
Statistical Inference and Spectral Methods for
Network Analysis

by

Xiao Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2017

Doctoral Committee:

Professor Mark E. Newman, Chair
Associate Professor Robert Deegan
Professor Charles R. Doering
Assistant Professor Xiaoming Mao
Assistant Professor Raj Rao Nadakuditi

Xiao Zhang

tomzhang@umich.edu

ORCID iD: 0000-0002-5373-1099

c© Xiao Zhang 2017

献给我的母亲甘劲女士，父亲张玉平先生。

ii

ACKNOWLEDGEMENTS

There are a number of people I am grateful to for the past few years in my graduate

studies. First and foremost, I would like to thank my academic advisor Prof. Mark

Newman, who sets me on the road of this wonderful journey. Mark has been a great

advisor, because both of his tremendous help in research and his general advice in

graduate school. He has taught me not only the specialty knowledge in network

science, but also how to be a good scientist by setting the role model himself. None

of the work presented in this thesis would be possible without him. In addition,

Mark’s understanding and kindness made graduate school much more enjoyable than

I expected. I am truly fortunate and thankful for having him as my advisor.

I am also deeply thankful to the other members in my dissertation committee:

Prof. Robert Deegan, Prof. Charles Doering, Prof. Raj Rao Nadakuditi and Prof.

Xiaoming Mao. Their invaluable comments and discussions have taught me a great

deal during the dissertation period. Further, I am also very thankful for their help

during the past few years through their teaching, collaborations and academic advice

in general.

I would also like to thank the fellow members in the Newman group: Dr. Brian

Ball, George Cantwell, Dr. Travis Martin and Dr. Maria Riolo. Brian has been

offering me help since I joined the group, including things ranging from research

advice to sharing template files for this dissertation. I am also grateful to George

for helpful discussions in research and I believe he will keep doing good work in the

group. I would like to thank Travis for his company at the office, collaborations on

iii

research and the friendship during his time in Michigan. I am indebted to Maria for

many things, particularly for her help on improving the quality of this thesis. It was

a great pleasure to work with these talented people.

I am grateful to other faculty members at Michigan, for their supports and teach-

ing, as well. In particular, I would like to thank Prof. Finn Larsen for his service

on graduate student chair and Prof. Henriette Elvang for her advice during the re-

cruitment process, which eventually helped me deciding on joining the Wolverine

family.

I would like to thank the people at the physics department as well as at the center

for complex systems. I am especially grateful to Chrissy Zigulis for taking good care

of me and reminding me all the administrative things I should have but forget to do,

to Susan Weber for showing me around when I first joined the center for complex

systems, to Mita Gibson for her help with all the documents I need to submit, to

Linda Wood for offering us the surplus of refreshments, and to Elise Bodei for her

tremendous help during the dissertation process after Chrissy’s move.

Lastly but not the least, I am fortunate to have the supports from my wonderful

families and friends, both in and far away from Ann Arbor. To name a few, I am

thankful for having Alex Page and Adam Katcher for being such great roommates as

well as friends. Alex always keeps me entertained and forces me, in a good way, to

do fun things. Adam has taken good care of the house, making the kitchen the best

hangout place. I am also especially grateful to Wenbo Shen for taking me exploring

many things I would otherwise not try, to Chrisy Du for taking me everywhere before

I learned how to drive, to Midhat Farooq for always keeping me companied in the

first-year office, to Qiaoyuan Dong for teaching me how to drive and offering me all

the good snacks, and of course to Rui, my girlfriend and love, who has always been

supportive and tries her best for accommodating my less flexible graduate school life.

My experiences at graduate school would be much less exciting without all those

iv

people, including the ones I would not be able to list here but only in my heart.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF APPENDICES . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 History and overview of network science 4
1.2 Mathematics of networks . 8

1.2.1 Representation of networks 8
1.2.2 Types of networks 9

1.3 Basic measures of networks 11
1.3.1 Degree and degree distribution 11
1.3.2 Clustering . 12
1.3.3 Centrality measures 12

1.4 Random graph models . 15
1.4.1 Erdős-Rényi random graph 15
1.4.2 Configuration model 16
1.4.3 Stochastic block model 17
1.4.4 Degree-corrected stochastic block model 18

1.5 Spectral methods for community detection 19
1.5.1 Graph partitioning and spectral partitioning 19
1.5.2 Modularity and community detection 24
1.5.3 Spectral analysis and detectability threshold 28

1.6 Statistical inference for network models 31
1.6.1 Overview of statistical inference 31
1.6.2 Statistical inference for random graph models 32

vi

1.7 Overview of chapters . 35

II. Spectra of random graphs with community structure and ar-
bitrary degrees . 38

2.1 Introduction . 38
2.2 The model . 39
2.3 Calculation of the spectrum 42

2.3.1 Spectrum of the centered matrix X 43
2.3.2 Examples . 47
2.3.3 Spectrum of the adjacency matrix 51
2.3.4 Examples . 55
2.3.5 Detectability of communities 57

2.4 Conclusions . 60

III. Multiway spectral community detection in networks 61

3.1 Introduction . 61
3.2 Spectral community detection and vector partitioning 62
3.3 Vector partitioning algorithm 66
3.4 Applications . 72

3.4.1 Synthetic networks 72
3.4.2 Real-world examples 76

3.5 Conclusions . 80

IV. Identification of core-periphery structure in networks 81

4.1 Introduction . 81
4.2 The stochastic block model 83
4.3 Fitting to empirical data . 85

4.3.1 The EM algorithm 86
4.3.2 Belief propagation 90

4.4 Detectability . 93
4.4.1 Degree-based algorithm 99

4.5 Applications and performance 100
4.5.1 Computer-generated test networks 100
4.5.2 Real-world examples 103

4.6 Conclusion . 104

V. Random graph models for dynamic networks 108

5.1 Introduction . 108
5.2 Dynamic network models . 111

5.2.1 Dynamic random graph 113

vii

5.2.2 Dynamic random graphs with arbitrary expected de-
grees . 117

5.2.3 Dynamic block models 124
5.3 Applications . 130

5.3.1 Synthetic networks 131
5.3.2 Real-world examples 134

5.4 Conclusions . 142

VI. Conclusion . 144

APPENDICES . 147

BIBLIOGRAPHY . 157

viii

LIST OF FIGURES

1.1 A basic visualization of the southern women network. Nodes are the
women who participate in the study and the edges indicate their co-
attendance of events. Other types to visualizations representing the
same data using different types of networks are also possible and will
be discussed later in the chapter. 2

1.2 Political blog network built by Adamic and Glance [3]. Nodes are
political blogs and the edges are web links among blogs. The col-
ors of nodes represent their political orientation, red for conservative
and blue for liberal. It would be not possible to see the clear di-
vision between the two types had not a particular layout based on
computational techniques of networks were chosen. 3

1.3 (a) A graphical description of the problem of the seven bridges of
Königsberg. The goal is to cross each bridge exactly once and one is
free to start and to end anywhere. Plot excerpted from wikipedia. (b)
A network representation of the problem. The nodes in the network
are individual land pieces and the edges are the bridges connecting
the lands. 5

1.4 Moreno’s sociogram of 2nd grade students interactions. Plot ex-
cerpted from wikipedia. 6

1.5 The karate club network in circular layout, reproduced in a similar
layout that was adopted in the original reference. 6

1.6 An example network (left) and the corresponding adjacency matrix
(right) of the network. 9

1.7 x can take more possible values than s, including the values that s can
take. The constraints on s is therefore “relaxed” to the constraints
on x. 23

ix

1.8 The division of the Karate club network using the leading eigenvec-
tor of the modularity matrix. The division agrees perfectly with the
experiment and the shades of the nodes indicate the strength of com-
munity assignment as measured by the value of the element in the
eigenvector. Figure comes from [97]. 28

1.9 Full spectrum of the modularity matrix of a stochastic block model
with n = 10000, cin = 40 and cout = 10. The red curve and vertical
line are the empirical distribution and the blue curve and vertical line
are the theoretical calculation given in Eqs. (1.47) and (1.48). We
see that the theory agrees very well with the empirical results. . . . 29

2.1 The spectrum of the adjacency matrix for the case of a network with
two groups of equal size and ki = (κi,±θ), where θ = 50, κi+n/2 = κi,
and κi is either 60 or 120 with equal probability. Blue represents
the analytic solution, Eqs. (2.29) and (2.39). Red is the numerical
diagonalization of the adjacency matrix of a single network with n =
10 000 vertices generated from the model with the same parameters.
The numerically evaluated positions of the two outlying eigenvalues
(the red spikes) agree so well with the analytic values (blue spikes)
that the red is mostly obscured behind the blue. 50

2.2 A plot of the left-hand side of Eq. (2.37) as a function of z has simple
poles at z = λi for all i. The solutions of the equation fall at the points
where the curve crosses the horizontal dashed line representing the
value of 1/α1. From the geometry of the figure we can see that the
solutions must lie in between the values of the λi, interlacing with
them, so that z1 ≥ λ1 ≥ z2 ≥ . . . ≥ zn ≥ λn. 52

2.3 A graphical representation of the solution of Eq. (2.42). The left-
hand side of the equation, represented by the solid blue curve, follows
closely the form of the Stieltjes transform g(z), except within a dis-
tance of order 1/n from z1, where it diverges. The horizontal dashed
line represents the value 1/α2 and the solutions to (2.42), of which
there are two, fall at the intersection of this line with the solid curve,
as indicated by the dots. One of these solutions coincides closely
with z1, the other is the solution of g(z) = 1/α2. 55

x

3.1 Depiction of the operation of our vector partitioning heuristic for
partitioning, in this case, a set of two-dimensional vectors into three
groups. The blue lines and dots indicate the individual vectors being
partitioned. The red lines are the group vectors. (The magnitudes of
the group vectors have been rescaled to fit into the figure—normally
they would be much larger, since they are the sums of the individual
vectors in each group.) The dashed lines indicate the borders between
communities, which are determined both by the angles and relative
magnitudes of the group vectors. Thus vector r1 will be assigned to
group 1 in this case, because it has its largest inner product with R1. 70

3.2 NMI as a function of the parameter δ for communities detected in
randomly generated test networks using the vector partitioning al-
gorithm of this chapter (red squares) and the k-means method of
Ref. [135] (blue triangles). The networks consist of n = 3600 vertices
divided into three communities thus: (a) equally sized communities
of 1200 vertices each; (b) communities of size 1800, 1200, and 600;
(c) communities of size 2400, 900, and 300. Each data point is an av-
erage of 100 networks. The vertical dashed line in panel (a) indicates
the position of the detectability threshold below which all methods
must fail [35]. 75

3.3 Illustration of the division of a synthetic three-group network us-
ing (a) the algorithm of this chapter and (b) the k-means algorithm
of [135]. Shapes indicate the planted communities while colors indi-
cate the communities found by the two algorithms. Observe how the
k-means results assign a good portion of vertices belonging to the
blue and green communities incorrectly to the red one, while the vec-
tor partitioning approach does not have this problem. The network
in this case has n = 4000 vertices with communities of size 3000, 500,
and 500. 77

3.4 Four-way division into communities of a collaboration network of sci-
entists at the Santa Fe Institute. Different colors and shapes indicate
the communities discovered by the vector partitioning algorithm of
this chapter. The communities split roughly along lines of research
topic. 78

3.5 21 communities found in a collaboration network of network scientists
using the algorithm proposed in this chapter. 79

xi

4.1 In the stochastic block model both core (red) and periphery (blue)
vertices have Poisson degree distributions, but the mean degree is
higher in the core than in the periphery, so the overall degree distri-
bution of the network is a sum of two overlapping Poisson distribu-
tions as shown here. A simple division of vertices by degree (vertical
dashed line) classifies most vertices into the correct groups, red in
the core and blue in the periphery. Only those in the overlap (shown
in purple) are classified incorrectly. 95

4.2 The fraction of nodes classified incorrectly in tests on stochastic block
model networks parametrized according to Eq. (4.33), as a function
of θ2 for fixed r = 2 and three different values of θ1 as indicated.
Solid points represent results for the maximum likelihood method
described in this chapter. Open points are the results of a simple
division according to vertex degree. Each point is an average over
10 networks of a million nodes. Statistical errors are smaller than
the data points. The parameter ranges are different for different
curves because they are constrained by the requirement that edge
probabilities be nonnegative and that c11 > c12 > c22, which means
that θ2 must satisfy −θ1/r < θ2 < θ1(1− 1/r)/(r + 1). 102

4.3 Core–periphery division of a 1470-node representation of the Internet
at the level of autonomous systems [112]. Nodes placed in the core by
our analysis are drawn larger and in blue; nodes in the periphery are
smaller and in yellow. The network was constructed from data from
the Oregon Routeviews Project and represents an older snapshot,
chosen for the network’s relatively small size. Our methods can easily
be applied to larger networks, but smaller size makes the visualization
of the results clearer. 105

4.4 Core–periphery division of a network of hyperlinks between political
blogs taken from [3]. The network naturally separates into conser-
vative and liberal communities, clearly visible as the two clusters in
this picture. Within each group our algorithm finds a separate core
and periphery indicated by the blue and yellow nodes respectively. . 106

xii

5.1 The normalized mutual information for runs of the community finding
algorithm described here on computer-generated networks themselves
created using the dynamic block model. T represents the number of
transitions between snapshots, so that the total number of snapshots
is T + 1, the parameter δ measures the strength of the community
structure, and η measures the extent to which community struc-
ture and edge dynamics are correlated. (a) Networks with η = 0,
βuniform = 0.4, and varying δ. (b) Networks with η = 1 and βplanted

rs

equal to βin = 0.3 along the diagonal and βout = 0.5 off the diagonal.
(c) Networks with δ = 0, βuniform = 0.4, βin = 0, and βout = 0.8, and
varying η. The vertical dashed line in panels (a) and (b) represents
the theoretical detectability threshold for single networks generated
from the standard stochastic block model with the same parame-
ters [35]. Panel (b) shows that the dynamics of the network can give
us additional information, allowing us to find the community struc-
ture even below this static threshold. Each data point is an average
over 30 networks with n = 500 nodes each and average degree c = 16
for all nodes. 133

5.2 Degree distribution of the Internet at the autonomous system level,
estimated in two different ways, first using a naive average of the de-
grees of our four snapshots (squares) and second using the maximum
likelihood method of this chapter (circles). The points are a his-
togram of estimated degrees using logarithmic (constant ratio) bins.
Note that the expected degrees are not necessarily integers, so the
positions of the points are not integers either. 136

5.3 Communities within the friendship network of UK high-school stu-
dents described in the text. (a) Node colors and shapes indicate
ground-truth data on substance use, divided into students who used
no substances (green circles), one (yellow squares), or two or more
substances (red triangles). (b) Colors and shapes indicate group as-
signments inferred by fitting the network to the dynamic block model
of this chapter using all three snapshots. (c) Colors and shapes in-
dicate the group assignments inferred by fitting an aggregate of the
three snapshots to the static degree-corrected stochastic block model. 139

xiii

5.4 Student proximity network. The nine groups of nodes in each panel
represent the nine classes and the colors and shapes represent the
community structure found using (a) the dynamic model of this chap-
ter applied to the four snapshots and (b) the standard static degree-
corrected block model applied to the aggregate of the snapshots. Note
that classes in the same row belong to the same subject specialty,
where PC stands for physics/chemistry, MP stands for math/physics
and BIO stands for biology. Classes within the same subject specialty
tend to have more inter-class edges than classes in different specialties.141

A.1 (a) Graphical solutions to Eq. (A.12). The solid curves indicate the
right hand side of the equation and the horizontal dashed line in-
dicates the left hand side. (b) A realization of the spectrum of the
modularity matrix, which consists of a continuous band and an out-
lying eigenvalue. Figure taken from [90]. 152

xiv

LIST OF APPENDICES

A. Spectra of stochastic block model and detectability threshold 148

B. Statistical inference methods for stochastic block model 154

xv

ABSTRACT

There has been increasing interest in the study of networked systems such as

biological, technological and social networks in recent years. The purpose of my

thesis is to develop and propose new theoretical models and algorithms for analyzing

large and complex networks. I focus on introducing two major classes of techniques—

statistical inference and spectral methods and how we can apply those techniques to

study various networks.

Community structure is common in real networks. Identifying community struc-

ture in networks can shed light on how the networks function and offer clear ways for

visualizing networks. Spectral methods, algorithms that make use of the eigenvalues

and eigenvectors of matrix representations of networks, are important methods for

solving community detection problems. My contributions to spectral methods are

two-fold: I first present a method to analytically compute the graph spectra of a

family of networks. Using recent advances in computational random matrix theory, I

show that spectral algorithms for community detection in networks are limited by the

strength of the embedded signal. My other contribution is extending existing single-

step spectral algorithms, which are limited to dividing a network into only two or

three communities, to a principled multiway spectral community detection algorithm

that divides a network into any number of communities. The algorithm is shown to

work better than the widely used k-means heuristic algorithm for multiway spectral

community detection. My contributions to statistical inference are coming up with

new models for large-scale structure and proposing learning algorithms for fitting

xvi

real-world networks to those models. In particular, I give an efficient algorithm for

identifying core-periphery structure in networks. Core-periphery structure is another

type of large-scale structure that is commonly found in real-world networks and it

characterizes complex sets of interactions between nodes in networked systems. How-

ever, a good algorithm for identifying core-periphery structure in networks has been

missing. I propose an expectation maximization algorithm for dividing a network into

a densely connected core and a loosely connected periphery. The algorithm applies

belief propagation for computing the optimal decomposition and is therefore efficient

and principled. Lastly, I apply statistical inference methods to the study of dynamic

networks. Most real-world networks are dynamic in nature, meaning they change

over time. There has been increasing research interest in the study of dynamic net-

works. I propose dynamic generalizations of a number of well-known static network

models as well as the corresponding statistical learning algorithms for fitting data

to those dynamic network models. I illustrate the use of the algorithms with both

computer-generated networks and real-world examples.

xvii

CHAPTER I

Introduction

A network is defined by a set of items called nodes (or vertices) with connections

between them, called edges. The study of networks has attracted tremendous atten-

tions from various fields due to their ubiquitous presence in our world. Examples of

complex networks come from diverse areas of study, including technological networks

such as the Internet and the World Wide Web, social networks such as friendship

patterns and collaborations of scientists, biological networks such as food webs and

protein-protein interactions, and many more.

The early work on network science has mostly focused on small networks and has

been primarily qualitative, for example, the so-called “southern women study” by

Davis et al. [33]. The study focused on the social circles of 18 women who were ob-

served over a period of nine months and the participation of the women was recorded

for a series of 14 events. In Figure 1.1, the nodes indicate the individuals of the study

and the edges connecting the nodes indicate that two women have attended an event

together at least once during the observation. The women were reported to organize

themselves into two more or less distinct groups. Because of the tractable size and

interesting properties, the data set has become a touchstone for comparing analyt-

ical methods in social network analysis. In recent years, due to the large amount

of available data, the study of networks has focused on much larger networks, with

1

11

10

13

12

15

14
17

16

18

1

3

2

5

4

7

6

9

8

Figure 1.1: A basic visualization of the southern women network. Nodes are the
women who participate in the study and the edges indicate their co-
attendance of events. Other types to visualizations representing the same
data using different types of networks are also possible and will be dis-
cussed later in the chapter.

thousands and even millions or billions of nodes and edges, using more analytical and

quantitative methods. The study of large networks is highly nontrivial even with the

vast advances in computational techniques. Take the political blog network studied

by Adamic and Glance [3] for example, which is a network of online blogs talking

about politics. The nodes in the network are blogs and the edges are web links be-

tween different blogs. It would be impossible to analyze the network in figure 1.2 the

same way as Davis et al. did in their study. A major question in network science is

how we can accommodate the need for studying large networks in this “information

boom” era. It is the purpose and focus of my thesis to introduce my contributions to

two of the major techniques in the field of network science, namely spectral methods

and statistical inference methods.

In this chapter I will give a brief but comprehensive review of the foundations

of network science, upon which the results in later chapters build. Specifically, I

2

Figure 1.2: Political blog network built by Adamic and Glance [3]. Nodes are polit-
ical blogs and the edges are web links among blogs. The colors of nodes
represent their political orientation, red for conservative and blue for lib-
eral. It would be not possible to see the clear division between the two
types had not a particular layout based on computational techniques of
networks were chosen.

will introduce the notations that will be adopted throughout the thesis. I will also

introduce some of the fundamental theories of network science, some of which are

not directly related to the materials covered in the later chapters but nevertheless are

important in the study of networks. Lastly, I will introduce some of the random graph

models and previous work on spectral methods and statistical inference methods

applied to those models, which are closely related to the later chapters. The materials

covered are mostly inspired by the review by Newman [95] and the textbook by

the same author [98] and interested readers are encouraged to take a look at these

references for more detailed and systematic discussions.

3

1.1 History and overview of network science

The study of networks traces its origin as early as 18th century–it comes from the

notable problem of the seven bridges of the Königsberg. There were seven bridges

built in the city of Königsberg, Prussia over the Pregel River connecting two islands

and two main lands and the posed problem was to devise a walk that crosses each

bridge once and only once. Leonard Euler, the famous mathematician, gave a beauti-

ful proof of the problem, which also laid the foundations of graph theory and network

science. The proof is as follows: first he pointed out we can simply turn each piece

of land into a single “node” and the bridges between them an “edge” as in figure 1.3

(b). The key observation now is that one would traverse two bridges each time as

one enters and leaves the land and therefore each node needs to have an even number

of edges except for at most two, the start node (which we may leave and never en-

ter) and the end node (which we may enter and never leave) [134]. The network (or

graph) in figure 1.3 does not satisfy this constraint and no such path is possible for

the seven bridges of Königsberg. Such paths that traverse each edge once on a graph

were named Eulerian paths after Leonard Euler. This insightful example shows how

representing a real-world system using network can significantly reduce the difficulties

in analyzing and studying the system.

Euler’s seminal work gave birth to the field of graph theory in mathematical

science, but its influences did not spread significantly to other fields, such as physical

and social sciences, until early 20th century, when sociologists realized networks are

natural ways to represent social systems. Early examples include the southern women

studied that we have previously mentioned in figure 1.1, and also a study by Moreno

in 1934 [85] where he observed the children playing at a playground and recorded

their interactions with each other. He reported the results using “sociogram”, which

is nothing but a network in today’s scientific language (see figure 1.4). A more

recent and important example of a social network is the “karate club network” by

4

(a)

(b)

Figure 1.3: (a) A graphical description of the problem of the seven bridges of
Königsberg. The goal is to cross each bridge exactly once and one is
free to start and to end anywhere. Plot excerpted from wikipedia. (b)
A network representation of the problem. The nodes in the network are
individual land pieces and the edges are the bridges connecting the lands.

Zachary [142] which describes a friendship network among members of a college karate

club. This network is particularly interesting to network scientists because it gives

a very interesting example of so-called community detection problem, which will be

discussed in depth at a later point.

Physicists have also become increasingly interested in the study of networks over

the past 20 years and have since introduced many quantitative techniques into the

study of networks. For example, physicists became very interested in the community

detection problem due to its similarities to spin models [47, 51]. And numerous

5

Figure 1.4: Moreno’s sociogram of 2nd grade students interactions. Plot excerpted
from wikipedia.

1

2

3

4

5

6
7

891011
12

13

14

15

16

17

18

19

20

21

22

23
24

25 26 27 28
29

30

31

32

33

34

Figure 1.5: The karate club network in circular layout, reproduced in a similar layout
that was adopted in the original reference.

6

measures based on insights from statistical physics measures have been introduced to

networks [94, 4]. We will introduce more of physicists’ contributions, including the

work in this thesis, to those areas of network science in later sections and in later

chapters as well.

The physics community’s interests in network science go beyond the mentioned

topics. Barabási and Albert [11] introduced a model of the so-called “scale-free net-

work” in which the degrees of nodes are power-law distributed, i.e. the number of

edges each node has follows a power-law distribution. Barabási and Albert’s model

was based on a similar model by Price [122] and both models attempt to capture the

prevailing power-law degree distribution observed in a variety of real-world systems,

such as the Internet, the World Wide Web and citation networks. Their work turned

out to agree very well with empirical observations and hence spurred wide interests

in the study of scale-free networks [12, 13]. Further, inspired by an experiment by

Milgram [81], there is a great amount of work studying the so-called small-world

networks. Milgram performed an experiment where he asked individuals from the

central United States, mainly Kansas and Nebraska, to send a package to a given

target receiver in Boston. The condition was that the sender could send the package

to the receiver if he/she knows the receiver otherwise the sender can send the package

to another person who he/she thinks is more likely to know the receiver. Milgram

found the surprising result that among all the received packages, it only took them on

average five and a half to six steps for the packages to reach the final destination. This

experiment introduces the idea of “six degrees of separation”, that human society is

characterized by a short-path-length. Since then there has been numerous studies on

small-world networks using various physics techniques such as mean-field theory [103],

renormalization group [106], and various models for small-world networks have been

proposed [133]. Inspired by the importance of topology of society, many traditional

fields such as the study of epidemics have also incorporated the idea of networks [111].

7

A number of new techniques have also been introduced to the well-studied models

such as the susceptible-infected-removed model using networks [93, 113]. And there

also has been a number of studies on the spreading process on different models of

networks [114, 84]. All of those fields are very important both academically and

practically and are actively researched. However, they are less relevant to the main

focuses of this thesis and we suggest the interested readers refer to the suggested

references for more discussions.

1.2 Mathematics of networks

1.2.1 Representation of networks

So far we have been talking about networks intuitively but have not yet given

them a formal definition. In this section we will introduce the fundamental notations

that will be adopted throughout the thesis. Formally speaking, a network is a math-

ematical graph, denoted by G = {E, V } where E and V indicates the set of nodes

and the set of edges in the graph, respectively. We will use n and m to represent the

total number of nodes and the total number of edges in the network.

One particularly useful way to represent networks is to use the adjacency matrix

of networks. The adjacency matrix is an n by n matrix with its elements defined

simply as

Aij =

1 if node i is connected to node j,

0 otherwise.

(1.1)

Figure 1.6 shows a simple network along with its adjacency matrix representation.

Since the adjacency matrix A contains all the information about the edges and nodes

of the network, we could also use A to represent the given network G.

There are other ways of representing networks. Here we also introduce the adja-

cency list and the edge list of networks. The adjacency list is similar to the adjacency

8

1

2

3

4

5

6

A =

0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0

Figure 1.6: An example network (left) and the corresponding adjacency matrix (right)
of the network.

matrix but it only keeps track of the nonzero terms in the matrix. That is, for a

network we build a dictionary (hash table) using its nodes as keys and the lists of

its neighbors as the corresponding values. The edge list of a network is built by only

recording the pairs of nodes of a network, as the name suggests. These two represen-

tations of networks are equivalent to the adjacency matrix but are more efficient in

terms of computer memories. From definition, it is easy to see that the memory cost

for storing a network with n nodes and m edges using adjacency matrix is O(n2),

while that for using adjacency list is O(n+m) and O(m) for using edge list.

1.2.2 Types of networks

So far we have been implicitly talking about simple networks : networks with at

most a single edge between any pair of nodes and having no edges that connect nodes

to themselves. Networks with multiple edges (or simply multiedge) between pair of

nodes or with nodes that connect with themselves (or simply self-edge) are called

multigraphs.

In general the edges connecting pairs of nodes do not have to take integer values

but any values are possible. Such networks with edges that can have any values (or

“weights”) are called weighted graphs. The adjacency matrix of a weighted network

9

is given as

Aij =

wij if node i is connected to node j,

0 otherwise.

(1.2)

where wij is the weight of the connection between i and j. In many social networks,

people may have different strength of connections (such as frequency of interaction,

rank of friendship) to the others and weighted networks are useful for representing

such networks.

The edges in networks could also have direction; a link from node i to j does not

have to be reciprocated with an edge from j to i. Such networks are called directed

networks or digraphs for short. The adjacency matrix of a directed network is defined

as

Aij =

1 if node j points to node i,

0 otherwise.

(1.3)

Notice that for undirected networks the adjacency matrices are symmetric while it is

not generally the case for the adjacency matrices of directed networks.

Over the past few years, there is also increasing interest in the study of networks

with many more features such as multiplex networks [88, 52, 14] and temporal net-

works [63, 107, 62]. Multiplex networks are networks with multiple levels. Each node

in the network is conserved in all levels but the edge connections could be different.

Temporal networks, as the name suggests, are networks with nodes and edges that

change over time. All those additions of features are created in order to accommodate

diverse needs to study various real-world systems that can be better captured using

those features. In this thesis we will introduce how representing real-world systems

using these more complicated frameworks can give us a better understanding of the

systems.

10

1.3 Basic measures of networks

In section 1.2 we introduced some of the foundations of network theory and we

are now ready to go into some of the basic statistics that we can use to describe a

network.

1.3.1 Degree and degree distribution

The degree of a node is simply the number of edges connected to the node. For-

mally speaking, the degree ki of a node i is defined as

ki =
∑
j

Aij. (1.4)

Notice we have that ∑
i

ki =
∑
ij

Aij = 2m, (1.5)

where m is the number of edges in the network and the factor of 2 comes from the

fact that each edge counts towards the degree of 2 nodes. A node in a network with

exceptionally large degree is called a hub in the network. Note that it is also common

to represent the degree of node i using di. This notation is adopted when ki might

lead to confusions in some chapters.

The degree distribution of a network is simply the distribution of all the degrees

of the nodes in the network. It is usually denoted by pk or p(k) and it tells us how

the degrees vary in the network. Degree distribution is one of the most basic and

important measures of networks. For example, scale-free networks are characterized

by the power-law distributed degree distribution

p(k) ∝ k−α, (1.6)

where α is the scaling exponent of the power law. For a typical real-world system that

11

follows a power-law distribution, the scaling exponent falls in the range 2 ≤ α ≤ 3.

1.3.2 Clustering

Clustering reflects the probability that two neighbors of a node are themselves

neighbors, either locally or globally. It is usually measured by using the clustering

coefficient which is defined as

C =
3× number of triangles

number of connected triplets of nodes
. (1.7)

In effect, it measures the density of triangles in the network and it is a simple yet

very useful statistic to capture a lot of features in a network. For example it can be

used to test whether the connections of nodes are random in a given network [94].

1.3.3 Centrality measures

Centrality of a node is a measure of “importance” of the node in the network. The

definitions of importance, of course, can be varied and different centrality measures

capture different concepts of importance. The centrality measures of a network only

capture the relative ranking of nodes in the network and their absolute values are

usually not important. In this section we will introduce and review some of the basic

centrality measures.

The degree centrality is one of the most basic centrality measures. The centrality

of each node is simply defined as the number of edges connected to it, its degree. It

is a simple measure which is quite useful in some scenarios. For example, it might be

reasonable to take the number of followers as the centrality measure to measure the

influence of a user on social media such as Twitter or Instagram.

A better measure that is related to the degree centrality is the so-called eigenvector

centrality [19]. It is defined by taking the eigenvector that corresponds to the largest

12

eigenvalue of the adjacency matrix as the centrality of a network, as we will now

demonstrate. The eigenvector centrality is based on the intuition that the centrality

of a node is not just proportional to the number of edges it has but is also dependent

on the centrality of its neighbors. In other words

xi ∝
∑
ij

Aijxj, (1.8)

where we use xi to denote the centrality of node i. In matrix notations Eq. (1.8) says

that x is an eigenvector of A. We are still left with the freedom to choose which

eigenvector x could be, or really any linear combinations of the eigenvectors. To

resolve this issue, let us now assume we start with an estimate of the true centrality

measure, denoted by x(0), and update the estimate using equation (1.8):

x(t) = Atx(0), (1.9)

where t denotes the number of iterations and we ignored the overall normalizing

constants. Now let us write x(0) as a linear combination of the eigenvectors vi of A:

x(0) =
∑
i

civi, (1.10)

where ci are the coefficients of the decomposition. Then Eq. (1.9) can be written as

x(t) = At
∑
i

civi =
∑
i

ciλ
t
ivi = λt1

∑
i

ci

[
λi
λ1

]t
vi, (1.11)

where λi are the eigenvalues of A and we order the eigenvalues such that λ1 ≥ λ2 ≥

. . . ≥ λn. As t → ∞, every term in the summation (λi/λ1)t goes to zero because

λi/λ1 < 1 except when i = 1. Therefore only the coefficient of the leading eigenvector

remains while all the others vanish. Then x(t) = c1λ
t
1v1 ∝ v1. Since we only care

13

about relative ranking in the centrality measure, we could choose any normalization

of the centrality x and say that x satisfy

λ1x = Ax. (1.12)

And we reach the conclusion that eigenvector centrality assigns a node’s centrality

based on its neighbors’ centralities, as we promised. Notice that the elements in the

adjacency matrix are positive and by Perron-Frobenius theorem its eigenvector with

the largest eigenvalue, which is a positive real number, has strictly all positive com-

ponents. Therefore, we can always find a meaningful eigenvector centrality measure

for a simple connected network.

There are yet a few more complicated and improved measures of centrality related

to eigenvector centrality. Non-backtracking centrality is based on the same intuition

that centrality measure of node i is proportional to its neighbors’ importance. But

when we consider the importance of its neighbors we explicitly require that the im-

portance of the neighbors are measured as if node i was removed from the network. It

is proven to be more stable than the eigenvector centrality when applied to networks

with hubs [73]. Katz centrality is different from eigenvector centrality in that it gives

every node an amount of centrality “for free” [66]. It works better than eigenvector

centrality when the network is acyclic. And similarly defined is the PageRank with

the modification that the centralities a node received from its neighbors are normal-

ized by the neighbors’ out-degree [110]. This is the algorithm that the web search

engine Google initially built upon.

The study of centrality measures is a very rich field and there are many more

measures in the literature trying to capture different features of a network. For more

detailed introduction we refer to [98].

14

1.4 Random graph models

In this section we will review some of the classical random network models that

will be discussed extensively in the thesis.

1.4.1 Erdős-Rényi random graph

The random graph model was initially proposed and studied extensively in the

1950s and 1960s by Erdős and Rényi [42, 43]. Although the model is too ideal to

resemble real-world networks, the methodology for studying random graph models is

the building block for the rest of network models. There are two types of random

graph: one is G(n,m), where we fix the number of nodes and the number of edges,

and then put the edges one by one randomly between all possible pairs of nodes. The

other one is G(n, p), where we fix the number of nodes and fix the probability of an

edge existing between each pair of nodes to be p. It was shown by Erdős and Rényi

that the two models are equivalent in the large n limit and we will only focus on

G(n, p) random graph here.

Due to the simplicity of the random graph, we can derive many of the network

statistics introduced in section 1.3 analytically. Here we will focus on the degree

distribution of a random graph. It is easy to show that the expected degree 〈k〉 (or

c) of every node in a random graph is

c = (n− 1)p. (1.13)

And the degree distribution of a random graph is

pk =

(
n− 1

k

)
pk(1− p)n−1−k, (1.14)

which is simply a binomial distribution. Since we are mostly interested in the study

15

of very large networks, that is n → ∞, it is interesting to see the limiting behavior

of the degree distribution of a random graph. In the limit of large n we have

ln
[
(1− p)n−1−k] = (n− 1− k) ln

[
1− c

n− 1

]
' −(n− 1− k)

c

n− 1
' −c, (1.15)

or equivalently

(1− p)n−1−k ' e−c. (1.16)

And (
n− 1

k

)
=

(n− 1)!

(n− 1− k)! k!
' (n− 1)k

k!
(1.17)

and thus Eq. (1.14) can be written as

pk =
(n− 1)k

k!
pke−c =

(n− 1)k

k!

(
c

n− 1

)k
e−c =

ck

k!
e−c (1.18)

which is the Poisson distribution. In the large n limit the degree distribution of a

random graph follows a Poisson distribution and therefore the Erdős-Rényi random

graph is also called a Poisson random graph.

1.4.2 Configuration model

Although the Poisson random graph is easy to study analytically, it is highly

unrealistic. In particular, all the nodes in the network are assumed to be homogeneous

in degrees in Eq. (1.13), while in reality most networks have a broad range of degrees.

The configuration model gets rid of this shortcoming of the Poisson random graph.

In a configuration model network, we are free to specify the degree of each node.

The configuration model is specified by a set of degree parameters {ki} for each

node i and then we connect the edges that are connected to each node randomly to

form the network. The configuration models are able to capture the wide range of

degree distributions in many real-world systems, for example the power-law degree

16

distribution in the World Wide Web.

A closely related model similar to the configuration model is the Chung-Lu model

[25, 24] in which the set of degree parameters {ki} does not specify the degrees of

the nodes but rather the expected degrees of the nodes. If the configuration model

is considered as a generalization of the G(n,m) random graph model in section 1.4.1

then the Chung-Lu model can be treated as a generalization of the G(n, p) model.

1.4.3 Stochastic block model

The Stochastic block model is a particularly useful model to generate community

structure in networks. A network with community structure is a network that can

be divided into groups where every pair of nodes in the same group has denser edge

connections than that of two nodes that come from two different groups. Community

structure has been one of the major focuses of the study of networked system both

due to its widespread applications and academic interests [47]. Numerous methods

have been proposed to solve the community detection problem and in the thesis we

will also introduce a few, and we will give a more detailed discussion of the problem

for specific techniques. The stochastic block model is a generative model researchers

proposed to study community structures in networks where we can artificially create

networks with communities [60].

We introduce the basic form the model here and we will introduce various exten-

sions of the model in the later chapters for specific setup of problems. We take the

total n nodes of the network and divide them into K groups. Specifically we give

each node a group assignment parameter gi = r where r = 1, . . . , K. The probability

of a node being assigned to group r is determined by the prior probability of group

assignment γr, which can be understood as the expected fraction of nodes in a par-

ticular group. Notice we have
∑K

r=1 γr = 1. We also need to define a mixing matrix,

which is a K ×K matrix with each element being prs, the probability of having an

17

edge between a node from group r and a node from group s. In the simplest form we

further set that

prs =

pin if r = s,

pout if r 6= s,

(1.19)

where pin and pout are constant parameters and pin > pout. This gives us a simplest

form of stochastic block model that generates networks with community structures.

1.4.4 Degree-corrected stochastic block model

Just as configuration model generalizes the Poisson random graph to networks

with arbitrary degree distribution, the degree-corrected stochastic block model gen-

eralizes the ordinary stochastic block model to networks with arbitrary degree dis-

tribution [65]. The stochastic block model also suffers from similar drawbacks that

the Poisson random graph does. The degree distributions are homogeneous within

each group, i.e. nodes in the same group have the same expected degrees. The

degree-corrected version of the stochastic block model overcomes this drawback and

is shown to work much better than ordinary stochastic block model when applied to

study real-world examples, particularly in the language of statistical inference, which

will be introduced shortly in section 1.6 and also in [65].

Here we also give a brief overview of the generative process of the degree-corrected

stochastic block model and more details will be included in later chapters. In addition

to K, prs, and γr, the parameters that specify stochastic block model, the degree-

corrected stochastic block model is further specified by a set of degree parameters {θ},

where θi specifies the expected degree of node i. Notice that, unlike configuration

models, for mathematical convenience θi is usually not defined to be exactly the

expected degree of the node. In effect, we want the probability of an edge existing

between node i and j to be pgigjθiθj and following [65] we choose the normalization

18

such that ∑
i

θiδgi,r = 1, (1.20)

where δij is the Kronecker delta function. Then θi can be regarded as the expected

fraction of edges in group gi = r that falls on i itself. Note that since the elements

of the mixing matrix do not directly correspond to the probability of an edge being

present between two nodes, it is more common to use ωrs to represent the elements

in the mixing matrix in the literature to avoid possible confusion. This notation is

adopted in later chapters when we discuss degree-corrected stochastic block models.

1.5 Spectral methods for community detection

In this section we will study the community detection problem a bit more in details

and introduce one of the major techniques for solving the problem, i.e. the spectral

method.

1.5.1 Graph partitioning and spectral partitioning

Graph partitioning is a classical problem that has been studied extensively in

mathematics and computer science. Graph partitioning is similar to community de-

tection where we seek to divide the network into groups, but it differs from community

detection in that the goal is to put the nodes into groups with given sizes and to min-

imize the number of edges between groups. That is we try to minimize

R = 1
2

∑
ij

gi 6=gj

Aij, (1.21)

where we use R to denote the number of edges we need to cut to separate the network

(or cut size) and the factor of 1
2

comes from the fact that we count each edge twice.

Notice that the group sizes have to be fixed in graph partitioning because otherwise we

19

are allowed to put all nodes in the same group and hence minimize the cut by making

no cuts at all. A more flexible way that does not require fixing the group sizes is by

minimizing the ratio cut. Consider the case where we divide the network into only two

groups and let n1 and n2 to denote the sizes of the two groups. For ratio cut we try to

minimize R/n1n2 instead of R. The ratio cut prevents putting all the nodes into one

group because if that is the case, one of n1 and n2 will become very small and making

the ratio quite large. Therefore minimizing ratio cut does not require the group sizes

to be fixed. Nonetheless, since n1n2 is maximized when n1 = n2 = 1
2
n, ratio cut would

still favor groups with roughly equal sizes. In practice the methods for solving the two

problems are not very different and in this section we will focus only on the case where

we fix the group sizes. In the early study of community detection, graph partitioning

was considered as one of the solutions. Although minimizing the between group edges

is not exactly what community structures try to convey in a network, it suggests a very

similar idea of dense edge connections within each group and sparse edge connections

between groups. It later turned out that the methods for solving graph partitioning

can be translated naturally for solving community detection problem. Therefore we

will focus on graph partitioning in this section.

So why is graph partitioning interesting? Let us focus on the case where we only

divide the network into two groups, the simplest in terms of the number of groups.

It is easy to see that there are a total of 2n possible configurations, an exponentially

growing number as n becomes large. It has also been proven that graph partitioning

falls under the category of NP-hard problems and the best we can do currently is

to solve it using heuristic and approximate algorithms. One of the most well-known

algorithms for efficiently solving the problem is the spectral clustering method by

Fiedler [45, 131].

For simplicity, let us consider dividing the network into two groups with equal

sizes, n1 = n2 = 1
2
n and we try to minimize the cut size in Eq. (1.21). Let us also

20

follow the standard notation in the literature by representing the group assignment

of a node gi using si where

si =

1 if node i is in group 1,

−1 if node i is in group 2.

(1.22)

Note that using the definition in Eq. (1.22) we have

1
2
(1− sisj) =

0 if i and j are in the same group,

1 if i and j are in the different group.

(1.23)

And now we can rewrite Eq. (1.21) as

R =
1

4

∑
ij

Aij(1− sisj) =
1

4

∑
i

ki −
1

4

∑
ij

Aijsisj

=
1

4

∑
ij

(kiδij − Aij)sisj. (1.24)

where we use ki to denote the degree of node i and in the last equality we used the

fact that s2
i = 1. Now let us write Lij = kiδij − Aij or in matrix form

L = D−A, (1.25)

where D is the diagonal matrix with its elements being the degree of each node. The

matrix is called the Laplacian matrix of the network and it has very important and

extensive applications in the study of networks, particularly in the spectral analysis

of networks [27]. By substituting Eq. (1.25) into Eq. (1.24), we can then represent

the cut size in matrix form

R =
1

4
sTLs. (1.26)

21

Our goal of minimizing the cut size is now translated into the problem of trying to

solve the minimization quadratic programming problem given the Laplacian matrix

of the graph and with the constraints that si = 1 or − 1 and
∑

i si = 0 (because the

group sizes are equal).

So far we have reduced the problem to a simpler form but still do not have a good

way of solving it due to the strict constraints on s and the problem is still NP-hard.

But writing the problem in the form of Eq. (1.26) we can adopt standard methods

for solving such problems and the usual way is to relax the constraints using the

relaxation method. The key point here is rather than trying to solve Eq. (1.26) with

the constraints directly, we define a length n vector x where xi can take any value

and solve the following problem:

Rx =
1

4
xTLx, (1.27)

with the constraints

1Tx = 0, (1.28)

and

xTx = n. (1.29)

The constraint in Eq. (1.28) again comes from the constraint that the group sizes have

to be equal. The constraint in Eq. (1.29) comes from the fact that sT s =
∑

i s
2
i = n

since si = 1 or − 1. By fixing Eq. (1.29), it says that the norm of x is equal to the

norm of s. One can think of s as a vector that points to the corners a hypercube

while x is a vector that points to anywhere on the hypersphere that circumscribes

the hypercube. Figure 1.7 shows a graphical visualization of the relaxation.

Solving the problem in Eq. (1.27) is now easy. We enforce the constraints in

Eqs. (1.28) and (1.29) by introducing two Lagrange multipliers λ and µ and minimize

22

s

x

Figure 1.7: x can take more possible values than s, including the values that s can
take. The constraints on s is therefore “relaxed” to the constraints on x.

the relaxed cut size Rx by taking its derivative respect to x and set to 0. This gives

∂

∂xk

[∑
ij

Lijxixj − λ
∑
i

x2
i − µ

∑
i

xi

]
= 0, (1.30)

which gives Lx = λx + 1
2
µ1 in matrix notation. Noting that 1 is an eigenvector

of L with eigenvalue 0 from its definition in Eq. (1.25) and multiplying the matrix

equation on both sides with 1T we find that µ = 0. This gives us that

Lx = λx. (1.31)

That is, x is an eigenvector of the Laplacian matrix. Then the relaxed graph parti-

tioning problem in Eq. (1.27) can be rewritten as

Rx =
1

4
xTLx =

1

4
λxTx =

nλ

4
. (1.32)

In order to minimize the relaxed cut size we need to then choose λ as small as possible.

23

However, the lowest eigenvalue of the Laplacian matrix, which is 0 with corresponding

eigenvector 1, does not satisfy the equal-group-size constraint in Eq. (1.28). Therefore

we are only allowed to choose λ as the second lowest eigenvalue of the Laplacian

matrix and take the corresponding eigenvector as our solution to x. The second

lowest eigenvector is called the Fiedler vector in honor of Fiedler’s contributions.

We have solved the relaxed graph partitioning problem but we have not yet solved

the original problem that we are interested in and we need to specify how to get s from

x. The “unrelaxation” turns out to be actually quite easy as we can simply take the

sign of xi as the corresponding value for si. It is easy to see that this particular choice

maximizes sTx and hence minimizes the angle between x and s. Our final spectral

partitioning algorithm for solving graph partitioning problem is then as follows: we

compute the second lowest eigenvector of the Laplacian matrix and divide the nodes

in the network according to the signs of the elements in the eigenvector.

1.5.2 Modularity and community detection

As we have briefly discussed, although graph partitioning is quite similar to the

ideas of community detection, it is designed for a somewhat different task. More

importantly, the group sizes need to be fixed in graph partitioning. This could be

very undesirable in real-world applications because in most cases we do not know

the sizes of each community in a network. All those undesirable features of graph

partitioning suggest us looking for a better solution to the community detection prob-

lem. Girvan and Newman proposed a measure called modularity [101] which has been

proven to be quite successful and is still in great use today. Modularity is usually

denoted using Q and intuitively it is defined as Q = (number of in-group edges) −

(expected number of in-group edges). That is, a network presents community struc-

ture if it has a higher number of in-group edge connections than what we would expect

them to have if the edges were wired randomly. More formally, the modularity is then

24

defined as

Q =
1

2m

∑
ij

(Aij − Pij) δgigj , (1.33)

where δ guarantees the sum is over the edges inside each group and Pij denotes

the probability of an edge exists between node i and j if the edges were put down

randomly. We still, however, need to define what Pij is. The common choice is that

we assume the network is generated by a configuration model and it is easy to show

that Pij = kikj/2m. Putting this into Eq. (1.33) we have

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δgigj . (1.34)

In order to find the best division of a network into communities we then maximize

Q in Eq. (1.34). The maximization of modularity for community detection has been

a great success. There are a number of algorithms proposed for this problem using

techniques ranging from Monte Carlo Markov Chain (MCMC) [58, 78], extremal

optimization [40], and greedy algorithms [28]. In this section we will focus on the

spectral method for modularity maximization proposed in [96].

For the modularity defined in Eq. (1.34), we further define the modularity matrix

as

Bij = Aij −
kikj
2m

. (1.35)

Note that the modularity matrix satisfies

∑
j

Bij =
∑
j

Aij −
ki

2m

∑
j

kj = ki −
ki

2m
2m = 0, (1.36)

a property which will become useful shortly. Let us again consider the division of

the network into two communities and let si denote the group assignment of node i

25

where

si =

1 if node i in group 1,

−1 if node i in group 2.

(1.37)

Additionally, similar to Eq. (1.23) we have

1
2
(sisj + 1) = δsisj =

1 if i and j are in the same group,

0 if i and j are in the different group.

(1.38)

Putting Eqs. (1.35) and (1.38) into the definition of modularity in Eq. (1.34) we then

arrive at the expression

Q =
1

4m

∑
ij

Bij (sisj + 1) =
1

4m

∑
ij

Bijsisj, (1.39)

where in the second equality made use of the property in Eq. (1.36). In matrix forms:

Q =
1

4m
sTBs. (1.40)

The problem of community detection is now translated into the problem of maximizing

the modularity in Eq. 1.40 with the constraints that si = 1 or − 1.

Notice the surprising resemblance between the modularity maximization and the

spectral graph partitioning in Eq. (1.26). This suggests that we can solve the mod-

ularity maximization similarly using the spectral relaxation method and indeed it

is the case. We again let x be the matrix that can take any value and rewrite the

relaxed modularity maximization problem as

Qx =
1

4m
xTBx, (1.41)

26

with the constraint that

xTx = n. (1.42)

We then introduce the Lagrange multiplier and take the derivative of Eq. (1.41) and

set to 0 and we get

Bx = βx. (1.43)

That is x is a eigenvetor of B with corresponding eigenvalues denoted by β. Finally

the modularity can be rewritten as

Qx =
1

4m
βxTx =

n

4m
β. (1.44)

In order to maximize the modularity, we choose β as large as possible. This leads

us to choose the eigenvector that corresponds to the largest eigenvalue of B as our

solution to x. We also still need to unrelax x to s and again we can do this simply

by assigning the nodes into their groups according to the signs of the elements in

the leading eigenvector. Our algorithm for spectral modularity maximization and

spectral community detection is then as follows: we compute the leading eigenvector

of the modularity matrix and then assign the nodes to their groups according to the

signs of the elements in the eigenvector.

Lastly, let us apply the spectral algorithm to a simple example for illustration.

We return to the karate club network of Zachary in figure 1.5 and explain why it is

such an interesting example that there is a special prize named after it at Netsci, the

world’s largest network science conference [2]. As we have introduced previously, the

karate club network was a friendship network among club members that attended

the karate club at a US university. There was a conflict that occurred in the club

between two major people, the administrator and the instructor, during the study.

The conflict eventually dissolved the club and the two people started their own clubs

afterwards [142]. The conflict split the original club into two clubs and surprisingly the

27

Figure 1.8: The division of the Karate club network using the leading eigenvector of
the modularity matrix. The division agrees perfectly with the experiment
and the shades of the nodes indicate the strength of community assign-
ment as measured by the value of the element in the eigenvector. Figure
comes from [97].

members who later join either club follow strongly with the friendship they have with

either person. This is exactly the definition of a community structure in a network and

this example is one of the few real-world examples that have community structures

with known group assignment. This very nice feature of the network has made it a

very popular choice as the benchmark to test community detection algorithms and

figure 1.8 shows the result of testing the spectral method introduced in this section

on the example. The result of the division coincides exactly with the known result in

real life.

1.5.3 Spectral analysis and detectability threshold

In this section, we will introduce an elegant result of community detection algo-

rithms that makes use of the spectral property of networks. It has been shown that

there exists a transition from a region where the original group assignment is unde-

tectable to one where detection is possible in stochastic block models [35]. Here we

present how to obtain the same detectability threshold using techniques from recent

developments in the study of random matrix theory. For length considerations we

will only present the main results in this section and for more details we refer to the

28

original reference by Nadakuditi and Newman [90] or in Appendix A.

−10 −5 0 5 10 15 20
Eigenvalue z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S
p
e
ct

ra
l
d
e
n
si

ty
 ρ

(z
)

Figure 1.9: Full spectrum of the modularity matrix of a stochastic block model with
n = 10000, cin = 40 and cout = 10. The red curve and vertical line are
the empirical distribution and the blue curve and vertical line are the
theoretical calculation given in Eqs. (1.47) and (1.48). We see that the
theory agrees very well with the empirical results.

Random matrix theory is the study of the spectra of matrices whose elements are

random. The adjacency matrix, Laplacian matrix and modularity matrix of random

graph models naturally fall into this category. We first note that the “expected”

adjacency matrix of the two-group stochastic block model is

〈A〉 = 1
2

(cin + cout) eeT + 1
2

(cin − cout) uuT , (1.45)

where we have defined cin = npin and cout = npout, and e and u are defined as

e = (1, . . . , 1)/
√
n and u = (1, . . . , 1,−1, . . . ,−1)/

√
n. Notice that the community

information is contained in u. The adjacency matrix is then A = 〈A〉+X where X is

29

a symmetric random matrix with iid elements of mean zero. The modularity matrix

is

B = A− 1
2

(cin + cout) eeT = X + 1
2

(cin − cout) uuT . (1.46)

The power of random matrix theory comes from the fact that it is able to compute the

full spectrum of X and asserts its influence on the spectrum of B. It is proven that the

full spectrum of the modularity matrix consists of two parts, a continuous band that

follows the Wigner semicircle law and an outlying leading eigenvalue corresponds to

the eigenvector u [90]. The semicircle law states that the spectral density of a random

matrix takes the form:

ρ(z) =

√
4c− z2

2πc
, (1.47)

where c = 1
2
(cin + cout) is the expected degree of a node in the network. And the

leading eigenvalue is given by

z1 = 1
2
(cin − cout) +

cin + cout

cin − cout

. (1.48)

A realization of the spectrum of the modularity matrix of stochastic block model is

given in figure. 1.9.

The implication of Eqs. (1.47) and (1.48) is as follows: when we fix the expected de-

gree c of nodes in the network, as the strength of community structure, i.e. cin− cout,

in the network varies, the rightmost edge of the continuous spectral band remains

fixed but the leading eigenvalue in Eq. (1.48) changes. This implies that for certain

parameter values, the eigenvalue that corresponds to the eigenvector u will get ab-

sorbed into the continuous band. As we have discussed in section 1.5.2, the spectral

method for community detection relies on finding the eigenvector u, which contains

the information of the community structure, of the modularity matrix. The commu-

nity structure in the network is detectable via spectral method if and only if we can

separate the informative eigenvalue z1, which corresponds to u, from the eigenvalues

30

in the continuous band, which correspond to random noise. It is easy to show that

z1 gets absorbed into the band when

cin − cout = 2
√
c. (1.49)

When the strength of the planted community structure in the stochastic block model

is weaker than this threshold, we are not able to detect the community structure

even though we know it exists, because we planted the structure. This fascinating

phenomenon inspired a number of works in the study of the stochastic block model [86,

87].

1.6 Statistical inference for network models

1.6.1 Overview of statistical inference

In this section we introduce another very important class of methods in studying

the structure of networks: statistical inference methods. Statistical inference is a very

large field and in general it is any process of deducing the properties of underlying

model/distribution using the analysis of data. Here we introduce some of the concepts

that are relevant and useful in this thesis.

Statistical inference usually focuses on two major components: a set of observed

data, denoted by D, and an underlying model assumption, denoted by M , which

in turn is specified by a set of parameters θ. The study usually revolves around

the quantity P (D|θ), the probability or the likelihood of the data given the model

parameters. Another related quantity is the log-likelihood which is nothing but the

logarithm of the likelihood.

Usually we are given the observed data but not the parameters and it is our goal

to estimate the parameters using the data. Maximum likelihood estimation (MLE) is

such a technique in which one estimates the parameters to be the ones that maximize

31

the likelihood of observed data. Let us now go through how it works with a simple

coin toss problem: assume we have a coin which we believe to be biased and out of n

total tosses, h turn out to be heads. We ask what would be the best estimate of the

probability of the coin’s flip to be heads? We assume each flip to be an independently

distributed Bernoulli random variable with the probability of landing on heads is p.

Then we get the likelihood of the observed data was generated by the assumed model

is

L(p) = P (D|p) = ph(1− p)n−h, (1.50)

and the log-likelihood is

L(p) = logP (D|p) = h log p+ (n− h) log (1− p). (1.51)

Notice that the likelihood and the log-likelihood is a function of the parameter p. In

order to give our best estimate of p, we maximize the likelihood or equivalently the

log-likelihood by taking the derivative of the likelihood function and set to 0. Using

the log-likelihood in Eq. (1.51) gives us

p̂ =
h

n
, (1.52)

where p̂ denotes the estimate on p and is simply the number of heads divided by the

total number of flips.

1.6.2 Statistical inference for random graph models

In the study of networks using statistical inference method, the data is the ob-

served network and the models can be any model of interests, for example the random

graph models introduced in section 1.4. Here we answer the question “what is the

best estimate of the parameters assuming the graph is generated by a specific model?”

32

for each model given in section 1.4.

Let us consider the Poisson random graph first, where the model is specified by a

single parameter p for a network of given size. Following the procedure in section 1.6.1

we first write down the likelihood of the observed network, which we represent using

its adjacency matrix, is generated with a Poisson random graph as

P (A|p) =
∏
i<j

pAij(1− p)1−Aij = pm(1− p)(n2−n)/2−m, (1.53)

and the log-likelihood:

logP (A|p) = m log p+

[
n(n− 1)

2
−m

]
log (1− p), (1.54)

To give an MLE of the parameter p we take the derivative of Eq. (1.54) and set to 0,

which gives us

m

p
−
[
n(n− 1)

2
−m

]
1

1− p
= 0. (1.55)

After organizing this gives

p̂ =
2m

n(n− 1)
=

c

n− 1
, (1.56)

where c = 2m/n is the average degree of the network. Eq. (1.56) gives the same result

as what we have from definition of the random graph in Eq. (1.13) as expected.

The case of the configuration model is less interesting. Since the configuration

model is specified by the set of degree parameters {ki} for each node i and for an

observed network the degree of each node is only observed once. Therefore the best

estimate of the degree is simply k̂i = ki, i.e. the observed degree itself. The general-

ization of configuration model to the temporal network is, however, more interesting

as we may observe a sequence of degrees for each node. More details will be discussed

in chapter V.

33

The case of stochastic block model is very interesting and important and will be

much of the focus of this thesis. The stochastic block model of given K is specified

by the mixing matrix and follow the notation in most literature we will denote here

using {ωrs} with r and s are indices for group assignment, the prior probability of

node assignment {γr} and most importantly the group assignment parameters {gi}.

In order to write down a solvable likelihood function, we need to know the group

assignments of the nodes. This is where the problem is interesting, since in general

we do not know the group assignments. In fact, inferring the group assignments is

usually the major interest when we fit a network into stochastic block model. For now,

let us assume we do know the group assignments and we write down the complete

data likelihood

P (A, g|ω, γ) =
∏
i

γgi
∏
i<j

ω
Aij
gigj

Aij!
exp (−ωgigj)

=
∏
r

γnrr
∏
rs

ωmrs/2rs exp (−1
2
nrnsωrs)

∏
i<j

1

Aij!
, (1.57)

where mrs denotes the total number of edges connecting group r and s if r 6= s or

twice that number if r = s. And the log-likelihood is

logP (A, g|ω, γ) =
∑
r

nr log γr + 1
2

∑
rs

(mrs logωrs − nrnsωrs) + . . . , (1.58)

where we have ignored terms that do not depend on γ or ω, which will become zero

when we differentiate the log-likelihood anyway. Following the standard procedure

then gives the estimates for the parameters as

γ̂r =
nr
n
, ω̂rs =

mrs

nrns
. (1.59)

We still need to answer the question of the group assignment parameters. The

34

difficulties are that there are a total of Kn configurations of group assignment and to

explore the entire parameter space would be impossible. The group assignments are

necessary in order to solve for γ and ω in Eq. (1.59), but themselves are unknown

or “hidden”. Such parameters in statistics are called hidden parameters or latent

variables and we solve this problem using the well-known technique in statistics called

the expectation-maximization (EM) algorithm. As the name suggests, EM algorithm

consists of the E step where we find the “expected” values the latent variables and the

M step where we find an optimal estimate of the parameters. The full EM algorithm

is an iterative process where we alternate between the two steps. For stochastic block

model, the M step is not particularly hard. We just need to update γ and ω according

to Eq. (1.59). The E step is more challenging but a number of methods have been

proposed, including the use of Monte Carlo algorithm [128], using a vertex moving

heuristic [65] and using message passing algorithm called belief propagation [34]. For

length considerations we leave more detailed discussions of the mentioned methods

in Appendix B.

The case of degree-corrected stochastic block model is not much different from

that of the ordinary stochastic block model in formulation. Although the additional

degree parameter θ makes solving the likelihood function harder and hence making

the inference of the parameters harder, including the group assignment parameters.

We will omit the discussion in the introduction section as we will return to this in

the later chapters.

1.7 Overview of chapters

In this chapter we have introduced the necessary and relevant foundations in

network science required for this thesis. In the subsequent chapters we will study in

details how new methods are developed based on those foundations. In chapter II

we use methods from random matrix theory to give a generalization to the spectral

35

density computation we have introduced in section 1.5.3 and Appendix A, where we

give a prescription for calculating the spectrum of a network with both community

structure and an arbitrary degree distribution. In general the spectrum has two parts,

a continuous spectral band, which can depart strongly from the classic semicircle form,

and a set of outlying eigenvalues that indicate the presence of communities. This

chapter is based on the work published in Physical Review E by Zhang et al. [145].

In chapter III we generalize the spectral method introduced in section 1.5.2, which

was proposed for dividing the network into only two communities, to a method that

can divide the network into any number of communities. The algorithm makes use

of a mapping from modularity maximization to a vector partitioning problem, com-

bined with a fast heuristic for vector partitioning. We compare the performance of

this spectral algorithm with previous approaches and find it to give superior results,

particularly in cases where community sizes are unbalanced. We also give demonstra-

tive applications of the algorithm to two real-world networks and find that it produces

results in good agreement with expectations for the networks studied. This chapter

is based on the work published in Physical Review E by Zhang and Newman [146].

In chapter IV we introduce a statistical inference method for dividing a network

into a core-periphery structure. Many networks can be usefully decomposed into a

dense core plus an outlying, loosely-connected periphery. Our method fits a gener-

ative model of core-periphery structure to observed data using a combination of an

expectation–maximization algorithm for calculating the parameters of the model and

a belief propagation algorithm for calculating the decomposition itself. We find the

method to be efficient, scaling easily to networks with a million or more nodes and

we test it on a range of networks, including real-world examples as well as computer-

generated benchmarks, for which it successfully identifies known core-periphery struc-

ture with low error rate. We also demonstrate that the method is immune from the

detectability transition observed in the related community detection problem, which

36

prevents the detection of community structure when that structure is too weak. There

is no such transition for core-periphery structure, which is detectable, albeit with

some statistical error, no matter how weak it is. This chapter is based on the work

published in Physical Review E by Zhang et al. [143].

In chapter V we propose a dynamic generalization to a number of random graph

models that were introduced in section 1.4. We assume that the presence and absence

of edges are governed by continuous-time Markov processes with rate parameters

that can depend on properties of the nodes. In addition to computing equilibrium

properties of these models, we demonstrate their use in data analysis and statistical

inference, giving efficient algorithms for fitting them to observed network data. This

allows us, for instance, to estimate the time constants of network evolution or infer

community structure from temporal network data using cues embedded both in the

probabilities over time that node pairs are connected by edges and in the characteristic

dynamics of edge appearance and disappearance. We illustrate our methods with a

selection of applications, both to computer-generated test networks and real-world

examples. This chapter is based on the work in preprint by Zhang et al. [144].

37

CHAPTER II

Spectra of random graphs with community

structure and arbitrary degrees

2.1 Introduction

We introduced the techniques for calculating the spectra of stochastic block models

in section 1.5.3. However, as we have discussed in section 1.4, the stochastic block

model is limited particularly because of its Poissonian degree distribution, which is

highly unrealistic. In this chapter, we will generalize the calculations of spectral

densities for networks with not only community structures but also broad degree

distributions, which are more closely related to real-world networks. We have also

introduced that recent work on spectral analysis of networks has demonstrated the

presence of a “detectability threshold” as a function of the strength of the embedded

structure [90]. When the community structure becomes sufficiently weak it can be

shown that the spectrum loses all trace of that structure, implying that any method

or algorithm for community detection based on spectral properties must fail at this

transition point. We show that a similar transition is also found in our model with

general degree distribution.

In other work, a number of authors have studied the spectra of synthetic networks

having broad degree distributions, such as the power-law distributions observed in

38

many real-world networks [44, 50, 26, 39, 70, 91]. It is found that while the spectrum

for Poisson degree distribution follows the classic Wigner semicircle law, in the more

general case it departs from the semicircle, sometimes dramatically.

In this chapter, we combine these two previous lines of investigation and study

the spectra of networks that possess general degree distributions and simultaneously

contain community structure. To do this, we make use of a recently proposed network

model by Ball et al. [10] that generalizes the models studied before. We derive an

analytic prescription for calculating the adjacency matrix spectra of networks gener-

ated by this model, which is exact in the limit of large network size and large average

degree. (The opposite limit, of constant average degree, is tackled by completely

different means and for a different model in [71].) In general the spectra have two

components. The first is a continuous spectral band containing most of the eigen-

values but having a shape that deviates from the semicircle law seen in networks

with Poisson degree distribution. The second component consists of outlying eigen-

values, outside the spectral band and normally equal in number to the number of

communities in the network.

2.2 The model

The previous calculations described in the introduction make use of two classes of

model networks. For networks with community structure, calculations were performed

using the stochastic block model introduced in section 1.4.3, in which vertices are

divided into groups and edges placed between them independently at random with

probabilities that depend on the group membership of the vertices involved [60, 30,

123, 35, 90, 64]. This model gives community structure of tunable strength but

vertices have a Poisson distribution of degrees within each community.

For networks without community structure but with non-Poisson degree distri-

butions, most calculations have been performed using the configuration model in-

39

troduced in section 1.4.2, a random graph conditioned on the actual degrees of the

vertices [83, 105], or a variant of the configuration model in which one fixes only the

expected values of the degrees and not their actual values [24].

The calculations presented in this chapter make use of a model proposed by

Ball et al. [10] that simultaneously generalizes both the stochastic block model and

the configuration model, so that both are special cases of the more general model.

The model of Ball et al. is defined as follows. We assume an undirected network

of n vertices labeled i = 1 . . . n, with each of which is associated a q-component real

vector ki where q is a parameter we choose. Then the number of edges between

vertices i and j is an independent, Poisson-distributed random variable with mean

ki ·kj/2m, where m is a normalizing constant given by

2m =

∣∣∣∣∣
n∑
i=1

ki

∣∣∣∣∣. (2.1)

Physically the value of m represents the average total number of edges in the whole

network. Its inclusion is merely conventional—one could easily omit it and renormal-

ize ki accordingly, and in fact Ball et al. did omit it in their original formulation of

the model. However, including it will simplify our notation later, as well as making

the connection between this model and the configuration model clearer.

The expected number of edges between vertices must be non-negative and

Ball et al. ensured this by requiring that the elements of the vectors ki all be non-

negative, but this is not strictly necessary since one can always rotate the vectors

globally through any angle (thereby potentially introducing some negative elements)

without affecting their products ki ·kj. In this chapter we will only require that all

products be nonnegative, which includes all cases studied by Ball et al. but also allows

us to consider some cases they did not.

Note that it is possible in this model for there to be more than one edge between

40

any pair of vertices (because the number of edges is Poisson distributed) and this

may seem unrealistic, but in almost all real-world situations we are concerned with

networks that are sparse, in the sense that only a vanishing fraction of all possible

edges is present in the network, which means that ki · kj/2m will be vanishing as n

becomes large. We will assume this to be the case here, in which case the chances

of having two or more edges between the same pair of vertices also vanishes and for

practical purposes the network contains only single edges.

The average degree c of a vertex in the network is

c =
2m

n
=

∣∣∣∣ 1n
n∑
i=1

ki

∣∣∣∣, (2.2)

and hence increases in proportion to the average of ki. In this chapter we will consider

networks where the vectors ki can have a completely general distribution, which gives

us a good deal of flexibility about the structure of our network, but consider for

example a network in which the vectors have arbitrary lengths, but each one points

toward one of the corners of a regular q-simplex in a (hyper)plane perpendicular to

the direction (1, 1, 1, . . .). For such a choice the vectors have the form ki = kivr,

where ki is the magnitude of the vector and vr is one of q unit vectors that will

denote the group r that vertex i belongs to. Then

ki ·kj = kikjvr ·vs = kikj[δrs + (1− δrs) cosφ], (2.3)

where φ is the angle between unit vectors vr and vs (all vectors being separated by

the same angle in a regular simplex). Thus for this choice of parametrization we can

increase the expected number of edges from i to all other vertices by increasing the

magnitude ki of the vector ki, hence increasing the vertex’s degree. At the same time

we can independently control the relative probability of connections within groups

(when r = s) and between them (r 6= s) by varying the angle φ.

41

If we set φ = 0 (so that all vr point in the (1, 1, 1, . . .) direction) then this model

becomes equivalent to the variant of the configuration model in which the expected

vertex degrees are fixed and there is probability kikj/2m of connection between each

pair of vertices, regardless of community membership. (Alternatively, if we set the

number of groups q to 1, so that the vectors ki become scalars ki then we also recover

the configuration model.) If we allow φ to be nonzero but make all ki equal to the

same constant value a, then the model becomes equivalent to the standard stochastic

block model, having a probability pin = a2/2m of connection between vertices in the

same community and a smaller probability pout = (a2/2m) cosφ between vertices in

different communities. For all other choices, the model generalizes both the configu-

ration model and the stochastic block model, allowing us to have nontrivial degrees

and community structure in the same network, as well as other more complex types

of structure (such as overlapping groups—see Ref. [10]).

2.3 Calculation of the spectrum

In this section we calculate the average spectrum of the adjacency matrix A for

networks generated from the model above, in the limit of large system size. The

adjacency matrix is the symmetric matrix with elements Aij equal to the number

of edges between vertices i and j. The elements are Poisson independent random

integers for our model, although crucially they are not identically distributed. The

spectra of matrices with Poisson elements of this kind can be calculated using methods

of random matrix theory. Our strategy is similar to that of the calculation for the

spectrum of the stochastic block model introduced in Appendix A. We first calculate

the spectrum of the matrix

X = A− 〈A〉, (2.4)

42

where 〈A〉 is the average value of the adjacency matrix within the model, which has

elements 〈Aij〉 = ki ·kj/2m. Since ki is a q-element vector, this implies that 〈A〉 has

rank q and hence its eigenvector decomposition has the form

〈A〉 =

q∑
r=1

αruru
T
r , (2.5)

where u are normalized eigenvectors and αr are the corresponding eigenvalues.

The matrix X is a “centered” random matrix, having independent random el-

ements with zero mean, which makes the calculation of its spectrum particularly

straightforward. Once we have calculated the spectrum of this centered matrix we

will then add the rank-q term 〈A〉 back in as a perturbation:

A = X + 〈A〉. (2.6)

As we will see, the only property of the centered matrix needed to compute its spec-

trum is the variance of its elements, and since the variance of a Poisson distribution

is equal to its mean, we can immediately deduce that the variance of the ij element

of X is ki ·kj/2m.

2.3.1 Spectrum of the centered matrix X

In this section we calculate the spectral density ρ(z) of the centered matrix X,

Eq. (2.4). The spectral density is defined by

ρ(z) =
1

n

n∑
i=1

δ(z − λi), (2.7)

where λi is the ith eigenvalue of X and δ(z) is the Dirac delta. The starting point for

our calculation is the well-known Stieltjes–Perron formula, which gives the spectral

43

density directly in terms of the matrix as

ρ(z) = − 1

nπ
Im Tr

〈
(z −X)−1

〉
, (2.8)

where z −X is shorthand for zI−X with I being the identity.

To calculate the trace, we follow the approach of Bai and Silverstein [9], making

use of the result that the ith diagonal component of the inverse of a symmetric

matrix B is [91] [
B−1

]
ii

=
1

Bii − bTi B−1
i bi

, (2.9)

where Bii is the ith diagonal element of B, bi is the ith column of the matrix, and

Bi is the matrix with the ith row and column removed. In the limit of large system

size, and provided that the degrees of vertices become large as the network does, the

distribution of values of [B−1]ii becomes narrowly peaked about its mean, and one

can write the mean value as

〈[
B−1

]
ii

〉
=

1

〈Bii〉 − 〈bTi B−1
i bi〉

. (2.10)

If, as in our case, the elements of B are independent random variables with mean

zero, then

〈
bTi B−1

i bi
〉

=
∑
jk

〈[
B−1
i

]
jk

〉〈
[bi]j[bi]k

〉
=
∑
j

〈[
B−1
i

]
jj

〉〈
[bi]

2
j

〉
, (2.11)

where we have made use of 〈[bi]j[bi]k〉 = 〈[bi]j〉〈[bi]k〉 = 0 when j 6= k.

In our particular example we have B = z −X, which means that

[bi]j = −Xij (2.12)

44

(since i 6= j by definition, the ith row having been removed from the matrix), so

〈
bTi B−1

i bi
〉

=
∑
j

〈[
B−1
i

]
jj

〉〈
X2
ij

〉
=
∑
j

〈[
B−1
i

]
jj

〉 ki ·kj
2m

=
1

2m
ki ·
∑
j

kj
〈[

(z −X)−1
]
jj

〉
, (2.13)

where the last equality applies in the limit of large system size (for which it makes a

vanishing difference whether we drop the ith row and column from the matrix or not,

so Bi can be replaced with z −X for all i). Then, noting that 〈Bii〉 = z − 〈Xii〉 = z,

Eq. (2.10) becomes

〈[
(z −X)−1

]
ii

〉
=

1

z − ki ·
∑

j kj
〈[

(z −X)−1
]
jj

〉
/2m

. (2.14)

Summing this expression over i we then get the trace we were looking for, which we

will write in terms of a new function

g(z) =
1

n
Tr
〈
(z −X)−1

〉
=

1

n

n∑
i=1

〈[
(z −X)−1

]
ii

〉
=

1

n

n∑
i=1

1

z − ki ·h(z)
, (2.15)

where we have for convenience defined the vector function

h(z) =
1

2m

∑
i

ki
〈[

(z −X)−1
]
ii

〉
. (2.16)

The quantity g(z) (which is just the trace divided by n) is called the Stieltjes transform

of the matrix X, and it will play a substantial role in the remainder of our calculation.

It remains to calculate the function h(z), which is now straightforward. Multiply-

45

ing Eq. (2.14) by ki and substituting into (2.16), we get

h(z) =
1

2m

∑
i

ki
z − ki ·h(z)

. (2.17)

The solution for the spectral density involves solving this equation for h(z), then

substituting the answer into Eq. (2.15) to get the Stieltjes transform g(z). Then the

spectral density itself can be calculated from Eq. (2.8):

ρ(z) = − 1

π
Im g(z). (2.18)

Alternatively, we can simplify the calculation somewhat by rewriting Eq. (2.14)

as

z
〈[

(z −X)−1
]
ii

〉
−
〈[

(z −X)−1
]
ii

〉
ki ·h(z) = 1, (2.19)

then summing over i and dividing by n to get zg(z)− c‖h(z)‖2 = 1, or

g(z) =
1 + c‖h(z)‖2

z
, (2.20)

where c = 2m/n as previously, which is the average degree of the network, and ‖h(z)‖

denotes the vector magnitude of h(z), i.e., h · h (not the complex absolute value).

Then the spectral density itself, from Eq. (2.18), is

ρ(z) = − c

πz
Im ‖h(z)‖2. (2.21)

If we further suppose that the parameter vectors ki are drawn independently from

some probability distribution p(k), which plays roughly the role played by the degree

distribution in other network models, then in the limit of large network size Eq. (2.17)

can be written as

h(z) =
1

c

∫
k p(k) dqk

z − k·h(z)
. (2.22)

46

Equations (2.21) and (2.22) between them give us our solution for the spectral

density. These equations can be regarded as generalizations of the equations for the

configuration model given in Ref. [91] and similar equations have also appeared in

applications of random matrix methods to other problems [82, 126, 7, 23, 8].

2.3.2 Examples

As an example of the methods of the previous section, consider a network of n

vertices with two communities of 1
2
n vertices each. Let the first group consist of

vertices 1 . . . 1
2
n and the second of vertices 1

2
n + 1 . . . n. Vertices in the first group

will have parameter vector ki = (κi, θ) and those in the second group will have

ki = (κi−n/2,−θ), where the quantities κi and θ are positive constants that we choose

and κi ≥ θ for all i, to ensure that the expected values 〈Aij〉 = ki ·kj/2m of the

adjacency matrix elements are non-negative.

This particular parametrization is attractive for a number of reasons. First, it

already takes the form of the rank-2 eigenvector decomposition of Eq. (2.5), which

simplifies the our calculations—the two (unnormalized) eigenvectors are the n-element

vectors (κ,κ) and (1, 1, . . . ,−1,−1, . . .) where κ is the (1
2
n)-element vector with

elements κ1, . . . , κn/2. Also the expected degrees take a particularly simple form.

The expected degree of vertex i for i ≤ 1
2
n is

1

2m

n∑
j=1

ki ·kj =
1

2m

[
n/2∑
j=1

(κiκj + θ2)

+
n∑

j=n/2+1

(κiκj−n/2 − θ2)

]
=
κi
m

n/2∑
j=1

κj. (2.23)

But, applying Eq. (2.1), we have m =
∑n/2

j=1 κj and hence the expected degree of

vertex i is simply κi. By a similar calculation it can easily be shown that for i > 1
2
n

47

the expected degree is κi−n/2, and the average degree in the whole network is

c =
1

n/2

n/2∑
i=1

κi. (2.24)

The parameter θ also has a simple interpretation in this model: it controls the strength

of the community structure. For instance, when θ = 0 vertices in the two communities

are equivalent and there is no community structure at all.

To calculate the spectrum for this model, we substitute the values of ki into

Eq. (2.22) to get equations for the two components of the vector function h(z) thus:

h1(z) =
1

c

∫
κp(κ)

[
1

z − κh1(z)− θh2(z)

+
1

z − κh1(z) + θh2(z)

]
dκ, (2.25)

h2(z) =
θ

c

∫
p(κ)

[
1

z − κh1(z)− θh2(z)

− 1

z − κh1(z) + θh2(z)

]
dκ, (2.26)

where p(κ) is the probability distribution of the quantities κi. Equation (2.26) has

the trivial solution h2(z) = 0, so the two equations simplify to a single one:

h1(z) =
1

c

∫
κp(κ) dκ

z − κh1(z)
, (2.27)

and then

ρ(z) = − c

πz
Imh2

1(z), (2.28)

which is independent of the parameter θ. These results are identical to those for

the corresponding quantities in the ordinary configuration model with no community

structure and expected degree distribution p(κ), as derived in Ref. [91], and hence we

expect the spectrum of the centered adjacency matrix to be the same for the current

48

model as it is for the configuration model with the same distribution of expected

degrees.

To give a simple example application, suppose that there are only two different

values of κ. Half the vertices in each community have a value κ1 and the other half κ2.

Then p(κ) = 1
2
[δ(κ−κ1)+δ(κ−κ2)], where δ(x) is the Dirac delta, and c = 1

2
(κ1 +κ2).

With this choice

h1(z) =
1

κ1 + κ2

[
κ1

z − κ1h1(z)
+

κ2

z − κ2h1(z)

]
, (2.29)

which can be rearranged to give the cubic equation:

κ1κ2h
3
1 − (κ1 + κ2)zh2

1 +

[
2κ1κ2

κ1 + κ2

+ z2

]
h1 − z = 0, (2.30)

which can be solved exactly for h1(z) and hence we can derive an exact expression for

the spectral density. The expression itself is cumbersome (like the solutions of most

cubic equations), but Fig. 2.1 shows an example for the choice κ1 = 60, κ2 = 120,

along with numerical results for the spectrum of a single random realization of the

model. As the figure shows, the two agree well. (The histogram in the left-hand

part of the figure represents the spectrum of the centered matrix. The two outlying

eigenvalues that appear to the right belong to the full, non-centered adjacency matrix

and are calculated in the following section.)

Note also that in the special case where κ1 = κ2 = c, so that κ is constant over

all vertices, Eq. (2.29) simplifies further to

h1(z) =
1

z − ch1(z)
, (2.31)

49

-20 0 20 40 60 80 100

Eigenvalue z

0

0.01

0.02

0.03

0.04

Sp
ec

tr
al

 d
en

si
ty

 ρ
(z

)

Figure 2.1: The spectrum of the adjacency matrix for the case of a network with two
groups of equal size and ki = (κi,±θ), where θ = 50, κi+n/2 = κi, and κi
is either 60 or 120 with equal probability. Blue represents the analytic so-
lution, Eqs. (2.29) and (2.39). Red is the numerical diagonalization of the
adjacency matrix of a single network with n = 10 000 vertices generated
from the model with the same parameters. The numerically evaluated po-
sitions of the two outlying eigenvalues (the red spikes) agree so well with
the analytic values (blue spikes) that the red is mostly obscured behind
the blue.

which is a quadratic equation with solutions

h1(z) =
z ±
√
z2 − 4c

2c
, (2.32)

and hence the spectral density is

ρ(z) =

√
4c− z2

2πc
, (2.33)

where we take the negative square root in Eq. (2.32) to get a positive density. Equa-

tion (2.33) has the form of the classic semicircle distribution for random matrices.

This model is equivalent to the standard stochastic block model and (2.33) agrees

with the expression for the spectral density derived for that model by other means in

Ref. [90].

50

2.3.3 Spectrum of the adjacency matrix

So far we have derived the spectral density of the centered adjacency matrix

X = A− 〈A〉. We can use the results of these calculations to compute the spectrum

of the full adjacency matrix by generalizing the method used in [91], as follows.

Using Eq. (2.5) we can write the adjacency matrix as

A = X + 〈A〉 = X +

q∑
r=1

αruru
T
r . (2.34)

Let us first consider the effect of adding just one of the terms in the sum to the

centered matrix X, calculating the spectrum of the matrix X +α1u1u
T
1 . Let v be an

eigenvector of this matrix with eigenvalue z:

(X + α1u1u
T
1)v = zv. (2.35)

Rearranging this equation we have α1u1u
T
1 v = (z−X)v and, multiplying by uT1 (z−

X)−1, we find

uT1 (z −X)−1u1 =
1

α1

. (2.36)

Note that the vector v has canceled out of the equation, leaving us with an equation

in z alone. The solutions for z of this equation give us the eigenvalues of the matrix

X + α1u1u
T
1 .

Expanding the vector u1 as a linear combination of the eigenvectors xi of the

matrix X, the equation can also be written in the form

n∑
i=1

(xTi u1)2

z − λi
=

1

α1

, (2.37)

where λi are the eigenvalues of X. Figure 2.2 shows a graphical representation of the

solution of this equation for the eigenvalues z. The left-hand side of the equation,

51

represented by the solid curves, has simple poles at z = λi for all i. The right-hand

side, represented by the horizontal dashed line, is constant. Where the two intercept,

represented by the dots, are the solutions for z. From the geometry of the figure we

can see that the values of z must fall between consecutive values of λi—we say that

the z’s and λ’s are interlaced. If we number the eigenvalues λi in order from largest to

smallest so that λ1 ≥ λ2 ≥ . . . ≥ λn, and similarly for the n solutions zi to Eq. (2.37),

then z1 ≥ λ1 ≥ z2 ≥ λ2 ≥ . . . ≥ zn ≥ λn. In the limit of large system size, as the λi

become more and more closely spaced in the spectrum of the matrix, this interlacing

places tighter and tighter bounds on the values of zi, and asymptotically we have

zi = λi and the spectral density of X + α1u1u
T
1 is the same as that of X alone.

λ
1

λ
2

λ
3

λ
n

z
1

z
2

z
3

z
n

z

Figure 2.2: A plot of the left-hand side of Eq. (2.37) as a function of z has simple
poles at z = λi for all i. The solutions of the equation fall at the points
where the curve crosses the horizontal dashed line representing the value
of 1/α1. From the geometry of the figure we can see that the solutions
must lie in between the values of the λi, interlacing with them, so that
z1 ≥ λ1 ≥ z2 ≥ . . . ≥ zn ≥ λn.

There is one exception, however, in the highest-lying eigenvalue z1, which is

bounded below by λ1 but unbounded above, meaning it need not be equal to λ1

52

and may lie outside the band of values occupied by the spectrum of the matrix X.

To calculate this eigenvalue we observe that, the matrix X being random, its eigen-

vectors xi are also random and hence xTi u1 is a zero-mean random variable with

variance 1/n. Taking the average of Eq. (2.37) over the ensemble of networks, the

numerator on the left-hand side gives simply a factor of 1/n and we have

1

α1

=
1

n

〈
n∑
i=1

1

z − λi

〉
=

1

n

〈
Tr(z −X)−1

〉
= g(z). (2.38)

The solution to this equation gives us the value of z1.

This then gives us the complete spectrum for the matrix X + α1u1u
T
1 . It consists

of a continuous spectral band with spectral density equal to that of the matrix X

alone, which is calculated from Eq. (2.21), plus a single eigenvalue outside the band

whose value is the solution for z of g(z) = 1/α1.

We could have made the same argument about any single term αruru
T
r appearing

in Eq. (2.34) and derived the corresponding result that the continuous spectral band

is unchanged from the centered matrix but there can be an outlying eigenvalue zr

given by

g(zr) =
1

αr
. (2.39)

The calculation of the spectrum of the full adjacency matrix requires that we consider

all terms in Eq. (2.34) simultaneously, but in practice it turns out that it is enough

to consider them one by one using Eq. (2.39). The argument for this is in two parts

as follows.

1. We have shown that the spectral density of the continuous band in the spectrum

of the matrix X+α1u1u
T
1 is the same as that for the matrix X alone, and there is

one additional outlying eigenvalue, which we denote z1. Now we can add another

term α2u2u
T
2 and repeat our argument for the matrix X + α1u1u

T
1 + α2u2u

T
2 ,

53

finding the equivalent of Eq. (2.37) to be

n∑
i=2

(xTi u2)2

z′ − zi
+

(xT1 u2)2

z′ − z1

=
1

α2

, (2.40)

where z′ is the eigenvalue of the new matrix and zi are the solutions of (2.37).

As before, this implies there is an interlacing condition and that the spectral

density of the perturbed matrix is the same within the spectral band as that for

the unperturbed matrix. We can repeat this argument as often as we like and

thus demonstrate that the shape of the spectral band never changes, so long as

the number of perturbations (which is also the rank of 〈A〉) is small compared

to the size of the network, i.e, q � n.

2. This argument pins down all but the top two eigenvalues of X + α1u1u
T
1 +

α2u2u
T
2 . These two we can calculate by a variant of our previous argument. We

average Eq. (2.40) over the ensemble, noting again that 〈(xTi u2)2〉 = 1/n and

find that

1

n

n∑
i=2

1

z′ − zi
+

1/n

z′ − z1

=
1

α2

. (2.41)

For large n the first sum is once again equal to the Stieltjes transform g(z) and

hence the top two eigenvalues are solutions for z′ of

g(z′) +
1/n

z′ − z1

=
1

α2

. (2.42)

But g(z) and α2 are of order 1, while the term n−1/(z′ − z1) is of order 1/n

and hence can in most circumstances be neglected, giving g(z′) = 1/α2, which

recovers Eq. (2.39). The only time this term cannot be neglected is when z′ is

within a distance of order 1/n from z1, in which case we have a simple pole in

the left-hand side of the equation as z′ approaches z1. Thus the left-hand side

has the form sketched in Fig. 2.3, following g(z) closely for most values of z,

54

but diverging suddenly when very close to z1. Equation (2.42) then has two

solutions, as indicated by the dots in the figure, one given by g(z) = 1/α2 and

one that is asymptotically equal to z1, which is the solution of g(z) = 1/α1.

z

Sp
ec

tr
al

 b
an

d
1/α

2

Figure 2.3: A graphical representation of the solution of Eq. (2.42). The left-hand side
of the equation, represented by the solid blue curve, follows closely the
form of the Stieltjes transform g(z), except within a distance of order 1/n
from z1, where it diverges. The horizontal dashed line represents the
value 1/α2 and the solutions to (2.42), of which there are two, fall at the
intersection of this line with the solid curve, as indicated by the dots.
One of these solutions coincides closely with z1, the other is the solution
of g(z) = 1/α2.

We can repeat this argument as many times as we like to demonstrate that the

outlying eigenvalues are just the q solutions of Eq. (2.39) for each value r = 1 . . . q.

Thus our final solution for the complete spectrum of the adjacency matrix has two

parts: a continuous spectral band, given by Eqs. (2.21) and (2.22), and q outlying

eigenvalues, given by the solutions of Eq. (2.39), with g(z) given by Eq. (2.20).

2.3.4 Examples

Let us return to the examples of Section 2.3.2 and apply the methods above to

the calculation of their outlying eigenvalues. Recall that we looked at networks with

two communities and chose parameter vectors ki = (κi, θ) for vertices in the first

55

community and ki = (κi−n/2,−θ) for those in the second. For such networks the

vector function h(z) reduces to a single scalar function h1(z) that satisfies Eq. (2.27).

At the same time, Eq. (2.20) tells us that for this model zg(z) = 1+ch2
1(z) and hence

from Eq. (2.39) the positions of the outlying eigenvalues are solutions of

1 + ch2
1(z)− z

αr
= 0, (2.43)

for r = 2 . . . q. Locating the outliers is thus a matter of solving (2.27) for h1, substi-

tuting the result into (2.43), and then solving for z.

Consider, for instance, the choice we made in Section 2.3.2, where there were

just two values of κ, denoted κ1 and κ2, with half the vertices in each community

taking each value. Then h1 obeys the cubic equation (2.30), which can be solved

exactly, and hence we can calculate the position of the outliers. Figure 2.1 shows the

results for the choice κ1 = 60, κ2 = 120, θ = 50, along with numerical results for

the same parameter values. As the figure shows, analytic and numerical calculations

again agree well—so well, in fact, that the difference between them is quite difficult

to make out on the plot.

We also looked in Section 2.3.2 at the simple case where κ = c for all vertices,

so that they all have the same expected degree, in which case the model becomes

equivalent to the standard stochastic block model and the continuous spectral band

takes the classic semicircle form of Eq. (2.33). For this model we have α1 = c and

α2 = θ2/c. Using Eq. (2.32) for h1(z) and solving (2.43) for z, we then find the top

two eigenvalues of the adjacency matrix to be

z1 = c+ 1, z2 =
θ2

c
+
c2

θ2
, (2.44)

which agrees with the results given previously for the stochastic block model in

Ref. [90].

56

2.3.5 Detectability of communities

One of the primary uses of network spectra is for the detection of community

structure [96, 90]. As we have seen, the number of eigenvalues above the edge of the

spectral band is equal to the number of communities in the network, and hence the ob-

servation of these eigenvalues can be taken as evidence of the presence of communities

and their number as an empirical measure of the number of communities. The identity

of the communities themselves—which vertices belong to which community—can be

deduced, at least approximately, by looking at the elements of the eigenvectors [96].

However, as shown previously in [90] for the simplest two-community block model,

the position of the leading eigenvalues varies as one varies the strength of community

structure, and for sufficiently low (but still nonzero) strength an eigenvalue may meet

the edge of the spectral band and hence become invisible in the spectrum, meaning it

can no longer be used as evidence of the presence of community structure. Moreover,

as also shown in [90], the elements of the corresponding eigenvector become uncor-

related with group membership at this point, so that any algorithm which identifies

communities by examining the eigenvector elements will fail. The point where this

happens, at least in the simple two-community model, coincides with the known “de-

tectability threshold” for community structure, at which it is believed all algorithms

for community detection must fail [123, 35, 64].

We expect qualitatively similar behavior in the present model as well. Consider

the Stieltjes transform g(z) defined in Eq. (2.15). Inside the spectral band the trans-

form is complex by definition—see from Eq. (2.18). Above the band it is real and

monotonically decreasing in z, as we can see by evaluating the trace in the basis in

which X is diagonal:

g(z) =
1

n

n∑
i=1

1

z − λi
, (2.45)

where λi are the eigenvalues of X as previously. Above the band, where z > λi for all i,

57

every term in this sum is monotonically decreasing, and hence so is g(z). This implies

via Eq. (2.39) that larger values of αr give larger eigenvalues and that the largest real

value gmax of the Stieltjes transform occurs exactly at the band edge. Moreover,

as shown in Ref. [91], the edge of the band is marked generically by a square-root

singularity in the spectral density, which implies that gmax is finite—see Fig. 2.3 for a

sketch of the function. Thus when we make the community structure in the network

weaker, meaning we decrease the values of the αr, we also decrease the outlying

eigenvalues of the adjacency matrix and eventually the lowest of those eigenvalues

will meet the edge of the band and disappear at the point where 1/αr = gmax. If we

continue to weaken the structure, more eigenvalues will disappear, in order—smallest

first, then second smallest, and so forth.

Thus we expect there to be a succession of detectability transitions in the network,

q−1 of them in all, where q again is the number of communities. At the first of these

transitions the qth largest eigenvalue will meet the band edge and disappear, meaning

there will only be q−1 outlying eigenvalues left and hence there will be observational

evidence of only q − 1 communities in the network, even if in fact we know there to

be q. At the next transition the number will decrease further to q − 2, and so forth.

One thus loses the ability to detect community structure in stages, one community

at a time. Final evidence of any structure at all disappears at the point where the

second largest eigenvalue meets the band edge.

Consider, for instance, the example network from Section 2.3.2 again, in which

there are two groups with parameter vectors of the form (κi,±θ), where the param-

eters κi control the expected degrees and θ controls the strength of the community

structure. As before, let us study the case where the κi take just two different values

with equal probability, so that h1 satisfies the cubic equation (2.30) (and h2 = 0).

Then we can calculate the maximal real value of g(z) as follows.

Like g(z), the function h1(z) is real outside the continuous spectral band but

58

complex inside it, as one can see from Eq. (2.28). The band edge is thus the point

at which the solution of the cubic equation becomes complex, which is given by the

zero of the discriminant of the cubic. Take, for example, the case where κ1 = κ and

κ2 = 2κ for some constant κ. Then, employing the standard formula, the discriminant

of (2.30) is

κ5

27

[
27

(
z2

κ

)3

− 216

(
z2

κ

)2

+ 252

(
z2

κ

)
− 512

]
. (2.46)

This is zero when, and hence the band edge falls at, z =
√
xκ, where x ' 7.058 is the

sole real solution of the cubic equation 27x3−216x2+252x−512 = 0. Substituting into

Eq. (2.30), we then find that the value of h1 at the band edge is y/
√
κ where y = 0.723

is the smallest real solution of the cubic equation 2y3 − 3
√
xy2 + (x+ 4

3
)y −

√
x = 0.

Then, using Eq. (2.20) and the fact that the average degree is c = 3
2
κ, the value of

g(z) at the band edge is

gmax =
2 + 3y2

2
√
xκ

. (2.47)

In this case there is only one parameter αr with r ≥ 2, which is α2 = θ2/c. Hence

there is a single threshold at which we lose the ability to detect communities, falling at

c

θ2
=

2 + 3y2

2
√
xκ

, (2.48)

or

θ =

√
3
√
xκ3

2 + 3y2
' 1.494κ3/4. (2.49)

If θ is smaller than this value then spectral methods will fail to detect the communities

in the network. We have checked this behavior numerically and find indeed that

spectral community detection fails at approximately this point.

59

2.4 Conclusions

In this chapter we have given a prescription for calculating the spectrum of the

adjacency matrix of an undirected random network containing both community struc-

ture and a nontrivial degree distribution, generated using the model of Ball et al. [10].

In the limit of large network size the spectrum consists in general of two parts: (1) a

continuous spectral band containing the bulk of the eigenvalues and (2) q outlying

eigenvalues above the spectral band, where q is the number of communities in the

network. We give expressions for both the shape of the band and the positions of

the outlying eigenvalues that are exact in the limit of a large network and large ver-

tex degrees, although their evaluation involves integrals that may not be analytically

tractable in practice, in which case we must resort to numerical evaluation. We have

compared the spectra calculated using our method with direct numerical diagonal-

izations and find the agreement to be excellent.

We have also demonstrated the existence of “detectability transitions” similar to

the one found in [90]. Based on our results we argue that there should be a series

of q− 1 “detectability transitions” as the community structure gets weaker, at which

one’s ability to detect communities becomes successively impaired. The positions of

these transitions correspond to the points at which the outlying eigenvalues meet

the edge of the spectral band and disappear. With the disappearance of the second-

largest eigenvalue in this manner, all trace of the community structure vanishes from

the spectrum and the network is indistinguishable from an unstructured random

graph.

60

CHAPTER III

Multiway spectral community detection in

networks

3.1 Introduction

In section 1.5, we introduced the spectral methods for community detection.

Specifically, we introduced the spectral algorithm for two-way division, the simplest

case in terms of group numbers. We showed that the spectral algorithms work very

well in practice. In fact, the spectral algorithm returned results in perfect agreement

with the actuality for the karate club network in 1.5.2. Spectral methods, however,

do have their limitations. A primary one is that there is no simple principled spectral

algorithm for dividing a network into an arbitrary number of communities. In this

chapter, we introduce a method that solves this problem and generalize the spectral

methods for dividing a network into any number of groups.

Among spectral methods, good algorithms exist for two- and three-way divisions,

and repeated two-way divisions can sometimes produce good multiway divisions, but

sometimes not [97, 96, 124]. A better approach, proposed by White and Smyth [135],

is to compute several leading eigenvectors of the modularity matrix at once, represent

them as points in a high-dimensional space, and then cluster those points using a

conventional data clustering method—White and Smyth use k-means. This method,

61

which is analogous to previous algorithms for the different but related problem of

Laplacian spectral graph partitioning [41, 46], is attractive in that it directly divides

a network into the desired number of communities. On the other hand, while the

strong similarity between graph partitioning and modularity maximization [96, 99]

makes it natural to think that k-means would work in this situation, it is not clear

what quantity, if any, the algorithm of [135] is optimizing. In particular, the algorithm

is not derived as an approximation to modularity maximization, so there are no formal

guarantees that it will indeed maximize modularity, and in practice, as we show in

this chapter, there are situations where it can fail badly.

In this chapter, therefore, we introduce a different method for single-step, mul-

tiway, spectral community detection. Our method is not a generalization of the

previous two- and three-way methods, which are based on relaxations of the discrete

modularity optimization problem to a continuous optimization that can be solved

by differentiation. Instead the method is based on the observation, made previously

in [96], that modularity maximization is equivalent to a max-sum vector partition-

ing problem. (A similar equivalence for the graph partitioning problem is explored

in [5, 6].) We propose a simple heuristic for the rapid solution of vector partitioning

problems and apply it to the task in hand to create an efficient multiway community

detection algorithm.

3.2 Spectral community detection and vector partitioning

Following the spectral community detection for two groups in section 1.5, we use

the modularity Q introduced in section 1.5.2 as a score to a given division into any

number of communities of a given network, such that good divisions—those in which

most edges fall within communities and few edges fall between them—get a high score

and bad divisions a low one. Let us focus on a undirected, unweighted network of

n vertices and use an adjacency matrix A defined in 1.2.1 to represent the network.

62

Now consider a division of the vertices of this network into k non-overlapping groups,

labeled by integers 1 . . . k, and define gi to be the label of the group to which vertex i

belongs. Then the modularity is again given by

Q =
1

2m

∑
ij

[
Aij −

didj
2m

]
δgi,gj , (3.1)

where di is the degree of vertex i, m is the total number of edges in the network,

and δst is the Kronecker delta. Note that we in this chapter we use di to represent

the degree of node i, instead of ki in chapter I, to avoid possible confusion with

the number of groups in the network, denoted by k. The modularity may be either

positive or negative (or zero), with a maximum value of +1. Positive values indicate

that the number of edges within groups is greater than what one would expect by

chance, and large positive values are considered indicative of a good network division.

For convenience we define the modularity matrix introduced in Eq. (1.35) to be

the symmetric n× n matrix B with elements

Bij = Aij −
didj
2m

(3.2)

in terms of which the modularity (3.1) can be written

Q =
1

2m

∑
ij

Bijδgi,gj . (3.3)

Remember that every row and column of the modularity matrix must sum to zero in

Eq. (1.36): ∑
i

Bij =
∑
i

Aij −
∑
i

didj
2m

= 0, (3.4)

which implies that the uniform vector 1 = (1, 1, 1, . . .) is an eigenvector of the mod-

ularity matrix with eigenvalue zero, a result that will be important shortly.

63

Now consider the problem of dividing a network with n vertices into k communi-

ties. Since good divisions have high modularity scores and low divisions low scores,

we can find good divisions by maximizing modularity over divisions. Exact maxi-

mization is known to be very slow [21], so we turn instead to approximate methods.

Following [6, 96], we note that the delta function in Eq. (3.3) can be rewritten as

δgi,gj =
k∑
s=1

δs,giδs,gj , (3.5)

and since the modularity matrix is symmetric it can always be written as an eigen-

vector decomposition

Bij =
n∑
l=1

λlUilUjl, (3.6)

where λl is an eigenvalue of B and Uil is an element of the orthogonal matrix U

whose columns are the corresponding eigenvectors. Without loss of generality, we will

assume that the eigenvalues are numbered in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn.

Combining Eqs. (3.3), (3.5), and (3.6), we now have

Q =
1

2m

∑
ij

n∑
l=1

λlUilUjl
∑
s

δs,giδs,gj

=
1

2m

n∑
l=1

λl
∑
s

[∑
i

Uilδs,gi

]2

. (3.7)

We observe that (apart from the uninteresting leading constant) this is a sum

over eigenvalues λl times the nonnegative quantities
∑

r

[∑
s Uilδs,gi

]2
, so the largest

(most positive) contributions to the modularity are typically made by the terms

corresponding to the most positive eigenvalues. A standard approximation, used

in essentially all spectral algorithms, is, instead of maximizing the entire sum, to

maximize only these largest terms, neglecting the others. That is, we approximate

64

the modularity by

Q =
1

2m

p∑
l=1

λl
∑
s

[∑
i

Uilδs,gi

]2

. (3.8)

for some integer p < n. At a minimum, we maximize only those terms corresponding

to positive values of λl (since maximizing ones corresponding to negative λl would

reduce, not increase, the modularity). In effect, we are making a rank-p approximation

to the modularity matrix, based on its leading p eigenvectors, then calculating the

modularity using that approximation rather than the true modularity matrix.

Noting that all λl in Eq. (3.8) are now positive, we can rewrite the equation as

Q =
1

2m

k∑
s=1

p∑
l=1

[∑
i

√
λlUilδs,gi

]2

, (3.9)

and we define a set of n p-dimensional vertex vectors ri with elements

[
ri
]
l
=
√
λlUil. (3.10)

Then

Q =
1

2m

k∑
s=1

p∑
l=1

[∑
i∈s

[
ri
]
l

]2

=
1

2m

k∑
s=1

∣∣∣∣∑
i∈s

ri

∣∣∣∣2, (3.11)

where the notation i ∈ s denotes that vertex i is in group s.

In other words, we assign to each vertex a vector ri, which can be calculated

solely in terms of the structure of the network (since it is expressed in terms of

the eigenvalues and eigenvectors of the modularity matrix) and hence is constant

throughout the optimization procedure. Then the modularity of a division of the

network into groups is given (apart from the leading constant 1/2m) as a sum of

contributions, one from each group s, equal to the square of the sum of the vectors

for the vertices in that group. Our goal is to find the division that maximizes this

modularity.

Generically, problems of this kind are called max-sum vector partitioning prob-

65

lems, or just vector partitioning for short. In the following section we propose a

heuristic algorithm to rapidly perform vector partitioning and show how the algo-

rithm can be applied to perform efficient multiway spectral community detection in

arbitrary networks.

We have not yet said what the value should be of the constant p that specifies

the rank at which we approximate the modularity matrix in Eq. (3.8). We have said

that p should be no greater than the number of positive eigenvalues of the modularity

matrix. On the other hand, as shown in [96], if p is less than k − 1 then the division

of the network with maximum modularity always has less than k communities, since

there will be at least one pair of communities whose amalgamation into a single

community will increase the modularity. Thus p should be greater than or equal

to k − 1. In all of the calculations presented in this chapter we make the minimal

choice p = k − 1, which gives the fastest algorithm and in most cases gives excellent

results. However, it is worth bearing in mind that larger values of p are possible

and, in principle, can give a more accurate approximation to the true value of the

modularity.

3.3 Vector partitioning algorithm

Vector partitioning is computationally easier than many optimization tasks. In

particular, it is solvable in polynomial, rather than exponential time. A general k-

way partitioning of n different p-dimensional vectors can be solved exactly in time

O(np(k−1)−1) [109]. Thus if we use the leading two eigenvectors of the modularity

matrix to divide a network into two communities the calculation can be done in time

O(n), as shown previously in [96]. However the running time quickly becomes less

tractable for larger numbers of communities. As discussed above, for a division of

a network into k communities we must use at least k − 1 eigenvectors, which gives

a running time O(nk
2−2k). Even for just three communities this gives O(n3), which

66

is practical only for rather small networks, and for four communities it gives O(n8)

which is entirely impractical. For real-world applications with k > 2, therefore, we

must abandon exact solution of the problem and look for faster approximate methods.

Previous approaches to vector partitioning include that of Wang et al. [132], who

suggest dividing the space of vectors into octants (or their generalization in higher

dimensions, which are sometimes called hyperoctants) and looking through all 2k−1 of

them to find the k octants that contain the largest numbers of vectors. Then we use

these as an initial coarse division and assign the remaining vectors to these groups

by brute-force optimization. This method works reasonably well for small values

of k but is not ideal as k becomes larger because the number of octants increases

exponentially with k. Richardson et al. [124] proposed a divide-and-conquer method

that works by splitting the space into octants again, but then splitting these into

smaller wedges, and repeating until further subdivision gives no improvement. This

method works well for the k = 3 case with two eigenvectors but does not generalize

well to higher k. Alpert and Yao [6] proposed a greedy algorithm that works for any

value of k by adding vectors one by one to the set to be partitioned, with vectors

of larger magnitude being added first (on the grounds that these contribute most

to the sums in Eq. (3.11)). This method works well when the largest magnitude

vectors are distributed evenly among the final groups, but more poorly when they

are concentrated in a few groups. Unfortunately, as we show in Section 3.4.1, when

network communities are of unequal sizes the largest vectors do indeed tend to be

concentrated in a few groups and the method of [6] works less well.

Here we introduce an alternative and well-motivated heuristic for finding the so-

lution to vector partitioning problems for general values of k. The algorithm is anal-

ogous to the k-means algorithm for the standard data partitioning problem. The

k-means method is an algorithm for partitioning a set of data points in any number

of dimensions into k clusters in which we start by choosing k index locations or cen-

67

troids in the space. These could be chosen in several ways: entirely at random, at

random from among the set of data points, or (most commonly) as the centroids of

some initial approximate partition of the data. Once these are chosen, we compute

the distance from each data point to each of the k centroids and divide the data

points into k groups according to which they are closest to. Then we compute the k

centroids of these groups, replace the old centroids with these new ones, and repeat.

The process continues until the centroids stop changing.

Our algorithm adopts a similar idea for vector partitioning, with points being

replaced by vectors and distances replaced by vector inner products. We start by

choosing an initial set of k group vectors Rs, one for each group or community s,

then we assign each of our vertex vectors ri to one of the groups according to which

group vector it is closest to, in a sense we will describe in a moment. Then we

calculate new group vectors for each community from these assignments and repeat.

The new group vectors are calculated simply as the sums of the vertex vectors in each

group:

Rs =
∑
i∈s

ri, (3.12)

so that the modularity, Eq. (3.11), is equal to

Q =
1

2m

∑
s

∣∣Rs

∣∣2. (3.13)

We observe the following property of this modularity. Suppose we move a vertex i

from one community s to another t. Let Rs and Rt represent the group vectors of the

two communities excluding the contribution from vertex i. Then, before the move,

the group vectors of the communities are Rs + ri and Rt, and after the move they

are Rs and Rt + ri. All other communities remain unchanged in the meantime and

68

hence the change ∆Q in the modularity upon moving vertex i is

∆Q =
1

2m

[
|Rs|2 + |Rt + ri|2 − |Rs + ri|2 − |Rt|2

]
=

1

m

[
RT
t ri −RT

s ri
]
. (3.14)

Thus the modularity will either increase or decrease depending on which is the larger

of the two inner products RT
t ri and RT

s ri. Or, to put that another way, in order to

maximize the modularity we should assign to vertex i to the community whose group

vector has the largest inner product with ri.

This then defines our equivalent of “distance” for our k-means style vector par-

titioning algorithm. Given a set of group vectors Rs, we calculate the inner prod-

uct RT
s ri between ri and every group vector and then assign vertex i to the community

with the highest inner product.

Note, however, that the group vectors Rs and Rt appearing in Eq. (3.14) are

defined excluding ri itself. To be completely correct, therefore, we should do the same

thing in our partitioning algorithm. For every vertex vector ri there will be one group

vector Rs that contains that vertex vector and before calculating the inner product for

that group we should subtract ri from the group vector. In practice this subtraction

typically makes little difference when the network is large—the subtraction or not

of a single vertex from a large group is not going to change the results much. In

many cases, therefore, one can omit the subtraction step. On the other hand, the

algorithm is not significantly slower with the subtraction, so one could also argue for

its inclusion, purely on grounds of correctness. We do include it in the calculations

of this chapter, but in the end it makes little difference to the results.

Our complete vector partitioning algorithm is the following:

1. Choose an initial set of group vectors Rs, one for each of the k communities.

2. Compute the inner product RT
s ri for all vertices i and all communities s, or

69

(Rs − ri)
T ri if vertex i is assigned to group s.

3. Assign each vertex to the community with which it has the highest (most posi-

tive) inner product.

4. Update the group vectors using the definition of Eq. (3.12).

5. Repeat from step 2 until the group vectors stop changing. (One could also

halt when the changes become negligible or after some maximum number of

iterations, just as some k-means implementations also do.)

See Fig. 3.1 for an illustration of the working of the algorithm.

R1

R2

R3

r1

Figure 3.1: Depiction of the operation of our vector partitioning heuristic for parti-
tioning, in this case, a set of two-dimensional vectors into three groups.
The blue lines and dots indicate the individual vectors being partitioned.
The red lines are the group vectors. (The magnitudes of the group vectors
have been rescaled to fit into the figure—normally they would be much
larger, since they are the sums of the individual vectors in each group.)
The dashed lines indicate the borders between communities, which are
determined both by the angles and relative magnitudes of the group vec-
tors. Thus vector r1 will be assigned to group 1 in this case, because it
has its largest inner product with R1.

We still need to decide how our the initial group vectors should be chosen. In

70

the simplest case we might just choose them to be of equal magnitude and point in

random directions. However, if there is community structure in the network then we

expect the vertex vectors to be clustered, pointing in a small number of directions,

with no or few vectors pointing in the remaining directions. It makes little sense to

pick initial group vectors pointing in directions well away from where the clusters

lie, so in practice we have found that, rather than giving the group vectors random

directions, we can get good results by picking them uniformly from among the vertex

vectors themselves. This ensures that, if most vectors point in a few directions, we

will be likely to choose initial group vectors that also point in those directions.

Note in fact that we need only pick k − 1 of the k group vectors in this fashion,

the final vector being fixed by the fact that the group vectors sum to zero. To

see this, recall that the uniform vector 1 = (1, 1, 1, . . .) is always an eigenvector of

the modularity matrix, which implies that the elements of all other eigenvectors—

i.e., the columns of the orthogonal matrix U—must sum to zero (since they must be

orthogonal to the uniform vector). Then the definition of Eq. (3.10) implies that

n∑
i=1

[
ri
]
l
=
√
λl

n∑
i=1

Uil = 0, (3.15)

and hence
n∑
i=1

ri = 0, (3.16)

and ∑
s

Rs =
∑
s

∑
i∈s

ri =
n∑
i=1

ri = 0. (3.17)

Thus, once we have chosen k− 1 of the group vectors randomly, the final one is fixed

to be equal to minus the sum of the rest.

Since there is a random element in the initialization of our algorithm, its result is

not always guaranteed to be the same, even when applied to the same network with

the same parameter values; it may give different results for the modularity on different

71

runs. In applications, therefore, we typically do several runs of the algorithm with

different initial conditions, choosing from among the results the community division

that gives the highest value of the modularity.

3.4 Applications

In this section we give a number of example applications of our method, first to

computer-generated test networks and then to two real-world examples.

3.4.1 Synthetic networks

For our first tests of the method we look at a set of computer-generated (“syn-

thetic”) benchmark networks that contain known community structure. Our goal

will be see whether, and how accurately, the algorithm can recover that structure. In

our tests we make use of networks generated using the stochastic block model [60]

introduced in section 1.4.3. We denote the probabilities of placing edges between

vertices by ωst that depend only on the groups s, t that the vertices belong to. As

we mentioned previously, however, the stochastic block model is unrealistic due to its

Poissonian degree distribution, which is quite different from the highly right-skewed

degree distributions commonly seen in real-world networks. We, therefore, test our

method using the degree-corrected stochastic block model [65] introduced in sec-

tion 1.4.4. In this model edges are placed independently between pairs of vertices i, j

with probability didjωst, where di is the desired degree of vertex i. For a detailed

discussion see [65].

Our tests consist of generating a number of networks using the degree-corrected

block model, analyzing them using our algorithm, then comparing the communities

found with those planted in the networks in the first place. To quantify the similarity

of the two sets of communities, planted and detected, we make use of a standard

measure, the normalized mutual information or NMI [32, 79]. The (unnormalized)

72

mutual information of two sets X, Y of numbers or measurements is defined to be

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (3.18)

where p(x, y) is the joint probability of x and y and p(x), p(y) are their marginal

probabilities. The mutual information measures how much you learn about one of

the two sets of measurements by knowing the other. If X and Y are uncorrelated

then each tells you nothing about the other and the mutual information is zero. If

they are perfectly correlated then each tells you everything about the other and the

mutual information is equal to all of the information that either set contains, which

is simply the entropy, H(X) or H(Y), of the set.

Having the maximum value of the mutual information be equal to the entropy is

in some ways inconvenient, since we don’t know in advance what that value will be.

So commonly one normalizes the mutual information by dividing by the mean of the

entropies of the two sets, thus:

NMI(X;Y) =
I(X;Y)

1
2
[H(X) +H(Y)]

. (3.19)

This normalized value falls in the interval from zero to one, with uncorrelated variables

giving 0 and perfect correlation giving 1.

The NMI is commonly used to quantify the match between two clusterings of the

vertices of a network. In the present case, the original assignments of vertices to

groups in the block model is used as one set of measurements X and the assignments

found by our algorithm are the other Y . An NMI of 1 denotes perfect recovery of the

planted partition; an NMI of zero indicates complete failure.

In the tests presented here we use networks of n = 3600 vertices divided into

k = 3 communities and with two different (expected) degrees: half the vertices in

each group have degree 10 and the other half have degree 30. The parameters ωst are

73

varied in order to tune the difficulty of the community detection according to

ωst = (1− δ)ωrandom
st + δωplanted

st , (3.20)

where δ is a parameter that varies from zero to one and

ωrandom
st =

1

2m
, ωplanted

st =
δst∑
i∈s di

, (3.21)

with m being the total number of edges in the network, as previously. With this

choice, the parameter δ tunes the edge probabilities from a value of didj/2m when

δ = 0, which corresponds to a purely random edge distribution with no community

structure at all (the so-called configuration model [83, 105]) to a value of didj/
∑

i∈s di

within each group s and zero between groups when δ = 1—effectively three separate,

unconnected configuration models, one for each group, which is the strongest form of

community structure one could have. This choice of ωst also has the nice property

that the expected fraction of within-group edges that a vertex has is the same for all

vertices.

We have tested our algorithm on networks generated with this model using two

eigenvectors (the minimum viable number) to define the vertex vectors ri. The results

are shown in Fig. 3.2 along with results for the same networks analyzed by clustering

the vertex vectors using the k-means algorithm of Ref. [135].

As δ → 1 the community structure in the network becomes strong and any reason-

able algorithm should be able to detect it. As we approach this limit our algorithm

assigns 100% of vertices to their correct communities and the NMI approaches one.

Conversely as δ → 0 the community structure in the network vanishes and neither

algorithm should detect anything, so NMI approaches zero. Furthermore, it is known

that there is a critical strength of structure—which translates to a critical value of

our parameter δ—below which the structure is so weak that no algorithm can detect

74

it [35]. This “detectability threshold” is marked in Fig. 3.2a with a vertical dashed

line. Above this point it should be possible to detect the communities, albeit with a

certain error rate, and indeed we see that both algorithms achieve a nonzero NMI in

this region.

0.0 0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 m

u
tu
a
l
in
fo
rm

a
ti
o
n

(a)

0.0 0.2 0.4 0.6 0.8 1.0
δ

(b)

0.0 0.2 0.4 0.6 0.8 1.0
δ

(c)

vector

k-means

Figure 3.2: NMI as a function of the parameter δ for communities detected in ran-
domly generated test networks using the vector partitioning algorithm of
this chapter (red squares) and the k-means method of Ref. [135] (blue
triangles). The networks consist of n = 3600 vertices divided into three
communities thus: (a) equally sized communities of 1200 vertices each;
(b) communities of size 1800, 1200, and 600; (c) communities of size 2400,
900, and 300. Each data point is an average of 100 networks. The ver-
tical dashed line in panel (a) indicates the position of the detectability
threshold below which all methods must fail [35].

As the figure shows, the vector partitioning algorithm does as well or better than

k-means in almost all cases. In panel (a) the three communities in the network

have equal sizes, and in this case the two algorithms perform comparably, there

75

being only a small range of parameter values in the middle of the plot where vector

partitioning outperforms k-means by a narrow margin. In panels (b) and (c) the

communities have unequal sizes—moderately so in (b) and highly in (c)—and in

these cases we see that the vector partitioning method does significantly better than

k-means. Indeed for unequal group sizes the k-means algorithm fails to achieve perfect

community classification (NMI = 1) even in the limit where δ = 1. The reason for

this is illustrated in Fig. 3.3, which shows a scatter plot of the vertex vectors for an

illustrative example network along with the communities into which each algorithm

divides the vertices (shown by the colors). As the figure shows, when the groups

are unequal in size the largest group is closer to the origin than the smaller ones—

necessarily so since the centroid of the vertex vectors lies at the origin (Eq. (3.16)).

This tends to throw off the k-means algorithm, which by definition splits the points

into groups of roughly equal spatial extent. The vector partitioning method, which

is sensitive only to the direction but not the magnitude of the vertex vectors, has no

such problems.

3.4.2 Real-world examples

Our next two example applications are to real-world networks, two collaboration

networks among scientists. The first, taken from Ref. [49], represents scientists work-

ing at the Santa Fe Institute, an interdisciplinary research institute in New Mexico.

The vertices in the network represent the scientists and the edges indicate that two

scientists coauthored a chaper together at least once. The network is small enough

to allow straightforward visualization of our results and is interesting in that the

scientists it represents, in keeping with the interdisciplinary mission of the institute,

come from a range of different research fields, in this case statistical physics, math-

ematical ecology, RNA structure, and agent-based modeling. It is plausible that the

communities in the network might reflect these subject areas.

76

(a) vector partitioning (b) k-means

Figure 3.3: Illustration of the division of a synthetic three-group network using (a) the
algorithm of this chapter and (b) the k-means algorithm of [135]. Shapes
indicate the planted communities while colors indicate the communities
found by the two algorithms. Observe how the k-means results assign
a good portion of vertices belonging to the blue and green communities
incorrectly to the red one, while the vector partitioning approach does
not have this problem. The network in this case has n = 4000 vertices
with communities of size 3000, 500, and 500.

Figure 3.4 shows the result of a four-way community division of this network

using vertex vectors constructed from the first three eigenvectors of the modularity

matrix. Overall the results mirror our expectations, with the four subject areas

corresponding roughly to the four communities found by the method. We note, on

the other hand, that there are also four vertices in the middle-right of the figure that

are clearly misclassified as being in the “agent-based models” group when they would

be more plausibly placed in the “structure of RNA” group. This illustrates a potential

weakness of the algorithm: the defining feature of these vertices is that their vertex

vectors have very small magnitude, meaning that they do not strongly belong to any

group. For such vertices even a small error—such as that introduced by making the

low-rank approximation to the true modularity matrix—can alter the direction of the

vertex vector substantially and hence move a vertex to a different group. Problems

like this are, in fact, typical of many spectral algorithms and are typically handled

by combining the algorithm with a subsequent iterative refinement or “fine tuning”

77

Agent-based Models

Mathematical Ecology

Statistical Physics

Structure of RNA

Figure 3.4: Four-way division into communities of a collaboration network of scien-
tists at the Santa Fe Institute. Different colors and shapes indicate the
communities discovered by the vector partitioning algorithm of this chap-
ter. The communities split roughly along lines of research topic.

step in which individual vertices or small groups are moved from group to group in

an effort to improve the value of the modularity [97, 124]. The spectral algorithm

is good at determining the “big picture”—rapidly doing an overall division of the

network into broad groups of vertices. The subsequent fine tuning then tidies up the

remaining details. Based on the results we see here, our algorithm might be a good

candidate for combination with a fine tuning step of this kind.

Our second real-world example is a collaboration network of scientists working

in the field of network science itself and is taken from Ref. [96]. Apart from being

rather larger than the Santa Fe Institute network, at 379 scientists, this network also

differs in that all its members are, ostensibly at least, studying the same subject, so

there is no obvious “ground truth” for the communities as there was in the previous

example or even for how many there should be. Choosing the number of communities

into which a network should be divided is a deep problem in its own right, and one

78

Figure 3.5: 21 communities found in a collaboration network of network scientists
using the algorithm proposed in this chapter.

that is not completely solved. Here, however, we simply borrow a technique from

the literature and estimate the number of communities in the network by counting

the real eigenvalues of the so-called non-backtracking matrix that are greater than

the largest real part among the complex eigenvalues. (For a discussion of why this

is a good heuristic, see [69].) In the present case this suggests that there should be

26 communities in the network, so we choose k = 26 for our community detection

algorithm and construct the vertex vectors from the leading 25 eigenvectors of the

modularity matrix. The results are shown in Fig. 3.5. In fact, in this case we find

that the algorithm does not make use of all 26 communities—the figure contains only

21. Nonetheless, the algorithm has succeeded in finding a good division in terms of

modularity: the modularity value for the division shown is Q = 0.83, comparable

to the value given for example in [124] for the same network. We note, however,

that, as is typical for larger values of k, the algorithm finds a range of different

79

divisions of the network in different runs that all have competitive modularity. The

existence of competing good community divisions in the same network is a well-known

phenomenon and has been previously discussed for instance by Good et al. [53].

3.5 Conclusions

In this chapter we have described a mapping of a multiway spectral community

detection method onto a vector partitioning problem and proposed a simple heuristic

algorithm for vector partitioning that returns good results in this application. We

have tested our method on computer-generated benchmark networks, comparing it

with a competing spectral algorithm that makes use of k-means clustering, and find

our method to give superior performance, particularly in cases where the sizes of the

communities are unequal. We have also given two example applications of our method

to real-world networks.

There remain a number of open questions not answered in this chapter. Although

the algorithm we propose is simple and efficient, it is only approximate and we have

no theoretical results on how well it will perform. The algorithm also assumes we

have prior knowledge of the number of communities in the network, where in reality

this is not usually the case. Determining the number of communities in a network

is an interesting open problem and there are a number of methods proposed to solve

this problem recently [104, 121]. Finally, as we (and others) have pointed out, the

best community detection methods are typically hybrids of two or more elementary

methods. It would be interesting to see how the vector partitioning algorithm we

propose works in combination with other methods. These problems, however, we

leave for future work.

80

CHAPTER IV

Identification of core-periphery structure in

networks

4.1 Introduction

In much recent work including the previous two chapters, the largest part of

the attention of studying large-scale structure of networks has gone to community

structures in networks. In this chapter, we focus on another, distinct type of large-

scale structure, core–periphery structure. Many networks are observed to divide into a

densely interconnected core surrounded by a sparser halo or periphery. Already in the

1990s sociologists observed such structure in social networks [20] and more recently a

number of researchers have made quantitative studies of core–periphery structure in a

range of different types of networks [61, 125, 31]. The identification of core–periphery

structure has a number of potential uses. Core nodes in a network might play a dif-

ferent role from periphery ones [57] and the ability to distinguish core from periphery

might thus give us a new handle on function in networked systems. Distinguishing

between core and periphery might lead to more informative visualizations of networks

or find a role in graph layout algorithms similar to that played today by community

structure. And core nodes, for instance in social networks, might be more influential

or powerful than periphery ones, so the ability to discern the difference could shed

81

light on social or other organization.

There have also been studies of other types of structure that are reminiscent

of, though different in important ways from, core–periphery structure: “rich club”

structure [29, 147], degree assortativity [112, 92] and k-core [98, 38]. A rich-club is a

group of high-degree nodes in a network (i.e., nodes with many connections to others)

that preferentially connect to one another. Such a club is a special case of the core in

a core–periphery structure, but the concept of a core is more general, encompassing

cases (as we will see) in which low-degree nodes can also belong to the core. The

rich-club phenomenon also makes no statement about connectivity patterns in the

remainder of the network, whereas core–periphery structure does.

Assortative mixing is the tendency of nodes in a network to connect to others

that are similar to themselves in some way, and degree-assortative mixing is the

tendency to connect to others with similar degree—high to high, and low to low.

This produces a core in the network of connected high-degree vertices, similar to

the rich-club, but low-degree vertices also preferentially connect to one another and

prefer not to connect to the core, which is the opposite of core–periphery structure

as commonly understood, in which periphery vertices are more likely to connect to

the core than they are to one another.

The k-core of a network is defined as the maximal subgraph of the network in

which every node has at least k connections to other nodes in the subgraph and how

to find k-core in a network is of great interest in algorithms. K-core, similar to rich-

club, does not make any statement about the rest of the network so long as the k-core

condition is satisfied. Also in order to be in k-core a node must have high enough

degrees that nodes with degrees lower than k cannot be in k-core at all. As we stated

previously, in general the core–periphery structure allows low-degree nodes to belong

to the core as well.

A number of suggestions have been made about how, given the complete pattern

82

of connections in a network, one could detect core–periphery structure in that pat-

tern. Most of them take the same basic approach of defining an objective function

that measures the strength or quality of a candidate division into core and periphery

and then maximizes (usually only approximately) over divisions to find the best one.

In early work, Borgatti and Everett [20] proposed a quality function based on com-

paring the network to an ideal core–periphery model in which nodes are connected

to each other if and only if they are members of the core. Rombach et al. [125]

built on the same idea, but using a more flexible model. Holme [61] took a contrast-

ing approach reminiscent of the clustering coefficient used to quantify transitivity

in networks. There are also some studies taking other approaches. Lee et al. [72]

used variations of centrality measure to examine core–periphery structure in various

real-world networks.

Using the general idea of statistical inference methods introduced in section 1.6, we

propose a different, statistically principled method of detecting core–periphery struc-

ture using a maximum-likelihood fit to a generative network model. The method is

conceptually similar to recently-popular first-principles methods for community de-

tection [17, 35] and in fact uses the same underlying network model, the stochastic

block model, although with a different choice of parameters appropriate to core–

periphery rather than community structure. Among other results we demonstrate

that the method is able consistently to detect planted core–periphery structure in

computer-generated test networks, and that, by contrast with the community detec-

tion problem, there is no minimum amount of structure that can be detected. Any

core–periphery structure, no matter how weak, is in principle detectable.

4.2 The stochastic block model

Let us again focus on the stochastic block model introduced in section 1.4.3.

Although the original purpose of the stochastic block model is to create artificial

83

networks that contain community structures, it is also commonly used for community

detection by fitting the model to observed network data. The parameters of the fit

tell us the best division of the network into communities.

Consider a network of n nodes and there are just two groups (which will represent

the core and periphery). Each vertex is assigned randomly to group 1 with probabil-

ity γ1 or group 2 with probability γ2 = 1 − γ1. Then between every vertex pair we

place an undirected edge independently at random with probability prs, or not with

probability 1 − prs, where r and s are the groups to which the two vertices belong.

Thus the probability of connection of any two vertices depends solely on their group

membership. The probabilities prs form the mixing matrix, sometimes also called the

affinity matrix, which is a 2× 2 matrix in our two-group example. Since the edges in

the network are undirected it follows that the mixing matrix is symmetric, p12 = p21,

leaving three independent probabilities that we can choose, p11, p12, and p22.

In the most commonly studied case of community structure the probabilities for

connection within groups are chosen to be larger than the probabilities between groups

p11 > p12 and p22 > p12. This gives traditional community structure, also called

assortative mixing, with denser connections within groups than between them. A

contrasting possibility is the disassortative choice p11 < p12 and p22 < p12, where edges

are more probable between groups than within them. This choice, and the structure

it describes, has received a modest amount of attention in the literature [94, 140].

There is, however, a third possibility that has rarely been studied, in which p11 >

p12 > p22. This is the situation we refer to as core–periphery structure. Since the

group labels are arbitrary we can, without loss of generality, assume p11 to be the

largest of the three probabilities, so group 1 is the core. Connections are most probable

within the core, least probable within the periphery, and of intermediate probability

between core and periphery. Note that this means that periphery vertices are more

likely to be connected to core vertices than to each other, a characteristic feature of

84

core–periphery structure that distinguishes it from either assortative or disassortative

mixing.

As we have said, the stochastic block model can be used to detect structure in

network data by fits of the data to the model. For instance, the assortative version of

the model can be used to fit and hence detect community structure in networks [17, 35,

120, 121]. As shown in [65], however, it often performs poorly at this task in real-world

situations because real-world networks tend to have broad degree distributions that

dominate the large-scale structure and the fit tends to pick out this gross effect rather

than the more subtle underlying community structure—typically the fit just ends up

dividing the network into groups of higher- and lower-degree vertices rather than

traditional communities. A more nuanced view has been given by Decelle et al. [34],

who show that in fact both the degree-based division and the community division are

good fits to the model—local maxima of the likelihood in the language introduced

below—but the degree-based one is better.

But when we turn to core–periphery structure this bug becomes a feature. In

networks with core–periphery structure the vertices in the core typically do have

higher degree than those in the periphery, so a method that recognizes this fact is

doing the right thing. Indeed, as we show in Section 4.5, one can in certain cases

do a reasonable job of detecting core–periphery structure just by separating vertices

into two groups according to their degrees. On the other hand, one can do better still

using the stochastic block model.

4.3 Fitting to empirical data

We propose to detect core–periphery structure in networks by finding the pa-

rameters of the stochastic block model that best fit the model to a given observed

network. This we do by the method of maximum likelihood introduced in section 1.6,

implemented using an expectation–maximization or EM algorithm [36, 77], which we

85

give a detailed introduction in Appendix B. The use of EM algorithms for network

model fitting is well established [108, 102], but it is worth briefly running through the

derivation for our particular model, which goes as follows.

4.3.1 The EM algorithm

Given a network, the question we ask is, if this network were generated by the

stochastic block model, what is our best guess at the values of the parameters of that

model? To answer this question, let Aij be an element of the adjacency matrix A of

the network having value one if there is an edge between vertices i and j and zero

otherwise, and let gi be the group that vertex i belongs to. Then the probability, or

likelihood, that the network was generated by the model is

P (A|p, γ) =
∑
g

P (A|p, γ, g)P (g|γ)

=
∑
g

∏
i<j

pAijgigj
(1− pgigj)1−Aij

∏
i

γgi , (4.1)

where
∑

g indicates a sum over all assignments of the vertices to groups.

To determine the most likely values of the parameters prs and γr, we maximize

this likelihood with respect to them. In fact it is technically simpler to maximize the

logarithm of the likelihood:

logP (A|p, γ) = log
∑
g

∏
i<j

pAijgigj
(1− pgigj)1−Aij

∏
i

γgi , (4.2)

which is equivalent since the logarithm is a monotone increasing function. Direct max-

imization is still quite difficult, however. Simply differentiating to find the maximum

leads to a complex set of implicit equations that have no easy solution.

Following Appendix B, a better approach, and the one taken in the EM algorithm,

involves the application of Jensen’s inequality, which says that for any set of positive-

86

definite quantities xi

log
∑
i

xi ≥
∑
i

qi log
xi
qi
, (4.3)

where qi is any probability distribution satisfying the normalization condition
∑

i qi =

1. One can easily verify that the exact equality is achieved by choosing

qi = xi/
∑
i

xi. (4.4)

For any properly normalized probability distribution q(g) over the group assign-

ments g, Jensen’s inequality applied to Eq. (4.2) gives

logP (A|p, γ) ≥
∑
g

q(g) log

[
1

q(g)

∏
i<j

pAijgigj
(1− pgigj)1−Aij

∏
i

γgi

]
=
∑
g

q(g)

[∑
i<j

[
Aij log pgigj + (1− Aij) log(1− pgigj)

]
+
∑
i

log γgi − q(g) log q(g)

]
=

1

2

∑
ij

∑
rs

[
Aijq

ij
rs log prs + (1− Aij)qijrs log(1− prs)

]
+
∑
ir

qir log γr −
∑
g

q(g) log q(g), (4.5)

where qir is the so-called marginal probability within the chosen distribution q(g)

that vertex i belongs to group r:

qir =
∑
g

q(g)δgi,r, (4.6)

and qijrs is the joint or two-vertex marginal probability that vertex i belongs to group r

and vertex j simultaneously belongs to group s:

qijrs =
∑
g

q(g)δgi,rδgj ,s, (4.7)

87

with δij being the Kronecker delta.

Following Eq. (4.4), the exact equality in (4.5) is achieved when

q(g) =

∏
i<j p

Aij
gigj(1− pgigj)1−Aij

∏
i γgi∑

g

∏
i<j p

Aij
gigj(1− pgigj)1−Aij

∏
i γgi

. (4.8)

Thus calculating the maximum of the left-hand side of (4.5) with respect to the

parameters p, γ is equivalent to first maximizing the right-hand side with respect

to q(g) (by choosing the value above) so as to make the two sides equal, and then

maximizing the result with respect to the parameters. In this way we turn our

original problem of maximizing over the parameters into a double maximization of

the right-hand side expression over the parameters and the distribution q(g). At first

glance, this would seem to make the problem more difficult, but numerically it is in

fact easier, since it splits a challenging maximization into two separate and relatively

elementary operations. The maximization with respect to the parameters is achieved

by straightforward differentiation of (4.5) with the constraint that
∑

r γr = 1. Note

that the final term on the right-hand side does not depend on the parameters and

hence vanishes upon differentiation, and we arrive at the following expressions for the

parameters:

prs =

∑
ij Aijq

ij
rs∑

ij q
ij
rs

, (4.9)

γr =
1

n

∑
i

qir, (4.10)

where n is the total number of vertices as previously. The simultaneous solution of

Eqs. (4.8) to (4.10) now gives us the optimal values of the parameters.

The EM algorithm solves these equations by numerical iteration. Given an initial

guess at the parameters p and γ we can calculate the probability distribution q(g)

from Eq. (4.8) and from it the one- and two-vertex marginal probabilities, Eqs. (4.6)

88

and (4.7). And from these we can calculate a new estimate of p and γ from Eqs. (4.9)

and (4.10). It can be proved that upon iteration this process will always converge

to a local maximum of the log-likelihood [36]. It may not be the global maximum,

however, so commonly one performs the entire calculation several times with different

starting conditions, choosing from among the solutions so obtained the one with the

highest likelihood.

Equation (4.9) can be simplified a little further by using Eq. (4.7) to rewrite the

denominator thus:

∑
ij

qijrs =
∑
g

q(g)
∑
i

δgi,r
∑
j

δgj ,s = 〈nrns〉, (4.11)

where 〈. . .〉 indicates an average within the probability distribution q(g) and nr =∑
i δgi,r is the number of vertices in group r. In the limit of large network size the

number of vertices in a group becomes narrowly peaked and we can replace 〈nrns〉

by 〈nr〉〈ns〉 with

〈nr〉 =
∑
g

q(g)
∑
i

δgi,r =
∑
i

qir, (4.12)

where we have used Eq. (4.6). Then

prs =

∑
ij Aijq

ij
rs∑

i q
i
r

∑
j q

j
s

. (4.13)

This expression has the advantage of requiring only a sum over edges in the numerator

(since one need sum only those terms for which Aij = 1) and single sums over vertices

in the denominator, not the double sum in the denominator of (4.9). This makes

evaluation of prs significantly faster for large networks. (Note, however, that despite

appearances, Eq. (4.13) does not assume that qijrs = qirq
j
s, which would certainly not

be correct in general. Only the sum over all vertex pairs factorizes, not the individual

terms.)

89

The final result of the EM algorithm gives us not only the values of the parameters,

but also the marginal probabilities qir for vertices to belong to each group. In fact,

it is normally this latter quantity that we are really interested in. In the community

structure context it gives the probability that vertex i belongs to community r. In the

core–periphery case, it gives the probability that the vertex belongs to either the core

(group 1) or the periphery (group 2). Typically, the last step in the calculation is to

assign each vertex to the group for which it has the highest probability of membership,

producing the final division of the network into core and periphery.

4.3.2 Belief propagation

The EM algorithm is an elegant approach but it has its shortcomings. Principal

among them is the difficulty of performing the sum over group assignments g in the

denominator of Eq. (4.8). Even for the current case where there are just two groups,

this sum has 2n terms and would take prohibitively long to perform numerically for

any but the smallest of networks. The most common way around this problem is

to make an approximate estimate of the sum by Monte Carlo sampling, but in this

chapter we employ an alternative technique proposed by Decelle et al. [35, 34], which

uses belief propagation. This technique is of interest both because it is significantly

faster than Monte Carlo and also because it lends itself to further analysis, as discussed

in Section 4.4.

Belief propagation [116], a generalization of the Bethe–Peierls iterative method

for the solution of mean-field models [16, 119], is a message-passing technique for

finding probability distributions on networks, which we can use in this case to find

the distribution q(g) of Eq. (4.8). We define a “message” ηi→jr , which is equal to the

probability that vertex i belongs to group r if vertex j is removed from the network.

The removal of j allows one to derive a set of self-consistent of equations that must

be satisfied by these messages [35]. The equations are particularly simple for the

90

case of a sparse network where prs is small so that terms of order prs can be ignored

by comparison with terms of order 1, which appears to describe most real-world

networks. For this case, the equations are

ηi→jr =
γr
Zi→j

∏
k

Aik=0

[
1−

∑
s

qksprs

] ∏
k(6=j)
Aik=1

∑
s

ηk→is prs, (4.14)

where Zi→j is a normalizing constant whose value is chosen to ensure that
∑

r η
i→j
r = 1

thus:

Zi→j =
∑
r

γr
∏
k

Aik=0

[
1−

∑
s

qksprs

] ∏
k(6=j)
Aik=1

∑
s

ηk→is prs. (4.15)

Equation (4.14) is typically solved numerically, by starting from a random initial

condition and iterating to convergence. In addition to calculating new values for the

messages ηi→jr on each step of this iteration we also need to calculate new values for

the one-vertex marginal probabilities qir, which satisfy

qir =
γr
Zi

∏
k

Aik=0

[
1−

∑
s

qksprs

] ∏
k

Aik=1

∑
s

ηk→is prs, (4.16)

with Zi being another normalization constant:

Zi =
∑
r

γr
∏
k

Aik=0

[
1−

∑
s

qksprs

] ∏
k

Aik=1

∑
s

ηk→is prs. (4.17)

Equation (4.14) is strictly true only on networks that are trees or are locally tree-

like, meaning that in the limit of large network size the neighborhood of any vertex

looks like a tree out to arbitrarily large distances. The stochastic block model itself

generates networks that are locally tree-like, but many real-world networks are not,

meaning that the belief-propagation method is only approximate in those cases. In

practice, however, it appears to give good results, comparable in quality with those

91

from Monte Carlo sampling [139] (which is also an approximate method).

Once the belief propagation equations have converged, we can use the results to

evaluate Eq. (4.13). This requires values of the two-vertex marginals, which are given

by Bayes theorem to be

qijrs = P (gi = r, gj = s|Aij = 1)

=
P (gi = r, gj = s)

P (Aij = 1)
P (Aij = 1|gi = r, gj = s), (4.18)

where all elements of the adjacency matrix other than Aij are assumed given in each

probability. In terms of our other variables we have

P (gi = r, gj = s) = ηi→jr ηj→is ,

P (Aij = 1|gi = r, gj = s) = prs, (4.19)

and the normalization P (Aij) is fixed by the requirement that qijrs sum to unity. So

qijrs =
ηi→jr ηj→is prs∑
rs η

i→j
r ηj→is prs

. (4.20)

Substituting the values of qir and qijrs into Eqs. (4.10) and (4.13) then completes the

EM algorithm.

Note that there are now two entirely separate iterative sections of our calculation:

the EM algorithm, which consists of the iteration of Eqs. (4.8), (4.10), and (4.13),

and the belief propagation algorithm, which consists of the iteration of Eq. (4.14).

Using the belief propagation algorithm is far faster than calculating q(g) directly

from Eq. (4.8). Equations (4.14) to (4.17) require the evaluation of only O(m + n)

terms for a network with n vertices and m edges, meaning an iteration takes linear

time in the common case of a sparse network with m ∝ n. There is still the issue of

how many iterations are needed for convergence, for which there are no firm results

92

at present, but heuristic arguments suggest that the number of iterations will be

needed is of the same order as the diameter of a network. So for a typical real-world

network which has diameter of O(log n) the algorithm is expected to converge in a

small number of iterations.

The complete algorithm for detecting core–periphery structure in networks con-

sists of the following steps:

1. Make an initial random guess at the values of the parameters p, γ.

2. From a random initial condition, iterate to convergence the belief propaga-

tion equations (4.14) for vertex pairs connected by an edge and the one-vertex

marginal probabilities, Eq. (4.16).

3. Use the converged values to calculate the two-vertex marginal probabilities,

Eq. (4.20).

4. Use the one- and two-vertex probabilities to calculate an improved estimate of

the parameters from Eqs. (4.10) and (4.13).

5. Repeat from step 2 until the parameters converge.

6. Assign each vertex to either the core or the periphery, whichever has the higher

probability qir.

4.4 Detectability

One of the most intriguing aspects of the community detection problem is the

detectability threshold [123, 35, 64]. When a network contains strong community

structure—when there is a clear difference in density between the in-group and out-

group connections—then that structure is easy to detect and a wide range of algo-

rithms will do a good job. When structure becomes sufficiently weak, however, at

93

least in simple models of the problem such as the stochastic block model, it becomes

undetectable. In this weak-structure regime it is rigorously provable that no algo-

rithm can identify community memberships with success any better than a random

coin toss [86, 87]. Given the strong connection between community detection and the

core–periphery detection problem studied here, it is natural to ask whether there is

a similar threshold for the core–periphery problem. Is there a point at which core–

periphery structure becomes so weak as to be undetectable by our method or any

other?

At the most naive level, the answer to this question is no. The core–periphery

problem differs from the community detection problem in that the vertices in the core

have higher degree on average than those in the periphery and hence one can use the

degrees to identify the core and periphery vertices with an average success rate better

than a coin toss.

Consider in particular the common case of a stochastic block model where

prs =
crs
n

(4.21)

for some constants crs. This is the case for which the detectability threshold men-

tioned above is observed. Then the average degrees in the core and periphery are,

respectively,

d̄1 = γ1c11 + γ2c12, d̄2 = γ1c12 + γ2c22, (4.22)

and the difference is d̄1 − d̄2 = γ1(c11 − c12) + γ2(c12 − c22). Since, by hypothesis,

c11 > c12 > c22, this quantity is always positive and d̄1 > d̄2. Because the edges in

the network are independent, the actual degrees have a Poisson distribution about

the mean in the limit of large n, and hence the degree distribution consists of two

overlapping Poisson distributions, as sketched in Fig. 4.1. By simply dividing the

vertices according to their observed degrees, therefore, we can (on average) classify

94

them as core or periphery with success better than chance. (This assumes we know the

sizes of the two groups, which we usually don’t, but this problem can be solved—see

Section 4.4.1.)

0 10 20

Degree

0

0.1

0.2

Fr
ac

tio
n

of
 v

er
tic

es

Figure 4.1: In the stochastic block model both core (red) and periphery (blue) ver-
tices have Poisson degree distributions, but the mean degree is higher
in the core than in the periphery, so the overall degree distribution of
the network is a sum of two overlapping Poisson distributions as shown
here. A simple division of vertices by degree (vertical dashed line) clas-
sifies most vertices into the correct groups, red in the core and blue in
the periphery. Only those in the overlap (shown in purple) are classified
incorrectly.

So rather than asking whether our ability to detect structure fails completely in

the weak-structure limit, we should instead ask whether we can do any better than

simply dividing vertices according to degree. The answer to this question is both yes

and no. As we now show, in the limit of weak structure no algorithm can do better

than one that looks at degrees only, but for stronger structure we can do better in

most cases.

To demonstrate these results, we take a standard approach from statistics and ask

whether our detection algorithm based on the stochastic block model can detect core–

95

periphery structure in networks that are themselves generated using the stochastic

block model. This is a so-called consistency test and, in addition to providing a well-

controlled test of our algorithm, it has one very important advantage. It is known

that on average the best way to detect the structure in a data set generated by a

model is to perform a maximum-likelihood fit to that same model, exactly as our

algorithm does. No other algorithm will return better performance on this test, on

average, than the maximum likelihood method.

Bearing this in mind, consider applying the algorithm of this chapter to a network

generated using the stochastic block model with two equally sized groups (γ1 = γ2 =

1
2
) and weak core–periphery structure of the form

c11 = c+ α1δ, c12 = c, c22 = c− α2δ, (4.23)

where α1, α2, and c are O(1) positive constants and δ is a small quantity. In the limit

as δ → 0 the core–periphery structure vanishes and the network becomes a uniform

random graph of average degree c. For small values of δ the structure is weak and it

is this regime that we’re interested to probe.

To make the problem as simple as possible, suppose that we allow our algorithm

to use the exact values of the parameters γr and prs, meaning that we need only

perform the belief propagation part of the calculation to derive an answer. There

is no need to perform the EM algorithm iteration as well, since this is only needed

to determine the parameters. This is a somewhat unrealistic situation—in practical

cases we do not normally know the values of the parameters. However, if, as we will

show, the algorithm performs poorly in this situation then it will surely perform no

better if we give it less information—if we do not know the values of the parameters.

Thus this choice gives us a best-case estimate of the performance of the algorithm.

To gain a theoretical understanding of how the belief propagation process works,

96

we consider the odds ratio qi1/q
i
2 between the probabilities that a vertex belongs to

the core and the periphery. Making use of Eq. (4.16), expanding the first product to

leading order in prs = crs/n, and dividing top and bottom in the second product by

a factor of n, this quantity is given by

qi1
qi2

=
γ1

γ2

ed̄2−d̄1
∏
k

Aik=1

ηi→j1 c11 + ηi→j2 c12

ηi→j1 c12 + ηi→j1 c22

, (4.24)

where d̄1 and d̄2 are defined as in Eq. (4.22) and we have made use of Eq. (4.10).

Note how the normalization Zi→j also cancels, making calculations simpler.

Now we substitute for crs from Eq. (4.23), set γ1 = γ2 = 1
2
, and note that as δ → 0

the probabilities of any vertex being in one group or the other become equal, so that

ηi→j1

ηi→j2

= 1 + βi→jδ (4.25)

to leading order for some constant βi→j. Keeping terms to first order in δ, we then

find that

qi1
qi2

= 1 + 1
2
(α1 + α2)

ki − c
c

δ, (4.26)

where ki is the degree of vertex i as previously.

Note that βi→j has dropped out of this expression, meaning that when δ is small

and the structure is weak the probabilities depend only on the degree ki of the vertex

and not on any other properties of the network structure. More specifically, vertex i

has a higher probability of belonging to group 1, i.e., the core, whenever its degree ki

is greater than the average degree c in the network as a whole. When its degree

is below average the vertex has a higher probability of belonging to the periphery.

Thus a simple division based on probabilities is precisely equivalent to dividing based

on degree. Moreover, since, as we have said, no other algorithm can do better at

distinguishing the structure, it immediately follows that there is nothing better one

97

can do in the weak-structure limit than divide the vertices based on degree.

The same is also true in the limit of strong structure. If the core–periphery struc-

ture is strong, meaning that there is a big difference between connection probabilities

for core and periphery vertices, then the two Poisson distributions of Fig. 4.1 will be

far apart, with very little overlap, and vertices can be accurately classified by degree

alone. The means of the two distributions are µ1 = 1
2
(c11 + c12) and µ2 = 1

2
(c12 + c22)

and, since the width of a Poisson distribution scales as the square root of its mean,

we will have easily distinguishable peaks provided µ1 − µ2 �
√

(µ1 + µ2)/2, or

c11 − c22 � 2
√
c, (4.27)

where c = 1
2
(µ1 + µ2) is the average degree of the network as a whole.

In fact, even between the limits of strong and weak structure there are some net-

works for which a simple division by degrees is optimal. Consider the two-parameter

family of models defined by

c11 = θr, c12 = θ, c22 =
θ

r
, (4.28)

for any choice of γr, where θ > 0 and r > 1. Substituting this choice into Eq. (4.24)

gives

qi1
qi2

=
γ1

γ2

ed̄2−d̄1rki , (4.29)

so again the results depend only on the vertex degrees.

So are there any cases where we can do better than the algorithm that looks

at degrees only? The answer is yes: for structure of intermediate strength, neither

exceptionally weak nor exceptionally strong, and away from the plane in parameter

space defined by Eq. (4.28), the messages are not simple functions of degree but

depend in general on the details of the network structure. Since, once again, the belief

98

propagation algorithm is optimal, it follows that any algorithm that gives a result

different from the belief propagation algorithm must give an inferior one, including

an algorithm that looks at degrees only. Hence in this regime one can do better than

simply looking at vertex degrees. Moreover, this regime contains most cases of real-

world interest. After all, core–periphery structure so weak as to be barely detectable

is presumably not of great interest, and real-world networks rarely have strongly

bimodal degree distributions of the kind considered above that make degree-based

algorithms work well in the strong-structure limit.

There is also, we note, no evidence in this case of a detectability threshold or

similar sharp discontinuity in the behavior of the algorithm. Everywhere in the pa-

rameter space the algorithm can identify core and periphery with performance better

than chance.

4.4.1 Degree-based algorithm

We are now also in a position to answer a question raised parenthetically in Sec-

tion 4.3.2. If we choose to classify vertices based on degree alone, what size groups

should we use? We can answer this question by noting that Eq. (4.28) defines the

subset of stochastic block models for which degree alone governs classification. As

we have seen, fitting to this model is equivalent to dividing according to degree, but

performing such a fit rather than just looking at degrees has the added advantage

that it gives us the values of the parameters γr, which in turn give us the expected

sizes nr = nγr of the groups. We can perform the fit exactly as we did for the full

stochastic block model in Section 4.3.1. Substituting Eq. (4.28) into the right-hand

side of (4.5), differentiating, and neglecting terms of order 1/n by comparison with

those of order 1, we find the optimal values of the parameters to be

γr =
1

n

∑
i

qir, r =
κ1

κ2

, θ =
κ1κ2

c
, (4.30)

99

where c is the average degree of the network as previously and κr is the expected

degree in group r:

κr =

∑
i kiq

i
r∑

i q
i
r

. (4.31)

The one-vertex probabilities qir are given by Eq. (4.29) to be

qi1 =
γ1e−d̄1rki

γ2e−d̄2 + γ1e−d̄1rki
, qi2 = 1− qi1. (4.32)

Hence for this model, no belief propagation is necessary. One can simply iterate

Eqs. (4.30) and (4.32) to convergence to determine the group memberships. (Note

that in fact the parameter θ is never needed in the iteration—it is sufficient to calculate

only γ1, γ2, and r from Eq. (4.30).)

4.5 Applications and performance

We have tested the proposed method on both computer-generated and real-world

example networks.

4.5.1 Computer-generated test networks

Computer-generated networks provide a controlled test of the algorithm’s ability

to detect known structure. For these tests we make use of the stochastic block model

itself to generate the test networks. We parametrize the mixing matrix of the model

as c11 c12

c21 c22

 = θ1u1u
T
1 + θ2u2u

T
2 , (4.33)

where u1 = (
√
r, 1/
√
r) and u2 = (1/

√
r,−
√
r). With this parametrization, setting

θ2 = 0 recovers the (θ, r)-model of Section 4.4, for which, as we showed there, no

algorithm does any better than a naive division according to vertex degree only. The

parameter θ2 measures how far away we are from that model in the perpendicular

100

direction defined by u2, and we might guess that when we are further away—i.e., for

values of θ2 further from zero—we would see a greater difference between the belief

propagation algorithm and the naive one.

Figure 4.2 shows this indeed to be the case. The figure shows, for three different

choices of θ1, the error rate of the algorithm (i.e., the fraction of incorrectly identified

vertices) as a function of θ2 for networks of n = 1 000 000 nodes, divided into equally

sized core and periphery. Also shown on the plot is the performance of the algorithm

that simply divides the vertices into two equally sized groups according to degree. As

we can see, when θ2 = 0 (marked by the vertical dashed line) the results for the two

approaches coincide as we expect. But as θ2 moves away from zero there is a visible

difference between the two, with the error rate of the naive algorithm being worse

than that of belief propagation by a factor of ten or more in some cases.

It is fair to say, however, that the error rates of the two algorithms are comparable

in some cases and the naive algorithm does moderately well under the right conditions,

with error rates of around 10 or 20 percent for many choices of parameter values.

There are a couple of possible morals one can derive from this observation. On the

one hand, if one is not greatly concerned with accuracy and just wants a quick-

and-dirty division into core and periphery, then dividing vertices by degree may be

a viable strategy. The belief propagation method usually does better, but it is also

more work to program and requires more CPU time to execute. For some applications

we may feel that the additional effort is not worth the payoff. Moreover, since the

belief propagation method is optimal in the sense discussed earlier, we know that, at

least for the definition of core–periphery structure used here, no other algorithm will

out-perform it, so the loss of accuracy seen in Fig. 4.2 is the largest such loss we will

ever incur when using the degree-based algorithm. In other words, this is as bad as

it gets, and it’s not that bad.

On the other hand, as we have said, one does not in most cases know the sizes of

101

-4 -3 -2 -1 0 1 2 3 4

θ2

0

10

20

30

E
rr

or
 r

at
e

(%
)

θ
1
 = 5, degree-based

θ
1
 = 5, max likelihood

θ
1
 = 10, degree-based

θ
1
 = 10, max likelihood

θ
1
 = 15, degree-based

θ
1
 = 15, max likelihood

Figure 4.2: The fraction of nodes classified incorrectly in tests on stochastic block
model networks parametrized according to Eq. (4.33), as a function of
θ2 for fixed r = 2 and three different values of θ1 as indicated. Solid
points represent results for the maximum likelihood method described in
this chapter. Open points are the results of a simple division according
to vertex degree. Each point is an average over 10 networks of a million
nodes. Statistical errors are smaller than the data points. The parameter
ranges are different for different curves because they are constrained by
the requirement that edge probabilities be nonnegative and that c11 >
c12 > c22, which means that θ2 must satisfy −θ1/r < θ2 < θ1(1−1/r)/(r+
1).

102

the groups into which the network is to be divided, in which case one must use the

EM algorithm even for a degree-based division. The computations involved, which are

described in Section 4.4.1, are less arduous than those for the full belief propagation

algorithm but significantly more complex than a simple division by degree only, and

this eliminates some of the advantages of the degree-based approach.

Furthermore, while the number of nodes on which our method and the degree-

based algorithm differ is sometimes quite small, it may be these very nodes that are

of greatest interest. It’s true that it is typically the higher-degree nodes that fall

in the core and the lower-degree ones that fall in the periphery. But when the two

algorithms differ in their predictions it is precisely because some of the low-degree

nodes correctly belong in the core or some of the high-degree ones in the periphery,

which could lead us to ask what is special about these nodes. Who are the people

in a social network, for example, who fall in the core even though they don’t have

many connections? Who are the well-connected people who fall in the periphery?

These people may be of particular interest to us, but they can only be identified by

using the full maximum likelihood algorithm. The degree-based algorithm will, by

definition, never find these anomalous nodes.

4.5.2 Real-world examples

Figure 4.3 shows an application of our method to a real-world network, the In-

ternet, represented at the level of autonomous systems. This network is expected to

have clear core–periphery structure: its general structure consists of a large number

of leaves or edge nodes—typically client autonomous systems corresponding to end

users like ISPs, corporations, or educational institutions—plus a smaller number of

well-connected backbone nodes [115, 61]. This structure is reflected in the decompo-

sition discovered by our analysis, indicated by the blue (core) and yellow (periphery)

nodes in the figure. The bulk of the nodes are placed in the periphery, while a small

103

fraction of central hubs are placed in the core. Note, however, that, as discussed

earlier, the algorithm does not simply divide the nodes according to degree. There

are a significant number of high-degree nodes that are placed by the algorithm in the

periphery because of their position on the fringes of the network, even though their

degree might naively suggest that they be placed in the core.

Figure 4.4 shows a contrasting example. The network in this figure, drawn from

a 2005 study by Adamic and Glance [3] is a web network, representing a set of 1225

weblogs, personal commentary web sites, devoted in this case to commentary on US

politics. Edges represent hyperlinks between blogs, which we treat as undirected

for the purposes of our analysis. This network has been studied previously as an

example of community structure, since it displays a marked division into groups of

conservative and liberal blogs. The figure is drawn so as to make these groups clear

to the eye—they correspond roughly to the left and right halves of the picture—

and the core–periphery division is indicated once more by the blue (core) and yellow

(periphery) nodes. See figure 1.2 in chapter I for a comparison to the community

structure division of the same network.

As the figure shows, the analysis finds a clear separation between core and periph-

ery, and moreover finds a separate core in each of the two communities. In effect, the

conservative blogs are divided into a conservative core and periphery, and similarly

for the liberal ones. A direct examination of the list of core nodes in each community

finds them to contain, as we might expect, many prominent blogs on either side of

the aisle, such as the National Review and Red State on the conservative side and

Daily Kos and Talking Points Memo on the liberal side.

4.6 Conclusion

In this chapter, we have examined core–periphery structure in undirected net-

works, proposing a first-principles algorithm for identifying such structure by fit-

104

Figure 4.3: Core–periphery division of a 1470-node representation of the Internet at
the level of autonomous systems [112]. Nodes placed in the core by our
analysis are drawn larger and in blue; nodes in the periphery are smaller
and in yellow. The network was constructed from data from the Oregon
Routeviews Project and represents an older snapshot, chosen for the net-
work’s relatively small size. Our methods can easily be applied to larger
networks, but smaller size makes the visualization of the results clearer.

105

Figure 4.4: Core–periphery division of a network of hyperlinks between political blogs
taken from [3]. The network naturally separates into conservative and
liberal communities, clearly visible as the two clusters in this picture.
Within each group our algorithm finds a separate core and periphery
indicated by the blue and yellow nodes respectively.

ting a stochastic block model to observed network data using a maximum likelihood

method. The maximization is implemented using a combination of an expectation–

maximization algorithm and belief propagation. The algorithm gives good results

on test networks and is efficient enough to scale to networks of a million nodes or

more. By a linearization of the belief propagation equations we are also able to show

the method to be immune from the detectability threshold seen in the application

106

of similar methods to community detection. In the community detection case the

algorithm (and indeed all algorithms) fail when community structure in the network

is too weak, but there is no such failure for the core–periphery case. Core–periphery

structure is always detectable, no matter how weak it is. There are still many ques-

tions are not answered in this chapter. For example it is still an open question how

would one perform a similar calculation on a weighted network.

107

CHAPTER V

Random graph models for dynamic networks

5.1 Introduction

So far we have focused on static networks that do not change over time [98]. In

section 1.2.2, we suggested that in reality, almost all networks do in fact change,

with nodes or edges appearing or disappearing as the system evolves, and a body

of new work aimed at quantifying, modeling, and understanding such temporal or

dynamic networks has recently emerged, driven in part by the increasing availability

of relevant data [63, 62]. In this chapter, we focus on the study of dynamic networks

and propose principled statistical methods for fitting real-world data into dynamic

network models.

Data on dynamic networks comes in a variety of forms, but the most common

form, and the one we consider in this chapter, is that of a set of snapshots of net-

work structure taken at successive times, usually (though not always) evenly spaced.

Such sets are a special case of a more general “multiplex” network, meaning a set

of different networks defined on the same set of nodes [18, 37]. Multiplex networks

include many non-dynamic kinds, such as social networks with different types of in-

teractions between the same set of actors. Our focus in this chapter, however, is

solely on dynamic networks. We also limit ourselves to networks defined on a fixed

and unchanging set of nodes, so that only edges appear and disappear, not nodes.

108

In many early analyses of dynamic networks, researchers treated snapshots as

independent measurements of network structure, analyzing each one separately using

conventional static network methods [62]. This, however, ignores the often strong

correlations between snapshots, and thereby also ignores a potential rich source of

information hidden in the data. In a friendship network, for instance, one expects to

still be friends next week with most of the same people one is friends with this week.

Moreover, it could be the case that two edges in a network are each present in half

the snapshots, but that one of these edges flickers on and off rapidly, while the other

varies more slowly. Treating snapshots independently would accurately measure the

overall probability that such edges exist, but would be completely insensitive to their

rate of appearance and disappearance.

A better approach is to employ methods where the fundamental unit of analysis

is not an individual snapshot but the entire history of the network, and a number

of researchers have followed this line of reasoning in recent years. Grindrod and

coworkers [54, 55, 56], for instance, construct models in which the appearance and

disappearance of edges in a network obeys a continuous-time Markov process, meaning

that edges appear and disappear by making transitions from present to absent or vice

versa at certain rates. Crucially, these rates can differ from edge to edge, which can

induce complex structure in the network. In [54], for example, the authors considered

rates that depend on the “range” of an edge, i.e., its length in some latent space, while

[55, 56] focus on local properties such as the current degree (the number of neighbors

of a node) or transitivity (the number of common neighbors of a node pair).

The models we study in this chapter are a special case of models in this class,

chosen so that they precisely generalize some of the best known static network models.

In particular we do the following. (1) We spell out explicitly dynamic generalizations

of the classic random graph, the configuration model, and the widely used stochastic

block model, specifically its degree-corrected variant. The models we describe are

109

contained within the larger class defined in [54, 55, 56] but are simpler than their more

general cousins, making possible certain calculations that would be harder, or even

impossible, in the general case. (2) We give calculations of the equilibrium properties

of these models and demonstrate explicitly the sense in which they generalize the

static models. (3) The bulk of our presentation is given over to the derivation and

application of methods for fitting the models to observed network data, which allows

us to infer large-scale structure, including (but not limited to) community structure,

using maximum-likelihood techniques akin to those developed previously for the static

case.

In addition to the work of [54, 55, 56], a number of other authors have considered

dynamic generalizations of network models, including the random graph [130] and

especially the stochastic block model [136, 141, 56, 68, 75, 48, 138, 137, 76]. The or-

dinary static version of the stochastic block model divides network nodes into groups

or communities and then places edges between them with probabilities that depend on

group membership. Dynamic variants of the model have been investigated in which

nodes can change their community membership over time, which can cause edge prob-

abilities also to change and hence edges to appear or disappear from one snapshot

to the next. Versions of this idea include the dynamic mixed-membership model of

Xing et al. [136] and the multi-group membership model studied by Yang et al. [141]

and Kim and Leskovec [68]. In Matias and Miele [75] and Ghasemian et al. [48], group

memberships can change but edges at successive times are independent conditioned

on the groups. Xu [137] has studied a dynamic block model with edge dynamics con-

trolled by a Markov process, which has some elements in common with our approach.

Another model similar to ours (but without degree correction) was defined in [56],

though in contrast to our approach the authors did not use maximum likelihood to

jointly infer the dynamical parameters and the block memberships. Matias et al. [76]

have considered “longitudinal” networks where contacts between nodes are governed

110

by a Poisson process. Finally, Ogura and Preciado [89] considered spreading processes

on networks with Markov processes on the edges.

A little further from our focus in this chapter are the multilayer stochastic block

models studied for instance in Refs. [59] and [129]. As with dynamic models, these

models generate a set of different networks or “layers” built upon the same set of

nodes, but there is now no ordering of the layers or any assumption that adjacent

layers are more similar than distant ones. Han et al. [59] have used such multilayer

models to derive more consistent estimation of community structure for certain data

sets than those derived from standard stochastic block models. Stanley et al. [129]

studied a variant in which different layers (“strata” in their terminology) are generated

from different underlying parameters.

In the following section, we describe the models studied in this chapter, and derive

a range of properties using the statistical inference methods introduced in section 1.6

for their applications.

5.2 Dynamic network models

Each of the models we study has a fixed number n of nodes, plus edges between

them that appear and disappear as the network evolves over time. Starting from

some initial condition at time t = 0, our models generate continuous-time network

histories, where edges appear and disappear at a sequence of real-valued times. In

some data sets, events like these can be observed directly, for instance in a network of

telephone calls where we are given the time and duration of each call. Here, however,

we assume that the network is only observed at a set of T further snapshots, evenly

spaced at integer times t = 1, . . . , T . Including the initial state there are, thus, a

total of T + 1 distinct snapshots. Note that the network is assumed to exist and to

continue to evolve unobserved between the snapshots.

The fundamental idea behind all of the models we consider is that the connection

111

between every pair of nodes obeys a continuous-time Markov process, edges appearing

and disappearing with constant rates, though the rates can differ from one node pair

to another depending on various latent properties of the nodes. By choosing this

dependence appropriately we can model various kinds of dynamic network structure,

including fluctuating densities, degree distributions, and community structure.

To make our discussion more concrete, consider a particular pair of nodes in the

network. Let us define λ to be the rate (in continuous time) at which an edge appears

between these two nodes where previously there was none, and let us define µ to be the

rate at which an existing edge disappears. If we denote by p1(t) and p0(t) respectively

the probabilities that there is and is not an edge between our nodes at time t then

p1(t+ dt) = p1(t) + λp0(t) dt− µp1(t) dt, (5.1)

p0(t+ dt) = p0(t)− λp0(t) dt+ µp1(t) dt, (5.2)

and hence p1 satisfies the master equation

dp1

dt
= −dp0

dt
= λp0(t)− µp1(t), (5.3)

which has the solution

p1(t) =
λ

µ+ λ
− c e−(µ+λ)t, (5.4)

where c is an integration constant and we have made use of p0 = 1− p1.

Now suppose that there is no edge between our two nodes at time t = 0, i.e., that

p1(0) = 0, which corresponds to the choice c = λ/(µ + λ). Then the probability of

having an edge between our nodes at the next snapshot of the network, at time t = 1,

is equal to p1(1), which takes the value

α =
λ

µ+ λ

[
1− e−(µ+λ)

]
. (5.5)

112

This is the probability of appearance of an edge between one snapshot and the next.

Similarly we can show that the probability of disappearance of an edge is

β =
µ

µ+ λ

[
1− e−(µ+λ)

]
, (5.6)

and the equilibrium probability of an edge in the limit of long time is

p = lim
t→∞

p1(t) =
λ

µ+ λ
=

α

α + β
. (5.7)

It will be more convenient to define our models in terms of probabilities such as these,

which can always be calculated if necessary from the continuous-time rates λ and µ.

5.2.1 Dynamic random graph

The random graph G(n, p) introduced in section 1.4.1, famously studied by Erdős

and Rényi in the 1950s and 60s [42, 43], is perhaps the most fundamental of all

network models. In this model edges are placed between node pairs independently

with probability p (or not with probability 1− p). In this section we define the first

and simplest of our dynamic network models as a direct dynamic counterpart to the

random graph.

The definition of the model is straightforward. Starting from some initial state

at time t = 0, at every snapshot t each node pair not connected by an edge in

the previous snapshot gains an (undirected) edge with probability α, or not with

probability 1 − α. Similarly each existing edge disappears with probability β or not

with probability 1 − β. The net result after T time-steps is a sequence of T + 1

snapshots which can be represented by a set of symmetric adjacency matrices A(t)

having elements Aij(t) = 1 if nodes i and j are connected by an edge in snapshot t

and Aij(t) = 0 otherwise.

In the limit of long time T → ∞, the average probability of an edge between

113

two nodes in this model is given by Eq. (5.7) to be p = α/(α + β), the same for

every node pair. Hence the stationary distribution of the model is simply the random

graph G(n, p). It is in this sense that the model is a dynamic generalization of the

random graph.

This is a particularly simple example of the class of models we study—we will look

at more complex ones shortly—but even so there are various reasons to be interested

in a model of this kind. One could use it for instance to compute the time variation of

network properties such as connectivity or component sizes, or the density of specific

subgraphs—computations akin to the classic calculations of Erdős and Rényi and

others for the static case [42, 43]. Our primary interest in this chapter, however, is in

the use of this and other models as tools for understanding observed network data,

using methods of statistical inference: we fit the model to the data by the method of

maximum likelihood and the parameters of the fit tell us about our data in much the

same way that fitting a straight line through a set of points can tell us about their

slope.

Suppose that we have a set of T+1 observed snapshots of some network, measured

at uniform intervals over time. If we hypothesize that the data were in fact generated

from our dynamic random graph model, then the probability, or likelihood, that we

observe this particular set of snapshots, given the parameters α, β of the model, has

the form

P ({A(t)}|α, β) =
∏
i<j

[
P (Aij(0)|α, β)

×
T∏
t=1

P
(
Aij(t)|α, β,Aij(t− 1)

)]
. (5.8)

Note that we have separate terms in this expression for the first snapshot and all

succeeding snapshots. The first snapshot differs from the others because it has no

preceding snapshots, so its probability is not conditioned on those before it. The

114

probabilities of all later snapshots, on the other hand, depend on the previous state

of the network. Because of the assumption that network evolution follows a Markov

process, each snapshot only depends directly on the immediately preceding snapshot,

hence the inclusion of Aij(t− 1) in the second product.

The two probabilities P (Aij(0)|α, β) and P
(
Aij(t)|α, β,Aij(t − 1)

)
are straight-

forward to write down. With the assumption that the first snapshot is drawn from the

stationary distribution of the Markov process, the first probability, which represents

the probability of observing Aij(0) given no information about the previous history of

the network, is equal to the stationary probability of an edge or non-edge within the

model, which as we have said is p = α/(α + β) for an edge, or 1− p for a non-edge.

Hence

P (Aij(0)|α, β) = pAij(0)(1− p)1−Aij(0). (5.9)

The second probability is only a little more complicated, taking one of four values

for edges that appear or not and ones that disappear or not:

P (Aij(t)|α, β,Aij(t− 1)) = α[1−Aij(t−1)]Aij(t)(1− α)[1−Aij(t−1)][1−Aij(t)]

× βAij(t−1)[1−Aij(t)](1− β)Aij(t−1)Aij(t). (5.10)

Substituting (5.9) and (5.10) into Eq. (5.8) then gives us the full likelihood for our

data. In fact, as is often the case, it is more convenient to work with the logarithm L

of the likelihood, which has its maximum in the same place. Taking the log of (5.10),

115

we have

L = logP ({A(t)}|α, β) =
∑
ij

{
Aij(0) log p+ [1− Aij(0)] log(1− p)

+
T∑
t=1

[
[1− Aij(t− 1)]Aij(t) logα

+ [1− Aij(t− 1)][1− Aij(t)] log(1− α)

+ Aij(t− 1)[1− Aij(t)] log β

+ Aij(t− 1)Aij(t) log(1− β)
]}
. (5.11)

Given the likelihood, we can estimate the parameters α and β by maximizing,

which gives

α =

∑
ij

[
Aij(0)− p+

∑T
t=1[1− Aij(t− 1)]Aij(t)

]∑
ij

[
Aij(0)− p+

∑T
t=1[1− Aij(t− 1)]

] , (5.12)

β =

∑
ij

[
p− Aij(0) +

∑T
t=1 Aij(t− 1)[1− Aij(t)]

]∑
ij

[
p− Aij(0) +

∑T
t=1Aij(t− 1)

] . (5.13)

Note that these expressions differ from the naive estimates of α and β given

by Laplace’s rule of succession [54], i.e., the number of times an edge appeared or

disappeared divided by the number of times it could potentially have done so. The

difference arises because the initial state of the network is chosen from the stationary

distribution, and the probability p that Aij(0) = 1 in this initial state itself depends

on α and β. As T → ∞ the effect of the initial state becomes progressively diluted

relative to the effect of the other snapshots and Eqs. (5.12) and (5.13) converge to

their naive values.

Because p appears on the right-hand side of (5.12) and (5.13), calculating the

rates α and β requires us to find self-consistent solutions to the equations. In fact, it

is possible to eliminate the dependence on p on the right-hand side and derive explicit

closed-form equations, but the expressions are somewhat complicated. In practice we

116

have found it simpler just to solve Eqs. (5.12) and (5.13) by iteration from a suitable

initial condition.

What do these equations tell us? For a given data set, they give us an optimal

estimate—better than the naive estimate—of the rate at which edges appear and

disappear in our network. This gives us information about the correlation between

adjacent snapshots. The combined values of α and β also give us the maximum-

likelihood estimate of the average density of the network, via the average probability

p = α/(α + β) of an edge.

This model, however, while illustrative, is not, in practice, very useful. Like the

static random graph which inspired it, it is too simple to capture most of the interest-

ing structure in real networks, and in particular it generates networks with Poisson

degree distributions, wholly unlike those of real-world networks, which typically have

broad and strongly non-Poisson distributions. In the world of static network models,

this latter shortcoming is remedied by the configuration model, a more sophisticated

random graph that can accommodate arbitrary degree distributions [83, 105]. In the

next section, we show how to define a dynamic equivalent of the configuration model.

5.2.2 Dynamic random graphs with arbitrary expected degrees

The configuration model introduced in section 1.4.2 is a model of a random graph

with a given degree sequence [83, 105]. We fix the degree di of each node i = 1, . . . , n.

In the limit n → ∞ the expected number of edges falling between nodes i and j in

this model is didj/2m, where m = 1
2

∑
i di is the total number of edges in the network,

and the actual number of edges between each pair of nodes is Poisson distributed with

this mean. There is nothing in this model to stop a pair of nodes having two or more

edges connecting them—a multiedge–and in general there will be some multiedges

in networks generated using the configuration model. Self-loops—edges connecting

a node to itself—can and do also appear. Although this is not realistic behavior for

117

most real-world networks, versions of the configuration model that explicitly forbid

multiedges and self-loops are much harder to work with than those that do not. More-

over, if the degree distribution has finite mean and variance, the expected number

of multiedges and self-loops in the network is constant, independent of n, so they

have vanishing density as n→∞. For these reasons, one normally puts up with the

presence of a few multiedges and self-loops for the sake of simplicity.

In this section, we focus on the Chung-Lu model [24], a variant of the configuration

model, which was also introduced in section 1.4.2. The numbers of edges between

node pairs in the Chung-Lu model are independent random variables, making analysis

simpler. The price one pays for this simplicity is that the degrees of individual

nodes are no longer fixed, themselves being Poisson-distributed (and asymptotically

independent) with mean di. Thus di in this case represents not the actual degree but

the expected degree of a node. (The random graph of Erdős and Rényi, with mean

degree c, is then the special case of this model where di = c for all i.)

In this section we define a dynamic analog of the Chung–Lu model in the sense of

this chapter: its edges have a dynamics chosen so that their stationary distribution

is precisely that of the Chung–Lu model. (A dynamic network model where the edge

rates depend on the current degrees of their endpoints was proposed in [55]. In our

model, by contrast, each node has a given average degree in the limit T →∞.) Since

the Chung–Lu model can contain multiedges, we consider a process for adding and

removing edges slightly different from that of the previous section, such that each pair

of nodes can have any nonnegative number k of edges connecting it. Specifically, for

each node pair we consider the Poisson process where edges are added at rate λ, and

each of the existing edges is removed independently at rate µ. Thus k is incremented

at rate λ, and decremented at rate kµ.

Let pk(t) denote the probability that a node pair has k edges at time t. Then pk

118

satisfies the master equation

dpk
dt

= λpk−1(t) + (k + 1)µpk+1(t)− (λ+ kµ)pk(t). (5.14)

We can solve this equation by defining a generating function g(z, t) =
∑∞

k=0 pk(t) z
k,

multiplying both sides of (5.14) by zk, and summing over k to get

∂g

∂t
= (z − 1)

[
λg − µ∂g

∂z

]
. (5.15)

The general solution to this equation is

g(z, t) = eλ(z−1)/µf
(
(z − 1)e−µt

)
, (5.16)

where f(x) is any once-differentiable function of its argument satisfying f(0) = 1,

the latter condition being necessary to fulfill the normalization requirement g(1, t) =∑
k pk(t) = 1 for all t.

In the limit of long time we have g(z, t) → eλ(z−1)/µ, which is the generating

function of a Poisson-distributed variable with mean λ/µ. Hence the number of edges

between any pair of nodes in this model is Poisson-distributed in the stationary state.

If we make the choice

λ = µ
didj
2m

(5.17)

for some set of values di, with m = 1
2

∑
i di as previously and any value of µ, then

the mean number of edges between nodes i and j is λ/µ = didj/2m. In other words,

the stationary state of this model is precisely the Chung–Lu model with expected

degrees di.

This then defines our model: to generate a dynamic network with n nodes, we

specify the expected degree di for each node and the parameter µ. We generate the

initial state of the network from the Chung–Lu model with these expected degrees,

119

and then generate future states by adding edges between each node pair i, j at rate

λij = µdidj/2m and removing existing edges at rate µ. We sample T snapshots of the

resulting network at integer intervals t = 1, . . . , T which, along with the initial state

at t = 0, comprise the T + 1 total snapshots generated by the model. We represent

these snapshots by adjacency matrices A(t).

One could use this model for various purposes, such as making calculations of

expected structural properties, but our principal interest here is again in fitting the

model to observed network data. As before we achieve this by maximizing a likelihood

function, which has the same basic form as previously:

P ({A(t)}|{di}, µ) =
∏
i<j

[
P (Aij(0)|di, dj, µ)

×
T∏
t=1

P
(
Aij(t)|di, dj, µ, Aij(t− 1)

)]
. (5.18)

The first probability on the right-hand side is straightforward to write down, since we

know that the stationary distribution places a Poisson-distributed number of edges

between nodes i and j with mean didj/2m. Thus

P (Aij(0)|{di}, µ) =
(didj/2m)Aij(0)

Aij(0)!
e−didj/2m, (5.19)

which is independent of µ.

The second probability P (Aij(t)|di, dj, µ, Aij(t − 1)) is more involved, but the

calculation is simplified by noting that even though the model can possess multiedges,

the observed network data will normally have at most a single edge between any pair of

nodes, so that the only allowed edge transitions are the appearance and disappearance

of single edges.

Suppose that a given node pair is connected by zero edges at time t = 0. Then,

setting t = 0 in Eq. (5.16), we find that f(x) = e−λx/µ, which implies that one

120

timestep later at t = 1 we have

g(z, 1) = eλ(z−1)(1−e−µ)/µ = e(z−1)βdidj/2m, (5.20)

where we have made use of Eq. (5.17) and for convenience defined the quantity

β = 1− e−µ, (5.21)

which (by analogy with our use of the same symbol β in Section 5.2.1) is equal to the

total probability that an existing edge disappears during a single unit of time, i.e.,

between two successive snapshots.

The probabilities p0→0 and p0→1 of a transition from zero edges to, respectively,

zero or one edges in a single timestep are then equal to the probabilities p0(1) and

p1(1) of having zero or one edges at t = 1. These are given by the zeroth and first

coefficients in the expansion of g(z, 1) in powers of z:

p0→0 = e−βdidj/2m, (5.22)

p0→1 = β
didj
2m

e−βdidj/2m. (5.23)

By a similar method we also have

p1→0 = βe−βdidj/2m, (5.24)

p1→1 = (1− β)e−βdidj/2m, (5.25)

where we have ignored terms of second and higher order in 1/m in (5.25). Eqs. (5.22)

to (5.25) give the expressions for the probabilities of a transition from zero edges to

zero edges, from zero edges to one edge, from one edge to zero edges, and from one

edge to one edge respectively. This specifies the full transition matrix for a network

121

that has single edges only and no multiedges.

We can now write down the transition probability P
(
Aij(t)|di, dj, µ, Aij(t− 1)

)
as

a function of β:

P
(
Aij(t)|di, dj, β, Aij(t− 1)

)
= (βdidj/2m)[1−Aij(t−1)]Aij(t)βAij(t−1)[1−Aij(t)]

× (1− β)Aij(t−1)Aij(t)e−βdidj/2m. (5.26)

Substituting this into Eq. (5.18) and taking logs, we get the following expression for

the log-likelihood in our model:

L =
∑
ij

(
Aij(0) +

T∑
t=1

[
1− Aij(t− 1)

]
Aij(t)

)
log

didj
2m

+ 2
(
m0→1 +m1→0

)
log β

+ 2m1→1 log (1− β)− 2m(1 + Tβ), (5.27)

where we have ignored constant terms and

m0→1 =
1

2

T∑
t=1

∑
ij

[1− Aij(t− 1)]Aij(t)

is the total number of newly appearing edges in the observed data, and similarly

m1→0 =
1

2

T∑
t=1

∑
ij

Aij(t−1)[1−Aij(t)], m1→1 =
1

2

T∑
t=1

∑
ij

Aij(t−1)Aij(t). (5.28)

Maximizing the log-likelihood with respect to the edge disappearance rate β, we then

find that the optimal value of β is the positive solution of the quadratic equation

mTβ2 − (mT +m0→1 +m1→0 +m1→1)β +m0→1 +m1→0 = 0. (5.29)

Similarly, maximizing with respect to di and bearing in mind that m = 1
2

∑
i di, we

122

find that di obeys

0 =
2

di

∑
j

[
Aij(0) +

T∑
t=1

[1− Aij(t− 1)]Aij(t)

]

− 1∑
j dj

∑
ij

[
Aij(0) +

T∑
t=1

[1− Aij(t− 1)]Aij(t)

]
− (1 + Tβ), (5.30)

which has the solution

di =
1

1 + Tβ

∑
j

[
Aij(0) +

T∑
t=1

[1− Aij(t− 1)]Aij(t)

]
. (5.31)

The sum in this expression is the number of edges initially connected to node i

plus the number that later appear. The divisor 1 + Tβ is the effective number of

independent measurements of an edge that we make during our T snapshots. If

β = 0, so that edges never appear or disappear, then in effect we only have one

measurement of each edge—the initial snapshot at t = 0. Conversely, if β = 1,

so that every observed edge immediately disappears on the next snapshot, then all

snapshots are independent and the number of independent measurements is T + 1.

Thus Eq. (5.31) measures the number of observed edges between node pairs divided

by the number of independent observations of each node pair.

Equations (5.29) and (5.31) give us the maximum-likelihood estimates the rate

parameter β and the expected degrees of the nodes. We note two points. First, these

equations have to be solved self-consistently, since the first equation depends on di

via m = 1
2

∑
i di and the second depends on β. Second, neither β nor di are equal to

their naive estimates from the data. One might imagine, for instance, that di would

be given by the average of
∑

j Aij(t) over all snapshots, but our results indicate that

the maximum-likelihood estimate differs from this value.

Both of these effects arise, as in the previous section, because of the information

provided by the initial state. Because the initial state is drawn from the stationary

123

distribution, which depends on the model parameters, we can make a better estimate

of those parameters by taking it into account than not. On the other hand, the

advantage of doing so dwindles as T becomes large and vanishes in the T →∞ limit.

We could use these results, for example, to define in a principled fashion an equiv-

alent of the “degree” for a node in a dynamic network. The actual degree of a node in

such a network is a fluctuating quantity, but using our results one can define a single

number di for each node that, like the degree in a static network, is a measure of the

propensity of that node to connect to others. We give some examples in Section 5.3.

5.2.3 Dynamic block models

We return to the stochastic block model [60], introduced in section 1.4.3 and dis-

cussed extensively in previous chapters, for a network that incorporates community

structure. In this section, we skip the dynamic generalization to the ordinary stochas-

tic block model. Instead, we derive the dynamic generalization of the degree-corrected

stochastic block model [65], which is a variant on the same idea that is analogous to

the model of Chung and Lu [24], allowing us to choose any set of values for the

expected degrees of nodes, while also generating a community-structured network.

A number of dynamic versions of block models have been proposed previously, as

discussed in the introduction [56, 136, 141, 68, 75, 48, 137, 76, 138]. In this section

we define a dynamic equivalent of the degree-corrected model and show how it can

be used to infer community structure from dynamic network data using maximum

likelihood.

The standard (static) degree-corrected block model divides a network of n nodes

into k nonoverlapping groups labeled by integers 1, . . . , k. Let us denote by gi the

group to which node i belongs. Then we place a Poisson-distributed number of

edges between each node pair i, j with mean equal to ωgigjθiθj, where θi is a degree-

like parameter and ωrs is a further set of parameters which control the density of

124

edges within and between each pair of groups. If the diagonal elements ωrr are

greater than the off-diagonal ones, the model generates networks with conventional

“assortative” community structure—dense in-group connections and sparser between-

group ones—although other choices of ωrs are also possible and are observed in real-

world situations.

This description does not completely fix the parameters of the model: they are

arbitrary to within a multiplicative constant, since one can multiply all the θi in any

group by a constant and divide the same constant out of ωrs without affecting the

behavior of the model. This is why we refer to θi as a “degree-like parameter”—it

plays a role similar to degree in the configuration model but is arbitrary to within a

group-dependent multiplicative constant. Following [65] and section 1.4.4, we remove

this ambiguity by making a specific choice of normalization, that the sum of θi within

any group should be 1: ∑
i

θiδgi,r = 1, (5.32)

where δij is the Kronecker delta. This gives us k constraints, one for each of the k

groups, and hence fixes all the remaining degrees of freedom.

To generalize this model to the dynamic case we again divide our n nodes into k

groups and assign to each of them a degree-like parameter θi satisfying (5.32). We

generate an initial state drawn from the static degree-corrected block model with these

parameters. We then generate a history for the network by adding edges between each

node pair i, j at rate

λij = µrsωrsθiθj (5.33)

and removing existing edges independently at rate µrs, where r = gi and s = gj

are respectively the groups to which i and j belong. Note the similarity between

Eqs. (5.17) and (5.33), the primary differences being that the parameter µrs now

depends on the group memberships and that the factor 1/2m has been replaced

125

by the quantity ωrs, which also depends on the group memberships. By the same

argument as before, the number of edges between i and j in the stationary state is

Poisson distributed with mean

λij
µrs

= ωrsθiθj, (5.34)

which makes the stationary state of this model equivalent to the degree-corrected

stochastic block model as desired.

Also by the same argument as before, we can calculate the transition rates for

edges to appear and disappear between one snapshot and the next, which are

p0→0 = e−βrsωrsθiθj , (5.35)

p0→1 = βrsωrsθiθje
−βrsωrsθiθj , (5.36)

p1→0 = βrse
−βrsωrsθiθj , (5.37)

p1→1 = (1− βrs)e−βrsωrsθiθj . (5.38)

Here

βrs = 1− e−µrs (5.39)

is the total probability for an existing edge between nodes in groups r and s to

disappear in the unit of time between successive snapshots. (Also as before we have

in Eq. (5.38) discarded terms beyond leading order in the small quantities ωrs.)

By fitting this model to observed network data, we can determine the parame-

ters βrs, ωrs, and θi, along with the group assignment parameters gi. The likelihood

as a function of the four sets of parameters {βrs}, {ωrs}, {θi}, and {gi} takes the

126

form

P ({A(t)}|{βrs}, {ωrs}, {θi}, {gi}) =
∏
i<j

[
P (Aij(0)|βgigj , ωgigj , θi, θj)

×
T∏
t=1

P
(
Aij(t)|βgigj , ωgigj , θi, θj, Aij(t− 1)

)]
.

(5.40)

The first probability on the right is straightforward, taking the value

P (A
(0)
ij |βgigj , ωgigj , θi, θj) =

(ωgigjθiθj)
Aij(0)

Aij(0)!
e−ωgigj θiθj (5.41)

by definition (which is independent of βgigj), while the second can be expressed in

terms of the transition probabilities, Eqs. (5.35) to (5.38). The resulting expression

for the log-likelihood is

L =
∑
ij

{
Aij(0) log(ωgigjθiθj)− ωgigjθiθj +

T∑
t=1

[[
1− Aij(t− 1)

]
Aij(t) log(βgigjωgigjθiθj)

+ Aij(t− 1)
[
1− Aij(t)

]
log βgigj + Aij(t− 1)Aij(t) log(1− βgigj)− βgigjωgigjθiθj

]}
=
∑
ij

∑
rs

δgi,rδgj ,s

{
Aij(0) log(ωrsθiθj)− ωrsθiθj +

T∑
t=1

[[
1− Aij(t− 1)

]
Aij(t) log(βrsωrsθiθj)

+ Aij(t− 1)
[
1− Aij(t)

]
log βrs + Aij(t− 1)Aij(t) log(1− βrs)− βrsωrsθiθj

]}
=
∑
ij

[
Aij(0) +

T∑
t=1

[
1− Aij(t− 1)

]
Aij(t)

]
log(θiθj) +

∑
rs

{
mrs(0) logωrs

+m0→1
rs log(βrsωrs) +m1→0

rs log βrs +m1→1
rs log(1− βrs)− (1 + Tβrs)ωrs

]}
,

(5.42)

where

mrs(0) =
∑
ij

Aij(0)δr,giδs,gj , (5.43)

127

and

m0→1
rs =

∑
ij

[
1− Aij(t− 1)

]
Aij(t)δr,giδs,gj , (5.44)

which is the total number of edges that appear between groups r and s in the observed

data. Similarly,

m1→0
rs =

∑
ij

Aij(t− 1)
[
1− Aij(t)

]
δr,giδs,gj , (5.45)

m1→1
rs =

∑
ij

Aij(t− 1)Aij(t)δr,giδs,gj , (5.46)

Differentiating Eq. (5.42) with respect to ωrs now gives us

ωrs =
mrs(0) +m0→1

rs

1 + Tβrs
, (5.47)

and differentiating with respect to βrs gives a quadratic equation again:

Tωrsβ
2
rs − (Tωrs +m0→1

rs +m1→0
rs +m1→1

rs)βrs

+m0→1
rs +m1→0

rs = 0. (5.48)

(Note that in order to perform the derivatives correctly, one must take into account

the fact that ωrs = ωsr and βrs = βsr, although it turns out that the end result is the

same as would be derived by naive differentiation, ignoring these equalities.)

Differentiating (5.42) with respect to θi and normalizing appropriately gives us

θi =

∑
j

{
Aij(0) +

∑T
t=1

[
1− Aij(t− 1)

]
Aij(t)

}∑
s(1 + Tβgis)ωgis

. (5.49)

The self-consistent solution of Eqs. (5.47), (5.48), and (5.49), now gives us the pa-

rameters of the model.

If we want to convert the degree-like parameter θi into a true degree, we can do

128

this by noting that the expected degree di of node i in the stationary state of this

model is equal to the sum of the expected number of edges between i and every other

node, which is

di =
∑
j

ωgigjθiθj = θi
∑
rj

ωgirθjδgj ,r = θi
∑
r

ωgir, (5.50)

where we made use of Eq. (5.32) in the final equality. Hence the degrees are simply

proportional to θi, with a constant of proportionality that can be easily calculated

once we have the values of ωrs from Eq. (5.47).

This still leaves us to calculate the maximum-likelihood estimates of the group

assignments gi. To do this, we substitute our estimates of the parameters back into

the log-likelihood, Eq. (5.42), to get the so-called profile likelihood, which is then

maximized over the group assignments gi. Note that there is no need to calculate

the last term
∑

rs(1 + Tβrs)ωrs in the likelihood since, by Eq. (5.47), it is equal to∑
rs[mrs(0) + m0→1

rs], which is independent of the group assignments and hence has

no effect on the position of the maximum.

Maximization of the profile likelihood over the values of gi is harder than maxi-

mizing with respect to the other parameters, since the values of the gi are discrete.

We perform the maximization numerically, using a heuristic algorithm analogous to

that used for the static block model in [65], which was in turn inspired by the clas-

sic Kernighan–Lin algorithm for graph partitioning [67]. Starting from a random

group assignment, we move a single node to a different group, choosing from among

all possible such moves the one that most increases (or least decreases) the profile

likelihood. We repeat this process, making a chain of successive single-node moves,

but with the important qualification that each node is moved only once. When all

nodes have been moved once, we reexamine every state passed through during the

process to find the one with the highest profile likelihood, then take that state as

129

the starting point for a new repetition of the same algorithm. We continue repeating

until no further improvement in the profile likelihood is found. As with many other

optimization algorithms, the results can vary from one run to another because of

the random initial condition, so one commonly performs several complete runs with

different initial conditions, taking as the final answer the output of the run that gives

the highest overall value of the profile likelihood.

An alternative way to fit our model would be to use an expectation–maximization

(EM) algorithm in which the model parameters are assigned their maximum-likelihood

values but one computes an entire posterior distribution over divisions of the network

into groups. The latter distribution, being a large object, is normally evaluated only

approximately, either by Monte Carlo sampling or using a belief propagation algo-

rithm [35], introduced in section 4.3.2, in which nodes pass each other estimates of

their marginal probabilities of belonging to each group. A belief propagation algo-

rithm was used previously for a different dynamic block model in [48], where each

node sends messages both along “spatial” edges to its neighbors in each snapshot and

along “temporal” edges to its past and future selves in adjacent snapshots. A similar

approach could work in the present case, although our model differs from that of [48]

in assuming unchanging group memberships but correlated edges where [48] makes

the opposite assumption of time-varying group memberships but independent edges

between snapshots.

5.3 Applications

In this section we give examples of fits of dynamic network data to the dynamic

configuration model of Section 5.2.2 and the dynamic block model of Section 5.2.3.

130

5.3.1 Synthetic networks

Our first set of examples make use of synthetic data sets—computer-generated net-

works with known structure that we attempt to recover using the maximum-likelihood

fit. We demonstrate this approach using the dynamic block model of Section 5.2.3

and the test networks we use are themselves generated using the same model. We

look in particular at the case where the expected degree parameters di for all nodes

are the same, equal to a constant c. For the tests reported here we use c = 16. At

the same time we vary the strength of the community structure, encapsulated in the

parameters ωrs, according to

ωrs = δωplanted
rs + (1− δ)ωrandom, (5.51)

Here ωplanted
rs is diagonal (all elements with r 6= s are zero), ωrandom is a flat matrix (all

elements are the same), and δ ∈ [0, 1] is an interpolating parameter. Thus by varying δ

we span the range from a uniform random graph with no community structure (δ = 0)

to a network in which all edges lie within communities and none between communities

(δ = 1), so that the communities are completely disconnected components.

We similarly vary the rate constants βrs according to a second parameter η, also

lying in [0, 1], such that

βrs = ηβplanted
rs + (1− η)βuniform, (5.52)

which interpolates between values that are the same for all groups and the heteroge-

neous choice βplanted
rs , which can be anything we choose. Note that while varying βrs

does not change the expected degree or average density of edges in the network, it

does change how rapidly edges appear and disappear. Thus η controls the extent to

which the dynamics of the network, as opposed to merely its average behavior, gives

131

additional information about the community structure.

Once the parameters are fixed, we generate a set of networks, which in our tests

have n = 500 nodes divided into two groups of equal size. For each network we

generate an initial state followed by up to five further snapshots. The initial state is

generated from the stationary distribution (i.e., from a traditional degree-corrected

block model) and the following snapshots are generated according to the prescription

of Section 5.2.3.

We now apply the fitting method of Section 5.2.3 to these networks to test whether

it is able to successfully recover the community structure planted in them. Suc-

cess, or lack of it, is quantified using the normalized mutual information [32, 79], an

information-theoretic metric that measures the agreement between two sets of group

assignments. A normalized mutual information of 1 indicates exact recovery of the

planted groups while 0 indicates complete failure—zero correlation between recovered

and planted values.

Figure 5.1 shows the results of our tests. In panel (a) we fix η = 0, so that βrs

is uniform and block structure is indicated only by the relative abundance of edges

within and between groups. We use a value of βuniform = 0.4, meaning that 40% of

extant edges disappear at each time-step. The different curves in the figure show the

normalized mutual information as a function of the parameter δ which measures the

strength of the community structure, for different numbers of snapshots from T = 0

to T = 5. As we can see, our ability to recover the planted structure diminishes, and

eventually fails completely, as the structure becomes weaker, but this effect is partly

offset (as we might expect) by increasing the number of snapshots—the more snap-

shots we use the better we are able to infer the community structure. For larger num-

bers of snapshots, the algorithm is able to surpass the known “detectability threshold”

below which community detection is impossible for single, static networks [35], which

is indicated by the vertical dashed line in the plot. In other words the algorithm is

132

0.0 0.2 0.4 0.6 0.8 1.0
δ

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze

d
 m

u
tu
a
l
in
fo
rm

a
ti
o
n

(a) η=0

0.0 0.2 0.4 0.6 0.8 1.0
δ

(b) η=1

0.0 0.2 0.4 0.6 0.8 1.0
η

(c) δ=0

T=0

T=1

T=2

T=3

T=5

Figure 5.1: The normalized mutual information for runs of the community finding al-
gorithm described here on computer-generated networks themselves cre-
ated using the dynamic block model. T represents the number of transi-
tions between snapshots, so that the total number of snapshots is T + 1,
the parameter δ measures the strength of the community structure, and
η measures the extent to which community structure and edge dynamics
are correlated. (a) Networks with η = 0, βuniform = 0.4, and varying δ.
(b) Networks with η = 1 and βplanted

rs equal to βin = 0.3 along the diagonal
and βout = 0.5 off the diagonal. (c) Networks with δ = 0, βuniform = 0.4,
βin = 0, and βout = 0.8, and varying η. The vertical dashed line in pan-
els (a) and (b) represents the theoretical detectability threshold for single
networks generated from the standard stochastic block model with the
same parameters [35]. Panel (b) shows that the dynamics of the network
can give us additional information, allowing us to find the community
structure even below this static threshold. Each data point is an average
over 30 networks with n = 500 nodes each and average degree c = 16 for
all nodes.

able to integrate information about the network over time in order to better determine

the shape of the communities.

In Fig. 5.1b we set η = 1, so that βrs = βplanted
rs , choosing the value of βplanted

rs

to be βin = 0.3 along the diagonal and βout = 0.5 off the diagonal, meaning that

within-group edges are somewhat more persistent—more likely to be conserved from

one snapshot to the next—than between-group edges. This behavior provides another

signal of community structure, in addition to the differing time-averaged edge prob-

abilities, which the algorithm can in principle use to determine group memberships.

133

And indeed the results of Fig. 5.1b reflect this, showing that the algorithm is able to

determine group memberships even well below the detectability threshold, but only

when T is large. If T is small, then it becomes difficult to determine the values of βrs

from the data, and hence difficult to determine group membership for small δ. This

point is discussed further below.

In Fig. 5.1c we fix δ = 0 and vary η between zero and one using values βuniform =

0.4 as previously, and βin = 0, βout = 0.8. With δ = 0 there is now no signal

whatsoever of community structure present in the positions of the edges. The only

clue to the group assignments lies in the rate of appearance and disappearance of

edges within and between groups. As we would expect, the algorithm is unable to

identify the communities at all when T = 0 or η = 0, but as η grows for T ≥ 1

the algorithm assigns a larger and larger fraction of nodes to the correct groups, with

better performance for larger values of T . These results suggest the existence of a new

detectability threshold as a function of η, with location tending to zero as T → ∞.

(A threshold like this was observed, for instance, by Ghasemian et al. [48] in their

model, discussed in Section 5.2.3, which has a transition as a function of both the

strength of community structure and the relevant rate parameters.)

5.3.2 Real-world examples

We have also tested our models against a number of empirical data sets repre-

senting the structure of real-world dynamic networks. We give three examples repre-

senting networks drawn from technological and social domains, finding in each case

that our dynamic models and their associated algorithms perform better than static

methods.

Internet graph: Our first example is a network representation of the structure of

the Internet at the level of autonomous systems (ASes), the fundamental units of

134

global packet routing used by the Internet’s Border Gateway Protocol. The structure

of the Internet changes constantly and is well documented: a number of ongoing

projects collect snapshots of the structure at regular intervals and make them available

for research. Here we use data from the CAIDA AS Relationships Dataset [1], focusing

on four snapshots of the network’s structure taken at three-month intervals during

2015. The spacing of the snapshots is chosen with an eye to the rate of growth of

the network. The Internet has grown steadily in size over the several decades of its

existence, and it is still growing today, but this growth is not captured by our models.

To ensure better fits, therefore, we first restrict our data to the set of nodes that are

present in all of our snapshots, and second choose snapshots that span a relatively

short total time. Thus our four snapshots were chosen to be sufficiently far apart in

time that the network sees significant change between one snapshot and the next, but

close enough that the size of the network does not change greatly.

We fit our Internet data to the dynamic version of the configuration model de-

scribed in Section 5.2.2, which gives us a way to determine the parameter β that

controls the rate of appearance and disappearance of edges as well as the effective

degrees di of nodes i in the network. For the rate parameter we find a maximum

likelihood value of β = 0.0896, which indicates a fairly slow rate of turnover of the

edges in the network. Recall that β is the average probability that an edge will van-

ish from one snapshot to the next, so this value of β implies that over 90% of edges

remain intact between snapshots. As discussed in Section 5.2.2, one could make a

naive estimate of the rate at which edges vanish simply by counting the number that

do, but that estimate would be less accurate than the maximum-likelihood one.

Our fit also gives us estimates of the degree parameters di from Eq. (5.31). Again,

we could make naive estimates of the degrees, for instance by assuming snapshots to be

independent and averaging the raw degrees of their nodes across snapshots. Figure 5.2

shows a comparison between the frequency distribution of estimated degrees for the

135

1 10 100 1000

Estimated degree

10-3

10-2

10-1

100

101

102

103

104

105

N
u
m
b
er

o
f
n
o
d
es

Time−averaged
Maximum likelihood

Figure 5.2: Degree distribution of the Internet at the autonomous system level, esti-
mated in two different ways, first using a naive average of the degrees of
our four snapshots (squares) and second using the maximum likelihood
method of this chapter (circles). The points are a histogram of estimated
degrees using logarithmic (constant ratio) bins. Note that the expected
degrees are not necessarily integers, so the positions of the points are not
integers either.

Internet derived from the two methods. As the figure shows, there is in this case

relatively little difference between the results from the two methods for most of the

degree distribution, although there is some deviation for very high and low degrees.

The dynamic method appears to produce a somewhat smoother distribution in these

regions, suggesting that departures from the smooth distribution in the naive estimate

may be due to transient effects.

The similarity between the maximum likelihood and naive estimates in Fig. 5.2 is

not entirely surprising, since the naive average is a correct estimator of the di in the

limit of a large number of snapshots—it will tend to the correct answer eventually.

Even so, it is less than ideal. For instance, while it may give a correct estimate of

the degrees, the estimate of the error on the values it gives would still be wrong.

By assuming the snapshots to be independent, we effectively assume that we have

136

more measurements of the network than we really do and hence underestimate the

variance. For instance, if we observe that the naive degree of a node is unchanging

for many snapshots in a row, we may conclude that the average of those values has a

very small statistical error, because the fluctuations are small. This, however, would

be erroneous if the small fluctuations are actually just a result of the fact that the

network is only changing rather slowly.

And error estimates are not the only thing that will be affected by improperly

using a naive degree estimate. The values of the degrees themselves can also be

affected if the snapshots are strongly correlated, which they are in this case because

of the small value of β. Strongly correlated snapshots will tend to give a node the

same or similar degree on successive snapshots, but Eq. (5.31) implies that in this

case our estimate of di should actually decrease over time (as T becomes larger in the

denominator while the numerator remains constant). A naive estimate on the other

hand would remain unchanged. At first sight the decrease in the maximum-likelihood

estimate may appear counterintuitive, but it has a simple physical interpretation: for

a node that truly has a constant value of di, we would expect additional edges to

appear occasionally, at a rate dependent on that value. If we do not see any edges

appearing, therefore, it implies our initial estimate of the degree was too high and we

should revise it downward.

The maximum-likelihood estimator can, on the other hand, also have problems

of its own if the the model we are fitting is not a perfect description of the data. In

the case of the Internet we see two possible sources of disagreement between data

and model. First, even though the number of nodes in the network is held fixed,

the number of edges is observed to grow over time—the network is becoming more

dense. This effect is not included in our model, which assumes constant expected

density. Second, we see some evidence that the removal of edges is not uniform as

our model assumes, but that edges connected to high-degree nodes disappear at a

137

higher rate than those connected to low-degree ones. Both of these behaviors could

potentially affect our results. (It is interesting to ask whether and how the model

could be generalized to include them, though we leave pursuit of that question for

future work.)

Friendship network: Our second example focuses on a set of social networks from

a study by Michell and West of friendship patterns and behaviors among school

students in the UK [80]. High-school students at a school in the west of Scotland

were polled about their friendship patterns, each student being allowed to name

up to twelve friends, and they were also asked about their drinking, smoking, and

drug use habits. The entire exercise was conducted a total of three times, at yearly

intervals, with the same group of students. The study looked at all students in the

school, but the most detailed data were collected for a subset of 50 girls within the

larger population and it is on this subset that we focus here.

The researchers were interested in the extent to which substance use behaviors

correlated with friendship patterns. They found that although there was no single

factor that would completely explain the friendships of the students, the network of

friendships did display homophily according to substance use, meaning that students

with similar use patterns were more likely to be friends [117, 118].

In our analysis we divide the students into three groups: those who do not drink,

smoke, or take drugs on a regular basis; those who exhibit one of these three behaviors;

and those who exhibit two or more. We then ask whether it is possible to detect

this division into groups based on network structure alone, without any knowledge

of student behaviors. We find that when using the dynamic version of the degree-

corrected block model described in Section 5.2.3 it is indeed possible to determine the

groups, and to do so with better accuracy than can be achieved by standard static

methods. Specifically, we compare results from our dynamic block model to those

138

(a)

(b)

(c)

Figure 5.3: Communities within the friendship network of UK high-school students
described in the text. (a) Node colors and shapes indicate ground-truth
data on substance use, divided into students who used no substances
(green circles), one (yellow squares), or two or more substances (red tri-
angles). (b) Colors and shapes indicate group assignments inferred by
fitting the network to the dynamic block model of this chapter using all
three snapshots. (c) Colors and shapes indicate the group assignments
inferred by fitting an aggregate of the three snapshots to the static degree-
corrected stochastic block model.

from the static degree-corrected block model fitted to an aggregate network formed

from the union of the three snapshots.

Figure 5.3 shows three pictures of the overall aggregate network of friendships.

Each picture is laid out identically, but with different coloring. In panel (a) the three

colors represent the ground truth, with green, yellow, and red denoting students who

engaged in zero, one, or two or more of the behaviors studied respectively. Panel (b)

shows the communities found in the network by fitting to the dynamic block model.

139

Though not perfect, this fit places 64% of the nodes in their correct groups. A random

coloring, for comparison, would get only 33% right (since each node would have a 1
3

probability of assignment to the correct group). Panel (c) shows the results from the

standard static algorithm applied to the aggregated network. This fit places only 52%

of the nodes in their correct groups.

Proximity network: Our third example is another social network, a network of

physical proximity between students in a high school in France [74]. The data were col-

lected using electronic proximity detectors worn by the participants, which recorded

the presence and identity of other detectors in their vicinity at intervals of 20 sec-

onds. The data were collected over five consecutive days, but on the last day only

a half day’s worth of data were collected, which we discard, leaving four full days to

work with. We construct one snapshot for each day and consider there to be an edge

between two participants in a snapshot if three or more contacts between them were

recorded during the relevant day. Requiring a minimum number of contacts in this

way helps to remove spurious signals from the data, as discussed in [127]. We also

restrict our study to those nodes that are present in all snapshots.

The students in the study were divided among three subject specialties: mathe-

matics/physics, physics/chemistry, and biology. Each specialty was further divided

into three classes, so there are a total of nine classes in the data. We attempt to

recover these classes from the network data alone, without other information, using

both the dynamic model of this chapter and a traditional static degree-corrected block

model applied to the aggregated network. In this case both methods do well, which is

perhaps unsurprising, given that the edges within each group are significantly denser

than those between groups. Figure 5.4 shows the results for the dynamic model in

panel (a) and the static model in panel (b). As we can see, both models achieve good

classification of the nodes into their classes, although the dynamic model performs

140

BIO

MP

PC

BIO

MP

PC

(a)

(b)

Figure 5.4: Student proximity network. The nine groups of nodes in each panel rep-
resent the nine classes and the colors and shapes represent the community
structure found using (a) the dynamic model of this chapter applied to
the four snapshots and (b) the standard static degree-corrected block
model applied to the aggregate of the snapshots. Note that classes in
the same row belong to the same subject specialty, where PC stands
for physics/chemistry, MP stands for math/physics and BIO stands for
biology. Classes within the same subject specialty tend to have more
inter-class edges than classes in different specialties.

141

slightly better. The error rate—the fraction of incorrectly labeled nodes—is 4.1% for

the dynamic model of panel (a) and 5.7% for the static model of panel (b).

The primary benefit of the dynamic model in this case, however, lies not in its

ability to recover the communities but in what it reveals about the dynamics of the

network. In addition to the communities themselves, the dynamic model also returns

values for the rate parameters that can reveal features of the data not seen in the

simple static fit to the aggregate network. Of particular interest in this case are the

parameters βrs, which measure the relative rates at which edges change within and

between groups. Our fit gives estimates of

βrs '

0.51± 0.05 within classes,

0.75± 0.19 different classes but same specialty,

0.94± 0.19 different specialties,

(5.53)

where the errors indicate the standard deviation among classes.

In other words, connections are not only more likely between participants in the

same class or specialty, but they are also more persistent, in some cases by a wide

margin—only about 6% of connections persist from one snapshot to the next between

individuals in the different specialties for example, but almost 50% persist within

classes.

5.4 Conclusions

In this chapter we have introduced dynamic generalizations of some of the best-

known static network models, including the Erdős–Rényi random graph, the configu-

ration model, and the degree-corrected stochastic block model. We have also derived

and implemented algorithms for fitting these models to network data that allow us

to infer maximum-likelihood estimates of rates of change, node degrees, and com-

142

munity structure. We have tested the performance of our models and algorithms

on synthetic benchmark networks as well as on a selection of data sets representing

real-world examples of dynamic networks.

There are a number of directions in which this work could be extended. First, we

have focused exclusively on edge dynamics here, but there are also networks in which

nodes appear and disappear and it would be a natural generalization to study the

dynamics of nodes also, or of both edges and nodes together. We could also allow

node properties, such as expected degrees or community memberships, to change over

time, as some other authors have done. Second, the assumption of continuous-time

Markov processes for the edge dynamics is a particularly simple one, which could be

relaxed to encompass more complicated situations. Third, in our community detection

calculations we assume we know the number of communities the network contains,

but in many cases we do not have this information. Methods have been developed

for determining the number of communities in static networks [104, 121] and it is an

interesting question whether those methods can be extended to the dynamic case as

well.

143

CHAPTER VI

Conclusion

In this thesis, I introduce my contributions to two major techniques, spectral meth-

ods and statistical inference methods, for analyzing large-scale structure of networks.

In order to understand the fast-growing and increasingly complicated network data

sets, researchers need more and better tools in network science. My contributions ad-

dress some of the existing issues in network science and give insights into open ones.

Spectral methods are efficient and principled for studying the large-scale structure

of networks, particularly the community structures. I study the spectra of random

networks, which gives insights into how spectral algorithms for community detection

perform. Further, I propose a principled spectral algorithm for single-step multiway

community detection in networks. Statistical inference methods allow us to study a

variety of structures in networks. I illustrate a method for finding the core-periphery

structure in a network, specifically using EM algorithm and belief propagation for

fitting network data into stochastic block models. Lastly, I generalize several classical

network models to include dynamic features of networks. Most real-world networks

have dynamic information and using the proposed dynamic models allows us to infer

more properties about the network data. I give a summary of those issues in detail

below.

In chapter II I introduce a method to analytically compute the spectra of random

144

networks with both community structure and nontrivial degree distributions. The

model of interests is the model proposed by Ball et al. [10]. Using recent results in

spectral analysis of networks [90, 91], I derive an analytical prescription for calculating

the spectra of networks generated with the model. The spectra of the adjacency

matrix is shown to have two components: a continuous band and a number of outlying

eigenvalues determined by the number of communities. The calculated spectra agree

well with numerical simulations. Lastly, I argue that as the strength of the community

structure becomes weaker, there are a series of “detectability transitions”, as which

point the ability of detecting communities vanishes.

In chapter III I give a principled, efficient and single-step multiway spectral com-

munity detection algorithm. Spectral algorithms are known to be limited by the

number of communities it can find. There is no good spectral algorithm for dividing

a network into any number of communities. By converting the modularity maximiza-

tion problem into the max-sum vector partitioning algorithm, I propose an algorithm

for multiway spectral community detection. The algorithm is based on a heuristic

motivated to maximize modularity. I compare the proposed algorithm to the k-means

clustering and show that it works better on synthetic networks. Lastly, I also apply

the algorithm on real-world data and find that it produces good results as well.

In chapter IV I show how to identify the core-periphery structure in a network

using statistical inference method. I propose a principled method by fitting the data

into a network model, the stochastic block model in this case, that has core-periphery

structure. The division is achieved by a maximum-likelihood fit, implemented using

an expectation-maximization or EM algorithm. In order to efficiently infer the un-

known group assignments, I propose using the belief propagation algorithm for per-

forming the expectation step of the EM algorithm. I also show that unlike community

detection problems, core-periphery detection does not have a “detectability thresh-

old”. Lastly, I demonstrate the use of the algorithms by applying it to two real-world

145

examples.

In chapter V I propose dynamic generalizations to classic static network models.

Most of the work on network models focus on static networks. In reality, however, al-

most all networks do change over time. Extending static network models to dynamic

models allows us to infer more properties of the network data. I propose dynamic

generalizations to the Erdős-Rènyi random graph, the configuration model and the

degree-corrected stochastic block model. I also introduce efficient algorithms for sta-

tistical inference using these models, showing how to fit these models into observed

data. For the dynamic degree-corrected stochastic block model, I also introduce a

vertex moving algorithm for inferring the community structure. Lastly, I apply the

methods to both computer-generated networks and three real-world examples.

There are a number of directions in which the work could be extended. First,

more flexible and more efficient algorithms for analyzing network structures using

either spectral methods or statistical inference methods are always in demand. As

networks data with larger size and greater complexity become available, better tools

for studying networks are also needed. Further, it is of great research interests to

study how spectral methods and statistical inference methods overlap and differ. As

I have discussed in the thesis, both spectral analysis [90] and statistical method [35]

assert a “detectability transition” in stochastic block model. Also in [100], Newman

pointed out that the spectral method for community detection and the maximum

likelihood method are equivalent in the special case of stochastic block model. There

are many other possibilities of how these two methods agree and disagree with each

other. Lastly, methods for studying the large-scale structure of networks with various

properties are still deficient. Networks in modern era come with rich information and

format: temporal networks, multiplex networks, networks with metadata and so on.

But the methods for analyzing such complicated networks are largely limited. All

those topics are of great research interests as well as real-world applications.

146

APPENDICES

147

APPENDIX A

Spectra of stochastic block model and detectability

threshold

In this section, we give the detailed calculations of the spectra of ordinary stochas-

tic block discussed in section 1.5.3. The derivations are based on the original reference

by Nadakuditi and Newman [90].

A.1 Spectra of adjacency matrix and modularity matrix

Following section 1.5.3, we first focus on the expected adjacency matrix of the

two-group stochastic block model with intra- and inter-group expected edges denoted

by cin and cout respectively. The expected adjacency matrix takes the form

〈A〉 = 1
2

(cin + cout) eeT + 1
2

(cin − cout) uuT , (A.1)

where e and u are defined as e = (1, . . . , 1)/
√
n and u = (1, . . . , 1,−1, . . . ,−1)/

√
n.

The full community information is contained in u. The adjacency matrix is A =

〈A〉 + X where X is a symmetric random matrix with iid elements of mean zero.

148

Moreover, the modularity matrix is

B = A− 1
2

(cin + cout) eeT = X + 1
2

(cin − cout) uuT . (A.2)

Based on Eqs. (A.1) and (A.2), we analyze the spectrum of the modularity matrix

in two steps: first we evaluate the spectrum of then random matrix X, and then we

study how the introduced rank-1 matrix influence the spectrum. As we have shown

in section 1.5.3, the spectrum of the modularity matrix consists of a continuous band

that follows Wigner semicircle law and an outlying eigenvalue that indicates the

community division. We give the detailed derivations in the following sections.

A.2 Spectral density of random matrix X

Following random matrix theory literature, we write the spectral density ρ(z) of

X using the imaginary part of the Stieltjes transform:

ρ(z) = − 1

nπ
Im 〈Tr (zI−X)−1〉. (A.3)

The main difficulty is to calculate the average of the trace, which can be expanded

in power of X as

〈Tr (zI−X)−1〉 =
1

z

∞∑
k=0

Tr 〈Xk〉
zk

, (A.4)

where each average of the trace term takes the form

Tr 〈Xk〉 = 〈Xi1i2Xi2i3 . . . Xiki1〉. (A.5)

Notice that the elements of X have mean zero, therefore any term in Eq. (A.5) that

contains any variable just once will become zero once we take the average. Moreover,

any term that contains any variable more than twice will become zero when the

149

average degree is much larger than one, i.e. when the network is dense. In the end,

only terms with k being even and each variable appear exactly twice remains. This

is a well-known combinatorial problem and the number of possible configurations is

described by the Catalan number Cm where

Cm =
1

m+ 1

(
2m

m

)
. (A.6)

And for each term we have 〈X2
ij〉 = (cin + cout)/2n since the elements in X have same

variance. We can then write Eq. (A.5) as

Tr 〈X2m〉 = nm+1

(
cin + cout

2n

)m
Cm = n

(
cin + cout

2

)m
Cm. (A.7)

Putting this into Eq. (A.4) we have

〈Tr (zI−X)−1〉 =
n

z

∞∑
m=0

(
cin + cout

2z2

)m
Cm

=
n

cin + cout

[
z −

√
z2 − 2(cin + cout)

]
. (A.8)

Notice that in Eq. (A.3) we are taking the imaginary part of Eq. (A.8) and the only

possible imaginary part in Eq. (A.8) can come from is under the square root sign.

Therefore, for the spectral density in Eq. (A.3) we have

ρ(z) =
1

π

√
2(cin + cout)− z2

cin + cout

. (A.9)

If we further denote c = (cin + cout)/2, Eq. (A.9) can be rewritten as

ρ(z) =

√
4c− z2

2πc
, (A.10)

which is the same as Eq. (1.47) in section 1.5.3.

150

A.3 Outlying eigenvalues

In order to compute the spectrum of the modularity matrix in Eq. (A.2), we are

left with the computation of the how the rank-1 matrix uuT influences the spectrum

of X. Following the results in the random matrix theory literature [15, 22], let z be

an eigenvalue of B and v be the corresponding eigenvector, we write the eigenvalue

problem of B as [
1
2
(cin − cout)uuT −X

]
u = zu. (A.11)

Rearranging and multiplying both sides of the equation by uT (zI−X)−1 we find

2

cin − cout

= uT (zI−X)−1u =
n∑
i=1

(uTxi)
2

z − λi
, (A.12)

where λi is the ith eigenvalue of X and xi is the corresponding eigenvector.

Using the power of random matrix theory, we are able to assert the eigenvalues

of modularity matrix based on the spectral density of the random matrix X. The

solutions to Eq. (A.12), which are the eigenvalues of the modularity matrix, are given

in figure A.1.(a). The eigenvalues satisfy “interlacing” conditions where z1 ≥ λ1 ≥

z2 ≥ λ2 ≥ . . . ≥ zn ≥ λn. These conditions bound the eigenvalues z2, . . . , zn such

that when n→∞ the spectrum of the modularity matrix is asymptotically the same

as that of X.

The only exception being the leading eigenvalue z1, which is only bounded on one

side. In order to calculate the value of z1, we need to evaluate the terms (uTxi)
2. The

important thing to realize here is that the eigenvectors of X are themselves random

vectors, therefore the average of the square of inner product with u is simply 1/n.

Putting this into Eq. (A.12) we get

2

cin − cout

=
1

n
〈
n∑
i=1

1

z − λi
〉 =

1

n
Tr (zI−X)−1 =

z −
√
z2 − 2(cin + cout)

cin + cout

, (A.13)

151

-√2(c
in

+c
out

) 0 √2(c
in

+c
out

)

λ
1

λ
2

λ
3

λ
n

z
1

z
2

z
3

z
n

(a)

(b)

z

z

ρ(z)

Figure A.1: (a) Graphical solutions to Eq. (A.12). The solid curves indicate the right
hand side of the equation and the horizontal dashed line indicates the left
hand side. (b) A realization of the spectrum of the modularity matrix,
which consists of a continuous band and an outlying eigenvalue. Figure
taken from [90].

where in the last equality we used Eq. (A.8). Rearranging for z, we find the solution

to the leading eigenvalue z1 to be

z1 = 1
2
(cin − cout) +

cin + cout

cin − cout

. (A.14)

The spectrum of the modularity matrix is now known and figure A.1.(b) shows a

visualization of the full spectrum.

152

A.4 Detectability threshold

Remember that the leading eigenvalue of the modularity matrix in Eq. (A.14)

corresponds the eigenvector that contains the community information. To recover the

planted community in the stochastic block model, we need to be able to reliably find

z1. As we have discussed previously, z1 might get absorbed into the continuous band

and we may fail to recover the community structure. Using Eqs. (A.14) and (A.10)

we find this happens when

cin − cout =
√

2(cin + cout) = 2
√
c. (A.15)

We reach our final conclusion that the spectral algorithm will fail when the planted

signal is weaker than this threshold. The same threshold is derived using other method

in [35].

153

APPENDIX B

Statistical inference methods for stochastic block

model

In section 1.6 we give a brief introduction on maximum likelihood estimation

(MLE). Here we give a more detailed introduction on other relevant statistical in-

ference concepts in this thesis. We also discuss how we may fit a network into an

ordinary stochastic block model with unknown group assignments.

B.1 Maximum likelihood estimation for stochastic block model

In this section, we give the formulation of the maximum likelihood estimation

for fitting an observed network A to the ordinary stochastic block model. Remember

that the stochastic block model is specified In section 1.6.2, we showed that likelihood

of the stochastic block model, assuming we know the group assignment, is

P (A, g|ω, γ) = P (A|g, ω)P (g|γ) =
∏
i

γgi
∏
i<j

ω
Aij
gigj

Aij!
exp (−ωgigj)

=
∏
r

γnrr
∏
rs

ωmrs/2rs exp (−1
2
nrnsωrs)

∏
i<j

1

Aij!
. (B.1)

154

In the general setting where g is unknown, we need to perform the sum

P (A|ω, γ) =
∑
g

P (A|g, ω)P (g|γ). (B.2)

As we have discussed previously, this sum cannot be carried out exactly efficiently

and we need to rely on other methods to find a good approximation in practice. We

introduce the expectation maximization algorithm for this purpose in the following

section.

B.2 Expectation maximization algorithm

We first rewrite the likelihood in Eq. (B.2) into the log-likelihood as

logP (A|ω, γ) = log
∑
g

P (A|g, ω)P (g|γ). (B.3)

The form of the right hand side of the equation is that of the logarithm of a sum-

mation. This form can usually be simplified by using the Jensen’s inequality which

states that for any set of xi ≥ 0 we have

log
∑
i

xi ≥
∑
i

qi log
xi
qi
, (B.4)

where the qi is any probability distribution over i. The exact equality is achieved at

qi =
xi∑
i xi

. (B.5)

Thus the maximal value of the left hand side in Eq. (B.4) is achieved by choosing qi

according to Eq. (B.5). Applying Jensen’s inequality on Eq. (B.3) then gives

logP (A|ω, γ) ≥
∑
g

q(g) log
P (A|g, ω)P (g|γ)

q(g)
, (B.6)

155

where the equality is achieved when

q(g) =
P (A, g|ω, γ)∑
g P (A, g|ω, γ)

=
P (A, g|ω, γ)

P (A|ω, γ)
. (B.7)

Although we have introduced another set of unknown distributions q(g) and seemingly

making things more complicated, we know how to efficiently compute every term in

Eqs. (B.6) and (B.7). In Eq. (B.6), we can maximize the log-likelihood by directly

differentiating with respect to parameters ω and γ. In Eq. (B.7), the numerator is

given in Eq. (B.1) and the denominator is just a normalizing constant, which we may

normalize at the very end to make sure q(g) is a probability distribution. The full

expectation maximization algorithm is then given by iterating between the two steps

in Eq. (B.6) (M-step) and in Eq.(B.7) (E-step).

156

BIBLIOGRAPHY

157

BIBLIOGRAPHY

[1] The CAIDA AS relationships dataset. http://www.caida.org/data/as-
relationships.

[2] Zachary karate club club. http://networkkarate.tumblr.com/.

[3] Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004
US election. In Proceedings of the WWW-2005 Workshop on the Weblogging
Ecosystem, 2005.

[4] Reka Albert and Albert-Laszlo Barabási. Statistical mechanics of complex net-
works. Rev. Mod. Phys., 74:47–97, 2002.

[5] Charles J. Alpert, Andrew B. Kahng, and So-Zen Yao. Spectral partitioning
with multiple eigenvectors. Discrete Applied Mathematics, 90(1):3–26, 1999.

[6] Charles J. Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors,
the better. In Bryan T. Preas, Patrick G. Karger, Bahman S. Nobandegani,
and Massoud Pedram, editors, Proceedings of the 32nd International Conference
on Design Automation, pages 195–200, New York, NY, 1995. Association of
Computing Machinery.

[7] Greg W. Anderson and Ofer Zeitouni. A clt for a band matrix model. In
Probability Theory and Related Fields, volume 134, pages 283–338, Berlin, 2006.
Springer.

[8] Z. Bai and L. Zhang. The limiting spectral distribution of the product of the
wigner matrix and a nonnegative definite matrix. In Journal of Multivariate
Analysis, volume 101, pages 1927–1949, Amsterdam, 2010. Elsevier.

[9] Zhidong Bai and Jack W. Silverstein. Spectral analysis of large dimensional
random matrices. Springer, Berlin, 2 edition, 2010.

[10] Brian Ball, Brian Karrer, and M. E. J. Newman. An efficient and principled
method for detecting communities in networks. Phys. Rev. E, 84:036103, 2011.

[11] Albert-Laszlo Barabási and Reka Albert. Emergence of scaling in random net-
works. Science, 286:509–512, 1999.

[12] Albert-Laszlo Barabási, Reka Albert, and Hawoong Jeong. Mean-field theory
for scale-free random networks. Physica A, 272:173–187, 1999.

158

[13] Albert-Laszlo Barabási, Reka Albert, Hawoong Jeong, and Ginestra Bianconi.
Power-law distribution of the World Wide Web. Science, 287:2115a, 2000.

[14] Federico Battiston, Vincenzo Nicosia, and Vito Latora. Structural measures for
multiplex networks. Phys. Rev. E, 89:032804, 2014.

[15] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigen-
vectors of finite, low rank perturbations of large random matrices. Advances in
Mathematics, 227:494–521, 2011.

[16] H. A. Bethe. Statistical theory of superlattices. Proc. R. Soc. London A,
150:552–575, 1935.

[17] Peter J. Bickel and Aiyou Chen. A nonparametric view of network models
and Newman–Girvan and other modularities. Proc. Natl. Acad. Sci. USA,
106:21068–21073, 2009.

[18] Stefano Boccaletti, G. Bianconi, R. Criado, Charo I. Del Genio, J. Gómez-
Gardeñes, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin. The struc-
ture and dynamics of multilayer networks. Physics Reports, 544:1–122, 2014.

[19] Phillip F. Bonacich. Power and centrality: A family of measures. Am. J. Sociol.,
92:1170–1182, 1987.

[20] Stephen P. Borgatti and Martin G. Everett. Models of core/periphery struc-
tures. Social Networks, 21:375–395, 1999.

[21] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. On finding graph clusterings with
maximum modularity. In Proceedings of the 33rd International Workshop on
Graph-Theoretic Concepts in Computer Science, number 4769 in Lecture Notes
in Computer Science, Berlin, 2007. Springer.

[22] M. Capitaine, C. Donati-Martin, and D. Féral. The largest eigenvalues of finite
rank deformation of large Wigner matrices: Convergence and nonuniversality
of the fluctuations. Annals of Probability, 37:1–47, 2009.

[23] G. Casati and V. Girko. Wigners semicircle law for band random matrices.
Random Operators and Stochastic Equations, 1:15–22, 1993.

[24] Fan Chung and L. Lu. The average distances in random graphs with given
expected degrees. Proc. Natl. Acad. Sci. USA, 99:15879–15882, 2002.

[25] Fan Chung and L. Lu. Connected components in random graphs with given
degree sequences. Annals of Combinatorics, 6:125–145, 2002.

[26] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given
expected degrees. Proc. Natl. Acad. Sci. USA, 100:6313–6318, 2003.

159

[27] Fan R. K. Chung. Spectral Graph Theory. Number 92 in CBMS Regional
Conference Series in Mathematics. American Mathematical Society, Providence,
RI, 1997.

[28] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community
structure in very large networks. Phys. Rev. E, 70:066111, 2004.

[29] Vittoria Colizza, A. Flammini, M. A. Serrano, and Alessandro Vespignani. De-
tecting rich-club ordering in complex networks. Nature Physics, 2:110–115,
2006.

[30] Anne Condon and Richard M. Karp. Algorithms for graph partitioning on the
planted partition model. Random Structures and Algorithms, 18:116–140, 2001.

[31] Peter Csermely, András London, Ling-Yun Wu, and Brian Uzzi. Structure and
dynamics of core/periphery networks. Journal of Complex Networks, 1:xx, 2013.

[32] Leon Danon, Jordi Duch, Albert Diaz-Guilera, and Alex Arenas. Comparing
community structure identification. J. Stat. Mech., page P09008, 2005.

[33] A. Davis, B. B. Gardner, and M. R. Gardner. Deep South. University of Chicago
Press, Chicago, 1941.

[34] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Asymptotic analysis of the stochastic block model for modular networks and
its algorithmic applications. Phys. Rev. E, 84:066106, 2011.

[35] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Inference and phase transitions in the detection of modules in sparse networks.
Phys. Rev. Lett., 107:065701, 2011.

[36] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. J. R. Statist. Soc. B, 39:185–197, 1977.

[37] Manilo De Domenico, Clara Granell, Mason A. Porter, and ALex Arenas. The
physics of spreading processes in multilayer networks. Nature Physics, 2016.

[38] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. K-core organization of
complex networks. Phys. Rev. Lett., 96:040601, 2006.

[39] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N. Samukhin. Spectra
of complex networks. Phys. Rev. E, 68:046109, 2003.

[40] Jordi Duch and Alex Arenas. Community detection in complex networks using
extremal optimization. Phys. Rev. E, 72:027104, 2005.

[41] U. Elsner. Graph partitioning—a survey. Technical Report 97-27, Technische
Universität Chemnitz, 1997.

160

[42] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae,
6:290–297, 1959.

[43] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications
of the Mathematical Institute of the Hungarian Academy of Sciences, 5:17–61,
1960.

[44] Illés J. Farkas, Imre Derényi, Albert-László Barabási, and Tamás Vicsek. Spec-
tra of “real-world” graphs: Beyond the semicircle law. Phys. Rev. E, 64:026704,
2001.

[45] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23:298–305,
1973.

[46] Per-Olof Fjällström. Algorithms for graph partitioning: A survey. Linköping
Electronic Articles in Computer and Information Science, 3(10), 1998.

[47] Santo Fortunato. Community detection in graphs. Phys. Rep., 486:75–174,
2010.

[48] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel.
Detectability thresholds and optimal algorithms for community structure in
dynamic networks. Phys. Rev. X, 6(3):031005, 2016.

[49] Michelle Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proc. Natl. Acad. Sci. USA, 99:7821–7826, 2002.

[50] K.-I. Goh, B. Kahng, and D. Kim. Spectra and eigenvectors of scale-free net-
works. Phys. Rev. E, 64:051903, 2001.

[51] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes. Critical phenomena in
networks. Phys. Rev. E, 67:026123, 2003.

[52] S. Gómez, A. Dı́az-Guilera, J. Gómez arde nes, C. J. Pérez-Vicente, Y. Moreno,
and A. Arenas. Diffusion dynamics on multiplex networks. Phys. Rev. Lett.,
110:028701, 2013.

[53] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Per-
formance of modularity maximization in practical contexts. Phys. Rev. E,
81:046106, 2010.

[54] Peter Grindrod and Desmond J. Higham. Evolving graphs: dynamical models,
inverse problems and propagation. In Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, volume 466, pages 753–
770, 2010.

[55] Peter Grindrod and Desmond J. Higham. Models for evolving networks: with
applications in telecommunication and online activities. IMA Journal of Man-
agement Mathematics, page dpr001, 2011.

161

[56] Peter Grindrod, Desmond J. Higham, and Mark C. Parsons. Bistability through
triadic closure. Internet Mathematics, 8(4):402–423, 2012.

[57] R. Guimerà and Lúıs A. Nunes Amaral. Functional cartography of complex
metabolic networks. Nature, 433:895–900, 2005.

[58] Roger Guimerà, Marta Sales-Pardo, and Luis A. N. Amaral. Modularity from
fluctuations in random graphs and complex networks. Phys. Rev. E, 70:025101,
2004.

[59] Qiuyi Han, Kevin XU, and Edoardo Airoldi. Consistent estimation of dynamic
and multi-layer block models. In Proceedings of The 32nd International Con-
ference on Machine Learning, pages 1511–1520, 2015.

[60] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: Some
first steps. Social Networks, 5:109–137, 1983.

[61] Petter Holme. Core-periphery organization of complex networks. Phys. Rev. E,
72:046111, 2005.

[62] Petter Holme. Modern temporal network theory: a colloquium. Eur. Phys. J.
B, 88:1–30, 2015.

[63] Petter Holme and Jari Saramki. Temporal networks. Physics Reports, 519:97–
125, 2012.

[64] Dandan Hu, Peter Ronhovde, and Zohar Nussinov. Phase transitions in ran-
dom Potts systems and the community detection problem: Spin-glass type and
dynamic perspectives. Phil. Mag., 92:406–445, 2012.

[65] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community
structure in networks. Phys. Rev. E, 83:016107, 2011.

[66] L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18:39–43, 1953.

[67] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49:291–307, 1970.

[68] Myunghwan Kim and Jure Leskovec. Nonparametric multi-group membership
model for dynamic networks. In Advances in Neural Information Processing
Systems, pages 1385–1393, 2013.

[69] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly,
Lenka Zdeborová, and Pan Zhang. Spectral redemption: Clustering sparse
networks. Preprint arxiv:1306.5550, 2013.

[70] Reimer Kühn. Spectra of sparse random matrices. J. Phys. A, 41:295002, 2008.

162

[71] Reimer Kühn and Jort van Mourik. Spectra of modular and small-world ma-
trices. J. Phys. A, 44:165205, 2011.

[72] Sang Hoon Lee, Mihai Cucuringu, and Mason A. Potter. Density-based and
transport-based core-periphery structures in networks. Phys. Rev. E, 89:032810,
2014.

[73] Travis Martin, Xiao Zhang, and M. E. J. Newman. Localization and centrality
in networks. Phys. Rev. E, 90:052808, 2014.

[74] Rossana Mastrandrea, Jlie Fournet, and Alain Barrat. Contact patterns in
a high school: a comparison between data collected using wearable sensors,
contact diaries and friendship surveys. PLoS ONE, 10(9):e0136497, 2015.

[75] Catherine Matias and Vincent Miele. Statistical clustering of temporal networks
through a dynamic stochastic block model. Journal of the Royal Statistical
Society B, 2016.

[76] Catherine Matias, Tabea Rebafka, and Fanny Villers. A semiparametric ex-
tension of the stochastic block model for longitudinal networks. Preprint
arxiv:1512.07075, 2015.

[77] Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and
extensions, volume 382. John Wiley, New York, 2007.

[78] A. Medus, G. Acuña, and C. O. Dorso. Detection of community structures in
networks via global optimization. Physica A, 358:593–604, 2005.

[79] Marina Meilă. Comparing clusteringsan information based distance. Journal of
Multivariate Analysis, 98(5):873–895, 2007.

[80] Lynn Michell and Patrick West. Peer pressure to smoke: The meaning depends
on the method. Health Education Research, 11(1):39–49, 1996.

[81] Stanley Milgram. The small world problem. Psychology Today, 2:60–67, 1967.

[82] Stanislav A. Molchanov, Leonid A. Pastur, and A. M. Khorunzhii. Limiting
eigenvalue distribution for band random matrices. In Theoretical and Mathe-
matical Physics, number 2, pages 108–118, Berlin, 1992. Springer.

[83] Michael Molloy and Bruce Reed. A critical point for random graphs with a
given degree sequence. Random Structures and Algorithms, 6:161–179, 1995.

[84] Cristopher Moore and M. E. J. Newman. Epidemics and percolation in small-
world networks. Phys. Rev. E, 61:5678–5682, 2000.

[85] Jacob L. Moreno. Who Shall Survive? Beacon House, Beacon, NY, 1934.

[86] Elchanan Mossel, Joe Neeman, and Allan Sly. Stochastic block models and
reconstruction. Preprint arxiv:1202.1499, 2012.

163

[87] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model
threshold conjecture. Preprint arXiv:1311.4115, 2013.

[88] Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and
Jukka-Pekka Onnela. Community structure in time-dependent, multiscale, and
multiplex networks. Science, 328:876–878, 2010.

[89] Masaki Ogura nad Victor M. Preciado. Stability of spreading processes over
time-varying large-scale networks. IEEE Transactions on Network Science and
Engineering, 3(1):44–57, 2016.

[90] Raj Rao Nadakuditi and M. E. J. Newman. Graph spectra and the detectability
of community structure in networks. Phys. Rev. Lett., 108:188701, 2012.

[91] Raj Rao Nadakuditi and M. E. J. Newman. Spectra of random graphs with
arbitrary expected degrees. Phys. Rev. E, 87:012803, 2013.

[92] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701,
2002.

[93] M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev. E,
66:016128, 2002.

[94] M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:026126, 2003.

[95] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45:167–256, 2003.

[96] M. E. J. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Phys. Rev. E, 74:036104, 2006.

[97] M. E. J. Newman. Modularity and community structure in networks. Proc.
Natl. Acad. Sci. USA, 103:8577–8582, 2006.

[98] M. E. J. Newman. Networks: An Introduction. Oxford University Press, Oxford,
2010.

[99] M. E. J. Newman. Spectral methods for network community detection and
graph partitioning. Phys. Rev. E, 88:042822, 2013.

[100] M. E. J. Newman. Equivalence between modularity optimization and maximum
likelihood methods for community detection. Phys. Rev. E, 94:052315, 2016.

[101] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Phys. Rev. E, 69:026113, 2004.

[102] M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis
in networks. Proc. Natl. Acad. Sci. USA, 104:9564–9569, 2007.

164

[103] M. E. J. Newman, Cristopher Moore, and Duncan J. Watts. Mean-field solution
of the small-world network model. Phys. Rev. Lett., 84:3201–3204, 2000.

[104] M. E. J. Newman and Gesine Reinert. Estimating the number of communities
in a network. Phys. Rev. Lett., 117(7):078301, 2016.

[105] M. E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graphs
with arbitrary degree distributions and their applications. Phys. Rev. E,
64:026118, 2001.

[106] M. E. J. Newman and Duncan J. Watts. Renormalization group analysis of the
small-world network model. Phys. Lett. A, 263:341–346, 1999.

[107] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo,
and Vito Latora. Graph metrics for temporal networks. In Temporal networks,
pages 15–40. Springer, New York, 2013.

[108] K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic
blockstructures. J. Amer. Stat. Assoc., 96:1077–1087, 2001.

[109] Shmuel Onn and Leonard J. Schulman. The vector partition problem for convex
objective functions. Mathematics of Perations Research, 26(3):583–590, 2001.

[110] L. Page, S. Brin, R. Motwani, and T. Winograd. The Pagerank citation ranking:
Bringing order to the web. Technical report, Stanford University, 1998.

[111] Romualdo Pastor-Satorras, Claudio Castellano, Piet van Mieghem, and
Alessandro Vespignani. Epidemic processes in complex networks. Rev. Mod.
Phys., 87:925–979, 2015.

[112] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani. Dy-
namical and correlation properties of the Internet. Phys. Rev. Lett., 87:258701,
2001.

[113] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic dynamics and
endemic states in complex networks. Phys. Rev. E, 63:066117, 2001.

[114] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in
scale-free networks. Phys. Rev. Lett., 86:3200–3203, 2001.

[115] Romualdo Pastor-Satorras and Alessandro Vespignani. Evolution and Structure
of the Internet. Cambridge University Press, Cambridge, 2004.

[116] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
San Francisco, CA, 1988.

[117] Michael Pearson and Patrick West. Drifting smoke rings. Connections, 25(2):59–
76, 2003.

165

[118] Mike Pearson, Chrisitian Sieglich, and Tom Snijders. Homophily and assimila-
tion among sport-active adolescent substance users. Connections, 27(1):47–63,
2006.

[119] Rudolf Peierls. On Ising’s model of ferromagnetism. Cambridge Philos. Soc. B,
2:477–481, 1936.

[120] Tiago P. Peixoto. Parsimonious module inference in large networks. Phys. Rev.
Lett., 110:148701, 2013.

[121] Tiago P. Peixoto. Hierarchical block structures and high-resolution model se-
lection in large networks. Phys. Rev. X, 4:011047, 2014.

[122] Derek J. de Solla Price. Networks of scientific papers. Science, 149:510–515,
1965.

[123] Joerg Reichardt and Michele Leone. (Un)detectable cluster structure in sparse
networks. Phys. Rev. Lett., 101:078701, 2008.

[124] Thomas Richardson, Peter J. Mucha, and Mason A. Porter. Spectral triparti-
tioning of networks. Phys. Rev. E, 80:036111, 2009.

[125] M. Puck Rombach, Mason A. Porter, James H. Fowler, and Peter J. Mucha.
Core-periphery structure in networks. SIAM J. Appl. Math., 74:167–190, 2014.

[126] Dimitri Shlyakhtenko. Random gaussian band matrices and freeness with amal-
gamation. In A. H. Harcourt and F. B. M. deWaal, editors, International Mathe-
matics Research Notices, number 20, pages 1013–1025. Oxford University Press,
Oxford, 1996.

[127] Jonathan C. Silva, Laura Bennett, Lazaros G. Papageorgiou, and Sophia Tsoka.
A mathematical programming approach for sequential clustering of dynamic
networks. Eur. Phys. J. B, 89:1–10, 2016.

[128] T. A. B. Snijders and K. Nowicki. Estimation and prediction for stochastic
blockmodels for graphs with latent block structure. Journal of Classification,
14:75–100, 1997.

[129] Natalie Stanley, Saray Shai, Dane Taylor, and Peter J. Mucha. Clustering
network layers with the strata multilayer stochastic block model. IEEE Trans-
actions on Network Science and Engineering, 3(2):95–105, 2016.

[130] Johan Ugander, Lars Backstrom, and Jon Kleinberg. Subgraph frequencies:
Mapping the empirical and extremal geography of large graph collections. In
Proceedings of the 22nd international conference on World Wide Web, pages
1307–1318, New York, 2013. Association of Computing Machinery.

[131] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17:395–416, 2007.

166

[132] Gaoxia Wang, Yi Shen, and Ming Ouyang. A vector partitioning approach to
detecting community structure in complex networks. Computers & Mathematics
with Applications, 55(12):2746–3752, 2008.

[133] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393:440–442, 1998.

[134] Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle
River, NJ, 1996.

[135] Scott White and Padhraic Smyth. A spectral clustering approach to finding
communities in graphs. In H. Kargupta, J. Srivastava, C. Kamath, and A. Good-
man, editors, Proceedings of the 5th SIAM International Conference on Data
Mining, Philadelphia, 2005. Society for Industrial and Applied Mathematics.

[136] Eric P. Xing, Wenjie Fu, and Le Song. A state-space mixed membership block-
model for dynamic network tomography. The Annals of Applied Statistics,
4(2):535–566, 2010.

[137] Kevin Xu. Stochastic block transition models for dynamic networks. In AIS-
TATS, 2015.

[138] Kevin S. Xu and Alfred O. Hero. Dynamic stochastic blockmodels: Statistical
models for time-evolving networks. In Social Computing, Behavioral-Cultural
Modeling and Prediction, pages 201–210. Springer, New York, 2013.

[139] Xiaoran Yan, Cosma Rohilla Shalizi, Jacob E. Jensen, Florent Krzakala, Cristo-
pher Moore, Lenka Zdeborova, Pan Zhang, and Yaojia Zhu. Model selection
for degree-corrected block models. Preprint arxiv:1207.3994, 2012.

[140] Xiaoran Yan, Yaojia Zhu, Jean-Baptiste Rouquier, and Cristopher Moore. Ac-
tive learning for node classification in assortative and disassortative networks.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, New York, 2011. Association of Computing
Machinery.

[141] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. De-
tecting communities and their evolutions in dynamic social networksa bayesian
approach. Machine Learning, 82:157–189, 2011.

[142] W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

[143] Xiao Zhang, Travis Martin, and M. E. J. Newman. Identification of core-
periphery structure in networks. Phys. Rev. E, 91:032803, 2015.

[144] Xiao Zhang, Cristopher Moore, and M. E. J. Newman. Random graph models
for dynamic networks. Preprint arXiv:1607.07570, 2016.

167

[145] Xiao Zhang, Raj Rao Nadakuditi, and M. E. J. Newman. Localization and
centrality in networks. Phys. Rev. E, 89:042816, 2014.

[146] Xiao Zhang and M. E. J. Newman. Multiway spectral community detection in
networks. Phys. Rev. E, 92:052808, 2015.

[147] S. Zhou and R. J. Mondragon. The rich-club phenomenon in the Internet
topology. IEEE Comm. Lett., 8:180–182, 2004.

168

