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ABSTRACT

The focus of this dissertation is to develop mathematical methods for the multi-criteria optimiza-

tion problem and the vehicle routing problem. We approach these problems through the concept

of Pareto dominance. Our goal is to develop general algorithms that utilize Pareto dominance and

solve the problems in reasonable time.

We first consider the problem of assigning medical residents to shifts within a pediatric emer-

gency department. This problem is challenging to solve for a number of reasons. First, like

many other healthcare personnel scheduling problems, it has a non-homogeneous work force, with

each resident having different characteristics, requirements, and capabilities. Second, residency

scheduling problems must not only ensure adequate resources for patient care but must also meet

educational training needs, adding further complexity and constraints. Finally, since many factors

should be taken into account when selecting the “best” schedule, there is no one clear, well-defined

single objective function under which to optimize. Thus, it is difficult, if not impossible, to pre-

assign weights that allow these factors and the preferences of the scheduler (typically, a Chief

Resident) to be captured in a mathematical objective function.

We propose an integer programming formulation and an iterative, interactive approach in which

we use this integer program for ill-defined multiple objective criteria which are often in conflict

with each other. After we identify quantifiable metrics through the interactive approach, we de-

velop an integer programming-based approach embedded within a recursive algorithm to provide

the Chief with a set of Pareto-dominant schedules from which to select. We then present our col-

laborative work with the University of Michigan C.S. Mott Children’s Hospital in building monthly

schedules, focusing on both the tractability of our methods and a case study to study how a Chief

xii



Resident would evaluate the Pareto set.

When building schedules, an alternative is to use a column generation approach in which each

variable represents complete sequences of tasks for a single agent to perform. In Chapter 4, we

show how the concept of Pareto dominance can be used to generate columns efficiently. We eval-

uate dynamic programming-based column generation approaches for the vehicle routing problem

since the models and algorithms proposed for the vehicle routing problems can be used effectively

not only for the solution of transportation problems concerning the delivery or collection of goods

but also for the solution of scheduling problems arising in healthcare as well.

In particular, we consider a new variant of the Time-Constrained Heterogeneous Vehicle Routing

Problem (TCHVRP). In this problem, the cost and travel time of any given arc vary by vehicle type

within a heterogeneous fleet. We make no assumptions about Pareto dominance across vehicles;

nor do we assume that cost and time are correlated. Our research is motivated by situations in which

existing fleets are evolving to incorporate hybrid vehicles in addition to their existing vehicle types;

for many vehicles, the cost per mile depends heavily on the type of driving (such as highway versus

city). We formulate TCHVRP as a path-based model, which we solve using column generation.

We introduce several different methods to solve the pricing problem. We conclude by conducting

empirical analyses to assess the performance of the proposed approach.

xiii



CHAPTER 1

Introduction

In this dissertation, we study mathematical models and algorithms for solving combinatorial opti-

mization problems: a multi-criteria healthcare scheduling problem and a vehicle routing problem.

Specifically, we develop Pareto-based approaches to solving them. First, for the multi-criteria

healthcare scheduling problem, we apply an interactive method to see the impact of the decision

maker’s feedback on the quality of the schedule and then consider a Pareto-based approach that

conveys much more information to the decision maker than the interactive method. Next, we intro-

duce a dynamic programming-based algorithm that utilizes dominance in order to solve the pricing

problem of the vehicle routing problem via column generation.

The remainder of this dissertation is organized as follows: In Chapter 1, we review the litera-

ture on healthcare personnel scheduling, multi-objective optimization problems, and the vehicle

routing problem. Then, we explain an iterative, interactive approach we’ve used for the University

of Michigan Pediatric Emergency Department Scheduling (PEDS) problem and present computa-

tional results in Chapter 2. In Chapter 3, we suggest a Pareto-dominant approach and demonstrate

the tractability and usability of this approach. In Chapter 4, we show dynamic programming-based

approaches to solving the shortest path problem with resource constraints in the vehicle routing

problem (VRP) and introduce the concept of Pareto dominance to improve computational time. In

Chapter 5, we present some conclusions and future research suggestions.

1



1.1 Healthcare Personnel Scheduling

Through the last decades, many studies have been attempted to solve healthcare personnel schedul-

ing problems. Most of these studies have been done to schedule nurses in a hospital department

[1, 2]. In addition, there exists literature focusing on physicians [3, 4] and on residents [5, 6].

1.1.1 Literature Review

Scheduling, the “allocation of resources to tasks over given time periods”, is a decision-making

process that occurs throughout almost all manufacturing and services industries [7]. Examples

include manufacturing processes [8]; transportation systems such as airlines [9], railways [10],

and public transportation [11]; staff scheduling in call centers [12]; emergency services such as

police [13], ambulance [14], and fire departments [15]; and even toll booths [16].

Scheduling problems are solved by using a variety of solution approaches, from heuristic al-

gorithms to exact methods, based on problem-specific characteristics (e.g. cyclic vs. non-cyclic,

deterministic vs. stochastic, single machine vs. parallel machine, and so on). The following review

papers address many of these methods and characteristics [7, 17, 18].

For personnel scheduling or human resource allocation problems, Edie’s paper [16] on traffic

delays at toll booths was the first formal approach, and the first integer programming (IP) formu-

lation was introduced by Dantzig [19]. Since then, these problems have been studied widely since

labor cost is a major direct cost in many environments [18, 20, 21]. These problems provide many

unique challenges, given the need to satisfy personal preferences and variability across workers’

skill sets.

Within healthcare, the personnel scheduling literature can be primarily divided into two cate-

gories. The first, and most abundant, is in nurse scheduling [1, 2]. In physician scheduling, most

of the literature focuses either on shift scheduling, primarily for emergency department physicians

[3, 22, 23, 24], or on scheduling operating room time for surgeons [25].

The key difference between nurses and physicians is their working conditions. Nurses often

2



work under the collective agreement so that they are not directly employed by the hospitals. On

the other hand, physicians are more typically employed by negotiating work agreements with their

hospital individually. In addition, nurses have more regular shifts with few changes since the

demand for nurses is relatively constant over a planning period. However, the need for physicians

for each department in the hospital can vary over a day due to the fluctuation in patients [4].

Thus, physicians can start at different times depending on the numbers of incoming patients and

their work conditions under labor contracts with their hospital. Also, physicians cannot switch

their shifts individually because of their different specialties and labor contracts, whereas days-

off requested by a nurse can be replaced by another nurse because of mutual agreements. The

requirements for physician’s on-call services adds more complexity to the physician scheduling

problem (PSP) than the nurse scheduling problem (NSP) [3].

Despite these practical differences between nurse and physician scheduling problems, many

papers successfully utilized solution methods for the NSP to solve the PSP since their mathematical

formulation are not that different [24]. Both allocate medical employees to work shifts over a

planning period subject to hard constraints that cannot be violated and soft constraints associated

with employee satisfaction. In general, the hard constraints represents legal regulations, whereas

the soft constraints represent individual preferences.

Cheang et al. [1] and Burk et al. [2] presented a bibliographic survey of key models and

approaches for NSP and outlined the current state of the art of the field until 2004. These briefly

cover mathematical programming (MP) methods and metaheuristics. Levner et al. [26] focused on

the cyclic or periodic nature of nurse scheduling. Recently, Brucker et al. [17] classified personnel

scheduling problems including a model for NSP and discussed their complexity. Vanhoucke and

Maenhout [27] proposed a benchmark problem generator and indicators that assess the degree of

complexity of nurse scheduling problems and the robustness of proposed approaches. In general,

it has been shown that optimization-based schedules are superior to those generated manually by

the head nurse [28].

As mentioned above, the demand for physicians is not uniform over a shift. This makes it harder

3



to match the supply of physicians with their demand by a patient. Thus, PSP has more complicated

constraints than NSP by individual labor contracts with their hospital, whereas NSP has relatively

few general rules over different hospitals [4]. By this complex nature of physicians, PSP has

received very less attention than NSP.

Beaulieu et al. [3] were one of the first papers to develop a shift-based model for schedul-

ing emergency room physicians by incorporating days-off requests and physician preferences into

the mixed-integer programming (MIP) formulation. Carter and Lappierre [22] analyzed several

scheduling procedures for emergency room physicians currently in use at six different hospitals

and provided a collection of rules and recommendations to improve them. Rousseau et al. [29]

presented a combination of three approaches that included constraint programming (CP), local

search, and genetic algorithms to solve the PSP. Brunner et al. [4] introduced a heuristic decom-

position strategy and an implicit formulation for the flexible shift scheduling problem of physicians

in hospitals. Carrasco [30] studied a simple random and greedy strategies to schedule the physi-

cians in the pediatrics department of a hospital in Spain over a one-year planning horizon.

1.1.2 Resident Schduling Problem (RSP)

The path to becoming a physician involves undergraduate education, medical school, and graduate

medical education (GME). Residency is a part of GME after undergraduate education and medical

school to become a physician. Residents receive additional specialty training under the supervision

of more experienced attending physicians as they provide patient care, becoming progressively

more independent.

As they provide patient care while being trained, residents are both providers and learners so that

resident schduling problems must satisfy both patient care needs and educational requirements.

For an optimal learning environment, it has to provide a variety of working activities according

to residents’ seniority level and guarantee the minimum required number of training experiences.

Thus, residents are alternately assigned to different activities for new experiences, and this makes

resident schduling problem (RSP) more complex than the full-time physicians.

4



In addition, RSPs are often challenging to solve for many reasons, including heterogeneity of

the workforce, personal preferences, fatigue issues, concerns over continuity of care, etc. When

scheduling residents, we are faced with all of these challenges and more, including significant

diversity in the residents’ skill sets and levels of training as well as the need to not only provide

adequate patient care but to also ensure that the residents meet their educational requirements.

Also, we note that the quality of a schedule can have a significant impact on the well-being of

residents and the quality of patient care services. Poor-quality schedules can lead to fatigue, lack of

sleep, professional burnout, and even depression. Recently, the emotional well-being of residents

has received much attention since many residents are at high risk for serious mental health issues

[31, 32, 33, 34, 35]. According to the American Foundation for Suicide Prevention, about 300

to 400 physicians commit suicide each year [36]. In addition, emotional distress and fatigue in

residents can lead to medical errors and negatively impact patient care [37, 38, 39]. Under the

Libby Zion Law [40], there were many reforms by the Accreditation Council for Graduate Medical

Education (ACGME), making new regulations and common program requirements for all medical

resident training institutions in the United States to balance between “limits on duty hours and the

need for educational experiences” [5, 41].

There are several types of residency scheduling. For example, the block schedule specifies

periods of time (often month-long) where residents are assigned to specific services over the course

of the academic year. The call schedule defines periods of time over which residents are responsible

for taking calls outside of normal working hours in order to meet patient needs. The shift schedule

(for appropriate services) assigns residents to specific tasks at specific times within a given block.

For example, an emergency department is typically staffed for 24 hours a day, 7 days a week, and

the shift schedule determines which residents work when. In this paper, we focus on residency

shift scheduling for a pediatric emergency department.

The literature on residency scheduling dates back at least as far as 1994 with the paper by

Ozkarahan [5]. It proposed a goal programming (GP) model focusing on both the requirements

of the residency program and the desires of residents. Sherali et al. [42] developed a MIP model
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to solve the night allocation problem of residents for on-call schedules while considering depart-

mental staffing and skill requirements as well as individual preferences. Franz and Miller [43]

addressed the problem of scheduling the daytime training rotations of the second and third year

family practice medicine residents. This problem has a set of educational requirements for a wide

variety of clinic experiences that must be satisfied to ensure that the residents gain sufficient expe-

rience. Day et al. [44] formulated an IP model for scheduling the weekly work hours of surgery

residents considering the rules of the ACGME, a private non-profit organization that regulates res-

ident duty hours. Topaloglu [45] proposed a multi-objective programming model for scheduling

residents with different seniority levels. Cohn et al. [46] combined heuristic and MIP approaches

to make a one-year residents schedule for the on-call shifts at three different hospitals staffed by the

psychiatry residency program at Boston University School of Medicine. Topaloglu and Ozkara-

han [47] used an MIP and a column generation approach via CP for scheduling residents shifts

over four-week planning periods under the ACGME requirements. Güler et al. [48] proposed a

GP model for scheduling the night and weekend shifts of the residents in an anesthesia and rean-

imation department, and Güler et al. [49] proposed a model for the assignments of residents to

out-patient clinics in a physical medicine and rehabilitation department. Recently, Bard et al. [50]

suggested a network model for monthly scheduling that assigned residents to clinic duty during

their training in internal medicine. Guo et al. [6] presented a generic version of the RSP that

produces a one-year schedule and showed a proof of its NP-completeness. They also developed a

greedy heuristic and analyzed its performance using data provided by the internal medicine resi-

dency program at the University of Illinois College of Medicine at Urbana-Champaign. Bard et al.

[51] proposed several integer programming-based heuristics for constructing annual block sched-

ules for family medicine residents with continuity clinic considerations. Bard et al. [52] focused

on block schedules for internal medicine residents.

Within an emergency department, there are unique characteristics that can influence sched-

ule quality [3, 22, 23, 24]. Beaulieu et al. [3] proposed a GP model for scheduling emergency

room (ER) physicians over a six-month period considering a large number of various rules. Carter
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Figure 1.1: Classification of MOP approaches

and Lapierre [22] addressed the problem of ER physicians in six different hospitals by managing

ergonomic constraints for the circadian rhythm. Topaloglu [23] used GP to address the monthly

shift scheduling problem for emergency medicine residents. Gendreau et al. [24] examined several

methods for physician scheduling in the ER.

1.2 Multi-objective Optimization Problem (MOP)

In multi-objective optimization problem (MOP), there are several conflicting objective functions,

and there is no single optimal solution that simultaneously optimizes all the objective functions.

Thus, the decision makers cannot find an optimal solution relative to all objectives. Instead, they

look for the most preferred solution. Thus, the concept of optimality is replaced by Pareto

optimality, the set of Pareto-dominant solutions.

1.2.1 Classification of MOP Approaches

According to the decision time when the decision maker provides their preference information,

MOP methods can be classified into three categories: priori, interactive, and posteriori methods

[53].

In priori methods, the decision maker is asked to express their preferences clearly before the

solution process through relative importance or weights to the objective functions. For example,

the weighted sum and lexicographic approaches are examples of priori methods. Given weights
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from the decision maker, weighted sum methods solve for a positively weighted convex sum of the

multiple objectives [54]. On the other hand, if there exists strict relative priority between metrics,

we could use lexicographical optimization which optimizes each metric in hierarchical order. After

making one single-objective scalar function from the multiple objectives, priori methods can utilize

traditional optimization techniques based on single-objective function seamlessly. However, priori

methods are only valid if the trade-off weight or relative priority from the decision maker matches

with true preference. Normally, it is very difficult for the decision maker to quantify preferences

or weights accurately beforehand.

In interactive methods, the decision maker progressively gives preference information toward

the most preferred solution. The decision maker alternatively involves two phases: solution pro-

cess and evaluation process. The decision process converges to the most preferred solution by

evaluating solutions iteratively until the decision maker is satisfied with the solution. This method

is useful when goals or weights are not clear yet. However, the decision maker never sees the

whole set of possible choices or an approximation of it. Hence, the most preferred solution after a

few iterations is a myopic choice from what they have evaluated so far [55].

In posteriori methods, the set of potential solutions are generated, and later the decision maker

selects one among them based on preference. The decision process is divided into two independent

phases: first, it generates all the possible alternatives; subsequently, the decision maker is involved

in selecting the most preferred one among them when all possible choices are on the table. The de-

cision maker is involved only in the second phase. Thus, this method is useful when the interaction

with the decision maker is rarely available. Also, since none of the potential solutions have been

left undiscovered, it reinforces a decision maker’s confidence in the final judgment [55]. However,

many real-world size MOPs are computationally expensive to generate all potential choices. Also,

the size of all the possible alternatives grows exponentially. Thus, it is necessary to provide a small

representative subset to approximate the whole range space of choices. The weighted sum methods

and the ε-constraint methods [56] are commonly used forposteriori methods.
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1.2.2 Posteriori Approaches

To generate the set of potential solutions, we need the concept of Pareto optimality. Intuitively,

any feasible solutions that are dominated by another solution by giving worse or equal values in

all objectives are not attractive. Therefore, dominated solutions will not be selected by decision

makers. We say a solution is Pareto optimal (or Pareto dominant) if and only if there is no alterna-

tive solution that can improve one of the objectives without worsening any other one. The goal of

posteriori methods is to generate the set of Pareto-dominant solutions to ensure that no solution is

excluded which would be the most preferred one.

Posteriori methods fall into two classes: evolutionary algorithm (EA) based methods and MP

based methods. While each run of EA produces a set of potential solutions simultaneously, MP

produces one potential solution per optimization search. Although EAs seem to be powerful search

mechanisms for the large size of real-world problems, they only generate an approximation or a

subset of Pareto optimal solutions. On the other hand, MPs can find all possible potential solutions.

In this paper, we focus on MP based methods.

1.2.2.1 Evolutionary Algorithms (EA)

EAs are stochastic optimization algorithms in which the Pareto frontier of an MOP is approximated

by evolving a population of solutions. The algorithm starts by generating a set of candidate solu-

tions and subsequently evolves it though two biological principles: selection and variation. The

selection represents the competition among living beings. A scalar fitness value defines the quality

of each solution and the chance to reproduce. Solutions of high quality (better fitness value) are

more likely to survive and to reproduce their genetic information. A stochastic selection process

simulates the natural selection process. On the other hand, the variation imitates the natural capa-

bility of creating new living beings through recombination and mutation. Although the underlying

principles are simple, EAs have proven as a general, robust and powerful search algorithm for

MOPs [57, 58]. A genetic algorithm (GA) [59, 60] and cuckoo optimization algorithm (COA) [61]
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are examples for EA based methods.

1.2.2.2 Mathematical Programming (MP)

MP-based methods are exact methods to find the complete Pareto frontier of an MOP. In MP-based

methods, the original MOP is converted to a single-objective problem through a parameterized ob-

jective function or constraints. The parameters are algorithmically set by the multi-objective opti-

mization algorithm. Basically, several single-objective problems with different parameter settings

are solved iteratively, and each single run is independent problem of the underlying MOP. The

most widely used scalarization methods in MOPs are theweighted sum method and the ε-constraint

method.

Given an MOP with n objectives {f1, · · · , fn} over a feasible set S and weights w ∈ Rn, the

weighted sum method is formulated as follows:

min
∑
i

wifi(x)

subject to: x ∈ S

where fi(x) is the ith objective function, wi is the weight for fi(x), and S is the feasible solution

space.

The weighted sum method converts multiple objectives into a single scalar objective function

by forming a linear combination of them. On the condition that all weights are positive, it can

be proved that the minimizer of the single-objective function is a Pareto-optimal solution for the

original MOP. Given weights w, assume that a feasible solution x minimizing the single-objective

function fw =
∑

iwifi(x) is not Pareto optimal. Then, there exists a solution y dominating x

(i.e., there exists some i ∈ {1, · · · , n} such that fi(y) < fi(x) and fj(y) ≤ fj(x) for all j 6= i).

Therefore, it follows that fw(y) < fw(x). This contradicts the assumption that fw(x) is minimized.

On the other hand, in the ordinary ε-constraint method, only one of the objective functions is

optimized by adding the other objective functions as constraints to the original solution space S.
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For any ε ∈ Rn−1 and some i ∈ {1, . . . , n}, the ε-constraint method is formulated as follows:

minfi(x)

subject to: x ∈ S

fj(x) ≤ εj, ∀j 6= i

where εj are the upper bounds of satisfaction level on the constrained objectives.

By selecting the main objective function and adjusting satisfaction levels properly on the right-

hand side of the constrained objectives, it can find any Pareto-optimal solution for the original

MOP. However, there is no guarantee that the ordinary ε-constraint method always generates

Pareto-optimal solutions. Theoretically, the obtained optimal solution is guaranteed to be Pareto-

optimal solution only if all (n−1) constrained objective functions are binding. We demonstrate the

weak Pareto solution in Figure 1.2. Mavrotas [55] suggested the augmented ε-constraint method by

introducing positive surplus variables, also known as slack variables to guarantee that the obtained

solutions are Pareto-optimal. In the augmented ε-constraint method, the main objective function is

augmented by the sum of the surplus values as follows:

minfi(x)− δ
∑
j

sj

subject to: x ∈ S

fj(x) + sj = εj, ∀j 6= i

sj ≥ 0

In the literature, several variations of the ε-constraint method have been developed to improve

its performance [55, 62].

The ε-constraint method has several advantages over the weighted sum method. First, it only

produces a Pareto extreme solution in the original linear programming (LP) feasible region. On the
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Figure 1.2: Weak Pareto solutions on the Pareto frontier

contrary, ε-constraint method can generate non-extreme Pareto solutions with the proper selection

of ε. Second, the weighted sum method could not generate all Pareto-optimal solutions for the non-

convex feasible region such as IP or MIP. These unsupported Pareto solutions are illustrated in

Figure 1.3. Third, there are many combinations of weights that result in the same Pareto extreme

solution. Finally, the meaning of weights or scaling of the objective functions in the weighted

sum method is ambiguous. However, in the ε-constraint method, the value of ε has more clear

meaning since it represents upper bounds on constrained objectives. Thus, decision makers can

appropriately select ε to move toward their preferred solution.

1.2.3 Healthcare Scheduling with Multi-Criteria Decision

Unlike many industrial optimization problems in which the dominant objective is to minimize cost

or maximize profit, many healthcare problems involve multiple, potentially conflicting, criteria. In

general, nurses work under collective union agreements, and this yields the staffing cost pressure

on hospitals. Therefore, the goal of NSP is to minimize salary cost and to maximize their individual

satisfaction simultaneously. On the other hands, PSP focuses more on personal preferences [24]. In
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Figure 1.3: Supported and unsupported Pareto solutions on the non-convex Pareto frontier

RSP, it needs to provide a good balance between education and patient care activities [23]. There

are patient needs, educational requirements, and personal preferences that all need to be taken into

consideration when evaluating the quality of a schedule.

Within the healthcare scheduling literature, several papers have specifically recognized this need

to address multiple objective criteria. The most commonly discussed methods are GP (i.e., seeking

to meet targets), weighted sum approaches (converting multiple objective criteria into one scalar

objective function), or some combination of the two [63]. Many nurse [64, 65, 66], physician [3]

and residency scheduling papers [5, 23, 45, 47, 48, 49, 50] formulate the problem with both hard

and soft constraints and handle soft constraints as multiple objectives with GP.

1.3 Vehicle Routing Problem (VRP)

The vehicle routing problem (VRP) is to find the optimal (i.e., minimum cost) design of routes

for a fleet of vehicles from a depot to serve a given set of customers. Many variations of the VRP

have been considered since Dantzig and Ramser [67] first proposed the basic VRP. The VRP

has been intensively studied since many combinatorial optimization problems and their practical
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applications can be solved effectively by the models and the algorithms for the VRPs.

1.3.1 Literature Review

Exact approaches to heterogeneous fleet VRP (HVRP), and to VRPs in general, are typically based

on IP formulations. These are usually either vehicle flow formulations or set partitioning formula-

tions.

Vehicle flow formulations use binary decision variables to indicate whether a given vehicle (or

vehicle type) travels between two customers in the optimal solution. Formulations of this type for

the VRP can be first found in Garvin et al. [68], and Gavish and Graves [69, 70]. The heteroge-

neous VRP was formulated in Gheysens et al. [71] and Golden et al. [72] by using three-index

binary variables xkij as vehicle flow variables that take value 1 if a vehicle of type k travels directly

from customer i to customer j, and 0 otherwise. Such formulations must include subtour elimina-

tion constraints, however, which often lead to heavily fractional solutions to the LP relaxation and,

in turn, weak lower bounds on the optimal objective value.

VRP is also often modeled, therefore, with a set partitioning formulation, as originally proposed

by Balinski and Quandt [73]. The set partitioning formulation for heterogeneous VRPs associates

a binary variable xtr with each feasible route r and vehicle type t. However, given that the number

of candidate routes is exponentially large, it is often impractical to explicitly enumerate all routes

in the model. Instead, delayed column generation algorithms are used, using a pricing problem

such as those posed by Rao and Zionts [74], Foster and Ryan [75], and Agarwal, Mathur, and

Salkin [76].

Both of these types of exact approaches, however, can suffer from significant computational

issues. In fact, all the VRP variations are NP-hard as they are a generalization of the traveling

salesman problem (TSP), which is theoretically proven as NP-hard. Even pure VRP problem

instances with more than 100 nodes can typically not be solved to optimality in a reasonable

amount of time. Variations such as HVRP, capacitated VRP (CVRP) and distance-constrained

14



VRP (DVRP) are even more complex to solve [77, 78, 79, 80]. Therefore, many heuristics and

hybrid algorithms have also been developed in order to find high-quality solutions in acceptable

run times [81, 82].

Dating back as far as Dantzig and Ramser [67], many heuristics have been published. The sav-

ings heuristic by Clarke and Wright [83] iteratively merges partial routes to form a set of feasible

routes, and the sweep algorithm by Gillett and Miller [84] sequentially generates non-overlapping

feasible routes by rotating a half-line rooted at the depot. In addition to classical VRP heuris-

tics, several meta-heuristic approaches have been developed as well. The best-known examples of

meta-heuristics include tabu search [85], simulated annealing [86], and genetic algorithms [87].

Specific meta-heuristics for VRP are provided in Taillard [88], Gendreau [89], Nagata [90], and

Prins [91]. Many of the most successful VRP heuristics, however, rely on the use of distance as a

surrogate for cost, assuming a constant cost per mile for each vehicle and a given distance matrix.

Because we are specifically interested in the case where distance and cost may not be correlated,

we cannot build directly on these heuristics for time-constrained heterogeneous vehicle routing

problem (TCHVRP). We instead present an alternative approach based on a path-based model, as

we discuss later in the paper.

There is a rich and extensive literature on VRP in general. We refer the reader to Laporte

[92], Toth and Vigo [93, 94] and Golden, Raghavan, and Wasil [95] for comprehensive surveys.

Additional studies and algorithms focused specifically on HVRPs can be found in Baldacci [96].
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CHAPTER 2

Interactive Shift Scheduling Problem

2.1 Motivation

Residency schedules are frequently built by Chief Residents (as was the case at Mott), either man-

ually or with the limited help of some basic spreadsheet tools. This is not only a tedious and a

time-consuming process, but it is often difficult to find even a feasible schedule, fully satisfying

all rules and requirements, that is of high-quality with respect to patient care, educational require-

ments, and personal preferences.

A natural approach to solving complex combinatorial problems such as those encountered in

residency scheduling is through IP; this is often a successful way to find feasible solutions to the

residency shift scheduling problem [97].

On the other hand, it remains a significant challenge to assist the Chief Residents in evaluating

and selecting from the potentially large set of feasible solutions because of the lack of a clearly-

defined single objective function. Unlike many industrial scheduling applications, the goal of a

residency scheduling problem is not to minimize cost. Rather, there are many different criteria,

associated with quality of patient care, resident personal preferences, and educational needs, under

which a schedule is evaluated.

One approach commonly used in addressing multi-criteria objective problems is to put weights

on each of the metrics in order to establish a single objective function. In our experience, the

weighted sum approach is not appropriate for building resident shift schedules, for three reasons
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(see similar observations in [98]). First, it can be very challenging for the Chief Residents to

identify weights that accurately represent their preferences. Second, even if the weights could be

inferred by reviewing prior chosen schedules, preferences often change from schedule to schedule.

For example, matching appropriate levels of seniority to shift types may be a high priority at the

beginning of the academic year, as new residents join the program, whereas priority towards the

end of the year might shift to facilitating residents’ fellowship interview schedules. Third, the

weighting may be non-linear. For example, the Chief Residents might be willing to give up one

vacation request in order to improve patient hand-offs on one shift, but not be willing to give up 5

requests to reduce 5 hand-offs. Thus, solutions generated by using a weighted-sum objective often

will not reflect the true preferences of the Chiefs.

Recognizing this limitation of assigning weights to trade off between different scheduling crite-

ria, our goal is to develop a mechanism by which Chief Residents can develop high-quality sched-

ules in a timely manner, enabling them to ensure that all rules and requirements are met while

focusing on the quality of the schedule with respect to patient care, resident educational needs, and

personal requests.

To develop such an iterative, interactive mechanism, we leverage three key ideas, in a collabo-

rative manner that merges both IP and the Chief Residents’ expertise. First, we note that integer

programming feasibility problems can often be solved very quickly, as is the case in this applica-

tion. Second, we have observed that it is often much easier for the Chief Residents to qualitatively

describe to us what they like and dislike about a specific schedule than it is for them to quantify, in

abstraction, their preferences. Third, we have also learned that the Chiefs are not actually seeking

an “optimal” schedule – in fact, they recognize that there are trade-offs that must be made between

different criteria and that multiple schedules may all be acceptable. Instead of seeking optimality,

their focus is on finding a schedule that is of high quality with respect to many different metrics.

Given these three points, we have developed a simple but effective process for developing

monthly schedules in collaboration with the residency program’s Chief Residents. We begin by

importing the month’s data (resident cohort, educational requirements, external requirements, va-
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cation requests, etc.) into an integer programming-based decision support tool that generates a

schedule satisfying all hard constraints. We next review with the Chiefs the value of this solu-

tion relative to each of their objective criteria. The Chiefs then identify undesirable characteristics

(e.g. “Too many bad sleep patterns have been assigned”), and we add constraints to the feasibility

problem bounding the associated metrics and re-run the algorithm in real-time, either leading to an

improved solution or returning a certificate of infeasibility. The process repeats, with constraints

on the objective criteria being successively tightened and loosened as a function of the Chiefs’

preferences, until the Chiefs are satisfied with the solution.

We present our collaborative work with the University of Michigan C.S. Mott Children’s Hospi-

tal in building monthly schedules, focusing on both our IP formulation and the iterative, interactive

approach in which we use this integer program.

2.2 University of Michigan Pediatric Emergency Department

Scheduling (PEDS)

2.2.1 Background

Residency is the phase of graduate medical education after completing medical school while con-

tinuing training to become a physician. Residents are trained in progressively more specialized ar-

eas under the supervision of more experienced attending physicians, becoming increasingly more

independent as they advance in seniority.

Medical students enter residency through the National Resident Matching Program (NRMP).

The “match” happens annually in the spring, with medical students assigned (“matched”) to resi-

dency program throughout the United States. Across the U.S., there are more than 30,000 residency

positions that are filled by the national matching program annually. Pediatric residents make up

almost 10% of this population.

Residency can take anywhere from three to upwards of seven years depending on the specialty
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chosen. For example, pediatric residency or internal medicine training takes three years. General

or orthopedic surgery can take five years to complete. After completion of a residency program,

one to three years of additional training in a subspecialty may be chosen by some physicians for

further training. For example, in pediatrics, a pediatrician may train to become a neonatologist. In

internal medicine, a physician may subspecialize in cardiology.

The University of Michigan Pediatric Emergency Department provides services 24 hours a day,

7 days a week to care for children with medical problems that cannot wait or are too severe to be

seen by their primary care providers. The emergency department (ED) offers unscheduled care

ranging from common minor pediatric problems to major medical and traumatic emergencies.

Approximately 20,000 children a year are seen at the University of Michigan Pediatric Emergency

Department. It is designated a Level I Pediatric Trauma Center which means it is certified by the

American College of Surgeons Committee on Trauma to provide the care to the most severely

injured children.

In addition to attending physicians and other clinical personnel, the ED is staffed by medical

residents of varying levels of seniority and from a variety of training programs (e.g. Pediatrics,

Internal Medicine, Psychiatry, etc.), with roughly 30 interns (i.e. first year residents) joining the

program each year while more senior residents remain for additional years of training.

In order for a pediatric resident to complete their graduate medical education, they must com-

plete rotations that encompass the competencies set forth by the ACGME. To be successful, the

pediatric resident must have inpatient and outpatient training. The training also includes subspe-

cialty time in the emergency department. Over the course of 3-years at the University of Michigan,

a pediatric resident will spend 12-weeks in the ED.

2.2.2 PEDS Problem Statement

Our research is based on the assigning of residents to shifts within the Pediatric Emergency Depart-

ment of the University of Michigan C.S. Mott Children’s Hospital. The ED is staffed with residents
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from many programs including Pediatrics, Emergency Medicine, and Family Medicine. Thus, it

has a non-homogeneous work force, with each resident having different skills, requirements, and

preferences. In a given year, there can be 4–6 residents from Family Medicine or Emergency

Medicine who rotate through the pediatric emergency department for additional training.

There are seven overlapping 9-hour shifts that are scheduled every day to staff the Pediatric

Emergency Department: Shift 1 (7 AM – 4 PM), Shift 2 (9 AM – 6 PM), Shift 3 (12 PM – 9 PM),

Shift 4 (4 PM – 1 AM), Shift 5 (5 PM – 2 AM), Shift 6 (8 PM – 5 AM) and Shift 7 (11 PM – 8

AM). Shifts 1 and 2 are are considered to be morning shifts, Shift 3 is considered to be a “flex”

shift, Shifts 4 and 5 are day shifts, and Shifts 6 and 7 are overnight shifts. The flex shift should

ideally be staffed by a resident to provide additional support to the attending physicians during the

peak hours of the day, but is not required to be staffed. All other shifts must be staffed by exactly

one resident.

Residents are assigned to work in the ED for month-long rotations. The senior residents start

and end on the first and last days of the month, while the interns transition from one rotation to

another on the 27th of each month to ensure a smooth transition. From a scheduling standpoint,

the implication of this is that certain shifts at the end of the month (known as “optional shifts”) can

be left unfilled to be staffed with incoming interns at the scheduling of the following month.

Note, however, that not all shifts can be staffed by interns – specifically, senior residents must

stafff the ED at the busiest times of day. In addition, there is a balance between the number of

residents who are rotating through the ED from other departments. In a given year there can

be 4-6 residents from family medicine or emergency medicine who rotate through the pediatric

emergency department for additional training. These residents also have limitations on when they

can be staffed, typically as a function of other regularly-scheduled training activities.

Finally, in addition to their monthly rotations on different services (including the emergency

department), residents also maintain a panel of patients whom they care for throughout the year in

the form of continuity clinics. Ideally, residents’ ED shifts should not conflict with attending their

weekly clinics.
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The primary University of Michigan Pediatric Emergency Department Scheduling (PEDS) rules

scheduling rules are as follows:

• Coverage: All shifts must be staffed by exactly one resident except the flex shifts (which

can be left unstaffed if necessary) and the optional shifts at the end of the month (which can

wait to be staffed by interns coming onto the following month).

• Invalid Assignments: There are many reasons why a specific resident cannot be assigned

to a specific shift. These include seniority (i.e. interns cannot staff certain shifts), program

conflicts (e.g. certain training programs have educational commitments on certain days of

the week), and continuity clinics. In addition, we treat vacation requests as hard constraints

in this context. Within the PEDS problem, residents are allowed to make personal requests.

These are typically only for critical issues (interviews, certification boards, weddings and

other major family events, etc.) and as such the Chiefs put highest priority on satisfying

these requests. In addition, there is typically enough flexibility in the assignment of shifts

that requests can be granted. We discuss this further in Section 2.4.

• Pre-Assignment: In some cases, there are specific shifts that must be assigned to specific

residents. These are often to ensure the completion of educational responsibilities for resi-

dents who have been on leave.

• Pediatric Coverage: For certain pairs of overlapping shifts, it is necessary to ensure that at

least one of the two shifts is staffed by a resident from the Pediatrics program.

• Duty Hours Restrictions: Regulatory guidelines require that, after completion of a shift,

residents must have at least ten hours off-duty before beginning a subsequent shift.

• Limits On Consecutive Shifts: There are limits on the number of consecutive days in a row

that residents can be assigned to shifts, and tighter limits on the number of consecutive days

in a row that residents can be assigned to overnight shifts.
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2.3 PEDS Feasiblity Formulation

The following model defines the feasible set of resident shift schedules, relative to the rules out-

lined in Section 2.2.2.

Notation

R set of residents, r ∈ {1, 2, . . . , |R|}

D set of days, d ∈ {1, 2, · · · , |D|}; In our data instances, D is either 30 or 31

S set of daily shifts, s ∈ {1, 2, . . . , |S|}; In our data instances, there are 7 shifts

T set of training programs, t ∈ {EMS, PED, EM, FM, . . . }

tr training program of resident r, tr ∈ T ∀r ∈ R

Cr set of days on which resident r has continuity clinic, Cr ⊆ D ∀r ∈ R

Wr set of days on which resident r can work, Wr ⊆ D ∀r ∈ R

F set of flex shifts, F ⊂ S; In our data instances, shift 3 (i.e., 12 PM – 9 PM) is the

only element of F

N set of night shifts, N ⊂ S; In our data instances, shifts 6 and 7 (i.e., 8 PM – 5 AM

and 11 PM – 8 AM) are in N

K set of shift pairs where k ∈ K is a pairs of shifts such that at least one must be

covered by a resident r of type PED, k ⊂ S; In our data instances, {shifts 1 and 2},

{shifts 4 and 5}, {shifts 6 and 7} are in K

Hr set of day-shift pairs that cannot be assigned to resident r, Hr ⊂ D × S ∀r ∈ R

Ar set of day-shift pairs that must be assigned to resident r, Ar ⊂ D × S ∀r ∈ R

J(d,s) set of day-shift pairs that would cause a duty-hours violation if assigned in addition

to day-shift (d, s), Jds ⊂ D × S ∀(d, s) ∈ D × S. Note that (d, s) is included in the

set J(d,s)

D maximum allowable number of days in a row that a resident can work a shift

N maximum allowable number of days in a row that a resident can work a night shift
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Decision Variables

xrds binary variable, equals 1 if resident r is assigned to shift s on day d; otherwise 0

∀r ∈ R, ∀s ∈ S,∀d ∈ D
Formulation

min 0 (2.1)

subject to:
∑
r∈R

xrds = 1 ∀s ∈ S\F, ∀d ∈ D (2.2)

∑
r∈R

xrds ≤ 1 ∀s ∈ F, ∀d ∈ D (2.3)

∑
(d,s)∈Hr

xrds = 0 ∀r ∈ R (2.4)

∑
(d,s)∈Ar

xrds = 1 ∀r ∈ R (2.5)

∑
r∈{r:tr=PED}

∑
s∈k

xrds ≥ 1 ∀d ∈ D, ∀k ∈ K (2.6)

∑
(d,s)∈J(d,s)

xrds ≤ 1 ∀r ∈ R, ∀d ∈ D, ∀s ∈ S (2.7)

d+D∑
i=d

∑
s∈S

xris ≤ D ∀r ∈ R, ∀d ∈ D (2.8)

d+N∑
i=d

∑
s∈N

xris ≤ N ∀r ∈ R, ∀d ∈ D (2.9)

xrds ∈ {0, 1} ∀r ∈ R, ∀d ∈ D, ∀s ∈ S (2.10)

Constraints (3.2) ensure that exactly one resident is assigned to every non-flex shift. Constraints

(3.3) ensure that flex shifts are covered by at most one resident. Constraints (2.4) ensure that

residents are not assigned to prohibited shifts. Constraints (2.5) ensure that residents cover pre-

assigned shifts. Constraints (2.6) ensure that at least one of two shifts in a required pair are assigned

to a Pediatrics resident. Constraints (3.7) ensure that residents are not assigned to shifts that begin
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within ten hours of a previously worked shift. Constraints (3.8) ensure that no resident works more

than a maximum allowable number of days in a row. Constraints (3.9) ensure that no resident

works more than a maximum allowable number of nights in a row.

2.4 Interactive Approach to PEDS

When evaluating the quality of a residency scheduling, there are several metrics of importance to

be evaluated, from the varying perspetives of the residency program and its educational needs, the

providing of patient care, and the residents’ personal preferences and well-being. Furthermore,

these metrics are in some cases more qualitative than quantitative. Thus, schedules must be eval-

uated holistically; it is difficult to assign an abstract objective function to find the “best” solution

without user engagement.

As such, the emphasis of our work has been not only on developing optimization-based tools

that enable us to quickly find feasible solutions that satisfy all of the firm requirements, but also on

developing an inteactive collaborative process in which the operations researchers and the Chief

Residents can work together in an efficient and effective manner to jointly develop high-quality

solutions.

We begin by noting the importance of deep collaboraiton even in defining the feasibility re-

quirements and identifying quantifiable metrics. In our experience, it is difficult for the Chiefs

(who only serve in their role for a year, have no scheduling training, and are learning solely based

on institutional knowledge passed on from year to year) to clearly and completely articulate all

of the requirements. Instead, we learned them by trial and error – building schedules based on

the rules we know, then having them review them and identify violated requirements for us to

incorporate into the program.

Likewise, we worked together, in evaluating individually schedules, to provide quantifiable met-

rics to help guide our assessment. In particular, the following are of particular importance to the

Chiefs:
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• Total Shift Equity: Because not all residents are on service for the same amount of time

(e.g. some have a full month and some have a half-month assignment), not all residents

should perform equal numbers of shifts. The Chiefs do, however, pay careful attention to

how many shifts each resident is working, seeking to be equitable.

• Night Shift Equity: Similarly, the Chiefs pay careful attention to how many night shifts are

assigned to each resident, to ensure fairness.

• Bad Sleep Patterns: A bad sleep pattern is a sequence of shifts that are legal from a duty-

hours perspective, but undesirable relative to circadian rhythm. For example, if a resident

works a morning shift on Monday, an overnight shift on Tuesday, and then another morning

shift on Thursday, it is difficult for them to match their sleep schedule to their work. (for more

details, see Table 2 in [99]). Whereverable possible, the Chiefs prefer to avoid assigning bad

sleep patterns.

• Post-continuity Clinic Shifts: Although it is legal to work an ED shift immediately after a

continuity clinic, the Chiefs again prefer to avoid such assignments because it requires the

resident to either leave the clinic early or arrive at the ED late. It is also a long assignment

for the resident to work both back-to-back.

• Intern-undesirable Shifts: Certain shifts are fully prohibited from interns being assigned

to them, as noted in Section 2.2.2. Other shifts are allowed, but the Chiefs prefer to avoid

them where possible.

• Covered Optional Shifts: As noted earlier, interns begin their ED rotations on the 27th of

the preceding month. Thus, when building a monthly schedule, it is permissible to leave

shifts on the 27th and later unfilled, to be filled when building next month’s schedule. This

can be difficult, however, if the following month is tightly constrained. Thus the Chiefs may

not want to leave too many optional shifts uncovered if they anticipate difficulties in the

building the following month’s schedule.
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• Uncovered Flex Shifts: Similarly, it is not required that all flex shifts be covered, but these

correspond to busy times during daily cycle of the ED’s patient volume and therefore when

possible it is desirable to staff them.

For the past several years, the following process has been effective in building the monthly ED

residenct shift schedules: First, the Chiefs provide the team with a set of input files that contain the

upcoming month’s residents, their continuity clinics schedules, their time-off requests, etc..

Next, we first try to find a feasible schedules that satisfies all time-off requests and continuity

clinics. If it is infeasible, we analyze the problem instance to identify causes of infeasibility and

then work with the Chiefs to identify which clinics to cancel and/or which requests to deny (these

are the highest priority and most sensitive, and need to be assessed individually).

Once we have a feasible schedule (i.e. have a valid set of continuity clinics and time-off re-

quests that can be honored), we focus on the metrics. Specifically, rather than imposing an explicit

objective function, we use upper bounds to limit the individual metrics, with the Chiefs deciding

which bounds to tighten or loosen at each iteration. For example, if a given schedule has a large

number of post-continuity clinics, we might relax all other bounds and minimize this metric to get

a sense of what is possible, then slowly lift this bound to gain better solutions with respect to other

metrics. It is by no means a scientific process, and yet it has continuously enabled the Chiefs to

quickly converge on solutions with which they are satisfied. We illustrate this process in Figure

2.1.

It is worth noting that this process not only provides a high-quality schedule for the Pediatric

Emergency Department, but also has enormously educational value. By working together and

learning how each of us brings our own perspective to the problem, we find each month that we

converge more quickly, e.g. the operations researchers in building the first initial draft of the sched-

ule are progressively better able to predict the Chiefs’ preferences. This is also providing junior

students (typically, undergraduates now do the bulk of the work in actually running the model)

with valuable hands-on experience with a real-world problem, including the monthly interactions

with the Chiefs. Finally, the Chiefs themselves have consistently demonstrated not only a willing-
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Figure 2.1: Iterative, interactive approach in the PEDS problem

ness but an eagerness to learn as much as they can about the model and how it works, and this has

changed the way they view other problems that they encounter in their work.

2.5 Computational Results

In this section, we present computational experiments to demonstrate the tractability and effec-

tiveness of this approach. Briefly, because the feasibility problems can be solved so quickly (on

the order of minutes or even seconds) and because we have developed an ever-increasing under-

standing of the Chiefs’ preferences which enables us to produce high-quality initial schedules, this

collaborative process typically takes on the order of at most one to two hours per monthly schedule,

frequently with only a few minor changes requested by the Chiefs relative to the initial schedule.

This is significantly less than the twenty-plus hours per month that was required of the Chief Res-

idents to build schedules manually prior to the development of this integer programming-based

approach. Far more importantly, the resulting schedules are of significantly higher quality than

those generated manually. Note that this section is extracted from our published paper [99].

27



2.5.1 Data Sets

Our computational results are based on real-world data from the C.S. Mott Children’s Hospital

Pediatric Emergency Department in the 2012–2013 academic year. The C.S. Mott Children’s Hos-

pital pediatric ED is a level 1 pediatric trauma center located in Ann Arbor, Michigan. It served

nearly 19, 000 patients in the 2010–2011 academic year (AY), and more than 23, 000 patients in

AY 2012–2013. Resident schedules from AY 2010–2011 and 2012–2013 were chosen for review.

The AY 2010–2011 was the most recent year that the schedule was constructed completely by

hand, and AY 2012–2013 was the first complete year scheduled using our interactive method. The

intervening AY 2011–2012 was a year of transition and was omitted.

To assess schedule quality, we evaluated 4 metrics of schedule quality that were compared

between the 2010–2011 and 2012–2013 academic year: total shift equity (TSE), night shift eq-

uity (NSE), occurrence of post-continuity clinic shifts (PCCs) immediately following outside clinic

responsibilities, and occurrence of challenging bad sleep patterns (BSPs).

The TSE and the NSE refer to variance in shift number among residents in any given month.

The PCCs were chosen as a negative quality metric because of the difficulty of preceding an ED

shift with clinic duty or other outside requirement. The BSPs were defined as consecutive shift

assignments that yield a difficult sleep schedule for residents and were determined by informally

surveying senior residents on challenging shift transitions.

Data collected included the monthly resident complement, total shifts per resident, night shifts

per resident, PCCs, and BSPs. These variables were calculated for each month in the study years,

then averaged within each year. Total shift distribution variance per month and night shift distribu-

tion variance per month were also calculated and averaged within each year. Student’s t-tests were

used to compare the data between the study years. Pediatrics Chief Residents were informally sur-

veyed throughout the project on the amount of time necessary to create a schedule, both manually

and utilizing our interactive method.

We solved the PEDS problem by impelementing our iteractive aprroach using C++ with CPLEX

28



Year
Month Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun.

Time(sec) 0.28 0.39 0.11 1.73 0.55 0.16 0.39 0.23 0.44 0.3 0.47 1.42

2012 2013

Table 2.2: CPU time per monthly schedule for 2012–2013 academic year

API version 12.1 on a computer with an Intel Xeon 3.20 GHz processor and 8 GB of memory.

Statistical analysis was completed using Minitab 16.

2.5.2 Results

A critical key to the success of this approach is that the individual feasibility problems be fast

enough to solve that they can be reviewed and re-run in an interactive, hands-on manner. Table 2.2

shows that each instance was solved in a seconds.

Building a typical monthly schedule takes up to 3 hours for the Chiefs to generate the input data

files (mainly collecting the residents’ requests and continuity clinic schedules). The operations

research team then typically spends a few hours generating a high-quality initial draft schedule,

and then the complete team typically meets for an hour or two to review, refine, and finalize the

schedule. In contrast, prior Chiefs report that each month’s schedule required 12 to 16 hours to

build manually, plus 10 to 12 additional hours of later corrections, all of this time on behalf of

the Chiefs, and with lesser quality in the final schedule. In sum, the total time to build a monthly

schedule was between 22 and 28 hours by hand and 4 to 6 hours using our interactive method.

Using the interactive method resulted in a 79% to 82% time reduction per month.

The number of residents working in the ED per month had a mean (µ) of 15.7 and a standard

deviation (σ) of 2.06 in 2010–2011, and had µ = 11.2 and σ = 1.18 in 2012–2013. As some

residents took a 2-week vacation block during their ED rotation, for each statistic, the number of

residents was normalized per month, such that a resident who was working in the ED for 15 days

in a 30-day month was counted as 0.5 residents.

Each resident worked a mean of 15.8 (σ = 1.68) total shifts per month in 2010–2011 and 16.4

(σ = 1.62) total shifts per month in 2012–2013. The mean number of monthly night shifts per

29



resident was 4.7 (σ = 0.98) in 2010–2011 and 5.0 (σ = 1.50) in 2012–2013. Total number of

BSPs decreases from 83 in 2010–2011 to 14 in 2012–2013 and the number of PCCs decreases

from 72 to 32. The number of BSPs and PCCs are normalized per resident unit for a statistical test.

2010-2011
mean (𝝈)

2012-2013
mean (𝝈)

Residents / month 15.7 (2.06) 11.2 (1.18)

Total Shifts / resident 15.8 (1.68) 16.4 (1.62)

Night Shifts / resident 4.7 (0.98) 5.0 (1.50)

Total BSP / year 83 14

Total PCC / year 72 32

Academic Years 2010–2011 vs. 2012–2013: Number of residents per month, total shifts per resident, night shifts per
resident, BSPs per year, and PCCs per year.

Table 2.3: Number of residents per month and average occurrence for the metrics

The BSPs decreased by 85.7% from 2010–2011 to 2012–2013 (mean change, 0.54 BSPs / resi-

dent per month; P < 0.001; 95% CI 0.31 to 0.77). The number of PCCs decreased by 66.7%

(mean change, 0.36 PCCs / resident per month; P < 0.002; 95% CI 0.16 to 0.56). While

there was no significant difference in total shift disparity between years (percentage change, 25%;

P = 0.491; 95% CI −0.02 to 0.04), there was statistically significant reduction in night shift

disparity, which decreased by 55.6% (P < 0.001; 95% CI 0.02 to 0.05).

2010-2011 2012-2013 Difference (Resident per Month)

Resident per Month, mean (𝛔) Mean Difference 95% confidence interval (CI) P Value

BSP 0.6312
(0.2821)

0.0897
(0.3109) 0.5415 (0.3110, 0.7720) < 0.001

PCC 0.5388
(0.26)

0.1757
(0.22) 0.3631 (0.1655, 0.5608) 0.002

Total Shift Variability 0.08
(0.02)

0.06
(0.03) 0.0089 (-0.0189, 0.0367) 0.491

Night Shift Variability 0.09
(0.03)

0.04
(0.02) 0.0421 (0.02652, 0.05763) < 0.001

Table 2.4: Normalized quality of metrics by monthly residents

Finally, we note that by coordinating the building of the schedule around both a mathematical

model and an associated interactive process, we have improved the continuity from year to year

as the Chief residents transition. We also see a greater percetion of fairness and acceptance of the
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schedule by the residents overall.

2.6 Conclusions

In this paper, we present an iterative and interactive IP-based approach that incorporates compli-

cated rules and qualitative preference of residents with high flexibility. This approach provided

faster and higher quality of schedules to the chief residents than the previous manual scheduling

process. This also contributes to improving patient safety, and resident satisfaction, and morale for

educational training.
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CHAPTER 3

Pareto Shift Scheduling Problem

3.1 Motivation

Residency scheduling problems are often challenging to solve because of a large number of con-

flicting rules and requirements needed to ensure both adequate patient care and resident edu-

cational opportunities. Given the combinatorial complexity of residency scheduling problems,

optimization-based decision support tools seem appropriate for aiding the Chief Residents in their

scheduling task, but additional complexity is introduced by the fact that there is no one clear ob-

jective function. For example, from a patient’s perspective, we might want to encourage schedules

where only senior residents staff overnight shifts, when there is less supervision from attending

physicians. On the other hand, from a training perspective, we might want to encourage schedules

where less experienced residents gain from the types of training experiences most likely to occur

during the overnight shifts. Thus, many different metrics (associated with patient care, resident

education, and resident satisfaction) are of value to the Chiefs in selecting a final schedule.

One common approach for multi-criteria objective problems is the weighted sum methods to

establish a single objective function [63]. However, in our experience, this has been unsuccessful

for residency scheduling for two key reasons. First, it can be very difficult for the Chief Residents

to accurately quantify their preferences. Second, these preferences change on a regular basis –

for example, focusing on training may be more important in early months of the academic year

because the residents are new to the program, while later in the year it may be more important to
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focus on residents’ day-off requests because of fellowship interviews. Thus, even if methods were

developed to intuit the Chief Residents’ preferential weights from past planning periods, these

weights may not be appropriate for future planning periods.

Another approach (as seen in [5, 23, 45, 48, 49]) is to utilize the analytic hierarchy process

(AHP) [100], in which users are surveyed to provide relative preferences between pairs of metrics.

However, we again find this inappropriate for the pediatric resident scheduling problem for the

following reasons: First, because the preferences change over time, this surveying process would

have to be repeated monthly. Second, the pairwise comparison questionnaire surveys in AHP are

too simplistic to capture complex conditional dependencies. As a simple example, as suggested by

[101, 102], I might prefer red wine to white wine in general, but prefer white wine if eating fish.

Finally, because AHP relies on an underlying weighted sum approach, it may fail to find all Pareto

dominant solutions within an MIP formulation [55, 103].

On the other hand, in interactive methods, the Chief Residents are actively involved in the so-

lution process. They investigate the presented schedule and express their preference information.

The preference is subsequently used to generate a new feasible schedule, and we provide it to the

Chief residents. Thus, the Chief Residents progressively refine their preferences until they are

satisfied with the final solution and do not wish to continue further. However, as shown in Figure

3.1, it tends to select a myopic solution without knowing better possible alternatives since they are

satisficers, not optimizers; they are not likely to spend extra time to find a better schedule if they

feel current one is good enough.

Therefore, as an alternative, we propose not to generate a single “optimal” schedule (in fact,

optimality is not defined) but rather to provide the Chiefs with the complete set of Pareto dominant

schedules, from which they can choose. A solution is Pareto dominant if there is no other feasible

solution that is as good, or better, on all metrics. If one solution Pareto-dominates another, then

the latter does not need to be considered by the Chiefs. Apparently, instead of evaluating the

potentially large set of feasible solutions, we can assist the Chief Resident to focus on only Pareto

frontier, the set of all Pareto schedules. In addition, since Pareto frontier gives the whole picture of
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Suppose that the red line is satisfaction line. Then, the Chief Residents could stop searching further if the search
reaches the satisfaction line since they are happy. However, there could exist Pareto-dominant schedules that dominate
the choice since they never see the whole picture of possible alternatives.

Figure 3.1: Interactive approach vs. Pareto-dominant approach

alternatives to the decision maker, the decision maker can have high confidence in the final decision

by comparing various Pareto schedules before the final choice. To this end, we have developed

an integer programming-based approach embedded within a recursive algorithm to generate all

Pareto-dominant solutions.

Some papers [104, 105] suggest a Pareto-based heuristic method based on simulated annealing,

which is a stochastic search algorithm first introduced by Kirkpatrick et al. [86]. One of the earliest

papers to use Pareto-based optimization for healthcare personnel schedule is Jaszkiewicz [104]. It

introduced a Pareto-based simulated annealing approach to solving the NSP by using a weighted-

sum method with adaptively changing weights. Later, another paper [105] extended the Pareto-

based simulated annealing approach to solving the multi-objective NSP with two options to address

user preferences in different ways. They show that the Pareto-based approach provides high-quality

solutions and flexible decision systems that are capable of handling changing environments which

are not possible to precisely capture when using constant weights. However, their methods are

based on an approximated Pareto frontier instead of the whole frontier. We introduce a way to

provide the Chiefs with the complete set of Pareto dominant solutions.
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3.2 PEDS Simplified Feasiblity Formulation

In this paper, we consider the problem of building monthly schedules for medical residents who

provide shift coverage in a pediatric emergency department. In particular, given the multi-criteria

nature of the problem, we focus on generating Pareto-dominant schedules from which the sched-

uler (typically, a Chief Resident) can choose. For the sake of exposition, we focus on the following

rules, which are amongst the most common and most important in residency shift scheduling. For

a more complex and nuanced model, see the mathematical formulation in Chapter 2.

1. Required Shift Coverage: Each of the six required (i.e., non-flex) shifts must be covered by

exactly one resident for each day in the planning horizon.

2. Flex Shift Coverage: The flex shift can be assigned to at most one resident for each day in

the planning horizon.

3. Total Shifts: There is a lower bound and an upper bound on the total number of shifts that

can be assigned to each resident.

4. Night Shifts: There is a lower bound and an upper bound on the total number of night shifts

that can be assigned to each resident.

5. Working Days in a row: There is an upper bound on the allowable number of consecutive

days (any shift) that can be worked in a row.

6. Working Nights in a row: There is an upper bound on the allowable number of consecutive

days on which an overnight shift (8 PM – 5 AM, 11 PM – 8 AM) can be worked.

7. Intern Limitations: First-year residents (interns) cannot be assigned to the 7 AM – 4 PM nor

the 11 PM – 8 AM shifts.

8. Program Limitation: Residents in certain programs cannot work specific days of the week

due to other program requirements.
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9. Ten Hours Rest: There must be at least ten hours between the end of one shift and the start

of the next shift for each resident.

10. Continuity Clinic: If a resident works a continuity clinic (a standing year-long assignment to

a weekly community clinic), then they cannot work certain shifts before, during, and after

their continuity clinic (5 PM – 2AM, 8 PM – 5 AM, 11 PM – 8 AM before the clinic day

and 7 AM – 4 PM, 9 AM – 6 PM, 12 PM – 9 PM, 4 PM – 1 AM, 5 PM – 2 AM on the clinic

day)

In this paper, to assess the quality of a resident schedule for the pediatric ED, we consider the

following four metrics. Note that all of these metrics are defined over the set of non-negative

integers value.

• Number of Bad Sleep Patterns (BSPs) are sequences of consecutive shift assignments that

disrupt residents’ circadian rhythm (see Table 2 in [99]). For example, it is legal to work a

Monday morning shift, a Tuesday overnight shift, and a Thursday morning shift, but doing

so is highly disruptive to a resident’s sleep patterns and thus undesirable.

• Number of Post-Continuity Clinic shifts (PCCs) are shifts in the ED assigned to a resident

shortly after completion of a continuity clinic. Although it is legal from the perspective of

duty-hour requirements, it yields a very long work stretch. In addition, performing both tasks

typically requires leaving clinic early or arriving late to the ED.

• Number of Denied Vacation Requests (DVRs) are periods of time for which the resident

requested time off but was nonetheless assigned to work at least one shift during this time

period.

• Number of Uncovered Flex Shifts (UFSs) refer to noon shifts (“flex shifts”) that go unas-

signed. While this is permissible, it is not desirable.

The following model defines the feasible set of resident shift schedules, relative to the rules

outlined above.
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3.2.1 Notation

R set of residents, r ∈ {1, 2, · · · , | R |}

T set of training programs, t ∈ {EMS, PED, EM, FM, · · · }

tr training program of resident r, tr ∈ T ∀r ∈ R

L set of seniority levels, l ∈ {interns, seniors}

lr seniority level of resident r, lr ∈ L ∀r ∈ R

D set of days, d ∈ {1, 2, · · · , | D |}; In our data instances, D is either 30 or 31

Cr set of days on which resident r has continuity clinic, Cr ⊆ D ∀r ∈ R

S set of shifts, s ∈ {1, 2, · · · , | S |}; In our data instances, there are 7 shifts

F set of flex shifts, F ⊂ S; In our data instances, shift 12 PM – 9 PM is the only

element of F

N set of night shifts, N ⊂ S; In our data instances, shifts 8 PM – 5 AM and 11 PM – 8

AM are in N

I set of intern-prohibited shifts, I ⊂ S; In our data instances, shifts 7 AM – 4 PM and

11 PM – 8 AM are in I

P set of shifts that are defined as the post-continuity clinic shifts, P ⊂ S; In our data

instances shifts 8 PM – 5 AM and 11 PM – 8 AM are in P

Od set of day-shift pairs that conflict with continuity clinic on day d, Od ⊂ D × S

∀d ∈ D

Ht set of day-shift pairs that cannot be worked by residents in training program t,

Ht ⊂ D × S ∀t ∈ T

J(d,s) set of day-shift pairs that would cause a duty-hours violation if assigned in addition

to day-shift (d, s), Jds ⊂ D × S ∀(d, s) ∈ D × S. Note that (d, s) is included in the

set J(d,s)

U set of bad (undesirable) sleep patterns where u ∈ U is a combination of shift offsets

on multiple days. Note that | u | represents the number of shift offsets in u.
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U(d,u) set of date-shift pairs associated with bad sleep pattern u on day d, U(d,u) ⊂ D × S

∀(d, u) ∈ D × U

V set of vacation requests where Vr ∈ V is a set of day-shift pairs (d, s) ∈ D × S that

resident r requests as part of a day off, Vr ⊂ D × S ∀r ∈ R

D maximum allowable number of days in a row that a resident can work a shift

N maximum allowable number of days in a row that a resident can work a night shift

Sr, Sr lower and upper bounds on the number of total shifts for resident r, ∀r ∈ R

N r, N r lower and upper bounds on the number of night shifts for resident r, ∀r ∈ R

3.2.2 Variables

xrds binary variable, equals 1 if resident r is assigned to shift s on day d; otherwise 0

yrdu binary variable, equals 1 if resident r is assigned to bad sleep pattern u on day d;

otherwise 0

zrd binary variable, equals 1 if resident r ∈ R is assigned to work a post-continuity clinic

shift on day d ∈ Cr; otherwise 0

qv binary variable, equals 1 if vacation request v ∈ V is denied; otherwise 0
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3.2.3 Formulation

min 0 (3.1)

subject to:
∑
r∈R

xrds = 1 ∀s ∈ S\F, ∀d ∈ D (3.2)

∑
r∈R

xrds ≤ 1 ∀s ∈ F, ∀d ∈ D (3.3)

∑
d∈D

∑
s∈I

xrds = 0 ∀r ∈ {r : lr = interns} (3.4)

∑
r∈{r:tr=t}

∑
(d,s)∈Ht

xrds = 0 ∀t ∈ T (3.5)

∑
d∈Cr

∑
(d,s)∈Od

xrds = 0 ∀r ∈ R (3.6)

∑
(d,s)∈J(d,s)

xrds ≤ 1 ∀r ∈ R, ∀d ∈ D, ∀s ∈ S (3.7)

d+D∑
i=d

∑
s∈S

xris ≤ D ∀r ∈ R, ∀d ∈ D (3.8)

d+N∑
i=d

∑
s∈N

xris ≤ N ∀r ∈ R, ∀d ∈ D (3.9)

Sr ≤
∑
d∈D

∑
s∈S

xrds ≤ Sr ∀r ∈ R (3.10)

N r ≤
∑
d∈D

∑
s∈N

xrds ≤ N r ∀r ∈ R (3.11)

yrds ≤ xrij ∀r ∈ R, ∀d ∈ D, ∀u ∈ U,∀(i, j) ∈ U(d,u) (3.12)

yrds+ | u | ≥
∑

(d,s)∈U(d,u)

xrds + 1 ∀r ∈ R, ∀d ∈ D, ∀u ∈ U (3.13)
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zrd ≥ xrds ∀r ∈ R, ∀d ∈ Cr, ∀s ∈ P (3.14)

zrd ≤
∑
s∈P

xrds ∀r ∈ R, ∀d ∈ Cr (3.15)

qv ≥ xrds ∀v = (r, Vr) ∈ V, ∀(d, s) ∈ Vr (3.16)

qv ≤
∑

(d,s)∈Vr

xrds ∀v = (r, Vr) ∈ V (3.17)

xrds ∈ {0, 1} ∀r ∈ R, ∀d ∈ D, ∀s ∈ S (3.18)

yrdu ∈ {0, 1} ∀r ∈ R, ∀d ∈ D, ∀u ∈ U (3.19)

zrd ∈ {0, 1} ∀r ∈ R, ∀d ∈ Cr (3.20)

qv ∈ {0, 1} ∀v ∈ V (3.21)

Decision variables (3.18) indicate whether to assign resident r to shift s on day d or not. Auxil-

iary variables (A.19) indicate whether to assign resident r to bad sleep pattern u on day d, (A.20)

indicate whether to assign resident r to a post-continuity clinic shift on day d, (3.21) indicates

whether the scheduler denies vacation request v in V .

Constraints (3.2) ensure that exactly one resident is assigned to every non-flex shift. Constraints

(3.3) ensure that flex shifts are covered by at most one resident. Constraints (3.4) ensure that interns

are not assigned shifts that must be covered by seniors. Constraints (3.5) ensure that residents are

not assigned to shifts that conflicts with their program requirements. Constraints (3.6) ensure that

residents are not assigned to shifts that conflicts with their continuity clinics. Constraints (3.7)

ensure that residents are not assigned to shifts that begin within ten hours of a previously worked

shift. Constraints (3.8) ensure that no resident works more than a maximum allowable number of

days in a row. Constraints (3.9) ensure that no resident works more than a maximum allowable

number of nights in a row. Constraints (3.10) and (3.11) ensure that each resident is assigned to a

number of shifts and night shifts between their respective lower and upper bounds.

Constraints (A.1) and (A.2) link decision variables xrds and auxiliary variables yrds to count the

number of bad sleep patterns. Constraints (A.3) and (A.4) link decision variables xrds and auxiliary
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variables zrd to count the number of post-continuity clinic shifts. Constraints (3.16) and (3.17) link

decision variables xrds and auxiliary variables qv to count the number of denied vacation requests.

3.3 Finding the Pareto Frontier of PEDS metrics

In Section 3.2, we presented an IP formulation for finding feasible solutions to the PEDS problem.

We denote by S the set of all feasible schedules. These solutions can be evaluated under several

different metrics (i.e., number of BSPs, PCCs, DVRs, UFSs). In this section, we discuss a method

that can be used to find all Pareto dominant points associated with this feasible region. In general,

this method is applicable to any multi-objective problem with integer-valued metrics.

Notation and Sets

n total number of metrics

S solution (or decision) space, i.e., the set of feasible schedules

s schedule, i.e., an element in the solution space, s ∈ S

fi(s) value of the ith metric for schedule s for all s ∈ S and i ∈ {1, · · · , n}

f(s) metric point, i.e., the vector of metric values for schedule s; f(s) = (f1(s), · · · , fn(s))

M metrics (or objective) space, i.e., the set of metric points associated with all feasible

schedules;M = {f(s) | s ∈ S}
Without loss of generality, we assume that we want minimal values for each of the metrics.

Note that there may be multiple schedules that all map to the same metric point. We will therefore

sometimes use the notation m for an element inM, because m does not necessarily correspond to

a unique schedule. In details, every feasible schedule evaluated by n metrics {f1, · · · , fn} should

map to some metric point m inM although multiple different feasible schedules could map to the

same one.

Key definitions for a MOP are dominance and Pareto frontier. We introduce the following key

definitions to understand the concept of Pareto optimality.

Definition 3.3.1. Dominance (≺): Given schedules s and s′ ∈ S , we say that s dominates s′
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(s ≺ s′) if and only if fi(s) ≤ fi(s
′) for all i ∈ {1, · · · , n} and ∃i ∈ {1, · · · , n} such that

fi(s) < fi(s
′). Similarly, given metric points m and m′ ∈ M, we say that m dominates m′

(m ≺ m′) if and only if all schedules associated with m dominate all schedules associated with

m′.

Definition 3.3.2. Strictly Dominance(Î): Let schedules s and s′ ∈ S. We say that s strictly

dominates s′ (s Î s′) if and only if fi(s) < fi(s
′) for all i ∈ {1, · · · , n}. Similarly, given two

metric point m and m′ ∈ M, we say that m strictly dominates m′ (m Î m′) if and only if a

schedule associated with m strictly dominates a schedule associated with m′.

Definition 3.3.3. Pareto point (m̂): The metric point m ∈ M is a Pareto point if and only if there

is no other metric point m′ inM such that m′ ≺ m.

Definition 3.3.4. Pareto frontier (P): set of all Pareto points, P = {m ∈ M | @m′ ∈ M : m′ ≺

m}.

Definition 3.3.5. ideal value(f ∗i ): the best value of ith metric value over Pareto frontier, f ∗i =

min{fi(s) : f(s) ∈ P}.

Definition 3.3.6. nadir value(f̄i): the worst value of ith metric value over Pareto frontier, f̄i =

max{fi(s) : f(s) ∈ P}.

Definition 3.3.7. ideal point(p∗): a vector of ideal values, f ∗ = (f ∗1 , · · · , f ∗n).

Definition 3.3.8. nadir point(p̄): a vector of nadir values, f̄ = (f̄1, · · · , f̄n).

Given a feasible region S and a vector of metrics {f1, · · · , fn}, we denote the MOP of finding

the associated Pareto frontier P by PS({f1, · · · , fn}). Our approach focuses specifically on the

case where the metrics only yield integer values. We define the MOP with n integer metrics

{f1, · · · , fn} over feasible set S as follows:
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min f(s) = (f1(s), f2(s), · · · , fn(s)) (3.22)

subject to: s ∈ S (3.23)

fi(s) ∈ Z ∀i ∈ {1, · · · , n} (3.24)

In this paper, we present an exact algorithm to find all points on the Pareto frontier P of

PS({f1, · · · , fn}). For conventional notation, we denote the set {s : f(s) ≤ u} in a subscript

by {f(s) ≤ u} or {f ≤ u} if there is no confusion. We also define the weighted sum single-

objective problem with additional upper bound constraints on all metrics as follows:

FS({(f1, w1, u1), · · · , (fn, wn, un)}) = min w1f1(s) + · · ·+ wnfn(s) (3.25)

subject to: s ∈ S (3.26)

f1(s) ≤ u1 (3.27)

... (3.28)

fn(s) ≤ un (3.29)

where wi represents a weight and ui represents an upper bound on metric i, respectively.

Finally, we define the following lexicographic optimization problem HS({f1, · · · , fn}) for a

feasible region S and a vector of metrics {f1, · · · , fn}. In the lexicographic optimization problem

HS({f1, · · · , fn}), we assume that the metrics are ranked in the order of importance so that f1

is more important than all other metrics, and fn is the least important metric. Then, we solve a

sequence of single-objective problems for each metric in order. First, it starts by solving PS({f1})

to minimize the first metric f1 over the feasible set S. Once we get the optimal value ẑ1 of f1 from

PS({f1}), we solve PS∩{f1(s)≤ẑ1}({f2}) to minimize the second metric f2 over the feasible set S

to which the new upper bound (i.e., f1(s) ≤ ẑ1) on f1 is added. Again, once we get the optimal

value ẑ2 of f2 from PS∩{f1(s)≤ẑ1}({f2}), we solve PS∩{f1(s)≤ẑ1,f2(s)≤ẑ2}({f3}) to minimize the third
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metric f3 over the feasible set S ∩ {s : f1(s) ≤ ẑ1} with new upper bound (i.e., f2(s) ≤ ẑ2)

on f2 and so on. At the ith iteration, we solve PS∩{f1≤ẑ1,··· ,fi−1≤ẑi−1}({fi}) by minimizing fi over

the feasible set S with a upper bounds fj(s) ≤ ẑj for all j < i where ẑj is the optimal value of

previous problems above successively. We describe the details of HS({f1, · · · , fn}) in Algorithm

1.

Algorithm 1: HS({f1, · · · , fn}), lexicographic optimization problem for PS({f1, · · · , fn})
INPUT : PS({f1, · · · , fn})

1 STEP 1 : optimize f1
2 Solve PS({f1})
3 Set ẑ1 = FS({(f1, 1,∞), (f2, 0,∞), · · · , (fn, 0,∞)})

4 STEP 2 : optimize f2
5 Solve PS∩{f1≤ẑ1}({f2})
6 Set ẑ2 = FS({(f1, 0, ẑ1), (f2, 1,∞), (f3, 0,∞), · · · , (fn, 0,∞)})

7
...

8 STEP n : optimize fn
9 Solve PS∩{f1≤ẑ1,··· ,fn−1≤ẑn−1}({fn})

10 Set ẑn = FS({(f1, 0, ẑ1), (f2, 0, ẑ2), · · · , (fn−1, 0, ẑn−1), (fn, 1,∞)})
OUTPUT
:

(ẑ1, ẑ2, · · · , ẑn)

By Definition 3.3.1 and 3.3.3, we prove the following theorem:

Theorem 3.3.1. The metric point (ẑ1, · · · , ẑn) gained by solving HS({f1, · · · , fn}) is a Pareto

point for PS({f1, · · · , fn}).

Proof. Suppose that there exists some metric point m̃ = (z̃1, · · · , z̃n) that dominates the metric

point m̂ = (ẑ1, · · · , ẑn) gained by solving HS({f1, · · · , fn}). Then, by Definition 3.3.1, there is

the first index i ∈ {1, . . . , n} such that z̃i < ẑi and z̃j = ẑj for all j < i. On the other hand,

we get ẑi by solving FS({(f1, 0, ẑ1), · · · , (fi−1, 0, ẑi−1), (fi, 1,∞), (fi+1, 0,∞), · · · , (fn, 0,∞)})

in Algorithm 1. It implies that no metric point has fi < ẑi when fj = ẑj for all j < i. It contradicts

the assumption that there exists the first index i of the metric point m̃. Thus, no metric point

dominates m̂. By Definition 3.3.3, it implies that m̂ is a Pareto point.
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3.3.1 Literature Review: Exact Algorithm

We define multi-objective problem with integer values (MOPI) to be any optimization problem

with multiple objective functions, where these objective functions always yield integer values. We

consider the problem of finding all points on the Pareto frontier for a given MOPI. We begin by

reviewing the literature on a subset of MOPI, the multi-objective integer programming (MOIP),

where the optimization problem is specifically an integer program. Klein and Hannan [106] sug-

gest an approach for the n dimensional MOIP based on a sequence of progressively more con-

strained single-objective optimization problems, eliminating the known dominated solutions; im-

provements of this appear in [103, 107]. Approaches for improving an upper bound on the worst-

case computational time include the full p-split method [108, 109, 110] and the full (p − 1)-split

method [107, 111, 112]. Recently, Boland proposed new two variants of the full (p − 1)-split

method, called the L-shaped search method [113], and the quadrant shrinking method, for the

tri-objecive integer programming (TOIP) problem [114].

In this paper, we use the recursive method [115, 116], which is a generalization of the well-

known ε-constraint method [56] and is known as one of the fastest existing methods [114].

The ε-constraint method was first introduced by Haimes et al. [56]. The basic idea of this

approach is to optimize a single objective while all other objectives are treated as constraints with

upper bounds. The optimal solution of the constrained single objective problem is then used to

determine new upper bounds on the objectives in the next iteration, and this is repeated until there

is no new solution found. Berube [117] solves bi-objective combinatorial optimization problems

by using the ε-constraint method. However, the original ε-constraint method could find a weakly

Pareto point (i.e., we say a metric point m is a weakly Pareto point when there is no other metric

point m′ Î m, but there exists a metric point m′′ ≺ m). Mavrotas [55] suggests augmented

ε-constraint method by introducing slack or surplus variables, and Kirlik and Sayın [112] use two-

stage ε-constraint formulation to guarantee to find Pareto points only by modifying the original

ε-constraint method. Recently, Özlen and Azizoğlu [115] suggest a recursive method, which is

an extension of the ε-constraint method for two-dimensional metrics, for n-dimensional objectives
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problem and later improves its computational performance by using a relaxation technique [116].

3.3.2 Recursive method for MOPI

The recursive algorithm proposed by Özlen and Azizoğlu [115] is to find the Pareto frontier of

the MOIP problem by recursively identifying Pareto frontier of subproblems with fewer objec-

tives. The key idea of recursive method is the inductive relationship between the nadir value of

PS({f1, · · · , fn}) and the Pareto frontier of PS({f1, · · · , fn−1}). To simplify notations in this

section, we denote the vector of metric values as z and the value of the ith metric value as zi.

3.3.2.1 Bi-objecive Problem with Integer Values (BOPI)

As preparation for the treatment of a high dimensional multi-objective problem, this section is

devoted to a two dimensional multi-objective problem, PS({f1, f2}). First, we assume that the

decision maker has two objectives in mind. We introduce a well-known ε-constraint method for

solving bi-objective problem with integer values (BOPI). This simple case can give an example to

illustrate the basic idea of the recursive method graphically. We will define the BOPI as follows:

min(f1(s), f2(s)) (3.30)

subject to: s ∈ S (3.31)

fi(s) ∈ Z ∀i ∈ {1, 2} (3.32)

where S refers to set of all feasible schedules and parameter {f1, f2} represents set of metrics

we will consider as objective functions.

(a) Range of Metric Space for BOPI To find the region in objective space that contains the

Pareto frontier, we define the following two points that define lower and upper bounds on metric

values of the Pareto frontier. The ideal value of f1 is FS({(f1, 1,∞), (f2, 0,∞)}) and denote it
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by z∗1 . Similarly, the ideal value of f2 is z∗2 = FS({(f1, 0,∞), (f2, 1,∞)}). Then, z∗ = (z∗1 , z
∗
2)

is the ideal point that defines lower bounds on metric values of all Pareto points. As an upper

bound of each metric value, nadir values of f1 and f2 are z̄1 = FS({(f1, 1,∞), (f2, 0, z
∗
2)}) and

z̄2 = FS({(f1, 0, z∗1), (f2, 1,∞)}) respectively. Then, z̄ = (z̄1, z̄2) is the nadir point that defines

upper bounds on metric values of all Pareto points. By definition of an ideal and a nadir value, it

follows that z∗1 ≤ ẑ1 ≤ z̄1 and z∗2 ≤ ẑ2 ≤ z̄2 for all Pareto points (ẑ1, ẑ2) in P .

Corollary 3.3.1.1. The corner points (z∗1 , z̄2) and (z̄1, z
∗
2) are in P .

Proof. By Definition 3.3.5 and 3.3.6, we can know that z∗1 = FS({(f1, 1,∞), (f2, 0,∞)}) and

z̄2 = FS({(f1, 0, z∗1), (f2, 1,∞)}). Obviously, by Algorithm 1, we can get (z∗1 , z̄2) by solving

HS({f1, f2}). Similarily, we can get (z̄1, z
∗
2) from HS({f2, f1}) by switching a role of f1 and f2.

Therefore, by Thoerem 3.3.1, two corner points (z∗1 , z̄2) and (z̄1, z
∗
2) are in P .

Theorem 3.3.2. For all pareto points (ẑ1, ẑ2) in P , it follows that z∗1 ≤ ẑ1 ≤ z̄1 and z∗2 ≤ ẑ2 ≤ z̄2.

Proof. Suppose that there is a Pareto point (ẑ1, ẑ2) such that ẑ1 < z∗1 or ẑ1 > z̄1. Then, it contra-

dicts Definition 3.3.5 or 3.3.6. Therefore, if a point (ẑ1, ẑ2) in P , it should follow z∗1 ≤ ẑ1 ≤ z̄1.

Similarily, it holds for ẑ2.

(b) Exact ε-constraint method for BOPI Berube [117] suggests the exact ε-constraint method

to finding the Pareto frontier of the bi-objective optimization problem with integer objective values

through a sequence of constrained problems based on a progressive tightening an upper bound

u2 on f2. Briefly, throughout the algorithm, u2 is improved (i.e., decreased when it minimizes

the objective) monotonically and find new Pareto point that has a worse value of f1 as a tradeoff

of tighter upper bound on f2. Since there are several variations of improvement [55, 112, 117]

from the conventional ε-constraint method [56], we restate an original version of them by using

HS({f1, · · · , fn}) in Algorithm 1 in order to keep the consistency of notations with our sequential
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method for general n-objective problem in Section 3.3.3.

Algorithm 2: ε-constraint method for BOPI, PS({f1, f2})
INPUT : PS({f1, f2})
INIT: k = 1,P = {∅}, u2 =∞

1 WHILE S ∩ {s : f2(s) ≤ u2} 6= ∅ DO
2 Let U2 = {∅}
3 BEGIN Lexicographic Optimization
4 Solve HS∩{f2≤u2}({f1, f2})
5 Set (ẑk1 , ẑ

k
2 ) be the solution

6 Update P = P ∪ (ẑk1 , ẑ
k
2 ) and k = k + 1

7 Set U2 = U2 ∪ {ẑk2}
8 END
9 Set z̄2 = max{U2} and u2 = z̄2 − 1

10 END
OUTPUT
:

P

In Algorithm 2, we first optimize for f1 metric with an upper bound constraint on f2 (i.e., f2 ≤

u2). Denote the optimal value of f1 by ẑ1. Second, we optimize for f2 relative to the optimal

metric value of f1 and denote it by ẑ2. Note that these two steps are equal to the lexicographic

optimization problem HS({f1, f2}) for PS({f1, f2}). We have proved above that the point (ẑ1, ẑ2)

gained by solving HS({f1, f2}) is a Pareto point in P . Finally, we tighten an upper bound u2 of

f2 by subtracting 1 from ẑ2 and repeat this process to find the other Pareto point until u2 is less

than z∗2 . Before showing that Algorithm 2 finds all Pareto points without missing anything, we first

state two following theorems.

Theorem 3.3.3. Given the metric point (ẑ1, ẑ2) gained by solving HS∩{f2≤u2}({f1, f2}) where ẑ2 ≤

u2, there is no other Pareto point that has f2 > ẑ2 for PS∩{f2≤u2}({f1, f2}).

Proof. By Algorithm 1, we get ẑ1 and ẑ2 respectively by solving ẑ1 = FS∩{f2≤u2}({(f1, 1,∞),

(f2, 0,∞)}) and ẑ2 = FS∩{f2≤u2}({(f1, 0, ẑ1), (f2, 1,∞)}). Note that, for PS∩{f2≤u2}({f1, f2}),

the ideal value of f1 is z∗1 = FS∩{f2≤u2}({(f1, 1,∞), (f2, 0,∞)}) and the nadir value of f2 is z̄2 =

FS∩{f2≤u2}({(f1, 0, z∗1), (f2, 1,∞)}). Since z∗1 = ẑ1, the nadir value of f2 for PS∩{f2≤u2}({f1, f2})

is ẑ2. By Definition 3.3.6, there is no Pareto point that has f2 > ẑ2 for PS∩{f2≤u2}({f1, f2}).
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Theorem 3.3.4. For each k ∈ {1, · · · , K} where K is the total number of iterations in Algorithm

2, (ẑk1 , ẑ
k
2 ) is a unique Pareto point having f2 = ẑk2 .

Proof. For some k ∈ {1, · · · , K}, suppose that there is another distinct Pareto point (z̃1, z̃2) that

has f2 = ẑk2 (i.e., z̃2 = ẑk2 ). To be distinct Pareto point, z̃1 should be less than ẑk1 . Therefore,

by Definition 3.3.1, (z̃1, z̃2) dominates (ẑk1 , ẑ
k
2 ). However, note that we get (ẑk1 , ẑ

k
2 ) by solving

HS∩{f2≤u2}({f1, f2}) in Algorithm 2, which is a Pareto point by Theorem 3.3.1. Therefore, it

contradicts the assumption that (ẑk1 , ẑ
k
2 ) is a Pareto point.

By the above Theorem 3.3.3 and 3.3.4, there is no unfounded Pareto points whose f2 is greater

than or equals to z̄2, where z̄2 is the nadir value of f2 for PS∩{f2(s)≤u2}({f1, f2}). Thus, we can

strictly restrict search space by decreasing upper bound of f2 up to z̄2 − 1 without missing any

Pareto point. Also, throughout a sequence of monotonically decreasing u2, we always get a Pareto

point by solving the lexicographic optimization HS∩{f2≤u2}({f1, f2}). This implies that Algorithm

2 finds all Pareto points for PS({f1, f2}).

Theorem 3.3.5. Algorithm 2 finds all Pareto points in P for PS({f1, f2}).

Proof. First, by Corollary 3.3.1.1, we have proved that the corner point (z∗1 , z̄2) is inP , which is the

first Pareto point founded by Algorithm 2. By Theorem 3.3.3, we know that ẑk2 is the nadir value of

f2 for PS∩{f2≤u2}({f1, f2}) where u2 = ẑk−12 −1 and ẑ02 =∞ for each iteration k ∈ {1, · · · , K} in

Algorithm 2. Thus, there is no other Pareto point such that f2 is between ẑk2 + 1 and u2 inclusively.

Also, by Theorem 3.3.4, we know that a point (ẑk1 , ẑ
k
2 ) is a unique Pareto point at f2 = ẑk2 for each

iteration k ∈ {1, · · · , K} in Algorithm 2. Therefore, there is no unfounded Pareto points such

that f2 is greater than or equal to ẑk2 . Thus, we don’t miss any Pareto point by strictly decreasing

a upper bound on f2 by substracting 1 from ẑk2 . By the termination condition in Algorithm 2, we

know that we search whole possible range of f2 shown in Theorem 3.3.2, where Pareto points

exists. Therefore, Algorithm 2 finds all Pareto points in P .
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3.3.2.2 Multi-objective Problem with Integer Values (MOPI)

In previous section, we explained how to find the Pareto frontier P for BOPI. Conceptually,

the method for BOPI is pretty straightforward. By generalizing this method, we can find the

Pareto frontier for a n dimensional multi-objective problem, PS({f1, · · · , fn}). Unfortunately, the

notation gets a bit heavy in the general case that has more than two objectives. For the sake of

simplicity, given two vectors u = (u1, . . . , up) and r = (r1, . . . , rp) for all p ∈ {1, . . . , n}, we use

the operator overloading u ≺ r if and only if ui ≤ ri for all i ∈ {1, . . . , p} and ∃i ∈ {1, . . . , p}

such that ui < ri as an extension of Definition 3.3.1 to a vector of arbitrary length. Similarily,

u � r represents ui ≤ ri for all i ∈ {1, . . . , p}. We also denote the set {s : f(s) � u} in a

subscript by {f(s) � u} or {f � u} if there is no confusion.

(a) Range of Metric Space for MOPI Unlike BOPI, the calculation of the range of metrics in

problems involving more than two objectives is not a trivial task [55, 118, 119, 120]. First, we

can get easily the ideal point z∗ = (z∗1 , . . . , z
∗
n) of the Pareto frontier, which defines lower bounds

on each metric value, by solving z∗i = FS({(f1, w1,∞), . . . , (fi, wi,∞), . . . , (fn, wn,∞)}) where

wi = 1 for all i ∈ {1, . . . , n} and wj = 0 for all j 6= i.

While the ideal point is easily attainable by optimizing the individual objective, the nadir point is

not. To define a region of objective space that contains the Pareto frontier, we suggest an algorithm

to calculate nadir values of each metric. Without loss of generality, we just show you a way to

find the nadir value of the last metric fn, z̄n = max{fn(s) : s ∈ E}. The nadir value of other

metrics can be calculated in a similar way. By definition of the ideal and nadir value, it follows

that z∗i ≤ ẑi ≤ z̄i for all i ∈ {1, .., n} for each Pareto point (ẑ1, . . . , ẑn) in P .

Theorem 3.3.6. Given the n − 1 dimensional Pareto frontier PS({f1, · · · , fn−1}) of PS({f1,

· · · , fn−1}), the nadir value of fn for PS({f1, · · · , fn}) is the following value:

z̄n = max
k=1,...,K

ẑkn
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where ẑkn = FS({(f1, 0, ẑk1 ), · · · , (fn−1, 0, ẑkn−1), (fn, 1,∞)}) for each point (ẑk1 , · · · , ẑkn−1) ∈

PS({f1, · · · , fn−1}), and K = |PS({f1, · · · , fn−1})|.

Proof. Suppose that there exists a Pareto point z̃ = (z̃1, . . . , z̃n) ∈ P such that z̃n > z̄n. Since we

assume that z̄n is the maximum value of fn among all Pareto points (ẑk1 , . . . , ẑ
k
n) in Therorem 3.3.6,

it holds that z̃n > ẑkn for all k ∈ {1, . . . , K}. Therefore, the projection (z̃1, . . . , z̃n−1) of the Pareto

point z̃ to the first n−1 dimensional metric subspace should not be dominated by any Pareto points

(ẑk1 , . . . , ẑ
k
n−1) in PS({f1, . . . , fn−1}). Otherwise, there exists some k ∈ {1, . . . , K} such that the

Pareto point (ẑk1 , . . . , ẑ
k
n) dominates z̃, and then it contradicts the assumption of z̃ ∈ P . Note that,

for any metric point in the n − 1 dimensional metric subspace, it should be either a Pareto point

or dominated by some Pareto point in PS({f1, . . . , fn−1}). Since (z̃1, . . . , z̃n−1) is not dominated

by (ẑk1 , . . . , ẑ
k
n−1) for all k ∈ {1, . . . , K}, it should be a Pareto point in PS({f1, . . . , fn−1}). In

Theorem 3.3.6, we get the nadir value z̄n of fn by taking the largest value of ẑkn from all Pareto

points (ẑk1 , . . . , ẑ
k
n−1) in PS({f1, . . . , fn−1}), k ∈ {1, . . . , K}. Therefore, it should be z̄n ≥ z̃n.

This contradicts z̃n > z̄n. Therefore, there is no Pareto point (ẑ1, . . . , ẑn) ∈ P such that ẑn > z̄n.

In other word, if some point (z1, . . . , zn) has zn > z̄n, then (z1, . . . , zn) /∈ P .

LetPS({f1, . . . , fn−1}) be the Pareto frontier of the n−1 objective problem, PS({f1, . . . , fn−1}),

and K be the number of points in the Pareto frontier PS({f1, . . . , fn−1}). For each point m =

(ẑk1 , . . . , ẑ
k
n−1) in PS({f1, . . . , fn−1}) for all k ∈ {1, . . . , K}, we solve for fn relative to m and

denote it by ẑkn = FS({(f1, 0, ẑk1 ), . . . , (fn−1, 0, ẑ
k
n−1), (fn, 1,∞)}). Then, the nadir value z̄n of fn

is computed by maxk=1,...,K ẑ
k
n.

(b) Recursive method for MOPI Özlen and Azizoğlu [115] proposes a recursive algorithm to

find the Pareto frontier of the MOIP by recursively identifying the Pareto frontier for sub-problems

with fewer objective functions. The basic idea for solving a multi-objective minimization problem

with n integer-valued objectives is the following. We improve an upper bound un on fn monoton-

ically throughout a recursive algorithm, starting with un = +∞. In each iteration, we first find the

51



Pareto frontier of the problem with n− 1 metrics with an upper bound un on fn, i.e., we solve the

problem PS∩{fn≤un}({f1, · · · , fn−1}). Suppose that the Pareto frontier of this problem consists of

K points denoted by (ẑk1 , · · · , ẑkn−1) for k = 1, . . . , K. Then, for each k = 1, . . . , K, we minimize

the last metric fn(s) subject to the constraints

s ∈ S

fi(s) ≤ ẑki , ∀i = 1, . . . , n− 1

and denote the optimal value by ẑkn. Let z̄n = maxk=1,...,K ẑ
k
n be the nadir value of fn over the

current set. Finally, we tighten an upper bound on fn by subtracting 1 from the nadir value z̄n and

repeat this process to find all Pareto points until un makes an infeasible set. Note that the last step

utilizes the fact that the metric functions are integer-valued. We summarize this recursive method

in Algorithm 3, incorporating the fact that MOPI has integer-only objective values.

Algorithm 3: Recursive method for MOPI, PS({f1, · · · , fn})
INPUT : PS({f1, · · · , fn})
INIT: Initialize the upper bound un of fn to∞
REPEAT

1. First find the Pareto frontier of the problem with n− 1 metrics with an upper bound
un on fn, i.e., we solve the problem PS∩{fn≤un}({f1, · · · , fn−1}).

2. Suppose the Pareto frontier of this problem consists of K points denoted by
(ẑk1 , · · · , ẑkn−1) for k = 1, . . . , K. Then, for each k ∈ 1, . . . , K, minimize the last
metric fn(s) subject to the constraints s ∈ S and fi(s) ≤ ẑki , ∀i = 1, . . . , n− 1, and
denote the optimal value by ẑkn.

3. Add points (ẑk1 , · · · , ẑkn), k = 1, . . . , K, to P

4. Let z̄n = maxk=1,...,K ẑ
k
n be the nadir value of fn over the current set.

5. Tighten an upper bound on fn by setting un := z̄n − 1. Note that this step utilizes
the fact that the metric functions are integer-valued.

UNTIL the problem becomes infeasible for some value of un
OUTPUT
:

P

We claim the following three theorems in order to prove that Algorithm 3 finds all Pareto points
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in the Pareto frontier of PS({f1, · · · , fn}).

Theorem 3.3.7. Given the maximum value z̄tn gained from PS∩{fn≤utn}({f1, · · · , fn−1}) in Algo-

rithm 3 for each iteration t ∈ {1, . . . , T} where T is total number of interations until Algorithm 3

terminates, there is no other Pareto point for PS∩{fn≤utn}({f1, · · · , fn}) such that fn > z̄tn where

utn = z̄t−1n − 1 and z̄0n =∞.

Proof. By Theorem 3.3.6, we know that z̄tn is the nadir value of fn for PS∩{fn≤utn}({f1, · · · , fn}).

By Definition 3.3.6, there is no Pareto point such that z̄tn < fn ≤ utn for each iteration t ∈

{1, . . . , T}.

Theorem 3.3.8. For each iteration t ∈ {1, . . . , T} in Algorithm 3, all Pareto points of PS({f1,

· · · , fn}) such that fn = z̄tn are founded by Algorithm 3.

Proof. Suppose that there is an unfounded distinct Pareto point (z̃1, · · · , z̃n) such that the value of

fn is z̄tn (i.e., z̃n = z̄tn) for some iteration t ∈ {1, . . . , T} in Algorithm 3. Since (z̃1, · · · , z̃n) is a

Pareto point of PS({f1, · · · , fn}) and z̄tn is the nadir value of fn in the iteration t, (z̃1, · · · , z̃n−1)

should be a Pareto point in the metric space projected into other n − 1 objectives. Therefore,

(z̃1, · · · , z̃n−1) should be inPS∩{fn≤utn}({f1, · · · , fn−1}). Since we get metric points (ẑk1 , · · · , ẑkn−1

, ẑkn) for all k ∈ {1, · · · , K} from PS∩{fn≤utn}({f1, · · · , fn−1}) for the iteration t in Algorithm 3

where K = |PS∩{fn≤utn}({f1, · · · , fn−1})|, the unfounded Pareto point (z̃1, · · · , z̃n) should be one

of the metric points (ẑk1 , · · · , ẑkn−1, ẑkn) for k ∈ {1, · · · , K}. It contradicts the assumption that the

distinct Pareto point (z̃1, · · · , z̃n) is unfounded.

Theorem 3.3.9. For each iteration t ∈ {1, . . . , T} in Algorithm 3, (ẑk1 , · · · , ẑkn−1, ẑkn) is a Pareto

point of PS({f1, · · · , fn}) for all k ∈ {1, · · · , K} where K = |PS∩{fn≤utn}({f1, · · · , fn−1})|.

Proof. Suppose that some metric point (ẑk1 , · · · , ẑkn−1, ẑkn) is not Pareto point of PS({f1, · · · , fn}).

Since we get the metric point (ẑk1 , · · · , ẑkn−1, ẑkn) from PS∩{fn≤utn}({f1, · · · , fn−1}), we know that

(ẑk1 , · · · , ẑkn−1) is a Pareto point in the projected metric space. Given the Pareto point (ẑk1 , · · · , ẑkn−1)

in the projected metric space, the value of fn could be less than ẑkn because the metric point
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(ẑk1 , · · · , ẑkn−1, ẑkn) is not Pareto point. However, it contradicts the assumption that ẑkn is the mini-

mum value of fn given the projected point (ẑk1 , · · · , ẑkn−1).

By Theorem 3.3.7 and 3.3.8 above, there is no unfounded Pareto points whose fn is greater than

or equals to z̄n when we strictly restrict a search space by decreasing an upper bounds of fn to

z̄n − 1. Thus, throughout a sequence of monotonically decreasing an upper found un on fn, we

don’t lose any Pareto point. This implies that Algorithm 3 finds all Pareto points.

Theorem 3.3.10. The recursive method in Algorithm 3 finds all Pareto points of PS({f1, · · · , fn}).

Proof. By Theorem 3.3.7 and 3.3.8, we see that we can find all Pareto points at the nadir value

z̄1n of fn for PS({f1, · · · , fn}) by the first iteration with u1n = ∞ in Algorithm 3 and there is no

Pareto point above the nadir value. Therefore, we have found all Pareto points that fn is greater

than or equal to z̄1n so that we can strictly decrease an upper bound on fn by substracting 1 from

z̄1n. At each iteration t ∈ {1, . . . , T} in Algorithm 3, we can find all Pareto points at the nadir

value z̄tn of fn for PS∩{fn≤utn}({f1, · · · , fn}) where utn = z̄t−1n − 1 and there is no unfounded

Pareto point between z̄tn and z̄t−1n − 1 for PS∩{fn≤utn}({f1, · · · , fn}). By induction, we have found

all Pareto points that fn is greater than or equal to z̄t−1n at the iteration t ∈ {1, . . . , T}. By the

termination condition in Algorithm 3, we know that we search whole possible range of fn where

Pareto points exists by Definition 3.3.5 and 3.3.6. Therefore, Algorithm 3 finds all Pareto points in

P by Theorem 3.3.9.

3.3.3 Sequential method for MOPI

In this section, given the fixed number of objectives, we restate the original recursive algorithm

[115] by using the lexicographic optimization problem HS({f1, · · · , fn}), which is defined in

Algorithm 1. Our sequential method in Algorithm 4 shows that we can get each Pareto point

(ẑk1 , · · · , ẑkn) by adjusting a vector of upper bounds u = (u2, · · · , un) for HS∩{f2≤u2,··· ,fn(s)≤un}

({f1, · · · , fn}) appropriately. The sequential algorithm to find the Pareto frontier of MOPI can be
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described as follows:

Algorithm 4: Sequential method for PS({f1, · · · , fn})
INPUT : PS({f1, · · · , fn})
INIT: k = 1,P = {∅}, un =∞

1 WHILE S ∩ {s : fn(s) ≤ un} 6= ∅ DO
2 Let Un = {∅} and un−1 =∞
3 WHILE S ∩ {s : fn−1(s) ≤ un−1, fn(s) ≤ un} 6= ∅ DO
4 Let Un−1 = {∅} and un−2 =∞

5
...

6 WHILE S ∩ {s : f3(s) ≤ u3, · · · , fn(s) ≤ un} 6= ∅ DO
7 Let U3 = {∅} and u2 =∞
8 WHILE S ∩ {s : f2(s) ≤ u2, · · · , fn(s) ≤ un} 6= ∅ DO
9 Let U2 = {∅}

10 BEGIN Lexicographic Optimization
11 Solve HS∩{f2≤u2,··· ,fn≤un}({f1, · · · , fn})
12 Set (ẑk1 , · · · , ẑkn) be the solution
13 Update P = P ∪ (ẑk1 , · · · , ẑkn) and k = k + 1

14 Set U2 = U2 ∪ {ẑk2}

15
...

16 Set Un = Un ∪ {ẑkn}
17 END
18 Set z̄2 = max{U2} and u2 = z̄2 − 1

19 END
20 Set z̄3 = max{U3} and u3 = z̄3 − 1

21 END

22
...

23 Set z̄n−1 = max{Un−1} and un−1 = z̄n−1 − 1

24 END
25 Set z̄n = max{Un} and un = z̄n − 1

26 END
OUTPUT
:

P

Briefly, by Theorem 3.3.11, we can combine the first step to find the n − 1 dimensional Pareto

frontier PS∩{fn≤un}({f1, · · · , fn−1}) and the second step to minimize the last index metric relative

to each Pareto point of PS∩{fn≤un}({f1, · · · , fn−1}) in Algorithm 3 into a single lexicographic op-

timization step via HS∩{f2≤u2,··· ,fn≤un}({f1, · · · , fn}). We claim the following theorems to prove
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that Algorithm 4 above finds all Pareto points in the Pareto frontier of PS({f1, · · · , fn}).

Theorem 3.3.11. For all upper bounds (u2, · · · , un) on metrics {f2, · · · , fn}, if there exist a metric

point (ẑ1, · · · , ẑn−1) gained by solving HS∩{f2≤u2,··· ,fn−1≤un−1}({f1, · · · , fn−1}) and a metric value

ẑn = FS({(f1, 0, ẑ1), · · · , (fn−1, 0, ẑn−1), (fn, 1, un)}), then the metric point (ẑ1, · · · , ẑn−1, ẑn)

can be gained by solving HS∩{f2≤u2,··· ,fn≤un}({f1, · · · , fn}) and it is a Pareto point in P .

Proof. Given an upper bound (u2, · · · , un), suppose that there exists a metric point (ẑ1, · · · , ẑn−1)

gained by solving HS∩{f2≤u2,··· ,fn−1≤un−1}({f1, · · · , fn−1}). Then, by Algorithm 1, we get the

value ẑn of last metric fn in HS∩{f2≤u2,··· ,fn≤un}({f1, · · · , fn}) by solving ẑn = FS({(f1, 0, ẑ1),

· · · , (fn−1, 0, ẑn−1), (fn, 1, un)}). Therefore, if the metric point (ẑ1, · · · , ẑn−1) can be gained by

solving HS∩{f2≤u2,··· ,fn−1≤un−1}({f1, · · · , fn−1}), both (ẑ1, · · · , ẑn−1) and ẑn can be gained to-

gether by solving HS∩{f2≤u2,··· ,fn≤un}({f1, · · · , fn}) by induction. Also, by Theorem 3.3.1, it is a

Pareto point in P .

Theorem 3.3.12. Given the fixed number of objectives, the sequential method in Algorithm 4 finds

all Pareto points in P .

Proof. First, suppose that we have two objectives (n = 2). Trivially, Algorithm 4 is exactly

same with Algorithm 2 for bi-objective case. Thus, it can find all Pareto points for n = 2. By

induction, suppose that Algorithm 4 generates all Pareto points for n objectives. Then, we use

Algorithm 4 for Step 1 in Algorithm 3 to find the Pareto frontier of the n objectives problem.

As Step 2 in Algorithm 3, we get the minimun value ẑn+1 of the metric fn+1 by solving ẑn+1 =

FS({(f1, 0, ẑ1), · · · , (fn, 0, ẑn), (fn+1, 1, un+1)}) for each point (ẑ1, · · · , ẑn) = HS∩{f2≤u2,··· ,fn≤un}

({f1, · · · , fn}) given an upper bound (u2, · · · , un+1). By Theorem 3.3.11, we know that (ẑ1, · · ·

, ẑn) and ẑn+1 can be gained together by solving HS∩{f2≤u2,··· ,fn+1≤un+1}({f1, · · · , fn+1}) and this

change of the calculation order does not impact on the individual value of (ẑ1, · · · , ẑn, ẑn+1).

Therefore, Algorithm 4 also works for n+ 1 objective problem.
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3.3.4 Improvements

The recursive and sequential method are based on solving a sequence of IP subproblems. There-

fore, it is critical to solve each IP problem quickly. A key idea to improve them is to make use

of information obtained from the already solved subproblems. We improve Algorithm 4 by using

the set of already solved subproblems and their Pareto points to reduce the solving of duplicate IPs

that produce repeated Paeto points through the relaxation strategy introduced by Özlen et al. [116].

In addition to implementing this relaxation, we also accelerate CPLEX IP solver by providing the

set of all known solutions from prior subproblems as feasible starting points, known as a warm

start solutions. Basically, there are a cluster of the similar IP problems with slightly different upper

bounds on metrics. Since Algorithm 4 improves the upper bounds monotonically throughout the

algorithm, there are some IP problems that are feasible to the former optimal solutions.

3.3.4.1 Relaxation

Özlen et al. [116] introduce a way to improve their ealier recurisve algorithm [115] by us-

ing the relaxation problem that has been solved before. For the sake of simplicity, we denote

PS∩{f1(s)≤u1,··· ,fp(s)≤up}({f1, · · · , fp}) by PS∩{f(s)�u}({f1, · · · , fp}) where u = (u1, · · · , up) for

all p ∈ {1, · · · , n}. We restate the definition and lemmas from Özlen et al. [116] using our

notations:

Definition 3.3.9. Relaxation: Given two vectors u = (u1, · · · , up) and r = (r1, · · · , rp) for a

positive number p ∈ {1, · · · , n}, PS∩{f(s)�r}({f1, · · · , fp}) is a relaxation of PS∩{f(s)�u}({f1,

· · · , fp}) if u ≺ r.

Lemma 3.3.13. Let PS∩{f(s)�r}({f1, · · · , fp}) be a relaxation of PS∩{f(s)�u}({f1, · · · , fp}) for a

positive number p ∈ {1, · · · , n}. If PS∩{f(s)�r}({f1, · · · , fp}) is infeasible, then PS∩{f(s)�u}({f1,

· · · , fp}) is also infeasible.

Lemma 3.3.14. Let PS∩{f(s)�r}({f1, · · · , fp}) be a relaxation of PS∩{f(s)�u}({f1, · · · , fp}) for a

positive number p ∈ {1, · · · , n}. If every Pareto point for PS∩{f(s)�r}({f1, · · · , fp}) is also feasi-
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ble for PS∩{f(s)�u}({f1, · · · , fp}), then the set of all Pareto points for PS∩{f(s)�u}({f1, · · · , fp}) is

precisely the set of all Pareto points for PS∩{f(s)�r}({f1, · · · , fp}).

By a slight modification of Lemma 3.3.13 and 3.3.14, we prove Theorem 3.3.15 to improve our

sequential method for MOPI. Given u � r, if a Pareto point gained by solving HS∩{f(s)�r}({f1, . . .

, fn}) for PS∩{f(s)�r}({f1, . . . , fn}) is feasible to PS∩{f(s)�u}({f1, . . . , fn}), we can skip solving

HS∩{f(s)�u}({f1, . . . , fn}) for PS∩{f(s)�u}({f1, . . . , fn}) in Algorithm 4 since both have the same

Pareto point by Theorem 3.3.15.

Theorem 3.3.15. Let m̂ be a Pareto point gained by solving HS∩{f(s)�r}({f1, . . . , fn}). If u � r

and m̂ is feasible to S ∩ {s : f(s) � u}, then the Pareto point gained by solving HS∩{f(s)�u}({f1,

. . . , fn}) is the same with m̂.

Proof. Let m̂ = (ẑ1, · · · , ẑn) be a Pareto point gained by solving HS∩{f(s)�r}({f1, . . . , fn}).

By Algorithm 1, we get ẑ1 by solving FS({(f1, 1, r1), (f2, 0, r2), · · · , (fn, 0, rn)}) for PS∩{f(s)�r}

({f1}). Similarily, let m̃ = (z̃1, · · · , z̃n) be a Pareto point gained by solving HS∩{f(s)�u}({f1,

. . . , fn}) where u � r. Then, we get z̃1 by solving FS({(f1, 1, u1), (f2, 0, u2), · · · , (fn, 0, un)}) for

PS∩{f(s)�u}({f1}). Note that PS∩{f(s)�r}({f1}) is a relaxation of PS∩{f(s)�u}({f1}) by Definition

3.3.9. Also, ẑ1 is a unique Pareto point for PS∩{f(s)�r}({f1}) and z̃1 is one for PS∩{f(s)�u}({f1}).

Since ẑ1 is feasible to S ∩ {f1 ≤ u1}, it holds that ẑ1 = z̃1 by Lemma 3.3.14. Sequentially,

we can prove all ẑi = z̃i for all i ∈ {1, · · · , n}. Thus, the Pareto point m̂ gained by solv-

ing HS∩{f(s)�r}({f1, . . . , fn}) is the same with m̃ gained by solving HS∩{f(s)�u}({f1, . . . , fn})

if u � r and hatm is feasible to S ∩ {f(s) � u}.

3.3.4.2 Warm Start

The warm start is a solution that could possibly help IP solver find an initial solution quickly and

provide a good bound on the optimal objective value of the new problem that has to be solved.

This warm start could come from previous similar problems that have been solved. Also, we can
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provide CPLEX solver with multiple warm starts. In this section, we suggest our multiple warm

starts strategy to improve computational time of our sequential method in Algorithm 4.

In Algorithm 4, we show that we can find each Pareto point by the lexicographic optimization,

HS({f1, . . . , fn}), which consists of a cluster of the similar IP problems except slightly different

upper bounds on metrics. Also, since we progressively tighten upper bounds (u1, · · · , un) on met-

rics in order, the former optimal solution for PS′∩{f1≤ẑ1,...,fp−1≤ẑp−1}({fp}) is always feasible for

the next IP problem PS′∩{f1≤ẑ1,...,fp−1≤ẑp−1,fp≤ẑp}({fp+1}) for a positive number p ∈ {1, · · · , n}

where S ′ = S ∩ {s : f1(s) ≤ u1, · · · , fn(s) ≤ un} and ẑp = FS({(f1, 0, ẑ1), · · · , (fp−1, 0, ẑp−1)

, (fp, 1, up), (fp+1, 0, up+1), · · · , (fn, 0, un)}). In addition, all previous optimal solutions are fea-

sible to all problems that come after whithin Algorithm 1. Therefore, we can cumulatively use

the former optimal solutions as warm starts for the following IP problems in Algorithm 1. In this

paper, we use the following multiple warm starts strategy described in Algorithm 5.

Algorithm 5: Enhanced HS({f1, . . . , fn}) by warm starts
INPUT : PS∩{f2≤u2,...,fn≤un}({f1, . . . , fn})

1 STEP 0 : check feasibility for the set of S ∩ {s : f2(s) ≤ u2, . . . , fn(s) ≤ un}
2 Solve PS∩{f2≤u2,...,fn≤un}({∅})
3 Set z̃0 = (z̃01 , . . . , z̃

0
n) be the solution of PS∩{f2≤u2,...,fn≤un}({∅})

4 STEP 1 : optimize f1
5 Solve PS∩{f2≤u2,...,fn≤un}({f1}) with a warm start z̃0

6 Set z̃1 = (z̃11 , . . . , z̃
1
n) be the solution of PS∩{f2≤u2,...,fn≤un}({f1})

7 STEP 2 : optimize f2
8 Solve PS∩{f1≤z̃11 ,f2≤u2,...,fn≤un}({f2}) with warm starts z̃k for all k = 0, 1

9 Set z̃2 = (z̃21 , . . . , z̃
2
n) be the solution of PS∩{f1≤z̃11 ,f2≤u2,...,fn≤un}({f2})

10 STEP 3 : optimize f3
11 Solve PS∩{f1≤z̃11 ,f2≤z̃22 ,f3≤u3,...,fn≤un}({f3}) with warm starts z̃k for all k = 0, 1, 2

12 Set z̃3 = (z̃31 , . . . , z̃
3
n) be the solution of PS∩{f1≤z̃11 ,f2≤z̃22 ,f3≤u3,...,fn≤un}({f3})

13
...

14 STEP n : optimize fn
15 Solve PS∩{f1≤z̃11 ,...,fn−1≤z̃n−1

n−1 ,fn≤un}
({fn}) with warm starts z̃k for all k = 0, 1, . . . , n− 1

16 Set z̃n = (z̃n1 , . . . , z̃
n
n) be the solution of PS∩{f1≤z̃11 ,...,fn−1≤z̃n−1

n−1 ,fn≤un}
({fn})

OUTPUT
:

(z̃n1 , . . . , z̃
n
n)
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3.4 Computational Experiments

In this section, we evaluate the effectiveness of the recursive method in solving the PEDS problem.

First, we assess the tractability with respect to run time; we pay particular attention to the impact

of using warm starts. Second, we investigate the size of the Pareto frontiers for standard problem

instances. Third, we present a case study demonstrating how the Chief Residents would evaluate

these Pareto sets.

3.4.1 Data Sets

Our computational results are based on real-world data from the pediatric ED at the University of

Michigan C.S. Mott Children’s Hospital. This ED is staffed by residents who rotate on a monthly

basis. They collectively cover 7 shifts per day, 7 days per week.

The rules taken into account in this scheduling problem are outlined in Section 2.2.2. Note

that, for the sake of exposition, we have simplified some of the details of the actual real-world

problem. In our experience, these additional details do not significantly change the structure of the

problem, nor do they have an impact on our computational results. Recall that the metrics under

consideration are the total numbers of: (1) bad sleep patterns assigned; (2) post-continuity clinics

worked; (3) vacation requests denied; and (4) flex shifts uncovered.

We collected data corresponding to 27 months, spanning July 2012 to June 2015 but excluding

the months of December, January, and February because these are treated separately by the sched-

uler due to the winter holidays (December, January) and the shorter-than-usual month (February).

To thoroughly evaluate the tractability and usability of our approach, we explore a wider range of

problem instances by creating 9 levels of flexibility for each of the 27 months. This is accomplished

by varying 2 basic characteristics of the problem:

• We vary restrictions on resident equity. In the first case all residents have to work the same

number of shifts (plus or minus one, as needed to account for not being able to evenly divide
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the total number of shifts). In the second case, each resident can be assigned to the average

number of shifts plus or minus up to five additional shifts. In the third case, each resident

can be assigned to as much as nine shifts’ deviation from the average. Thus, the first case is

very tightly constrained but treats the residents most equitably, while the third case has the

greatest flexibility but could result in significant inequity across residents. In this paper, we

denote these three cases by S1, S2, and S3, resepectively.

• We vary the set of vacation requests for each resident. For each resident, we randomly

generate single-day vacation requests. In the first case, we assume that each resident has a

10% chance of requesting a given day off (so, on average, they would each make roughly

three requests per month); in the second case, the probability of a weekday request is 10%

and the probability of a weekend request if 20%; in the third case, all days have a 20%

probability of being requested as a day off. In this paper, we denote these three cases by V1,

V2, and V3, resepectively.

Randomly generating one trial for each of these 9 levels of flexibility (three options for equity

times three options for vacation requests) for each of the 27 months yields 243 problem instances.

Of these, 15 are easily found to be infeasible – not surprisingly, this is typically the case where the

schedules are most tightly restricted (for more details, see Table B.1 in the appendix).

For the remaining instances, we solved them using the IP-based recursive method by imple-

menting our approach in Python and C++ using CPLEX 12.6 C++ API with a 0.1% optimality

gap. All computational experiments were performed on an Intel i7 3.40 GHz processor with 8 GB

of memory. We terminate if any individual IP runs beyond a 30-minute time limit.

3.4.2 Tractability

To demonstrate the tractability of the enhanced recursive method (including the use of warm starts),

we evaluated the run time of the 243 problem instances described above. Of these, 15 instances
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were infeasible, 15 instances could not be solved to optimality given the thirty minute time limit

for the individual IPs, and the remaining 213 instances were solved to completion.

For the 15 instances that had no feasible solution, it was trivial to prove infeasibility, taking no

longer than two seconds per instance. For the 15 instances that timed out, it was often the case that

many IPs within the instance were solvable, and thus many Pareto points identified for the Chief

Residents to consider, but at least one IP required more than thirty minutes to solve and therefore

we terminated the algorithm. We note that 14 of the 15 instances that timed out come from May

2014 and June 2014, which were difficult months to schedule due to a lower than usual number of

residents assigned to the ED and thus less flexibility in meeting the scheduling requirements. For

the remaining 213 solvable instances, 62 solved to completion (i.e., generated the complete Pareto

frontier) in under one minute, the next 92 in under 10 minutes, and the next 42 in under 1 hour.

For a complete summary of run times, see Figure 3.2, with additional details to be found in Table

B.1 of the appendix.

62

92

42

8 5
1 2 1

15 15

0

10

20

30

40

50

60

70

80

90

100

0:01:00 0:10:00 1:00:00 2:00:00 4:00:00 6:00:00 9:00:00 12:00:00 Timeout Infeasible

FR
EQ

U
EN

CY

TIME(H:MM:SS)

Histogram of CPU times to solve all 243 instances of the monthly scheduling problem. Infeasible instances and
instances that were not solved with a 30 minutes time limit imposed on individual IPs are depicted as separate bars.

Figure 3.2: Histogram of CPU times

Finally, we evaluate the relative impact of the different levels of flexibility on run time. In Table

3.2, we see the average run time per Pareto point generated, as a function of the 9 combinations of

flexibility characteristics. Note that we report average time per point in recognition of the fact that

different instances yield different-sized Pareto frontiers. We observe that the slowest run times are
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found for S1/V3, which yields the most tightly-constrained problem instances with heavy vacation

requests and thus the associated IPs are the most challenging.

Time Per Point (sec) V1 V2 V3
S1 22.13 23.69 37.22
S2 14.04 14.81 22.81
S3 12.07 12.49 16.73

Table 3.2: CPU time per Pareto points for 9 levels of flexibility

3.4.3 Contributions from Warm Starts Strategy

As noted in Section 3.3.4, our problem easily lends itself to the use of warm starts, because at each

iteration we are solving an IP for which the preceding iteration’s solution is still feasible. In this

section, we discuss the impact on run time of using these warm starts.

Of the 228 feasible instances described above, there are fourteen which cannot be solved to

completion, given a 30-minute time limit on the individual IPs, independent of whether or not

the warm start is applied. There are three instances which can only be solved if warm starts are

used. Interestingly, there is also one instance which cannot be solved using warm starts, but can be

solved to completion when warm starts are not applied. For more details about these 18 instances,

see Appendix Table B.2.

For the 210 instances that can be solved either with or without the use of warm starts, we observe

that the overhead of implementing the warm start outweighs any benefits for problems that solve

very quickly — for those 96 instances that can be solved in under 3 minutes without a warm start,

there is no significant benefit in reading and applying the warm start and in some cases the run

time even becomes slower. For all 96 instances, the difference (plus or minus) between the run

time with and without warm starts is at most 30 seconds.

For the remaining 114 instances, i.e., those that require more than three minutes of run time,

there are three that actually perform faster without the use of warm starts. However, the time

loss is not significantly different since it just gets 2.72% slower even in the worst case. For the
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remaining 111, the benefits range from 0.11% to 65.75% reduction in time. The largest absolute

change was 6 hours 12 minutes. The average time savings was 33.44%. Figure 3.3 summarizes

the comparisons over all 114 instances. Further information can be found in Figure B.1 in the

Appendix.
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Figure 3.3: Histogram of CPU time improvement ratio of warm starts to no warm start for the
non-trivial instances

Given the 30-minute time limit for individual IP runs, there exists one instance which can be

solved without a warm start, but cannot be solved using warm starts because warm starts do not

always save CPU time in the IP instance level. Figure 3.4 presents a histogram of time improve-

ment ratio of warm starts over all non-trivial comparable IPs, where comparable IP is defined as

an IP instance that can be solved both with and without warm starts and non-trivial IP means an

IP requiring more than 60 seconds. In Figure 3.4, the warm starts can make run time extremely

slower than without the use of warm starts even though it rarely happens statistically. Thus, it is

possible to terminate by the time limit imposed on individual IP runs even if total time could be

shorter.
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3.4.4 Size of Pareto Frontier

In addition to assessing the run time of our algorithm, we also sought to understand the size of the

resulting Pareto Frontiers found in realistic problem instances. There are 214 problem instances

that we were able to solve to completion, either with or without the use of warm starts. For each,

we counted the number of Pareto points. These are summarized in Figure 3.5.

64 instances have five or fewer Pareto points, the next 26 have between 6 and 10 Pareto points,

and the next 45 have between 11 and 20 Pareto points. We observe that 17 instances have more

than 100 Pareto (with a maximum of 387). However, we see that 14 instances out of these 17 are

instances in category V3, i.e., they have the largest number of vacation requests. This number is

actually unrealistic in real-world practice but was considered to test the boundaries of performance.
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Figure 3.5: Histogram of the number of Pareto points

3.4.5 Efficiency

As seen in [110], the number of IPs solved by the recursive method is bounded by O(| P |n)

where | P | is the size of the Pareto frontier and n is the number of metrics. This implies that the

recursive method could solve duplicate IPs that yield the same Pareto point repeatedly throughout

the algorithm. However, we have found that the inefficient calculations rarely happened in our

problem instances.

Table 3.6 shows that 700 iterations are duplicated out of total 8014 iterations. Since 654 it-

erations out of 700 are saved by the relaxation improvement, only 46 iterations are inefficient

calculations. Therefore, this implies that our approach is very efficient to find the Pareto frontier

for the PEDS problem.

3.4.6 Case Study

We conclude this section with a discussion of how Chief Residents might use the output from our

approach. Note that for (64+26+45=) 135 instances, there were fewer than 20 Pareto points as

shown in Figure 3.5, which in our experience is a small enough number for the Chiefs to evaluate

explicitly. At the other extreme, there were 21 instances with more than 80. We view this number
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There were total 8014 iterations to find Pareto points. Among them, 700 iterations was repeatations that yield the
duplicate Pareto points that has been solved before. The number of relaxations is the number of trials that are reduced
by the relaxation improvement. Only 46 out of 700 repeatations yielded duplicated calculations inefficiently.

Figure 3.6: The number of relaxations and duplicates in the sequential method for the PEDS

as too large to directly evaluate. However, we have observed that most of these instances are

generated by V3, exaggerated vacation requests considered to test the boundaries of tractability,

and these extreme cases rarely happen in practice. Thus, we focus on the instances with more than

20 but at most 80 Pareto points.

In our collaborations with several Chief Residents, we have observed that while one metric is

never fully dominant, nonetheless they typically have a rough prioritization of the metrics. For ex-

ample, suppose that there are four metrics and the vector (M1,M2,M3,M4) represents the value

of four metrics in order. If the first metric was the most important and there are two candidates

P1 = (2, 3, 5, 7) and P2 = (3, 2, 4, 6), Chief Residents would prefer P1 over P2 since they would

be willing to give up a little from each of the other metrics to improve the first metric. However,

they would not choose (2, 30, 50, 70) over P2. We call this weak priority, where there exists a

highest-priority metric, but it does not strictly dominate in all cases, as in the example above.

In the PEDS problem, what we have observed is that the Chiefs typically begin by reviewing

only those schedules for which the highest-priority metric has its best possible value. If they find

a high-quality schedule within this space, they are satisfied. Alternatively, they may also choose

67



to review those schedules for which the highest-priority metric achieves its second-best value and

quickly evaluate those schedules as well to see if significant benefit can be gained with minor

sacrifice of the first metric.

Table 3.3 presents the number of Pareto points for each highest-priority metric over (31+17+10=)

58 instances with more than 20 but at most 80 Pareto points. We observe that, even though the to-

tal number of Pareto points may be as high as 80 in these instances, the total number of solutions

relative to a single metric’s best possible value is rarely more than 20 and thus manageable for the

Chiefs to evaluate.

3.5 Conclusions

In this paper, we present an IP-based approach that generates the exhaustive set of Pareto-dominant

schedules from which the Chief Residents can choose and demonstrated the tractability and prac-

ticality of this new approach to solving a real-world residency scheduling problem. This approach

provided substantial benefits to the chief residents, providing them with a high-quality set of sched-

ules to evaluate in a short period of time, and facilitating their qualitative decision making.

The contributions of this research are: (a) we suggest a way to handle ill-defined preferences

between conflicting objectives; (b) the first application of a recursive method to generate all Pareto-

dominant schedules; (c) showing tractability and usability of it; (d) a strategy to use a warm start.
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TOP1 TOP2 TOP3 TOP1 TOP2 TOP3 TOP1 TOP2 TOP3 TOP1 TOP2 TOP3
6 2012-2013 July S2V3 38 15 27 34 15 26 34 9 17 26 12 21 28
9 2012-2013 July S3V3 38 15 27 34 15 26 34 9 17 26 12 21 28

10 2012-2013 August S1V1 48 6 13 18 17 34 44 4 8 11 24 28 39
11 2012-2013 August S1V2 48 6 13 18 17 34 44 4 8 11 24 28 39
13 2012-2013 August S2V1 48 6 13 18 17 34 44 4 8 11 24 28 39
14 2012-2013 August S2V2 48 6 13 18 17 34 44 4 8 11 24 28 39
16 2012-2013 August S3V1 48 6 13 18 17 34 44 4 8 11 24 28 39
17 2012-2013 August S3V2 48 6 13 18 17 34 44 4 8 11 24 28 39
24 2012-2013 September S2V3 42 2 5 12 4 10 18 1 5 10 7 16 24
27 2012-2013 September S3V3 36 2 5 12 4 10 18 1 3 6 3 10 18
30 2012-2013 October S1V3 22 6 12 18 12 19 22 6 12 18 12 19 22
55 2012-2013 April S1V1 70 10 25 40 20 40 55 5 14 26 19 24 40
56 2012-2013 April S1V2 24 3 6 9 11 18 21 5 9 12 10 11 18
57 2012-2013 April S1V3 48 6 12 18 19 33 42 5 14 21 18 19 33
58 2012-2013 April S2V1 70 10 25 40 20 40 55 5 14 26 19 24 40
59 2012-2013 April S2V2 24 3 6 9 11 18 21 5 9 12 10 11 18
60 2012-2013 April S2V3 48 6 12 18 19 33 42 5 14 21 18 19 33
61 2012-2013 April S3V1 70 10 25 40 20 40 55 5 14 26 19 24 40
62 2012-2013 April S3V2 24 3 6 9 11 18 21 5 9 12 10 11 18
63 2012-2013 April S3V3 48 6 12 18 19 33 42 5 14 21 18 19 33
100 2013-2014 September S1V1 50 8 17 26 18 35 50 7 15 24 17 34 35
101 2013-2014 September S1V2 24 6 12 18 12 20 24 3 8 14 12 20 24
103 2013-2014 September S2V1 37 7 14 21 13 24 33 7 14 21 20 22 36
106 2013-2014 September S3V1 37 7 14 21 13 24 33 7 14 21 20 22 36
111 2013-2014 October S1V3 37 3 10 19 2 6 12 1 4 8 2 7 13
114 2013-2014 October S2V3 36 3 10 19 2 6 12 1 3 7 2 6 12
117 2013-2014 October S3V3 36 3 10 19 2 6 12 1 3 7 2 6 12
127 2013-2014 March S1V1 29 14 29 29 5 11 17 1 4 9 9 19 29
128 2013-2014 March S1V2 29 14 29 29 5 11 17 1 4 9 9 19 29
172 2014-2015 August S1V1 24 4 9 14 4 9 14 1 3 6 14 19 22
173 2014-2015 August S1V2 24 4 9 14 4 9 14 1 3 6 14 19 22
174 2014-2015 August S1V3 80 10 24 39 17 35 53 1 4 12 25 47 63
175 2014-2015 August S2V1 24 4 9 14 4 9 14 1 3 6 14 19 22
176 2014-2015 August S2V2 24 4 9 14 4 9 14 1 3 6 14 19 22
177 2014-2015 August S2V3 60 11 23 35 14 28 41 1 4 9 21 36 43
178 2014-2015 August S3V1 24 4 9 14 4 9 14 1 3 6 14 19 22
179 2014-2015 August S3V2 24 4 9 14 4 9 14 1 3 6 14 19 22
180 2014-2015 August S3V3 60 11 23 35 14 28 41 1 4 9 21 36 43
195 2014-2015 October S2V3 54 8 20 31 18 34 45 12 22 32 18 30 42
198 2014-2015 October S3V3 55 8 20 30 19 36 47 14 23 33 18 29 41
199 2014-2015 November S1V1 22 3 8 13 9 18 22 5 10 15 11 14 20
200 2014-2015 November S1V2 35 4 10 17 13 26 35 8 16 24 12 24 27
201 2014-2015 November S1V3 31 3 7 11 10 20 31 6 12 18 12 21 26
202 2014-2015 November S2V1 22 3 8 13 9 18 22 5 10 15 11 14 20
203 2014-2015 November S2V2 39 5 12 20 13 26 35 9 18 27 15 28 31
204 2014-2015 November S2V3 43 3 9 16 14 28 38 9 18 27 15 28 32
205 2014-2015 November S3V1 22 3 8 13 9 18 22 5 10 15 11 14 20
206 2014-2015 November S3V2 39 5 12 20 13 26 35 9 18 27 15 28 31
207 2014-2015 November S3V3 52 3 9 16 17 34 46 9 18 27 19 35 39
217 2014-2015 April S1V1 61 3 11 24 17 39 61 1 5 13 9 21 24
218 2014-2015 April S1V2 61 3 11 24 17 39 61 1 5 13 9 21 24
220 2014-2015 April S2V1 75 6 16 31 19 39 57 4 13 25 17 27 42
221 2014-2015 April S2V2 75 6 16 31 19 39 57 4 13 25 17 27 42
223 2014-2015 April S3V1 75 6 16 31 19 39 57 4 13 25 17 27 42
224 2014-2015 April S3V2 75 6 16 31 19 39 57 4 13 25 17 27 42
237 2014-2015 June S1V3 21 6 12 17 11 18 21 5 10 13 8 9 14
240 2014-2015 June S2V3 24 7 14 20 11 18 21 6 12 15 11 12 17
243 2014-2015 June S3V3 24 7 14 20 11 18 21 6 12 15 11 12 17

Index Year Month Levels #Pareto Points
DVR UFS PCC BSP

The number of Pareto points for the highest-priority metrics over instances with more than 20 but at most 80 Pareto
points. The three columns TOP1, TOP2, and TOP3 under the highest-priority metrics represents the number of Pareto
points when we consider the best possible value only, or the best and the second-best value together, or the best and
the second and the third-best value respectively.

Table 3.3: The number of Pareto points reduced by the highest-priority metrics
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CHAPTER 4

Vehicle Routing Problem

4.1 Introduction

In this chapter, we present models and algorithms to solve the time-constrained heterogeneous

vehicle routing problem (TCHVRP). In this variant of the classical VRP, first posed by Dantzig

and Ramser [67], we allow vehicles to vary not only by route time limit (in our case, corresponding

to a limit on total travel and service time), but by cost on each arc as well. This research is motivated

by the gradual introduction of hybrid vehicles into existing fleets [81]. In such cases, one vehicle

(e.g. with a traditional combustion engine) might get better mileage (and thus have lower cost)

on an arc primarily comprised of highway driving, whereas a hybrid vehicle might dominate in

cost over an arc primarily comprised of city driving. Likewise, highway distances can be longer

between two points than a city route, but travel times shorter due to less traffic and higher speeds.

Thus, of particular importance to this research is the fact that we do not assume Pareto dominance

of one vehicle type over another. Nor do we assume any correlation between arc distances and arc

costs or arc times.

We consider two ways to model the TCHVRP, one a vehicle flow formulation and the other

a set partitioning formulation. We find the explicit vehicle flow formulation to be computation-

ally impractical for all but very small problem instances. We therefore focus on a set partitioning

formulation, where delayed column generation [74] can be used to address the very large num-

ber of columns. We introduce and analyze a dynamic programming (DP) approach and different
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relaxations for generating these columns effectively in the pricing problem.

4.2 Time-Constrained Heterogeneous Vehicle Routing Problem

(TCHVRP)

4.2.1 Problem Description

The classical VRP is to find an optimal (i.e. minimum-cost) set of routes for a fleet of vehicles

so as to serve a given set of customers; the TSP is a special case of VRP, in which only one

vehicle must serve all customers [121]. Many other variants of the VRP have been considered,

including: CVRP, in which the vehicles have limited capacity [80, 122, 123], DVRP, where all

vehicles have upper bounds on the length of the route in terms of mileage or time [124], multi-depot

VRP (MDVRP), in which there are different depots that can be used for each vehicle [125], VRP

with time windows (VRPTW), where customers have time windows within which the deliveries

must be made [126, 127], and HVRP, in which there are different types of vehicles characterized

by different capacities and costs [72].

Within HVRP, problems can be further classified. For example, some have finite numbers of

vehicles for each type and some are unlimited. Some have fixed costs for each vehicle and some

do not. In some cases, the capacity is constant across all vehicle types and in some cases it varies

across types. Furthermore, arc-costs may be constant or may vary by vehicle type. These problems

are further described, and the literature reviewed, in Baldacci, Battarra, and Vigo [96]. In addition,

Laporte et al. [128] considered an extended version of DVRP involving both capacity and distance

constraints simultaneously.

We consider a combination of HVRP and DVRP, which we label the Time-Constrained Hetero-

geneous Vehicle Routing Problem (TCHVRP). In this variant, the cost and travel time of any given

arc may vary by vehicle type within a heterogeneous fleet. In particular, we make no assumptions

about Pareto dominance across vehicles. Thus, one vehicle may be the least-cost option on certain
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arcs but the most costly on others. Similarly, one vehicle may be fastest over some arcs, but slowest

over others. Furthermore, we do not assume that cost and time are correlated. This allows us to

incorporate characteristics of mixed fleets that combine vehicles with both traditional combustion

and hybrid engines.

Specifically, TCHVRP is defined as follows:

• We are given a fixed depot and a known set of customers.

• We are given a set of vehicle types, with a finite number of vehicles within each type.

• We are given arcs connecting each customer with the depot and each pair of customers. Each

vehicle type/arc pair has a given cost. There is no fixed cost per vehicle.

• Each vehicle type has its own route time limit on the amount of work that vehicles of that

type can perform. Each vehicle type/arc pair has a given time duration, and there is a given

time associated with servicing each customer. Note that this resource (time) is consumed

over the arcs as well as at the nodes (i.e. customers).

• The goal is to find the minimum-cost assignment of vehicle types to routes such that each

customer is visited exactly once, no vehicle exceeds its time limit, and we do not use more

vehicles of a given type than are available.

4.2.2 Data Sets

Throughout the paper, we present computational experiments to assess the performance of different

approaches to solving TCHVRP. Our computational experiments are loosely based on the data

sets of Golden et al. [72]. Specifically, we use the network topology of these data sets, defined by

coordinates in a Euclidean space for each node in the network. Our arc costs and times cannot be

drawn from the data sets, however, as it is the variation in these parameters that we are specifically

exploring.
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Our data sets range in size from 20 nodes to 35 nodes, with exhaustive sets of arcs connecting

all node pairs. These correspond to Problem Instances 3, 4 and 15 through 18 of Golden et al.

[72]. Specifically, we use the first 20 nodes from Problem Instances 3 and 4, the first 25 nodes

from Problem Instances 17 and 18, the first 30 nodes from Problem Instances 15 and 16, and the

first 35 nodes from Problem Instances 17 and 18.

We consider three different cases of problem instances derived from these original data sets. In

the first case, which serves as a base case, we construct instances where there is only one vehicle

type and arc costs and times are fully correlated with distance. Specifically, we define a constant

cost per mile and a constant speed, and apply these to all arcs in the network for all vehicle types,

using the Euclidiean distance between a given pair of nodes as their arc length.

In the second case, we allow cost per mile and speed to vary by vehicle type, but arc costs and

speeds are still fully correlated with distance, and there is thus Pareto dominance with respect to

cost, i.e. whichever vehicle type is least-cost on one arc will be least-cost on all arcs.

In the third case, we consider the case of interest, in which costs and times are neither Pareto-

dominant nor fully correlated with each other (and thus, implicitly, with the arc distance), although

we do recognize that there is at least some degree of correlation to be reasonably expected. To

generate arc costs and times, we again start with the same arc lengths between each pair of cus-

tomers as in the first two cases. We then assign each vehicle type a baseline cost per mile and a

baseline speed, but we also randomly generate a perturbing error factor for each arc to avoid Pareto

dominance and full correlation between cost and time. Given that we are randomly generating the

perturbation factors, we create ten instances for each set of network topologies in this case. [See

Appendix Table C.1 for full details.]

Finally, we assume three types of vehicles for problem instances in the second and third cases.

For 20-node instances, we assume two vehicles of each type; for 25-node instances, we assume

three vehicles of each type; and for 30- and 35-node instances, we assume four vehicles of each

type. For the sake of exposition, we assign the same service time (thirty minutes) to each customer

and the same route time limit constraint (eight hours) to each vehicle type. It is trivial, however, to

73



specify vehicle- and customer-specific values within our proposed model.

All computational experiments were performed on an Intel Xeon 3.20 GHz processor with 32

GB of memory using CPLEX 12.2 C++ API with an optimality gap of 0.01%.

4.3 Arc-Based Model

As with other variants of VRP, TCHVRP can be formulated as an arc-based network flow model,

using subtour elimination constraints such as those found in Golden et al. [72], which in turn

builds on the work of Miller, Tucker, and Zemlin (MTZ) for the TSP [129]. Such an approach to

TCHVRP, however, suffers from poor computational performance, as we will demonstrate below.

Thus, this section motivates us to instead pose a column generation approach to solving a path-

based formulations of the TCHVRP.

4.3.1 Vehicle Flow Formulation

Notation

Parameters and Sets
N set of customers in the network, where index 0 represents the depot

T set of vehicles types

ctij cost to travel from customer i to customer j for vehicle type t,∀i, j ∈ N, ∀t ∈ T

dtij travel time from customer i to customer j for vehicle type t, ∀i, j ∈ N,∀t ∈ T

Mt number of available vehicles of type t, ∀t ∈ T

Qt route time limit for vehicle type t, ∀t ∈ T

Li service time at customer i, ∀i ∈ N \ 0

Variables
xtij binary variable that takes value 1 if a vehicle of type t is assigned to travel between cus-

tomers i and j, ∀i, j ∈ N,∀t ∈ T

yti cumulative travel and service time up through customer i for vehicle type t, ∀i ∈ N, ∀t ∈ T
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Arc-Based Model (ABM):

min
∑
t∈T

∑
i∈N

∑
j∈N

ctijx
t
ij (4.1a)

subject to:
∑
t∈T

∑
i∈N

xtij = 1 ∀j ∈ N \ 0 (4.1b)

∑
i∈N

xtij −
∑
i∈N

xtji = 0 ∀j ∈ N, ∀t ∈ T (4.1c)

∑
j∈N

xt0j ≤Mt ∀t ∈ T (4.1d)

Qtx
t
ij + (dtij + Lj)x

t
ij + yti ≤ ytj +Qt ∀i, j ∈ N, i 6= j,∀t ∈ T (4.1e)

ytj + dtj0x
t
j0 ≤ Qt ∀j ∈ N \ 0, ∀t ∈ T (4.1f)

xtij =

 ∈ {0, 1} , i 6= j,∀t ∈ T

0 , i = j,∀t ∈ T
(4.1g)

yj =

 ∈ R+ , j ∈ N

0 , j = 0
(4.1h)

The objective (4.1a) minimizes the total routing cost, which is the sum of the costs associated

with each arc used. Constraint set (4.1b) ensures that exactly one vehicle type and one incoming arc

is assigned to customer j. Constraint set (4.1c) specifies flow conservation at each customer. Con-

straint set (4.1d) specifies that the number of arcs out of the depot (and thus the number of routes)

assigned to a vehicle type does not exceed the available number of vehicles of that type. Constraint

set (4.1e) provides the subtour elimination constraints. The variable yti is the accumulated time

associated with whatever vehicle type t services customer i. Constraint set (4.1e) defines the rela-

tionship between any two customers that are sequential on a route to have respective y values that

differ by at least the travel and service time associated with moving between them. This ensures

that a subtour cannot exist, otherwise the y variable associated with any customer appearing in a

subtour would ultimately be required to be strictly greater than itself. In particular, when xtij = 1,
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some vehicle type t travels from customer i to customer j. Therefore, ytj must be at least equal to

yti plus the time between them and the service time at customer j ((dtij +Lj)x
t
ij). Conversely, when

xtij = 0, there is no known relationship between yti and ytj . The equation reduces to yti ≤ ytj + Qt

which will also hold because Q is the limit on accumulated time for any single vehicle, i.e. any

single route. Constraint (4.1f) ensures that the time incurred by a vehicle type t through servicing

of customer j, plus the time that it would take to return to the depot if this were the last customer

on the route, cannot exceed the total time limit for vehicles of the associated type. This enforces

the capacity constraint.

4.3.2 Computational Experiments and Analysis

The arc-based model (ABM) is difficult to solve in practice, both because it is highly fractional and

because the LP relaxation provides an inherently weak lower bound on the optimal objective value.

To demonstrate this, we evaluated a randomly chosen subset of our non-Pareto data instances,

limiting each run to at most two hours of run time. Tables 4.1 and 4.2 show our computational

results. Specifically, for each of the four instances considered, Table 4.1 provides the number of

nodes in the network, the realization number (recall that for each of the original networks, we

randomly generated 10 sets of arc distances, costs, and times), the number of constraints, and

the number of variables. This table also includes information about the branch-and-bound results

after two hours of run time. Specifically, we see the number of branch-and-bound nodes solved,

the number of pending nodes remaining in the branch-and-bound tree, and the optimality gap at

the end of two hours. Table 4.1 shows that ABM failed to solve any of the instances to provable

optimality (the optimality tolerance is 0.01%) within the two hour time limit, and in the case of

the 35-node instances, could not even find an integer-feasible solution. In addition, the non-trivial

optimality gaps and remaining high numbers of pending nodes suggest that the algorithm is far

from terminating at the two-hour time limit.

Table 4.2 enables us to compare the run times and best objective values for three variations of

the problem — the LP relaxation of the integrality constraints (ABM-LPR), the original problem
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#Nodes Realization
Number of 
constraints

Number of 
variables

Number of 
nodes solved

Number of 
pending nodes

Optimality gap

20 8 ~500 ~1200 914,203 789,919 4.66%
25 5 ~750 ~1900 314,918 305,205 12.26%
30 7 ~1050 ~2700 190,431 188,429 13.27%
35 5 ~1400 ~3700 73,857 72,455 N/A

Data Set ABM (2hours)

Table 4.1: Computational results after two hours (ABM)

with a two-hour limit on run time, and the original IP with the relaxation of the subtour elimination

constraints (ABM-SER). As Table 4.2 indicates, the run time of the LP relaxation is close to 0, sug-

gesting that the problem size is not the source of computational challenge. The LP solutions, how-

ever, are highly fractional, as demonstrated in Table 4.1 by the large number of branch-and-bound

nodes solved and the nearly equivalent number of pending nodes yet to be solved. Furthermore,

the optimality gap at termination is quite weak, with three of the instances having gaps between

4.66% and 13.27% and one of the instances unable to find a single integer-feasible solution within

the two-hour time limit.

The key to this fractionality appears to be the subtour elimination constraints. When we remove

these, the remaining IP solves very quickly (almost as fast as ABM-LPR). As seen in Table 4.2,

however, the objective value for ABM-SER is even lower than the objective value for the LP

relaxation, providing an even worse optimality gap.

#Nodes Realization
Run Time 

(sec)
Objective 

Value
Run Time 

(sec)
Objective 

Value
Run Time 

(sec)
Objective 

Value
20 8 < 1 375.46 7200 477.91 < 1 369.51
25 5 < 1 464.79 7200 544.89 1 462.04
30 7 < 1 472.99 7200 544.10 < 1 467.91
35 5 < 1 532.77 7200 613.84 < 1 526.73

ABM-LPR ABM (2hours) ABM-SERData Set

Table 4.2: Optimal cost of relaxations (ABM)

To help understand why ABM-LPR and ABM-SER provide such weak lower bounds, consider

the example from Figure 4.1. In this example, we see a simple network with four nodes (plus the

depot). Arc costs are depicted; for the sake of exposition, we assume all vehicles are identical and

have infinitely long time limits. In this instance, the optimal IP solution is to follow the path D-
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1-2-3-4-D, with each corresponding arc having flow of one, and an objective value of 215. When

the subtour elimination constraints are relaxed, however, it is valid to assign one unit of flow to the

arcs in path D-1-4-D and likewise to the arcs in the path 2-3-2. This reduces the objective value by

88 percent, from 215 to 25.

Finally, when the subtour constraints are included but the integrality requirements are relaxed,

we can assign α units of flow to each arc in the path D-1-2-3-4-D (the solution to ABM), and 1−α

units to the arcs in the path D-1-4-D and 2-3-2 (the solution to ABM-SER), i.e. ABM-LPR is a

convex combination of ABM and ABM-SER, where α approaches 0 as Q goes to infinity.

1

4

D

2

3

100

100

55

5

5

Models Paths Cost

ABM 𝑟𝐼𝑃: D-1-2-3-4-D (1) 5 + 100 + 5 + 100 + 5 =  215

ABM-SER 𝑟𝑆𝐸𝑅: D-1-4-D, 2-3-2 (1) (5 + 5 + 5) + (5 + 5)  =  25

ABM-LPR
(0 ≤ 𝛼 ≤ 1)

𝑟𝐿𝑃𝑅: D-1-2-3-4-D (𝛼)
D-1-4-D , 2-3-2 (1 − 𝛼)

𝛼 × 215 + 1 − 𝛼 × 25
= 𝛼 × 𝑟𝐼𝑃 + 1 − 𝛼 × 𝑟𝑆𝐸𝑅

Figure 4.1: Example of weak lower bounds by relaxations (ABM)

4.4 Path-Based Model

Motivated by the computational experiments described in Section 4.3, we seek an approach that

is not hampered by the need for subtour elimination. In this section, we introduce a path-based

model that, by explicitly constructing paths as an input to the model, eliminates the need for such

constraints.

4.4.1 Set Partitioning Formulation

Notation
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Parameters and Sets
N set of customers in the network, where index 0 represents the depot

T set of vehicles types

Rt set of all feasible routes (i.e. paths) for vehicle type t ∈ T

ctr travel cost of route r for vehicle type t, ∀t ∈ T,∀r ∈ Rt

δtir binary coefficient that takes value 1 if customer i belongs to route r for vehicle type t, else

0, ∀i ∈ N \ 0, t ∈ T, r ∈ Rt

Mt number of available vehicles of type t, ∀t ∈ T

Qt time limit for vehicle type t, ∀t ∈ T

Li service time at customer i, ∀i ∈ N \ 0

Variables
xtr binary variable that takes value 1 if route r is assigned to a vehicle of type t, else 0, ∀t ∈

T,∀r ∈ Rt

Path-Based Model (PBM):

min
∑
t∈T

∑
r∈Rt

ctrx
t
r (4.2a)

subject to:
∑
t∈T

∑
r∈Rt

δtirx
t
r = 1 ∀i ∈ N \ 0 (πi) (4.2b)

∑
r∈Rt

xtr ≤Mt ∀t ∈ T (µt) (4.2c)

xtr ∈ {0, 1} ∀t ∈ T,∀r ∈ Rt (4.2d)

The objective (4.2a) minimizes the total routing cost. Constraint set (4.2b) requires that each

customer must be covered by exactly one route. Constraint set (4.2c) specifies that at most Mt

routes are assigned to vehicles of type t ∈ T . In addition, we associate dual variables πi and µt

with (4.2b) and (4.2c), respectively.
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4.4.2 Heuristic Column Generation

The path-based model (PBM) contains too many variables to solve explicitly except for very small

problem instances. We therefore propose to use column generation [130, 131] to solve the LP re-

laxation of PBM (PBM-LPR). Specifically, we begin with an initial subset of the feasible columns

(i.e. routes) generated by the sweep algorithm [84], which we call the restricted master problem

(RPBM-LPR). We then use a pricing problem to identify promising new routes to add to RPBM-

LPR, based on the dual values of the current optimal solution. If such columns (i.e. routes) are

found, they are used to augment RPBM-LPR and the process repeats. An optimal solution to the

LP relaxation is guaranteed when no new negative reduced cost routes can be found.

Reduced Cost:

For a given feasible route rt ∈ Rt where γtijr is a binary parameter specifying whether arc (i, j)

is included in route rt, the corresponding reduced cost equation is:

RCt
r = ctr −

∑
i∈N\0

πiδ
t
ir − µt

=
∑
i∈N

∑
j∈N

ctijγ
t
ijr −

∑
i∈N\0

πi(
∑
j∈N

γtijr)− µt

=
∑
i∈N

∑
j∈N

ctijγ
t
ijr −

∑
i∈N

πi(
∑
j∈N

γtijr)− µt

=
∑
i∈N

∑
j∈N

(ctij − πi)γtijr − µt

where we define π0 = 0 so as to combine terms in the final representation.

To find a negative reduced cost column for vehicles of type t, or to prove that no such columns

exist, we can formulate the following optimization problem.
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Pricing Problem:

min
∑
i∈N

∑
j∈N

(ctij − πi)γtijr − µt (4.4a)

subject to: rt ∈ Rt (4.4b)

For the remainder of this section, we focus primarily on solving PBM-LPR and, in particular, the

pricing problem. This problem can be posed as an elementary shortest path problem with resource

constraints (ESPPRC) on graphs with negative cost cycles and it has been shown that it is strongly

NP-hard [132]. Thus, when we solve the integer version of the problem, we do so heuristically.

That is, for the simplicity of implementation, we solve the LP to optimality and then find the best

IP solution relative to the current set of columns in the restricted master. In practice, it would be

necessary to generate new columns at each subsequent nodes of the branch-and-bound tree in order

to ensure a provably optimal solution.

4.5 Dynamic Programming Approaches to solving the Pricing

Problem

The key challenge in solving PBM-LPR is in solving the pricing problem, i.e. in generating can-

didate routes (negative reduced cost pivot variables). In theory, this problem ((4.4a) and (4.4b))

could be formulated as a MIP. However this will result in the same difficulties observed in the

arc-based formulation, such as fractionality in the LP relaxation and a weak lower bound, due to

the sub-tour elimination (4.1e) and time limit constraints (4.1f), which must now be shifted into

the pricing problem. We therefore instead take a dynamic programming (DP) approach in which,

by constructing the routes dynamically, we naturally avoid sub-tours. Throughout the remainder

of this section, we present and compare several DP algorithms for solving the pricing problem.
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4.5.1 Elementary Shortest Path Problem with Resource Constraints (ESP-

PRC)

The pricing problem for PBM-LPR identifies minimum-cost elementary paths (i.e. paths without

any embedded cycles) that do not violate some sort of resource constraint. In our case, the resource

is time (which is consumed over both arcs and nodes), and the cost is the reduced cost associated

with the route when included in the restricted master. That is, we consider the true cost (which is

the sum of all the arc costs) minus the dual value associated with each node minus the dual value

associated with the specific vehicle type. In particular, one reduced cost problem can be solved for

each vehicle type, in which the corresponding costs (true and dual) are assigned to individual arcs

within the network.

Feillet et al. [133] were the first to propose an exact dynamic programming algorithm for solv-

ing the pricing problem of the VRPTW where paths with embedded cycles are forbidden. Other

refinements for the DP algorithm have also been suggested by Chabrier [134], Righini and Salani

[135, 136] and Lozano et al. [137]. Chabrier [134] embeded ESPPRC into a branch-and-price

scheme for VRPTW and improved the quality of bounds by cutting planes and several other im-

provements. Righini and Salani [135, 136] proposed resource-based bounding, bidirectional search

and a decremental state-space relaxation. Lozano et al. [137] introduced a recursive algorithm with

novel pruning strategies and tested the proposed algorithm by solving the linear relaxation of the

VRPTW at the root node via column generation approach. While DP can be a good candidate ap-

proach for solving the pricing problem for some VRPs [138], the exponential rise in the state-space

can be burdensome in other cases. For example, the success of Feillet et al. [133] depends on the

use of narrow time windows to facilitate pruning. On the other hand, when time windows are too

wide, the computational performance suffers significantly.

In TCHVRP, we encounter computational issues associated with the limited opportunity to

prune. Although we can use the vehicle time limits and the fact that nodes cannot be repeated

to prune, these are not sufficient. Ideally, we also want to prune whenever two partial paths meet at
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the same node but with different costs and consumed times. Specifically, given two partial routes

p1 and p2 that terminate at the same node, p1 is dominated by p2 and therefore p1 can be pruned,

if: 1) p1 is more costly than p2; 2) p1 takes longer than p2. We also need a third criterion, however:

3) the set of nodes included in p1 is a superset of the nodes included in p2.

The third criteria is necessary to ensure equivalent remaining opportunities to capture the benefit

of negative dual values. For example, consider partial paths p1: D−X−Y −Z and p2: D−W−Z.

We are tempted to prune p1 if it is higher cost and consumes more time than path p2. However, it

may be the case that the optimal (i.e. most negative reduced cost) path isD−X−Y −Z−W −D.

If we prune p1, we will not encounter this path. Conversely, the path D−W −Z−W −D (which

should be both cheaper and less time consuming than D −X − Y − Z −W −D) is not actually

a valid path because it repeats node W (and thus accumulates the dual value associated with the

cover constraint for node W twice). Thus we can only prune p1 if it is not only more costly and

more time consuming than p2 but also if it includes a superset of the nodes found in partial path

p2. This criteria greatly reduces the pruning opportunities, with significant negative impact on

computational performance, as we demonstrate below.

To evaluate the ESPPRC approach, considering both run time and solution quality, we conducted

two experiments, using the data sets described in Section 4.2.2 and detailed in Appendix Table C.1.

First, we compared the optimal objective values of the LP relaxations of the arc-based model to the

path-based model. Second, we compared the heuristic objective values found by (a) solving the LP

relaxation of the path-based model to optimality and then finding the optimal integer solution with

respect to the given columns in the restricted master problem versus (b) allowing the arc-based

integer model to run for the same amount of time as the path-based model and taking the best

integer feasible solution.

Consistently, we observed that the LP relaxation of the path-based model is substantially higher

than that of the arc-based model, thus yielding a tighter lower bound. As seen in Columns ABM-

LPR and ESPPRC-LPR of Table 4.3, the LP relaxation of the path-based model ranges from

18.33% to 32.75% higher than the arc-based model, with an average increase of 25.68%.
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To compare the objective values, we solved the path-based LP relaxation to optimality, then

found the best integer solution relative to those columns. We subsequently ran the arc-based integer

model for the equivalent amount of time and took the lowest integer solution found during that time.

In the best case, the path-based approach found a solution that was 69.37% lower than the ABM

solution. In addition, in many cases, the arc-based approach found no integer-feasible solution

(i.e. N/A), while the path-based approach always did. Finally, in all but three instances, the PBM

solution was strictly better than the ABM solution, and all three of those instances were instances

of the homogeneous version of the problem. Results for this experiment can be seen in Table 4.3,

Columns ESPPRC-IP and ABM-IP.

Based on the network topology of Golden et al. [72], we conduct experiments on 4 different

size networks, with 20, 25, 30, and 35 nodes respectively. For each network, we consider three

different cases. The first case has only one vehicle type and Pareto dominance with respect to cost

and time. The second case has multiple vehicle types but again has Pareto dominance. For the

third case, in which we relax the Pareto dominance, we randomly generate ten instances.

Although the first two experiments show that the path-based approach yields a tighter lower

bound and better integer solution in equivalent time, we suggest that the approach is still too

slow for practical use. For example, although the path-based approach can be solved in roughly

a minute for the heterogeneous non-Pareto instance with twenty nodes, the computational time

grows exponentially for this approach as the number of nodes increases, taking about two hours to

solve the instances with 35 nodes. As seen in Table 4.4, Columns RPBM-LPR & Pricing Problem

and Branch & Bound for IP Heuristics, neither the LP relaxations of the restricted master nor the

ultimate IP itself take long to solve; total run time depends primarily on the time required to solve

the DPs at each iteration of the pricing problem. We therefore consider alternative approaches to

solving the DP in the following sections.
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#Nodes #VehTypes Pareto ABM-LPR ESPPRC-LPR ∆ LPR (%) ESPPRC-IP time(sec) ABM-IP time(sec) ∆ IP (%)
20 1 (6) Yes 438.072 548.778 25.27% 570.69 27 570.69 27 0.00%
20 3 (2) Yes 383.637 488.224 27.26% 525.44 123 553.4 123 5.05%
20 3 (2) No 371.78 466.91 25.59% 489.82 49 526.94 66 7.04%
20 3 (2) No 374.5 473.504 26.44% 514.54 68 535.86 66 3.98%
20 3 (2) No 373.955 471.317 26.04% 501.17 92 582.21 66 13.92%
20 3 (2) No 375.452 460.342 22.61% 493.58 102 529.69 66 6.82%
20 3 (2) No 364.397 464.748 27.54% 494.77 67 522.39 66 5.29%
20 3 (2) No 382.248 479.287 25.39% 506.86 35 517.52 66 2.06%
20 3 (2) No 372.486 461.86 23.99% 505.58 47 513.26 66 1.50%
20 3 (2) No 375.455 470.413 25.29% 501.74 28 508.85 66 1.40%
20 3 (2) No 371.301 466.656 25.68% 500.96 110 546.96 66 8.41%
20 3 (2) No 364.683 453.665 24.40% 483.85 57 529.42 66 8.61%
25 1 (9) Yes 559.204 661.708 18.33% 674.79 47 674.79 47 0.00%
25 3 (3) Yes 489.413 606.384 23.90% 616.48 255 922.24 255 33.15%
25 3 (3) No 475.899 569.747 19.72% 598.79 160 764.29 233 21.65%
25 3 (3) No 464.149 567.087 22.18% 572.85 154 631.79 233 9.33%
25 3 (3) No 478.001 570.983 19.45% 595.24 192 683.24 233 12.88%
25 3 (3) No 484.074 582.357 20.30% 594.7 281 929.81 233 36.04%
25 3 (3) No 464.791 572.237 23.12% 577.96 245 829.94 233 30.36%
25 3 (3) No 486.371 583.196 19.91% 595 305 1942.52 233 69.37%
25 3 (3) No 475.794 574.853 20.82% 584.11 239 807.77 233 27.69%
25 3 (3) No 481.448 584.172 21.34% 594.61 280 925.87 233 35.78%
25 3 (3) No 463.837 566.54 22.14% 577.07 186 940 233 38.61%
25 3 (3) No 483.451 594.391 22.95% 602.03 287 1381.03 233 56.41%
30 1 (12) Yes 556.388 690.789 24.16% 733.58 348 713.07 348 -2.88%
30 3 (4) Yes 487.081 636.173 30.61% 650.24 1798 789.43 1798 17.63%
30 3 (4) No 480.186 605.767 26.15% 642.18 2814 742.4 2306 13.50%
30 3 (4) No 478.29 607.222 26.96% 631.58 2422 653.76 2306 3.39%
30 3 (4) No 491.584 620.204 26.16% 659 1679 743.2 2306 11.33%
30 3 (4) No 464.098 599.535 29.18% 643.53 2372 835.23 2306 22.95%
30 3 (4) No 467.434 603.99 29.21% 603.99 2895 697.17 2306 13.37%
30 3 (4) No 468.403 611.449 30.54% 646.09 3016 841.7 2306 23.24%
30 3 (4) No 472.99 604.492 27.80% 644.12 1464 709.8 2306 9.25%
30 3 (4) No 478.938 614.081 28.22% 623.81 2821 N/A 2306 N/A
30 3 (4) No 480.524 609.289 26.80% 624.22 1820 746.59 2306 16.39%
30 3 (4) No 483.211 613.911 27.05% 645.02 1753 780.29 2306 17.34%
35 1 (12) Yes 640.683 801.635 25.12% 821.23 1708 821.23 1708 0.00%
35 3 (4) Yes 560.893 744.589 32.75% 766.09 8003 N/A 8003 N/A
35 3 (4) No 572.354 724.176 26.53% 750.18 8497 852.84 8253 12.04%
35 3 (4) No 556.932 716.294 28.61% 749.49 11436 802.4 8253 6.59%
35 3 (4) No 533.847 692.536 29.73% 707.57 7945 N/A 8253 N/A
35 3 (4) No 565.321 712.613 26.05% 735.07 9706 N/A 8253 N/A
35 3 (4) No 532.77 701.591 31.69% 725.4 6040 N/A 8253 N/A
35 3 (4) No 546.034 699.645 28.13% 728.95 9672 795.19 8253 8.33%
35 3 (4) No 529.464 680.76 28.58% 706.56 2800 N/A 8253 N/A
35 3 (4) No 551.074 709.405 28.73% 732.58 8407 N/A 8253 N/A
35 3 (4) No 546.031 697.333 27.71% 717.77 10155 N/A 8253 N/A
35 3 (4) No 554.51 704.135 26.98% 727.66 7866 N/A 8253 N/A

#VehTypes: number of vehicle types (number of vehicles per type in parenthesis),
ABM-LPR: Linear relaxation of ABM at the root node,

ESPPRC-LPR: Linear relaxation of ESPPRC at the root node,
ESPPRC-IP: heuristic integer solution at the root node,

ABM-IP: exact integer solution by branch & bound
∆LPR(%) = [RSPPRC− LPR]− [ABM− LPR]/[ABM− LPR],

∆IP(%) = ([ABM− IP]− [ESPPRC− IP]) /[ABM− LPR]

Table 4.3: Solution quality (ESPPRC)
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RPBM-LPR & 
Pricing Problem

Branch & 
Bound for IP

Total

#Nodes #VehTypes Pareto time(sec) time(sec) time(sec)
20 1 (6) Yes 27 0 27
20 3 (2) Yes 122 1 123
20 3 (2) No 49 0 49
20 3 (2) No 67 1 68
20 3 (2) No 92 0 92
20 3 (2) No 101 1 102
20 3 (2) No 67 0 67
20 3 (2) No 35 0 35
20 3 (2) No 46 1 47
20 3 (2) No 28 0 28
20 3 (2) No 109 1 110
20 3 (2) No 56 1 57
25 1 (9) Yes 47 0 47
25 3 (3) Yes 254 1 255
25 3 (3) No 158 2 160
25 3 (3) No 152 2 154
25 3 (3) No 189 3 192
25 3 (3) No 280 1 281
25 3 (3) No 244 1 245
25 3 (3) No 304 1 305
25 3 (3) No 237 2 239
25 3 (3) No 278 2 280
25 3 (3) No 184 2 186
25 3 (3) No 283 4 287
30 1 (12) Yes 345 3 348
30 3 (4) Yes 1786 12 1798
30 3 (4) No 2811 3 2814
30 3 (4) No 2414 8 2422
30 3 (4) No 1662 17 1679
30 3 (4) No 2352 20 2372
30 3 (4) No 2894 1 2895
30 3 (4) No 3004 12 3016
30 3 (4) No 1451 11 1464
30 3 (4) No 2816 5 2821
30 3 (4) No 1813 7 1820
30 3 (4) No 1747 6 1753
35 1 (12) Yes 1663 44 1708
35 3 (4) Yes 7859 144 8003
35 3 (4) No 8250 247 8497
35 3 (4) No 11136 299 11436
35 3 (4) No 7796 148 7945
35 3 (4) No 9338 366 9706
35 3 (4) No 5803 236 6040
35 3 (4) No 9547 124 9672
35 3 (4) No 2669 130 2800
35 3 (4) No 8268 139 8407
35 3 (4) No 9945 209 10155
35 3 (4) No 7754 111 7866

Data Set

Table 4.4: Computing time (ESPPRC)
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4.5.2 Cycle Relaxation of ESPPRC (RSPPRC)

The DP is hard to solve when elementary paths are required because the dominance requirements

significantly limit pruning opportunities. As observed by Desrochers et al. [127], removing the

no-cycles restriction can greatly reduce run times. Furthermore, even if cycles are allowed, the

equality restriction in the cover constraints will prevent such routes from being included in the op-

timal integer solution [134]. In fact, prior to the work of Feillet et al. [133], most existing research

relaxed the no-cycle constraint in order to simplify the pricing problem. For example, Desrochers

et al. [127] presented a pseudo-polynomial primal-dual labeling algorithm to effectively solve this

problem. Recently, Baldacci et al. [79] proposed the use of ng-routes, which yields a compro-

mise between elementary routes and non-elementary routes with cycles. Martinelli et al. [139]

expanded further upon this idea by combining the decremental state-space relaxation [136] and

completion bounds to accelerate the algorithm.

In this section, we consider alternative ways to solve the DP without requiring elementary paths,

that is, by allowing cycles. We analyze the impact of this relaxation on both the time required to

solve the pricing problem and also the strength of the LP relaxation. We refer to the variation of the

pricing problem in which cycles are allowed as the cycle relaxation of ESPPRC (RSPPRC). In our

approach to solving RSPPRC, we recognize that when cycles are allowed, it is no longer required

that the set of nodes in partial route p1 be a superset of the nodes in partial route p2 in order for p2

to dominate p1 and thus for p1 to be pruned. It is trivial to modify our original DP algorithm for

solving ESPPRC accordingly, by simply eliminating the third pruning criterion.
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ESPPRC RSPPRC ∆ / ESPPRC

#Nodes #VehTypes Pareto time(sec) time(sec) %
20 1 (6) Yes 27 4 -85.19%
20 3 (2) Yes 123 10 -91.87%
20 3 (2) No 49 7 -85.71%
20 3 (2) No 68 7 -89.71%
20 3 (2) No 92 8 -91.30%
20 3 (2) No 102 8 -92.16%
20 3 (2) No 67 9 -86.57%
20 3 (2) No 35 6 -82.86%
20 3 (2) No 47 8 -82.98%
20 3 (2) No 28 7 -75.00%
20 3 (2) No 110 7 -93.64%
20 3 (2) No 57 8 -85.96%
25 1 (9) Yes 47 6 -87.23%
25 3 (3) Yes 255 14 -94.51%
25 3 (3) No 160 10 -93.75%
25 3 (3) No 154 13 -91.56%
25 3 (3) No 192 9 -95.31%
25 3 (3) No 281 12 -95.73%
25 3 (3) No 245 13 -94.69%
25 3 (3) No 305 12 -96.07%
25 3 (3) No 239 13 -94.56%
25 3 (3) No 280 12 -95.71%
25 3 (3) No 186 13 -93.01%
25 3 (3) No 287 13 -95.47%
30 1 (12) Yes 348 9 -97.41%
30 3 (4) Yes 1798 23 -98.72%
30 3 (4) No 2814 24 -99.15%
30 3 (4) No 2422 20 -99.17%
30 3 (4) No 1679 21 -98.75%
30 3 (4) No 2372 20 -99.16%
30 3 (4) No 2895 25 -99.14%
30 3 (4) No 3016 21 -99.30%
30 3 (4) No 1464 21 -98.57%
30 3 (4) No 2821 21 -99.26%
30 3 (4) No 1820 20 -98.90%
30 3 (4) No 1753 17 -99.03%
35 1 (12) Yes 1708 15 -99.12%
35 3 (4) Yes 8003 48 -99.40%
35 3 (4) No 8497 40 -99.53%
35 3 (4) No 11436 48 -99.58%
35 3 (4) No 7945 37 -99.53%
35 3 (4) No 9706 43 -99.56%
35 3 (4) No 6040 48 -99.21%
35 3 (4) No 9672 42 -99.57%
35 3 (4) No 2800 45 -98.39%
35 3 (4) No 8407 35 -99.58%
35 3 (4) No 10155 46 -99.55%
35 3 (4) No 7866 47 -99.40%

Data Set

(∆ = [RSPPRC]− [ESPPRC])

Table 4.5: Computing time (RSPPRC)

We conducted computational experiments on the same data as in 4.5.1 to evaluate run time,

strength of the LP relaxation, and IP-heuristic solution quality. Figure 4.2 presents the resulting
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LP relaxation bounds and objective values for the IP-heuristic approaches to RSPPRC, ASPPRC

(Augmented RSPPRC defined later) and ESPPRC. Note that the first column of Table 4.3, 4.4 and

4.5 provides a unique index for each instance and x axis in Figure 4.2 correspond to these indices.

We observe that, by simply enabling a greater degree of pruning, we can solve RSPPRC much

more quickly than ESPPRC, as demonstrated in Table 4.5. This table presents the total time, for

both ESPPRC and RSPPRC, needed to solve the LP relaxation to optimality and then to solve “to

optimality” the associated IP (note that we solve to optimality with respect to the available columns

but we do not implement branch-and-price). As seen in Figure 4.2, however, the LP relaxation is

significantly worse relative to when using ESPPRC (although still significantly better than the LP

relaxation of the arc-based model, ABM-LPR). In turn, as seen in Figure 4.2, the quality of the

heuristic IP solution (found when branching just on those columns found when solving for the LP

relaxation) is worse than the ESPPRC approach as well.

To understand why the LP relaxation when cycles are allowed is worse than ESPPRC, consider

the following example, as depicted in Figure 4.3. The true cost of path D − A − B − C − D is

206 and this path covers nodes A,B, and C. When cycles are allowed, however, we can replace

this variable with a variable corresponding to the path D − A− B − C − A− B − C −D, with

value 1/2. Again, this covers nodes A,B, and C, but now with cost 106. The reduction is because

we have reduced the travel distance from the depot to the cluster of nodes. Extending this idea,

consider traversing the cycle A − B − C − A m times with corresponding value x = 1
m

. Again,

in the LP relaxation, this would satisfy coverage of A,B, and C, but with a cost of 6m
m+1

+ 206
m+1

. As

m approaches infinity, the cost approaches six, the cost of the cycle A − B − C − A. The only

limiting factor here is the total time limit Q allowed for the path.

In addition, the IP heuristic objective is also worse because many of the columns identified when

solving PBM-LPR using RSPPRC will not in fact be valid columns for the integer version of the

problem because, as motivated in the previous example, many will contain cycles which are invalid

under the equality constraints. Since we are not generating columns beyond the root node, this is

particularly problematic.
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Figure 4.2: Solution quality (RSPPRC)

Motivated by this, we augmented the RSPPRC approach to include the acyclic equivalent of

each newly-generated column. That is, given a column where some node occurs more than once,

we also create a new column in which we delete from the route all occurrences of that node except

the first. We refer to this augmented RSPPRC as ASPPRC. Note that this does not impact the LP

relaxation of RSPPRC (because these were not chosen to be included in the optimal LP solution),

nor does it have any significant impact on the run time over solving RSPPRC. Therefore, ASPPRC

is equivalent in run time to RSPPRC. For solution quality, as seen in Figure 4.2, ASPPRC is always

better than RSPPRC (given that it has a superset of the columns of RSPPRC), however, it still has

worse objective values than ESPPRC.
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100 𝑨
𝑩

D

𝑪

𝑚

102

2

2
2

Route Cost(𝒄𝒓) Value(𝒙) Total Cost

No cycle
(𝑚 = 0)

𝐷 − 𝐴 − 𝐵 − 𝐶 − 𝐷
: 100+2+2+102 = 206 1 206

One cycle
(𝑚 = 1) 

𝐷 − (𝐴 − 𝐵 − 𝐶) − (𝐴 − 𝐵 − 𝐶) − 𝐷
: 100+(2+2+2)+2+2+102 = 212

1
2

106

⋮ ⋮ ⋮ ⋮

𝑚 cycle 𝐷 − 𝐴 − 𝐵 − 𝐶 ⋯ (𝐴 − 𝐵 − 𝐶) − 𝐷
: 100+m × (2+2+2)+2+2+102 = 206+m × 6

1
𝑚 + 1

6𝑚
𝑚 + 1

+
206
𝑚 + 1

Figure 4.3: Example of weak lower bounds by the relaxation of no-cycle constraint

4.5.3 Weak Dominance Relaxation of ESPPRC (WESPPRC)

In the previous sections, we observed that allowing cycles made the DP approach much faster

because we were not limited to pruning only when one path contained a superset of the nodes

in another. On the other hand, allowing cycles greatly weakened the lower bound. Motivated

by these facts, we propose a final alternative approach in which we do not allow cycles, but we

eliminate the third pruning criterion. For example, if path p1 is less costly and takes less time

than path p2, we allow path p2 to be pruned, even if it does not contain a superset of the nodes in

path p1. We refer to this ESPPRC with weak dominance rule as the weak dominance relaxation of

ESPPRC (WESPPRC). Note that this new approach no longer guarantees an optimal solution to

the LP relaxation because we may prune a path that is in fact part of the optimal solution.

We observe, as seen in Table 4.6, that the result is a significant improvement in run time - in one

instance, from more than three hours to roughly 34 seconds. We reiterate that the LP relaxation of

WESPPRC is not guaranteed to be optimal (i.e. we may prune relevant columns). As seen in Table

4.6, however, the impact on the LP relaxation is very small, with a maximum increase of 0.94%.

Finally, we note that the IP objective value of WESPPRC is sometimes worse and sometimes better

than ESPPRC. However, we observe the difference in objective value to be within 5.24% in all
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cases, and often much less. Furthermore, it is as good or better than ASPPRC in all but one of the

large problem instances, and faster than that approach in most cases.

ESPPRC WESPPRC LPR objective ratio Time ratio

#Nodes #VehTypes Pareto time(sec) time(sec)
WESPPRC-LPR / 

ESPPRC-LPR
WESPPRRC-IP / 

ESPPRC-IP
WESPPRRC-IP / 

ASPPRC-IP
WESPPRRC-IP / 

ASPPRC-IP
20 1 (6) Yes 27 3 100.20% 100.00% 93.69% 0.43
20 3 (2) Yes 123 5 100.00% 100.83% 91.39% 0.45
20 3 (2) No 49 5 100.41% 100.29% 90.65% 0.71
20 3 (2) No 68 5 100.94% 99.56% 91.00% 0.71
20 3 (2) No 92 4 100.33% 101.74% 91.65% 0.50
20 3 (2) No 102 6 100.04% 101.82% 91.55% 0.86
20 3 (2) No 67 6 100.20% 101.45% 96.31% 0.67
20 3 (2) No 35 5 100.44% 100.86% 92.31% 0.83
20 3 (2) No 47 5 100.81% 98.29% 93.32% 0.63
20 3 (2) No 28 4 100.03% 99.43% 91.12% 0.50
20 3 (2) No 110 5 100.19% 101.68% 90.68% 0.63
20 3 (2) No 57 4 100.50% 100.33% 87.05% 0.44
25 1 (9) Yes 47 4 100.28% 102.61% 94.16% 0.80
25 3 (3) Yes 255 7 100.00% 101.11% 90.69% 0.47
25 3 (3) No 160 10 100.00% 104.31% 97.18% 1.00
25 3 (3) No 154 6 100.22% 101.24% 90.94% 0.43
25 3 (3) No 192 8 100.11% 100.94% 94.94% 0.80
25 3 (3) No 281 7 100.04% 101.06% 92.93% 0.54
25 3 (3) No 245 7 100.05% 101.12% 93.26% 0.54
25 3 (3) No 305 7 100.40% 102.11% 93.76% 0.58
25 3 (3) No 239 7 100.00% 100.71% 93.56% 0.58
25 3 (3) No 280 8 100.42% 103.50% 95.36% 0.62
25 3 (3) No 186 6 100.62% 100.33% 91.23% 0.43
25 3 (3) No 287 7 100.20% 105.21% 94.90% 0.54
30 1 (12) Yes 348 6 100.16% 99.97% 92.64% 0.67
30 3 (4) Yes 1798 12 100.11% 105.24% 96.90% 0.48
30 3 (4) No 2814 13 100.00% 101.07% 89.78% 0.57
30 3 (4) No 2422 10 100.39% 103.21% 91.21% 0.48
30 3 (4) No 1679 13 100.23% 98.19% 86.21% 0.59
30 3 (4) No 2372 13 100.73% 98.66% 90.94% 0.59
30 3 (4) No 2895 10 100.25% 100.25% 89.97% 0.40
30 3 (4) No 3016 12 100.07% 101.35% 93.74% 0.57
30 3 (4) No 1464 12 100.32% 97.73% 88.55% 0.55
30 3 (4) No 2821 13 100.43% 105.24% 92.39% 0.59
30 3 (4) No 1820 12 100.52% 102.46% 89.63% 0.60
30 3 (4) No 1753 13 100.25% 103.64% 90.75% 0.76
35 1 (12) Yes 1708 11 100.02% 101.28% 94.12% 0.69
35 3 (4) Yes 8003 25 100.06% 100.40% 91.53% 0.50
35 3 (4) No 8497 32 100.11% 99.64% 92.46% 0.76
35 3 (4) No 11436 34 100.16% 103.93% 94.44% 0.69
35 3 (4) No 7945 25 100.28% 100.49% 91.85% 0.64
35 3 (4) No 9706 43 100.05% 100.01% 88.74% 1.00
35 3 (4) No 6040 28 100.07% 98.02% 91.78% 0.56
35 3 (4) No 9672 26 100.36% 97.84% 87.72% 0.60
35 3 (4) No 2800 21 100.83% 100.66% 92.34% 0.45
35 3 (4) No 8407 30 100.47% 99.67% 89.25% 0.83
35 3 (4) No 10155 30 100.07% 101.27% 100.54% 0.63
35 3 (4) No 7866 28 100.16% 100.00% 90.18% 0.57

100.94% 105.24% 100.54% 1.00
100.00% 97.73% 86.21% 0.40
100.26% 101.06% 92.11% 0.61

Max
Min

Average

Data Set IP objective ratio

Table 4.6: Computing time & solution quality (WESPPRC)
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Finally, we present the optimality gap for WESPPRC in Table 4.7. For future research, we

could implement and evaluate the total time and solution quality of using branch-and-price with

WESPPRC embedded in each node of the branch-and-bound tree.

#Nodes #VehTypes Pareto WESPPRC-LPR WESPPRC-IP Gap (%)
20 1 (6) Yes 549.897 570.69 3.78%
20 3 (2) Yes 488.245 529.82 8.52%
20 3 (2) No 468.814 491.26 4.79%
20 3 (2) No 477.948 512.26 7.18%
20 3 (2) No 472.887 509.91 7.83%
20 3 (2) No 460.533 502.58 9.13%
20 3 (2) No 465.672 501.92 7.78%
20 3 (2) No 481.374 511.21 6.20%
20 3 (2) No 465.602 496.94 6.73%
20 3 (2) No 470.577 498.89 6.02%
20 3 (2) No 467.541 509.39 8.95%
20 3 (2) No 455.922 485.47 6.48%
25 1 (9) Yes 663.535 692.39 4.35%
25 3 (3) Yes 606.392 623.35 2.80%
25 3 (3) No 569.747 624.6 9.63%
25 3 (3) No 568.332 579.95 2.04%
25 3 (3) No 571.638 600.84 5.11%
25 3 (3) No 582.572 600.98 3.16%
25 3 (3) No 572.519 584.41 2.08%
25 3 (3) No 585.549 607.58 3.76%
25 3 (3) No 574.853 588.25 2.33%
25 3 (3) No 586.631 615.44 4.91%
25 3 (3) No 570.038 578.98 1.57%
25 3 (3) No 595.57 633.38 6.35%
30 1 (12) Yes 691.928 733.35 5.99%
30 3 (4) Yes 636.857 684.33 7.45%
30 3 (4) No 605.792 649.03 7.14%
30 3 (4) No 609.594 651.88 6.94%
30 3 (4) No 621.651 647.04 4.08%
30 3 (4) No 603.928 634.9 5.13%
30 3 (4) No 605.48 605.48 0.00%
30 3 (4) No 611.847 654.79 7.02%
30 3 (4) No 606.452 629.5 3.80%
30 3 (4) No 616.733 656.48 6.44%
30 3 (4) No 612.475 639.59 4.43%
30 3 (4) No 615.416 668.47 8.62%
35 1 (12) Yes 801.829 831.78 3.74%
35 3 (4) Yes 745.024 769.16 3.24%
35 3 (4) No 724.998 747.45 3.10%
35 3 (4) No 717.455 778.93 8.57%
35 3 (4) No 694.448 711.04 2.39%
35 3 (4) No 712.935 735.15 3.12%
35 3 (4) No 702.082 711.03 1.27%
35 3 (4) No 702.151 713.22 1.58%
35 3 (4) No 686.392 711.25 3.62%
35 3 (4) No 712.741 730.13 2.44%
35 3 (4) No 697.844 726.9 4.16%
35 3 (4) No 705.27 727.66 3.17%

Table 4.7: Optimality gap (WESPPRC)
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4.6 Conclusions

In this paper, we present a variation of VRP, TCHVRP, in which arc times and costs vary by

vehicle type, and in particular, Pareto dominance is not assumed. We demonstrate the challenges

of solving this problem with an arc-based model and consider a path-based model as a viable

alternative. In particular, we focus on dynamic programming-based approaches to solving the

pricing problem when solving the path-based formulation via column generation. We show that

allowing cycles within the routes makes DP approaches to generating routes much faster, but at the

expense of a weaker LP relaxation and poorer integer solutions when routes are generated only at

the root node. We also show that prohibiting cycles, with fully-defined pruning, is prohibitive slow.

As an alternative, we propose a heuristic where cycles are not allowed, but pruning is expanded to

allow those cases where set of the nodes covered by one partial route is not necessarily a superset

of the nodes covered by another. Although we can no longer guarantee the optimality of the LP

relaxation, we show that this markedly improves solution time over the pure case and markedly

improves solution quality over the case in which cycles are allowed.
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CHAPTER 5

Conclusions / Future Research

5.1 Conclusions / Future Research

In this dissertation, we study the role of dominance in the multi-criteria optimization problem and

the vehicle routing problem. Chapter 2 introduces an iterative and interactive IP-based approach

to clarify ill-defined or multiple objectives in healthcare provider scheduling problem. In Chapter

3, we study the concept of dominance and develop an exact algorithm to find all points on the

Pareto frontier. Chapter 4 focuses on a column generation approach to solve the vehicle routing

problem. We propose dynamic programming-based approaches using dominance and evaluate

several relaxation methods to address the pricing problem.

In Chapter 3, the contributions of our research are in developing, implementing, and evaluating

an IP-based approach for generating the exhaustive set of Pareto-dominant solutions to a multi-

criteria residency scheduling problem. We discuss both the tractability and the practicality of our

approach as applied to the University of Michigan Pediatric Emergency Department. In the future,

we plan to extend this research in the following ways:

• Apply the proposed method to other multi-objective problems with discrete metric values.

• Accelerate the run time of individual IPs when it takes too long time to find a Pareto point.

We have shown that the use of warm starts is helpful to reduce the run time of the original IPs,

and thus the overall run time. More research on the impact of various warm start strategies
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on running time or a way to use the similarity of IPs in the lexicographic optimization or a

perturbation of upper bounds to avoid extremely slow IP instances is a logical next step.

• Finally, we seek to elicit hidden information about the Chiefs’ preferences through an inter-

active precedure in which they evaluate the Pareto schedules and provide feedback toward

their true preference. We could proactively use the information in the future decision process

in order to forecast the subset area where the preferred schedule exists instead of exploring

whole solution space.

In Chapter 4, we introduce the dominance rule and dynamic programming-based approaches

to solving the ESPPRC which is the pricing problem when solving the TCHVRP via column

generation. There are more topics to investigate this network-based column generation approach

and its applications further. Several directions for future research are described as below:

• We have observed that the superset condition in the dominance rule reduces the ability to

prune non-optimal states in a dynamic programming, and the relaxation of the superset con-

dition improves solution time significantly without losing huge optimality gap. In future

research, instead of relaxing the superset condition strictly, we could develop intelligent

heuristics for identifying non-optimal states by considering cost, time, and superset infor-

mation comprehensively.

• We could parallelize the dynamic programming approach to solve the pricing problem. Since

the shortest path problem for different types of vehicles and the state for each subpath in

dynamic programming could be solved independently, the parallel computing power could

accelerate the processing time.

• We could integrate the dynamic programming-based approach with an exact branch-and-

price algorithm. We could use our method that yields tighter bounds than the case in which

cycles are allowed to solve the linear relaxation of the set partitioning problem in each node

of the branch-and-bound procedure.
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• Recent healthcare provider scheduling studies suggest a column generation based decompo-

sition algorithm to solving these more complex healthcare personnel scheduling problems

[6]. We could apply this approach to the challenging healthcare personnel scheduling such

as the long-term or multi-year scheduling problems [140], scheduling problems integrating

different provider schedules [141, 142], and flexible shift scheduling problems that allow

flexible start times and variable shift lengths [4].
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APPENDIX A

Appendix for Chapter 2

A.1 Metric Formulation

Notation

G set of resident groups where g ⊂ G is the set of residents who have the same number

of working days, g = {r ∈ R : |Wr| is the same} ⊂ R

I set of intern-undesirable shifts, I ∈ S; In our data instances, shift 1 and 7 are in I

P set of shifts that are defined as the post-continuity clinic shifts, P ⊂ S; In our data

instances shifts 6 and 7 (i.e., 8 PM – 5 AM and 11 PM – 8 AM) are in P

E set of day-shift pairs that are defined as the optional shifts around the end of the

planning horizon, E ⊂ D × S

U set of bad (undesirable) sleep patterns where u ∈ U is a combination of shift offsets

on multiple days. Note that | u | represents the number of shift offsets in u

U(d,u) set of date-shift pairs associated with bad sleep pattern u on day d, U(d,u) ⊂ D × S

∀(d, u) ∈ D × U

Input parameters

Sg, Sg lower and upper bounds on the number of total shifts for a resident in group g, ∀g ∈ G

N g,

N g

lower and upper bounds on the number of night shifts for a resident in group g,

∀g ∈ G
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U g,

U g

lower and upper bounds on the number of bad sleep patterns for a resident in a group

g, ∀g ∈ G

P g,

P g

lower and upper bounds on the number of post-continuity clinic shifts for a resident in

a group g, ∀g ∈ G

I , I lower and upper bounds on the number of intern residents assigned to

intern-prohibited shifts in the planning horizon

E, E lower and upper bounds on the number of covered optional shifts in the planning

horizon

F , F lower and upper bounds on the number of uncovered flex shifts in the planning

horizon

Metric variables

yrdu binary variable, equals 1 if resident r is assigned to bad sleep pattern u on day d;

otherwise 0 ∀r ∈ R, ∀d ∈ D, ∀u ∈ U

zrd binary variable, equals 1 if resident r ∈ R is assigned to work a post-continuity clinic

shift on day d ∈ Cr; otherwise 0 ∀r ∈ R, ∀d ∈ D

sr number of total shifts for resident r, sr =
∑

d∈D
∑

s∈S xrds for ∀r ∈ R

nr number of night shifts for resident r, nr =
∑

d∈D
∑

s∈N xrds for ∀r ∈ R

ur number of bad sleep patterns for resident r, ur =
∑

d∈D
∑

u∈U yrdu for ∀r ∈ R

pr number of post-continuity clinic shifts for resident r, pr =
∑

d∈Cr

∑
s∈P xrds for

∀r ∈ R

i total number of intern residents assigned to intern-undersirable shifts in the planning

horizon, i =
∑

r∈{r:lr=interns}
∑

d∈D
∑

s∈I xrds

e total number of covered optional shifts in the planning horizon,

e =
∑

r∈R
∑

(d,s)∈E xrds

f total number of uncovered flex shifts in the planning horizon,

f =| D | −
∑

r∈R
∑

d∈D
∑

s∈F xrds
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Metric constraints

yrds ≤ xrij ∀r ∈ R, ∀d ∈ D, ∀u ∈ U,∀(i, j) ∈ U(d,u) (A.1)

yrds+ | u | ≥
∑

(d,s)∈U(d,u)

xrds + 1 ∀r ∈ R, ∀d ∈ D, ∀u ∈ U (A.2)

zrd ≥ xrds ∀r ∈ R, ∀d ∈ Cr,∀s ∈ P (A.3)

zrd ≤
∑
s∈P

xrds ∀r ∈ R, ∀d ∈ Cr (A.4)

sr =
∑
d∈D

∑
s∈S

xrds ∀r ∈ R (A.5)

nr =
∑
d∈D

∑
s∈N

xrds ∀r ∈ R (A.6)

ur =
∑
d∈D

∑
u∈U

yrdu ∀r ∈ R (A.7)

pr =
∑
d∈Cr

∑
s∈P

xrds ∀r ∈ R (A.8)

i =
∑
r∈R

∑
d∈D

∑
s∈I

xrds (A.9)

e =
∑
r∈R

∑
(d,s)∈OPT

xrds (A.10)

f =| D | −
∑
r∈R

∑
d∈D

∑
s∈F

xrds (A.11)

Sg ≤ sr ≤ Sg ∀g ∈ G,∀r ∈ g (A.12)

N g ≤ nr ≤ N g ∀g ∈ G,∀r ∈ g (A.13)

U g ≤ ur ≤ U g ∀g ∈ G,∀r ∈ g (A.14)

P g ≤ pr ≤ P g ∀g ∈ G,∀r ∈ g (A.15)
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I ≤ i ≤ I (A.16)

E ≤ e ≤ E (A.17)

F ≤ f ≤ F (A.18)

yrdu ∈ {0, 1} ∀r ∈ R, ∀d ∈ D, ∀u ∈ U (A.19)

zrd ∈ {0, 1} ∀r ∈ R, ∀d ∈ Cr (A.20)

Constraints (A.1) and (A.2) link decision variables xrds and auxiliary variables yrds to count the

number of bad sleep patterns. Constraints (A.3) and (A.4) link decision variables xrds and auxiliary

variables zrd to count the number of post-continuity clinic shifts.

Metric variables (A.5) measure the total number of shifts assigned to resident r, metric variables

(A.6) measure the the total number of night shifts assigned to resident r, metric variables (A.7)

measure the total number of BSPs assigned to resident r, metric variables (A.8) measure the total

number of PCCs assigned to resident r, metric variables (A.9) measure the total number of intern

residents assigned to intern-prohibited shifts in the planning horizon, metric variables (A.10) mea-

sure the number of covered optional shifts in the planning horizon, metric variables (A.11) measure

the total number of uncovered flex shifts (UFSs) in the planning horizon.

Metric constraints (A.12) and (A.13) control the upper and lower bounds on the number of

shifts and night shifts that is assigned to each resident r in a group g ∈ G, metric constraints

(A.14) control the number of BSPs that are assigned to each resident r in a group g ∈ G, metric

constraints (A.15) control that the number of PCCs that are assigned to each resident r in a group

g ∈ G, metric constraints (A.16) control the total number of interns assigned to intern residents

assigned to intern-undersirable shifts in the planning horizon, metric constraints (A.17) control the

total number of covered optional shifts in the planning horizon, metric constraint (A.18) control

the total number of UFSs in the planning horizon.
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APPENDIX B

Appendix for Chapter 3

B.1 Computational Results

Index Month Levels Infeasible Time(h:m:s) #Pareto Points #Repeats Timeout Index Month Levels Infeasible Time(h:m:s) #Pareto Points #Repeats Timeout Index Month Levels Infeasible Time(h:m:s) #Pareto Points #Repeats Timeout
1 July S1V1 No 0:00:39 3 0 No 82 July S1V1 No 0:00:59 5 2 No 163 July S1V1 No 0:02:35 9 0 No
2 July S1V2 No 0:00:37 3 0 No 83 July S1V2 No 0:02:17 10 2 No 164 July S1V2 No 0:02:52 9 0 No
3 July S1V3 No 0:48:44 9 2 Yes 84 July S1V3 No 0:04:04 15 3 No 165 July S1V3 No 4:55:12 82 0 No
4 July S2V1 No 0:00:32 3 0 No 85 July S2V1 No 0:00:52 5 2 No 166 July S2V1 No 0:01:42 8 1 No
5 July S2V2 No 0:00:30 3 0 No 86 July S2V2 No 0:01:48 10 2 No 167 July S2V2 No 0:01:49 8 1 No
6 July S2V3 No 0:54:26 38 1 No 87 July S2V3 No 0:02:26 14 0 No 168 July S2V3 No 3:27:14 215 5 No
7 July S3V1 No 0:00:30 3 0 No 88 July S3V1 No 0:00:43 5 2 No 169 July S3V1 No 0:01:29 8 1 No
8 July S3V2 No 0:00:28 3 0 No 89 July S3V2 No 0:01:30 10 2 No 170 July S3V2 No 0:01:38 8 1 No
9 July S3V3 No 0:28:49 38 1 No 90 July S3V3 No 0:02:04 14 0 No 171 July S3V3 No 2:03:05 212 4 No

10 August S1V1 No 0:12:25 48 5 No 91 August S1V1 No 0:00:15 1 0 No 172 August S1V1 No 0:06:16 24 0 No
11 August S1V2 No 0:13:17 48 5 No 92 August S1V2 No 0:00:15 1 0 No 173 August S1V2 No 0:07:24 24 0 No
12 August S1V3 No 1:35:30 204 15 No 93 August S1V3 No 0:00:41 3 0 No 174 August S1V3 No 0:41:38 80 0 No
13 August S2V1 No 0:10:46 48 5 No 94 August S2V1 No 0:00:12 1 0 No 175 August S2V1 No 0:05:55 24 0 No
14 August S2V2 No 0:10:50 48 5 No 95 August S2V2 No 0:00:13 1 0 No 176 August S2V2 No 0:05:19 24 0 No
15 August S2V3 No 0:58:46 203 13 No 96 August S2V3 No 0:00:34 3 0 No 177 August S2V3 No 0:18:29 60 6 No
16 August S3V1 No 0:09:34 48 5 No 97 August S3V1 No 0:00:11 1 0 No 178 August S3V1 No 0:04:26 24 0 No
17 August S3V2 No 0:09:34 48 5 No 98 August S3V2 No 0:00:11 1 0 No 179 August S3V2 No 0:05:04 24 0 No
18 August S3V3 No 0:48:15 203 13 No 99 August S3V3 No 0:00:27 3 0 No 180 August S3V3 No 0:14:45 60 6 No
19 September S1V1 No 0:01:27 6 0 No 100 September S1V1 No 0:09:22 50 6 No 181 September S1V1 Yes 0:00:01 0 0 No
20 September S1V2 No 0:01:32 6 0 No 101 September S1V2 No 0:04:32 24 3 No 182 September S1V2 Yes 0:00:01 0 0 No
21 September S1V3 No 0:02:58 11 0 No 102 September S1V3 No 1:16:54 96 7 No 183 September S1V3 Yes 0:00:01 0 0 No
22 September S2V1 No 0:03:22 19 0 No 103 September S2V1 No 0:05:34 37 4 No 184 September S2V1 No 0:00:15 2 0 No
23 September S2V2 No 0:03:29 19 0 No 104 September S2V2 No 0:01:44 12 1 No 185 September S2V2 No 0:00:16 2 0 No
24 September S2V3 No 0:08:06 42 7 No 105 September S2V3 No 0:33:59 143 5 No 186 September S2V3 No 0:04:27 18 16 No
25 September S3V1 No 0:03:09 19 0 No 106 September S3V1 No 0:05:00 37 4 No 187 September S3V1 No 0:00:07 1 0 No
26 September S3V2 No 0:03:09 19 0 No 107 September S3V2 No 0:01:28 12 1 No 188 September S3V2 No 0:00:07 1 0 No
27 September S3V3 No 0:06:25 36 1 No 108 September S3V3 No 0:28:18 143 2 No 189 September S3V3 No 0:01:21 10 0 No
28 October S1V1 No 0:00:14 1 0 No 109 October S1V1 No 0:08:56 14 0 No 190 October S1V1 Yes 0:00:01 0 0 No
29 October S1V2 No 0:00:15 1 0 No 110 October S1V2 No 0:17:41 19 0 No 191 October S1V2 Yes 0:00:01 0 0 No
30 October S1V3 No 0:06:08 22 0 No 111 October S1V3 No 0:31:30 37 0 No 192 October S1V3 Yes 0:00:01 0 0 No
31 October S2V1 No 0:00:11 1 0 No 112 October S2V1 No 0:05:30 13 0 No 193 October S2V1 No 0:01:02 5 3 No
32 October S2V2 No 0:00:12 1 0 No 113 October S2V2 No 0:10:19 18 0 No 194 October S2V2 No 0:01:46 10 0 No
33 October S2V3 No 0:02:12 10 0 No 114 October S2V3 No 0:16:33 36 0 No 195 October S2V3 No 0:12:17 54 6 No
34 October S3V1 No 0:00:08 1 0 No 115 October S3V1 No 0:05:08 13 0 No 196 October S3V1 No 0:00:49 5 3 No
35 October S3V2 No 0:00:08 1 0 No 116 October S3V2 No 0:08:10 18 0 No 197 October S3V2 No 0:01:32 10 0 No
36 October S3V3 No 0:01:57 10 0 No 117 October S3V3 No 0:16:17 36 0 No 198 October S3V3 No 0:11:11 55 6 No
37 November S1V1 No 0:00:16 1 0 No 118 November S1V1 No 0:00:22 2 0 No 199 November S1V1 No 0:05:11 22 0 No
38 November S1V2 No 0:00:16 1 0 No 119 November S1V2 No 0:00:22 2 0 No 200 November S1V2 No 0:17:02 35 0 No
39 November S1V3 No 0:01:07 5 0 No 120 November S1V3 No 0:00:32 2 0 No 201 November S1V3 No 0:12:31 31 0 No
40 November S2V1 No 0:00:12 1 0 No 121 November S2V1 No 0:00:10 1 0 No 202 November S2V1 No 0:04:17 22 0 No
41 November S2V2 No 0:00:11 1 0 No 122 November S2V2 No 0:00:10 1 0 No 203 November S2V2 No 0:17:33 39 0 No
42 November S2V3 No 0:01:25 9 0 No 123 November S2V3 No 0:00:22 2 0 No 204 November S2V3 No 0:12:06 43 0 No
43 November S3V1 No 0:00:10 1 0 No 124 November S3V1 No 0:00:10 1 0 No 205 November S3V1 No 0:03:31 22 0 No
44 November S3V2 No 0:00:10 1 0 No 125 November S3V2 No 0:00:10 1 0 No 206 November S3V2 No 0:07:39 39 0 No
45 November S3V3 No 0:01:15 9 0 No 126 November S3V3 No 0:00:21 2 0 No 207 November S3V3 No 0:11:47 52 0 No
46 March S1V1 No 0:04:07 16 0 No 127 March S1V1 No 0:12:11 29 0 No 208 March S1V1 Yes 0:00:01 0 0 No
47 March S1V2 No 0:04:18 16 0 No 128 March S1V2 No 0:12:34 29 0 No 209 March S1V2 Yes 0:00:01 0 0 No
48 March S1V3 No 0:04:05 16 0 No 129 March S1V3 No 1:26:56 142 35 No 210 March S1V3 Yes 0:00:01 0 0 No
49 March S2V1 No 0:03:21 16 0 No 130 March S2V1 No 0:03:11 19 0 No 211 March S2V1 No 0:04:30 14 0 No
50 March S2V2 No 0:03:37 16 0 No 131 March S2V2 No 0:03:12 19 0 No 212 March S2V2 No 0:05:13 14 0 No
51 March S2V3 No 0:03:35 16 0 No 132 March S2V3 No 0:52:23 134 37 No 213 March S2V3 No 7:19:33 387 10 No
52 March S3V1 No 0:03:06 16 0 No 133 March S3V1 No 0:02:55 19 0 No 214 March S3V1 No 0:05:04 19 0 No
53 March S3V2 No 0:03:16 16 0 No 134 March S3V2 No 0:02:54 19 0 No 215 March S3V2 No 0:06:16 19 0 No
54 March S3V3 No 0:03:15 16 0 No 135 March S3V3 No 0:41:58 129 14 No 216 March S3V3 No 3:51:11 377 49 No
55 April S1V1 No 2:18:13 70 0 No 136 April S1V1 No 0:02:47 8 0 No 217 April S1V1 No 0:34:33 61 6 No
56 April S1V2 No 0:41:00 24 34 No 137 April S1V2 No 0:02:40 8 0 No 218 April S1V2 No 0:37:22 61 6 No
57 April S1V3 No 0:42:54 48 30 No 138 April S1V3 No 0:05:48 11 0 No 219 April S1V3 No 1:07:12 87 13 No
58 April S2V1 No 1:01:06 70 0 No 139 April S2V1 No 0:01:57 8 0 No 220 April S2V1 No 0:19:22 75 5 No
59 April S2V2 No 0:16:47 24 34 No 140 April S2V2 No 0:02:03 8 0 No 221 April S2V2 No 0:19:44 75 5 No
60 April S2V3 No 0:24:16 48 30 No 141 April S2V3 No 0:04:22 13 0 No 222 April S2V3 No 1:39:52 212 51 No
61 April S3V1 No 0:45:36 70 0 No 142 April S3V1 No 0:01:48 8 0 No 223 April S3V1 No 0:18:55 75 5 No
62 April S3V2 No 0:15:49 24 34 No 143 April S3V2 No 0:01:48 8 0 No 224 April S3V2 No 0:18:37 75 5 No
63 April S3V3 No 0:21:43 48 30 No 144 April S3V3 No 0:03:42 13 0 No 225 April S3V3 No 1:09:57 204 28 No
64 May S1V1 No 0:00:42 4 0 No 145 May S1V1 No 3:42:37 77 8 Yes 226 May S1V1 Yes 0:00:01 0 0 No
65 May S1V2 No 0:00:42 4 0 No 146 May S1V2 No 0:44:09 4 1 Yes 227 May S1V2 Yes 0:00:01 0 0 No
66 May S1V3 No 0:04:02 18 0 No 147 May S1V3 No 0:31:39 2 1 Yes 228 May S1V3 Yes 0:00:01 0 0 No
67 May S2V1 No 0:00:34 4 0 No 148 May S2V1 No 9:43:19 209 10 No 229 May S2V1 No 0:00:15 1 0 No
68 May S2V2 No 0:00:36 4 0 No 149 May S2V2 No 2:53:11 37 9 Yes 230 May S2V2 No 0:00:16 1 0 No
69 May S2V3 No 0:03:16 18 0 No 150 May S2V3 No 8:17:11 86 31 Yes 231 May S2V3 No 0:00:17 1 0 No
70 May S3V1 No 0:00:31 4 0 No 151 May S3V1 No 6:59:47 209 10 No 232 May S3V1 No 0:00:14 1 0 No
71 May S3V2 No 0:00:30 4 0 No 152 May S3V2 No 3:26:40 39 8 Yes 233 May S3V2 No 0:00:14 1 0 No
72 May S3V3 No 0:02:48 18 0 No 153 May S3V3 No 1:31:16 37 19 Yes 234 May S3V3 No 0:00:15 1 0 No
73 June S1V1 Yes 0:00:01 0 0 No 154 June S1V1 No 1:45:17 16 1 No 235 June S1V1 No 0:01:57 10 2 No
74 June S1V2 Yes 0:00:01 0 0 No 155 June S1V2 No 0:41:22 1 1 Yes 236 June S1V2 No 0:02:13 10 2 No
75 June S1V3 Yes 0:00:01 0 0 No 156 June S1V3 No 0:36:17 1 1 Yes 237 June S1V3 No 0:06:39 21 4 No
76 June S2V1 No 0:00:10 1 0 No 157 June S2V1 No 2:34:25 49 2 Yes 238 June S2V1 No 0:01:48 11 2 No
77 June S2V2 No 0:00:10 1 0 No 158 June S2V2 No 3:49:56 64 29 Yes 239 June S2V2 No 0:01:42 11 2 No
78 June S2V3 No 0:00:11 1 0 No 159 June S2V3 No 24:04:21 306 50 Yes 240 June S2V3 No 0:05:12 24 4 No
79 June S3V1 No 0:00:07 1 0 No 160 June S3V1 No 3:34:59 106 5 No 241 June S3V1 No 0:01:32 11 2 No
80 June S3V2 No 0:00:07 1 0 No 161 June S3V2 No 2:52:43 75 19 Yes 242 June S3V2 No 0:01:33 11 2 No
81 June S3V3 No 0:00:07 1 0 No 162 June S3V3 No 9:48:23 202 68 Yes 243 June S3V3 No 0:04:43 24 4 No

2014-20152012-2013 2013-2014

Table B.1: Computational results (warm starts version)
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Index Year Month Levels Infeasible Timeout Max IP Time(sec) Timeout Max IP Time(sec)
3 2012-2013 July S1V3 No Yes 1800.535 Yes 1800.483
6 2012-2013 July S2V3 No Yes 1800.351 No 768.61

145 2013-2014 May S1V1 No Yes 1800.31 Yes 1800.445
146 2013-2014 May S1V2 No Yes 1800.39 Yes 1800.914
147 2013-2014 May S1V3 No Yes 1800.31 Yes 1801.002
149 2013-2014 May S2V2 No Yes 1800.60 Yes 1800.437
150 2013-2014 May S2V3 No Yes 1800.49 Yes 1800.728
152 2013-2014 May S3V2 No Yes 1800.93 Yes 1800.426
153 2013-2014 May S3V3 No Yes 1800.81 Yes 1801.478
154 2013-2014 June S1V1 No Yes 1800.91 No 1010.45
155 2013-2014 June S1V2 No Yes 1801.32 Yes 1801.707
156 2013-2014 June S1V3 No Yes 1800.31 Yes 1800.926
157 2013-2014 June S2V1 No No 925.37 Yes 1800.406
158 2013-2014 June S2V2 No Yes 1800.50 Yes 1800.887
159 2013-2014 June S2V3 No Yes 1800.31 Yes 1801.078
161 2013-2014 June S3V2 No Yes 1800.60 Yes 1801.203
162 2013-2014 June S3V3 No Yes 1801.28 Yes 1800.885
165 2014-2015 July S1V3 No Yes 1800.306 No 756.28

No (No warm start) M (Mutiple warm starts)

Table B.2: Timeout instances by either no warm start or warm starts
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Figure B.1: CPU time ratio of warm starts to no warm start for comparable problem instances
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APPENDIX C

Appendix for Chapter 4

C.1 Problem Data

We generate TCHVRP instances based on the data sets of Golden et al. [72], which is popular

benchmark test instances commonly used in the literature. Table C.1 gives the characteristics of

the TCHVRP instances we have generated. In this table, we give the number N of customers and,

for each vehicle type k, the number Mk of vehicles available, the variable cost factor αk and time

factor βk, error terms for cost εα and time εβ , and the number of instances. As global parameter

settings, we use the constant capacity Q and loading time L over all vehicles. Finally, we generate

three different data sets for TCHVRP: single fleet type with Pareto cost, heterogeneous fleet with

Pareto cost, and heterogeneous fleet with non-Pareto cost.

For Pareto instances, we have a fixed cost per mile and distance per hour for each vehicle type.

For Non-Pareto instances, we generate the cost per mile (αij) and distance per hour (βij) from

a normal distribution with the means and standard deviations in Table C.1. More precisely, the

travel cost ckij and time tkij between customers i and j for vehicles of type k are calculated by ckij =

αkijdij and tkij =
dij
βk
ij

when the travel is performed by a vehicle of type k. These are based off of a

Euclidean distance matrix Dij from the geographical data given in Golden et al. [72]. And then,

we generate cost and time matrix such that cost = αij ×Dij and time = Dij

βij
given distance matrix

Dij .

For the time resources constraints, we have chosen to use a single value Q = 8 hours for all
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vehicles, and a loading time of L = 30 minutes for all customer nodes for all vehicle types. Finally,

the error terms αk and βk have been chosen in such a way that no vehicle speed is less than 30 mph

or more than 60 mph and cost is between 1.25 and 3.75 dollars per mile.

Time & Cost Vehicle 1 Vehicle 2 Vehicle 3 Instances

Single Pareto
(𝜶𝟏, 𝜷𝟏)

𝑀1: 6(20 nodes), 9(25 
nodes), 12(30,35 nodes)

𝜶𝟏: 2 , 𝜷𝟏: 45
None None 1

Multiple Pareto
(𝜶𝒕, 𝜷𝒕)

𝑀1: 2(20 nodes), 3(25 
nodes), 4(30,35 nodes)

𝜶𝟏: 2.25 , 𝜷𝟏 : 40

𝑀2: 2(20 nodes), 3(25 
nodes), 4(30,35 nodes)

𝜶𝟐 : 2 , 𝜷𝟐 : 45

𝑀3: 2(20 nodes), 3(25 
nodes), 4(30,35 nodes)
𝜶𝟑 : 1.75, 𝜷𝟑 : 50 

1

Multiple Non-Pareto
(𝜶𝒕 + 𝝐𝜶, 𝜷𝒕 + 𝝐𝜷)

𝝐𝜶:𝑁 0,0.25 [1.25,3.75]
𝝐𝜷:𝑁 0,7 [30,60]

𝝐𝜶:𝑁 0,0.25 [1.25,3.75]
𝝐𝜷:𝑁 0,7 [30,60]

𝝐𝜶:𝑁 0,0.25 [1.25,3.75]
𝝐𝜷:𝑁 0,7 [30,60] 10

Table C.1: Parameters for VRP instances
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