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Abstract 

 
Regulation of transcription through protein complex assembly is critical for the 

maintenance of cellular homeostasis. Dysregulation of transcription is unexpectedly a 

cause or consequence of most human disease. Thus, there is significant therapeutic 

potential in discovering novel mechanisms to restore normal protein-protein interaction 

(PPI) networks in transcription. Targeting these transcriptional PPIs with small molecules 

has historically been challenging as the interactions occur over broad surface areas with 

relatively weak binding affinities. Within this dissertation, I describe two emergent 

strategies, namely natural products screening and protein-observed 19F-NMR, that 

allowed for the identification of small molecule inhibitors of the activator interaction 

domain (AcID) of Med25, a critical coactivator protein in transcription. 

Med25 AcID is a transcriptional coactivation domain that interacts with several 

transcriptional activators that have been implicated in cancer and disease, including the 

ETV/PEA3 family and the oxidative stress response factor ATF6α. An overarching goal 

of this dissertation was to identify small molecule inhibition of Med25 AcID that will allow 

for future study of the role of Med25 in cancer processes such as metastasis and 

tumorigenesis. 

This dissertation first describes the mechanistic details that define the interactions 

between Med25 AcID and its native protein partners to enable the identification of small 

molecules that selectively inhibit Med25 AcID. As demonstrated, the AcID motif interacts 

with each of its binding partners using discrete modes of molecular recognition. The 

significant differences between the interactions of Med25 AcID with the ERM and ATF6α 

activators (e.g. differences in binding locations and relative dependence on electrostatic 
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interactions) highlight the diversity of molecular mechanisms through which Med25 AcID 

functions. Small molecule inhibitors of Med25 AcID were then identified, guided by these 

mechanistic details. Natural products discovery and protein-observed 19F-NMR were 

leveraged to target Med25 AcID, which interacts with its protein partners over broad 

surface areas with relatively weak binding affinities. These two strategies have provided 

recent successes for other transcriptional PPIs. The 34913 lipopeptide, which exhibits 

effective inhibition of the Med25-ATF6α PPI in a cellular context, and nine preliminary hit 

fragments were successfully identified using those strategies. Collectively, this 

dissertation represents a tremendous advance in the identification of small molecules that 

target a challenging transcriptional coactivator, Med25 AcID, that will allow for subsequent 

determination of the role of Med25 in disease.
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Chapter One 
 

Targeting protein-protein interactions involved in transcription  
 

A. Abstract 

Transcription, the central process that maintains normal homeostasis and cellular 

function, is tightly regulated through a series of protein-protein interactions (PPIs).1 

Unsurprisingly, dysregulation of transcription is often attributed to human disease, either 

by cause or effect.2 Thus, there is a need for small molecules that can restore normal 

transcriptional output; targeting transcriptional PPIs represent a viable avenue towards 

this goal. However, targeting transcriptional PPIs is challenging to such an extent that 

these PPIs were once considered undruggable as they are typically transient in nature, 

are relatively low affinity interactions, and occur over large surface areas.3,4 While the 

discovery of small molecule modulators remains challenging, recent advances in 

chemical screening libraries and methodologies have made them tractable for small 

molecule intervention.  

This introductory chapter will define the principles and regulatory mechanisms that 

underscore transcriptional PPIs and their roles in human disease. The features of 

transcriptional PPIs and the difficulties of targeting them with small molecules will be 

discussed. Finally, emergent strategies that leverage natural products discovery and 

fragment-based NMR screening to overcome the inherent challenges in modulating 

transcriptional PPIs will be discussed.  
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B. Protein-protein interactions in transcription 

Protein-protein interactions (PPIs) between transcriptional activators and 

transcriptional coactivators are a key component of the regulatory network of 

transcription.1,5 The activator proteins are minimally composed of a DNA-binding domain 

(DBD) responsible for interaction at specific DNA promoter elements and a transcriptional 

activation domain (TAD) responsible for making contacts with transcriptional coactivators 

(Figure 1.1).6–8 The minimal assembly of these three elements (DNA, activator, and 

coactivator) at a specific gene promoter allows for subsequent localization of the pre-

initiation complex and RNA Polymerase II.9 Following the recruitment of RNA Polymerase 

II, the gene will be transcribed into messenger RNA (mRNA) for future translation into 

protein.10 However, the multimeric assembly is much more complex than this simple 

model might suggest. Each of the transcriptional proteins make specific contacts with 

multiple binding partners and nearly half of all transcription factors have been 

computationally predicted to be intrinsically disordered, or lacking an ordered structure in 

solution.11–14 Additionally, it has been suggested that a single activator may need to recruit 

multiple protein complexes to a promoter region to remodel chromatin structure prior to 

successful gene transcription.15  
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Multidomain coactivator complexes 

 Within transcriptional PPI networks, certain coactivators function as hub proteins 

or protein complexes that can bind to multiple proteins at either the same interface or at 

multiple interfaces simultaneously.16,17 Data suggest that hub proteins are capable of 

binding multiple proteins at multiple interfaces. High levels of structural plasticity allows 

Figure 1.1. Model of transcriptional regulation. (A) A high-affinity interaction 
between masking proteins and DNA-bound transcriptional activation domains (TADs) 
suppresses TAD activity and subsequent transcription. (B) Transient interactions 
between TADs and coactivators, including hub coactivators, leads to recruitment of 
general transcription factors and RNA Polymerase II (RNAP II) and subsequent 
activation of transcription. 
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these proteins to exhibit multiple conformations to adapt towards differing partner proteins 

as needed.18,19 Additionally, coactivator hubs tend to contain few “hot spot” clusters at 

their binding interfaces and a high prevalence of α-helices at multifunctional interfaces.20 

To overcome these characteristics, coactivator hubs often bind activator partners 

following a post-translational modification of the activator or through allosteric 

communication between binding sites of the coactivator.21–23 Two critical and well-studied 

hubs that contain multiple binding interfaces include the Mediator complex and the master 

coactivator CBP/p300.24,25  

 Recruitment of the Mediator complex, which consists of thirty-one protein subunits 

in humans, to DNA promoter regions is required for activated transcription of the majority 

of genes that code for proteins.26–28 This hub coactivator complex functions as a bridge 

that links multiple components of the transcriptional machinery through specific protein-

protein interactions (Figure 1.2).25,29,30 The Mediator complex acts through contacts with 

transcriptional activators, general transcription factors, and RNA Polymerase II itself.31,32 

Several Mediator-activator PPIs are important in the regulation of cellular homeostasis 

and thus have significant relevance in disease, including hormone and nuclear receptors 

(e.g. estrogen and androgen receptors) and the well-studied oncogenes p53 and ESX.33–

37 Furthermore, the Mediator complex has been directly linked to several human diseases 

(e.g. cancer intellectual disability, Alzheimer’s disease).38–42 
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CBP/p300 represents a second example of a hub coactivator with multiple binding 

interfaces that can be occupied simultaneously (Figure 1.3).24 CBP/p300 functions as a 

bridge between transcriptional activators and general transcription factors involved in the 

assembly of the pre-initiation complex.43 Differing from the Mediator complex and its 

multiple protein subunits, CBP/p300 consists of multiple coactivator domains on a single 

polypeptide.44–46 However, like the Mediator complex, CBP/p300 makes several contacts 

Figure 1.2. The Mediator complex is a critical coactivator hub. A composite image  
of the structure of the Mediator complex (human) showing the approximate relative 
location of each subunit. The Head, Middle, Tail, and Kinase modules are indicated by 
color; Med1 and Med26 are not always present in the complex. Protein binding 
partners for specific subunits are indicated. Figure adapted from Malik et. al (2010). 
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with transcriptional activators, such as p53, MLL, c-Jun, and HIF-1α, that have been 

implicated in human diseases.47–51  

 

Transcriptional protein-protein interactions and disease 

 Due to the importance of transcription in cellular homeostasis, dysregulation of 

transcriptional PPIs is either a cause or effect of many human diseases.2 Dysregulation 

of these processes occurs through several mechanisms including abnormally elevated or 

reduced expression of transcriptional proteins, the formation of fusion oncoproteins by 

chromosomal translocations, and genetic mutations within transcriptional proteins that 

elevate or reduce their activity.52 The transcriptional activator c-Myc represents an 

excellent example of an overexpressed activator in cancer.53 Elevated expression levels 

of c-Myc lead to overexpression of oncoproteins involved in cell cycle and metabolic 

regulation.54 Another example of the disease impact of overexpressed activators can be 

shown by the influences that the ETV/PEA3 family of activators (ETV1/ER81, 

ETV4/PEA3, and ETV5/ERM) play in cancer metastasis and tumorigenesis.55–57 These 

activators are amplified in concert with the Ras and PI3 kinase pathways and demonstrate 

high correlation with tumor invasion through the action of matrix metalloproteases.58 With 

Figure 1.3. Structural organization of the hub coactivator CBP/p300. The domain 
organization of CBP/300 is shown. Protein binding partners for specific domains are 
indicated below the relevant domain. Figure adapted from Majmudar et. al (2012). 
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respect to c-Myc and the ETV/PEA activators, elevated transcriptional activity occurs 

through an increase in the frequency of their interactions with coactivators and other 

transcription factors. Thus, the study and inhibition of these, and related PPIs represent 

an avenue to target and study disease processes. 

 

Features of transcriptional protein-protein interactions 

 As described, transcriptional coactivators interact with multiple binding partners; 

the same is true for transcriptional activators through their TAD motifs. Most, if not all 

TADs are considered amphipathic, meaning that their primary structures consist of acidic 

and polar residues interspersed with hydrophobic amino acids, and are intrinsically 

disordered in solution.59,60,13 TADs tend to make specific contact with two classes of 

proteins, namely transcriptional coactivators and masking proteins (Figure 1.4).8,61 

Masking proteins typically form specific and high affinity interactions with activators 

(nanomolar dissociation constants) for the purposes of suppressing, or ‘masking’, the 

activation of downstream gene production.62 Well-studied examples of activator 

interactions with masking proteins include p53-MDM2 and Gal4-Gal80.63,64 Crystal 

structures of both complexes have highlighted the importance of ‘hot spot’ residues, 

hydrophobic interactions, and small interaction interfaces that characterize masking-TAD 

PPIs.65,66 These features differ dramatically from activator-coactivator PPIs which are low-

to-moderate affinity (micromolar dissociation constants) and occur over large interfaces 

(800-2500 Å2).67–69 These PPIs tend to involve a mechanism in which the activator and 

the coactivator undergo conformational changes upon binding.70 In this scenario, the 

intrinsically disordered TAD adopts an α-helical structure upon binding to a coactivation 
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domain, causing the coactivator to allow for an induced fit between the activator and 

coactivator pair. For example, the activators pKID and Gcn4 are both intrinsically 

disordered prior to interaction with CBP/p300 KIX and Med15, respectively.71,72 Finally, 

activator-coactivator PPIs often exist in multiple “fuzzy” conformations and/or 

orientations, which is thought to be a critical determinant for the transiency and lack of 

specificity between these particular interacting partners.73,74 

 

 

 

Figure 1.4. Diversity of transcriptional protein-protein interactions. PPIs can be 
classified according to the affinity and the surface area of the interaction. Examples 
found within transcription of all four classes of PPIs are shown. Figure adapted from 
Mapp et al. (2015).  
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C. Small molecule modulation of transcriptional protein-protein interactions 

Difficulties in targeting transcriptional protein-protein interactions 

 Modulation of PPIs with small molecules has been historically challenging with 

significantly fewer than 0.01 % of all binary PPIs in the human cell having been 

successfully targeted.75–77 In fact, many PPIs, particularly those involving transcriptional 

proteins, have been previously classified as undruggable.3,4,78 The specific difficulty 

towards targeting transcriptional PPIs arises from inherent features of 

activator-coactivator PPIs, as described above. Examples of molecules that target unique 

classes of PPIs are provided in Figure 1.5.79–82 Coactivator-activator interactions are 

transient with binding interactions that demonstrate weak affinity over large surface 

areas.68,69 Weak interactions occurring over large interfaces have traditionally been more 

challenging to target with small molecules, as fewer than four percent of known molecules 

that target PPI are represented by these characteristics.76,83 Targeting this class of PPI  

requires a structurally plastic and large molecule that can overcome the lack of ‘hotspot’ 

residues within the broad and poorly defined interface.84 Additionally, due to their transient 

nature, the structural basis of many transcriptional PPIs have been poorly studied.85 This 

fact has also significantly hampered the potential for small molecule discovery as the 

specific elements of individual PPIs (e.g. binding orientations, hydrophobic regions/clefts 

of binding interfaces) are unknown. As a result of these collective characteristics of 

transcriptional PPIs, traditional screening, medicinal chemistry efforts, and rational design 

methodologies have led to limited success towards the discovery of novel small molecule 

modulators.86 Nevertheless, as described below, methodologies are being developed that 

demonstrate potential for the discovery of small molecules to target transcriptional PPIs. 
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Natural products to target transcriptional protein-protein interactions 

Natural products discovery offer promise towards targeting transcriptional PPIs; 

several natural products have recently been developed as tool compounds to target PPIs 

A. 

B. 

Figure 1.5. Small molecule modulation of diverse classes of protein-protein 
interactions. (A) Modulators of PPIs were categorized based on diverse classes of 
PPIs. An majority of known PPI modulators target PPIs with high affinity and small 
surface areas. (B) Examples of small molecules that target unique PPIs that represent 
each of the four PPI classes are provided. Figure adapted from Cesa et al. (2015). 
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(Figure 1.6).87–91 To highlight the broad utility of natural products, approximately 80% of 

all drugs available on the U.S. market in 2012 were natural products or derived from 

natural products.92,93 Natural product compounds derive great utility from their inherent 

structural complexity, ability to maintain high degrees of rigidity and chirality, and vast 

diversity of molecular structures and scaffolds.87 In fact, nearly 40% of compounds 

represented in the Dictionary of Natural Products contain unique structural elements that 

are not otherwise represented in purely synthetic compounds.95 Furthermore, it is thought 

that only a small fraction, particularly from the marine environment, of the total chemical 

matter that nature has designed has been identified by the scientific community 

suggesting that majority of potential compounds are still to be discovered.96–98 The 

discovery of these novel molecules should be forthcoming due to recent advances in 

fermentation, sample collection techniques, structural elucidation technologies, and 

increased exploration into the marine environment and other underutilized biological 

sources.99,100  
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The discovery of lichen-derived natural products, sekikaic acid, and lobaric acid, 

that target CBP/p300 KIX represent an excellent example of the potential that natural 

products can provide for modulation of transcriptional PPIs. These molecules, which 

belong to a class of molecules known as depsides and depsidones, were identified using 

an iterative screening strategy against the CBP KIX-MLL PPI.87,101 While high-throughput 

screening of a traditional drug-like small molecule library (50,000+ compounds) had failed 

to identify inhibitors of this PPI, high-throughput screening of natural product extracts 

isolated from marine sediment-derived microbes, cyanobacteria, lichens, and sponges 

(16,320 total) provided sekikaic acid and lobaric acid, both of which are potent inhibitors 

Figure 1.6. Examples of natural product small molecules. The field of natural 
products represents a broad range of structurally diverse molecules that have been 
(A) highly successful drugs and (B) capable of selectively inhibiting protein-protein 
interactions. 

A. 

B. 
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of CBP KIX-MLL (IC50 of 17 µM and 25 µM, respectively). Subsequent computational 

analysis of sekikaic acid revealed that its lowest energy suite of conformations 

demonstrate that the molecule adopts an orientation that mimics an amphipathic α-helix, 

suggesting that the depside class of natural products likely function as helical mimetics.  

 

Fragment screening to target transcriptional protein-protein interactions  

The screening of fragment-based libraries for the discovery of small molecule 

inhibitors of PPIs has become increasingly common since pioneering work in this area 

during the mid-1990s.102–105 Fragments are small molecules that typically obey a ‘Rule of 

Three’ (MW less than 300 Da, no more than three each of hydrogen bond donors and 

acceptors); though these are rules are not strictly followed.106–108 There are several 

benefits of screening fragments instead of traditional chemical libraries.109 Fragments can 

be screened at high concentrations due to their high solubility in aqueous solutions and 

their ability to maintain high ligand efficiency. Discovered fragments tend to rely more on 

hydrogen bond interactions with the protein-of-interest than traditional small molecules 

which rely more heavily on hydrophobic interactions.104 Additionally, specific to the 

screening of PPIs, fragments are capable of interacting with one of the typically three to 

five regions critical for interaction with binding partners within a broad interface and have 

been successful in targeting highly dynamic regions within proteins.68 Following initial 

fragment discovery against a target PPI, fragments can then combined with other hot 

fragments or optimized into more potent compounds using structure-activity 

relationships.102 Examples of fragments that target PPIs are shown in Table 1.1. 
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Table 1.1. Examples of small molecules fragment modulators of protein-
protein interactions. Fragments that modulate PPIs are shown; To demonstrate the 
power of fragment screening, ‘ABT-263’ and ‘IL-2 inhibitor’ are shown alongside the 
initial fragment(s) that lead to their discovery.  
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Fragment screening using NMR methodologies 

While multiple methodologies (e.g. surface plasmon resonance and Tethering) 

have been successfully used for the screening of fragment libraries, protein-observed 

NMR methods have been the most commonly and effectively used, particularly against 

PPIs.110–117 First, NMR chemical shifts are extremely sensitive to their surrounding 

chemical environment, giving rise to an assay that is capable of efficient detection of 

weakly associating fragments (single-digit millimolar binding affinities). Secondly, NMR 

experiments allow for protein-ligand interactions to be determined in solution near 

physiological conditions and unrestricted by artificial matrices, offering a native, 

well-folded protein. NMR screening can provide a large amount of structural and 

biochemical characterization of protein-fragment interactions, even during the screening 

process itself. This structural and biochemical characterization can include determination 

of the binding location and binding affinity of the hit fragment towards the protein.118,119  

Most protein-observed NMR strategies for screening use two-dimensional 

heteronuclear single quantum correlation (HSQC) techniques that make use of 15N-1H 

correlations in amide bonds or 13C-1H bond correlations in methyl groups of amino acid 

side chains.120 While HSQC protein NMR is most common and can provide the highest 

degree of structural information during the screening process, it does have serious 
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limitations. HSQC NMR requires a homogenous protein sample, long instrumental time 

(upwards of two hours per experiment), expensive isotopic reagents to produce 

15N-labeled or 13C-labeled protein, and time-intensive analysis of the resultant 

two-dimensional NMR spectra. Additionally, with regards to 1H, 15N-HSQC, this method 

only detects chemical shift perturbations of amide N-H bonds, offering minimal, if any, 

insight into side chain interactions. 

Protein-observed 19F-NMR (PrOF NMR) represents an alternative NMR method 

for fragment screening. PrOF NMR requires the incorporation of 19F through the 

integration of fluorinated amino acids into a protein-of-interest or through chemical 

modification to covalently label a residue onto the protein-of-interest with a fluorinated 

molecule.121,122 Relative to HSQC methodologies, PrOF NMR is desirable for a its short 

experimental time (as short as five minutes per experiment), rapid analysis of one-

dimensional spectra, and the ability to observe side chain interactions of a select number 

of residues.122,123 Inherent advantages also offered by the 19F nucleus include its native 

isotopic abundance (100%), magnetic sensitivity (83% as sensitive as 1H), and its low 

background signal in protein NMR (19F does not occur naturally in proteins).124 This 

strategy has been recently applied for the successful discovery of fragment-based 

inhibitors of the CBP/p300 KIX domain and its PPI network and as the orthogonal 

screening strategy against the SPRY-domain-containing SOCS box protein 2 and 

AMA1.125–127 Additionally, this methodology has been successfully applied for the 

simultaneous screening of two proteins of similar structure (BrdT and BPTF), indicating 

that PrOF NMR offers a tremendous opportunity for in-screen fragment filtering of protein 

selectivity.117  
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D. Thesis Summary  

The subsequent chapters of this dissertation describe the protein-protein 

interaction network of the Mediator subunit Med25 and the discovery of small molecule 

inhibitors that target Med25-activator PPIs. Med25 functions through its activator 

interaction domain (AcID) to bridge transcriptional activators to the Mediator complex to 

enable activated transcription of their target gene products. Specifically, Med25 AcID 

interacts with transcriptional activators that include the herpes simplex viral activator 

VP16, the activator ERM/ETV5 (implicated in cancer progression and metastasis), and 

the hypoxic stress response activator ATF6α (involved in the unfolded protein 

response).128–130 However, many questions regarding the selectivity of activators for 

unique Med25 binding sites and individual modes of molecular recognition remained 

unanswered prior to beginning this project.  

This dissertation describes the discrete binding modes between Med25 AcID and 

its protein partners as well as the development of small molecule inhibitors of the AcID 

motif. These small molecules will be invariably useful towards the dissection of Med25 

AcID function in vitro and in the cellular context as mechanistic probes in the elucidation 

of the role of Med25 in the regulation of transcriptional programs. Chapter Two describes 

the interaction between Med25 AcID and two of its protein partners, CBP and ATF6α, 

using HSQC NMR. Additionally, this chapter describes a mutagenesis study that utilized 

protein mutagenesis coupled with fluorescence polarization assays to investigate Med25 

AcID interactions with each of its native partners. Chapter Three expands upon the 

findings of Chapter Two to enable the generation of binding models that describe Med25 

AcID and its interactions with discrete protein ligands using PrOF NMR of Med25 AcID. 
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Furthermore, this chapter leverages PrOF NMR to gain mechanistic understanding of 

Med25-small molecule interactions. Chapter Four describes the discovery of small 

molecule inhibitors of Med25 AcID. First, this chapter describes the identification of 

preliminary hit fragments using PrOF NMR of Med25 AcID to enable a rapid screening 

process. Finally, this chapter describes the identification and mechanism of action of a 

novel natural product that potently targets Med25 AcID and its PPI network.   
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Chapter Two 
 

Investigation of Med25 AcID and its protein-protein network 
 

A. Abstract 

The activator interaction domain (AcID) of Med25 is a transcriptional coactivation 

motif that interacts with several transcriptional activators that are critical for normal cellular 

processes and certain disease states, including the ETV/PEA3 family transcription 

factors, the herpes simplex viral protein VP16, the oxidative stress response factor 

ATF6α, and the master coactivator CBP.1–4 However, Med25 AcID biochemistry and its 

modes of molecular recognition for individual binding targets had been poorly understood 

prior to this study. This chapter explores the binding modes for unique Med25 AcID-

activator interactions to describe putative binding sites of the AcID domain. Additionally, 

this chapter describes the identification and biochemical characterization of the minimal 

interacting sequences of CBP and ATF6α for Med25 AcID. These findings demonstrate 

that Med25 AcID contains two binding sites that are 180° apart, termed the H1 and H2 

sites, and a putative third site flanked by H1 and H2. Data suggests that some activator 

ligands (VP16 H1 and VP16 H2, in particular) are capable of binding at multiple sites on 

Med25 AcID. Others, such as ERM and ATF6α bind selectively at one site. This chapter 

builds a critical foundation for understanding the Med25 AcID-activator interactions further 

                                            
Several collaborators provided research assistance throughout Chapter Two. Dr. Felicia Gray (University 
of Michigan) collected HSQC NMR data of the Med25 AcID-ATF6α and Med25 AcID-CBP interactions. 
Kevon Stanford (University of Michigan) assisted with the analysis of the minimal ATF6α sequence and 
synthesized ATF6α(53-75). Andy Henderson (University of Michigan) identified VP16 G450C as a peptide 
capable of efficiently Tethering to Med25 AcID and characterized its interactions with WT Med25 AcID. 
Collectively, Andy Henderson and I collected the data describing the effects of VP16 G450C on Med25 
AcID mutants. 
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explored using protein-observed 19F NMR in Chapter 3 and leveraged for small molecule 

discovery in Chapter 4. 

 

B. Introduction 

The protein-protein interactions (PPIs) between transcriptional coactivators and 

transcriptional activation domains (TADs) represent the molecular underpinnings of 

transcription and are therefore tightly regulated.5,6 Dysregulation of transcriptional PPI 

networks is common in disease states, and altered transcriptional networks are often 

either a cause or a direct effect of the disease.7,8 These PPIs are frequently transient, 

occur over large surface areas (>1500 Ǻ) and demonstrate weak-to-moderate binding 

affinity.9–11 The transcriptional coactivator involved in a particular PPI is typically capable 

of interacting with a wide array of TADs.12 Likewise, transcriptional activators are also 

known to bind multiple proteins. This capability to bind multiple ligands often results from 

the ability of the coactivator to adopt multiple conformations dependent upon TAD 

binding.5,13 A better understanding of the subtle differences in binding mode and 

conformations of the coactivator would allow for further study of the impact of these PPIs 

on transcription and their implications for disease .   

 

Mediator subunit Med25 and AcID motif 

Med25, a subunit of the Mediator complex, is a transcriptional coactivator that has 

recently been implicated as a critical protein in the recruitment of the pre-initiation 

complex and subsequent gene transcription for a number of TADs.1 Med25 consists of 

three unique motifs – a von Willebrand factor type A (VWA) domain that anchors Med25 
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to the multiprotein Mediator complex, a nuclear receptor (NR) box that is reported to 

interact with retinoic acid receptor α and the estrogen receptor α, and an activator 

interaction domain (AcID) that interacts with several TADs implicated in disease.1–4,14,15 

Transcriptional activators reported to interact with Med25 AcID include VP16, a 

component of the herpes simplex virus responsible for lytic infections1,16; ERM, a member 

of the Ets family of transcription factors that has been implicated in cancer progression 

and metastasis2,17,18; and ATF6α, an endoplasmic reticulum stress response transcription 

factor that is involved in the unfolded protein response.3,19,20 Additionally, the master 

coactivator CBP has been reported to interact with Med25 AcID; the biochemical rationale 

for this PPI is still relatively unknown.4  

 

 The AcID motif is an unprecedented structural fold among transcriptional 

coactivators, because it consists of a central β-barrel with three surrounding α-helices.21–

23 Typical transcriptional coactivator motifs, such as KIX and TAZ domains, consist 

primarily of α-helices.24,25 This motif is also unique in that it is only found in Med25 and 

Prostate Tumor Overexpressed 1 (PTOV1).26 Interestingly, PTOV1, which contains two 

Figure 2.1. Domain architecture of Med25 and the structure of the AcID motif. At 
left, the domain architecture of Med25 (one AcID motif) and PTOV1 (two AcID motifs). 
At right, a cartoon image of Med25 AcID to demonstrate central β-barrel with three 
surrounding α-helices. (PDB 2XNF) 
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AcID motifs, is overexpressed in a variety of cancers while not expressed at detectable 

levels in healthy tissues.27–29 Additionally, it has been shown to compete with Med25 for 

interaction with CBP.26 

Med25 AcID-activator protein-protein interactions 

Previous NMR studies have reported on the interactions between Med25 AcID and 

the two canonical VP16 TADs, termed VP16 H1 and VP16 H2.21,23 These data 

demonstrated that Med25 AcID contained at least two presumed binding sites. Titration 

of VP16(413-451), the H1 TAD, into 15N-labeled Med25 AcID perturbed specific residues 

in the cleft of Med25 AcID formed by β1–β3–β5 and α2 (Figure 2.2.A).23 This cleft of 

Med25 AcID is hereby referred to as the H1 site. Similarly, titration of VP16(452-490), the 

H2 TAD, into 15N-labeled Med25 AcID perturbed specific residues in the cleft of Med25 

AcID formed by α1 and β6–β7–β4 (Figure 2.2.B).21 This region of Med25 AcID is hereby 

referred to as the H2 site. Additional reports of 1H,15N-HSQC NMR studies of Med25 AcID 

in complex with ERM/ETV5 and ETV4 TADs1 found that the TADs of both bound to the 

H1 site.17,3 A third putative site within Med25 AcID, formed at the junction of β4-β2 and 

α2, was also recently reported to interact with the DNA-binding domain (DBD) of ETV4, 

as demonstrated by 1H,15N-HSQC NMR (Figure 2.2.C). 

 However, even with these published reports, many questions regarding the 

selectivity of peptide ligands for unique binding sites and individual modes of molecular 

recognition remain. For example, the Med25-VP16 NMR publications disagree above the 

relative importance of the H1 versus H2 binding sites for interaction with VP16 TADs and 

subsequent VP16 transcriptional activation.21,23 This discrepancy requires a rigorous 

analysis of the binding determinants of each site and the selectivity of differing activator 
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ligands for one site over the others. Additionally, the minimal interacting regions of CBP 

and ATF6α have not been reported. Identification of those sequences would allow for the 

biochemical characterization of these proteins with the AcID motif of Med25. 

 

H1 site H2 site 

β4 

β7 

β6 

α1 

β3 
β5 

β1 
α3 

Figure 2.2. Med25 AcID contains multiple binding sites. (A)The H1 binding site 
(teal), as defined by Milbradt et al. (2011)23, is formed by β1–β3–β5 and α2. (B) The 
H2 binding site (red), as defined by Vojnic et al. (2011)21, is formed by α1 and β6–β7–
β4. (C) A proposed third binding site (green), as defined by Currie et. al. (2017)30, is 
formed by β4-β2 and α2. (PDB 2XNF) 

Third site (~90° rotation from H1 site) 

A. B. 

C. 

β4 

β2 
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Role of electrostatic contacts in Med25 PPIs 

Electrostatic contacts have been shown to play a significant role in activator-

coactivator PPIs, consistent with the acidic nature of TAD sequences.31 Thus, it had been 

expected that Med25 AcID PPIs might also be dependent on electrostatic contacts to 

drive the binding of acidic TADs to the highly basic AcID motif. Experiments performed 

by Steve Sturlis (Mapp lab, University of Michigan) demonstrated that a 10 fold increase 

in the concentration of NaCl in fluorescence polarization (FP) experiments resulted in a 

>30 fold decrease in affinity of the VP16 peptides for Med25 AcID. This result is consistent 

with Med25 AcID being dependent upon electrostatic interactions. It was hypothesized 

that electrostatic interactions could be leveraged for the study of one Med25 binding site 

at a time, allowing for observation of activator interactions that might occur selectively 

within that binding site.  

 

C. Results and discussion 

Characterization of the Med25 AcID-CBP protein-protein interaction 

Previous work had demonstrated that GST-tagged CBP(1-460) interacted 

specifically with the AcID domain of Med25 in vitro.4 While coactivator-coactivator PPIs 

are common (e.g. CBP iBiD interacts with steroid receptor coactivator 132), the Med25-

CBP interaction is interesting because CBP was thought to be functioning as a TAD 

mimic. All other reported PPIs involving Med25 AcID represented more traditional 

activator-coactivator interactions. As such, more in-depth biochemical study of the CBP-

Med25 PPI was intriguing but required the discovery of a minimal sequence of CBP 

necessary for the PPI than the N-terminal 460 residues.  
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An analysis using the Basic Local Alignment Search Tool (BLAST) of CBP(1-460) 

against the transcriptional activation domain of VP16, found that CBP(20-44) shared 

homology (38% identity, 52% similar) with a portion of the VP16 activation sequence 

(Figure 2.3).33 Like the VP16 TAD, CBP(20-44) is very negatively charged (-7 charge) 

and contains a high percentage of aromatic and bulky hydrophobic residues. 

Following the identification of the short sequence within CBP that shared homology 

with a VP16 TAD, a small panel of CBP-derived peptides extending from residue 20 

through residue 76 of CBP were synthesized. This encompassed the entirety of the 

predicted TAD-like sequence from 20-44 as well as additional patches of hydrophobic 

residues and a predicted α-helical sequence C-terminal to that sequence. The CBP(20-

44) sequence in particular had many of the critical characteristics of a canonical TAD, 

including a high number of negatively charged and aromatic amino acids as well as a 

region predicted to adopt an α-helical structure.31,34 Six peptides in total were designed 

and synthesized – CBP(20-44), CBP(20-55), CBP(30-44), CBP(33-55), CBP(50-64), and 

CBP(59-76). Each peptide was appended with a N-terminal fluorescein and an 

accompanying β-alanine linker for use in FP assays to detect direct binding with Med25 

AcID.   

Figure 2.3. Sequence alignment of CBP(20-44) and VP16(454-486). A basic local 
alignment search of CBP(1-460) demonstrated that CBP(20-44) was homologous to 
the VP16 H2 transcriptional activation domain. CBP(20-44) shares numerous acidic 
and hydrophobic residues in common with the VP16 sequence. 
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 FP assays were consistent with a model in which residues 20-44 of CBP are the 

primary determinant for the interaction between Med25 AcID and the N-terminal region 

of CBP, as CBP(20-44) peptide bound Med25 AcID with a dissociation constant of 1.0 ± 

0.1 µM. Binding affinity for Med25 AcID was not increased by shortening or extending this 

sequence, as evidenced by CBP(30-44) (Kd = 5.9 ± 0.3 µM) and with CBP(20-55) (Kd = 

2.5 ± 0.3 µM) respectively. The most C-terminal peptides tested, CBP(50-64) and 

CBP(59-76), demonstrated very limited interaction with Med25 AcID with dissociation 

constants of 115 ± 11.1 µM and > 500 µM respectively. These results were unsurprising, 

 Figure 2.4. Minimal Med25 AcID-interacting sequences of CBP. (A) Sequence of 
CBP from 20-76. Predicted α-helical regions, from 32-38 and from 62-75, are bold and 
underlined. Synthesized peptides are shown, labeled and depicted as colored boxes, 
beneath their corresponding sequences. (B) Direct binding experiments between 
fluorescein-labeled CBP peptides and purified Med25 AcID. Binding curves are 
colored to match the sequences shown in (A). Data curves reported are average and 
standard deviations of triplicates of two independent experiments. 
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given the relative lack of negative charge present at the C-terminal region of the CBP(20-

76) sequence.    

 A variant of the CBP(20-44) peptide replacing the N-terminal fluorescein with a 

acetyl group was synthesized to demonstrate that the observed PPI did not result from a 

specific interaction between Med25 AcID and fluorescein itself. In FP experiments with a 

50% bound complex of Med25 AcID with fluorescein labeled CBP(20-44), acetylated 

CBP(20-44) was capable of disrupting this complex with a Ki of 9.4 ± 0.8 µM  (Figure 2.5). 

This level of inhibition, approximately 10x less than the binding affinity for Fl-CBP(20-44), 

suggests that the fluorescein at the N-terminus of CBP(20-44) peptide does contribute 

slightly to the direct binding FP experiment. However, this degree of increased binding 

affinity can be explained by the hydrophobicity of fluorescein. 

 

Following confirmation that CBP(20-44) bound to Med25 AcID in FP experiments, 

1H-15N-HSQC experiments were performed to determine the binding site(s) of Med25 

AcID responsible for this PPI. Acetylated CBP(20-44) peptide was titrated into 15N-labeled 

Med25 AcID at 0, 1, 2, and 5 equivalents of peptide relative to protein. This titration 

demonstrated dose-dependent chemical shift perturbations of backbone amide bonds of 

Figure 2.5. Acetylated CBP(20-44) inhibits Med25 AcID interaction with 
Fluorescein-CBP(20-44). At relative fraction bound of 1.0, Med25 AcID was 50% 
bound with Fl-CBP(20-44). The data curve reported provides representative averages 
and standard deviations of triplicates. 
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selected Med25 AcID residues (Figures 2.6, 2.7, 2.8). These dose-dependent chemical 

shifts demonstrated that Med25 AcID makes a specific PPI with CBP(20-44) and retention 

of most 1H-15N resonances suggests that the overall structural fold of the protein remains 

intact.  

 

Figure 2.6. 1H-15N-HSQC NMR spectra of Med25 AcID-CBP(20-44) complexes. 
An overlay of the HSQC spectra of 15N-labeled Med25 AcID with DMSO (black), one 
equivalent of CBP(20-44) (light blue), two equivalents of CBP(20-44) (dark blue), and 
five equivalents of CBP(20-44) (pink) is shown.  
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Peaks in all of the collected HSQC spectra were assigned to specific residues using both 

a previously published NMR assignment21 and a de novo assignment performed by Andy 

Henderson (Mapp lab, University of Michigan). Notable residues of Med25 AcID that are 

most significantly affected by the addition of CBP(20-44) include residues located within 

the H1 face along β2/β1/β5 and α3 (L406, Q409, E410, K413, M450, Q451, C497, V498, 

A504, C506, N535, and G536) in addition to the H2 face along β4/β7/β6 and α1 (G462, 

L464, R466, N467, R469, V471, Q472, M512, L513, S516, G524, and L525). There were 

also several shifted peaks that correspond to residues that sit along β1/β2, the C-terminal 

Figure 2.7. Chemical shift perturbations within Med25 AcID induced by 
saturating CBP(20-44) conditions. The magnitude of chemical shift perturbations, 
in Hz, are shown upon saturation of 15N Med25 AcID with five equivalents CBP(20-
44). Residues that shift 1-2 standard deviation (SD) above the mean (light blue), >2 
standard deviations above the mean (dark blue), and that broaden into noise (red) 
are considered to be significantly affected by CBP(20-44).  

M e d 2 5  A c ID  -  C B P  t itra t io n

R e s id u e


 C

h
e

m
ic

a
l 

S
h

if
t 

(H
z

)

3
9

5

4
0

0

4
0

5

4
1

0

4
1

5

4
2

0

4
2

5

4
3

0

4
3

5

4
4

0

4
4

5

4
5

0

4
5

5

4
6

0

4
6

5

4
7

0

4
7

5

4
8

0

4
8

5

4
9

0

4
9

5

5
0

0

5
0

5

5
1

0

5
1

5

5
2

0

5
2

5

5
3

0

5
3

5

5
4

0

5
4

5

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1  S D

2  S D

B ro a d e n e d  p e a k



40 
 

end of β4, α2, and on the loop between β2-β3 (L400, L406, Q430, N434, E437, N438, 

L439, K440, F473, H474 L483, K484, G485, and L486).  

 

These data do not demonstrate that CBP(20-44) specifically interacts at the H1 or 

H2 sites of Med25 AcID. This indicates that CBP(20-44) binds to Med25 AcID with a 

Figure 2.8. Chemical shift perturbations within Med25 AcID induced by 
saturating CBP(20-44) conditions. Mapped onto the structure of Med25 AcID are 
chemical shift perturbations upon binding to five equivalents CBP(20-44). Increasing 
shades of red indicate a gradient of increasing chemical shift perturbations. Red 
balls indicate residues that show near-complete peak broadening. (PDB 2XNF) 

H1 site H2 site 

Proposed 3rd site 
~90° rotation from H1 site 
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mechanism that is distinct from previously described activator partners. Instead, these 

data suggest that CBP(20-44) could interact at a newly reported third binding site located 

at β2/β4/α2, 90° away from the H2 site.30 An interaction at this site would explain the high 

degree of significantly perturbed residues in that region of the protein. In the event that 

CBP(20-44) does interact at this third binding site, perturbation of residues in the H2 site 

would be explained by allosteric or through-molecule effects. Interestingly, this result is 

unexpected based on the BLAST analysis that demonstrated that CBP(20-44) was 

homologous to VP16 H1. Based on this homology experiment, it might be expected that 

CBP(20-44) would interact at the H1 site of Med25 AcID; That CBP(20-44) does not 

interact specifically at that site suggests that VP16 H1 itself might not be specific for the 

H1 site. Additional experiments described in Chapter 2 (mutagenesis at H1 and H2 

binding sites) and in Chapter 3 (protein-observed 19F NMR) provide additional evidence 

that CBP(20-44) interacts in a manner distinct from activators that directly bind at the H1 

and H2 sites (such as VP16 H1, VP16 H2, ERM) and that it likely binds at the putative 

third site formed by β2/β4/α2.  

 

Characterization of the Med25 AcID-ATF6α protein-protein interaction 

Similar to the N-terminus of CBP, previous reports demonstrated that the N-

terminal 150-residue activation domain of ATF6α interacted with Med25 AcID in vitro.3 

However, the minimal binding region of ATF6α for Med25 AcID was unknown. An analysis 

using BLAST was performed to discover that residues 42-67 of ATF6α shared homology 

(38% identity, 48% similarity) with the VP16 H1 TAD, an interacting partner for Med25 

AcID21–23,33. Critically, this sequence of ATF6α, similarly to VP16 H1, bears a net negative 
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charge (-9 charge for ATF6α compared to -10 charge for the homologous region of VP16 

H1) and is relatively hydrophobic (Figure 2.9).  

 

Again, in similar manner as was performed after discovery of CBP(20-44), a small 

panel of ATF6α-derived peptides surrounding the region homologous to the VP16 H1 

TAD were synthesized. This panel of peptides focused on synthesis of short sequences 

that were richest in negatively charged amino acids (Glu/Asp) and aromatic amino acids 

(Phe/Tyr/Trp) as well as predicted α-helical regions (D28-T39 and E43-A49). Recall that 

high proportion of negatively charged residues, amphipathic character, and a propensity 

to form α-helices are all common characteristics of TADs.34 Seven peptides in total were 

synthesized – ATF6α(13-33), ATF6α(28-49), ATF6α(40-66), ATF6α(52-75), ATF6α(63-

75), and ATF6α(66-80). The peptides of greatest interest at the time of synthesis were 

ATF6α(40-66), designed to capture the entirety of the region homologous to VP16 H1; 

and ATF6α(28-49), designed to encompass each of the predicted α-helices. Each peptide 

was appended with a N-terminal fluorescein and an accompanying β-alanine linker for 

use in FP assays to detect direct binding with Med25 AcID. 

Figure 2.9. Sequence alignment of ATF6α(42-67) and VP16(423-448). A basic 
local alignment search of ATF6α(1-150) demonstrated that ATF6α(42-67) was 
homologous to the VP16 H1 transcriptional activation domain. ATF6α(42-67) shares 
numerous acidic and hydrophobic residues in common with the VP16 sequence. 
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 Each of the peptides synthesized demonstrated single-digit micromolar binding 

affinities towards Med25 AcID. Further, two peptides - ATF6α(40-66) and ATF6α(63-75) 

– exhibited binding affinities in submicromolar range. Collectively, this suggests that the 

ATF6α TAD is quite lengthy, spanning the majority of the 13-80 amino acid region that 

was explored. Since negatively charged and aromatic residues are dispersed throughout 

this ATF6α sequence, this observation is perhaps not unlikely. For future study of the 

Med25-ATF6α PPI, the ATF6α(40-66) peptide was chosen because of its homology with 

VP16 H1 and its tight binding affinity (KD = 0.50 ± 0.02 µM).  

 

 Figure 2.10. Minimal Med25 AcID-interacting sequences of ATF6α. (A) Sequence 
of ATF6α from 13-80. Predicted α-helical regions, from 28-39 and from 43-49, are bold 
and underlined. Synthesized peptides are shown, labeled and depicted as colored 
boxes, beneath their corresponding sequences. (B) Direct binding experiments 
between fluorescein-labeled ATF6α peptides and purified Med25 AcID. Binding curves 
are colored to match the sequences shown in (A). Data curves reported are average 
and standard deviations of triplicates of two independent experiments. Kev 
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Next, 1H-15N-HSQC experiments were performed to determine the binding site(s) of 

Med25 AcID responsible for its interaction with ATF6α. Acetylated ATF6α(40-66) peptide 

was titrated into 15N-labeled Med25 AcID at 0, 0.25, 0.5, 1 and 3 equivalents of peptide 

relative to protein (Figures 2.11, 2.12, 2.13). Dose-responsive chemical shift perturbations 

of selected residues demonstrated that Med25 AcID specifically interacts with ATF6α(40-

66) and that the peptide does not destabilize the overall structural fold of Med25 AcID.  

 

Figure 2.12. Chemical shift perturbations within Med25 AcID induced by 
saturating ATF6α conditions. The magnitude of chemical shift perturbations, in Hz, 
are shown upon saturation of 15N Med25 AcID with three equivalents ATF6α(40-66). 
Residues that shift 1-2 standard deviation (SD) above the mean (light blue) and >2 
standard deviations above the mean (dark blue) are considered to be significantly 
affected by ATF6α(40-66). 
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As with CBP(20-44) titration, peaks in all of the collected HSQC spectra were 

assigned to specific residues using both a previously published NMR assignment21 and 

a de novo assignment performed by Andy Henderson (Mapp lab, University of Michigan). 

Notably, only residues of Med25 AcID located on the H2 face are significantly affected by 

the addition of ATF6α(40-66). These affected residues located within the cleft of Med25 

formed by β4/β7/β6, α1, and α2 include G462, L464, R466, V471, H474, G485, R487, 

I488, M489, G490, G492, L513, L514, S516, M523, G524, and L525. The majority of 

these perturbed residues cluster within the H2 site of Med25 AcID in stark contrast to the 

similar experiment performed with CBP(20-44). There are minor, but not significant (>1 

SD chemical shift), perturbations at the H1 face. These minor perturbations are likely a 

result of either a slight conformational change within Med25 AcID or through-molecule 

H1 site 

Figure 2.13. Chemical shift perturbations within Med25 AcID induced by 
saturating ATF6α conditions. Mapped onto the structure of Med25 AcID are 
chemical shift perturbations upon binding to three equivalents ATF6α(40-66). 
Increasing shades of red indicate increasing magnitude of chemical shift; Note that 
most of the significantly perturbed residues cluster around the H2 site. (PDB 2XNF) 

H2 site 
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effects. These data are consistent with ATF6α(40-66) binding specifically to the H2 site 

of Med25 AcID.  

 

Mutational analysis of Med25 to define binding models 

 Previous studies suggested that the two TADs of VP16 bind opposing faces of 

Med25 AcID. VP16 H1 binds to Med25 AcID at the surface formed by β1–β3–β5 and α223 

and that VP16 H2 binds at the surface formed by α1 and β6–β7–β421. However, the 

specificity of peptides for one site over the other remained an open and unanswered 

question. To better understand the specificity of individual binding partners towards each 

of the two binding sites, it was hypothesized that mutagenesis of specific Med25 AcID 

residues at each binding site could provide a more in-depth picture of these PPIs. Due to 

the observation made by others in the Mapp lab that charge-charge interactions between 

the positively charged Med25 AcID protein and negatively charged peptide ligands is a 

primary driver of these PPIs, most residues were mutated to introduce a negatively 

charged side chain (Glu or Asp). The introduction of negative charge at a single site was 

hypothesized to function as a mechanism to functionally block one site of Med25 while 

leaving the opposite site unaffected. This would allow for a determination of the selectivity 

of each discrete peptide ligands for unique binding sites on Med25 AcID. For example, it 

was anticipated that a Met-to-Glu mutation at residue 523, located in the center of the H2 

face and perturbed by ATF6α in HSQC NMR titrations, would cause a dramatic loss in 

binding affinity for ATF6α(40-66) but have marginal effect on ERM(38-68), a ligand 

predicted to bind at the H1 face. 
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Initial residues selected for mutagenesis to introduce a negatively charged residue 

at the H1 binding face - V405, L423, Q451, H499, and R538 -  were chosen based on 

analysis of published HSQC NMR data of the Med25-ERM PPI.17 All mutants, following 

Figure 2.14. Mutagenesis at H1 site of Med25 AcID. (A) Residues selected for 
mutagenesis based on HSQC NMR titrations with ERM peptides. (B) Circular 
dichroism spectra of WT Med25 AcID and H1 site mutants. (C) Binding affinities of 
Med25-interacting peptides for H1 site mutants relative to WT Med25 AcID, as 
measured by FP. Bar graphs represent the average and standard deviations of the 
fold change of three independent experiments performed in triplicate. 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
(𝐾𝐷 for Mutant Med25 AcID-peptide interaction)

(𝐾𝐷 for WT Med25 AcID-peptide interaction)
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site-directed mutagenesis of a plasmid containing WT Med25 AcID, were expressed and 

purified following standard conditions defined for WT Med25 AcID. Mutant proteins were 

then subjected to a battery of biochemical experiments - FP assays against Med25-

interacting peptide ligands, circular dichroism, and CD-monitored thermal denaturation – 

to determine the functional impact of the mutation (Figure 2.14). Circular dichroism, which 

measures protein secondary structure, suggested that most mutant proteins retained WT-

like secondary structure. L423E and H499E both demonstrated minima at 208 and 228 

nm that were of lesser magnitude than WT Med25 AcID. This suggests that these 

mutations had a slight effect on the helicity of the protein fold. This is not unexpected as 

L423E introduces a negative charge in the proximity of α2 while H499E places a negative 

charge in the proximity of α3. Interestingly, all single-point mutants tested behaved 

similarly in CD-monitored thermal denaturation experiments with 12-15% losses in 

melting temperature (58-60 °C compared to 71 °C for WT Med25 AcID). Taken together, 

these experiments demonstrate that mutations at the H1 face of Med25 AcID could result 

in minor losses in stability but have little effect on the overall structural integrity of Med25 

AcID.  

It had been anticipated that the introduction of glutamic acid within the H1 binding 

face would result in large losses in apparent binding affinity relative to WT Med25 AcID 

for peptides predicted to preferentially bind at the H1 face such as ERM(38-68), VP16 

(438-454) – the helical region of VP16 H1 – and VP16(413-451) – the entirety of the VP16 

H1 TAD. However, FP experiments utilizing these mutants demonstrated that they 

conferred only a modest effect on the binding affinities for Med25-interacting ligands. 

V405E and L423E demonstrated a less than two-fold loss in binding affinity for all peptides 
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tested relative to WT Med25 AcID. This could indicate that these two residues are outside 

of the H1 site, as neither mutation provided significant effects (greater than 3-fold 

change). Q451E, H499E, and R538E all demonstrated a significant effect on the binding 

interaction with ERM(38-68) with 3.0-, 3.5-, and 5.9- fold losses in binding affinity relative 

to WT, respectively. These data are consistent with ERM(38-68) binding preferentially to 

the H1 site.  However, they do suggest that either a single mutation is not sufficient to 

fully block the H1 site or that ERM is capable of compensatory interactions at the H2 site. 

Q451E, H499E, and R538E did not significantly affect any other peptide ligand. 

Collectively, these data suggest that the H1 binding site is less dependent on electrostatic 

interactions and hotspot residues than previously assumed, that a single mutation is not 

sufficient to block the H1 site, and/or that the H1 site could allow for multiple 

conformations of binding.  
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Initial residues selected for mutagenesis at the H2 binding face – R466, R469, and 

M523 – were chosen based on HSQC NMR data of the Med25-ATF6α PPI (Figure 2.13). 

Negatively charged amino acids (Glu or Asp) were singly introduced at all three positions. 

A. B. 

C. 

Figure 2.15. Mutagenesis at H2 site of Med25 AcID. (A) Residues selected for 
mutagenesis based on HSQC NMR titrations with ATF6α(40-66). (B) Circular 
dichroism spectra of WT Med25 AcID and H2 site mutants. (C) Binding affinities of 
Med25-interacting peptides for H2 site mutants relative to WT Med25 AcID, as 
measured by FP. Bar graphs represent the average and standard deviations of the 
fold change of three independent experiments performed in triplicate. 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
(𝐾𝐷 for Mutant Med25 AcID-peptide interaction)

(𝐾𝐷 for WT Med25 AcID-peptide interaction)
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All mutants, following site-directed mutagenesis of parent Med25 plasmid, were 

expressed and purified following standard conditions defined for WT Med25 AcID. 

Circular dichroism demonstrated that single-point H2 mutant proteins (R466D, R466E, 

and M523E) retained the core secondary structure of WT Med25 AcID (Figure 2.15) with 

minor differences. CD spectra of R469E does have a minimum at 208 nm that is of 

meaningfully lesser magnitude than WT suggesting that this particular mutation affects 

the helical structure of Med25 AcID, potentially through disruption of α1. Additionally, each 

single-point mutant brought minor losses in protein stability in CD-observed thermal 

denaturation experiments (15-19% decrease in melting temperatures relative to WT 

Med25 AcID).  

Differing from the example of H1 mutations, FP experiments performed with 

R466D, R466E, and M523E demonstrated that introduction of negative charge within the 

predicted H2 binding face had dramatic effects on binding affinity for CBP(20-44), 

VP16(467-488) – the helical region of VP16 H2, and ATF6α(40-66). Specifically, the 

binding affinities of R466E Med25 AcID to CBP(20-44), VP16(467-488), and ATF6α(40-

66) were, respectively 6.7-fold, 14-fold, and 11-fold weaker than the corresponding 

interactions with WT Med25 AcID. The binding affinities of R466D Med25 AcID to 

CBP(20-44), VP16(467-488), and ATF6α(40-66) were, respectively, 8.1-fold, 11-fold, and 

6.3-fold weaker than the corresponding interactions with WT Med25 AcID. Finally, the 

binding affinities of M523E Med25 AcID to CBP(20-44), VP16(467-488), and ATF6α(40-

66) were, respectively, 11-fold, 9.4-fold, and 8.5-fold weaker than the corresponding 

interactions with WT Med25 AcID. These experiments corroborate earlier experiments 

indicating that the H2 site is dependent on electrostatic contacts between positive charges 
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of Med25 AcID and negatively charged TADs. Additionally, these findings suggest that 

the peptides derived from ATF6α, CBP, and VP16 H2 are specific interacting partners at 

the H2 face of Med25. If these peptide ligands could bind equally or nearly as well to the 

H1 face as to the H2 face, there would be a limited reduction in binding affinities to H2 

mutants relative to WT. These three single-point mutants did not show decreases in 

binding affinities that were nearly as dramatic for ERM(38-68), VP16(413-451) or 

VP16(438-454). The lack of large reductions in binding affinity for these peptides, 

particularly ERM(38-68), suggests that the binding interaction of these peptide ligands for 

Med25 is not dependent on the H2 face.  

The R469E mutation brought about a moderate but significant decrease in the 

binding affinity for all tested peptides. The minima observed at 208 nm and 228 nm, which 

represent α-helical character, in the CD spectrum of R469E were of lesser magnitude 

than that of WT Med25 AcID. Taken in concert, FP assays and CD analysis suggests that 

this mutation, with a side chain directed away from the center of the H2 binding face, 

could be affecting the structural integrity of Med25 AcID. It is possible that an introduction 

of negative charge at this position could result in the disruption of either α1 or α3. The 

D529R mutation was designed in part to function as a control mutation. D529 is positioned 

on α3, away from both the H1 and H2 faces, and was not predicted to be involved in any 

PPIs. D529R Med25 AcID retained WT-like secondary structure and showed no effect 

(0.9-1.1 fold change) toward any Med25-interacting peptides. 
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A. 

B. 

Figure 2.17 Mutagenesis to block H1 and H2 sites simultaneously. (A) Binding 
affinities of putative H1 site peptides for Med25 mutants relative to WT Med25 AcID, 
by FP. Bar graphs represent the average and standard deviations of the fold change 
of three independent experiments performed in triplicate. (B) Binding affinities of 
putative H2 site peptides for Med25 mutants relative to WT Med25 AcID.  

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
(𝐾𝐷 for Mutant Med25 AcID-peptide interaction)

(𝐾𝐷 for WT Med25 AcID-peptide interaction)
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To continue the investigation into peptide selectivity between the putative H1 and 

H2 sites, methods to inhibit function at both sites were desired. Knowledge from the single 

mutagenesis experiments was leveraged to generate two doubly mutated Med25 AcID 

variants - Q451E/M523E and R466D/M523E. 

An attempt to block the H1 and H2 faces simultaneously through the 

Q451E/M523E mutant was successful in corroborating that peptides believed to 

specifically target the H1 face – ERM(38-68) and VP16(413-451) – are capable of 

interacting at the H2 face (Figure 2.17.A). Q451E Med25 AcID bound ERM(38-68) 3.0-

fold less tightly than WT Med25 AcID; Q451E/M523E bound ERM(38-68) 9.9 times less 

tightly than WT Med25 AcID. The single mutants R466D and M523E, as well as double 

mutant R466D/M523E, had no effect on the binding of ERM(38-68). This single mutant 

data suggests that ERM(38-68) has a preference for interaction at the H1 site, as 

evidenced by impact of negative charge at H1 face alone but not at H2 face alone. 

However, the large increase in the magnitude of the effect in the case of Q451E/M523E 

definitively demonstrates that ERM(38-68) must be capable of interacting at the H2 face 

when/if the H1 face is blocked. In the case of the other ligand predicted by NMR to bind 

the H1 face, each of the three single-point mutants (Q451E, R466D, M523E) inhibited 

VP16(413-451) equally well with 3.0- to 4.0- fold losses in binding affinity relative to WT 

Med25 AcID. This suggested that, contrary to published HSQC NMR experiments, 

VP16(413-451) could bind equally well at both the H1 and H2 faces of Med25 AcID. The 

double mutant Q451E/M523E validated this finding, since blocking both sites resulted in 

24-fold loss in binding affinity. 
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The double mutagenesis was also effective at providing corroborating evidence 

that both ATF6α(40-66) and VP16(467-488) are highly selective/specific for the H2 face 

of Med25 AcID (Figure 2.17.B). The double mutant Q451E/M523E had nearly identical 

effects on binding affinity towards ATF6α(40-66) and VP16(467-488) as did M523E itself 

(9.4-fold loss in affinity vs. 8.6-fold loss against ATF6α(40-66); 9.0-fold loss in affinity vs. 

9.1-fold loss against VP16(467-488)). The inability of the H1 mutation to provide 

additional inhibitory benefit relative to a single H2 mutant demonstrates that neither 

peptide is affected by the blocking of the H1 face through the introduction of negative 

charge. Further, as anticipated, the double mutant R466D/M523E was more effective at 

inhibition of ATF6α(40-66) and VP16(467-488) than either single mutant. The CBP(20-

44) peptide, as in HSQC NMR experiments, behaved unlike all others. Neither double 

mutant was more effective at inhibition of CBP(20-44) than either R466D or M523E. In 

fact, Q451E/M523E bound CBP(20-44) more tightly (5.3-fold loss in binding affinity 

relative to WT) than M523E (11-fold loss in binding affinity). It is possible that this data 

suggests, in light of the HSQC NMR experiments, that CBP(20-44) is partially interacting 

at the putative third site of Med25 AcID. If this is the case, the inability of Q451E/M523E 

to replicate the effects of M523E alone could be explained by either a slight 

conformational change in Med25 AcID or an alteration in the orientation of the peptide 

interaction with the protein. 

A secondary method to block both the H1 and H2 faces simultaneously was 

explored using a combination of mutagenesis and covalently tethered peptide ligands. It 

had been discovered that a unique derivative of VP16(438-454) that incorporated a 

cysteine at the G450 position can form a disulfide linkage with C506 of Med25 AcID. C506 
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of Med25 AcID is positioned on a loop nearby the H1 face site and nearly 100% labeling 

with the G450C peptide can be achieved using disulfide Tethering35,36. HSQC NMR 

experiments of WT Med25 AcID tethered to G450C peptide demonstrate that the peptide 

does not destabilize the overall structure of the protein and that it likely interacts with the 

H1 face of Med25 AcID (Figure 2.18). Therefore, it was expected that the G450C peptide 

would function to block, or inhibit, the H1 face of Med25 AcID, likely more efficiently than 

does Q451E, R538E, or H499E.   

 Modifications performed in tandem (G450C peptide at H1 site; mutagenesis at H2 

site) designed to block both faces simultaneously performed similarly to the 

Q451E/M523E double mutation and corroborated the conclusions that were drawn from 

Figure 2.18. Chemical shift perturbations within Med25 AcID induced by 
tethered VP16 G450C peptide. Mapped onto the structure of Med25 AcID are 
chemical shift perturbations caused by formation of a covalent complex with VP16 
G450C peptide. Significantly perturbed residues are depicted in pink (>1 standard 
deviation from mean) and red (>2 standard deviation). Cys506 is depicted with red 
sphere. (PDB 2XNF) 
 

H1 face H2 face 
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that set of experiments for ERM(38-68), VP16(413-451), and VP16 H2 peptides (Figure 

2.19).  

 

B. 

A. 

Figure 2.19 Mutant Med25-G450C peptide complexes to block H1 and H2 sites 
simultaneously. (A) Binding affinities of putative H1 site peptides for Med25 mutants 
complexed to VP16 G450C relative to WT Med25 AcID, by FP. Bar graphs depict the 
average and standard deviations of the fold change of experiments performed in 
triplicate. (B) Binding affinities of putative H2 site peptides for Med25 mutants 
complexed to VP16 G450C relative to WT Med25 AcID, as measured by FP. 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
(𝐾𝐷 for Mutant Med25 AcID-peptide interaction)

(𝐾𝐷 for WT Med25 AcID-peptide interaction)
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Blocking either the H1 (G450C peptide complex) or H2 face (R466D) had 

negligible impact on the binding affinity of ERM(38-68) relative to WT Med25 AcID. 

However, a complex of R466D Med25 AcID tethered to G450C peptide bound ERM(38-

68) with a 8.8-fold weaker binding affinity than WT Med25 AcID. Blocking the H1 face 

(G450C peptide complex) caused a 13-fold loss in binding affinity towards VP16(413-

451); blocking the H2 face (R466D or M523E) caused a 4.0- to 5.5- fold loss in affinity. 

However, blocking both faces with mutant proteins, R466D and M523E, complexed to 

G450C peptide led to 67- and 77- fold losses in binding affinity, respectively. For each of 

these peptides, as had been shown in the Q451E/M523E set of experiments, these 

results add to the mountain of evidence suggesting that neither of ERM(38-68) nor 

VP16(413-451) binds exclusively to the H1 face. 

 Again, as had been shown in Q451E/M523E experiments, VP16 H2 is more 

specific for the H2 site than any of the presumed H1 peptides are for the H1 site. However, 

blocking the H1 site with G450C peptide proved to be more effective than the Q451E 

mutation. In the Q451E/M523E experiments, no additional inhibitory benefit against 

VP16(467-488) had been attributed to the Q451E mutation. However, the addition of 

G450C peptide to H2 mutant proteins did produce a more pronounced effect on the 

binding affinity of VP16(452-490) than R466D or M523E alone. R466D-G450C peptide 

complex bound VP16(452-490) with 23-fold decrease in binding affinity relative to WT 

Med25 AcID; R466D gave a 11-fold decrease. M523E-G450C peptide complex bound 

VP16(452-490) with 33-fold decrease in binding affinity relative to WT Med25 AcID; 

R466D gave a 23-fold decrease. This loss in specificity for the H2 site could be explained 

by a change in the peptide used during these experiments. VP16(452-490), the peptide 
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used in the mutant-G450C peptide experiments, is a larger VP16 H2-derived peptide than 

used in single and double mutagenesis work previously described. It is highly possible 

that the N-terminal portion of this construct is beginning to wrap around Med25 AcID and 

contacting the H1 site directly while the C-terminal portion is contacting the H2 site. The 

final peptide tested in this set of experiments, VP16(438-490), contains the helical region 

of VP16 H1 and the entirety of VP16 H2. It is known to interact with both the H1 and H2 

sites21 simultaneously. Each of the three single-site inhibitory methods – R466D, M523E, 

and G450C peptide – cause a significant loss in binding affinity relative to WT Med25 

AcID (8.9-, 15-, and 6.0- fold losses respectively). As anticipated, blocking both sites has 

a dramatic effect on binding to this particular peptide – R466D complexed with G450C 

peptide experienced a 46-fold loss in binding affinity relative to WT Med25 AcID and 

M523E complexed with G450C peptide experienced a 117-fold loss in binding affinity 

relative to WT Med25 AcID. 

  

D. Conclusions and future directions  

 Through the work outlined in this chapter, I set out to expand the understanding of 

the molecular underpinnings of the interactions between Med25 AcID and its binding 

partners. Previous literature reports had demonstrated that Med25 AcID contains two 

binding sites that interact with VP16 TADs and ERM(38-68)17,21,23. Additional data from 

the Mapp lab had determined that Med25 AcID-VP16 PPIs were dependent on 

electrostatic interactions between acidic TADs and basic amino acids on the surface of 

the AcID motif. However, the selectivity of unique activator ligands for single sites within  

Med25 AcID remained an open question at the beginning of this Chapter. In addition, the 
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minimal interacting regions of two Med25 AcID binding partners (CBP and ATF6α) had 

not yet been identified and the PPIs had not been biochemically characterized.  

 Using basic local alignment searches coupled with peptide synthesis and FP 

assays, the minimal regions of CBP and ATF6α that interact specifically with Med25 AcID 

were determined. Subsequent HSQC NMR suggested that CBP(20-44) bound Med25 

AcID did not interact specifically at one of the two previously reported binding sites for 

VP16 and that ATF6α(40-66) likely interacted at the H2 site of Med25 AcID.   

 The H1 and H2 sites of Med25 AcID were also investigated by selectively blocking 

each interface through the introduction of negative charges at the H1 and H2 sites using 

protein mutagenesis and the addition of a Tethered VP16 G450C peptide at the H1 site. 

Collectively, experiments to block the H2 site suggested that binding at the H2 site is 

more dependent on electrostatic interactions and ‘hot spot’ residues than the H1 site. 

Additionally, these data demonstrated that ATF6α and VP16 H2 preferentially interact at 

the H2 site. However, peptides predicted to bind the H1 site by HSQC NMR17,23 – ERM 

and VP16 H1 – did not demonstrate similar selectivity for the H1 site. Instead, ERM and 

VP16 H1 were both capable of binding to the H2 site when the H1 site was blocked, as 

demonstrated by the double H1/H2 site inhibition experiments.  

While the mutagenesis study and 1H, 15N-HSQC NMR experiments within this 

chapter and in the literature, are consistent in loosely describing the multi-site binding 

model of Med25 AcID, there remained uncertainty regarding the specific differences 

between discrete Med25 AcID binding partners. Each of the described binding sites are 

very large (estimated at ~1800 Å2), as determined by HSQC NMR, which leads to several 

questions. Does every protein partner orient itself in the same direction within a binding 
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site? Do protein ligands associate with the entirety of a binding site or just a portion of it? 

Furthermore, it has been suggested in this chapter that some peptide ligands (e.g. VP16 

H1) are capable of binding at the H1 and the H2 sites. What does this supposition mean 

for binding stoichiometry and the relative affinities that a ligand might have towards one 

binding site over another? Are some peptides capable of binding with >1:1 stoichiometry?  

 Many of these next-level mechanistic questions require higher levels of sensitivity 

than can be provided using either HSQC NMR or fluorescence polarization experiments. 

To overcome this sensitivity problem and to answer many of the questions posed above, 

protein-observed 19F-NMR of Med25 AcID and its PPI network will be described in 

Chapter 3. This burgeoning technique involves the incorporation of site-selective 19F 

nuclei into the side chains of Med25 AcID for the direct observation of individual protein-

protein and protein-ligand interactions. These 19F-incroporated residues are well-

dispersed across the binding sites of Med25 and allow for precise determination of 

binding locations, relative affinities between differing binding sites, and binding 

stoichiometry of each Med25-peptide interaction.  
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E. Materials and methods 

Reagents and Instrumentation 

Unless otherwise noted, chemical and biological reagents were obtained from commercial 

sources and were used without additional modification. Protein, peptide, and DNA 

concentrations were determined using a NanoDrop ND-1000 UV-Vis Spectrophotometer 

and/or a Beckman Spectrophotometer.  

 

Plasmids  

pET21b-Med25(394-543)-His6 was provided by Patrick Cramer. Mutant Med25 AcID 

plasmids Point mutations of pET21b-Med25(394-543)-His6 were generated using 

standard molecular biology protocols.  

 

Expression of Med25 AcID and Med25 AcID mutants  

All WT Med25 AcID and Med25 AcID mutants were expressed as follows. pET21b-

Med25(394-543)-His6 was transformed into chemically competent Rosetta pLysS cells 

(Novagen), plated onto LB/ampicillin/chloramphenicol agar, and incubated at 37 °C 

overnight. In the morning, agar plates were placed at 4 °C until further use. In the evening, 

a single colony from the transformed plate was placed into 25 mL Luria Broth with 0.1 

mg/mL ampicillin and 0.034 mg/mL chloramphenicol and incubated at 37 °C overnight at 

≥200 RPM. The following morning, 5-20 mL from the starter culture was added to 1 L 

Terrific Broth with 0.1 mg/mL ampicillin and bacteria were grown at 37 °C at ≥200 RPM 

to an OD600 of 0.8-1.0. Temperature was reduced to 20 °C for a minimum of thirty minutes 

prior to induction of protein expression with 0.2-0.5 mM IPTG. Bacteria were shaken 
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overnight at 20 °C at ≥200 RPM. The following morning, bacterial cultures were 

centrifuged at 7000 x g for 20 mins at 4 °C. Cell pellets were then stored at -80 °C prior 

to protein purification. 

 

Expression of 15N-labeled Med25 AcID 

pET21b-Med25(394-543)-His6 was transformed into chemically competent Rosetta 

pLysS cells (Novagen), plated onto LB/ampicillin/chloramphenicol agar, and incubated at 

37 °C overnight. In the morning, agar plates were placed at 4 °C until further use. In the 

evening, a single colony from the transformed plate was placed into 25 mL Luria Broth 

with 0.1 mg/mL ampicillin and 0.034 mg/mL chloramphenicol and incubated at 37 °C 

overnight at ≥200 RPM. The following morning, 5-20 mL from the starter culture was 

added to 1 L Terrific Broth with 0.1 mg/mL ampicillin and bacteria were grown at 37 °C at 

≥200 RPM to an OD600 of 0.8-1.0. Cells were centrifuged and washed with M9 minimal 

media. Cells were then resuspended in 1 L M9 minimal media with ampicillin and 2-3 mL 

BioXpress (Cambridge Isotope Laboratories) was added. Cultures were incubated at 37 

°C overnight at ≥200 RPM for one hour reducing the temperature to 20 °C. After 30-45 

minutes, 0.5 mM IPTG was added. Bacteria were shaken overnight at 20 °C at ≥200 RPM. 

The following morning, bacterial cultures were centrifuged at 7000 x g for 20 mins at 4 

°C. Cell pellets were then stored at -80 °C prior to protein purification. 
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Purification of Med25 AcID and Med25 AcID mutants 

The purification of Med25 AcID proteins was completed using two different 

protocols – one that used a Ni-NTA 5 mL HiTrap FPLC column and the other that used 

Ni-NTA resin (Qiagen). Both are described below. 

  

1. Ni-NTA 5 mL HiTrap FPLC column 

Cell pellets were thawed and resuspended with 30-35 ml Lysis Buffer (50 mM 

phosphate, 300 mM NaCl, 10 mM imidazole, pH 7.2). β-mercaptoethanol, at 1:1000 

dilution, and one cOmplete, Mini, EDTA-free Protease Inhibitor tablet (Sigma-Aldrich) 

were added to the resuspended cell pellet. To lyse, the cells were sonicated on ice for 

4-6 min (Cycle - 3 seconds on, 7 seconds off) and/or until the cells had observable 

change in color (lighter brown) and viscosity. Following sonication, the lysed pellet in 

50 mL conical tube(s) was centrifuged at 9,500 RPM for 30 min at 4 °C. The supernatant 

was decanted into fresh 50 mL conical tubes, the pellet was discarded, and the 

supernatant was centrifuged at 9,500 RPM for 10 min at 4 °C. After this second 

centrifugation step, the supernatant was filtered using a 0.2 µm or 0.45 µm syringe filter 

(Whatman). This filtered supernatant was then purified over a Ni-NTA 5 mL HiTrap 

column using an AKTA pure FPLC chromatography system. The gradient used for the 

purification is as follows: 1) Load protein onto the column (All flow rates during the 

purification at 2.5 mL/min); 2) Wash with 5 column volumes of Buffer A; 3) Wash with 5 

column volumes at 10% Buffer B (90% Buffer A); 4) Wash with 5 column volumes at 15% 

Buffer B (85% Buffer A); 5) Gradient from 15-100% Buffer B relative to Buffer A over the 
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course of 10 column volumes; 6) Wash with 5 column volumes at 100% Buffer B. The 

composition of Buffers A is 50 mM phosphate, 300 mM NaCl, 30 mM imidazole, pH 7.2; 

Buffer B is 50 mM phosphate, 300 mM NaCl, 400 mM imidazole, pH 7.2. Fractions that 

contain Med25 AcID were combined and diluted by 4-fold with cold DI water or 50 mM 

phosphate buffer. 1 mM DTT was added to this protein solution. The protein was then 

purified over Source S 5 mL HiTrap column using an AKTA pure FPLC chromatography 

system. The gradient used for the purification is as follows: 1) Load protein onto the 

column (All flow rates during the purification at 2.5 mL/min); 2) Wash with 5 column 

volumes of Buffer A; 3) Gradient from 0-100% Buffer B relative to Buffer A over the course 

of 10 column volumes; The composition of Buffer A is 50 mM phosphate, 1 mM DTT, pH 

7.2; Buffer B is 50 mM phosphate, 1 M NaCl, 1 mM DTT, pH 7.2. To check for purity after 

the purification, SDS-PAGE of eluted fractions was then performed (1X MES running 

buffer; 8-12% acrylamide gels). Fractions of pure protein (>95% pure by SDS-PGAE 

analysis) were combined and buffer exchanged into storage buffer (10 mM phosphate, 

100 mM NaCl, 10% glycerol, 1 mM DTT, pH 6.8) using either overnight dialysis, a PD-10 

column, or the concentrate-dilute-concentrate method. Protein concentration was 

determined by UV-Vis spectroscopy using an extinction coefficient, ε = 22,460 M-1cm-1 

and samples were taken for mass spectroscopy analysis prior to storage of protein 

aliquots (300-400 µL at 100-150 µM concentration) at -20 °C. 

 

2. Ni-NTA resin (Qiagen) 

 Cell pellets were thawed and resuspended with 30-35 ml Lysis Buffer (50 mM 

phosphate, 300 mM NaCl, 10 mM imidazole, pH 7.2). β-mercaptoethanol, at 1:1000 
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dilution, and one cOmplete, Mini, EDTA-free Protease Inhibitor tablet (Sigma-Aldrich) 

were added to the resuspended cell pellet. To lyse, the cells were sonicated on ice for 

4-6 min (Cycle - 3 seconds on, 7 seconds off) and/or until the cells had observable 

change in color (lighter brown) and viscosity. Following sonication, the lysed pellet in 

50 mL conical tube(s) was centrifuged at 9,500 RPM for 30 min at 4 °C. Concurrent with 

centrifugation of cells, 750 μl of Ni-NTA resin per 12 mL of cell lysate were washed three 

times with DI water. After centrifugation of the cell lysate, the supernatant was added to 

the washed Ni-NTA resin (Qiagen) and incubated for 1 hour at 4 °C. The resin was then 

centrifuged at 2500 RPM for 2 min at 4 °C before being washed five times with wash 

buffer (50 mM phosphate, 300 mM sodium chloride, 30 mM imidazole, pH 6.8). The resin 

was centrifuged at 2500 RPM for 1 min at 4 °C between washes. After the washing step, 

protein was incubated with 1 mL of elution buffer (50 mM phosphate, 300 mM sodium 

chloride, 400 mM imidazole, pH 6.8) per 750 μl of Ni-NTA resin for 30 min at 4 °C. The 

resin was centrifuged at 2500 RPM for 1 min at 4 °C and the protein supernatant 

containing Med25 AcID was saved. This elution step was repeated a total of three times. 

Fractions containing Med25 AcID were pooled and subjected to further purification using 

a Source S 5 mL HiTrap column using an AKTA pure FPLC chromatography system, as 

previously described.  

 

Mass spectroscopy of proteins 

Samples were not prepared. Protein was analyzed by mass spectrometry using an Agilent 

QTOF LC/MS following a partial separation with a Poroshell 300SB C8 reverse-phased 

HPLC column (5-100% acetonitrile with 0.1% formic acid over five minutes). Resultant 



67 
 

MS data was analyzed using Agilent software (Qualitative Analysis) with background 

subtraction and deconvolution settings for an intact protein of 10-30 KDa.  

 

Solid-phase peptide synthesis and subsequent HPLC purification 

Peptides were synthesized on CLEAR amide resin (Peptides International) using 

standard HBTU/HOBT/DIEA coupling conditions as previously described37. TFA cleaved 

peptides were purified using reverse-phase HPLC (Agilent 1260) on a C18 Poroshell 

column (Agilent) using ammonium acetate/acetonitrile solvent systems. The 

concentration of fluorescein labeled peptides was then determined by UV-Vis 

spectroscopy following 1:500 dilution of DMSO stock solutions into 10 mM PBS, pH 7.4 

using ε = 72,000 M-1cm-1, per the manufacturer (Pierce). Acetylated peptides, if they did 

not contain a native Tyr/Trp, were synthesized with a N-terminal Tyr residue next to a β-

alanine linker prior to the start of desired sequence in order to allow for determination of 

the concentration of stock peptides by UV/VIS. Peptide identity was confirmed by 

electrospray mass spectrometry; peptide purity was determined by analytical HPLC. 

 

Fluorescence polarization binding assays  

Fluorescence polarization binding assays were performed in triplicate with a final sample 

volume of 16 μL in a low volume, non-binding, 384-well black plate (Corning). Peptides 

that were N-terminally labeled with fluorescein were diluted in assay buffer (5 mM 

HNa2PO4, 5 mM NaH2PO4, 100 mM NaCl, 10 % glycerol, pH 6.8) to 50 nM. Med25 AcID 

(16 µL per replicate) was serially diluted two-fold with assay buffer going down the 

columns of the 384-well plate (This allowed for eight total protein-peptide experiments on 
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a single plate). The final well, in Row P, was a negative control (no-protein, peptide-only). 

8 µL of the diluted fluorescent peptide stock was then added to each well of protein for a 

final peptide concentration of 25 nM. Plates were then incubated for 30 minutes at room 

temperature before fluorescence polarization was measured on either a Tecan Genios 

Pro or PHERAstar plate reader (polarized excitation at 485 nm and emission intensity 

measured through a parallel and perpendicularly polarized 535 nm filter). A binding 

isotherm that accounts for ligand depletion (assuming a 1:1 binding model of peptide to 

protein) was fit to the observed polarization values as a function of ACID to obtain the 

apparent equilibrium dissociation constant, C where ‘a’ and ‘x’ are the total concentrations 

of fluorescent peptide and protein, respectively; ‘y’ is the observed polarization at a given 

protein concentration; ‘b’ is the maximum observed polarization; ‘c’ is the minimum 

observed polarization value.     

 

Each KD is the average and standard deviation of three technical replicates. For the 

mutagenesis study, the fold change in binding affinity for mutants relative to WT Med25 

AcID is calculated using the following: 

𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
(𝐾𝐷 for Mutant Med25 AcID-peptide interaction)

(𝐾𝐷 for WT Med25 AcID-peptide interaction)
 

 

Fluorescence polarization competition assays 

Inhibition assays were performed in triplicate with a final sample volume of 20 μL in a low 

volume, non-binding, 384-well black plate (Corning). A complex of the indicated 
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fluorescent peptide and protein was prepared at a two-fold the concentrations of protein 

and peptide to achieve 50% of the tracer bound during the assay. For peptide-based 

competition assays, an N-terminally acetylated variant of peptide was diluted in assay 

buffer (5 mM HNa2PO4, 5 mM NaH2PO4, 100 mM NaCl, 10 % glycerol, pH 6.8) to 

100-1000 µM compound and serially diluted was serially diluted two-fold with assay buffer 

going down the columns of the 384-well plate (This allows for eight total protein-peptide 

experiments on a single plate). The final well, in Row P, was a negative control (protein-

peptide, no inhibitor). 10 µL of the pre-formed fluorescent peptide-protein complex was 

then added to each well for a final volume of 20 µL. Samples were incubated for thirty 

minutes at room temperature before fluorescence polarization was measured a Tecan 

Genios Pro or PHERAstar plate reader (polarized excitation at 485 nm and emission 

intensity measured through a parallel and perpendicularly polarized 535 nm filter). 

Polarization values were converted to relative fraction bound and plotted against 

log[inhibitor]. Inhibition curves were fit with a non-linear regression using Prism’s 

‘log(inhibitor) vs response – variable slope’ equation from which the IC50 value was 

calculated.  

 

1H, 15N-HSQC NMR of Med25 AcID 

Samples of purified 15N-labeled Med25 AcID (50-100 µM) were complexed with molar 

equivalents of N-terminally acetylated peptides at 10% D2O (final concentration) with 

NMR buffer (20 mM sodium phosphate buffer, pH 6.5, 150 mM NaCl, 3 mM DTT). HSQC 

experiments were completed by Felicia Gray (University of Michigan) using an Avance 

Bruker 600 MHz NMR spectrometer equipped with a 5 mm cryogenic probe.  Data was 
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processed and analyzed by Matt Beyersdorf using TopSpin. Chemical shift analysis for 

individual peaks was quantified using the following:  

Chemical shift = SQRT((abs(Δδ15N)2)+ (abs(Δδ1H)2)) 

 

Circular dichroism of Med25 AcID 

Circular dichroism spectra of Med25 AcID and mutants were acquired on a J-715 

spectropolarimeter (Jasco Inc) using a 1 mM pathlength quartz cuvette. Protein was 

dialyzed into CD buffer (5 mM HNa2PO4, 5 mM NaH2PO4, 100 mM NaF, pH 6.8) 

overnight before analysis. Data was collected from 260-180 nm in 1 nm increments at a 

scanning speed of 100 nm/min. A background scan was performed using buffer only.  

Data, after subtraction of the background scan, were converted to mean residue ellipticity 

according to the following equation where Ψ is the CD signal in degrees, n is the number 

of amides, l is the path length in centimeters, and c is the concentration in decimoles per 

cm3: 

 

Each spectrum reported is the average of 8 scans. 

 

Circular dichroism-observed thermal melt 

CD-observed thermal melts were collected following collection of CD spectra; See above 

for instrument/buffer/etc. Using the ‘Variable temperature’ module, thermal melts were 

observed by CD. Protein was heated from 20-100 °C at a gradient of 1 °C/min; data was 

acquired by monitoring the molar ellipticity at 208 nm and 222 nm. Molar ellipticity was 
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collected at every third degree from 20-35 °C and at every degree from 35-100 °C. Molar 

ellipticity values were converted to Fraction Unfolded and Tm was determined by fitting 

data with Prism’s ‘log(inhibitor) vs response – variable slope’ equation. 

 

Tethering with VP16 G450C peptide 

The cysteine of VP16 G450C peptide (sequence: ALDDFDLDMLGDCDSPG) was 

capped with cysteamine by Andy Henderson. A two-fold molar excess of 

cysteamine-capped VP16 G450C in presence of 100 µM β-mercaptoethanol was 

incubated  with WT or mutant Med25 overnight, shaking, at room temperature. During the 

following day, the protein-peptide complex was purified away from excess peptide using 

the FPLC IEX method described above, for purification of Med25 AcID. 
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Chapter Three 
 

Defining binding mechanisms of Med25 AcID and its protein-protein interaction 
network using protein-observed 19F-NMR 

 

A. Abstract 

 The structural study of coactivator-activator interactions has long been considered 

challenging due to the transient and dynamic natures of these interactions, weak-to-

moderate binding affinities, and abilities of both coactivators and activators to bind 

multiple targets.1–3 However, NMR techniques offer excellent methodologies to 

investigate protein dynamics due to their sensitivity and resolution.4,5 In particular, protein-

observed fluorine (PrOF) NMR is desirable for the study of these interactions due to the 

short amount of time required for experimental and data analysis, the high sensitivity 

provided by the 19F nucleus, and the lack of 19F in naturally-occurring proteins.6,7 Previous 

work in the literature and in Chapter 2 of this thesis demonstrated the Med25 AcID 

contains multiple binding sites, each of which is suggested to be targeted by specific 

Med25-interacting proteins.8–12 However, many questions regarding the mechanisms of 

recognition between Med25 AcID and its protein partners remained. This chapter set out 

to answer several of those mechanistic questions using PrOF NMR, an emerging 

technique to study protein-protein interactions. This chapter precisely describes the 

inherent differences between each unique Med25 AcID protein-protein interaction 

including differences in binding selectivity towards AcID binding sites, relative affinities, 

                                            
Several collaborators provided research assistance throughout Chapter Three. Prof. William Pomerantz 
and Clifford Gee (University of Minnesota) assisted with initial efforts to incorporate 19F into Med25 AcID 
and resonance assignment of 3-fluorotyrosine Med25 AcID. Andy Henderson (University of Michigan) 
collected HSQC NMR of several Med25-activator complexes that were useful in describing binding 
models for discrete Med25 AcID protein-protein interactions. Drs. Paul Bruno and Steve Sturlis (University 
of Michigan) identified and characterized norstictic acid as an inhibitor of Med25 AcID. Andy Henderson 
identified fragment A6 in a Tethering screen against Med25 AcID; Dr. Clint Regan (University of Michigan) 
synthesized A6 and all A6 derivatives. 
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and binding stoichiometry. These observed differences in binding modes range from the 

subtle (ATF6α and VP16 H2, both selectively for the H2 binding site, position themselves 

differently across this interface) to the highly dramatic (ERM, highly selective for the H1 

site, appears capable of achieving a 2:1 binding stoichiometry). Finally, the mechanism 

of action for two recently identified small molecules (norstictic acid and the fragment A6) 

that target Med25 AcID is described, as determined using PrOF NMR of Med25 AcID. 

  

B. Introduction 

Limitations of 1H, 15N-HSQC NMR in study of protein-protein interactions 

Protein-observed NMR has been extensively utilized to study protein-protein 

interactions (PPIs) and protein-ligand interactions for decades.4 1H, 15N-HSQC NMR is 

the most commonly used technique and, as described in Chapters 2 and 4 of this thesis, 

has been effective in mapping the binding interactions between Med25 AcID and its native 

and small molecule ligand partners. However, this two-dimensional technique has several 

practical and experimental limitations. Long instrumental time (e.g. 90-100 minutes for a 

single 1H, 15N-HSQC NMR Med25 AcID experiment), the need for expensive isotopic 

reagents to produce 15N-labeled protein, and time-intensive analysis of resulting 2-D NMR 

spectra complicate data collection and interpretation.13 Incomplete assignment of all 

resonances in 1H, 15N-HSQC NMR (e.g. Only 103 of the 151 residues of Med25 AcID can 

be definitively assigned) limits the depth of the analysis of the protein-of-interest, including 

difficulty in differentiation of orthosteric and allosteric effects.14 This lack of depth is 

especially problematic for the study of activator-coactivator interactions because these 

interactions are transient, weak affinity, and involve proteins that are highly dynamic and 
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often intrinsically disordered.2,3,15 Additionally, coactivator proteins often contain multiple 

binding sites with many protein partners; differentiation of these binding sites and binding 

partners is imperative for proper understanding of coactivator-activator function. Finally, 

this technique detects chemical shift perturbations of amide N-H bonds and thus offers 

little insight into side chain interactions.4     

  

Protein-observed 19F-NMR for study of protein-protein interactions 

Protein-observed 19F-NMR (PrOF NMR), a 1-D NMR experiment that 

complements 1H, 15N-HSQC NMR, can overcome some of the inherent limitations of 

HQSC NMR. PrOF NMR is desirable for a its short experimental time6, simple and quick 

analysis of 1-D spectra, and ability to observe side chain interactions of a select number 

of residues. Inherent advantages also offered by the 19F nucleus include its native isotopic 

abundance (100%), magnetic sensitivity (83% as sensitive as 1H), and its low background 

signal in protein NMR (19F does not occur naturally in proteins)7. PrOF NMR has been 

effectively utilized to study several protein-protein and protein-ligand interactions 

including those involving the glucose- and galactose-binding protein16, avian lysozymes17, 

dihydrofolate reductase18, the aspartate receptor19, the coactivator domain CBP20,21, and 

bromodomains22,23.  

 Incorporation of 19F for PrOF NMR can be done using biosynthetic methodologies 

to integrate fluorinated amino acids into a protein-of-interest or through chemical 

modification to covalently label a residue onto the protein-of-interest with a fluorinated 

molecule.24,25 The most utilized amino acids for PrOF are fluorinated versions of tyrosine, 

tryptophan, and phenylalanine, all of which can be incorporated by auxotrophic bacterial 
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strains.26 These aromatic amino acids are selected due to their range of native structural 

environments from conformationally dynamic loops to α-helical and β-sheet structures 

and at PPI interfaces.27–30 Additionally, aromatic amino acids are desirable due to their 

low abundance, which minimizes the total number of 19F nuclei that are incorporated into 

protein, simplifying the subsequent PrOF spectrum.31 This also lessens the likelihood of 

significant effects of the fluorinated amino acids on protein structure and function. 

Common fluorinated variants of aromatic amino acids for direct incorporation into the 

primary structure of proteins include 3-fluorotyrosine, 2/3/4-fluorophenylalanine, and 

4/5/6-fluorotryptophan. Alternatively, fluorine-containing small molecules can be 

incorporated into a protein after expression. This is typically accomplished through 

covalent modification of cysteine residues. Common molecules that have been 

successfully utilized for the methodology include 3-bromo-1,1,1-trifluoroacetone, 3-

bromo-1,1,1-trifluoropropanone, and 2,2,2-trifluoroethanethiol, all of which are cysteine-

reactive.32–35  

 

PrOF NMR for study of Med25 AcID and its protein-protein interaction network 

PrOF NMR of Med25 AcID was pursued to complement 1H, 15N-HSQC NMR 

experiments and the mutagenesis study described in Chapter 2 to test the proposed 

binding models for each unique Med25 AcID PPI.  
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Incorporation of 3-fluorotyrosine (3FY) was proposed to provide NMR reporters of 

the H2 site of Med25 AcID due to the dispersed placement of Tyr residues across the H2 

and third sites of Med25 (Figure 3.1). Y528 is located on the loop between β7 and α3 with 

its side chain situated at the base of the H2 site. Y487 and Y515, thought to be a 

hydrogen-bonded pair, are situated at the opposite edge of the H2 site from Y528, on α2 

and β5 respectively. Finally, Y432 is situated within the putative third site and in proximity 

of the H2 site, near the C-terminal end of β2. Notably, as shown in the image of the H1 

Figure 3.1. 3FY Med25 AcID structures. (A) Surface renderings of the H2 site (left) 
and H1 site (right) of Med25. Tyr residues are colored – Y528 (red), Y432 (green), 
Y487/Y515 (orange). (B) Cartoon images of the H2 site (left) and putative third site 
(right). (PDB 2XNF) 

A. 

B. 
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H2 site 

H2 site 
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site in Figure 3.1.A, none of the Tyr residues are situated proximal to the H1 site. It was 

hypothesized that PrOF NMR of 3FY Med25 AcID would provide corroborating evidence 

regarding the selectivity of VP16 H2 and ATF6α for the H2 site of Med25 site, could 

definitively demonstrate the ability of ERM and VP16 H1 to bind at both the H1 and 

H2sites, and would provide additional evidence of the putative third site that CBP was 

proposed to bind in HSQC NMR experiments.  

 

Incorporation of 5-fluorotryptophan (5FW) was proposed to function as a NMR 

reporter system to allow for observation of the H1 site of Med25 AcID. All three Trp 

residues of Med25 AcID are near to the H1 site on Med25 AcID (Figure 3.2). W402 and 

W444 are part of an aromatic triad (along with F500) within the core of the β-barrel and 

form an edge-to-face π-π stacking interaction with one another. W408 is located near the 

C-terminal end of β1 and, with α2, forms a cleft at the “top” of the β-barrel. This residue 

Figure 3.2. 5FW Med25 AcID structure. Cartoon (left) and surface (right) images of 
the H1 site of Med25 AcID. All three residues are near the H1 site and the side chains 
of W402/W444 are not solvent-exposed. (PDB 2XNF) 
 

H1 site H1 site 
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is thought to be the most sensitive reporter of the three towards H1 ligands. It was 

hypothesized that PrOF NMR of 5FW would corroborate evidence that VP16 H2, 

ATF6α(40-66), and CBP(20-44) do not interact with the H1 site, even at high 

concentrations of peptide. Furthermore, it was thought that PrOF NMR analysis would 

corroborate the working model that ERM, while capable of binding to the H2 site, interacts 

preferentially at the H1 site. 

 

C. Results and discussion 

Biochemical characterization of fluorinated Med25 variants 

Fluorinated variants of Med25 were expressed using an auxotrophic bacterial 

strain, adapted from published expression conditions for other proteins.36 3-fluorotyrosine 

(3FY) expression resulted in high yields (35-40 mg protein per liter bacterial culture) with 

>99% 19F incorporation, as determined by mass spectrometry (Figure 3.3). Note that in 

all cases, the percentage of 19F incorporation was calculated by dividing the total peak 

areas of deconvoluted proteins in mass spectrometry by the sum of peak areas of all 

proteins that contain at least one 19F atom.36 Furthermore, ~80% of 3FY Med25 AcID had 

3FY incorporated at all four Tyr residues. 5-fluorotryptophan (5FW) expression resulted 

in lower yields (10-15 mg protein per liter bacterial culture) and lower incorporation of 19F 

(90% by mass spectrometry) than 3FY. However, protein quality and quantities were 

sufficiently high to perform subsequent experiments. The third amino acid, 

4-fluorophenylalanine (4FF), provided poor results in terms of yield (<<5 mg protein per 

liter bacterial culture) and 19F incorporation (~70% labeled; however, most of the protein 

incorporated 4FF at fewer than four of the seven total Phe residues).  
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Circular dichroism (CD) and fluorescence polarization (FP) were used to assess 

effects of the unnatural amino acids on Med25 AcID structure and function (Figure 3.4 

and Table 3.1). CD spectra indicated that fluorine incorporation resulted in minimal 

perturbation of the secondary structure relative to WT. CD-observed thermal denaturation 

indicated that 3FY Med25 AcID was marginally more stable than WT Med25 AcID (67.0 

± 0.5 °C vs 64.8 ± 0.3 °C). Finally, FP assays demonstrated that 3FY Med25 AcID and 

5FW Med25 AcID maintained similar function to WT. All tested peptides bound 3FY and 

5FW Med25 with less than three-fold loss in binding affinity relative to WT.  

Figure 3.3. Mass spectrometry of fluorinated Med25 AcID variants. Deconvoluted 
mass spectra of A) 3-fluorotyrosine, (B) 5-fluorotryptophan, and (C) 4-
fluorophenylalanine Med25 AcID with corresponding 19F-containing amino acid 
structure. Red squares represent the number of incorporated 19F-containing amino 
acids (+18 amu per 19F). The percentage of 19F incorporation was calculated by 
dividing the total peak areas of deconvoluted proteins in mass spectrometry by the 
sum of peak areas of all proteins that contain at least one 19F atom. 

A. B. 

C. 
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Figure 3.4 Structural stability of fluorinated Med25 AcID variants. (A) Circular 
dichroism spectra of 3FY, 4FF, and 5FW Med25. (B) CD-observed thermal 
denaturation of 3FY Med25 and WT Med25. Fraction unfolded was determined from 
circular dichroism measurements at 222 nm as protein samples were heated from 20-
100 °C. 

Table 3.1 Dissociation constants for Med25-interacting peptides to 3FY Med25 
AcID. Each KD was determined using FP assays performed in triplicate.   



84 
 

Following this initial suite of experiments to characterize the fluorinated Med25 

AcID variants, each variant was independently subjected to PrOF analysis (Figure 3.5). 

The PrOF NMR spectrum of 3FY Med25, which contains four Tyr residues, provided four 

well-resolved resonances with excellent signal-to-noise in 1200-1600 total NMR scans 

(experimental time of 11-15 minutes). 5FW Med25 AcID provided two overlapped and 

broad resonances at -126.8pm with another resonance ~1.5 ppm upfield in 2400 scans 

(experimental time of ~20 minutes). The PrOF NMR spectrum of 4FF Med25 AcID was 

not well-resolved (up to five resonances overlapped from -116 to -118 ppm). Furthermore, 

6000 scans (~1 hr of experimental time) were required to acquire a 4FF spectrum of the 

quality shown in Figure 3.5. 4FF Med25 AcID was not further pursued for PrOF NMR of 

Med25 due to its poor resonance dispersion, lengthy experimental time, and low protein 

yield. 
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Figure 3.5. 19F-NMR spectra of fluorinated Med25 AcID variants. (A) NMR spectra 
of 3-fluorotyrosine Med25 AcID; All four Tyr residues, shown in blue, are solvent 
exposed and located within or near the H2 site. (B) NMR spectra of 5-fluorotryptophan 
Med25 AcID; All three Trp residues, shown in blue, located in proximity of the H1 site. 
Only the side chain of W408 is solvent exposed. (C) NMR spectra of 
4-fluorophenylalanine Med25 AcID; Only two of seven Phe residues, shown in blue, 
are solvent exposed. (PDB 2XNF) 
 

A. 

C. 

B. 
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Assignment of 3FY resonances 

 Prior to functional ligand studies, the 19F-NMR resonances of 3FY Med25 needed 

to be independently assigned to specific residues of the protein. To accomplish this, four 

Tyr-to-Phe mutants were generated (Y432F, Y528F, Y487F, and Y515F Med25 AcID). 

Each mutant was successfully cloned, expressed and purified in low-to-moderate yield. 

Mass spectrometry of each mutant verified that a single mutation had been performed 

and that 19F incorporation was sufficiently high for PrOF NMR analysis (Figure 3.6).  

 

Subsequent PrOF NMR spectra of Y432F Med25 AcID demonstrated that the 

resonance at -135.57 ppm was Y432 based on the absence of that peak from the 

collected spectra (Figure 3.6). Similarly, PrOF NMR spectra of Y528F Med25 AcID 

Figure 3.6. Assignment of Y432 and Y528 resonances of 3FY Med25. Tyr-to-Phe 
mutations at residues 432 and 528 allowed for the assignment of these 19F-NMR 
resonances at -135.57 ppm and -137.48 ppm, respectively. Note that signal-to-noise 
of both Y432F and Y528F Med25 AcID spectra are low in part because each was 
expressed on small-scale (100 mL bacterial culture), resulting in low total protein. 
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demonstrated that the resonance at -137.48 ppm was Y528 based on the absence of that 

peak from the collected spectra. PrOF spectra of Y487F and Y515F Med25 AcID gave 

inconclusive results, possibly because these two Tyr residues might be engaged in a 

hydrogen bond interaction with one another. While the distances between the oxygen of 

one Tyr and the hydrogen of another are never closer than 3.5 Å in NMR structures (PDB 

2XNF, 2KY6, 2L6U), these side chains are oriented such that they could be engaged in 

a transient hydrogen bond.  

To assign the final two tyrosine residues, Y487 and Y515, which represent the 

most upfield resonances of the WT spectra, the “nudge” mutational method was utilized.37 

This methodology involves a soft mutation of a residue located in the physical proximity 

of a single target Tyr. This “nudge” mutation should then affect the local environment of 

only that target Tyr and perturb a single 19F-NMR resonance. The perturbed resonance 

can then be assigned to the Tyr residue near the nudge mutation. 3FY-containing K484R 

Med25 was generated in hopes of “nudging” Y487 and perturbing a single resonance 

(Figure 3.7). This residue was selected for mutation because it was near Y487 only and 

was solvent exposed, and therefore expected to have minimal effect on Med25 structure. 

PrOF spectrum of K484R Med25 allowed for the assignment of Y487 to be the resonance 

at -137.95 ppm in the WT spectra. The K484R mutation led to a 0.025 ppm shift in the 

resonance at -137.95 ppm while leaving the resonance at -138.26 ppm unperturbed. This 

final resonance at   -138.26 ppm was assigned to Y515 by process of elimination. 
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PrOF NMR titrations with Med25-interacting peptides against 3FY Med25 AcID 

With assignments of 3FY Med25 AcID completed, PrOF NMR was used to define 

interactions between Med25 AcID and native peptide ligands. Titrations were performed 

with acetylated variants of the Med25-interacting peptides (the same peptide ligands used 

during previous mutagenesis and HSQC NMR work in Chapter 2).  

 

  

    

Figure 3.7. Assignment of Y487 and Y515 resonances of 3FY Med25. The nudge 
mutation method was used to assign these two Tyr residues. A K484R mutation 
perturbed the resonance at -137.95 ppm, indicating that it represents Y487. 19F-NMR 
spectra of K484R 3FY Med25 shown in red; WT 3FY Med25 shown in light blue. (PDB 
2XNF) 
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An acetylated variant of VP16(413-451) (7.5 µM, 18.75 µM, 37.5 µM, 56.25 µM, 

75 µM, 93.75 µM, 112.5 µM and 150 µM) was complexed with 3FY Med25 AcID (75 µM) 

and subjected to PrOF NMR (Figure 3.8). The most significantly perturbed resonances 

corresponded to the Y487/Y515 pair, as these two peaks merged to form an overlapping 

resonance at -137.08 ppm in the spectra of 3FY Med25 with two equivalents of VP16(413-

451), the H1 TAD of VP16. This new resonance represented an upfield shift of 0.12 ppm 

for Y487 and a downfield shift of 0.18 ppm for Y515. Additionally, starting at 0.5 and 

higher equivalents of VP16 H1, Y528 was perturbed (0.03 ppm downfield shift at 2 eq. 

Figure 3.8. PrOF NMR of 3FY Med25 AcID-VP16 H1 complexes. Spectral analysis 
of 3FY Med25 AcID in the presence of increasing concentrations of VP16(413-451), 
the H1 TAD of VP16, demonstrated that VP16 H1 only perturbs the Y487/Y515 pair, 
in a dose-responsive manner. The resonance corresponding to Y528 is initially 
downshifted during the titration but reverts towards the WT chemical shift at 2 eq. VP16 
H1.  
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peptide). VP16 H1 had a much more significant impact on the Y487/Y515 than any of the 

H2/third site peptides - VP16 H2, ATF6α, and CBP. This is consistent with an alternative 

mode of interaction. The effect on Y487/Y515 could be explained by an interaction 

between VP16 H1 and β5, located at the center of the H1 cleft. A tight association with 

β5 would likely cause a conformational change in α2, the helix on which Y487 resides. 

The lack of perturbations at Y528 at 0.1 and 0.25 eq VP16 H1 along with the complete 

lack of perturbations at Y432 are consistent with the H2 site not being the primary target 

for VP16 H1 binding to Med25 AcID. However, the perturbation of Y528 at elevated 

concentration of VP16 H1 does corroborate mutagenesis data that suggests that VP16 

H1 is capable of binding at the H2 site when the H1 face is blocked.  
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Increasing concentrations of VP16 H2 (residues 452-490 of VP16) (7.5 µM, 

18.75 µM, 56.25 µM, 75 µM, and 150 µM) were then complexed with 3FY Med25 AcID 

(75 µM) and subjected to PrOF NMR (Figure 3.9). VP16(452-490), which comprises the 

entirety of the VP16 H2 TAD, significantly affected both Y432 (upfield shift of 0.05 ppm at 

2 eq. peptide) and the Y487/Y515 pair (0.05 ppm downfield and 0.09 ppm upfield shifts 

at 2 eq. peptide). This result suggests that VP16 H2 binds at the H2 site, as expected by 

HSQC NMR8 and mutagenesis work. However, the difference in perturbed residues 

between VP16 H2 and ATF6α(40-66) suggests that these two H2 site peptides interact 

Figure 3.9. PrOF NMR of 3FY Med25 AcID-VP16 H2 complexes. Spectral analysis 
of 3FY Med25 AcID in the presence of increasing concentrations of VP16(452-490), 
the H2 TAD of VP16, demonstrated that VP16 H2 perturbs Y432 and the Y487/Y515 
pair.  
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differentially with Med25 AcID. While PrOF and HSQC data suggest that ATF6α binds 

perpendicular to the β-barrel and interacts with the C-terminal end of α1, this PrOF result 

suggests that VP16 H2 likely extends towards the N-terminal end of the α1 and proximal 

to α2.   

 

 Acetylated VP16(438-490) (7.5 µM, 37.5 µM, 56.25 µM, 75 µM, 93.75 µM, 

112.5 µM and 150 µM) was complexed with 3FY Med25 AcID (75 µM) and subjected to 

PrOF NMR (Figure 3.10). Based on the PrOF data for VP16(452-490), it is unsurprising 

that an extended VP16 construct, VP16(438-490), also perturbs Y432 (0.06 upfield shift 

Figure 3.10. PrOF NMR of 3FY Med25 AcID-VP16(438-490) complexes. Spectral 
analysis of 3FY Med25 AcID in presence of increasing concentrations of VP16(438-
490), the helical region of VP16 H1 and the entirety of VP16 H2, demonstrated 
perturbations of all four Tyr residues.  
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at 2 eq. peptide) and the Y487/Y515 pair (0.13 ppm downfield and 0.05 ppm upfield) in 

similar ways. However, an interesting difference between these two PrOF titrations is that 

VP16(438-490) also perturbs Y528 in a dose-responsive manner (0.07 ppm downfield 

shift at 2 eq. peptide). These data are consistent with a more complex binding mode for 

VP16(452-490) relative to VP16(438-490).  For instance, VP16(438-490), which binds 

Med25 AcID much more tightly than VP16(452-490) (KD of 82 nM for Med25-VP16(438-

490) vs. 605 nM for Med25-VP16(452-490) in FP assays), could potentially bind twice to 

Med25, either at both the H1 and H2 sites simultaneously or twice at the H2 site itself. 

The N-terminal portion of VP16(438-490) which represents the helical region of the VP16 

H1 TAD, could bind to the H1 face concurrent to the C-terminal portion’s interaction with 

the H2 site. If this second scenario is true, the PrOF data, particularly the perturbation of 

Y528, would suggest that VP16(438-490) wraps around either α1 and α3 or “underneath” 

the β-barrel, 180° away from α2. 
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 As performed with CBP(20-55), ATF6α(40-66) peptide (8.75 µM, 35 µM, and 

70 µM) was complexed with 3FY Med25 AcID (35 µM) and subjected to PrOF NMR 

(Figure 3.11). ATF6α(40-66) caused dose-responsive shifts in both Y432 and Y528, with 

the highest concentration (2 eq peptide relative to 3FY Med25 AcID) providing upfield 

0.12 ppm and 0.11 ppm shifts respectively. These data corroborate HSQC NMR evidence 

that ATF6α(40-66) binds the H2 site at the cleft formed by β6/β7/β4 and α1 and suggests 

that the peptide does not directly bind to α2, where Y487 is located. 

Figure 3.11. PrOF NMR of 3FY Med25 AcID-ATF6α(40-66) complexes. Spectral 
analysis of 3FY Med25 AcID in presence of increasing concentrations of ATF6α(40-
66) demonstrated that ATF6α(40-66) perturbs Y432 and Y528, each of which are 
located in proximity to the H2 site.  
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Increasing concentrations of acetylated CBP(20-55) peptide (7.5 µM, 15 µM, 

30 µM , and 60 µM) were complexed with 3FY Med25 AcID (50 µM) and subjected to 

PrOF NMR (Figure 3.12). Only Y432 was significantly perturbed in a dose-responsive 

Figure 3.12. PrOF NMR of 3FY Med25 AcID-CBP(20-55) complexes. Spectral 
analysis of 3FY Med25 AcID in presence of increasing concentrations of CBP(20-55) 
demonstrated that CBP(20-55) specifically perturbs Y432. A binding isotherm for the 
Med25-CBP interaction can be determined using the chemical shift perturbation at 
Y432 with respect to [CBP(20-55)].   
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manner. At the highest concentration (1.2 eq. CBP peptide relative to 3FY Med25 AcID), 

there was a 0.06 ppm upfield shift the Y432 resonance. The specific perturbation of this 

residue without affecting the other resonances suggests that CBP(20-55) does not bind 

directly to the H2 site. Instead, these data corroborate HSQC NMR evidence that 

suggested that CBP bound to Med25 by wrapping itself perpendicular to the β-barrel 

along β4/β2/β1 in a binding mode that was unique compared to the Med25-interacting 

ligands. 

A binding isotherm for the Med25-CBP PPI was determined using the dose-

responsive chemical shift perturbation at Y432 to determine a binding affinity of 

35 ± 7 µM. This result provided an additional validation that 3FY Med25 AcID functioned 

similarly to Med25 AcID, with a KD approximately ten-fold higher than measured by FP. 

This loss in binding affinity can be explained by the lack of the hydrophobic N-terminal 

fluorescein in the acetylated CBP(20-55) peptide. A similar ten-fold loss in binding affinity 

was demonstrated in FP-based competition experiments (Figure 2.3). Notably, this PPI 

was the only interaction for which an appropriate KD with minimal error could be 

measured. This could be explained if the Med25-CBP PPI occurs with different kon/koff 

values and/or exchange rates (kex)38. For interactions that occur on fast exchange 

regimes (high kex), titrations of one ligand into protein will provide NMR resonances that 

shift proportionally from the unbound state to the bound state.5 However, in the case of 

protein-ligand interactions that occur under intermediate exchange rates, the chemical 

shift is not necessarily proportional from the unbound state to the bound state. It is likely 

that the Med25-CBP PPI is operating in the fast exchange regime while the other Med25 

PPIs occur on an intermediate timescale. 
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Finally, ERM(38-68) peptide (7.5 µM, 18.75 µM, 37.5 µM, 56.25 µM, 75 µM, 

93.75 µM, 112.5 µM and 150 µM) was titrated with 3FY Med25 AcID (75 µM) and 

subjected to PrOF NMR in order to test the working hypothesis that ERM is the most 

selective peptide for the H1 site and also interacts at the H2 site with weaker affinity 

(Figure 3.13). Titration of 3FY Med25 AcID with ERM(38-68) demonstrated biphasic 

character. At substoichiometric concentrations of peptide (Figure 3.13.A), none of the 3FY 

resonances is shifted; The only effect that substochiometric ERM(38-68) provides is a 

slight broadening of the resonance at Y515. Similar to VP16 H1, this difference could be 

explained by a slight conformational change in the protein that results from ERM(38-68) 

binding to the H1 site. The second phase of 3FY Med25 AcID induced by ERM(38-68) 

occurs at 1, 1.5, and 2 eq. of peptide relative to protein (Figure 3.13.B). These three 

spectra (1, 1.5, and 2 eq. ERM) overlap with each of the four resonances experiencing 

nearly identical downfield shifts relative to WT. These data suggest that either Med25 

binds ERM peptide at two sites with measurably different affinities or that ERM binds at 

the H1 site and induces a significant conformational change in Med25 that causes uniform 

shifting in 3FY resonances after ERM saturation. Taken together with previous 

mutagenesis data demonstrating that ERM(38-68) is capable of binding Med25 even if 

the H1 site is inhibited, the first scenario is most consistent.  

 

Figure 3.13. PrOF NMR of 3FY Med25 AcID-ERM(38-68) complexes. (Figure on 
previous page); Spectral analysis of 3FY Med25 AcID in the presence of increasing 
concentrations of ERM(38-68) demonstrates biphasic character. At substoichiometric 
concentrations (A), shown in blue, ERM(38-68) causes no significant chemical shifts 
but does broaden the Y515 resonance. At and above stoichiometric equivalents (B), 
shown in green, ERM(38-68) causes a downfield perturbation in all four Tyr residues.  
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PrOF NMR titrations with Med25-interacting peptides against 5FW Med25 AcID 

 3-fluorotyrosine provided excellent reporters of ligand binding and conformational 

change at the H2 and third sites of Med25 AcID while also offering some nuance towards 

definition of the H1 site. However, for continued study of the H1 site using PrOF NMR, 

further development of a system that provided direct reporters within the H1 site was 

desired. Since 5-fluorotryptophan Med25 AcID was obtainable in high yields (10-15 mg 

protein per liter bacterial culture) at high 19F incorporation and provides direct reporters 

at the H1 site, this reagent was used in similar peptide titrations as performed with 3FY 

Med25 AcID.  

Site-directed mutagenesis to assign the resonances in 5FW Med25 AcID were 

unsuccessful. None of the attempted mutants – W402F, W408F, and W444F – could be 

expressed. This inability to express W-to-F mutants likely results from the side chains of 

each of these Trp residues not being solvent exposed and thus potentially critical for 

protein folding and structure. However, for the scope of this work, independent 

assignment was thought to be unnecessary, in part because W402 and W444 are direct 

interaction partners. It is thought that the overlapped resonances from -126.3 to -127.3 

ppm, which integrate for two fluorine atoms, likely represent the W402-W444 dyad. 

Furthermore, all three Trp residues are positioned near the H1 site, contain side chains 

that are not solvent exposed, and are presumed to be integral to Med25 structure. 

Therefore, it was hypothesized that 5FW resonances would be sensitive to only the most 

selective H1 site ligands. 
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B. 

A. 

Figure 3.14. PrOF NMR of 5FW Med25 AcID complexes. (A) Spectral analysis of 
5FW Med25 AcID in the presence of increasing concentrations of VP16(413-451), the 
H1 TAD of VP16. No Trp residue is significantly affected. This titration is representative 
of similar titrations of 5FW Med25 performed with VP16 H2, ATF6α(40-66), and 
CBP(20-44), which also showed no effect. (B) Spectral analysis of 5FW Med25 in 
presence of highest concentrations of peptides tested, 
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  Similar to the described experiments with 3FY Med25 AcID, peptide ligands that 

interact with Med25 AcID – CBP(20-44), ATF6α (40-66), VP16 H1, and VP16 H2 – were 

incubated with 5FW Med25 AcID (Figure 3.14). 5FW Med25 was held constant at 75 µM 

and peptide ligands were added at 18.75 µM, 37.5 µM, 75 µM, and 150 µM for PrOF NMR 

spectral analysis. Note that the VP16 H1 titration did not include the 150 µM data point. 

None of these four peptide ligands had any effect on the 5FW Med25 spectra, indicating 

that none of them contacted, or caused a conformational change in, any of the three Trp 

residues. These results were expected for the CBP, ATF6α, and VP16 H2 peptides, none 

of which appear to significantly interact at the H1 site. However, the lack of perturbation 

of W408 by VP16 H1 was puzzling as it was expected that VP16 H1 interacted with the 

loop between β1 and β2. This result suggests instead that VP16 H1 likely interacts with 

the H1 site parallel to, and up against α3.  

 

Figure 3.15. PrOF NMR of 5FW Med25 AcID in complex with 1 eq ERM(38-68). 
ERM(38-68) causes a significant perturbation (0.83 ppm shift) in the resonance 
centered around -126.7 ppm in spectra of 5FW Med25 AcID while not affecting the 
resonance at -128.3 ppm. 5FW Med25 complexed to ERM(38-68) shown in blue; 5FW 
Med25 only shown in red.  
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In contrast to the results of the H2/third site interacting peptides and the VP16 H1 

experiments, the addition of 1 eq ERM(38-68) to 5FW Med25 AcID caused a dramatic 

perturbation of 5FW resonances (Figure 3.15). Specifically, ERM(38-68) caused a ~1 

ppm downfield shift of the resonance at -126.7 ppm. As previously noted, this broad 

resonance integrates for two 19F atoms and is proposed to represent the W402/W444 

dyad. This result corroborates previous evidence that ERM(38-68) binds to the H1 site in 

a unique manner and quite differently than VP16 H1. In particular, when considering the 

lack of perturbations at α2 in 3FY PrOF experiments at substochiometric ERM conditions, 

this result suggests that ERM(38-68) might bind perpendicular to the β-barrel at the H1 

site. 

 

Binding models for unique peptide interactions with Med25 AcID  

 At this stage, each discrete interaction between Med25 AcID and its protein 

interaction partners have been subjected to extensive analysis including 1H, 15N-HSQC 

NMR, the mutational study described in Chapter 2, and protein-observed 19F NMR. 

Collectively, these data have informed proposed binding models to describe each of the 

known Med25 AcID PPI. Each methodology has its limitations (e.g. HSQC NMR cannot 

necessarily differentiate between allosteric and orthosteric effects) however, they are 

incredibly complementary, with each providing unique insights (e.g. PrOF NMR can 

provide selective differentiation of specific regions within a single binding site).  
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In the mutagenesis study, blocking both the H1 and H2 sites with negative charge 

(Q451E/M523E mutant) resulted in a 24-fold loss in binding affinity for VP16 H1 relative 

to WT; Blocking either the H1 site (Q451E) or the H2 site (M523E) alone provided 

relatively minor losses in binding affinity (2.9-fold and 4.3-fold losses, respectively). This 

suggested that VP16 H1 could either bind at both the H1 and H2 sites or that VP16 H1 is 

an allosteric regulator of Med25 function; HSQC NMR data were consistent with these 

two possibilities. PrOF NMR of 3FY Med25 AcID suggested that VP16 H1 binding occurs 

“high” in the H2 site, near α2, as only the Y487/Y515 pair were significantly perturbed. 

The lack of perturbations in the PrOF NMR of 5FW Med25 (which provides NMR reporters 

at the H1 site only) indicated that the H1 site is not the sole target for binding to Med25 

Figure 3.16. Model of the Med25 AcID-VP16 H1 PPI. Proposed binding locations of 
Med25 AcID for VP16(413-451) are highlighted by golden circles. Residues of Med25 
AcID that are significantly perturbed by VP16 H1 peptide in HSQC NMR are colored 
in teal (2 standard deviations) and pale blue-green (1 standard deviation); Tyr residues 
that are affected in PrOF NMR experiments are shown as sticks in black; Residues 
where introduction of negative charge significantly inhibited the PPI are shown as 
sticks in dark blue. HSQC NMR performed by Andy Henderson. (PDB 2XNF) 

H1 site H2 site 
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AcID, diminishing allosteric effects as the cause for H2 site perturbations in other 

experiments. Collectively, these data suggest that VP16 H1 binds at the H2 site with an 

affinity equivalent to that at the H1 site. It remains unknown however if multiple copies of 

the peptide are capable of binding to the protein simultaneously (Figure 3.16). 

 

HSQC NMR of the Med25 AcID-VP16 H2 demonstrated significant perturbations 

at the H1 and H2 sites, suggesting that the peptide might bind at both locations. However, 

the mutational and PrOF NMR studies were more definitive in demonstrating that VP16 

H2 binds selectively to the H2 site. Mutagenesis to block the H2 site was incredibly 

effective at inhibiting VP16 H2 (R466D and M523E provided 11-fold and 23-fold losses in 

binding affinity relative to WT, respectively) while blocking the H1 site through 

H2 site H1 site 

Figure 3.17. Model of the Med25 AcID-VP16 H2 PPI. The proposed binding location 
of Med25 AcID for VP16(452-490) is highlighted by the golden circle within the H2 site. 
Residues of Med25 AcID that are significantly perturbed by VP16 H2 in HSQC NMR 
are colored in red (2 standard deviations) and pink (1 standard deviation); PrOF NMR 
experiments of 3FY Med25 AcID caused perturbations in Y432 and the Y487/Y515 
pair (sticks in black); Introduction of negative charge at R466 and M523 (sticks in blue) 
caused significant inhibition of the Med25 AcID-VP16 PPI. HSQC NMR performed by 
Andy Henderson. (PDB 2XNF) 
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mutagenesis was ineffective at inhibiting VP16 H2. PrOF NMR studies of the Med25 

AcID-VP16 H2 localized the VP16 H2 interaction to occur “high” in the H2 site, near α2, 

and likely extending perpendicular to the β-barrel towards Y432 (Figure 3.17). 

 

Like VP16 H2, HSQC NMR of VP16(438-490), which contains the α-helical region 

of VP16 H1 and the entirety of VP16 H2, demonstrated significant chemical shift 

perturbations at both the H1 and H2 sites of Med25 AcID. However, the mutagenesis 

work and PrOF NMR could differentiate VP16 H2 from VP16(438-490), as VP16(438-

490) had more dramatic impact within both studies. PrOF NMR of 3FY Med25 AcID 

perturbed all four Tyr residues dispersed among the H2 site. Individual inhibition of either 

H2 site H1 site 

Figure 3.18. Model of the Med25 AcID-VP16(438-490) PPI. Proposed binding 
locations of Med25 AcID for VP16(438-490), which contains the α-helical region of 
VP16 H1 and the entirety of VP16 H2, are highlighted by golden circles. Residues of 
Med25 AcID that are significantly perturbed by VP16 H1 peptide in HSQC NMR are 
colored in orange (2 standard deviations) and yellow (1 standard deviation); Tyr 
residues that are affected in PrOF NMR experiments are shown as sticks in black; 
Shown as sticks in dark blue are residues at which introduction of negative charge to 
block the H2 site (R466 and M523) or tethering with a peptide to block the H1 site 
(C506) significantly inhibited the Med25-VP16(438-490) PPI. HSQC NMR performed 
by Andy Henderson. (PDB 2XNF) 
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the H2 site through introduction of negative charge (R466D and M523E provided 8.9-fold 

and 15-fold losses in binding affinity relative to WT, respectively) or the H1 site through 

Tethering of VP16 G450C peptide (WT-VP16 G450C peptide provided a 6.0-fold loss in 

binding affinity relative to WT) significantly reduced binding affinity. Furthermore, blocking 

the H1 and H2 sites simultaneously had dramatic effects (R466D and M523E Tethered 

to VP16 G450C peptide provided 46-fold and 117-fold losses in binding affinity to WT, 

respectively). Collectively, these data suggest that VP16(438-490) likely binds to both the 

H1 and H2 faces simultaneously. It is likely that C-terminal portion, containing VP16 H2, 

interacts at the H2 site while the N-terminal binds at the H1 site (Figure 3.18). While the 

order in which these interactions occur is unknown, the first binding event would make 

the second binding event highly favorable, as the entropic cost of the second interaction 

would be lowered. This mechanism of action provides an explanation of why the 

VP16(438-490) peptide binds Med25 AcID with >7-fold higher affinity than VP16 H2 (KD 

of 82 nM for Med25-VP16(438-490) vs. 605 nM for Med25VP16(452-490) in FP assays). 
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 HSQC NMR of the Med25 AcID-ERM PPI, reported in the literature10 and 

performed in the Mapp lab, demonstrated significant chemical shift perturbations at the 

H1 site. Additional residues were significantly perturbed at the H2 site, opening the 

possibility that ERM(38-68) could behave like VP16 H1 and bind at both sites with similar 

affinities. However, both the mutagenesis study and PrOF NMR indicated that this is not 

the case. In the mutagenesis study, ERM was the only peptide that was significantly 

Figure 3.19. Model of the Med25 AcID-ERM PPI. The proposed primary binding 
location of Med25 AcID for ERM(38-68) is highlighted by the golden circle at the H1 
site. A proposed secondary binding location, thought to represent a weaker affinity 
interaction, is highlighted by the tan circle at the H2 site. Residues of Med25 AcID that 
are significantly perturbed by saturation with ERM peptide in HSQC NMR are colored 
in teal (2 standard deviations) and pale blue-green (1 standard deviation). Shown as 
sticks in dark blue are residues (Q451, H499, and R538) at which introduction of 
negative charge to block the H1 site significantly inhibit ERM binding (These residues 
are also significantly perturbed in HSQC NMR experiments.). At the H1 site, Trp 
residues that are affected in PrOF NMR experiments are shown as sticks in black; At 
the H2 site, Tyr residues, shown as sticks in gray, are perturbed in PrOF NMR only at 
and above stoichiometric equivalents; Introduction of negative charge at M523, shown 
as sticks in light blue, inhibits ERM binding only if the H1 site is also blocked with 
Q451E (H1 site) mutation. HSQC NMR performed by Andy Henderson. (PDB 2XNF)  

H1 site H2 site 
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affected by the introduction of negative charge at Q451, H499, and R538 (3.0-fold, 3.5-

fold, and 5.9-fold losses in binding affinity to ERM(38-68) relative to WT, respectively). 

Furthermore, ERM(38-68) was the only interaction partner that perturbed 5FW Med25 

resonances in PrOF NMR, all of which are located near the H1 site, and did not perturb 

any 3FY Med25 resonances at substochiometric equivalencies. Collectively, these data 

demonstrated that ERM binds selectively at the H1 site when relative levels of ERM 

peptide are low (Figure 3.19).  

Additional evidence suggested that ERM likely binds to the H2 site with a lesser 

relative affinity when the H1 site is already occupied with another copy of the peptide 

ligand. In PrOF NMR, 3FY Med25 resonances are unaffected by ERM until the 

concentration of ERM peptide is equal or, or greater than, the concentration of protein at 

which point all resonances become significantly perturbed. The mutational study provided 

additional evidence of a weak, second interaction between ERM and the H2 site. 

Inhibition of the H2 site through introduction of negative charge at M523 alone does not 

affect ERM binding (1.2-fold change relative to WT) however blocking both the H1 and 

H2 sites with the Q451E/M523E mutation provides 9.9-fold loss in binding affinity relative 

to WT (which is three-fold better inhibition than Q451E alone) 
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 Like VP16 H2, all experimental data suggest that ATF6α binds selectively at the 

H2 site. HSQC NMR demonstrated that vast majority of significantly perturbed residues 

are within or near the H2 site; Inhibition at the H1 site through mutagenesis had no effect 

on the Med25-ATFα interaction however H2 site mutants provided large effects (M523E, 

R466D, and R466D/M523E provided 8.8-, 12-, and 16-fold losses in binding affinity 

relative to WT). PrOF NMR did however demonstrate that ATF6α does interact differently 

with the H2 site than does VP16 H2. These data suggest that ATF6α binds at the ‘bottom’ 

of the H2 site, away from α2 and near the C-terminal end of α1 (Figure 3.20). 

Y528 

R466 

Figure 3.20. Model of the Med25 AcID-ATF6α PPI. The proposed binding location of 
Med25 AcID for ATF6α(40-66) is highlighted by the golden circle within the H2 site. 
Residues of Med25 AcID that are significantly perturbed by ATF6α peptide in HSQC 
NMR are colored in red (2 standard deviations) and pink (1 standard deviation); R466 
and Y528 (labeled) were also perturbed by >2 SD in HSQC NMR. PrOF NMR 
experiments of 3FY Med25 AcID caused perturbations in Y528 and Y432 (sticks in 
black). Finally, introduction of negative charge at R466 and M523 (sticks in blue) 
caused significant reduction in binding affinity of ATF6α(40-66) for Med25 AcID. (PDB 
2XNF) 
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 The Med25 AcID-CBP PPI is unique from all Med25-activator PPIs, based on the 

data. HSQC perturbation patterns differ from all other peptides, providing significant 

chemical shift perturbations within the H2 site and at a cleft in the protein that could 

represent a third binding site formed by β2/β4/α2, 90° away from the H2 site. Notably, 

CBP(20-44) is the only tested peptide to perturb several residues in this region of the 

protein away from the H2 site. A recent report has suggested that the DNA-binding 

domain of ETV4 likely occupies this similar position on Med25 AcID.39 Additional evidence 

that CBP(20-44) resides at this newly identified cleft of the protein and not at the H2 site 

comes from the PrOF NMR titration of 3FY with CBP. Only Y432, a residue that is situated 

between the H2 site and this putative third site, is perturbed by CBP. It should be noted 

H2 site Third site 

Figure 3.21. Model of the Med25 AcID-CBP PPI. The proposed binding location of 
Med25 AcID for CBP(20-44) is highlighted by the golden circle at the third site. 
Residues of Med25 AcID that are significantly perturbed by CBP peptide in HSQC 
NMR are colored in bright green (2 standard deviations) and dull green (1 standard 
deviation); Y432, the single Tyr residue that is perturbed in PrOF NMR experiments is 
shown as sticks in black; Residues where introduction of negative charge significantly 
inhibited the PPI are shown as sticks in dark blue. (PDB 2XNF) 
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that it is unknown where the H2 site ends and this potential third site would begin (Figure 

3.21). However, critically, the NMR binding signatures for the Med25-CBP(20-44) PPI are 

unique and unlike any other peptide ligand (as described) or small molecule ligand (to be 

described). This stark difference in binding signature could have important implications 

on Med25 AcID function. This newly identified site, if verified, could represent an interface 

that Med25 might exploit for allosteric purposes or to link activators to the master 

coactivator CBP/p300. 

 

Protein-observed 19F-NMR experiments demonstrate model of Med25 AcID inhibition 

induced by norstictic acid 

Norstictic acid is a single-digit micromolar inhibitor of Med25 AcID PPIs, and 

functions through formation of reversible covalent imine adducts with lysine residues of 

Med25 AcID. Site-specific mutations of lysine with arginine eliminated the possibility for 

covalent-adduct formation while maintaining positive charge. A single set of mutations – 

K518R/K519R/K520R, located on the H2 site – had negligible effects on native Med25-

peptide interactions but strongly reduced inhibition by norstictic acid of Med25-VP16 H1 

and Med25-VP16 H2 interactions. This suggested that norstictic acid covalently binds 

with these specific lysine residues within the H2 site however secondary evidence was 

desired. This Med25 AcID-ligand interaction offered an excellent opportunity to leverage 

the PrOF NMR system and knowledge gained during the PrOF analyses of Med25 PPIs 

towards the mechanistic understanding of a small molecule that targets Med25 AcID.  
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 Norstictic acid was incubated with 3FY Med25 AcID, at four different 

concentrations relative to Med25, for four hours at room temperature prior to reduction of 

the resultant imine with sodium borohydride. Following a buffer exchange, these protein 

samples were then subjected to mass spectrometric analysis to demonstrate the 

formation of covalent Med25-norstictic acid adducts (Figure 3.22). Incubation of 3FY 

Med25 with 0.5 eq. norstictic acid provided 39% singe-labeled protein (18557.59 Da) and 

6% double-labeled protein (118912.52 Da). 3FY Med25 incubated with 1 eq. norstictic 

acid (47% single-, 21% double-, and 3% triple-labeled) and 2 eq. norstictic acid (45% 

single-, 37% double-, and 8% triple-labeled) both provided protein samples that were 

primarily labeled as a single adduct. Unsurprisingly, incubation with 4 eq. norstictic acid 

Figure 3.22. Labeling of 3FY Med25 AcID with norstictic acid. 3FY Med25 (75 µM) 
was incubated with 0.5, 1, 2, and 4 eq. of norstictic acid for four hours at room 
temperature before mass spectrometry and PrOF NMR analysis. Red squares indicate 
number of covalent norstictic acid; Each norstictic acid provided +354 mass units. 
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gave the highest degree of labeling with > 50% of the total protein covalently bound with 

three or more norstictic acid molecules (6% single-, 19% double-, 24% triple-; 32% 4x-, 

14% 5x-, 5% 6x-labeled).  

 

  After mass spectroscopy and a buffer exchange to remove excess norstictic acid, 

each sample was subjected to PrOF NMR analysis (Figure 3.23). The resultant spectra 

demonstrated that labeling with norstictic acid dramatically affects the tyrosine residues 

of 3FY Med25. The Med25 AcID sample incubated with 0.5 eq. norstictic acid was either 

unlabeled (55% by MS) or single-labeled (39% by MS). This single adduct caused a 

splitting of both the Y432 and Y487 resonances, as evidenced by the downfield shoulders 

Figure 3.23. PrOF NMR of 3FY Med25 AcID labeled with norstictic acid. Spectral 
analysis of 3FY Med25 AcID incubated with 0.5, 1, 2, and 4 eq. of norstictic acid. 
Labeling with norstictic acid causes chemical shift perturbation at Y487 at 0.5 eq. and 
subsequent perturbations of Y432 and Y515 as [norstictic acid] increases. 
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of the WT resonances at -134.5 and -136.9 ppm. These new peaks become more 

apparent in the 1 eq. norstictic acid sample, likely due to its lower % unlabeled by MS 

(29%). In the PrOF spectrum of the Med25 AcID sample incubated with 2 eq. norstictic 

acid sample, which contained significant amount of protein with two covalent adducts 

(37% double-labeled), both the Y487 and Y515 resonances were completely shifted 

downfield from their WT chemical shifts. The PrOF spectrum of the final sample, Med25 

AcID incubated with 4 eq. norstictic acid, demonstrated significant broadening of all 

resonances in the noise, with peaks indistinguishable for Y432, Y487, and Y515. This 

could indicate that each of these tyrosine residues are near norstictic acid when Med25 

AcID is labeled with more than one norstictic acid or that multiple-labeled adducts induce 

large conformational changes (Only 6% of this sample contained fewer than two adducts). 

The resonance for Y528, while broadened slightly, remained in its WT location.  

 Collectively, these PrOF experiments with Med25 AcID covalently labeled to 

increasing amounts of norstictic acid demonstrated that norstictic acid likely binds the 

protein in proximity of the Y487/Y515 pair and Y432 (Figure 3.24). Since it is known that 

the molecule forms a covalent adduct with the side chains of lysine, this PrOF data 

suggested that norstictic acid is likely to preferentially bind one of the lysine residues in 

the 6-7 loop (K518/K519/K520) at least once, and potentially twice, before reacting with 

other residues. These are the only lysine residues in proximity of each of the Y487/Y515 

and Y432 residues that are influenced by norstictic acid in PrOF experiments. This 

analysis is consistent with, and corroborates, previous Lys-to-Arg mutational work that 

demonstrated that K518/K519/K520 were critical for the inhibitory activity of norstictic 

acid40. In addition to providing corroboration of the location of the Med25-norstictic acid 
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interaction, this result demonstrated that PrOF NMR of fluorinated Med25 variants offers 

a unique method of studying Med25-ligand interactions in addition to Med25 PPIs  

 

PrOF NMR allows for characterization and development of a small molecule fragment 

that targets Med25 AcID 

The Med25 AcID-ERM PPI had been screened against a library of 1600 small 

molecule fragments maintained by the Wells lab at the University of California – San 

Francisco using the FP Tethering approach (Andy Henderson, University of Michigan and 

Zach Hills, UCSF).41,42 This methodology allows for the discovery of fragments that 

undergo disulfide exchange with solvent exposed cysteine residues of a protein-of-

interest. Med25 AcID contains two such cysteines – C497, located in the center of the H1 

site, and C506, located on a loop near the base of the H1 site. Thus, this methodology 

Figure 3.24. Model of norstictic acid labeling of Med25 AcID. PrOF NMR analysis 
corroborated that K518/K519/K520 (shown in red) on loop between β6-β7 is likely 
primary target for covalent labeling of norstictic acid for Med25 AcID. Dark blue 
residues indicate 3FY residues perturbed in PrOF experiments; pink represents 
additional Lys residues; Light blue represents Y528, which is not affected by norstictic 
acid labeling. (PDB 2XNF) 

K518/K519/K520 

Y528 



116 
 

was anticipated to discover molecules that inhibited Med25 AcID at the H1 site. Following 

screening of the Med25-ERM complex at three different stringencies (0.2 mM, 1 mM, and 

5 mM β-mercaptoethanol) and removal of fluorescent artifacts, thirty-one unique 

compounds were discovered to significantly inhibit Med25-ERM. One of the most potent 

fragments discovered, termed A6, was independently synthesized (Clint Regan, 

University of Michigan) containing an irreversible iodoacetamide electrophile in place of 

the disulfide used during the Tethering screen (Figure 3.25). As with norstictic acid, it was 

hypothesized that PrOF NMR could be leveraged to provide mechanistic understanding 

of the interaction of this fragment small molecule with Med25 AcID.  

 

Med25 AcID was incubated with four equivalents of A6-iodoacetamide fragment 

for six hours, resulting in a protein sample that was singly labeled (>95% by mass 

spectroscopy). Longer incubation times and/or higher equivalencies of A6 did produce 

Figure 3.25. Structures of fragment A6. A6 is shown with a right-side terminal 
disulfide (structure of originally discovered molecule in Tethering screen; allows for 
reversible disulfide exchange with cysteine) and with a right-side terminal 
iodoacetamide (allows for covalent labeling at cysteine residues) 
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Med25 AcID that was doubly labeled; however, this second labeling event was much 

slower than the first. Labeling studies with C506A and C497A mutants were used to 

determine which of the two solvent exposed cysteines was the preferred target for 

A6-iodoacetamide (Andy Henderson, University of Michigan). These experiments 

demonstrated that A6-iodoacetamide efficiently labels C497A Med25 AcID but does not 

label C506A Med25 AcID, a result indicating that the Cys at 506 is the likely target of 

A6-iodoacetamide. 

 The ability of A6 to inhibit binding of peptide ligands to the H1 site of Med25 was 

investigated using WT Med25 AcID and Med25 mutants that block the H2 site (R466D, 

and M523E), in similar manner as performed with VP16 G450C peptide (Figure 3.26). It 

was hypothesized that A6 would be capable of moderate and significant inhibition of the 

Med25-VP16 H1 PPI based on the effects of VP16 G450C peptide when tethered to C506 

of Med25 AcID. Tethering of VP16 G450C peptide to WT Med25 AcID caused a 12.8-fold 

loss in VP16 H1 binding affinity while Tethering of VP16 G450C peptide to R466D had 
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Figure 3.26. Mutant Med25-A6 complexes fail to block H1 and H2 sites 
simultaneously. Binding affinities of VP16 H1 and VP16 H2 peptides for Med25 
mutants complexed to A6, as measured by FP.  
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caused a 67-fold loss in VP16 H1 binding affinity. These results had demonstrated that 

the combination of an H2 site mutant and VP16 G450C peptide appended to the H1 site 

was capable of successfully blocking the H1 and H2 sites simultaneously. Considering 

these large inhibitory effects provided by VP16 G450C, it was hypothesized that the small 

molecule fragment A6 Tethered to the same C506 residue of Med25 AcID would be 

capable of comparable inhibitory effects.  

For all three Med25 AcID variants (WT, R466D, and M523E), excess A6-

iodoacetamide was incubated with protein until >95% single labeling was achieved 

according to MS analysis. Binding affinities of labeled and unlabeled protein to VP16 H1 

and VP16 H2 were then measured by FP. WT Med25 AcID bound VP16 H1 and VP16 

H2 with a KD of 1.7 ± 0.1 and 0.6 ± 0.1 µM, respectively; Tethering of A6 to WT Med25 

AcID had a minimal effect on the affinity towards VP16 H1 (2.7-fold loss; 

KD = 4.6 ± 0.3 µM) and VP16 H2 (1.6- fold loss; KD = 0.9 ± 0.1 µM). Labeling of R466D 

and M523E, two mutants that block the H2 site, with A6-iodoacetamide did not improve 

the capability of parent proteins to block VP16 H1 or VP16 H2 interactions. In fact, R466D 

Med25 labeled with A6 bound VP16 H1 and VP16 H2 with slightly tighter affinities than 

WT Med25 AcID (e.g. R466D Med25 AcID bound VP16 with KD of 9.9 ± 0.9 µM compared 

to a KD of 8.5 ± 0.8 µM for WT Med25 AcID).  

 PrOF NMR of Med25 AcID, utilizing both VP16 G450C and A6 tethered to C506, 

was then pursued to determine why A6 was incapable of successfully blocking the H1 

site even while being tethered to C506. It was hypothesized that differences in binding 

locations of VP16 G450C and A6 to Med25 AcID as determined using PrOF NMR could 

explain their differences in efficacy. 3FY Med25 was independently labeled with VP16 
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G450C peptide and fragment A6 before being subjected to PrOF NMR analysis (Figure 

3.27)  

 

 As expected, VP16 G450C caused chemical shift perturbations in each tyrosine 

residue in 3FY Med25 relative to unlabeled 3FY Med25. This result was consistent with 

VP16 G450C likely inducing a conformational change in Med25 AcID when 100% bound 

to the protein. The large effects on Y432 and the Y487/Y515 pair indicate that VP16 

G450C is likely extending across the H1 site from C506 up to α2 of Med25 AcID. Finally, 

Y528 was the least perturbed resonance of the four tyrosines in 3FY Med25 AcID, further 

corroborating that VP16 G450C extends into the H1 site and thus away from Y528. Of 

Figure 3.27. PrOF NMR of 3FY Med25 AcID labeled with VP16 G450C peptide or 
fragment A6. Spectral analysis of 3FY Med25 AcID covalently tethered to either VP16 
G450C peptide or A6 at C506.  
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note for this discussion – The side chain of Y528 is only 12-18 Å away from the sulfur 

atom of C506 in every published NMR structure. 

 Differing from the PrOF NMR spectra of 3FY Med25-VP16 G450C, which 

demonstrated chemical shifts for all resonances, the PrOF NMR spectrum of 3FY Med25 

AcID was dramatically perturbed at a single resonance by labeling with A6. The 

resonance attributed to Y528, at -137.5 ppm, was completely broadened into noise in the 

3FY Med25-A6 PrOF spectra. The lack of major perturbations in the Y487/Y515 pair and 

Y432 suggests that, unlike VP16 G450C peptide, A6 does not extend into the H1 site 

towards α2 of Med25 AcID when tethered to C506. Instead, the broadening of the Y528 

resonance suggested that A6 is likely interacting with the ‘bottom’ of the β-barrel, away 

from the H1 site, and could be making direct contact with Y528. Further, it was proposed 

that the 5-methoxy-indole of A6 could be forming a π-π interaction or hydrogen bond with 

the side chain of Y528 or a nearby residue. Based on molecular distances, this hypothesis 

is plausible. A6 is predicted to extend ~20 Ǻ from end-to-end in its lowest energy 

structure, longer than the distance (12-18 Ǻ) between C506 and Y528.  

 To investigate the hypothesis that the 5-methoxy-indole of A6 interacted with the 

base of the β-barrel and thus diminished its ability to inhibit Med25 PPIs similarly to VP16 

G450C, A6 was chemically modified to remove hydrogen bonding and/or aromatic 

character (Figure 3.28). Syntheses of an A6 derivative that replaced the 5-methoxy-indole 

with benzene and another that replaced the 5-methoxy-indole with cyclohexane were 

completed by Clint Regan (University of Michigan). 
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Following synthesis of the A6 derivatives, samples of 3FY Med25 AcID were 

independently labeled with each molecule to >95% singly labeled by MS and then 

subjected to PrOF NMR analysis (Figure 3.29). PrOF NMR spectrum of 3FY Med25 AcID 

tethered to the A6 benzene derivative demonstrated a partial recovery of the Y528 

resonance relative to the 3FY Med25-A6 spectrum and a ‘new’ resonance at -136.8 ppm. 

This peak and the Y528 resonance at -136.5 ppm both integrate for ~0.6 19F relative to 

the Y432 resonance (the Y487/Y515 pair integrate for 2.05 19F) suggesting that these 

resonances represent two distinct conformers of Y528, a WT-like state and another in 

which Y528 is interacting with the A6 benzene derivative. Additionally, moderate 

perturbations in the Y487/Y515 pair suggest that α2, located on the opposite end of the 

β-barrel from C506, is affected by the A6 benzene derivative. Collectively, this result 

indicated that the A6 benzene derivative was likely interacting with the bottom of the β-

Figure 3.28. Structures of A6 derivatives. Two derivatives of A6 were designed to 
investigate the hypothesis that the 5-methoxy-indole of A6 interacts with the base of 
the β-barrel to significantly broaden the Y4528 resonance in PrOF NMR. 
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barrel about 50% as tightly or consistently as A6 and that the A6 benzene derivative was 

partially adopting VP16 G450C character. 

 

PrOF NMR spectrum of the A6 cyclohexane derivative demonstrated nearly 

complete recovery of the resonance at Y528. The chemical shift of the doubled peak is 

significantly perturbed relative to WT, however the peak itself has recovered signal-to-

noise and integrates for 1.1 19F relative to Y432. This result suggests that the A6 

cyclohexane derivative no longer significantly interacts with Y528 and the bottom of the 

β-barrel, likely due to the replacement of the 5-methoxy-indole functionality of A6 with a 

saturated cyclohexane ring incapable of π-π stacking or hydrogen bond formation. It is 

Figure 3.29. PrOF NMR of 3FY Med25 AcID labeled with A6 or A6 derivatives. 
Spectral analysis of 3FY Med25 AcID covalently tethered to A6 or A6 derivatives at 
C506. As proposed, chemical modification of the 5-methoxy-indole of A6 to remove 
aromaticity and/or ability for hydrogen bonding allowed for observation of the Y528 
resonance.  
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possible that the molecule could now be occupying the H1 site instead even though the 

A6 cyclohexane derivative does not perturb the Y487/Y515 pair, which are affected by 

VP16 G450C peptide.  

 This chemical modification and subsequent PrOF NMR strategy was successful in 

demonstrating that the inability of the parent fragment A6 to significantly inhibit Med25 

PPIs when fully bound at C506 likely results from its binding location on Med25 AcID. 

This strategy demonstrated that by removing the aromatic and hydrogen bond 

donators/acceptors at the end of this molecule, the fragment started to bind at the H1 site 

in a manner similar to VP16 G450C, a highly effective inhibitor of Med25 PPI at the H1 

site, as opposed to associating with the bottom of the β-barrel and apart from any of the 

putative Med25 AcID binding sites. While it is yet unknown if these modified fragments 

will be useful Med25 inhibitors, this study should provide future guidance in the rational 

development of Med25 fragments that target the H1 site. Additionally, this study 

demonstrated the power and utility of PrOF NMR in the development and characterization 

of small molecule modulators of Med25 AcID.  

 

D. Conclusions and future directions 

In this chapter, I hypothesized that protein-observed 19F-NMR of Med25 AcID 

would be a useful methodology for the study of Med25 and its protein-protein interaction 

network that would complement previously performed 1H, 15N-HSQC NMR from the 

literature and Chapter 2 of this thesis.8–10,39 Previous data demonstrated that Med25 AcID 

contained two or three discrete binding interfaces. Additionally, the H1 site was 

determined to be less dependent on hotspot residues and electrostatic interactions than 
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the H2 site and that several Med25-interacting partners that bound at the H1 site were 

proposed to be capable of compensatory interactions at the H2 site.  

Two unique PrOF NMR strategies were developed to specifically differentiate 

between the H1 and H2/third sites of Med25 AcID. The incorporation of 3-fluorotyrosine 

into Med25 AcID was hypothesized to allow for precise study of the H2 and ‘third’ sites 

due to the dispersion of four solvent-exposed Tyr residues surrounding the putative 

bounds of the H2 site. The incorporation of 5-fluorotryptophan into Med25 AcID was 

hypothesized to allow for direct observation of the H1 site. 3FY Med25 and 5FW Med25 

AcID were biosynthesized in high yields and subjected to PrOF NMR analysis. 3FY 

Med25 AcID provided four well-resolved resonances that were independently assigned 

to each of the four Tyr residues using Y-to-F and ‘nudge’ mutagenesis strategies. 5FW 

Med25 AciD provided an interpretable spectrum in a reasonable timeframe (~20 minutes 

of experimental time) however resonances were assigned to specific Trp residues. 

Subsequent titrations of each Med25-interacting peptide ligand with 3FY Med25 

AcID and 5FW Med25 AcID were analyzed by PrOF NMR. The titration of peptide ligands 

previously proposed to bind specifically at the H2 site (ATF6α and VP16 H2) caused 

significant chemical shift perturbations in multiple 3FY Med25 resonances while not 

affecting any resonances of 5FW Med25 AcID. PrOF NMR of CBP(20-55) in complex with 

3FY Med25 AcID demonstrated a significant chemical shift in a single residue (Y432) 

located along the nebulous barrier between the H2 site and the third site. This 

demonstrated that CBP binds Med25 AcID in a manner unlike other Med25-interacting 

ligands and likely associates directly at the third site located along β4/β2/β1 and the N-

termini of α2. PrOF NMR demonstrated significant differences in the binding modes of 
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the two previously proposed peptides (ERM and VP16 H1) that were thought to be 

somewhat selective for the H1 site. Increasing concentrations of VP16 H1 were found to 

cause significant chemical shift perturbations in the Y487/Y515 pair of residues in 3FY 

Med25 AcID while having no impact on resonances of 5FW Med25 AcID. However, 

increasing concentrations of ERM(38-68) had no impact on 3FY Med25 AcID at 

substochiometric equivalencies while causing a significant shift in 5FW Med25 AcID. This 

suggested that while VP16 H1 might be equally capable of binding to the H1 or H2 sites, 

ERM is highly selective for the H1 site at substochiometric concentrations. Collectively, 

these analyses of Med25 PPIs by PrOF NMR coupled with experiments performed in 

Chapter 2 and by another member of the Mapp lab (Andy Henderson) allowed for the 

generation of hypothesized models to describe each of the binding interactions for Med25 

AcID and its discrete protein partners. 

In addition to the study of Med25 and its PPI network, PrOF NMR was successful 

applied to the characterization of two small molecules discovered by other members of 

the Mapp lab. PrOF NMR spectra of 3FY Med25 AcID samples labeled with norstictic acid 

provided decisive evidence regarding norstictic acid’s mode of inhibition. This primary 

binding of this molecule, previously known to function through covalent adduct formation 

with lysine residues of Med25 AcID, was localized to the 6-7 loop of H2 site. PrOF NMR 

was also successfully utilized to suggest the reason for the inability of a molecule that 

binds Med25 AcID to significantly inhibit Med25 AcID function. This molecule, a fragment 

termed ‘A6’ was discovered by a Tethering screen against Med25 AcID. However, even 

when fully bound to the protein, A6 offered minimal inhibitory effects. PrOF NMR of 3FY 

Med25 labeled with A6-iodoacetamide demonstrated that the 5-methoxyindole 
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functionality of this fragment was likely forming a π-π interaction or hydrogen bond with 

a region of Med25 AcID that directed the molecule away from the H1 binding site. 

Removal of that 5-methoxyindole functionality provided A6-derivatives that are thought to 

bind into the H1 site in a manner similar to a known peptide-based inhibitor of the H1 site, 

VP16 G450C. This study could provide future guidance in the rational development of 

Med25 inhibitors that target the H1 site.  

Future work to develop additional fluorinated variants of Med25 AcID for the study 

of the H1 site could be beneficial. Only a single peptide, ERM(38-68) was capable of 

perturbing any of the resonances of 5FW Med25 AcID. However, while this result was 

incredibly useful in demonstrating the unique binding mode of ERM towards Med25 AcID, 

recall that at least two of the Trp residues within Med25 AcID are not solvent-exposed. It 

is thought that more environmentally sensitive 19F reporters could be useful in detecting 

weak interactions of other peptide ligands with the H1 site. To this end, future PrOF NMR 

experiments could be pursued using Med25 AcID labeled with trifluoroacetone. 

Preliminary work has demonstrated that the solvent-exposed cysteines (C497 and C506) 

of Med25, both of which reside within the H1 site, can both be reacted with 3-bromo-

1,1,1-trifluoroacetone to generate a Med25 AcID covalently linked to two trifluoroacetone 

molecules (Figure 3.30). A subsequent PrOF NMR spectrum provided three distinct 

resonances, indicating that the trifluoroacetone bound to each Cys residue are resolved. 

Three NMR resonances, as opposed to the anticipated two, suggests that one of the two 

cysteine-trifluoroacetone species likely exists in multiple conformations. Assignment of 

these resonances should be possible by labeling C497A and C506A Med25 mutants with 

trifluoroacetone to provide singly labeled protein species.  
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Figure 3.30. PrOF NMR of Med25 AcID labeled with trifluoroacetone. (A) Med25 
was reacted with 3-bromo-1,1,1-trifluoroacetone to covalently label C497 (orange) and 
C506 (red) with trifluoroacetone. (B) Mass spectroscopy of Med25-trifluoroacetone 
sample demonstrated that Med25 AcID was 16% singly labeled and 83% double 
labeled. (C) PrOF NMR spectra of Med25-trifluoroacetone sample provided three 
resonances (-79.16, -79.54, -79.62 ppm). 

A. B. 

C. 
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E. Materials and methods  

Plasmids  

pET21b-Med25(394-543)-His6 was provided by Patrick Cramer. Mutant Med25 AcID 

plasmids. Point mutants of pET21b-Med25(394-543)-His6 were generated using 

standard molecular biology protocols.  

 

Previously described methods 

Relevant methods that were previously described in Chapter Two include Med25 AcID 

purification, mass spectroscopy of proteins, FP binding experiments, circular dichroism, 

thermal melts, and solid-phase peptide synthesis. 

 

Expression of 19F-labeled Med25 AcID 

pET21b-Med25(394-543)-His6 was transformed into chemically competent DL39(DE3), 

plated onto LB/ampicillin agar, and incubated at 37 °C overnight. In the morning, agar 

plates were placed at 4 °C until further use. In the evening, a single colony from the 

transformed plate was placed into 25 mL Luria Broth with 0.1 mg/mL ampicillin and 

incubated at 37 °C overnight at ≥200 RPM. The following morning, 5-20 mL from the 

starter culture was added to 1 L Luria Broth with 0.1 mg/mL ampicillin and bacteria were 

grown at 37 °C at ≥200 RPM to an OD600 of ~0.8. Cells were centrifuged and supernatant 

was decanted. Cells were then resuspended in 0.5-1 L of the minimally defined media, 

as described36 with minor changes as noted. For the expression of 3FY Med25, media 

was supplemented with either 48 mg/L L-3-fluorotyrosine (Alfa Aesar) or 

96 mg/mL DL-3-fluorotyrosine (Sigma Aldrich). For the expression of 5FW Med25, media 
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was supplemented with either 60 mg/L L-5-fluoroindole (Alfa Aesar) or 

120 mg/mL DL-5-fluoroindole (Sigma Aldrich). For the expression of 4FF Med25, media 

was supplemented with either 29 mg/L L-4-fluorophenylalanine (Alfa Aesar) or 

58 mg/mL DL-4-fluorophenylalanine (Sigma Aldrich). Cultures were incubated at 37 °C 

overnight at ≥200 RPM for 90 minutes before reducing the temperature to 20 °C. After 30 

minutes, 0.5 mM IPTG was added. Bacteria were shaken overnight at 20 °C at ≥200 RPM. 

The following morning, bacterial cultures were centrifuged at 7000 x g for 20 mins at 4 

°C. Cell pellets were then stored at -80 °C prior to protein purification (performed as done 

with unlabeled Med25 AcID, described in Chapter Two) 

 

1-D 19F-NMR of 19F-labeled Med25 AcID 

To prepare for PrOF NMR,19F-labeled Med25 AcID was dialyzed into PrOF buffer (50 mM 

HEPES, 100 mM NaCl, 1 mM DTT, pH 7.2). All PrOF experiments were performed with 

10% D2O and 0.01% trifluoroacetic acid (TFA) as an internal 19F reference. PrOF NMR 

data were acquired on a Varian 500 MHz NMR spectrometer with a Varian 5 mm PFG 

OneNMR Probe. Spectra were obtained without proton decoupling. NMR pulse 

parameters - D1 relaxation time of 1 sec and an acquisition time of 0.6 sec with a 10 ppm 

sweep width (centered on −136 ppm for 3FY Med25, −125 ppm for 5FW Med25, and 

−117 ppm for 4FF Med25). 1200-1600 total scans were collected for experiments with 

3FY Med25 AcID; 2400 scans for 5FW Med25 AcID; 6000 scans for 4FF Med25 AcID. 

For each protein sample, a second TFA reference experiment was also performed (32 

scans, D1 – 1 sec, Ac. time – 0.6 sec; centered on -76.55 ppm). 
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Labeling of 3FY Med25 AcID with norstictic acid 

Varying molar equivalents of norstictic acid were added to 3FY Med25 AcID, in PrOF 

buffer. The protein-small molecule mixture was incubated for 4 hours at room temperature 

with gentle shaking using an orbital shaker. The protein was then reduced with excess 

sodium borohydride for 1 hour at room temperature with gentle shaking using an orbital 

shaker. After reduction, the protein was buffer exchanged in PrOF buffer and prepared 

for PrOF NMR analysis. 

 

Labeling of Med25 AcID with A6 and its derivatives 

A four-fold molar excess of compound was incubated with WT, mutant, or 19F-labeled 

Med25 for four hours, or until >95% single-labeled protein was obtained by mass 

spectroscopy. The protein-small molecule complex was incubated at room temperature 

with gentle shaking using an orbital shaker. After labeling, the protein was centrifuged 

and buffer exchanged into either FP assay or PrOF buffer.  

 

Labeling of Med25 with 3-bromo-1,1,1-trifluoroacetone 

A five-fold molar excess of compound was incubated with WT Med25 overnight. The 

protein-small molecule complex was incubated at room temperature with gentle shaking 

using an orbital shaker. After labeling, the protein was centrifuged and buffer exchanged 

into PrOF buffer.  
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Chapter Four 
 

Small molecule inhibition of Med25-activator interactions 
 

A. Abstract 

 Med25 AcID, a structurally unique and dynamic transcriptional coactivator, makes 

critical contacts with several transcriptional activators that are critical for normal cellular 

processes and certain disease states, including the oxidative stress response factor 

ATF6α and the ETV/PEA3 family of transcription factors.1,2 Previous work had 

demonstrated that Med25 contains two discrete binding sites, one of which demonstrates 

high selectivity for interaction with ATF6α while the other is moderately selective for the 

ETV5/ERM activator. It is proposed that small molecule inhibition of Med25 AcID and its 

protein-protein interaction (PPI) network would be beneficial in studying the function of 

Med25 in a cellular context and could be beneficial in the study of cancer progression and 

metastasis through inhibition of ETV- and ATF6α-mediated transcriptional activation. Two 

distinct strategies to develop and characterize small molecules that selectively target 

Med25 AcID in vitro and in cellulo are described herein. A pilot fragment screening effort 

that utilized PrOF NMR of Med25 identified nine preliminary compounds that target the 

AcID motif. Additionally, a novel natural product compound, termed 34913 lipopeptide, 

has been identified as a potent and selective inhibitor of Med25 AcID. This molecule, 

thought to mimic the structure of a transcriptional activation domain, interacts with the H2 

site of Med25 AcID in a binding mode that is nearly identical to that of the ATF6α activation 

                                            
Several collaborators provided research assistance throughout Chapter Four. Andy Henderson 
(University of Michigan) identified EN300-51104 in a HSQC fragment screening effort; Julie Garlick 
(University of Michigan) collected the inhibition data presented in Figure 4.2. Dr. Ashootosh Tripathi and 
Pam Schultz (University of Michigan) purified 34913 lipopeptide; Dr. Tripathi elucidated the structure of 
34913 lipopeptide. Brian Linhares (University of Michigan) collected HSQC NMR data of the Med25 AcID-
34913 lipopeptide interaction. 
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domain. Furthermore, the 34913 lipopeptide exhibited dose-dependent inhibition of a 

critical ATF6α gene product, GRP78, in a cellular environment. Collectively, this chapter 

represents a key advance in the discovery of small molecules that modulate Med25 AcID 

function and should allow for future determination of the role of Med25 and its PPI network 

in several disease contexts. 

 

B. Introduction 

Difficulties in targeting protein-protein interactions  

Protein-protein interactions (PPIs), particularly those in the transcriptional 

activator-coactivator class, have long been characterized as “undruggable”.3,4 The 

contact interfaces of PPIs are generally large (1500 – 3000 Å2) and shallow, lacking a 

traditional binding pocket present in protein-ligand interactions.4,5 Activator-coactivator 

interactions bring an additional set of difficulties. These PPIs are transient, moderate-

affinity interactions (binding affinities range from 500 nM to 100 µM) and each protein 

involved is structurally dynamic, often intrinsically disordered, and uses the same binding 

surface to interface with a large number of interaction partners.6–8 

 

Natural products for the inhibition of protein-protein interactions 

As a result of the inherent character of activator-coactivator interactions described 

above, traditional screening, medicinal chemistry efforts and rational design 

methodologies have led to limited success towards targeting this class of PPIs.9 Natural 

products, however, offer promise towards targeting this class of PPIs, and several natural 

products have recently been developed as tool compounds to target PPIs.10–14 These 
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natural product compounds derive great utility from their inherent structural complexity, 

ability to maintain high degrees of rigidity and chirality, and their vast diversity of molecular 

structure and scaffolds.15 In fact, nearly 40% of compounds represented in the Dictionary 

of Natural Products contain unique structural elements that are not otherwise represented 

in purely synthetic compounds.16,17 Furthermore, it is thought that the scientific community 

has discovered small fractions of the total chemical matter that nature has designed, 

particularly from the marine environment.18,19 Resulting from recent advances in 

fermentation, sample collection techniques, and structural elucidation technologies, 

natural product exploration into the marine environment (and other underutilized 

biological sources) has become more accessible.20,21 

 An excellent example of natural product inhibition of a PPI was demonstrated by 

Majmudar and coworkers in their discovery of depsides and depsidones that inhibited the 

KIX transcriptional coactivation domain of CBP and its transcriptional activation network.8 

Two unique compounds, sekikaic acid (depside) and lobaric acid (depsidone), were 

capable of inhibition of CBP KIX and were highly selective for this coactivator motif relative 

to transcription factor-DNA interactions and related coactivator-activator PPIs 

(Figure 4.1). Molecular dynamics simulations of sekikaic acid demonstrated that this 

molecule adopts an amphipathic structure that mimics an α-helix, suggesting that 

depsides and depsidones might be privileged scaffolds for the inhibition of PPIs. 

 

Molecular inhibition of Med25 AcID for study of disease 

 The ETV/PEA3 family of transcriptional activators and the oxidative stress 

response activator ATF6α represent emerging targets for disease, particularly metastatic 
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cancers.22,23 The Mediator subunit Med25, a common transcriptional interaction partner 

of these two TADs, represents a potential target for small molecule intervention of these 

activators and their downstream gene products.1,2 

 Under normal cellular conditions, the transcriptional activator ATF6α is a 

transmembrane protein found in the endoplasmic reticulum (ER). However, conditions of 

oxidative stress cause cleavage of ATF6α and subsequent translocation to the nucleus.24 

Once in the nucleus, ATF6α interacts with promoters that contain endoplasmic reticulum 

stress response elements and activates pro-survival and anti-apoptotic genes associated 

with the unfolded protein response (UPR), most notably the chaperone protein 

GRP78.25,26 As a critical component of the UPR, induction of GRP78 acts to suppress 

oxidative stress and misfolding of proteins to protect the cell from apoptosis during times 

of external stress, particularly in cancerous tumors.27,28 It is hypothesized that selective 

disruption of ATF6α activity through inhibition of the Med25-ATF6α PPI could be 

therapeutically beneficial in downregulating GRP78 and related gene targets. 

Additionally, small molecule inhibition of the Med25-ATF6α PPI would be incredibly 

beneficial in determining the role of Med25 in the ATF6α pathway, the UPR, and the role 

of the UPR in cancer progression.29 

 The ETV family of transcriptional activators (ETV1/ER81, ETV4/PEA3, and 

ETV5/ERM) are involved in the transition into a metastatic phenotype across several 

cancer types.22,30–32 Overexpression of the ETV activators has been correlated with an 

invasive cancer phenotype and shRNA knockdown of all three ETV activators has been 

shown to decrease the transcription of genes associated with cancer metastasis.33,34 It is 

hypothesized that targeting Med25 AcID with small molecules would function similarly to 
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shRNA knockdown of the ETVs and downregulate cancer metastasis genes (e.g. Matrix 

metalloprotease I).   

 

Initial success in demonstrating that Med25 can be targeted with small molecules 

Similar to CBP KIX, depsidone scaffolds have been discovered that selectively 

inhibit Med25 AcID PPIs (relative to other coactivator-activators interactions.35 Two 

compounds, norstictic acid and psoromic acid, are capable of targeting Med25 AcID in 

cellulo with specific inhibition of the Med25-ATF6α PPI having been demonstrated 

through downregulation of GRP78. Additionally, these compounds decreased the 

migratory ability of breast cancer cells, presumably by downregulating the expression of 

Matrix metalloprotease I, an ETV gene product.  

 

 However, these small molecules bring inherent issues that could hamper their 

usefulness as molecular probes to study Med25 function in more complicated cellular 

experiments. First, each molecule contains an aldehyde functionality that has been shown 

to efficiently and covalently label Med25 AcID in vitro. Second, each molecule is highly 

oxygenated and presumed to be highly redox active. Each of these two characteristics 
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(covalent mode of action and redox activity) lessen their likely utility as molecular probes 

in cellulo. 

 Additional tools will be required for a more complete understanding of Med25 

function both in cellulo and in vivo. This chapter will highlight the methodologies (fragment 

discovery, natural product discovery) that have been pursued to discover novel small 

molecules that target Med25 AcID and lack one or both undesirable qualities of norstictic 

and psoromic acids. Additionally, through biochemical and biophysical techniques, we 

sought to find small molecule ligands that could function to selectively target a single 

binding site within Med25 AcID. This would allow for future work in dissecting the relevant 

roles that each individual binding site plays within the context of the cell.  

 

C. Results and discussion 

NMR fragment screening allows for rapid discovery of weak-to-moderate affinity ligands  

 NMR screening has been successfully used to identify fragments that interact with 

a protein-of-interest with weak-to-moderate binding affinity in a medium-throughput 

manner.36–38 NMR as a screening methodology for fragments provides two essential 

benefits – differentiation of multiple binding sites and preliminary characterization of 

binding mechanism during the screening process and a high degree of sensitivity for 

molecules that interact weakly with the protein-of-interest.37,39 These discovered 

fragments have been successfully used to study underlying biochemical mechanisms of 

their target proteins and, in several cases, have ultimately led to the generation of lead 

clinical target molecules.40–42 PrOF NMR strategies were pursued for the discovery of 

novel fragments that bind Med25 AcID.  
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 A previous 1H 15N-HSQC NMR screen of 15N-labeled Med25 AcID against a 

medium-sized fragment library (532 total compounds) maintained by the Cierpicki lab at 

the University of Michigan discovered a single hit fragment (Andy Henderson, 

University of Michigan). This hit rate of 0.2% was incredibly low and unfortunately 

provided few lead fragments for molecule discovery, indicating that chemical shift 

perturbations induced in HSQC NMR of Med25 AcID are not sensitive enough to detect 

weak binding fragment molecules. Subsequent FP inhibition assays with this fragment, 

EN300-51104, demonstrated that this fragment inhibited Med25 AcID-VP16 H1 with an 

IC50 value of 139 ± 10 µM and Med25 AcID-VP16 H2 with an IC50 value of 79 ± 7 µM 

(Figure 4.2). 

 

PrOF NMR presents a sensitive screening methodology for the discovery of small 

molecule fragments that target Med25 AcID 

The weak inhibitor EN300-51104 provided an excellent positive control for 

determining the sensitivity of 3FY Med25 AcID in PrOF NMR experiments for weak 

fragments (Figure 4.3). All PrOF experiments performed with 3FY Med25 AcID had 

Figure 4.2. Fragment EN300-51104 is a weak inhibitor of Med25 AcID. This 
fragment, identified in a HSQC NMR screen against Med25 AcID inhibits the Med25 
AcID-VP16 H1 PPI with an IC50 value of 139 ± 10 µM and the Med25 AcID-VP16 H2 
PPI with an IC50 value of 79 ± 7 µM by FP. Inhibition data collected by Julie Garlick. 
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previously been performed with peptide and small molecule ligands that bound WT 

Med25 AcID with single-digit micromolar binding affinities. It should be noted that the 

HSQC NMR screen was run at 1 mM fragment. It was thus hypothesized that if EN300-

51104 caused a significant chemical shift perturbation in 3FY Med25 AcID at ≤1 mM 

concentration that PrOF NMR would represent a potentially successful screening 

strategy. 

 

PrOF NMR of 3FY Med25 with increasing concentrations of EN300-51104 

demonstrated dose-dependent chemical shift perturbations of Y487/Y515 resonances. 

Additionally, at higher equivalencies of the fragment, perturbations at both Y432 and Y528 

Figure 4.3. PrOF NMR of 3FY Med25 AcID in presence of EN300-51104. These 
data, demonstrating a dose-dependent shift in 3FY resonances and significant (>0.03 
ppm) chemical shifts below 1 mM (10 eq.), suggested that PrOF NMR of 3FY Med25 
AcID represented a viable screening strategy. 
 

Y432 Y528 Y487 Y515 
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are observed; It would not be surprising if, at high concentrations, that the fragment would 

be capable of binding multiple times to the protein. Critically, the fragment did 

demonstrate a chemical shift perturbation well below the concentration of molecule 

relative to protein that was screened in the HSQC NMR screen (1 mM fragment; which in 

these experiments is closest to 12 eq relative to Med25 AcID). Furthermore, a significant 

chemical shift perturbation (>0.03 ppm shift) in the Y487/Y515 pair was detected at an 

even lower concentration (3 eq. relative to protein) than the HSQC NMR screen was 

performed. This suggests that a PrOF NMR screen with 3FY Med25 AcID would be as 

sensitive, if not more sensitive, than an HSQC NMR screen with 15N Med25 AcID.  

 

A pilot, small-scale fragment screening effort using PrOF NMR against 3FY Med25 

was performed (Figure 4.4). To maximize the potential for the discovery of Med25-

interacting fragments, we leveraged knowledge of functional groups that had either 

previously been found in Med25-interacting ligands (peptides, norstictic acid, fragment 

A6, EN300-51104) or are known to be commonly found in PPI inhibitors.8,43–45 A 

commercially available fragment library (Asinex Navigator) maintained by the Center for 

Chemical Genomics was mined for all fragments that contained functional groups 

contained within Med25 AcID inhibitors (carboxylic acid, amide, indole, highly oxygenated 

Figure 4.4. Generation of fragment library for PrOF NMR screening. Flowchart to 
describe methodology behind the generation of a selected number of fragments to test 
for Med25 binding in PrOF NMR screening 
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groups) in addition to other common functional groups (e.g. piperazine, nipecotic acid, 

morpholine, sulfonamide) to provide 927 unique compounds. A second filtering step, a 

requirement that all fragments contain at least two of these “desirable” functional groups 

for PPI inhibition, trimmed the potential list to 168 total fragments. Finally, sixty unique 

fragments to be screened by PrOF NMR were randomly selected from this shortlist of 168 

fragments with two or more “desirable” functional groups.    

 The sixty fragments selected for screening were combined into fifteen unique 

mixtures (termed Mix 1 through Mix 15) at a stock concentration of 25 mM per compound 

in DMSO. All mixtures were subsequently screened at 750 µM compound and 3% DMSO 

(9 µL fragment mixture into 300 µL final sample volume) in the presence of 75 µM 3FY 

Med25 AcID. All experiments were performed using 1600 scans and required less than 

15 min of instrumental time (240 min total instrument time to screen all 15 mixtures and 

run a 3% DMSO negative control) (Figures 4.5 and 4.6).  
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Figure 4.5. PrOF NMR of fragment mixtures not classified as hits. Overlay of 3FY 
Med25 AcID in presence of fragment mixtures that did not significantly perturb any 3FY 
resonances relative to average chemical shift of all fragment mixtures. Note that Mixt 
13 contained a fluorine-containing small molecule that is presumed to give the large 
resonance at -138.7 ppm. 
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Figure 4.6. PrOF NMR of fragment mixtures classified as hits. Overlay of 3FY 
Med25 AcID in presence of fragment mixtures 5, 2, 4, 6, 3, and 14 with 3% DMSO 
control. Mix 5 was classified as a hit based on significant (>1 standard deviation in 
magnitude relative to average chemical shift of screened fragment mixtures) 
perturbation of Y528 and Y487 (green asterisks); Mixes 2, 4, and 6 were classified as 
hits based on significant perturbation of Y432 (red asterisk). Mixes 3 and 14 were 
classified as hits based on perturbation of Y487 (blue asterisk) 
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 Following the initial screening of the fragment mixtures using PrOF NMR, the 

chemical shifts of resonances for each spectrum was determined to calculate the absolute 

magnitude of the chemical shift perturbation relative to the 3% DMSO. From there, 

mixtures were scored as hits if the chemical shift of one of their resonances was perturbed 

by more than one standard deviation greater than the mean perturbation for that residue 

(Figure 4.7). This strategy found six fragment mixtures to contain at least one statistically 

significant chemical shift perturbation – Mix 2, Mix 3, Mix 4, Mix 5, Mix 6, and Mix 14 

(Figure 4.6). Mixes 3 and 14 were classified as hits based on the downfield perturbation 

Figure 4.7. Chemical shift perturbations of 3FY Med25 AcID residues in PrOF 
NMR fragment screening. The chemical shift perturbations induced by each fragment 
mixture are shown. Mixtures that were classified as hits are depicted in colors that 
correspond to the residue that is significantly perturbed. The statistical cutoff to 
designate a significant chemical shift (1 standard deviation above average chemical 
shift perturbation of all mixtures) for each 3FY residue is shown with a colored line. 
(e.g. Mixture 2, shown in dark red, was classified as a hit as a result of significant 
perturbation of Y432) 
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of Y487, indicating that these mixtures contain at least one fragment capable of binding 

to Med25 AcID near α2 at either the H1 or H2 sites. Mixes 2, 4, and 6 were classified as 

hits based on perturbation at Y432 and, in the case of mixes 4 and 6, at Y515. This result 

would indicate that these mixtures contain at least one fragment that binds either high in 

the H2 site, near α2, or at the putative third site. Finally, Mix 5 was classified as a hit due 

to perturbation at Y528 and Y487, indicating that this mixture likely contains at least one 

fragment that binds at the H2 site and would likely be an orthosteric inhibitor of H2 site 

peptides such as ATF6α(40-66). Most fragment mixtures were not classified as hits 

because none of their resonances were significantly perturbed (Figure 4.5). 

 

 

This initial screening of this sixty-compound library narrowed potential Med25-

interacting fragments to 24 unique compounds. To rapidly perform a secondary 

screening/filtering step, these 24 compounds were tested for inhibition of Med25 PPIs in 

an FP assay (Figure 4.8) This yielded nine potential inhibitors of Med25 AcID for further 

investigation in PrOF NMR titrations with 3 FY Med25 AcID (Figure 4.9).  

 

Figure 4.8. Secondary screening of PrOF NMR fragment mixtures. The individual 
fragments that comprised the six hit fragment mixtures were all tested for inhibition of 
Med25 AcID-VP16 H2 in FP assays. Weak inhibition of nine fragments was 
demonstrated; These fragments represent potential Med25 inhibitors and require 
additional characterization in PrOF NMR experiments.  
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 As anticipated, preliminary fragments from the PrOF NMR screen include a couple 

of carboxylic acid-containing molecules. Interestingly, two of these fragments – A12 and 

E8 – are highly similar molecules. Both fragments the same pyridylalanine core; this could 

represent an excellent starting point for rational design of downstream Med25 ligands. 

Four of the nine potential Med25 fragments contain an acetamide functionality and a 

saturated ring system with two heteroatoms. Each of these nine potential Med25 fragment 

Figure 4.9. Structures of discovered fragments in PrOF NMR screen of Med25 
AcID. Nine fragment molecules have been classified as preliminary hit molecules in a 
PrOF NMR screen of 3FY Med25. This set includes three carboxylic acid-containing 
and four acetamide-containing fragments. All molecules require additional 
characterization to verify potential for Med25 inhibition.      
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molecules, while apparent weak inhibitors of Med25 AcID, represent an opportunity to 

pursue rational design of novel Med25 PPI inhibitors pending independent verification of 

binding to Med25 AcID in PrOF and 1H 15N-HSQC NMR experiments.  

 

A naturally occurring lipopeptide demonstrates selective inhibition of Med25 AcID 

 As discussed, the binding sites of Med25 are large (1500 – 3000 Å2) and shallow 

with moderate-affinity interactions with several TADs. Additionally, Med25 AcID has been 

demonstrated to be structurally dynamic and many of its interacting partners are 

intrinsically disordered. Collectively, these features make targeting Med25 AcID with high-

affinity small molecules difficult. However, as has been shown with norstictic acid and 

garcinolic acid, natural product compounds present great utility for Med25 AcID inhibition. 

Natural products possess high degrees of structural complexity that offer high rotational 

and conformational plasticity that are thought to be beneficial in inhibition of transcriptional 

PPIs. It was hypothesized that natural products discovery towards Med25 AcID inhibition 

could be beneficial in targeting Med25 without some of the challenges presented by 

previously identified molecules (e.g. Norstictic acid functions through covalent adduct 

formation and has redox reactivity, both impediments for study of Med25 function in 

cellular context). 

 Concurrent with the follow-up and deconvolution of a high-throughput screen 

(HTS) of a natural product extracts library (described in the Appendix), a previously 

unidentified lipopeptide was isolated from a cyanobacterial strain. This cyanobacterial 

strain, hereby referred to using its internal identification number 34913, had demonstrated 

~20% inhibition of the Med25-ERM PPI in the aforementioned HTS, below the arbitrary 
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cutoff (30% inhibition) for a hit extract. The novel lipopeptide from strain 34913 consists 

of a D-amino acid-containing heptapeptide (Glu-Asp-Leu-Leu-Leu-Leu-Val) connected to 

a lipophilic alkyl chain via an amide bond (Figure 4.10). This structure was determined 

using high-resolution mass spectrometry, to provide an exact mass of 1054.6982 Da, and 

rigorous 1-D and 2-D NMR analysis (Ashu Tripathi, University of Michigan). I noted that 

the lipopeptide appeared to mimic the structural elements of a transcriptional activator 

and decided to test the novel molecule for activity against Med25 AcID and its PPI 

network. 

  

FP-based inhibition experiments demonstrated that the 34913 lipopeptide is a 

potent inhibitor of Med25 AcID with a Ki of 8.8 ± 0.6 µM against the Med25-ATF6α PPI 

Figure 4.10. 34913 lipopeptide is a potent inhibitor of the Med25-ATF6α PPI. The 
34913 lipopeptide, consisting of an acidic, D-amino acid heptapeptide connected 
through an amide linkage to a branched lipophilic alkyl chain, is thought to function 
as a TAD mimetic. It demonstrates single-digit micromolar inhibition of the Med25-
ATF6α PPI (Ki of 8.8 ± 0.6 µM) 
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and a Ki of 11 ± 2 µM against the Med25-ERM PPI. Each of the amino acids in the peptide 

portion of this small molecule are D-amino acids, a potentially beneficial structural aspect 

for in cellulo  and in vivo studies as D-amino acids are less prone to proteolysis than L-

amino acids46. Taking the free carboxy terminus of the peptide portion into account, this 

molecule has a net -3 charge. A net negative charge would be expected for a potent 

inhibitor of Med25 AcID PPIs. The alkyl moiety consists of an eleven-carbon chain with 

four methyl branches and a single hydroxyl group gamma to the carbon of the amide bond 

that connects the alkyl chain to the peptide portion of the molecule.  

 Following the discovery of this novel natural product and its potent single-digit 

micromolar inhibition of Med25 AcID PPIs, FP-based inhibition assays against CBP KIX 

were performed to test for selectivity of the molecule towards Med25 AcID (Figure 4.11). 

The lipopeptide did successfully inhibit CBP KIX function (Ki values of ~25 µM for all three 

canonical CBP KIX-TAD PPIs tested). Critically, this indicates that the 34913 lipopeptide 

is three times more active against the Med25 AcID-ATF6α PPI than against CBP KIX, 

Figure 4.11. Inhibitory effects of 34913 lipopeptide against CBP KIX. The 34913 
lipopeptide demonstrates inhibition of Med25 AcID that is approximately 3-fold 
stronger than CBP KIX (Ki of 9 µM for Med25 AcID versus 25 µM for CBP KIX), as 
measured by FP. 
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providing a window of selectivity that is necessary and beneficial to study Med25 AcID 

function in cellulo and in vivo. 

 

 With a selective molecule in hand, biophysical experiments – 1H 15N-HSQC and 

PrOF NMR experiments –  were performed to map the binding location of the 34913 

lipopeptide onto Med25 AcID. Based on the slight increase in potency towards the 

Med25-ATF6α PPI (specific for the H2 site) compared to the Med25-ERM PPI (the most 

specific H1 site peptide ligand), it was proposed that the 34913 lipopeptide would be a 

H2 site binding ligand and thus an orthosteric inhibitor of the ATF6α TAD. 

 1H-15N-HSQC experiments were performed in which 34913 was complexed with 

15N-labeled Med25 AcID at 0, 1, 2, and 4 equivalents of small molecule relative to protein. 

Figure 4.12. 1H-15N-HSQC NMR spectra of Med25 AcID in complex with 34913 
lipopeptide. Overlay of the HSQC spectra of 15N-labeled Med25 AcID with DMSO 
(black), 1 eq. molecule (light blue), 2 eq. (dark blue), and 5 eq. (pink) is shown. Inserts 
show selected resonances have been significantly perturbed including H2 site residues 
(L513, G524, and L464) and H1 site residues (C497). 
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These data demonstrated that the molecule bound to Med25 AcID in a specific orientation 

and did not cause significant protein unfolding or aggregation as several resonances 

corresponding to specific residues were perturbed in a dose-dependent manner (Figures 

4.12 4.13, 4.14). Peaks in each of the collected spectra were assigned to specific residues 

using a previously published NMR assignment47 and a recent assignment performed in 

the Mapp lab (Andy Henderson, University of Michigan).   

 

Saturation of the 34913 lipopeptide onto Med25 AcID caused significant 

chemical shift perturbations (>2 standard deviations above the mean) in selected 
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Figure 4.13. Chemical shift perturbations within Med25 AcID induced by 
saturating 34913 lipopeptide. The magnitude of chemical shift perturbations, in Hz, 
are shown upon saturation of 15N Med25 AcID with 4 eq. 34913 lipopeptide. Residues 
that shift 1-2 standard deviation (SD) above the mean (light blue), >2 SD (dark blue), 
and broadened into noise level (red) are significantly perturbed. 
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residues located in the H2 site of the protein along α1 and β6/β7/β4. All perturbed shifts 

reside at the ‘bottom’ of the H2 site, away from α2. These statistically significant chemical 

shift perturbations specifically correspond to Q455, G462, L464, R469, M470, V471, 

L513, and G524. Additionally, the residue R466, located at the C-terminus of α1 and 

known to be critical for H2 site peptide ligand binding based on mutagenesis work 

performed in Chapter 2, was broadened into the noise level at all concentrations of 34913 

lipopeptide tested. This suggested that this residue is likely in direct contact with the 

molecule when the lipopeptide is bound to Med25 AcID. These data are consistent with 

the 34913 lipopepetide functioning as an orthosteric inhibitor of ATF6α(40-66) at the base 

of the H2 site. Furthermore, the residues that are significantly perturbed by binding of 

34913 lipopeptide represent many of the same residues that are significantly perturbed 

by ATF6α(40-66) (Figure 4.15). In addition to H2 site perturbations, the HSQC data also 

demonstrates that a small number of residues at the H1 site are significantly perturbed 

(T421, C497, V508). The C497 residue, in particular, is located in the center of the H1 

site and is among those residues significantly perturbed by ERM peptide ligands in HSQC 

NMR experiments48. This could suggest that the 34913 lipopeptide is capable of allosteric 

inhibition of H1 site mutants, explaining its inhibitory effects towards the Med25 AcID-

ERM(38-68) PPI. 
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Figure 4.14. Chemical shift perturbations induced by 34913 lipopeptide mapped 
on Med25 AcID. Residues are colored with increasing shades of red to indicate a 
gradient of increasing chemical shift perturbations. These data suggest that 34913 
lipopeptide interacts specifically with the H2 face of Med25 AcID. 

Figure 4.15. Overlay of ATF6α(40-66)-induced and 34913 lipopeptide-induced 
Med25 AcID chemical shifts in HSQC NMR. Residues of Med25 AcID that are 
significantly affected by both ATF6α and 34913 lipopeptide are shown in red. These 
data demonstrate that 34913 lipopeptide binds to the H2 site in a binding mode very 
similar to that of ATF6α, suggesting that the lipopeptide is an orthosteric inhibitor of 
the Med25-ATF6α PPI. Residues significantly affected by 34913 lipopeptide only are 
shown in green; residues affected by ATF6α(40-66) only are shown in yellow. 
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Concurrent with HSQC analysis, PrOF NMR experiments were also performed to 

characterize the Med25 AcID interaction with the 34913 lipopeptide. Increasing 

concentrations of 34913 lipopeptide (0, 0.25 eq., 0.5 eq., 1 eq. relative to protein) were 

complexed with 3FY Med25 AcID and subjected to PrOF NMR analysis (Figure 4.16).   

 The HSQC data also demonstrates that the 34913 lipopeptide affects the Tyr 

residues of 3FY Med AcID in a similar manner as does ATF6α(40-66) peptide. All four 

residues are perturbed in a dose-dependent manner; however the intensity of the 

observed chemical shift perturbations is less than with ATF6α peptide. This could be 

explained by the large difference in size between the 34913 lipopeptide and the 25-

residue ATF6α peptide particularly if the lipopeptide binds specifically at the ‘bottom’ of 

the H2 site and away from α2 (on which Y487 is located), as predicted by HSQC NNMR.  

  

Figure 4.16. PrOF NMR of 3FY Med25 AcID in complex with 34913 lipopeptide. 
Spectral analysis of 3FY Med25 AcID in presence of increasing concentrations of 
34913 lipopeptide corroborated HSQC NMR evidence that 34913 binds Med25 AcID 
in similar mode as ATF6α(40-66). 
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The 34913 lipopeptide is an effective inhibitor of Med25 function in a cellular context  

With structural characterization of the molecule and biochemical assessment of its 

interaction with Med25 AcID completed, experiments were pursued to demonstrate 

inhibition of Med25 function in cellulo. It was hypothesized that the 34913 lipopeptide 

could traverse the cellular membrane based on its amphipathic nature (lipophilic portion 

attached to linear peptide chain) and, once inside the cell, interact specifically with Med25 

AcID (based on observed 3-fold selectivity against CBP KIX).  

Previous literature on Med25 function reported an interaction between the retinoic 

acid receptor and the nuclear receptor box of Med25 in order to recruit Med25 and the 

Mediator complex to retinoic acid receptor promoter elements.49 A subsequent 

interaction, as has been described in Chapter 2, between Med25 AcID and CBP(20-44), 

results in the recruitment of CBP to the same retinoic acid promoter. This set of 

interactions was then leveraged to design a luciferase reporter to observe the Med25 – 

CBP – retinoic acid receptor interactions in cellulo.49 HEK293T cells were transfected with 

a luciferase reporter driven by a retinoic acid receptor element promoter in addition to a 

constitutively expressed β-galactosidase (for normalization purposes). Concurrent with 

stimulation of the luciferase reporter gene using retinoic acid, cells were co-dosed with 

increasing concentrations of the 34913 lipopeptide (Figure 4.17). It was hypothesized that 

the 34913 lipopeptide would be capable of inhibition of the luciferase output by direct 

inhibition of the Med25 AcID-CBP PPI. Disruption of this interaction should disrupt 

formation of the pre-initiation complex and binding of RNA polymerase II to the retinoic 

acid receptor promoter. 
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Figure 4.17. Inhibition of a Med25-dependent luciferase reporter by the 34913 
lipopeptide. (A) Schematic of the RARα-luciferase reporter assay. RARα binds to a 
RARE promoter on the luciferase reporter plasmid following stimulation with retinoic 
acid and recruits the Mediator complex through an interaction with the NR region of 
Med25. The AcID domain of Med25 then recruits CBP to the promoter, which can then 
modify upstream histones using its histone acetyltransferase domain, resulting in 
elevated expression of luciferase. (B) The 34913 lipopeptide demonstrated a dose-
dependent reduction in the transcriptional activation of a luciferase reporter driven by 
the retinoic acid receptor. This luciferase inhibition is presumed to occur through direct 
inhibition of the Med25 AcID-CBP PPI, which leads to a lowered recruitment of the 
master coactivator CBP to the promoter elements of the retinoic acid receptor. All 
luciferase signals were normalized to β-gal activity and represent the mean and 
standard deviation of three biological replicates 

A. 

B. 
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  The 34913 lipopeptide was capable of dose-dependent inhibition in this Med25-

dependent luciferase reporter assay. These data demonstrated that this molecule can 

cross the cell membrane and target Med25 AcID in the cellular milieu. Excitingly, the 

molecule provided complete inhibition of normalized luciferase output at 200 µM with 

nearly 50% inhibition at 50 µM.  

 Following these successful preliminary cellular experiments, we were interested in 

the potential for 34913 lipopeptide to inhibit the Med25-ATF6α PPI, an interaction thought 

to be important in the unfolded protein response and hypoxia.1,50 This PPI leads to the 

activation of  pro-survival and anti-apoptotic genes associated with the UPR under 

hypoxic conditions.25,26 The most notable of these ATF6α-regulated genes is GRP78 

(also known as HSPA5), a chaperone protein that suppresses oxidative stress, prevents 

misfolding of proteins, and stabilizes intracellular calcium levels during periods of 

hypoxia.51,52 To test for inhibition of the Med25-ATF6α PPI, we measured the effects of 

increasing doses of 34913 lipopeptide on GRP78 expression levels after thapsigargin-

induced hypoxic stress, as previously described for inhibition of Med25- ATF6α, using 

qPCR for analysis1. HeLa cells were dosed with 34913 lipopeptide for three hours prior 

to induction of hypoxic stress with thapsigargin dosing for another three hours 

(Figure 4.18). It was hypothesized that the lipopeptide would be capable of 

downregulating GRP78 expression levels through the inhibition of the Med25 AcID-

ATF6α PPI.  
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Figure 4.18. Inhibition of the Med25 AcID-ATF6α PPI in a cellular context by the 
34913 lipopeptide. (A) Schematic of the activation of GRP78. The transcriptional 
activation domain of ATF6α recruits the Mediator complex through a specific protein-
protein interaction with Med25 AcID to activate expression of GRP78. (B) The 34913 
lipopeptide downregulated the production of GRP78, an ATF6α gene product, in a 
dose-dependent manner, as assessed by qPCR. This downregulation is presumed to 
occur through orthosteric inhibition of the Med25 AcID-ATF6α PPI. Expression levels 
of GRP78 were normalized to expression levels of RPL19. All signals represent the 
mean and standard deviation of two technical replicates. 
 

A. 

B. 
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GRP78 gene output, as assessed by qPCR, was inhibited by 34913 lipopeptide in 

a dose-dependent manner with ~50% inhibition achieved at 50 µM molecule. 

Interestingly, 34913 lipopeptide at 75 µM did not inhibit GRP78 more efficiently than the 

50 µM dosage. This could indicate that the lipopeptide is at saturating levels in the cell at 

50 µM or, that GRP78 is being produced in compensatory mechanisms that are not 

Med25-dependent. If the latter is true, the 34913 lipopeptide could be a useful as a 

synergistic inhibitor of molecules known to target other proteins involved in hypoxia and 

the unfolded protein response. Collectively, these data demonstrate that this novel 34913 

lipopeptide is capable of on-target inhibition of a potential therapeutic gene target. Based 

on biochemical evidence that the 34913 lipopeptide interacts with the H2 site of Med25 

AcID in a similar fashion to ATF6α(40-66), this inhibition of GRP78 is presumably a result 

of direct inhibition of Med25 AcID in cellulo.  

 

D. Conclusions and future directions 

The overarching hypothesis of this work is that the discovery and characterization 

of small molecules that inhibit Med25 AcID function could provide molecular probes for 

the study of disease through inhibition of the Med25-ERM and Med25-ATF6α PPIs. 

Specifically, with respect to ERM/ETV5, these molecules could be useful towards a better 

understanding of ETV5 and related ETV activators and their role in cellular processes 

related to cancer progression and metastasis. With respect to ATF6α, molecules that 

inhibit Med25 PPIs could be therapeutically beneficial in downregulating ATF6α gene 

products, such as GRP78, and could useful in determining the role of Med25 in the ATF6α 

pathway, the unfolded protein response, and the role of the unfolded protein response in 
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cancer progression.29 In this chapter, we developed and characterized several small 

molecules that inhibit Med25 AcID function. These molecules were discovered using 

multiple screening strategies, from fragment identification by Tethering and NMR 

methodologies to natural products isolation following competition-based fluorescence 

polarization assays.  

PrOF NMR of Med25 AcID was developed to allow for a pilot screening effort of a 

small fragment library. This technique is uniquely sensitive for the detection of weakly 

binding fragment molecules as NMR allows for screening of high [compound] in a 

multiplexed format. Furthermore, PrOF NMR, a 1-D methodology, specifically offers short 

experimental and analysis timeframes as well as high native abundance of the 19F 

isotope, high magnetic sensitivity (83% as sensitive as 1H), low background signal and 

low background signal. Using a PrOF NMR screen of 3FY Med25 AcID, nine compounds 

were discovered as preliminary hits against Med25 AcID. These fragments represent 

excellent compounds for future biochemical and NMR characterization with Med25 AcID 

and could demonstrate novel scaffolds for rationally designed fragment inhibitors. 

A novel lipopeptide isolated from cyanobacteria has been discovered as a potent 

single-digit micromolar inhibitor of the Med25-ATF6α PPI in FP assays that demonstrates 

three-fold selectivity for Med25 AcID relative to CBP/p300 KIX. HSQC and PrOF NMR 

demonstrated that this lipopeptide binds at the H2 site of Med25 AcID in a binding mode 

nearly identical to that of the ATF6α transcriptional activator. In cellular experiments, 

GRP78 gene output, as assessed by qPCR, was downregulated by the novel lipopeptide 

in a dose-dependent manner with ~50% inhibition achieved at 50 µM compound. 

Critically, this novel natural product represents the first highly selective, potent, and non-
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covalent small molecule that targets Med25 AcID function both in vitro and in cellulo. It 

demonstrates tremendous promise as a lead candidate for future study of the roles that 

Med25 AcID plays in disease contexts, particularly cancer metastasis and tumor 

progression. 

Going forward, we are developing two strategies for future production of this novel 

lipopeptide and related compounds. The cyanobacterial strain, 34913, that produces this 

compound will be engineered to produce the compound in higher yields using ribosomal 

and/or metabolic strategies.53,54 Concurrently, synthetic derivatives of this lipopeptide are 

being generated that incorporate aromaticity into the peptide portion and vary the alkyl 

chain (Figure 4.19). If a similar compound with similar inhibitory properties can be readily 

synthesized, this would represent the route with highest potential throughput for cellular 

studies of Med25 AcID function. 
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A. 

B. 

Figure 4.19. Structures and activity of 34913 lipopeptide derivatives. (A) Four 
34913 lipopeptide derivatives are provided. The peptide portion has been synthesized 
with all D-amino acids and with all L-amino acids; Both peptides has been derivatized 
with a ten-carbon chain appended to its N-terminus. (B) Inhibition of the Med25-ATF6α 
PPI by 34913 derivatives. 
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E. Materials and methods 

Previously described methods 

Relevant methods that were previously described in Chapter Two include Med25 AcID 

purification, mass spectroscopy of proteins, FP binding experiments, FP competition 

experiments, production of 15N-labeled protein, HSQC NMR and solid-phase peptide 

synthesis. 

Relevant methods that were previously described in Chapter Three include the production 

of 19F-labeled protein and PrOF NMR. 

 

PrOF NMR screening 

The sixty fragments selected for screening were combined into fifteen unique mixtures 

(termed Mix 1 through Mix 15) at a stock concentration of 25 mM per compound in DMSO. 

All mixtures were subsequently screened at 750 µM compound and 3% DMSO (9 µL 

fragment mixture into 300 µL final sample volume) in the presence of 75 µM 3FY Med25 

AcID. All experiments were performed using 1600 scans.  

 

Expression and purification of CBP KIX 

CBP KIX was expressed and purified according to previously published protocols55. 

 

Med25-CBP-RARα luciferase reporter assay  

The RARα luciferase reporter plasmid containing 3 tandem RARα promoter elements 

(termed ‘pRARE-luc’) was obtained from Addgene. A constitutively active β-galactosidase 

coding plasmid driven by a CMV promoter (termed ‘CMV β-Gal’) was provided by Dr. 
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Jorge Iñiguez-Lluhí (University of Michigan). pCDNA3, a non-coding vector, used for 

transfection controls was provided by Dr. Jorge Iñigues:Lluhí. All cells were maintained 

in 5% CO2 at 37°C. HeLa cells were grown in Dulbecco’s modified Eagle’s medium 

(DMEM, Invitrogen) supplemented with 10% FBS. For luciferase assays, 4x105 cells were 

plated in a 6-well dish and allowed to adhere overnight. The media was removed and 

cells were transfected in OptiMEM (Invitrogen) with 1 μg RARα:luc, 200 ng CMV:β:Gal, 

and 800 ng pCDNA using Lipofectamine 2000 (Life Technologies) according to 

manufacturer’s instructions. After 4.5 hours, transfection solution was removed and 

replaced with DMEM containing 10% FBS. At 24 h after transfection, cells were 

trypsinized and resuspended in DMEM supplemented with 10% FBS before plating into 

a 96-well plate at a density of 15x103 cells per well. After an additional 16 hours, media 

was removed and replaced with OptiMEM containing DMSO control or 34913 lipopeptide 

and 1 µM retinoic acid.  After cells 16 hours, media was removed and cells were lysed 

with 60 μL of passive lysis buffer. Luciferase and β:Galactosidase activities were 

determined as previously described56. RARα luciferase activity and response curve 

analysis was performed using GraphPad software. 

 

RT-qPCR analysis of GRP78 gene expression  

For endogenous gene expression analysis, 1x105 HeLa cells were plated into a 24-well 

plate and allowed to adhere overnight. Media was removed and replaced with OptiMEM 

containing DMSO control or 34913 lipopeptide. After incubating for 2 hours, cells were 

treated with 500 nM thapsigargin. After 2 h, the media was removed and total RNA was 

isolated using RNeasy Plus RNA isolation kits (Qiagen) according to manufacturer’s 
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instructions. Each RNA sample was used to synthesize cDNA using iScript cDNA 

synthesis kits (Bio-Rad). RT-qPCR reactions were carried out in duplicate in an Applied 

Biosystems StepPlusOne instrument using SYBR green master mix and primers for: 

human RPL19 F pr. 5’:ATGTATCACAGCCTGTACCTG:3’; R Pr., 5’:TTCTT 

GGTCTCTCTTCCTCCTTG:3’) and GRP78 (F Pr., 5’:CTGGGTACATTTGATCTGACTG 

G:3’; R Pr., 5’: CTTACCGACCTTTCGGTGGTCCTACG:3’). RT-qPCR analysis was 

carried out using the comparative CT Method (ΔΔCT Method) to estimate GRP78 mRNA 

levels relative to the reference RPL19 mRNA levels.   

 

Synthesis of 34913 derivatives  

34913-derived peptide were synthesized using solid-phase peptide synthesis, as 

described in Chapter Two. ‘34913 D-peptide+decane’ and ‘34913 L-peptide+decane’ were 

synthesized using standard peptide coupling, on solid phase resin, between the 

N-terminus of the 34913 peptide sequence and undecanoic acid. 
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CHAPTER FIVE 
 

Conclusions and future directions 
 
A. Summary 

Historically, targeting protein-protein interactions (PPIs) with small molecule 

modulators has been a significant challenge.1,2 This difficulty has been especially true 

with regards to transcriptional PPIs which are transient, weak-to-moderate affinity, and 

for which structural studies have been limited. However, there have been recent 

successes born from the field of natural products and from screening strategies that utilize 

protein-observed 19F-NMR (PrOF NMR) towards the identification of small molecule 

modulators that target transcriptional PPIs.3–6 

This dissertation sought to leverage natural products and PrOF NMR for the 

identification and characterization of selective small molecule inhibitors that target the 

activator interaction domain (AcID) of Med25 and its PPI network. Molecular inhibition of 

Med25 AcID is desired as a potential avenue for the investigation of the ETV/PEA3 family 

of transcriptional activators and the oxidative stress response activator ATF6α in disease, 

such as metastatic cancer.7,8 Towards this end, we first sought to better understand the 

mechanistic details between Med25 and its binding partners. This was accomplished 

using a mutagenesis strategy designed to selectively inhibit a single Med25 binding, 

PROF and HSQC NMR methodologies. Through this process, we demonstrated that 

discrete protein partners of Med25 AcID interact with unique binding profiles and 

signatures that could be exploited during the small molecule discovery process. Following 

these analyses, several small molecules that target Med25 AcID were characterized and 

developed as inhibitors of this coactivator motif. These identified molecules will enable 
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for future study of the role of Med25 AcID in cellular contexts, including in model systems 

of cancer and disease.  

 

B. Conclusions 

The bulk of this thesis, as described in Chapters Two and Three, has focused on 

the investigation of Med25 AcID and its underlying mechanistic biochemistry. Prior to this 

dissertation, structural data of Med25 AcID in complex with the two canonical VP16 TADs, 

termed VP16 H1 and VP16 H2, had been reported.9,10 These data demonstrated that 

Med25 AcID contained two putative binding sites, termed the H1 and H2 sites. Chapter 

Two identified the minimal regions of ATF6α and CBP that bind Med25 AcID and 

subsequent HSQC NMR suggested that ATF6α(40-66) likely bound at the H2 site of 

Med25 AcID while CBP(20-44) did not interact specifically at either one of these two 

previously reported H1 or H2 binding sites. Chapter Two then described a strategy to 

selectively inhibit the H1 and H2 sites of Med25 AcID. Inhibition at the H1 site was 

accomplished through the introduction of negative charge using protein mutagenesis and 

peptide Tethering at a solvent-exposed cysteine near the H1 site; The H2 site was 

inhibited using protein mutagenesis to introduce negative charge. Collectively, 

experiments to block the H2 site suggested that binding at the H2 site is more dependent 

on electrostatic interactions and ‘hot spot’ residues than the H1 site. This suggests that 

the H2 is likely to be a more druggable interface than the H1 site. 

 Chapter Three described a strategy for studying Med25 AcID and its protein-

protein and protein-ligand interactions using PrOF NMR. 3-fluorotyrosine (3FY) and 

5-fluorotryphtophan (5FW) were successfully incorporated into Med25 AcID, providing 
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two model systems for study. The precise refinement of binding locations, relative 

affinities between differing binding sites, and binding stoichiometry for each Med25 AcID 

interaction were described using PrOF NMR, HSQC NMR, and analyses from the 

mutagenesis study to block the H1/H2 sites. These data demonstrated that Med25 AcID 

interacts with discrete activators using multiple mechanisms. As demonstrated in Figure 

5.1, ERM binds selectively at the H1 site of Med25 AcID at substochiometric 

concentrations; ATF6α binds selectively at the H2 site of Med25 AcID; VP16 binds at both 

sites simultaneously. The observed level of selectivity between the two sites demands 

logical questions to be answered in the future. Are the two sites differentially regulated in 

normal tissues? In disease states? Can multiple activators bind to the protein 

simultaneously in the cell?  

Chapters Three and Four described the identification and biochemical 

characterization of several small molecules that target Med25 AcID and its PPI network. 

PrOF NMR was leveraged to gain mechanistic insight into the Med25-related function of 

the small molecule fragment, A6, and a natural product compound, norstictic acid. 

Additionally, PrOF NMR of 3FY Med25 AcID was utilized for the screening of a small 

molecule fragment library that identified nine lead compounds for future study. Finally, a 

novel natural product, termed 34913 lipopeptide, was identified as a potent and selective 

inhibitor of Med25 AcID. This molecule, thought to mimic the structure of a transcriptional 

activation domain (TAD), interacts with Med25 AcID in a binding mode that is nearly 

identical to that of the ATF6α activation domain. Furthermore, it demonstrates effective 

inhibition of the Med25-ATF6α PPI in a cellular context, indicating that it could be 

exploited in future experiments to investigate Med25 and its PPI network in disease.  
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Figure 5.1. Three critical activators bind Med25 AcID in three unique binding 
modes. For each Med25-activator interaction shown, proposed bindind locations are 
shown by golden circles. Data that informs the conclusions presented are indicated as 
Med25 residues that are significantly perturbed in HSQC NMR (VP16 – shades of 
orange; ERM – shades of teal; ATF6α – shades of pink), PrOF NMR (black, as sticks), 
and in the mutagenesis study (dark blue, as sticks) are shown. Detailed figure captions 
and discussions can be found in Chapter Three (Fig 3.18, 3.19, 3.20) (PDB 2XNF) 



176 
 

C. Future Directions 

34913 lipopeptide will be used to study the role of Med25 in ATF6α transcriptional 

processes the unfolded protein response  

Under normal cellular conditions, the transcriptional activator ATF6α is a 

transmembrane protein found in the endoplasmic reticulum (ER). However, conditions of 

oxidative stress cause cleavage of ATF6α and subsequent translocation to the nucleus.11 

Once in the nucleus, ATF6α activates pro-survival and anti-apoptotic genes associated 

with the unfolded protein response (UPR), most notably GRP78.12,13 As a key player in 

the UPR, induction of GRP78 acts to suppress oxidative stress and misfolding of proteins 

while stabilizing intracellular calcium levels.14 Collectively, these actions lead to protection 

of the cell from apoptosis during times of external stress. It is thus unsurprising that 

expression of GRP78 is held at low levels under normal cellular conditions while being 

strongly overexpressed in many disease states, such as in cancerous tumors.15,16 This 

overexpression represents an inherent mechanism through which cancer cells can resist 

apoptosis; indeed, GRP78 overexpression resulting from increased ATF6α activity 

protects cancer cells from apoptosis in model systems.17 Additionally, increased activity 

of ATF6α and expression of GRP78 has been indicated in both metastasis and disease 

relapse in Hodgkin’s lymphoma, breast, and liver cancers.18–21 Thus, disruption of ATF6α 

activity and the anti-apoptotic pathways of the UPR through small molecule inhibition of 

the Med25-ATF6α could be therapeutically beneficial in sensitizing cancer cells towards 

apoptosis (Figure 5.2).  
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As described in Chapter 4, we have identified a novel natural product, termed the 

34913 lipopeptide, as a potent and selective inhibitor of Med25 AcID in vitro that binds to 

the AcID domain with a binding signature that is nearly identical to that of the ATF6α TAD. 

Additionally, we have demonstrated that this molecule inhibits the expression of the 

ATF6α target gene GRP78 under hypoxic conditions. To test the hypothesis that the 

34913 lipopeptide is functioning by specifically targeting the Med25-ATF6α PPI (as 

opposed to causing downregulation of GRP78 through some other avenue), we plan to 

test the inhibitory capability of 34913 lipopeptide towards additional ATF6α gene products 

A. 

B. C. 

Figure 5.2. Activation of ATF6α and GRP78 (A) Under normal cellular conditions, 
ATF6α is a transmembrane protein found in the endoplasmic reticulum (ER). (B) 
Oxidative stress, such as hypoxia in cancer cells, causes ATF6α to translocate to the 
nucleus where it binds to ERSE promoters. An interaction between ATF6α and 
Med25 leads to activation of anti-apoptotic genes associated with the UPR, notably 
GRP78.  (c) It is hypothesized that molecular inhibition of the Med25-ATF6α PPI 
represents a viable target for the inhibition of ATF6α-related, anti-apoptotic pathways 
of the UPR in hypoxic cancers and would sensitize cancer cells to apoptosis.   
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that are involved in the unfolded protein response (e.g. p58, HYOU1, CRT-1, and 

GRP9449)8. Selectivity for targeting the Med25-ATF6α PPI in the context of the unfolded 

protein response (UPR) will then be assessed by determining the effects of the 34913 

lipopeptide towards gene targets that are upstream of IRE1 and PERK, the other primary 

transcriptional activators involved in the UPR22. It is expected that the lipopeptide will 

show no effect on these pathways, indicating that it functions to selectively target the 

Med25 AcID-ATF6α PPI.  

We also plan to assess the ability of 34913 lipopeptide to decrease cancer cell 

viability and proliferation as determined using WST-1 assays, cellular migration as 

determined using a wound healing assay, and cancer invasion as determined using a 

Matrigel invasion assay. Since the UPR is ubiquitous in cancer cells and its role in differing 

cell types is not well understood, it would be useful to perform these phenotypic assays 

in multiple cancer cell types (e.g breast, liver, Hodgkin’s lymphoma, and head and neck). 

Additionally, 34913 lipopeptide could be tested for its ability to sensitize hypoxic cancer 

cells towards apoptosis through combination treatments with common cytotoxic agents 

(e.g. cisplatin, doxorubicin) in common cancer cell lines as well as drug-resistant cell lines 

(e.g. cisplatin-resistant A2780 cells23).  

 

The role of PTOV1 will be determined through the biochemical study of its AcID domains  

The AcID motif is highly unique to Med25; Based on primary structure, only one 

other protein, Prostate Tumor Overexpressed factor 1 (PTOV1), has been proposed to 

contain an AcID domain. However, unlike Med25, PTOV1 contains two AcID domains in 

tandem (Figure 5.3). PTOV1 was originally reported as a protein that was overexpressed 
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in primary tumors of advanced and early prostate cancer patients24,25. It has been since 

been discovered that PTOV1, while undetectable in most normal cell tissues, is 

overexpressed in a wide variety of early- and late-stage cancer types26. Reports suggest 

that PTOV1 functions as a negative regulator of Med25 AcID  function by competing for 

interaction with the N-terminal region of CBP27. These publications demonstrate that a 

chemical biology-focused study of the AcID motifs of PTOV1 could provide excellent 

insight into Med25 function and its mechanisms of regulation within normal and disease 

contexts. Additionally, the PTOV1 AcID domains could represent an excellent model 

system against which to study selectivity within this unique structural class of coactivation 

domains. However, prior to this dissertation, the excised AcID domains of PTOV1 had not 

been biochemically characterized. 

 

The AcID motifs of PTOV1, termed AcID-A (residues 88-235) and AcID-B 

(residues 253-398) share homology with the AcID motif of Med25 (81% identity to AcID-

A and 72% to AcID-B). However, many of the differences between the primary sequences 

of Med25 AcID and the PTOV1 AcID domains lie within the H1 and H2 binding sites. We 

Figure 5.3. Domain architecture of PTOV1 and structure of the AcID motif. At left, 
domain architecture of Med25 (one AcID motif) and PTOV1 (two AcID motifs). At right, 
cartoon image of Med25 AcID to demonstrate central β-barrel with three surrounding 
α-helices. (PDB 2XNF) 



180 
 

plan to investigate the role of PTOV1 and its interplay with Med25, biochemical 

characterization of each of the two AcID motifs, AcID-A and AcID-B, was desired. Neither 

domain had been previously expressed as a standalone protein construct.  

 Multiple attempts to express and purify PTOV1 AcID-A and AcID-B were 

unsuccessful. A variety of gene constructs of differing lengths and with a variety of 

solubility tags (e.g. Glutathione S-transferase) were attempted. In the end, codon-

optimized genes for each PTOV1 AcID motif were designed into pET21-b plasmids and 

purchased (Genscript). As demonstrated in Figure 5.4, this strategy provided purified 

PTOV1 AcID-A and PTOV1 AcID-B that was well-folded according to circular dichroism. 

Additionally, both PTOV1 AcID motifs demonstrated equivalent stability relative to Med25 

AcID in thermal melting experiments (Tm of 63 ± 1 °C and 66 ± 1 °C for AcID-A and 

AcID-B, respectively, compared to 65 ± 1 °C for Med25 AcID). Preliminary FP assays with 

both PTOV1 AcID domains suggest that both bind each of the Med25 AcID-interacting 

peptide ligands with similar affinities to Med25 AcID. 
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 These data demonstrating the production of functional AcID domains from PTOV1 

offer a new avenue for future investigation into the AcID domain. While it currently 

unknown whether these excised domains can recapitulate the function of full-length 

PTOV1 either alone or in trans, this represents a critical first step towards answering this 

question. Future work will be performed to study the excised PTOV1 AcID domains using 

HSQC and PrOF NMR to assess any minor differences from the Med25 AcID structure. 

In addition, these AcID motifs will be valuable in small molecule inhibition studies to 

determine if the three AcID motifs can be selectively targeted. 

 

 

  

Figure 5.4. Production of PTOV1 AcID-A and AcID-B. (A) Deconvoluted mass 
spectra of PTOV1 AcID-A and AcID-B. (B) Circular dichroism spectra of all three 
AcID domains. Data were collected with Julie Garlick and Olivia Pattelli (University of 
Michigan). 

A. B. 



182 
 

D. Materials and Methods 

Plasmids 

pET21b plasmids that encoded for PTOV1(88-235), termed ‘PTOV1 AcID-A’, and 

PTOV1(253-398), termed ‘PTOV1 AcID-B’, were purchased from Genscript. 

 

Previously described methods 

Relevant methods that were previously described in Chapter Two include mass 

spectroscopy of proteins, FP binding experiments, circular dichroism, thermal melts, and 

solid-phase peptide synthesis. 

 

Expression and purification of PTOV1 AcID domains 

Protein expression was completed as described for Med25 AcID. 

Cell pellets were thawed and resuspended with 30-35 ml Lysis Buffer (50 mM phosphate, 

300 mM NaCl, 10 mM imidazole, pH 7.2). β-mercaptoethanol, at 1:1000 dilution, and one 

cOmplete, Mini, EDTA-free Protease Inhibitor tablet (Sigma-Aldrich) were added to the 

resuspended cell pellet. To lyse, the cells were sonicated on ice for 4-6 min 

(Cycle - 3 seconds on, 7 seconds off) and/or until the cells had observable change in color 

(lighter brown) and viscosity. Following sonication, the lysed pellet in 50 mL conical 

tube(s) was centrifuged at 9,500 RPM for 30 min at 4 °C. Concurrent with centrifugation 

of cells, 500 μl of TALON Cobalt resin per 12 mL of cell lysate were washed three times 

with DI water. After centrifugation of the cell lysate, the supernatant was added to the 

washed TALON Cobalt resin and incubated for 1 hour at 4 °C. The resin was then 

centrifuged at 2500 RPM for 2 min at 4 °C before being washed five times with wash 
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buffer (50 mM phosphate, 300 mM sodium chloride, 30 mM imidazole, pH 6.8). The resin 

was centrifuged at 2500 RPM for 1 min at 4 °C between washes. After the washing step, 

protein was incubated with 1 mL of elution buffer (50 mM phosphate, 300 mM sodium 

chloride, 400 mM imidazole, pH 6.8) per 500 μl of TALON Cobalt resin for 30 min at 4 °C. 

The resin was centrifuged at 2500 RPM for 1 min at 4 °C and the protein supernatant 

containing PTOV1 AcID was saved. This elution step was repeated a total of three times. 

Fractions containing PTOV1 AcID were pooled and subjected to further purification using 

a Source S 5 mL HiTrap column using an AKTA pure FPLC chromatography system, as 

previously described.  
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Appendix 

A. The identification of a CBP-CBP protein-protein interaction presents a potential 

mechanism for the regulation of CBP function 

 In Chapter Two of this dissertation, the identification of an N-terminal sequence of 

CBP that interacts specifically with Med25 AcID was described. This sequence of CBP 

shares high homology with the transcriptional activation domain (TAD) of VP16 and, as a 

result, was suspected to function as a TAD mimic (Figure A.1).  

 

Following the investigation of the CBP(20-44) and its proximal downstream 

residues and its interaction with Med25 AcID, it was hypothesized that this TAD-like 

sequence of CBP could also function to interact specifically with other coactivation 

domains. A panel of CBP-derived peptides, labeled with N-terminal fluorescein, were 

synthesized and tested for binding to CBP KIX, as had been performed with Med25 AcID 

(Figure A.2). The supposition that CBP(20-44) could interact specifically with CBP KIX 

was demonstrated to be correct, as CBP(20-44) and CBP(20-55) bound to the CBP KIX 

domain with dissociation constants of 37 ± 2 µM and 49 ± 6 µM, respectively, by 

fluorescence polarization (FP). 

Figure A.1. Sequence alignment of CBP(20-44) and VP16(454-486). A basic local 
alignment search of CBP(1-460) demonstrated that CBP(20-44) was homologous to 
the VP16 H2 transcriptional activation domain. CBP(20-44) shares numerous acidic 
and hydrophobic residues in common with the VP16 sequence. 
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Several TADs have been shown to interact with CBP KIX through a 

phosphorylation-dependent mechanism, including the KID domain of CREB, p53, and 

FOXO3a.1–4 Each of these proteins interact with CBP with relevant affinities after their 

TAD sequences have become phosphorylated. Noting that the CBP(20-44) sequence 

contained two Ser residues that are part of predicted recognition sites for casein kinase 

II, we synthesized a variant of CBP(20-44) peptide to contain phosphoserine at the 23 

and 32 positions.5,6 Subsequent FP assays determined that this phosphorylated variant 

bound to CBP KIX with a nearly 2-fold increase in binding affinity (KD of 19 ± 2 µM for the 

doubly phosphorylated variant compared to 35 ± 2 µM), suggesting that phosphorylation 

may play a role in regulating this interaction. Interestingly, this doubly phosphorylated 

Figure A.2. CBP-derived peptides bind to the KIX domain of CBP. The sequence 
of CBP from residues 20-55 is shown; Acidic (red) and hydrophobic (green) residues 
are indicated. CBP(20-44) and CBP(20-55) bind to the CBP KIX domain with 
dissociation constants of 37 ± 2 µM and 49 ± 6 µM, respectively, by fluorescence 
polarization. Data reported are average and standard deviations of triplicates. 
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CBP(20-44) also bound Med25 with an affinity that was 4-fold tighter than the 

non-phosphorylated variant (KD of 0.25 ± 0.01 µM compared to 1.1 ± 0.1 µM). 

 

Following confirmation that CBP(20-44) bound to CBP KIX in FP experiments, 1H-

15N-HSQC experiments were performed to determine the binding location of the peptide 

ligand towards CBP KIX. Acetylated CBP(20-44) peptide was titrated into 15N-labeled 

CBP KIX at 0, 1, and 2 equivalents of peptide relative to protein. This titration 

demonstrated dose-dependent chemical shift perturbations of backbone amide bonds of 

Figure A.3. Chemical shift perturbations within CBP KIX induced by 
complexation with CBP(20-44). The magnitude of chemical shift perturbations, in 
ppm, are shown upon complexation of 15N CBP KIX with two equivalents CBP(20-44). 
Residues that shift 1-2 standard deviation (SD) above the mean (light blue) and >2 SD 
above the mean (dark blue) are considered to be significantly affected by CBP(20-44).  

C B P  K IX  -  C B P (2 0 -4 4 ) c o m p le x

R e s id u e


 C

h
e

m
ic

a
l 

S
h

if
t 

(p
p

m
)

5
9

0

5
9

5

6
0

0

6
0

5

6
1

0

6
1

5

6
2

0

6
2

5

6
3

0

6
3

5

6
4

0

6
4

5

6
5

0

6
5

5

6
6

0

6
6

5

6
7

0

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

1  S D

2  S D



189 
 

selected CBP KIX residues (Figures A.3). These dose-dependent chemical shifts 

demonstrated that CBP(20-44) binds specifically to CBP KIX; additionally, these 

experiments demonstrated that CBP(20-44) does not affect the structural integrity and 

fold of the protein. Furthermore, these data demonstrated that CBP(20-44) binds 

selectively to the MLL site of CBP KIX, evidenced by the significant chemical shift 

perturbation of several residues (I611, F612, E636, K659, K662, E663) known to be 

important for the KIX-MLL interaction(Figure A.4).7 

 

As demonstrated, the minimally defined sequence of CBP that interacts with 

Med25 AcID mimics a canonical TAD (high concentration of acidic and hydrophobic 

amino acids across a predicted α-helix) and makes a specific contact with the MLL site of 

Figure A.4. Chemical shift perturbations induced by CBP(20-44) mapped on CBP 
KIX. Mapped onto the structure of CBP KIX (4I9O) are chemical shift perturbations 
upon binding to 2 eq. CBP(20-44) peptide. Residues that are perturbed by 1-2 
standard deviations (SD) (pink) and >2 SD (red) are considered to be significantly 
affected by CBP(20-44). 

MLL site pKID site 
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CBP KIX. It is possible this interaction between CBP(20-44) and the KIX domain 

represents a novel mechanism through which CBP could be regulated. As described, 

phosphorylation of the CBP(20-44) peptide sequence at Ser23 and Ser32 caused a 2-fold 

increase in its affinity for the KIX domain. Both Ser23 and Ser32 are predicted to be 

phosphorylation sites for casein kinase II, a protein that is activated by Wnt signaling, a 

common dysregulated signaling pathway in cancer.8,9 It is hypothesized that 

phosphorylation of Ser23 and/or Ser32 by casein kinase II would increases the affinity of 

the N-terminus of CBP for the MLL site of the KIX domain (Figure A.5). This intra- or 

inter-molecular PPI and subsequent inhibition of the MLL site of the KIX domain would 

decrease the transcriptional output of MLL and other activators that target this site of the 

KIX domain.  
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Figure A.5. Model for the CBP-CBP interaction. It is proposed that the KIX domain 
of CBP is in a binding equilibrium with the N-terminus of CBP and activators. (A) Under 
normal conditions, the higher relative affinities of KIX-activator interactions cause the 
equilibrium to reside in favor of KIX-activator interactions. (B) Phosphorylation of 
Ser23/Ser32 is proposed to shift the equilibrium towards the KIX-CBP interaction. 
Note that the indicated ratios between KIX-activator and KIX-CBP are arbitrary; Their 
purpose is to demonstrate the relative difference between the two scenarios. 
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B. An identified intramolecular salt bridge within Med25 AcID is likely important for 

Med25 function and stability 

As is the case with many activator-coactivator interactions, electrostatic 

interactions have been demonstrated as a primary binding determinant for Med25 AcID 

and its protein-protein interactions (PPIs).10 It has been demonstrated that ten-fold 

increase the salt concentration of buffers used in fluorescence polarization (FP) 

experiments results in > 30-fold decreases in the binding affinity of VP16 peptides for 

Med25 AcID. Additionally, in Chapter 2, the introduction of negative charge within the H1 

and H2 binding sites of Med25 disrupted the formation of Med25-peptide complexes. 

These data are consistent with Med25 AcID being dependent upon electrostatic 

interactions.  

With this dependence on electrostatic contacts, it is likely that the protein itself 

would contain electrostatic salt bridges to assist with structural stability. Indeed, published 

NMR structures indicated that D529 and R466 are oriented such that they might form a 

salt bridge.11–13 It should be noted that the distance between these two residues is beyond 

that of a traditional salt bridge interaction however, this region of Med25 AcID is dynamic 

and flexible and a crystal structure of Med25 has not been determined. It was 

hypothesized that the addition of a second mutation, D529R to R466D Med25 AcID, could 

partially recover WT Med25 AcID function. This would invert the proposed salt bridge 

interaction between residues 466 and 529.  
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Following expression and purification of R466D/D529R Med25 AcID, FP assays 

and CD-observed thermal denaturation experiments were performed (Figure 2.16). 

R466D/D529R bound H2-interacting peptides VP16(467-488), CBP(20-44), and to 

ATF6α(40-66) with binding affinities of 2.3 µM, 4.8 µM, and 3.6 µM, respectively. These 

binding affinities are all >40% tighter than corresponding affinities towards R466D 

(VP16(467-488) - 3.7 µM, CBP(20-44) - 11.3 µM, ATF6α(40-66) - 10.2 µM) and likely 

represent a partial recovery of WT binding function. Completely regained WT function 

would have been unlikely, as the double mutant R466D/D529R does still place a negative 

charge in the middle of the presumed H2 binding site. CD-observed thermal denaturation 

experiments also supported the presence of a 466-529 salt bridge interaction. The single-

Figure A.6. Intramolecular salt bridge within Med25 AcID. (A) D529 and R466 are 
oriented to potentially form a stabilizing salt bridge between α1 and α3. (B) Binding 
affinities of Med25 variants against H2 site-interacting peptides, as measured by FP. 
Two sets of experiments were performed in triplicate. (C) Melting temperatures of 
Med25 variants determined by CD-observed thermal denaturation. 
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point R466D mutation caused a 19% decrease in melting temperature compared to WT 

Med25 AcID (57.0 ± 2.0 °C vs. 70.8 ± 1.3 °C); Restoration of the putative salt bridge with 

the R466D/D529R mutation restored 39% (+5.4 °C compared to R466D) of the lost 

thermal stability. 
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C. Garcinolic acid is an effective but non-selective inhibitor of Med25 AcID   

Identification and initial selectivity screening of garcinolic acid 

Garcinolic acid was discovered as a hit molecule in a competition-based FP high-

throughput screening effort against the Med15 KIX-Pdr1 PPI performed using a small 

molecule library maintained by the Center for Chemical Genomics at the University of 

Michigan (Meg Breen, University of Michigan). During selectivity screening of this 

molecule, it was found to be a pan-inhibitor of several disparate coactivator motifs 

including, most notably for this thesis, Med25 AcID (Figure A.7 and Table A.1). 

 

Figure A.7. Garcinolic acid targets several transcriptional coactivation domains. 
Structures of related – cgMed15 KIX (PDB 4D7X), scMed15 KIX (PDB 2K0N), CBP 
KIX (PDB 2AGH) – and unrelated – Med25 AcID (PDB 2XNF) – proteins whose 
function are inhibited by garcinolic acid. 
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Coactivator domain TAD peptide IC
50
 

scMed15 KIX Pdr1 27 µM 

cgMed15 KIX Pdr1 59 µM 

CBP KIX MLL 3.3 ± 0.9 µM 

CBP KIX c-Myb 4.5 ± 1.0 µM 

p300 KIX MLL 4.6 ± 1.4 µM 

p300 KIX c-Myb 7.2 ± 1.8 µM 

Med25 AcID ATF6α 3.4 ± 0.6 µM 

Med25 AcID VP16 H1 4.9 ± 1.0 µM 
  

 While garcinolic acid was discovered using a HTS of Saccharomyces cerevisae 

(sc) Med15 KIX and Candida galbrata (cg) Med15 KIX, it is more potent against Med25 

AcID and the KIX motifs of CBP and p300. Garcinolic inhibited the Med25 AcID and 

CBP/p300 KIX domains with single-digit micromolar IC50 values in FP assays. While this 

molecule does not offer selectivity between CBP/p300 KIX and Med25 AcID, it did provide 

a non-covalent and potent inhibitor of AcID function in vitro that could be leveraged for 

use in downstream cellular experiments to study AcID function in cellulo and in vivo. 

However, prior to cellular study, we wanted to establish whether garcinolic acid could 

selectively target a single site of either Med25 AcID and CBP/p300 KIX, as potential 

selectivity differences between unique activators of either coactivator domain would be 

beneficial during in cellulo experimental design and interpretation. 

 As described previously, both the CBP/p300 KIX and Med25 AcID motifs contain 

multiple binding sites responsible for interactions with unique transcriptional activators. 

Table A.1. Summary of the inhibitory effects of garcinolic acid. Half maximal 
inhibitory constants of garcinolic acid for tested coactivator-activator PPIs in FP 
assays. (Performed with Meg Breen and Sam DeSalle) 
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Additionally, both the CBP KIX and Med25 AcID domains share at least one common in 

vitro interacting partner, MLL (Data not shown). To provide secondary confirmation of 

these protein-ligand interactions and to determine the binding mode of garcinolic acid for 

each protein, 1H 15N-HSQC and PrOF NMR of the Med25 AcID-garcinolic acid and CBP 

KIX-garcinolic acid interactions were pursued. It was thought that these methodologies 

could test the hypothesis that garcinolic acid functions to potently inhibit two structurally 

distinct coactivator motifs by mimicking a transcriptional activator and whether garcinolic 

acid selectively targets singular sites of both proteins.  

 

Biochemical characterization of the Med25 AcID-garcinolic acid interaction 

1H-15N-HSQC experiments were performed in which garcinolic acid was 

complexed with 15N-labeled Med25 AcID at 0, 1, 2, and 4 equivalents of small molecule 

relative to protein. This set of experiments demonstrated dose-dependent chemical shift 

perturbations and significant broadening of resonances that represented many Med25 

AcID residues (Figures A.8, A.9, A.10). As with previous HSQC experiments with Med25 

AcID, peaks in all of the collected spectra were assigned to specific residues using both 

a previously published NMR assignment11 and a de novo assignment performed by Andy 

Henderson (University of Michigan). Residues that demonstrated a dose-dependent and 

statistically significant (>1 standard deviation above the mean) chemical shift perturbation 

were almost exclusively located within the H2 site of Med25, indicating that garcinolic acid 

likely bound within this region of the protein. Specifically, significantly perturbed residues 

were located across the lengths of β5, β4, β7, and β6, along α1, and near the C-terminal 

end of α2 (L457, G462, L464, R466, M470, F473, H474, M490, G496, M512, L514, K520, 
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F522, M523, N535). In addition to resonances that were significantly perturbed, several 

residues were completely broadened into noise at all tested concentrations of garcinolic 

acid. These residues – 471, 472, 513, 516, 524, and 529 – were within the ‘bottom’ of the 

H2 site (away from α2) except for D529, located on the loop between β7 and α3. 

Collectively, these experiments demonstrated that garcinolic acid is likely making direct 

contact with Med25 AcID at the portion of H2 face away from α2. The large number of 

resonances that are broadened into noise, even at the lowest concentration of garcinolic 

acid, suggested a highly specific and tight affinity interaction. 

 

Figure A.8. 1H-15N-HSQC NMR spectra of Med25 AcID-garcinolic acid complexes. 
Overlay of the HSQC spectra of 15N-labeled Med25 AcID with DMSO (pink), one 
equivalent of garcinolic acid (dark blue), two equivalents (light blue), and four 
equivalents (black) is shown. 
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Figure A.9. Chemical shift perturbations within Med25 AcID induced by 
saturating garcinolic acid conditions. The magnitude of chemical shift 
perturbations, in Hz, are shown upon saturation of 15N Med25 AcID with four eq 
garcinolic acid. Residues that shift 1-2 standard deviation (SD) above the mean (light 
blue), >2 SD (dark blue), and that broaden into noise (red) are significantly perturbed. 
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Figure A.10. Chemical shift perturbations induced by garcinolic acid mapped on 
Med25 AcID. Mapped onto the structure of Med25 AcID are chemical shift 
perturbations upon binding to four eq. garcinolic acid. Increasing shades of red 
indicate a gradient of increasing chemical shift perturbations. Red balls indicate 
residues that show complete peak broadening.    
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PrOF NMR spectra of 3FY Med25 AcID in complex with increasing concentrations 

of garcinolic acid (0, 0.1, 0.5, 1 and 2 equivalents of small molecule relative to protein) 

were collected (Figure A.11). As anticipated based on the HSQC results, garcinolic acid 

affected 3FY Med25 similarly to other H2 site ligands (e.g. ATF6α(40-66) peptide) with 

perturbations of all four Tyr residues. However, not all residues shifted in an apparent 

dose-dependent manner. Y528 and Y432 behaved in a typical fashion for Med25 AcID 

ligands with incremental chemical shift perturbations as garcinolic acid was increasing 

added into 3FY Med25 AcID. The Y487/Y515 pair did not appear to share this typical 

behavior. These two resonances were slightly broadened at 0.1 and 0.5 eq. garcinolic 

acid but only Y487 demonstrated relatively minor (for this resonance) chemical shift 

perturbations. Then, starting at 1 eq. garcinolic acid, both the Y487 and Y515 resonances 

demonstrated large upfield perturbations. These results could represent two discrete 

binding modes for garcinolic acid interacting with Med25 AcID, indicating that garcinolic 

acid might adopt multiple orientations with the H2 site or that garcinolic acid might bind 

with a 2:1 stoichiometry at the H2 site. 
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Together, HSQC and PrOF NMR of the Med25 AcID-garcinolic acid interaction 

suggested that garcinolic acid bound tightly and specifically to the H2 site of Med25 AcID. 

This would indicate that this molecule is capable of orthosteric inhibition of the H2 site. 

The ability of garcinolic acid to inhibit the Med25-VP16 H1 PPI is either a result of 

orthosteric inhibition of VP16 H1 in instances when this peptide is bound at the H2 site or 

allosteric inhibition of the H1 site. However, a lack of HSQC chemical shift perturbations 

in the H1 site makes the latter less likely than the former. Orthosteric inhibition of VP16 

Figure A.11. PrOF NMR of 3FY Med25 AcID in complex with garcinolic acid. 
Spectral analysis of 3FY Med25 AcID in presence of increasing concentrations of 
garcinolic acid demonstrated that garcinolic acid behaves similarly to a H2 site peptide. 
However, differences in the dose-dependence of Y528/Y432 and Y487/Y515 suggest 
that two garcinolic acid molecules may bind a single Med25 AcID protein. 
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H1 at the H2 site would not be surprising considering mutagenesis experiments that 

suggested VP16 H1 bound at both the H1 and H2 sites. 

 

Biochemical characterization of the CBP KIX-garcinolic acid interaction 

 Concurrent with the definition of the Med25-garcinolic acid interaction, similar 

experiments were performed to characterize the CBP KIX-garcinolic acid interaction. 1H-

15N-HSQC experiments were performed in which garcinolic acid was complexed with 15N-

labeled CBP KIX at 0, 0.25, 0.5, and 1.5 equivalents of small molecule relative to protein. 

This data provided dose-dependent chemical shift perturbations in resonances 

corresponding to several CBP KIX residues (Figures A.12, A.13, A.14). Peaks in each 

ofthe collected spectra were assigned to specific residues using a previously published 

NMR assignment16.  

 

Figure A.12. 1H-15N-HSQC NMR spectra of CBP KIX-garcinolic acid complexes. 
Overlay of the HSQC spectra of 15N-labeled Med25 AcID with DMSO (black), 0.25 eq. 
of garcinolic acid (light blue), 0.5 eq. (light blue), and 1.5 eq. (black) is shown. 
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Figure A.13. Chemical shift perturbations within CBP KIX induced by saturating 
garcinolic acid conditions. The magnitude of chemical shift perturbations caused by 
complexation of 15N CBP with 1.5 eq. garcinolic acid. Residues that shift 1-2 (light blue) 
and >2 standard deviations (dark blue) are significantly perturbed. 
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The HSQC NMR titration demonstrated that garcinolic acid induced significant 

chemical shift perturbations within the MLL site of CBP KIX (I611, F612, R624, I660, and 

E663). Critically, while there are minor chemical shift perturbations at the pKID/c-Myb site, 

zero residues within this site of CBP KIX are significantly perturbed. These data are 

consistent with garcinolic acid binding orthosterically at the MLL site. Interestingly, a few 

residues that are 90° from the MLL site at a cleft formed by α1 and α2 – V608, L620, and 

A630 – are also significantly perturbed at the highest tested garcinolic acid condition (1.5 

eq. small molecule). These perturbations could be induced by allosteric or through-

molecule effects induced by garcinolic acid at the MLL site. Alternatively, this region of 

CBP KIX could represent a second binding location. This would suggest either a 1:1 

binding model in which both the MLL site and this binding site share a similar affinity for 

Figure A.14. Chemical shift perturbations induced by garcinolic acid mapped on 
CBP KIX. Mapped onto the structure of CBP KIX (2AGH) are chemical shift 
perturbations upon binding to 1.5 eq. garcinolic acid. Increasing shades of red indicate 
a gradient of increasing chemical shift perturbations. Garcinolic acid significantly 
affects residues within the MLL site and are 90° from the MLL site at a α1/α2 cleft.  
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garcinolic acid or a 2:1 binding model in which a second molecule binds at this site before, 

or after, a binding event at the MLL site.  

 PrOF NMR spectra of 3FY CBP KIX in complex with increasing concentrations of 

garcinolic acid (0, 0.1, 0.5, 1 and 2 equivalents of small molecule relative to protein) were 

collected (Figure A.15). 3FY CBP KIX contains five Tyr residues, all of which can be 

resolved in PrOF NMR spectra. Critically, for this protein-ligand interaction, only one of 

these Tyr residues, Y631, is in the proximity of the MLL site. Y631 is located on α2 of 

CBP KIX and sits near the base of the MLL site. In PrOF experiments, as expected, none 

of the other Tyr residues is affected by the presence of garcinolic acid, consistent with the 

molecule not binding near or within the pKID/c-Myb site. However, interestingly, garcinolic 

acid also did not perturb Y631 at 0.1 or 0.5 eq. relative to Med25 AcID and only provided 

a mild perturbation at 1 eq. molecule. At 2 eq. garcinolic acid, the chemical shift of Y631 

was significantly perturbed. This delayed perturbation of Y631 could indicate that 

garcinolic acid either binds at the ‘top’ of MLL near the loop between α1 and α2 or at the 

‘third’ site 90° from the MLL site at the cleft formed by α1/α2 (Figure A.16). Y631 is next 

to A630, one of the significantly perturbed residues in HSQC NMR experiments that 

residues within this alternative site. Note that the demonstrable loss in signal-to-noise 

observed in the PrOF NMR spectra of 3FY CBP KIX in complex with 2 eq. garcinolic acid 

is thought to have resulted from precipitation of protein during the experiment, which 

would thereby increase the relative ratio of garcinolic acid to protein as data was being 

collected.  
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Figure A.15. PrOF NMR of 3FY CBP KIX in complex with garcinolic acid. Spectral 
analysis of 3FY CBP in presence of increasing concentrations of garcinolic acid 
demonstrated a significant, dose-responsive chemical shift perturbation of Y631 
(located in proximity of the MLL site). None of the Tyr residues in proximity of the pKID 
site were perturbed, consistent with the HSQC NMR data. 
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The NMR experiments with CBP KIX and garcinolic acid demonstrated that the 

molecule binds to the protein at either the MLL site and that a second binding event could 

occur at the putative ‘third’ site located 90° from the MLL site in a cleft at α1/α2. This result 

suggests that garcinolic acid is an orthosteric inhibitor of the KIX-MLL PPI and an 

allosteric inhibitor of the KIX-cMyb PPI.  

 

Conclusions 

 Garcinolic acid is a potent, single-digit micromolar inhibitor of the AcID domain of 

Med25 AcID and the KIX domain of Med15, CBP, and p300. Because these two domains 

are structurally divergent, the modes of recognition for garcinolic acid interactions were 

desired. Subsequent NMR data suggest that garcinolic acid likely interacts with unique 

sites of both Med25 AcID (H2 site) and CBP KIX (MLL site). However, these data also 

demonstrate that garcinolic acid likely binds both proteins in multiple orientations and/or 

Figure A.16. Garcinolic acid likely binds near the MLL site within CBP KIX. 
NMR methodologies demonstrates that garcinolic acid causes significant chemical 
shift perturbations near the MLL site. Residues perturbed in HSQC NMR 
experiments are shown in red; Y631, the only 3FY residue perturbed in PrOF NMR, 
is depicted as sticks in blue. 
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with >1:1 stoichiometry. These modes of recognition suggest that garcinolic acid, a rigid 

and negatively charged molecule, likely will not allow for selective inhibition of unique 

Med25 AcID functions in cellular experiments due to off-target effects and nonspecific 

binding interactions.  
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D. Follow-up of a Natural Product Extracts screen against Med25-ERM 

Small molecules that target the coactivator Med25 AcID and its protein-protein 

interaction (PPI) are desired to allow for the study of Med25 AcID function in cellular and 

disease contexts. Natural products demonstrate, as evidenced by the examples of 

norstictic acid and the 34913 lipopeptide as described in this dissertation, a large class of 

molecules that exhibit chemical properties (e.g. conformational plasticity, structural 

complexity) that are useful in targeting coactivator-activator complexes that typically 

involve large surface areas and low binding affinity. To discover novel natural product 

inhibitors of this complex, two former graduate students in the Mapp lab, Steve Sturlis 

and Paul Bruno, designed a fluorescence polarization-based competition assay to screen 

the Med25-ERM PPI against a Natural Product Extracts (NPE) library (33,400 total 

Extracts) maintained by the Center for Chemical Genomics (Life Sciences Institute, 

University of Michigan). This highly diverse chemical library of partially fractionated 

extracts has been cultivated from a collection of sediments, cyanobacteria and sponges 

from across the world. Note that a single extract contains a majority of the organic matter 

produced by a single microbe (i.e. one extract ≠ one compound). A primary screen of the 

full NPE library gave a Z’ score of 0.78. Obvious false positives (previously known 

reactive/fluorescent extracts) were eliminated from the initial hits prior to subjecting those 

initial hits to a dose-response assay and a selectivity filter designed to eliminate 

compounds that inhibited unrelated PPIs, other activator-coactivator PPIs, and protein-

DNA interactions. At the conclusion of this screening strategy, 332 natural product 

extracts were validated hits that required further study.  
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Secondary confirmation of inhibitory activity of validated hit extracts   

Prior to isolation of the inhibitory molecules-of-interest, validated hit extracts must 

be reproduced for secondary confirmation of their activity. This is necessary to confirm 

that the activity demonstrated in the primary screen was not a result of degradation of the 

sample and that the inhibitory molecule-of-interest can be reproducibly biosynthesized by 

the producing microbial strain.  

 

 Of the 332 inhibitory extracts obtained from the screening strategy, thirty-six were 

selected for initial follow-up (Table A.2). This subset was chosen to maximize potential 

biological diversity as related to location of the collection (i.e. Red Sea, Costa Rica, etc.), 

the culture medium required for the organism to produce secondary metabolites, and the 

Table A.2. Natural Product Extracts selected for initial follow-up after the NPE 
primary screen. (Table prepared by Steve Sturlis)  
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degree of inhibitory activity against the Med25 PPI interface. Additionally, preference was 

given to extracts that had been rarely, if ever, identified previously in other high-

throughput screening efforts against this Extracts library. For each of the thirty-six 

selected extracts, the producing microbial strain were individually re-grown in an identical 

manner (number of days, temperature, media conditions) as the original sample that gave 

a validated hit in the primary screen (Figure A.17). These microbial growths all started 

from frozen spore stocks maintained by Pam Schultz and the Sherman lab. Using the 

spore stocks, microbial strains were streaked onto oatmeal plates for 3-5 days before 

transferring the microbe to 3 mL ISP2 media for 5-7 days. These cultures were then 

transferred to 100 mL of media for growth and secondary metabolite production (8-30 

days at 37 °C. At the end of the growth, microbial strains were centrifuged and XAD-16 

resin was added to the supernatant. After incubation with the supernatant, the XAD-16 

resin, impregnated with all of organic material produced by the microbe, was sequentially 

extracted with two solvent systems – 50:50 methanol:acetone, and dichloromethane. Of 

the thirty-six selected strains, thirty-one were successfully re-grown and their organic 

material extracted; The other five microbial strains did not start to grow after initial 

streaking out on oatmeal plates. 
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After successful culturing and extraction of each microbial strain, a FP competition 

assay against Med25-ERM, as performed in the initial HTS, was performed. Additionally, 

a previously validated Med25-dependent luciferase reporter assay, as described in 

Chapter 4, was performed to test the ability of extracts to inhibit Med25 AcID function in 

a cellular context (Figure A.18). Collectively, these data demonstrated that fourteen of the 

originally chosen thirty-six unique extracts exhibit inhibitory activity in vitro and in cellulo. 

(Table A.3). These strains represented excellent starting points for large-scale growths 

and bioassay-guided fractionation to identify active compounds. 

Figure A..17 Workflow for the re-growth of NPE strains from the primary screen. 
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Medium-scale growth and fractionation of selected microbial strains 

 Five of the microbial strains that demonstrated inhibitory activity in vitro and in 

cellulo following re-growth on small-scale were selected for medium-scale growth and 

subsequent bioassay-guided fractionation for isolation of active compounds (Table A.4). 

Figure A.18 Inhibitory activity of selected Natural Product Extract Strains in 
Med25-dependent luciferase assay.  All successfully re-grown strains were tested in 
a Med25-dependent luciferase reporter assay; A selection of the data are shown 
above. The dotted line indicates the negative control; Notably, the NPR strain 91085 
demonstrated excellent inhibitory activity. (Performed with Paul Bruno) 
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Table A.3 Analysis of inhibitory activity of re-grown NPE strains. Fourteen of 
thirty-one NPE, highlighted in yellow, demonstrated good inhibition in vitro (FP assays) 
and in cellulo (luciferase reporter assay).  



214 
 

 

 Near the end of microbial growth, on the penultimate day, XAD-16 resin bags (20 g 

per 1 L culture) were added to growing cultures. After the growth, these resin bags were 

extracted with three organic solvents – acetone, methanol, and dichloromethane – to 

remove the organic material contained within. Extracts were then subjected to 

fractionation using C18 column chromatography. A stepwise gradient of water:acetonitrile 

(100:0, 90:10, 75:25, 60:40, 45:55, 30:70, 15:85, 0:100) was used to collect eight fractions 

that were subsequently subjected to FP inhibition assays (Table A.5).  

 

FP assays of C18 fractions demonstrated that discrete fractions of each NPE 

contained activity against Med25-ERM. In particular, the 90:10 and 45:55 fractions of NPE 

strain 34908 (101% and 42% inhibition, respectively, at 0.75 mg/mL), the 90:10 and 75:25 

fractions of NPE strain 41445 (96% and 60% inhibition, respectively, at 0.75 mg/mL), and 

the 100:0, 90:10, 75:25, 60:40 fractions of NPE strain 91085 (51%, 46%, 57%, and 46% 

Table A.4 NPE strains grown at medium-scale. Growth conditions are provided. 
Note that 91085 was co-cultured with Rhoddococcus after one day of microbial growth; 
10 mL of Rhoddoccus liquid culture (high OD) was added per 1 L of 91085 culture. 

Table A..5 Inhibitory activity of C18 fractionated NPE strains. FP assays were 
performed to test the activity of C18 fractions of each strain grown on medium-scale to 
inhibit the Med25-ERM PPI. Fractions were tested at three concentrations of organic 
material (1.5 mg/mL, 0.75 mg/mL, 0.38 mg/mL) in duplicate. Shown below are the 
average percent inhibition at 0.75 mg/mL organic material. 
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inhibition, respectively, at 0.75 mg/mL) demonstrated sufficiently high inhibitory activity to 

encourage further purification by HPLC. 

 Analytical HPLC runs of each of the aforementioned C18 fractions were performed 

to assess the complexity/total number of potential compounds contained within. These 

analytical runs suggested that the 90:10 and 75:25 fractions of NPE strain 91085 could 

be readily separated to produce purified compounds. HPLC runs of the C18 fractions of 

34908 and 41445 appeared to be complex enough that they were initially passed over to 

focus on purification of 91085. In addition to the relative lack of complexity within the 

HPLC analytical runs, the 91085 strain was prioritized because it was the most potent 

NPE strain in the Med25-dependent luciferase assay performed during the secondary 

validation of hits.  

 

Investigation of NPE strain 91085 

 The medium-scale culture (10.5 L) of 91085 was further fractionated after C18 

chromatography using HPLC. Many different HPLC methods and columns were 

attempted throughout the entirety of this investigation. To simplify the discussion, a small 

fraction of all attempted experiments are described below.  

 The C18 75:25 fraction was purified using a gradient of 10-30% acetonitrile over 

15 min followed by 30-40% acetonitrile over 30 min (7 mL/min) using a C18 preparative 

column on a Beckman HPLC. Collected fractions were tested for inhibition against Med25 

(Figure A.19) to discover that two peaks contained activity and were carried ahead into 

further purifications. As an example, Fraction 22 from that HPLC purification was further 

fractionated using a gradient of 15-17.5% acetonitrile (0.1% formic acid) over 20 min 
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followed by 17.5-35% acetonitrile (0.1% formic acid) over 10 min (4 mL/min) with a C18 

semi-preparative column on a Beckman HPLC. (Figure A.20)  

 

Figure A.19. HPLC purification of 91085 C18-75:25. Representative HPLC 
chromatogram of 91085 C18-75:25. Beckman HPLC; C18 preparative column; 
Gradient - 10-30% acetonitrile over 15 min followed by 30-40% acetonitrile over 30 
min (7 mL/min); Peaks indicated by yellow arrows (Fract. 18-20 and 22-23) were active 
against Med25-ERM PPI, as demonstrated in the supplied table. 
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 As indicated in Figure A, the purification of 91085 C18-75:25/HPLC-22 produced 

three active peaks. Each of these was tested for inhibition in the Med25-dependent 

luciferase assay that had been previously utilized successfully against crude NPE 

extracts (Figure A.21). One of these partially purified fractions, termed “91085 C18-

75:25/HPLC-22/HPLC-15.5 min”, demonstrated dose-responsive inhibition of Med25 

function within this assay, suggesting that an active molecule was contained within this 

fraction. Unfortunately, at this stage, after a C18 purification and two sequential HPLC 

purifications, there was a very small amount of this partially purified material, much less 

than a milligram and not enough to collect a full suite of NMR data for structural 

Figure A.20. HPLC purification of 91085 C18-75:25/HPLC-22. Representative 
HPLC chromatogram of 91085 C18-75:25/HPLC-22 (Fraction 22 collected in Figure 
A.). Beckman HPLC; C18 semi-preparative column; 15-17.5% acetonitrile (0.1% 
formic acid) over 20 min followed by 17.5-35% acetonitrile (0.1% formic acid) over 10 
min (4 mL/min); Peaks indicated by yellow arrows (8 min, 9 min, 15.5 min) were active 
against Med25-ERM PPI, as demonstrated in the supplied table. 
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elucidation. In order to follow up this active fraction, it was necessary to grow more of the 

91085 strain and on a much larger scale.  

 

A 40 L growth was performed to generate more 91085 extract to enable isolation 

of active molecules in higher quantities. This growth was performed as before, although 

it is possible that there may have been slight differences in water composition due to 

seasonal variation. After the growth, extraction, and C18 fractionation, the 75:25 fraction 

from C18 was subjected to similar HPLC methods as had been previously used to purify 

91085 C18 75:25. Unfortunately, the composition of the organic compounds within this 

C18 fraction appeared to be rather different than the same fraction from the medium-scale 

growth (Figure A.22). This suggested that the production of 91085 is not particularly 

reproducible and hinted that problems might lie ahead. 

 

Figure A.21 Cellular activity of 91085 C18-75:25/HPLC-22/HPLC-15.5 min. Partially 
purified compounds from 91085 that have undergone C18 fractionation and two HPLC 
purifications were tested in a Med25-dependent luciferase assay. 91085 C18-
75:25/HPLC-22/HPLC-15.5 min (See Figure A) demonstrated dose-dependent 
inhibition of luciferase production. 
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 Instead of focusing on the C18 75:25 fraction from the large-scale growth, further 

efforts sought to isolate active compounds from the C18 60:40 fraction. Additionally, to 

decrease the added sample complexity that was being demonstrated by the large-scale 

growth, all active C18 fractions were fractionated using size-exclusion chromatography 

(SEC) prior to continued HPLC purifications. Following this SEC purification, the C18 

60:40 fraction from the large-scale was purified by HPLC. After several trials, this fraction 

was purified using an isocratic method (15% acetonitrile) with a C18 semi-preparative 

column on a Shimadzu HPLC. A large quantity of material (~18 mg) was partially purified 

as “28.5 min”. A subsequent HPLC purification of this peak using an isocratic method 

(35% methanol) with a C18 semi-preparative column on a Shimadzu HPLC provided a 

purified molecule, termed “91085 C18-60:40/HPLC-"28.5min"/HPLC-137” (Figure A.23).  

Figure A.22 HPLC purifications of 91085 C18-75:25 are not reproducible from 
one growth of 91085 to the next. 91085 was grown on large-scale (40 L) to acquire 
more material for compound isolation; HPLC analysis of 91085 C18-75:25 after this 
growth is very different than after first medium-scale (10.5 L) growth (See Figure A) 
Beckman HPLC; C18 preparative column; Gradient - 10-30% acetonitrile over 15 min 
followed by 30-40% acetonitrile over 30 min (7 mL/min);  
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The molecule was sufficiently pure and in high enough quantity to allow for a 

complete set of NMR data (13C, 1H, HSQC, HMBC, COSY) to be collected (Figure A. 24). 

Unfortunately, however, this molecule was a poor inhibitor of the Med25-ERM PPI with 

Figure A.23 Sequential HPLC purifications of 91085 C18-60:40. (A) Representative 
HPLC purification of 91085 C18-60:40. Isocratic method (15% acetonitrile) with C18 
semi-prep column on Shimadzu HPLC. Active peaks are indicated by yellow arrows. 
(B) HPLC purifications of 91085 C18-60:40/HPLC-“28.5min” provided a pure molecule. 
Isocratic method (35% methanol) with C18 semi-prep column on Shimadzu HPLC. 



221 
 

an IC50 of 818 ± 129 µM. At that point, the NMR data was left to be unanalyzed and 

different avenues were pursed to identify potent molecules from 91085. 

 

 The general story of 91085 C18-60:40/HPLC-"28.5min"/HPLC-137 played out two 

additional times. The exact reasons (e.g. PEG contamination of unknown origin) differed 

but the end result remained the same. The only identified molecules, of which four have 

been sufficiently purified, have proven to be poor inhibitors of Med25 AcID function. It 

should be noted that among those four molecules, complete NMR data sets and high 

resolution mass spectroscopy for three, termed 91085 C18-60:40/HPLC-

"28.5min"/HPLC-137, KG-58, and KG-59, have been collected. Structural elucidation of 

these molecules could be incredibly beneficial in determining whether 91085 should be 

further pursued. It is possible that the discovered molecules are analogues of the actual 

Figure A.24 Characterization of 91085 C18-60:40/HPLC-"28.5min"/HPLC-137. A 
pure molecule was identified; NMR and mass spectroscopy data was collected but not 
fully analyzed. This identified molecule demonstrated weak inhibition with an 
IC50 = 818 ± 129 µM against the Med25-ERM PPI.  
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inhibitor(s) contained within Med25 AcID. To highlight this possibility, consider that 

norstictic acid is potent inhibitor of Med25 AcID (IC50 ~2.5 µM) but that a closely related 

compound, stictic acid, has no inhibitory activity against Med25 AcID (IC50 >> 250 µM) 

(Figure A.25) 

 

 

 

 

 

 

 

  

Figure A.25 Comparison of stictic acid and norstictic acid. Methylation of a phenol 
group is the only structural difference between a potent Med25 inhibitor (norstictic acid) 
and an inactive molecule. 

stictic acid  norstictic acid  
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