same distributional course requirement.

Our paper also differs from that prior work in that there is no natural control group, as all
students receive recommendations. Thus, we estimate the relative effects of receiving different
recommendations. Students are not told how recommendations are calculated, and they do not
have an incentive to adjust their recommendation because the recommendation is not binding.

3.2 Institutional Context and Data Description

3.2.1 Pre–Calculus and Calculus at our Institution of Study

In our paper, we use administrative transcript data from students at a highly selective pub-
lic four-year institution, Flagship Academic College (FAC). FAC houses many colleges and
schools; the two largest are its College of Arts and Sciences (CAS) and Engineering College.
The College of Arts and Sciences has the largest student body (approximately 60% of total
undergraduate enrollment) and provides students with the most diverse set of courses. CAS
students can take courses outside of the CAS, and college majors such as Business, Education,
and Public Policy are not housed in CAS.

The transcript data records each course students take while at FAC, including transfer cred-
its the student earned prior to enrollment at FAC, and transfer credits the student transferred
in while attending FAC. Courses are not recorded if a student withdraws from a course within
the first three weeks of the semester. The transcript separately records attempted and earned
credits, as well as the letter grade received from each course.3

All CAS students are required to take one preapproved course to satisfy a quantitative distri-
butional graduation requirement. Some of these preapproved courses, such as Linear Algebra,
Introduction to Microeconomics, and Introductory Statistics, also satisfy other majors’ course
requirements and are clear stepping stones to more advanced courses. Other courses that satisfy
the distributional requirement do not satisfy any major’s course requirements, and do not pave
the way to more advanced courses. For example, there are courses focusing on the history of
DNA, cryptology, and looking for extraterrestrial life. We refer to these courses as “Non-Major
Quantitative Courses” and investigate them as a separate outcome. AP credits do not satisfy

2 Because this course counts towards overall graduation credit, the “diversion” effect in Scott-Clayton and
Rodriguez (2015) is not relevant in our context. Although we find substitution patterns between Pre-Calculus and
other quantitative courses, students will satisfy the quantitative course requirement regardless of their choice.

3Less than 3% of all student-courses taken at CAS result in withdrawals, which are recorded if the student
withdraws later than three weeks after the start of the semester.
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the quantitative graduation requirement.

Pre-Calculus and Calculus also satisfy this quantitative distributional requirement. Despite
being called “Pre-Calculus,” the Mathematics Department at CAS designs the Pre-Calculus
curriculum to be self-contained and not a stepping stone to Calculus.

All students who enter FAC, regardless of previous mathematics background or transfer
credits, receive one four mutually exclusive recommendations:

1. Definite Recommendation to take Pre-Calculus (DP)

2. Tentative Recommendation to take Pre-Calculus (TP)

3. Tentative Recommendation to take Calculus (TC)

4. Definite Recommendation to take Calculus (DC)

These recommendations are based on a Math Index calculated from each student’s high school
grade point average, math SAT or ACT score, and math placement exam score. Students take
the math placement exam before starting any coursework.4 Three explicit cutoffs in the Math
Index (at 1.5, 2.0, and 2.25) determine students’ recommendations. Further details can be found
in the Appendix. Here, we refer to these four recommendations as DP, TP, TC, and DC.

At a pre-orientation event5 the summer or winter before they start coursework, students
meet with academic advisors who provide them with this recommendation. This is the only
time students observe these recommendations: they are not presented to the student after taking
the math placement exam, and cannot be otherwise found afterwards. FAC wants students to
take these recommendations seriously. If students express reluctance, academic advisors try
to convince students to follow the recommendations. For example, if the student wanted to
take Calculus instead of following a Pre-Calculus recommendation, the advisor could show the
student a Calculus textbook and challenge the student to comprehend the first few chapters.
Ultimately, students can still choose to ignore their advisors’ recommendations.

3.2.2 Sample Selection of Students

We use administrative data from FAC to calculate this index and recreate the recommenda-
tions. Although all students receive these recommendations, we are concerned with examining
the largest population of students for whom these recommendations have the same amount of

4In 2003, the math placement exam moved from a pencil-and-paper exam students took at the pre-orientation
event before enrolling to an online exam students could take any time before the pre-orientation event. We could
not find differences in recommendations following this change, though our data only starts in 2002. The Math
Index is actually based on a regression calculated a number of years ago that predicts the grade a student would
receive in calculus (on a four-point scale) if her or she were to take it without additional preparation.

5Students have a variety of dates to choose from during the summer, and require a separate orientation fee
and accommodation expenses. Students who do not attend the event during the summer are required to attend a
functionally identical event a few days before the start of the semester.
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relevance. Therefore, we limit our sample to students who enter FAC through CAS from 2002
to 2008 as freshmen and did not have any transfer credit for Pre-Calculus or Calculus. We track
these students for six years after they enter CAS.

We show the sample selection in Table 3.1. Focusing our analysis on students who initially
enroll at FAC through CAS, we drop students who initially enrolled through the Engineering
College, which comprises proportionally fewer female students and students with higher SAT
and ACT math scores. The other dropped students are transfers from outside institutions, who
enter with lower math achievement measures, and have a higher proportion of Black, Asian,
and Hispanic students. Students who are dropped for having Advanced Placement Calculus
credit for Calculus I are more likely to be male and Asian and to have higher SAT and ACT
scores.

3.2.3 Descriptive Statistics of Recommendations and Quantitative Course–Taking

FAC does not record the continuous (running or forcing) variable used to compute the rec-
ommendation. Therefore, we computed the running variable and recommendation using the
formula and cutoffs provided by the registrar. Figure 3.1 shows that we make few errors in
recreating them. Despite extensive effort, we were unable to determine why we were unable to
perfectly recreate students’ recommendations.6 We retain students in our sample regardless of
whether we correctly recreated their recommendations, giving us a fuzzy regression disconti-
nuity design. We consequently estimate Intent-to-Treat (ITT) effects.

An obvious result of the placement recommendation is that students might alter the ways
they fulfill the quantitative course requirement. Although these recommendations are for Pre-
Calculus and Calculus, which satisfies the quantitative course requirement, students can also
choose from a list of classes that meet the quantitative requirement but do not satisfy any
major’s course requirements.7 We refer to this group of courses as “Non-Major Quantitative
Courses.”

Table 3.3 gives a preliminary look at the outcome variables indicating whether or not stu-
dents ever take different quantitative courses by their second, eighth, and twelfth semesters.
We consider three groups of quantitative courses that count towards FAC’s quantitative distri-
butional requirement:

1. Pre–Calculus

2. Calculus
6The CAS administration proposed two reasons for this inconsistency: The first is that the administrative

data is overwritten as new data appears - students who retake the ACT or SAT have their data rewritten in the
administrative records. The second is inconsistent reporting of high-school GPA and other scores across different
data tables.

7There are also courses that satisfy the quantitative course requirement which also satisfy different majors’
course requirements. We take these courses into account in examining students’ course-taking in different subjects.
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3. “Non-Major Quantitative Courses”

Table 3.3 shows almost no differences between the proportions of students who take these
courses between their eighth and twelfth semesters. With this in mind, we look only at out-
comes by students’ second and eighth semesters. These semesters are calculated as subsequent
semesters after initial enrollment; very few students skip semesters.

The descriptive evidence supports the hypothesis that the recommendations affected stu-
dents’ course choices. Table 3.3 shows that the proportion of Definitely Recommended to Take
Pre-Calculus (DP) students who take Pre-Calculus increases from 40% in the second semester
to 44% in the eighth semester. Students Tentatively Recommended to Take Pre-Calculus (TP)
behave similarly, with the proportion taking Pre-Calculus increasing from 36% to 38%.

Looking at the proportion of students who take Calculus, we see that TC and DC students
take Calculus in much higher proportions, with 54% of TC and 43% of DC students taking
Calculus by their eighth semester. Taking Calculus is likely to be more popular among TC stu-
dents than DC students in part because DC students are better prepared to take more advanced
quantitative courses.

Taking Non-Major Quantitative Courses is less popular than taking Pre-Calculus or Cal-
culus. DP students take Non-Major Quantitative Courses in higher proportions than all other
students, around 21% by the end of their eighth semesters. At the other extreme, only 12%
of DC students take Non-Major Quantitative Courses. From their second to eighth semesters,
the proportion of students who take Non-Major Quantitative Courses increases around ten to
fifteen percentage points across all recommendations.

3.3 Estimation Strategy

Comparing these descriptive statistics most likely results in biased inferences about the causal
impact of recommendations. DP students are likely very different from TP students in unob-
served ways: previous experiences with quantitative coursework, desires to pursue STEM ma-
jors, study habits, and quantitative ability. These unobserved differences likely correlate with
our outcomes of interest: taking Pre-Calculus, taking Calculus, graduating in STEM majors,
and course-taking trajectories.

To estimate the causal impact of these recommendations, it is helpful to think about the
ideal experiment where students are randomly given Definite or Tentative recommendations
to take Pre-Calculus or Calculus recommendations or none at all. Using the calculated Math
Index, we separate students into four levels of quantitative preparation. For the least prepared
students, we would randomly assign students to receive a Definite Recommendation to take
Pre-Calculus (DP) or none at all. This assignment process would continue, until for the most
prepared students, we randomly assign students to receive a Definite Recommendation to take
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Calculus (DC) or none at all.8 With students randomly assigned recommendations suitable for
their level of quantitative preparation or none at all, we could estimate the causal impact of
each of the four recommendations.

3.3.1 Interpretation of Receiving Different Recommendations

Our context differs from the ideal experiment, because all students are given a recommendation.
Thus, we can only estimate the relative effects of different recommendations. If we simply
compare two groups with different recommendations, and one group shows a greater measured
outcome than the other, it is not possible to know whether one recommendation increased the
outcome or the other recommendation decreased it, or both.9 Observing a difference between
those students confounds two distinct reactions to the recommendation. We interpret relative
effects of these different recommendations as students’ reactions to signals of their quantitative
preparation.

In contrast to most educational interventions, we draw attention to the somewhat pecu-
liar properties of placement recommendations and evaluating a context where all students are
treated. Unlike contexts where the policy recommendations are whether to treat or not, our
setting compares the relative impacts of different recommendations. In our regression discon-
tinuity context, the most obvious policy question is how the cutoff should be placed.

Robinson (2011) discusses how the cutoff should be placed with respect to finding null
impacts. If the intent of Pre-Calculus and Calculus recommendations are to close gaps in
STEM course-taking or major choices, then an estimated null impact means there is either
no discernable impact or the cutoff has been placed to equalize outcomes. It is likely these
recommendations are not intended to close gaps, and we focus on unintended consequences of
recommending students to taking Pre-Calculus or Calculus.

We present a framework based on Robinson (2011) for understanding the cost and benefits
of setting the cutoff. Suppose the university is interested in equalizing outcomes between stu-
dents with less (L) and more (H) preparation on some outcome Y . Suppose YL < YH , and the
university assigns some treatment (T ) based on students’ preparation to equalize outcomes. If
the university perfectly set the cutoff such that only L students are assigned the treatment, then
we would find no differences using the RD design: YL + T = YH . If the cutoff is too low, then
not enough L students are assigned the treatment. We would find the treatment has a positive
effect, though outcomes are not equalized.

8It is likely the highest achieving students would ignore any recommendations to take Pre-Calculus. Policy
makers would likely not be interested in the impacts of Definitely Recommending the least prepared students to
take Calculus. Both scenarios have obvious ethical shortcomings.

9This consideration is relevant in our present scenario. An anecdotal report from an academic advisor said that
students getting the TP recommendation, below the recommendation to take Calculus, often argue for a higher
placement, whereas students getting the TC recommendation often argue for a lower one. It is also not clear why
students argue for different recommendations, as recommendations can be ignored without consequence.
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If the cutoff is too high, then H students are assigned. If TH is positive, such as offering
studying strategies, then the university can afford to set the cutoff too high. We would find a
positive effect of the treatment at the margin: YH + TH > YH . Yet the RD design will not
capture the policy margin of interest, between L and H students. L and H outcomes may not
be equalized (this depends on the relative magnitudes of TL and TH).

We now depart from Robinson (2011)’s approach and consider if TH is negative,10 such
as recommending students to take a developmental course. Taking this developmental course
could slow H students from graduating on time. If the cutoff were set too high, we would then
find a negative effect of the treatment at the cutoff: YH + TH < YH , even though the treatment
benefits less prepared students, TL > 0. The university could incorrectly either the treatment
does not work, or (following Robinson (2011)) the cutoff is too low. The case where TH < 0 is
important for the university to consider. If it sets the cutoff too high, it pays a cost of decreasing
the outcomes of H students.

3.3.2 Regression Discontinuity Validity and Approach

We use the recommendations based on explicit cutoffs in a regression discontinuity (RD) de-
sign. RD estimates causal impacts by comparing students who just above or below along a
continuous quantitative dimension, in our case, those who receive different recommendations.
RD is used in various fields, including Economics, Education, and Psychology (Cook, 2008),
as a compelling method to estimate causal impacts.

We study four mutually exclusive recommendations, and estimate relative impacts of marginally
receiving one recommendation compared to another. Since recommendations are based on cut-
offs in the calculated Math Index, we can only make three comparisons. We would estimate
the three equations below, each on students in a narrow interval around the discontinuity.

Yit = 0 + 1MathIndexi + α11{Tentative Recommendation to Take Pre-Calculusi} (3.1)

Yit = 2 + 3MathIndexi + α11{Tentative Recommendation to Take Calculusi} (3.2)

Yit = 4 + 5MathIndexi + α11{Definite Recommendation to Take Calculusi} (3.3)

If the regression discontinuity design is valid, then α1 estimates the impact of the Tentative
Recommendation to take Pre-Calculus relative to the Definite Recommendation to take Pre-
Calculus (TP – DP), α2 estimates the impact of Tentative Recommendation to take Calculus
relative to the Tentative Recommendation to take Pre-Calculus (TC – TP), and α3 estimates
the impact of the Definite Recommendation to take Calculus relative to the Tentative Recom-
mendation to take Calculus (DC - TC). These estimates are for students at the cutoffs, who are
marginally given a higher recommendation or signal of quantitative preparation.

10This case is not considered in Robinson (2011), as it examines for English Learner Reclassification, where
the treatment effect is assumed to be positive.
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(3.1), (3.2), and (3.3) are estimated using a subsample of students with Math Index values
in a narrow interval around the cutoff values. We use a fuzzy regression discontinuity design,
where α1, α2, and α3 estimate the Intent-to-Treat (ITT) impacts on students who marginally
receive these recommendations (Lee and Lemieux, 2009).

RD requires two tests that provide evidence in support of this causal interpretation. The first
test is that students are as good as randomly assigned in narrow intervals around the cutoffs for
different recommendations. One reason this may not happen is if students tried to manipulate
their calculated Math Index. This occurs in other contexts when the formula is publicly known
(Lee, 2001). We use a McCrary density test (McCrary, 2008) which tests the null hypothesis
that the Math Index running variable has a continuous density around the cutoffs. We run
separate tests for each cutoff and entering cohort year. Our results appear in Table 3.2;11 they
show that the density in the Math Index is generally smooth through the cutoffs. We find
differences that approach statistical significance, at the 10% level, in TP - TC (comparing that
Math Index density for students Tentatively Recommended to take Pre-Calculus against those
who are Tentatively Recommended to take Calculus). We keep this in mind moving forward,
but describe below why this should not be interpreted as evidence manipulation.

Students are not aware of how their Math Index value is calculated, and there is no incentive
to manipulate their recommendations. Recommendations are shared between the student and
advisor at the pre-orientation event, and are not binding. Neither the student nor the advisor
ever sees the calculated Math Index. While students can re-take the math placement exam, we
only calculate the Math Index value using students’ first math placement exam score. Very few
students retake the math placement exam: only 22 students (less than 0.1%) in our entire sam-
ple. We argue students are not trying to manipulate their scores for desirable recommendations.

The second test is whether there is balance in student control variables at the cutoff. If there
are discrete jumps in student control variables, then any difference in outcomes at the cutoff
in the running variable can be attributed to both the jump in student control variables and the
treatment. We plot out student characteristics over the index in Figures 3.4 3.5, 3.3, and 3.2.
Figures C.1 and C.2 plot across other student characteristics. We find no visual evidence of any
jumps at the cutoff.

We rigorously test for differences in student control variables, using the same non-parametric
regression discontinuity estimator from Calonico et al. (2014). Table 3.4 shows students who
are marginally given the Tentative Recommendation to take Pre-Calculus, rather than the Def-
inite Recommendation to take Pre-Calculus are less likely to come from earlier cohorts. Stu-
dents marginally given the Tentative Recommendation to take Calculus, rather than the Tenta-

11We show the McCrary test for the unrounded math index values. Although the formula used to calculate the
math index rounds to the nearest hundredths place, the cutoffs are 1.50, 2.00, and 2.25 and sensitive to rounding.
Our preliminary analyses showed that the McCrary test failed using the rounded math index. This does not affect
our arguments against manipulation, and the rounding creates a data artifact uncorrelated with potential confounds
(Barreca et al., 2016).
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tive Recommendation to take Pre-Calculus are more likely to be Asian and score higher on the
SAT Math section. Students marginally given the Definite Recommendation to take Calculus,
rather than the Tentative Recommendation to take Pre-Calculus are less likely to be White,
more likely to not report a race, more likely to report multiple races, score higher on the ACT
Math and Science sections, and have lower high school GPAs.

What can cause these discontinuous jumps in student control variables? Recall the calcu-
lated Math Index is calculated using high school grade point average, math SAT or ACT score,
and math placement exam score. Then discontinuous jumps in enrollment year and reported
race is based on their correlation with these scores. Discontinuous jumps in ACT and SAT
section scores, and high school grade point averages likely come from the availability of these
scores. Section C.1 discusses the availability of these scores.

We now estimate the impact of receiving different recommendations on students. We ex-
amine three different cutoffs, comparing:

1. Definite Recommendation to take Pre-Calculus against Tentative Recommendation to
take Pre-Calculus (TP – DP);

2. Tentative Recommendation to take Pre-Calculus against Tentative Recommendation to
take Calculus (TC – TP); and

3. Tentative Recommendation to take Calculus against Definite Recommendation take Cal-
culus (DC - TC).

In applying the parametric analysis shown in (3.1), (3.2), and (3.3), we found that estimating
TP – DP, TC – TP, and DC - TC was highly sensitive to the interval or bandwidth selection. As
the bandwidth decreases, the estimate becomes more susceptible to random noise: it becomes
under powered. As the bandwidth increases, the estimate becomes more precise because the
variance decreases. However, a larger bandwidth runs the risk of including students who are
not on the margin of being assigned the treatment, thereby invalidating the RD design. We
also found that the estimates were sensitive to the different functional forms of (3.1), (3.2), and
(3.3): polynomials of the running variable and interactions with the cut-off.

There is no definitive method to determine the best interval or parametric form.12 To address
this issue while allowing us to “let the data speak for itself”, we use non-parametric regression
and a kernel-weighting function of the distance of observations from the cutoff. However, this
method also relies on bandwidth selection. Unfortunately, the bandwidth selection required to
approximate the kernel-weighting function is often too large and introduces the bias of involv-
ing students who are more likely to be different in unobserved ways. Too large a bandwidth

12In Figures C.4 and C.3, we plot the running variable over whether students take Pre-Calculus or Calculus.
Linear regressions along the entire interval imply differences we do not see in the non-parametric specifications.
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can lead us to incorrectly reject the null hypothesis the parameter is not different from zero. As
Calonico et al. (2014) observe, “This is a well-known problem in the nonparametric curve esti-
mation literature” (pg. 2301). We use a method to calculate robust non-parametric confidence
intervals presented in Calonico et al. (2014) that corrects for this bias using variation from the
larger bandwidth. A separate “pilot bandwidth” is used to calculate a separate bias estimate
that is subtracted from the original estimate. In all tables showing estimates, we present the
estimate, P-value, bandwidth (not the “pilot bandwidth”), control mean (on the left-hand side
of the cutoff), and sample size from this bias-corrected process.

3.4 Non-Parametric Regression Discontinuity Results

In our non-parametric RD estimates, we estimate the effect of receiving the marginally higher
recommendation. For example, along the TP – DP margin, we estimate the Intent-to-Treat
(ITT) estimate of the marginal effect of receiving the Tentative Recommendation to take Pre-
Calculus (TP) compared to the Definite Recommendation to take Pre-Calculus (DP) for stu-
dents at the margin. Table 3.3 showed little variation between students’ eighth and twelfth
semesters, and we show ITT estimates on students’ outcomes by the end of their second and
eighth semesters.

3.4.1 ITT Impacts on Cumulative Credits and Graduation

One of the main outcomes of interest in the developmental course literature is students’ cu-
mulative credits over time (Horn et al., 2009; Martorell and McFarlin, 2011; Scott-Clayton
et al., 2014). Cumulative attempted credits roughly measures how students make progress
toward completing graduation requirements. We show non-parametric RD estimates on cumu-
lative credits on Table 3.5. We measure students’ cumulative credits by the second and eighth
semesters, as well as the difference in cumulative credits between students’ eighth and second
semesters. For students who drop out or leave the institution before these semesters, we carry
their cumulative credits forward rather than give them zeros or drop them from the sample.

We find that along the margin of receiving the Definite Recommendation to take Pre-
Calculus (DP) and Tentative Recommendation to take Pre-Calculus (TP), TP students take
more credits in their second semester. The estimated effect sizes are neither statistically nor
substantively significant. Along the TC – TP and DC - TC margins, we also find that marginal
students given higher recommendations to take Calculus neither statistically nor substantially
increase attempted cumulative credits.

Yet we find recommendations affect course withdrawals, with estimates shown on Table
3.5. Students at the TP – DP margin withdrew from half a course more by their eighth semester
when they were marginally given the Tentative Recommendation to take Pre-Calculus. The
65% increase (0.568 on a control mean of 0.853) difference is statistically and substantially
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significant. This result suggests recommendations cause students to overreach and enroll in
courses they are not prepared for. One reason we may see this during students’ eighth semesters
is that these courses are not necessarily related to Pre-Calculus or Calculus.

Table 3.5 also shows RD estimates on whether the student graduates by their eighth semester.
We find that students who marginally received the Tentative Recommendation to take Pre-
Calculus (TP) are four percentage points less likely to graduate by their eighth semester com-
pared to students who marginally received the Definite Recommendation to take Pre-Calculus
(DP). We find a 4.7% decrease (4.5 on 96.5) that statistically significant at the 10% level. We
find this estimate surprising, as students given marginally higher signals of their quantitative
preparation are more likely to drop out. This result differs from the literature on remedial
course-taking. In formulating an interpretation, one could argue that the higher recommenda-
tion could lead to a riskier course-taking strategy, with some number of students attempting
courses that do not match their preparation level. Estimates on graduation for TC relative to TP
and DC relative to TC are statistically and substantively insignificant.

3.4.2 ITT Impacts on Quantitative Course–Taking

Across all recommendations, we find statistically and substantially insignificant impacts on
whether students take Pre-Calculus. However, we find impacts on taking Calculus. We see stu-
dents who marginally receive the Tentative Recommendation to take Pre-Calculus compared
to the Definite Recommendation to take Pre-Calculus are more likely to ever take Calculus by
their second and eighth semesters. These differences are substantial and statistically significant:
marginal TP students are 16 percentage points more likely to take Calculus in their first or sec-
ond semester, on a control mean of 22 percent. This difference persists to the eighth semester:
TP students are 18 percentage points more likely to ever take Calculus by their eighth semester,
on a control mean of 27 percent. This shows recommendations affect students’ early decisions
to take Calculus, and few students on the TP – DP margin revisit this decision (as they might if
the experience in Pre-Calculus were sufficiently positive to encourage them to take Calculus).
To summarize this finding bluntly, FAC’s placement recommendation, rather than equalizing
Calculus outcomes for the least quantitatively prepared students, causes them to be less likely
to take Calculus.

We find a short-lived impact on Calculus taking for the marginal TP and TC students. Stu-
dents marginally given the Tentative Recommendation to take Calculus (TC) are 15 percentage
points more likely to take Calculus by their second semester, on a control mean of 38 percent.
By their eighth semesters, this difference is statistically insignificant but substantially signifi-
cant: 7 percentage points more likely on 47 percent. The TP students who receive a lower signal
about their quantitative preparation are initially discouraged from taking Calculus, but catch up
with their TC student peers who received a higher signal about their quantitative preparation.

Yet is taking Calculus rewarding for these students? We find suggestive evidence these rec-
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ommendations have a negative influence on students’ Calculus grades. Estimates on students’
first earned grades on 3.7 show marginal TP and TC students score 0.3 points lower (approxi-
mately from a “B+” to “B”). While these estimates are not causal because they are conditional
on students taking Calculus, it suggests the calculus course itself can be dissuading students
from continuing into quantitative majors.

3.4.3 ITT Impacts on Taking Non-Major Quantitative Courses

We next look at other reactions to these recommendations. Upon getting a recommendation,
students can elect to take a course other than Pre-Calculus or Calculus to satisfy the quantitative
requirement.

The top portion of Table 3.6 shows whether students ever take a Non-Major Quantitative
Course. The marginal TP students are 2 percentage points less likely to take Non-Major Quan-
titative Courses by their second semester compared to the marginal DP students. This is statis-
tically significant at the 5% level. The 2 percentage point difference is substantial as the control
mean is 2 percent, and the difference persists into the eighth semester, where TP students are
12 percentage points less likely to take these courses, on a control mean of 26 percent. The
level growth in this effect between semesters 2 and 8 is significant, suggesting that the disparity
in taking Non-Major Quantitative Courses grows over time. This shows that among the less
quantitatively prepared students, the signals of lower quantitative preparation conveyed by the
recommendation causes students to take more Non-Major Quantitative Courses. The result on
ever taking Calculus is of a similar magnitude, suggesting students are substituting Calculus
with Non-Major Quantitative Courses.

3.4.4 ITT Impacts on Courses Requiring Pre–Calculus and Calculus

We have seen that these recommendations have substantial impacts on whether students ever
take Calculus and Non-Major Quantitative Courses. We then move to measure impacts on tak-
ing courses that require Pre-Calculus or Calculus. Courses that require Calculus include most
Physics courses, intermediate and advanced Economics, intermediate Statistics, Chemistry, and
Math courses.

ITT estimates on the top of Table 3.8 show that along all recommendation margins, TP –
DP, TC – TP, and DC - TC, we do not find statistically significant differences. However, the di-
rection of these estimates are consistent with students responding to higher signals about their
quantitative preparation for college courses. Students who marginally receive higher recom-
mendations are more likely to take courses that require Pre-Calculus or Calculus.
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3.4.5 ITT Impacts on Cumulative Credits in STEM Related Subjects

Another outcome of interest is whether students use these recommendations to draw inferences
about their ability or capacity to continue in more quantitative fields. Such a finding would
be particularly informative to policies that wish to increase student participation in certain
quantitative or Science, Technology, Engineering, and Math (STEM) fields, if students are not
being properly encouraged about their quantitative preparation.

We look at the cumulative credits students have taken in Chemistry, Biology, Mathematics,
Statistics, and Economics in Tables 3.8 and 3.9. Courses are usually three or four credits each,
and Calculus is a prerequisite for majors in these fields. Recommendations to take Calculus
can open up these fields for students. We find short-run differences in cumulative attempted
Mathematics, Statistics, and Economics credits, but overall find substantially and statistically
insignificant results across recommendations.

Table 3.8 shows estimates on cumulative attempted Chemistry and Biology credits by stu-
dents’ second and eighth semesters. Across all recommendations, we find statistically insignif-
icant differences. Along the TC – TP margin, we find positive differences for students’ cumu-
lative Chemistry credits, suggesting the marginal Tentative Recommendation to take Calculus
has some positive influence on Chemistry course-taking.

In Table 3.9, we find statistically significant results along the TP – DP margin for cumula-
tive second semester Math and Economics credits, and along the DC - TC margin for cumu-
lative second semester Statistics credits. We find that giving Tentative Recommendations to
take Pre-Calculus increases cumulative attempted second semester Math and Economics cred-
its by around one credit (0.7 on control means of 2.4 and 0.629). These Math and Economics
credit differences are significant at the 10% and 5% levels, respectively. Compared to students
who marginally receive Definite Recommendations to take Pre-Calculus, TP students have at-
tempted 100% more Economics credits by their second semester. However, these differences
are not statistically significant by students’ eighth semesters.

Along the DC - TC margin, students who marginally receive Definite Recommendations
to take Calculus take 0.5 more Statistics credits (on a control mean of 0.7) by their second
semesters. Like previous results, this difference also decreases by students’ eighth semesters.
These results on Math, Economics, and Statistics suggests that at best, recommendations can
have short-lived impacts on coursework in quantitative fields.

3.4.6 ITT Impacts on STEM Major Completion

Finally, we find that recommendations to take Pre-Calculus or Calculus have no statistically
discernable impact on a student’s graduating major. Table 3.10 shows that recommendations
have no statistically significant impact on whether students graduate in Biology, Economics,
Physics, Mathematics, or Statistics. The estimates suggest a substantive difference in Eco-
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nomics: DP students are 5 percentage points more likely to graduate in Economics (control
mean of 3 percentage points) relative to TP students. Results on graduating majors are consis-
tent with our findings on course-taking in different subjects.

3.5 Discussion and Conclusion

In this paper, we use administrative student transcripts and admissions data from a four year
public institution to estimate the causal impacts of receiving Tentative or Definite Recommen-
dations to take Pre-Calculus or Calculus on taking quantitative college courses over time.

Our paper makes its largest contribution to the growing literature of how students respond
to information about their ability and preparation to major in certain fields (Papay et al., 2011;
Smith et al., 2017). We examine how student course-taking responds to institutional recom-
mendations across all students, rather than responses conditional on taking AP exams. We
also focus on a different population of students, who did not receive Advance Placement Exam
credit and who are less prepared for college work.

We interpret recommendations as signals about students’ quantitative preparation, and find
favorable signals about students’ quantitative preparation cause them to be more likely to take
Calculus. Marginal students who receive the Tentative Recommendation to take Pre-Calculus
are 85% more likely to take Calculus in their first or second and eighth semesters than those who
receive the Definite Recommendation. We find neither substantially nor statistically significant
differences in whether students ever take Pre-Calculus.

We also find that recommendations affect whether less-prepared students take Non-Major
Quantitative Courses, which satisfy a quantitative distributional requirement but do not fulfill
course requirements in any major. Students who receive the Tentative Recommendation to take
Pre-Calculus are 100% less likely to ever take Non-Major Quantitative Courses than if they
receive the Definite Recommendation to take Pre-Calculus. Although this difference decreases
over time, it remains statistically and substantially large, showing early information sets stu-
dents on a course-taking trajectory away from the courses required for quantitative majors.
Taking Non-Major Quantitative Courses is not unequivocally undesirable, as the institution we
study offers these courses for students who do not intend to pursue quantitative majors.

At the same TP – DP margin, we find marginally receiving the Tentative Recommenda-
tion to take Pre-Calculus causes more course withdrawals. We also find suggestive evidence
these marginal students also perform worse in Calculus. Although this recommendation seems
to cause students to substitute Non-Major Quantitative Courses with Calculus, the marginal
students do not seem to be benefiting.

However, if we assume that students at the TP – DP margin have equivalent intentions and
potential toward quantitative majors (as the logic of the RD design assumes), the fact that there
is a statistically and substantially significant estimate at the TP and DP margin suggests that an
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unintended side effect of the recommendation policy is that the placement recommendations are
not matched optimally to the students’ quantitative preparation. Either too many DP students
are pursuing Non-Major Quantitative Courses, or too few TP students are, or perhaps even
both co-occur. Unfortunately, the RD analysis here is agnostic about the way in which the
recommendation policy should be adjusted. Such a decision must instead be derived from the
educational goals of the institution.

We find statistically and substantially significant effects on cumulative attempted credits in
Math, Statistics, and Economics in the second semester. Students who are marginally given the
lowest recommendation, a Definite Recommendation to take Pre-Calculus, take half as many
Economics credits by their second semester. We find limited evidence this difference persists.

Additional findings of limited evidence on Biology and Chemistry course-taking are puz-
zling juxtaposed with statistically and substantially significant results on ever taking Calculus.
Are students induced to take Calculus not using the Calculus experience for future coursework?
It could be that induced Calculus course-taking is associated with detailed course-taking pat-
terns we cannot measure by grouping courses by subject. Alternatively, it is possible that
the experience of taking Calculus for those students affected by the recommendation does not
encourage–or even discourages–further coursework dependent on Calculus. If policy makers
want students to go beyond taking Calculus, evidence suggests that it is insufficient to place
students at FAC into Calculus courses, at least those students at the level of preparation at the
recommendation margin. Future research on students’ motivations to take Calculus or on their
actual experience taking Calculus could reveal more potent policy levers.

80



Ta
bl

e
3.

1:
Sa

m
pl

e
Se

le
ct

io
n

St
ar

tin
g

Sa
m

pl
e

Pr
op

or
tio

n
of

A
C

T
Sc

or
es

SA
T

Sc
or

es
H

S
Fe

m
al

e
W

hi
te

B
la

ck
A

si
an

H
is

p
M

at
h

R
ea

di
ng

M
at

h
V

er
ba

l
G

PA

m
ea

n
0.

50
9

0.
65

8
0.

05
7

0.
13

6
0.

05
1

28
.5

99
28

.7
32

67
1.

40
8

63
0.

08
3.

74
2

sd
(0

.5
)

(0
.4

74
)

(0
.2

32
)

(0
.3

43
)

(0
.2

21
)

(4
.0

38
)

(4
.4

43
)

(7
7.

16
)

(7
8.

50
1)

(0
.2

81
)

N
35

25
0

35
25

0
35

25
0

35
25

0
35

25
0

25
34

2
25

35
0

19
30

1
19

30
1

34
11

2
1:

N
ot

In
co

m
in

g
to

C
ol

le
ge

of
A

rt
sa

nd
Sc

ie
nc

es
m

ea
n

0.
37

1
0.

66
2

0.
04

9
0.

14
2

0.
04

3
29

.4
91

28
.3

63
68

5.
33

8
62

2.
63

3.
70

7
sd

(0
.4

83
)

(0
.4

73
)

(0
.2

16
)

(0
.3

49
)

(0
.2

03
)

(4
.1

65
)

(4
.5

85
)

(7
8.

87
9)

(8
3.

08
1)

(0
.3

25
)

N
10

28
6

10
28

6
10

28
6

10
28

6
10

28
6

73
42

73
51

58
43

58
43

98
37

2:
N

ot
In

co
m

in
g

Fr
es

hm
en

m
ea

n
0.

52
3

0.
35

7
0.

29
8

0.
11

5
0.

1
23

.4
76

24
.4

43
61

7.
75

3
57

7.
00

8
3.

31
5

sd
(0

.5
)

(0
.4

79
)

(0
.4

58
)

(0
.3

19
)

(0
.3

01
)

(4
.7

42
)

(5
.3

8)
(1

04
.5

71
)

(8
6.

80
7)

(0
.3

79
)

N
18

81
18

81
18

81
18

81
18

81
12

02
12

02
89

9
89

9
16

01
3:

H
av

e
A

dv
an

ce
d

Pl
ac

em
en

tC
al

cu
lu

sC
re

di
t

m
ea

n
0.

51
7

0.
69

0.
01

0.
19

7
0.

01
8

31
.3

9
30

.4
08

70
7.

57
5

65
9.

80
4

3.
86

5
sd

(0
.5

)
(0

.4
63

)
(0

.0
99

)
(0

.3
98

)
(0

.1
34

)
(2

.7
9)

(3
.6

17
)

(5
7.

03
8)

(6
7.

94
9)

(0
.1

6)
N

13
08

13
08

13
08

13
08

13
08

11
09

11
09

66
4

66
4

13
07

4:
H

av
e

O
th

er
C

al
cu

lu
sC

re
di

t
m

ea
n

0.
62

5
0.

65
8

0.
05

0.
13

2
0.

05
6

28
.1

55
27

.9
05

65
6.

8
62

5.
6

3.
83

4
sd

(0
.4

85
)

(0
.4

75
)

(0
.2

19
)

(0
.3

39
)

(0
.2

3)
(3

.2
43

)
(4

.3
75

)
(6

8.
87

7)
(6

4.
20

9)
(0

.1
94

)
N

35
7

35
7

35
7

35
7

35
7

29
6

29
6

15
0

15
0

35
1

5:
Fi

na
lS

am
pl

e
m

ea
n

0.
57

1
0.

68
0.

04
3

0.
13

2
0.

05
3

28
.3

8
29

.1
39

66
6.

72
7

63
6.

22
6

3.
78

1
sd

(0
.4

95
)

(0
.4

66
)

(0
.2

02
)

(0
.3

39
)

(0
.2

24
)

(3
.6

08
)

(4
.1

25
)

(7
2.

06
6)

(7
3.

98
1)

(0
.2

2)
N

21
41

8
21

41
8

21
41

8
21

41
8

21
41

8
15

39
3

15
39

2
11

74
5

11
74

5
21

01
6

81



Figure 3.1: Comparing Calculated Math Index with Official Recommendations

NOTES –

Vertical lines represent the cutoff values for receiving different recommendations based on
calculated Math Index values. If we perfectly predicted students’ recommendations with our
calculated Math Index, then there would be no overlap at these vertical lines.
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Figure 3.2: Proportion of White Students Over the Math Index

Figure 3.3: Proportion of Black Students Over the Math Index
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Figure 3.4: ACT Math Score Over the Math Index

Figure 3.5: SAT Math Score Over the Math Index
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Table 3.5: Non-Parametric RD Estimates on Cumulative Credits and Graduation

Cumulative Credits
TP – DP TC – TP DC – TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.231 -1.159 -1.775 0.124 3.840 1.912 0.442 0.471 0.242
P-Value 0.678 0.747 0.619 0.899 0.427 0.656 0.28 0.855 0.921

Bandwidth 0.594 0.456 0.453 0.193 0.263 0.299 0.635 0.695 0.754
Control Mean 27.726 95.806 68.419 28.692 93.364 65.949 28.398 94.459 65.965

Interval Size 3444 2648 2648 1556 2131 2303 5673 6319 6815

Cumulative Course Withdrawals
TP – DP TC – TP DC – TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate -0.082 0.568 0.594 -0.033 -0.169 -0.009 -0.136 0.182 0.211
P-Value 0.430 0.046 0.012 0.771 0.439 0.965 0.206 0.585 0.438

Bandwidth 0.458 0.461 0.499 0.256 0.331 0.267 0.214 0.201 0.220
Control Mean 0.330 0.853 0.547 0.205 0.952 0.673 0.303 0.839 0.610

Interval Size 2648 2799 2871 1954 2586 2131 1951 1951 1951

Graduated by the 8th Semester
TP – DP TC – TP DC – TC

8th 8th 8th

Estimate -0.044 0.024 -0.006
P-Value 0.074 0.519 0.819

Bandwidth 0.613 0.281 0.364
Control Mean 0.965 0.927 0.933

Interval Size 3568 2303 3402

NOTES – : ITT estimates compare the marginal student between different recommendations,
abbreviated as the Definite Recommendation to take Pre-Calculus (DP), Tentative
Recommendation to take Pre-Calculus (TP), Tentative Recommendation to take Calculus (TC)
and Definite Recommendation to take Calculus (DC). RD estimates use the estimator from
Calonico et al. (2014), with robust P-Values and bandwidth to account for large bandwidth
selection in standard non-parametric RD models.
For all following tables, we show p-values, bandwidths, control means, and Interval Sizes that
are robust to the inherent large bandwidth selection problem. These statistics are reported
using the Stata command rdrobust, the accompanying command with the aforementioned
work.
“ 8th - 2nd” is where the outcome is the difference between 8th and 2nd semester outcomes.
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Table 3.6: Non-Parametric RD Estimates on Ever Taking Pre-Calculus, Calculus, and a
“Non-Major Quantitative Course”

Ever Take Pre–Calculus
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate -0.006 -0.02 -0.022 -0.078 -0.079 -0.004 0.016 0.028 0.001
P-Value 0.91 0.698 0.394 0.267 0.282 0.772 0.698 0.513 0.951

Bandwidth 0.566 0.656 0.388 0.237 0.228 0.242 0.227 0.228 0.362
Control Mean 0.448 0.477 0.044 0.306 0.312 0.008 0.073 0.076 0.009

Interval Size 3329 3799 2326 1859 1859 1954 2125 2125 3402

Ever Take Calculus
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.165 0.183 -0.008 0.147 0.076 -0.045 -0.023 0.004 0.023
P-Value 0.011 0.007 0.771 0.03 0.263 0.241 0.733 0.955 0.357

Bandwidth 0.369 0.377 0.556 0.297 0.302 0.225 0.251 0.26 0.315
Control Mean 0.226 0.273 0.073 0.383 0.473 0.073 0.598 0.63 0.035

Interval Size 2183 2183 3214 2303 2461 1859 2284 2420 2787

Ever Take Non-Major Quantitative Course
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate -0.023 -0.129 -0.098 0.009 -0.019 -0.026 0.007 -0.023 -0.025
P-Value 0.036 0.003 0.013 0.655 0.731 0.675 0.666 0.624 0.605

Bandwidth 0.563 0.588 0.709 0.223 0.271 0.231 0.243 0.273 0.242
Control Mean 0.022 0.264 0.237 0.015 0.181 0.169 0.012 0.168 0.154

Interval Size 3329 3444 4154 1859 2131 1859 2284 2420 2284
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Table 3.7: Non-Parametric RD Estimates on First Earned Pre-Calculus and Calculus Grades

First Earned Pre-Calculus Grade
TP – DP TC – TP DC – TC

Estimates 0.080 0.077 0.020
P-Values 0.313 0.162 0.599

Bandwidth 0.235 0.111 0.071
Control Mean 3.344 3.733 3.942

Interval Size 3359 2153 1526

First Earned Calculus Grade
TP – DP TC – TP DC – TC

Estimates -0.372 -0.199 -0.046
P-Values 0.007 0.076 0.715

Bandwidth 0.107 0.109 0.074
Control Mean 3.500 3.309 3.031

Interval Size 1527 1965 1514
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Table 3.8: Non-Parametric RD Estimates on Taking a Course that Requires Calculus and
Cumulative Chemistry and Biology Credits

Ever Take Course that Requires Calculus
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.008 0.044 0.027 0.002 0.075 0.076 -0.008 0.041 0.036
P-Value 0.641 0.386 0.565 0.963 0.258 0.162 0.857 0.511 0.463

Bandwidth 0.491 0.358 0.367 0.311 0.221 0.221 0.247 0.244 0.274
Control Mean 0.017 0.13 0.118 0.073 0.147 0.078 0.114 0.288 0.176

Interval Size 2871 2030 2183 2461 1859 1859 2284 2284 2420

Cumulative Chemistry Credits
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate -0.204 0.035 0.378 0.143 0.377 0.324 -0.177 -1.036 -0.806
P-Value 0.428 0.965 0.53 0.674 0.709 0.667 0.696 0.372 0.345

Bandwidth 0.667 0.475 0.447 0.328 0.266 0.265 0.208 0.209 0.221
Control Mean 1.446 3.346 1.854 1.641 4.322 2.638 1.930 5.440 3.437

Interval Size 3971 2799 2648 2586 2131 2131 1951 1951 2125

Cumulative Biology Credits
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.254 0.564 0.299 -0.18 0.518 0.76 -0.123 -0.798 -0.766
P-Value 0.235 0.439 0.647 0.481 0.577 0.351 0.689 0.395 0.381

Bandwidth 0.581 0.499 0.474 0.311 0.254 0.255 0.258 0.267 0.239
Control Mean 0.823 3.568 2.766 1.046 3.97 2.874 1.209 5.181 4.116

Interval Size 3444 2871 2799 2461 1954 1954 2284 2420 2125
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Table 3.9: Non-Parametric RD Estimates on Cumulative Credits in Math, Statistics, and
Economics

Cumulative Math Credits
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.718 0.236 -0.274 -0.172 -0.635 -0.555 -0.005 0.146 0.149
P-Value 0.083 0.625 0.266 0.665 0.32 0.301 0.987 0.788 0.674

Bandwidth 0.423 0.5 0.594 0.314 0.321 0.257 0.276 0.31 0.365
Control Mean 2.49 3.428 0.874 3.094 4.301 1.239 2.917 3.787 0.935

Interval Size 2503 2871 3444 2461 2586 1954 2420 2787 3402

Cumulative Statistics Credits
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.279 0.383 0.204 -0.029 0.089 0.013 0.497 0.005 -0.252
P-Value 0.123 0.257 0.469 0.907 0.828 0.967 0.053 0.989 0.519

Bandwidth 0.456 0.444 0.526 0.239 0.251 0.333 0.204 0.269 0.199
Control Mean 0.434 2.127 1.663 0.742 2.534 1.848 0.674 2.869 2.064

Interval Size 2648 2648 3136 1859 1954 2586 1951 2420 1766

Cumulative Economics Credits
TP – DP TC – TP DC - TC

2nd 8th 8th - 2nd 2nd 8th 8th - 2nd 2nd 8th 8th - 2nd

Estimate 0.703 1.152 0.361 -0.133 0.664 1.269 0.212 0.179 0.017
P-Value 0.014 0.353 0.726 0.695 0.511 0.178 0.455 0.874 0.988

Bandwidth 0.323 0.346 0.371 0.233 0.27 0.238 0.242 0.308 0.27
Control Mean 0.629 3.037 2.400 1.289 3.677 1.978 1.126 5.142 4.176

Interval Size 1951 2030 2183 1859 2131 1859 2284 2787 2420
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Table 3.10: Non-Parametric RD Estimates on Graduating in Selected Majors by the Eighth
Semesters

Graduate in Biology
TP – DP TC – TP DC - TC

8th 8th 8th

Estimate -0.019 0.001 -0.044
P-Value 0.531 0.986 0.369

Bandwidth 0.445 0.336 0.2
Control Mean 0.069 0.077 0.116

Interval Size 2648 2586 1766

Graduate in Economics
TP – DP TC – TP DC - TC

8th 8th 8th

Estimate 0.054 -0.005 0.003
P-Value 0.131 0.872 0.925

Bandwidth 0.348 0.306 0.314
Control Mean 0.034 0.065 0.092

Interval Size 2030 2461 2787

Graduate in Physics, Math, or Statistics
TP – DP TC – TP DC - TC

8th 8th 8th

Estimate 0.000 -0.006 0.005
P-Value 0.998 0.709 0.723

Bandwidth 0.706 0.225 0.346
Control Mean 0.008 0.014 0.015

Interval Size 4154 1859 3184
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APPENDIX A

Appendix for Chapter One

A.1 Administrative Data Details

A.1.1 Nature of Data Storage

Administrative data at the University is stored in such a way that information such as ACT and
SAT scores is overwritten if students retake them after entering the University. This may be
because the student wants to transfer out of the University. I cannot observe these changes, as I
can only use a “snapshot” of the data. Very few students transfer out of the University to other
institutions.

A.1.2 Student’s Pre-College Academic Interests

Student’s pre-college interests are collected by the University from a diverse set of data sources.
This includes the questionaire on the SAT, a student profile when registering for the ACT, and
the Common Application. The SAT allows students to list up to three majors they are interested
in, regardless of whether they are offered at the University. The Common Application allows
students to list many more “Areas of Interest,” which are restricted to the majors available at
the University, regardless of whether the student is applying to CALS or other colleges at the
University. The ACT allows students to list one intended major as well as intended occupation
or career.

Below are the prompts from the SAT, ACT, and Common Application students see when
listing interests.

SAT questionnaire:
Items 20. to 22. Choice of Majors – Supply up to three choices of majors to
possibly pursue in college.
ACT, “Your Plans for the Future”:
The college major (program of study) you plan to enter: Your choice of occupation
(vocation):
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Common Application Area(s) of Interest

A.1.3 Conceptual Issues with Merging on Earnings from External Datasets

One way to collect pecuniary data is to merge on earnings and employment data for observably
similar students from highly selective public institutions from nationally representative surveys
such as the American Community Survey or NLSY97. However, this encounters two major
issues. First, imputation based on observed characteristics leaves little to no individual varia-
tion for estimation (consider the case where I use the average earnings conditional on observed
characteristics). Second, students who attended college in 2002 to 2011 likely have not yet
reached a steady earnings trajectory. If the relevant post-graduation outcome is expected earn-
ings, then it is dangerous to extrapolate from current earnings data. Using historical earnings
data does not account for more recent shifts in the economy that not only affect the earnings
potentials of different occupations, but the correspondence between occupations and majors.

A.1.4 Coding Specific Major Requirements

The University provides on their website the history of all majors’ course requirements. The
requirements each student faces depends on their incoming semester. Requirements are tailored
for each student, depending on their course history. For example, suppose that either Psychol-
ogy 101 or Psychology 102 can be taken to satisfy the Psychology major’s introductory course
requirement. Then I only code the first instance of taking Psychology 101 or Psychology 102
as satisfying the Psychology major’s course requirements.

Courses with at least a grade of “C” satisfy majors’ course requirements. If a student
“fails” on this margin and retakes the course, I only code the first taken course as satisfying
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the course requirement. Using this measure, I would incorrectly infer a student completes the
requirements for a major if she received a grade lower than “C” in the last course she took in
that major. Withdrawals are only recorded if the student withdrew at least three weeks into
the course. Courses usually schedule the first exam to be around this time. My measurement
captures whether or not the student repeats the course because she received below a “C”. If the
student retakes the course and passes, likely she will continue taking courses that I measure as
making progress.

Some requirements are taking a set of courses instead of individual courses. For example,
one requirement in the Physics major is to complete one out of four different sets of courses,
where the sets do not overlap. This set is a combination of different lecture and laboratory
courses. To code this requirement, I only count the first completed set. If the student does not
complete any set, I do not measure any progress in that major. There are similar requirements
in other natural science majors, and the Psychology major. My decision implies that I will
under measure how students complete majors’ course requirements.

Prerequisite courses are coded as making progress in these majors, and I disregard whether
an individual student has satisfied the prerequisite before taking other courses in the major.
There is variation in how departments enforce prerequisites, ranging from loosely “advised”
prerequisites to strictly preventing students from registering unless they are concurrently taking
or previously took the prerequisite. Individual instructors can override these requirements,
though these are also subject to individual departmental policies.

At the University, the same course generally cannot be used to satisfy a general distribu-
tional requirement and a major course’ requirement. For example, Economics 101 satisfies the
general quantitative requirement, but also is required for the Economics major. This means
a student who intends to major in Economics must take another course to fulfill the general
quantitative requirement. Although several advanced Economics courses also satisfy the gen-
eral quantitative requirement, the general rule is that a student cannot use one of them to satisfy
both Economics and general quantitative requirements.

To avoid potential overlap between majors’ course requirements and general requirements,
courses that satisfy distributional requirements span many different majors. For example,
courses in Astronomy also satisfy the general quantitative requirement. In certain cases, these
rules might place extreme constraints on the students – for example, graduating within a certain
time frame. Academic advisors can override these rules, and certain courses can satisfy multi-
ple majors’ requirements if the student is a double major. These decisions are jointly discussed
and made with the student.

In this case, the student and academic advisor designate one major to be the “primary ma-
jor,” and a course that satisfies a general graduation requirement can also satisfy the major
requirement in a “secondary major.” Under this multiple major paradigm, the student is able
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to, on a case-by-case basis, have one course satisfy multiple majors’ requirements. There are
some un-avoidable overlaps, such as requiring Statistics 101 for most Social Science majors.
The student and academic advisor can strategically designate which is the “primary major,”
which is not observed in the administrative data.

Finally, these requirements are recorded in varying levels of detail. The larger majors such
as Psychology, Economics, and Political Science, and scientifically rigorous majors such as
Biology, Mathematics, and Computer Science have detailed requirements. They list the specific
courses and students can take to satisfy different major requirements. Coding up these majors
is relatively straightforward.

However, other smaller majors such as Art History and English have more ambiguous re-
quirements. For example, describing a list of courses to be approved by an advisor, or courses
“with an emphasis on Latin American history.” To code these requirements would introduce
massive measurement error in how progress can be used to infer intention to complete a major.
At a minimum, pre-requisite courses are listed in relatively more detail. However, coding only
the pre-requisite courses will inflate the measurement error in progress towards completion.
This was particularly egregious for certain smaller majors (with less than two hundred gradu-
ates over the entire sample period). Aggregating these majors and representing progress in this
major group using the maximum progress helps address measurement error in each individual
major.

A.1.5 Availability of Pre-Medical and Remedial Courses

The University does not offer a premedical major. The University provides students interested
in applying to medical College with the exact courses that satisfy these requirements, and these
courses also count towards different major requirements. CALS offers majors in related fields
such as Biology and Chemistry. Medical Colleges in the United States require applicants to
take courses in Biology, Chemistry, Physics, and Calculus.

The University does not offer any remedial or developmental courses. These are courses
designed for under-prepared college students, and cover basic quantitative and reading skills,
and do not satisfy any graduation course requirements. The University offers summer programs
for these students, and has special versions of Pre-Calculus courses for these students as well.
All versions of Pre-Calculus satisfy graduation requirements.

A.1.6 Calendar System at the University – Aggregating to Four Years

The University runs on a semester calendar system, offering standard Fall and Spring semesters
with two shortened Summer semesters. Although the transcript data shows students’ courses
by semester, I use years to simplify how students’ choice histories across each major group
evolve over time. These decisions also help with the backwards induction calculation to solve
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the value function – discussed in Subsection A.4.3. This aggregates students’ decisions at the
start of each semester within a year. Observing that most students leave the University after
their fourth years in Table A.1, I model students’ decisions over four years, with the fourth year
representing all decisions from their fourth year onwards.

Table A.1 shows that very few students are taking Summer courses. Analyzing semester-to-
semester creates an issue of how to account for Summer semesters. Summer semesters are not
equivalent to Fall and Spring semesters. Summer course-taking is around one-fifth to one-third
of Fall semester course-taking. Keeping Summer semesters separate requires accounting for
the decision of whether to take Summer courses, while grouping them with the Fall and Spring
semester artificially inflates course-taking. I instead look at yearly course-taking. Although
students who take Summer semester courses will take more courses per year, I forgo explicitly
model whether students decide to take any summer courses instead of other activities such as
interning.

I see a large drop of attending students after their fourth year. Assuming that all students
who leave before their fifth Fall graduate, this is slightly below the median graduation time of
52 months.1

A.1.7 “Non-Requirement Major Courses” that Do Not Satisfy Any Major Groups’
Course Requirements

Table A.3 shows a substantial amount of course-taking does not satisfy any major groups’
course requirements, around 2% to 6% for the Natural and Social Sciences, and 4% to 10% for
Humanities. I find descriptive evidence that taking “Non-Requirement Major Courses” related
to different majors is independent of, or at least not a substitute for, making progress across
major groups. For this reason, and to reduce the number of state variables, I do not explicitly
account for them in the dynamic course-taking model.

By assuming that “Non-Requirement Major Courses” do not affect students’ learning about
major group match quality, I will over-estimate the effect of information from courses that do
satisfy major groups’ course requirements. Figure A.2 shows that the distribution of grades
between courses that fulfill and do not fulfill major groups’ requirements are similar. “Non-
Requirement Major Courses” tend to have more grade inflation and bunching at certain grade
values. This comes at the cost of tracking students’ progress in different major groups over
time. To appropriately model taking these “Non-Requirement Major Courses” introduces an-
other level of choice-making, as students decide, for each major group, whether to take courses
that satisfies course requirements, and whether to take courses that are related but do not satisfy
course requirements. It is likely students are taking these “Non-Requirement Major Courses”
for their consumption and learning value.

1From the 2007-08 cohort of students starting at public four-year institutions (Cataldi et al., 2011).
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Table A.2 finds limited evidence that whether a student takes any “Non-Requirement Major
Course” is related to whether they take courses that fulfill major groups’ course requirements.
The table looks at how the probability students take any “Non-Requirement Major Courses” in
an academic year varies over whether students complete majors’ course requirements that same
academic year.

Strikingly, whether students take any “Non-Requirement Major Course” related to a major
group does not seem to depend on whether they make progress in any major group. There
are two exceptions: students making progress in the Humanities are 10 percentage points more
likely to take a “Non-Requirement Major Course” in the Humanities. Students making progress
in the Social Sciences are 11 percentage points more likely to take a “Non-Requirement Major
Course” in the Social Sciences. This specific pattern will lead me to over-estimate the amount
of learning in the Social Sciences and Humanities, as students who make progress in these
majors are also taking more “Non-Requirement Major Courses” related to them.

A.1.8 Major Group and General Graduation Requirements

Focusing on how students take courses to complete majors’ course requirements, I do not model
how students choose to take courses to satisfy other requirements. These other requirements
include distributional or general education requirements and the 120 credits needed to graduate.
Ignoring distributional and general education requirements restricts the amount of information
students can receive, and limits the students’ objective to graduating in a major rather than
fulfilling the general requirements for graduation.

The University requires students to satisfy different general distributional course require-
ments, creating inelastic demand for certain groups of courses. I show distributional course re-
quirements drive students’ first-year course-taking, but students specialize their course-taking
to satisfy major groups’ course requirements afterwards. Table A.3 shows that students’ first
year of course-taking satisfies both general distributional course requirements: 22.5% (4.6% +

15.3% + 2.6%) satisfy only general distributional requirements, 19.1% (8.1% + 5.7% + 5.3%)
only satisfy major groups’ course requirements, and 45.4% (16.9% + 15.2% + 13.3%) satisfy
both. Starting in their second year, students mostly take courses to satisfy major groups’ course
requirements. The proportion of courses that satisfy only general distributional requirements
drops after students’ first year to 8.8% (2.6% + 5.3% + 0.9%) in the second year. Mean-
while, the proportion of courses that satisfy only major groups’ requirements increases to 52%
(20.2% + 15.3% + 16.5%) in the second year.
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A.2 All Sample Selection Steps: Detailed Empirical and Model
Concerns

A.2.1 Empirical Concerns

I create a final sample of students with similar pre-college experiences and who face similar fi-
nancial constraints. While I am unable to measure students’ financial information, I use detailed
administrative information about students’ incoming characteristics and academic choices to
address these empirical concerns.

I first drop 30 students who are missing complete ACT and SAT scores in Step 2.

Students with substantial transfer credit from outside institutions already have progress to-
wards general graduation requirements and major group requirements before starting at the
University. The instructor and peer qualities are different, grades come from different distri-
butions, and Advanced Placement exams are completely different. I drop students with more
than 24 incoming credits from external institutions or AP exams. Sample selection in Table
A.9 shows that I drop around 4500 students in Step 3. This forms almost all students who are
dropped due to empirical concerns. Compared to the final sample of students, these dropped
students are more likely to be Male and Black, and less likely to be Asian. Dropped students
score ten percentile ranks higher in Reading and Math, implying these dropped students are
better prepared than students who start at the University with less exposure to college-level
courses.

The decision to attend the University half-time instead of full-time is likely neither driven by
the desire to learn about abilities nor complete majors. It is likely driven by financial incentives,
since students taking a course load with fewer than 12 credits each semester face a different
half-time tuition payment schedule. Students may also enroll half-time due to other external
shocks. I do not observe any financial aid or tuition expense information in the data, and I
drop students who ever enrolled half-time in Step 4. Table A.9 shows that around 250 students
ever enroll at half-time or less. This leaves me with a group of students with similar college
experiences before starting at the University and whose enrollment decisions are less responsive
to external financial or other related shocks.

The last sample selection steps are informed by the dynamic course-taking model and as-
sumptions about how students can make progress across major groups.

A.2.2 Model Concerns

There are four model concerns: students who make no progress across any major groups in
one year, students who allocate more than three requirement units (that is, make more than
75% combined progress across all major groups) in one year, students who allocate three re-
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quirement units into one major in one year, and students who internally transfer in the first
year.

In Step 5 of my sample selection, I drop around 300 students who make no progress across
all majors group in one year. To make no progress across all major groups, students are taking
courses that satisfy distributional or other general graduation requirements. Table A.9 shows
that these 300 students are around six and a half times more likely to drop out (53% to 8% )
and half as likely to graduate (45% to 74%) compared to students in the final sample. These
students are likely not taking courses outside of CALS, as one or two of them internally transfer
out of CALS. Curiously, despite these starkly different outcomes, these 300 students only score
in slightly lower Math and Reading percentiles.

In Step 6, I drop around 100 students who allocate more than three requirement units across
all major groups in one year. Three requirement units corresponds to between eight to ten
courses in one year. Dropped students in Step 6 are similar to the dropped students in Step
7, the 200 who allocate three requirements all in one major group in one year. As expected,
these students are likely to drop out compared to students in the final sample. Step 6 and 7
students are more likely to graduate from CALS (92% to 74%) and in return practically none
of them internally transfer out of CALS. These students actually score in slightly lower Math
and Reading percentiles compared to students in the final sample.

Finally, around 42 students internally transfer out of CALS in their first year. These students
score in slightly lower Reading and slightly higher Math percentiles compared to those in the
final sample. Aside from their preparation, internally transferring in the first year strongly
suggests these students were not interested in graduating in the CALS majors.

A.3 Additional Evidence of Sorting Across Majors

Figure A.3 shows students’ first year GPA in each major group over their cumulative progress
in that major group over time. Students across quartiles tend to make the same amount of
progress over all, suggesting that grades do not play a substantial role in students’ course-
taking. However, these figures are conditional on students taking courses that satisfy each
major groups’ course requirements. Students could be choosing not to take courses in these
major groups for various reasons. A key reason could be that students with lower beliefs about
their match quality in these major groups choose not to take courses in them.

Two patterns stand out from the figures. First, students in the bottom quartile of Natural
Sciences GPA make the least amount of cumulative progress in Natural Sciences. This suggests
students are reacting positively to their Natural Sciences grades. Second, students in the top
quartiles of Humanities and Social Sciences GPA make the least amount of cumulative progress
in these two majors, suggesting an opposite story to the Natural Sciences.
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A.4 Model Solution, Likelihood Function, and Computational Details

A.4.1 Solving the Dynamic Programming Problem

From the separate definitions for immediate and graduation payoffs ν(c|c ∈ L) and Wimt, and
from the learning framework, the student’s state variables are her cumulative progress cit, and
GPA git. Then her objective function can be re-written from (1.1) as:

Vit(cit, git, bi1) = max
{

max
c∈C

{
E
[ ∑
m ∈ c

ν(c|c ∈ L)|cit, git, bi1
]
+

β
(∏M

m′=1 1−Km′

)
E
[
Vit+1(eit+1, git+1, bi1)|cit, git, bi1, c

]
+

β
(∏M

m′=1Km′

)
E[Wm(gimt+1)|cit, git, bi1]

}
,

uBus., uOth., 0
} (A.1)

To solve this Bellman equation, the student calculates the future value of making each choice
c : E

[
V (eit+1, git+1, bi1)|cit, git, bi1, c

]
. Using backwards induction, the student takes an expec-

tation over future grades and idiosyncratic errors. When the student considers making different
choices, she first considers all possible payoffs from the last period, using them to calculate her
expected payoffs from all possible choices in the second to last period. This continues until she
has expectations for the continuation value for each period’s choice.

The idiosyncratic errors εict play a crucial role in the backwards induction calculation for
value functions. Under the assumption that εict is distributed generalized extreme value with
location and scale parameters 0 and τt, with a correlation of ϕL among requirement unit al-
locations, McFadden (1978) shows the expectation of the maximum value of future choices
conditional on state variables Sit and a given choice c is:

E[Vit(Sit+1|Sit, c)] = τtE[γe + ln
(( ∑̃

l∈L
exp[

Vit(Sit+1, l̃)

τt · ϕL
]
)ϕL

+
∑̃
l /∈L

exp[
Vit(Sit+1, l̃)

τt
]
)
|Sit, c]

(A.2)

where γe is the Euler-Mascheroni constant (≈ 0.5772). This formulation is convenient for
calculating the probability that students choose any of the C choices at any time period, and
avoids calculating value functions using simulation methods.

The expectation of the value of future choices in (A.2) increases with τt. This has an intu-
itive explanation: as the variance of errors increases, the student’s option value for continuing
to future periods increases because she is more likely to receive a higher εict draw. τt also plays
a leading role for explaining choices within a time period. Consider the case where τt is very
high – then it is more likely εict takes on large positive or negative values, leaving the student’s
choice up to chance.
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Uncertainty over future grades is not trivial. If the student receives a low grade in the
Natural Sciences, she may choose not to graduate in the Natural Sciences even though she
believes she has a higher Natural Sciences match quality because her Natural Sciences GPA
is lower. Grades also shift her match quality beliefs, causing the student to change from her
expected trajectory of choices. Even if the student perfectly knew her match qualities and did
not learn based on her earned grades git, she may not make the same choices each time period.
Suppose she receives positive immediate payoffs from allocating requirement units to Natural
Sciences, but does not intend to graduate in it. She actually wants to graduate in Social Sciences
because it has a higher graduation payoff. Then one way for her to maximize her utility is to
allocate requirement units in Natural Sciences and Social Sciences, and in the last period, only
allocate enough to graduate in the Social Sciences.

A.4.2 Likelihood Function of Observed Choices and Grades

In this dynamic choice model, the estimation outcomes of interest are students’ observed
choices and grades in each major group. I follow the college major choice literature and
model students’ choices with a nested logit model (with a nest for requirement unit alloca-
tions) and grades with ordinary least squares (Arcidiacono, 2004; James, 2011; Stange, 2012).
The assumption that εict is distributed with an generalized extreme value distribution provides
an analytical solution for the probability of students’ choices over time (McFadden, 1978).
Combining the choice and grade likelihood, I estimate all model parameters using maximum
likelihood estimation.

Students choose which major groups to receive grades from, and only receive grades gimt

if they make progress in that major group. This selection links the two likelihood functions
of observed choices, ci, and grades, gimt. Let Θ represent the set of parameters exclusively
involved in the choice likelihood and let Ξ represent the remaining parameters, (σm, φm,∆),
which are in the choice and grade likelihoods. Then the joint likelihood of observed choices
and grades is:

Li(Θ,Ξ) = Li(ci|Θ,Ξ, Xi, Zi)Li(gimt|Ξ, Xi, Zi)

where Li(ci|Θ,Ξ, Xi, Zi) =
T∏
t=1

( ∏
c∈C

P(c(Sit)|Θ,Ξ, Xi, Zi)
1{ci=c}

)
,

and Li(git|Ξ, Xi) =
T∏
t=1

( M∏
m=1

P(gimt|σm, φm,∆, Xi)
1{cimt>0}

) (A.3)

Note thatXi and Zi are mutually exclusive. Xi contains students’ time-invariant characteristics
used to estimate prior beliefs bi1, and Zi are students’ time-invariant characteristics used to
calculate the major-specific immediate course-taking payoffs uimt.

To calculate the choice likelihood, I solve the dynamic programming problem for each stu-
dent in the sample, using backwards induction. The total choice set C contains L possible
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requirement unit allocations, and the options to internally transfer to the Business College, in-
ternally transfer to Other College, and drop out from the University. I calculate the expected
value of each choice for each possible combination of state variables cit and git, for each stu-
dent, Vit(c, Sit|Θ,Ξ, Xi). From the assumption that εict follows a generalized extreme value
distribution with location and scale parameters 0 and τt, and are correlated with ϕL among
requirement unit allocations, the probability of each choice c is:

P(c(Sit)|Θ,Ξ, Xi, Zi) =



exp[
V (c)

τt
]

1 + exp[
V (Bus.)

τt
] + exp[

V (Oth.)

τt
] +GϕL

, if c ∈ L

GϕL−1 exp[
V (c)

τt · ϕL
]

1 + exp[
V (Bus.)

τt
] + exp[

V (Oth.)

τt
] +GϕL

, otherwise

(A.4)

where G =
∑
c∈L

exp[
V (c)

ϕL · τt
], V (c) = Vit(c, Sit|Θ,Ξ, Xi, Zi),

and

C =

{
{Dropout,L,Transfer – Business,Transfer – Other}, if t > 1

{Dropout,L}, if t = 1

The grade likelihood is a function of the observed grades and the student’s beliefs in
each period. The student’s major-group-specific beliefs are a function of learning parameters
(σ2

m, φm,∆), state variables, cit, git, and prior beliefs bi1.

P(git(Sit)|Ξ, Xi, cit, git) =
M∏

m=1

1

σm
√

2π
exp[−(bimt(σm, φm,∆, Xi)− gimt)

2

2σ2
m

] (A.5)

where bimt is beliefs in each period, and initialized as bim1 = Xiφm.

Note that the grade likelihood only applies whenever the student is observed to make
progress in that major. This comes from the assumption in the dynamic course-taking model
that students only receive grades if they made progress in that major group.

A.4.3 Backwards Induction Computation

The main drawback of looking at how students allocate requirement units instead of declaring
majors is the exponentially more state variable combinations to consider. There are six state
variables: students’ cumulative progress, and GPAs across three major groups.

I discretized how students complete major groups’ course requirements into intervals of
25%. Then students can only make choices as long as all their cumulative progress is less
than 100%, or four requirement units, within a major group. Cumulative grades are by nature
continuous, and I discretize them based on observed variation in students’ cumulative grades.
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For each major group, I use the 10th, 25th, 75th, and 95th percentiles as possible cumulative
grade values over time. I discretize the grades students can receive to be 0,2,3, or 4. I do not
include grades of 1 as they occur with very low frequency, as shown in Figure A.2.

Discretizing grades and progress to completing course requirements implicitly interpolates
value functions across cumulative grade values. For each allocation of requirement units stu-
dents make, they have different probabilities of receiving a vector of grades. The requirement
unit allocation they make and vector of earned grades determines how students transition from
one set of state variables values to another.

I assume that students receive one grade regardless of whether they allocate one or two
requirement units. Basic statistics says otherwise: the probability of receiving two “A” grades
is lower than the probability of receiving one “A” grade. Note this also affects the probability of
transitioning between state variable values, and how cumulative grades are calculated. Students
who allocate one requirement unit are more likely to have some cumulative grades than students
who allocate two requirement units. Fully accounting for this means keeping track of students’
entire sequences of grade and choice histories, rather than cumulative progress and GPA, further
increasing computational burden.

Assuming that students can allocate one to three requirement units across major groups, and
can allocate at most two requirement units into one major group, the choice set of requirement
unit allocations L has sixteen different combinations. For each combination, students can re-
ceive different combinations of grades. The requirement units and corresponding grades result
in 232 different ways to change state variables in each year.

I show below the number of state variable combinations that need to be calculated for each
student in the sample. In the first year, all students have the same state variable combination
(zero for all). Since there are 232 different possible outcomes, there are 232 possible state
variable values in the second year. Each student needs to consider 232× 232 = 53,824 different
future combinations. Many of these combinations are not unique, and several do not have any
continuation value because the student graduates. For example, choosing (2,0,0) in the first and
second years results in graduating in the Natural Sciences.

Year Number of Unique Number Number of
Student State Variable × of = Values for

Make Choices Combinations Outcomes Each Student

1 1 232 232
2 232 232 53,824
3 2,678 232 621,296
4 4,257 232 987,624

Then for each of the unique state variable combinations above, I calculate the expected value
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of each choice. Each choice-state combination either results in graduation in a major group or
continuing at CALS. The distributional assumption of εict, (A.2) gives an analytical solution
for the expectation of the maximum of these values. Forward simulations and other methods
with simulated draws are also possible (Arcidiacono and Ellickson, 2011).

I use backwards induction to calculate the value functions. Each period students can make
a choice, they consider all possible outcomes of grades, resulting cumulative GPAs, and re-
sulting match quality beliefs, from each choice they make. For example, when the student is
considering her first choice, she first calculates all possible outcomes from all possible choices
in the final year. Using these values, she forms her expectation from each possible outcomes
for all possible choices in the fourth year, using (A.2). This continues backwards until she has
the expected values from all possible choices in the first year.

Once all the value functions for each student at each possible state variable combination
over time are calculated, these values are used to calculate the choice likelihood function in
(A.4). To reduce the computational load, I use parallel processing to divide the log-likelihood
calculation across multiple processors. To further reduce computational burden, I limit estima-
tion to a random subset of around 4,000 students of the final estimation sample.

Individual variation in the value functions comes from individual student characteristics.
Increasing the sample size in this case, without any interpolation between student characteris-
tics, can dramatically increase the computational time.2 To hasten log-likelihood calculation, I
divide calculation across multiple computer processors. Each processor calculates value func-
tions for each state variable combination for an even subset of students. The processors then
combine log-likelihood functions to numerically calculate the derivative for the log-likelihood
with respect to each parameter.

Another way to implement parallel computing is to spread the state variable combinations
across processors. However, this dramatically increases the information that is shared across
processors. In dividing the sample across processors, processors only share their combined
calculated total log-likelihood for a given set of parameter values. Spreading state variable
combinations, processors have to share much more information to calculate the log-likelihood
function. The processors share multiple times because backwards induction requires knowing
the values for all future state variable combinations.

Using this parallel computing strategy, I use the optimizer provided in SciPy (Jones et al.,
2001) for estimation. This optimizer package is not “intelligent” of the parallel structure and
does not easily communicate the same vector across processors (Dalcin et al., 2005). This
makes it difficult to implement an analytical derivative that precisely aggregates vectors. It is
more tractable to rely on communicating scalars across processors, and I use the numerical

2I previously tried to interpolate across students’ characteristics, but this resulted in a non-smooth likelihood
function. I also tried interpolating across state variables as done in Stinebrickner and Stinebrickner (2014b), but
there was only a small computational speedup.
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derivative for optimization. For this reason, I rely on the limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS-B) Algorithm rather than the standard BFGS Algorithm in SciPy
which does not communicate the vectors across processors. At the time of this writing, there
does not exist a reliable Python module that communicates derivative vectors across processors,
where vectors are distributed over the estimation sample. While it is possible to distribute
these derivative calculations across parameters, this defeats the purpose of my parallel strategy
across the sample size. Finally, the L-BFGS-B requires the log-likelihood and value functions
calculated in double precision.
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Table A.1: Observed Course-Taking for CALS Students Over
All Enrolled Years and Semesters

Number of Number of
Year Semester Courses Taken Attending Students

1 Fall 115623 28093
1 Spring 118240 27693
1 Summer 10212 5439
2 Fall 109533 24945
2 Spring 108153 24352
2 Summer 14017 8170
3 Fall 95381 21569
3 Spring 83720 19808
3 Summer 11169 6226
4 Fall 91486 20532
4 Spring 79219 19032
4 Summer 4836 2430
5 Fall 10495 2644
5 Spring 6163 1631
5 Summer 1018 490
6 Fall 1450 396
6 Spring 1193 327
6 Summer 328 154
7 Fall 593 168
7 Spring 520 147
7 Summer 150 71
8 Fall 295 79
8 Spring 201 53
8 Summer 76 36
9 Fall 132 37
9 Spring 121 32
9 Summer 42 20

10 Fall 89 29
10 Spring 102 30
10 Summer 49 14

NOTES – Years of attendance are normalized to the semester students start course-taking.
Students can start in Year 1 Fall, Spring, or Summer semesters.
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Table A.2: Whether Any “Non-Requirement” Major Courses are Taken in a Year,
Conditional on Completing Course Requirements that Year

Satisfied Proportion Taking a “Non-Requirement”
Course Major Course Related to Major Group

Major Group Requirements Natural Sciences Human. Social Sciences Count

Nat. Sci. No 0.405 0.685 0.250 39728
Nat. Sci. Yes 0.384 0.676 0.299 74650
Human. No 0.415 0.589 0.290 16838
Human. Yes 0.387 0.695 0.280 97540

Soc. Sci. No 0.405 0.659 0.186 21774
Soc. Sci. Yes 0.388 0.684 0.304 92604

NOTES – This shows the proportion of student-years that take a “Non-Requirement Major
Course” that is related but does not satisfy any major groups’ course requirements. These
proportions are shown for student-years that do and do not make complete course
requirements in that major group, shown for the final sample of students.
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Table A.3: Across Major Groups – Proportion of Courses that Satisfy Major Groups’ Course
Requirements and General Distributional Requirements

Natural Sciences Courses
Among All Courses Taken Among Courses Related to Natural Sciences

General Dist. Major Both None but General Dist. Major Both None but
Year Req. Only Req. Only Req. Related Req. Only Req. Only Req. Related

1 0.046 0.081 0.169 0.018 0.146 0.258 0.538 0.057
2 0.026 0.202 0.059 0.023 0.084 0.652 0.190 0.074
3 0.014 0.189 0.020 0.035 0.054 0.733 0.078 0.136
4+ 0.011 0.165 0.010 0.058 0.045 0.676 0.041 0.238

Humanities Courses
Among All Courses Taken Among Courses Related to Humanities

General Dist. Major Both None but General Dist. Major Both None but
Year Req. Only Req. Only Req. Related Req. Only Req. Only Req. Related

1 0.153 0.057 0.152 0.041 0.380 0.141 0.377 0.102
2 0.053 0.153 0.116 0.046 0.144 0.416 0.315 0.125
3 0.023 0.214 0.066 0.060 0.063 0.590 0.182 0.165
4+ 0.015 0.221 0.046 0.099 0.039 0.580 0.121 0.260

Social Sciences Courses
Among All Courses Taken Among Courses Related to Social Sciences

General Dist. Major Both None but General Dist. Major Both None but
Year Req. Only Req. Only Req. Related Req. Only Req. Only Req. Related

1 0.026 0.053 0.133 0.018 0.113 0.230 0.578 0.078
2 0.009 0.165 0.073 0.023 0.033 0.611 0.270 0.085
3 0.004 0.238 0.042 0.041 0.012 0.732 0.129 0.126
4+ 0.006 0.196 0.026 0.071 0.020 0.656 0.087 0.237

NOTES – Shows the proportion of courses that satisfy each major groups’ course
requirements or general distributional course requirements.
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Table A.4: List of Academic Subjects Used to Measure Coursework Related in Major Groups,
As Shown in Table A.3

• Natural Sciences
Geological Sciences
Earth & Environment
Biology
Chemistry
Astronomy
Math & Systems
Physics
Statistics
Geography

• Social Sciences
Political Science
Psychology
Anthropology
Economics
Sociology

• Humanities
Spanish
French
German
Italian
Asian Languages
Russian & Slavic Languages
Classicals and Architecture
Latin
International Studies
Women’s Studies
American Culture
Ethnic Studies
Philosophy & Linguistics
Religion and Theology
Film Studies
Communications
English and Literature
History
Art History

NOTES – These are subjects that are used to determine if a course is relevant to these major
groups even though the course did not count towards satisfying that major group’s require-
ments. This list is not used to identify courses that satisfy major groups’ course requirements.
To keep the anonymity of the University, several of these subject names have either been edited
or combined with more common subjects. Five to seven subjects with small student enrollment
and unique names are omitted.
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Table A.5: Subjects that Neither Count Towards Any Major Groups’ Course Requirements,
Nor are “Related” – Ten Most Common Overall among CALS Students

Total Taken Courses Each Year
Subject Total 1 2 3 4 After 4th

Afroamerican & African Studies 6504 1556 1553 1542 1646 207
Ensemble 6286 2071 1778 1295 1062 80

Study Abroad 3583 42 362 2443 677 59
Romance Languages 3348 2173 862 175 124 14

Dance 3327 421 684 743 1390 89
Writing Center 3236 2011 290 559 328 48
Architecture ♠ 3178 836 1974 240 115 13

Education ♣ 3162 432 762 758 1115 95
Scholars Program 2836 2580 150 30 72 4

Movement Science § 2425 809 867 350 370 29
Art Design ♠ 2369 508 576 464 716 105

Residential College Humanities 2268 857 632 338 404 37
Climate & Space Sciences B 1883 282 515 531 517 38

Theatre & Music ♠ 1723 312 498 395 433 85
Musicology ♠ 1597 398 474 336 355 34

Sports Management § 1317 412 646 140 108 11
Electrical Engineering B 1294 123 225 304 464 178

Engineering B 1282 501 403 192 160 26
Film 1090 131 284 377 298

Physiology § 1027 5 159 447 355 61

NOTES – This shows the number of courses taken in these subjects overall, and over the first
four years, and all years afterwards. If the subject is not part of the College of Arts and Liberal
Sciences, the College it belongs to is listed.
♠ - Art-Related Colleges, ♣ - College of Education, § - Medical-Related Colleges, B -
Engineering College
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Table A.6: Correlation Between Taking Any “Non-Requirement Major Courses” related to
One Major Group with Taking Any “Non-Requirement Major Course” related to Another

Major Group

Natural Sciences Humanities Social Sciences

Natural Sciences 1 - -
Humanities 0.034 1 -
Social Sciences -0.014 -0.009 1

NOTES – Correlations between taking “Non-Requirement Major Courses” related to different
major groups are calculated using all student-year observations in the final sample.

Table A.7: Number of Students with Truncated Time Due to
Inferred Completion Times and Internal Transfers

Inferred Completion in Major Group Internal Transfer

Year Nat. Sci. Human. Soc. Sci. Business Other

1 0 0 0 0 50
2 1 12 13 1949 1124
3 244 1130 1551 667 1776
4 0 0 0 0 0

Total 245 1142 1564 2616 2950

NOTES – This is shown for the subset of student whose inferred and actual last period differ,
for the sample of students after Step (4) in Table A.9. The inferred completion year refers to
the year immediately after the student finishes the requirements in any major group.

Table A.8: Internal Transfer Destinations for CALS Students:
Before Model Concerns and Final Sample

Before Model Concerns Final Sample
Years Years

Destination 1 2 3 4+ 1 2 3 4+

Art Related 17 159 478 70 0 158 476 69
Business 0 1955 685 41 0 1955 684 39

Engineering 0 435 164 32 0 435 164 32
Medical Related 25 541 392 531 0 538 387 519

Public Policy or Education 0 11 788 139 0 8 779 133

Total 42 3101 2507 813 0 3094 2490 792

NOTES – This shows the subset of students in the final sample on Table A.9 who internally
transfer to Other Colleges at the University. Names of Colleges are generalized to preserve
anonymity.
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Figure A.1: Discretizing Progress Over Time –
Distributions of Discretized and Actual Continuous Progress

Natural Sciences

Humanities

Social Sciences

NOTES – This is shown on the full starting sample, before dropping any observations due to
the sample restrictions shown in Table A.9. Discretized progress is over intervals of 0.25.
Continuous progress in red (darker) is coded to be represented with the corresponding blue
(lighter) discretized progress.
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Figure A.2: Distributions of Grades from Progress and Non-Progress Course-Taking

Natural Sciences

Humanities

Social Sciences

NOTES – Grades are only shown if the student made progress in that major group, or took a
course related to that major group. These grades are credit-weighted at the yearly level. The
list of subjects that are related to different major groups can be found in Table A.4.
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Figure A.3: Cumulative Progress over First Year GPA

Natural Sciences

Humanities

Social Sciences
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Table A.10: Shares of Requirement Unit Allocations over Time, After Imposing Empirical
Considerations on the Sample

Requirement Unit Year Dropped for
Allocation 1 2 3 4 1 2 3 4 Final Sample

0 0 0 23 42 44 162 0.001 0.001 0.002 0.007
0 0 1 528 268 379 624 0.015 0.008 0.013 0.026
0 0 2 14 51 139 96 0.000 0.002 0.005 0.004
0 0 3 1 3 11 52 0.000 0.000 0.000 0.002 X
0 0 4 0 0 0 2 0.000 0.000 0.000 0.000 X
0 1 0 1346 1668 2338 2772 0.037 0.053 0.082 0.117
0 1 1 4935 6414 8508 5962 0.137 0.203 0.300 0.251
0 1 2 142 735 761 773 0.004 0.023 0.027 0.033
0 1 4 0 0 1 0 0.000 0.000 0.000 0.000 X
0 2 0 67 139 301 603 0.002 0.004 0.011 0.025
0 2 1 499 528 534 872 0.014 0.017 0.019 0.037
0 2 3 0 0 0 3 0.000 0.000 0.000 0.000 X
0 2 4 0 0 0 1 0.000 0.000 0.000 0.000 X
0 3 0 7 8 11 75 0.000 0.000 0.000 0.003 X
0 4 0 1 0 0 2 0.000 0.000 0.000 0.000 X
1 0 0 675 278 113 182 0.019 0.009 0.004 0.008
1 0 1 3563 2485 2759 1204 0.099 0.078 0.097 0.051
1 0 2 48 315 587 1068 0.001 0.010 0.021 0.045
1 1 0 3129 2204 1497 813 0.087 0.070 0.053 0.034
1 1 1 20441 15997 10016 7376 0.568 0.505 0.353 0.311
1 1 3 0 1 0 0 0.000 0.000 0.000 0.000 X
1 2 0 442 223 189 460 0.012 0.007 0.007 0.019
1 3 1 3 0 0 0 0.000 0.000 0.000 0.000 X
2 0 0 6 3 12 27 0.000 0.000 0.000 0.001
2 0 1 52 165 65 176 0.001 0.005 0.002 0.007
2 0 3 0 0 0 2 0.000 0.000 0.000 0.000 X
2 1 0 81 130 76 420 0.002 0.004 0.003 0.018
2 3 0 0 0 0 1 0.000 0.000 0.000 0.000 X
3 0 0 3 5 1 10 0.000 0.000 0.000 0.000 X
3 0 2 0 0 0 2 0.000 0.000 0.000 0.000 X
3 3 0 0 0 0 1 0.000 0.000 0.000 0.000 X

NOTES – Starting from the left, requirement units are allocated in the Natural Sciences,
Humanities, and Social Sciences.
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Table A.11: Additional Evidence of Model Fit: Student Characteristics Over Aggregate
Graduation Outcomes

Graduate with a Degree At Least in...
Nat. Sci. Human. Soc. Sci.

Obs. Sim. Obs. Sim. Obs. Sim.

Reading Percentile 82.812 83.086 84.466 82.633 82.088 82.675
Math Percentile 88.956 86.945 83.184 84.906 85.326 85.282

High School GPA 3.805 3.778 3.733 3.745 3.752 3.749
Black or Hisp. 0.101 0.110 0.124 0.126 0.126 0.123

Black or Hisp. × Female 0.060 0.069 0.084 0.078 0.083 0.077
Asian 0.187 0.140 0.084 0.120 0.141 0.125

Asian × Female 0.103 0.077 0.058 0.070 0.082 0.072
Female 0.531 0.560 0.634 0.582 0.590 0.578

International 0.054 0.080 0.057 0.039 0.049 0.057
Reported Household Annual Income

Less than 100K 0.218 0.232 0.218 0.223 0.217 0.228
More than or equal to 100K 0.407 0.404 0.397 0.383 0.401 0.407

Missing 0.375 0.364 0.385 0.394 0.382 0.365
Maximum Reported Parental Education Level

High School 0.077 0.081 0.081 0.096 0.082 0.091
College 0.299 0.304 0.297 0.270 0.293 0.294

Advanced Degree 0.444 0.451 0.444 0.445 0.449 0.451
Missing 0.179 0.164 0.178 0.189 0.176 0.164

Prior Interest
Natural Sciences 0.703 0.674 0.329 0.403 0.438 0.434

Humanities 0.201 0.309 0.480 0.413 0.330 0.366
Social Sciences 0.224 0.320 0.396 0.365 0.377 0.378

Business College 0.140 0.203 0.232 0.243 0.268 0.243
Other College 0.506 0.415 0.311 0.351 0.355 0.357

Continued on the next page
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Table A.11 Continued: Additional Evidence of Model Fit: Student Characteristics Over
Aggregate Graduation Outcomes

Internal Transfer to...
Other Business Drop Out

Obs. Sim. Obs. Sim. Obs. Sim.

Reading Percentile 81.938 82.826 84.126 82.274 81.010 82.988
Math Percentile 87.166 85.864 92.281 86.689 82.316 85.395

High School GPA 3.800 3.769 3.791 3.746 3.695 3.755
Black or Hisp. 0.080 0.119 0.085 0.113 0.160 0.113

Black or Hisp. × Female 0.044 0.074 0.041 0.062 0.092 0.071
Asian 0.094 0.126 0.198 0.145 0.103 0.118

Asian × Female 0.054 0.073 0.094 0.081 0.061 0.070
Female 0.582 0.581 0.387 0.510 0.597 0.586

International 0.066 0.065 0.060 0.058 0.064 0.056
Reported Household Annual Income

Less than 100K 0.219 0.208 0.217 0.205 0.229 0.207
More than or equal to 100K 0.399 0.399 0.401 0.396 0.394 0.400

Missing 0.381 0.394 0.381 0.399 0.377 0.393
Maximum Reported Parental Education Level

High School 0.082 0.065 0.077 0.060 0.086 0.066
College 0.287 0.312 0.296 0.316 0.301 0.308

Advanced Degree 0.457 0.433 0.431 0.433 0.437 0.437
Missing 0.174 0.189 0.197 0.191 0.176 0.188

Prior Interest
Natural Sciences 0.448 0.468 0.244 0.291 0.386 0.348

Humanities 0.290 0.308 0.303 0.310 0.379 0.334
Social Sciences 0.245 0.289 0.461 0.361 0.364 0.329

Business College 0.185 0.218 0.813 0.648 0.229 0.254
Other College 0.542 0.519 0.210 0.285 0.360 0.350

NOTES – Average of student characteristics gathered from twenty simulations of the baseline
model, using a random subset of the final sample that was not used for parameter estimation.
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APPENDIX B

Appendix for Chapter Two

B.1 Subjects Related to Each Major

To calculate the “Grade Shocks” for students, I first calculated the major-specific GPAs. Be-
yond using the explicit courses that make progress towards that major, I included courses with
subjects similar to that major.

For example, Calculus I is not required for the Math major at PHEC (only advanced Math-
ematics courses count towards the Math major), but certainly students will have a better idea
of their Math ability after taking Calculus I. Beyond introductory level courses, other majors
such as Psychology and Earth Science have more advanced courses that do not count towards
the major.

The correspondence for each major is below. The correspondence for each specific major
is available upon request.

Table B.1: Course Subject and Major Correspondence

Major Group Course Subjects

Math & Physical Sciences Computer Science, Math, Statistics Astronomy, Physics, Math, Statistics
Life & Earth Sciences Biochemistry, Molecular Biology, Cellular Biology, Developmental Biology,

Chemistry, Biomedicine, Biophysics, Atmospheric, Oceanic and Space
Sciences Geology Sciences, Environmental Science, Earth Science

Humanities North African Studies, Hebrew and Judaic Studies, Yiddish, Linguistics,
Women’s Studies, Latin American and Carribbean Studies, Film Studies,
International Relations, Asian Studies, Classic Civilization,
Classic Languages, Classic Architecture, History, Art History, Ancient
Civilization and Biblical Studies, Classical Greek, Hebrew Judaic Studies,
French, German, Russian, Slavic Culture, Spanish, Polish, Italian,
Modern Greek, Communications, English, Comparative Literature

Social Sciences Sociology, Political Science, Anthropology, Information Science,
Complex Systems

Economics Economics
Psychology Psychology, Bioanthropology, Organizational Behavior
Art Theatre Studies, Creative Writing, Drama, Music Studies
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B.2 Estimating Students’ Initial Major Ability Beliefs

I use students’ estimated initial beliefs in order to calculate the signals students receive from
their grades. I used ordinary least squares to estimate students’ prior beliefs about their grades.
The course-taking model assumes grades are a noisy signal of students’ true major-specific
abilities. A regression on students’ first semester grades minimizes selection bias, which would
upwardly bias estimates based on selection into taking first semester courses. For each major, I
ran a regression of students’ first semester grades in that major as a function of:

• Female

• Black

• Hispanic

• Asian

• ACT/SAT Math and Reading Percentiles

• ACT/SAT Math and Reading Percentiles Squared

• ACT/SAT Math and Reading Percentiles Cubed

• Median Reported Household Income in Students’ Recorded Zipcode in 2012

• Median Reported Household Income in Students’ Recorded Zipcode in 2012 Squared

• Median Reported Household Income in Students’ Recorded Zipcode in 2012 Cubed

If a student did not take a class in these majors during their first semester, I do not include them
in this regression. I use the estimated coefficients from these regressions to estimate students’
initial major ability beliefs.

Table B.1: Proportion of Student-Semesters for Values of Major Progress

Bins of Semester Major Progress
Major Group 0% (0% - 10%] (10% - 20%] (20% - 100%]

Math & Physical Sciences 0.72 0.19 0.07 0.01
Life & Earth Sciences 0.56 0.27 0.15 0.02
Humanities 0.44 0.13 0.36 0.11
Social Sciences 0.58 0.12 0.25 0.06
Economics 0.86 0.02 0.11 0.02
Psychology 0.55 0.19 0.21 0.07
Arts 0.96 0.01 0.02 0.01
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Figure B.1: The Waning Role of Prior Interest in on Making Progress in a Majors’ Course
Requirements

NOTES – Each point is the estimated coefficient on prior interest in a major on making any
progress, separately estimated for each major and students enrolled in that semester.
Regressions control for time invariant characteristics: reported gender, ethnicity, zipcode, and
Math and Reading percentile scores. Students are not included in a regression if they have
have completed a major’s course requirements (progress ≥ 100%) that semester.
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APPENDIX C

Appendix for Chapter Three

C.1 How Recommendations are Calculated

All incoming FAC students are given one of four mutually exclusive recommendations based
on their Math SAT or ACT score, High School GPA, and Math Placement Exam. This infor-
mation is used to calculate a Math Index, and cutoffs in the Math Index determine individual
recommendations. While all incoming students are required to take the Math Placement Exam
that is conducted by FAC, not all students have SAT, ACT, or High School GPAs.

The first step is to standardize the SAT and ACT scores if the SAT score is not available.
If both scores are available, only the SAT Math score is used. If students’ Math SAT score
is not available, then a Math ACT score is used, where the calculated ACT score is: 20.69 ×
Math ACT Score/ + /46.49. The calculated ACT score is rounded to the nearest hundredths
place.

The following formulas are used depending on the availability of these other scores.

• If no other scores are available:
Math Index = −018937 + 0.1454×Math Placement Score

• If only Math SAT or ACT score is available:
Math Index = −1.3272 + 0.11485×Math Placement Score + 0.0023923×Math SAT

• If only HS GPA is available:
Math Index = −2.3981‘ + 0.12049×Math Placement Score + 0.69086× HS GPA

• If all information is available:
Math Index = −3.4255 + 0.10237×Math Placement Score + 0.0022499×Math SAT +

0.67767× HS GPA

The recommendations are assigned based on cutoffs in this Math Index:

1. Definitely take Pre-Calculus, if Math Index ≤ 1.5
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2. Tentatively take Pre-Calculus, if 1.5 < Math Index ≤ 2.0

3. Tentative take Calculus, if 2.0 <1 Math Index < 2.25

4. Definitely take Calculus, if 2.25 < Math Index
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Figure C.1: ACT English, Reading, and Science Scores, and High School GPA Smoothness
Over the Calculated Math Index

ACT English Score

ACT Science Score

ACT Reading Score

High School GPA

NOTES – For each scatter plot, the average of ACT English, Reading, and Science Scores,
and High School GPA are shown for narrow intervals of 0.04 of the calculated Math Index.
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Figure C.2: Proportion of Female, Asian, Hispanic, and US Citizenship Smoothness Over the
Calculated Math Index

Proportion Female

US Citizenship

Proportion Asian

Proportion Hispanic

NOTES – For each scatter plot, the average of Female Students, Asian Students, Hispanic
Students, and US Citizens are shown for narrow intervals of 0.04 of the calculated Math
Index. US citizenship is recorded upon admission to the FAC.
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Figure C.3: Graphical Evidence for Regression Discontinuity for Taking Pre-Calculus at the
Three Cutoffs

By the Second Semester By the Eighth Semester

NOTES – Shown are scatter plot and linear regression lines for the first two cutoffs, between
Definite Recommendations to take Pre-Calculus, Tentative Recommendations to take
Pre-Calculus, and Tentative Recommendations to take Calculus. Figures for the discontinuity
between Tentative and Definite Recommendations to take Calculus are available upon request.
Linear regression is done over the entire interval, without choosing an interval around the
cutoff.
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Figure C.4: Graphical Evidence for Regression Discontinuity for Taking Calculus at the Three
Cutoffs

By the Second Semester By the Eighth Semester

NOTES – Shown are scatter plot and linear regression lines for the first two cutoffs, between
Definite Recommendations to take Pre-Calculus, Tentative Recommendations to take
Pre-Calculus, and Tentative Recommendations to take Calculus. Figures for the discontinuity
between Tentative and Definite Recommendations to take Calculus are available upon request.
Linear regression is done over the entire interval, without choosing an interval around the
cutoff.
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