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Abstract 

 This dissertation examined the effect of contextual features of the classroom 

environment on measures of teacher quality derived from classroom observation instruments.  

Using data on 228 teachers observed four times as part of the Understanding Teacher Quality 

(UTQ) study, scores from the Classroom Assessment Scoring System, the Framework for 

Teaching, and the Protocol for Language Arts Teaching Observation were analyzed using 

Generalizability Theory (GTheory) statistical models.  The goals of these analyses were to 

examine how the reliability, validity, and bias of teacher quality estimates shifted as GTheory 

models successively incorporated a variety of contextual features of measurement present 

across specific occasions of observation.  The contextual features of measurement examined 

included: (1) observation system design (SD) variables such as time of year and methods of 

scoring; (2) variables measuring curricular and instructional (CI) practices, such as whether a 

lesson focused on reading or writing or included discussion or lecture; and (3) variables 

measuring features of school organization (SO) such as classroom student composition.   

Through comparison of models that successively adjusted for SD, CI, and SO 

variables, it was found that for all three observation instruments, over 20% of the variance 

attributed to teacher effects in traditional GTheory statistical models was due to sampling 

error stemming from values of the SD and CI variables recorded for a teacher on a given 

occasion of measurement, implying that traditional GTheory approaches (that do not 

incorporate SD and CI variables) can result in positively biased estimates of the reliability of 

teacher quality scores.  However, this dissertation also found that teacher quality scores 

adjusted for SD and CI variables were highly correlated to teacher quality scores from 
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GTheory models that did not adjust for SD and CI variables, in part because occasions of 

observation were selected at random during the UTQ data collection period.   

Inclusion of SO variables into GTheory statistical models had more far-reaching 

consequences. To begin, SO variables (and especially student composition) explained ~40% 

of the variance in teacher quality estimates, changed point estimates considerably, and 

reduced the reliability of these estimates to very low levels under normal observational 

designs.  However, the decision as to whether or not to include SO facets into GTheory 

statistical models necessarily involves assumptions about whether these differences in 

observed teaching quality are driven by teacher sorting (e.g. better teachers are teaching more 

advantaged students) or co-construction (e.g., more advantaged students co-construct 

instruction along with the teacher, making instruction of higher measured quality in more 

advantaged settings).  If one assumes that co-construction drives the observed effects of SO 

variables on teacher quality estimates, then these variables should be included in a GTheory 

model, but such inclusion will make teacher quality estimates very unreliable.  If, on the other 

hand, one assumes that teacher selection drives the statistical relationship between SO 

variables and teacher quality estimates, inclusion of SO variables into a GTheory model 

would bias teacher quality estimates by removing this selection effect. 

Overall, the results presented in this dissertation highlight the subtle ways that SD, CI, 

and SO variables can affect teacher quality estimates and how these subtle differences can 

affect the reliability, validity, and bias of teacher quality measures derived from classroom 

observation instruments.   
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Chapter I. Introduction 

Teaching is an inherently situated activity (J. J. Cohen & Goldhaber, 2016). Teachers 

teach specific content to specific students using a variety of instructional formats (like 

lecture, recitation, discussion, or seat-work). Moreover, instruction unfolds over time. New 

days can involve teaching different content (like reading or writing) or teaching for different 

instructional goals (like introducing new content, reviewing, engaging in independent 

practice). Teacher's instructional choices can be dependent on their students and the content 

being taught. Further, teachers enact instruction in specific schools, and schools can vary in 

the ways they are organized and staffed for instruction and how they allocate students to 

teachers. Much research shows that the situated nature of teaching has the potential to affect 

the nature of instruction a teacher provides-- to specific groups of students, on specific days 

of the year, in specific school settings (e.g. Stodolsky, 1984). 

This thesis explores how the situated nature of teaching complicates our ability to use 

classroom observation data measuring teaching quality (gathered over a particular set of 

situated instances of teaching) to make inferences about an observed teacher's ability to 

provide high quality instruction across many possible situated acts of teaching, which I will 

call teacher quality. While any specific measurement of teaching quality is drawn from a set 

of situated acts, the inferences we wish to make about a teacher's ability to provide high 

quality instruction are often more broad. For example, a principal may wish to draw 

conclusions about a teacher's ability to teach the full range of students likely to be 

encountered in a school, but the principal may only have data from a single class (or a few 

classes) taught by the teacher. A superintendent might wish to draw conclusions about which 

teachers are the best teachers across all schools in the district while having data on each 
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teacher's instruction as it occurred in a single school. Researchers are often interested in 

estimating a stable teacher quality to engage in high quality instruction across even more 

school and district contexts, but again, have data only on instruction provided across a single 

school, on a limited number of days, where teachers teach a limited number of curriculum 

topics to a limited range of students. Each of these cases represents a problem of generalizing 

from observed scores on a small number of occasions of measurement to broader constructs 

that capture a teacher's ability to mount high quality instruction across a range of pre-defined 

contexts. Given the situated nature of teaching, this process of generalizing scores across 

contexts can be far more complex than most studies have acknowledged. 

The process of generalization can be divided into two steps. In a first step, a 

measurement procedure is developed and a set of "facets" of measurement over which a user 

wants to generalize scores from that instrument is specified in advance. In the measurement 

literature, a facet is defined as any dimension of the measurement situation that may affect 

observed scores on the measure of interest and across which generalization of the observed 

score is desired. In much measurement work, the facets of measurement defined in advance 

consist of properties of the measurement protocol used to obtain an observed score. So, for 

example, if an analyst is using a classroom observation instrument to measure teaching 

quality, he or she might want to understand the extent to which a teaching quality score 

derived from a limited number of days of classroom observation can be dependably 

generalized to the score a teacher would receive had all potential days of instruction been 

observed. Alternatively, an analyst who has chosen to use a subset of items from a given 

observation instrument might want to understand how dependably a score derived from that 

limited item set can be generalized to a situation in which other subsets of items were used. 

Concerns with measurement protocols are important to the measurement of teaching quality, 

and I will examine these concerns in some detail in this dissertation. However, facets of 
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measurement related to the measurement protocol itself are just one of many aspects of 

measurement across which an analyst might want to generalize. For example, when 

classroom observation instruments are being used to measure a given teacher's ability to 

mount high quality instruction, analysts might want to generalize scores from a given 

measurement protocol to several other facets of the measurement context in which 

measurement occurred, including across schools where a teacher might teach, across the 

students a teacher might teach, across the content domains a teacher might be expected to 

teach (e.g. reading, writing, algebra, geometry....), and so on.  

Importantly, one need not seek to generalize across all possible levels of each of these 

facets. In fact, another step in a measures development is to define (in advance) not only the 

facets of measurement across which one wants to generalize, but also the levels of these 

facets across which generalization is sought. This exercise—of defining the facets and levels 

of facets across which one wants to generalize—defines what is called in the measurement 

literature the “universe” of generalization. Consider, for example, how the “universe” of 

generalization might differ for two different decision makers—a superintendent and a 

principal—working in the same district and using scores from the same classroom 

observation instrument to make inferences about a specific middle school teacher’s ability to 

mount high quality instruction. The superintendent might want to use the teacher’s score from 

the observation instrument to make inferences about how well that teacher will teach across 

all middle schools in the district; the principal, on the other hand, might want to use the 

scores only as an indication of how well the teacher teaches in the school where she was 

observed (and he serves as principal). In this case, the “levels” of the school facet over which 

these different administrators want to generalize constitute the “universes” to which 

generalization is desired, and, as we have just seen, the two administrators have defined two 

different universes based on their intended use of the scores. 
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A second step in generalizing scores obtained from a measurement instrument to a 

"universe" involves decisions about how to sample observations of teaching quality from the 

desired universe to which one wants to generalize. Imagine, for example, that we have 

designed an observation system that allows us to observe a teacher across a representative (or 

random) range of values from a facet's universe. Here, the universe plays the role of defining 

the range of values of a facet that a teacher may be observed over. Sampling over a 

representative range of values for the defined universe is necessary for proper generalization. 

For example, with a universe defined as all middle schools in a state, we might observe the 

same teacher as she works in urban, suburban, and rural middle schools, as well as middle 

schools with low and high proportions of minority students. This would, arguably, give a 

measure of the teacher in a representative set of schools, supporting the generalization of 

estimates of teacher quality to all schools in a state. The goal of observing teachers across a 

range of instances of each facet is to demonstrate how much observed teaching quality varies 

across the facet, allowing an estimation of how much each facet contributes to observed 

scores. Knowing how much teaching quality varies across facets enables an estimate of how 

dependably (i.e. reliably) teacher quality estimates represent a teacher's ability across facets, 

as I will discuss later in this thesis. 

The two-step process of generalization just discussed often involves many practical 

problems. In particular, it is usually not possible to observe teachers across the full range of 

facets over which generalization is desired. For example, we might want to generalize scores 

for a teacher across a range of schools, but teachers are rarely observed teaching in different 

schools, and so we in fact do not have a very strong evidentiary basis upon which to examine 

how well observed teaching quality may generalize across schools. In such cases, we must 

extrapolate scores across schools. Extrapolation, here, in effect, is a process of generalizing 

across facets where no data exists to support the generalization. Extrapolation, instead, relies 
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on arguments and/or assumptions to support the inference that scores apply across a facet. 

For example, we could argue that the knowledge and skills that teachers need to provide high 

quality instruction are common across schools. Thus, a teacher who provides high quality 

instruction in one school will similarly provide high quality instruction in another school, 

implying that teacher scores as traditionally estimated from classroom observations can be 

generalized across schools. Alternatively, we could argue that schools have different cultures 

and curricula (among other features), that these differences among schools affect observed 

teaching quality, and that this effect is constant across teachers. In this case, the best teachers 

in one school will be the best teachers in all schools, suggesting that teacher scores should be 

centered around school means and that, after this centering, scores are generalizable across 

schools. A third argument might claim teacher scores will differ across schools solely 

because of differences in the student composition of the school. In this case, teacher scores 

can be equated across schools by adjusting them for the effects of the student composition, 

much like is done with value-added score estimates. These "equated" scores are then 

generalizable across schools.  

A problem faced in practice is that arguments justifying extrapolation can result in 

very different estimates of any given teachers' teaching ability. Further, in many cases, there 

will be little evidentiary basis upon which to accept one or another argument as "correct," 

highlighting the challenge of extrapolating scores to an unobserved universe. Thus, 

extrapolation provides a weak basis from which to "generalize" across facets and, whenever 

possible, teachers should be observed across the universe of facets to which one wishes to 

generalize a score so that data-based generalization can occur. 

Unfortunately, this careful process of specifying the universe of generalization, 

sampling to provide evidence for generalizing, and providing arguments to support explicit 

extrapolation is not what occurs in practice when classroom observation instruments are used 
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to make inferences about teaching ability. Instead, users of observation instruments typically 

define all days of instruction over the course of a year as the universe of generalization, 

sample a random subset of days, and then generalize observed scores to the "average" day of 

instruction. While this approach uses the same logic of generalization as just discussed, the 

situated nature of teaching and the difficulty of extrapolating is ignored in the process. And 

this creates at least three problems of measurement discussed in this thesis. 

The first problem is instrument bias. Classroom observation instruments use a fixed 

definition of teaching quality, which (instrument developers assume), on average, captures 

high quality teaching practices. However, it could be that scores on a particular observation 

instrument do not correspond to high quality instruction in all cases. For example, most 

observation instruments focus on high cognitive demand as a feature of high quality 

instruction (due to the importance of students developing these critical thinking skills and the 

difficulty in teaching them to students). However, there may be specific points in time, 

specific types of lessons, or specific kinds of academic content where drilling on basic skills 

(rather than focusing on more cognitively demanding tasks) is the most beneficial approach 

for students. In these cases, classroom observation instruments emphasizing high cognitive 

demand may poorly measure actual instructional quality. The result will be instrument bias in 

observed teaching quality, which can result in biased estimates of a teacher's general ability 

to mount high quality instruction. Taking an approach to generalization that recognizes the 

situated nature of teaching allows for an exploration of instrument biases, as I will show in 

this thesis. 

A second problem concerns efficiency in estimation. Assume that the teacher 

construct we are generalizing to includes teaching quality in both reading and writing lessons. 

When sampling is done randomly across the year, without regard to the content domain being 

taught, some teachers, by chance, will be observed only teaching reading and not observed 
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teaching writing. Estimated teacher quality for this set of teachers will therefore include only 

part of the construct of interest (i.e. only teacher quality in teaching reading and not writing). 

Assuming teacher quality varies across content domains, this results in a poor estimate of 

teacher quality for the subset of teachers observed only teaching reading. Further, the 

randomness of whether a teacher is observed teaching reading or writing contributes to 

teachers’ observed scores, leading to inefficient estimates of these scores (i.e. the construct-

irrelevant randomness of sampling is included as a part of teacher score estimates). If, 

recognizing the situated nature of teaching, we instead observed each teacher in both reading 

and writing lessons, the sampling of days of instruction will lead to more efficient estimation 

of teacher scores, though as I discuss later in this thesis, this does lead to some subtle 

challenges related to shifting interpretations of the meaning of teacher quality. 

The third problem arises from the need to extrapolate across contexts. Often, little to 

no attention is paid to the role that context might have in constraining or supporting high 

quality instruction. Comparisons of teachers across contexts necessarily involve assumptions 

about the effects of contexts on teaching quality. The default assumption--usually implicit--is 

that no context effects on observed teaching quality exist. There are, though, calls for 

observed scores to be adjusted for the student composition of classrooms (e.g. Whitehurst, 

Chingos, & Lindquist, 2014) and, in a similar vein, attempts to isolate how the students 

assigned to a specific class might affect estimates of teacher quality (Steinberg & Garrett, 

2016). These approaches, however, are fairly rare at this point and are isolated to the problem 

of a classroom's student composition rather than recognizing potential context effects more 

broadly. Further, these approaches do not address the implications for the measurement of 

teacher quality more broadly, as I will show in this thesis. A situated view of teaching 

recognizes the impact of student composition on observed teaching quality as just one of a 
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broad range of facets over which extrapolation is necessary
1
. There is a need for more 

explicitness about when data-informed generalization is being done and when extrapolation is 

occurring, including better-developed arguments to support the extrapolation at hand (and 

any alternative, reasonable extrapolation arguments). 

I.1. The Problem 

In this dissertation, I explore how the situated nature of instruction can affect the bias, 

reliability, and validity of estimates of teacher quality based on classroom observations
2
. As 

in much previous research on teaching, the main approach to estimating teacher quality from 

teacher observation data in my dissertation involves using statistical methods derived from 

Generalizability Theory (GTheory) to estimate the effect that specific teachers have on 

observed teaching quality net of other factors that potentially affect the teacher's scores 

(Brennan, 2001). One piece of the problem here is identifying important facets of 

measurement, which can include properties of the situation in which observed teaching 

occurs (e.g., the content being taught, the instructional formats in use, or the students being 

taught) as well as various properties of the overall protocol used to measure teaching quality 

(e.g. the specific items on the observation instrument being used to rate teaching quality, the 

procedures by which days of instruction are selected for observation, or the consistency with 

which raters score similar instances of instruction across items, days, and teachers). The 

second piece of the problem is identifying the ways in which all of these facets—teachers, 

                                                 

1 
Note that I am effectively ignoring the possibility of observing teachers across sections that would 

enable generalizing across student composition. There is an empirical question here. How much of the variation 

across student characteristics occurs within-teachers, between-sections (allowing generalization) and how much 

occurs between-teachers (necessitating extrapolation)? This will likely vary quite a bit across study designs and 

samples, but it seems reasonable, given residential sorting and teacher sorting within-schools that much of the 

differences in student composition will occur between-schools and between-teachers. 

2
 Bias here represents whether the estimate matches the population value of the estimate.  Validity, on the 

other hand, captures whether the estimate represents some meaningful notion of teacher quality and is often 

operationalized by situating the measurement within a broader nomological network of constructs.  Estimates 

can be biased and valid (though this seems more rare) or unbiased and not valid.  See Kane’s (2006) distinction 

between generalizing and extrapolation for a broader discussion of this distinction. 
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situations, and conditions of measurement—affect observed scores and the resulting 

implications of these effects for the reliability, bias, and validity of inferences about teacher 

quality one can make from a particular set of classroom observation data. The last part of the 

problem is clearly identifying the boundaries of generalization and the inferences necessary 

to extrapolate to different desired ways of defining teaching quality. 

I.2. Approach 

My dissertation proceeds in three steps. In a first step I use a GTheory-inspired 

statistical model to examine issues related to the reliability with which differences among 

teachers in teaching quality can be estimated. This follows the traditional approach, ignoring 

the situated nature of teaching. In this section of the thesis, I focus mostly on decomposing 

variance in observed scores into a teacher component (i.e. teacher quality, which I view as the 

“true” score to be estimated) and other components reflecting deviations of observed teaching 

quality scores from the teacher quality estimate in the model (where these deviations are 

viewed as “error” variance). The statistical model I estimate here differs from those in the 

literature in that I include items as an important source of error variance (rather than 

modeling mean scores across items), which leads to a richer exploration of error components 

in teacher observations. This analysis provides a starting point for additional exploration of 

how aspects of the instructional context affect observed teaching quality as well as a point of 

comparison for statistical models estimated at later points in this thesis. 

In the second step of the dissertation, I expand the GTheory variance decomposition 

just discussed so that it now attends to effects that arise from contextual features of the 

lessons being observed (e.g. the content being taught, the instructional formats in use, the 

characteristics of students in the classroom, and the school where the teaching occurs). The 

inclusion of these additional “facets” of measurement in a GTheory analysis is not common 

in most reported research. The goal of this step is to understand how features of the teaching 
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context affect observed teaching quality and to explore the implications of these effects for 

the reliability, bias, and validity of estimates of teacher quality. In this section of the 

dissertation, I present three additional statistical models that make corrections for various 

types of facets. The first model adds controls for score artifacts that arise from when and how 

scores are collected (e.g. date scoring occurred, whether scoring was done live or by video). 

These factors arguably should be controlled for in any estimate of teacher quality in order to 

reduce sampling variability in scores. The second statistical model adds controls for the 

content being taught and the instructional formats in use in the lessons observed. This model 

adjusts for inefficiencies (i.e. reduces sampling error) stemming from randomly sampling 

days by estimating a teacher effect that captures a teacher's ability to engage in a range of 

valued forms of instruction rather than the average instruction provided over the course of a 

year. This model also allows me to test for potential sources of instrument bias. The third 

statistical model adds controls for the contexts in which teachers teach (e.g. grade taught), 

moving towards the problem of extrapolating scores across contexts. The contribution of this 

section of the dissertation is not to advocate for one specific approach compared to another 

for arriving at estimates of the teacher quality construct. Rather, it is to show how carefully 

considering the situated nature of teaching and the construct one wishes to generalize to can 

lead to many approaches for score estimation, each of which has different implications when 

it comes to assessing the reliability, bias, and validity of resulting estimates. 

A final step in the data analysis explores the validity of estimates of teacher quality 

derived from different statistical models, where a teacher’s value-added score (i.e. a measure 

of the average gains in learning experienced by students in a teacher’s class) is used as a 

criterion variable to examine concurrent validity of estimates of teacher quality. In this step, 

the goal is to understand whether it is possible to make claims about the relative validity of 

teacher quality measures derived from different models. As I will argue, the various models 
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that I present can increase measurement precision and either reduce bias or increase bias, 

depending on the assumptions we are willing to make about the nature of teacher quality and 

the differences in teachers across school contexts. Exploring the validity issues across models 

provides more information about the construct being measured by each model. Note, 

however, that rather than searching for the "best model", viewed from the framework of this 

thesis, what the validity analysis really is intended to examine is which model provides an 

estimate of teaching quality that is most aligned with the definition of teaching quality 

implicit in value-added scores. That alignment, however, should not be taken as an ironclad 

rule about which model-based estimate is "valid." Instead, according to the arguments 

developed in this thesis, validity depends crucially on the features of context across which 

one wants to generalize, and it is explicit arguments about generalization that determine 

which (of many plausible) models should be used. 

I.3. Data 

In order to explore the research problems just discussed, I use data from the 

Understanding Teaching Quality (UTQ; http://utqstudy.org/) project, which gathered data on 

teaching quality from 228 English Language Arts (ELA) teachers in grades 6-8 using three, 

widely-used, classroom observation instruments: the Classroom Assessment and Scoring 

System (denoted as CLASS here and described in Pianta, Hamre, Haynes, Mintz, & La Paro, 

2007); the Framework for Teaching (denoted as FFT here and described in Danielson, 2000); 

and the Protocol for Language Arts Teaching Observations (denoted as PLATO here and 

described by Grossman, Loeb, Cohen, & Wyckoff, 2013). The UTQ data is sufficient for me 

to estimate the effects of many different facets of measurement (including teachers, contexts 

of teaching, and conditions of measurement) on measured teaching quality. As I discuss in 

more detail in Chapter 4, each teacher in this study was observed on 4 days of instruction, 

spread across two separate class sections of students, by multiple raters recording scores on 

http://utqstudy.org/
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many different items from each of the classroom observation instruments. In addition, as part 

of the data collection regime, the content being taught on a given occasion of measurement 

was recorded, as was the type of instructional interactions taking place. Finally, the UTQ data 

set includes data allowing me to measure the school location of each teacher, the prior 

achievement levels, and socioeconomic characteristics of students in different class sections 

taught by that teacher, and the value-added scores of teachers for the study year and the year 

prior. 

I.4. Outline of Dissertation 

In the next chapter (Theoretical Framework), I provide a detailed overview of the 

theoretical framework used to frame this study. I start by providing an in-depth introduction 

to Generalizability Theory (GTheory), focusing on how it separates true score variance from 

error variance and, especially, how it isolates and describes sources of error variance, 

allowing a deeper understanding of how classroom observation instruments function as tools 

of measurement. I then discuss how contextual features of measurement can be incorporated 

into GTheory models, tying their incorporation to the problem of generalizing observed 

scores across contexts. Next, I discuss the various ways that contextual features of 

measurement might affect estimates of teacher quality. I conclude the second chapter by 

creating three categories of measurement facets that differ in how they are likely to affect the 

measurement process. Some contextual features will only make measurement more 

inefficient, some may bias estimates of teacher quality, and others may do both. 

In the third chapter (Review), I present a literature review on past measurement work 

on observation instruments. I highlight previous uses of GTheory to study modern 

observation instruments. I will mostly focus on what is known about how contextual features 

of the measurement context affect observed teaching quality. Where possible I try to describe 
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what is known about how these contextual features impact estimates of teacher quality, but 

past work has not focused much on these constructs. 

The fourth chapter (Methods) starts by expanding upon the brief introduction to the 

data provided here. I then provide detailed introductions to the various statistical models that 

I will be using. I conclude the chapter by discussing my analytic approaches, including how I 

will identify instrument bias, how I explore the effect of measurement facets on observed 

teaching quality, and how I explore the validity of estimates of teacher quality. Underlying 

each of these analyses is the effect that accepting the situated nature of teaching has on how 

we think about generalizing observed scores to create estimates of teacher quality. 

The fifth chapter (Results) presents results for the three approaches described here. I 

start by showing the relatively small role that teacher quality plays in explaining observed 

teaching quality. Next, I show that items and raters both play a large role as sources of error 

in observed teaching quality.  I next highlight the large impacts that contextual features have 

on observed teaching quality across all categories of contextual features. This, however, does 

not produce a large impact on estimated teacher quality, likely due to the near random 

sampling of days and random assignment of raters in the UTQ study. Only the grade teachers 

teach and the characteristics of students in their classroom have a meaningful, though modest, 

impact on estimates of teacher quality. Especially important here is that models that do not 

account for the situated nature of teaching lead to imprecise estimates of teacher quality, 

which leads to inflated estimates of the reliability of scores. Last, I show that there is no 

evidence of differential validity of teacher quality across models, which seems to be the result 

of low power, given the small differences in teacher quality estimates across models. 

In the last chapter (Discussion), I connect the results to their implications and the 

prior literature. I focus the discussion on the evidence that I found for the bias, reliability, and 

validity of scores from classroom observation instruments. I highlight the distinction in 
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implications for both research and practice. Especially important for the effect on estimates of 

teacher quality is the careful sampling that is a hallmark of research, but less possible in 

practice. Throughout this chapter, I discuss limitations of this thesis and next steps for the 

research. 
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Chapter II. Theoretical Framework 

In this chapter, I discuss the analytic and theoretical frameworks for this dissertation. 

As discussed in the preceding chapter, teaching is a situated activity, which makes estimating 

teacher quality from teaching quality complex. In this chapter, I introduce Generalizability 

Theory (GTheory) as a means for statistically modeling this complexity. I first describe the 

basic ideas underlying GTheory and show how the language of GTheory can be applied to 

the problem at hand. This discussion will show that GTheory allows me to model observed 

teaching quality scores as containing both a true score component and multiple error 

components. In the next section of the chapter, I show how the typical GTheory model 

requires the researcher to declare in advance what features of the measurement context are to 

be considered sources of errors in measurement (e.g. raters, items, days) and note that these 

features are called “facets” of measurement in GTheory. These defined facets, we shall see, 

help define the “universe” of measurement situations over which observed scores are 

intended to be generalized. Importantly, however, GTheory also recognizes that some 

features of a measurement context might not easily be taken into account or included 

explicitly as facets in the GTheory statistical model. In GTheory, these are called “hidden 

facets.” In the next section, I detail different ways that hidden facets might impact observed 

teaching quality and the implications for the reliability, bias, and validity of estimates of 

teacher quality. Next, I discuss three classes of “hidden facets” that I intend to analyze as part 

of this dissertation and discuss how these hidden facets might affect the inferences we can 

draw about teacher quality from a given set of classroom observation data. I conclude the 

chapter by reviewing the pertinence of the “hidden facets” problem to the research questions 

at hand. 
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II.1. Generalizability Theory 

Generalizability Theory (GTheory; Brennan, 2001) forms the foundation of my 

analytic approach to making inferences about teacher quality from classroom observations. 

GTheory focuses on the problem of generalizing scores across facets of measurement and 

follows the same approach to generalizing that I described in the introduction. GTheory starts 

with a definition of the construct of interest. For classroom observation instruments, this is 

usually a teacher's ability to create high quality instruction. In the discussions that follow, I 

use the term teacher quality to represent the construct of interest in all models, though it must 

be noted that there are many subtly different ways of defining "teacher quality". Teacher 

quality can be defined as a teacher's ability to teach in a given school, the average of the 

observed teaching quality provided over the course of a year, a teacher's ability to teach a 

range of important curriculum topics, or a teacher's ability to teach across a range of school 

contexts. The distinction between these definitions is important (and detailed in later 

chapters) because the way teacher quality is defined determines the universe to which scores 

generalize, the appropriate model for estimating teacher quality, and the aspects of teaching 

quality that affect teacher quality. For example, defining teacher quality as school-specific 

precludes comparing teachers across schools while defining teacher quality as existing across 

schools requires some justification for extrapolating scores across contexts. 

The next step for GTheory is to define the features of the measurement context (i.e. 

facets) across which observed teaching quality will vary and to which generalization is 

desired. As described before, this includes specifying the full range of "levels" a facet might 

take, which is called the facet's domain. The first thing to note about this process is that the 

facets of measurement depend on the specific definition of teacher quality. If the construct is 

a teacher's ability to teach within his or her school, school is not a facet because the teacher 

quality construct is defined as referring only to quality in the teacher's current school. 
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Importantly, because school is not a facet (and the construct is defined within schools), 

comparisons of teacher scores cannot be made across schools. If the construct is a teacher's 

ability to teach in any urban school in the state, school is a facet because a teacher's observed 

teaching quality likely varies across schools. The facet's domain defines the universe to 

which the school facet generalizes, in this case, urban schools within the given state.  

Part of the definition of a construct, then, involves defining the contexts across which 

generalization is desired, which, in turn, defines the facets of interest. Of course, numerous 

facets exist, for example: classroom student composition, content domain being taught, time 

of year, time of day, the rater doing the scoring, and innumerable other facets. While there is 

a need to recognize the situated nature of teaching by recognizing features of the classroom 

and day context across which observed teaching quality varies, all facets cannot possibly be 

included and modeled. GTheory models generally are based around a set of facets that are 

explicitly planned to vary through the design of the observation system. Note that, in fact, the 

teacher is also facet of measurement and treated conceptually like any other facet, though, of 

course, the teacher, being the focus of measurement typically gets more attention than other 

facets. The typical facets characterizing the planned variation are teachers, items, raters, 

occasions of measurement, days, and sections (e.g. Kane et al., 2012; Mashburn, Downer, 

Rivers, Brackett, & Martinez, 2013). These planned facets broadly characterize some of the 

situations over which observed teaching quality is measured, but they do not capture the 

situated nature of teaching fully. Those features of context not measured are called hidden 

facets because they are “hidden” from the estimation model. Note that with this 

conceptualization, the distinction between hidden and non-hidden facets is model and 

protocol dependent.  In this thesis, I am interested in studying some of these hidden facets 

directly. 
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Specifying the construct creates the framework of GTheory, but this framework needs 

to be reflected in the data. The data comes from sampling teachers' instruction. For each facet 

to be generalized across, a teacher needs to be observed across a representative sample of 

levels from the facet’s domain. GTheory generally assumes both that sampling occurs 

randomly (or ignorably) from all possible levels of facet and that each level of a facet is an 

equally good substitute for any other level of that facet. For example, taking the day facet, it 

assumes that every day (of instruction) is equally likely to be observed and that there is no 

reason to prefer sampling day 1 as compared to day 2 or 9. This sampling facilitates 

generalization because teaching quality is observed across a representative set of levels from 

a facet's domain, allowing a prediction of how teaching quality will look across unobserved 

levels from that facet. That is, by analyzing how observed teaching varies across sampled 

levels of a facet, we can predict how scores will vary across all levels of the facet and so how 

stable scores will be across the facet. This is the theoretical basis that justifies estimating the 

reliability of scores in GTheory. As I will discuss below, however, the complexity stemming 

from the situated nature of teaching creates challenges for this framework. Namely, each day 

of instruction is not necessarily an equal representation of teacher quality. 

This process of specifying the construct and sampling across facets in a way to allow 

generalization is the foundation on which GTheory statistical models are built. Similar to 

classical test theory, GTheory models observed scores (𝑋) as being composed of a true score 

component (𝑇) plus an error (𝜖) component (i.e. 𝑋 = 𝑇 + 𝜖). The true score here represents 

the previously defined construct of interest (i.e. teacher quality). The error term in GTheory 

(𝜖) is further decomposed as the sum of independent contributions from each planned facet 

and the interactions of all facets. For example, if we assume that the only facets of 

measurement are raters and days, the error term will be broken down into a component 

caused by raters, a component caused by days, a component caused by the interaction of 
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raters and days, and a residual error (i.e. 𝜖 = 𝜐𝑟𝑎𝑡𝑒𝑟𝑠 + 𝜐𝑑𝑎𝑦𝑠 + 𝜐𝑟𝑎𝑡𝑒𝑟𝑠−𝑏𝑦−𝑑𝑎𝑦𝑠 + 𝜐𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙). 

Each of the facets included as part of the error term are called error facets and these error 

facets are assumed independent
3
. 

Of more interest in GTheory models, usually, is the relationship between the 

variances of the modeled terms (i.e. 𝑣𝑎𝑟(𝑋) = 𝑣𝑎𝑟(𝑇) + 𝑣𝑎𝑟(𝜐𝑟𝑎𝑡𝑒𝑟𝑠) + 𝑣𝑎𝑟(𝜐𝑑𝑎𝑦𝑠) +

𝑣𝑎𝑟(𝜐𝑟𝑎𝑡𝑒𝑟𝑠−𝑏𝑦−𝑑𝑎𝑦𝑠) + 𝑣𝑎𝑟(𝜐𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)). This is because the variances determine the relative 

importance of the true score and various error facets and the reliability of score estimates. 

When the variance of the true score is large (relative to the error facets), the observed scores 

measure teacher quality well. Error facets with large variances represent the largest sources of 

error in observed scores. These large facets can then be the focus of targeted efforts to 

improve the functioning of observation scores as a measure of teacher quality. For example, 

if the rater error facet is large, more effective training for raters should help improve 

measurement. 

The reliability of the estimate of teacher quality (i.e. 𝑇 or 𝜐𝑇 below) also comes 

directly from the estimated variances. Reliability is defined as the percentage of the observed 

score variance that is due to the true score (i.e. 𝑣𝑎𝑟(𝑇)/𝑣𝑎𝑟(𝑋)). This is easily calculated 

with the variances from the GTheory model. In fact, GTheory is often used to conduct what is 

called a "decision study", which examines the impact on the reliability of score estimates of 

averaging teacher scores across multiple measurements. Consider what happens when using 

the average score from two separate raters who independently scored an occasion of 

instruction as an estimate of teacher quality. The same true score contributes to the scores 

given by each rater, but the rater effects (i.e. deviations from true score caused by raters) are 

different and independent. The variance of the average of two independent, identically 

                                                 

3
 In fact, when data are balanced across facets and all interactions are modeled, the error facet become 

independent by design (i.e. the assumption must be true). 
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distributed random variables is half of the variance of the original variable (i.e. the variance 

of the rater error facet is cut in half when averaging scores across two independent raters). 

Thus, the variance of the true score remains constant while the variance of the error facets 

(namely the rater facet) is cut in half. Averaging scores across levels of a facet increases the 

reliability of estimates of teacher quality in a calculable way. Decision studies, then, use this 

fact to estimate score reliabilities across different sampling designs. For example, a decision 

study would estimate the score reliability stemming from averaging scores across four days 

with one rater each day; averaging scores across 3 days with two raters each day; and, more 

broadly, ‘𝐴’ days with ‘𝐵’ raters each day. In this way, GTheory analyses can flow directly 

into examining the reliability of score estimates, including predicting score reliability for 

future observational system designs. 

In summary, GTheory provides a theoretical and analytic framework from which to 

generalize observation scores across a number of different facets through emphasizing clarity 

in defining the construct of interest and facets across which generalization is desired. In doing 

so, GTheory helps to show which facets of measurement have the largest impact on observed 

teaching quality. It also provides a framework for understanding the reliability of teacher 

quality estimates and estimates a true score, which represents teacher quality.  It does not, 

however, directly address the issue of extrapolating teacher scores across facets where no 

data exists to support generalization. 

Up to this 

point, I've focused broadly on how GTheory is used and why it is relevant for exploring the 

generalizability of classroom observation instruments. In this section, I provide a full 

GTheory measurement model for typical classroom observational data (such as the UTQ data 

that I use in this thesis). I present this model to demonstrate the complexity of GTheory 

II.1.1. A Full GTheory Model for Classroom Observation Data 
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models and to provide a basis for further discussions about the specific impacts of 

characteristics of the measurement context on observed teaching quality. 

In UTQ, observation instruments were used to measure teaching quality for a given 

teacher using multiple items across multiple days of instruction in two sections, where scores 

were given by multiple raters. Further, each day of observation was scored as multiple 

occasions, which were created by dividing days into 15 minute intervals. Thus, using 

GTheory, a goal is to assess the generalizability of observed teaching quality across all 

potential levels of items (I), raters (R), occasions of measurement within days (O), days of 

instruction within sections (D), and sections within teachers (S). The approach described here 

follows that of much previous research, though it uses a more complex (i.e. complete) model 

(e.g. Bell et al., 2012; Casabianca et al., 2013; Hill, Charalambous, & Kraft, 2012a; Ho & 

Kane, 2013; Kane et al., 2012; Mashburn et al., 2013). Effects stemming from the 

interactions of facets are also modeled as sources of variation. For example, the rater-by-day 

effect captures whether, after controlling for day and rater main effects, a rater is more lenient 

than expected on a specific day due to an idiosyncratic reaction to the day scored. The 

measurement model just described would be denoted as 𝑖 ⋅ 𝑟 ⋅ (𝑜: 𝑑: 𝑠: 𝑡) in GTheory (i.e. as 

occasions nested within days nested within sections nested within teachers crossed with items 

and raters). This gives four levels of nesting (occasions, days, sections, and teachers) and a 

total of 19 facets that affect observed scores. Most work (including this dissertation) does not 

fully model all facets of this full measurement model. For example, some researchers choose 

to average across items before conducting GTheory analysis, leading the analysis to focus 

only on average scores and reducing the model to 9 error facets. Written as a statistical 

model, the model assumes that observed scores, 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡), vary around an overall sample 

mean with a deviation from this mean due to each of the 19 facets: 
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X{ir(o:d:s:t)} = μ + υt + υ{s:t} + υ{d:s:t} + υ{o:d:s:t}

+υi + υ{it} + υ{i(s:t)} + υ{i(d:s:t)} + υ{i(o:d:s:t)}

+υr + υ{rt} + υ{r(s:t)} + υ{r(d:s:t)} + υ{r(o:d:s:t)}

+υ{ir} + υ{irt} + υ{ir(s:t)} + υ{ir(d:s:t)} + υ{ir(o:d:s:t)} 

 (1) 

where 𝑜 is occasions, 𝑑 is days, 𝑠 is sections, 𝑡 is teachers, 𝑖 is items, 𝑟 is raters, 𝜇 is the 

overall average quality and 𝜐𝑥𝑦 generally refers to deviations from this mean resulting from 

unique combinations of facets 𝑥 and 𝑦. 𝑥: 𝑦 denotes that facet 𝑥 is nested in facet 𝑦. The 

variance of facet 𝑥 is 𝑣𝑎𝑟(𝜐𝑥). 𝜐𝑠:𝑡 is section deviation from teacher quality, 𝜐𝑑:𝑠:𝑡 is day 

deviation from average section quality, 𝜐𝑜:𝑑:𝑠:𝑡 is occasion deviation from average day 

quality
4
; 𝜐𝑖 represents item difficulty or centered average item scores; and 𝜐𝑟 is a rater 

leniency effect. 𝜐𝑖𝑡, 𝜐𝑖(𝑠:𝑡), 𝜐𝑖(𝑑:𝑠:𝑡), and 𝜐𝑖(𝑜:𝑑:𝑠:𝑡) model teacher, section, day, and occasion 

quality varying across items (i.e. difficulty of items varies across 

teacher/section/day/occasion); 𝜐𝑟𝑡, 𝜐𝑟(𝑠:𝑡), 𝜐𝑟(𝑑:𝑠:𝑡), and 𝜐𝑟(𝑜:𝑑:𝑠:𝑡) model separate raters 

ranking teachers/sections/days/occasions differently (e.g. rater bias or halo effects); 𝜐𝑖𝑟 

represents raters differing on an item's difficulty; 𝜐𝑖𝑟𝑡, 𝜐𝑖𝑟(𝑠:𝑡), 𝜐𝑖𝑟(𝑑:𝑠:𝑡), and 𝜐𝑖𝑟(𝑑:𝑠:𝑡) allow 

raters’ scores of teacher/section/lesson/occasion quality to vary across items (e.g. rater 

unreliability or item specific rater bias). 

II.2. Hidden Facets 

In this section, I start to consider the impact of the situated nature of teaching on 

observed teaching quality, moving beyond those facets that are a planned part of 

measurement protocols. The fact that important facets are often not part of the planned 

                                                 

4
 I assume here occasions are independent and nested within days. This is incorrect in that occasions are 

ordered in time. The first occasion within a lesson is unique in a specific way, as is the second, third and so on. 

This suggests that occasions could be crossed rather than nested. This would estimate a unique effect for the first 

occasion as distinct from the effect of the second or third. The interaction of occasion and day would then 

capture what I am calling occasion. This would increase the complexity of the model by adding additional facets 

(an occasion order main effect and up to nine interaction terms). The current model is simpler and better 

captures the structure of accountability systems where informal observations can be conducted over any 15 

minute occasion. In later models, I will account for this structure of occasions through fixed effect moderators. 
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features of measurement is recognized by GTheorists. Thus, GTheory enables an exploration 

of the import of facets that characterize the situated nature of teaching (e.g. content domain 

taught, students taught, school context...). These facets are, in the language of GTheory, 

hidden facets because they are measurement facets (i.e. sources of score variation) not 

explicitly modeled in Equation (1). When hidden facets are not modeled, the variance in 

observed scores due to the teacher (i.e. the true score variance) or any other error facet may 

be either over- or under-estimated (Webb, Shavelson, & Haertel, 2006). For example, 

assuming that writing and reading lessons receive different scores on average, two otherwise 

equivalent teachers may still receive different teacher quality estimates if one happens, by 

chance, to be observed teaching writing (rather than reading) more than the other teacher. 

Since all days are not equal representations of the underlying construct of teacher quality, the 

hidden facet, through the random sampling of days, can contribute additional variation to 

teacher scores (i.e. sampling error gets included in the teacher quality estimate, 𝜐�̂�). The result 

is an inflated estimate of the variance in teacher scores (i.e. 𝐸(𝑣𝑎𝑟(𝜐𝑡))^ > 𝑣𝑎𝑟(𝜐𝑡)), which is 

only one of a number of possible effects of hidden facets. The exact effect of the hidden facet 

will depend on whether it acts within-teachers or between-teachers and on the distribution of 

the hidden facet across teachers. 

Before discussing the possible effects of hidden facets on observed teaching quality in 

detail, I must define some key terms necessary for this discussion. First, true teaching quality 

on a given occasion of measurement can be denoted as 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)
𝑡𝑟𝑢𝑒  and is the extent to which 

effective instructional interactions occur in the classroom on an occasion of measurement, 

where effective interactions are ones that promote student learning. This may vary from the 

observed teaching quality defined by Equation (1) (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)), where any difference 

between these two values represents bias in observed teaching quality. Second, true teacher 

quality is symbolized by 𝜐𝑡 in Equation (1) and is simply the effect of a teacher on observed 
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teaching quality as estimated across numerous occasions of measurement. Note again that the 

precise meaning of 𝜐𝑡 is model dependent, but as it appears in Equation (1), true teacher 

quality is the average of the observed teaching quality provided across the full observation 

period (i.e. from the first occasion that could be sampled through the last that could be 

sampled). 𝜐𝑡 cannot be directly known, but we can use models to estimate teacher quality (𝜐𝑡) 

and the estimate is denoted as �̂�𝑡 and termed estimated teacher quality. Now, consider what 

happens if we add to Equation (1) a "hidden" facet called facet-𝑎. For simplicity, I will 

assume facet-𝑎 is positively related to observed teaching quality, and takes on values 0 (𝑎0) 

and 1 (𝑎1). Facet-𝑎 could, for example, be writing instruction where facet-𝑎0 indicates no 

writing instruction and facet-𝑎1 indicates writing instruction took place. Adding this hidden 

facet to Equation (1) results in an equation similar to Equation (1), but with a fixed effect, 𝛽𝑎, 

added (i.e. 𝜇 is replaced with 𝜇 + 𝛽𝑎). The parameters of this equation are written with an '𝑎' 

superscript (e.g. 𝜐𝑡
𝑎). I call this the adjusted equation because it "adjusts for" the main effect 

of facet-𝑎, predicting higher quality teaching when observing facet-𝑎1 than when observing 

facet-𝑎0. Note that 𝛽𝑎 is simply a regression coefficient for dichotomous variable facet-𝑎. 

This removes the average effect of facet-𝑎 from estimates of teacher quality (�̂�𝑡). In what 

follows, I focus on the impact that the hidden facet has on estimated teacher quality (i.e. 

comparing �̂�𝑡 and �̂�𝑡
𝑎
) and the variances of teacher quality (i.e. 𝑣𝑎𝑟(𝜐𝑡)^  and 𝑣𝑎𝑟(𝜐𝑡

𝑎)^
). 

The switch from the unadjusted model (Equation 1) to the adjusted model (which 

includes the 𝛽𝑎 effect) changes the interpretation of the teacher quality estimate, not just the 

value of the estimate (i.e. 𝜐𝑡 and 𝜐𝑡
𝑎 have slightly different meanings). This shift in meaning 

is best explored by examining which aspects of teacher quality the unadjusted and adjusted 

models include in their estimates of teacher quality. The unadjusted model estimates teacher 

quality without regard to facet-𝑎. Teacher quality (i.e. 𝜐𝑡) in this model reflects the average 

quality of instruction provided over the observation period. Part of teacher quality in this 
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model is the frequency with which teachers engaged in instruction at each level of facet-𝑎. 

This reflects the belief that the decision of what to teach has important effects on what 

students learn and thus should be thought of as an aspect of teacher quality (e.g. Polikoff & 

Porter, 2014). This decision of what to teach is included in teacher quality (i.e. 𝜐𝑡), which, as 

I have argued, leads to an additional source of sampling error, the frequency with which a 

teacher is observed teaching at each level of facet-𝑎 (which can also be understood as error in 

the prediction of how often a teacher engages in facet-𝑎0 and facet-𝑎1 instruction from how 

often teachers are observed in engaging in instruction at each level of the facet).  

The adjusted model "adjusts for" the fact that facet-𝑎1 lessons, on average, score 𝛽𝑎 

points higher than facet-𝑎0 lessons. Teacher quality (i.e. 𝜐𝑡
𝑎) in this model now reflects an 

average of the quality of instruction provided in facet-𝑎1 and the quality of instruction 

provided in facet-𝑎0 over the observation period. The adjusted model "equates" instruction 

across the levels of facet-𝑎 so differences in the frequency with which facet-𝑎1 and facet-𝑎0 

are taught is no longer included in teacher quality (i.e. 𝜐𝑡
𝑎 purposefully excludes the teacher's 

choice to teach facet-𝑎1 lessons versus facet-𝑎0 lessons). This also removes the sampling 

error coming from the frequency with which teachers are observed across levels of facet-𝑎, 

under the assumption that the 𝛽𝑎 parameter correctly models the facet's effect on observed 

teaching quality.  

Thus, the difference in teacher quality between models is whether the frequency that 

teachers teach facet-𝑎1 and facet-𝑎0 is part of teacher quality. However, even under the 

assumption that the frequency teachers teach facet-𝑎1 and facet-𝑎0 is part of teacher quality, 

there may be reason to prefer the adjusted model. This is because the gain in the precision of 

the teacher quality estimate in the adjusted model (over the unadjusted model) can outweigh 

the bias that arises in the adjusted model (due to adjusting away part of true teacher quality). 

That is, there is a bias-variance tradeoff. If we cannot reliably estimate the frequency with 
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which teachers teach facet-𝑎1 and facet-𝑎0 during the observation period using the observed 

occasions, the reduced sampling error of the adjusted model is likely preferable because, 

without being able to estimate this frequency, we cannot estimate how differences in the 

same frequency may affect teacher quality. Prior research suggests that up to 15-30 days are 

needed to accurately estimate the frequency with which teachers engage in instruction across 

content domains (Rowan, Camburn, & Correnti, 2004). However, observation protocols 

generally sample about four days of instruction per teacher. Thus, it seems that the gain in 

precision from the adjusted model may often outweigh the possible introduction of bias. This 

trade-off between adjusting for facet-𝑎 to eliminate the sampling error associated with facet-𝑎 

and introducing bias by adjusting for facet-𝑎 varies based on the observation protocol, the 

meaning of facet-𝑎, and one's belief about what should and should not contribute to teacher 

quality. The question of what should and should not contribute to teacher quality is key to 

this thesis. In the next section, I discuss the ways that hidden facets affect teaching quality 

and the resulting impact this can have for estimates of teacher quality. 

The simplest empirical test for whether facet-𝑎 affects observed teaching quality (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) 

is to test whether 𝛽𝑎 is significantly related to observed teaching quality (i.e. test if the 

regression coefficient 𝛽𝑎is non-zero). A statistically significant effect implies there is 

something unique about facet-𝑎1 that affects observed scores. The effect could be significant 

for one of two possible reasons. First, the instrument may be biased for days with facet-𝑎1 

(i.e. 𝐸[𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)] ≠ 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)
𝑡𝑟𝑢𝑒  for 𝑎 = 1). Bias occurs when factors unrelated to teaching 

quality affect the observed score. For example, an instrument focused on classroom 

interactions might be positively biased for classroom discussions, rating all discussions 

higher than their true teaching quality would warrant. Instrument bias on observed teaching 

quality will generally bias estimates of teacher quality. The adjusted model should correct for 

II.2.1. Average Differences in Teaching Quality across Levels of Hidden Facets 
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this instrument bias, assuming the bias manifests as an average difference in observed 

teaching quality across levels of facet-𝑎. This correction occurs because the difference in 

average scores on a given level of facet-𝑎 is removed by the adjustment of 𝛽𝑎. In the 

empirical analyses discussed later, I will capitalize on the fact that UTQ includes three 

separate observation instruments to test for potential instrument bias, assuming that any 

differences in the magnitude of 𝛽𝑎 across the three instruments are indicative of bias. For 

example, if one instrument finds a positive effect of 𝛽𝑎 while the other two find a negative 

effect of 𝛽𝑎, bias must exist. In this case, true teaching quality is either higher, lower, or the 

same for facet-𝑎1 (as compared to facet-𝑎0), but it cannot be both higher and lower at the 

same time. Of course, I am unable to determine which of the instruments is biased in a given 

case since I have no direct measure of true teaching quality. All I know is that one instrument 

or another is biased. This is unfortunate because, in the presence of bias, the models adjusted 

for facet-𝑎 should provide a better estimate of teacher quality (i.e. 𝜐𝑡
𝑎 is more valid than 𝜐𝑡) 

so knowing which instruments show bias and should estimate teacher quality with an 

“adjusted” model would be useful.  Note that all three instruments used in the UTQ study 

emphasize interactive forms of instruction and higher-order thinking skills, which limits my 

ability to examine instrument bias since all three instruments may share similar biases. 

The second reason for a mean difference in observed scores across levels of facet-𝑎 is 

that true observed teaching quality varies across levels of facet-𝑎. When this occurs, the 

impact of the hidden facet on the parameters of the measurement model will depend on 

whether the hidden facet is within-teachers or between-teachers. Within-teacher hidden facets 

are sampled within-teachers across the full range of the facet's domain. This means that data 

exists to support generalizing across these facets, at least for many teachers. Between-teacher 

facets take on only a single level (or a very limited subset of levels) for a given teacher. Thus, 
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generalization is impossible and we must extrapolate to equate scores across these facets. I 

discuss these two types of hidden facets separately below. 

Within-teacher hidden facets occur when 

the average teacher displays higher teaching quality when observed with facet-𝑎1 than when 

observed with facet-𝑎0
5. Because this variation is occurring within teachers, under most 

definitions of teacher quality, which usually assume a stable construct across days (and often 

sections), this variation in scores is a source of error. Assuming that facet-𝑎 varies across 

days of instruction, the random sampling of days will lead to random variation in how many 

days teachers are observed at each level of facet-𝑎. This random variation leads to variation 

in teacher scores that is unrelated to teacher quality. Thus, when there is an average 

difference in scores across levels of facet-𝑎, within-teacher hidden facets will lead to 

estimates of the variance of teacher quality that are positively biased (i.e. 𝐸[𝑣𝑎𝑟(𝜐𝑡)^ ] >

𝑣𝑎𝑟(𝜐𝑡 )). Models that adjust for the effect of facet-𝑎 provide a better estimate of day 

variance (i.e. 𝐸[𝑣𝑎𝑟(𝜐𝑡
𝑎)^ ] = 𝑣𝑎𝑟(𝜐𝑡 )) because they adjust for the difference in means across 

levels of facet-𝑎 that drive the increase in bias in variance estimates. Further, models that 

adjust for facet-𝑎 will provide more estimates of the variance of teacher quality that contain 

less sampling variation (i.e. 𝑣𝑎𝑟[𝑣𝑎𝑟(𝜐𝑡
𝑎)^ ] < 𝑣𝑎𝑟[𝑣𝑎𝑟(𝜐𝑡 )

^
]), which is possible because the 

adjusted model eliminates the sampling variation in estimates caused by mean differences 

across the levels of facet-𝑎. For example, a teacher will have the same estimated score from 

the adjusted model (i.e. 𝜐𝑡
�̂�) whether they were observed once, twice, or three times on facet-

𝑎1 while the estimate of teacher quality from the unadjusted model will vary based on how 

                                                 

5
 Note that I am assuming here that within-teacher hidden facets are affecting within-teacher differences 

in teaching quality.  If there is a correlation between a teacher's average teaching quality and the prevalence of a 

specific facet, the within-teacher facets can affect between-teacher differences in teaching quality.  When this 

occurs, the within-teacher facets can lead to the same effects as between-teacher hidden facets because they take 

on a component that acts between teachers (which may or may not prevent generalizing across the facet, 

depending on the nature of the facet and the nature of between-teacher differences of the facet).   

II.2.2. Within-Teacher Hidden Facets 
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often they are observed on facet-𝑎1. Since few definitions of teacher quality are likely to treat 

sampling variation as an aspect of teacher quality, the adjusted model should be preferable in 

most cases, assuming of course, the shift in the definition of teacher quality resulting from 

using the adjusted model is acceptable. Importantly, the difference here stems from the fact 

that it is easier to accurately measure teacher quality within levels of the hidden facet than 

without regard to those levels. This reflects the same gain in efficiency that comes from 

stratified sampling as opposed to simple random sampling. Thus, adjusting models for 

within-teacher facets should reduce both the bias and variance in the estimate of the variance 

of teacher quality (𝑣𝑎𝑟(𝜐𝑡)^ ). This should lead to better reliability of estimates of teacher 

quality when using the adjusted model. 

Between-teacher hidden facets occur 

when teachers work in different contexts and the average of the observed teaching quality 

varies across context. When teachers are only observed on a single level of facet-𝑎, little 

evidential basis exists from which to generalize scores across the facet or to support 

comparisons of scores between teachers across the facet. In general, two assumptions are 

commonly used to support extrapolation. The first, called teacher sorting, assumes that any 

observed differences in teacher quality across the between-teacher hidden facet are the result 

of true differences in teacher quality (i.e. 𝑐𝑜𝑟(𝜐𝑡, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠) ≠ 0). If the 

effect is completely due to teacher sorting, teacher quality should be comparable across levels 

of facet-𝑎 without the need for any adjustment (i.e.  𝜐𝑡 = 𝜐𝑡). Further, the adjusted model will 

provide incorrect estimates of teacher quality because the adjustment equates teacher quality 

across the levels of facet-𝑎, whereas, by assumption, there are differences in teacher quality 

across the levels of facet-𝑎 (i.e.  �̂�𝑡
𝑎 ≠ 𝜐𝑡).  

The second assumption assumes that any observed differences in teacher quality 

across the facet are the result of some characteristic of the facet (i.e. co-construction; 

II.2.3. Between-Teacher Hidden Facets 
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𝑐𝑜𝑟(𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡), 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠|𝜐𝑡) ≠ 0). The most common example of co-

construction is that higher-achieving students may be easier to teach than lower achieving 

students, perhaps because they follow directions better or contribute more to the intellectual 

culture of classrooms. If the effect of facet-a is completely due to co-construction, only after 

adjusting for 𝛽𝑎 will estimates of teacher quality be accurate (i.e.  𝜐𝑡
𝑎 = 𝜐𝑡,   �̂�𝑡 ≠ 𝜐𝑡).  In this 

case, the difference across facets has nothing to do with a teacher's ability so the differences 

in observed teaching quality are, in a sense, artificial at least from the perspective of teacher 

quality.  

It is generally difficult to empirically distinguish between teacher sorting and co-

construction for facet effects, unless a study is designed explicitly to address this problem
6
. 

This is unfortunate because the implications of the two assumptions are contradictory. Thus, 

the assumption one makes in order to extrapolate determines whether the choice to adjust is 

correct. 

In the previous 

section, I discussed how mean differences across levels of a facet can affect estimates of 

teacher quality. In many cases, however, differences in observed teacher quality across facets 

will be more complex. For example, if the facet is within-teachers (e.g. teaching writing or 

not), the effects of this within-teacher facet might vary across teachers. Suppose, for example, 

one group of teachers is particularly skilled in teaching writing, leading the difference in 

teaching quality for writing versus non-writing lessons to be much larger for that group. 

Another group of teachers might struggle with teaching writing, leading the difference in 

teaching quality for writing versus non-writing lessons to be very small for that group (i.e. 

                                                 

6
 It should be noted that I described only the two most common arguments for and against adjusting. 

However, many others (and combinations of the two posed) exist, which would suggest other methods of 

adjusting for observed differences across the facet.  For example, I discuss the assumption that schools have a 

constant mean effect on scores across all teachers, which suggests centering scores within-schools as a solution 

in later chapters. 

II.2.4. Non-Constant Effects of Hidden Facet across Teachers 
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𝜐𝑡
𝑎1 − 𝜐𝑡

𝑎0 = 𝛽𝑎,𝑡 where 𝜐𝑡
𝑎1 is teacher quality for facet-a1, 𝜐𝑡

𝑎0 is teacher quality for facet-a0, 

and 𝛽𝑎,𝑡 is the difference between the two and varies across teachers
7
). In this case, neither 

the unadjusted model nor the adjusted model would be fully appropriate (because the 

adjusted model estimates 𝛽𝑎 and not 𝛽𝑎,𝑡, which varies across can take different values across 

groups) and a researcher might want to consider more complex models. One approach would 

be to allow the 𝛽𝑎 coefficient in the regression analysis to vary across the teacher random 

effect facet (i.e. 𝜐𝑡). Alternatively, researchers could separately sample, from each teacher, 

days of instruction from each level of the within-teacher facet-𝑎. This would allow separate 

teacher quality estimates to be estimated for each teacher at each level of facet-𝑎. This 

sampling approach to correcting for the effect of a hidden facet on observed teaching quality 

creates facet-level specific teacher quality estimates for a given teacher (e.g. a separate 

teacher quality estimate for writing and non-writing). Arguably, estimating level-specific 

abilities for a facet can provide the basis for a richer exploration of the effects of a facet while 

making fewer assumptions about the data, though the approach requires much more data. 

To this point, I 

have focused on the effects of hidden facets on the average of the observed teaching quality 

(i.e. differences in means across levels of facet-𝑎). In fact, facet-𝑎 can have effects beyond 

producing a mean difference in observed quality scores. Sampling each level of facet-𝑎 

independently, as just discussed, would provide the most thorough exploration of this 

possibility. Full GTheory models, such as Equation (1), could be run for each level of facet-𝑎. 

If this approach was used, the variance of any of the measurement facets, including the 

variance of "true" score (𝜐𝑡), could now vary across these independent models (i.e. 

                                                 

7
 Forgive the slight abuse of notation, which recasts 𝛽𝑎as a difference in teacher quality rather than observed 

teaching quality. I retain the notation of 𝛽𝑎to emphasize that I'm still referring to the same difference in quality 

across facet-a, though doing so at a different level of abstraction the two should be equivalent in the context in 

which its used. 

II.2.5. Hidden Facet Effects on the Variance of Teacher Quality 
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𝑣𝑎𝑟(𝜐𝑡|𝑎1) ≠ 𝑣𝑎𝑟(𝜐𝑡|𝑎0)). For example, lectures may be a relatively simple form of 

instruction where teachers all have a fair amount of skill (i.e. 𝑣𝑎𝑟(𝜐𝑡|𝑎1) is small) while 

small group discussions may require far more from teachers and so better demonstrate a 

teachers' skill in teaching (i.e. 𝑣𝑎𝑟(𝜐𝑡|𝑎0) is large). This fact could be utilized to construct 

more reliable measures of teacher quality by measuring only facets with more teacher-level 

variation, but this, of course, would change the meaning of teacher quality and restrict 

generalization to the levels of facet-𝑎 observed. In order to explore these more complex 

effects of the hidden facets, it is necessary to observe teachers on multiple days within each 

level of facet-𝑎. As I will describe later, that is not possible using UTQ data. Thus, in the 

empirical analyses presented in this thesis, I am restricted to examining only mean 

differences across levels of the hidden facets. 

The discussion 

up to this point has assumed that, across teachers, the observed days are representative of the 

full universe of possible days. This is necessary to make any generalizations across the 

specific days observed and, as discussed above, is assumed by GTheory. There are two 

important parts of this assumption, however, both of which involve within-teacher hidden 

facets. First, the assumption is that sampling is ignorable, and preferably random. Sampling is 

ignorable if the likelihood of being observed on any level of a hidden facet is independent of 

teacher quality. Second, each possible level of the hidden facet is assumed to have a positive 

probability of being sampled. Importantly, if non-ignorable sampling occurs, any 

measurement errors discussed here may contribute to bias in scores while if some levels of a 

hidden facet have no chance of being observed, generalization cannot be done over that level 

of the hidden facet (though we could extrapolate).  

Either of these assumptions can break down in practical settings. Observations within 

teacher evaluation systems, for example, face competing time demands from busy schedules. 

II.2.6. Role of Random Sampling in Analyzing Hidden Facets 
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Further, the goal of random sampling can conflict with formative assessment goals of 

evaluation systems. For example, a teacher may want to be observed only on writing lessons 

to get feedback on a type of instruction they find challenging. This could negatively bias 

scores for that teacher and make it impossible to generalize scores beyond writing lessons for 

that teacher. Further, assuming that teachers with higher teacher quality were more likely to 

engage in this practice, it would bias estimates of the effect of writing lessons by creating an 

association between teacher quality and the likelihood of being observed teaching writing 

(i.e. writing instruction will take on a between-teacher nature and be caused, at least partly, 

by teacher sorting). Thus, non-ignorability in the sampling of days is a significant challenge. 

This challenge, however, is likely minimal in research where efforts are made to keep 

sampling random and few incentives exist for teachers to manipulate sampling. The 

challenge, though, will likely be more important for accountability systems in practice, which 

must balance both the summative and formative goals of observations and complex 

schedules. This is an important fact because the effects of within-teacher facets that I detect 

in UTQ, which engaged in random sampling of days, may be a lower bound of the effects one 

might see in practice. 

One last problem arising from 

hidden facets concerns the concurrent validity of estimated teacher quality from a given 

statistical model. Assume there is an alternate measure of teacher quality (𝜏𝑡), such as teacher 

value-added (VA) scores. The question discussed now is how statistical adjustments of 

teacher quality estimates from classroom observation data affect correlations of these teacher 

quality estimates to an alternative measure.  This is an important question because the goal of 

measurement is teacher quality and, by demonstrating that teacher quality estimates, after 

making some adjustments for hidden facets, have greater concurrent validity, evidence is 

provided that these adjustments improve the measurement of the teacher quality construct. 

II.2.7. Hidden Facets and Construct Validity 
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I begin by discussing how adjusting for within-teacher hidden facets might affect this 

correlation. Based on the arguments to this point, adjusting for within-teacher hidden facets 

should increase the precision of teacher quality estimates. This increase in precision, in turn, 

should increase the correlation between teacher quality estimates and the alternate measure 

(i.e. 𝑐𝑜𝑟(�̂�𝑡
𝑎

, 𝜏𝑡) > 𝑐𝑜𝑟(�̂�𝑡 , 𝜏𝑡)) and so give a “better” estimate of teacher quality. However, 

the alternative measure, the unadjusted model, and the adjusted model all have different ways 

of defining teacher quality.  If the definition of teacher quality implicit in the adjusted model 

is more aligned to the alternative measure, this alignment could off-set the gain from 

increased precision.  For example, suppose that content coverage by teachers has large effects 

on student achievement such that teachers who cover more writing will have better value-

added scores (Polikoff and Porter, 2014). Under these conditions, the unadjusted estimate of 

teacher quality taken from classroom observation scores will capture the effects of any 

differences among teachers in content coverage (to the extent these differences are estimable 

from observed data) whereas the adjusted model removes these effects from estimates of 

teacher quality.   Thus, the unadjusted model may be superior because it retains a piece of 

teacher quality that is important to value-added scores, though, as I discussed above, it is not 

clear that the frequency of teaching writing can be reliably estimated with observation scores.   

The overall point, then, is that adjustment for within-teacher facets can improve precision 

(and therefore should improve concurrent validity). However, unadjusted models could be 

better aligned to the alternate measures and this "alignment" effect could be larger than gains 

from precision. The net effect of these two forces (precision vs. alignment) is therefore hard 

to predict.  

Adjusting for between-teacher facets, by contrast, mainly affects the bias with which 

teacher quality is estimated and this bias could either increase or decrease the correlation 

between the teacher quality estimate and the alternate measure. The correlation should 
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increase if co-construction effects are at work but decrease if teacher sorting is at work. For 

example, if more advantaged students are easier to teach (i.e. co-construction), but are 

generally not taught by better teachers (i.e. no sorting), we might observe higher teaching 

quality in classrooms with more advantaged students. In this case, the adjusted model will 

have a higher correlation between estimated teacher quality and the alternative measure 

because only the adjusted model will accurately reflect that teacher quality is unrelated to the 

percentage of advantaged students in a classroom (unlike unadjusted measured teaching 

quality). On the contrary, if better teachers choose to teach more advantaged students (i.e. 

teacher sorting), we might observe the same higher teaching quality in classrooms with more 

advantaged students. However, in this case, the unadjusted model will have a higher 

correlation between estimated teacher quality and the alternative measure because only the 

unadjusted model will accurately reflect the true differences in teacher quality across 

classrooms with different percentages of advantaged students. Thus, by using a concurrent 

measure of teacher quality, it may be possible to test for an increase in precision when 

controlling for within-teacher hidden facets and to explore the role of teacher sorting and co-

construction in explaining between-teacher hidden facets. However, concerns about 

alignment make this a difficult proposition. 

Finally, the relationship of observed teaching quality and true quality may differ 

across different hidden facets (i.e.  𝑐𝑜𝑟(X{ir(o:d:s:t)}, 𝜏𝑡|𝑎1) ≠ 𝑐𝑜𝑟(X{ir(o:d:s:t)}, 𝜏𝑡|𝑎0)). For 

example, if true quality in lectures is driven by the organization of the material and true 

quality in small group discussions is driven by instructional interactions, CLASS should be 

more valid for small group discussions because it measures interactions better than the 

organization of content. Thus, we might also be interested in the validity of estimated teacher 

quality across levels of facet-𝑎. Of course, testing the validity of observation score estimates 
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in this way presupposes that we actually have an alternate measure of teacher quality
8
. One 

challenge of finding such a measure, as I detail later, is ensuring that the measurement error 

in the alternative measure must be uncorrelated to measurement error in the estimated teacher 

quality from observation scores. This is a challenge because school context and students may 

lead to correlated errors across both measures. A further challenge is alignment of different 

definitions of teacher quality, as described above. Overall, then, there are many challenges to 

addressing the validity of estimates of teacher quality that will need careful qualitative and 

theoretical exploration. Additionally, experimental methods will likely be necessary to truly 

examine the validity of scores. 

At this point, let me review the implications of the discussion so 

far. I have argued that hidden facets exist and can affect observed teaching quality. 

Differences in observed teaching quality across levels of a hidden facet may be due to 

instrument bias or true differences in teaching quality, which in turn may be the result of 

within-teacher or between-teacher facets. Instrument biases will lead to biased estimates of 

teacher quality. Within-teacher facet effects on observed teaching quality will increase the 

sampling error of observed teaching quality, inflating estimates of the variance of teacher 

quality, but should not lead to bias if sampling is ignorable. Between-teacher facet effects on 

observed teaching quality may or may not bias estimates of teacher quality, depending on 

whether teacher sorting or co-construction are the source of these effects. It is possible to 

adjust models for mean differences in teaching quality across levels of the hidden facets, but 

this shifts the meaning of the teacher quality estimates. Further, differences in average scores 

                                                 

8 
Unfortunately, there is no good measure of teacher quality (𝜏𝑡) in UTQ. VA scores are too distal to 

detect anything but large effects (though I will test for effects with them). I cannot use the multiple observation 

instruments either because they correlate in similar ways to hidden facets (i.e. shared measurement error). 

Adjusting for hidden facets will remove this shared source of variation, necessarily decreasing the correlation 

between observation measures. A measure of teacher quality that does not share sources of error is necessary, 

instead. 

II.2.8. Summary 
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across hidden facets are only the simplest of many possible effects of hidden facets. A better 

option, I have argued, might be to sample separately each level of the hidden facet, 

constructing a full GTheory model for each facet, which would allow a full exploration of the 

impact of the hidden facet. However, this is a data intensive approach that most data sets 

cannot support. The question of validity floats above this enterprise, but is very elusive. 

Without a good alternative measure of teacher quality, validity cannot be addressed, but 

identifying a good measure is complicated by the many sources of measurement error and 

complications stemming from shifting definitions of teacher quality across models. 

Nonetheless, the validity of estimates of teacher quality may either increase or decrease after 

adjusting for the effects of hidden facets and this change should provide information about 

why hidden facets are associated with observed teaching quality. 

II.3. Three Classes of Hidden Facets 

As we have just seen, hidden facets pose a challenge to measuring teacher quality and 

making accurate comparisons of teacher ability across contexts. In this section, I describe 

three classes of hidden facets. These classes are differentiated by how and why they affect 

observed teaching quality. I then use this distinction to further discuss when one may wish to 

adjust scores for the effects of these facets. The first class of hidden facets to be discussed 

includes facets of measurement stemming from the observational system in use. In what 

follows, I call these System Design facets. These are facets of measurement that are 

introduced by the necessity of selecting specific days, times, and raters to score teachers as 

part of an observation protocol and almost certainly contribute to measurement error. The 

second class of facets includes characteristics of Curriculum and Instruction that affect 

measured teaching quality. These Curriculum and Instruction facets can appear both within-

teachers and between-teachers. Adjusting for these effects most directly changes the meaning 

of teacher quality estimates, shifting the definition of teacher quality to be a teachers' ability 
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to teach within each level of the facet rather than generalizing teacher ability across all levels 

of the facet. The third class of facets discussed here arises from the organization of schooling. 

This class includes, for example, differences in the percentage of poor or linguistically 

disadvantaged students in a teacher's class. These contextual differences produce largely 

between-teacher effects on teacher quality estimates, and sometimes between-school effects, 

and when this occurs, an analyst needs to extrapolate in order to compare teachers across 

these facets. 

The first class of facets comes from the 

design of observation systems. This class captures differences in observed teaching quality 

arising from when observations are made, which classes are observed, and who is doing the 

observation and other facets of measurement associated with the observation system design. 

For example, systematic variation of teaching quality across the school year may occur 

because of structural features of classrooms (e.g. an initial honeymoon period of good 

behavior) or from structural features of the school environment (e.g. a focus on standardized 

testing in the early spring). Since observation systems organize when observations occur, the 

system determines whether teachers are observed across a range of time periods across the 

school year or during only a few time periods across the school year. This affects whether it 

is advisable to generalize teacher ability measures across the full school year and how the 

time of year facet affects estimates of teacher quality.  When observational protocols are 

well-designed and implemented, these facets should mostly act within-teachers.  I focus on 

this case, though it should be noted that when observational systems are not well-

implemented, which can happen in practice, these facets may act between teachers.   

Variation in observed teaching quality due to System Design facets occurs within-

teachers, at least when sampling plans are well designed. Thus, these facets affect observation 

II.3.1. Facets of System Design (SD) 
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scores independently of teacher quality
9
. Based on the above discussion, this means these 

facets contribute to measurement error and may be sources of instrument bias when 

generalizing across the facets, but no extrapolation should be necessary since one could 

expect good sampling to produce observations across all or most levels of the facet. Thus, 

adjusting for the System Design facets in the measurement process should reduce sampling 

error, leading to more accurate score estimates. There are two main ways of adjusting for 

System Design facets, both of which were described above. The first is to add fixed effects of 

the facet to statistical models (e.g. 𝛽𝑎 as above), controlling for differences in average scores 

across levels of the facet. The second, preferred method, is to stratify sampling such that each 

teacher is observed across the various levels of a facet. In fact, this already occurs for some, 

but not all, SD facets in most research studies, including UTQ. For example, observations are 

usually spaced across semesters, controlling for time of year effects. As discussed above, 

using sampling to adjust for facet effects is preferred because it does not require the 

assumption that the average effect on observed teaching quality is the only effect of the facet 

nor complex statistical adjustments. Importantly, the size of the effects on observed teaching 

quality that I detect will apply most directly to research projects that sample as carefully as 

the UTQ project did. The effects of these facets in evaluation systems, which face greater 

constraints on the sampling of observation days (including the problem of non-ignorable 

sampling), likely will be much larger. 

Raters are the System Design facet that has received the most scrutiny in the 

measurement literature, and raters are included as a planned facet of measurement in most 

GTheory analyses. Three separate challenges related to rater error arise in observation 

systems. The first is the problem of rater leniency (i.e. rater severity or norming), which 

                                                 

9
 Note, however, that teacher quality might interact with some of these facets. For example, some 

teachers may be better at getting the school year off to a quick start or maintaining even quality across the 

school year. 
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involves getting raters to agree on what constitutes performance at each scale point. The rater 

main facet and rater-by-item facet in a GTheory statistical model capture these problems. The 

rater main effect captures each rater's expected deviation from the average score and the 

rater-by-item interaction captures the possibility that this expected deviation might vary by 

the item being scored. A second challenge is rater uncertainty, which results from raters 

scoring inconsistently across occasions, teachers, or class sections. The third challenge is 

rater bias, where raters respond to some quality-irrelevant aspect of instruction, leading a 

rater to produce scores that are systematically higher or lower than true quality. The rater-by-

teacher/ rater-by-section/ rater-by-day/ rater-by-occasion facets and all three-way facets 

involving raters capture a combination of rater uncertainty and rater bias, which are difficult 

to distinguish. The two-way facets just discussed capture raters disagreeing over the correct 

score for the teacher, section, day, or occasion while the three-way facets allow this 

disagreement to vary across items. Taking steps to account for rater error in a GTheory 

statistical model is important because rater effects are often large (Casabianca, Lockwood, & 

McCaffrey, 2015; Kane et al., 2012). Despite this, studies sometimes ignore rater error (e.g. J. 

L. Brown, Jones, LaRusso, & Aber, 2010; Burchinal, Vandergrift, Pianta, & Mashburn, 2010; 

Curby et al., 2009; Curby, Rudasill, Edwards, & Pérez-Edgar, 2011; Hamre et al., 2013; 

Kane, Taylor, Tyler, & Wooten, 2011) or account only for rater leniency effects (e.g. Cor, 

2011; McCaffrey, Yuan, Savitsky, Lockwood, & Edelen, 2014). By contrast, Equation (1) 

includes 10 different types of rater error, allowing for a much wider exploration of rater 

errors
10

. 

                                                 

10
 All models are unable to detect rater errors that are shared across all raters in a sample. These arise 

when the rater group as a whole deviates in the same way from the "true" score that should be awarded--perhaps 

because of inadequate norming at the training stage. Such effects may be large, especially when there are few 

raters and raters work closely together. Moreover, such errors can arise when raters using the same instrument 

are trained by different trainers for different studies. Estimates based on calibration data collected by UTQ 

researchers (which estimate differences between group means in scoring and an expert-provided "true" scores) 

suggest that group effects may account for up to 50% of the rater error in the UTQ data set. 
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The second class of facets 

comes from the variety of instructional goals (e.g. introducing content, reviewing), the variety 

of content topics (e.g. reading, writing), and a variety of other factors (e.g. rigor of tasks, 

instructional grouping) that occur in a teacher's classroom over time. These are “hidden” 

facets of measurement when they are not included as a facet in the statistical model (i.e. they 

are "hidden" from the model), but when variation in these facets nevertheless affects 

observed teaching quality scores on an occasion of measurement. Variation in levels of these 

Curriculum and Instruction facets occurs within-teachers, and all teachers generally will 

engage in instruction across all levels of these facets, though teachers likely vary in the 

amount of time they spend on each level of each facet, introducing a between-teacher 

component to these facets. 

Additionally, this class of facets likely gives rise to the most instrument bias, as the 

content taught and instructional approaches may change the relationship between observed 

quality and true quality. This class of facets, then, represents a more complex challenge than 

the System Design facets and adjusting for the effect of facets is likely to be controversial 

because the frequency with which teachers engage in instruction at different levels of these 

facets is often considered an aspect of teaching quality (e.g. Polikoff & Porter, 2014). For 

example, if the effects of content domain on observed scores are statistically controlled for in 

a measurement model, comparisons across teachers will reflect teacher skill within each 

content domain, not the average provided teaching quality. This represents an important shift 

in the meaning of teacher quality. As I have argued, this shift removes the threat of biases 

stemming from instrument bias and improves measurement precision at the expense of 

sacrificing an aspect of teacher quality (prevalence rates in instructional activities). Thus, 

even if one believes the prevalence with which teachers engage in specific types of 

instruction is an important aspect of teacher quality, it may be beneficial to adjust for CI 

II.3.2. Facets of Curriculum and Instruction (CI) 
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facets because the gains in precision and reduction in instrument bias may outweigh any 

biases introduced by the adjustment.  Further, as I have argued, observation instruments do 

not measure instruction frequently enough to estimate the prevalence with which teachers 

engage in specific types of instruction, which is necessary to estimate how the prevalence of 

instructional practices (which is ignored when adjusting for CI facets) affects teacher quality.  

That said, adjusting for curricular and instructional facets goes against the typical ways of 

framing and understanding teacher quality so it is likely to be controversial.  

My strategy in this dissertation therefore is to estimate models with and without 

adjustments for facets of Curriculum and Instruction. The differences across models show the 

impact of shifting the meaning of teacher quality (at least for when sampling is nearly 

random), and demonstrate the gains or losses from adjustment. If there is no meaningful 

difference in parameter estimates across models (i.e. �̂�𝑡 ≈ �̂�𝑡
𝑎
), the problem of adjustment 

remains academic with little practical importance. 

The third class of facets provides a 

different type of challenge because these facets always affect between-teacher differences in 

observed teaching quality
11

. This means that extrapolation is necessary to interpret teacher 

scores as applying across these facets (since teachers will almost always be observed teaching 

in only one level of each facet). The effect of School Organization facets on observed 

teaching quality can be within-schools (e.g. tracking between teachers) or between-schools 

(e.g. residential sorting of students, school culture). This set of facets likely includes both co-

construction effects, where the facet enables higher observed teaching quality, and teacher 

sorting effects, where teachers choose where they work. Thus, as discussed above, 

                                                 

11
 Note again that I've theoretically sectioned off the within-teacher context effects (e.g. variation in 

students across sections, teachers teaching multiple subjects or grades, and/or teachers teaching within different 

programs within the school) because they are better thought of as problems of system design--when observation 

systems choose to observe teachers. 

II.3.3. Facets of School Organization 
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extrapolation arguments with contradictory implications are feasible. As an example, it is not 

clear whether statistical models that adjust for School Organization facets will provide better 

or worse estimates of teacher quality. Moreover, the preferred sampling approaches described 

earlier are not possible because teachers typically cannot be observed across a range of levels 

of these facets. Making adjustments risks over-correcting for true differences across teachers 

while making no adjustments risks penalizing teachers who teach disadvantaged students. 

Despite these challenges, calls are already being made to adjust estimates of teacher quality 

for the effects of this class of facets (e.g. Whitehurst et al., 2014). Additionally, differential 

validity and instrument biases may also play a role here. For example, there is evidence that 

different types of students benefit from different types of instruction (Connor et al., 2009b), 

implying observation instruments could give higher scores to instruction that only promotes 

learning for certain types of students. 

Missing from the current conversation about this third class of facets is the difficulty 

of making clear teacher quality comparisons across schools. Schools provide an environment 

and culture that supports or constrains teachers. This complicates the comparison of teacher 

quality across schools by making it difficult to distinguish between teacher and school 

effects. Thus, it is especially difficult to justify extrapolation arguments that support 

comparing estimates of teacher quality across schools. One solution, discussed by some 

value-added theorists (Raudenbush, 2013; Reardon & Raudenbush, 2009), is to assume 

teachers are comparable to other teachers only within their own school, or possibly very 

similar schools. This reduces the extent to which extrapolation arguments must bridge wide 

differences across contexts, simplifying comparisons across teachers. However, it prevents 

comparisons of teachers' who work in different contexts, forcing a definition of teacher 

quality that is isolated to the teachers’ current school and possibly very similar other schools. 
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II.4. Summary and Research Questions 

In summary, this dissertation addresses two broad problems related to the use of 

classroom observation instruments to measure teacher quality. The first problem involves 

generalizing across the many facets of measurement involved in the typical classroom 

observation study, including both planned facets and hidden facets, in order to get an estimate 

of teacher quality. The second problem arises from the need to extrapolate across contexts 

where no data exists to generalize. The GTheory approach discussed in this dissertation 

provides a framework for exploring these twin problems.  

The statistical model I develop explicitly includes a true score and multiple error 

facets and is used here to understand the contribution of each to observed teaching quality. 

The relative contribution to variance in observed scores of these different facets in a GTheory 

model has important implications for how reliably observation instruments are measuring 

teacher quality. It also has implications for problems related to the effects of hidden facets. 

For example, if there is no within-teacher, between-day variation in observed teaching quality 

(i.e. the day facet effect is zero), then measurement conditions that vary within-teachers 

between-days cannot affect observed teaching quality and so they are not facets of 

measurement. Given the complexity of the GTheory model I shown in Equation (1), it is also 

important to consider the precision with which variance components are estimated. 

Of course, the sources of planned variation in a measurement system are not the only 

factors that can affect observed teaching quality. GTheory models can also attempt to 

incorporate the effect of "hidden" facets of measurement (at least if these are identified). As 

this dissertation shows, this can be done in a number of ways. The most straightforward way 

is to incorporate parameters that equate observed teaching quality across levels of the hidden 

facets. I have argued that this process can be used to identify areas of instrument bias, to 

examine the effects of within-teacher facets on the precision of teacher score estimates, and 
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to understand whether between-teacher facets bias estimates of teacher quality. Determining 

if any of these effects are happening is important to understanding the impact of hidden facets 

on observed teaching quality. The decision of whether to adjust for the impact of hidden 

facets is more complex, requiring the balancing of shifting meanings of the estimated teacher 

quality score and the problems caused by the hidden facets in unadjusted models. 

A last issue discussed in this dissertation concerns the validity of estimates of teacher 

ability. I have argued that the precision of estimates of teacher ability should increase after 

adjusting for within-teacher facets, especially facets related to System Design and Curriculum 

and Instruction. This, in turn, should increase the concurrent validity of estimates that adjust 

for the facet effects (i.e. by improving the correlation of the ability estimate to an alternative 

measure of teaching quality). But I also argued that any gains to validity arising from 

adjustment may be outweighed by shifts in alignment between the adjusted measure and the 

alternative measure. Additionally, the concurrent validity of observed teaching quality may 

vary across levels of hidden facets. That is, observation instruments may more accurately 

measure true teaching quality at specific levels of specific facets. This, in turn, would lead 

estimates of teacher quality to be more valid (i.e. more highly related to a concurrent measure 

of teacher quality) when teachers are observed on some levels of a facet than when they are 

observed on other levels of the facet (e.g. teachers observed teaching writing may have more 

valid scores than those observed teaching reading). 

The considerations just discussed lead to the following research questions to be 

discussed in this dissertation: 

1. Using UTQ data from several classroom observation instruments, what percentage of 

variance in observed teaching quality scores is due to a true score component (𝜐𝑡 in 

equation 1) and what percentage is due to error components? 
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a. To what extent do these percentages of variance differ across the classroom 

observation instruments used in the UTQ data? 

b. How precise are the estimates of these variance components in UTQ data? 

2. When hidden facets are analyzed in a GTheory framework: 

a. Is there any evidence that the observation instruments used in the UTQ study may 

be biased for some levels of identified hidden facets? 

b. Do the hidden facets affect observed teaching quality within-teachers or between-

teachers? Do hidden facets affect between-school differences in observed teaching 

quality? 

c. How much does adjusting for the effect of hidden facets on observed scores change 

estimates of teacher quality and estimates of the reliability of teacher quality? 

3. Does adjusting for the effect of hidden facets on observed teacher quality in the UTQ 

data improve the relationship between teacher quality estimates and teachers' value-

added scores? 

a. Does the concurrent validity of observation scores vary systematically across 

teachers based on the level of the hidden facets over which they were observed? 
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Chapter III. Review 

There has been a wide range of research on classroom observation instruments 

recently. The nature of this research has varied quite widely across specific instruments 

discussed in this thesis. Research on CLASS has largely involved evaluating interventions 

designed to change the climate of classrooms, with CLASS serving as the proximal measure 

of classroom environment. Research on FFT has centered on evaluations of district teacher 

evaluation systems. Research on PLATO has centered on how to measure and understand 

subject matter teaching quality. The combination of these strands has increased our 

understanding of observation instruments as measures of teaching quality, but leaves this 

knowledge unorganized and instrument dependent. We do not know how well results of 

research on one instrument might generalize across other observation instruments or across 

new samples of schools and districts. One challenge is the wide range of instruments. For 

example, the Early Childhood Environment Rating Scale-Revised (ECERS-R) focuses on the 

pre-K physical environment (Cassidy, Hestenes, Hegde, Hestenes, & Mims, 2005) and the 

TEX-IN3 captures literacy environment (Hoffman, et al., 2004). I restrict my review here 

largely to high-inference, behaviorally-anchored observation instruments that directly score 

quality of instruction. I do not review research on instruments that do not directly measure 

instructional quality, low-inference or behaviorist-oriented instruments, time-sampling 

instruments, instruments focused on specific discrete behaviors, instruments used only in pre-

school, or older process-product instruments that are not used anymore
12

. This restricts my 

focus to instruments similar to those that are adopted by newer teacher evaluation systems. 

                                                 

12 
Most of these older instruments either fall into the other excluded categories also or have very few 

published studies that I was able to locate that are relevant to the discussion here. 
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However, most research to date on instruments like this has focused on only four instruments: 

CLASS, FFT, PLATO, and Mathematical Quality of Instruction (MQI; Hill et al., 2012b). 

Thus, by default, research using these four instruments forms the bulk of this review, though I 

will discuss other instruments where possible. 

It is important to consider how representative these four focal instruments are to the 

broader group of classroom observation instruments focused on measuring teacher quality. 

While the four focal instruments represent a wide range of ways of characterizing teaching 

quality, they by no means represent the full diversity of instruments under consideration for 

use in teacher evaluations (nor a random subset therein). For example, the Marzano Art and 

Science of Teaching Framework (Marzano) has raters score only selected portions of the 

instrument and Thoughtful Classrooms (TC) has items that are only scored when they fit the 

lesson (Rowan et al., 2013). These unique features could have important impacts on how 

these observation instruments function, especially when considering rater error. Additionally, 

the focal instruments were designed to capture a broad range of activities and lessons while 

some instruments capture only specific types of instruction or one small aspect of the 

classroom environment. For example, the Instructional Quality Assessment (IQA) scores only 

discussions (Matsumura et al., 2006). This may lead the IQA to capture discussions better 

than any other instrument, but this comes with the downside of a very narrow scope. Overall, 

then, the instruments that I discuss here are a non-representative sample of the observation 

instruments in use in schools and research today. They are the focus simply because they 

have been featured prominently in research, due in part because of their broad applicability, 

which simplifies their use, but also because of who designed them, why they were designed, 

and where they have been adopted in practice. While the problems that I discuss should be 

relevant to all observation instruments, research is needed to understand how much specific 

results generalize across instruments. 
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Given these caveats, I turn now to reviewing prior research on observation 

instruments that provide high-inference scores of teaching quality. The flow of this chapter 

follows the previous chapter. I start by reviewing the research using Generalizability Theory, 

which provides a broad sense of the functioning of observation instruments. I then turn to 

consider the situated nature of teaching, reviewing aspects of the measurement context that 

have been shown to affect observed teaching quality. This discussion is organized by the 

three classes of facets introduced in the previous chapter. Where research exists, I look to see 

how each facet might contribute to instrument bias or the reliability and validity of estimates 

of teacher quality. Last, I discuss what is known about the validity of observation scores as 

measures of teacher quality. 

III.1. Generalizability Theory with Observation Instruments 

Generalizability Theory (GTheory) has been the main tool for understanding the 

measurement properties of classroom observation instruments. Nine recent studies have 

conducted GTheory analyses on observation instruments that fit my criteria of being high-

inference, behaviorally-anchored, direct measures of teaching quality (Bell et al., 2012; Hill 

et al., 2012b; Ho & Kane, 2013; Kane et al., 2012, 2011; Mashburn et al., 2013; Newton, 

2010; Praetorius, Lenske, & Helmke, 2012; Praetorius, Pauli, Reusser, Rakoczy, & Klieme, 

2014).
13

 These studies covered 6 instruments, used 7 different statistical models, and 

organized scoring in a number of different ways, making it difficult to generalize conclusions 

across instruments or studies. One problem lies in the fact that none of the studies under 

review used a full GTheory model (of the sort presented in Equation (1)). This is one reason 

comparisons across studies are difficult (Shavelson, Webb, & Burstein, 1986). The most 

                                                 

13
 Note that I do not include process-product research from the 1980s-1990s because these studies were 

generally either focused on time-sampled instruments, low-inference instruments, instruments that did not 

directly measure teaching quality, or instruments that appear to not be in use anymore. Further, I wanted to 

focus on modern instruments, which tend to be more constructivist and/or socio-cultural than older behaviorist-

leaning instruments. 
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common deviation from a full GTheory model involved averaging across items before 

analysis, which I call item-average models (Bell et al., 2012; Hill et al., 2012b; Ho & Kane, 

2013; Kane et al., 2012, 2011; Mashburn et al., 2013; Newton, 2010). While there is nothing 

statistically incorrect with this, it complicates comparisons across studies and hides the effect 

of items. Item-average models have less overall variance because scores are averaged across 

items (thus reducing total variance) and have fewer modeled error facets. This results in a 

greater percentage of variance in item-averaged observation scores to appear to come from 

the remaining main facets (e.g. the teacher true-score variance and the variance of the rater 

error facet appear larger in item-averaged models). Thus, when comparing the amount of 

total variance due to the teacher true-score across studies that use different models, it was 

difficult to determine how much of the difference in results between studies was due to 

different samples and how much was due to the different models. The same applies to the 

other facets.  

In addition to aggregating over items before conducting a GTheory analysis, two of 

the studies averaged across occasions of measurement within days before running models 

(Hill et al., 2012b; Kane et al., 2012). Aggregating over occasions within days before analysis 

inflates day variance while reducing the total variance, inflating the percentage of variance 

due to teachers, days, and raters. The MET analyses went one step further and used only main 

facets in their model (Kane et al., 2012). This ignores the rater-by-teacher and rater-by-

section facets. The full impact of ignoring these facets is unclear, though it will inflate the 

residual variance estimates. Overall, the choice of which facets to model and whether to 

aggregate scores before analysis will change the variance associated with each modeled facet, 

making it difficult to know whether differences across studies are driven by model or sample. 

Another important difference across studies that might affect the variance components 

is the level at which raters are assigned (i.e. assigned to score occasions, days, sections, 
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teachers). Most studies assign raters to days so that raters score all occasions within a given 

day. One study assigned raters to occasions, such that each rater scores only one occasion on 

a given day (Mashburn et al., 2013). This latter study procedure resulted in higher estimates 

for occasion and rater-by-occasion variance and lower estimates for day and rater-by-day 

variance. This shift from day to occasion variance likely will always occur under this 

different rater assignment procedure. When raters are assigned to occasions, the rater-by-

occasion effect captures two raters disagreeing on an occasion's score and the occasion effect 

captures the occasion's deviation from a day score composed of many different raters' scores 

(i.e. it includes some rater disagreement). When raters are assigned to days, the rater-by-

occasion effect captures the raters' different perception of how the occasion deviated from 

their own view of the day score while the occasion effect captures average of raters' views of 

how the occasion deviated from their own estimate of the day mean (i.e. it includes no rater 

disagreement). Because raters disagree with each other, the net effect of this difference 

should be to increase the variance of planned error facets at the level at which raters are 

assigned. The level at which raters are assigned will capture the majority of rater effects 

stemming from stable rater disagreements. This is also true when raters are assigned to 

teachers, which appears to increase estimates of the rater-by-teacher error facet (Ho & Kane, 

2013). Fully-crossing raters should help remove these effects, making the interpretation of 

error facets more clear. 

Despite the above caveats about inconsistencies across studies, there is a great deal of 

consistency in study results. Teacher variance in observed scores was generally near 25-30% 

of the total variance and slightly higher when data came from practice. The higher teacher 

variance in practice appears to stem from principals using information not contained in the 

observation in their scoring (Whitehurst et al., 2014). Day variance estimates were more 

variable across studies ranging from approximately 10-20% of the total and noticeably higher 
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in analyses of the MET data compared to other studies. Estimated rater effects showed the 

most variability across studies, which is to be expected given the different raters and training 

approaches across studies. Last, residual variance was always one of the largest variance 

components of observation scores. Overall, however, it is unfortunate that there is not more 

consistency in the statistical models used, nor any sense of the uncertainty in individual 

estimates, across studies. A greater level of consistency would allow more precise analysis 

and comparison of results than is possible presently. 

III.2. Facets of Measurement 

The GTheory models used in previous studies aimed to examine how teaching quality 

varies across measurement error facets like sections, days, occasions, raters, and items, which 

are the planned sources of generalization for classroom observations. But teaching is a 

situated task, and teaching quality will therefore vary systematically over many other aspects 

of lessons and classes as well (Gitomer & Bell, 2013). Understanding this variation is key 

both to understanding the generalizability of estimated scores and knowing the extent to 

which scores can be extrapolated across contexts. I turn now to a review of what we know 

about potential hidden facets. I divide this section into three parts based on the three classes 

of facets that I introduced in the last chapter. Very little past work has incorporated an 

exploration of these facets into a measurement framework, so the work that I review 

generally demonstrates simple mean differences in observed teaching quality across levels of 

a facet. Where possible, though, I will discuss whether research suggests that the hidden 

facets may be a source of instrument bias or affect the bias and reliability of estimated teacher 

scores. 

There are two main elements of the design of an 

observational system that are likely to influence observed teaching quality. The first is the 

decision of when observations occur. The second is the choice of raters doing the 

III.2.1. System Design Facets 
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observation. I also discuss the role of specific items in this section. Item effects are an 

important part of understanding observation instruments, especially as some districts are 

adapting instruments by changing, adding, or removing items (e.g. Chaplin, Gill, Thompkins, 

& Miller, 2014). An observational system must make decisions along each of these three 

areas to structure observations. These choices will impact estimates of observed teaching 

quality and affect how teaching quality relates to teacher quality. 

In this section, I discuss what is known about how 

the timing of observations affects teaching quality. Observed teaching quality fluctuates both 

randomly and systematically throughout the school year, the school day, and both within and 

across lesson periods. When teachers are observed at different points in time, the facets that 

effect observed teaching quality act differently across teachers. This complicates estimating 

teaching quality because part of the variation across teachers is due to the factors related to 

when teachers were observed. I discuss in this section the known factors that lead to this 

systematic variation across time, including occasions within days, time of year, time of day, 

and sections. 

Occasions. Lesson periods are usually the focus of observations due to the natural 

division of a school day into lesson periods. Many instruments, though, do not assign scores 

to lesson periods, but instead break lesson periods down into shorter occasions, usually using 

equal-length occasions (e.g. CLASS scores 15 minute occasions). The division into occasions 

has received little explicit discussion or focused empirical study. Occasions must be long 

enough to provide evidence to score each item, but short enough to reduce the cognitive 

burden of scoring. The longer the time period being scored, the more raters must internally 

aggregate over many pieces of, possibly conflicting, evidence (Hill et al., 2012a). This is a 

complex cognitive challenge for raters, which may contribute to the high amount of rater 

error found in observation instruments. Scoring shorter segments should reduce the cognitive 

III.2.1.1. When to Observe 
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burden on raters, but may lead to scoring based on heuristic approaches if little evidence for 

an item is observed (e.g. assigning a score that matches the other items rather than scoring 

items individually; c.f. Bell et al., 2014). Further, it shifts the internal process of aggregating 

scores over time to an external, testable process of averaging scores across discrete occasions. 

This allows a more formal approach to combining scores from parts of a lesson into a whole, 

but may lose contextual considerations raters can employ internally when aggregating scores. 

Similarly, when scoring occasions live, the rater is recording scores for up to one-third of the 

lesson, which may lead rare events to be missed. 

Given these considerations on occasions, I turn now to review how research has 

explored the role of occasions. Work on the Measures of Effective Teaching Project (MET; 

Kane & Cantrell, 2010) focused on the question of how many occasions are necessary to 

accurately estimate the average day score (Joe, McClellan, & Holtzman, 2014). Two fifteen 

minute occasions sufficed to get scores that correlate with the total score above 0.9, leading 

MET to score only the first 30 minutes of each day, though they acknowledged rare events 

may be missed by such a procedure
14

. Using FFT, another MET study found that 20% of 

domain 2 and 40% of domain 3 scores on this instrument changed when scores were given on 

the first 15 minutes rather than the whole day. This change was enough to shift teacher scores 

significantly up or down the distribution (Ho & Kane, 2013), suggesting one occasion is not 

sufficient. The other way of examining occasions has been to include occasions as a facet in 

GTheory analyses (Bell et al., 2012; Malmberg, Hagger, Burn, Mutton, & Colls, 2010; 

Mashburn et al., 2013), though none of these studies included a variable for the n
th

 occasion 

within a day (i.e. include a unique effect for the first/second/third occasion in a lesson 

period). Mashburn and colleagues (2013) found that occasion variance dwarfs day variance, 

                                                 

14
 The total score was the average across occasions 1-4 so this correlation is inflated by fact that the first 

two occasions composed half of the total score.   
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though their assignment of raters to occasions changes the meaning of the occasion facet (as 

described above). More commonly, occasion variance is found to be slightly less than day 

variance (Bell et al., 2012; Malmberg et al., 2010). 

None of these studies get at the root of how occasions affect observation scores. To do 

so requires explicitly recognizing the ordering of occasions and the way they are created from 

a full lesson. There has been some recognition of occasions in this way. Minutes 15-30 in a 

lesson score higher on PLATO than the first fifteen minutes while time after the first 45 

minutes is scored significantly lower (Cor, 2011). Other work found the first occasion of a 

lesson scores higher than other occasions (Cortina, Miller, McKenzie, & Epstein, 2015), 

though this may vary across items with instructional items increasing over the course of a 

lesson (Ho & Kane, 2013).  Thus, there is inconsistency in the literature. This inconsistency 

may stem from way occasions are created (e.g. occasion 1 can start with the bell or when 

instruction begins).  

The division of lessons into 15 minute occasions is arbitrary and leads to occasions 

with little coherence (Hill et al., 2012a; Staub, 2007). A proper examination of occasions 

would be served by creating meaningful occasions within lessons. Though this can be 

difficult, breaking lessons into occasions with a constant content focus and grouping structure 

has proved useful (Carlisle, Kelcey, Berebitsky, & Phelps, 2011; Stodolsky, 1984). 

Researchers from the Third International Mathematics and Science Study (TIMSS) argued 

instead for the use of lesson events, patterns of regular behaviors of consistent and pre-

defined form and function that occur within cultures (Clarke et al., 2007). Adopting occasions 

with a meaningful structure introduces a new source of error: disagreement over the 

demarcation of occasions. On the other hand, making occasions coherent may reduce rater 

error by allowing raters to score a coherent piece of instruction rather than cognitively 

balancing multiple distinct pieces of instruction (Schutz & Moss, 2004). Additionally, it 
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could better structure feedback for teachers and make more clear how teaching quality varies 

within lessons. At this point, however, no studies of relevant observation instruments have 

used coherent occasions to empirically test the impact. Thus, while the current literature 

suggests an important, albeit minor, impact of occasions on observed scores, the way 

occasions are studied may drive this finding, possibly reducing the apparent influence of 

occasions on observed scores. This is particularly relevant for this dissertation because it 

restricts how carefully I can study the effect of specific instructional practices on teaching 

quality. 

Time of Year. The structure of the school year also leads to fluctuations in observed 

teaching quality. At the beginning of the school year, students and teachers are unfamiliar 

with each other. As they gain familiarity and establish instructional routines, interaction 

patterns may shift, leading to changes in observed teaching quality. Many studies have noted 

systematic variation in teaching quality across the school year. But this usually manifests as a 

linear decrease in scores over a semester (Pianta & Hamre, 2009) or year (Bell et al., 2012; 

Casabianca et al., 2013). This decrease varies across items, with classroom management 

items remaining more constant than other items (Bell et al., 2012; Casabianca et al., 2013). 

This decline may also be sample specific as beginning teachers may show gains in observed 

scores over the course of the school year (Kane et al., 2011; Malmberg et al., 2010). Few 

explanations of this decrease exist, though standardized testing may contribute, as teaching 

quality shows a marked decline just before testing (Plank & Condliffe, 2011). This research 

showing time trends has, for the most part, been conducted using CLASS and there is less 

evidence on how other observation instruments vary across the school year. 

Time of Day. Scores appear to vary over the course of the day too, though evidence is 

limited. Most evidence suggests that teaching quality decreases over the course of the school 

day (Curby et al., 2011; Pianta & Hamre, 2009; Plank & Condliffe, 2011). However, this 
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decline may be limited to specific dimensions as climate items appear to remain more 

constant (Plank & Condliffe, 2011). Examination of the effect of time of day has been 

conducted almost exclusively with CLASS and in lower elementary grades limiting its 

generalizability. 

Sections. Teachers often teach multiple classes. In the elementary grades, they teach 

multiple subjects to the same students. In the upper grades, they teach multiple groups of 

students, possibly across different subjects and grades. This represents a possible source of 

variation in teaching quality (Bell et al., 2012). Observational systems must decide which 

sections to sample. This decision may have a large impact on conclusions about teacher 

quality. The difference between sections can result from differences in the students being 

taught or the subject being taught, which can occur either within-teachers or between-

teachers, a distinction that is rarely taken up in the literature. Only when these effects are 

within-teachers do they belong to the set of System Design facets. Because these impacts are 

generally treated as between teacher effects, I discuss the role of students and subjects in the 

System Design facet section. 

Rater error has received more attention than any other source 

of error in observed scores. Further, an extensive literature exists about rater error in 

performance assessments more broadly. The two most consistent conclusions are that rater 

errors are much higher than desired (Bell et al., 2014; Cash, Hamre, Pianta, & Myers, 2012; 

Gitomer et al., 2014; Hill et al., 2012b), often exceeding accepted rules of thumb for rater 

errors (see Graham, Milanowski, & Miller, 2012), and an entire system of training, 

monitoring, and supporting raters is necessary to obtain accurate scores (Hill et al., 2012a; 

Joe, Tocci, Holtzman, & Williams, 2013). In fact, the high inference, global ratings of many 

classroom observation instruments have long been known to have high rater errors, even after 

extensive training (Hoyt & Kerns, 1999; Shavelson & Dempsey-Atwood, 1976). 

III.2.1.2. Raters 
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The most thorough exploration of rater errors was conducted by Bell and colleagues 

(2014) using combined data from MET and UTQ. They found, both empirically and from 

rater self-report, that rater error varied by dimension with more dynamic dimensions 

containing more error while classroom management dimensions contained less error. 

Cognitive interviews revealed that all six raters under study displayed confusion in their 

understanding of at least one item, which went beyond trouble scoring the item from video 

data. This was despite their extensive training, calibration, and scoring experience. This 

confusion may stem from trouble reconciling discrepant beliefs about good instruction (Cash 

et al., 2012). The fact that raters misunderstood items is disconcerting as it suggests the 

assigned scores may not always reflect their intended meaning (Hill et al., 2012b), which may 

be even more true in practice because administrators are both less focused on accuracy and 

less experienced in using observation instruments than professional raters (Ferris, Munyon, 

Basik, & Buckley, 2008). 

In fact, most results on rater error are overly optimistic because they examine error 

based on comparing scores given by two raters in order to estimate the amount of rater error. 

These are "internal errors" and can be contrasted with "external errors", where rater scores are 

compared to an externally created "true score" (Myford & Wolfe, 2009). This is an important 

distinction because the process of training and calibration may lead the entire group of raters 

to drift from the "true scores". Using the master scores from UTQ calibration data as a proxy 

for "true score", I found (in work in progress) that only about half of the rater error can be 

detected by comparing scores between raters. This can tentatively serve as an estimate of how 

much the current literature may under-estimate the actual amount of rater error in observation 

scores. However, the number of raters and how closely they work together will play a role in 

the prevalence of internal and external rater errors. 
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The most commonly examined rater error is rater leniency (i.e. rater main effect or 𝜐𝑟 

from Equation (1)). Rater leniency arises when raters disagree in their understanding of how 

scale points correspond to actual performance. Estimates of rater leniency vary quite a bit 

across studies and instruments, ranging from 5% to 30% of the total variance (Bell et al., 

2012; Hill et al., 2012b; Ho & Kane, 2013; Kane et al., 2012, 2011; Mashburn et al., 2013; 

Newton, 2010; Praetorius et al., 2012, 2014). While rater leniency is generally treated as 

constant, evidence shows that raters drift over time in how they use scales, causing leniency 

to vary over time (Casabianca et al., 2015; J. J. Cohen & Goldhaber, 2016; Harik et al., 

2009). Leniency also varies across items (e.g. 𝜐𝑖𝑟 from Equation (1)), which leads to 

covariances in rater error across items (Hoyt & Kerns, 1999; McCaffrey et al., 2014). These 

covariances make it difficult to explore correlations across items and the factor structure of 

items. 

The most important determinants of rater leniency are the rater's role and goals 

(Golman & Bhatia, 2012). When administrators give ratings, scores are usually inflated and 

have a compressed range (Golman & Bhatia, 2012). Principals are especially sensitive to 

score thresholds that have consequences for teachers (Grissom & Loeb, 2016). This is 

because scores will affect the working climate, the principal's relationship with the teacher, 

and even whether the teacher takes up feedback provided (Bretz, Milkovich, & Read, 1992; 

Kraft & Gilmour, 2016). That is, principals are not solely focused on providing accurate 

scores, but have competing goals that influence how they score (Grissom & Loeb, 2016; 

Wang, Wong, & Kwong, 2010). Because of these challenges, districts sometimes put into 

place external observers with no connection to the teacher or goals beyond providing an 

accurate score (Dee & Wyckoff, 2015; Steinberg & Sartain, 2015). The scores derived from 

this procedure may be more highly correlated with VA scores, but are rarely as reliable (Ho 

& Kane, 2013; Whitehurst et al., 2014).  The lower reliability occurs because principals are 
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more familiar with their own teachers and so provide scores that are more stable (i.e. reliable) 

based on their knowledge of the teacher that extends beyond the lesson observed (Hoyt & 

Kerns, 1999).  When this knowledge of teachers that extends beyond the specific lessons 

observed is not linked to teachers’ VA scores, the validity of scores assigned by principals is 

lower than that of an external observer. 

The rater leniency effects just discussed are only a small portion of total rater error, 

however. For example, MET found residual error, which is driven by rater inaccuracy and 

other rater errors, to be up to 10 times larger than leniency effects (Kane et al., 2012). This 

rater inaccuracy error stems from raters applying the observation instrument differently to 

specific videos. It also tends to be item specific with dynamically scored items and 

instruction-related items leading to higher rater error (Bell et al., 2014; Gitomer et al., 2014; 

Sartain, Stoelinga, & Brown, 2009). While rater inaccuracy is treated as purely random 

variation in scores caused by raters, little of the error is likely to be truly random (Murphy & 

Deshon, 2000). Rather, it stems from various sources, such as the way raters sample 

interactions from videos (Bell et al., 2012), the rater's current emotional state (Floman, 

Hagelskamp, Brackett, & Rivers, 2016), and even the previously watched video (Ho & Kane, 

2013; Sumer & Knight, 1996). Rater biases against specific types of instruction or specific 

teacher and student characteristics may also play a role, though efforts to reduce bias are 

generally employed in rater training (Park, Holtzman, & Chen, 2014). 

Rater error is an inevitable aspect of observation scores and likely to remain a major 

source of error. The research shows this consistently, despite extensive training and 

monitoring of raters. Rater errors in practice are likely to be higher, given the competing 

demands on and goals of administrators. However, it is important to note that the most 

damaging forms of rater error, biases against specific groups of teachers or students, have not 
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been reported, though, admittedly, research designs and analyses able to capture these biases, 

if they exist, are uncommon. 

The role of items has received relatively little attention 

because the focus of classroom observation instruments has largely been on identifying 

effective teachers using average scores. The main result in regard to items has been that 

average scores on items related to classroom management and culture are generally higher 

than average scores on items related to instruction (e.g. Kane et al., 2012). This shows that 

average scores on observation instruments will vary greatly based on how many items 

measure classroom management and culture compared to how many items measure 

instruction. In fact, the variance in classroom observation scores due to items dwarfs the 

variance from any other source (White, 2017). Some studies have explored items more 

carefully, especially early studies of the subject-specific instruments (Grossman et al., 2013; 

e.g. Hill et al., 2012a) and studies that present item-specific variance decompositions (e.g. 

Kane et al., 2012). Such studies have provided information about the validity of specific 

items. Explicit Strategy Instruction from PLATO, for example, shows the strongest 

relationship with VA scores compared with other PLATO items (Grossman et al., 2013). 

Studies also demonstrate that specific items show very different amounts of variation across 

raters and days, suggesting the need to explore item-specific models. The instructional 

triangle (D. K. Cohen & Ball, 1999) provides one way to understand this variation. Across 

days, teachers and students remain the same while content shifts so items connected to 

content should show greater variation across days, a consistent finding, though differences 

are often small and determining which items vary with content is fraught (Praetorius et al., 

2014). 

This research shows that the choice of what items are included on an observation 

instrument has an important effect. Further, items do not function in similar ways; some items 

III.2.1.3. Items 
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provide more reliable estimates of teaching quality than others. Additionally, items scores 

vary in the degree to which they correlate with value-added scores. These differences across 

items, in part, are aligned with the distinction between items focusing on management or 

culture and those focusing on instruction. However, more work is needed to explore whether 

specific types of items function in unique ways across different instruments. 

  

In summary, then, this section discussed the facets of system design. These facets are 

affected by decisions made in the design observational systems. There is a convincing body 

of evidence demonstrating that these facets affect observed teaching quality, though the 

extent to which these effects may be sample or instrument dependent is less well known. 

Well-designed observation systems space observations across time, hire well-trained raters 

who display few biases, and record data on teaching quality across a wide range of 

dimensions. In these well-designed systems, the effects of SD facets on observed teaching 

quality discussed here should produce minor sources of sampling error, inflating estimates of 

the variance of teacher quality. This will affect how reliably scores are estimated, but scores 

should not be biased by these facets. 

Features of curriculum and instruction 

can affect the observed teacher quality. Over the course of the year, teachers teach multiple 

content areas and use many instructional formats, such as lecture, recitation, and discussions. 

Understanding the extent to which these facets affect observed teaching quality and whether 

classroom observation instruments idiosyncratically respond to quality-irrelevant features of 

the enacted curriculum and instruction is important to building models that accurately 

estimate teacher quality (Brophy, 2006; J. J. Cohen & Goldhaber, 2016; Grossman et al., 

2010; Kelcey & Carlisle, 2013). The most direct way to explore the potential effects of 

enacted curriculum and instruction on observed teaching quality would be to observe all 

III.2.2. Curriculum and Instruction Facets 



 

63 

teachers teaching the same lesson. Such analyses used to be more common in research on 

teaching and were used to increase the precision of measurement by restricting the variation 

in classroom tasks (e.g. Calkins, Borich, Pascone, Kugle, & Marston, 1977). This same 

approach provided useful information about how much specific tasks affected observed 

classroom quality scores. Current research, however, has been more focused on generalizing 

observed teaching quality scores to average provided instruction, and as a result, approaches 

that allow an exploration of how specific lesson plans affected observed teaching quality 

have fallen out of favor. 

There is evidence that the content domain 

taught affects observed teaching quality (Grossman, Cohen, & Brown, 2014; Grossman et al., 

2014). By content domain, I refer to large categories of content, such as reading, writing, 

grammar, fluency, or vocabulary in English and algebra or geometry in math. In a small study 

of English using the PLATO instrument, Grossman and colleagues (2013) found that lessons 

involving writing instruction received lower scores than lessons involving reading 

instruction, which the authors assert was due to the low direct instruction and the high 

frequency of seat-work practice in writing lessons. Using data from the larger MET study, 

though, Grossman, Cohen, and Brown (2014) found that lessons involving grammar and 

lessons that involved both reading and writing received lower scores on PLATO than did 

lessons involving only reading or involving only Writing. This second study, then, failed to 

fully replicate the original study (Grossman et al., 2014). One limitation of both of these 

studies is that they have only examined the PLATO observation instrument, which focuses on 

English specific instructional practices. It is not clear if more general observation instruments 

(e.g. FFT or CLASS) will show these same effects. It is also not clear how much the 

differences in findings across the two studies just discussed is due to sampling error 

III.2.2.1. Content Domain Effects 
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stemming from the use of different samples or due to other factors such as the writing 

curriculum used by the schools. 

Overall, however, the finding that content domain affects observed teaching quality is 

not surprising given that teachers engage in different instructional moves across content 

domains (Stodolsky, 1984). In fact, other research (on reading instruction in elementary 

grades) found that the content domain being taught during a reading lesson accounts for about 

15% of the variation in teacher moves associated with delivering instruction and 67% of the 

variation in teacher moves associated with supporting students (Kelcey & Carlisle, 2013).  

There is a limited amount of evidence for content domain effects on teaching quality 

in Math. Indeed, I was able to find only one study that explored content domain effects on 

observed teaching quality in math (Hill et al., 2012b). This study found no difference in MQI 

scores across lessons focused on Algebra versus Geometry. Thus, more study is needed to 

examine the potential effects of content domain on observed teaching quality, both across 

new samples and using a wider range of instruments to help clarify how facets related to 

Curriculum and Instruction affect observed teaching quality. 

The way instructional 

interactions are structured during lessons may also impact observed teaching quality. For 

example, individual seat-work limits interactions, recitations limit students' interactions to 

responding directly to teacher questions, while group discussions allow for more free-flowing 

and complex interactions among students and teachers. The choice between instructional 

formats structures the sort of interactions likely to occur among students and teachers, which 

in turn could affect observed teaching quality. While the choice of how to structure 

interactions is often considered a part of teaching quality, within-teacher variation in this 

choice will be observed as a result of sampling of days, which can affect the precision of 

III.2.2.2. Structure of Instructional Interactions 



 

65 

estimates of teacher quality. Thus, the effect of how instructional interactions are structured 

on observed teaching quality may be either within-teachers or between-teachers. 

The only interaction structure that has received research attention is instructional 

grouping. Small group work promotes more student to student interactions while individual 

work promotes fewer interactions. There is a range of findings, almost solely for CLASS, 

with some studies finding that individual work is rated lower on average than small group 

and whole class instruction (Curby et al., 2011; Plank & Condliffe, 2011, 2013).  But other 

studies find no effect of grouping (Rimm-Kaufman, Paro, Downer, & Pianta, 2005; Stuhlman 

& Pianta, 2009). The difference across studies may be explained by the purpose of the 

individual seat-work in a given lesson, as individual work geared towards standardized test 

preparation is of particularly low quality (Plank & Condliffe, 2011, 2013). Thus, additional 

research is needed to understand the role that variations in interaction structures plays in the 

measurement of teaching, with a particular need for research focused on understanding 

whether effects generalize across instruments, grades, specific content being studied, and a 

broader range of interaction structures. 

Other facets related to 

the curriculum might also play a role. While there is no empirical evidence for this, a number 

of areas have been pointed to as potentially important to examine. For example, the sequence 

of content and lessons has long been highlighted as an area for study (Gage & Needels, 1989; 

Garrison & Macmillian, 1984; Staub, 2007). A lesson's learning goals have also been 

suggested as relevant to observed instructional quality (Kelcey & Carlisle, 2013). Some 

instructional goals may not require cognitively demanding instructional practices, leaving 

items focused on cognitive demand, such as Analysis and Problem Solving in CLASS, to be 

less valid for these lessons (Grossman et al., 2014; Praetorius et al., 2014; Walkington & 

Marder, 2014). 

III.2.2.3. Other Curriculum and Instruction Facets 
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Overall, then, there is limited evidence about how facets of Curriculum and 

Instruction affect teaching quality. Content domain seems to be important, but the 

consistency of findings across samples and instruments is unknown and few other facets have 

been actively explored. However, teaching a full curriculum over the course of a year 

necessitates a wide range of teaching practices. We know very little about how this variety 

might systematically impact observed teaching quality or the inference to teacher quality, but 

it seems unwise to assume a priori that these effects are trivial. As such, we should build up 

our understanding of how observed teaching quality varies across the full range of curriculum 

and instructional practices. 

Yet another set of influences on observed 

teaching quality arise from the ways schools are organized. In this section, I review the 

research on four such facets and how they might affect observed teaching quality. The first 

facet is related to student characteristics, which vary within and between schools due to 

tracking and residential sorting. The second and third facets I discuss are subject and grade, 

which arise from the division of schools into discrete classes and grades. Lastly, I look at the 

impact of schools and districts overall on observed teaching quality. 

Studies consistently find that observed 

teaching quality is related to students' prior achievement (Allen et al., 2013; J. J. Cohen & 

Goldhaber, 2016; Polikoff, 2015; Schacter & Thum, 2004; Steinberg & Garrett, 2016; 

Whitehurst et al., 2014). These effects appear to be stronger for English compared to math, in 

middle schools compared to elementary schools, and for dimensions of teaching quality that 

relate to climate and culture versus instructional practices (Gill, Shoji, Coen, & Place, 2016; 

Lazarev & Newman, 2015; Steinberg & Garrett, 2016).  In fact, the relationship between 

student characteristics and student's prior achievement may disappear entirely in elementary 

III.2.3. School Organization Facets 
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schools (Lazarev & Newman, 2015; Steinberg & Garrett, 2016), a finding that needs further 

study. The relationship of observed quality and student demographics is also well established, 

though the effect is weaker than for prior achievement (Bell et al., 2015; Chaplin et al., 2014; 

J. J. Cohen & Goldhaber, 2016; Grossman et al., 2014; Walkington & Marder, 2014). 

Interestingly, teacher scores varied little across different groups of students taught by 

the same teacher within a given year, as when teachers offer instruction to multiple class 

sections in the same school (Kane et al., 2012). This seems at odds with the strong effect of 

student characteristics on observed teaching quality scores
15

. One explanation for the finding 

of small class section effects on observed teaching quality is that effects due to student 

characteristics are only between-teacher effects, which appears to be true for evaluation 

systems, where student characteristics largely act between schools (Jiang & Sporte, 2016; 

Kane et al., 2011). However, in the MET data, at least, where section effects are small, the 

relationship of prior achievement and observed quality were estimated as a within-teacher 

effect (Steinberg & Garrett, 2016). Another explanation for the puzzling finding about class 

section effects is that while student composition effects are present, they have relatively little 

effect on scores as a whole, at least when differences in student characteristics are measured 

as differences between sections taught by the same teacher. This was true in the MET data, 

where correlations between teacher score estimates with and without adjustments for student 

demographics were above 0.9 (Kane, McCaffrey, Miller, & Staiger, 2013). Further, the cross-

year instability of observed teaching quality scores was found to be mostly unrelated to 

changes in demographic characteristics of classrooms (Polikoff, 2015). Both of these 

findings, then, suggest that the relationship between student composition and observed 

                                                 

15
 The author's own analyses show that in MET and UTQ data, there is a significant amount of variation 

in student characteristics within-teachers across-sections. This reduces the likelihood that between section 

differences in student composition are too small to detect, ruling out the possibility that teacher sections are too 

similar to detect student composition effects. 
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teaching quality is not highly important to estimating teacher scores overall, at least for some 

samples. That said, there is evidence that teacher behavior changes as a result of student 

composition (e.g. Carlisle et al., 2011) and that ideal instruction varies across students of 

different ability levels (e.g. Connor, Morrison, & Petrella, 2004; Connor et al., 2009a). 

Because of this, the relationship of student characteristics to teaching quality should not be 

ignored. Further, the effect on observed teaching quality of adjusting scores for student 

composition effects appeared to be much larger in many studies other than studies using the 

MET data (Jiang & Sporte, 2016; Kane et al., 2011; Whitehurst et al., 2014). These 

considerations have led to calls for adjusting observation scores based on student 

characteristics (Steinberg & Garrett, 2016; Whitehurst et al., 2014). However, as discussed 

earlier, any adjustments in observed scores for student composition can result in increasing 

errors in observed scores, unless the mechanism responsible for non-random assignment of 

students across classes is correctly modeled (J. J. Cohen & Goldhaber, 2016). 

Beyond the direct effect of student characteristics on observed teaching quality, there 

is some evidence that the effect of observed teaching quality on student learning varies across 

different groups of students. A number of studies have found that lower ability students 

(Cadima, Leal, & Burchinal, 2010), poor students (Carlisle et al., 2011), and minority 

students (J. J. Cohen & Grossman, 2016) benefit more from high quality instruction than do 

their better off peers. Other work, almost entirely from the CLASS instrument, shows that 

observed teaching quality acts more to buffer students at risk of negative outcomes than to 

explain positive outcomes (Cadima et al., 2010; Curby, Rimm-Kaufman, & Ponitz, 2009; 

Hamre & Pianta, 2005; Rimm-Kaufman et al., 2002; Walkington & Marder, 2014). The 

findings that observation scores are related to student outcomes differently across different 

groups of students are not consistent, however. For example, CLASS scores appear to be 

equally predictive of outcomes for Hispanic and non-Hispanic students and students whose 
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first language is and is not English in pre-school (Downer et al., 2012). These discrepancies 

could stem from CLASS being more robust to the instructional needs of different groups of 

students or to the fact that differential validity of observation instruments only occurs in 

certain grades. Thus, there is a need for further exploration of the differential validity of 

observation scores across groups of students. Assuming the effects of observed teaching 

quality on student outcomes replicate, research needs to examine whether such interaction 

effects are driven by different types of students needing different types of instruction, or by 

the unique sensitivity of disadvantaged students to poor instruction, or perhaps by other 

factors not yet identified. 

Observed teaching quality scores may vary across subjects 

(e.g. math, English, science, social studies) because teaching approaches differ across 

subjects (J. J. Cohen, 2015b; Stodolsky, 1984). The evidence of subject differences in scores 

on the observation instruments studied here is mixed, with some studies finding higher scores 

in English than math (Chaplin et al., 2014) while others find no differences (Curby et al., 

2011; Pianta & Hamre, 2009). Only one study that I could find explored within-teacher 

differences in instructional quality across subject (Curby et al., 2011). It found math and 

English instruction had fewer positive emotions, were more controlling, and were more 

productive than instruction on average. Various effects were found for other subjects most of 

which were small. Importantly, the effects on observed teaching quality varied across grades 

in complex ways, suggesting subject effects are grade specific. Overall, then, more research 

is needed to explore how and why subject affects observed teaching quality with a focus on 

grade level moderators and whether effects are between or within teachers. 

There is more consistency in research that has shown the relationship of observation 

scores and VA scores varies across subjects. This relationship was found to be stronger in 

math than English (Chaplin et al., 2014; Kane et al., 2012), which likely reflects the greater 

III.2.3.2. Subject 
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role of non-school forces in the learning of English compared to math. Interestingly, this 

difference was not seen for the higher-order English test used in the MET study, which tested 

mostly writing performance, a skill that is apparently less affected by non-school forces 

(Kane et al., 2012). Thus, not only might the subject being taught affect observed teaching 

quality, but it might impact the relationship between teaching quality and teacher quality. 

The grade level of students being taught also has been 

found to have a large effect on observed teaching quality in previous research. The MET 

project, for example, found large grade effects, with middle school teachers (grades 6-8) 

scoring significantly lower than elementary school teachers (grades 4-5) (Grossman et al., 

2014; Mihaly & McCaffrey, 2014). Studies of teacher evaluation systems have found similar 

effects of grade level on observed teaching quality (Chaplin et al., 2014). Importantly, this 

effect was not explained by differing teacher or student characteristics across grades, but 

rather seemed to reflect differences in curriculum and student maturation effects (Mihaly & 

McCaffrey, 2014; Walkington & Marder, 2014). However, as in research on subject effects 

on teacher quality, the lack of studies that observed the same teacher teaching more than one 

grade makes any conclusions as to the cause of grade differences in teaching quality unclear. 

The effects could be driven by teacher sorting to preferred grades. 

There is also mixed evidence concerning the extent to which the relationship of 

observed teaching quality scores and VA scores varies across grades. Some studies found the 

correlation of observation scores and VA scores was higher in elementary grades (Chaplin et 

al., 2014), some found the correlation was higher in middle grades (Walkington & Marder, 

2014), and others found no difference across grades (Mihaly & McCaffrey, 2014). 

Walkington and Marder (2014) looked in detail at why the relationship between an 

observation score and VA score was higher in middle schools using the UTeach Observation 

Protocol and MET data, finding that student behavior and school climate often affected VA 

III.2.3.3. Grade Levels 
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scores but had little effect on observed teaching quality. They also identified content as an 

explanation of the varying relationship between observation and VA scores because the focus 

on lower-order tasks in instruction detracted from observed scores, but not VA scores. Thus, 

the differential validity of observation scores across grades appears driven by observation 

scores responding to aspects of teaching quality unrelated to VA scores. This suggests that 

the differential validity of observation scores across grades is likely instrument and test 

dependent. 

The goal of this thesis is to explore the 

relationship between observed teaching quality and "true" teacher quality. Schools and 

districts may have an important moderating effect on this relationship (Blazar, Litke, & 

Barmore, 2016; Jiang & Sporte, 2016; Lynch, Chin, & Blazar, 2015), though this potential 

effect has been ignored in most past work. Schools may affect the relationship between 

teaching quality and true teacher quality because, as many have asserted, schools have 

distinct instructional cultures that affect teaching practices (Bryk, et al., 2010; Ladson-

Billings, 2008), though convincing evidence demonstrating how schools affect observed 

teaching quality is harder to come by. Cohen and Brown (2016) found that observation scores 

and VA scores are unrelated in schools with positive school environment ratings but 

positively related when the school has negative school environment ratings, suggesting that 

school environment moderates the validity of observation scores. This study, however, was 

conducted with a small sample and tables presented in the paper show one outlier teacher 

whose data could be driving the moderating effects of school environment. Cohen and 

Grossman (2016) similarly reported that the relationship between observation scores and VA 

scores varied across schools, but it is unclear whether the two papers shared common schools. 

The authors of the two papers suggested that schools with a positive environment had more 

shared responsibility for student learning so the instructional skill of the classroom teacher 

III.2.3.4. Schools and/or Districts 
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was less connected to student learning. Holtzapple (2003) found similar moderation effects of 

school climate, which were driven by higher VA scores for the worst teachers in good 

schools compared to the VA scores of the worst teachers in bad schools. If the power of 

observation scores to predict VA scores is only in the lower tail of the distribution (e.g. 

Holtzapple, 2003), this could explain the results from Cohen and colleagues (2016; 2016) 

without appealing to moderating effects of schools.  

In general, however, much more work is needed to understand how school (or district) 

environments might affect observed teaching quality and how this relationship affects the 

extrapolation to true teacher quality. This is vital because teacher evaluation systems are 

extrapolating across schools to make between-school comparisons of teachers, which rely on 

estimating the causal impact of the teacher on teaching quality. If schools affect a teacher's 

ability to provide instruction, the relationship of teaching quality and teacher quality will vary 

across schools, leading school effects to contaminate the estimates of teacher quality 

(Gitomer & Bell, 2013). 

Current uses of 

observation instruments often focus on questions that require causal attributions to teachers 

(Bell et al., 2012; Gitomer & Bell, 2013). We wish to know whether one teacher meets a 

given threshold of quality or performs better than another teacher. This is a challenging 

problem because observed teaching quality varies widely with characteristics of the lesson 

and classroom being observed. Teaching is a situated task and must be understood as such if 

we want to make appropriate conclusions about teacher quality (J. J. Cohen & Goldhaber, 

2016; Kennedy, 2010). In this section, I reviewed the evidence that currently exists about 

factors that are systematically related to differences in average scores on observation 

instruments. Unfortunately, this evidence is often inconsistent or incomplete across studies. 

Further, it is often unclear if effects generalize across the single instrument used in the study. 

III.2.4. Summary of Facet Effects on Observation Scores 
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However, it is clear that three broad classes of hidden facets affect observed scores on 

observation instruments. These hidden facets—labeled here as System Design facets, 

Curriculum and Instruction facets, and School Organization facets all represent groups of 

variables that have been shown, with varying amounts of replication and consistency, to 

affect observed teaching quality. While these classes of facets affect averaged observed 

teaching quality, much less is known about how these hidden facets affect the measurement 

properties of observation scores—the reliability of estimates, bias in estimates, and the 

validity of score estimates. In this thesis, I hope to provide information on this point by 

incorporating these hidden facets into a broader measurement framework and statistical 

models that examine how observed scores generalize across facets of measurement. 

III.3. Validity of Classroom Observation Scores 

Up to this point, I have reviewed past work relevant to my first two research questions 

which explore the effect of the planned and hidden facets of measurement on observed 

teaching quality. In this section, I turn towards evidence supporting the validity of score 

estimates derived from classroom observation instruments. The majority of research that has 

explored the validity of using observed teaching quality to make conclusions about teacher 

quality has focused on the relationship between classroom observations and VA scores, 

though some work has connected observations to teacher knowledge and student survey 

measures of teacher quality. 

The evidence linking observation scores and VA scores is growing (e.g. Kane et al., 

2013; Milanowski, 2011; Schacter & Thum, 2004). There are, however, concerns about this 

evidence. The relationship between observation scores and VA scores may be driven mostly 

by effects in the lower tail of the distribution (Grossman, Cohen, Ronfeldt, & Brown, 2014; 

Holtzapple, 2003; Lynch et al., 2015). Further, the non-random sorting of students to teachers 

raises the potential that shared measurement error is driving this relationship. Using MET 
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randomization data, Garrett and Steinberg (2015) found that observation scores can causally 

identify effective teachers only in math (and not English), providing only partial support for 

the claim that the relationship between observation scores and VA scores is not the result of 

shared error stemming from the non-random sorting of students. The lack of an identifiable 

causal relationship stems, in part, from the weak connection between observation scores and 

VA scores and high levels of measurement error in both measures. This weak connection is 

unsurprising given that different approaches can lead to student learning, students may 

respond differently to the same instruction, learning occurs outside of classrooms, and the 

long history of low correlations from process-product work (Croninger & Valli, 2009; Good, 

1979; Muijs, 2006; Seidel & Shavelson, 2007). Observation scores have also broadly been 

connected to other outcomes, such as teacher knowledge (Bell et al., 2012; Hill, Ball, Blunk, 

Goffney, & Rowan, 2007) and the quality of student work (Matsumura, Garnier, Slater, & 

Boston, 2008). Thus, there is broad and consistent evidence that supports the validity of 

observation scores, at least correlationally, but the relationships are weaker than desired. 

This evidence of the validity of observation scores does not directly address the 

question of whether hidden facets affect the validity of observation scores. Only the MET 

study directly addressed this, but MET research on the issue was done in passing and the 

researchers simply noted a correlation above 0.9 between teacher score estimates before and 

after adjusting for the facets of student characteristics, implying student characteristics did 

not have an effect on the validity of observation scores (Kane et al., 2013). It is not clear how 

well this finding generalizes though because, as I discussed before, other studies suggested 

more meaningful changes to scores as a result of adjusting for student characteristics (e.g. 

Whitehurst et al., 2014). 
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III.4. Chapter Summary 

In this chapter, I reviewed the past research that explored the connection between the 

contexts of measurement and observed teaching quality. Here, I summarize this work, 

connecting it directly to my research questions. This research shows clearly that observed 

teaching quality varies, over both planned error facets and contextual features of lessons not 

generally considered in measurement models (i.e. hidden facets). The various planned error 

facets make large contributions to observed score variance and these contributions are fairly 

consistent across studies, though no evidence exists regarding how accurately they are 

estimated.  

There is less evidence for consistency in the research on hidden facets, however.  The 

research here is shallow, contains few replications of any given result, and is splintered such 

that most results apply to only a single classroom observation instrument. The one exception 

to this is the strong connection between observed teaching quality and student prior 

achievement and demographic characteristics, which has been robustly shown across many 

studies and instruments. For most hidden facets, though, more research is necessary to 

explore the generalizability of findings across samples and instruments. Given this, very little 

is known that directly relates to my second research question.  

Few studies have explored how adjusting for hidden facets might change estimates of 

teacher quality or examined the implications of these changes for issues of validity. Further, 

little research is explicit about whether facets act within or between-teachers, which, as I have 

argued, is important for understanding their effect on teacher's score estimates and for 

understanding when extrapolation is necessary to compare scores across teachers.  To be 

sure, there is growing interest in adjusting observation scores for contextual features, but this 

interest has largely focused on adjusting measures for student characteristics and has not 
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connected these adjustments to a broader measurement framework that fully addresses the 

many questions associated with using adjusted or unadjusted models for score estimation.   

Research on the validity of observation scores has focused almost solely on 

connecting observed teacher score estimates to other measures of teacher quality. The 

validity research has yet to explore whether adjusting for hidden facets may help improve the 

validity of estimates of teacher quality. Further, there has been little explicit exploration of 

how much the relationship between scores from observation instruments and other measures 

of teacher quality varies across levels of hidden facets, though some studies have shown the 

correlation of observation scores and VA scores varies across schools, subjects, and grades. 

Overall, then, past research provides support for my claims that the context of measurement 

matters in understanding observed teaching quality, but largely leaves open the implications 

of this relationship, especially the question of how contexts of measurement might impact 

estimates of observed teacher quality. 
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Chapter IV. Methods 

In this chapter, I review the data sources used in this thesis and describe my analytic 

models in detail. I start by describing the UTQ study, the classroom observation instruments, 

including a short instructional log, and briefly discuss the value-added scores used by the 

UTQ study. I then turn to describing the GTheory models that I estimated to test the research 

questions, highlighting the models used to examine each question. 

IV.1. Understanding  Teacher Quality (UTQ) 

The data for this thesis were collected as part of the Understanding Teaching Quality 

project (UTQ; http://utqstudy.org/). This project was designed to examine how well existing 

teacher observation instruments measured teaching quality with the goal of increasing the 

value of these tools for personnel evaluation and instructional improvement. The UTQ 

project conducted live and video observations of mathematics and English language arts 

teachers in grades 6-8 in three large school systems in the southeastern United States from 

2009-2011. The project had a sample of 458 volunteer teachers (228 of whom taught 

English), with roughly half the teachers in the project participating in each of the two school 

years when research was conducted. The data reported in this thesis focuses only on ELA 

classrooms because the PLATO protocol included an instructional log that allows me to study 

some of the hidden facets discussed in the last chapter directly. In the single year they 

participated, each teacher was observed and videotaped teaching one lesson on four separate 

http://utqstudy.org/
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days across 2 sections
16

. Each teacher's instruction was scored using the CLASS, FFT, and 

PLATO instruments. 

In UTQ, a total of twelve raters participated in scoring
17

. These raters received 

multiple days of training on each of the three observation instruments under study here: 

CLASS, FFT, and PLATO. All raters were certified by observation protocol developers to 

conduct scoring of the relevant instrument before beginning to score lessons according to 

rules developed by the observation protocol developers. In addition, calibration exercises 

were conducted every 3 weeks during the course of the study to maintain reliable scoring 

over time
18

. Calibration consisted of scoring a video with master codes, discussing the video 

and scores, and receiving feedback. No actions were taken when observers did not score 

accurately during calibration exercises. 

As I discussed earlier in this thesis, the assignment of raters to scoring is important to 

interpreting rater effects, so I will spend some time here describing the process of assigning 

raters to lessons and the organization of the scoring process. In UTQ, there were two phases 

of scoring. The first phase included live scoring of year 1 teachers for 90% of the year 1 

lessons. Live scoring only happened for one instrument per day, so only 30% of year 1 ELA 

videos have live scores on each individual instrument (CLASS, FFT, and PLATO). Phase 2 

scoring began after the end of phase 1 and consisted of video scoring both years of lessons. 

Videos were randomly assigned to raters, thus randomizing both the rater scoring the video 

and the order in which videos were scored, though year 1 videos were scored, on average, 

earlier than year 2 videos because year 2 data collection was ongoing during scoring. In 

UTQ, raters were assigned to score at most one video per teacher, though assignment of live 

                                                 

16
 Four classrooms were observed only once due to scheduling problems. 

17
 One rater only completed the live scoring. 

18
 Observers completed calibration on one of the three instruments that they were scoring each week. 
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and double scoring was done independently of assigning primary scoring tasks (note that no 

raters were assigned to a day they previously scored in person). Double scoring was 

completed for one of the four videos submitted by each teacher (25% rate) and conducted by 

a randomly assigned rater. The combination of live and double scoring resulted in about 60% 

of videos scored by one rater, 34% by two raters, and 5% by three raters, allowing 39% of 

videos to contribute to my estimate of the rater-by-day variance component (which requires 

two raters to score the same day of instruction). There were 471 cases of raters scoring two 

videos from the same teacher (174 unique teachers) and 34 cases of a rater scoring three 

videos from the same teacher (33 unique teachers). These cases form the basis of rater-by-

teacher estimates (which requires the same rater to score multiple days of instruction from the 

same teacher). This scoring setup provides a large minority of videos with multiple raters to 

estimate inter-rater reliability and ensures many raters view each teacher; but the setup limits 

the number of times a single rater scores days of instruction from any given teacher, 

restricting the amount of data available to estimate some rater biases, such as rater biases 

against specific teachers. 

All three instruments under study divided the day of observation into occasions based 

on instrument protocol (described below) and assigned scores for each occasion sequentially. 

Days of instruction consisted of between 1 and 7 occasions for PLATO and CLASS. FFT, 

though, used 30 minute occasions so few videos have more than one occasion and none have 

more than two. Live observations contained a time gap between scoring occasions equal in 

length to the instrument's scoring period. The scores from videos contained no such time gap 

between occasions. Thus, beyond the first occasion of a lesson, the video and live 

observations were scored on somewhat different time periods. When scoring both types of 

videos, observers started at the beginning of the lesson and progressed sequentially through 

scoring all occasions. While observers were instructed to score each occasion independently, 
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this scoring design has the potential to reduce the variance between occasions because of 

carry-over effects (i.e. the scores for the first occasion affect scores for future occasions; see 

Ho & Kane, 2013). However, this approach to scoring makes the video scoring process 

similar to the live scoring process, hopefully minimizing the effect of scoring mode. 

IV.2. Observation Instruments 

My thesis focuses on the three observation instruments used to score English 

classrooms: CLASS, FFT, and PLATO. Using three instruments allowed me to more fully 

characterize the nature of each day of instruction than would be possible using only a single 

instrument. Further, by comparing the effects of particular hidden facets across instruments, I 

can explore instrument biases. 

The Classroom Assessment and Scoring System-Secondary (CLASS); Pianta et al., 2007) 

was developed as an extension of a project examining the impact of classroom quality on 

child development outcomes under the premise that the proximal interactions in the 

classroom will lead directly to these outcomes. CLASS purports to be content neutral, 

focusing on the interactions between teachers and students. It was originally created and used 

across the first half of a school day (in grades K-3), capturing unstructured time between 

lessons. In fact, CLASS developers typically encourage the observation of unstructured time 

between classes. When used in higher grades, however, it has focused only on instructional 

periods, much like the other instruments. 

There are three broad measurement domains in CLASS, and these domains are broken 

into 11 dimensions. The domain of Emotional Support focuses on the emotional and social 

tone of the classroom, largely growing out of the literature on attachment theory and self-

determination theory (Pianta & Hamre, 2009). It is composed of four dimensions: Positive 

Climate, Negative Climate, Teacher Sensitivity, and Regard for Adolescent Perspective. 

IV.2.1. Classroom Assessment and Scoring System-Secondary (CLASS) 
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Negative Climate is unique in that higher scores denote lower quality.  In this thesis, I reverse 

code Negative Climate so higher scores capture higher quality.  The domain of Classroom 

Organization captures the efficiency and management of the classroom. It is comprised of 

three dimensions: Behavior Management, Productivity, and Instructional Learning Formats. 

The domain of Instructional Support captures the nature of instructional interactions between 

students and the teacher, focusing on the development of higher order thinking skills. It is 

composed of four dimensions: Content Understanding, Analysis and Problem Solving, and 

Quality of Feedback. Last, CLASS codes student's engagement, which is viewed as an 

outcome measure. 

In the UTQ study, each day of observation was divided into 15 minute occasions with 

each occasion scored independently. When live scored, the lesson was divided into 22 minute 

occasions with 15 minutes spent observing the lesson followed by 7 minutes of scoring. 

When scored from video, raters paused the video for 7 minutes to score an occasion, leaving 

no breaks between 15 minute scoring occasions. Occasions less than 10 minutes in length 

were not scored. This led to 5% of videos with 2 occasions, 65% with three occasions, and 

30% with 4 or more occasions scored. Twelve raters scored CLASS live and 11 scored videos 

using CLASS. Raters received multiple days of training prior to scoring and passed a 

certification test that required them to score 80% of dimensions within one point (on 7 point 

scale) of a previously determined master score across 5 test videos. 

The Framework for Teaching (FFT) 

was developed as an extension of the work developing the Praxis III observation system for 

teacher certification (Danielson, 2000). It too purports to be content neutral, adopts a 

constructivist view of student learning in principle, and includes items that measure teacher 

preparation and planning and teacher professional responsibilities, as well as instruction. 

While most teacher evaluations systems that have adopted FFT use all the components of the 

IV.2.2. The Framework for Teaching (FFT) 
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instrument, at least in a modified form, research on teaching has focused mainly on Domain 2 

(labelled the Classroom Environment) and Domain 3 (labelled Instruction). These are the two 

domains that can be scored solely from observations of classroom instruction. The Classroom 

Environment domain is comprised of five dimensions: Creating an Environment of Respect 

and Rapport, Establishing a Culture of Learning, Managing Classroom Procedures, Managing 

Student Behavior, and Organizing Physical Space. The domain of instruction is also 

comprised of five dimensions: Communicating with Students, Using Questioning and 

Discussion Techniques, Engaging Students in Learning, Using Assessment in Instruction, and 

Demonstrating Flexibility and Responsiveness. In UTQ, one dimension of Domain 1, 

Planning and Preparation was also scored: Demonstrating Knowledge of Content and 

Pedagogy. 

FFT had its own unique scoring design that differentiated between live observations 

and videos. Live observations were scored by observing instruction on a given day for 30 

minutes and then scoring for 15 minutes. This was repeated if time allowed. Occasions had to 

be longer than 20 minutes to be scored. Video records were scored in 30 minute occasions 

with no time lapses between occasions. This led to most videos having only one occasion and 

12% with two occasions. Twelve raters scored FFT live and 11 raters scored videos. Raters 

received training and passed a certification test the required them to score 50% of dimensions 

exactly (on a four point scale) and less than 25% of dimensions 2 or more points from the 

master score across 4 videos. 

The Protocol for Language Arts Teaching Observations (PLATO) (Grossman et al., 2013) 

was developed as an extension of the CLASS instrument to focus specifically on English 

language arts instruction. Like CLASS, PLATO is intended to focus on interactions in the 

classroom under the assumption that proximal interactions cause student learning. Unlike 

CLASS, however, PLATO explicitly examines content specific (i.e. English) instructional 

IV.2.3. Protocol for Language Arts Teaching Observations (PLATO) 
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practices because PLATO developers believe that content and teaching cannot be separated 

and that best practices differ across subject areas (like English and math). Since its initial 

development, PLATO has become an independent observation protocol by dropping 

dimensions from the CLASS instrument, such as the Emotional Climate items. Currently, 

four major domains are measured by PLATO: Disciplinary Demand of Classroom Talk & 

Activity, Contextualizing and Representing Content, Instructional Scaffolding, and 

Classroom Environment. These domains are broken down into 13 dimensions in the version 

of PLATO used for UTQ: Purpose (expressed clarity of the lesson), Intellectual Challenge, 

Representation of Content (teachers' ability to represent content to students through effective 

and meaningful explanations), Connections to Prior Academic Knowledge, Connections to 

Personal and Cultural Experiences, Models/Modeling, Explicit Strategy Instruction, Guided 

Practice, Classroom Discourse, Text-Based Instruction (the presence and use of texts during 

class), Accommodations for Language Learning (ways teacher incorporates strategies for 

English language learners), Behavior Management, and Time Management. 

In the UTQ study, PLATO was scored by breaking each recorded lesson into 15 

minute occasions with each occasion scored independently. When live scored, the lesson was 

divided into 23 minute occasions with 15 minutes spent observing the lesson then 8 minutes 

given over to completing the scoring task. When scored from video, raters paused the video 

for 8 minutes to score the lesson, leaving no breaks between 15 minute scoring occasions. 

Occasions less than 10 minutes in length were not scored. This led to 5% of days with 2 

occasions, 65% with 3 occasions, and 30% with 4 or more occasions. Unlike CLASS and 

FFT, only 6 raters scored PLATO (one rater left after live scoring leaving 5 to score videos). 

Raters received multiple days of training prior to scoring and passed a certification test that 

required them to score 80% of dimensions correctly across 5 videos. 
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IV.3. PLATO Log 

The PLATO log--which is a separable component of the PLATO observation 

instrument--is an important additional instrument studied in this thesis. It serves as a unique 

data source to record what would otherwise be hidden facets of measurement. In particular, 

the PLATO Log has two main parts. The first records the content domain of the lesson for 

each scoring occasion (Reading; Writing; Literature; Oral Language; Vocabulary/Word 

Study; Grammar/Spelling; Research Strategies) and whether each content domain was a 

major focus, minor focus, touched on briefly, or not touched on during instruction. 

Importantly, raters can select multiple content domains for a given occasion. When lessons 

had a major focus on reading, writing, or literature, an additional section of checklist items 

was completed. I did not use this additional section of the log, however, due to concerns 

about missing data and rater error. In order to examine the hidden facet of content domain, I 

aggregated Content Domain variables to the day-level so variables could be used with FFT. I 

scored a day of instruction as having a sustained focus on a specific content domain if that 

domain was a major or minor focus for two consecutive occasions on a given day. This 

operationalization balanced identifying lessons with a strong focus on a given content domain 

and obtaining enough lessons within each domain for stable estimates of the effect of the 

content domain. I dropped Oral Language, Vocabulary, and Research Strategies because too 

few days had these as a sustained focus. These coding decisions were all made prior to testing 

effects on content domain on observed teaching quality. Of the 901 total days observed, 74 

(8%) had a sustained focus on reading, 203 (23%) had a sustained focus on literature, 234 

(26%) had a sustained focus on writing, 235 (26%) had a sustained focus on grammar, and 

240 (27%) had no sustained focus. The 240 days with no sustained focus generally shifted 

between a focus on multiple content domains or focused on excluded domains, though 80 

days contained no major or minor focus on any content domain. Most teachers were observed 
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across different domains on different day with fewer than 15 teachers submitting three or four 

days on the same content domain. Most days of instruction had a sustained focus on only one 

content domain. 

The second section of the log was a set of checklist items that denoted classroom 

activity structure
19

. I used this checklist to create a measure of the construct of interaction 

structure. After examining this data, I aggregated items to the day-level using the same 

concept of sustained focus. When an activity structure (e.g. teacher talk/lecture) was 

indicated as present for two consecutive occasions, I scored the lesson has having a sustained 

focus on that activity structure. I used these lesson-level variables to construct three new 

variables: recitation/lecture (a sustained focus on teacher talk/lecture OR short student 

response OR student presentations); discussion (a sustained focus on small group discussion 

either structured or unstructured OR whole class discussion); and independent work (a 

sustained focus on either independent work OR independent reading from the reading 

domain). These three composite variables capture structures organizing student/teacher 

interactions, which I termed "interaction structure". Interactions form the basis for scoring 

lesson quality. Thus, the structure used to organize instructional interactions is an important 

factor to consider when exploring the effect of day characteristics on observation scores and 

when testing for instrument biases. For example, in recitation/lectures, the interactions focus 

on listening and responding in limited, controlled ways. In discussions, interactions are more 

free and open, based on the topic of discussion. In independent work, limited interactions 

occur. There is overlap in these categories and none is operationalized perfectly, but my 

approach to measurement should provide a broad sense of how the structure of instructional 

                                                 

19
 The full range of possible classroom activity structure items is Teacher Talk/Lecture; Short student 

responses to teacher questions; Small group/partner discussions unstructured; Small group/partner discussions 

structured (literature circles, etc); Whole group discussion; Student presentations; Independent work; Teacher 

(or student) uses students' primary language to introduce or explain key concepts, terms, etc; Teacher provides 

differentiated assignments or assessments. 
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interactions affects observation scores. The goal here is to provide evidence to guide future 

research rather than to definitively address research questions. There were 659 days (73%) 

with a sustained focus on recitation/lecture, 454 days (50%) with a sustained focus on 

discussion, 92 days (10%) with a sustained focus on independent work, and 84 days (9%) 

with no sustained focus on any interaction structure. Many days had an interaction structure 

in two or more areas: 304 (34%) days had a focus on discussions and recitation/lecture, 75 

(8%) days focused on recitation/lecture and independent work, and 39 (4%) had a sustained 

focus on both discussions and independent work. 

Because of the importance of the PLATO log to my study of hidden facets, a number 

of limitations of the instrument should be noted now. The inter-rater reliability is low, 

especially for the interaction structures. Table 4.2 shows inter-rater reliability statistics for the 

log items. The left column specifies the facet being described and columns show, in order, the 

statistics of percent raw agreement, Cohen's Kappa, Negative Agreement, and Positive 

Agreement (Gwet, 2012). Negative Agreement captures agreement conditional on either rater 

coding the variable as 0 and Positive Agreement captures agreement conditional on either 

rater coding the variable as 1. The Kappa values are below 0.66 for all content domain items 

and close to zero for interaction structure. Recommended minimum Kappa values are 0.6 

with 0.8 preferred (Graham et al., 2012). Despite the low Kappa values, the agreement rates 

for content domain were comparable to gateway items in the Study of Instructional 

Improvement (SII) log while the agreement for interaction structure was only slightly below 

the agreement on back-end items of the SII log (Camburn & Barnes, 2004; Rowan & 

Correnti, 2009). The lower than desired reliabilities may have stemmed, in part, from the 

PLATO log not being part of the rater certification and calibration process, which may have 

led to a reduced focus on learning to score these items well in training. 
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Table 4.2: Inter-Rater Reliability Statistics for the PLATO Log variables 

Facet 

Percent 

Agreement 
Kappa 

Negative 

Agreement 

Positive 

Agreement 

Content Domain     

   Reading 92% 0.40 96% 44% 

   Writing 87% 0.60 92% 68% 

   Literature 84% 0.52 90% 62% 

   Grammar 87% 0.66 91% 75% 

Interaction Structure     

   Recitation/Lecture 50% -0.04 35% 59% 

   Discussion 55% 0.04 64% 38% 

   Independent Work 88% -0.03 94% 04% 

Note. Percent Agreement =Percent Raw Agreement; Kappa=Cohen's Kappa; Negative Agreement =Negative 

Percent Agreement; Positive Agreement =Positive Percent Agreement. 

 

Another limitation of the log is the limited set of variables capturing instruction. A 

complete exploration of hidden facets would require a much wider set of variables, including 

instructional goal (i.e. review, introduce new material, independent practice), grouping 

structure (i.e. small group, whole class), the cognitive demand of the content taught, and 

other lesson characteristics. The structure of breaking days down into 15 minute observation 

intervals also works against the effectiveness of the log. Fifteen minutes is an arbitrary length 

of time that may not capture natural phases of instruction, as I have discussed. 

IV.4. Value-Added Scores 

In studying the validity of the CLASS, FFT, and PLATO instruments, I will be 

correlating the scores teachers received on these instruments to teachers’ Value-Added (VA) 

scores as calculated by UTQ authors. I only briefly discuss these scores and do not delve into 

the specific statistical models used to create the scores (see Lockwood & McCaffrey, 2014 

for a detailed discussion). To begin this discussion, please note that I used one of the 

provided VA scores from the data set (called “lr6 estimates” in the data set). In my view, 

there are important challenges associated with correlating these VA scores to UTQ 

observation scores. UTQ provides two (lr6) VA scores, the same-year scores and an 

alternate-year scores (i.e. the teacher's VA score from the previous year). Generally, the 

alternate-year VA score is preferred because the same students do not contribute to observed 
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teaching quality and the alternate-year VA score. However, the alternate-year scores are 

correlated with current year students' prior achievement. That is, the gains made by last year's 

students are correlated with the incoming ability of this year's students. This is a common, 

though rarely discussed, source of bias to VA scores, which the UTQ models have 

minimized, but not eliminated (Lockwood & McCaffrey, 2014). Moreover, this correlation is 

troubling because classroom observation scores are also correlated with students' prior 

achievement. Thus, the relationship between alternate-year VA scores and current students' 

prior achievement is an indication of (potentially) shared measurement error between 

observation scores and alternate-year VA scores. This shared measurement error will bias 

correlations between the two measures
20

. The current year VA scores, due to explicit controls 

for prior achievement, do not contain this particular source of correlated error, but likely 

contain other unknown correlated errors stemming from the fact that the same students 

contribute to both measures. My solution to this problem in the analyses described below is to 

control, within a regression framework, for the prior ability and the demographics of current 

students so the estimated relationship between observation scores and VA scores is 

independent of the prior achievement and student demographics effect. This assumes that 

students' prior achievement and student demographics capture all of the correlated 

measurement error, which may not be true. 

IV.5. Generalizability Theory Analytic Models 

Having discussed the UTQ study procedures and the variables I will be analyzing. I 

now lay out the analyses that I conducted for this thesis. I start by introducing the base 

GTheory model that I estimated. Here, I focus on the specific model that I ran, highlighting 

                                                 

20
 I have never seen this discussed and it seems to be a major threat to much research currently going on 

(see Kane et al., 2011, Kane et al. 2012...) that argue for using correlations with alternate year VA scores to 

avoid biases. 
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how it varies from the previously introduced full model (Equation 1). I then provide an 

overview of the "Decision Studies" I used to calculate score reliability from the GTheory 

model. Next, I introduce more complex models that control for the three classes of hidden 

facets. These models, to varying degrees, embrace the situated nature of teaching. 

Comparisons of these models to the Base model allow me to explore the impact of 

controlling for hidden facets on the measurement properties of observation scores and on 

estimates of teacher scores. In the next section, I describe my approaches for comparing 

model estimates, highlighting the implications of these comparisons. Additionally, I describe 

how I will examine the validity of teacher estimates across models, including differential 

validity across facets. 

I began building my GTheory statistical model from the 

full model described earlier (Equation 1). The model in Equation (1) is highly complex and 

contains many terms that are not well separated, which stems from the partial crossing of 

raters and days in the UTQ design
21

. For example, in UTQ data, the item-by-rater-by-day 

(𝜐𝑖𝑟(𝑑:𝑠:𝑡)) and the item-by-day (𝜐𝑖(𝑑:𝑠:𝑡)) terms in Equation (1) are only distinguishable on the 

minority of days that have multiple raters (usually 2 raters). I fit the statistical models 

reported here using Restricted Maximum Likelihood (REML) with the package 𝑙𝑚𝑒4 (Bates, 

Mächler, Bolker, & Walker, 2015) in R (R Core Team, 2016a), which should be capable of 

estimating both facets despite this challenge. However, the inclusion of all facets still led to 

challenges, such as lack of convergence and extremely long model run times (which is 

especially problematic given the bootstrapped confidence intervals for the estimated variance 

components). Further, there is a difficulty in interpreting the facets with high-level 

interactions as distinct from the pure residual variance. These considerations led me to 

                                                 

21
 The correlation between the day and rater-by-day variance component estimates across the 

bootstrapped samples was close to -0.8. 

IV.5.1. Base Model (Base) 
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combine the three-way interactions and the rater-by-occasion term into a single residual term 

in the models presented in this thesis
22

. After combining these facets, I ran the models, 

finding close to zero variance at the section-level across all instruments
23

. In order to save 

computational time, I therefore eliminated section-level facets from the model. Last, in 

consideration of the fact that each instrument has a fixed set of items, I chose to include items 

as a fixed effect. The interactions of items with other facets are still modeled as random 

effects, which introduces some minor error to the model as it assumes that all items vary 

across occasions, days, and teachers to the same extent (i.e. it calculates average item 

variation over different facets). My Base model, then, is below: 

 

X{ir(o:d:s:t)} = μ + υt + υ{d:s:t} + υ{o:d:s:t}

+ υ{it} + υ{i(d:s:t)} + υ{i(o:d:s:t)}

+υr + υ{rt} + υ{r(d:s:t)}

+υ{ir} + ϵir(o:d:s:t)

 ϵir(o:d:s:t) = υ{r(o:d:s:t)} + υ{irt} + υ{ir(d:s:t)} + υ{ir(o:d:s:t)}

 μ = βi

   (Base) 

where 𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡) represents the residual, 𝜇 is a stand-in for all fixed effects, 𝛽𝑖 is item fixed 

effects, and all other variables are as before (see equation 1). Teacher quality, as estimated 

from this model, represents the teacher's average enacted teaching quality over the time 

period from which days are sampled (usually a year). 

A few notes of caution about interpreting parameters in this model are necessary. I 

modeled the outcomes as continuous, but they are actually ordinal. There are two problems 

with this. First, only a limited number of item scores are possible (i.e. CLASS is a 7 point 

                                                 

22
 Models with the rater-by-occasion term generally had slightly lower occasion facet variances and small 

rater-by-occasion facets. Suggesting, at least when raters are assigned at the day-level, few rater-by-occasion 

effects. Further, the item-by-rater-by-teacher and item-by-rater-by-section effects were generally small. The 

item-by-rater-by-day facet was generally large, almost equal in size to the residual term, but it is hard to 

interpret this facet apart from being a residual error (the residual is the item-by-rater-by-occasion facet). 

23
 It is difficult to conclude why the section-level variance is so low, especially because the effect of 

student composition appears to be quite large across a range of studies (including in the UTQ data). It is possible 

that the model simply does not have enough days of instruction per section to estimate a stable score for 

sections. After all, the reliability of teacher variances is quite low, much less for sections, which have half as 

much data supporting their estimation. 
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scale; FFT/PLATO are 4 point scales). Modeling scores as continuous is common practice in 

GTheory, though the limited range of outcome values can affect variance component 

estimates (Shavelson et al., 1986; Shumate, Surles, Johnson, & Penny, 2007). Prior GTheory 

work examining the impact of assuming a continuous outcome has been conducted on very 

simple models (compared to this one) so past work may not generalize to this model. 

Nonetheless, I have run models in which I first averaged across occasions or items, increasing 

the range of values the dependent variable (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) may take, as a sensitivity analysis. 

These alternative models lead to very similar conclusions as the models presented in this 

thesis, though they provide less ability to explore error facets. 

A second problem stemming from the ordinal nature of the outcome is that the 

distance between rubric score points in my model is assumed constant (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡) ∈ {1 −

4} for PLATO/FFT). Because the data is ordinal, there is no reason to prefer using 1-4 as 

compared to 1, 3, 4, and 9 or any other set of increasing numbers. To test if the choice of 

using 1-4 had an effect, I used Correspondence Analysis (Greenacre, 2005) to rescale item 

responses
24

. Using the re-scaled values, I ran the same GTheory model described above 

(Equation Base) as a sensitivity test. This alternative approach led to approximately the same 

percentage of variance across each facet as the model using the original values, suggesting 

robustness to the equal-interval assumption. All results presented use the original item 

responses (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡) ∈ {1 − 4} for PLATO/FFT). I could have run these models using an 

ordinal link function, but this would eliminate the residual variance, preventing a full analysis 

of variance across facets. Additionally, ordinal models are non-linear and significantly harder 

                                                 

24
 Correspondence analysis is akin to an ordinal principal components analysis. Item scale scores (i.e. the 

numbers 1-4) are re-scaled to maximize the correlation between individual dimension scores and the average 

score across the items. This leads to the rescaling that maximizes the percentage of variance explained by the 

average score across items. For example, the scale points of 1-4 on FFT's Respect and Rapport item were 

changed so that 1 => -4.2, 2 => -1.9, 3 => 0.4, and 4 => 3.3. This is admittedly a somewhat arbitrary way of 

rescaling the data, but it provides a sensitivity test for the specific values used as scale points. 
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to fit. There is no software I could find available that would fit this complex of a model
25

, in 

fact the algorithms necessary to do so are an active area of research (Schilling & Rowan, 

Personal Communication).  

Another potential challenge with this model is the assumption of equal residual 

variance across items, because the unconditional variance of item scores varies across items. I 

fit a model allowing for this heterogeneity [which I did in a Bayesian framework using 𝑏𝑟𝑚𝑠 

(Bürkner, in press). This model resulted in estimated variance components that were not 

significantly different from those in the 𝑙𝑚𝑒4 model, suggesting robustness to heterogeneity 

of variances. Last, there is the threat of auto-correlation across occasions within a lesson, 

which I did not model using 𝑙𝑚𝑒4. I did fit models (using 𝑏𝑟𝑚𝑠 in a Bayesian framework) 

that included this auto-correlation and these models showed no significant auto-correlation 

across occasions. 

A common flaw in GTheory applications in research on teaching is the lack of 

reported uncertainties in the estimated variance parameters. This occurs, no doubt, because 

most common statistical software does not provide uncertainty estimates for variance 

components and because of the computational demands of creating these uncertainty 

estimates. This is unfortunate because the data structures are highly complex with many 

levels of nesting and partially-crossed data, which may lead to high levels of uncertainty in 

model estimates. In the results reported here, I use fully parametric bootstrapping (Brennan, 

2001) to generate 95% confidence intervals for variance component estimates using the 

percentile bootstrap (Hesterberg, et al, 2005; Efron & Tibshirani, 1994; see Appendix G for a 

deeper discussion of this bootstrapping approach and comparison with alternative methods). 

Here, I simply state that while percentile bootstrap methods are often found to be too narrow, 

                                                 

25 
If I moved to a Bayesian framework, I could, in theory, find software to do this fit. In fact, I tried this 

(briefly) using 𝑏𝑟𝑚𝑠 to call 𝑆𝑇𝐴𝑁, but could not get the chains to mix. 



 

93 

they are consistent with error O(n^-0.5) under many conditions (Hesterberg, et al, 2005; 

Efron & Tibshirani, 1994)
26

.  It is important to note what these confidence intervals do and do 

not represent. Parametric bootstrapping assumes the estimated model matches the population 

model and re-samples new data under this assumption. This gives the sampling variation of 

parameter estimates, but only under the assumption the original model is (approximately) 

correct. This is a challenge here because, as I have noted, the structure of the data may make 

it difficult to find large variance estimates for some parameters (e.g. section variance, rater-

by-teacher variance). If this is the case, the confidence intervals may not be accurate. 

The base model above (Equation Base) will form the foundation for analyses that 

address the first research question. These analyses focus on examining the relative variances 

associated with different planned facets (e.g. 𝑣𝑎𝑟(𝜐𝑟)) and the uncertainty of these estimates. 

Comparisons of variance components, especially across the three instruments, can elucidate 

which facets of measurement most affect observed scores. For example, if rater-by-teacher 

variance is low, there is a limited amount of rater-specific bias based on teacher 

characteristics
27

. Again, however, the reader is cautioned that the data structure may play a 

role in limiting the ability to estimate some facet effects. 

Before moving to describe the more complex models that 

I estimate in order to "adjust" for hidden facets, I describe the use of decision studies in 

GTheory. A GTheory analysis provides a variance decomposition of observed scores. The 

variance can be broadly broken down into True Scores, usually measured as only the teacher 

                                                 

26
 The specific condition here is that  ∃ 𝑔 𝑠𝑡 𝐹𝝊 (√𝑛 (𝑔(𝜓(υ̂)) −  𝑔(𝜓(𝜐)))) ~𝑁(0,1) ∀𝜐 where g is 

monotonically increasing, 𝜓is the function of the parameters of (i.e. statistic being bootstrapped), 𝑁(0,1) is a 

standard normal distribution, and 𝜐 is the vector of model parameters defining the distribution F (Efron & 

Tibshirani, 1994).  If the model distribution truly fits the population, then confidence intervals will be more 

exact. 

27
 This is not completely true because if all raters share the same bias, it will not be detectable without 

some external anchor. This is the problem of external rater error (Myford & Wolfe, 2009). It is also possible that 

a specific design is simply not well set up to distinguish rater-by-teacher bias from rater-by-day biases. 

IV.5.2. Decision Studies 
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facet (i.e. 𝑣𝑎𝑟(𝜐𝑡)), and Error, usually measured as all other facets. This can be used to 

generate an estimate of reliability (i.e. 𝑣𝑎𝑟(𝑇𝑟𝑢𝑒𝑆𝑐𝑜𝑟𝑒)/𝑣𝑎𝑟(𝑇𝑜𝑡𝑎𝑙𝑆𝑐𝑜𝑟𝑒)). Importantly, a 

reliability can be estimated not only for the current data, but for alternative study designs (e.g. 

if teachers were observed on 5 days by 2 raters per day)
28

. Using bootstrapped samples, I can 

also estimate uncertainties for these reliabilities. One distinction often made in GTheory is 

whether teachers are compared to a fixed standard or to each other, called absolute and 

relative reliability, respectively. When comparing teachers to each other, under the 

assumption of fully-crossed raters and items, the rater and item main facets (i.e.  𝜐𝑖, 𝜐𝑟) do 

not contribute to measurement error. This is because the object of measurement is the teacher 

ranking, which remains unchanged if a rater or item becomes more or less lenient. However, 

observation instruments rarely have designs with fully crossed raters and changes to rater 

leniency will shift the relative rankings of teachers when the design is not fully crossed. Thus, 

the relative reliability is almost never appropriate for observation scores and I only use 

absolute reliabilities in this thesis. When displaying results from Decision Studies, I will 

generally graph the reliabilities across a range of days potentially observed and a range of 

raters potentially scoring each day, assuming 3 occasions per day for CLASS and PLATO 

and 1 occasion per day for FFT and all items scored. 

The Base model described above forms the 

base for more complicated models that adjust for the three classes of hidden facets described 

earlier. The System Design Model (SD) described here adjusts for System Design Facets, 

including scoring mode (i.e. whether scoring was live or part of double scoring), rater drift 

                                                 

28
 This is possible because the variance of an average of two independent random variables can be easily 

calculated (i.e. 𝑣𝑎𝑟((𝑋 + 𝑌)/2) = (𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝑌))/4 if 𝑋 ⫫ 𝑌). Thus, if the variance of the rater facet is 

0.1, then the error variance contributed by raters to a score averaged across two raters is 0.05 (i.e. (0.1 +
0.1)/4 = 0.05). This same type of analysis can be conducted across all facets after specifying the number of 

occasions, days, sections, items, and raters are being averaged over, allowing an estimate of the error variance 

and ultimately score reliability for a specific sampling design. 

IV.5.3. System Design Model (SD) 
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(i.e. date rater scored video), day of the week scored, date videotaped, and occasion order 

effects. This model replaces 𝜇 in in the Base model (equation Base) with: 

 μ = βOcc∙i + 𝛽𝐿𝑖𝑣𝑒 + 𝛽Dbl + βDtSc + βDayWk + βMonth   (SD) 

where 𝛽𝑂𝑐𝑐⋅𝑖 captures occasion order by item effects (e.g. Positive Climate on segment 1), 

𝛽𝐿𝑖𝑣𝑒 dummy codes whether scoring was done live, 𝛽𝐷𝑏𝑙 dummy codes whether scoring was 

part of the double scoring procedure, 𝛽𝐷𝑡𝑆𝑐 represents a linear trend for date scored, 𝛽𝐷𝑎𝑦𝑊𝑘 

is dummy variables capturing day of the week videotaped (reference is Monday), 𝛽𝑀𝑜𝑛𝑡ℎ is a 

linear trend for date observed. 

The hidden facets controlled for in this model arise because the observation process 

must select specific days to observe using a specific scoring mode (i.e. live or by video) and 

raters score videos over time—all of which are determined by the observation protocol being 

implemented. This model forms one of the three models I contrast with the Base model in 

research question two. Generalizing observed scores should become more efficient after 

adjusting for these facets because sampling variation associated with these hidden facets is 

controlled for. Thus, teacher quality estimates should become more precise and the variance 

of the teacher facet (i.e. (𝜐𝑡) ) will be reduced accordingly (because a source of sampling 

error included in this term is removed). Teacher quality, as defined in this model, represents 

the teacher's enacted teaching quality at a fixed occasion in time, using a given mode of 

scoring, and being scored at the same time
29

. That is, if teachers differ in quality based on 

when they were observed, the mode of the observation, or when raters scored their videos, 

these differences are removed from the estimate. 

The Curriculum and Instruction 

Model (CI) builds upon the System Design model by adding statistical adjustments for facets 

                                                 

29
 Note, however, adjustments for date scored and drift are only for average scores and assumed linear, 

which makes this definition an over-simplification. 

IV.5.4. Curriculum and Instruction Model (CI) 
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related to the curriculum and instruction. These facets come from the PLATO log and include 

content domain taught and interaction structure. As with the System Design model, this 

model replaces 𝜇 in in the Base model (equation Base) with: 

 
μ = βOcc∙i + 𝛽𝐿𝑖𝑣𝑒 + 𝛽Dbl + βDtSc + βDayWk + βMonth

 +βRead + βLit + βWrite + βGrammar + βDisc + βInd + βRec
    (CI) 

where 𝛽𝑅𝑒𝑎𝑑, 𝛽𝐿𝑖𝑡, 𝛽𝑊𝑟𝑖𝑡𝑒, and 𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟 are dummy variables representing the four content 

domains: reading, literature, writing, and grammar, respectively; 𝛽𝐷𝑖𝑠𝑐, 𝛽𝐼𝑛𝑑, and 𝛽𝑅𝑒𝑐 are 

dummy variables representing the three interaction structures: discussion, independent work, 

and recitation/lecture, respectively. These seven variables capture a range of content areas 

and instructional choices that most teachers likely use at some point during the year. 

However, they represent only a small subset of the important facets of Curriculum and 

Instruction that could be studied in research on teaching. 

This model adds hidden facets related to the specific content and instruction occurring 

on the day observed to the SD model, helping to address research question two. To the extent 

that these facets act within-teachers, controlling for these facets should eliminate the 

sampling error associated with how often teachers are observed at each level of the facet. 

This should increase the precision with which teacher quality is estimated (and so reduce the 

variance at the teacher level), while the meaning of teacher quality shifts slightly. Teacher 

quality is now the teacher's capacity to engage in high quality instruction for reading, writing, 

literature, and grammar lessons while using discussions, independent work, and recitations on 

a given occasion in time, scoring mode, and when scored on the same day. That is, if teachers 

differ in teaching quality based on how often they are observed teaching across content 

domains, interaction structures, or SD facets, these differences are removed from score 

estimates. There may also be between-teacher aspects to these facets, which, depending on 

their cause, can lead this model to either increase or reduce bias in teacher quality estimates.  

Recall that even when this model increases bias by removing between-teacher differences in 
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the frequency of engaging lessons at each level of the CI facets, the increase in precision may 

make this model appropriate because too few days of instruction are observed to accurately 

estimate how frequently teachers engage in specific types of instruction. 

The School Organization Model (SO) 

builds upon the Curriculum and Instruction model by adding statistical adjustments for facets 

related to the ways schools are organized. These facets reflect mostly between-teacher effects 

that reflect differences in grade, student composition, and school culture. As with the other 

models, this model replaces 𝜇 in in the Base model (equation Base) with: 

 

μ = βOcc∙i + 𝛽𝐿𝑖𝑣𝑒 + 𝛽Dbl + βDtSc + βDayWk + βMonth

 +βRead + βLit + βWrite + βGrammar + βDisc + βInd + βRec

+β7th + β8th + βPrAch + βDemo +   βImp

    (SO) 

where 𝛽7𝑡ℎ and 𝛽8𝑡ℎ are dummy variables capturing 7th and 8th grade (reference is 6th 

grade); 𝛽𝑃𝑟𝐴𝑐ℎ is a linear effect for section average student prior achievement; 𝛽𝐷𝑒𝑚𝑜 is a 

linear effect of a composite indicator of student demographics (discussed below); and 𝛽𝐼𝑚𝑝 is 

a dummy variable capturing whether the prior achievement and student demographics were 

imputed (6% of classrooms). Imputations were done using a k-Nearest Neighbors algorithm 

using the 𝑉𝐼𝑀 package in R (Kleiner, Talwalkar, Agarwal, Stoica, & Jordan, 2013). The 

composite indicator of student demographics is the first principal component of the section-

level variables percent black, percent Hispanic, percent white, percent Asian, percent English 

language learner (ELL), and percent free-reduced price lunch (FRL). The first principal 

component explained 43% of the total variance and captures classrooms that are more black, 

Hispanic, ELL, and higher FRL while being less white and Asian. 

This model adds hidden facets related to the teacher's context to the CI model. It is 

directly related to research question two. These facets should mostly act between teachers, 

affecting the extrapolation of scores across contexts. The extrapolation argument implicit in 

this model here is the co-construction argument (whereas teacher sorting is the implicit 

IV.5.5. School Organization Model (SO) 
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argument when not adjusting for these facets). Under the assumption of co-construction, 

correcting scores for student characteristics and grade taught is necessary to allow teacher 

scores to be compared across contexts. Teacher quality, as defined in this model, represents 

the teacher's ability to teach a specific type of classroom in a specific grade and to teach 

specific content domains using specific interactions structures at specific times. That is, 

differences in teacher quality associated with the students a teacher teaches, the grade at 

which they teach, or CI and SD facets are removed from estimates. Note that, under the 

teacher sorting assumption, adjusting for SO facets will introduce bias to teacher score 

estimates. 

IV.6. Analyses 

In this section, I detail the analyses that I will be conducting using the models just 

described. These analyses address research questions (RQ) 2 and 3 (whereas RQ 1 can be 

addressed using only the Base model). I first describe the model comparisons that address 

research question two, highlighting how comparisons across the four models just described 

can show the role of hidden facets in estimating teacher quality. I then discuss the third 

research question, focused on the validity of teacher score estimates across models and across 

levels of the hidden facets. 

There are three types of analyses that I will 

conduct to address RQ 2. These analyses compare the four models just presented (i.e. Base 

model, SD model, CI model, SO model) and estimate the impact of the hidden facet 

adjustments on observed teaching quality and estimates of teacher quality. The first set of 

analyses focus on the significance and size of the fixed effect estimates of the facets. The 

fixed effect estimates represent the impact of the facets on observed scores. They show how 

much scores might vary if, for example, a teacher is only observed at the beginning of the 

year compared to the end of the year. The size of the effect is difficult to interpret, though, 

IV.6.1. Model Comparisons (RQ 2) 
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because there is no meaningful metric. The natural metric of "scale point" says little about 

how much a teacher's score might be impacted by these effects. In order to create a 

meaningful metric, I convert the effects into an "effect size metric" using the standard 

deviation of the teacher scores from the Base model to scale effects (i.e.√𝑣𝑎𝑟(𝜐𝑡
𝐵𝑎𝑠𝑒)). Note 

the use of a superscript to denote which model the parameter is from. This translates the facet 

effect into teacher standard deviation units (SDT). For example, being scored live might move 

an observed score half of a teacher standard deviation (i.e. 0.5 SDT), which would move a 

teacher from the 50th percentile of estimated teacher quality to the 69th percentile of 

estimated teacher quality. This also creates an arguably common unit across the models for 

different observation instruments. The reader will notice that the effect sizes can be quite 

large. This is a function of both the compressed range of observed scores and the relatively 

small percentage of variance that is attributable to teachers (i.e. high measurement error). 

In order to address RQ 2a regarding instrument bias, I will compare estimated effects 

of hidden facets across models. When effects differ significantly across models (see 

Appendix F for a broader discussion of the statistical test used here), as I have argued, it is a 

sign of instrument bias, though determining which instrument is biased is impossible. In 

order to explore cases of instrument bias, I use item-specific GTheory models (presented in 

Appendix D) to analyze which specific items appear to be the source of the bias. If similar 

items across instruments show dissimilar effects of the hidden facet, then bias results from 

the relative emphasis that the different instruments place on specific aspects of teacher 

quality (i.e. construct under-representation or construct-irrelevant variance). If no such 

patterns exist, I will not be able to make any conclusions about the source of the bias. 

As I've argued before, one of the main determinants of whether adjustments should be 

made for the effects of a hidden facet on observed teaching quality is whether the effect is 

between-teachers or within-teachers. This is RQ 2b. This is especially important for the 



 

100 

Curriculum and Instruction facets, which can affect scores both within-teachers between-days 

and between-teachers. I test for the level of the effect from hidden facets by dividing the 

hidden facet variable into three components: a within-teacher component, a between-teacher 

within-school component, and a between-school component. The within-teacher component 

is created by removing the teacher average score from the hidden facet variable. The 

between-teacher within-school component is created by removing the school average from 

the teacher average of the hidden facet variable. The between-school component is the school 

average of the variable. The within-teachers component is independent of teachers and 

schools and so can only act within-teachers. Similarly, the between-teachers within-school 

component is independent of schools and has a constant value within-teachers so can only act 

between-teachers, within-schools. The between-school component is constant within schools 

so can only act between schools. This centering trick has long been used by Hierarchical 

Linear Modeling approaches to explore the level at which variables act (Raudenbush & Bryk, 

2001). This helps to clarify the nature and type of effects the hidden facets are having on 

observed scores. As I've argued before, adjusting for within-teacher effects should mostly 

increase the precision of estimates; between-teacher effects define where extrapolation across 

facets is necessary; and between-school effects both define where extrapolation is necessary 

and complicate extrapolation by conflating the hidden facet and broader school effects on 

teaching quality. 

Turning to RQ 2c, I also conduct a number of analyses examining the change in 

teacher quality estimates across models. The size of the fixed effects does not directly show 

how much teacher quality estimates will change across models. That is because day-level 

facet effects on observed teaching quality scores are averaged across four days of instruction 

and effects from numerous facets. The net effect of facets varies in complex ways based on 

the distribution of facets across days and teachers. While the fixed effect estimate show the 
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potential impact of facets on estimates of teacher quality, the difference in teacher quality 

estimates across models (i.e. comparing 𝜐𝑡
𝐵𝑎𝑠𝑒 and 𝜐𝑡

𝑆𝐷) shows the actual impact on teacher 

quality estimates. The correlation of teacher quality estimates across models 

(i.e.𝑐𝑜𝑟(𝜐𝑡
𝐵𝑎𝑠𝑒 , 𝜐𝑡

𝑆𝐷)) provides an overall estimate of how adjusting for hidden facets changes 

teacher scores. However, observation scores, in high stakes situations, can be used to make 

decisions about individual teachers (in combination with other data). Thus, knowing how 

much teacher quality estimates for individual teachers vary across models is important. This 

is often explored with classification consistency (Deng & Hambleton, 2013), which tests 

whether two models would classify teachers in the same way. However, classification 

consistency requires a threshold for comparison and there is no natural threshold that can be 

used in this case. Further, the use of a threshold becomes statistically complex when models 

adjust for facets. Thus, I will explore how teacher rankings change across models, which is 

akin to a threshold-less version of classification consistency. For example, a teacher may 

have an estimated score in the 50th percentile in the Base model and the 30th percentile in the 

System Design model, a difference of 20 percentile points. Looking across teachers, we 

might conclude that 5% of teachers have their scores shift 20 or more percentile points across 

models. This gives an estimate of how much individual teacher scores might be affected by 

adjusting for hidden facets. 

Next, I look at the change in the variance of planned facets of measurement across the 

different models. As the adjustments for hidden facets are added to models, they will explain 

some of the variation across the different facets. This shifts the relative size of the true and 

error facet variances. A direct examination of the size of the shift in variance provides 

information about the improvements in precision gained by controlling for hidden facets. For 

example, assume the variance of the teacher facet is 20% smaller for the SD model as 

compared to the Base model. This would imply that 20% of the "teacher effect" from the 
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Base model is truly sampling variation stemming from the fact that teachers were observed at 

different times, using different observation modes, and raters scored videos over time. This 

means that the teacher quality estimate from the Base model is actually 20% sampling error.  

The conclusion here assumes that the facets controlled for are all truly sources of 

measurement error and the shift in meaning of teacher quality, in this case from average 

provided teaching quality across a set time period to teaching quality on a specific occasion, 

observation mode, and scored on a given day. We can also explore changes in the size of the 

variance in the planned error facets, which provides information about how much the hidden 

facets included in the model explain the variation in observed teaching quality across the 

error facets. For example, if the SD model had 50% less rater error than the Base model, this 

would imply that half the rater error is attributable to scoring mode or rater drift (or the other 

SD hidden facets). This analysis provides another view into the importance of the hidden 

facets for observed teaching quality. 

Additionally, the change in the variance associated with the different error facets 

across models will lead to different estimates for score reliability. Comparing the reliability 

across models tells how much the confidence we have in teacher scores changes after 

adjusting for the effect of hidden facets (RQ 2c). Importantly, the reliability in the adjusted 

model is reliability for a score with the same adjustments. This is important because, as 

discussed before, the meaning of the teacher quality estimate varies based on which hidden 

facets are adjusted for. Adjusting for hidden facets should decrease the teacher variance, 

removing sampling error from teacher score estimates, so the adjusted models will likely 

reduce reliability of scores. However, this is not necessarily the case. If adjustments explain 

significant amounts of the variance in error facets (e.g. the rater, item, or within-teacher 

section or day variance), the reliability may actually increase as more hidden facets are 

controlled for (i.e. the error variance may decrease). 
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The set of analyses described in this section provide evidence to address the second 

research question. They provide a comprehensive evaluation of the effects that hidden facets 

have on the measurement of teacher quality with observation scores. The results should help 

demonstrate when hidden facets have a meaningful effect on observed teaching quality and 

elucidate exactly what this effect is. 

The analyses discussed up to this point 

emphasize changes to the reliability of scores and score estimates that occur after controlling 

for hidden facets. They have not yet dealt with the validity of scores, the third research 

question. In general, the validity of a score estimate is supported if it is related to similar 

measures of the same construct (i.e. concurrent validity). In this thesis, I use VA scores as the 

concurrent measure of teacher quality. That is, I argue that the validity of estimated teacher 

scores is stronger if it has a stronger relationship (such as a correlation) with VA scores. 

Further, if teacher score estimates are becoming more valid after adjusting for hidden facets 

(i.e. the scores are better capturing teacher quality and hence contain less error), the 

relationship between score estimates and VA scores should increase after statistically 

adjusting for more hidden facets. However, recall that VA score estimates and observational 

estimates of teacher quality both correlate with students' prior achievement, raising the 

concern of correlated measurement error. Thus, I test the relationship between estimates of 

observed teacher quality and VA scores after partialling out the effect of students' prior 

achievement and student demographics through simple OLS regression. VA scores (i.e. 𝑌𝑉𝐴) 

are the dependent variable while students' prior achievement, the demographic composite, 

and observation score are regressors (i.e. 𝑌𝑉𝐴 = 𝛽𝑃𝑟𝐴𝑐ℎ + 𝛽𝐷𝑒𝑚𝑜 + 𝛽𝜐𝑡
𝑏𝑎𝑠𝑒). If scores become 

more valid after adjusting for hidden facets, the 𝛽𝜐𝑡
𝑏𝑎𝑠𝑒  term should increase across models 

(i.e. 𝛽𝜐𝑡
𝑏𝑎𝑠𝑒 < 𝛽𝜐𝑡

𝑆𝐷 < 𝛽𝜐𝑡
𝐶𝐼 < 𝛽𝜐𝑡

𝑆𝑂). 

IV.6.2. Validity Analyses (RQ3) 
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There is a second validity concern that arose in the theoretical framework and 

literature review. The relationship between observed teaching quality and teacher quality may 

vary across facets. This is a problem of differential validity across facets. Estimates of teacher 

quality may be more valid when created from observations of some facets than for other 

facets. For example, when observing small group instruction, there may be a strong 

relationship between estimated teaching quality and teacher quality while, when observing 

lectures, there may be a weak relationship between estimated teaching quality and teacher 

quality (i.e. 𝑐𝑜𝑟(�̂�𝑡 , 𝑌𝑉𝐴)|𝑠𝑚𝑎𝑙𝑙𝑔𝑟𝑜𝑢𝑝 > 𝑐𝑜𝑟(�̂�𝑡 , 𝑌𝑉𝐴)|𝑙𝑒𝑐𝑡𝑢𝑟𝑒). This can occur if the 

observation instrument measures interpersonal interactions, but, for lectures, teacher quality 

is more related to the organization of content than interpersonal interactions. That is, the 

observation instrument measures some aspect of instruction that is somewhat tangential to 

teaching quality on some levels of a facet. I explore the possibility of differential validity for 

the Curriculum and Instruction facets and the School Organization facets by testing whether 

the estimated teaching quality score-VA score relationship is affected by how often teachers 

were observed on a given hidden facet. For example, if observation scores of writing lessons 

are more valid than those of non-writing lessons, the validity of observation scores should be 

higher when more writing lessons are observed (i.e. 

𝛽𝜐𝑡
𝑏𝑎𝑠𝑒 |𝑠𝑚𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑝 𝑎𝑙𝑤𝑎𝑦𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 > 𝛽𝜐𝑡

𝑏𝑎𝑠𝑒| 𝑠𝑚𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑝 𝑛𝑒𝑣𝑒𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 where 

𝛽𝜐𝑡
𝑏𝑎𝑠𝑒  is as defined in the validity equation in the last paragraph). This can be tested by 

interacting observation scores with a variable capturing how many days of writing were 

observed for the given teacher in a model predicting VA scores. The use of VA scores as a 

validation measure is common practice in research on classroom observation instruments, but 

likely has little power given the weak relationship between observation score estimates and 

VA scores and the distance of VA scores from classroom instruction. The difference in 
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validity across models and across hidden facets therefore would have to be very large to have 

any power to detect the kinds of effects just noted. 

IV.7. Summary 

This chapter reviewed the data sources, statistical models, and analytic approaches 

used in this thesis. The UTQ project provides a rich source of data to explore the 

measurement properties of classroom observation scores as measures of teacher quality. 

GTheory provides the statistical framework to explore the properties of classroom 

observation scores, allowing the separation of true teacher effects from multiple sources of 

planned error. Further, GTheory is easily expanded to account for the situated nature of 

teaching and the effect of hidden facets on the reliability, bias, and validity of estimates of 

teacher quality.  

I described three approaches to explore the effect of hidden facets on observed 

teaching quality in this chapter. First, I examine the size of the fixed effect estimate, scaled to 

an effect size metric, which shows the effect of the hidden facet on observed teaching quality. 

Further, differences in effect sizes across instruments indicate instrument bias. Second, the 

correlation of teacher score estimates and the shift in ranks of those estimates demonstrate 

how much correcting for the effects of hidden facets actually changes estimated teacher 

scores. Third, the change in score reliability across models shows how the amount of error in 

score estimates shifts after controlling for hidden facets. I further described how I will divide 

hidden facets into independent components across levels of nesting (i.e. within-teachers, 

between-teachers, between-schools) to explore the level of nesting at which hidden facets 

affect observed teaching quality. Last, I examine the differential validity of scores across 

facets and across different degrees of adjustments for hidden facets.  

These analyses provide a comprehensive view of how adjusting for hidden facets 

affects observed teaching quality and teacher quality estimates. It is not clear, though, what 
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degree of adjusting is ideal. In fact, the very notion of an ideal set of facets to adjust for is 

probably overly-simplistic. The types of adjustments one decides to make depends on 

definitions of teacher quality, what facets one believes are drivers of teacher quality, and 

whether there are any practical effects of making adjustments. 
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Chapter V. Results 

In this chapter, I report the results from the analyses just described. In the first section, 

I focus on the relative size of the error facets included in the base GTheory model (Research 

Question [RQ] 1). This provides a broad overview of how the observation instruments are 

functioning as tools of measurement across the many sources of planned error inherent to the 

measurement protocol. I then turn to reporting the fixed effect estimates of the hidden facets 

in the System Design (SD) model, Curriculum and Instruction (CI) model, and School 

Organization (SO) model, paying special attention to the differential effects of hidden facets 

on observed teaching quality across instruments. These results address RQ 2 broadly. In the 

same section, I also explore whether the effects of hidden facets on observed teaching quality 

are within-teachers or between-teachers (RQ 2b), which has important implications for how 

this might affect estimates of teacher quality. In the third section, I explore the impact that 

hidden facets have on estimates of teacher quality, including the reliability of these estimates 

(RQ 2c). I then turn to the problem of validity by looking at how the teacher quality estimates 

from different statistical models are correlated to UTQ value-added scores (RQ 3). 

V.1. Results from the Base Model 

In this section, I review the results of the Base model. This model estimates the 

relative contributions of teacher quality (i.e. the "true" score) and error facets to variance in 

observed teaching quality scores. The goal is to evaluate RQ 1, which asks about the relative 

size of the contributions of teacher quality and the error facets to observed teaching quality. 

Developing an understanding of the relative importance of the different error facets is an 
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important first step in understanding how observed teaching quality varies across contexts of 

measurement. 

Table 5.1 shows the size of the variance of the planned facets of measurement from 

the Base models. The Base model was estimated separately for each of the three instruments, 

and the results for each instrument are presented in two columns. The left column under each 

instrument shows the absolute size of the estimated variance components while the right 

column presents the same data as a percentage of the total variance attributable to each facet. 

Both columns contain 95% bootstrapped confidence intervals in parentheses below the 

estimates. The column presenting percentages of variance explained by facets is generally 

more useful because it scales the instrument-specific variance components to a common and 

meaningful scale. 

I will start by discussing the estimated variance of teacher quality (i.e. the teacher 

facet or "true" score in each model). I will then turn to a discussion of the day and occasion 

error facets, also discussing here the item error facets related to days and occasions. I then 

review the item main effect facet, the results of which are displayed (separately) in Table 5.2. 

Last, I will discuss the rater error facets. 
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Table 5.1: Random Effect Variance Components from Base GTheory Model 

 CLASS  FFT  PLATO 

Facet Value Percent  Value Percent  Value Percent 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.076 

(0.054-0.098) 
7% 

(5-8.9) 
 0.029 

(0.021-0.038) 
10.7% 

(7.9-13.7) 
 0.012 

(0.007-0.015) 
2.8% 

(1.8-3.7) 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.013 

(0-0.035) 
1.2% 

(0-3.2) 
 0.008 

(0.001-0.016) 
3% 

(0.4-5.9) 
 0.003 

(0-0.008) 
0.8% 

(0-1.8) 

Occasion (𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 
0.053 

(0.048-0.059) 
4.9% 

(4.3-5.5) 
 

  
 0.017 

(0.015-0.019) 
4.1% 

(3.6-4.6) 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.04 

(0-0.102) 
3.7% 

(0-8.9) 
 0.011 

(0.003-0.024) 
4.2% 

(1-8.5) 
 0.002 

(0-0.009) 
0.5% 

(0-2.2) 
Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 
0 

(0-0.037) 
0% 

(0-3.3) 

 0.005 

(0-0.019) 
1.8% 

(0-6.6) 

 0 

(0-0.005) 
0.1% 

(0-1.2) 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.141 

(0.099-0.156) 
13% 

(9.1-14.6) 

 0.044 

(0.029-0.054) 
16% 

(10.5-19.6) 

 0.02 

(0.014-0.024) 
4.8% 

(3.5-5.7) 

Item-by-Rater (𝑣𝑎𝑟(𝜐𝑖𝑟)) 
0.225 

(0.17-0.294) 
20.7% 

(16.4-25.7) 
 0.011 

(0.008-0.015) 
4% 

(2.9-5.2) 
 0.022 

(0.014-0.03) 
5.3% 

(3.5-7.1) 

Item-by-Teacher (𝑣𝑎𝑟(𝜐𝑖𝑡)) 
0.029 

(0.024-0.034) 
2.7% 

(2.2-3.2) 
 0.008 

(0.006-0.01) 
2.9% 

(2.1-3.7) 
 0.012 

(0.009-0.015) 
2.9% 

(2.3-3.6) 

Item-by-Day (𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 
0.128 

(0.12-0.135) 
11.8% 

(10.7-12.8) 
 0.017 

(0.012-0.021) 
6% 

(4.5-7.7) 
 0.067 

(0.062-0.07) 
16.2% 

(15.2-17.1) 
Item-by-Occasion 

(𝑣𝑎𝑟(𝜐𝑖(𝑜:𝑑:𝑠:𝑡))) 
0 

(0-0.008) 
0% 

(0-0.7) 

 
  

 0.012 

(0.007-0.017) 
2.9% 

(1.7-4.1) 

Residual (𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.381 

(0.372-0.386) 
35.1% 

(32.3-37.4) 
 0.14 

(0.135-0.145) 
51.4% 

(48.1-54.3) 
 0.246 

(0.241-0.251) 
59.6% 

(57.7-61.4) 

Note. Separate regressions were run for each instrument. For each regression model, the value column shows the 

estimated variance for the given facet and given model and the percent column shows the percentage of the total 

variance contributed by the given facet.  * p<0.05; ** p<0.01; *** p<0.001. 

 

Table 5.1 shows that the percentage of 

variance attributable to the teacher quality (i.e. the teacher facet: 𝜐𝑡) was 7% for CLASS, 

10.7% for FFT, and 2.8% for PLATO. Thus, across all three instruments, 11% or less of the 

variance in observed scores was attributable to teachers—the object of measurement in 

classroom observation research. The reader should note that this is much lower than what has 

been found in past research. For example, the MET study (discussed earlier in this thesis) 

found that the percentage of variance due to the teacher facet, was about 30% for the same 

instruments examined here (c.f. Kane et al., 2012). The difference between these MET results 

and the ones presented in Table 5.1 was mainly due to differences in the GTheory statistical 

model estimated here versus statistical model in the MET study rather than inherent 

properties of the UTQ data set. As discussed earlier, the GTheory statistical models I 

estimated included items as facets of measurement, which makes comparisons with the item-

averaged statistical models used in the MET study inappropriate. If we estimate the same 

V.1.1. Teacher Facet (Teacher Quality) 
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statistical models employed by MET researchers using UTQ data, the results were more 

similar to results from that study—24% variance in observed scores was due to teacher 

quality for CLASS, 27% for FFT, and 22% for PLATO. 

The results in Table 5.1 show that the percentage of variance due to teachers differs 

significantly across instruments. FFT had the highest percentage of variance in scores due to 

teachers (10.7%); by contrast, the percentage of score variance due to teachers was about a 

third as much for PLATO (2.8%) and somewhat more than half as much as for CLASS (7%). 

This shows that compared to CLASS and PLATO, the variance in observed scores on FFT 

were more the result of teacher quality (𝜐𝑡 in Equation 1) than to the effects of the rater, item, 

day, or occasion facets in the model (alone and in combination). As a result, score estimates 

from FFT should be more reliable (but not necessarily more valid) than scores from CLASS 

or PLATO. 

Note also that the percentage of variance in observed scores due to teachers was 

estimated with minimal "absolute error", but considerable "relative error". For example, 

Table 5.1 shows that the confidence intervals for the percentage of variance due to teachers 

were only a few percentage points wide, which shows a small absolute error (i.e. the 

confidence interval spans only a 2-5 percentage points). However, the uncertainty in the 

estimate was large relative to the size of the point estimate (i.e. relative error). For example, 

the variance point estimates shown in Table 5.1 can shift up or down by about 33% and still 

remain within the 95% confidence interval. This is an important challenge to my subsequent 

efforts to understand how hidden facets affect the measurement properties of observation 

instruments. As I have argued, one of the likely main effects of hidden facets in GTheory 

analyses is to inflate estimates of the variance of the teacher facet (𝑣𝑎𝑟(𝜐𝑡)^ ). As I turn to 

making comparisons between models to explore this effect, one question will be whether the 

teacher-level variance component was reduced as adjustments were made for more hidden 
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facets. Given the confidence intervals for variance components shown in Table 5.1, hidden 

facets would have to explain over 1/3 of the variance between teachers in the Base model for 

me to conclude that a statistically significant change has occurred in the estimated variance of 

teacher quality. In fact, as can be seen in Table 5.1, this is a challenge not only for the teacher 

variance component, but for all other variance components in the model as well. 

To this point, I have been discussing the 

variance of the “true” score component in my GTheory statistical model (𝑣𝑎𝑟(𝜐𝑡)^ ). I now 

turn to the percentage of variance in observed scores due to specific error facets, beginning 

with the day and occasion error facets. The day facet produces variation in observed scores 

within-teachers between-days, while the occasion facet produces variation in observed scores 

within days. Table 5.1 shows that all three of the classroom observation instruments under 

study had low day variance, with the day facet accounting for only 1.2% of the total variance 

in observed scores for CLASS, 3% for FFT, and 0.8% for PLATO. This is surprising given 

that past work has found larger effects for the day facet (e.g. Kane et al., 2012).  Just as for 

the teacher facet, however, part of the discrepancy in my findings versus those of other 

studies stems from the model estimated in this thesis, which led to lower estimates of 

variance components generally. However, even after estimating a MET-like model on UTQ 

data (results not shown here), the variation in observed teaching quality across days in UTQ 

data was below that found in the MET data. This is unfortunate in the context of this 

dissertation because many of the hidden facets of interest to this dissertation (like curriculum 

and instruction) varied across days. Because there was low within-teacher variation in scores 

by day, there was less variation to be explained, making the detection of "hidden" facet 

effects more difficult when these were included in my statistical model. 

Table 5.1 shows that the variance due to occasions (nested within days) was larger 

than the variance due to days, with the occasion facet accounting for 4.9% of the total 

V.1.2. Day and Occasion Error Facets 
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variance in CLASS and 4.1% in PLATO. Note again that FFT was scored on 30 minute 

occasions and that there were not enough days scored on multiple occasions to estimate an 

occasion effect. As a result, no estimate of occasion variance was provided for FFT in Table 

5.1. Overall, the findings on the occasion variance seem to suggest that occasions were more 

important than days in accounting for observed score variance. However, it is important to 

consider the item-by-day and item-by-occasion effects before drawing this conclusion. The 

percentages of variance in observed scores due to item-by-day effects were large for all 

instruments: about 11.8% for CLASS, 6% for FFT, and 16.2% for PLATO. In contrast, the 

percentage of observed score variance due to item-by-occasion effects was much smaller: 0% 

for CLASS and 2.9% for PLATO. Thus, when including item effects, days were a more 

important source of variation in observed teaching quality than occasions.  This shows that 

items were very important for understanding the variation of teaching quality across days, but 

less important for understanding how occasions deviate from day scores.  

Using the data in Table 5.1 we can quantify the relative importance of average scores 

across items (e.g. the day facet) and deviations from this average due to specific items (e.g. 

the item-by-day facet) at each level (i.e. occasion, day, teacher) of the statistical model. The 

sum of the variance due to the day facet and the item-by-day facet represents the total 

variance in observed scores across days (net of any rater error effects). As the day facet gets 

relatively larger and starts to explain all of the variance in scores across days (i.e. 

𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡) >> 𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))), items do not vary independently, but only vary with changes 

to the day mean score (i.e. the day facet). That is, the variance across days becomes 

unidimensional. This suggests using the percentage of the variance across days (net of rater 

error effects) that is due to the day facet (i.e. 𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)/[𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡) + 𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))]) as a 

rough measure of uni-dimensionality (see "percentage of total variance" in Hattie, 1985). 

Applying this measure to data from Table 5.1, I find 9% of the variance in observed CLASS 
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scores across days was due to the day facet; while the equivalent percentages for FFT and 

PLATO were 32% and 4%, respectively. Thus, there was a great deal of multi-dimensionality 

across days; that is, deviations of specific items from the average day score was instrumental 

to understanding the variation of observed scores across days, implying days vary in 

instructional quality across specific dimensions more than they do overall. 

Conducting the same analysis focusing on the occasion facets, we can see that all of 

the variance in observed CLASS scores across occasions was due to the occasion facet and 

59% of the variance in observed PLATO scores across occasions was due to the occasion 

facet. These percentages were much higher than for days, which show more 

unidimensionality at the occasion-level. That is, item-specific deviations from the average 

score were much less important for understanding the variance of observed scores across 

occasions than across days. This tells us that day deviations from teacher quality occurred 

mainly on specific items (i.e. a day was stronger or weaker than expected on specific items 

rather than as a whole) while occasion deviations from day scores occurred equally across all 

items (i.e. an occasion was stronger or weaker than expected equally across all items). 

We can conduct this same analysis at the teacher-level (i.e. examine what percentage 

of the teacher variance was due to the teacher facet). Using the data from Table 5.1, I find 

that 70% of variance in observed CLASS scores across teachers was due to the teacher facet 

while the corresponding percentage was 80% for FFT and 50% for PLATO. Thus, like at the 

occasion-level, the variance of observed scores at the teacher-level was mostly due to 

differences in teacher means, rather than item-specific deviations from the mean (i.e. scores 

were more unidimensional at the teacher-level). There were, however, differences across the 

instruments; item facets contributed more to PLATO scores across all levels of the model (i.e. 

occasions, days, and teachers), as compared to CLASS and FFT. The variation in FFT scores 

was least effected by items at all levels (i.e. occasions, days, teachers). 
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I have just discussed how item error facets interact 

with occasion, day, and teacher facets to produce observed score variance. I turn now to 

examining item main effects. Note that in my Base statistical model, items were modeled as 

fixed effects and so are not included as a facet in the variance components results shown in 

Table 5.1. Table 5.2 shows the item main effects with one pair of columns for each 

instrument. Estimates of item means with standard errors from the Base model are displayed 

for each item. As Table 5.2 shows, the item means spanned a wide range of the scale for each 

instrument. Moreover, if item means were treated as a random effect in my statistical model, 

they would dwarf the variance accounted for by any other facet, except the residual
30

. As has 

been noted in past work (e.g. Kane et al., 2012) and as shown in Table 5.2, teachers tended to 

receive higher scores on items measuring the classroom management and classroom culture 

dimensions of teaching quality and tended to receive lower scores on items measuring 

various instructional dimensions of teaching quality. 

  

                                                 

30
 As discussed before, by including item fixed effects in my Base model, I have effectively reduced the 

overall amount of variance to be explained by the random effects in my model. My treatment of item effects as 

fixed means that I assume any researcher building on my results to make a decision study will use all items in 

his or her observation protocol. Moreover, although I include item fixed effects in my Base model, the actual 

teacher quality score I get from my Base model (i.e., the specific random effect for a given teacher's estimated 

from the model) would correlate 1.0 with an estimate of the same model without these fixed effects. The 

benefits of including item fixed effects in the BASE model is that they are indicator of “item” difficulty. That is, 

item means show which items teachers tend to score high on and which they score lower on. 

V.1.3. Main Item Error Facet 
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Table 5.2: Average Item Scores from Base GTheory Model 

CLASS FFT PLATO 

Item (𝛽𝑖) Mean (SE) Item (𝛽𝑖) Mean (SE) Item (𝛽𝑖) Mean (SE) 

Positive Climate 
4.57 

(0.15)*** 
Respect and Rapport 

2.82 

(0.05)*** 
Purpose 

2.88 

(0.07)*** 

Negative Climate 
6.71 

(0.15)*** 
Culture for Learning 

2.35 

(0.05)*** 
Intellectual Challenge 

2.12 

(0.07)*** 

Regard for Adolescent 

Perspectives 

3.12 

(0.15)*** 
Classroom Procedure 

2.49 

(0.05)*** 

Representation of 

Content 

2.42 

(0.07)*** 

Teacher Sensitivity 
4.04 

(0.15)*** 
Student Behavior 

2.77 

(0.05)*** 

Connections to Prior 

Knowledge 

1.51 

(0.07)*** 

Behavior 

Management 

5.96 

(0.15)*** 
Physical Space 

2.34 

(0.05)*** 

Connections to Personal 

Experience 

1.31 

(0.07)*** 

Productivity 
5.73 

(0.15)*** 

Communicating with 

Students 

2.64 

(0.05)*** 

Explicit Strategy 

Instruction 

1.17 

(0.07)*** 

Instructional Learning 

Formats 

3.71 

(0.15)*** 

Knowledge of Content 

and Pedagogy 

2.24 

(0.05)*** 
Modeling 

1.24 

(0.07)*** 

Content 

Understanding 

3.26 

(0.15)*** 

Questioning and 

Discussion Techniques 

1.97 

(0.05)*** 
Guided Practice 

2.42 

(0.07)*** 

Analysis and Problem 

Solving 

2.42 

(0.15)*** 
Engaging Students 

2.27 

(0.05)*** 
Classroom Discourse 

2.07 

(0.07)*** 

Quality of Feedback 
3.36 

(0.15)*** 
Using Assessment 

2.04 

(0.05)*** 
Text Based Instruction 

1.93 

(0.07)*** 

Student Engagement 
5.02 

(0.15)*** 

Flexibility and 

Responsiveness 

2.15 

(0.05)*** 

Accommodations for 

Language Learning 

1.37 

(0.07)*** 

    Behavior Management 
3.91 

(0.07)*** 

    Time Management 
3.77 

(0.07)*** 

 

Having considered teacher, day, occasion, and item 

facets, I turn now to facets of measurement involving raters. Table 5.1 shows that there are 

four error facets related to raters, plus the residual which captures rater error (since the 

residual includes rater-by-occasion, rater-by-item-by-teacher, rater-by-item-by-day, and rater-

by-item-by-occasion effects). The rater facet in my statistical model captures variation in 

scores due to some raters being consistently more harsh or lenient than other raters in their 

scoring. The rater-by-item error facet captures an item-specific version of this same error 

(and if large, shows that a rater's leniency is not consistent across items). The rater-by-teacher 

and rater-by-day error facets capture idiosyncratic rater reactions to specific teachers and 

V.1.4. Rater Error Facets 
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specific days, respectively
31

. Thus, each of the error facets captures a different type of rater 

error.  

Table 5.1 shows wide variation in how much each type of rater error contributed to 

the total variance in observed scores across the three classroom observation instruments 

under study, although rater-by-item and rater-by-day error facets were always the largest 

error component, no matter the instrument. Looking at Table 5.1, it can be seen that the 

percentage of variance in observed teaching quality explained by the rater-by-item error facet 

is 20.7% for CLASS, 4% for FFT, and 4.8% for PLATO. The noticeably larger variance 

explained by the rater-by-item facet for CLASS versus the other instruments may be due to 

differences in the structure of CLASS instrument itself or to the rater training for CLASS, 

though because the same raters scored all three instruments in the UTQ study it cannot be due 

to the raters themselves. For both CLASS and PLATO, the rater-by-item error facet was the 

largest rater-related effect in the data (not including the residual), easily dwarfing the 

variance in observed scores due to the rater main effect only. This implies that on CLASS 

and PLATO, raters were not so much harsh or lenient in general but rather were relatively 

harsh or lenient in their scoring of specific items. For FFT, where item facets were generally 

small, the rater-by-item error facet was almost as large as the rater error facet. Thus, for all of 

the instruments under study, raters appeared to be more or less lenient (compared to other 

raters) on an item-by-item basis. 

Table 5.1 also allows us to examine the importance of the rater-by-day effect, which 

(as the table shows) is the next most important source of rater error. The percentage of 

variance in observed teaching quality explained by the rater-by-day error facet is 13% for 

CLASS, 16% for FFT, and 4.8% for PLATO. This error facet is noticeably smaller for 

                                                 

31
 Recall that the rater-by-section error was found to be near zero so these error facets are independent of 

errors stemming from the specific classroom. 
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PLATO than it is for CLASS and FFT. Looking at Table 5.1, we can also compare the 

relative size of the rater-by-day facet and the day facet. Doing so shows that the rater-by-day 

facet was much larger than the day facet, implying that any two raters disagreed over the 

correct score on a given day more than any two days "disagreed" about a teacher's teaching 

quality
32

. No matter the causes of the rater-by-day error in the data, this indicates a very high-

level of rater error in the estimation of teaching quality on a given day.  This again raised a 

challenge for my thesis, especially for hidden facets that operated at the day-level. In UTQ 

data, most days were scored by a single rater, and as a result, day-level score estimates were 

confounded with rater effects, which affects my exploration of day-level hidden facets
33

. The 

UTQ data set, then, may be limited in its ability to explore the impact of (within-teacher) day-

level hidden facets since scores for days were not well-estimated. 

In contrast to the rater facets discussed so far, the rater-by-teacher facet was 

indistinguishable from zero (see Table 5.1). This finding helps alleviate common concerns 

that raters were biased against specific types of teachers. Since any such bias would show up 

in the rater-by-teacher facet (unless all raters were biased in the same way
34

), this concern 

                                                 

32
 One possible way of exploring this kind of error in UTQ data is to look at the number of notes that 

raters submitted for each occasion and day. UTQ asked raters to submit notes that recorded evidence they used 

to assign scores (although it is not clear how well this policy was implemented since there was a wide variation 

in how often raters submitted notes containing scoring evidence). I conducted an exploratory analysis examining 

variation in the number of score notes submitted by raters. After adjusting for rater main effects, the largest 

source of variation in scoring notes submitted was the rater-by-day facet (except for PLATO where the rater-by-

occasion facet was slightly larger). Further, for CLASS and PLATO, days accompanied by more scoring notes 

had higher scores while days accompanied by more scoring notes had lower scores on FFT. Thus, the data 

indicate that raters apparently noticed different amounts of scoring evidence when observing the same day of 

instruction and difference in how much scoring evidence was reported is associated with differences in scores. 

This suggests that the ways in which raters confronted and processed evidence on a given day could be an 

important explanation of rater-by-day error. 

33
 Rater-by-day effects and the assignment of raters to days might also explain the low section-level 

variances estimated in my initial models. Without being able to stably estimate day-level deviations from 

teacher scores, the model may be unable to estimate section average scores, especially with only two days per 

section. A true exploration of the section facet, then, might have to wait until a more robust data set is created 

that increases both the number of days scored for each teacher and the number of raters scoring any given day. 

34
 In a set of analyses outside the scope of this dissertation, I show about half of the rater error in UTQ is 

the result of all raters being biased in the same direction (relative to master scores on calibration data).  Thus, 

the rater error in analyses discussed in this thesis captures only half of the total rater error. 



 

118 

does not seem warranted in the UTQ data, perhaps because UTQ employed professional 

raters with no knowledge of the teachers they were rating
35

. 

  

In summary, this section discussed the effect that teacher quality and error facets had 

on observed teaching quality as estimated from the base GTheory model applied to UTQ 

data. Exploring the relative size and importance of the random effects from the GTheory 

model highlighted many of the ways that observed teaching quality varied over the 

measurement facets included in the analysis, providing useful information about errors in the 

measurement of teacher quality. There were differences across instruments in the importance 

of different facets, including differences in the amount of variance in observed teaching 

quality that was due to differences in teacher quality (i.e. size of teacher facet), the 

importance of items in understanding observed teaching quality, and the main types of rater 

error. On CLASS, the item-by-rater, item-by-day, and residual facets explained the largest 

percentage of variance in observed teaching quality while the teacher facet (i.e. teacher 

quality) explained a moderate amount of the variance in observed teaching quality. On FFT, 

the rater-by-day, teacher, and residual facets explained the largest percentage of variance in 

observed teaching quality. On PLATO, the rater-by-day, item-by-day, and residual facets 

explained the largest percentage of variance in observed teaching quality. 

                                                 

35
 Once again, it is worth noting that the UTQ data structure does not provide a strong basis from which 

to evaluate the rater-by-teacher facet and in fact may lead this facet to be under-estimated. Ideally, the rater-by-

teacher facet is estimated when two different raters score all observed days for a given teacher. This allows each 

rater to generate a complete view of the teacher from which comparisons across raters can be made. In UTQ, 

raters very rarely scored more than two out of four days from a teacher, conflating the rater-by-day and rater-by-

teacher errors. Surprisingly, the uncertainty in the rater-by-teacher variance components is not correspondingly 

large. It is interesting to note, however, that across individual bootstrapped samples, the correlation in the 

variance estimates for the rater-by-teacher and rater-by-day effects is quite large (near -0.8), confirming my 

suspicion that the data structure leads to poor separation of these effects. Simulation work is necessary to 

explore the effect of data structure on limiting how error facets can be estimated. 
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V.2. Impact of Hidden Facets on Observed Teaching Quality 

In this section, I turn from investigating variance in observed scores due to planned 

features of the observation protocol to what I previously called “hidden” facets of 

measurement. Recall that I discussed three general “classes” of facets: System Design (SD) 

facets, Curriculum and Instruction (CI) facets, and School Organization (SO) facets. In what 

follows, I explore the impact of these facets on observed teaching quality (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) in a set 

of nested statistical models that progressively adjust for these facets, beginning with a 

GTheory model that adds to the Base model the effects of the SD facets, moving next to the 

incorporation of CI facets, and concluding with the incorporation of SO facets. The goal of 

these nested models is to address RQ 2 by estimating the extent to which observed teaching 

quality changes across levels of hidden facets. Specifically, I look across the three 

instruments to examine evidence of instrument bias across the hidden facets (RQ2a); I 

address the question of whether hidden facets act within-teachers, between-teachers, or 

between-schools (RQ2b); and I show how adjusting for hidden facets impacts estimates of 

the variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡)) and the variance of the planned error facets. 

Two challenges arose in comparing results across these nested models: determining 

whether facet effects on observed scores are meaningfully large (i.e. understanding effect 

sizes) and comparing facet effects across the three instruments. To address these challenges, I 

reported facet effects in the tables below in the metric of teacher quality standard deviations 

(i.e. √𝑣𝑎𝑟(𝜐𝑡), which I denote below as SDT). Standardizing on teacher quality standard 

deviations allowed me to interpret facet effect sizes in terms of how much entry of a given 

facet into my GTheory statistical model would move a teacher across the distribution of 
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teacher quality. This, in turn, arguably created a common, meaningful metric across 

instruments
36

. 

I begin the analyses of hidden facets by 

exploring the effect of the System Design (SD) facets on observed scores. This involves 

adding variables characterizing the SD facets to the Base model discussed earlier. In what 

follows, I call this new model the SD model. By demonstrating that the SD facets affected 

observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)), I show that the SD facets I consider are, in fact, 

hidden facets (recall that hidden facets must affect observed scores and capture a 

characteristics we wish to generalize across). I also look for evidence of instrument bias to 

address RQ 2a. 

My findings show that a number of the System Design facets were systematically 

related to observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) as shown in Table 5.3. Table 5.3 shows 

the results of three separate SD models (one for each instrument). Each cell contains the 

estimated effect of a hidden facet on observed teaching quality with the standard error of that 

effect. The top row of Table 5.3 shows that the effect of a dummy coded variable 

representing whether a rater scored a day live, that is, whether the rater was in the classroom 

or using a pre-recorded video (where live scoring = 1, and video scoring = 0). The table 

shows that live scoring had a statistically significant effect on observed scores only for the 

FFT instrument. For FFT, days scored live received scores 0.56 SDT higher on FFT than days 

scored from video. This implies that a teacher at the 50th percentile of estimated teacher 

quality would be estimated to be at the 71th percentile of estimated teacher quality if they 

were only scored live. CLASS scores were not higher when scoring was live (𝛽𝐿𝑖𝑣𝑒 =0.33 

SDT; p=0.11). In contrast to the two instruments just mentioned, PLATO scores were 0.44 

                                                 

36
 I present the same tables, but this time in the typical scale point metric, in Appendix B. 

V.2.1. System Design Model (SD) 
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SDT lower when scoring was live, an effect that was marginally significant (p=0.07). 

Considering FFT had a significant positive effect and PLATO had a marginally significant 

negative effect, the impact of live scoring on PLATO and FFT are inconsistent, suggesting 

instrument bias, as discussed earlier. Appendix F discusses the process of identifying this bias 

in more detail.  Here, I simply state that the effect of live scoring on PLATO scores was 

significantly lower than the effect on FFT scores (p<0.001) and CLASS scores (p=0.008), 

demonstrating instrument bias.  This indicates bias because live scoring cannot 

simultaneously lead to an increase and a decrease in true observed teaching quality (i.e. 

𝑋𝑡𝑟𝑢𝑒)
37

. Note that this bias is likely due to construct under-representation or construct-

irrelevant variance
38

. That is, the biased instrument is not capturing some important aspects 

of true teaching quality (construct under-representation) or is measuring some factor that is 

independent of true teaching quality (construct-irrelevant variance) when scoring is live. 

Table 5.3: Fixed Effects for the System Design (SD) Model across the three Instruments in 

the Teacher SD Metric 

Names CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 0.33 (0.20) 0.56 (0.21)** -0.44 (0.25) 

Double Scored (𝛽𝐷𝑏𝑙) -0.12 (0.13) 0.05 (0.13) -0.24 (0.14) 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) -0.06 (0.01)*** -0.04 (0.01)** -0.08 (0.02)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)    

   Tuesday -0.08 (0.15) -0.01 (0.14) -0.16 (0.18) 

   Wednesday 0.31 (0.16)* 0.29 (0.15) 0.18 (0.19) 

   Thursday -0.02 (0.15) 0.15 (0.15) -0.20 (0.18) 

   Friday -0.24 (0.18) -0.15 (0.18) -0.02 (0.23) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) -0.12 (0.02)*** -0.11 (0.02)*** -0.11 (0.03)*** 

Note. Each column shows the results of a separate model for the indicated instrument. Date Scored is scaled so a 

1 point difference is one month; Monday is the reference group for the Days of the Week.  * p<0.05; ** p<0.01; 

*** p<0.001. 
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 It is somewhat strange to think of the process of live scoring as affecting true observed teaching 

quality. However, if, for example, low-achieving students routinely sit in the back of the classroom, where they 

are observable only when live scoring and not on video, then the process of scoring classrooms live could have a 

real impact on the true value of observed teaching quality by allowing a unique aspect of the classroom to be 

visible. Alternatively, the presence of a rater scoring the classroom could affect what happens in the classroom 

more than the presence of a video camera.  Either of these could differentially affect different dimensions of 

observed teaching quality and so have a different effect across instruments.   

38
 In an analysis not shown here but reported in Appendix D, I ran the SD model separately for each item 

in each instrument. These item-specific models allowed me to explore whether the inconsistency in effects of 

the type of scoring across PLATO and FFT was restricted to certain items on these instruments. However, no 

clear patterns emerged in the data. 
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The second row of Table 5.3 shows the effects of whether or not a score was part of 

the double scoring process on observed scores. As the table shows, this facet had no 

statistically significant effect on observed scores
39

. The third row of Table 5.3 (i.e. the Date 

Scored row) shows the effect of when scoring was completed on observed teaching quality. 

This variable is included in the SD model to capture a phenomenon called "rater drift" (where 

any linear trend in scores across dates indicates a trend in scoring that is, by design, 

independent of other explanations for this trend). As Table 5.3 shows, all three instruments 

showed negative rater drift with raters becoming harsher (i.e. giving lower scores) over time. 

Further, the estimated size of the rater drift was consistent across instruments. While the rater 

drift effect is small, scoring persisted over a two year period and the effect shown gives the 

difference in assigned scores across adjacent months. Thus, the difference between scores 

given at the start and end of the scoring process due solely to the effect of rater drift is about 

1.4-1.9 SDT, which is quite large. The finding of negative rater drift matches the results of 

Casabianca and colleagues (2015), who showed a similar effect in the UTQ data, though they 

modeled a complex drift trend that arguably over-fits the data. 

Turning from SD facets related to how and when observations were scored, I next 

examine the effects of when the instruction being observed took place. I begin by looking at 

results in Table 5.3 showing day of the week effects on observed scores. Four effects for days 

of the week were estimated (with Monday as the reference day). As Table 5.3 shows, scores 

on CLASS and FFT were higher on Wednesdays (~0.30 SDT) compared to other days of the 

week, though this effect was only marginally significant for FFT. This Wednesday effect 

                                                 

39
 The effect of double scoring is marginally significant for PLATO. It becomes significant in later 

models. There is no reason for there to be a significant effect of double scored videos. Double scored videos 

were randomly selected, scored in a random order (albeit later on average than the original scores), and scored 

by a randomly selected rater. It is possible that the correction for rater drift is not adequate, but adding a more 

complex drift term did not affect the significance of the double scoring effect. Looking at the item-level data, 

the effect is driven by only Modeling in the SD model while Purpose, Intellectual Challenge, and Representation 

of Content become significant in the CI model. 
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would move an average teacher from the 50th percentile of estimated teaching quality to the 

62th percentile. In contrast to CLASS and FFT, there were no day of the week effects for the 

PLATO instrument. Here again, then, there was some suggestion that instrument bias may 

exist. However, the effect of Wednesdays on CLASS scores was not significantly different 

than the effect on PLATO so instrument bias cannot be confirmed (c.f. Appendix F). 

Table 5.3 also shows the effect of the month that an observation took place (denoted 

as Observation Month in the table). All three instruments show a decrease in observed 

teaching quality scores over the course of the year, suggesting actual teaching quality 

decreases across the school year. Table 5.3 shows that CLASS, FFT, and PLATO scores 

decrease ~0.11 SDT for each month of the school year. This negative effect on observed 

teaching quality has been found before with UTQ data (Casabianca et al., 2015). Over the 8 

month school year, the trend in scoring predicts that scores will decrease by 0.99 SDT on 

CLASS, FFT, and PLATO, which can substantially affect a teacher’s score. 

A final step in the analysis of SD facets is reported in Tables 5.4 and 5.5. Here, 

attention turns from a consideration of time of year and day of week effects on observed 

scores to the effects of occasions of measurement within days on observed scores. In these 

tables, I am going to report on the extent to which observed scores on CLASS and PLATO 

are affected by the time ordering of observation segments within days. The reader will recall 

that raters using these instruments recorded their scores at 15-minute intervals
40

. The question 

for the analysis is whether there are segment ordering effects—that is, whether after 

controlling for all other variables in the SD statistical model shown in Table 5.3, scores 

recorded in segments occurring earlier in an observation period differ from scores recorded at 

                                                 

40
 Recall that FFT was scored using 30 minute occasions and that too few days had multiple occasions for 

FFT to be included in the present analysis. 
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a later point. Note also that in these statistical models, I will report segment timing effects 

separately for each item on each instrument. 

Table 5.4 shows the results for CLASS and Table 5.5 shows the results for PLATO. 

In both tables, the first column of the table shows the item averages for the reference 

occasion (i.e. the first occasion; minutes 0-15). The second column shows item-specific 

deviations from this average due to the second occasion (i.e. minutes 15-30). The third 

column shows item-specific deviations from this average due to the third occasion (i.e. 

minutes 30-45). The fourth column shows item-specific deviations from this average due to 

the fourth and later occasion (i.e. minutes 45 through end of lesson)
41

. All effects are 

presented in the teacher standard deviation (SDT) metric. 

The results in Tables 5.4 and 5.5 show that observed teaching quality scores varied 

systematically within the course of a lesson period. In analyses not shown here, I found that 

averaging across all items, scores on CLASS were 0.31 SDT higher on the second occasion as 

compared to the first and 0.18 SDT higher on the third occasion as compared to the first, 

while the fourth and later occasions were not significantly different than the first occasion.  

PLATO scores showed a similar effect, but the effect was twice as strong with scores in the 

second occasion 0.61 SDT higher and scores on the third occasion 0.40 SDT higher than 

scores on the first occasion.  This shows that observed teaching quality generally increased 

through the middle portion of the lesson, remaining lower at the start and end of the lesson. 

  

                                                 

41
 Only 272 of 901 days (30%) had 4 occasions, 52 (6%) had 5 occasions and 16 (2%) days had six 

occasions. 
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Table 5.4: Item-by-Occasion Fixed Effects for the System Design (SD) Model on the CLASS 

Instrument in the Teacher SD Metric 

Item (𝛽𝑖) 
Item Average 

(Occasion 1) 
Occasion 2 Occasion 3 Occasion 4+ 

Positive Climate 16.87 (0.55)*** 0.16 (0.10) 0.03 (0.10) 0.02 (0.15) 

Negative Climate 24.62 (0.55)*** 0.07 (0.10) 0.16 (0.10) 0.21 (0.15) 

Regard for Adolescent Perspectives 11.08 (0.55)*** 0.87 (0.10)*** 0.85 (0.10)*** 1.02 (0.15)*** 

Teacher Sensitivity 14.81 (0.55)*** 0.37 (0.10)*** 0.41 (0.10)*** -0.15 (0.15) 

Behavior Management 22.09 (0.55)*** -0.14 (0.10) -0.18 (0.10) -0.45 (0.15)** 

Productivity 21.00 (0.55)*** 0.18 (0.10) 0.24 (0.10)* 0.07 (0.15) 

Instructional Learning Formats 13.88 (0.55)*** 0.23 (0.10)* -0.28 (0.10)** -0.97 (0.15)*** 

Content Understanding 12.25 (0.55)*** 0.24 (0.10)* -0.35 (0.10)*** -1.06 (0.15)*** 

Analysis and Problem Solving 8.71 (0.55)*** 0.64 (0.10)*** 0.63 (0.10)*** 0.49 (0.15)** 

Quality of Feedback 12.16 (0.55)*** 0.65 (0.10)*** 0.58 (0.10)*** 0.37 (0.15)* 

Student Engagement 18.49 (0.55)*** 0.13 (0.10) 0.07 (0.10) 0.09 (0.15) 

Note. Column 'Main' shows the Item mean on occasion 1; Column '2' shows the deviation of the item on 

occasion 2; Column '3' shows the deviation of the item on occasion 3; Column '4+' shows the deviation of the 

item on occasion 4 or higher.  * p<0.05; ** p<0.01; *** p<0.001. 

 

Table 5.5: Item-by-Occasion Fixed Effects for the System Design (SD) Model on the PLATO 

Instrument in the Teacher SD Metric 

Item (𝛽𝑖) 
Item Average 

(Occasion 1) 
Occasion 2 Occasion 3 Occasion 4+ 

Purpose 27.25 (0.62)*** 0.08 (0.19) -0.04 (0.20) -0.29 (0.30) 

Intellectual Challenge 19.42 (0.62)*** 1.13 (0.19)*** 1.33 (0.20)*** 1.07 (0.30)*** 

Representation of Content 22.77 (0.62)*** 0.75 (0.19)*** 0.18 (0.20) -0.93 (0.30)** 

Connections to Prior Knowledge 16.06 (0.62)*** -1.48 (0.19)*** -2.93 (0.20)*** -4.33 (0.30)*** 

Connections to Personal Experience 12.60 (0.62)*** 0.40 (0.19)* -0.08 (0.20) -0.47 (0.30) 

Explicit Strategy Instruction 11.48 (0.62)*** 0.14 (0.19) -0.29 (0.20) -0.51 (0.30) 

Modeling 11.62 (0.62)*** 0.91 (0.19)*** 0.51 (0.20)* 0.10 (0.30) 

Guided Practice 21.84 (0.62)*** 1.24 (0.19)*** 2.29 (0.20)*** 2.24 (0.30)*** 

Classroom Discourse 19.02 (0.62)*** 1.32 (0.19)*** 1.01 (0.20)*** 0.71 (0.30)* 

Text Based Instruction 16.53 (0.62)*** 2.71 (0.19)*** 3.08 (0.20)*** 3.03 (0.30)*** 

Acc. for Language Learning 13.34 (0.62)*** 0.15 (0.19) -0.43 (0.20)* -1.06 (0.30)*** 

Behavior Management 37.00 (0.62)*** -0.30 (0.19) -0.27 (0.20) -0.20 (0.30) 

Time Management 34.86 (0.62)*** 0.86 (0.19)*** 1.08 (0.20)*** 1.28 (0.30)*** 

Note. Column 'Main' shows the Item mean on occasion 1; Column '2' shows the deviation of the item on 

occasion 2; Column '3' shows the deviation of the item on occasion 3; Column '4+' shows the deviation of the 

item on occasion 4 or higher; Acc. for Language Learn is Accommodations for Language Learning.  * p<0.05; 

** p<0.01; *** p<0.001. 

 

This average effect, however, hides the large heterogeneity of occasion effects across 

items, as shown in Tables 5.4 and 5.5. The item-specific effects, when statistically 

significant, were often much larger than the item average effects just reported, but these 

effects also varied widely across items.  The patterns of occasion effects on specific items 

defy easy description. The results shown for CLASS in Table 5.4, for example, show that 

scores on the Regard for Adolescent Perspectives, Teacher Sensitivity, Analysis and Problem 

Solving, and Quality of Feedback items generally increased in later lesson occasions 
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compared to the first occasion; that Positive Climate, Negative Climate, and Student 

Engagement scores were steady across lesson occasions; that scores on Instructional Learning 

Formats and Content understanding peaked in the second lesson occasion and decline 

thereafter; and that scores on Behavior Management declined at the end of lessons.   

Table 5.5 shows item-specific effects of occasion on PLATO item scores. Here, the 

data showed that scores on Connections to Prior Knowledge was highest at the very 

beginning of lessons; that scores on Intellectual Challenge, Modeling, Guided Practice, 

Classroom Discourse, Text-based Instruction, and Time Management generally increased 

after the first lesson occasion; that Purpose, Explicit Strategy Instruction, and Behavior 

Management remained constant across the lesson; and that Representations of Content, 

Accommodations for Language Learning, and Connections to Personal Experience were 

higher in the second occasion before falling off towards the end of the lesson. Taken as a 

whole, then, the results in Tables 5.4 and 5.5 suggest that occasion order is indeed a hidden 

facet that has effects on observed teaching quality.  Thus, if observations were only 

conducted on some occasions within a lesson, as they often are during informal observations 

(Steinberg & Donaldson, 2015), estimates of teacher quality and the item-specific feedback 

received by teachers will vary depending on the occasions sampled.  Ratings will be higher 

when the middle of a day of instruction is sampled rather than the start or end of the lesson. 

 

In summary, then, the SD model just discussed shows that a variety of SD facets 

affect observed teaching quality scores. Observed teaching quality is dependent on when 

teachers are observed, whether scoring was done live or from video, and when raters did the 

scoring. The analyses presented here further suggest that these facet effects can be large 

enough, especially if examined in combination, to have important effects on where teachers 

fall in the distribution of teacher quality. Importantly, while the analyses here show that SD 
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facets affected observed teaching quality (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)), it is not clear how much they affect 

estimates of a teacher's teacher quality (�̂�𝑡). This was because the design of UTQ controlled 

for the impact of these facets by sampling days across the full school year, by randomly 

assigning raters to observation days, and by randomly ordering dates of scoring. Each of 

these steps balances the impact of these facets across the four days each teacher was 

observed, helping to minimize their effect on estimates of teacher quality (�̂�𝑡). Below, I will 

show that the estimated variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡
𝐵𝑎𝑠𝑒)

^
) in the Base model was 

inflated compared to the estimated variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡
𝑆𝐷)

^
) in the SD model, 

but the estimated teacher quality scores from the Base and SD model were almost identical 

(𝑐𝑜𝑟(𝜐𝑡
𝐵𝑎𝑠𝑒 , 𝜐𝑡

𝑆𝐷) ≈ 1). This demonstrates that not controlling for the SD facets inflated the 

estimate of the variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡
𝐵𝑎𝑠𝑒)

^
), but had little effect on the estimates 

themselves (�̂�𝑡
𝐵𝑎𝑠𝑒

), at least in UTQ data where sampling was well controlled. 

I turn now to reporting the 

results of the Curriculum and Instruction (CI) model, which adds effects for the CI facets to 

the SD model just discussed
42

. Like the last section, the goal of this section is to show that the 

CI facets have effects on observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)). The CI facets are 

analyzed here to investigate whether observed teaching quality is affected by various 

characteristics of the content being taught in a lesson and the structure framing the 

interactions between students and teachers. These facets have the potential to cause bias 

across instruments (RQ2a) because instruments may favor types of instructional approaches 

                                                 

42
 The effects of curriculum and instructional facets are somewhat affected by how the facets are created. 

Appendix E shows the results for the CI and SO model when hidden facets are created through averaging 

PLATO log items across segments and raters. All hidden facets are positively related to observed teaching 

quality on PLATO under this construction, the effect of literature and grammar are positive on CLASS, and the 

effect of literature is non-significant on FFT.  These changes are more the result of shifts across the p=0.05 

threshold rather than large changes in the parameters themselves. 

V.2.2. Curriculum and Instruction Model (CI) 
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that are not always ideal. Further, when these facets are hidden (i.e. excluded from the 

statistical model), they are likely to inflate estimates of the variance of teacher quality 

(𝑣𝑎𝑟(𝜐𝑡)^ ), as I argued earlier and demonstrate statistically in future sections. Here, I focus on 

whether the hidden facets affect observed teaching quality (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)), which is a necessary 

pre-requisite for them to affect estimates of teacher quality (�̂�𝑡). I also focus here on whether 

hidden facet effects are consistent across instruments, as inconsistency in effects necessarily 

implies instrument bias. 

Table 5.6 shows the results of the CI model where effects are reported in terms of the 

teacher standard deviation metric with standard errors in parentheses. Each column in the 

table presents the fixed effect estimates from the instrument-specific GTheory regression 

model. I focus first on the results for content domain facets.  Note that the results for the SD 

facet effects already discussed do not change much (except for the effect of double scoring on 

PLATO as discussed in footnote 39). 
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Table 5.6: Fixed Effects for the Curriculum and Instruction (CI) Model across the three 

Instruments in the Teacher SD Metric 

Names CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 0.37 (0.20) 0.54 (0.21)** -0.40 (0.24) 

Double Scored (𝛽𝐷𝑏𝑙) -0.11 (0.13) 0.06 (0.13) -0.43 (0.14)** 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) -0.06 (0.01)*** -0.04 (0.01)** -0.06 (0.02)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)    

   Tuesday -0.03 (0.15) 0.06 (0.14) -0.03 (0.17) 

   Wednesday 0.32 (0.16)* 0.32 (0.15)* 0.11 (0.18) 

   Thursday -0.01 (0.15) 0.19 (0.15) -0.17 (0.17) 

   Friday -0.27 (0.18) -0.16 (0.18) -0.07 (0.21) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) -0.11 (0.02)*** -0.09 (0.02)*** -0.07 (0.03)* 

Content Domain    

   Reading (𝛽𝑅𝑒𝑎𝑑) 0.09 (0.19) -0.26 (0.18) 0.48 (0.22)* 

   Literature (𝛽𝐿𝑖𝑡) 0.36 (0.14)** 0.44 (0.13)*** 1.08 (0.16)*** 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 0.43 (0.13)*** 0.21 (0.12) 0.99 (0.15)*** 

   Grammar (𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 0.17 (0.13) -0.25 (0.13)* 0.02 (0.15) 

Interaction Structure    

   Discussion (𝛽𝐷𝑖𝑠𝑐) 0.28 (0.10)** 0.03 (0.10) 0.67 (0.12)*** 

   Independent (𝛽𝐼𝑛𝑑) 0.05 (0.17) 0.21 (0.16) 0.44 (0.20)* 

   Recitation (𝛽𝑅𝑒𝑐) -0.17 (0.11) -0.03 (0.11) 0.21 (0.15) 

Note. Each column shows the results of a separate model for the indicated instrument. Date Scored is scaled so a 

1 point difference is one month; Monday is the reference group for the Days of the Week.  * p<0.05; ** p<0.01; 

*** p<0.001. 

 

As Table 5.6 shows, observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) did indeed vary as a 

result of whether or not there was a sustained focus on a content domain of interest
43,44

. The 

most consistent finding in the table was that lessons with a sustained focus on literature 

generally received higher scores on all instruments compared to lessons with no sustained 

content focus (ES=0.36 SDT for CLASS, 0.44 SDT for FFT, and 1.08 SDT for PLATO). For 

two instruments (CLASS and PLATO) lessons with a sustained focus on writing also 

received higher scores than lessons having no sustained content focus (ES=0.43 SDT for 

CLASS and 0.99 SDT for PLATO). These effects are capable of moving a teacher from the 

50th percentile of teacher quality to the 67
th

 percentile on CLASS scores and the 84
th

   

                                                 

43
 Note that there is technically no reference group because these facets are not mutually exclusive. The 

correct interpretation is the effect of the facet compared to lessons not using that facet. However, there is 

relatively little overlap in content domains so the "reference group", in effect, is a set of lessons that have no 

sustained focus on any of the four focal content domains (roughly 1/4 of lessons). This includes both lessons 

that change domain across occasions and those that never focus on a domain. This makes the "reference group" 

difficult to clearly conceptualize. 

44
 The reader should notice that effects are generally slightly larger and present more often for PLATO. 

This is likely due to the same rater providing PLATO scores and the PLATO log scores, but may also reflect the 

PLATO instrument's special sensitivity to specific types of instruction. The data does not allow me to separate 

these possibilities. 
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percentile on PLATO scores. Further, PLATO scores were 0.48 SDT higher on lessons that 

focus on reading and FFT scores were 0.25 SDT lower for lessons that focus on grammar
45

. 

Past research by (Grossman et al., 2014) showed a similar negative effect of grammar lessons 

on PLATO relative to lessons focused on reading and writing lessons. This result is 

confirmed in the UTQ data and was extended to the FFT instrument (Note that PLATO 

scores on grammar lessons were significantly lower than PLATO scores on literature and 

writing lessons though not lower than scores on lessons with no sustained focus on a content 

domain; see footnote 45). 

Table 5.6 also shows the effects on observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) from 

hidden facets involving classroom interaction structures (i.e. whether lessons included 

discussion, recitation, and independent work). The interaction structure of a lesson had some 

effects on observed teaching quality, though the effects differed across instruments. PLATO 

scores increased when lessons included discussion and independent work (ES=0.67 SDT and 

0.44 SDT respectively); CLASS scores only increased when lessons included discussion 

(ES=0.28 SDT); and there were no classroom interaction facet effects on FFT scores. Overall, 

then, both content domain and interaction structure can be considered hidden facets of 

measurement. Since a teacher is likely to be observed across multiple levels of these facets, 

they should be considered within-teacher facets and should act to reduce the precision of 

measurement and inflate the estimate of the variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡)^ ). This does 

not, however, mean there are no differences between teachers in the frequency of instruction 

across levels of the content domain or interaction structure facets, which could lead to 

                                                 

45
 In analyses not shown here, I ran contrast tests to explore whether the curriculum effects on observed 

teaching quality just discussed differed across the four content domains. On the CLASS instrument, the effects 

of the four content domains were not distinguishable from each other. Thus, while observed CLASS scores for 

some content domains differed from lessons with no sustained focus on a content domain, lessons with a 

sustained focus on a content domain did not differ from each other. On FFT and PLATO, literature and writing 

lessons received higher scores than grammar lessons. Further, on FFT only, literature and writing lessons also 

received higher scores than reading lessons. 
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between-teacher effects of this facet (and potentially bias), a question I return to in a later 

section. 

Table 5.6 additionally shows that the effects of specific content domains and 

interaction structures varied across the three instruments, a sign of instrument bias. Recall 

that this is a sign of instrument bias because the true teaching quality (i.e. 𝑋𝑡𝑟𝑢𝑒) cannot be 

both higher and lower nor higher and not higher at the same time (see Appendix F for a more 

detailed discussion of the determination of instrument bias). While instrument bias can be see 

by examining the different point estimates of the CI facets in Table 5.6, Figure 5.1 presents a 

more clear view of the problem of instrument bias.  Figure 5.1 shows the range of point 

estimates obtained for the effect of the hidden facet on observed teaching quality across 

bootstrap replicates, along with means and 95% confidence intervals for those estimates.  

Under the parametric bootstrap assumptions and the null-hypothesis of no instrument bias, 

the distributions of these point estimates should overlap.  To the extent that they do not, there 

is evidence of instrument bias (consult Appendix F for a more detailed discussion of this 

point).  From Figure 5.1, we can see that the effect of reading on PLATO scores is much 

larger than the effect on FFT scores (p=0.008); the effect of literature on PLATO scores is 

much larger than the effect on FFT scores (p<0.001) and CLASS scores (p<0.001); the effect 

of writing on PLATO scores is much larger than the effect on FFT scores (p<0.001) and 

CLASS scores (p=0.002); and the effect of grammar on FFT scores is less than the effect on 

CLASS scores (p=0.010).  Further, there are also differences in the size of the effect of 

interaction structure facets across the instruments.  The effect of discussion lessons on 

PLATO scores is significantly greater than the effect on CLASS scores (p=0.008) and FFT 

scores (p<0.001).  Thus, there is some evidence of instrument bias for all the content domain 

facets and for discussion lessons with the main effect being the effect on PLATO scores was 

much larger than the effect on the other instruments. 
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Figure 5.1: Comparison of CI Facet Effects across Bootstrap Replicates 

As I have argued, the most likely sources of this bias are either construct under-

representation or construct-irrelevant variance. Given the prominent role that PLATO plays 

in the findings, the instrument bias appears to be driven by differences  between PLATO and 

the other instruments.  Being the only subject-specific instrument, PLATO scores may be 

more sensitive to the aspects of instruction that vary across the content domain being taught 

and interaction structure being used.  That is, PLATO scores measure some important aspect 

of teaching quality or measure some irrelevant feature of instruction unrelated to teaching 

quality that varies across the facets examined. I explored these possibilities using the item-

specific models presented in Appendix D.  The positive effect of reading lessons on PLATO 

scores arose from positive effects on items related to text-based instruction, explicit strategy 

instruction, and accommodations for language learners; dimensions of instruction not 

captured by FFT. The negative effect for FFT was due to questioning and discussion 

techniques, engaging students in learning, and using assessment in instruction. Of these FFT 

dimensions, only questioning and discussion techniques was captured directly by PLATO 
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(and the effect of classroom discussion on PLATO was slightly negative). This suggests that 

reading lessons were more centered on texts and explicitly introducing reading strategies with 

some recognition of language learners, while not including discussions or assessment and 

were less engaging. 

Common patterns of item effects were also visible for the effect of literature.  Across 

the three instruments, no effect was significant for items related to behavior management and 

time management while the effect of being a literature lesson was positive on items related to 

instructional quality. The larger effect on PLATO scores, then, seems the result of the greater 

focus on instructional items and lesser focus on classroom culture, with the PLATO focus on 

text-based instruction playing a prominent role in explaining why PLATO scores were much 

more strongly related to literature lessons than the other two instruments.  The negative effect 

of grammar lessons on FFT scores stemmed from lower scores on FFT’s culture of learning 

and questioning and discussion items, though most items had a non-significant negative 

coefficient. This suggests grammar lessons lacked academic press (Shouse, 1996) and 

discussions, which are not directly scored by CLASS.  

When lessons involved discussion, PLATO scores were higher on all items, except 

modeling, accommodations for language learners, behavior management, and time 

management while, for FFT, only organizing physical space and questioning and discussion 

techniques received higher scores on discussion lessons. This suggests discussion lessons 

included discussions and included a number of English specific beneficial strategies (i.e. 

PLATO only items), but had weak time management, behavior management, and modeling 

of strategies.  Thus, for the cases of instrument bias identified in the CI facets , there was 

evidence that the bias between instruments was a function of the specific dimensions of 

instruction being measured, as effects were isolated to dimensions only measured well by one 

instrument.  However, an alternative explanation cannot be ruled out.  The same rater 
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provided PLATO scores and PLATO log information that was used to create the CI facets.  

This could lead to correlated error in the PLATO scores and PLATO log due to the common 

rater, which may also explained the observed larger effects on PLATO scores than on 

CLASS and FFT scores.  There is no way to rule out this alternative explanation.  Only the 

instrument bias in grammar scores, which did not involve the PLATO instrument, is free of 

the contamination of rater error. 

Overall, I have provided evidence that demonstrates that, at least in UTQ data, the 

content domain being taught and the interaction structure of the lesson both impacted 

observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)). As I have argued, this should lead models that do 

not account for these effects to be less precise, with inflated estimates of the variance of 

teacher quality (𝑣𝑎𝑟(𝜐𝑡)^ ). I will explore the exact extent of this effect below, as well as test 

for between-teacher effects of the CI facets that may introduce bias into estimates of teacher 

quality (𝜐�̂�). I also showed in this section that there is some indication of instrument bias for 

reading lessons, literature lessons, writing lessons, grammar lessons, and discussion lessons. 

This bias seems to stem from the specific aspects of teacher quality that each instrument 

measures (i.e. producing either construct under-representation or construct-irrelevant 

variance), though it may be due to rater error. When instruments contain different items and 

when only some aspects of instruction change across levels the CI facets can adopt (e.g. 

reading or discussions), then only those instruments with items capturing aspects of teaching 

that differ across levels of the CI facets will show differences in observed scores across these 

facets. Adopting a statistical model (such as the CI model) that controls for the CI facets will 

ensure that the instrument biases identified here do not contaminate estimates of teacher 

quality (𝜐�̂�), at least when the bias takes the form of an average difference in observed scores. 

Only scores for the instrument showing bias would have to be adjusted, but, as I have 

discussed, it is not possible to identify which specific instruments showed bias. 
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In this section, I describe the results for 

the School Organization (SO) model. As in the previous two prior hidden facet models 

(above), the goal of this section is to examine the effects that SO facets have on observed 

teaching quality (e.g. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)). I also will look for evidence of instrument bias to address 

RQ 1a.  

Table 5.7 shows the results of this analysis.  The model estimated here simply added 

the SO variables to the CI statistical model just discussed.  The variables added to the model 

are: grade level of the class section being taught, the average prior year’s achievement level 

of students in a class section, and the average score of students in a class section on the 

demographic composite discussed earlier.  Once again, the effects of these variables on 

observed scores are presented separately for each observation instrument, all effects are 

reported in the SDT metric, and standard errors are in parentheses.  In the discussion, I will 

focus only on the effects of the School Organization facets.  However, it is worth noting that 

in contrast to results for the CI model discussed above, adding School Organization variables 

to the model changes some estimates for other variables.  The most notable change is that the 

estimated effect of literature lessons on observed scores decreases in this new model, 

suggesting that (as I found in analyses not presented here) at least part of the literature effect 

on teaching quality comes from differences in student background across classes, where 

classrooms having higher achieving students also are more likely to teach literature. 

  

V.2.3. School Organization Model (SO) 
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Table 5.7: Fixed Effects for School Organization (SO) Model in Teacher SD Metric 

Names CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 0.48 (0.20)* 0.65 (0.20)** -0.30 (0.24) 

Double Scored (𝛽𝐷𝑏𝑙) -0.16 (0.13) 0.03 (0.13) -0.46 (0.14)** 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) -0.04 (0.01)*** -0.03 (0.01)* -0.05 (0.02)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)    

   Tuesday -0.06 (0.14) -0.02 (0.14) -0.10 (0.17) 

   Wednesday 0.24 (0.15) 0.25 (0.15) 0.03 (0.18) 

   Thursday -0.04 (0.14) 0.11 (0.14) -0.25 (0.17) 

   Friday -0.26 (0.18) -0.21 (0.17) -0.10 (0.21) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) -0.11 (0.02)*** -0.09 (0.02)*** -0.07 (0.03)** 

Content Domain    

   Reading (𝛽𝑅𝑒𝑎𝑑) 0.16 (0.18) -0.16 (0.18) 0.55 (0.21)* 

   Literature (𝛽𝐿𝑖𝑡) 0.25 (0.13) 0.30 (0.13)* 0.96 (0.16)*** 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 0.42 (0.12)*** 0.18 (0.12) 0.98 (0.15)*** 

   Grammar (𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 0.17 (0.13) -0.24 (0.12)* 0.03 (0.15) 

Interaction Structure    

   Discussion (𝛽𝐷𝑖𝑠𝑐) 0.23 (0.10)* -0.04 (0.10) 0.64 (0.12)*** 

   Independent (𝛽𝐼𝑛𝑑) 0.05 (0.16) 0.20 (0.15) 0.44 (0.19)* 

   Recitation (𝛽𝑅𝑒𝑐) -0.16 (0.11) -0.00 (0.11) 0.22 (0.15) 

Grade    

   7th Grade (𝛽7𝑡ℎ) -0.51 (0.16)** -0.37 (0.15)* -0.42 (0.18)* 

   8th Grade (𝛽8𝑡ℎ) 0.07 (0.15) 0.07 (0.15) 0.13 (0.17) 

Prior Achievement (𝛽𝑃𝑟𝐴𝑐ℎ) 0.29 (0.09)** 0.44 (0.08)*** 0.17 (0.10) 

St. Info Missing (𝛽𝐼𝑚𝑝) -0.48 (0.25) -0.39 (0.24) -0.32 (0.28) 

Demographic Composite (𝛽𝐷𝑒𝑚𝑜) -0.33 (0.09)*** -0.20 (0.09)* -0.27 (0.10)** 

Note. Each column shows the results of a separate model for the indicated instrument. Date Scored is scaled so a 

1 point difference is one month. Monday is the reference group for the Days of the Week. Prior Achievement is 

captured at the section level and is the average achievement level on last year's standardized test for students in 

a particular section.  The Demographic Composite is a section-level variable and captures classrooms that have 

higher percentages of students who are black, Hispanic, ELL, and FRL. St. Info Missing is a dummy variable 

indicating if Prior Achievement and Demographic Composite are missing.  * p<0.05; ** p<0.01; *** p<0.001. 

 

The first variable to be discussed is grade level. As Table 5.7 shows, seventh grade 

classrooms receive lower scores than 6th and 8th grade classrooms. On CLASS, seventh 

grade scores are 0.51 SDT lower than 6th grade classrooms; on FFT, scores are 0.37 SDT 

lower than 6th grade classrooms; and on PLATO, seventh grade scores are 0.42 SDT lower 

than 6th grade classrooms. These findings do not match past work of Grossman and 

colleagues (2014), who did not find grade level effects within middle schools (but did find 

middle schools received lower scores than elementary schools).  

Table 5.7 also shows large effects on observed teaching quality of my two measures 

of student characteristics in the class sections taught by UTQ teachers. Across all 

instruments, class sections with more disadvantaged students received lower observation 

scores than those with fewer disadvantaged students. In fact, for every standard deviation 
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increase in the demographic composite (which represents classrooms becoming more black, 

Hispanic, ELL, and FRL), there was a 0.33 SDT decrease in CLASS scores, a 0.20 SDT 

decrease in FFT scores, and a 0.27 SDT decrease in PLATO scores. Additionally, on CLASS 

and FFT, class sections with lower average prior achievement scores received lower 

observation scores. Here, for every standard deviation increase in the section average student 

prior achievement, there was an increase of 0.29 SDT in CLASS, an increase of 0.44 SDT in 

FFT scores, and a statistically insignificant increase of 0.17 SDT in PLATO scores. These 

results are reasonably consistent across instruments, but smaller for PLATO scores than for 

CLASS and FFT scores for students' prior achievement (the smaller effect on PLATO scores 

is not significant as can be seen in Appendix F). Past work has suggested that instruction 

becomes more controlling and directed when there are more disadvantaged students in a 

classroom (Carlisle et al., 2011), but the item specific models in Appendix D provide neither 

clear evidence to confirm this possibility nor suggest another explanation of these results. 

The results from the SO model are similar to results from the models presented in 

previous sections, providing strong evidence the SO facets are hidden facets. This is 

important because it suggests that these SO effects can affect generalizations and/or 

extrapolations researchers might want to make to a pre-defined universe.   In earlier 

discussions of these SO variables, I have hypothesized that SO effects can be driven by either 

“co-construction” effects (where teachers and students jointly produce quality of teaching), 

teacher sorting effects (where better teachers tend to work in more advantaged classrooms 

and schools), or other unknown effects.  The adjustments presented in the SO model are only 

appropriate if co-construction (or a similar effect) drive differences in observed teaching 

quality.  If teacher sorting explains the facet effects, then estimates of teacher quality from 

the SO model are likely to be biased.  Interestingly, the data presented in Table 5.7 provide 

no evidence of instrument. In the next section, I explore whether these SO facet effects were 
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associated with within-teacher, between-teacher, or between-school differences in observed 

teaching quality, which has important implications for how the SO facets might affect 

estimates of teacher quality. 

In the previous sections, I 

demonstrated that some facets in each of the three categories of hidden facets were 

systematically associated with variations in observed teaching quality (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)).  By 

definition, this makes them "hidden facets" of measurement. As I have argued, one of the 

main determinants for how a hidden facet affects estimates of teacher quality (𝜐�̂�) is whether 

the effect of the hidden facet on observed teaching quality (𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) acts within-teachers or 

between-teachers. Further, identifying between-school differences is important because 

isolating facet effects from broader school context effects is difficult. Hidden facets that act 

within-teachers are likely to inflate estimates of the variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡)̂ ), but 

not cause bias to estimates of teacher quality (𝜐�̂�). Hidden facets that act between-teachers, 

including those acting between schools, may lead to bias in estimates of teacher quality (𝜐�̂�) 

because co-construction-like effects imply differences in observed teaching quality 

(𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) that are not solely the result of differences in teacher knowledge or ability. In this 

section, I test to see the level of nesting (i.e. within-teacher, between-teacher, or between-

schools) at which hidden facets affected observed teaching quality. 

Tables 5.8, 5.9, and 5.10 show, for CLASS, FFT, and PLATO, respectively, the 

results from statistical models based on the SO model.  Note these tables separate the CI and 

SO facets into three components: a within-teacher component, a between-teacher component, 

and a between-schools component. I only show those CI and SO facets that could act either 

within-teachers, between-teachers, or between-schools (i.e. I do not include grade). Tables 

5.8, 5.9, and 5.10 present the original SO model estimates in the left column. The next three 

columns come from a single model, breaking the facets down into a within-teacher 

V.2.4. Within-Teacher and Within-School Effects 
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component (second column), a between-teacher, within-school component (third column), 

and a between-school component (last column). 

Before discussing the results of Tables 5.8, 5.9, and 5.10, I first want to bring 

attention to the standard errors of estimates across the three components. The content domain 

and interaction structure standard errors were very large between-teachers and between-

schools, which reflects the fact that most of the variation in these facets was within-teachers 

(i.e. there was little variation of the CI facet variables between-teachers and between-

schools). The prior achievement standard errors were about equal across components, though 

up to twice as large as when including only the single prior achievement effect. The standard 

errors on the demographic composite parameters were smallest for between-school variation, 

reflecting the large between-school variation of this facet (over 80% of the variance in 

demographic composite was between schools). Thus, I have the most power to detect within-

teacher effects from the CI facets and between-school effects for the demographic composite 

facet while I have about equal power for each component of the prior achievement facet. 
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Table 5.8: Within-Teacher, Between-Teacher, and Between-School Effects on Observed 

Teaching Quality of the CI and SO facets for CLASS 

Facet SO Model Within-Teacher Between-Teacher Between-School 

Content Domain     

   Reading (𝛽
𝑅𝑒𝑎𝑑

) 0.16 (0.18) 0.30 (0.20) -0.58 (0.51) -1.02 (1.06) 

   Literature (𝛽
𝐿𝑖𝑡

) 0.25 (0.13) 0.14 (0.15) 0.78 (0.36)* 0.97 (0.68) 

   Writing (𝛽
𝑊𝑟𝑖𝑡𝑒

) 0.42 (0.12)*** 0.52 (0.14)*** 0.17 (0.36) -0.67 (0.76) 

   Grammar (𝛽
𝐺𝑟𝑎𝑚𝑚𝑎𝑟

) 0.17 (0.13) 0.29 (0.14)* -0.20 (0.33) -0.63 (0.73) 

Interaction Structure     

   Discussion (𝛽
𝐷𝑖𝑠𝑐

) 0.23 (0.10)* 0.13 (0.11) 0.60 (0.32) 1.37 (0.68)* 

   Independent (𝛽
𝐼𝑛𝑑

) 0.05 (0.16) 0.03 (0.17) 0.27 (0.49) -0.05 (0.93) 

   Recitation (𝛽
𝑅𝑒𝑐

) -0.16 (0.11) -0.16 (0.12) -0.48 (0.38) -0.39 (0.76) 

Prior Achievement (𝛽
𝑃𝑟𝐴𝑐ℎ

) 0.29 (0.09)** 0.13 (0.15) 0.16 (0.14) 0.39 (0.19)* 

Demographic Composite (𝛽
𝐷𝑒𝑚𝑜

) -0.33 (0.09)*** -0.26 (0.26) -0.64 (0.28)* -0.07 (0.14) 

Note. The model included all of the parameters from the SO model, but only the CI and SO facets are displayed. 

The left column presents the parameter estimates from the original SO model. The other three columns show 

results from a single model.  The next column presents the within-teacher component, estimated as the original 

value minus the teacher mean score. The third column presents the between-teacher component, estimated as the 

teacher mean score minus the school mean score. The last column presents the between-school component, 

estimated as the mean aggregated to the school level. The effects are in the teacher quality standard deviation 

metric (SDT). The Demographic Composite represents classrooms that have higher percentages of students who 

are black, Hispanic, ELL, and FRL.  * p<0.05; ** p<0.01; *** p<0.001. 

 

Table 5.9: Within-Teacher, Between-Teacher, and Between-School Effects on Observed 

Teaching of the CI and SO facets for FFT 

Facet SO Model Within-Teacher Between-Teacher Between-School 

Content Domain     

   Reading (𝛽
𝑅𝑒𝑎𝑑

) -0.16 (0.18) -0.17 (0.19) -0.32 (0.49) -0.05 (1.04) 

   Literature (𝛽
𝐿𝑖𝑡

) 0.30 (0.13)* 0.29 (0.14)* 0.38 (0.36) -0.02 (0.67) 

   Writing (𝛽
𝑊𝑟𝑖𝑡𝑒

) 0.18 (0.12) 0.25 (0.13)* -0.01 (0.35) -0.76 (0.75) 

   Grammar (𝛽
𝐺𝑟𝑎𝑚𝑚𝑎𝑟

) -0.24 (0.12)* -0.18 (0.13) -0.33 (0.33) -0.98 (0.72) 

Interaction Structure     

   Discussion (𝛽
𝐷𝑖𝑠𝑐

) -0.04 (0.10) -0.11 (0.10) 0.42 (0.31) 0.89 (0.67) 

   Independent (𝛽
𝐼𝑛𝑑

) 0.20 (0.15) 0.18 (0.16) 0.25 (0.48) 0.62 (0.91) 

   Recitation (𝛽
𝑅𝑒𝑐

) -0.00 (0.11) -0.07 (0.11) 0.23 (0.37) 0.05 (0.74) 

Prior Achievement (𝛽
𝑃𝑟𝐴𝑐ℎ

) 0.44 (0.08)*** 0.18 (0.15) 0.50 (0.14)*** 0.55 (0.18)** 

Demographic Composite (𝛽
𝐷𝑒𝑚𝑜

) -0.20 (0.09)* -0.24 (0.25) -0.36 (0.28) -0.05 (0.14) 

Note. The model included all of the parameters from the SO model, but only the CI and SO facets are displayed. 

The left column presents the parameter estimates from the original SO model. The other three columns show 

results from a single model.   The next column presents the within-teacher component, estimated as the original 

value minus the teacher mean score. The third column presents the between-teacher component, estimated as the 

teacher mean score minus the school mean score. The last column presents the between-school component, 

estimated as the mean aggregated to the school level. The effects are in the teacher quality standard deviation 

metric (SDT). The Demographic Composite represents classrooms that have higher percentages of students who 

are black, Hispanic, ELL, and FRL.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table 5.10: Within-Teacher, Between-Teacher, and Between-School Effects on Observed 

Teaching of the CI and SO facets for PLATO 

Facet SO Model Within-Teacher Between-Teacher Between-School 

Content Domain     

   Reading (𝛽
𝑅𝑒𝑎𝑑

) 0.55 (0.21)* 0.64 (0.24)** 0.09 (0.56) 0.54 (1.17) 

   Literature (𝛽
𝐿𝑖𝑡

) 0.96 (0.16)*** 0.91 (0.18)*** 1.37 (0.41)*** 1.09 (0.75) 

   Writing (𝛽
𝑊𝑟𝑖𝑡𝑒

) 0.98 (0.15)*** 1.01 (0.16)*** 1.26 (0.40)** 0.07 (0.85) 

   Grammar (𝛽
𝐺𝑟𝑎𝑚𝑚𝑎𝑟

) 0.03 (0.15) 0.12 (0.17) -0.19 (0.37) -0.16 (0.81) 

Interaction Structure     

   Discussion (𝛽
𝐷𝑖𝑠𝑐

) 0.64 (0.12)*** 0.47 (0.13)*** 1.37 (0.36)*** 2.60 (0.76)*** 

   Independent (𝛽
𝐼𝑛𝑑

) 0.44 (0.19)* 0.45 (0.21)* 0.21 (0.54) 0.23 (1.03) 

   Recitation (𝛽
𝑅𝑒𝑐

) 0.22 (0.15) 0.24 (0.16) 0.06 (0.42) -0.63 (0.84) 

Prior Achievement (𝛽
𝑃𝑟𝐴𝑐ℎ

) 0.17 (0.10) 0.12 (0.18) -0.10 (0.16) 0.27 (0.21) 

Demographic Composite (𝛽
𝐷𝑒𝑚𝑜

) -0.27 (0.10)** -0.21 (0.30) -0.89 (0.32)** -0.01 (0.16) 

Note. The model included all of the parameters from the SO model, but only the CI and SO facets are displayed. 

The left column presents the parameter estimates from the original SO model. The other three columns show 

results from a single model.   The next column presents the within-teacher component, estimated as the original 

value minus the teacher mean score. The third column presents the between-teacher component, estimated as the 

teacher mean score minus the school mean score. The last column presents the between-school component, 

estimated as the mean aggregated to the school level. The effects are in the teacher quality standard deviation 

metric (SDT). The Demographic Composite represents classrooms that have higher percentages of students who 

are black, Hispanic, ELL, and FRL.  * p<0.05; ** p<0.01; *** p<0.001. 

 

 Table 5.8 shows that, for the CLASS instrument, literature lessons (ES=0.78 SDT) 

affected between-teacher within-school differences in observed teaching quality while 

writing (ES=0.52 SDT) and grammar (ES =0.29 SDT) lessons affected within-teacher 

between-day differences in teaching quality. Additionally, discussion lessons affected 

between-school differences in observed teaching quality (ES=1.37 SDT). This means that the 

average teacher, when observed on CLASS during a writing or grammar lesson, scored 

higher (on average) than when observed during a non-writing or non-grammar lessons. 

Additionally, teachers who were observed teaching literature more often than other teachers 

in their school had higher average observed teaching quality than those teachers who were 

observed teaching literature less often than other teachers in their school. Last, schools where 

discussion lessons were more commonly observed had higher average observed teaching 

quality than schools where discussion lessons were less common. This is surprising because, 

as I have argued, the CI facets should mostly affect observed teaching quality within-

teachers, between-days since all teachers will engage in instruction across the range of 
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content domains and interaction structures during the observation period. In fact, over 85% of 

the variance in the frequency of CI facets occurred within-teachers (which is why the 

standard errors for the within-teacher component are much lower). 

As Table 5.9 shows, on FFT, no CI facets affected between-teacher or between-school 

differences in observed teaching quality.  The literature (ES=0.29 SDT) and writing (ES=0.25 

SDT) lesson effects, as predicted, affected within-teacher, between-day differences in 

observed teaching quality. Table 5.10 shows that PLATO was more similar to CLASS than 

FFT, though far more effects on PLATO were significant as compared to the other two 

instruments. Scores on reading (ES=0.64 SDT) and independent work (ES=0.45 SDT) lessons 

were higher within-teachers between-days than scores on lessons with no sustained focus on 

those facets. Further, Table 5.10 shows that literature and writing lessons were associated 

with higher observed teaching quality within-teachers between-days (ES=0.91 SDT and 

ES=1.01 SDT respectively) and between-teachers within-schools (ES=1.37 SDT and ES=1.26 

SDT respectively) while discussion lessons had higher observed teaching quality across all 

three components (ES=0.47 SDT within-teachers; ES=1.37 SDT between-teachers; and 

ES=2.60 SDT between-schools). That is, the average teacher had higher observed teaching 

quality on PLATO during discussion lessons than that same teacher received on non-

discussion lessons and teachers who were observed teaching more discussion lessons had 

higher average observed teaching quality on PLATO than those observed teaching fewer 

discussion lesson and schools where teachers were observed teaching more discussion 

lessons received higher average observed teaching quality on PLATO than schools where 

teachers were observed teaching fewer discussion lessons.  One caveat to these findings is 

that the discrepancies across instruments (e.g. only within-teacher writing effects are 

significant across all three instruments) call into question the stability of these effects.  Note 

that the same instrument biases on CI facets identified earlier occurred here, but only within-
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teachers.  There was not enough precision in the between-teacher and between school effects 

to identify differences across instruments.   

Contrary to expectations, Tables 5.8, 5.9, and 5.10 show that, while most effects of CI 

facets are within-teachers, there are some between teacher effects of CI facets, at least for 

CLASS and PLATO. I turn here to break down the implications of the different components 

shown in Tables 5.8, 5.9, and 5.10. The within-teacher component captures differences in 

observed teaching quality for a teacher when she/he, for example, teaches writing lessons 

compared to when she/he teaches non-writing lessons.  When the within-teacher component 

of a CI facet was significant (e.g. writing across all three instruments), estimates of models 

that do not control for the CI facets, as I have argued before, will have inflated estimates of 

the variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡)^ ) and less precise estimates of teacher quality (𝜐�̂�) 

because average teacher scores will vary randomly due to the sampling of days within-

teachers. Then, to increase the precision of measuring teacher quality, we should prefer the 

CI model that adjusts for these facets and removes this source of imprecision. When the 

between-teacher component of a CI facet is significant (e.g. literature on CLASS), it implies 

teacher sorting is occurring (e.g. teachers with higher average scores on CLASS were 

observed teaching more literature lessons) because the within-teacher component controls for 

any possible co-construction effects (e.g. if it were easier to enact high quality teaching on 

literature lessons [i.e. co-construction], the within-teacher component would adjust for this, 

assuming there is sufficient within-teacher variation in these facets, as is the case in the UTQ 

data)
 46

. It is this between-teacher effect that captures differences in teacher quality due to 

                                                 

46
 Note that this is a variation on what I have argued previously as my prior arguments have focused on 

facets that are either within-teacher or between-teacher. The CI facets are within-teacher facets (because they 

vary within-teachers between-days), but as this analyses shows have some between-teacher aspect. Co-

construction-type effects are possible, but act within-teachers (under the assumption of a constant facet effect) 

because many teachers are observed across the full range of possible values of the facet (by definition).  

Differences between teachers are solely driven by the number of days teachers are observed at each level of the 

facet. This is in contrast to between-teacher facets (like average class prior achievement), which, incidentally, 
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differences in the frequency with which teachers engage in specific forms of instruction.  In 

this case, we should prefer the unadjusted model because the adjusted model will statistically 

eliminate a source of true differences in teacher quality
47

. When the between-school 

component of a CI facet is significant (i.e. discussion on CLASS and PLATO), it implies that 

schools where teachers were observed teaching a level of a facet more often had higher (or 

lower) school-average observed teaching quality (e.g. schools where more observations of 

discussion lessons occurred had higher observed teaching quality). In this case, it is not clear 

which model to prefer because the difference could stem from school sources (e.g. a 

curriculum that promotes discussion lessons) or it could stem from teacher sources (e.g. 

teachers who choose to teach more discussion lessons choose to work at specific schools). If 

the school is the source, the adjusted model is preferred because the adjusted model removes 

the impact of the school context whereas the reverse is preferable if the teacher is the source. 

This shows how complex the problem of when to adjust for hidden facets can become. When 

facets are acting on multiple levels of nesting, the benefits and costs of using statistical 

models that adjust for the effects of facets must be balanced across the impact of adjusting at 

each nesting level. 

Tables 5.8, 5.9, and 5.10 also show how the SO facets affected observed teaching 

quality within-teachers, between-teachers, and between-schools. Table 5.8 shows that prior 

                                                                                                                                                        

may vary within-teachers between-sections. For between-teacher facets, however, the within-teacher component 

cannot fully account for any co-construction effects because not enough teachers are sampled across the full 

range of possible values of the facet (note that 80% of the variance in the demographic composite is between 

schools so teachers cannot be observed across the full range of the variable since they are in a single school).  

Thus, co-construction can occur between-teachers because facet effects that drive co-construction may only 

occur between teachers. 

47
 Note that I am assuming here that the effect of the facet on observed teaching quality is constant across 

teachers or the sampling of days for teachers is independent of the size of the effect of the facet for a given 

teacher (i.e. a teacher with a larger facet effect is not observed on that facet more often than a teacher with a 

smaller facet effect). I also assume all teachers within a school face the same set of contextual features after 

controlling for facets included in the model, such as grade, prior achievement, and demographic characteristics. 

If teachers in a school face unique contextual features (such as a special education teacher might) that lead them 

to engage in different types of instruction (which introduces heterogeneity within a level of the CI facet—a 

complication not addressed here), teacher sorting would not be the only possible between-teacher within-school 

effect that could cause this effect. 
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achievement was associated only with between-school differences in observed teaching 

quality for CLASS (ES=0.39 SDT).  Table 5.9 shows prior achievement was associated with 

between-teacher within-school (ES=0.50 SDT) and between-school (ES=0.55 SDT) 

differences in observed teaching quality on FFT. Table 5.10 shows no effect of prior 

achievement on PLATO at any level.  The demographic composite, on the other hand, is 

related to between-teacher within-school differences in observed teaching quality only on 

CLASS (ES= -0.64 SDT) and PLATO (ES= -0.89 SDT), but not FFT, as can be seen in Tables 

5.8, 5.10, and 5.9, respectively. Because none of the SO facets act within-teachers, the SO 

facets will not contribute to imprecise estimates of teacher quality (𝜐�̂�), but they may 

contribute to bias in estimates of teacher quality (𝜐�̂�). As I have discussed, if the facets 

affected observed teaching quality because of co-construction effects, then a model that 

adjusts for the hidden facets should be preferred because it "corrects" for effects on observed 

teaching quality not caused by the teacher (i.e. it equates the different contextual factors 

teachers face). If the facets affected observed teaching quality because of teacher sorting, 

then an unadjusted model should be preferred because the differences across the facets 

reflected true differences in teacher quality. 

 The analyses presented in this section focused on the level of nesting at which facets 

affected observed teaching quality. Throughout this thesis, I have argued that facets that act 

within-teachers contribute to imprecise estimates of teacher quality (𝜐�̂�) and inflate estimates 

of the variance of teacher quality (𝑣𝑎𝑟(𝜐𝑡)^ ) whereas between-teacher, within-school and 

between-school effects may or may not cause bias in estimates of teacher quality (𝜐�̂�), 

depending on whether co-construction or teacher sorting is the cause of the effect and the 

model employed to estimate teacher quality. The analyses presented here show that the CI 

facets acted at all levels of nesting, which was a surprise given that the majority of the 

variance across these facets was within-teachers.  The SO facets acted between-teachers with 
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prior achievement acting between-schools on CLASS and FFT, prior achievement acting 

between-teachers, within-schools on FFT only, and the demographic composite acting 

between-teachers, within-schools on CLASS and PLATO. Thus, both CI and SO facets may 

contribute to biases in estimates of teacher quality. Further, there is no evidence in the UTQ 

data that can allow me to determine whether we should prefer models that do or do not adjust 

for these facet effects. 

Since introducing the 

Base model, I have focused solely on the estimated effects of hidden facets on observed 

teaching quality. However, as hidden facets are added to the GTheory models, the size of the 

error facets changes.  I focus in this section on a common Hierarchical Linear Modeling 

(Raudenbush & Bryk, 2001) approach that examines how the inclusion of explanatory 

variables (here, hidden facets) affects the variation of the model's random effects (here, the 

planned facets of measurement).  Exploring changes to the random effects is important for 

developing a full understanding of how the hidden facets affected the measurement properties 

of observation instruments. For example, hidden facets that explain why days of instruction 

vary within-teachers will reduce the variance of the day facet while hidden facets that explain 

differences in teacher quality will reduce the variation of the teacher facet.  By understanding 

how each category of hidden facet changed the variance of the planned facets of 

measurement, we learn how the hidden facets affect observed teaching quality.  If, for 

example, the rater error facet variance is reduced to zero after controlling for a set of hidden 

facets, we would have identified a set of hidden facets that explains why some raters are more 

harsh or lenient than others.  This can reveal a lot about the nature of the planned facets of 

measurement. 

Table 5.11 shows how the variances of the planned facets of measurement change 

across models for CLASS. Tables 5.12 and 5.13 show the same for FFT and PLATO, 

V.2.5.   Change in Variance Components Across Models 
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respectively.  The tables consist of three sets of comparisons. Each comparison shows the 

difference in the variances of the facet across two models. The first three columns compare 

the Base model (Base) to the System Design (SD) model. The next set of three columns 

compares the Base model to the Curriculum and Instruction (CI) model. The last set of 

columns compares the Base model to the School Organization (SO) model. Within each set 

of columns, the left column presents the variance of the indicated error facet from the Base 

model (and so it is the same for each set of columns). The middle column presents the 

variance of indicated error facet from the comparison model. The right column shows the 

percentage of change (i.e. (x-y)/x) across the two models. Additionally, Tables A.1, A.2, and 

A.3 in Appendix A show variances of the error facets with 95% confidence intervals across 

each model, allowing for a sense of whether changes are statistically significant
48

. 

  

                                                 

48
 While the percentage change in facet size across models is often large, the differences are generally 

smaller than the uncertainty in estimates. That is, changes are non-significant. The only exception is for the 

teacher facet of the SO model for all instruments and the teacher facet of the CI model for PLATO. This is 

caused by the large relative uncertainty in estimates, which results in very large percentage changes in variance 

components being necessary in order to get significant changes. Thus, differences in the variance components 

across models should not be over-interpreted. The differences are large enough to be meaningful, however, and 

presenting uncertainty in variance components is not standard practice so I still briefly discuss the implications 

of the differences in this section. 
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Table 5.11: Change in the Variance of the Error Facets across the CLASS Models 

 SD Model Comparison  CI Model Comparison  SO Model Comparison 

Facet 
Base SD 

Perc 

Change 

 
Base CI 

Perc 

Change 

 
Base SO 

Perc 

Change 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 0.076 0.066 14%  0.076 0.06 21%  0.076 0.031 59.2% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 0.013 0.007 44%  0.013 0.007 47%  0.013 0.005 60.8% 

Occasion (𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 0.053 0.052 3%  0.053 0.052 3%  0.053 0.052 3.0% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 0.04 0.021 46%  0.04 0.022 45%  0.040 0.022 44.8% 

Rater-by-Teacher (𝑣𝑎𝑟(𝜐𝑟𝑡)) 0 0.012 0%  0 0.013 0%  0.000 0.014 0% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.141 0.116 18% 

 
0.141 0.114 19% 

 
0.141 0.112 20.3% 

Item-by-Rater (𝑣𝑎𝑟(𝜐𝑖𝑟)) 0.225 0.225 0%  0.225 0.225 0%  0.225 0.225 0.0% 

Item-by-Teacher (𝑣𝑎𝑟(𝜐𝑖𝑡)) 0.029 0.029 -1%  0.029 0.029 -1%  0.029 0.029 -0.8% 

Item-by-Day (𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 0.128 0.129 -1%  0.128 0.129 -1%  0.128 0.129 -0.7% 

Item-by-Occasion 

(𝑣𝑎𝑟(𝜐𝑖(𝑜:𝑑:𝑠:𝑡))) 
0 0 100% 

 
0 0 100% 

 
0.000 0.000 80.1% 

Residual (𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 0.381 0.377 1%  0.381 0.377 1%  0.381 0.377 1.0% 

Note. Each table consists of three sets of comparisons. Each comparison shows the difference in error facet 

variances across two models. The first three columns compare the base model (Base) to the System Design (SD) 

model. The next set of three columns compares the Base model to the Curriculum and Instruction (CI) model. 

The last set of columns compares the Base model to the School Organization (SO) model. Within each set, the 

left column presents the variance of the indicated error facet from the Base model. The middle column presents 

the variance of indicated error facet from the comparison model. The right column shows the percentage of 

change (i.e. (x-y)/x) across the two models. 

 

Table 5.11 shows the results for CLASS.  Table 5.11 shows that the variance of the 

teacher facet (i.e. 𝑣𝑎𝑟(𝜐𝑡
𝑚𝑜𝑑𝑒𝑙)) decreased by 14% from the Base to the SD model, by 21% 

from the Base to the CI model, and by 59% from the Base to the SO model.  This implies that 

14% of the variation of the teacher facet in the Base models was attributable to when teachers 

were observed and how scoring was organized (i.e. the SD facets).  A further 7% of the 

variation in the teacher facet in the Base model was attributable to differences in the content 

domain being taught and the interaction structures being used when teachers were observed.  

This result confirmed my prediction of an inflated variance estimate in the Base model 

stemming from the effects of within-teacher hidden facet effects (assuming the hidden facets 

effects capture error or within-teacher effects).  Finally, a further 38% the variation in the 

teacher facet in the Base model was explainable by between-teacher differences in the 

students being taught and the grade being taught (i.e. SO facets).  If co-construction explains 

the SO facet effects, this variance is error and should not affect teacher score estimates (and it 

is not error if teacher sorting explains the SO facet effects).  Thus, these results suggest that 
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observation instruments may be incorporating a lot of non-teacher variation in their estimates 

of teacher quality and the choice of which facets to adjust for will have a major impact on 

how well teacher quality is being measured.  As I show below, the net effect of these results 

was to reduce the reliability of teacher scores as more controls for hidden facets were added 

to the model.  

Table 5.11 also shows that other planned facets of measurement change across the 

different models.  The variance of the day facet, the rater facet, and the rater-by-day facet 

changed a lot across the models
49

.  Forty-four percent of the day variance in the Base model 

was explained by the SD facets while the CI facets explained a further 3% and the SO facets 

explained a further 14% of the variance of the day facet in the Base model.  Thus, differences 

in the time of year observed, the day of the week observed, rater drift, and the scoring mode 

explained almost half of the variance in observed teaching quality between-days within-

teachers, while student characteristics and grade taught (i.e. the SO facets) explained an 

additional portion of the variance of the day facet in the Base model.  Overall, across all 

categories of facets, Table 5.11 shows that 61% of the variance in the day facet in the Base 

model was explained.  Similarly, the SD model explained 46% of the variance of the rater 

facet, indicating that rater drift, scoring mode, and when observations occurred played a 

significant role in determining differences in rater severity.  The CI model and SO model did 

not further reduce the variance of the rater facet.  Table 5.11 also shows that the variance of 

the rater-by-day facet was reduced by 18% by the SD facets, showing the explanatory value 

of these facets for another source of rater error.  Thus, much of the rater error in CLASS is 

the result of systematic effects related to the SD facets. 

                                                 

49
 I do not consider the item-by-occasion facet because the Base model shows the variance across this 

facet is almost zero. 
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Table 5.12 shows the same results, but for FFT.  Looking at table 5.12, we see that on 

FFT, 13% of the teacher facet variance in the Base model was explained by the SD model, 

21% was explained by the CI model, and 61% was explained by the SO model. This is a 

remarkably similar to the results from CLASS shown in Table 5.11.  Table 5.12 also shows 

that the day and rater-by-day facets changed across the different models.  Of the variance in 

the day facet in the Base model, 3% was explained by the SD model, 7% was explained by 

the CI model, and 11% was explained by the SO model.  Thus, the hidden facets explained 

significantly less variance across the day facet on FFT than on CLASS, showing that the 

variation within-teachers between-days in FFT scores was due to different sources than the 

same type of variation in CLASS scores.  Last, of the variance in the rater-by-day facet on 

FFT, 12% was explained by the SD model while the CI and SO models did not further 

explain the variation across the rater-by-day facet.  Similar to CLASS, then, the SD facets 

(such as scoring mode or rater drift) explained a fairly large fraction of the variation across 

the rater-by-day facet. 

Table 5.12: Change in the Variance of the Error Facets across the FFT Models 

 SD Model Comparison  CI Model Comparison  SO Model Comparison 

Facet 
Base SD 

Perc 

Change 
 Base CI 

Perc 

Change 
 Base SO 

Perc 

Change 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 0.029 0.026 12.6%  0.029 0.023 21.1%  0.029 0.011 61.3% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 0.008 0.008 3.2%  0.008 0.008 6.6%  0.008 0.007 10.9% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 0.011 0.011 5.1%  0.011 0.010 10.0%  0.011 0.011 4.9% 

Rater-by-Teacher (𝑣𝑎𝑟(𝜐𝑟𝑡)) 0.005 0.005 -1.1%  0.005 0.005 -5.3%  0.005 0.005 -4.6% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.044 0.038 12.3%  0.044 0.038 12.8%  0.044 0.038 13.4% 

Item-by-Rater (𝑣𝑎𝑟(𝜐𝑖𝑟)) 0.011 0.011 -0.1%  0.011 0.011 -0.1%  0.011 0.011 -0.1% 

Item-by-Teacher (𝑣𝑎𝑟(𝜐𝑖𝑡)) 0.008 0.008 1.0%  0.008 0.008 1.0%  0.008 0.008 1.0% 

Item-by-Day (𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 0.017 0.017 -1.2%  0.017 0.017 -1.2%  0.017 0.017 -1.2% 

Residual (𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 0.140 0.140 0.2%  0.140 0.140 0.2%  0.140 0.140 0.2% 

Note. Each table consists of three sets of comparisons. Each comparison shows the difference in error facet 

variances across two models. The first three columns compare the base model (Base) to the System Design (SD) 

model. The next set of three columns compares the Base model to the Curriculum and Instruction (CI) model. 

The last set of columns compares the Base model to the School Organization (SO) model. Within each set, the 

left column presents the variance of the indicated error facet from the Base model. The middle column presents 

the variance of indicated error facet from the comparison model. The right column shows the percentage of 

change (i.e. (x-y)/x) across the two models. 

 

Table 5.13 shows the same results, but for PLATO.  As Table 5.13 shows, compared 

to the Base model, the variance of the teacher facet was 16% lower on the SD model, 38% 
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lower on the CI model, and 57% lower on the SO model.  The amount of reduction in the 

variance across teachers in the SD and SO models matched the results from CLASS and FFT, 

but the CI model explained more of the variation across teachers in observed teaching quality 

on PLATO than on the other two instruments.  This was due to the larger effect of the CI 

facets on PLATO scores, which is turn was likely either driven by the same rater providing 

PLATO scores and PLATO log responses used to create the CI facets (i.e. correlated rater 

error) or could reflect PLATO score's greater sensitivity to specific instructional practices 

that shift across levels of the CI facets.  The reader will notice from Table 5.13 that the 

percent change in the variance components across models for PLATO scores were far more 

variable than for CLASS and FFT.  Much of this can be explained by the variances of many 

facets being non-significantly larger than zero in the Base model, which suggests this 

variation across models may be sampling error shifting estimates as the models change.  

Table A.3 in Appendix A shows the value of the variances with 95% confidence intervals for 

PLATO across the four models.  As Table A.3 shows, the estimated variance of the day facet, 

rater facet, and rater-by-teacher facet had confidence intervals that included zero, so I do not 

interpret the effects of these facets in Table 5.13 (as they likely represent sampling error).  

The variance of the item-by-occasion facet decreased by 56% when moving from the Base 

model to the SD model and remained the same size in the CI and SO models.  This likely 

reflected the impact of the item by occasion order interaction effects included in the SD 

model.   
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Table 5.13: Change in the Variance of the Error Facets across the PLATO Models 

 SD Model Comparison  CI Model Comparison  SO Model Comparison 

Facet 
Base SD 

Perc 

Change 
 Base CI 

Perc 

Change 
 Base SO 

Perc 

Change 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 0.012 0.010 16%  0.012 0.007 38%  0.012 0.005 57% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 0.003 0.004 -8%  0.003 0.000 100%  0.003 0.000 100% 

Occasion (𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 0.017 0.016 4%  0.017 0.016 3%  0.017 0.016 3% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 0.002 0.000 100%  0.002 0.000 90%  0.002 0.000 85% 

Rater-by-Teacher (𝑣𝑎𝑟(𝜐𝑟𝑡)) 0.000 0.000 100%  0.000 0.000 100%  0.000 0.000 43% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.020 0.019 6%  0.02 0.019 7%  0.02 0.018 8% 

Item-by-Rater (𝑣𝑎𝑟(𝜐𝑖𝑟)) 0.022 0.021 1%  0.022 0.021 1%  0.022 0.021 1% 

Item-by-Teacher (𝑣𝑎𝑟(𝜐𝑖𝑡)) 0.012 0.013 -4%  0.012 0.013 -4%  0.012 0.013 -4% 

Item-by-Day (𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 0.067 0.069 -3%  0.067 0.069 -3%  0.067 0.069 -3% 

Item-by-Occasion 

(𝑣𝑎𝑟(𝜐𝑖(𝑜:𝑑:𝑠:𝑡))) 
0.012 0.005 56%  0.012 0.005 56%  0.012 0.005 56% 

Residual (𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 0.246 0.245 0%  0.246 0.245 0%  0.246 0.245 0% 

Note. Each table consists of three sets of comparisons. Each comparison shows the difference in error facet 

variances across two models. The first three columns compare the base model (Base) to the System Design (SD) 

model. The next set of three columns compares the Base model to the Curriculum and Instruction (CI) model. 

The last set of columns compares the Base model to the School Organization (SO) model. Within each set, the 

left column presents the variance of the indicated error facet from the Base model. The middle column presents 

the variance of indicated error facet from the comparison model. The right column shows the percentage of 

change (i.e. (x-y)/x) across the two models. 

 

The results presented in this section showed that the hidden facets included in the 

statistical model will determine, to some extent, the degree to which observed teaching 

quality scores vary across the planned measurement facets.  As I had predicted, the within-

teacher SD facets caused the Base model to have arguably inflated estimates of the variance 

across teachers.  Across the instruments, the variance of the teacher facet was about 15% 

lower in the SD model than in the Base model, implying that, assuming the SD facets do not 

contribute to teacher quality, 15% of the variance in the teacher score estimates from the Base 

model was actually sampling error coming from the SD facets.  Further, the results showed 

that a further 8% of the variance in the teacher scores from the Base model was explained by 

the CI facets on CLASS and FFT, while a further 22% of the variance in the teacher scores 

from the Base model on PLATO was explained by the CI facets, which also may be sampling 

error if the frequency of observing a teacher at a level of a hidden facet does not predict the 

frequency of that teacher teaching at that level of the hidden facet or the frequency with 

which teachers engage in instruction at different levels of the hidden facet is not considered 
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an aspect of teacher quality.  If we further assume that co-construction caused the SO facet 

effects, then a total of about 60% of the variance in estimated teacher scores from the Base 

model was due to error stemming from the SD, CI, or SO facets.  These effects were 

remarkably consistent across instruments, though PLATO had a larger reduction in teacher 

facet variance due to the CI facets.  Beyond the teacher facet, this consistency breaks down.  

Controlling for the SD facets explained a great deal of the rater error on CLASS, but not FFT 

or PLATO.  Similarly, controlling for the SD facets explained a great deal of the rater-by-day 

error facet on CLASS and FFT, but much less for PLATO.  These both suggest that the 

source of rater error varies across instruments.  Importantly, the analyses shown here suggest 

that, assuming the SO model is correct, the variation in observed teaching quality that was 

attributable to teacher differences was drastically over-estimated, to the extent that, as I show 

below, the SO model seems to have little ability to reliably distinguish between teachers 

possessing different levels of teacher quality.   

V.3. Impact of Hidden Facets on Estimated Teacher Quality 

To this point, I have focused on the effect of hidden facets on observed teaching 

quality and changes to the estimated variances across the statistical models.  In this section, I 

begin to focus on research question 2c: How much does adjusting for the contextual features 

of measurement (i.e. hidden facets) change estimated teacher quality scores and estimated 

score reliability? To explore this question, I extract estimates of teacher quality (e.g. 𝜐𝑡
𝑏𝑎𝑠𝑒, 

𝜐𝑡
𝑆𝐷, ...) from the models described earlier. I then make comparisons of these scores to each 

other, the simple teacher average score, and occasionally other teacher score estimates. 

Further, I explore how the reliability of these scores changes across models.  The goal of this 

section is to explore whether the hidden facets lead to meaningfully different score estimates. 

I start by looking at the simple correlation of teacher score estimates across models. I then 

move to examine how a teacher's rank in the teaching quality distribution changes across 
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models, which gives a view of the effect of adjusting for hidden facets that captures the 

impact on individual teachers. Last, I look at how estimated decision study reliability changes 

across models. 

A common way to explore 

how much estimates of teacher quality change across different models is to examine the 

simple correlation between scores derived from these different models. This very broadly 

addresses the question of whether adjusting for hidden facets makes a practical difference 

when it comes to teacher score estimates. Tables 5.14, 5.15, and 5.16 show the correlation of 

teacher scores across the models for CLASS, FFT, and PLATO, respectively. Beyond using 

teacher scores estimated from the Base model, SD model, CI model, and SO model, which 

have been extensively discussed, I create estimates of teacher quality using three additional 

approaches. First, I simply average observed scores up to the teacher-level (Ave). Second, I 

averaged scores after removing rater main effects (Rater).  Last, I include teacher score 

estimates from a model that is identical to the Base model, but includes a school random 

effect so that teacher quality captures only within-school differences in quality (BaseW)
50

. 

As Tables 5.14, 5.15, and 5.16 show, the correlations of scores across all models was 

very high. Correlations mostly remained above 0.95 for scores formed from averaging the 

observed scores (Ave), averaging the observed scores after removing the rater main effects 

(Rater), the Base model, the SD model, and the CI model. This implies that, if teacher score 

estimates are the only concern, the simple average give the same result as more complicated 

statistical models. However, this relies on the random sampling of days in the UTQ data so 

likely does not apply to data where sampling is not carefully conducted.  This was surprising 

                                                 

50
 The within-school model is not ideal because teachers in UTQ are a non-random sample of the 

teachers within their school. Thus, the deviation is not from the true school average, but an estimate of that 

average from a set of non-randomly selected teachers. This is problematic if teachers in different schools were 

selected into UTQ under different mechanisms. It is still, however, interesting to explore these effects. 

V.3.1. Teacher Score Correlations across Models 
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given the large effects of the hidden facets on observed teaching quality in the SD and CI 

models discussed earlier. Apparently, the random sampling across days in the UTQ sampling 

design helped average out the effects of the SD and CI facets, thereby minimizing their 

impact on estimated teacher quality. In addition, the fact that there was no correlation 

between teacher quality and likelihood of being observed on any SD or CI facet (due to the 

random sampling of days) also helps minimize the effects of these facets on teacher quality 

estimates. When sampling is less well-controlled, this averaging out of the effects of SD and 

CI facets should not be expected and the difference in estimated teacher scores across models 

will likely be much larger. 

Importantly, however, the correlations of teacher score estimates from the SO model 

to the Base model were lower (0.76-0.82).  Finally, the correlation of estimated scores from 

the within-school Base model (BaseW in the tables) and the SO model are higher than for any 

other model while the BaseW model correlates with other models more strongly than the SO 

model.  This places BaseW scores between the scores from the Base model and the SO 

model, a sort of compromise between models not adjusting for SO facets and those explicitly 

adjusting for these facets.  This within-school Base model (BaseW) allows extrapolation of 

scores across schools under the assumption that teachers who received the highest score in 

their current school will receive the highest score in all schools (i.e. schools have a mean 

impact on observed teaching quality that is constant across all teachers) while the Base model 

assumes teacher sorting effects and the SO model assumes co-construction effects.  This is an 

alternative way of supporting the extrapolation of scores across schools that has been used in 

VA scores due to concerns about the difficulty of comparing teachers across schools 

(Reardon & Raudenbush, 2009), concerns which also apply to classroom observation scores.  
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Table 5.14: Correlation of Teacher CLASS Scores Estimates across Models 

 Ave Rater Base SD CI SO BaseW 

Ave 1 0.98 0.97 0.94 0.93 0.76 0.87 

Rater 0.98 1 0.99 0.96 0.95 0.76 0.89 

Base 0.97 0.99 1 0.97 0.96 0.76 0.89 

SD 0.94 0.96 0.97 1 0.99 0.82 0.90 

CI 0.93 0.95 0.96 0.99 1 0.83 0.90 

SO 0.76 0.76 0.76 0.82 0.83 1 0.84 

BaseW 0.87 0.89 0.89 0.90 0.90 0.84 1 

Note. Ave is the observed teaching quality score averaged to the teacher-level. Rater is the observed teaching 

quality score averaged to the teacher-level with rater main effects removed. Base is teacher score estimate from 

the Base Model. SD is teacher score estimate from the System Design Model. CI is teacher score estimate from 

the Curriculum and Instruction Model. SO is teacher score estimate from the School Organization Model. 

BaseW is the teacher score estimates from the Base model, but centered within schools. 

 

Table 5.15: Correlation of Teacher FFT Scores Estimates across Models 

 Ave Rater Base SD CI SO BaseW 

Ave 1 0.98 0.98 0.95 0.94 0.76 0.88 

Rater 0.98 1 0.99 0.97 0.96 0.77 0.90 

Base 0.98 0.99 1 0.98 0.96 0.77 0.91 

SD 0.95 0.97 0.98 1 0.99 0.81 0.92 

CI 0.94 0.96 0.96 0.99 1 0.84 0.92 

SO 0.76 0.77 0.77 0.81 0.84 1 0.85 

BaseW 0.88 0.90 0.91 0.92 0.92 0.85 1 

Note. Ave is the observed teaching quality score averaged to the teacher-level. Rater is the observed teaching 

quality score averaged to the teacher-level with rater main effects removed. Base is teacher score estimate from 

the Base Model. SD is teacher score estimate from the System Design Model. CI is teacher score estimate from 

the Curriculum and Instruction Model. SO is teacher score estimate from the School Organization Model. 

BaseW is the teacher score estimates from the Base model, but centered within schools. 

 

Table 5.16: Correlation of Teacher PLATO Scores Estimates across Models 

 Ave Rater Base SD CI SO BaseW 

Ave 1 0.99 0.98 0.95 0.91 0.81 0.92 

Rater 0.99 1 0.99 0.97 0.93 0.83 0.94 

Base 0.98 0.99 1 0.98 0.93 0.82 0.94 

SD 0.95 0.97 0.98 1 0.95 0.86 0.95 

CI 0.91 0.93 0.93 0.95 1 0.92 0.91 

SO 0.81 0.83 0.82 0.86 0.92 1 0.87 

BaseW 0.92 0.94 0.94 0.95 0.91 0.87 1 

Note. Ave is the observed teaching quality score averaged to the teacher-level. Rater is the observed teaching 

quality score averaged to the teacher-level with rater main effects removed. Base is teacher score estimate from 

the Base Model. SD is teacher score estimate from the System Design Model. CI is teacher score estimate from 

the Curriculum and Instruction Model. SO is teacher score estimate from the School Organization Model. 

BaseW is the teacher score estimates from the Base model, but centered within schools. 

 

In summary, then, Tables 5.14, 5.15, and 5.16 show that adjusting for the SD and CI 

hidden facets had minimal effects on estimates of teacher quality scores (as compared to 

estimates from the Base model or simple mean scores) while teacher quality estimates from 

the SO model had slightly lower correlations with teacher quality estimates from the Base 

model.  On the basis of these findings, adjusting for SD and CI facets (or even using a model 

beyond simply taking means) might not be worth the effort when the goal is only to estimate 
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teacher quality scores, although the reader should take note that the results reported here are 

probably the result of the UTQ sampling design, which selected days of observation more or 

less at random.  If, on the other hand, an observation protocol selected days of observation in 

a way that was correlated to teaching quality (as might be the case of teachers wanted to be 

observed teaching their best curriculum), the correlations between adjusted and unadjusted 

scores might not show the patterns found in Tables 5.14 – 5.16.  In addition, the findings 

suggest that a failure to adjust for SO facets (related to student composition) could be more 

consequential, as correlations of simple models and models adjusted for SO facets are only 

correlated in the range of .75 - .85.  Though, as we have seen, any adjustment of SO facets 

involves the question of what assumptions are appropriate to generalize observed teaching 

quality across the SO facets, a question I return to in the discussion. 

The correlation of teacher score 

estimates from different models just discussed provides a broad view of how much adjusting 

for hidden facets affects estimates of teacher quality (i.e. teacher scores; 𝜐�̂�). However, in 

many practical settings, teachers will face individual consequences for their scores, so in this 

section I change from looking at the impact of model-to-model variation in scores to how 

specific teachers will shift their location in the distribution of teacher scores as estimation 

models change.  I do this by examining how much teacher score estimates change ranks in 

the distribution of teacher quality as estimating models change. For example, a teacher's 

estimated score might be in the 54
th

 percentile of the distribution in the Base model, but move 

to the 68
th

 percentile when using the SD model. This switch would thus move the teacher's 

score by 14 ranks. By calculating this rank shift across all teachers, we can ask how many 

ranks did the 1% of teachers who showed the greatest change experience. This provides 

information about how much the specific model used to estimate teacher quality scores 

affects the value of those scores for individual teachers (say for the 1% of teachers who 

V.3.2. Difference in Rank Scores across Models 
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experienced the greatest change).  This is the same information conveyed by the correlations 

above, but the results are more interpretable as the implications of the statistical model for 

individual teachers. 

Table 5.17 shows the results of this analysis
51

. The first two columns specify the 

instrument and the target model that is being switched to. I look only at how much switching 

from the Base model to the target model affects a teacher's score's rank. The percentages 

show quantiles of the distribution of the difference in teacher's score's rank across models. 

Consider the top row of Table 5.17. This row shows the effect of moving from the Base 

model to the SD model for the teacher's rank on CLASS. Ninety-percent of teachers will shift 

their rank by 1 percentile point or more; 75% by 2 percentile points or more; and 10% will 

shift by 14 percentile points or more. Thus, about 23 teaches had their scores move over 1/10 

of the distribution when moving from the Base model to the SD model. The one percent of 

teachers who experienced the largest change between the Base model and the SD model shift 

20 percentile points in CLASS, 14 in PLATO, and 18 in FFT. The changes are only slightly 

larger for the CI model, except for PLATO. Table 5.17 shows that moving to the SO model 

has larger implications for teachers. One-percent of teachers will move almost 50 percentile 

points across the distribution while one-quarter of teachers will move 20-26 percentile points 

or more. The analyses presented here, then, show that while controlling for hidden facets on 

the estimated teacher quality scores was relatively minor sample-wide (i.e. correlations were 

high across models), the decision of what hidden facets to adjust for can be very 

consequential for individual teachers. 

  

                                                 

51
 Note there are 228 teachers so 1% of teachers is 2.28 teachers. 
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Table 5.17: Percentile Shift in the Rank of Teacher's Score Estimates across Models 

compared to the Base Model 

Instrument Target Model 90% 75% 50% 25% 10% 1% 

CLASS System Design 1 2 5 9 14 20 

PLATO System Design 0 2 4 7 11 14 

FFT System Design 1 2 4 8 11 18 

CLASS Curriculum/Instruction 1 2 6 11 17 23 

PLATO Curriculum/Instruction 1 3 7 14 20 33 

FFT Curriculum/Instruction 1 2 5 10 14 23 

CLASS School Organization 2 5 14 26 37 50 

PLATO School Organization 1 4 11 20 31 49 

FFT School Organization 2 6 13 25 37 53 

Note. Table shows the change in rank of the teacher quality distribution that a teacher's estimated score will 

experience when shifting from the Base model to the target model. For each row, a distribution of how many 

ranks teacher's scores change across models is formed. From the third row on, the cells display the quantiles of 

this distribution. The third column shows the minimum shift in rank that 90% of teachers will experience when 

teacher score estimates are estimated from the indicated model instead of the Base model. Fourth column shows 

the minimum shift in rank 75% of teachers will experience, and so on.  * p<0.05; ** p<0.01; *** p<0.001. 

 

In this section, I examine how 

estimates of score reliabilities change across models. In a previous section, I showed that 

estimates of the variance in teacher scores decreased as more controls were added to adjust 

for hidden facets. This has implications for score reliability, suggesting the reliability will 

decrease as models add controls for hidden facets. The reader will recall that this is what I 

predicted in earlier chapters, where I argued that the presence of hidden facets increases the 

sampling error of observation scores, thereby providing artificially high estimates of the 

reliability of teacher scores derived from models that do not include the facets. In this section, 

I explore this idea and in doing so, show what is one of the largest effects of controlling for 

hidden facets, namely changes in estimated score reliability. 

I present the results of these analyses in Figures 5.2, 5.3, and 5.4.  These figures 

graphically represent the results from decision studies I conducted for each instrument and 

show the implications for reliability estimates of using different estimation models across 

different combinations of days observed and raters per day used in an observation system.  I 

focus on these two variations in observation System Design because these are two main 

design features of most observational systems since most studies assume that the number of 

items is fixed by the choice of observation instrument. Note that Figures 5.2 – 5.4 do not 

V.3.3. Change in Reliability across Models 
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include results for the SD model.  That is because the results for that model almost exactly 

duplicate results for the CI model. In addition to the figures discussed next, I also will present 

the same data on reliability where there is only one choice for the number of raters per day.  

This allows me to show the 95% confidence intervals for the reliability estimates very 

clearly. Appendix C presents these results in a tabular format. 

 

Figure 5.2: Estimated D-Study Reliability of the Teacher Score Estimate for CLASS across 

days, raters, and models  
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Figure 5.3: Estimated D-Study Reliability of the Teacher Score Estimate for FFT across 

days, raters, and models  
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Figure 5.4: Estimated D-Study Reliability of the Teacher Score Estimate for PLATO across 

days, raters, and models  

Figures 5.2, 5.3, and 5.4 show the results for CLASS, FFT, and PLATO respectively. 

It is interesting to note how similar the results were across instruments. I focus my discussion 

on an observation system that includes four days of teacher observation with a different rater 

each day. As the figures show, as more adjustments are made for hidden facets, estimated 

score reliability falls. This is because the adjusted models control away some part of the 

variation that the Base model attributes to true differences across teachers, reducing the 

variance of the "true score". The decrease was modest for the CI model, with estimated 

reliabilities moving from 0.55 to 0.53 on CLASS, 0.59 to 0.55 on FFT, and 0.52 to 0.45 on 

PLATO.   Finally, the SO model had even lower reliabilities, just 0.39 for CLASS and FFT 

and 0.37 for PLATO.  
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Note that the reliabilities reported here are somewhat lower than those calculated from 

MET data, especially for PLATO, which had a reliability of 0.67 when observing 4 days in 

the MET study (Kane et al., 2012) and has a reliability of 0.53 for the equivalent design in the 

UTQ data. This difference between the two studies that arose because the teacher facet 

contributed relatively little variation to PLATO scores in the UTQ data as compared to in the 

MET data.  Additionally, while the differences between score reliability in the Base model 

and the CI model were quite modest, they were large enough for FFT and PLATO to suggest 

that an additional day of observation is needed to maintain the same score reliability (i.e. they 

suggested moving from 4 to 5 days to maintain the score reliability).  Observing an additional 

day entails a large financial cost so even this modest decrease is important.  In fact, for the 

SO model, neither adding a second rater to score each day of instruction nor adding an 

additional day of observation will bring the reliability estimates up to that of the Base model. 

Looking at Figures 5.5, 5.6, and 5.7, we can see the uncertainty of these reliability 

estimates with the 95% confidence interval of the estimates.  The 95% confidence intervals 

span almost 0.2 points, which is large enough to generate considerable uncertainty in how 

many days of instruction and raters scoring each day are necessary for reliable teacher 

estimates.  In fact, after observing for 3-4 days, adding an additional day of instruction does 

not make a statistically significant improvement in reliability estimates.  Additionally, the CI 

model does not produce reliability estimates that are significantly lower than the Base model, 

though estimates of score reliability from the SO model are significantly lower than those 

from the Base model.  Overall, then, the uncertainty in estimates makes it difficult to make 

definitive decisions on the number of days of instruction that should be observed, the number 

of raters scoring each day, and even the effect of moving from the Base model to the CI 

model. 
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Figure 5.5: Estimated D-Study Reliability of the Teacher Score Estimate for CLASS with 95% 

CI across days, raters, and models  

 

Figure 5.6: Estimated D-Study Reliability of the Teacher Score Estimate for FFT with 95% 

CI across days, raters, and models 
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Figure 5.7: Estimated D-Study Reliability of the Teacher Score Estimate for PLATO with 

95% CI across days, raters, and models  

  

There is one major take-away from these reliability analyses. The reliability of scores 

estimated from the Base model appears to be positively biased. This bias is small relative to 

the uncertainty in the estimated reliability for the SD and CI facets, but large enough to 

change decisions about the design of an observational system.  The effect is much larger for 

the SO facets, but, as I have discussed, whether the SO facets show a bias in the estimated 

reliability of the teacher quality scores is not straightforward.  If we treat the adjustment for 

the SO facets as a proper correction for different circumstances of teaching (i.e. co-

construction), the estimated reliabilities from the Base model (and in the current literature), 

drastically over-estimate score reliability—to the point where, under feasible System Design 

parameters, scores will never be adequately reliable. On the other hand, if one assumes that 

the effects of the SO facets on observed teaching quality is a result of teacher sorting across 

schools, the estimated reliabilities from the Base model are only slightly inflated (from 
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effects of the SD and CI facets).  This highlights the importance of determining whether SO 

facets capture a teacher sorting effect or co-construction-like effect. 

V.4. Validity of Observation Scores 

In this section, I address the third research question (RQ 3), which concerns the 

validity of the inference that observation scores capture teacher quality. Specifically, I will 

examine whether adjusting teacher quality scores for the effects of the SD, CI, and SO facets 

affects the validity of adjusted scores, where the validity data come from examining the 

(partial) correlation between the relevant teacher quality score and a teacher’s value-added 

(VA) score as calculated by UTQ researchers.  It is, of course, of relatively little interest how 

much observation scores correlate with VA scores, but instead the goal is to understand to 

what extent estimates of teacher quality represent the intended construct of teacher quality 

(i.e. the validity of scores).  The correlation with VA scores provides a single (of many 

possible) view into how well teacher quality estimates capture the construct of teacher 

quality.  In general, the higher the correlation of an estimate of teacher quality with VA 

scores, the more evidence exists for the validity of the observation scores, though, as I discuss 

below, this over-simplifies reality. Note that this is a narrow way of conceptualizing the 

validity of observational scores. Teacher quality is a broad construct with many different 

components, and so it is not necessarily the case that the teacher instructional quality is 

strongly connected to all other ways of measuring teacher quality (Bell et al., 2012).  

However, given the current policy environment in US schools, demonstrating a concurrent 

relationship with value-added scores is the accepted way to begin establishing the validity of 

any measure of teacher quality. 

I also search for evidence that the validity of inferences might vary across different 

facets of measurement. In the analyses, I look at two separate measures of VA scores, a VA 

score constructed for the same year as observation scores were conducted (Current VA) and a 
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VA score constructed for the year before VA scores were conducted (Alt Year VA).  Each 

measure presents some challenges for the validity of analyses.   

In this section, I use the 

partial correlation between estimates of teacher quality from observation scores (i.e. �̂�𝑡) and 

value-added scores to provide evidence for the concurrent validity of observation scores, 

using this partial correlation as my "validity coefficient". Further, I test to see if this validity 

coefficient increases as I make adjustments for the effects of hidden facets. There are two 

reasons to think that the validity of observation scores will increase after adjusting for hidden 

facets. First, there was some evidence of instrument bias in the data presented to this point. If 

adjusting for hidden facets corrects for this instrument bias, then the validity of teacher 

estimates after making adjustments should increase. Second (and this reason applies mostly 

to the SO facets), the estimates of teacher quality could be biased by hidden facets as a result 

of co-construction effects (i.e. the hidden facet acts to increase or decrease observed teaching 

quality for all teachers), which could lead to biased estimates of teacher scores if those facets 

are ignored. In terms of the other effects that I have discussed in this chapter, those should 

affect estimates of the variance in teacher quality across teachers, but have no effect on the 

validity of the scores themselves. 

Table 5.18 shows the partial correlation (i.e. “validity”) coefficients across the three 

instruments and the two VA measures. This table contains the results from many different 

regressions, displaying only the regression coefficient of interest. The columns indicate the 

model from which the estimate of teacher quality was drawn (all teacher quality estimates 

were standardized). The top two rows show the validity coefficient for CLASS, the next two 

for FFT, and the last two for PLATO. Within each set of rows, the top row (Alt Year VA) 

shows the results for the prior year's VA score estimate while the bottom row (Current VA) 

uses the current year VA estimate. The validity coefficients in Table 5.18 are all quite similar 

V.4.1. Correlations with VA Scores across models 
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with minimal differences across VA score estimates or across different estimates of observed 

teacher quality, which is not surprising given the finding of high correlations across the 

teacher quality estimates from different models. With respect to differences across models 

that adjust for different facets, the validity coefficients using scores from the SO model were 

slightly lower than correlations for Mean, Base, SD, and CI models, but only for CLASS and 

FFT.  However, the standard errors of the estimated parameters are larger than the differences 

in the validity coefficients across the different models.  Thus, I cannot conclude that there are 

differences in the validity coefficients across the different models.  This is likely due to the 

high correlations between teacher score estimates across observational models, which 

precludes the possibility of the validity coefficients from estimates differing very much (i.e. 

two variables that are correlated with each other at 1 will always have the same correlation 

with any third variable. When the two variables are correlated very close to 1, their respective 

correlations with any third variable must be almost the same). 

Table 5.18: Partial Correlations between VA Scores and Teacher Quality Estimates across 

Models 

Outcome Mean (𝐸(𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) Base (𝛽𝜐𝑡
𝑏𝑎𝑠𝑒) SD (𝛽𝜐𝑡

𝑆𝐷) CI (𝛽𝜐𝑡
𝐶𝐼) SO (𝛽𝜐𝑡

𝑆𝑂) 

CLASS      

   Alt Year VA 0.21 (0.07)** 0.20 (0.08)** 0.21 (0.07)** 0.22 (0.07)** 0.17 (0.06)** 

   Current VA 0.19 (0.08)* 0.19 (0.08)* 0.17 (0.08)* 0.18 (0.08)* 0.14 (0.07)* 

FFT      

   Alt Year VA 0.14 (0.08) 0.16 (0.08) 0.17 (0.08)* 0.19 (0.08)* 0.14 (0.07)* 

   Current VA 0.21 (0.08)* 0.19 (0.08)* 0.19 (0.08)* 0.21 (0.08)** 0.16 (0.07)* 

PLATO      

   Alt Year VA 0.20 (0.07)** 0.18 (0.07)* 0.20 (0.07)** 0.24 (0.07)*** 0.21 (0.06)*** 

   Current VA 0.25 (0.07)*** 0.23 (0.07)** 0.21 (0.07)** 0.26 (0.07)*** 0.24 (0.06)*** 

Note. Table shows the estimated partial correlations between the indicated value-added score and estimated 

teacher quality from observation scores after controlling for student prior achievement and the demographic 

composite. Alt Year VA is the Prior Year Value-Added score estimate. Current VA is the Current Year Value-

Added score estimate. Mean is the Teacher Quality score averaged from observed teaching quality. Base is the 

teacher score estimate from the Base model. SD is the teacher score estimate from the System Design model. CI 

is the teacher score estimate from the Curriculum and Instruction model. SO is the teacher score estimate from 

the School Organization model.  Asterisks denote the significance of the relationship between the classroom 

observation score estimate and the VA score.  * p<0.05; ** p<0.01; *** p<0.001. 

 

In this last section, I look to see if the 

validity of inferences about teacher quality based on observation scores varies across the 

facets over which teachers were observed. As I argued before, there is no a prior reason to 

V.4.2. Differential Validity across Facets 
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think that the relationship between observed teaching quality (i.e. 𝑋𝑖𝑟(𝑜:𝑑:𝑠:𝑡)) and student 

learning is constant across different facets. Observation instruments may be better at 

measuring teacher quality for specific types of instruction or for specific types of students, for 

example. The results presented in this section follow on those in the last section. In this 

analysis, I introduce an interaction term into the regressions from the last section that used the 

Base model estimate of teacher quality. The interaction term is then examined to see whether 

the validity coefficient varies across levels of the hidden facet. In this sense, then, the 

interaction term is the main parameter of interest in the analysis.  Note that, in these analyses, 

I aggregated all day-level facets to the teacher-level. As a result, in the analyses that follow, I 

am looking at whether teachers who were observed teaching more writing lessons have 

teacher quality scores that are more highly correlated to VA scores (and are hence more valid 

measures of teacher quality) than teacher quality scores from teachers who were observed 

teaching fewer writing lessons. This is not the ideal approach to examining concurrent 

validity since it does not address the potential impact that might arise from which teachers 

were observed teaching writing (i.e. teachers who are observed teaching writing more often 

may be fundamentally different in some way than those observed teaching writing less often).  

This would lead to the impression that scores on writing lessons are more valid than those on 

non-writing lessons, but the effect is driven by who was observed teaching writing, rather 

than writing itself.  That is to say, this analysis is particularly exploratory and results should 

be verified before they are taken too seriously. 

Table 5.19 shows the results for the analysis testing for differential validity across the 

grade facet (an SO variable). Each column of Table 5.19 shows the results of a different 

regression, with each row showing a regression coefficient. The last two rows, which show 

the interaction of grade and observation scores, are the focal parameters.  A significant effect 

of these parameters suggests differential validity across the grade facet. The first three 
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columns look at results for the current year VA scores while the next three look at results for 

the alternative year VA scores. There is no evidence that relationship between observation 

scores and VA scores varies across grade, as is shown in the bottom two rows. 

Table 5.19: Regression Results Predicting Value-Added Scores with Observation Scores 

across Grade-Levels 

 Current VA  Alt Year VA 

Parameter CLASS FFT PLATO  CLASS FFT PLATO 

Intercept -0.13 (0.12) -0.12 (0.11) -0.13 (0.11)  0.08 (0.11) 0.08 (0.12) 0.08 (0.11) 

Demo Composite 0.09 (0.10) 0.08 (0.10) 0.10 (0.10)  0.01 (0.10) -0.02 (0.10) 0.02 (0.10) 

Prior Ach 0.11 (0.11) 0.07 (0.11) 0.11 (0.10)  0.15 (0.11) 0.15 (0.11) 0.19 (0.11) 

Grade 7 0.11 (0.17) 0.09 (0.17) 0.10 (0.17)  -0.14 (0.17) -0.18 (0.17) -0.17 (0.16) 

Grade 8 0.20 (0.16) 0.19 (0.16) 0.18 (0.16)  -0.11 (0.15) -0.10 (0.16) -0.12 (0.15) 

Obs. Score 0.12 (0.12) 0.17 (0.12) 0.28 (0.13)*  0.10 (0.11) 0.05 (0.12) 0.09 (0.13) 

Obs Score by Grade 7 -0.01 (0.18) -0.10 (0.17) -0.19 (0.18)  0.10 (0.16) 0.04 (0.17) 0.10 (0.18) 

Obs Score by Grade 8 0.23 (0.16) 0.18 (0.16) 0.05 (0.16)  0.19 (0.16) 0.17 (0.16) 0.15 (0.16) 

Note. Cells show the regression parameters with SE. Each column is a separate regression. Demo 

Composite=Demographic Composite; Prior Ach= Prior Achievement; Obs Score= Observation Score-Estimated 

Teacher Quality from Base Model.  * p<0.05; ** p<0.01; *** p<0.001.  

 

Table 5.20: Regression Results Predicting Value-Added Scores with Observation Scores 

across Student Characteristics 

 Current VA  Alt Year VA 

Parameter Pr Ach Demo  Pr Ach Demo 

CLASS      

   Intercept 0.00 (0.07) 0.03 (0.07)  0.05 (0.07) 0.02 (0.07) 

   Demo Composite 0.09 (0.10) 0.11 (0.10)  0.04 (0.10) 0.04 (0.11) 

   Prior Ach 0.11 (0.11) 0.12 (0.11)  0.18 (0.11) 0.17 (0.11) 

   Obs. Score 0.20 (0.08)* 0.21 (0.08)**  0.23 (0.08)** 0.22 (0.08)** 

   Obs Score by Facet -0.04 (0.07) 0.10 (0.08)  -0.11 (0.07) 0.06 (0.08) 

FFT      

   Intercept 0.02 (0.08) 0.05 (0.07)  0.07 (0.07) 0.03 (0.07) 

   Demo Composite 0.07 (0.10) 0.08 (0.10)  -0.00 (0.10) -0.01 (0.10) 

   Prior Ach 0.07 (0.11) 0.08 (0.11)  0.16 (0.11) 0.15 (0.11) 

   Obs. Score 0.21 (0.08)** 0.22 (0.08)**  0.15 (0.08) 0.15 (0.08) 

   Obs Score by Facet -0.05 (0.07) 0.12 (0.07)  -0.13 (0.07)* 0.07 (0.07) 

PLATO      

   Intercept -0.03 (0.07) 0.01 (0.07)  0.00 (0.07) -0.03 (0.07) 

   Demo Composite 0.09 (0.10) 0.10 (0.10)  0.04 (0.10) 0.02 (0.10) 

   Prior Ach 0.10 (0.10) 0.10 (0.10)  0.19 (0.11) 0.18 (0.10) 

   Obs. Score 0.25 (0.07)*** 0.27 (0.07)***  0.20 (0.07)** 0.18 (0.07)* 

   Obs Score by Facet 0.02 (0.08) 0.08 (0.07)  -0.04 (0.07) -0.05 (0.07) 

Note. Cells show the regression parameters with SE. Each column and block is a separate regression. Demo 

Composite=Demographic Composite; Prior Ach= Prior Achievement; Obs Score= Observation Score-Estimated 

Teacher Quality from Base Model; In the second and fourth columns, Facet is 'Pr Ach'=Prior Achievement; In 

the third and fifth columns, Facet is Demo=Demographic Composite.  * p<0.05; ** p<0.01; *** p<0.001. 

 

Table 5.20 shows the results for the student demographic composition (another SO 

variable), presenting equivalent information to that of Table 5.19. Each column of Table 5.20 

shows the results of a separate regression for each of the three observation instruments. The 

left two columns show results for the current year VA scores and the right two for the 
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alternate year VA scores. In only one of the twelve equations in Table 5.20 is there evidence 

that the relationship between estimates of teacher quality and VA scores varies across levels 

of this facet. For the alternate year VA score only, the relationship between observation 

scores and VA scores is weaker for teachers with more disadvantaged students on FFT. 

However, this interaction would not be significant after correcting for multiple comparisons. 

Table 5.21 shows the same analysis for the content domain facet (a CI variable). 

Again, each column of Table 5.21 shows the results of a separate regression for each content 

domain facet on each observation instrument. Only one interaction (out of 24) is significant 

here. Teachers who were observed teaching more reading lessons had a higher validity 

coefficient for the alternate year VA score on FFT compared to those observed teaching 

fewer reading lessons. Again, the effect would not be significant after adjusting for multiple 

comparisons. Table 5.22 shows the same results for interaction structure.  No effects were 

significant here. 

 Overall, the results presented in this section show that estimates of teacher quality 

across all three instruments are related to VA scores, but there is no evidence for differential 

validity across different levels of the hidden facets analyzed here. This means that there is no 

evidence that teacher quality is better measured when observing specific forms of instruction 

compared to other types of instruction.  However, to really examine the differential validity 

across facets, it would be ideal to get stable teacher quality estimate for each level of the 

facet. This would require sampling multiple days of instruction for each teacher on each level 

of the facet.  With separate teacher quality estimates for each level of the hidden facet, one 

could explore the within-teacher differences in the relationship of the two teacher quality 

estimates and VA scores.  This should both eliminate the threat that non-teacher sources are 

creating the observed relationship and, since all teachers have reliable estimates of teacher 
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quality for each facet, should provide more power to detect differences in the correlations 

with VA scores. 

Table 5.21: Regression Results Predicting Value-Added Scores with Observation Scores 

across Content Domains 

 Current VA  Alt Year VA 

Parameter Read Lit Writ Grammar  Read Lit Writ Grammar 

CLASS          

   Intercept 
0.00 

(0.08) 

0.08 

(0.09) 

0.06 

(0.10) 

-0.17 

(0.09) 
 

0.03 

(0.07) 

0.05 

(0.09) 

0.07 

(0.10) 

-0.16 

(0.09) 

   Demo Composite 
0.09 

(0.10) 

0.08 

(0.10) 

0.10 

(0.10) 

0.10 

(0.10) 
 

0.03 

(0.10) 

0.01 

(0.10) 

0.01 

(0.10) 

0.04 

(0.10) 

   Prior Ach 
0.10 

(0.11) 

0.13 

(0.11) 

0.11 

(0.11) 

0.12 

(0.11) 
 

0.13 

(0.11) 

0.16 

(0.11) 

0.14 

(0.11) 

0.17 

(0.10) 

   Facet 
-0.05 

(0.12) 

-0.08 

(0.08) 

-0.07 

(0.08) 

0.14 

(0.07)* 
 

-0.11 

(0.11) 

-0.08 

(0.08) 

-0.07 

(0.07) 

0.14 

(0.07)* 

   Obs. Score 
0.20 

(0.09)* 

0.29 

(0.11)** 

0.13 

(0.11) 

0.30 

(0.10)** 
 

0.16 

(0.08) 

0.16 

(0.10) 

0.23 

(0.11)* 

0.32 

(0.10)*** 

   Obs Score by Facet 
-0.01 

(0.12) 

-0.07 

(0.07) 

0.06 

(0.08) 

-0.09 

(0.07) 
 

0.18 

(0.11) 

0.05 

(0.06) 

-0.03 

(0.08) 

-0.10 

(0.07) 

FFT          

   Intercept 
0.02 

(0.08) 

0.08 

(0.09) 

0.07 

(0.10) 

-0.16 

(0.09) 
 

0.02 

(0.07) 

0.03 

(0.09) 

0.08 

(0.10) 

-0.15 

(0.09) 

   Demo Composite 
0.06 

(0.10) 

0.05 

(0.10) 

0.07 

(0.10) 

0.08 

(0.10) 
 

-0.02 

(0.10) 

-0.03 

(0.10) 

-0.02 

(0.10) 

-0.01 

(0.10) 

   Prior Ach 
0.05 

(0.11) 

0.08 

(0.11) 

0.08 

(0.11) 

0.08 

(0.11) 
 

0.14 

(0.11) 

0.15 

(0.11) 

0.14 

(0.12) 

0.16 

(0.11) 

   Facet 
-0.06 

(0.11) 

-0.05 

(0.08) 

-0.07 

(0.08) 

0.15 

(0.07)* 
 

-0.08 

(0.11) 

-0.06 

(0.08) 

-0.07 

(0.08) 

0.13 

(0.07) 

   Obs. Score 
0.20 

(0.09)* 

0.32 

(0.10)** 

0.14 

(0.12) 

0.27 

(0.10)** 
 

0.06 

(0.09) 

0.09 

(0.10) 

0.12 

(0.13) 

0.25 

(0.10)* 

   Obs Score by Facet 
0.05 

(0.11) 

-0.11 

(0.07) 

0.05 

(0.08) 

-0.03 

(0.07) 
 

0.22 

(0.11)* 

0.06 

(0.07) 

0.01 

(0.08) 

-0.11 

(0.07) 

PLATO          

   Intercept 
0.01 

(0.07) 

0.09 

(0.09) 

0.10 

(0.10) 

-0.21 

(0.09)* 
 

0.02 

(0.07) 

0.05 

(0.09) 

0.09 

(0.10) 

-0.18 

(0.09)* 

   Demo Composite 
0.09 

(0.10) 

0.08 

(0.10) 

0.10 

(0.10) 

0.12 

(0.10) 
 

0.03 

(0.10) 

0.03 

(0.10) 

0.03 

(0.10) 

0.05 

(0.10) 

   Prior Ach 
0.09 

(0.10) 

0.13 

(0.10) 

0.11 

(0.10) 

0.13 

(0.10) 
 

0.17 

(0.10) 

0.21 

(0.11) 

0.20 

(0.11) 

0.21 

(0.10)* 

   Facet 
-0.10 

(0.11) 

-0.12 

(0.08) 

-0.11 

(0.07) 

0.17 

(0.06)** 
 

-0.13 

(0.11) 

-0.07 

(0.08) 

-0.10 

(0.07) 

0.15 

(0.07)* 

   Obs. Score 
0.22 

(0.08)** 

0.30 

(0.10)** 

0.19 

(0.11) 

0.32 

(0.10)*** 
 

0.16 

(0.08)* 

0.19 

(0.10) 

0.08 

(0.11) 

0.31 

(0.09)*** 

   Obs Score by Facet 
0.14 

(0.12) 

-0.02 

(0.07) 

0.07 

(0.08) 

-0.03 

(0.07) 
 

0.17 

(0.12) 

0.02 

(0.07) 

0.11 

(0.08) 

-0.09 

(0.07) 

Note. Cells show the regression parameters with SE. Each column and block is a separate regression. Demo 

Composite=demographic composite; Prior Ach= prior achievement; Obs Score= observation score-estimated 

teacher quality from Base model; In the second and sixth columns, the facet is days observed teaching reading; 

In the third and seventh columns, the facet is days observed teaching literature; In the fourth and eighth 

columns, the facet is days observed teaching writing; In the fifth and ninth columns, the facet is days observed 

teaching grammar.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table 5.22: Regression Results Predicting Value-Added Scores with Observation Scores 

across Interaction Structures 

 Current VA  Alt Year VA 

Parameter Discussion Ind Wk Recitation  Discussion Ind Wk Recitation 

CLASS        

   Intercept 0.13 (0.16) 0.06 (0.08) 0.01 (0.24)  0.30 (0.15)* 0.02 (0.08) -0.11 (0.24) 

   Demo Composite 0.08 (0.10) 0.09 (0.10) 0.08 (0.10)  0.01 (0.10) 0.03 (0.10) 0.02 (0.10) 

   Prior Ach 0.11 (0.11) 0.11 (0.11) 0.11 (0.11)  0.17 (0.10) 0.16 (0.11) 0.14 (0.11) 

   Facet -0.07 (0.07) -0.16 (0.11) -0.01 (0.08)  -0.14 (0.07)* -0.05 (0.11) 0.04 (0.08) 

   Obs. Score 0.24 (0.17) 0.25 (0.09)** 0.66 (0.29)*  0.44 (0.15)** 0.24 (0.09)** -0.14 (0.28) 

   Obs Score by Facet -0.01 (0.07) -0.10 (0.11) -0.16 (0.10)  -0.10 (0.06) -0.06 (0.10) 0.12 (0.09) 

FFT        

   Intercept 0.15 (0.16) 0.07 (0.08) 0.08 (0.25)  0.27 (0.15) 0.02 (0.08) -0.12 (0.24) 

   Demo Composite 0.05 (0.10) 0.07 (0.10) 0.06 (0.10)  -0.04 (0.10) -0.02 (0.10) -0.03 (0.10) 

   Prior Ach 0.06 (0.11) 0.06 (0.11) 0.06 (0.11)  0.16 (0.11) 0.14 (0.11) 0.13 (0.11) 

   Facet -0.07 (0.07) -0.18 (0.11) -0.02 (0.08)  -0.13 (0.07) -0.04 (0.11) 0.04 (0.08) 

   Obs. Score 0.23 (0.17) 0.23 (0.09)* 0.62 (0.28)*  0.26 (0.16) 0.15 (0.09) -0.14 (0.27) 

   Obs Score by Facet -0.00 (0.08) -0.01 (0.11) -0.14 (0.09)  -0.05 (0.07) -0.01 (0.10) 0.10 (0.09) 

PLATO        

   Intercept 0.23 (0.16) 0.06 (0.08) -0.01 (0.24)  0.36 (0.15)* 0.01 (0.08) -0.10 (0.24) 

   Demo Composite 0.09 (0.10) 0.10 (0.10) 0.09 (0.10)  0.02 (0.10) 0.03 (0.10) 0.03 (0.10) 

   Prior Ach 0.12 (0.10) 0.11 (0.10) 0.10 (0.10)  0.20 (0.10)* 0.19 (0.11) 0.18 (0.11) 

   Facet -0.12 (0.07) -0.19 (0.11) -0.00 (0.08)  -0.17 (0.07)* -0.05 (0.11) 0.03 (0.08) 

   Obs. Score 0.36 (0.15)* 0.27 (0.08)** 0.47 (0.23)*  0.35 (0.14)* 0.20 (0.08)* 0.01 (0.22) 

   Obs Score by Facet -0.04 (0.07) -0.01 (0.12) -0.08 (0.08)  -0.05 (0.06) 0.01 (0.11) 0.07 (0.07) 

Note. Cells show the regression parameters with SE. Each column and block is a separate regression. Demo 

Composite=Demographic Composite; Prior Ach= Prior Achievement; Obs Score= Observation Score-Estimated 

Teacher Quality from Base Model; In the second and fifth columns, Facet is Days with a sustained focus on 

discussions; In the third and sixth columns, Facet is Days with a sustained focus on independent work; In the 

fourth and seventh columns, Facet is Days with a sustained focus on recitation.  * p<0.05; ** p<0.01; *** 

p<0.001. 

 

V.5. Chapter Summary 

In this chapter, I reviewed a number of results about the effect of facets (and 

especially “hidden” facets”) of measurement on observed teaching quality and the resulting 

implications for bias, reliability and validity. To address my first research question, I started 

by exploring the facets of measurement typically built into the design of most observation 

systems and explicitly included in most GTheory models. These facets include teachers, 

occasions, days, raters, and items.  Teachers contributed less to observed teaching quality on 

PLATO than the other two instruments and teachers contributed the most to observed 

teaching quality on FFT.  Additionally, the rater facets contributed a large portion of the 

variance in observed teaching quality, especially the rater-by-day and rater-by-item facets.  

For CLASS in particular, the variance of the rater-by-item facet was large.  Item facets also 
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made a large contribution to observed teaching quality, especially the item-by-day facet, 

though items contributed relatively little variance to observed teaching quality at the teacher 

level (i.e. item-by-teacher facets were small).  These facet variances were estimated with a 

surprisingly high degree of precision (with confidence intervals spanning a few percentage 

points), but the error was large relative to the size of the variance components, which 

contributed to the high error in reliability estimates we saw in the latter part of this chapter. 

In order to address my second research question, I presented the results of three 

models that build off of this Base model to add controls for the impacts of the hidden facets 

under study on observed teaching quality.   These models showed that SD, CI, and SO facets 

all were associated with observed teaching quality.  These effects were often consistent 

across instruments, but for live scoring, reading, grammar, discussion, the student 

demographic composite, and student’s average prior achievement, there was a significant 

difference between the effects of the hidden facets on observed teaching quality across 

instruments, which suggests instrument bias.  This bias appeared to be the result of the 

specific aspects of teaching quality captured by each instrument, with each instrument 

capturing a unique component of teaching quality.   

However, despite these effects on observed teaching quality, I showed that the impact 

of the hidden facets on estimates of teacher quality were often quite small, except for the 

effects of the SO facets.  This is likely due to the random sampling of days, which averaged 

out the impact of day-level facets (like the SD and CI facets) on estimates of teacher quality.  

Even the effects of the SO facets on estimates of teacher quality were modest.  I showed that 

the impact of adjusting for the hidden facets on the reliability of teacher quality scores was 

more meaningful.  While the decrease in reliability was modest after adjusting for the SD and 

CI facets, it was large enough to suggest adding an additional day of observation for each 

teacher, which entails a large cost.  The decrease in reliability after adjusting for the SO 
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facets was much more substantial with the reliability of teacher quality scores from the SO 

model remaining below 0.55 even when five days of instruction are observed and half of the 

observed days are double scored.  Overall, then, this chapter: (a) provides convincing 

evidence for the presence of effects of hidden facets; (b) shows that adjusting estimates of 

teacher quality for hidden facets has relatively little effect on teacher score estimates, at least 

in UTQ data, and (c) suggests the design of the observational system should depend on 

whether adjustments for hidden facets will be made to estimates of teacher quality. 

I then presented results related to my third research question, the differential validity 

of estimates of teacher quality.  These results showed that there was no difference in the 

correlation of the estimates of teacher quality with VA scores across the different models (i.e. 

the Base model, SD model, CI model, and SO models).  Further, the correlation with teacher 

quality estimates did not vary for teachers observed across different facets.  This showed that 

there was no evidence for the differential validity of inferences of teacher quality.    
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Chapter VI. Discussion 

VI.1. The Problem 

This thesis explored the implications of treating teaching as a situated phenomenon 

for the measurement of teacher quality with classroom observation instruments.  Traditional 

approaches to measuring teaching quality using classroom observation instruments have 

recognized that observed teaching quality scores will vary across days, class sections taught 

by a teacher, particular items on an observation instrument, and the raters using the 

observation instrument.  However, researchers also typically assume that each level of these 

facets provides an equivalent view of teaching quality.  As such, the typical approach to 

measurement implicitly assumes that any two days of instruction are an equal representation 

of a teacher's ability to mount high quality instruction, that any two raters provide equally 

valid scores, and so on.  

The problem addressed in this thesis is what happens when variation in teaching 

quality occurs in systematic ways across days, raters, and items.  For example, suppose that 

certain properties of days—for example, the teacher’s use of lecture or class discussion—has 

a systematic effect on teaching quality.  When this occurs, days featuring lectures are not 

equivalent to days featuring discussions.  Further, a teacher's ability may not be measured as 

accurately if observed only during lectures as compared to both lectures and class 

discussions.  When specific days (or levels within any other facet) are systematically related 

to teaching quality, measurement models may provide incorrect parameter estimates.  

Characteristics of measurement that are systematically related to teaching quality, but not 

explicitly included in measurement models, are called "hidden" facets of measurement.  The 
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question explored in this thesis was whether we can identify some of these hidden facets, and 

if so, how explicitly incorporating these hidden facets into our measurement analysis affects 

the bias, reliability, and validity of our inferences about teacher quality.  

The presence of hidden facets raises several issues in the measurement of teaching 

quality.  The first involves the problem of generalizing and/or extrapolating scores in the face 

of these hidden facets.  I argued in this thesis that when a facet varies within-teachers and 

teachers are observed across representative levels on this facet, it is a straightforward matter 

to understand how observed teaching quality generalizes across levels of the facet because 

there is data on this issue.  However, when a facet varies mostly between-teachers and 

teachers are only observed on a small part of the domain of this facet, it is much more 

difficult to generalize because we do not have direct data on how observed teaching quality 

varies across that facet (for a given teacher).  In this case, generalization involves a certain 

amount of extrapolation.   

Importantly, the distinction between within- and between-teacher facets may be 

sample and observation protocol dependent.  For example, the UTQ study data used in this 

thesis came from a study design that sampled teachers separately in math and English, 

making subject a between-teacher facet; but other studies (often in elementary schools), 

might sample math and English lessons from the same teacher, making subject a within-

teacher facet.   When a facet is between-teachers, some assumptions must be made about how 

teachers observed across the facet differ in order to generalize across the domain of the facet. 

This is a process of extrapolation because generalization is accompanied by a set of 

assumptions (which may or may not be true) about the nature of teacher-to-teacher 

differences across levels of the facet and these assumptions must be true for generalization to 

be accurate.  The problem of this thesis, then, comes down to understanding the facets of 

measurement, which determine the boundaries across which generalization occurs, and to 
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determining how observed teaching quality varies across these facets, including the 

assumptions necessary to generalize across facets where extrapolation is necessary. 

As I discussed throughout this thesis, the problem of generalization first involves 

identifying potential "hidden" facets of measurement that affect observed teaching quality 

and over which generalization is desired.  The first category of hidden facets that I studied 

was System Design (SD) variables.  These are characteristics of classroom observation 

systems that arise as part of the selection of specific days to observe, raters to conduct 

observations, and procedures to score observation data.  Among the variables considered in 

this study, for example, were the time of year and day of the week when data were video 

recorded, the date in the study period when video scoring occurred, and whether or not scores 

were recorded live or from video data.  As discussed in this thesis, SD facets like the ones 

studied here are usually within-teacher facets because teachers are usually observed across a 

wide range of levels on these facets (e.g. teachers are observed during set observation 

windows spread across the school year, and their videos are scored from video at many time 

points across the study period).  Because of this, data are sufficient to generalize observed 

teaching quality across these facets so that a simple averaging of a teacher's scores across all 

observation occasions will typically result in a reasonably unbiased score, assuming the 

observation protocol was well-designed and implemented.  However, this averaged score will 

contain not only a true score component of variation but also the variance in observed scores 

due to the omitted hidden facets.  This was demonstrated in this thesis by building a GTheory 

statistical model that statistically adjusted for the SD facets.  This model eliminated variation 

in teacher scores due to SD variables (like when teachers were observed or whether a 

teacher's videos were scored live or by video), and as we saw, this statistical adjustment had 

implications for the reliability of scores (by reducing the ratio of "true" score variance to error 

variance).  It did not, however, have much effect on point estimates of teacher quality since 
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the random sampling of days and the random assignment of raters across days in UTQ 

already balanced the effects of these facets. 

The second category of hidden facets that I studied involved dimensions of 

Curriculum and Instruction.  In this thesis, the Curriculum and Instruction (CI) facets studied 

included the structure of instructional interactions occurring during observed lessons as well 

as the ELA content domains that were taught.  Because most observation protocols (including 

UTQ) sample days of instruction more or less randomly, teachers tend to be observed across 

a range of these CI facets (e.g. they are observed teaching writing some days and reading 

other days).  Thus, CI facets (like the SD facets) are within-teacher facets.  However, there 

may be between-teacher components to CI facets if, for example, a writing curricula in some 

schools leads writing instruction to be fundamentally different in some schools than others 

(which makes the writing instruction facet between-teachers since a teacher is observed only 

in one style of writing instruction)
52

.  Alternatively when different teachers teach the CI 

facets with different frequencies, between-teacher effects of the CI facets may exist.   

Models built to statistically adjust for the CI facets (such as the CI model used in this 

thesis) estimate teacher quality within each of the CI facets, which eliminates differences in 

teacher quality stemming from how frequently teachers teach a given topic.  Therefore, the 

“adjusted” teacher quality estimate from the CI model captures a teacher's ability to teach 

reading and writing not the frequency of teaching it.  Importantly, there is a bias-variance 

trade-off in this adjustment decision.  The negative impact of introducing a bias by ignoring 

aspects of teacher quality linked to the frequency with which teachers engage in specific 

types of instruction can be outweighed by the benefit of reducing sampling variation 

                                                 

52
 In the UTQ data, I found between-teacher effects of a CI facet (namely content domain taught), but, as I 

argued before, this does not necessarily make the CI facet a between-teacher facet because teachers were 

observed across a representative range of the facet's domain due to the random sampling of days.  The 

distinction of within-teacher and between-teacher facets stems more from whether data exists for generalization, 

not from whether they affect between-teacher differences in observed teaching quality. 
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stemming from how frequently teachers are observed engaging in specific types of 

instruction. I have argued that too few days of instruction are observed to estimate how often 

a teacher teaches writing (or any other CI facet) so the reduction in sampling error will likely 

outweigh the introduction of bias.  However, this trade-off is likely sample dependent (i.e. 

dependent on the relative size of within-teacher and between-teacher effects of CI facets) and 

hard to evaluate. Importantly, this tradeoff only occurs under a limited set of conditions—

when it is difficult to accurately estimate the frequency with which a teacher teaches at 

particular levels of the facet and when the facet has (between-teacher) effects on teaching 

quality.   Thus, the precision-bias trade-off likely exists only for some CI facets and for some 

ways of defining and understanding teacher quality.  When the trade-off does not exist, 

adjusting for the facet will increase precision without negative effects (i.e. without affecting 

bias). 

The third category of hidden facets that I studied were called School Organization 

(SO) facets.  In this thesis, SO facets included features related to the design of school systems 

like student composition, grade taught, and subject taught.  As discussed earlier in this thesis, 

SO facets are usually between-teacher facets, so generalizations from observations on a given 

teacher to other settings can sometimes involve extrapolation.  For example, if we observe a 

teacher teaching students with only a limited range of background characteristics, we must 

extrapolate in order to compare that teacher’s measured quality to the measured quality of 

teachers who teach students with an entirely different range of backgrounds.  In models that 

do not directly adjust for the SO facet effects, differences in measured teaching quality due to 

context get attributed to teachers.  This would be a good procedure if, in fact, differences in 

averaged teaching quality across contexts was due to teacher sorting (i.e. differences in the 

ability of teachers who are employed at different levels of the facets).  On the other hand, we 

might assume that facet effects arise not from teacher sorting but from co-construction (i.e. 
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the facet itself causes differences in observed teaching quality due, for example, to some 

students being easier to teach than others).  In this case, scores are only comparable across 

contexts after adjusting for the effects of the SO facets.  Importantly, in both cases, 

extrapolation is necessary if one wants to generalize beyond the specific setting where a 

teacher was observed because teachers were not observed across a representative range of the 

domain of SO facets.   The point, once again, is that assumptions drive the way a teacher 

quality score is estimated, as well as the extent to which one can generalize this score to 

settings which have not been directly observed and these assumptions should be made clear 

along with the goals of generalizing.  Moreover, it will always be the case that teacher quality 

estimates based on adjusted and unadjusted models will produce somewhat different point 

estimates (to the extent that SO facets have effects on observed teaching quality) and vary in 

the precision of their estimates. 

The division of contextual features of instruction into within-teacher and between-

teacher hidden facets and the categorization of three types of hidden facets provided a 

framework to explore how the situated nature of teaching affects the measurement of teacher 

quality with observation instruments.  This is one of the major contributions of this thesis 

because it allows for an exploration of how contextual factors of instruction (i.e. hidden 

facets) impact the measurement process, focusing on what we can conclude about teacher 

quality and the limitations of different estimates of this construct.   

VI.2. Review of Findings 

Having discussed the problem of generalization in the face of hidden facets, I turn 

now to a review of the findings.  I begin with a discussion of how planned facets of 

measurement (such as occasions, days, raters, and items) affect the measurement of teacher 

quality. 

VI.2.1. Planned Facets of Measurement 



 

182 

The analyses I presented in this thesis began with a presentation of one of the most complete 

GTheory analyses conducted to date on the effects of planned measurement facets on 

observed teaching quality scores for the observation instruments under study (note that the 

analysis also broke new ground by presenting confidence intervals to bound estimated 

variances in this analysis). The GTheory model that I estimated (called the Base model in 

previous chapters) produced a number of interesting findings.  The first was that the amount 

of variance in observed scores due to the teacher facet (i.e. the true score, 𝜐𝑡) differed across 

the three instruments under study. The teacher facet contributed the most variance to 

observed scores on FFT and the least to observed scores on PLATO. In these initial analyses, 

then, FFT was found to provide the most reliable estimate of teacher quality and PLATO was 

found to provide the least reliable estimate.  Note, however, that other studies—including the 

MET study (Kane et al., 2012)—of these same instruments have not found large differences 

in reliability across instruments.  Note also that the differences I found in estimated score 

reliability across the three instruments under study did not seem to affect the concurrent 

validity of these measures (i.e., the correlation of the estimated teacher quality scores to VA 

scores was roughly similar for all three instruments).  

An interesting contribution of this study—and one not found in other GTheory 

analyses of these observation instruments—was my calculation of confidence intervals for 

each of the variance estimates in my model, which allowed me also to calculate confidence 

intervals for the variance of planned measurement facets.   The 95% confidence intervals for 

the variance estimates were large relative to the estimates themselves, but bounded the 

percentage of variance explained by a facet to +/- ~3 percentage points. This large error 

relative to the variance components themselves contributed to wider than desired confidence 

intervals on estimates of score reliability, making it hard to determine whether reliability 

changed significantly as planned facets of measurement (such as number of days or number 
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of raters) changed. In any case, it is important to consider what the confidence intervals I 

estimated do and do not represent.  Importantly, researchers who want to make use of the 

findings presented here to plan their own studies will have to extrapolate these findings to 

their own setting. The confidence intervals do not show the uncertainty likely to arise in this 

extrapolation process, but show uncertainty in running a similar study in the same context. At 

present, no research has explored the limits or boundaries of this extrapolation process, 

though the similarity in the relative sizes of facet variances across studies of different 

populations (when common statistical models are used) suggests that generalizing across 

fairly similar populations might be warranted. 

A further caution about the confidence intervals constructed here is warranted.  The 

bootstrapping method I used to construct confidence intervals assumes that model estimates 

of variance components do, in fact, reflect population parameters. This is the basis from 

which re-sampling is used to calculate uncertainty in parameter estimates. I have expressed 

concerns, which I review again below, that the structure of the UTQ data, assignment of 

raters, and relatively low rate of double scoring puts limitations on the estimation of some 

variance components. If that is the case, the bootstrapped confidence intervals may not be 

correct. Simulation studies (or the computationally prohibitive double bootstrap) could be 

used in the future to test how the complex structure of the data might affect estimated 

variance components. 

The most unique feature of the Base model that I estimated was the inclusion of items 

as an explicit (i.e. planned) facet of measurement. The item models presented in this thesis 

provided a great deal of useful information about the functioning of observation instruments 

as measurement tools. Across all three instruments, item fixed effects were always large 

although noticeably more so for CLASS and PLATO than for FFT.   These large item effects 

suggest the need to better model how items function individually (Shavelson et al., 1986).  
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That is, my models assumed each item varied across days, teachers, and raters to the same 

extent, which may not be true and should be explicitly tested.  The item-level models in 

Appendix D do this, but an in depth exploration of these models is beyond the scope of this 

thesis. The item-by-rater and item-by-day interactions show further the importance of 

considering items in a standard GTheory model of classroom observation instruments. Items, 

apparently, do not have a consistent “difficulty” across raters or days.  While future studies 

might try to explain why this is the case, in this thesis, I simply treated these item interactions 

as error in the measurement process.   

The Base GTheory model used in this thesis also went beyond the typical analysis of 

rater error found in classroom observation research.  In many studies, the only rater effect 

estimated is rater main effects (e.g. Cor, 2011; McCaffrey, et al., 2014).  But I also estimated 

various rater interaction effects.  These interaction effects, in turn, showed the importance of 

rater error other than simple leniency (as estimated by the rater main effect).  In particular, 

the Base model I estimated showed substantial rater-by-item interactions, suggesting that 

raters are not consistently lenient (or severe) across all items, and rater-by-day interactions, 

suggesting inconsistencies in rater leniency across days.  In fact, in the Base models 

estimated here, the rater-by-day, rater-by-item, and residual facets were always a large source 

of error variance, but the relative magnitude of these error components varied across 

instruments.  In fact, this variation across instruments has important implications for efforts 

to reduce rater error.  For example, the high rater-by-item error on CLASS, which accounted 

for almost one-fifth of the total score variance, shows that raters struggled with understanding 

the level of teaching quality that corresponds to a specific score value on a given item.  On 

FFT, however, the rater-by-day error was the largest by far, showing that (the same) raters 

struggled the most with understanding the level of teaching quality being exhibited on 

specific days of instruction.  While no research exists to connect these error types with 
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specific training remedies to reduce rater error, it is reasonable to think that different 

approaches would be required to address each of these two very different types of rater error.  

This deeper understanding of rater error, which hopefully will better guide researchers to 

solutions, is one of the benefits of including five sources of rater error in the GTheory model. 

However, more research is needed to connect the various types of rater error with approaches 

to reducing these errors.   One final, cautionary note on rater error is essential.  At least in 

UTQ, up to half the rater error may be undetectable because no "true” observed teaching 

quality is available to judge rater error.  With the data at hand, we can only examine rater 

disagreement (Myford & Wolfe (2009); White, In Prep).  So, when two raters are both wrong 

in the same way, we must incorrectly conclude they are correct. 

In estimating the Base (and other) GTheory statistical models, I raised concerns about how 

the complexity of the UTQ data structure might have affected the results presented here. For 

example, the rater-by-teacher and rater-by-day facets were not well-separated (their variance 

estimates are correlated at ~ -0.8 across bootstrapped samples), and this could be due to the 

complex UTQ data structure, which includes only a partial crossing of raters (i.e. all 

occasions of instruction are not scored by all raters). The need for a partial crossing of raters 

is obvious (it is too costly to have all raters score all occasions), but that need forces those 

conducting a measurement study to make study design decisions that probably affect the 

estimation of variance due to rater facets. To begin, any partial crossing of raters involves 

choosing a level of nesting at which to assign raters. That is, raters must either be assigned to 

teachers, such that they score all days for a given set of teachers, be assigned to days, such 

that they score all occasions for a given day (and a limited number of days per teacher), or 

assigned to occasions, such that they score only one occasion for a given day. Second, a 

decision must be made about whether to score occasions sequentially or independently. 

Generally speaking, the lower the level of nesting to which raters are assigned (i.e. occasions 

VI.2.2. The Relationship of Data Structure, Rater Errors, and Score Reliability 
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rather than days), the more raters will contribute to a teacher's observed score because fewer 

raters will contribute to each teacher’s score.  Assigning raters to occasions will lead to the 

most reliable teacher scores because the rater, rater-by-item, and rater-by-day errors will be 

spread across the most raters. However, this approach would also mean that fewer raters were 

scoring the same occasions on a given day or the same days within teachers, reducing the 

power to detect systematic rater biases (e.g. raters who are biased against lectures or minority 

teachers). There is thus a trade-off here: increasing the reliability of estimates of teacher 

quality or increasing ability to explore rater errors. The Base GTheory model allows an 

exploration of this trade-off. The rater-by-teacher error facet was near zero in the analyses I 

conducted, so adding additional raters to score a given teacher does not contribute to score 

reliability. The rater-by-day error facet, however, was large, so adding more raters to score 

each day is an important step to increasing reliability
53

. It would seem, then, that raters should 

be assigned to the occasion level to maximize the reliability of scores since this maximizes 

the number of raters scoring each day. Alternatively, if one wishes to explore rater biases, 

assigning raters to the teacher level is preferable, but this will increase error in teacher score 

estimates and should probably only be done if at least two raters score each teacher.  

Additionally, there seems to be no statistical reason to ever assign raters to the day level since 

this hampers exploration of rater bias and provides less reliable scores than assigning raters to 

occasions.  Interestingly, most studies assign raters to days.  This may reflect the importance 

of non-statistical reasons.  For example, one may be concerned that a rater cannot score the 

second occasion without viewing the first occasion for context or scoring may be done live, 

in which case assigning raters to occasions is impractical.   

                                                 

53
 The rater and rater-by-item facets would seem to play a role here, but given sufficient double scoring, a 

regression model with rater-by-item fixed effects (i.e. include a dummy variable for every rater, every item, and 

every combination of rater and item in the regression and use the residual from this model as observed scores) 

adjusts for these effects, preventing them from influencing score reliability for any fixed set of raters.  If we 

want to generalize effects beyond the observed raters, this approach is not possible and having more raters score 

each teacher will reduce the effect of these facets. 
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The Base model just discussed was not 

the focus of this dissertation.  Instead, the main goal of the thesis was to explore the role that 

hidden facets play in the measurement of teaching quality. Three categories of hidden facets 

were studied in my thesis—SD facets, CI facets, and SO facets. Notably, each category of 

hidden facets contained variables that had a statistically significant effect on observed 

teaching quality, but the addition of the SD and CI facet effects into the model led to almost 

no differences in estimates of teacher quality. This was because SD and CI facets are within-

teacher facets and SO facets are between-teacher facets.  Differences in teacher quality 

estimates across the Base and CI model (which adjusted for all within-teacher hidden facets) 

was very close to 1 because these day level, within-teacher, hidden facet effects were 

averaged across four days, sampling of days was random (or at least ignorable), and the UTQ 

study stratifies teacher scores across SD facets. This finding might be sample dependent as 

the UTQ data showed much less day variance than previous studies (such as MET, see Kane 

et al., 2012). 

Going forward, it is worth exploring whether the within-teacher hidden facets have 

larger effects in practical evaluation applications, where sampling is less controlled and 

typically under teacher or principal control. In fact, because SD and CI facets operate within-

teachers, teachers can “game the system” by making selected decisions about when they will 

be observed (e.g., when in the day or year, or teaching a reading versus a writing lesson). The 

large size of the effects of the hidden facets on observed teaching quality implies that these 

decisions will have major implications for teacher scores, allowing teachers to significantly 

move up the distribution of teacher quality by cleverly "gaming" the system.  For example, a 

teacher that is able to be observed only at the beginning of the school year on writing lessons 

that feature discussions in their 6
th

 grade class will score in the 98
th

 percentile of teacher 

quality on CLASS while this same teacher, had they been observed only towards the end of 

VI.2.3. How important are hidden facets? 
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the school year, in their 7
th

 grade classroom, and on reading lessons that did not feature 

discussions, would have been scored at the 50
th

 percentile.  While this example is admittedly 

an extreme case, it shows the potential control a well-informed teacher can have on their 

scores by controlling when they are observed.  The best solution to this challenge is to keep 

sampling as close to random as possible.   

However, near random sampling is not possible, nor necessarily always desirable in 

practice.  For example, a teacher may wish to be observed only in writing because they need 

formative feedback on their writing instruction (while other teachers are observed only in 

grammar for similar reasons). Allowing this may be beneficial to the formative feedback 

goals of observation systems, but still has the same result just discussed: the within-teacher 

effects found in the UTQ data take on between-teacher components and lead to larger 

differences in teacher quality estimates across models that make different adjustments for 

hidden facets.  In this way, there can be a tension between formative and summative uses of 

observational systems.  Thus, there is a need to take care in generalizing the results of this 

study to practical applications. More research is needed to examine how the sampling of 

lessons in practice might affect scores, especially when teachers face both high-stakes 

consequences and have some control over what days are observed (Brophy, 2006). 

While the within-teacher (SD and CI) hidden facets had minor impacts on teacher 

score estimates overall in the UTQ data, they did have important (though modest) effects on 

the reliability of teacher score estimates. The estimated variance of the teacher score fell by 

21-38% between the Base model and the CI model across the three instruments. This implies 

that 21-38% of the variance in teacher scores from the Base model is the result of sampling 

error due to sampling across the SD and CI facets. This is a lot of "error" in the teacher score 

estimates from the Base model, though, as I have discussed, terming this error depends which 

aspects of teacher quality we want to include in our definition of teacher quality. Nonetheless, 
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the finding about large error variance due to hidden facets suggests that estimates of teacher 

quality are not as reliable as the Base model would suggest. The decrease in the estimated 

reliability of the teacher score dropped enough for FFT and PLATO to suggest that an 

additional day of observation is necessary to maintain the same level of reliability indicated 

by the Base model, which has important implications for the cost of using classroom 

observation instruments. However, it is once again worth noting that the uncertainty in 

estimates of the reliability of teacher scores is much larger than differences across models, an 

important point given that  no previous studies have investigated the precision with which 

these reliabilities are estimated. At least for UTQ data, then, we can conclude that the effects 

of within-teacher hidden facets are large enough to be theoretically of interest and are helpful 

in understanding the reliability of teacher scores, but that inclusion of these hidden facets in a 

GTheory model has little practical effect on teacher score estimates themselves.  This 

changes when sampling is not well-controlled as non-random sampling can lead to the hidden 

facets having much larger effects on the teacher score estimates. 

The effects of the between-teacher facets, namely the SO facets, are a different story. 

These facets are unique in that comparisons of teacher scores across between-teacher facets 

are only supported through extrapolation.  As a result, understanding the source of these 

effects and determining how to address them is highly complex. Models that adjust for the 

SO facets resulted in estimates of teacher quality that, though still highly related to the Base 

model estimates (correlations were near 0.8), were noticeably different. While a correlation 

of .8 is still quite high, the implications could differ.  Further, estimates of the reliability of 

scores fell roughly 0.15-0.20 points from the Base model to the SO model, a decrease that is 

easily large enough to imply additional raters or days of instruction are necessary to achieve a 

given score reliability. In fact, under common sampling plans, the reliability estimates from 

the SO model suggest very little ability to reliably distinguish between teachers, which is a 
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primary goal of observation instruments in most research and practice settings. This finding, 

in fact, is the major benefit of incorporating this exploration of hidden facets within a broader 

measurement framework, which is rarely done. 

This review of findings from the SO models raises the important question of whether 

or not it is appropriate to make adjustments for student characteristics and grade taught when 

estimating teacher quality from classroom observation data. It cannot be determined from 

UTQ data whether teacher sorting or co-construction were the source of the SO facet effects 

found in this study, which means I cannot conclude definitively if an adjustment for SO 

effects is appropriate.  

Additional research will be needed to specifically test the causes of the SO facet 

effects. Because of the importance of distinguishing between teacher sorting and co-

construction effects, it is useful here to consider what evidence could be helpful in 

distinguishing between these two sources of differences in observed teaching quality across 

contexts.  The MET study attempted this through randomizing students across classrooms 

within-schools, which effectively eliminated within-school, between-teacher student sorting 

as an explanation for the SO facet effects (e.g. Garrett & Steinberg, 2015). Garret and 

Steinberg (2015), after removing all within-school teacher sorting through randomizing 

students to teachers, found much of their ability to predict teacher quality (i.e. VA scores) 

using FFT scores was lost, suggesting co-construction was at play.  However, the weak 

implementation of the randomization process significantly reduced power to detect effects, 

which may have driven the findings.  Further, the difference between within-teacher and 

between-teacher within-school effects was not broken down.  Efforts such as this are an 

important step in understanding whether co-construction or teacher sorting explains these 

between-teacher facets, but, at least in the UTQ data, students' prior achievement had a 

statistically significant effect on the average observed teaching quality between schools (i.e. 
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schools with higher achieving students had higher observed teaching quality).  Thus, student's 

prior achievement affects observed teaching quality in ways that cannot be examined through 

within-school experiments. The effects of classroom composition found in this study, 

however, were within-school/between-teacher effects so the MET randomization data could 

inform these effects.  In general, though, research that observes teachers in multiple school 

contexts is necessary.  This could take the form of observational longitudinal studies where 

teachers are followed as they move across schools, but the endogenous choice of moving 

schools will affect the generalizability of these studies.  Instead, experiments that incentivize 

teachers to move schools and then capture the effect on observed teaching quality of this 

change are necessary to get a true sense of how contexts (especially school context) affect 

observed teaching quality.   

Overall, then, a conclusion from the current study is that SO facets like student 

composition have a meaningful impact on estimates of teacher quality.  Further, under the 

assumption of co-construction (but not sorting) the use of the SO model is appropriate.  The 

effect of this adjustment is to reduce instrument reliability enough to make it nearly 

impossible to differentiate teacher quality between teachers with any precision.  This is an 

important finding and one that calls out for more research. 

The models presented here also 

showed some evidence of bias across instruments. For most facets, the estimated effect of the 

facet was consistent across instruments.  This means all instruments detected the same shift in 

observed teaching quality across the levels of the facet, which I interpreted as evidence that 

observed teaching quality truly changes across the levels of the facet.  However, some facets, 

especially the content domain facets, showed differential effects on teaching quality across 

instruments, which I interpreted as a sign of instrument bias. I focus here only on instrument 

bias in the CI facets (and do not further discuss possible bias across live scoring).  

VI.2.4. Is there evidence of instrument bias? 
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The effects of the CI facets are of particular interest when it comes to the question of 

instrument bias because these facets, I have argued, were the most likely to lead to instrument 

bias.  In fact, there was indication of bias, mostly for the PLATO instrument.  The effect of 

reading lessons, literature lessons, writing lessons, and discussion lessons on PLATO scores 

was significantly larger than the effect of these lesson types on CLASS scores and FFT 

scores.  Except for reading lessons, differences in the size of the effect across instruments 

was driven by a large positive effect on PLATO scores and positive, but near-zero effect on 

CLASS and FFT scores.  For reading only, the effect on FFT scores was negative and the 

effect on PLATO scores was positive.  Thus, the evidence for bias is largest for reading, 

because the reading effect is not dependent on the assumption that the teacher standard 

deviation metric appropriately scaled the parameter estimates to be equal across instruments.  

Interpreting these biases is somewhat complex because the same rater provided PLATO 

scores and the log scores that created the CI facets.  Given that rater error across items is 

known to be correlated (McCaffrey, et al., 2014), correlated rater error could explain this.  

For example, a rater who rates a lesson as scoring high in use of text in instruction (a PLATO 

item) may be more likely to rate a lesson as incorporating a reading component (even after 

controlling for whether a lesson is a reading lesson) than is a rater who does not notice the 

use of text in instruction.    Alternatively, PLATO is designed to measure ELA instruction 

and so could capture aspects of instruction that are more sensitive to differences across 

content domain and interaction structure than are the items on CLASS and FFT.  An 

examination of the item-level models in Appendix D showed that these biases were linked to 

the specific aspects of instruction measured by each instrument.  Only some features of 

instruction vary across the CI facets and, only when an instrument measures those features, 

does it show an effect for the facet.  This bias, then, could also be understood as construct 
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under-representation or construct-irrelevant variance in observation instruments.  Given only 

the UTQ data, it is impossible to empirically distinguish these explanations.   

There was also evidence of instrument bias across FFT scores and CLASS scores for 

grammar lessons.  Grammar lessons had a marginally positive effect on CLASS scores and a 

negative effect on FFT scores.  This is the strongest evidence of instrument bias, given the 

independence of scores from the PLATO log rater and the different directions of effects.  

Again here, I found evidence that this bias was driven by construct under-representation or 

construct-irrelevant variance with grammar lessons lacking "academic press" (Shouse, 1996) 

and discussions, which was captured by FFT more than CLASS. 

Bias across instruments can play an important role in selecting observation 

instruments.  If we assume that no instrument can fully capture all possible aspects of 

teaching quality due to limits on possible instrument length and complexity, then when 

choosing an instrument to use, one would have to select an instrument that captures aspects of 

teaching quality that are the most important.  This, of course, can be done in part by close 

examination of an instrument, but evidence that shows instruments that do (or do not) 

respond to preferred methods of instruction can also play an important role in selecting an 

instrument.  For example, if one believes discussions are inherently more effective ways of 

teaching than lectures/recitation, knowing that an instrument (such as CLASS) rates 

discussions as higher quality, on average, while other instruments (such as FFT) do not is 

quite useful.  In terms of estimating teacher quality, however, this evidence of bias is more 

troubling because the biased model should be adjusted for the hidden facets across which bias 

occurs, but there is no way to tell which of the models is biased when evidence of bias is 

indicated. 

In this section, I reflect 

on how well hidden facets were explored in this dissertation, dividing the discussion between 

VI.2.5. How well have we explored hidden facet effects? 
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the CI facets, which vary within-days between-occasions, and the SD and SO facets, which 

vary between-days and between-teachers. My ability to explore the CI facets was limited by 

three factors.   The first was the use of fixed-time occasions, which I have discussed briefly. I 

treated CI facets as varying across days, but in reality, they vary across occasions.  Lessons 

do not naturally form 15 minute occasions, and this division creates artificial boundaries that 

cut across natural divisions in the lesson. If lessons were instead divided into occasions based 

on naturally formed breaks such as lesson events (Clarke et al., 2007) or occasions with 

consistent content focus and grouping structure (Carlisle et al., 2011; Stodolsky, 1984), then 

occasions would more clearly and precisely represent a focus on a specific content domain, 

instructional grouping, interaction structure, or other factor. This would allow a more precise 

examination of the effect of CI facets. My approach of identifying lessons with a sustained 

focus on a content domain or interaction structure is crude compared to an approach of using 

natural lesson occasions. The crudeness of the occasion-level CI facets in the UTQ data likely 

led to more error in the creation of facets and lower power to detect the effect of the facet 

(Williams & Zimmerman, 1989). 

A second factor limiting my exploration of CI facets is a lack of days observed for 

any given teacher. As I argued, the main effects of facets (i.e. average mean difference in 

observed teaching quality) that I tested for represent the most basic way that a hidden facet 

might affect teaching quality. Exploring more complicated effects would require estimating 

different teacher scores for each level of the facet of interest, which in turn requires observing 

teachers at each level of the hidden facet on multiple days. This would allow me both to more 

clearly identify the effects of hidden facets on observed teaching quality as acting within-

teachers and to examine if the variance of the planned facets of measurement differed across 

facets. For example, it is possible that lectures have a narrower distribution of teacher 

variance than small group work. This could happen if all teachers have a relatively high level 
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of skill conducting lectures, due either to more experience lecturing or lectures being 

inherently easier to conduct than small group work. Estimating separate teacher quality 

estimates for each level of the facet would allow a more complete exploration of the role of 

CI facets. Note that this same argument could be applied to SD facets, though I would argue 

that estimating a teacher's skill in teaching reading and writing separately is more useful than, 

say, estimating their skill in teaching in the fall and spring separately. This type of analysis is 

generally not possible for the SO facets because teachers are not observed across the full 

range of student characteristics or grades (at least for UTQ). The effects of facets on observed 

teaching quality that I identified in this thesis, then, barely touch on how these facets might 

affect teaching quality. 

The last factor limiting my exploration of CI facets is the limited scope and reliability 

of the PLATO log. While the PLATO log captured the full range of content domains for 

English, the interaction structure items were both limited and measured with a great deal of 

error. Increased measurement error leads to decreased power to detect effects (Williams & 

Zimmerman, 1989), limiting the ability to truly explore the interaction structure facets.  The 

PLATO log also conflated PLATO scores and CI facets through the common rater providing 

both sources of information, which limited my ability to explore instrument bias and to 

accurately estimate the relationship between PLATO scores and CI facets.  Additionally, a 

richer exploration of CI facets would allow for a more complete exploration of how broad 

classroom processes affect teaching quality. A number of facets previously identified as 

potentially important or identified as affecting teaching quality include the sequence of 

content and lessons (Gage & Needels, 1989; Staub 2007; Garrison & Macmillian, 1984), 

cognitive rigor of lesson (Grossman et al., 2014; Walkington & Marder, 2014), and 

instructional grouping (Curby et al., 2011; Plank & Condliffe, 2011, 2013). Exploring the 

effect of commercial curricula on teaching quality would also be interesting. 
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I was able to better explore the effects of SD and SO facets because they do not suffer 

from the way occasions were defined in the UTQ study.  My analyses showed how both sets 

of facets affected estimates of teacher quality and explored the level of nesting at which SO 

facets affected observed teaching quality, demonstrating that prior achievement acted 

between-schools and student demographics acted within-schools.  However, additional work 

is necessary to explore the generalizability of these effects, especially for teacher evaluation 

programs in practice and for the level of nesting at which the hidden facets affect observed 

teaching quality. Moreover, as with CI facets, I was only able to test average mean effects of 

the SD and SO facets, assuming the effect was constant across teachers and schools, an 

assumption which should be explored in further work. As I have argued, these constant mean 

effects are the most simple of possible ways that hidden facets might affect observed teaching 

quality.  Notably though, collecting richer data on each teacher across all levels of a hidden 

facet is very difficult for the SO facets because teachers are rarely observed across the full 

range of these facets, much less across multiple schools.  Further, my exploration of school 

effects was lacking in this thesis because the UTQ study did not have a representative sample 

of teachers from each school, but only included volunteers, leaving me unable to get accurate 

school means for estimating the impact of schools.  

Overall, then, this dissertation has just begun to scratch the surface of understanding 

how aspects of the lesson observed affect teaching quality. As I argued before, understanding 

the impact of CI facets can increase the precision of measurement if the effect of the facet is 

within-teachers and reduce bias when these facets affect between-teacher differences in 

observed teaching quality. Further, as I will discuss below, they can help guide school and 

district professional development efforts. 

One of the most important questions 

stemming from this dissertation is whether observation scores should be adjusted for the 

VI.2.6. Should we adjust for hidden facets? 
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effects of the identified hidden facets. This question, I will argue, has different answers based 

on the purpose of scores from observation instruments. I speak first about adjusting scores for 

evaluation systems and next for adjusting scores in research studies. There are some benefits 

to using the raw mean (i.e. unadjusted scores) of observed teaching quality in evaluation 

systems. Without adjusting scores, scores from observation instruments can be used as a 

criterion-referenced measure (J. J. Cohen & Goldhaber, 2016). For example, FFT defines a 

score of 3 as representing proficient performance. This is beneficial because it holds teachers 

to an external standard rather than making comparative judgments between teachers. 

Comparative judgments of teachers may discourage teachers from supporting each other and 

working together because teachers are judged relative to their peer's performance (J. J. Cohen 

& Goldhaber, 2016). After making adjustments, the criterion referenced nature of observation 

scores is muddied (although technically recoverable). 

In teacher evaluation systems, observation instruments have both formative feedback 

and summative feedback purposes. The formative feedback goal of observation requires 

teachers to get immediate and direct feedback. This feedback will almost certainly be based 

on the unadjusted scores because an observation instrument's scoring rubric directly links 

observed classroom behavior to unadjusted scores, allowing the feedback based on 

unadjusted scores to directly link to specific classroom interactions. Further, adjusting scores 

takes too much time to provide teachers with immediate feedback on performance. Adjusted 

scores could be used for the summative purposes of teacher evaluation systems, however, but  

this will likely result in (at least some) teachers receiving discrepant information from 

immediate formative feedback on unadjusted scores and later summative feedback on 

adjusted scores, potentially causing confusion for teachers and damaging trust and confidence 

in the evaluation system. (cf. Cantrell & Scantlebury, 2011; Kraft & Gilmour, 2016; Bell et 

al., 2015; Jiang, Sporte, & Luppescu, 2015). Indeed, experience trying to help teachers 
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understand VA scores suggests that explaining statistical adjustments to teachers can be a 

challenge (Amrein-Beardsley & Collins, 2012; Goldring et al., 2015). 

In light of the benefits of using criterion-referenced (unadjusted) scores in evaluation 

systems, I would argue that there must be clear and substantive benefits of adjusting 

observation scores to justify the use of adjusted scores in practice. Based on the UTQ data, 

the effects of the SD and CI facets are too small to justify such adjustments. However, this 

does not mean that we should ignore these facets. The effects of these facets can still be 

controlled by randomly sampling of days and by stratifying sampling across time to the 

extent that is possible. This limits the impact of facets on estimates of teacher quality, which 

was found in the UTQ data, where estimates of teacher quality across models had 

surprisingly high correlations.  In fact, any recommendations I can make in this vein are 

conditioned on well-controlled sampling, similar to the UTQ study because any non-

ignorable sampling is likely to lead hidden facets to have much larger effects than estimated 

in this thesis, as I have discussed before.   

Thus, research must verify that the SD and CI facets have a minimal effect on scores 

in specific evaluation systems and on specific observation instruments. Teacher evaluation 

systems should collect as much data as is feasible about the observation process and lessons 

being observed in order to explore the impact, in their data, of possible adjustments, making 

their final decision based on those analyses. Given these analyses replicate the findings in this 

thesis in the evaluation context, the simple averaging of scores (without adjustments) should 

be sufficient to estimate a measure of teacher quality.  

In fact, understanding the effect of hidden facets on observed teaching quality and 

estimates of teacher quality can provide a lens into the health of the evaluation system, even 

if the hidden facets are not being used to formally adjust teacher scores. The CI facets are of 

particular interest here because they can be used to develop professional development 
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opportunities targeted to the skills of the school or district’s teachers. For example, imagine 

that scores on FFT’s culture of learning and engaging students in learning items are low on 

grammar lessons across a district. The district, upon learning this, might want to develop a 

professional development series that focuses on how to provide more cognitively engaging 

and intellectually rigorous grammar instruction, targeting both a content domain that teachers 

struggle to teach and the specific aspects of instruction that are most difficult to achieve 

within that content domain. Thus, beyond the measurement question of adjusting scores 

immediate to this thesis, understanding how CI facets affect observed teaching quality can be 

beneficial for teacher learning and the design of school improvement programming. 

Whether to adjust for the SO facets is a bit more complex. Teacher quality scores 

from models that adjust for the SO facets are different from those that do not make these 

adjustments. The difficulty in knowing whether to adjust for the SO facets comes from the 

need to extrapolate scores across facets. Such extrapolation is unavoidable, unless one 

decides never to make comparisons across teachers teaching in different contexts.  If we use 

unadjusted scores, then comparing teachers who teach in classrooms with different student 

characteristics assumes that teacher sorting leads to these differences in observed teaching 

quality across classrooms with different student characteristics. If we use adjusted scores, on 

the other hand, we assume co-construction is causing the difference in observed teaching 

quality across classrooms. In either case, if the assumption is wrong, then comparisons of 

teachers across levels of the SO facets will be biased. The assumption we make determines 

which teachers' score estimates might be biased. If we assume teacher sorting but are wrong 

about this, we inadvertently "punish" teachers teaching disadvantaged students by not 

properly accounting for how difficult it is to teach these students. If we assume co-

construction is present and are wrong, we inadvertently "punish" teachers teaching 

advantaged students by improperly adjusting away true differences in teacher quality. Given 
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that schools and districts often have trouble filling vacancies at schools serving disadvantaged 

students, we may want to err on the side of adjusting scores, though some have argued that 

this unfairly allows lower ability teachers to teach disadvantaged students (assuming teacher 

sorting is the cause of the difference in observed teaching quality). Until we can distinguish 

between teacher sorting and co-construction effects, then, it is not clear whether adjustments 

should be made or not. In practice, then, it seems that not adjusting for facets is the best 

solution, though concerns about the impact of not adjusting for SO facets might lead some to 

adjust for these facets. In any case, the difference in teacher quality estimates with and 

without adjusting for the SO facets is not very large on average (but it is large for some 

specific teachers). 

In contrast, I would recommend that adjustments always be made in research efforts, 

though estimating teacher quality with and without adjustments will often be the best course. 

I focus my comments here on research that looks at teacher quality over time to evaluate 

intervention efforts or to examine teacher growth. Adjusting for the SD facets should be 

uncontroversial because the timing of when a teacher is observed and who did the 

observation should play no role in estimating teacher quality.  However, the impact of 

adjusting for these facets on estimation is so small in a well-designed system that it may not 

be necessary.  

The question of adjusting for the CI and SO facets is more complex. The concern here 

is distinguishing between changes in observed teaching quality that stem from differences in 

the types of lessons that are observed and from changes in the composition of classrooms 

from true differences in teacher quality. Unadjusted estimates of teacher quality capture only 

changes in observed teaching quality, no matter the source. Adjusted estimates of teacher 

quality capture differences in a teacher's ability to teach within levels of the hidden facets 

used to adjust scores. This distinction is important. For example, imagine that teachers 
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receive an intervention designed to promote student-centered instruction. This intervention 

could change observed teaching quality in a number of ways (which are not mutually 

exclusive). First, teachers could try to be "helpful" by making sure that researchers observe 

them teaching in student-centered ways. This can result in differences in observed teaching 

quality due to differences in the way days of instruction are sampled during baseline and 

post-intervention, which would in fact bias estimates of the impact of the intervention. 

Second, teachers could adopt some example lessons such that they engage in more student-

centered instruction, but do not change how they conduct such instruction (i.e. a shift in 

frequency and not quality). Third, teachers could begin to engage in higher quality student-

centered instruction, where teachers' skill in engaging in such instruction increases (i.e. a shift 

in quality and not frequency). Unadjusted teacher quality estimates will not be able to 

distinguish between these three explanations while adjusted teacher quality estimates test for 

only the third explanation. If unadjusted teacher quality estimates show a gain but adjusted 

teacher quality does not show a gain, the gain must be caused by one of the first two 

explanations (which can only be distinguished by careful sampling).  

I argue for the use of adjusted estimates of teacher quality in research under the 

assumption that the third explanation of differences in observed teaching quality is usually 

the desired target of explanation because it reflects a growth in teacher skill and ability. 

However, comparing the two estimates is usually the most informative because it would 

allow, for example, a researcher to conclude that observed teaching quality increased as a 

result of the intervention to promote student-centered instruction, but this increase was 

caused solely by an increase in the frequency with which teachers were observed using 

classroom discussions rather than an increase in the quality of classroom discussions. This 

sort of conclusion provides a better understanding of how the intervention changed 

instructional practice than would be possible using only unadjusted or only adjusted teacher 
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quality estimates. The same arguments can be used to argue for comparing teacher quality 

estimates with and without adjusting for SO facets to distinguish between actual teacher skill 

development and shifts in the composition of classrooms. Thus, the benefits of adjusting for 

hidden facets when estimating teacher quality is more clear in research (especially when 

adjusted estimates of teacher quality are compared with unadjusted estimates) while the 

pitfalls of accommodating formative and summative feedback do not exist. 

VI.3. Concurrent Validity of Teacher Quality Estimates 

I began this dissertation by discussing the distinction between teacher quality and 

observed teaching quality, arguing that teacher quality is the construct of interest. The 

question naturally arises as to whether one can successfully generalize the observed teaching 

quality to obtain a true measure of teacher quality. I argued that the size of the correlation 

between the estimate of teacher quality from a model and the teacher's VA score is a proxy 

measure for how well I have obtained a true measure of teacher quality.  Using the concurrent 

validity with VA scores, I showed that the estimates of teacher quality from observation 

instruments did have a significant association with VA scores. However, the different models 

(i.e. Base model, SD model, CI model, and SO model) produced different estimates of 

teacher quality, raising the question of whether one model produced estimates that were more 

valid representations of teacher quality than other models.  Validity could differ across model 

estimates because correcting for instrument bias, which I found for the CI facets, or 

correcting for bias caused by between-teacher facet effects, which occurred for the CI and SO 

facets, leads to a better estimate of teacher quality.  For example, imagine co-construction 

explains the effect of the SO facets, estimates of teacher quality from the Base model would 

incorrectly show large differences in teacher quality across schools and this error would lead 

to a reduced correlation of teacher quality estimates from the base model to true teacher 

quality.  I tested for differential validity of teacher quality estimates across models, but was 
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unable to find any, possibly due to low power to detect these effects.  The low power was the 

result of high correlations of teacher scores estimates across models which implies that any 

bias, should it exist, must be small, at least in the UTQ data.  Thus, I was not able to provide 

any evidence regarding which model provided the best estimated of teacher quality. 

The most important result of my concurrent validity analysis was not so much the 

information it provided about correlation of CLASS, FFT, and PLATO scores to VA scores 

but rather what was learned about the problems of correlated measurement error across these 

two ways of measuring teaching quality.  Measuring teacher quality is a very complex 

endeavor and estimates from both classroom observation data and student achievement data 

will have many sources of measurement error. Unfortunately, measurement error involved in 

using these two sources of data to measure teaching quality will often be correlated, biasing 

estimates of concurrent validity. In the UTQ data, for example, I found that students' prior-

achievement (and the teacher's school) was related both to the previous year's VA scores and 

to the teacher’s observation scores. Since the students' prior-achievement may be considered 

a source of error, this implies a shared measurement error. Additionally, using the current 

year VA score will not overcome this challenge because the same students contribute to the 

current year VA score and classroom observation score, which likely leads to some bias 

(Lockwood & McCaffrey, 2012; Lockwood & McCaffrey, 2014).  

Thus, for both the prior and current VA scores in the UTQ data, there is, arguably, 

shared error variance between the VA scores and the estimates of teacher quality based on 

classroom observation data, and this leads to biased estimates of the validity of estimated 

teacher quality. Further, this shared error variance will lead to the curious effect that the 

correlation of VA scores with adjusted observation scores can be lower than the correlation 

with unadjusted observation scores, where the adjustment eliminates a source of shared error 

variance, even when the adjusted scores are a better measure of teacher quality. This occurs 
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because the shared error variance (i.e. 𝑐𝑜𝑣(𝐸𝑎
𝑉𝐴, 𝐸𝑏

𝑂𝑏𝑠)) contributes to the covariance of 

measures (i.e. 𝑐𝑜𝑣(𝑋𝑎
𝑉𝐴, 𝑋𝑏

𝑂𝑏𝑠) = 𝑐𝑜𝑣(𝑇 + 𝐸𝑎
𝑉𝐴, 𝑇 + 𝐸𝑏

𝑂𝑏𝑠) = 𝑣𝑎𝑟(𝑇) + 𝑐𝑜𝑣(𝐸𝑎
𝑉𝐴, 𝐸𝑏

𝑂𝑏𝑠) 

where 𝐸𝑏
𝑂𝑏𝑠 is zero in the adjusted scores because adjustment controls for 𝐸𝑏

𝑂𝑏𝑠). This 

highlights why it is vital to understand any possible sources of correlated errors before 

interpreting a relationship between measures of the same construct. This has not been done 

well in past education research, as studies routinely use prior year VA scores to validate 

observation instruments without controlling for the correlation of each measure with student 

prior achievement (Blazar et al., 2016; Chaplin et al., 2014; Cohen, 2015a; Cohen & 

Grossman, 2011; Kane et al., 2013, 2012; Mihaly & McCaffrey, 2014; Milanowski, 2011; 

Schacter & Thum, 2004; Wayne et al., 2016). 

VI.4. Conclusion 

Observation instruments are tasked with the challenge of generalizing from a small 

number of situated measurements of teaching quality in order to capture the teacher-level, 

stable construct of teacher quality. This usually involves both generalizing scores across 

hidden facets when a teacher is observed across a range of levels of these facets and 

extrapolating teacher scores across measurement facets when teachers are observed in only a 

single level of the facet. This is an exceptionally difficult challenge. Any given day of 

instruction may have an untold number of facets that affect observed teaching quality 

independent of teacher quality. There is also the threat that instruments themselves are biased 

such that teaching quality is not measured accurately. Developing a deeper understanding of 

the hidden measurement facets that contribute to sampling error in estimates of teacher 

quality, instrument bias, and biases in estimates of teacher quality is vital if we are to 

interpret estimates of teacher quality as a true measure of teacher quality (i.e. a teacher trait 

capturing that teachers' general ability to engage in high-quality teaching). 
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Appendices 

Appendix A – Comparison of Model RE with CI 

Table A.1: Variance of the Error Facets with Confidence Interval for the CLASS Models 

 Base Model  SD Model  CI Model  SO Model 

Facet Value Percent  Value Percent  Value Percent  Value Percent 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.076  

(0.054-0.102) 

7%  

(5-9.1) 

 0.066  

(0.046-0.087) 

6.4%  

(4.5-8.3) 

 0.06  

(0.042-0.078) 

5.8%  

(4.1-7.6) 

 0.031  

(0.018-0.045) 

3.1%  

(1.8-4.6) 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.013  

(0-0.035) 

1.2%  

(0-3.2) 

 0.007  

(0-0.027) 

0.7%  

(0-2.6) 

 0.007  

(0-0.027) 

0.7%  

(0-2.6) 

 0.005  

(0-0.024) 

0.5%  

(0-2.4) 

Occasion 

(𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 

0.053  

(0.048-0.058) 

4.9%  

(4.4-5.5) 

 0.052  

(0.047-0.056) 

5%  

(4.4-5.5) 

 0.052  

(0.047-0.057) 

5%  

(4.5-5.6) 

 0.052  

(0.047-0.056) 

5.2%  

(4.6-5.7) 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.04  

(0-0.102) 

3.7%  

(0-8.9) 

 0.021  

(0-0.065) 

2.1%  

(0-6.1) 

 0.022  

(0-0.063) 

2.1%  

(0-6.1) 

 0.022  

(0-0.071) 

2.2%  

(0-7) 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0  

(0-0.036) 

0%  

(0-3.3) 

 0.012  

(0-0.044) 

1.1%  

(0-4.2) 

 0.013  

(0-0.042) 

1.3%  

(0-4.1) 

 0.014  

(0-0.045) 

1.4%  

(0-4.5) 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 

0.141  

(0.101-0.158) 

13%  

(9.3-14.6) 

 0.116  

(0.08-0.139) 

11.2%  

(7.7-13.6) 

 0.114  

(0.078-0.136) 

11.1%  

(7.7-13.4) 

 0.112  

(0.08-0.137) 

11.3%  

(8-13.8) 

Item-by-Rater 

(𝑣𝑎𝑟(𝜐𝑖𝑟)) 

0.225  

(0.168-0.289) 

20.7%  

(16.1-25.5) 

 0.225  

(0.168-0.286) 

21.8%  

(17-26.4) 

 0.225  

(0.167-0.287) 

21.9%  

(17-26.7) 

 0.225  

(0.169-0.288) 

22.6%  

(17.8-27.1) 

Item-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑖(𝑡))) 

0.029  

(0.024-0.034) 

2.7%  

(2.2-3.2) 

 0.029  

(0.024-0.034) 

2.8%  

(2.3-3.4) 

 0.029  

(0.024-0.035) 

2.8%  

(2.3-3.4) 

 0.029  

(0.024-0.035) 

2.9%  

(2.4-3.5) 

Item-by-Day 

(𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 

0.128  

(0.121-0.136) 

11.8%  

(10.8-12.9) 

 0.129  

(0.122-0.137) 

12.5%  

(11.4-13.6) 

 0.129  

(0.122-0.137) 

12.6%  

(11.6-13.7) 

 0.129  

(0.122-0.137) 

12.9%  

(11.8-14.1) 

Item-by-Occasion 

(𝑣𝑎𝑟(𝜐𝑖(𝑜:𝑑:𝑠:𝑡))) 

0  

(0-0.008) 

0%  

(0-0.7) 

 0  

(0-0.009) 

0%  

(0-0.9) 

 0  

(0-0.01) 

0%  

(0-0.9) 

 0  

(0-0.008) 

0%  

(0-0.8) 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 

0.381  

(0.371-0.386) 

35.1%  

(32.3-37.5) 

 0.377  

(0.367-0.382) 

36.5%  

(33.9-38.6) 

 0.377  

(0.367-0.382) 

36.7%  

(34.1-39) 

 0.377  

(0.367-0.381) 

37.8%  

(34.8-40.2) 

Note. Each pair of columns shows a separate model. For each regression model, the left column displays the 

estimated variance and the right column displays the percentage of variance for each error facet.  
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Table A.2: Variance of the Error Facets with Confidence Interval for the FFT Models 

 Base Model  SD Model  CI Model  SO Model 

Facet Value Percent  Value Percent  Value Percent  Value Percent 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.029 

(0.021-0.038) 

10.7% 

(7.9-13.7) 

 0.026 

(0.019-0.034) 

9.7% 

(7.2-12.3) 

 0.023 

(0.017-0.03) 

8.9% 

(6.5-11.4) 

 0.012 

(0.007-0.016) 

4.7% 

(2.9-6.5) 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.008 

(0.001-0.016) 

3% 

(0.4-5.9) 

 0.008 

(0.001-0.015) 

3% 

(0.4-5.5) 

 0.008 

(0.001-0.015) 

2.9% 

(0.3-5.7) 

 0.007 

(0-0.014) 

2.7% 

(0-5.3) 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.011 

(0.003-0.024) 

4.2% 

(1-8.5) 

 0.011 

(0.003-0.023) 

4.1% 

(1-8.3) 

 0.01 

(0.002-0.024) 

3.9% 

(0.8-8.6) 

 0.011 

(0.002-0.023) 

4.3% 

(1-8.7) 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0.005 

(0-0.019) 

1.8% 

(0-6.6) 

 0.005 

(0-0.017) 

1.9% 

(0-6.3) 

 0.005 

(0-0.017) 

2% 

(0-6.6) 

 0 

(0-0.011) 

0% 

(0-4.6) 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 

0.044 

(0.029-0.054) 

16% 

(10.5-19.6) 

 0.038 

(0.026-0.048) 

14.6% 

(9.8-18.4) 

 0.038 

(0.025-0.048) 

14.7% 

(9.6-18.4) 

 0.043 

(0.031-0.05) 

17.5% 

(12.3-20.1) 

Item-by-Rater 

(𝑣𝑎𝑟(𝜐𝑖𝑟)) 

0.011 

(0.008-0.015) 

4% 

(2.9-5.2) 

 0.011 

(0.008-0.015) 

4.2% 

(3-5.5) 

 0.011 

(0.008-0.014) 

4.2% 

(3-5.5) 

 0.011 

(0.008-0.015) 

4.4% 

(3.2-5.9) 

Item-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑖(𝑡))) 

0.008 

(0.006-0.01) 

2.9% 

(2.1-3.7) 

 0.008 

(0.005-0.01) 

2.9% 

(2-3.9) 

 0.008 

(0.005-0.01) 

3% 

(2.1-3.8) 

 0.008 

(0.006-0.01) 

3.1% 

(2.2-4) 

Item-by-Day 

(𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 

0.017 

(0.012-0.021) 

6% 

(4.5-7.7) 

 0.017 

(0.012-0.022) 

6.3% 

(4.7-8.2) 

 0.017 

(0.013-0.022) 

6.4% 

(4.9-8.3) 

 0.017 

(0.013-0.022) 

6.7% 

(5.1-8.8) 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 

0.14 

(0.135-0.145) 

51.4% 

(48.1-54.3) 

 0.14 

(0.135-0.145) 

53.3% 

(49.8-56) 

 0.14 

(0.135-0.145) 

53.9% 

(50.8-56.6) 

 0.14 

(0.135-0.145) 

56.5% 

(53-59.4) 

Note. Each pair of columns shows a separate model. For each regression model, the left column displays the 

estimated variance and the right column displays the percentage of variance for each error facet. 
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Table A.3: Variance of the Error Facets with Confidence Interval for the PLATO Models 

 Base Model  SD Model  CI Model  SO Model 

Facet Value Percent  Value Percent  Value Percent  Value Percent 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.012 

(0.007-0.015) 

2.8% 

(1.8-3.7) 

 0.01 

(0.006-0.013) 

2.4% 

(1.5-3.3) 

 0.007 

(0.004-0.01) 

1.8% 

(1.1-2.5) 

 0.005 

(0.002-0.007) 

1.3% 

(0.6-1.9) 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.003 

(0-0.008) 

0.8% 

(0-1.8) 

 0.004 

(0-0.008) 

0.9% 

(0-2) 

 0 

(0-0.004) 

0% 

(0-1.1) 

 0 

(0-0.004) 

0% 

(0-1) 

Occasion 

(𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 

0.017 

(0.015-0.019) 

4.1% 

(3.6-4.6) 

 0.016 

(0.014-0.018) 

4% 

(3.5-4.5) 

 0.016 

(0.014-0.018) 

4.1% 

(3.6-4.5) 

 0.016 

(0.014-0.018) 

4.1% 

(3.6-4.6) 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.002 

(0-0.009) 

0.5% 

(0-2.2) 

 0 

(0-0.003) 

0% 

(0-0.7) 

 0 

(0-0.003) 

0% 

(0-0.8) 

 0 

(0-0.004) 

0.1% 

(0-1) 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0 

(0-0.005) 

0.1% 

(0-1.2) 

 0 

(0-0.005) 

0% 

(0-1.2) 

 0 

(0-0.005) 

0% 

(0-1.2) 

 0 

(0-0.004) 

0% 

(0-1.1) 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 

0.02 

(0.014-0.024) 

4.8% 

(3.5-5.7) 

 0.019 

(0.013-0.022) 

4.7% 

(3.3-5.4) 

 0.018 

(0.013-0.021) 

4.7% 

(3.2-5.2) 

 0.018 

(0.013-0.02) 

4.7% 

(3.3-5.2) 

Item-by-Rater 

(𝑣𝑎𝑟(𝜐𝑖𝑟)) 

0.022 

(0.014-0.03) 

5.3% 

(3.5-7.1) 

 0.021 

(0.014-0.029) 

5.3% 

(3.6-7.1) 

 0.021 

(0.015-0.029) 

5.4% 

(3.7-7.3) 

 0.021 

(0.014-0.029) 

5.4% 

(3.6-7.2) 

Item-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑖(𝑡))) 

0.012 

(0.009-0.015) 

2.9% 

(2.3-3.6) 

 0.013 

(0.01-0.015) 

3.1% 

(2.5-3.8) 

 0.013 

(0.01-0.015) 

3.2% 

(2.5-3.9) 

 0.013 

(0.01-0.015) 

3.2% 

(2.6-3.9) 

Item-by-Day 

(𝑣𝑎𝑟(𝜐𝑖(𝑑:𝑠:𝑡))) 

0.067 

(0.062-0.07) 

16.2% 

(15.2-17.1) 

 0.069 

(0.065-0.073) 

17.2% 

(16.2-18.2) 

 0.069 

(0.065-0.074) 

17.5% 

(16.5-18.5) 

 0.07 

(0.065-0.074) 

17.7% 

(16.7-18.7) 

Item-by-Occasion 

(𝑣𝑎𝑟(𝜐𝑖(𝑜:𝑑:𝑠:𝑡))) 

0.012 

(0.007-0.017) 

2.9% 

(1.7-4.1) 

 0.005 

(0.001-0.011) 

1.3% 

(0.3-2.6) 

 0.005 

(0.001-0.011) 

1.3% 

(0.3-2.7) 

 0 

(0-0.005) 

0% 

(0-1.4) 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 

0.246 

(0.241-0.251) 

59.6% 

(57.7-61.4) 

 0.245 

(0.24-0.25) 

61.1% 

(59.1-62.8) 

 0.245 

(0.24-0.25) 

62% 

(59.9-63.6) 

 0.25 

(0.244-0.253) 

63.5% 

(61.5-64.9) 

Note. Each pair of columns shows a separate model. For each regression model, the left column displays the 

estimated variance and the right column displays the percentage of variance for each error facet.  
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Appendix B – Fixed Effect Estimates in Scale Score Metric 

Table B.1: Fixed Effects for the System Design (SD) Model across the three Instruments in 

the Scale Score Metric 

Names CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 0.09 (0.06) 0.10 (0.04)** -0.05 (0.03) 

Double Scored (𝛽𝐷𝑏𝑙) -0.03 (0.04) 0.01 (0.02) -0.03 (0.02) 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) -0.02 (0.00)*** -0.01 (0.00)** -0.01 (0.00)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)    

   Tuesday -0.02 (0.04) -0.00 (0.02) -0.02 (0.02) 

   Wednesday 0.09 (0.04)* 0.05 (0.03) 0.02 (0.02) 

   Thursday -0.01 (0.04) 0.03 (0.02) -0.02 (0.02) 

   Friday -0.07 (0.05) -0.03 (0.03) -0.00 (0.02) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) -0.03 (0.01)*** -0.02 (0.00)*** -0.01 (0.00)*** 

Note. Each column shows the results of a separate model for the indicated instrument. Date Scored is scaled so a 

1 point difference is one month; Monday is the reference group for the Days of the Week.  * p<0.05; ** p<0.01; 

*** p<0.001.  
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Table B.2: Fixed Effects for the Curriculum and Instruction (CI) Model across the three 

Instruments in the Scale Score Metric 

Names CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 0.10 (0.06) 0.09 (0.04)** -0.04 (0.03) 

Double Scored (𝛽𝐷𝑏𝑙) -0.03 (0.04) 0.01 (0.02) -0.05 (0.02)** 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) -0.02 (0.00)*** -0.01 (0.00)** -0.01 (0.00)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)    

   Tuesday -0.01 (0.04) 0.01 (0.02) -0.00 (0.02) 

   Wednesday 0.09 (0.04)* 0.05 (0.03)* 0.01 (0.02) 

   Thursday -0.00 (0.04) 0.03 (0.02) -0.02 (0.02) 

   Friday -0.07 (0.05) -0.03 (0.03) -0.01 (0.02) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) -0.03 (0.01)*** -0.02 (0.00)*** -0.01 (0.00)* 

Content Domain    

   Reading (𝛽𝑅𝑒𝑎𝑑) 0.03 (0.05) -0.04 (0.03) 0.05 (0.02)* 

   Literature (𝛽𝐿𝑖𝑡) 0.10 (0.04)** 0.08 (0.02)*** 0.12 (0.02)*** 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 0.12 (0.04)*** 0.04 (0.02) 0.11 (0.02)*** 

   Grammar (𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 0.05 (0.04) -0.04 (0.02)* 0.00 (0.02) 

Interaction Structure    

   Discussion (𝛽𝐷𝑖𝑠𝑐) 0.08 (0.03)** 0.00 (0.02) 0.07 (0.01)*** 

   Independent (𝛽𝐼𝑛𝑑) 0.01 (0.05) 0.04 (0.03) 0.05 (0.02)* 

   Recitation (𝛽𝑅𝑒𝑐) -0.05 (0.03) -0.00 (0.02) 0.02 (0.02) 

Note. Each column shows the results of a separate model for the indicated instrument. Date Scored is scaled so a 

1 point difference is one month; Monday is the reference group for the Days of the Week.  * p<0.05; ** p<0.01; 

*** p<0.001. 
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Table B.3: Fixed Effects for the School Organization (SO) Model across the three 

Instruments in the Scale Score Metric 

Names CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 0.13 (0.05)* 0.11 (0.03)** -0.03 (0.03) 

Double Scored (𝛽𝐷𝑏𝑙) -0.04 (0.04) 0.01 (0.02) -0.05 (0.02)** 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) -0.01 (0.00)*** -0.00 (0.00)* -0.01 (0.00)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)    

   Tuesday -0.02 (0.04) -0.00 (0.02) -0.01 (0.02) 

   Wednesday 0.07 (0.04) 0.04 (0.02) 0.00 (0.02) 

   Thursday -0.01 (0.04) 0.02 (0.02) -0.03 (0.02) 

   Friday -0.07 (0.05) -0.04 (0.03) -0.01 (0.02) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) -0.03 (0.01)*** -0.02 (0.00)*** -0.01 (0.00)** 

Content Domain    

   Reading (𝛽𝑅𝑒𝑎𝑑) 0.05 (0.05) -0.03 (0.03) 0.06 (0.02)* 

   Literature (𝛽𝐿𝑖𝑡) 0.07 (0.04) 0.05 (0.02)* 0.10 (0.02)*** 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 0.12 (0.03)*** 0.03 (0.02) 0.11 (0.02)*** 

   Grammar (𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 0.05 (0.04) -0.04 (0.02)* 0.00 (0.02) 

Interaction Structure    

   Discussion (𝛽𝐷𝑖𝑠𝑐) 0.06 (0.03)* -0.01 (0.02) 0.07 (0.01)*** 

   Independent (𝛽𝐼𝑛𝑑) 0.01 (0.04) 0.03 (0.03) 0.05 (0.02)* 

   Recitation (𝛽𝑅𝑒𝑐) -0.04 (0.03) -0.00 (0.02) 0.02 (0.02) 

Grade    

   7th Grade -0.14 (0.04)** -0.06 (0.03)* -0.05 (0.02)* 

   8th Grade 0.02 (0.04) 0.01 (0.03) 0.01 (0.02) 

Prior Ach 0.08 (0.02)** 0.08 (0.01)*** 0.02 (0.01) 

St. Info Missing -0.13 (0.07) -0.07 (0.04) -0.03 (0.03) 

Demo. Composite -0.09 (0.02)*** -0.03 (0.01)* -0.03 (0.01)** 

Note. Each column shows the results of a separate model for the indicated instrument. Date Scored is scaled so a 

1 point difference is one month. Monday is the reference group for the Days of the Week. Sixth grade is the 

references group for grade. The Demographic Composite represents classrooms that have higher percentages of 

students who are black, Hispanic, ELL, and FRL. St. Info Missing is a dummy variable indicating if Prior 

Achievement and Demographic Composite are missing.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table B.4: Item-by-Occasion Fixed Effects for the System Design (SD) Model on the CLASS 

Instrument in the Scale Score Metric 

Item (𝛽𝑖) Main Occasion 2 Occasion 3 Occasion 4+ 

Positive Climate 4.65 (0.15)*** 0.04 (0.03) 0.01 (0.03) 0.00 (0.04) 

Negative Climate 6.79 (0.15)*** 0.02 (0.03) 0.04 (0.03) 0.06 (0.04) 

Adolescent Perspectives 3.05 (0.15)*** 0.24 (0.03)*** 0.23 (0.03)*** 0.28 (0.04)*** 

Teacher Sensitivity 4.08 (0.15)*** 0.10 (0.03)*** 0.11 (0.03)*** -0.04 (0.04) 

Behavior Management 6.09 (0.15)*** -0.04 (0.03) -0.05 (0.03) -0.13 (0.04)** 

Productivity 5.79 (0.15)*** 0.05 (0.03) 0.07 (0.03)* 0.02 (0.04) 

Instructional Learning Formats 3.83 (0.15)*** 0.06 (0.03)* -0.08 (0.03)** -0.27 (0.04)*** 

Content Understanding 3.38 (0.15)*** 0.07 (0.03)* -0.10 (0.03)*** -0.29 (0.04)*** 

Analysis and Problem Solving 2.40 (0.15)*** 0.18 (0.03)*** 0.17 (0.03)*** 0.13 (0.04)** 

Quality of Feedback 3.35 (0.15)*** 0.18 (0.03)*** 0.16 (0.03)*** 0.10 (0.04)* 

Student Engagement 5.10 (0.15)*** 0.04 (0.03) 0.02 (0.03) 0.03 (0.04) 

Note. Column 'Main' shows the Item mean on occasion 1; Column '2' shows the deviation of the item on 

occasion 2; Column '3' shows the deviation of the item on occasion 3; Column '4+' shows the deviation of the 

item on occasion 4 or higher.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table B.5: Item-by-Occasion Fixed Effects for the System Design (SD) Model on the PLATO 

Instrument in the Scale Score Metric 

Item (𝛽𝑖) Main Occasion 2 Occasion 3 Occasion 4+ 

Purpose 2.93 (0.07)*** 0.01 (0.02) -0.00 (0.02) -0.03 (0.03) 

Intellectual Challenge 2.09 (0.07)*** 0.12 (0.02)*** 0.14 (0.02)*** 0.12 (0.03)*** 

Representation of Content 2.45 (0.07)*** 0.08 (0.02)*** 0.02 (0.02) -0.10 (0.03)** 

Connections to Prior Knowledge 1.73 (0.07)*** -0.16 (0.02)*** -0.32 (0.02)*** -0.47 (0.03)*** 

Connections to Personal Experience 1.36 (0.07)*** 0.04 (0.02)* -0.01 (0.02) -0.05 (0.03) 

Explicit Strategy Instruction 1.24 (0.07)*** 0.02 (0.02) -0.03 (0.02) -0.05 (0.03) 

Modeling 1.25 (0.07)*** 0.10 (0.02)*** 0.06 (0.02)* 0.01 (0.03) 

Guided Practice 2.35 (0.07)*** 0.13 (0.02)*** 0.25 (0.02)*** 0.24 (0.03)*** 

Classroom Discourse 2.05 (0.07)*** 0.14 (0.02)*** 0.11 (0.02)*** 0.08 (0.03)* 

Text Based Instruction 1.78 (0.07)*** 0.29 (0.02)*** 0.33 (0.02)*** 0.33 (0.03)*** 

Acc. for Language Learning 1.44 (0.07)*** 0.02 (0.02) -0.05 (0.02)* -0.11 (0.03)*** 

Behavior Management 3.98 (0.07)*** -0.03 (0.02) -0.03 (0.02) -0.02 (0.03) 

Time Management 3.75 (0.07)*** 0.09 (0.02)*** 0.12 (0.02)*** 0.14 (0.03)*** 

Note. Column 'Main' shows the Item mean on occasion 1; Column '2' shows the deviation of the item on 

occasion 2; Column '3' shows the deviation of the item on occasion 3; Column '4+' shows the deviation of the 

item on occasion 4 or higher. Acc. for Language Learn is Accommodations for Language Learning.  * p<0.05; 

** p<0.01; *** p<0.001. 
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Appendix C – Numeric Results of Score Reliabilities across Models 

Table C.1: Estimated Reliability for Each Model for the Listed Number Days Scores and 

Raters Scoring each Day 

Instrument Raters Days Base SD CI SO 

CLASS 1 1 0.23 (0.17-0.30) 0.24 (0.18-0.30) 0.22 (0.17-0.29) 0.14 (0.09-0.19) 

CLASS 1 2 0.38 (0.29-0.46) 0.38 (0.30-0.47) 0.36 (0.29-0.44) 0.24 (0.16-0.32) 

CLASS 1 3 0.48 (0.38-0.56) 0.48 (0.39-0.57) 0.46 (0.37-0.55) 0.32 (0.22-0.41) 

CLASS 1 4 0.55 (0.45-0.63) 0.55 (0.47-0.64) 0.53 (0.44-0.62) 0.39 (0.28-0.48) 

CLASS 1 6 0.64 (0.55-0.72) 0.65 (0.57-0.72) 0.63 (0.54-0.71) 0.48 (0.36-0.58) 

CLASS 1 8 0.71 (0.62-0.77) 0.71 (0.64-0.78) 0.69 (0.61-0.76) 0.55 (0.43-0.65) 

CLASS 1.2 1 0.26 (0.19-0.33) 0.27 (0.20-0.33) 0.25 (0.19-0.32) 0.16 (0.10-0.21) 

CLASS 1.2 2 0.41 (0.32-0.50) 0.42 (0.34-0.50) 0.40 (0.32-0.48) 0.27 (0.18-0.35) 

CLASS 1.2 3 0.51 (0.42-0.60) 0.52 (0.43-0.60) 0.50 (0.41-0.58) 0.35 (0.25-0.45) 

CLASS 1.2 4 0.58 (0.49-0.66) 0.59 (0.50-0.67) 0.57 (0.48-0.65) 0.42 (0.30-0.52) 

CLASS 1.2 6 0.68 (0.59-0.75) 0.68 (0.60-0.75) 0.66 (0.58-0.74) 0.52 (0.40-0.62) 

CLASS 1.2 8 0.74 (0.66-0.80) 0.74 (0.67-0.80) 0.72 (0.65-0.79) 0.59 (0.47-0.68) 

CLASS 2 1 0.34 (0.26-0.42) 0.35 (0.27-0.42) 0.33 (0.25-0.40) 0.21 (0.14-0.29) 

CLASS 2 2 0.51 (0.41-0.59) 0.51 (0.42-0.60) 0.49 (0.40-0.57) 0.35 (0.24-0.45) 

CLASS 2 3 0.61 (0.51-0.69) 0.61 (0.52-0.69) 0.59 (0.50-0.67) 0.44 (0.33-0.55) 

CLASS 2 4 0.67 (0.58-0.74) 0.68 (0.59-0.75) 0.66 (0.57-0.73) 0.52 (0.39-0.62) 

CLASS 2 6 0.76 (0.68-0.81) 0.76 (0.69-0.82) 0.74 (0.67-0.80) 0.61 (0.49-0.71) 

CLASS 2 8 0.80 (0.74-0.85) 0.81 (0.74-0.85) 0.79 (0.73-0.84) 0.68 (0.56-0.76) 

FFT 1 1 0.26 (0.20-0.33) 0.25 (0.19-0.31) 0.23 (0.18-0.30) 0.14 (0.09-0.19) 

FFT 1 2 0.42 (0.33-0.49) 0.40 (0.32-0.48) 0.38 (0.30-0.46) 0.24 (0.16-0.32) 

FFT 1 3 0.52 (0.43-0.60) 0.50 (0.42-0.58) 0.48 (0.39-0.56) 0.32 (0.23-0.41) 

FFT 1 4 0.59 (0.50-0.66) 0.57 (0.49-0.65) 0.55 (0.46-0.63) 0.39 (0.28-0.48) 

FFT 1 6 0.68 (0.60-0.75) 0.67 (0.59-0.73) 0.64 (0.56-0.72) 0.49 (0.37-0.58) 

FFT 1 8 0.74 (0.66-0.80) 0.73 (0.66-0.79) 0.71 (0.63-0.77) 0.56 (0.44-0.65) 

FFT 1.2 1 0.30 (0.22-0.37) 0.28 (0.22-0.35) 0.26 (0.20-0.33) 0.16 (0.10-0.22) 

FFT 1.2 2 0.45 (0.37-0.54) 0.44 (0.36-0.52) 0.42 (0.33-0.50) 0.27 (0.19-0.36) 

FFT 1.2 3 0.55 (0.46-0.63) 0.54 (0.46-0.62) 0.52 (0.43-0.60) 0.36 (0.26-0.46) 

FFT 1.2 4 0.62 (0.54-0.70) 0.61 (0.53-0.68) 0.59 (0.50-0.66) 0.43 (0.32-0.53) 

FFT 1.2 6 0.71 (0.63-0.78) 0.70 (0.63-0.76) 0.68 (0.60-0.75) 0.53 (0.41-0.63) 

FFT 1.2 8 0.77 (0.70-0.82) 0.76 (0.69-0.81) 0.74 (0.67-0.80) 0.60 (0.48-0.69) 

FFT 2 1 0.39 (0.30-0.47) 0.38 (0.30-0.45) 0.35 (0.28-0.43) 0.23 (0.15-0.30) 

FFT 2 2 0.56 (0.47-0.64) 0.54 (0.46-0.62) 0.52 (0.43-0.60) 0.37 (0.26-0.46) 

FFT 2 3 0.65 (0.57-0.73) 0.64 (0.56-0.71) 0.62 (0.53-0.70) 0.46 (0.34-0.57) 

FFT 2 4 0.72 (0.64-0.78) 0.70 (0.63-0.77) 0.68 (0.60-0.75) 0.53 (0.41-0.63) 

FFT 2 6 0.79 (0.72-0.84) 0.78 (0.72-0.83) 0.76 (0.70-0.82) 0.63 (0.51-0.72) 

FFT 2 8 0.83 (0.78-0.88) 0.83 (0.77-0.87) 0.81 (0.75-0.86) 0.69 (0.58-0.78) 

PLATO 1 1 0.22 (0.15-0.28) 0.20 (0.14-0.26) 0.17 (0.11-0.23) 0.13 (0.08-0.18) 

PLATO 1 2 0.35 (0.26-0.44) 0.33 (0.25-0.41) 0.29 (0.21-0.37) 0.23 (0.14-0.31) 

PLATO 1 3 0.45 (0.35-0.54) 0.43 (0.33-0.51) 0.38 (0.28-0.47) 0.31 (0.20-0.40) 

PLATO 1 4 0.52 (0.42-0.61) 0.50 (0.40-0.59) 0.45 (0.34-0.54) 0.37 (0.25-0.47) 

PLATO 1 6 0.62 (0.52-0.70) 0.60 (0.50-0.68) 0.55 (0.44-0.64) 0.47 (0.34-0.58) 
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PLATO 1 8 0.68 (0.59-0.76) 0.66 (0.57-0.74) 0.61 (0.51-0.70) 0.54 (0.40-0.64) 

PLATO 1.2 1 0.24 (0.17-0.30) 0.22 (0.16-0.28) 0.19 (0.13-0.25) 0.14 (0.09-0.20) 

PLATO 1.2 2 0.38 (0.29-0.47) 0.36 (0.27-0.44) 0.31 (0.23-0.40) 0.25 (0.16-0.34) 

PLATO 1.2 3 0.48 (0.38-0.57) 0.46 (0.36-0.54) 0.41 (0.30-0.50) 0.33 (0.22-0.43) 

PLATO 1.2 4 0.55 (0.45-0.64) 0.53 (0.43-0.61) 0.48 (0.37-0.57) 0.40 (0.28-0.50) 

PLATO 1.2 6 0.65 (0.55-0.72) 0.63 (0.53-0.70) 0.58 (0.47-0.67) 0.50 (0.36-0.60) 

PLATO 1.2 8 0.71 (0.62-0.78) 0.69 (0.60-0.76) 0.64 (0.54-0.73) 0.57 (0.43-0.67) 

PLATO 2 1 0.29 (0.22-0.37) 0.27 (0.20-0.35) 0.24 (0.16-0.31) 0.19 (0.11-0.26) 

PLATO 2 2 0.45 (0.35-0.54) 0.43 (0.33-0.52) 0.38 (0.28-0.48) 0.31 (0.21-0.41) 

PLATO 2 3 0.55 (0.45-0.64) 0.53 (0.42-0.62) 0.48 (0.37-0.58) 0.40 (0.28-0.51) 

PLATO 2 4 0.62 (0.52-0.70) 0.60 (0.49-0.68) 0.55 (0.44-0.64) 0.47 (0.34-0.58) 

PLATO 2 6 0.71 (0.62-0.78) 0.69 (0.59-0.76) 0.65 (0.54-0.73) 0.57 (0.44-0.67) 

PLATO 2 8 0.77 (0.69-0.83) 0.75 (0.66-0.81) 0.71 (0.61-0.78) 0.64 (0.51-0.73) 

     

  



 

229 

Appendix D – Item Specific Variance Components 

Table D.1: Item-Specific Variance Components from Base GTheory Model for Instrument 

CLASS 

Facet PC NC RSP TS BM PD ILF CU APS QF ENG 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.159 

13.1% 

0.024 

8.4% 

0.184 

12% 

0.165 

11.6% 

0.052 

9.3% 

0.042 

5.8% 

0.154 

11.8% 

0.107 

8% 

0.055 

5% 

0.109 

7.2% 

0.08 

9% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.056 

4.7% 

0.012 

4.3% 

0.108 

7% 

0.064 

4.5% 

0.068 

12.2% 

0.055 

7.5% 

0.017 

1.3% 

0.114 

8.6% 

0.054 

4.9% 

0.068 

4.4% 

0.038 

4.3% 

Occasion (𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 
0.014 

1.2% 

0.019 

6.6% 

0.118 

7.7% 

0.038 

2.7% 

0.017 

3% 

0.064 

8.8% 

0.096 

7.4% 

0.153 

11.4% 

0.046 

4.1% 

0.147 

9.6% 

0.055 

6.1% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.395 

32.7% 

0.058 

20% 

0.319 

20.7% 

0.432 

30.4% 

0.08 

14.3% 

0.143 

19.5% 

0.261 

20.1% 

0.234 

17.5% 

0.35 

31.4% 

0.385 

25.2% 

0.24 

26.8% 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0.067 

5.6% 

0.017 

5.9% 

0.007 

0.4% 

0.014 

1% 

0  

0% 

0  

0% 

0  

0% 

0.006 

0.4% 

0  

0% 

0  

0% 

0.004 

0.5% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.266 

22% 

0.074 

25.5% 

0.389 

25.2% 

0.307 

21.6% 

0.143 

25.6% 

0.195 

26.7% 

0.404 

31% 

0.317 

23.7% 

0.293 

26.3% 

0.388 

25.4% 

0.245 

27.4% 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.25 

20.7% 

0.085 

29.4% 

0.416 

27% 

0.403 

28.3% 

0.198 

35.6% 

0.232 

31.7% 

0.369 

28.4% 

0.405 

30.3% 

0.316 

28.3% 

0.431 

28.2% 

0.233 

26% 

Note. Separate regressions were run for each item. For each regression model, the estimated variance is shown 

above the percentage of variance for each error facet.  PC=Positive Climate; NC=Negative Climate; 

RSP=Regard for Adolescent Behavior; TS=Teacher Sensitivity; BM=Behavior Management; PD=Productivity; 

ILF=Instructional Learning Formats; CU=Content Understanding; APS=Analysis and Problem Solving; 

QF=Quality of Feedback; ENG=Student Engagement.  Negative Climate has been reverse coded so higher 

scores capture higher quality. 

  



 

230 

Table D.2: Item-Specific Variance Components from Base GTheory Model for Instrument 

FFT 

Facet RR CL MCP MSB OPS CS KC QDT ESL UAI FR 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.032 

17.6% 

0.064 

19.2% 

0.05 

15.8% 

0.045 

20.8% 

0.029 

11.5% 

0.034 

12.5% 

0.038 

12.3% 

0.038 

14.8% 

0.044 

12.7% 

0.011 

4.2% 

0.019 

7.4% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.013 

6.9% 

0.019 

5.7% 

0.023 

7.4% 

0.022 

10.2% 

0.028 

11.2% 

0.024 

8.9% 

0.011 

3.6% 

0.017 

6.8% 

0.033 

9.5% 

0.02 

7.7% 

0.006 

2.3% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.005 

2.6% 

0.027 

8% 

0.022 

6.9% 

0.01 

4.4% 

0.006 

2.5% 

0.021 

7.7% 

0.036 

11.6% 

0.014 

5.4% 

0.053 

15.3% 

0.035 

13.4% 

0.022 

8.4% 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0 

0% 

0.008 

2.3% 

0.009 

2.8% 

0 

0% 

0.018 

7.3% 

0.002 

0.7% 

0.018 

5.9% 

0.002 

0.6% 

0.025 

7.2% 

0.007 

2.7% 

0.014 

5.3% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.069 

37.9% 

0.093 

27.8% 

0.041 

13% 

0.053 

24.7% 

0.074 

29.5% 

0.072 

26.5% 

0.109 

35% 

0.05 

19.6% 

0.067 

19.1% 

0.077 

29.1% 

0.093 

36.2% 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.064 

35.1% 

0.123 

37% 

0.172 

54.1% 

0.085 

39.8% 

0.096 

38% 

0.118 

43.6% 

0.099 

31.6% 

0.134 

52.7% 

0.126 

36.1% 

0.113 

42.9% 

0.104 

40.4% 

Note. Separate regressions were run for each item. For each regression model, the estimated variance is shown 

above the percentage of variance for each error facet.  RR=Respect and Rapport; CL=Culture for Learning; 

MCP=Managing Classroom Procedures; MSB=Managing Student Behavior; OPS=Organizing Physical Space; 

CS=Communicating with Students; KC=Knowledge of Content and Pedagogy; QDT=Questioning Discussion 

Techniques; ESL=Engaging Students in Learning; UAI=Using Assessment in Instruction; FR=Flexibility and 

Responsiveness. 
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Table D.3: Item-Specific Variance Components from Base GTheory Model for Instrument 

PLATO 

Facet PURP INTC RC CPK CPE ESI MOD GP CD TBI ALL BMN TMN 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.009 

3.9% 

0.021 

5.6% 

0.038 

8.4% 

0.022 

4.2% 

0.015 

4% 

0.006 

3.1% 

0.003 

0.9% 

0.018 

2.4% 

0.044 

11.2% 

0.086 

8% 

0.01 

3.6% 

0.008 

7.2% 

0.014 

5.4% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.018 

7.4% 

0.028 

7.8% 

0.034 

7.4% 

0 

0% 

0.054 

14.1% 

0.008 

4% 

0.013 

3.9% 

0.046 

6% 

0.035 

8.8% 

0.198 

18.4% 

0.006 

2.1% 

0.016 

13.9% 

0.004 

1.8% 

Occasion 

(𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 

0.027 

11.3% 

0.031 

8.6% 

0.082 

18.1% 

0.089 

17.1% 

0.074 

19.4% 

0.018 

9.6% 

0.064 

19.5% 

0.108 

14.3% 

0.044 

11.2% 

0.154 

14.3% 

0.017 

5.7% 

0.01 

8.5% 

0.034 

13.6% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.018 

7.3% 

0.048 

13.1% 

0.012 

2.7% 

0.024 

4.6% 

0.014 

3.7% 

0.018 

9.5% 

0.018 

5.6% 

0.073 

9.7% 

0.03 

7.7% 

0.021 

2% 

0.035 

11.9% 

0.001 

0.4% 

0.006 

2.4% 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0.008 

3.5% 

0.014 

3.9% 

0.007 

1.4% 

0.003 

0.5% 

0.022 

5.8% 

0 

0% 

0.018 

5.6% 

0 

0% 

0.002 

0.6% 

0.031 

2.9% 

0 

0% 

0 

0% 

0 

0% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.04 

16.8% 

0.053 

14.4% 

0.058 

12.7% 

0.065 

12.5% 

0.004 

1% 

0.045 

23.4% 

0.04 

12.2% 

0.141 

18.6% 

0.077 

19.7% 

0.191 

17.8% 

0.086 

29.6% 

0.019 

16.4% 

0.055 

22% 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.119 

49.9% 

0.171 

46.7% 

0.224 

49.3% 

0.319 

61.1% 

0.199 

51.9% 

0.097 

50.4% 

0.17 

52.3% 

0.371 

49% 

0.161 

40.9% 

0.392 

36.5% 

0.137 

47.2% 

0.063 

53.6% 

0.137 

54.9% 

Note. Separate regressions were run for each item. For each regression model, the estimated variance is shown 

above the percentage of variance for each error facet.  PURP=Purpose; INTC=Intellectual Climate; 

RC=Representation of Content; CPK=Connections to Prior Knowledge; CPE=Connections to Personal and /or 

Cultural Experience; ESI=Explicit Strategy Instruction; MOD=Modeling; GP=Guided Practice; CD=Classroom 

Discussion; TBI=Text-Based Instruction; ALL=Accommodations for Language Learners; BMN=Behavior 

Management; TMN=Time Management. 
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Table D.4: Item-Specific Variance Components from SO GTheory Model for Instrument 

CLASS 

Facet PC NC RSP TS BM PD ILF CU APS QF ENG 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.074 

6.8% 

0.02  

7% 

0.055 

4.3% 

0.072 

5.6% 

0.044 

8.3% 

0.023 

3.2% 

0.064 

5.9% 

0.052 

4.5% 

0.023 

2.5% 

0.046 

3.4% 

0.037 

4.5% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.053 

4.8% 

0.007 

2.5% 

0.113 

8.8% 

0.055 

4.3% 

0.057 

10.7% 

0.049 

6.9% 

0 

0% 

0.092 

8% 

0.041 

4.4% 

0.036 

2.6% 

0.037 

4.5% 

Occasion (𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 
0.015 

1.3% 

0.019 

6.9% 

0.102 

7.9% 

0.035 

2.8% 

0.015 

2.8% 

0.065 

9.1% 

0.087 

8% 

0.136 

11.8% 

0.037 

4% 

0.14 

10.2% 

0.055 

6.7% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.398 

36.3% 

0.058 

20.7% 

0.269 

20.9% 

0.42 

33% 

0.081 

15.2% 

0.148 

20.8% 

0.203 

18.6% 

0.178 

15.4% 

0.264 

28.2% 

0.349 

25.5% 

0.223 

27.2% 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0.088 

8% 

0.021 

7.5% 

0.057 

4.4% 

0.059 

4.6% 

0 

0% 

0 

0% 

0 

0% 

0.04 

3.5% 

0 

0% 

0.013 

1% 

0.009 

1.1% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.219 

20% 

0.071 

25.3% 

0.281 

21.8% 

0.229 

18% 

0.139 

26.2% 

0.194 

27.4% 

0.367 

33.7% 

0.252 

21.8% 

0.257 

27.4% 

0.351 

25.7% 

0.227 

27.6% 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.249 

22.7% 

0.084 

30% 

0.41 

31.9% 

0.402 

31.6% 

0.196 

36.8% 

0.231 

32.6% 

0.369 

33.9% 

0.406 

35.1% 

0.314 

33.6% 

0.431 

31.5% 

0.233 

28.3% 

Note. Separate regressions were run for each item. For each regression model, the estimated variance is shown 

above the percentage of variance for each error facet.  PC=Positive Climate; NC=Negative Climate; 

RSP=Regard for Adolescent Behavior; TS=Teacher Sensitivity; BM=Behavior Management; PD=Productivity; 

ILF=Instructional Learning Formats; CU=Content Understanding; APS=Analysis and Problem Solving; 

QF=Quality of Feedback; ENG=Student Engagement.    Negative Climate has been reverse coded so higher 

scores capture higher quality. 
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Table D.5: Item-Specific Variance Components from SO GTheory Model for Instrument FFT 

Facet RR CL MCP MSB OPS CS KC QDT ESL UAI FR 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.025 

14.8% 

0.026 

9.5% 

0.032 

10.8% 

0.036 

17.9% 

0.01 

4.7% 

0.014 

5.5% 

0.008 

3.2% 

0.017 

7.5% 

0.015 

4.9% 

0.003 

1.2% 

0.003 

1.3% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.011 

6.3% 

0.016 

5.8% 

0.025 

8.3% 

0.02 

9.7% 

0.029 

13.2% 

0.026 

10.3% 

0.014 

5.3% 

0.015 

6.8% 

0.027 

8.8% 

0.017 

6.8% 

0.008 

3.5% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.005 

2.9% 

0.019 

7.1% 

0.022 

7.4% 

0.009 

4.6% 

0.004 

1.9% 

0.022 

8.8% 

0.029 

11.6% 

0.011 

5.1% 

0.048 

15.8% 

0.036 

14.4% 

0.022 

9.6% 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0 

0% 

0.014 

5.1% 

0.015 

5% 

0 

0% 

0.019 

8.4% 

0.001 

0.4% 

0.016 

6.4% 

0 

0% 

0.025 

8.1% 
0 0.2% 

0.015 

6.8% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.066 

38.3% 

0.075 

27.7% 

0.033 

11% 

0.056 

27.3% 

0.061 

27.8% 

0.077 

30.9% 

0.097 

38.1% 

0.047 

21.1% 

0.069 

22.7% 

0.081 

32.6% 

0.072 

32.3% 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.065 

37.7% 

0.122 

44.8% 

0.172 

57.5% 

0.083 

40.6% 

0.097 

44.1% 

0.109 

44.1% 

0.09 

35.4% 

0.133 

59.6% 

0.121 

39.7% 

0.112 

44.8% 

0.104 

46.5% 

Note. Separate regressions were run for each item. For each regression model, the estimated variance is shown 

above the percentage of variance for each error facet.  RR=Respect and Rapport; CL=Culture for Learning; 

MCP=Managing Classroom Procedures; MSB=Managing Student Behavior; OPS=Organizing Physical Space; 

CS=Communicating with Students; KC=Knowledge of Content and Pedagogy; QDT=Questioning Discussion 

Techniques; ESL=Engaging Students in Learning; UAI=Using Assessment in Instruction; FR=Flexibility and 

Responsiveness. 
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Table D.6: Item-Specific Variance Components from SO GTheory Model for Instrument 

PLATO 

Facet PURP INTC RC CPK CPE ESI MOD GP CD TBI ALL BMN TMN 

Teacher (𝑣𝑎𝑟(𝜐𝑡)) 
0.004 

1.9% 

0.006 

1.9% 

0.022 

5.1% 

0.016 

3.4% 

0.007 

1.8% 

0.006 

3.3% 

0.002 

0.6% 

0.015 

2% 

0.012 

3.7% 

0.046 

5.3% 

0.003 

1.2% 

0.008 

6.5% 

0.01 

4.1% 

Day (𝑣𝑎𝑟(𝜐𝑑:𝑠:𝑡)) 
0.014 

6.2% 

0.024 

7.1% 

0.028 

6.7% 

0.002 

0.4% 

0.051 

13.9% 

0.011 

5.9% 

0.014 

4.7% 

0.037 

5% 

0.028 

8.2% 

0.069 

7.8% 

0.008 

3.2% 

0.015 

12.9% 

0.006 

2.6% 

Occasion (𝑣𝑎𝑟(𝜐𝑜:𝑑:𝑠:𝑡)) 
0.027 

11.6% 

0.025 

7.3% 

0.079 

18.6% 

0.067 

13.9% 

0.074 

20.1% 

0.018 

9.9% 

0.061 

20.1% 

0.093 

12.5% 

0.038 

11.3% 

0.117 

13.3% 

0.014 

5.5% 

0.01 

8.4% 

0.03 

12.4% 

Rater (𝑣𝑎𝑟(𝜐𝑟)) 
0.017 

7.4% 

0.046 

13.7% 

0.008 

2% 

0.015 

3% 

0.012 

3.4% 

0.008 

4.3% 

0.007 

2.3% 

0.09 

12.1% 

0.028 

8.5% 

0.023 

2.6% 

0.018 

7.1% 

0  

0.4% 

0.008 

3.2% 

Rater-by-Teacher 

(𝑣𝑎𝑟(𝜐𝑟𝑡)) 

0.009 

3.9% 

0.02 

5.9% 

0.009 

2% 

0.001 

0.2% 

0.02 

5.5% 

0 

0% 

0.024 

7.8% 

0 

0% 

0.007 

2% 

0.005 

0.6% 

0 

0% 

0 

0% 

0 

0% 

Rater-by-Day 

(𝑣𝑎𝑟(𝜐𝑟(𝑑:𝑠:𝑡))) 
0.038 

16.6% 

0.043 

12.7% 

0.054 

12.8% 

0.071 

14.7% 

0.005 

1.2% 

0.038 

21.3% 

0.025 

8.2% 

0.135 

18.1% 

0.059 

17.8% 

0.223 

25.3% 

0.073 

28.6% 

0.02 

17% 

0.049 

20.3% 

Residual 

(𝑣𝑎𝑟(𝜖𝑖𝑟(𝑜:𝑑:𝑠:𝑡))) 
0.12 

52.4% 

0.173 

51.3% 

0.224 

52.9% 

0.311 

64.4% 

0.199 

54.1% 

0.097 

55.2% 

0.17 

56.3% 

0.373 

50.3% 

0.162 

48.5% 

0.398 

45.2% 

0.138 

54.4% 

0.063 

54.8% 

0.138 

57.3% 

Note. Separate regressions were run for each item. For each regression model, the estimated variance is shown 

above the percentage of variance for each error facet.  PURP=Purpose; INTC=Intellectual Climate; 

RC=Representation of Content; CPK=Connections to Prior Knowledge; CPE=Connections to Personal and /or 

Cultural Experience; ESI=Explicit Strategy Instruction; MOD=Modeling; GP=Guided Practice; CD=Classroom 

Discussion; TBI=Text-Based Instruction; ALL=Accommodations for Language Learners; BMN=Behavior 

Management; TMN=Time Management. 
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Table D.7: Item-Specific Fixed Effects from SD GTheory Model for Instrument CLASS in 

Scale Score Metric 

Facet PC NC RSP TS BM PD ILF CU APS QF ENG 

Intercept 
4.64*** 

(0.20) 

6.80*** 

(0.08) 

2.96*** 

(0.17) 

4.02*** 

(0.20) 

6.16*** 

(0.10) 

5.85*** 

(0.13) 

3.76*** 

(0.15) 

3.36*** 

(0.15) 

2.46*** 

(0.16) 

3.35*** 

(0.19) 

5.05*** 

(0.15) 

Scored Live 

(𝛽𝐿𝑖𝑣𝑒) 

0.22* 

(0.09) 

0.06 

(0.05) 

0.06 

(0.10) 

-0.14 

(0.10) 

-0.03 

(0.07) 

0.14 

(0.08) 

0.08 

(0.10) 

0.16 

(0.10) 

0.32*** 

(0.09) 

-0.15 

(0.10) 

0.32*** 

(0.08) 

Double Scored 

(𝛽𝐷𝑏𝑙) 

-0.13* 

(0.06) 

-0.01 

(0.03) 

-0.02 

(0.07) 

-0.08 

(0.06) 

0.02 

(0.04) 

0.01 

(0.05) 

-0.01 

(0.06) 

-0.05 

(0.06) 

-0.04 

(0.06) 

-0.11 

(0.07) 

0.05 

(0.05) 

Date Scored (m) 

(𝛽𝐷𝑡𝑆𝑐) 

-0.01 

(0.01) 

0.01** 

(0.00) 

-0.05*** 

(0.01) 

-0.04*** 

(0.01) 

0.01* 

(0.00) 

0.02*** 

(0.01) 

-0.04*** 

(0.01) 

-0.03*** 

(0.01) 

-0.02** 

(0.01) 

-0.04*** 

(0.01) 

0.00 

(0.01) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
0.00 

(0.06) 

0.03 

(0.03) 

-0.02 

(0.07) 

-0.01 

(0.07) 

0.09 

(0.05) 

0.01 

(0.05) 

-0.01 

(0.07) 

-0.05 

(0.07) 

-0.05 

(0.06) 

-0.13 

(0.07) 

0.03 

(0.06) 

   Wednesday 
0.11 

(0.07) 

0.05 

(0.04) 

0.17* 

(0.08) 

0.07 

(0.07) 

0.11* 

(0.05) 

0.06 

(0.06) 

0.12 

(0.07) 

0.08 

(0.08) 

0.07 

(0.06) 

0.12 

(0.08) 

0.18** 

(0.06) 

   Thursday 
0.08 

(0.06) 

0.02 

(0.03) 

0.06 

(0.08) 

0.05 

(0.07) 

0.03 

(0.05) 

0.03 

(0.06) 

0.04 

(0.07) 

-0.13 

(0.07) 

-0.05 

(0.06) 

-0.04 

(0.07) 

0.04 

(0.06) 

   Friday 
-0.07 

(0.08) 

0.00 

(0.04) 

-0.01 

(0.09) 

-0.10 

(0.08) 

0.03 

(0.06) 

0.01 

(0.07) 

-0.08 

(0.08) 

-0.18* 

(0.09) 

-0.11 

(0.07) 

-0.18* 

(0.09) 

0.05 

(0.07) 

Observation 

Month (𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.04*** 

(0.01) 

-0.02*** 

(0.01) 

-0.04** 

(0.01) 

-0.03* 

(0.01) 

-0.04*** 

(0.01) 

-0.03*** 

(0.01) 

-0.04*** 

(0.01) 

-0.03* 

(0.01) 

-0.05*** 

(0.01) 

-0.03* 

(0.01) 

-0.03*** 

(0.01) 

Segment 

    2 
0.04 

(0.02) 

0.02 

(0.01) 

0.23*** 

(0.03) 

0.10*** 

(0.03) 

-0.04* 

(0.02) 

0.05* 

(0.02) 

0.06* 

(0.03) 

0.06* 

(0.03) 

0.17*** 

(0.02) 

0.18*** 

(0.03) 

0.04 

(0.02) 

    3 
0.02 

(0.02) 

0.01 

(0.01) 

0.27*** 

(0.03) 

0.12*** 

(0.03) 

-0.10*** 

(0.02) 

0.03 

(0.02) 

-0.06 

(0.03) 

-0.08* 

(0.03) 

0.20*** 

(0.03) 

0.16*** 

(0.03) 

0.02 

(0.02) 

    4+ 
0.03 

(0.03) 

0.01 

(0.02) 

0.34*** 

(0.05) 

-0.02 

(0.04) 

-0.19*** 

(0.03) 

-0.04 

(0.04) 

-0.23*** 

(0.04) 

-0.28*** 

(0.05) 

0.16*** 

(0.04) 

0.11* 

(0.05) 

0.03 

(0.03) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month; Monday is the reference group for the Days of the Week. 

PC=Positive Climate; NC=Negative Climate; RSP=Regard for Adolescent Behavior; TS=Teacher Sensitivity; 

BM=Behavior Management; PD=Productivity; ILF=Instructional Learning Formats; CU=Content 

Understanding; APS=Analysis and Problem Solving; QF=Quality of Feedback; ENG=Student Engagement.    

Negative Climate has been reverse coded so higher scores capture higher quality.* p<0.05; ** p<0.01; *** 

p<0.001. 
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Table D.8: Item-Specific Fixed Effects from SD GTheory Model for Instrument FFT in Scale 

Score Metric 

Facet RR CL MCP MSB OPS CS KC QDT ESL UAI FR 

Intercept 
2.90*** 

(0.04) 

2.40*** 

(0.06) 

2.56*** 

(0.07) 

2.86*** 

(0.05) 

2.34*** 

(0.05) 

2.69*** 

(0.06) 

2.24*** 

(0.07) 

2.04*** 

(0.06) 

2.32*** 

(0.08) 

2.00*** 

(0.07) 

2.19*** 

(0.06) 

Scored Live 

(𝛽𝐿𝑖𝑣𝑒) 

0.09 

(0.05) 

0.30*** 

(0.07) 

-0.02 

(0.07) 

-0.06 

(0.05) 

-0.12 

(0.06) 

-0.04 

(0.06) 

0.20** 

(0.06) 

0.18** 

(0.06) 

0.14* 

(0.07) 

-0.03 

(0.06) 

0.24*** 

(0.06) 

Double Scored 

(𝛽𝐷𝑏𝑙) 

-0.01 

(0.03) 

-0.01 

(0.04) 

-0.06 

(0.04) 

0.00 

(0.03) 

0.00 

(0.04) 

0.02 

(0.04) 

0.03 

(0.04) 

0.04 

(0.04) 

0.02 

(0.04) 

0.07 

(0.04) 

0.03 

(0.04) 

Date Scored (m) 

(𝛽𝐷𝑡𝑆𝑐) 

0.01 

(0.00) 

-0.00 

(0.00) 

-0.01 

(0.00) 

-0.00 

(0.00) 

-0.02*** 

(0.00) 

-0.01*** 

(0.00) 

-0.01** 

(0.00) 

-0.00 

(0.00) 

-0.00 

(0.00) 

-0.01*** 

(0.00) 

-0.01* 

(0.00) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
-0.01 

(0.03) 

0.02 

(0.04) 

0.03 

(0.04) 

0.01 

(0.04) 

0.01 

(0.04) 

0.04 

(0.04) 

-0.02 

(0.04) 

-0.02 

(0.04) 

0.00 

(0.04) 

-0.01 

(0.04) 

-0.01 

(0.04) 

   Wednesday 
0.07* 

(0.04) 

0.11* 

(0.05) 

0.07 

(0.05) 

0.05 

(0.04) 

0.06 

(0.04) 

0.07 

(0.04) 

0.06 

(0.04) 

0.04 

(0.04) 

0.08 

(0.05) 

0.06 

(0.04) 

0.05 

(0.04) 

   Thursday 
0.04 

(0.03) 

0.09* 

(0.04) 

0.02 

(0.05) 

0.02 

(0.04) 

0.09* 

(0.04) 

0.00 

(0.04) 

0.02 

(0.04) 

-0.01 

(0.04) 

0.05 

(0.05) 

0.04 

(0.04) 

0.02 

(0.04) 

   Friday 
0.01 

(0.04) 

-0.04 

(0.05) 

-0.01 

(0.06) 

-0.01 

(0.05) 

-0.01 

(0.05) 

-0.03 

(0.05) 

-0.05 

(0.05) 

-0.02 

(0.05) 

-0.03 

(0.06) 

-0.06 

(0.05) 

0.01 

(0.05) 

Observation 

Month (𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.02*** 

(0.01) 

-0.03*** 

(0.01) 

-0.02* 

(0.01) 

-0.02** 

(0.01) 

-0.01 

(0.01) 

-0.02** 

(0.01) 

-0.01 

(0.01) 

-0.02** 

(0.01) 

-0.02** 

(0.01) 

-0.00 

(0.01) 

-0.02*** 

(0.01) 

Segment 2 -0.01 

(0.03) 

-0.03 

(0.04) 

-0.03 

(0.04) 

-0.07* 

(0.03) 

0.01 

(0.03) 

-0.09* 

(0.03) 

-0.10** 

(0.03) 

-0.03 

(0.04) 

-0.07 

(0.04) 

0.00 

(0.03) 

-0.00 

(0.03) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month; Monday is the reference group for the Days of the Week.  

RR=Respect and Rapport; CL=Culture for Learning; MCP=Managing Classroom Procedures; MSB=Managing 

Student Behavior; OPS=Organizing Physical Space; CS=Communicating with Students; KC=Knowledge of 

Content and Pedagogy; QDT=Questioning Discussion Techniques; ESL=Engaging Students in Learning; 

UAI=Using Assessment in Instruction; FR=Flexibility and Responsiveness.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table D.9: Item-Specific Fixed Effects from SD GTheory Model for Instrument PLATO in 

Scale Score Metric 

Facet PURP INTC RC CPK CPE ESI MOD GP CD TBI ALL BMN TMN 

Intercept 
2.88*** 

(0.06) 

2.14*** 

(0.10) 

2.50*** 

(0.07) 

1.69*** 

(0.07) 

1.29*** 

(0.06) 

1.17*** 

(0.05) 

1.27*** 

(0.05) 

2.47*** 

(0.14) 

2.06*** 

(0.08) 

1.76*** 

(0.10) 

1.36*** 

(0.07) 

3.97*** 

(0.03) 

3.81*** 

(0.05) 

Scored Live 

(𝛽𝐿𝑖𝑣𝑒) 

0.10* 

(0.05) 

-0.04 

(0.05) 

-0.07 

(0.06) 

-0.10 

(0.06) 

-0.17*** 

(0.05) 

0.10* 

(0.04) 

0.14** 

(0.05) 

-0.22** 

(0.08) 

-0.26*** 

(0.06) 

-0.17 

(0.10) 

0.08 

(0.05) 

0.02 

(0.03) 

-0.02 

(0.05) 

Double 

Scored (𝛽𝐷𝑏𝑙) 

-0.04 

(0.03) 

-0.04 

(0.03) 

-0.06 

(0.04) 

0.01 

(0.04) 

0.01 

(0.03) 

-0.02 

(0.02) 

-0.06* 

(0.03) 

-0.05 

(0.05) 

-0.01 

(0.03) 

-0.04 

(0.06) 

-0.03 

(0.03) 

0.01 

(0.02) 

0.03 

(0.03) 

Date Scored 

(m) (𝛽𝐷𝑡𝑆𝑐) 

-0.00 

(0.00) 

-0.01** 

(0.00) 

-0.00 

(0.00) 

-0.02*** 

(0.00) 

-0.02*** 

(0.00) 

-0.01* 

(0.00) 

-0.00 

(0.00) 

-0.00 

(0.00) 

-0.03*** 

(0.00) 

-0.01* 

(0.01) 

-0.02*** 

(0.00) 

0.00 

(0.00) 

0.01* 

(0.00) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
0.03 

(0.03) 

-0.01 

(0.04) 

-0.01 

(0.04) 

-0.00 

(0.04) 

0.03 

(0.04) 

-0.01 

(0.03) 

-0.06 

(0.03) 

0.03 

(0.05) 

-0.05 

(0.04) 

-0.10 

(0.07) 

-0.05 

(0.03) 

0.04 

(0.02) 

0.02 

(0.03) 

   Wednesday 
0.07* 

(0.03) 

0.06 

(0.04) 

0.02 

(0.05) 

0.00 

(0.04) 

0.06 

(0.04) 

-0.03 

(0.03) 

-0.08* 

(0.04) 

0.08 

(0.06) 

0.04 

(0.04) 

0.13 

(0.08) 

-0.05 

(0.03) 

0.03 

(0.02) 

0.03 

(0.03) 

   Thursday 
-0.03 

(0.03) 

-0.00 

(0.04) 

-0.03 

(0.04) 

-0.02 

(0.04) 

0.04 

(0.04) 

-0.03 

(0.03) 

-0.06 

(0.03) 

-0.04 

(0.05) 

-0.02 

(0.04) 

0.04 

(0.08) 

-0.05 

(0.03) 

0.00 

(0.02) 

-0.01 

(0.03) 

   Friday 
0.02 

(0.04) 

0.02 

(0.05) 

0.03 

(0.05) 

0.01 

(0.05) 

0.06 

(0.05) 

-0.06 

(0.03) 

-0.07 

(0.04) 

0.01 

(0.07) 

-0.05 

(0.05) 

0.02 

(0.09) 

-0.03 

(0.04) 

-0.02 

(0.03) 

0.02 

(0.04) 

Obs. Month 

(𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.01 

(0.00) 

-0.03*** 

(0.01) 

-0.01* 

(0.01) 

-0.01 

(0.01) 

-0.01 

(0.01) 

-0.00 

(0.00) 

-0.01** 

(0.01) 

-0.02** 

(0.01) 

-0.02* 

(0.01) 

-0.01 

(0.01) 

-0.00 

(0.01) 

-0.01** 

(0.00) 

-0.02*** 

(0.00) 

Segment 

    2 
0.01 

(0.02) 

0.12*** 

(0.02) 

0.08*** 

(0.02) 

-0.16*** 

(0.03) 

0.05* 

(0.02) 

0.02 

(0.01) 

0.10*** 

(0.02) 

0.13*** 

(0.03) 

0.14*** 

(0.02) 

0.29*** 

(0.03) 

0.02 

(0.02) 

-0.03** 

(0.01) 

0.10*** 

(0.02) 

    3 
0.00 

(0.02) 

0.15*** 

(0.02) 

0.01 

(0.02) 

-0.31*** 

(0.03) 

-0.01 

(0.02) 

-0.02 

(0.01) 

0.08*** 

(0.02) 

0.22*** 

(0.03) 

0.12*** 

(0.02) 

0.33*** 

(0.03) 

-0.02 

(0.02) 

-0.04** 

(0.01) 

0.10*** 

(0.02) 

    4+ 
-0.03 

(0.02) 

0.12*** 

(0.03) 

-0.11** 

(0.04) 

-0.45*** 

(0.04) 

-0.05 

(0.03) 

-0.04 

(0.02) 

0.03 

(0.03) 

0.20*** 

(0.04) 

0.10*** 

(0.03) 

0.34*** 

(0.05) 

-0.08** 

(0.03) 

-0.04* 

(0.02) 

0.10*** 

(0.03) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month; Monday is the reference group for the Days of the Week.  

PURP=Purpose; INTC=Intellectual Climate; RC=Representation of Content; CPK=Connections to Prior 

Knowledge; CPE=Connections to Personal and /or Cultural Experience; ESI=Explicit Strategy Instruction; 

MOD=Modeling; GP=Guided Practice; CD=Classroom Discussion; TBI=Text-Based Instruction; 

ALL=Accommodations for Language Learners; BMN=Behavior Management; TMN=Time Management.  * 

p<0.05; ** p<0.01; *** p<0.001. 
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Table D.10: Item-Specific Fixed Effects from CI GTheory Model for Instrument CLASS in 

Scale Score Metric 

Facet PC NC RSP TS BM PD ILF CU APS QF ENG 

Intercept 
4.53*** 

(0.20) 

6.78*** 

(0.08) 

2.85*** 

(0.18) 

3.93*** 

(0.21) 

6.14*** 

(0.11) 

5.82*** 

(0.14) 

3.60*** 

(0.16) 

3.12*** 

(0.16) 

2.34*** 

(0.17) 

3.09*** 

(0.20) 

5.02*** 

(0.16) 

Scored Live 
(𝛽𝐿𝑖𝑣𝑒) 

0.23* 

(0.09) 

0.07 

(0.05) 

0.07 

(0.10) 

-0.13 

(0.09) 

-0.03 

(0.07) 

0.14 

(0.08) 

0.10 

(0.10) 

0.19* 

(0.10) 

0.33*** 

(0.09) 

-0.12 

(0.10) 

0.33*** 

(0.08) 

Double Scored 
(𝛽𝐷𝑏𝑙) 

-0.13* 

(0.06) 

-0.01 

(0.03) 

-0.03 

(0.07) 

-0.08 

(0.06) 

0.02 

(0.04) 

0.01 

(0.05) 

0.00 

(0.06) 

-0.03 

(0.06) 

-0.05 

(0.06) 

-0.09 

(0.07) 

0.05 

(0.05) 

Date Scored (m) 
(𝛽𝐷𝑡𝑆𝑐) 

-0.01 

(0.01) 

0.01** 

(0.00) 

-0.04*** 

(0.01) 

-0.04*** 

(0.01) 

0.01* 

(0.00) 

0.02*** 

(0.01) 

-0.04*** 

(0.01) 

-0.03*** 

(0.01) 

-0.02** 

(0.01) 

-0.04*** 

(0.01) 

0.00 

(0.01) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
0.01 

(0.06) 

0.03 

(0.03) 

0.00 

(0.07) 

0.00 

(0.07) 

0.10 

(0.05) 

0.02 

(0.05) 

0.00 

(0.07) 

-0.02 

(0.07) 

-0.02 

(0.06) 

-0.09 

(0.07) 

0.04 

(0.06) 

   Wednesday 
0.11 

(0.07) 

0.05 

(0.04) 

0.17* 

(0.08) 

0.08 

(0.07) 

0.11* 

(0.05) 

0.05 

(0.06) 

0.12 

(0.07) 

0.08 

(0.07) 

0.07 

(0.06) 

0.14 

(0.08) 

0.17** 

(0.06) 

   Thursday 
0.09 

(0.07) 

0.01 

(0.03) 

0.06 

(0.08) 

0.05 

(0.07) 

0.03 

(0.05) 

0.03 

(0.06) 

0.05 

(0.07) 

-0.11 

(0.07) 

-0.05 

(0.06) 

-0.02 

(0.07) 

0.04 

(0.06) 

   Friday 
-0.08 

(0.08) 

-0.01 

(0.04) 

-0.04 

(0.09) 

-0.11 

(0.08) 

0.03 

(0.06) 

-0.00 

(0.07) 

-0.09 

(0.08) 

-0.17 

(0.09) 

-0.13 

(0.07) 

-0.17 

(0.09) 

0.04 

(0.07) 

Observation 
Month (𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.03** 

(0.01) 

-0.02** 

(0.01) 

-0.03* 

(0.01) 

-0.02 

(0.01) 

-0.03*** 

(0.01) 

-0.03** 

(0.01) 

-0.03** 

(0.01) 

-0.03* 

(0.01) 

-0.04*** 

(0.01) 

-0.02 

(0.01) 

-0.03** 

(0.01) 

Segment 

    2 
0.04 

(0.02) 

0.02 

(0.01) 

0.23*** 

(0.03) 

0.10*** 

(0.03) 

-0.04* 

(0.02) 

0.05* 

(0.02) 

0.06* 

(0.03) 

0.06* 

(0.03) 

0.17*** 

(0.02) 

0.18*** 

(0.03) 

0.03 

(0.02) 

    3 
0.02 

(0.02) 

0.01 

(0.01) 

0.27*** 

(0.03) 

0.12*** 

(0.03) 

-0.10*** 

(0.02) 

0.03 

(0.02) 

-0.06 

(0.03) 

-0.08* 

(0.03) 

0.20*** 

(0.03) 

0.16*** 

(0.03) 

0.02 

(0.02) 

    4+ 
0.03 

(0.03) 

0.01 

(0.02) 

0.34*** 

(0.05) 

-0.02 

(0.04) 

-0.19*** 

(0.03) 

-0.04 

(0.04) 

-0.23*** 

(0.04) 

-0.28*** 

(0.05) 

0.16*** 

(0.04) 

0.11* 

(0.05) 

0.02 

(0.03) 

Content Domain 

   Reading (βRead) 
-0.00 

(0.08) 

0.01 

(0.04) 

-0.14 

(0.10) 

-0.10 

(0.09) 

0.08 

(0.06) 

0.18* 

(0.07) 

-0.02 

(0.09) 

0.03 

(0.09) 

0.04 

(0.08) 

-0.14 

(0.09) 

0.07 

(0.07) 

   Literature (βLit) 
0.09 

(0.06) 

0.05 

(0.03) 

0.20** 

(0.07) 

0.04 

(0.06) 

0.01 

(0.05) 

0.09 

(0.05) 

0.14* 

(0.06) 

0.23*** 

(0.07) 

0.17** 

(0.05) 

0.27*** 

(0.07) 

0.07 

(0.05) 

   Writing (βWrite) 
0.09 

(0.06) 

0.06* 

(0.03) 

0.04 

(0.07) 

0.16** 

(0.06) 

0.06 

(0.04) 

0.08 

(0.05) 

0.13* 

(0.06) 

0.13* 

(0.06) 

0.20*** 

(0.05) 

0.24*** 

(0.06) 

0.07 

(0.05) 

   Grammar 
(βGrammar) 

0.05 

(0.06) 

-0.00 

(0.03) 

-0.11 

(0.07) 

0.04 

(0.06) 

-0.02 

(0.04) 

-0.00 

(0.05) 

0.08 

(0.06) 

0.24*** 

(0.06) 

-0.07 

(0.05) 

0.18** 

(0.06) 

-0.01 

(0.05) 

Interaction Structure 

   Discussion 
(βDisc) 

0.09* 

(0.04) 

0.05* 

(0.02) 

0.22*** 

(0.05) 

0.08 

(0.05) 

0.00 

(0.03) 

0.02 

(0.04) 

0.14** 

(0.05) 

0.17*** 

(0.05) 

0.06 

(0.04) 

0.13* 

(0.05) 

0.04 

(0.04) 

   Independent 
(βInd) 

0.03 

(0.07) 

-0.03 

(0.04) 

0.02 

(0.08) 

0.09 

(0.07) 

0.04 

(0.06) 

0.02 

(0.06) 

0.04 

(0.08) 

0.07 

(0.08) 

-0.04 

(0.07) 

-0.04 

(0.08) 

0.01 

(0.06) 

   Recitation 
(βRec) 

-0.02 

(0.05) 

-0.05 

(0.03) 

-0.07 

(0.06) 

-0.07 

(0.05) 

-0.02 

(0.04) 

-0.06 

(0.04) 

-0.05 

(0.05) 

-0.02 

(0.06) 

-0.05 

(0.05) 

-0.01 

(0.06) 

-0.06 

(0.04) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month; Monday is the reference group for the Days of the Week.  

PC=Positive Climate; NC=Negative Climate; RSP=Regard for Adolescent Behavior; TS=Teacher Sensitivity; 

BM=Behavior Management; PD=Productivity; ILF=Instructional Learning Formats; CU=Content 

Understanding; APS=Analysis and Problem Solving; QF=Quality of Feedback; ENG=Student Engagement.    
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Negative Climate has been reverse coded so higher scores capture higher quality.  * p<0.05; ** p<0.01; *** 

p<0.001.  
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Table D.11: Item-Specific Fixed Effects from CI GTheory Model for Instrument FFT in Scale 

Score Metric 

Facet RR CL MCP MSB OPS CS KC QDT ESL UAI FR 

Intercept 
2.85*** 

(0.05) 

2.39*** 

(0.07) 

2.52*** 

(0.08) 

2.88*** 

(0.06) 

2.32*** 

(0.06) 

2.63*** 

(0.07) 

2.15*** 

(0.08) 

1.97*** 

(0.06) 

2.30*** 

(0.09) 

1.92*** 

(0.08) 

2.16*** 

(0.07) 

Scored Live 

(𝛽𝐿𝑖𝑣𝑒) 

0.09 

(0.05) 

0.29*** 

(0.07) 

-0.02 

(0.07) 

-0.06 

(0.05) 

-0.11 

(0.06) 

-0.04 

(0.06) 

0.21** 

(0.06) 

0.19** 

(0.06) 

0.13* 

(0.07) 

-0.03 

(0.06) 

0.23*** 

(0.06) 

Double Scored 

(𝛽𝐷𝑏𝑙) 

-0.01 

(0.03) 

-0.00 

(0.04) 

-0.06 

(0.04) 

0.00 

(0.03) 

-0.00 

(0.04) 

0.02 

(0.04) 

0.03 

(0.04) 

0.04 

(0.04) 

0.02 

(0.04) 

0.07 

(0.04) 

0.03 

(0.04) 

Date Scored (m) 

(𝛽𝐷𝑡𝑆𝑐) 

0.00 

(0.00) 

-0.00 

(0.00) 

-0.01 

(0.00) 

-0.00 

(0.00) 

-0.02*** 

(0.00) 

-0.01*** 

(0.00) 

-0.01** 

(0.00) 

0.00 

(0.00) 

-0.00 

(0.00) 

-0.01*** 

(0.00) 

-0.01* 

(0.00) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
0.00 

(0.03) 

0.03 

(0.04) 

0.03 

(0.04) 

0.01 

(0.04) 

0.02 

(0.04) 

0.06 

(0.04) 

-0.01 

(0.04) 

-0.01 

(0.04) 

0.03 

(0.04) 

-0.00 

(0.04) 

-0.00 

(0.04) 

   Wednesday 
0.08* 

(0.04) 

0.11* 

(0.05) 

0.07 

(0.05) 

0.05 

(0.04) 

0.05 

(0.04) 

0.07 

(0.04) 

0.06 

(0.04) 

0.04 

(0.04) 

0.09 

(0.05) 

0.07 

(0.04) 

0.05 

(0.04) 

   Thursday 
0.05 

(0.04) 

0.11* 

(0.04) 

0.02 

(0.05) 

0.02 

(0.04) 

0.09* 

(0.04) 

0.01 

(0.04) 

0.03 

(0.04) 

0.00 

(0.04) 

0.06 

(0.05) 

0.04 

(0.04) 

0.02 

(0.04) 

   Friday 
0.01 

(0.04) 

-0.03 

(0.05) 

-0.01 

(0.06) 

-0.01 

(0.05) 

-0.02 

(0.05) 

-0.03 

(0.05) 

-0.04 

(0.05) 

-0.03 

(0.05) 

-0.03 

(0.06) 

-0.06 

(0.05) 

0.01 

(0.05) 

Observation 

Month (𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.02** 

(0.01) 

-0.03*** 

(0.01) 

-0.01* 

(0.01) 

-0.02** 

(0.01) 

-0.01 

(0.01) 

-0.02* 

(0.01) 

-0.01 

(0.01) 

-0.02** 

(0.01) 

-0.02* 

(0.01) 

0.00 

(0.01) 

-0.02** 

(0.01) 

Segment 2 -0.00 

(0.03) 

-0.03 

(0.04) 

-0.03 

(0.04) 

-0.07* 

(0.03) 

0.01 

(0.03) 

-0.08* 

(0.03) 

-0.10** 

(0.03) 

-0.03 

(0.04) 

-0.06 

(0.04) 

0.01 

(0.03) 

0.00 

(0.03) 

Content Domain 

   Reading (𝛽𝑅𝑒𝑎𝑑) 
-0.06 

(0.04) 

-0.10 

(0.05) 

0.01 

(0.06) 

0.06 

(0.05) 

-0.04 

(0.05) 

-0.02 

(0.05) 

-0.05 

(0.05) 

-0.13* 

(0.05) 

-0.15** 

(0.06) 

-0.11* 

(0.05) 

-0.01 

(0.05) 

   Literature (𝛽𝐿𝑖𝑡) 
0.05 

(0.03) 

0.09* 

(0.04) 

0.08 

(0.04) 

0.05 

(0.03) 

0.04 

(0.04) 

0.13*** 

(0.04) 

0.12** 

(0.04) 

0.13*** 

(0.04) 

0.17*** 

(0.04) 

-0.01 

(0.04) 

0.03 

(0.03) 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 
0.06* 

(0.03) 

-0.03 

(0.04) 

0.04 

(0.04) 

-0.01 

(0.03) 

0.01 

(0.04) 

0.02 

(0.04) 

0.03 

(0.04) 

-0.04 

(0.03) 

0.05 

(0.04) 

0.13*** 

(0.03) 

0.06 

(0.03) 

   Grammar 

(𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 

-0.04 

(0.03) 

-0.09* 

(0.04) 

-0.05 

(0.04) 

-0.02 

(0.03) 

-0.05 

(0.04) 

-0.07 

(0.04) 

-0.04 

(0.04) 

-0.09** 

(0.03) 

-0.07 

(0.04) 

-0.01 

(0.03) 

-0.05 

(0.03) 

Interaction Structure 

   Discussion 

(𝛽𝐷𝑖𝑠𝑐) 

0.02 

(0.02) 

-0.02 

(0.03) 

0.02 

(0.03) 

-0.03 

(0.03) 

0.07* 

(0.03) 

-0.00 

(0.03) 

0.01 

(0.03) 

0.10*** 

(0.03) 

0.01 

(0.03) 

0.02 

(0.03) 

0.00 

(0.03) 

   Independent 

(𝛽𝐼𝑛𝑑) 

-0.00 

(0.04) 

0.07 

(0.05) 

0.07 

(0.05) 

-0.03 

(0.04) 

0.08 

(0.05) 

-0.02 

(0.05) 

0.11* 

(0.05) 

0.08 

(0.04) 

0.07 

(0.05) 

0.02 

(0.04) 

-0.01 

(0.04) 

   Recitation 

(𝛽𝑅𝑒𝑐) 

0.01 

(0.03) 

0.02 

(0.03) 

-0.01 

(0.03) 

-0.01 

(0.03) 

-0.04 

(0.03) 

0.04 

(0.03) 

0.05 

(0.03) 

0.03 

(0.03) 

-0.05 

(0.03) 

0.02 

(0.03) 

0.01 

(0.03) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month; Monday is the reference group for the Days of the Week.  

RR=Respect and Rapport; CL=Culture for Learning; MCP=Managing Classroom Procedures; MSB=Managing 

Student Behavior; OPS=Organizing Physical Space; CS=Communicating with Students; KC=Knowledge of 

Content and Pedagogy; QDT=Questioning Discussion Techniques; ESL=Engaging Students in Learning; 

UAI=Using Assessment in Instruction; FR=Flexibility and Responsiveness.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table D.12: Item-Specific Fixed Effects from CI GTheory Model for Instrument PLATO in 

Scale Score Metric 

Facet PURP INTC RC CPK CPE ESI MOD GP CD TBI ALL BMN TMN 

Intercept 
2.73*** 

(0.07) 

1.96*** 

(0.10) 

2.19*** 

(0.07) 

1.58*** 

(0.08) 

1.27*** 

(0.07) 

1.11*** 

(0.05) 

1.16*** 

(0.06) 

2.33*** 

(0.15) 

1.92*** 

(0.09) 

1.42*** 

(0.11) 

1.24*** 

(0.07) 

3.92*** 

(0.03) 

3.71*** 

(0.06) 

Scored Live 

(𝛽𝐿𝑖𝑣𝑒) 

0.10* 

(0.05) 

-0.05 

(0.05) 

-0.07 

(0.06) 

-0.09 

(0.06) 

-0.16** 

(0.05) 

0.10* 

(0.04) 

0.13** 

(0.05) 

-0.23** 

(0.08) 

-0.24*** 

(0.06) 

-0.13 

(0.10) 

0.07 

(0.05) 

0.02 

(0.03) 

-0.01 

(0.05) 

Double Scored 

(𝛽𝐷𝑏𝑙) 

-0.07* 

(0.03) 

-0.07* 

(0.03) 

-0.11** 

(0.04) 

-0.02 

(0.04) 

0.00 

(0.03) 

-0.03 

(0.02) 

-0.07* 

(0.03) 

-0.07 

(0.05) 

-0.05 

(0.03) 

-0.09 

(0.06) 

-0.06 

(0.03) 

-0.00 

(0.02) 

0.01 

(0.03) 

Date Scored 

(m) (𝛽𝐷𝑡𝑆𝑐) 

0.00 

(0.00) 

-0.01** 

(0.00) 

0.00 

(0.00) 

-0.01*** 

(0.00) 

-0.02*** 

(0.00) 

-0.01* 

(0.00) 

-0.01 

(0.00) 

-0.00 

(0.00) 

-0.03*** 

(0.00) 

-0.01 

(0.01) 

-0.02*** 

(0.00) 

0.00* 

(0.00) 

0.01** 

(0.00) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
0.03 

(0.03) 

0.01 

(0.04) 

0.01 

(0.04) 

0.01 

(0.04) 

0.04 

(0.04) 

-0.01 

(0.03) 

-0.06 

(0.03) 

0.03 

(0.05) 

-0.03 

(0.04) 

-0.04 

(0.06) 

-0.05 

(0.03) 

0.04 

(0.02) 

0.02 

(0.03) 

   Wednesday 
0.06 

(0.03) 

0.06 

(0.04) 

0.01 

(0.04) 

-0.00 

(0.04) 

0.05 

(0.04) 

-0.04 

(0.03) 

-0.08* 

(0.03) 

0.08 

(0.06) 

0.03 

(0.04) 

0.08 

(0.07) 

-0.06 

(0.03) 

0.02 

(0.02) 

0.02 

(0.03) 

   Thursday 
-0.03 

(0.03) 

-0.00 

(0.04) 

-0.03 

(0.04) 

-0.02 

(0.04) 

0.03 

(0.04) 

-0.03 

(0.03) 

-0.06 

(0.03) 

-0.04 

(0.05) 

-0.02 

(0.04) 

0.05 

(0.06) 

-0.04 

(0.03) 

0.00 

(0.02) 

-0.01 

(0.03) 

   Friday 
0.01 

(0.04) 

0.02 

(0.04) 

0.04 

(0.05) 

0.01 

(0.05) 

0.04 

(0.05) 

-0.06 

(0.03) 

-0.07 

(0.04) 

0.00 

(0.07) 

-0.08 

(0.05) 

-0.02 

(0.08) 

-0.02 

(0.04) 

-0.02 

(0.03) 

0.02 

(0.04) 

Observation 

Month 

(𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.00 

(0.00) 

-0.02** 

(0.01) 

-0.01 

(0.01) 

-0.01 

(0.01) 

-0.00 

(0.01) 

-0.00 

(0.00) 

-0.01 

(0.01) 

-0.01 

(0.01) 

-0.01* 

(0.01) 

0.00 

(0.01) 

-0.00 

(0.01) 

-0.01* 

(0.00) 

-0.02*** 

(0.00) 

Segment 

    2 
0.01 

(0.02) 

0.12*** 

(0.02) 

0.08*** 

(0.02) 

-0.16*** 

(0.03) 

0.05* 

(0.02) 

0.02 

(0.01) 

0.10*** 

(0.02) 

0.13*** 

(0.03) 

0.14*** 

(0.02) 

0.29*** 

(0.03) 

0.02 

(0.02) 

-0.03** 

(0.01) 

0.10*** 

(0.02) 

    3 
0.00 

(0.02) 

0.15*** 

(0.02) 

0.01 

(0.02) 

-0.31*** 

(0.03) 

-0.01 

(0.02) 

-0.02 

(0.01) 

0.08*** 

(0.02) 

0.22*** 

(0.03) 

0.12*** 

(0.02) 

0.32*** 

(0.03) 

-0.02 

(0.02) 

-0.04** 

(0.01) 

0.10*** 

(0.02) 

    4+ 
-0.03 

(0.02) 

0.12*** 

(0.03) 

-0.12** 

(0.04) 

-0.45*** 

(0.04) 

-0.04 

(0.03) 

-0.04 

(0.02) 

0.03 

(0.03) 

0.20*** 

(0.04) 

0.10*** 

(0.03) 

0.34*** 

(0.05) 

-0.09*** 

(0.03) 

-0.04* 

(0.02) 

0.10*** 

(0.03) 

Content Domain 

   Reading 

(𝛽𝑅𝑒𝑎𝑑) 

-0.01 

(0.04) 

0.04 

(0.05) 

-0.01 

(0.05) 

-0.00 

(0.05) 

0.04 

(0.05) 

0.08* 

(0.03) 

-0.03 

(0.04) 

-0.10 

(0.07) 

-0.05 

(0.05) 

0.52*** 

(0.08) 

0.09* 

(0.04) 

0.03 

(0.03) 

0.03 

(0.04) 

   Literature 

(𝛽𝐿𝑖𝑡) 

0.08** 

(0.03) 

0.14*** 

(0.03) 

0.16*** 

(0.04) 

0.13*** 

(0.04) 

0.09* 

(0.04) 

-0.02 

(0.02) 

-0.02 

(0.03) 

0.03 

(0.05) 

0.18*** 

(0.04) 

0.64*** 

(0.06) 

0.07* 

(0.03) 

0.02 

(0.02) 

0.05 

(0.03) 

   Writing 

(𝛽𝑊𝑟𝑖𝑡𝑒) 

0.15*** 

(0.03) 

0.20*** 

(0.03) 

0.20*** 

(0.04) 

0.02 

(0.04) 

0.01 

(0.03) 

0.06* 

(0.02) 

0.18*** 

(0.03) 

0.23*** 

(0.05) 

-0.01 

(0.03) 

0.18** 

(0.06) 

0.04 

(0.03) 

0.03 

(0.02) 

0.06* 

(0.03) 

   Grammar 

(𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 

0.04 

(0.03) 

0.03 

(0.03) 

0.17*** 

(0.04) 

0.02 

(0.03) 

-0.13*** 

(0.03) 

0.04 

(0.02) 

-0.01 

(0.03) 

0.08 

(0.05) 

-0.07* 

(0.03) 

-0.27*** 

(0.06) 

0.10*** 

(0.03) 

-0.00 

(0.02) 

-0.00 

(0.03) 

Interaction Structure 

   Discussion 

(𝛽𝐷𝑖𝑠𝑐) 

0.10*** 

(0.02) 

0.12*** 

(0.03) 

0.11*** 

(0.03) 

0.06* 

(0.03) 

0.06* 

(0.03) 

0.04* 

(0.02) 

0.03 

(0.02) 

0.12** 

(0.04) 

0.20*** 

(0.03) 

0.11* 

(0.05) 

0.03 

(0.02) 

0.02 

(0.02) 

0.03 

(0.02) 

   Independent 

(𝛽𝐼𝑛𝑑) 

0.10** 

(0.03) 

0.02 

(0.04) 

0.12* 

(0.05) 

0.02 

(0.05) 

0.05 

(0.04) 

-0.00 

(0.03) 

-0.02 

(0.04) 

0.11 

(0.06) 

0.07 

(0.04) 

0.04 

(0.07) 

0.04 

(0.04) 

0.02 

(0.03) 

0.06 

(0.04) 

   Recitation 

(𝛽𝑅𝑒𝑐) 

-0.01 

(0.03) 

-0.02 

(0.03) 

0.10** 

(0.04) 

0.05 

(0.04) 

-0.03 

(0.03) 

0.01 

(0.02) 

0.03 

(0.03) 

-0.09 

(0.05) 

0.01 

(0.03) 

0.10 

(0.06) 

0.06* 

(0.03) 

0.02 

(0.02) 

0.05 

(0.03) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month; Monday is the reference group for the Days of the Week.  

PURP=Purpose; INTC=Intellectual Climate; RC=Representation of Content; CPK=Connections to Prior 

Knowledge; CPE=Connections to Personal and /or Cultural Experience; ESI=Explicit Strategy Instruction; 

MOD=Modeling; GP=Guided Practice; CD=Classroom Discussion; TBI=Text-Based Instruction; 

ALL=Accommodations for Language Learners; BMN=Behavior Management; TMN=Time Management.  * 

p<0.05; ** p<0.01; *** p<0.001.  
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Table D.13: Item-Specific Fixed Effects from SO GTheory Model for Instrument CLASS in 

Scale Score Metric 

Facet PC NC RSP TS BM PD ILF CU APS QF ENG 

Intercept 
4.68*** 
(0.21) 

6.83*** 
(0.09) 

2.94*** 
(0.19) 

4.02*** 
(0.21) 

6.17*** 
(0.11) 

5.86*** 
(0.14) 

3.74*** 
(0.16) 

3.20*** 
(0.16) 

2.37*** 
(0.17) 

3.19*** 
(0.20) 

5.13*** 
(0.16) 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 
0.28** 
(0.09) 

0.08 
(0.05) 

0.12 
(0.10) 

-0.09 
(0.09) 

-0.01 
(0.07) 

0.17* 
(0.08) 

0.14 
(0.10) 

0.23* 
(0.10) 

0.37*** 
(0.08) 

-0.07 
(0.10) 

0.38*** 
(0.08) 

Double Scored 
(𝛽𝐷𝑏𝑙) 

-0.15* 
(0.06) 

-0.02 
(0.03) 

-0.05 
(0.07) 

-0.09 
(0.06) 

0.01 
(0.04) 

-0.00 
(0.05) 

-0.02 
(0.06) 

-0.05 
(0.06) 

-0.06 
(0.06) 

-0.11 
(0.07) 

0.03 
(0.05) 

Date Scored (m) 
(𝛽𝐷𝑡𝑆𝑐) 

-0.01 
(0.01) 

0.01*** 
(0.00) 

-0.04*** 
(0.01) 

-0.04*** 
(0.01) 

0.01** 
(0.00) 

0.02*** 
(0.00) 

-0.03*** 
(0.01) 

-0.02** 
(0.01) 

-0.01* 
(0.01) 

-0.03*** 
(0.01) 

0.01 
(0.01) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
-0.00 
(0.06) 

0.02 
(0.03) 

-0.01 
(0.07) 

-0.01 
(0.06) 

0.08 
(0.05) 

0.01 
(0.05) 

-0.01 
(0.06) 

-0.04 
(0.07) 

-0.03 
(0.06) 

-0.10 
(0.07) 

0.03 
(0.06) 

   Wednesday 
0.07 

(0.07) 
0.04 

(0.04) 
0.13 

(0.08) 
0.04 

(0.07) 
0.08 

(0.05) 
0.03 

(0.06) 
0.09 

(0.07) 
0.04 

(0.07) 
0.04 

(0.06) 
0.11 

(0.07) 
0.14* 
(0.06) 

   Thursday 
0.07 

(0.06) 
0.00 

(0.03) 
0.04 

(0.07) 
0.03 

(0.07) 
0.01 

(0.05) 
0.02 

(0.05) 
0.04 

(0.07) 
-0.13 
(0.07) 

-0.07 
(0.06) 

-0.03 
(0.07) 

0.03 
(0.06) 

   Friday 
-0.07 
(0.08) 

-0.01 
(0.04) 

-0.05 
(0.09) 

-0.10 
(0.08) 

0.03 
(0.06) 

-0.00 
(0.07) 

-0.09 
(0.08) 

-0.17 
(0.09) 

-0.13 
(0.07) 

-0.17 
(0.09) 

0.04 
(0.07) 

Observation Month 
(𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.03** 
(0.01) 

-0.02** 
(0.01) 

-0.03** 
(0.01) 

-0.02 
(0.01) 

-0.03*** 
(0.01) 

-0.03** 
(0.01) 

-0.03** 
(0.01) 

-0.03* 
(0.01) 

-0.04*** 
(0.01) 

-0.02* 
(0.01) 

-0.03*** 
(0.01) 

Segment 

    2 
0.04 

(0.02) 
0.02 

(0.01) 
0.24*** 
(0.03) 

0.10*** 
(0.03) 

-0.04* 
(0.02) 

0.05* 
(0.02) 

0.06* 
(0.03) 

0.06* 
(0.03) 

0.17*** 
(0.02) 

0.18*** 
(0.03) 

0.04 
(0.02) 

    3 
0.02 

(0.02) 
0.01 

(0.01) 
0.27*** 
(0.03) 

0.12*** 
(0.03) 

-0.10*** 
(0.02) 

0.03 
(0.02) 

-0.06 
(0.03) 

-0.08* 
(0.03) 

0.20*** 
(0.03) 

0.16*** 
(0.03) 

0.02 
(0.02) 

    4+ 
0.03 

(0.03) 
0.02 

(0.02) 
0.35*** 
(0.05) 

-0.01 
(0.04) 

-0.19*** 
(0.03) 

-0.03 
(0.04) 

-0.22*** 
(0.04) 

-0.27*** 
(0.05) 

0.16*** 
(0.04) 

0.12* 
(0.05) 

0.03 
(0.03) 

Content Domain 

   Reading (𝛽𝑅𝑒𝑎𝑑) 
0.04 

(0.08) 
0.02 

(0.04) 
-0.10 
(0.09) 

-0.06 
(0.08) 

0.10 
(0.06) 

0.20** 
(0.07) 

0.02 
(0.08) 

0.06 
(0.09) 

0.06 
(0.07) 

-0.10 
(0.09) 

0.10 
(0.07) 

   Literature (𝛽𝐿𝑖𝑡) 
0.04 

(0.06) 
0.03 

(0.03) 
0.13 

(0.07) 
-0.02 
(0.06) 

-0.02 
(0.05) 

0.06 
(0.05) 

0.10 
(0.06) 

0.18** 
(0.06) 

0.12* 
(0.05) 

0.21** 
(0.06) 

0.03 
(0.05) 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 
0.09 

(0.05) 
0.06* 
(0.03) 

0.03 
(0.06) 

0.16** 
(0.06) 

0.05 
(0.04) 

0.08 
(0.05) 

0.14* 
(0.06) 

0.13* 
(0.06) 

0.20*** 
(0.05) 

0.25*** 
(0.06) 

0.07 
(0.05) 

   Grammar 
(𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 

0.05 
(0.06) 

0.00 
(0.03) 

-0.11 
(0.07) 

0.05 
(0.06) 

-0.00 
(0.04) 

0.01 
(0.05) 

0.08 
(0.06) 

0.24*** 
(0.06) 

-0.06 
(0.05) 

0.18** 
(0.06) 

-0.00 
(0.05) 

Interaction Structure 

   Discussion (𝛽𝐷𝑖𝑠𝑐) 
0.05 

(0.04) 
0.03 

(0.02) 
0.19*** 
(0.05) 

0.05 
(0.04) 

-0.01 
(0.03) 

0.00 
(0.04) 

0.11* 
(0.05) 

0.15** 
(0.05) 

0.04 
(0.04) 

0.10* 
(0.05) 

0.01 
(0.04) 

   Independent 
(𝛽𝐼𝑛𝑑) 

0.03 
(0.07) 

-0.03 
(0.04) 

0.02 
(0.08) 

0.08 
(0.07) 

0.03 
(0.06) 

0.01 
(0.06) 

0.04 
(0.07) 

0.06 
(0.08) 

-0.05 
(0.07) 

-0.04 
(0.08) 

0.01 
(0.06) 

   Recitation (𝛽𝑅𝑒𝑐) 
-0.02 
(0.05) 

-0.05* 
(0.03) 

-0.07 
(0.06) 

-0.06 
(0.05) 

-0.02 
(0.04) 

-0.07 
(0.04) 

-0.05 
(0.05) 

-0.02 
(0.05) 

-0.05 
(0.05) 

-0.00 
(0.05) 

-0.06 
(0.04) 

Grade 

   7th Grade (β7th) 
-0.21** 
(0.07) 

-0.10** 
(0.04) 

-0.13 
(0.07) 

-0.19** 
(0.07) 

-0.09 
(0.05) 

-0.11* 
(0.05) 

-0.25*** 
(0.07) 

-0.12 
(0.07) 

-0.05 
(0.05) 

-0.16* 
(0.07) 

-0.16** 
(0.06) 

   8th Grade (β8th) 
-0.06 
(0.06) 

-0.03 
(0.03) 

0.05 
(0.07) 

0.02 
(0.07) 

0.08 
(0.05) 

0.08 
(0.05) 

-0.05 
(0.06) 

0.02 
(0.07) 

0.08 
(0.05) 

0.00 
(0.06) 

0.01 
(0.05) 

Prior Achievement 
(βPrAch) 

0.09* 
(0.04) 

0.03 
(0.02) 

0.14** 
(0.04) 

0.08 
(0.04) 

0.09** 
(0.03) 

0.07* 
(0.03) 

0.08* 
(0.04) 

0.06 
(0.04) 

0.06* 
(0.03) 

0.11** 
(0.04) 

0.12*** 
(0.03) 

St. Info Missing 
(βImp) 

-0.18 
(0.11) 

-0.01 
(0.06) 

-0.18 
(0.12) 

-0.12 
(0.11) 

-0.09 
(0.08) 

-0.17* 
(0.08) 

-0.14 
(0.11) 

-0.15 
(0.11) 

-0.06 
(0.09) 

-0.13 
(0.11) 

-0.18 
(0.09) 

Demographic 
Composite (βDemo) 

-0.18*** 
(0.04) 

-0.04 
(0.02) 

-0.10* 
(0.04) 

-0.15*** 
(0.04) 

-0.03 
(0.03) 

-0.03 
(0.03) 

-0.11** 
(0.04) 

-0.10* 
(0.04) 

-0.08* 
(0.03) 

-0.08* 
(0.04) 

-0.07* 
(0.03) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month. Monday is the reference group for the Days of the Week. The 

Demographic Composite represents classrooms that have higher percentages of students who are black, 

Hispanic, ELL, and FRL. St. Info Missing is a dummy variable indicating if Prior Achievement and 

Demographic Composite are missing.  PC=Positive Climate; NC=Negative Climate; RSP=Regard for 

Adolescent Behavior; TS=Teacher Sensitivity; BM=Behavior Management; PD=Productivity; 
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ILF=Instructional Learning Formats; CU=Content Understanding; APS=Analysis and Problem Solving; 

QF=Quality of Feedback; ENG=Student Engagement.  Negative Climate has been reverse coded so higher 

scores capture higher quality.  * p<0.05; ** p<0.01; *** p<0.001.  
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Table D.14: Item-Specific Fixed Effects from SO GTheory Model for Instrument FFT in Scale 

Score Metric 

Facet RR CL MCP MSB OPS CS KC QDT ESL UAI FR 

Intercept 
2.90*** 
(0.06) 

2.48*** 
(0.08) 

2.53*** 
(0.08) 

2.89*** 
(0.06) 

2.38*** 
(0.06) 

2.70*** 
(0.08) 

2.21*** 
(0.08) 

2.02*** 
(0.07) 

2.37*** 
(0.09) 

1.95*** 
(0.08) 

2.22*** 
(0.07) 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 
0.11* 
(0.05) 

0.33*** 
(0.06) 

0.00 
(0.07) 

-0.05 
(0.05) 

-0.08 
(0.06) 

-0.01 
(0.06) 

0.25*** 
(0.06) 

0.22*** 
(0.06) 

0.17* 
(0.06) 

-0.01 
(0.06) 

0.27*** 
(0.06) 

Double Scored 
(𝛽𝐷𝑏𝑙) 

-0.01 
(0.03) 

-0.01 
(0.04) 

-0.07 
(0.04) 

-0.00 
(0.03) 

-0.02 
(0.04) 

0.02 
(0.04) 

0.02 
(0.04) 

0.03 
(0.04) 

0.00 
(0.04) 

0.06 
(0.04) 

0.02 
(0.04) 

Date Scored (m) 
(𝛽𝐷𝑡𝑆𝑐) 

0.01* 
(0.00) 

0.00 
(0.00) 

-0.00 
(0.00) 

-0.00 
(0.00) 

-0.02*** 
(0.00) 

-0.01** 
(0.00) 

-0.01* 
(0.00) 

0.00 
(0.00) 

-0.00 
(0.00) 

-0.01** 
(0.00) 

-0.01 
(0.00) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
-0.01 
(0.03) 

0.01 
(0.04) 

0.02 
(0.04) 

0.00 
(0.04) 

-0.00 
(0.04) 

0.04 
(0.04) 

-0.03 
(0.04) 

-0.03 
(0.04) 

0.02 
(0.04) 

-0.02 
(0.04) 

-0.02 
(0.04) 

   Wednesday 
0.06 

(0.04) 
0.10* 
(0.04) 

0.05 
(0.05) 

0.04 
(0.04) 

0.02 
(0.04) 

0.05 
(0.04) 

0.03 
(0.04) 

0.02 
(0.04) 

0.07 
(0.05) 

0.05 
(0.04) 

0.03 
(0.04) 

   Thursday 
0.03 

(0.03) 
0.09* 
(0.04) 

0.01 
(0.04) 

0.01 
(0.04) 

0.07 
(0.04) 

-0.02 
(0.04) 

-0.00 
(0.04) 

-0.02 
(0.04) 

0.04 
(0.04) 

0.01 
(0.04) 

-0.01 
(0.04) 

   Friday 
-0.00 
(0.04) 

-0.04 
(0.05) 

-0.01 
(0.05) 

-0.01 
(0.05) 

-0.05 
(0.05) 

-0.05 
(0.05) 

-0.06 
(0.05) 

-0.04 
(0.05) 

-0.04 
(0.05) 

-0.07 
(0.05) 

-0.01 
(0.05) 

Observation Month 
(𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.02** 
(0.01) 

-0.03*** 
(0.01) 

-0.02* 
(0.01) 

-0.02*** 
(0.01) 

-0.01 
(0.01) 

-0.02* 
(0.01) 

-0.01 
(0.01) 

-0.02** 
(0.01) 

-0.02* 
(0.01) 

0.00 
(0.01) 

-0.02** 
(0.01) 

Segment 2 
0.00 

(0.03) 
-0.01 
(0.04) 

-0.01 
(0.04) 

-0.06* 
(0.03) 

0.02 
(0.03) 

-0.07* 
(0.03) 

-0.09** 
(0.03) 

-0.02 
(0.04) 

-0.05 
(0.04) 

0.02 
(0.03) 

0.02 
(0.03) 

Content Domain 

   Reading (𝛽𝑅𝑒𝑎𝑑) 
-0.04 
(0.04) 

-0.08 
(0.05) 

0.03 
(0.06) 

0.08 
(0.05) 

-0.01 
(0.05) 

-0.01 
(0.05) 

-0.02 
(0.05) 

-0.10* 
(0.05) 

-0.12* 
(0.05) 

-0.08 
(0.05) 

0.02 
(0.05) 

   Literature (𝛽𝐿𝑖𝑡) 
0.03 

(0.03) 
0.05 

(0.04) 
0.06 

(0.04) 
0.03 

(0.03) 
0.01 

(0.04) 
0.10** 
(0.04) 

0.07 
(0.04) 

0.10** 
(0.04) 

0.13** 
(0.04) 

-0.04 
(0.04) 

-0.01 
(0.03) 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 
0.06 

(0.03) 
-0.03 
(0.04) 

0.03 
(0.04) 

-0.01 
(0.03) 

0.00 
(0.03) 

0.02 
(0.04) 

0.03 
(0.03) 

-0.05 
(0.03) 

0.05 
(0.04) 

0.13*** 
(0.03) 

0.05 
(0.03) 

   Grammar 
(𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 

-0.04 
(0.03) 

-0.09* 
(0.04) 

-0.03 
(0.04) 

-0.01 
(0.03) 

-0.04 
(0.03) 

-0.07 
(0.04) 

-0.04 
(0.03) 

-0.09** 
(0.03) 

-0.07 
(0.04) 

0.00 
(0.03) 

-0.05 
(0.03) 

Interaction Structure 

   Discussion (𝛽𝐷𝑖𝑠𝑐) 
0.01 

(0.02) 
-0.04 
(0.03) 

0.00 
(0.03) 

-0.04 
(0.03) 

0.05 
(0.03) 

-0.02 
(0.03) 

-0.01 
(0.03) 

0.08** 
(0.03) 

-0.01 
(0.03) 

-0.00 
(0.03) 

-0.02 
(0.03) 

   Independent 
(𝛽𝐼𝑛𝑑) 

-0.00 
(0.04) 

0.06 
(0.05) 

0.06 
(0.05) 

-0.03 
(0.04) 

0.08 
(0.04) 

-0.02 
(0.05) 

0.10* 
(0.04) 

0.07 
(0.04) 

0.05 
(0.05) 

0.02 
(0.04) 

-0.02 
(0.04) 

   Recitation (𝛽𝑅𝑒𝑐) 
0.01 

(0.03) 
0.03 

(0.03) 
-0.01 
(0.03) 

-0.01 
(0.03) 

-0.04 
(0.03) 

0.03 
(0.03) 

0.05 
(0.03) 

0.03 
(0.03) 

-0.05 
(0.03) 

0.02 
(0.03) 

0.01 
(0.03) 

Grade 

   7th Grade (𝛽7𝑡ℎ) 
-0.05 
(0.04) 

-0.12** 
(0.04) 

-0.07 
(0.05) 

-0.04 
(0.04) 

-0.07 
(0.04) 

-0.07 
(0.04) 

-0.06 
(0.04) 

-0.04 
(0.04) 

-0.09* 
(0.04) 

-0.00 
(0.03) 

-0.06 
(0.03) 

   8th Grade (𝛽8𝑡ℎ) 
0.01 

(0.04) 
-0.05 
(0.04) 

0.08 
(0.04) 

0.07 
(0.04) 

-0.00 
(0.04) 

-0.01 
(0.04) 

0.00 
(0.04) 

0.01 
(0.04) 

-0.03 
(0.04) 

0.02 
(0.03) 

0.02 
(0.03) 

Prior Achievement 
(𝛽𝑃𝑟𝐴𝑐ℎ) 

0.03 
(0.02) 

0.13*** 
(0.02) 

0.10*** 
(0.03) 

0.09*** 
(0.02) 

0.06* 
(0.02) 

0.03 
(0.02) 

0.12*** 
(0.02) 

0.10*** 
(0.02) 

0.12*** 
(0.02) 

0.06** 
(0.02) 

0.07*** 
(0.02) 

St. Info Missing 
(𝛽𝐼𝑚𝑝) 

-0.11 
(0.06) 

-0.03 
(0.07) 

-0.05 
(0.07) 

-0.06 
(0.07) 

-0.08 
(0.06) 

-0.10 
(0.06) 

-0.03 
(0.06) 

-0.04 
(0.06) 

-0.03 
(0.07) 

-0.06 
(0.05) 

-0.06 
(0.05) 

Demographic 
Composite (𝛽𝐷𝑒𝑚𝑜) 

-0.05* 
(0.02) 

-0.03 
(0.03) 

0.01 
(0.03) 

0.00 
(0.02) 

-0.04 
(0.02) 

-0.07** 
(0.02) 

-0.03 
(0.02) 

-0.02 
(0.02) 

-0.02 
(0.02) 

-0.02 
(0.02) 

-0.04* 
(0.02) 

Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month. Monday is the reference group for the Days of the Week. The 

Demographic Composite represents classrooms that have higher percentages of students who are black, 

Hispanic, ELL, and FRL. St. Info Missing is a dummy variable indicating if Prior Achievement and 

Demographic Composite are missing.  RR=Respect and Rapport; CL=Culture for Learning; MCP=Managing 

Classroom Procedures; MSB=Managing Student Behavior; OPS=Organizing Physical Space; 

CS=Communicating with Students; KC=Knowledge of Content and Pedagogy; QDT=Questioning Discussion 

Techniques; ESL=Engaging Students in Learning; UAI=Using Assessment in Instruction; FR=Flexibility and 

Responsiveness.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table D.15: Item-Specific Fixed Effects from SO GTheory Model for Instrument PLATO in 

Scale Score Metric 

Facet PURP INTC RC CPK CPE ESI MOD GP CD TBI ALL BMN TMN 

Intercept 
2.76*** 

(0.07) 

2.00*** 

(0.10) 

2.23*** 

(0.08) 

1.59*** 

(0.08) 

1.29*** 

(0.08) 

1.11*** 

(0.06) 

1.15*** 

(0.06) 

2.40*** 

(0.15) 

1.99*** 

(0.09) 

1.43*** 

(0.12) 

1.26*** 

(0.07) 

3.92*** 

(0.04) 

3.74*** 

(0.06) 

Scored Live 

(𝛽𝐿𝑖𝑣𝑒) 

0.11* 

(0.05) 

-0.02 

(0.05) 

-0.04 

(0.06) 

-0.08 

(0.06) 

-0.15** 

(0.05) 

0.09* 

(0.04) 

0.12* 

(0.05) 

-0.21* 

(0.08) 

-0.20*** 

(0.06) 

-0.10 

(0.10) 

0.07 

(0.05) 

0.03 

(0.03) 

0.00 

(0.05) 

Double Scored 

(𝛽𝐷𝑏𝑙) 

-0.07** 

(0.03) 

-0.08* 

(0.03) 

-0.12*** 

(0.04) 

-0.02 

(0.04) 

0.00 

(0.03) 

-0.03 

(0.02) 

-0.07* 

(0.03) 

-0.07 

(0.05) 

-0.06 

(0.03) 

-0.10 

(0.06) 

-0.06 

(0.03) 

-0.00 

(0.02) 

0.01 

(0.03) 

Date Scored (m) 

(𝛽𝐷𝑡𝑆𝑐) 

0.00 

(0.00) 

-0.01* 

(0.00) 

0.00 

(0.00) 

-0.01*** 

(0.00) 

-0.01*** 

(0.00) 

-0.01* 

(0.00) 

-0.01 

(0.00) 

-0.00 

(0.00) 

-0.02*** 

(0.00) 

-0.00 

(0.01) 

-0.02*** 

(0.00) 

0.01* 

(0.00) 

0.01*** 

(0.00) 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘) 

   Tuesday 
0.03 

(0.03) 

-0.00 

(0.04) 

-0.00 

(0.04) 

0.00 

(0.04) 

0.03 

(0.04) 

-0.01 

(0.03) 

-0.06 

(0.03) 

0.02 

(0.05) 

-0.05 

(0.04) 

-0.05 

(0.06) 

-0.05 

(0.03) 

0.03 

(0.02) 

0.01 

(0.03) 

   Wednesday 
0.05 

(0.03) 

0.04 

(0.04) 

-0.01 

(0.04) 

-0.01 

(0.04) 

0.04 

(0.04) 

-0.03 

(0.03) 

-0.08* 

(0.04) 

0.06 

(0.06) 

0.01 

(0.04) 

0.06 

(0.07) 

-0.05 

(0.03) 

0.01 

(0.02) 

0.01 

(0.03) 

   Thursday 
-0.04 

(0.03) 

-0.02 

(0.04) 

-0.05 

(0.04) 

-0.02 

(0.04) 

0.02 

(0.04) 

-0.03 

(0.03) 

-0.06 

(0.03) 

-0.06 

(0.05) 

-0.03 

(0.04) 

0.03 

(0.06) 

-0.04 

(0.03) 

-0.01 

(0.02) 

-0.03 

(0.03) 

   Friday 
0.01 

(0.04) 

0.01 

(0.04) 

0.02 

(0.05) 

0.01 

(0.05) 

0.03 

(0.05) 

-0.06 

(0.03) 

-0.07 

(0.04) 

-0.01 

(0.06) 

-0.08 

(0.05) 

-0.02 

(0.08) 

-0.03 

(0.04) 

-0.03 

(0.03) 

0.01 

(0.04) 

Observation 

Month (𝛽𝑀𝑜𝑛𝑡ℎ) 

-0.00 

(0.00) 

-0.02** 

(0.01) 

-0.01 

(0.01) 

-0.01 

(0.01) 

-0.00 

(0.01) 

-0.00 

(0.00) 

-0.01 

(0.01) 

-0.01 

(0.01) 

-0.01* 

(0.01) 

-0.00 

(0.01) 

-0.00 

(0.01) 

-0.01* 

(0.00) 

-0.02*** 

(0.00) 

Segment 

    2 
0.01 

(0.02) 

0.12*** 

(0.02) 

0.08*** 

(0.02) 

-0.16*** 

(0.03) 

0.05* 

(0.02) 

0.02 

(0.01) 

0.10*** 

(0.02) 

0.13*** 

(0.03) 

0.14*** 

(0.02) 

0.29*** 

(0.03) 

0.02 

(0.02) 

-0.03** 

(0.01) 

0.10*** 

(0.02) 

    3 
0.00 

(0.02) 

0.15*** 

(0.02) 

0.01 

(0.02) 

-0.31*** 

(0.03) 

-0.01 

(0.02) 

-0.02 

(0.01) 

0.08*** 

(0.02) 

0.22*** 

(0.03) 

0.12*** 

(0.02) 

0.32*** 

(0.03) 

-0.02 

(0.02) 

-0.04** 

(0.01) 

0.10*** 

(0.02) 

    4+ 
-0.02 

(0.02) 

0.13*** 

(0.03) 

-0.10** 

(0.04) 

-0.44*** 

(0.04) 

-0.04 

(0.03) 

-0.04* 

(0.02) 

0.03 

(0.03) 

0.21*** 

(0.04) 

0.11*** 

(0.03) 

0.34*** 

(0.05) 

-0.09*** 

(0.03) 

-0.04* 

(0.02) 

0.11*** 

(0.03) 

Content Domain 

   Reading 

(𝛽𝑅𝑒𝑎𝑑) 

-0.00 

(0.04) 

0.05 

(0.04) 

0.01 

(0.05) 

0.00 

(0.05) 

0.05 

(0.05) 

0.08* 

(0.03) 

-0.03 

(0.04) 

-0.09 

(0.07) 

-0.03 

(0.05) 

0.54*** 

(0.08) 

0.09* 

(0.04) 

0.04 

(0.03) 

0.04 

(0.04) 

   Literature 

(𝛽𝐿𝑖𝑡) 

0.07* 

(0.03) 

0.11*** 

(0.03) 

0.13*** 

(0.04) 

0.12** 

(0.04) 

0.07 

(0.04) 

-0.02 

(0.03) 

-0.01 

(0.03) 

0.01 

(0.05) 

0.14*** 

(0.03) 

0.61*** 

(0.06) 

0.07* 

(0.03) 

0.00 

(0.02) 

0.03 

(0.03) 

   Writing 

(𝛽𝑊𝑟𝑖𝑡𝑒) 

0.15*** 

(0.03) 

0.20*** 

(0.03) 

0.19*** 

(0.04) 

0.02 

(0.04) 

0.01 

(0.03) 

0.06* 

(0.02) 

0.18*** 

(0.03) 

0.23*** 

(0.05) 

-0.01 

(0.03) 

0.17** 

(0.06) 

0.05 

(0.03) 

0.02 

(0.02) 

0.05* 

(0.03) 

   Grammar 

(𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 

0.04 

(0.03) 

0.03 

(0.03) 

0.17*** 

(0.04) 

0.02 

(0.04) 

-0.13*** 

(0.03) 

0.05* 

(0.02) 

-0.01 

(0.03) 

0.08 

(0.05) 

-0.07* 

(0.03) 

-0.25*** 

(0.06) 

0.09*** 

(0.03) 

0.00 

(0.02) 

0.00 

(0.03) 

Interaction Structure 

   Discussion 

(𝛽𝐷𝑖𝑠𝑐) 

0.09*** 

(0.02) 

0.11*** 

(0.03) 

0.10** 

(0.03) 

0.05 

(0.03) 

0.05 

(0.03) 

0.05* 

(0.02) 

0.04 

(0.02) 

0.11** 

(0.04) 

0.19*** 

(0.03) 

0.10* 

(0.05) 

0.03 

(0.02) 

0.02 

(0.02) 

0.02 

(0.02) 

   Independent 

(𝛽𝐼𝑛𝑑) 

0.10** 

(0.03) 

0.02 

(0.04) 

0.12* 

(0.05) 

0.03 

(0.05) 

0.04 

(0.04) 

-0.01 

(0.03) 

-0.02 

(0.04) 

0.11 

(0.06) 

0.07 

(0.04) 

0.04 

(0.07) 

0.04 

(0.04) 

0.02 

(0.03) 

0.06 

(0.04) 

   Recitation 

(𝛽𝑅𝑒𝑐) 

-0.02 

(0.03) 

-0.02 

(0.03) 

0.10** 

(0.04) 

0.05 

(0.04) 

-0.03 

(0.03) 

0.01 

(0.02) 

0.03 

(0.03) 

-0.10* 

(0.05) 

0.01 

(0.03) 

0.10 

(0.06) 

0.06* 

(0.03) 

0.02 

(0.02) 

0.05 

(0.03) 

Grade 

   7th Grade (𝛽7𝑡ℎ) 
-0.03 

(0.03) 

-0.06 

(0.03) 

-0.05 

(0.04) 

0.00 

(0.04) 

-0.04 

(0.04) 

-0.05 

(0.03) 

-0.01 

(0.03) 

-0.12* 

(0.05) 

-0.09* 

(0.04) 

-0.03 

(0.06) 

-0.06* 

(0.03) 

0.01 

(0.02) 

-0.04 

(0.03) 

   8th Grade (𝛽8𝑡ℎ) 
-0.01 

(0.03) 

0.01 

(0.03) 

0.04 

(0.04) 

-0.01 

(0.04) 

0.01 

(0.03) 

0.01 

(0.02) 

0.03 

(0.03) 

0.01 

(0.05) 

-0.02 

(0.03) 

0.08 

(0.06) 

-0.03 

(0.03) 

0.04 

(0.02) 

0.03 

(0.03) 

Prior Achieve 

(𝛽𝑃𝑟𝐴𝑐ℎ) 

-0.00 

(0.02) 

0.04* 

(0.02) 

0.01 

(0.02) 

-0.00 

(0.02) 

-0.00 

(0.02) 

0.01 

(0.01) 

-0.03 

(0.02) 

-0.01 

(0.03) 

0.08*** 

(0.02) 

0.11** 

(0.04) 

-0.02 

(0.02) 

0.03* 

(0.01) 

0.03 

(0.02) 

St. Info Missing 

(𝛽𝐼𝑚𝑝) 

-0.10* 

(0.04) 

-0.07 

(0.05) 

-0.11 

(0.06) 

-0.00 

(0.06) 

-0.00 

(0.05) 

0.04 

(0.04) 

-0.02 

(0.05) 

-0.12 

(0.07) 

-0.03 

(0.06) 

-0.07 

(0.10) 

0.11* 

(0.05) 

-0.03 

(0.04) 

-0.09* 

(0.05) 

Demographic 

Composite 

(𝛽𝐷𝑒𝑚𝑜) 

-0.02 

(0.02) 

-0.04* 

(0.02) 

-0.09*** 

(0.02) 

-0.03 

(0.02) 

-0.04* 

(0.02) 

0.01 

(0.01) 

-0.02 

(0.02) 

-0.06* 

(0.03) 

-0.04 

(0.02) 

0.01 

(0.04) 

-0.03 

(0.02) 

-0.01 

(0.01) 

-0.02 

(0.02) 
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Note. Each column shows the results of a separate model for the indicated item and instrument. Date Scored is 

scaled so a 1 point difference is one month. Monday is the reference group for the Days of the Week. The 

Demographic Composite represents classrooms that have higher percentages of students who are black, 

Hispanic, ELL, and FRL. St. Info Missing is a dummy variable indicating if Prior Achievement and 

Demographic Composite are missing.  PURP=Purpose; INTC=Intellectual Climate; RC=Representation of 

Content; CPK=Connections to Prior Knowledge; CPE=Connections to Personal and /or Cultural Experience; 

ESI=Explicit Strategy Instruction; MOD=Modeling; GP=Guided Practice; CD=Classroom Discussion; 

TBI=Text-Based Instruction; ALL=Accommodations for Language Learners; BMN=Behavior Management; 

TMN=Time Management.  * p<0.05; ** p<0.01; *** p<0.001. 
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Appendix E – Sensitivity Analyses of Creation of Hidden Facets 

This section provides a comparison of an alternative method of creating the Content 

Domain and Interaction Structure variables. I initially created these variables to highlight 

whether a day of instruction had a sustained focus on the relevant content domain or 

interaction structure. This focused the analysis on days where the content domain or 

interaction structure was a prominent part of the lesson. An alternative way of creating these 

variables is to simply average PLATO log scores up to the lesson level. Note that the use of 

30 minute occasions for FFT makes it impossible to use segment level variables in a 

consistent way across all instruments. Tables E.1 and E.2 show a comparison of the fixed 

effects of the CI and SO models across the two models. The Sustained Focus columns are the 

original models while the Average Value columns are the new models. There are some 

meaningful differences across the two models. CLASS and FFT both score Reading lessons 

lower than non-reading lessons only in the average value model, which creates a larger 

contrast to the positive effect on PLATO than in the sustained focus. Similarly, CLASS and 

PLATO score grammar lessons more positively than non-grammar lessons when using the 

average PLATO log values, which again highlights the contrast of two instruments with the 

third. The impact of adding SO facets into the equation also differs slightly across the two 

methods of capturing the CI facets as the literature effect on CLASS decreased more when 

using the sustained focus approach while the literature effect on FFT decreased more when 

using the average value approach. Using average PLATO log values creates a greater sense 

of instrument bias due to discrepant content domain effects across instruments than in the 

original models. On the other hand, the average value model leads FFT to have the same 

positive effect, though admittedly much smaller, for discussion lessons as the other two 

instruments. This effect is only in the CI model and not the SO model. Last, recitation lessons 

receive higher scores on PLATO than non-recitation lessons only for the model using average 
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scores on the PLATO log, leaving PLATO as the only instrument with a positive view of 

recitation lessons. The broad patterns here are consistent, CI facets have large effects and 

those effects are not always consistent across the instruments. The differences, though, do 

suggest a need to better capture these variables. Using occasion level variables would help 

accomplish this, but only if the occasions capture the content domain and interaction 

structures under study. This requires a more careful separation of days of instruction into 

meaningful occasions. 
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Table E.1: Comparison of Sustained Focus and Average Value approaches to constructing 

CI facets for CI Model in Teacher SD Metric 

 Sustained Focus CI Facets Average Value CI Facets 

Names CLASS FFT PLATO CLASS FFT PLATO 

Scored Live(𝛽𝐿𝑖𝑣𝑒) 
0.17 

(0.09) 

0.25 

(0.09)** 

-0.09 

(0.05) 

0.14 

(0.09) 

0.23 

(0.09)* 

-0.09 

(0.05) 

Double Scored(𝛽𝐷𝑏𝑙) 
-0.05 

(0.06) 

0.03 

(0.06) 

-0.09 

(0.03)** 

-0.04 

(0.06) 

0.03 

(0.06) 

-0.05 

(0.03) 

Date Scored (m)(𝛽𝐷𝑡𝑆𝑐) 
-0.03 

(0.01)*** 

-0.02 

(0.01)** 

-0.01 

(0.00)*** 

-0.03 

(0.01)*** 

-0.02 

(0.01)** 

-0.01 

(0.00)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)      

Tuesday 
-0.01 

(0.07) 

0.03 

(0.06) 

-0.01 

(0.04) 

0.02 

(0.07) 

0.03 

(0.06) 

0.02 

(0.04) 

Wednesday 
0.14 

(0.07)* 

0.14 

(0.07)* 

0.02 

(0.04) 

0.16 

(0.07)* 

0.14 

(0.07)* 

0.03 

(0.04) 

Thursday 
-0.00 

(0.07) 

0.09 

(0.07) 

-0.04 

(0.04) 

0.03 

(0.07) 

0.09 

(0.07) 

-0.01 

(0.04) 

Friday 
-0.12 

(0.08) 

-0.07 

(0.08) 

-0.01 

(0.05) 

-0.07 

(0.08) 

-0.07 

(0.08) 

0.02 

(0.04) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) 
-0.05 

(0.01)*** 

-0.04 

(0.01)*** 

-0.02 

(0.01)* 

-0.05 

(0.01)*** 

-0.04 

(0.01)*** 

-0.01 

(0.01)* 

Content Domain       

   Reading (𝛽𝑅𝑒𝑎𝑑) 
0.04 

(0.09) 

-0.12 

(0.08) 

0.10 

(0.05)* 

-0.08 

(0.04)* 

-0.09 

(0.04)* 

0.04 

(0.02)* 

   Literature (𝛽𝐿𝑖𝑡) 
0.16 

(0.06)** 

0.20 

(0.06)*** 

0.24 

(0.03)*** 

0.48 

(0.13)*** 

0.36 

(0.12)** 

0.66 

(0.07)*** 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 
0.19 

(0.06)*** 

0.10 

(0.06) 

0.22 

(0.03)*** 

0.10 

(0.03)*** 

0.03 

(0.03) 

0.15 

(0.01)*** 

   Grammar (𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 
0.08 

(0.06) 

-0.11 

(0.06)* 

0.00 

(0.03) 

0.06 

(0.03)* 

-0.08 

(0.03)** 

0.05 

(0.01)** 

Interaction Structure       

   Discussion (𝛽𝐷𝑖𝑠𝑐) 
0.13 

(0.05)** 

0.01 

(0.04) 

0.15 

(0.03)*** 

0.92 

(0.18)*** 

0.36 

(0.17)* 

0.93 

(0.10)*** 

   Independent (𝛽𝐼𝑛𝑑) 
0.02 

(0.07) 

0.10 

(0.07) 

0.10 

(0.04)* 

0.24 

(0.20) 

0.25 

(0.20) 

0.46 

(0.12)*** 

   Recitation (𝛽𝑅𝑒𝑐) 
-0.08 

(0.05) 

-0.01 

(0.05) 

0.05 

(0.03) 

-0.03 

(0.11) 

0.01 

(0.10) 

0.20 

(0.07)** 

Note. Each column shows the results of a separate model for the indicated instrument. The left three columns 

show the hidden facets when estimated using the sustained focus approach that was used throughout this thesis. 

These columns match the results of Table 5.6. The right three columns average scores across the logs to form 

the same variables as a sensitivity analysis. Date Scored is scaled so a 1 point difference is one month. Monday 

is the reference group for the Days of the Week. Sixth grade is the references group for grade. The Demographic 

Composite represents classrooms that have higher percentages of students who are black, Hispanic, ELL, and 

FRL. St. Info Missing is a dummy variable indicating if Prior Achievement and Demographic Composite are 

missing.  * p<0.05; ** p<0.01; *** p<0.001. 
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Table E.2: Comparison of Sustained Focus and Average Value approaches to constructing 

SO facets for SO Model in Teacher SD Metric 

 Sustained Focus CI Facets Average Value CI Facets 

Names CLASS FFT PLATO CLASS FFT PLATO 

Scored Live (𝛽𝐿𝑖𝑣𝑒) 
0.22 

(0.09)* 

0.30 

(0.09)** 

-0.07 

(0.05) 

0.20 

(0.09)* 

0.28 

(0.09)** 

-0.07 

(0.05) 

Double Scored (𝛽𝐷𝑏𝑙) 
-0.07 

(0.06) 

0.01 

(0.06) 

-0.10 

(0.03)** 

-0.07 

(0.06) 

0.01 

(0.06) 

-0.06 

(0.03)* 

Date Scored (m) (𝛽𝐷𝑡𝑆𝑐) 
-0.02 

(0.01)*** 

-0.01 

(0.01)* 

-0.01 

(0.00)*** 

-0.02 

(0.01)*** 

-0.01 

(0.01)* 

-0.01 

(0.00)*** 

Day of the Week (𝛽𝐷𝑎𝑦𝑊𝑘)      

   Tuesday 
-0.03 

(0.06) 

-0.01 

(0.06) 

-0.02 

(0.04) 

0.00 

(0.06) 

-0.01 

(0.06) 

0.01 

(0.04) 

   Wednesday 
0.11 

(0.07) 

0.11 

(0.07) 

0.01 

(0.04) 

0.12 

(0.07) 

0.11 

(0.07) 

0.01 

(0.04) 

   Thursday 
-0.02 

(0.07) 

0.05 

(0.06) 

-0.05 

(0.04) 

0.01 

(0.06) 

0.05 

(0.06) 

-0.03 

(0.04) 

   Friday 
-0.12 

(0.08) 

-0.09 

(0.08) 

-0.02 

(0.05) 

-0.08 

(0.08) 

-0.10 

(0.08) 

0.01 

(0.04) 

Observation Month (𝛽𝑀𝑜𝑛𝑡ℎ) 
-0.05 

(0.01)*** 

-0.04 

(0.01)*** 

-0.02 

(0.01)** 

-0.05 

(0.01)*** 

-0.04 

(0.01)*** 

-0.01 

(0.01)* 

Content Domain       

   Reading (𝛽𝑅𝑒𝑎𝑑) 
0.07 

(0.08) 

-0.07 

(0.08) 

0.12 

(0.05)* 

-0.04 

(0.04) 

-0.04 

(0.04) 

0.07 

(0.02)** 

   Literature (𝛽𝐿𝑖𝑡) 
0.11 

(0.06) 

0.14 

(0.06)* 

0.21 

(0.03)*** 

0.36 

(0.13)** 

0.21 

(0.12) 

0.60 

(0.07)*** 

   Writing (𝛽𝑊𝑟𝑖𝑡𝑒) 
0.19 

(0.06)*** 

0.08 

(0.05) 

0.21 

(0.03)*** 

0.10 

(0.03)*** 

0.03 

(0.03) 

0.15 

(0.01)*** 

   Grammar (𝛽𝐺𝑟𝑎𝑚𝑚𝑎𝑟) 
0.08 

(0.06) 

-0.11 

(0.06)* 

0.01 

(0.03) 

0.06 

(0.03)* 

-0.08 

(0.03)** 

0.05 

(0.01)*** 

Interaction Structure       

   Discussion (𝛽𝐷𝑖𝑠𝑐) 
0.10 

(0.04)* 

-0.02 

(0.04) 

0.14 

(0.03)*** 

0.81 

(0.17)*** 

0.22 

(0.17) 

0.89 

(0.10)*** 

   Independent (𝛽𝐼𝑛𝑑) 
0.02 

(0.07) 

0.09 

(0.07) 

0.10 

(0.04)* 

0.26 

(0.19) 

0.27 

(0.19) 

0.47 

(0.12)*** 

   Recitation (𝛽𝑅𝑒𝑐) 
-0.07 

(0.05) 

-0.00 

(0.05) 

0.05 

(0.03) 

-0.03 

(0.11) 

0.02 

(0.10) 

0.19 

(0.07)** 

Grade       

   7th Grade (𝛽7𝑡ℎ) 
-0.23 

(0.07)** 

-0.17 

(0.07)* 

-0.09 

(0.04)* 

-0.23 

(0.07)** 

-0.17 

(0.07)* 

-0.10 

(0.04)** 

   8th Grade (𝛽8𝑡ℎ) 
0.03 

(0.07) 

0.03 

(0.07) 

0.03 

(0.04) 

0.05 

(0.07) 

0.03 

(0.07) 

0.03 

(0.04) 

Prior Achievement (𝛽𝑃𝑟𝐴𝑐ℎ) 
0.13 

(0.04)** 

0.20 

(0.04)*** 

0.04 

(0.02) 

0.12 

(0.04)** 

0.20 

(0.04)*** 

0.03 

(0.02) 

St. Info Missing (𝛽𝐼𝑚𝑝) 
-0.21 

(0.11) 

-0.18 

(0.11) 

-0.07 

(0.06) 

-0.20 

(0.11) 

-0.16 

(0.11) 

-0.06 

(0.06) 

Demographic Composite (𝛽𝐷𝑒𝑚𝑜) 
-0.15 

(0.04)*** 

-0.09 

(0.04)* 

-0.06 

(0.02)** 

-0.14 

(0.04)*** 

-0.09 

(0.04)* 

-0.06 

(0.02)** 

Note. Each column shows the results of a separate model for the indicated instrument. The left three columns 

show the hidden facets when estimated using the sustained focus approach that was used throughout this thesis. 

These columns match the results of Table 5.7. The right three columns average scores across the logs to form 

the same variables as a sensitivity analysis. Date Scored is scaled so a 1 point difference is one month. Monday 

is the reference group for the Days of the Week. Sixth grade is the references group for grade. The Demographic 

Composite represents classrooms that have higher percentages of students who are black, Hispanic, ELL, and 

FRL. St. Info Missing is a dummy variable indicating if Prior Achievement and Demographic Composite are 

missing.  * p<0.05; ** p<0.01; *** p<0.001. 
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Appendix F – Bootstrap Instrument Bias Analysis  

One of the questions raised in this thesis is the problem of instrument bias.  An 

observation instrument may score specific types of lessons (e.g. lectures or discussions) 

systematically lower or higher than their true instructional quality.  I explore this through 

looking at the hidden facet effect estimates, standardized to the teacher quality standard 

deviation metric, across the three instruments.  Arguably, the teacher standard deviation 

metric provides a common metric across instruments because it represents the extent to which 

a teacher will move across the distribution of teacher quality as a result of being observed on 

a given facet.  However, there are challenges to directly comparing the estimated regression 

parameters across models.  The regressions were run on the same population so errors in the 

hidden facet regression parameters are likely correlated across the instruments.  In order to 

get around this challenge, I make use of the bootstrap replicates to test for significant 

differences in the regression parameters.  Each bootstrap replicate is generated from an 

independent, simulated sampled.  This should reduce any relationship between the errors of 

the hidden facet parameter estimates.  Note, though, that each of the simulated samples had 

the same distribution of hidden facets across teachers, days, and raters (e.g. 20% of teachers 

were observed on two days of literature in each simulated sample), which could, in principal, 

still cause some bias in the results of this analysis. 

Under the assumption of no instrument bias, the estimated effects of a hidden facet 

are equivalent (except for sampling variation) across the instruments.  This implies that the 

relationship between observed teaching quality and the hidden facet in each of the 

bootstrapped simulation samples is equivalent.  Thus, looking at the estimates of the hidden 

facet effect across the bootstrapped samples, under the assumption of no instrument bias, we 

should see that the sampling variation of the effect within an instrument (across replications) 

is much larger than the differences of this effect across instruments.  We can quantify this 
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difference by estimating a bootstrapped p-value.  I tested this by randomly selecting a hidden 

facet estimate from the bootstrapped replications for each of two instruments, for example 

CLASS and FFT.  I then tested if the hidden facet effect estimate is larger on CLASS as 

compared to the estimate for FFT.  Repeating this procedure 1,000 times, I then calculated 

the percentage of times that the CLASS estimate was larger than the FFT estimate, which 

gives the p-value for whether there is evidence of instrument bias for the given hidden facet 

(note that this is equivalent to the Mann–Whitney U test; Mann & Whitney, 1947).  Because I 

conducted three comparisons for each hidden facet, I use a Bonferroni correction for the p-

values, interpreting p-values below 0.0167 and above 0.983 as significant (i.e. 0.05/3 and 1-

0.05/3). 

Figures F.1-F.3 show the estimates of the hidden facet effects across the bootstrapped 

replications and across instruments.  Figure F.1 shows the SD facets; Figure F.2 shows the CI 

facets (equivalent to Figure 5.1); and Figure F.3 shows the SO facets.  In each graph, every 

small dot represents an estimate of the effect of that hidden facet on one of the bootstrapped 

replications.  The boxes show the 95
th

 percentile of the effect estimates and the line in the 

middle of the box shows the mean effect.  Looking at Figure F.1, the top set of three boxes 

shows the estimates of the effect of being scored live for the PLATO, FFT, and CLASS 

instruments.  Notice the large overlap between the distribution of the estimates for the FFT 

and CLASS scores, which is indicative of cases where there is no evidence of instrument bias 

(p=0.211).  While the average estimated effect of live scoring on FFT scores was larger than 

the average effect on CLASS scores, the sampling variation of these effects was much larger 

than the difference between the two instruments.  On the other hand, almost every 

bootstrapped estimate of the effect of live scoring on PLATO scores is lower than the 

estimated effects on FFT or CLASS scores.  This is indicative of instrument bias, with the 

effect of live scoring on PLATO scores significantly lower than the effect on FFT (p<0.001) 
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or CLASS scores (p=0.008).  I discuss the meaning and implications of these effects in the 

main body of the thesis.  Here, I simply state that none of the other SD facet effects (aside 

from live scoring) in Figure F.1 show were statistically significant.  Figure F.2 shows the 

results for the CI facets.  The effects on PLATO scores are significantly larger than the 

effects on FFT scores on reading, literature, writing, and discussion lessons.  The effects on 

PLATO scores were significantly larger than the effects on CLASS scores for literature, 

writing, and discussion lessons.  The effect on CLASS scores was significantly larger than 

the effect on FFT scores only for grammar lessons. Figure F.3 shows the results for the SO 

facets, where there are no significant differences across instruments. 

 

 

Figure F.1: Comparison of SD Facet Effects across Bootstrap Replicates 
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Figure F.2: Comparison of CI Facet Effects across Bootstrap Replicates 

 

 

Figure F.3: Comparison of SD Facet Effects across Bootstrap Replicates 
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Appendix G – Comparison of Methods of Calculating Confidence Intervals for 

Variance Components   

In order to estimate the uncertainty in the variance components of the GTheory 

models, I used a fully parametric bootstrap to obtain the sampling distribution of the variance 

components (Davison & Hinkley, 1997; Efron & Tibshirani, 1994).  The parametric bootstrap 

assumes that the estimated model is correct and then samples from distributions of the 

estimated measurement facets and the residual to create a new, artificial sample.  I chose a 

parametric bootstrap because the partially crossed nature of the data made a non-parametric 

bootstrap infeasible and evidence from GTheory suggests semi-parametric models tend to 

have biased results (Brennan, 2001).  The model is used to generate estimates of observed 

teaching quality for this new sample and the original model is fit to this new sample.  This 

process is repeated 1,000 times, giving 1,000 estimates of each parameter from models fit to 

each of the 1,000 independent, artificial bootstrapped samples.  These 1,000 replicates form 

the sampling distribution for data equivalent in structure to the UTQ data of the GTheory 

model. Under the assumption that the estimated model is correct, this should estimate the 

sampling distribution of the population parameter of interest (e.g. the variance in observed 

scores that are explainable by the teacher facet: 𝑣𝑎𝑟[υt]).  Figure G.1 shows the distribution 

of these parameters across the 1,000 bootstrap replications.  These distributions should be 

approximately normally distributed.  As Figure G.1 shows, this is the case, except for when 

the measurement facets are estimated to have near 0 variance (i.e. near the boundary of 

allowable values), in which case the distributions appear approximately exponential.     
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Figure G.1: Distribution of the Bootstrap Replicates for the Percentage of Variance 

Attributable to each Measurement Facet on CLASS 

 

When estimating the uncertainty in parameter estimate from the bootstrap replicates, 

it is necessary to find a pivot (or near pivot).  A pivot is a parameter whose distribution is 

independent of its value (Efron & Tibshirani, 1994).  This is necessary so that any uncertainty 

in estimating the parameter of interest does not affect the estimate of the uncertainty in that 

parameter.  That is, even if the GTheory model provides an incorrect estimate of the 

parameter, it must be able to provide a correct estimate of the uncertainty in that parameter 

for the bootstrap to work.  A number of approaches exist to find pivots that can be used to 
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convert the bootstrap replicates into the desired confidence intervals.  The basic bootstrap 

uses the bias in the parameter estimate as a approximate pivot (i.e. 𝑣𝑎�̂�[υt] − 𝑣𝑎𝑟[υt]).  The 

probability of this pivot is then used to estimate the confidence interval (i.e. Pr[𝑣𝑎�̂�(υt) −

𝑣𝑎𝑟(υt)] is inverted substituting the original model estimate for true value and bootstrap 

samples for estimate).   The normal bootstrap estimates a standard error of the parameter 

from the distribution of the bootstrap replicates and uses this to generate a confidence interval 

under the assumption that parameter has a normal distribution (Davison & Hinkley, 1997).  

This simply assumes the distribution of the parameter being estimated is normal.  On the 

other hand, the percentile method directly uses the 95
th

 percentile of the bootstrap replicates 

as an estimate of the confidence interval.  It is justified in that it provides correct confidence 

intervals whenever a function of the parameter of interest is approximately normal (Efron & 

Tibshirani, 1994).  All three of these bootstrap approaches are "first order accurate", which 

means they converge on the order of n^-0.5 (Efron & Tibshirani, 1994; Hesterberg, 2015). 

Other, more complicated and more efficient approaches exist (such as the BCa 

approach and studentized bootstrap), but these generally require additional knowledge of the 

parameter’s distribution, such as the standard deviation of the distribution or an acceleration 

constant (Davison & Hinkley, 1997).  Beyond the computationally prohibitive double 

bootstrap or jackknifed bootstrap, I have no way of estimating these additional values.  Based 

on the three available approaches, the percentile bootstrap appears the best because the 

distributions of the parameters are not always normal or symmetric, which rules out the 

normal and basic bootstraps.  That said, it is not clear how accurate the percentile bootstrap 

will be.  Further, most research on the properties of these parameters is based on non-

parametrically bootstrapped replicates and so may not directly apply to this problem, which 

uses a fully parametric approach (which has implications for how well the sampling 

distribution of the data is being represented).   
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An alternative approach to estimating confidence intervals for the estimates of the 

variance of measurement facets would be to use profiling (Bates, et al., 2015).  Profiling uses 

the shape of the likelihood curve around the estimated parameters to determine how much 

parameters can be adjusted before a significant decrease in model fit occurs.  This provides 

an alternative approach to exploring the uncertainty in model parameters without resorting to 

a bootstrap.  However, I am not directly interested in the confidence intervals on the model 

parameter (i.e. (υt) ), but on a function of this parameter, namely, the percentage of total 

variance (i.e. 𝑣𝑎𝑟(υt)/𝑣𝑎𝑟(X{ir(o:d:s:t)}) ).  There is no simple way to convert the profiled 

confidence intervals of the parameter (i.e. (υt) ) into a percentage because the uncertainty in 

the variance of the observed scores is unknown and is related to the uncertainty in the 

individual parameters in potentially complex ways.  However, I can use the profiled 

confidence intervals to compare the different bootstrap approaches, which I do in Figures 

G.2-G.4.  As the figures show, there were some differences in the three bootstrap approaches 

and the profiled confidence intervals, but these differences are generally small.  Further, the 

percentile bootstrap appears to be the most similar to the profiled confidence intervals, and so 

again is, in some sense, preferred.  The percentile method is also scale invariant and so is 

arguably the most appropriate for the rescaled percentage of variance estimate that I am most 

interested in (Davison & Hinkley, 1997).   

In figures G.5-G.7, I show the confidence intervals for the percentage of the total 

variance attributable to each measurement facet.  Again, there were minimal differences 

across the three methods.  This suggests that there is limited reason to prefer one method over 

the other for this problem and provides some evidence towards the robustness of results to 

this choice (given a number of approaches with different assumptions led to similar 

outcomes).  I chose to use the percentile method because of its scale invariance and closer 

connection to the profiled confidence intervals in the raw variance estimates. 
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Figure G.2: Comparison of Bootstrap Confidence Intervals for the Variance of Measurement 

Facets on CLASS Instrument 
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Figure G.3: Comparison of Bootstrap Confidence Intervals for the Variance of Measurement 

Facets on FFT Instrument 
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Figure G.4: Comparison of Bootstrap Confidence Intervals for the Variance of Measurement 

Facets on PLATO Instrument 
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Figure G.5: Comparison of Bootstrap Confidence Intervals for the Percentage of Variance in 

Observed Scores due to each Measurement Facets on CLASS Instrument 
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Figure G.6: Comparison of Bootstrap Confidence Intervals for the Percentage of Variance in 

Observed Scores due to each Measurement Facets on FFT Instrument 
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Figure G.7: Comparison of Bootstrap Confidence Intervals for the Percentage of Variance in 

Observed Scores due to each Measurement Facets on PLATO Instrument 

 

 


